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Preface

Model-Driven Development (MDD) has become an important paradigm in soft-

ware development. The approach claims to provide a solution for systematic and 

efficient software development for the highly complex systems developed now- 

adays. It uses models, i.e. abstract representations of certain aspects of a system, 

as primary artifacts in the development process. Models are often visual models, 

like Unified Modeling Language (UML) models, but can also be represented in 

textual formats like the Extensible Markup Language (XML). A model-driven  

development process usually makes use of different models on different levels of 

abstraction. Model transformations are used to transform a model (semi) 

automatically into another (usually less abstract) model and finally into implemen-

tation code. MDD provides a large number of powerful concepts and tools to deal 

with models, meta-models, and model transformations.  

Model-driven development of user interfaces applies the principles of MDD to 

the target domain of user interfaces. Modern user interface development requires 

the usage of extensive pre-fabricated software libraries and frameworks and has a 

strong tendency that the code becomes rather platform-specific. Therefore, MDD 

is a highly interesting technology for user interface development. MDD can help 

to hide the complexity of libraries and frameworks by using adequate abstractions, 

and MDD can achieve some degree of platform-independence through abstract in-

terface models. The fact that different models of the same system may describe 

different views of the same system is also helpful, for instance, to separate the 

content (what is displayed) from the design (how it is displayed) into distinct 

models. Also for the emerging the paradigm of ubiquitous computing MDD is an 

interesting technology. Ubiquitous computing requires user interfaces which run 

on diverse target platforms in a consistent way, can adapt at runtime to the current 

application context or even migrate at runtime between different devices. Plat-

form-independent, abstract models provide an excellent base to address such  

requirements. 

The topics discussed in this book are intended to give a broad overview of the 

currents state of research in MDD for user interface development, in particular for 

advanced user interface concepts. Topics include, e.g., foundations and principles 

of models required for modeling (specific aspects of) advanced or non-standard 

user interfaces, tools supporting model-driven development of advanced user in-

terfaces, adaptation and customization mechanisms for model transformations 

leading to tailored advanced user interfaces with a high degree of usability,  

the combination of models and informal design knowledge in a model-driven  
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development process and project experience on user interface development using a 

model-driven development approach. 

The specific chapters in this book cover a relatively broad spectrum of detailed 

research topics concerning, e.g., method engineering, formal description techniques, 

multi front-end engineering, development of multimodal user interfaces, models at 

development-time and at run-time, business process modeling, task modeling lan-

guages (e.g., useML, CTT, AMBOSS), user interface description languages (e.g., 

DISL, UIML, UsiXML, XAML), model transformation languages (e.g., ATL, QVT, 

T:XML), optimization of automatic generated user interfaces, informal design 

knowledge, user-centered software engineering and mixed interaction. 

The idea of this book is based on the very successful workshop series of  

“Model-Driven Development of Advanced User Interfaces (MDDAUI)”. The 

MDDAUI workshops were organized initially at the MODELS conference (2005, 

2006 and 2007) mainly attracting software engineers and HCI researchers with a 

strong technical background. In 2009, the workshop took place at the Intelligent 

User Interfaces (IUI) conference, focusing topics at the intersection between HCI 

and Artificial Intelligence (AI). The last workshop up to now, in 2010, was con-

ducted at the conference on Human Factors in Computing Systems (CHI) which 

focused more on user experience related aspects rather than pure technological  

innovations in model-driven development. Based on the contributions to this 

workshop, the editors have invited selected authors to contribute timely and origi-

nal research papers to this book.  

This book provides an outstanding overview as well as deep insights into the 

area of model-driven development of advanced user interfaces, which is an emer-

ging topic in the intersection of Human-Computer-Interaction and Software-

Engineering. Besides aiming to be the reference in its area, this book is intended 

as a very significant and valuable source for professional researchers as well as 

senior and post-graduate computer science and engineering students. 

This book could not be completed without the help of many people. We would 

like to thank all the authors for their contribution to the book and their effort in 

addressing reviewers’ and editorial feedback. Thanks also go to all the other par-

ticipants and program committee members of former MDDAUI workshops. Fi-

nally, we would like to thank Eva Hestermann-Beyerle and Birgit Kollmar-Thoni 

at Springer (Heidelberg, Germany) for their assistance in publishing this book in a 

timely fashion. 

October 2010 Heinrich Hussmann 

Gerrit Meixner 

Detlef Zuehlke
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Formalizing Interaction Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

Paolo Bottoni, Esther Guerra, Juan de Lara

Task Models in the Context of User Interface

Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

Gerd Szwillus

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303



H. Hussmann et al. (Eds.): MDD of Advanced User Interfaces, SCI 340, pp. 1–26. 

springerlink.com                                    © Springer-Verlag Berlin Heidelberg 2011 

Model-Driven Useware Engineering 

Gerrit Meixner, Marc Seissler, and Kai Breiner* 

Abstract. User-oriented hardware and software development relies on a systematic 
development process based on a comprehensive analysis focusing on the users’  
requirements and preferences. Such a development process calls for the integration 
of numerous disciplines, from psychology and ergonomics to computer sciences 
and mechanical engineering. Hence, a correspondingly interdisciplinary team must 
be equipped with suitable software tools to allow it to handle the complexity of a 
multimodal and multi-device user interface development approach. An abstract, 
model-based development approach seems to be adequate for handling this com-
plexity. This approach comprises different levels of abstraction requiring adequate 
tool support. Thus, in this chapter, we present the current state of our model-based 
software tool chain. We introduce the use model as the core model of our model-
based process, transformation processes, and a model-based architecture, and we 
present different software tools that provide support for creating and maintaining 
the models or performing the necessary model transformations. 

1   Introduction 

Considering the interaction with technical devices such as a computer or a ma-

chine control panel, the users actually interact with a subset of these hardware and 

software components, which, in their entirety, make up the user interface [1]. Un-

fortunately, today’s developers often disregard the most important component of 

                                                           
Gerrit Meixner 

German Research Center for Artificial Intelligence (DFKI), Trippstadter Str. 122, 67663, 

Kaiserslautern, Germany 

e-mail: Gerrit.Meixner@dfki.de 

Marc Seissler 

University of Kaiserslautern, Center for Human-Machine-Interaction, Gottlieb-Daimler  

Str. 42, 67663, Kaiserslautern, Germany 

e-mail: Marc.Seissler@mv.uni-kl.de 

Kai Breiner 

University of Kaiserslautern, Software Engineering Research Group, Gottlieb-Daimler  

Str. 42, 67663, Kaiserslautern, Germany 

e-mail: Breiner@cs.uni-kl.de 



2 G. Meixner, M. Seissler, and K. Breiner

 

an interactive system – the user – because of their inability to put themselves into 

the position of a user. Since usability, which is perceived in a subjective way, de-

pends on various factors such as skills or experience, the user interface will be 

perceived by each user in a completely different way. 

Moreover, in a highly competitive market that brings forth technically and 

functionally more and more similar or equal devices, usability as an additional 

sales argument secures a competitive advantage. In order to put stronger emphasis 

on users’ and customers’ needs, wishes, working styles, requirements, and prefe-

rences, and in order to consider them right from the beginning in all phases of the 

device development process, the responsible professional organizations in Germa-

ny, i.e., GfA, GI, VDE-ITG, and VDI/VDE-GMA, coined the term “Useware” for 

the above-mentioned subset and intersection of hardware and software, back in 

1998 already [2].  

The development of user interfaces for interactive software systems is a time 

consuming and therefore costly task, which is shown in a study [3]. By analyzing 

a number of different software applications, it was found that about 48% of the 

source code, about 45% of the development time, about 50% of the implementa-

tion time, and about 37% of the maintenance time is required for aspects regarding 

user interfaces. Petrasch argues that the time effort needed for implementing user 

interfaces – even 15 years after the study by Myers et al. [3] – is still at least 50% 

[4]. He justifies that the spread of interactive systems as well as their requirements 

have drastically increased over the last years. To be able to enforce the develop-

ment of user interfaces more efficiently, a methodical procedure with an early  

focus on user and task requirements was seen as necessary. 

Therefore, the systematic Useware Engineering Process, which calls for a com-

prehensive user, task, and use context analysis preceding the actual development, 

was developed [5]. Later in the Useware Engineering Process, interdisciplinary 

teams composed, for instance, of computer scientists, mechanical engineers, psy-

chologists, and designers, continue developing the respective device in close col-

laboration with the ordering customer and its clients by constantly providing  

prototypes even in the very early development phases, thereby facilitating  

continuous, parallel evaluation (as depicted in Fig. 1). 

 

Fig. 1 Useware Engineering Process 

The development process is determined by the procedure of ISO 13407 (user 

centered design) and follows the policy of ISO 9241-110 (dialog principles). In 
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the analyzing phase, the characteristics and behaviors of current and prospective 

users are defined using different methods, i.e., interviews, observations, task  

analysis, or surveys. At first, individual task models as well as communalities and 

differences between the user groups are derived from the requirements and beha-

viors while the system is used. Additionally, such issues as environmental and 

working conditions, team and labor organizations, as well as domain-specific  

context are explored during the analysis. Data elicited during the analysis can be 

entered, saved, analyzed, and exported using appropriate tools [6]. First of all, the 

structuring phase concentrates on harmonization and manual conflation of the in-

dividual task models and user requirements in order to obtain a common, system 

comprehensive, platform-independent use model. This model describes, e.g., what 

kinds of tasks can be performed or are allowed, for example for user groups at 

specific locations with specific devices. On the basis of classification, prioritiza-

tion, and temporal relation of the tasks, an abstract operating structure is specified 

initially and saved in the XML-based Useware Markup Language [6]. The struc-

ture evaluation is an important and determining part of this phase. It guarantees 

the conformity of the harmonized structure and temporal sequences with the men-

tal models of the users. It is already possible to simultaneously generate first pre-

liminary models as well as executable use models for evaluation goals based on 

the use models and to test them by having the user use the respective software 

tools [7]. After the structuring phase, the actual design takes place. With the help 

of the user requirements and the results of the analysis, concepts of visualization, 

navigation, and interaction are chosen and combined appropriately. The design of 

coarse mask layouts is finally followed by the fine design of the ergonomically 

designed user masks, with the focus being on providing efficient support for the 

user as well as information brokering in a quick and systematic way in order to of-

fer the user adequate decision-making aids. In parallel to the fine design, the reali-

zation starts, meaning the concrete implementation of the developed concepts into 

a user interface using the selected hard- and software platforms. The parallel eval-

uation represents a continuation of the analysis phase [8], since the development 

results are tested and evaluated continuously with structural or executable proto-

types in every phase of the development process by representative users. To  

ensure that each user evaluation is taken into account, the user interfaces are im-

proved iteratively. Adjustments to the use model can be made by returning from 

later phases to earlier ones, for example. 

Any process is useless if developers do not adhere to it or accidently execute 

the process in a wrong way. To support the correct execution of the Useware En-

gineering Process, tools are indispensable. Furthermore, the constantly increasing 

number of heterogeneous platforms (PC, smart phone, PDA, etc.) is another rea-

son why user interfaces have to be kept consistent with each other in relation to 

user experience on such target platforms in order to guarantee intuitional handling 

and thus ensure usability [9]. Since usability is a subjectively experienced non-

functional requirement, there is no such thing as a best user interaction concept. In 

order to reduce the recurrent development effort of individual solutions for  

specific platforms, modalities, or even context of use, a model-based  

approach – which facilitates reusability – can be taken, focusing on the needs and 
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requirements of the users. This allows developers to generate prototypes of the us-

er interface on the basis of the use model from the very beginning of their work. 

In the subsequent sections, we will first discuss related work, followed by a 

section that focuses on supporting user interface developers during development 

time. Then we will introduce the CAMELEON Reference Framework as a meta 

architecture for model-based user interface development and subsequently present 

our derived model-based architecture. Furthermore, we will introduce useML 2.0 

and the graphical useML-editor “Udit”. Targeting the transition from the use  

model to the abstract user interface design, we present the Dialog and Interface 

Specification Language (DISL). Furthermore, we will introduce the User Interface 

Markup Language (UIML), which represents the concrete user interface. Addi-

tionally, we will introduce two mapping approaches: from useML to DISL and 

from DISL to UIML. Finally, we provide an outlook on currently developed as 

well as planned extensions to the tool chain. 

2   Related Work 

Many problems and limitations of current model-based architectures are a conse-

quence of focusing too much on just one model [10]. For example, MECANO 

[11] and TRIDENT [12], [13] are architectures that do not integrate different  

discrete models.  

TADEUS [14], [15] is an architecture and development environment for the 

development of user interfaces considering the application functionality as well as 

task modeling aspects. The dialog and the presentation model are generated from 

the task model on the basis of predefined classifications. The focus of TADEUS is 

on modeling application functionality. Regarding temporal operators, TADEUS 

only integrates a sequence operator. 

GLADIS+ [16] and ADEPT [17] are architectures for model-based develop-

ment on the basis of task models. The overall usability of these architectures is ra-

ther low. These architectures make use of classical formal models, such as entity 

relation (ER) models, to drive the greatest possible degree of automation regarding 

the user interface design process. As a consequence, only user interfaces with poor 

visual presentation can be generated [18]. 

In MOBI-D [19], an informal textual representation of the task and domain 

model is used to start the development process. MOBI-D is rather a set of tools 

than an architecture, and generates (semi-)automatic user interfaces [20]. MOBI-D 

cannot be used for developing multi-platform or multi-modality user interfaces. 

One of the most recent architectures and XML-based development environ-

ments for multi-modal user interfaces is the Transformation Environment for  

inteRactivE Systems representAtions (TERESA) [21], [22]. Basically, TERESA 

consists of a task- and presentation model. On the basis of an abstract description 

of the task model in the ConcurTaskTree (CTT) notation [23], a developer is able 

to (semi-)automatically develop platform-specific task models, abstract presenta-

tion models, concrete presentation models, and finally HTML source code [24]. 

TERESA was developed as a monolithic development environment with an inte-

grated simulator for evaluating models. The focus of TERESA, based on the task 
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model specified with CTT, is on supporting developers by offering different tools 

[25], [20]. Besides the task model, the developers need to specify further design 

decisions in order to transform the task model into a presentation model  

(specified with TeresaXML [26]). Interaction tasks in CTT do not contain the  

necessary semantics for transforming tasks into abstract interaction objects  

fully automatically [20], [9]. Furthermore, transformation processes are integrated  

directly into the source code of TERESA, which reduces the flexibility of the 

transformation processes in terms of extension, modification, and maintenance 

[27]. In TERESA, finite state machines are used to describe the dialog model, 

which is therefore quite limited in its expressiveness [28]. Recent work has been 

about the development of MARIA [29], the successor of TERESA. 

Similar to TERESA, DYGIMES (Dynamically Generating Interfaces for Mobile 

and Embedded Systems) [20] is an architecture for the development of user 

interfaces based on different XML-compliant languages. DYGIMES aims at 

simplifying the development process by clearly separating the user interfaces from 

the application functionality. Furthermore, DYGIMES aims at reducing the 

complexity of the different models used. The focus of DYGIMES is on the 

automatic generation of a dialog and presentation model from a task model 

specified with CTT at runtime. The dialog and presentation model is described with 

SeescoaXML (Software Engineering for Embedded Systems using a Component-

Oriented Approach) [25]. Task models are also specified with CTT, which needs 

additional abstract UI descriptions [20] to transform the task model into a dialog 

and presentation model. Luyten adapts the Enabled Task Sets (ETS) approach from 

Paternò [23] and introduces an optimized ETS-calculation algorithm [9]. After ETS 

calculation, designers can specify spatial layout constraints, which allow expressing 

how the single UI building blocks are grouped and aligned at the user interfaces. 

Finally, the generated user interfaces are rendered by a light-weight runtime 

environment running, for example, on the target mobile device. 

3   Useware Engineering at Development Time 

In this section, we will give a short overview of the CAMELEON reference 

framework – which is a well-established refinement framework for the systematic 

development of user interfaces on the basis of different models. In accordance 

with the refinement steps of this particular framework, we will introduce our  

architecture as a concrete instantiation of the CAMELEON reference framework. 

3.1   CAMELEON – A Reference Framework 

For many years, there has been much intensive research on using model-based 

development methodologies in the development of user interfaces [30]. These 

methodologies are very similar to model-based approaches in the domain of 

software engineering. Key aspects like model abstraction and using transformations 

to automatically generate further models or source code (e.g., used in Model Driven 

Architecture (MDA) in software engineering) are also important factors in the 

development of consistent user interfaces [7]. 
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The CAMELEON reference framework was developed by the EU-funded 

CAMELEON project [31]. It describes a framework that serves as a reference for 

classifying user interfaces that support multiple targets, or multiple contexts of  

use on the basis of a model-based approach. The framework covers both the  

design time and runtime phases of multi-target user interfaces. Furthermore,  

the CAMELEON reference framework provides a unified understanding of  

context sensitive user interfaces rather than a prescription of various ways or me-

thods for tackling different steps of development. 

 
Fig. 2 The CAMELEON Reference Framework 

As depicted in Fig. 2, the framework describes different layers of abstraction, 

which are important for model-based development of user interfaces, and their  

relationships among each other [32]: 

• The Task and Concepts level considers, e.g., the hierarchies of tasks that 

need to be performed in a specific temporal order in order to achieve the 

users’ goals (during the interaction with a user interface). 

• The Abstract User Interface (AUI) expresses the user interface in terms 

of abstract interaction objects (AIO) [12]. These AIOs are independent of 

any platform or modality (e.g., graphical, vocal, haptic). Furthermore, 

AIOs can be grouped logically. 

• The Concrete User Interface (CUI) expresses the user interface in  

terms of concrete interaction objects (CIO). These CIOs are modality  
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dependent but platform independent. The CUI defines more concretely 

how the user interface is perceived by the users. 

• The Final User Interface (FUI) expresses the user interface in terms of 

platform-dependent source code. A FUI can be represented in any pro-

gramming language (e.g., Java) or mark-up language (e.g., HTML). A 

FUI can then be interpreted or compiled. 

Between these levels, there are different relationships: reification (forward engi-

neering), abstraction (reverse engineering), and translation (between different 

contexts of use). 

Fig. 3 shows an example (a simple graphical log-in screen) of the different lay-

ers of the CAMELEON reference framework. Starting with the “task & concepts” 

layer modeling the log-in task, the AUI, CUI, and FUI layers can be (semi-)  

automatically derived via transformations. 

 
Fig. 3 A simple example showing the different layers 

3.2   An Architecture for the Model-Based Useware Engineering 

Process 

Different models are required in model-based development of user interfaces. The 

entity of models used is known as “interface model” and consists of different ab-

stract and concrete models [30]. Abstract models are, e.g., the user model 

(represents different user groups, for example), the platform model (specifies target  
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platforms), the context model (describes the context of use), as well as the task 

model (describes tasks and actions of the user). The visualization of the user inter-

face is defined by the presentation model. It specifies how visual, haptic, or voice 

interaction objects of the user interfaces are specified. The dialog model is the link 

between the task model and the presentation model. It describes the operating se-

quence, the starting point, the goal, and the results that control the process of the 

user interface. Furthermore, the presentation model and the dialog model are  

divided into an abstract and a concrete model part. Especially the abstract presenta-

tion and dialog models are characterized by a lack of references to specific modali-

ties and platforms. As a result, transformations into any modality or platform can 

be realized.  

The CAMELEON reference framework is the starting point for developing and 

integrating our own model-based architecture. This reference framework leaves 

open aspects regarding the practical composition of models and how to use them 

in user-centered development processes (such as the Useware Engineering 

Process). Therefore, we adapted the framework and developed our own model-

based architecture, which integrates perfectly into the different phases of the Use-

ware Engineering Process (see Fig. 4).  

 
Fig. 4 Schematic of the model-based architecture 



Model-Driven Useware Engineering 9

 

The first step consists of a survey of elicited analysis data, from which the task 

models of the individual users can be extracted. After harmonizing the analysis 

data, task models are combined (manually) during the structuring phase into a sin-

gular use model (see sections 3.3 and 3.4), which also integrates other abstract 

models (e.g., context, user, and platform model). Together, the analysis and struc-

turing phases can be mapped to the “task & concepts” layer of the CAMELEON 

reference framework. The abstract user interface is built on the basis of the ab-

stract presentation model and the abstract dialog model, which can be described 

using the Dialog and Interface Specification Language (DISL) (see section 3.5). 

With DISL, it is possible to describe platform- and modality-independent user in-

terfaces during the design phase (abstract user interface). With the standardized 

User Interface Markup Language (UIML), concrete graphical user interfaces (de-

sign phase) can be described (see section 3.6). In our architecture, UIML covers 

the concrete presentation model as well as the concrete dialog model. By making 

use of an appropriate generic vocabulary [33], it is possible to transform UIML in-

to a final user interface (realization phase) by generating source code or other 

markup languages (such as HTML) directly. 

Although based on models and transformation processes, it is also necessary to 

integrate further models, transformations, tools, etc. into a holistic view and put 

them into order. As Schaefer shows, the overall architecture of model-based user 

interface processes consists of a number of further important components [28]. For 

the efficient development of user interfaces, respectively for the interactive 

processing of models, development teams additionally need software support, e.g., 

a model-based tool chain. This tool chain integrates model transformation engines 

(see sections 3.7 and 3.8), model editors, knowledge bases, as well as databases. 

Moreover, an execution environment is required, consisting of layout generators 

(e.g., for ordering graphical elements), HCI patterns (for reusing the designers’ 

expert knowledge), and source code generators.  

Finally, an application skeleton of the user interface can be generated via 

source code generators in the preferred programming language. This application 

skeleton can then be extended by functional characteristics until a complete ver-

tical application prototype in a particular development environment is finished. 

This vertical application prototype can then again be tested iteratively by the users 

of the interactive system. 

3.3   The Useware Markup Language 2.0 

The Useware Markup Language (useML) 1.0 [34] was developed to support the 

user- and task-oriented Useware Engineering Process with a modeling language 

representing the results of the initial task analysis. Accordingly, the use model ab-

stracts platform-independent tasks into use objects (UO) that make up a hierarchi-

cally ordered structure (see Fig. 5). Each element of this structure can be anno-

tated by attributes such as eligible user groups, access rights, and importance. 

Further annotations and restrictions can be integrated by extending a dynamic part 

of the use model (e.g., for integrating information from the platform or context 

model). This functionality makes the use model more flexible than many other 
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task models and their respective task modeling languages (cf. section 2). Further-

more, the leaf tasks of a use model are described with a set of elementary use  

objects (eUO) representing atomic interactive tasks: inform, trigger, select, enter, 

and change. In contrast to other task modeling languages such as CTT [23] (see 

section 2), an eUO refines an interaction task, i.e., an eUO can be mapped directly 

to a corresponding abstract interaction object in the abstract user interface. 

The basic structure of the use model has not been changed since 2004 [34], but 

the development of a taxonomy for task models and its application to the use 

model have revealed certain shortcomings and potentials for enhancing the use 

model extensively [35]. All these enhancements have been incorporated into 

useML 2.0 as introduced below. 

 
Fig. 5 Schematic of the use model 

According to [36], the use model must differentiate between interactive user 

tasks (performed via the user interface) and pure system tasks requiring no active 

intervention by the user. System tasks encapsulate tasks that are fulfilled solely by 

the system – which, however, does not imply that no user interface must be pre-

sented, because the user might decide, for example, to abort the system task, or re-

quest information about the status of the system. Interactive tasks usually require 

the user(s) to actively operate the system, but still, there can be tasks that do not 

have to be fulfilled or may be tackled only under certain conditions. In any case, 

however, interactive tasks are usually connected to system tasks and the underly-

ing application logic, which has been addressed recently by the newly introduced 

differentiation of user tasks and system tasks in useML 2.0. 

To specify that a certain task is optional, the semantics of the use objects and 

the elementary use objects has been enhanced to reflect their importance. Their  

respective user actions can now be marked as “optional” or “required”. 
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Similarly, only useML 2.0 can attribute cardinalities to use objects and 

elementary use objects. These cardinalities can specify minimum and maximum 

frequencies of utilization, ranging from 0 for optional tasks up to ∞. Further, 

respective logical and/or temporal conditions can now be specified, as well as 

invariants that must be fulfilled at any time during the execution (processing) of a 

task. Except for useML 2.0, only few task modeling languages are able to specify 

both logical and temporal conditions. Consequently, temporal operators (see [7]) 

have been added to useML, which is the most important and most comprehensive 

enhancement in version 2.0. These operators allow for putting tasks on one 

hierarchical level into certain explicitly temporal orders; implicitly, temporal 

operators applied to neighboring levels of the hierarchical structure can form highly 

complex, temporal expressions. In order to define the minimum number of 

temporal operators that allows for the broadest range of applications, the temporal 

operators of 18 task modeling languages were analyzed and compared [37]. Among 

others, Tombola [38], VTMB [39], XUAN [40], MAD [41], DIANE+ [42], GTA 

[43], and CTT [23] were examined closely. Based on their temporal operators’ 

relevance and applicability in a model-based development process, the following 

binary temporal operators were selected for useML 2.0: 

• Choice (CHO): Exactly one of two tasks will be fulfilled. 

• Order Independence (IND): The two tasks can be accomplished in any 

arbitrary order. However, when the first task has been performed, the 

second one has to wait for the first one to be finalized or aborted. 

• Concurrency (CON): The two tasks can be accomplished in any 

arbitrary order, even in parallel at the same time (i.e., concurrently). 

• Deactivation (DEA): The second task interrupts and deactivates the first 

task. 

• Sequence (SEQ): The tasks must be accomplished in the given order. 

The second task must wait until the first one has been fulfilled. 

Since the unambiguous priority of these four temporal operators is crucial for the 

connection of the use model with a dialog model, their priorities (i.e., their order 

of temporal execution) have been defined as follows [9]:  

Choice > Order Independence > Concurrency > Deactivation > Sequence 

3.4   The Graphical useML 2.0-Editor 

Editors, simulators, and model transformation tools are needed that allow creating, 

testing, as well as processing the user interface models. To address these demands, 

the useML-Editor (Udit) was introduced [7], which allows the graphical editing of 

useML 2.0 models. Udit enables the developer to create and manipulate use mod-

els easily and quickly via a simple, graphical user interface. It further provides a 

validation mechanism for ensuring the correctness of a use model and the integrity 

of a use model to be loaded from a useML file. In case of problems, Udit shows 

appropriate warnings, hints, and error messages (use models created and saved  

using Udit are always valid). 
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Using project-specific conditions and constraints, useML provides an external 

schema attribute definition that can be changed at any time, without necessitating 

changes to the core useML schema. For example, user group names, personas and 

roles, locations, device types and specifications, the devices’ function models, etc., 

are highly variable. While these conditions and constraints are specified in an  

external XML file in useML, Udit provides a schema editor to edit them quickly 

and easily. 

As can be seen in Fig. 6 (left part), the basic elements of the useML 2.0 specifi-

cation, i.e., use model (root element, black), use objects (orange), active task ele-

mentary use objects (green), and elementary use objects of the passive “inform” 

type (blue), are displayed in different colors. This facilitates the developer’s orien-

tation and navigation, especially when a developer works with complex use mod-

els. Collapsing and expanding sub-trees of the use model is also possible. The 

temporal operators are displayed as part of the connection line between two 

neighboring (elementary) use objects. 

Udit has been designed to support the features of the recently revised  

useML 2.0. Since then, the initial version of Udit has been consistently enhanced. 

Udit now implements the transformation process from the use model to the ab-

stract user interface. An integrated filter mechanism can be used to automatically 

derive a specific use model from the basic use model. This specific use model can 

be refined by the developer, or it can be automatically exported. Additional fea-

tures, such as drag&drop functionality, a model validation tool, and a zoom func-

tion, have been incorporated. 

To visualize the dynamic behavior of the use model, a simulator has been inte-

grated in Udit, which can be used to evaluate the behavior of the developed use 

model. As depicted in Fig. 6 (right part), the simulator is split into four main 

screens: On the left side of the window, the simulated use model is displayed. The 

eUOs that are enabled for execution are highlighted in this use model and listed in 

a box, located in the right upper window. Each of the listed eUOs can be executed 

by pressing the corresponding “execute” button, which triggers the simulator to 

load a new set of executable eUOs. Additional features of the simulator include an 

execution history and a window for displaying conditions. 

 

Fig. 6 Udit 2.0 - The useML Editor (left) and Simulator (right) 
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3.5   The Abstract User Interface 

The abstract user interface is modeled with the Dialog and Interface Specification 

Language (DISL) [44], which was developed at the University of Paderborn  

(Germany) as a modeling language for platform- and modality-independent user 

interfaces for mobile devices. DISL focuses on scalability, reactivity, easy usabili-

ty for developers, and low demands on processing power and memory consump-

tion. An important precondition to the systematic development of user interfaces is 

the strict separation of structure, presentation, and behavior of a user interface. 

Since the User Interface Markup Language (UIML) [45] facilitates not only this 

separation, but also – by employing a XML-based file format – the easy creation 

of interpreters and development tools, UIML was used as a basis for the develop-

ment of DISL. Therefore, the basic structure and the syntax of UIML were partial-

ly adapted. However, two UIML properties that shall be presented here in more 

detail did not fulfill the purpose of DISL. These are UIML’s limited behavior 

model and its dependence on platform specifications. 

UIML allows for the event-based behavior description of user interfaces. 

Events like pressing a key can lead to changes in the state of the respective user 

interface. Therefore, it is possible to specify the behavior of a user interface as a 

finite state machine in UIML. This is intuitive for simple user interfaces. In bigger 

projects, the developer is likely to lose track of the exponentially growing number 

of state transitions. In the past, this has been the reason why mechanisms and nota-

tions were introduced that significantly reduce the complexity of the state space, 

for example by employing parallel state transitions as in [46]. This, however, re-

quires storing complex user interface states, such as “menu item 1 selected AND 

switch set to C”. Instead of storing numerous complex states, DISL introduces 

state variables, resulting in state transitions being calculated from relevant state 

variable values at the occurrence of certain events. This also allows for setting 

state variables arbitrarily during a state transition. Finally, DISL also provides 

means for specifying time-dependent transitions, which is of high relevance for 

mobile applications where reactive user interfaces are to be designed even in  

unreliable networks, e.g., when a waiting period times out and an alternative  

interaction method must be provided to the user. 

The second significant difference between DISL and UIML is the consequent 

abstraction of the DISL modeling language from any target platforms and modali-

ties, which makes DISL a pure dialog modeling language. In UIML, on the  

contrary, abstract descriptions of the user interfaces are possible, but mapping be-

tween abstract items and concrete target platform items – the so-called “vocabu-

lary” – is mandatory. DISL, however, uses only purely abstract interaction objects 

(AIO, see [10]); it is up to the implementation to either interpret AIOs  

directly on the target device (as presented, for example, in [44]), or to convert the 

abstract specification into a modality-dependent code using (external) transforma-

tions (see section 3.8). This supports DISL’s objective of being scalable, since the 

abstract interaction objects possess only the minimal set properties that must be 

available on many systems. Fig. 7 shows as a proof of concept a simple interface 

for a media player modeled with DISL. The left part of Fig. 7 shows an emulated 
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Siemens M55 mobile phone, whereas the right part of Fig. 7 shows a real Siemens 

M55 mobile phone. Both mobile phones – the emulated and the real one – render 

the corresponding DISL document. The generated UI is functional but not very 

appealing; however, the AIOs could later be augmented during the transformation 

phase, e.g., by incorporating HCI patterns as design knowledge, in order to  

generate better interfaces on the respective end device. 

 

Fig. 7 Simple User Interface for a Siemens M55 mobile phone generated from DISL 

Adopting DISL into the Useware Engineering Process and linking it to the use 

models, finally completes the transformation-based, holistic Useware Engineering 

Process, as illustrated in [28]. For the development of DISL itself, not the whole 

user interface development process was taken into account, but, on purpose, only 

the dialog modeling and the presentation, either through direct interpretation on an 

end device or through transformation into a target format. 

3.6   The Concrete User Interface 

The concrete user interface is modeled with the User Interface Markup Language 

(UIML) [45]. UIML separates presentation components (e.g., widgets and layout), 

dynamic behavior (e.g., state transitions), and the content of a user interface  

(see Fig. 8). For instantiating a user interface in UIML, a UIML document and a 

specific vocabulary are required. 



Model-Driven Useware Engineering 15

 

 

Fig. 8 The UIML Meta-Interface Model 

The interface section of a UIML document consists of five components: structure, 

style, layout, content, and behavior: 

• Structure describes a hierarchy of interaction objects and their relationships. 

• Style specifies the properties of the components, e.g., text, color, or size. 

• Layout defines how the components are arranged relative to each other 

(spatial constraints).  

• Content separates the content of the interface from the other parts and is 

referenced in the components’ properties.  

• Behavior describes, for example, interaction rules or actions to be  

triggered under various circumstances (specifies the dialog model). 

While the interface section describes the general appearance of the user interface, 

the peers section of a UIML document describes the concrete instantiation of the 

user interface by providing a mapping onto a platform-specific language (i.e.,  

interface toolkits or bindings to the application logic). 

• Logic specifies how the interfaces are bound to the application logic. 

• Presentation describes the mapping to a concrete interface toolkit, such 

as Java Swing. 

Furthermore, a UIML document includes an optional <head>-element for 

providing meta-information and a concept that allows the reuse of predefined 
components. These so-called “templates” are predefined interaction objects, which 

can be easily instantiated with concrete parameters derived from the application 

data model. 
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Since syntax and functionality of DISL were still close to UIML, several  

fundamental enhancements and improvements of DISL were incorporated into the 

new 4.0 version of UIML [47]. Since May 2009, UIML 4.0 is a standard of the 

Organization for the Advancement of Structured Information Standards (OASIS). 

DISL’s abstractions accounting for platform and modality independence, however, 

are adopted by UIML 4.0 because of their fundamentally different mechanism. 

Still, platform independence of graphical user interfaces can now be achieved  

using UIML with a generic vocabulary, as demonstrated in [48]. 

3.7   Transformation of useML 2.0 into DISL 

To support the developer in designing user interfaces, an automatic transformation 

process has been developed [49]. This process adapts the transformation process 

used in the TERESA development methodology [26] and consists of four phases 

depicted in Fig. 9. While in the (optional) first phase, the developer manually re-

fines the use model – e.g., for the target platform or target user group – the subse-

quent phases gradually and automatically transform the use model into an abstract 

user interface. 

While the transformation process introduced in [26] transforms a task model into 

a final user interface, we explicitly focus on mapping the use model onto an ab-

stract user interface. Since this is compliant with the architecture proposed with the 

CAMELEON Reference Framework [31], it has the advantage that the generated 

user interface is independent from the later modality or platform. 

 

Fig. 9 The Transformation Process 

Phase 1: Filtering the Use Model 

In the optional first phase, developers can annotate the use model by applying as-

sertions to the single UOs and eUOs. These assertions can be used to specify, for 

example, on which device a task can be executed or which user group is allowed 

to execute the task. After the developer has annotated the use model, filters can be 

set to generate the “system task-model” [26]. Whereas a standard set of assertions 

is specified in a separate XML-schema in useML, this schema can be individually 

extended with project-specific assertions. 
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Phase 2: Generating the Binary Priority Tree 

The filtered use model is passed to the second process phase as input for the sub-

sequent automated transformation steps. To simplify interpretation and to solve 

ambiguities between the temporal operators in this phase, the use model is trans-

formed into a binary “priority tree” [25] representation. While in [25] the priority 

tree is used for grouping tasks with identical temporal operator priority on the 

same hierarchical level, a binary version of the priority tree has been used. The bi-

nary version of the priority tree has exactly two UOs – respectively eUOs – on 

each level of the tree. This significantly reduces the number of cases that have to 

be considered when generating the dialog graph in the next phase. In the left part 

of Fig. 10, a binary priority tree for a simple “pump” use model is depicted. 

The hierarchical structure of the binary priority tree is derived from the 

temporal operator priorities. A recursive algorithm starts at the root level of the 

use model and selects those UOs that have the temporal operator with the highest 

priority. These two UOs are grouped with a new “abstract UO” that replaces both 

UOs. After that, the algorithm loops until only two UOs are left on the current 

level. Then the algorithm recursively descends into the next hierarchy level and 

starts grouping the children. The algorithm terminates when only two UOs/eUOs 

are left on each hierarchy level. 

Phase 3: Generating the Dialog Graph 

A dialog graph is generated based on the binary priority tree in the third phase of 

the transformation process. The dialog graph represents the dynamical character of 

the use model derived from the semantics of the temporal operators. 

eUOs that can be executed by the user at the same point in time are grouped 

within the states of the dialog graph. Consequently, a state of the dialog graph 

represents an “Enabled Task Set” (ETS) [23]. The right part of Fig. 10 shows the 

corresponding dialog graph for the previously mentioned binary priority tree of a 

pump. 

 

Fig. 10 The binary priority tree (left) and the generated dialog graph (right) of a simple 

pump use model 
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For each eUO of a dialog state, there is a corresponding directed transition that 

is labeled with the eUO and connected to a successor state. These transitions are 

used to describe the navigation between the single dialog states. The user can na-

vigate through the dialog graph by executing one of the eUOs of a dialog state. 

In [9], an algorithm is introduced that has been used in the DYGIMES 

framework to generate a dialog graph from a CTT task model. Since this algorithm 

has some shortcomings regarding the generation of parallel states, a new algorithm 

has been developed that solves these shortcomings and allows the parallel 

identification of successor states and transitions. The developed recursive algorithm 

generates the complete dialog graph by virtually executing the use model. For this 

execution, each UO and eUO is flagged with an execution status that denotes 

whether the object is currently executable or has already been executed. 

The algorithm is divided into two subsequent phases: Top-down analysis for 

identifying the current dialog state and bottom-up updating for determining the 

new use model execution status. 

In the top-down analysis, the use model is searched for executable eUOs. For 

this purpose, the use model is traversed from the root node of the use model to the 

leaves, which are represented by the eUOs. The semantics of the temporal opera-

tors and the execution status of the UOs are used to decide which branch of the bi-

nary priority tree has to be descended recursively. The algorithm terminates when 

the leaves of the use model have been reached and the executable eUOs have  

been identified. The result of one top-down-analysis is a unique dialog state that 

represents one ETS. 

Following the top-down analysis, for each eUO stored in the identified dialog 

state, the successor dialog state as well as the transition to the successor dialog 

state has to be generated. This is where the identified eUOs are “virtually ex-

ecuted”. Each eUO of the previously identified dialog state is selected and labeled 

by the algorithm as “executed”. When the execution status of the selected eUO has 

been changed in the use model, the execution status of all other UOs/eUOs has to 

be updated. Beginning with the parent UO of the executed eUO, the tree nodes are 

recursively updated from the leaves up to the root of the use model. This is why 

this recursive algorithm is referred to as bottom-up updating. 

To generate the whole dialog graph, these two recursive algorithms are nested 

within each other. When all eUOs in the binary priority tree are marked as  

“executed”, the dialog graph has been generated. 

Phase 4: Mapping the Dialog Graph 

The final phase of the transformation process implements the mapping from the 

generated dialog graph onto a dialog model. 

In contrast to the TERESA approach, a modality-independent target mapping 

language has been used for this mapping to support the generation of multi-

modality and multi-platform user interfaces. For the specification of this abstract 

user interface we use DISL. Since DISL was initially designed for mobile devices, 

it supports a concept where the user interface is split into several modular inter-

faces. This concept is used in our transformation process for the presentation 

mapping. Here, the states of the dialog graph are mapped onto DISL interfaces. 
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Afterwards, each eUO of a dialog state is mapped onto its corresponding abstract 

interaction object. In Fig. 11, a mapping of the previously generated dialog graph 

of a pump is depicted. 

 

Fig. 11 The mapped dialog graph rendered as a GUI 

Since the transitions of the dialog graph are used to move between the dialog 

states, they represent a dynamical aspect of the user interface. Therefore, the tran-

sitions are represented in the behavior part of the DISL user interface. By using a 

concept of rules and transitions for each AIO, a transition is specified that is fired 

when the user interacts with this AIO. This transition executes a “restructure” 

command, which triggers the DISL renderer to activate the new interface. 

3.8   Transformation of DISL into UIML 

According to the CAMELEON Reference Framework, the next step in a model-

based user interface development process is the transformation of the abstract user 

interface into a modality-depended but platform-independent concrete user  

interface. Since UIML can be used to describe the user interface in terms of a plat-

form-independent model, the language is used as the target mapping language. 

Therefore, in this step, the dialogs and interaction objects, as well as the behavior 

of the abstract UI have to be mapped onto the corresponding UIML elements. 
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In both languages (DISL and UIML), the user interface is separated into  

structure, style, and behavior descriptions. Starting by analyzing the user interface 

structure, the widgets that have to be mapped are identified in the first transforma-

tion step. This mapping is specified in a look-up table that expresses the relation-

ship between the abstract DISL interaction objects and the concrete UIML  

widgets. One mapping can be, for example, that an abstract DISL command inte-

raction object is mapped onto a UIML button widget, which is commonly used in 

graphical user interfaces to trigger a function. In the style section of the  

DISL and UIML user interfaces, the widget’s properties that have an impact on 

the presentation of the user interface are specified. Therefore, DISL properties 

such as widget texts, descriptions, and visibility attributes are mapped onto the 

corresponding UIML properties. 

The behavior section is primarily used to specify the actions that have to be  

executed when the user interacts with the user interface. These user interactions 

may result in opening a new window or changing a set of interaction objects. In 

DISL, the user interface behavior is described with a set of rules, which allow the 

specification of conditions, and a set of transitions, which specify a set of actions 

that are executed when the according rule is evaluated as true. Additionally, DISL 

supports the definition of events that allow the specification of time-triggered 

transitions. As in DISL, the behavior description in UIML is also specified using 

rules, conditions, and, accordingly, the actions to be executed when a condition is 

evaluated to true. Because of this similarity, the behavior can be mapped rather 

statically between those languages. 

While those three categories are used in both languages to describe the UI, the lan-

guages have different characteristics that have an influence on the transformation 

process: 

One aspect with an impact on the transformation is that an explicit classifica-

tion of the interaction objects is used in DISL. The abstract interaction objects are 

classified as output, interaction, and collection interaction objects. While these 

classes have an impact on the interaction objects semantics, they are not expressed 

as an explicit property in the interaction objects style definition. Since UIML does 

not use such a widget classification, those properties have to be expressed as ex-

plicit properties in the UI style definition. For example, the textfield interaction 

object is an output element used for presenting large non-editable texts to the user 

[28]. Since there is no dedicated output-only widget in UIML, this property has to 

be expressed in the widget style definition by specifying the editable attribute of 

the respective text widget. 

Another aspect that has to be considered in the mapping process is that the 

properties specified in the style description also have an influence on the mapping 

of the widgets. For example, in DISL there is an incremental property in the style 

definition that is used to specify a variablebox that accepts numerical input values. 

If this property is set, the variable box has to be mapped onto a spinner widget in 

UIML, while otherwise a text widget is used during the structure mapping phase. 

The third aspect that has an influence on the transformation is that besides the 

explicit properties in the style section of the DISL document, additional informa-

tion can be used in the mapping process. In DISL, some widget properties are  
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specified in the behavior section. For example, DISL does not support the  

specification of a minimum or maximum value for a variable box that is set to be 

incrementally changeable. To emulate these boundaries, they have to be specified 

in the behavior section of the DISL document by using two variables and a set of 

rules and transitions that ensure that the values cannot exceed the limits. While 

this behavior can be mapped onto a UIML style property, the rules and transitions 

must be omitted when mapping the behavior section of the two languages. 

While this phase of the transformation process benefits from the similar struc-

ture of the AUI and the CUI models, ambiguities in the mapping process may oc-

cur. These ambiguities stem from the fact that the abstract user interface model 

has to be enriched with additional, modality-specific information not contained in 

the source model. Since UIML is used as the target language for describing the 

CUI, attributes for the graphical user interfaces – such as widget size, layout, and 

color – have to be specified in this mapping that are, by definition, not contained 

in the AUI model. 

Various strategies can be used to obtain this information and to use it as input 

in the transformation process. One approach is to derive the information from oth-

er models. Platform models [30] are used to specify information about the input 

and output capabilities of the target device and are therefore suitable as an input 

source. But while it has been shown that these models are suitable for partially de-

riving the layout [9], they are still not sufficient for automatically deriving a  

high fidelity user interface. Aspects such as the corporate identity of a user  

interface usually still have to be applied by the developer herself. Therefore, tools 

are needed in this transformation phase that allow manual intervention in the 

transformation phases. 

Today, different languages – e.g., ATL [50], RDL/TT [51], and XSLT [52] – 

and tools are used for model transformation. A review of several transformation 

systems can be found in [53]. Since the models used in these transformation 

processes are based on XML, XML-based transformation languages and tools are 

needed. XSL Transformation (XSLT) is standardized by the W3C group and one 

of the most widespread languages for transforming XML-based documents. XSLT 

uses templates to match and transform XML documents into other XML struc-

tures, respectively output formats. Since XSLT is one of the most popular XML 

based transformation languages and offers a large set of generic transformation 

processors, it is used for the implementation of the DISL-to-UIML transformation 

process. To enable convenient handling of the XSLT templates, an additional tool 

has been built that allows selecting the input model (DISL), the transformation 

template (XSLT), and the output folder for transforming DISL into UIML. Fol-

lowing the generation of the CUI, the source code for the final user interface can 

be generated, or the user interface can be interpreted by a renderer. In order to en-

able early feedback of the resulting user interface, an UIML renderer has been in-

tegrated into the transformation tool DISL2UIML. Fig. 12 shows a screenshot of 

the DISL2UIML tool. In the left part, a developer can choose a DISL document 

and the transformation template (XSLT). After starting the transformation, the re-

sulting UIML document is visualized in the right part of DISL2UIML. In the next 

step, UIML.net can be started for rendering the transformed UIML document. 
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Fig. 12 Screenshot of DISL2UIML showing the transformation software as well as the  

rendered UIML document 

This renderer is an enhanced and extended version of UIML.net [54] capable of 

rendering UIML 4.0 compliant user interfaces. Different vocabularies such as Gtk#, 

System.Windows.Forms and System.Windows.Forms for the Compact .Net 

Framework can be used to present the user interface with a different look and feel. 

Besides offering tools for model transformation, tools for authoring and 

enhancing models are crucial. In recent years, a set of UIML authoring 

environments have been introduced that allow the design of multi-platform user 

interfaces. Gummy [55] is an authoring environment that supports the graphical 

editing of UIML 3.0 documents by offering a toolbox with a set of predefined 

widgets. After selecting the target platform, the tool loads the appropriate UIML 

widgets that are available on that platform. Jelly [56] has been recently introduced 

as a tool for designing multi-platform user interfaces. Although Jelly relies on a 

proprietary UI description language, it adapts the UIML structure. Harmonia Inc. 

LiquidApps [57] is the only known commercial UIML authoring environment that 

supports editing UIML 3.0 compliant documents. The tool has a graphical 

WYSIWYG editor for designing the user interface using drag&drop functionality. 

Besides adding and aligning the widgets, the behavior of the user interface can be 

specified in a different view. After the user interface has been specified, the code 

for the final user interface can be automatically generated by the tool for several 

target languages, e.g., Java, C++ Qt, and Web apps. 

After generating the code for the final user interface, language-specific tools 

can be used by the developer to incorporate final design decisions and compile the 

user interface. 
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4   Summary and Outlook 

In this chapter, we have presented the current status of our model-based user inter-

face development environment. After discussing related work, we introduced the 

CAMELEON Reference Framework as a meta-architecture for model-based user 

interface development and subsequently presented the model-based architecture 

we derived from it. Furthermore, we introduced useML 2.0 and the graphical 

useML editor “Udit”, which is targeted at the structuring phase of the Useware 

Engineering Process. Additionally, we introduced the Dialog and Interface Speci-

fication Language (DISL) and the User Interface Markup Language (UIML) as 

well as mapping processes from useML to DISL and from DISL to UIML. 

Currently, we are investigating efforts to optimize the transformation 

approach from DISL to UIML by integrating platform models. For specifying 

platform models, we have analyzed the User Agent Profile (UAProf), which is a 

specification for capturing the capabilities of a mobile phone, including, e.g., 

screen size, multimedia capabilities, and character set support. Information 

about input and output capabilities, in particular, is relevant for transforming the 

abstract user interface into a concrete user interface. During this transformation 

process, information about target constraints is essential. 

Furthermore, existing tools have to be extended and new tools have to be  

developed. Especially tools for tweaking the transformation process of useML to 

DISL have to be developed in conjunction with new DISL renderers, e.g., for the 

Apple iPhone or for the Google Android platform. 
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Multi Front-End Engineering

Goetz Botterweck

Abstract. Multi Front-End Engineering (MFE) deals with the design of multiple

consistent user interfaces (UI) for one application. One of the main challenges is the

conflict between commonality (all front-ends access the same application core) and

variability (multiple front-ends on different platforms). This can be overcome by

extending techniques from model-driven user interface engineering. We present the

MANTRA approach, where the common structure of all interfaces of an applica-

tion is modelled in an abstract UI model (AUI) annotated with temporal constraints

on interaction tasks. Based on these constraints we adapt the AUI, e.g., to tailor

presentation units and dialogue structures for a particular platform. We use model

transformations to derive concrete, platform-specific UI models (CUI) and imple-

mentation code. The presented approach generates working prototypes for three

platforms (GUI, web, mobile) integrated with an application core via web service

protocols. In addition to static evaluation, such prototypes facilitate early functional

evaluations by practical use cases.

1 Introduction

Multi Front-End Engineering (MFE) deals with the systematic design and imple-

mentation of multiple consistent user interfaces for one application.

One of the main challenges in MFE is the inherent conflict between common-

ality and variability. On the one hand, all front-ends provide access to the same

application core. Hence, they share a common structure and provide similar func-

tionality. On the other hand, each front-end has to take into account the specifics

of the particular user interface platform. Hence, each front-end has to be adapted to

these specific characteristics, e.g., when grouping interaction elements into logical

presentation units of varying sizes.
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The challenges that arise from this conflict between commonality and variability

can be overcome by adapting and extending techniques from model-driven user

interface engineering. To support multiple user interfaces, however, we have to

prepare by providing additional information that can guide an automatic or

semi-automatic adaptation, for instance to take into account platform-dependent

characteristics.

To illustrate how this can be done, we present the MANTRA1 approach, where

the abstract structure of all user interfaces of an application is modelled in an ab-

stract UI model (AUI). This model is annotated with temporal constraints on the

dialogue flow and the relative order of interaction tasks. Based on this informa-

tion, we are able to adapt the user interface on an abstract level, for instance, by

deriving and tailoring dialogue structures, which take into account constraints im-

posed by the particular user interface platform. The adaptation includes the cluster-

ing into presentation units and the insertion of control-oriented interaction elements.

Based on this abstract model, we use model-to-model transformations to derive

concrete, platform-specific UI models (CUI). Subsequently, we use model-to-text

transformations to generate implementation code.

The presented approach is realized as a set of Eclipse-based tools and model

transformations in ATL (Atlas Transformation Language). It generates working pro-

totypes for three platforms: desktop GUI applications, dynamic web sites and mo-

bile applications. These prototypes are integrated with an application core via web

service protocols. Because of the functional integration with the application core,

in addition to the evaluation of the static user interface (composition, layout and vi-

sual presentation of interaction elements), such prototypes also facilitate functional

evaluations by performing and analysing practical use cases.

The remainder of this chapter is structured as follows: Section 2 summarises

related work, Section 3 gives an overview of the presented approach, Section 4

explains the use of Abstract User Interface (AUI) models in the context of MFE,

Section 5 deals with the adaptation of user interfaces on the AUI level, Section 6

describes the transformation from AUI to Concrete User Interface (CUI) Models and

the generation of implementation artefacts, Section 7 explains the meta-models of

the modelling languages used by our approach, and Section 8 concludes the chapter

by discussing the presented approach and future work.

2 Related Work

Calvary et al. [1] define a reference framework for multi-target user interfaces. This

is also known as the Cameleon reference framework after the European project of

the same name. Calvary at al. define the challenges of “multi-targeting” and “plas-

ticity”, which are related to the problem addressed in this chapter. Also, the pro-

cesses and artefacts in our approach are structured on abstraction levels similar to

the Cameleon framework (see Section 3 for an overview).

1 MANTRA stands for Model-driven Approach to UI-Engineering with Transformations.
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The mapping problem [2] is the problem of defining mappings between abstract

and concrete elements is one of the fundamental challenges in model-based ap-

proaches to User Interface Engineering. This challenge can occur in various forms

and can be dealt with by various types of approaches [3]. One instance of this is the

question of how we can identify concrete interaction elements that match a given

abstract element and other constraints [4].

A similar challenge is the derivation of structures in a new model based on

information given in another existing model. Many task-oriented approaches use

requirements given by the task model to determine UI structures; for example, tem-

poral constraints similar to the ones in our approach have been used to derive the

structure of an AUI [5] or dialogue model [6].

Florins et al. [7] take an interesting perspective on a similar problem by dis-

cussing rules for splitting existing presentations into smaller ones. That approach

combines information from the abstract user interface and the underlying task model

- similar to our approach using an AUI annotated with temporal constraints which

are also derived from a task model.

Many model-driven approaches to UI engineering have proposed a hierarchical

organisation of interaction elements, which are grouped together into logical units.

For instance, Eisenstein et al. [8] use such an structure when they aim to support

designers in building user interfaces across several platforms.

A number of approaches to multiple user interfaces has been collected in a book

edited by Seffah and Javahery [9].

Earlier work on MANTRA, the approach discussed in this chapter, has been pre-

sented in [10]. In current work [11], we adapt and specialize techniques taken from

the MANTRA approach to support the configuration, derivation and tailoring of

user interfaces for products in a product line.

3 Overview of the MANTRA Approach

Horizontally, the MANTRA approach (see Fig. 1) is structured by three tiers, Front-

Ends, Application Core, and Resources. Vertically, the MANTRA activities and

created artefacts are structured by abstraction levels similar to the CAMELEON

framework [1]. They include Abstract User Interface (AUI), Adapted Abstract User

Interface (Adapted AUI), Concrete User Interface (CUI), and Implemented User

Interface (IUI).

The ultimate goal of MANTRA is to create multiple implemented front-ends of

the application (see the IUIw , IUIm, and IUIg at the bottom of Fig. 1). These front-ends

are based on different platforms, but provide access to the same Application Core

and indirectly to Resources, which are used by the application.

The MANTRA approach starts with the activity of Abstract UI Modelling ,

which creates an abstract user interface AUI . Then, the interface is adapted on an

abstract level . The resulting adapted AUI models are then transformed into

concrete platform-specific UI models (CUI) for three different platforms (Web,
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Fig. 1 Overview of the artefacts and data flow between them in the MANTRA approach

GUI, Mobile). Finally, the desired front-ends (implemented UI, IUI) are created by

generating platform-specific code .

The following sections will explain these activities and the processed artefacts in

more detail.
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4 Abstract Modelling of User Interfaces

We will now explain the subsequent activities of the MANTRA approach in more

detail. For the illustration and discussion, we will use a simple time table application.

We start of with the activity of Abstract UI Modelling , which creates an ab-

stract user interface AUI . Fig. 2 shows the corresponding AUI model of our sample

timetable application. The user can search for train and bus connections by specify-

ing several search criteria like departure and destination locations, time of travel or

the preferred means of transportation (lower part of Fig. 2).

Please note that in the context of the overall MANTRA approach the AUI model,

which describes the front-ends of the application, references concepts in models

describing other parts or aspects of the system (see AUI layer in the overview in

Fig. 1). For instance, abstract UI elements can refer to web service operations to

describe integration with the application core or data types defined in a data model.

In our sample shown in Fig. 2, one of the nodes refers to a web service operation

Timetable.getConnections(), which retrieves connections from the Timetable web

services and provides them to the subsequent presentation Timetable Results for

display.
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Fig. 2 AUI model of the sample application annotated with temporal constraints (horizontal

lines)

At first, the AUI model only contains UI Elements ( ) and UI Composites

( ) organized in a simple composition hierarchy (indicated by rela-

tions) and the web service operation necessary to retrieve the results. This model

is the starting point of our approach (see AUI in Fig. 1) and captures the common
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essence of the multiple user interfaces of the application in one abstract UI. This

AUI contains platform-independent interaction concepts like “Select one element

from a list” or “Enter a date”.

As an input for later adaptation techniques, the AUI is then further annotated by

dialogue flow constraints based on the temporal relationships of the ConcurTaskTree

approach [12]. For instance, we can describe that two interaction elements have to

be processed sequentially ( ) or can be processed in any order ( ).

5 Adaptation of Abstract User Interfaces

As a next step ( in Fig. 1), we augment the AUI by deriving dialogue and pre-

sentation structures. These structures are still platform-independent. However, they

can be adapted and tailored to take into account constraints imposed, for instance,

by platforms with limited display size or by inexperienced users. The result of this

process step, the adapted AUI model, is shown in Fig. 3.

5.1 Clustering Interaction Elements to Generate Presentation

Units

To derive this adapted AUI model, we cluster UI elements by identifying suitable

UI composites. The subtrees starting at these nodes will become coherent presenta-

tions in the user interface ( ). For instance, we decided that “Time of Travel”

and all UI elements below will be presented coherently. This first automatic cluster-

ing is done by heuristics based on metrics like the number of UI elements in each

presentation or the nesting level of grouping elements.

To further optimize the results, the clustering can be refined by the human de-

signer by an interactive editors that operates on the adapted AUI model.

5.2 Inserting Control-Oriented Interaction Elements

Secondly, we generate the navigation elements necessary to traverse between the

presentations identified in the preceding step. For this, we create triggers ( ).

These are abstract interaction elements which can start an operation (OperationTrig-

ger) or the transition to a different presentation (NavigationTrigger). In graphical

interfaces, these can be represented as buttons, menus, or hyperlinks. In other front-

ends, they could for instance be implemented as speech commands.

To generate NavigationTriggers in a presentation p, we calculate dialogue-

Successors(p) which is the set of all presentations which can “come next” if we ob-

serve the temporal constraints. We can then create NavigationTriggers (and related

Transitions) so that the user can reach all presentations in dialogueSuccessors(p).
In addition to this, we have to generate OperationTriggers for all presentations

which will trigger a web service operation, e.g., “Search” to retrieve matching train

connections (see the lower right corner of Fig. 3).
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These two adaptation steps (derivation of presentations, insertion of triggers)

are implemented as ATL model transformations. These transformations augment

the AUI with dialogue structures (e.g., presentations and transitions

between them) which determine the paths a user can take through our application.

It is important to note that the dialogue structures are not fully determined by the

AUI. Instead, we can adapt the AUI according to the requirements and create differ-

ent variants of it (see the two adapted AUI models resulting from step in Fig. 1).

For instance, we could create more (but smaller) presentations to facilitate viewing

on a mobile device – or we could decide to have large coherent presentations, taking

the risk that the user has to do lots of scrolling if restricted to a small screen.
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Fig. 3 Adopted AUI model with generated presentations and triggers

5.3 Selecting Content

To reflect limitations of the platform, e.g., limited screen estate, which only allows

to show a limited number of interaction elements, can apply an additional adaptation

step that filters content retrieved from the web service based on priorities.

For instance, if a user has a choice, higher priority is given to knowing when

the train is leaving and where it is going before discovering whether it has a restau-

rant. This optional information can be factored out to separate “more details”

presentations.

A similar concept are substitution rules which provide alternative representations

for reoccurring content. A train, for example, might be designated as InterCityEx-

press, ICE, or by a graphical symbol based on the train category (for instance,

to indicate a luxury train) depending on how much display space is available. These

priorities and substitution rules are domain knowledge which cannot be inferred

from other models. The necessary information can, for instance, be modelled as

annotations to the underlying data model.
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6 Generating Concrete Interface Models and Their

Implementation

Subsequently, we transform the adapted AUI models into several CUIs using a spe-

cialized model transformation ( in Fig. 1) for each target platform. These transfor-

mations encapsulate the knowledge of how the abstract interaction elements are best

transformed into platform-specific concepts. Hence, they can be reused for other

applications over and over again.

As a result, we get platform-specific CUI models. These artefacts are still repre-

sented and handled as models, but now use platform-specific concepts like “HTML-

Submit-Button” or “.NET GroupBox”. This makes them more suitable to use them

as a basis for the code generation ( in Fig. 1), which produces the implemen-

tations of the desired user interfaces in platform-typical programming or markup

languages.

describes

(coarse-grained)

behaviour of

contains

operate on

data elements

defined in

typed by
(indirectly)

typed by

typed by

AUI

use operations

defined in

Dialogue Model
(State Machine)

UI Structure

UI Components
Data 

Components

Data Model

Web Service

Fig. 4 Overview of the AUI metamodel

7 Modelling Languages

In this section, we will present the modelling languages (i.e., meta-models) used by

the MANTRA approach. We will focus on the AUI level, where the common aspects

of all front-ends are represented and differences between platforms are abstracted

away. Fig. 4 shows an overview of the involved packages.

First, we will now introduce modelling elements that describe the overall user in-

terface structure. Then, we will then focus on modelling elements for describing the

dialogue structure. Finally, we will show how user interface elements can be bound

to data components and how these data components are bound to the application

core.
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7.1 User Interface Structure

Fig. 5 shows a simplified excerpt from the AUI metamodel with metaclasses to de-

scribe UI structure (on the left) and metaclasses to describe dialogue structures (on

the right). Please note that the sections “UI Structure” and “Dialogue” correspond

to packages in the metamodel, which was shown earlier overview in Fig. 4.

The core structure of a user interface is given by the composition hierarchy of

the various user interface components. In the AUI metamodel, this is modelled by a

“Composite” design pattern [13] consisting of the classes UIComponent,

UIElement, and UIComposite (see in Fig. 4).

There are two types of UIComponents: The first subtype are UIElements (see

in the metamodel in Fig. 5) which cannot contain further UIComponents. Hence,

they become the “leaves” of the hierarchy tree (see the symbols in the Timetable

sample in Fig. 2). Subclasses of UIElement can be used to describe various abstract

interaction tasks, such as the editing of a simple string value (InputField) or the

selection of one value from a list (SelectOne). A special case of UIElements are

Triggers which can start the transition to another presentation (NavigationTrigger)

or start a (potential data modifying) transaction (TransactionTrigger). Please note

that the AUI modelling language contains many more UIElement subclasses, but

they have been omitted here to simplify the illustration.

Fig. 5 Binding user interface elements to a data model

The second subtype of UIComponents are UIComposites (see in Fig. 5).

UIComposites can contain other UIComponents via the association “uiComponents”

and hence build up the “branches” of the hierarchy tree (see the symbols in the
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Timetable sample in Fig. 2). A UIComposite can be connected to its left and right

sibling by temporal relations (see the horizontal lines in Fig. 2). In

the metamodel, this is described by an instance of the association class Temporal-

Relation which connects two UIComposites leftSibling and rightSibling. There are

several kinds of temporal operators, such as enabling, suspendResume or choice

(see the enumeration TemporalOperator).

There are two special cases of UIComposites: A UserInterface represents the

whole user interface and is therefore the root of the hierarchy. In the Timetable

sample, this is the node “Timetable enquiry” (see Fig. 2).

Another special case of an UIComposite is a Presentation. A Presentation is a

hierarchy node that was selected during the adaptation process, because all UIEle-

ments contained in the subtree below it should be presented coherently. For instance,

see the node “Time of travel” in the Timetable sample (Fig. 3): This node and the

subtree below it are surrounded by a marked area to indicate that all UICompo-

nents within that area will be presented in one coherent Presentation. Hence, this

UIComposite will be converted into a Presentation in further transformation steps.

7.2 Dialogue Model

The dialogue model of an abstract user interface is described by a state machine

(see in Fig. 5) which is based on UML Statecharts [14]. It consists of States,

which are linked to Presentations generated in the adaptation process. As long as

the UserInterface is one particular state, the related Presentation is displayed (or

presented in different ways on non-visual interfaces).

When the UserInterface performs a Transition to a different State, the next Pre-

sentation is displayed. Transitions can be started by Events, for instance, by a UIEle-

mentTriggeredEvent, which fires as soon as the related UIElement, such as a Trigger,

is triggered.

There are many other event types, which have been omitted here to simplify the

metamodel illustration.

7.3 Binding UI Elements to Data Components

In the MANTRA metamodel, user interface elements are grouped into different

categories depending on their main function, for instance structure-oriented (e.g.,

UIComposite, UIComponentGroup, see Section 7.1), control-oriented (e.g., Trig-

ger, Hyperlink, MenuItem, see Section 7.2), and data-oriented (e.g., various forms

of Input, various forms of Select, and the composite DataTableView).

For the latter category, data-oriented user interface elements MANTRA allows to

describe corresponding data components that will hold and organize the correspond-

ing processed data, which is presented (and potentially edited) via the data-oriented

UI elements.

Fig. 6 shows both data-oriented user interface elements (left) and data compo-

nents (right) as well as some of the mappings between them. For instance, each
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Fig. 6 Binding data-oriented UI elements to data components

DataOrientedUIElement (including specializations) has a DataElement as data

source. Again the shown sections correspond to packages in the metamodel overview

(Fig. 4).

7.4 Binding Data Components to the Application Core

As mentioned earlier, the front-end is integrated with the application core via web

service protocols. To allow this integration, the AUI model references concepts in a

web service model, which is based on a WSDL description.
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Fig. 7 Binding user interface elements to a web service

As an example of how this integration works on a metamodel level, Fig. 7 shows

how data-oriented components are referring to the corresponding web service oper-

ations, which are used to retrieve or store data from/to the web service.

8 Discussion and Outlook

We have shown how our MANTRA approach can be used to generate several con-

sistent user interfaces for a multi tier application (see Fig. 8).

We discussed how the user interface can be adapted on the AUI level by tailoring

dialogue and logical presentation structures which take into account requirements
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Search

Search

Search

Web

Mobile

GUI

Fig. 8 The generated front-ends (Web, GUI, mobile)

imposed by front-end platforms or inexperienced users. For this, we used the hierar-

chical structure of interaction elements and constraints on the dialogue flow which

can be derived from a task model.
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The approach generates fully working prototypes of user-interfaces on three

target platforms (GUI, dynamic website, mobile device), which can serve as front-

ends to arbitrary web services. Such generated prototypes are beneficial in rapid

prototyping and early evaluation of user interfaces, since they facilitate functional

evaluations by performing and analysing practical use cases.

The approach is geared towards interaction patterns that are commonly found

in electronic forms and hypertext-like applications. It would, for instance, be very

difficult to model and generate applications like an image processing tool or a

spreadsheet calculation application.

8.1 Applied Technologies

When implementing MANTRA, we described the meta-models (including platform-

specific concepts) in UML and then converted these to Ecore, since we use the

Eclipse Modeling Framework (EMF) [15] to handle all processed models and the

corresponding meta-models.

The various model transformations (e.g., for steps and in Fig. 1) are

described in ATL [16].

We use a combination of Java Emitter Templates and XSLT to generate (

in Fig. 1) arbitrary text-oriented or XML-based implementation languages (e.g.,

C-Sharp or XHTML with embedded PHP).

The coordination of several steps in the model flow is automated by Apache

Ant [17] (integrated into Eclipse) and custom-developed “Ant Tasks” to manage the

chain of transformations and code generation.

We use web services as an interface between the UIs and the application core.

Hence, the UI models reference a WSDL-based description of operations in the

application core. The generated UIs then use web service operations, for instance,

to retrieve results for a query specified by the user.

8.2 Future Work

In the discussion of the AUI adaptation, it has been mentioned that the derived user

interface structures (first the adapted AUI, then later the CUI) are not fully specified

by the given input models (AUI with temporal constraints). In other words, when

progressing down the MANTRA model workflow (see Fig. 2) and making decisions

on how to best implement the given abstract specifications, we can choose among

different potential solutions. This provides the opportunity for various optimisation

approaches. We intend to explore this further.

Another aspect for future work is the modelling and handling of variability and

commonality among the multiple front-ends of one application. On an element level,

this can be addressed by abstraction, where one abstract element (e.g., “Select One”

can describe multiple concrete solutions (e.g., “HTML Link List” and “‘MS Win-

dows ListBox”). This however, does not allow to describe variations among front-

ends on a structural level. For instance, how do you represent that certain dialog
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structures and navigation paths are only available in some front-ends, but not all

of them? Here, approaches from product line engineering and variability modelling

could be beneficial [18, 19].

Related to this, feature modelling [20] could be applied to describe variation

and configuration options. Then, techniques from product configuration [21, 22]

could be applied and extend to describe how configuration options are chosen –

potentially over multiple stages [23]. Finally, techniques from feature mapping [24]

and variability realisation [25] could be used to describe how the chosen options

influence the artefacts that actually describe the user interface.

In current work, we have take first steps towards such an integration of model-

based user interface engineering and model-driven product line engineering ap-

proaches. In particular, we integrated feature models, which describe the variability

and configuration choices of the product line, and abstract user interface models,

which describe the common user interface structure of all products. More details

are described in [11].
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A Design Space for User Interface Composition 

Fabio Paternò, Carmen Santoro, and Lucio Davide Spano* 

Abstract. Modern user interfaces are highly dynamic and interactive. They often 

compose in various ways user interface components. Thus, there is a need to  

understand what can be composed in user interfaces and how. This chapter pre-

sents a design space for user interface composition. The design space consists of 

five dimensions addressing aspects ranging from the UI abstraction level involved, 

the granularity of UI elements involved, the UI aspects that are affected by it, the 

time when such a composition occurs, and the type of web services involved.  

The design space is then analyzed with respect to the capabilities of the  

ConcurTaskTrees and MARIA languages in order to show how it is possible  

to compose user interfaces at various abstraction levels. In order to provide  

a deeper insight, in the paper, we also present a number of excerpts for several 

composition examples. 

1   Introduction 

The basic idea of user interface composition is to combine pieces of User Interface 

(UI) descriptions in order to obtain a new user interface description for a new inter-

active application. In the context of composition of user interfaces for emerging 

service-based applications, two main cases can be identified. On the one hand, we 

can compose services that do not have associated any UI. In this case, a strategy 

could be composing web services (using already existing and well-known tech-

niques for orchestration of Web services) and then derive the UI of the service re-

sulting from such composition. Examples of such approaches are WS-BPEL [9], a 

notation that is well known and used for representing and composing business 

processes, BPEL4people [1], which is an extension of BPEL to the standard WS-

BPEL elements for modelling human interaction in business processes, and WS-

Human Task [2], a notation for the integration of human beings in service-oriented 

applications. On the other hand, we can have the case when service-based applica-

tions have already associated user interfaces. They latter can be described through 
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annotations (see for example [6]) providing some indications for the corresponding 

user interface specifications or they can be complete user interface descriptions 

composed to create new interactive applications, as it happens with mash-up appli-

cations. In this case, the focus is on composing the user interfaces descriptions and 

we will mainly discuss such aspects. 

Many UI definition languages are XML-based, thus some work on user inter-

face composition has aimed to apply the tree algebras for XML data system to the 

XML languages for user interface definition. A tree algebra for XML data systems 

can be found in [4]. A tree is as a set of nodes, each one with a single parent and 

many children. The trees have two types of operators: algebraic and relational. 

Another tree algebra definition can be found in [5], with a similar approach. The 

main difference is the focus of the definition: Jagadish et al. [5] aim to discuss a 

solution for creating data structures able to run efficient queries on XML trees and 

they define operators similar to the usual relational database. A similar tree-based 

approach, but specific for the concrete level of the UI has been applied for the 

USIXML Language [7]. In this chapter, we consider compositions that are mainly 

driven from the user interface perspective taking into account the support that they 

have to provide. In order to discuss comprehensively these issues, a systematic 

approach for analyzing this problem is advisable. To this aim, we have identified a 

design space based on various dimensions on which the composition of the UI  

can vary.  

More specifically, this chapter describes a five-dimensional problem space for 

UI composition. In particular, in Section 2, we report an overview of the main 

characteristics of the problem space, showing a number of problem dimensions, 

and which aspects are modelled by each dimension. Afterwards, Section 3 is  

dedicated to describing how MARIA and ConcurTaskTrees support the different 

compositions identified in the problem space. For the various options, we provide 

some examples. Lastly, a final section summarises the main points covered.  

2   The Design Space for Composition of UIs 

User interfaces can be composed according to a number of aspects. In this section, 

we describe a design space referring to such aspects in order to identify the  

possible compositions that can occur. Up to now, five dimensions have been  

identified (see Figure 1): 

• Abstraction level used to describe the user interface; 

• Granularity of the user interface elements considered; 

• UI Aspects addressed; 

• Time/Phase when the composition occurs; 

• The type of Web Services involved in the composition. 
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Mixed 

Web Services 

REST-Based 

WSDL-Based 

 

Fig. 1 The problem space for composition of UIs. 

As we better see in the following sections, only on three (out of five) axis there 

is an ordering relationships between the contained values. In Figure 1, this has 

been highlighted by opportunely using arrows or plain lines for representing the 

different dimensions. In the next sub-sections (Section 2.1 – Section 2.5), we de-

scribe more in detail the characteristics of every axis of the problem space. After-

wards, in Section 3, we analyze how MARIA and ConcurTaskTrees support the 

composition options offered by the problem space.  

2.1   Abstraction Levels 

Since a UI can be described at various abstraction levels (task and objects,  

abstract, concrete, and implementation level), the user interface composition can 

occur at each of these levels. The abstraction levels usually considered are those of 

the CAMELEON Reference Framework [3], starting from the highest abstraction 

levels to the more concrete ones: 

• Task: this level refers to activities performed to reach the users’ goals; 

• Abstract: this is the level of a platform-independent interface description; 

• Concrete: an interface description referring to a specified platform, but in a 

manner that is independent from the implementation framework; 

• Implementation: interface description referring to a specific implementation 

language. 

Please note that with “platform” we mean a group of devices sharing a number of 

common interaction resources. Examples of different platforms are the graphical 

desktop platform, the graphical mobile platform, the vocal platform.  

Moreover, transformations could be defined between the various user interface 

descriptions of the different levels. One example of such transformations could be 
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the mapping that associate abstract interactors to concrete ones (through forward 

transformations). However, it could also be possible to have backward references 

(for instance, when it is possible to map abstract interactors to tasks).  

Finally, an ordering relationship exists among the various values of this axis: 

the task level is the most abstract level, while the implementation level is the most 

concrete one. 

2.2   Granularity 

The granularity refers to the size of elements that can be composed. Indeed, we 

can compose single user interface elements or groups of objects, and we can join 

presentations in order to obtain the user interface for an entire application. Since it 

is also possible to compose user interfaces of applications (e.g., to obtain mash-

ups), another value has been added on this dimension: "Applications". Therefore, 

below you can find the various values on this dimension, as they appear in the cor-

responding axis, starting from the most elementary ones to more complex objects 

(for instance, in a presentation, we can have compositions of groups, as well as in 

an application, we can have several presentations). 

• Elements: Composing single user interface elements; 

• Groups: Composing groups of elements; 

• Presentations: Composing different presentations. A presentation is a set of 

UI-elements that are all perceivable at a certain moment. Therefore, a presenta-

tion can be seen in some sense as defining the current context where user  

actions can be performed. For instance, for a Web site, the page the user is  

currently visiting is an example of presentation;  

• Applications: Composing different applications. For instance, with mash-up 

applications it is possible to add in a new composed application different (and 

generally smaller) applications (or ‘gadgets’). An example of this is iGoogle 

(http://www.google.com/ig), where the user can create her personalized 

dashboard by grouping together ‘gadgets’, such as a weather application, a 

news feed, etc. 

Again, also for this axis, the various values have been placed assuming an  

implicit underlying order (from the most elementary ones to the most structured/ 

comprehensive ones). 

2.3   UI Aspects 

With this dimension, we distinguish the different types of compositions depending 

on the main UI aspects the composition affects.  

• Data: in this case the composition is carried out on the data manipulated by the 

UI elements considered; 

• Dynamic aspects: in this case the composition affects the possible sequencing 

of user actions and system feedback; 
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• Perceivable aspects: this is the case when the composition acts on perceivable 

UI aspects. 

No specific ordering relationship exists between the various values belonging to 

this axis. 

2.4   Time/Phase 

This dimension specifies when the composition occurs. It can be either a static 

composition, occurring at design time, in which case the elements we are going to 

compose are known in advance. It can also be a dynamic composition, occurring 

at runtime, during the execution of the application.  

The latter composition (occurring at runtime) is especially significant in ubiqui-

tous applications, since in such environments the context of use can vary a lot and 

then it may require different services according to such variations. Another option 

is the possibility of having types of composition that are a combination of the two 

possibilities. To summarize: 

• Runtime: during application execution  

• Design Time: when designing the application 

• Mixed: when the composition is a mixed-up of the previous cases (e.g., when 

the composition occurs partially at design time and partially at runtime) 

The time when the composition occurs can be assumed as the underlying order of 

this axis. 

2.5   Web Services 

A "Web service" is defined as “a software system designed to support interoper-

able machine-to-machine interaction over a network” [13]. Also, two basic classes 

of Web Services can be identified: REST-compliant Web services, and WSDL- 

(or SOAP-) based Web Services. On the one hand, SOAP (using WSDL) is a 

XML standard-based on document passing, with very structured formats for re-

quests and responses. On the other hand, REST is lightweight, basically requiring 

just HTTP standard to work, and without constraining to a specific required for-

mat. In [12], there is an interesting comparison and discussion of strengths and 

weaknesses of both approaches. 

3   How MARIA and ConcurtaskTrees fit the Problem Space 

In this section, we mainly focus on how the MARIA [11] and ConcurTaskTrees 

[10] languages enable the composition mechanisms that are identified through the 

problem space. In order to concretely describe the support for the problem space, 

we also provide excerpts for some composition examples analyzed. We start our 
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analysis by considering the highest abstraction level (task level, see Section 3.1) 

and then move to composition options at more concrete levels. 

3.1   Task Level 

In the following subsection, we show some examples of composition at the task 

level by exploiting the ConcurTaskTrees notation. 

3.1.1   UI Composition at the Task Level Exploiting the ConcurTaskTrees 

Language 

One example of composition at the task level involves the description of the ac-

tivities to be performed in order to search for a DVD (using a web service like the 

Amazon AWSECommerce service) and then obtain the related trailer (using a 

movie trailer service like YouTube). A possible composition of these two tasks is 

exploiting the search service in order to find out which DVDs are available in 

store, allowing the user to watch the trailer of the search results. The starting point 

is having two separate task models describing the activities for searching for a 

DVD and getting a trailer (see Figure 2). 

 

 
Fig. 2 Task models for accessing the DVD search and watch trailer services. 

The composition is performed by specifying the temporal relationship between 

the two task models: the “search DVD” task enables the “get Trailer” task, by 

passing to it the information associated with the title of the selected DVD. In order 

to create such composition the designer has to: 

1. Define an abstract task (the “Compos dvd search” task in Figure 3) that is the 

root of the composite task model (Step 1); 

2. Add the “search DVD” task model as sub-task of the root specified at Step 1. 

3. Add the “get Trailer” model as sub-task of the root specified at Step 1. 
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4. Connect the two models using the enabling with information passing operator 

(represented by this symbol: “[]>>”) 

5. Specify that the object of the search sub-task is used by the “get Trailer”  

service. 

Figure 3 shows the result of the composition. 

 

Fig. 3 The composition result. 

In the five-dimensional space identified, this example can be represented as 

shown in Figure 4 (Abstraction level: task; Granularity: groups; UI Aspects: Dy-

namic aspects; Time/Phase: design time; Web Services: WSDL-based). Indeed, 

the abstraction level is the task because we are considering tasks for composition, 

the granularity is at the group level because we are composing parts of user inter-

faces associated with given services (we can suppose that the presentation might 

contain additional UI elements). Regarding the UI aspects, the composition in this 

example basically intervenes on dynamic aspects since it indicates that after exe-

cuting the first service, the second one is enabled by receiving the result by the 

first one. In addition, through the CTT language it is possible to refer to  
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Fig. 4 The considered composition example referred to the problem space. 
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web services specified through WSDL descriptions, as it has been considered  

in this composition example. Finally, in the considered example, the composition 

occurs at design time.  

3.2   Abstract Level 

Figure 5 depicts how MARIA supports the problem space. In terms of abstractions, it 

covers both the abstract and the concrete level, as well as the implementation. At the 

abstract level, the UI is described using abstract elements and relationships, inde-

pendent from a specific platform. Such relationships are abstract composition opera-

tors, which are provided by the language itself to combine together different interac-

tors or, in turn, other composed expressions. Also the mechanisms used for 

composing together abstract presentations, by means of abstract connections, can be 

used for composition at this level. In addition, mechanisms specified in the dialog 

model (at the abstract level) can be used to specify compositions occurring within a 

single abstract presentation. While the first one (composition operators) is a composi-

tion that defines a static organization of the interactors, the other two mechanisms  

define dynamic compositions, which evolve over time. In the following sections, we 

better detail all such different cases, by devoting to each a separate section. 

UI Aspects 

Abstraction Levels 

Granularity 

Time/Phase 

      Task 

      Abstr. 

      Runtime 

Data

Dynamic  asp. 

Perceivable asp. 

Concr. 

      Impl. 

      Elem. Groups Pres.  Appl. 
      Design 

Web Services 

REST-Based

WSDL-Based 

Mixed 

 

Fig. 5 The problem space supported by MARIA. 

3.2.1   Abstract Composition Operators 

The composition expressed through the abstract composition operators generally 

affects the presentation aspects of an interface. In MARIA, three composition op-

erators have been identified: grouping, relation and repeater. 
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The composition operators allow for composing together (composition of)  

interactors. As it is indicated by the name, the objective of the grouping operator is 

to indicate that some interactors are logically grouped together: this information 

should be appropriately rendered in the UI. The definition of the Grouping opera-

tor in MARIA requires the specification of a number of attributes: 

• continuous_update. Boolean type, optional. It is used to specify a continuous 

update of the content. The technique used for implementing such an update will 

depend on the specific technology that will be used at the implementation level. 

• hidden. Boolean type, optional. It is True if the interactor is not displayed to 

the user. 

• hierarchy. Boolean type, optional. If true, the grouped interactors have a hier-

archical relation. 

• hierarchy_value. String type, optional. Value for hierarchical presentation of 

the content. 

• id. NMTOKEN type, required. It is the interactor composition identifier 

• ordering. Boolean type, optional. If true, the grouped interactors have an  

ordering relation. 

• update_function. String type, optional. The name of the function for a  

continuous_update. 

A simplified example of grouping expression in the MARIA language is in the 

following XML-based excerpt in which three UI elements are grouped together: 

an interactor used for selecting a customer, an activator element for searching the 

quotations associated with the selected customer, and a description interactor 

showing the results. A more structured example of use of MARIA XML-based 

language will be presented later on in the Chapter. 

 
<grouping id="Select_customer"hierarchy="false" 

[…other attributes…]> 

<single_choice id="Specify_customer_ID" […]> 

<choice_element value="item/id"/> 

</single_choice> 

<activator id="Search_customer_quotations" […]/> 

<description id="P3_Show_result" […] /> 

</grouping> 

 

Differently from the Grouping operator, which models a relationship between  

several abstract UI objects (or compositions of them), the Relation operator mod-

els a relationship between only two expressions of interactors. A typical example 

of Relation abstract operator is translated at the concrete level (for a graphical 

platform) in a UI form. In this case, the two expressions of interactors involved by 

the Relation are on the one hand, the N fields to be filled by the users, and, on  

the other hand, the button (generally labelled with “Submit”) for transmitting the  
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corresponding values to the application server. So, the Relation operator supports 

a N:1 relationship between the N elements appearing in the first expression, and 

the second expression involved in the composition. 

3.2.2   Connections 

The connections are mechanisms for composing together presentations, where  

a presentation is a set of UI elements that can be perceived at a certain time.  

Differently from what happens for the composition operators presented in the pre-

vious sections (which combine elements belonging to the same presentation), the 

compositions supported by the connections involve different presentations of the 

UI and generally affect the dynamic behaviour of the UI. A connection is gener-

ally defined by specifying a presentation, which is the current presentation, and an 

interaction element, which is generally a navigator element triggering the activa-

tion of another presentation (i.e., the target presentation) when it is selected. At the 

abstract level, the connections are defined in terms of abstract presentations and 

abstract interactors. 

At the abstract level, three types of connections can be specified in MARIA: 

• Elementary connections: connections linking together two presentations 

through one abstract interactor (e.g., by activating an interactor of type naviga-

tor). Thus, it is possible to move from a source presentation to a target presenta-

tion through an interactor. 

• Complex connections: a more structured connection in which it is possible to 

specify a set of interactors composed by Boolean expressions able to activate 

the connection. 

• Conditional connections: a more flexible mechanism for describing connec-

tions, in which it is possible to specify that, depending on the value currently 

assumed by a certain parameter, it is possible to move to different presenta-

tions. Therefore, a "conditional connection" is a connection that can activate 

more than one presentation, and the presentation that is finally activated de-

pends on a specific value.  

A simplified example of conditional connection in MARIA has the following 

specification:      

<conditional_conn id="" interactor_id="" parameter_name=""> 

<cond parameter_value="" presentation_to_load="" 

        target_composition_operator=""  

      target_presentation_name="">{1,unbounded}</cond> 

</conditional_conn> 

As you can see from the above excerpt, a conditional connection can have one or 

multiple child elements of type cond, whose definition has a number of attributes. 

In addition, the definition of the conditional connection includes some attributes, 

which are detailed below: 

• id. Required, it is the unique identifier of the conditional connection 
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• interactor_id. Required, it is the identifier of the interactor which connects  

the current presentation with another one (generally refers to a navigator or an 

activator) 

• parameter_name. Required, it is a string with the name of the variable to test 

for selecting the target presentation 

In order to better illustrate how connections work, in the continuation of the  

Chapter, we will provide a more structured example in which they are exploited. 

3.2.3   Dialog Model – Related Composition Mechanism (Abstract Level) 

Another mechanism that can be used for composing UIs is the mechanism defined 

in the dialog model, which is an abstract model that is used to specify the structure 

of the dialogue between a user and an interactive computer system. The composi-

tion technique associated with the dialogue model involves dynamic aspects of a 

UI and it is generally used for specifying the dynamic behaviour occurring within 

a single presentation. Indeed, a presentation does not have just one single state, but 

it can move between different states depending on a number of events, which 

represents its dynamic behaviour. Therefore, the compositions intervening at the 

level of the dialog model allows for composing together over time the interactors 

that belong to the same presentation, by identifying different states within the 

same presentation.  

For example, as a consequence of selecting a specific item in a list of cities  

in a part of a presentation, it can happen that some other UI elements in the 

presentation are disabled, since they are not possible for the specific item selected, 

while other elements are enabled. In this case, we have identified a first state of 

the presentation as the one in which a certain subset of interactors is disabled, and 

another state of the presentation as the one in which the same subset of interactors 

are enabled as a consequence of performing a certain selection in the UI (city 

selection). So, in this case, the mechanism for dynamically moving from the first 

state to the second state (in other terms: to compose together the two states or 

groups of interactors) is the UI element that supports the selection of a specific 

city. Another simple example would be a touristic web page with a list of cities, 

where the user selects a city in the countryside, and therefore, in the presentation, 

the part dedicated to reach this location by boat should be dynamically disabled. 

The mechanism modelled by the dialog model is a consequence of the fact that 

the dynamic behaviour of an abstract presentation can evolve over time depending 

on some events that occur in the UI. In MARIA, the dialogue model is basically an 

event-based model in which the CTT temporal operators can be used for defining 

complex dialog expressions. As for the type of actions that can be performed in re-

action to a change of state (the so-called event handlers), they can be i.e. to enable 

(or to disable) UI objects, as well as to support further, more flexible behaviour. To 

this aim, in MARIA, some more flexible constructs have been identified as useful 

for modelling the different activities that can be performed as a consequence of a 

change of state. For instance, a value change of an interactor attribute can be  

supported in MARIA through the change_property attribute. Other activities  

are: change of values of some elements in the data model, invocation of external 
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functions, usage of typical programmatic operations on Strings, Numbers, and  

Boolean values, and the support for well-known programming language constructs 

like if-then-else and while. Finally, it is worth pointing out that at this level the 

composition will involve abstract events and abstract event handlers (which are 

associated to abstract interactors).  

3.2.4   Abstract Composition Example 

In this section, we focus on one example of composition at the abstract level and 

involving perceivable aspects of interactors belonging to a single presentation. In 

addition, the example considers composition occurring at design time. Therefore, 

the five-dimensional element identified by this example (see Figure 6) is: Abstrac-

tion level: abstract; Granularity: presentation; UI Aspects: perceivable aspects; 

Time/Phase: design time; Web Services: WSDL-Based. 

      Elem. Groups Pres. Appl. 

Mixed
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UI Aspects 

Time/Phase 
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Fig. 6 The composition considered in the example, and referred to the problem space. 

In order to provide an example of this kind of composition, we can consider a 

simple application with which the user interacts in order to search for a DVD 

within an online DVD database.  

The application has three presentations. The first presentation (“Presentation_1”, 

see excerpt below) provides the UI for specifying the data on which the search will 

be performed. As you can see in the MARIA excerpt below, in this presentation 

there are various interactors of type text_edit for specifying such information (e.g., 

title, actor, director, etc.): 

<presentation name="Presentation_1"> 

<grouping id="Specify dvd_search"> 

<grouping id="Enter_film_data"> 

<text_edit id="Enter_keyword"/> 

<text_edit id="Enter_title"/> 
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<text_edit id="Enter_actor"/> 

<text_edit id="Enter_director"/> 

<activator id="search_film_activator"/> 

</grouping> 

<grouping id="perform_search"> 

<activator id="show_result_activator"/> 

</grouping> 

</grouping> 

</presentation> 

 

The second presentation shows the result of the search (see the description interac-

tor "show_result" in the excerpt below). This result shows a list of possible movies 

satisfying the constraints specified in the search: from this list of results, the user 

can then select (see the single_choice interactor) a specific movie: 

 
<presentation name="Presentation_2"> 

<grouping id="Perform_dvd_search"> 

<grouping id="perform_search"> 

<description id="show_result"/> 

<navigator id="perform_search_navigator"/> 

</grouping> 

<grouping id="choose_dvd"> 

<single_choice id="select_dvd"  

cardinality="4"/> 

</grouping> 

</grouping> 

</presentation> 

 

Once the user has selected a specific trailer, in the third presentation the user can 

obtain the data about the trailer that has been selected by interacting with a naviga-

tor interactor. 

 
<presentation name="Presentation_3"> 

<grouping id="Get_Trailer"> 

<navigator id="get_trailer_data_navigator"/> 

</grouping> 

</presentation> 

 

An example of composition for such UIs is to merge the three presentations into 

only one presentation. In such combined presentation there will be one part dedi-

cated to entering the search keywords, one part for showing the results, and a re-

maining part for watching the selected trailer. In terms of the MARIA language, 

the resulting composition at the abstract level will produce the following result: 

 
<presentation name="Composed_presentation"> 

<grouping id="Composed_dvd_search"> 

<grouping id=”Specify_dvd_search"> 

<grouping id="Enter_film_data"> 

<text_edit id="Enter_keyword"/> 

<text_edit id="Enter_title"/> 
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<text_edit id="Enter_actor"/> 

<text_edit id="Enter_director"/> 

<activator id="search_film_activator"/> 

</grouping> 

<grouping id="perform_search"> 

<activator id="show_result_activator"/> 

</grouping> 

</grouping> 

<grouping id="Perform_dvd_search"> 

<grouping id="perform_search"> 

<description id="show_result"/> 

<navigator id="perform_search_navigator"/> 

</grouping> 

<grouping id="choose_dvd"> 

<single_choice id="select_dvd" cardinality="4"/> 

</grouping> 

</grouping> 

<grouping id="get_Trailer"> 

<navigator id="get_trailer_data_navigator"/> 

</grouping> 

</grouping> 

<presentation> 

 

The composition in this case has been exploited through a grouping operator com-

posing the content of the involved presentations. 

3.3   Concrete Level (Graphical Desktop Platform) 

At the concrete level, the UI is expressed by referring to concrete elements and  

relationships. Differently from the abstract level, at this level the UI description 

refers to a specific platform. Therefore, at this level, we refer to a number of inter-

action techniques that are dependent on a platform, but are independent of a spe-

cific implementation language. As an example, while on a vocal platform we use 

specific sounds for grouping together vocally rendered elements, on a graphical 

platform we can use a shared background colour for rendering the fact that some 

elements are grouped together. Then, the concrete composition mechanisms that 

have been identified are basically the concrete composition operators (which  

are refinements of grouping and relation abstract operators), the dialog model  

(defining the dynamic behaviour associated within a single concrete presentation), 

and the composition mechanisms that can be specified through the connections 

(expressing the dynamic behaviour between different concrete presentations). 

3.3.1   Concrete Composition Operators 

At this level, the composition mechanisms identified are refinements of the com-

position techniques identified at the abstract level, using references to a specific 

platform/modality. For instance, while at the abstract level we refer to abstract  
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grouping relation between UI elements, at this level, we have to specify which 

concrete techniques we use on a specific platform/modality in order to render such 

a grouping relation between the various elements. At the concrete level, the com-

position operators inherit the attributes that they have at the abstract level, adding 

further concrete details. In particular, at the concrete level (e.g., the desktop  

platform), the composition operators have some default_settings.  

For the grouping operator, they are the following, modelled as attributes of the 

grouping_settings element, as described in the excerpt below: 

 
<grouping_settings bullet="" fieldset="" position=""> 

<hierarchy_properties 

visualization="">{0,1}</hierarchy_properties> 

<ordering_properties position="" 

visualization="">{0,1}</ordering_properties> 

<background>{0,1}</background> 

</grouping_settings> 

• bullet. Optional, if the grouping is carried out by using bullets 

• fieldset. Optional, for grouping the elements with a fieldset (yes/no) 

• position. Required, the element position settings 

As for the Relation operator, since this operator is generally used for modelling 

the relationships occurring between a set of interactors (possibly composed with 

some composition operators) and one interactor, it has the form as its default sup-

porting mechanism at the concrete desktop level. 

3.3.2   Connections 

At the concrete level, the connections are defined in the same way as at the ab-

stract level. The only difference is that, at this (concrete) level, the specification is 

done by referring to concrete interactors (and concrete presentations), since they 

are a mechanism that just refines the corresponding elements introduced at the ab-

stract level (abstract connections) by just adding platform-specific details.  

3.3.3   Dialog Model –Related Mechanism (Concrete Level) 

As it happened at the abstract level, also at the concrete level it is possible to use 

composition techniques based on the dialogue model, in order to model a dynamic 

behaviour affecting a single concrete presentation. In order to do this, we use 

complex expressions of concrete events (associated with concrete interactors), 

which might trigger the activation of concrete event handlers. The main difference 

from the dialog model-related mechanisms in the abstract case is that now the 

composition (occurring in terms of dynamic behaviour) will be defined by means 

of concrete events (associated with concrete interactors), which trigger the activa-

tion of concrete event handlers. For example, in a graphical platform a “click” 

event is a refinement of the abstract “selection” event. 
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3.3.4   Concrete Composition Example (Graphical Desktop Platform) 

At this level, we show an example of composition that involves dynamic aspects. 
In particular, we show how it is possible to group together three different presenta-
tions in such a way that, depending on the value held by a specific parameter that 
can be selected in the first presentation, different elements are dynamically acti-
vated in the other two presentations.  

Abstraction levels 

Granularity 

UI Aspects 

Time/Phase 

      Elem.  Groups  Pres.  Appl. 

Task

      Abstr. 

Concr. 

      Impl. 

Design

Runtime 

Data 
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Mixed 

Web Services 

WSDL-Based 

REST-Based 

 

Fig. 7 The composition considered in the example, and referred to the problem space (con-

crete level, presentation granularity, dynamic aspects, design time, WSDL-based services). 

We show how this behaviour can be modelled by using the "conditional 
connection" structure of MARIA language. Therefore, the five-dimensional 
element identified by this example is: Abstraction level: concrete; Granularity: 
presentations; UI Aspects: Dynamic aspects; Time/Phase: Design; Web Services: 
WSDL-based (see Figure 7). The considered example is drawn from an application 
that allows the user to present and edit home features. We can consider a first 
presentation ("presentation_1", see excerpt below), in which there is a grouping 
(implemented, in concrete terms, by a fieldset) of some pieces of information 
(textual elements) referring to a specific apartment. In addition, within this 
presentation, it is also possible to select the various rooms composing the flat.  

<presentation name="presentation_1"> 

 .... 

 <grouping id="deviceListGrouping"> 

 <properties position="row" bullet="false" fieldset="true"> 

  <background> 

    <background_color>#D3D3D3</background_color> 

  </background> 

</properties> 

<descriptionid="textRooms"> 
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<text>  <string>Room List:</string> 

   <font_settings style="" align="Center" size="20pt"  

       color="#FF0000" name="Verdana"/> 

  </text> 

<description id="RoomDescription"><text> 

<string>The apartment is located in a seven-storey 

building situated in the immediate outskirts of the town. It 

consists of five rooms.</string></text> 

 <font_settings style="" align="Center" size="20pt"  

              color="#FF0000" name="Verdana"/> 

  </description> 

<single_choicedata_reference="ArrayOfRooms" 

id="roomSelection" selected="Bedroom" cardinality="5"> 

 <drop_down_list label="Room selection"> 

   <choice_element selected="false" value="Dining_room"  

                   label="Dining room"/> 

   <choice_element selected="false" value="Living_room"  

                               label="Living room"/> 

   <choice_element selected="false" value="Kitchen"  

                               label="Kitchen"/> 

   <choice_element selected="true" value="Bedroom"  

                               label="Bedroom"/> 

   <choice_element selected="false" value="Bathroom"  

                               label="Bathroom"/> 

</drop_down_list> 

</single_choice> 

</grouping> 

      .... 

</presentation> 

In addition to “presentation_1”, we have other presentations that are devoted to 

describe the characteristics of each room in the apartment. More specifically, in 

the example presented, we have a second presentation ("presentation_2" in the ex-

cerpt below) dedicated to showing details of the bedroom, while the third presen-

tation shows details of the bathroom (we do not include its XML specification for 

sake of brevity). 

<presentation name="presentation_2"> 

       ... 

<grouping id="bedroomGrouping"> 

<properties position="column"> 

<background> 

  <background_color>#004466</background_color> 

    <background_image></background_image> 

  </background> 

</properties> 

<description id="title Image"> 

<image width="100" height="100" horizontal_align="Left"  

         alt="Bedroom image" source="img/bedroom.png"/> 

</description> 

<description id="titleText"> 

<text><string>Bedroom</string> 
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   <font_settings style="italic" align="Left" size="30pt"                           

color="white" name="Arial"/> 

     </text> 

   </description> 

   </grouping> 

       .... 

</presentation> 

The idea is to have a new combined presentation in which, depending on the value 

that has been chosen between the set of rooms composing the flat, different 

presentations are activated. In the MARIA language, if we want to compose such 

presentations, in order to have a new UI with a dynamic behaviour that allows the 

activation of a specific presentation, depending on the value that is assumed by a 

specific interactor attribute, we can use the "conditional connection" construct. A 

"conditional connection" is a connection that can activate more than one presentation, 

and the presentation that is finally activated depends on a specific value. In the 

example, it is the value assumed by the drop-down list "roomSelection". Thus, if the 

value currently selected is "Bedroom", the "presentation_2" will be activated, and if 

the selected value is "Bathroom", the "presentation_3" will be activated. 

Below is the related MARIA excerpt specifying the result of composition 

through conditional connection in "presentation_1" (only the part related to the 

connection specification has been described): 

<presentation name="presentation_1"> 

 <connections> 

<conditional_conn id="id1"interactor_id="roomSelection" 

parameter_name="roomSelection/selected"> 

  <cond parameter_value="Bedroom"  

      target_presentation_name="presentation_2"                  

target_composition_operator="target_composition_operator1" 

               presentation_to_load="presentation_1"/> 

  <cond parameter_value="Bathroom"  

                target_presentation_name="presentation_3"/> 

</conditional_conn> 

</connections> 

<grouping id="deviceListGrouping"> 

   [ definition of  deviceListGrouping here ] 

</grouping> 

3.3.5   Example of Composition of Services at the Concrete Level  

In this section, we show a possible composition of services at the concrete level. 

In particular, we consider the case when there is a first Web service used by a last 

minute tour agency, which, depending on the current time and location, delivers a 

list of cheap return flights (from the current location). We suppose that the user  

is currently in the area of London (Gatwick) and the service displays the flights 

currently available and departing from that airport from that moment onward, 

showing them in ascending order, from the cheapest flight to the most expensive 

one. A visualization of this service (for the desktop platform) is shown in Figure 8. 
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Price Time/Date To Flight 

Number 

Class 

09:35  9 Oct Madrid OP1456 Economy £ 291 

 6:55   15 Oct London 

Gatwick 

OP1453 Economy 

12:30  9 Oct Barcelona TR1235 Economy £ 295 

 6:55   15 Oct London 

Gatwick 

TR1665 Economy 

22:40  9 Oct Barcelona AA1466 Economy £ 300 

 6:55   14 Oct London 

Gatwick 

AA1216 Economy 

10:35  8 Oct Paris PP4452 Economy £ 350 

 6:55   15 Oct London 

Gatwick 

PP4452 Economy 

Fig. 8 A possible graphical rendering of the UI for the first service providing information 

on flights (desktop platform). 

 

Fig. 9 A possible graphical rendering of the UI for the second service providing informa-
tion on hotels (desktop platform). 
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The area given in input to this first service can vary, and can be specified, e.g., 

depending on the current position of the mobile user. In this case, a GPS receiver 

could provide this information. Then, the first service might be defined likewise: 

flight_info=getFlightInfo(area), where getFlightInfo is the name of the service, 

area is the input parameter passed to the service, and flight_info is the output 

value returned by the service itself (it includes the city destination and depar-

ture/arrival times). Another service is also available, which, having in input a des-

tination city and two dates (arrival/departure date), offers a list of available hotels 

for the considered period, also providing a visualization of each available hotel in 

a graphical map. The functionality of this second service can then be summarized 

with the following function: hotels_info=provide_hotels_info(destination_city, ar-

rival_date, departure_date), where destination_city is the city where to find an 

accommodation, while arrival_date and departure_date are the dates that identify 

the period during which the user will stay in that city.  

This service delivers in output hotels_info, which is information about available 

hotels including name, address, rates, and also it provides a visualization of this 

hotel in a graphical map. A possible graphical rendering for this second service 

(for the graphical desktop platform) is visualized in Figure 9. These two UI ser-

vices can be composed together on temporal aspects. Indeed, after the user selects 

a particular return flight in which s/he is interested from the currently available 

ones (depending on associated dates and destination selected), the second service 

will show the list of possible accommodation options in a graphical map. The 

composition of such services in the mobile device produces two presentations, 

which are displayed in Figures 10-11 below. 

 

Fig. 10 First presentation (mobile device) of the UI resulting from composing the two  
services. 

More specifically, Figure 10 shows how the user can select the flight in which 

s/he is interested. Additionally, as soon as the user selects a particular hotel, this 

action triggers the visualization of a second presentation (visualized in Figure 11) 

in which the possible accommodation options are visualized. Depending on the  
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Fig. 11 Second presentation (mobile device) of the UI resulting from the composition 

option selected by the user, the corresponding hotel is visualized in the graphical 

map, and its position will be highlighted in it by using an icon with a colour dif-

ferent from the one used for the other icons, to distinguish it from the other hotels 

in the same area. Also, in the mobile device, an adaptation step will generate an UI 

(see Figure 11) in which only a part of the information available for each hotel is 

immediately visible on the screen. Indeed, when the user selects a specific hotel, 

the application presents the overall description by displaying the picture and a part 

of the information in a textual manner, while the remaining information is vocally 

rendered. 

As far as our problem space is concerned, in this case, the composition is car-

ried out at the concrete level, involving groups of UI objects. Indeed, in this case, 

we are composing services, which can even provide data for only some parts of a 

presentation, and for this reason, we consider it as a composition involving groups 

of objects. In addition, the composition affects temporal aspects, since, after the 

user selects a particular item in the list different events are triggered in the other 

parts of the UI. The map shown in the right part of the UI changes its appearance 

since the selected item is highlighted with a different colour, and a vocal rendering 

of the remaining information about the selected hotel starts.  

Therefore, the five-dimensional element identified by this example (see Figure 

12) is: Abstraction level: Concrete; Granularity: groups of UI objects; UI Aspects: 

Dynamic aspects; Time/Phase: Runtime; Web Services: WSDL-Based. 

The composition is done at runtime since we suppose that the service that pro-

vides information on hotels is not statically determined but it dynamically changes 

depending on the current position of the user. Regarding the level of composition, 

it occurs at the concrete level; the granularity is that of groups of UI objects, and  
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Fig. 12 The composition considered in the example, and referred to the problem space. 

the aspects affected by the composition are the dynamic aspects (although also the 

perceivable aspects are affected as well). 

4   Conclusions 

This chapter presents a design space for user interface composition. In particular, 

we judged useful to propose a five-dimensional space for identifying the charac-

teristics of the various user interface composition techniques that can be used.  

The five dimensions that have been identified are: granularity, abstraction level, 

UI-aspects affected by the composition, the phase when the composition occurs 

and the type of services that the composition involves.  

Once we have defined such a problem space, we considered the support pro-

vides by the ConcurTaskTrees and MARIA languages, and to what extent they are 

able to cope with the composition options identified by the problem space. More 

specifically, currently MARIA neither provides support for composing together 

entire applications, nor for composing UIs at the task level.  

In order to better illustrate relevant UI composition examples, we have  

provided and discussed a number of examples that cover the various parts of  

the proposed design space. Such examples have been provided by considering  

different levels of abstractions (also including the task level). Moreover, we have 

also provided relevant XML-based MARIA excerpts for some of them, in order to 

give the reader a more concrete idea of how in MARIA language it is possible to 

specify different composition cases.  

UI Aspects  Web Services 

Abstraction levels 

Granularity 

Time/Phase 

      Elem.  Groups  Pres.  Appl. 

    Task 

      Abstr. 

         Concr. 

      Impl. 

 

Design 

 

Runtime 

 Data 

         Dynamic  asp. 

  Perceivable  asp. 

 

Mixed 

WSDL-Based

REST-Based 
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Future work will be dedicated to further analysis of the proposed design space 

and to evaluating its validity and generality in identifying the possible situations 

that can occur in user interface composition. 

Acknowledgments. This work has been supported by the ICT EU ServFace STREP project 
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Applying Meta-Modeling for the Definition of 

Model-Driven Development Methods of Advanced 

User Interfaces 

Stefan Sauer
*
 

Abstract. The user interfaces of interactive systems become increasingly complex 
due to new interaction paradigms, required adaptability, use of innovative tech-
nologies, multi-media and interaction modalities. Their development thus de-
mands for sophisticated processes and methods, as they are deployed in software 
engineering. Model-driven development is a promising candidate for mastering 
the complex development task in a systematic, precise and appropriately formal 
way. Although diverse models of advanced user interfaces are deployed in a de-
velopment process to specify, design and implement the user interface, it is not 
standardized which models to use, how to combine them, and how to proceed in 
the course of development. Rather, this has to be defined by methods in the con-
text of organizations, domains, projects. To cope with the definition of model-
driven development methods for advanced user interfaces, we propose a meta-
method for method engineering. It can be used for modeling and tailoring such 
development methods. We show how to apply this meta-method for designing de-
velopment methods in the domain of advanced user interfaces. 

1   Introduction 

The development of advanced interactive software systems demands for sophisti-

cated engineering processes and methods, not only for the application functionality, 

but also for their increasingly sophisticated user interfaces. Model-driven develop-

ment is a qualified approach for dealing with the complex development task of  

advanced user interface development in a systematic, precise and appropriately  

formal way. However, it needs to get along with the creative and less formal  

development techniques that are also used in user interface development. 

Diverse models of advanced user interfaces are deployed in a development 

process to specify, design and implement the user interface. Among these models 
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are task models, dialog structure or navigation structure models, dialog flow or 

navigation models, dialog state and presentation state models, abstract and con-

crete user interface models, models of adaptation, device capability models, and so 

on. The concrete set of models that is used for a development depends on the  

domain, purpose, and nature of the interactive system and its user interface. In an 

integrated development approach, the set of models also has to be compatible  

with other models of the interactive system such as those regarding application 

functionality. 

In order to cope with this complexity, it is necessary to define precise methods 

for model-driven development of advanced user interfaces (MDDAUI). It must be 

specified which models and artifacts are to be produced, how they are related and 

how to proceed from one to the other by the use of transformations. Such trans-

formations can be executed as manual development tasks or by automated proce-

dures (e.g. model transformations) as part of the development process.  

We propose a meta-method for method engineering [1] as a solution for this 

challenge. It can be utilized for modeling and tailoring engineering methods. We 

show how to apply this meta-method for designing development methods in the 

domain of advanced user interfaces. 

The meta-method consists of a product and a process part. The product part 

prescribes which elements must be defined for a development method (product 

model). The process model specifies what needs to be done (work model) and how 

to proceed to obtain the definition of the development method (workflow model). 

Engineering a development method then means instantiating the meta-method’s 

product model according to its process model, i.e., the method engineer performs 

the defined method engineering tasks of the work model and follows the meta-

method’s workflow model. The resulting development method – the product of 

method engineering – is an instance of the meta-method’s product model. 

In our approach, the development method itself contains a model of domain 

concepts from the MDDAUI domain as its first product. Such domain concepts 

are general concepts from the domain of human-computer interaction such as user, 

task (not to be confused with the concept “task” from the method engineering do-

main), dialog, presentation state, widget and so on, but also concepts that are spe-

cific to either advanced user interfaces or model-based and model-driven methods. 

Examples are multimodal interaction and adaptation, or domain-relevant – both 

general and domain-specific – types of models with their model elements and de-

fined model transformations, respectively. The model of domain concepts defines 

these concepts, their relevant properties and the interrelationships between the 

concepts. The domain concepts are paired with notations for their representation to 

form the artifact types (artifact model) of the development method. (Their seman-

tic relations are taken from the model of domain concepts.) The pairing provides 

us with an adequate, integrated set of (modeling) languages for advanced user in-

terfaces. We thus combine method engineering and language engineering in our 

meta-method. 

The tasks in the process dimension are described as transformations that act 

upon the artifacts of the method’s artifact model. The model transformations of 

model-driven development are a specialization of this transformation concept. The 
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activities of the workflow generally correspond to the tasks the UI developers 

have to accomplish, but may adapt them according to the situational context. It 

can be specified in a rule-based manner which effects a particular development 

task or activity has on the graph of artifacts. We use a notation based on graph 

transformation rules to describe the precondition, post-condition and effect of such 

development activities.  

Tools can then be built that (1) use the model of domain concepts as the foun-

dation of their artifact repository structure; (2) that use a representation that  

conforms to the defined notation of the method’s artifact types in their interaction 

part, i.e., user interface, content and representation media, produced output docu-

ments and files; and (3) that use the work and workflow models as the basis for 

the supported functionality. 

In the next section, we will analyze the method domain of MDDAUI in order to 

derive requirements for appropriate development methods from this analysis. 

These requirements transitively impose requirements on the meta-method, possi-

bly requiring the specialization of the general meta-method for this class of  

methods. We structure our analysis according to the characteristics of user inter-

faces, advanced user interfaces, (advanced) user interface development, models of 

(advanced) user interfaces, and integrated model-driven development of advanced 

user interfaces. In Section 3, we give a general introduction into method engineer-

ing and the use of meta-modeling for method engineering. Our meta-method for 

method engineering is presented in Section 4. In Section 5, we show how to apply 

it for the MDDAUI method domain. We summarize our work in Section 6. 

2   Model-Driven Development of Advanced User Interfaces 

In this section, we give an overview of MDDAUI. We derive from this the re-

quirements for model-driven development methods for advanced user interfaces. 

In particular, we look at both the characteristics of advanced user interfaces that 

impact their development from its product perspective and the inherent character-

istics of the development approach from the process perspective. 

2.1   User Interfaces 

The user interface of interactive software systems is one of the key factors  

determining its success. Not surprisingly, the development of sophisticated user  

interfaces is gaining more and more attention not only in the human-computer  

interaction community, but eventually also in the software engineering community.  

The user interface is the part of an interactive system where interaction  

between humans and computers occurs. Interaction is a bidirectional process of 

action and reaction, with the exchange of information between the human and the 

computer. User interfaces therefore provide means of input and/or output, thus al-

lowing the users to manipulate a system and, vice versa, the system to indicate the 

effects of the users' manipulation. The user interface of a software-based system 

includes both hardware (physical) and software (logical) components. The term 
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“computer” thereby stands for an increasing multitude of computing platforms, 

ranging from smart cards and wearable computing devices, across interactive  

embedded systems, appliances, mobile phones and mobile computers, to desktops 

and collaboration environments (cf.[2]). 

2.2   Advanced User Interfaces 

Advanced user interfaces represent the current state-of-the-art in human-computer 

interaction. It is an intricate task to precisely define the term advanced user  

interface, since there exists a wide range of user interfaces that are considered  

advanced. Their common qualification is that they go beyond traditional user in-

terfaces of data-intensive or simple control systems. But this can be with respect to 

different aspects, e.g. supporting complex interactions, visualizations, multimedia 

representations, multimodality, context-dependent adaptability, or customization 

(see [3], [4]). Summarizing and extending the classification of [5], typical facets 

of advanced user interfaces are: 

• they have to provide a high degree of usability, 

• increasingly complex functionality is expected, 

• more intuitive interaction techniques are built in, 

• multimodal interaction is supported, 

• tailored and customizable representations of information are offered,  

• techniques like animation or 3D visualization are incorporated, 

• speech or haptic output are used as additional perception channels, 

• temporal media types, like video and audio, and the combination of differ-

ent modalities require dealing with synchronization and dependency issues, 

• different interaction devices are used for different purposes, even within a 

single modality, 

• they use a broad spectrum of presentation, perception, and representation 

media, 

• context-aware user interfaces and adaptation to the context of use by means 

of context-sensitive and multi-target user interfaces and user interface plas-

ticity appear in ubiquitous computing [2]. 

2.3   (Advanced) User Interface Development 

User interface development generally employs both creative and informal tech-

niques of development such as storyboards and prototyping, and formal tech-

niques such as dialog structure and dialog state models. The development of user 

interfaces of a software-based system is a multidisciplinary task. It typically in-

volves knowledge (and experts) from areas such as usability engineering, interac-

tion design, graphics and media design, user interface technologies and interaction 

devices, computer engineering, software engineering, human factors, ergonomics 

and even psychology. User interface development comprises tasks of specifica-

tion, design, and implementation. The implementation of user interfaces often  
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employs dedicated frameworks (e.g. Java AWT, SWT or SWING), toolkits, and 

tools (e.g. GUI builders). 

Advanced user interface development covers a broader spectrum of aspects than 

traditional user interfaces development. This is due to two reasons: advanced user 

interfaces have additional aspects that need to be taken into account (product per-

spective); the development of advanced user interfaces comprises additional tasks, 

activities, methods and techniques that are not contained in traditional user inter-

face development methods (process perspective). 

We can thus distinguish between two different dimensions and interpretations 

of the term advanced user interface development, which can even be combined to 

build a third interpretation: 

A) development of advanced user interfaces 

B) advanced development of user interfaces 

C) advanced development of advanced user interfaces 

Model-driven development of user interfaces can be subsumed to category B, 

model-driven development of advanced user interfaces belongs to category C. 

Advanced-user interface development naturally requires the combination of exper-

tise from human-computer interaction and software engineering. One possible ap-

proach is to combine object modeling with user interface design [6]. A series of 

workshops on bridging the gaps between the software engineering and human-

computer interaction communities was hold as an activity of IFIP WG 2.7/13.4 on 

User Interface Engineering during the last decade (http://www.se-hci.org/bridging/) 

and resulted in some interesting lines of research (see e.g. [7], [8], [9]) –MDDAUI 

being one of them! 

It is our objective to integrate the knowledge from both domains and to apply 

the model-driven development paradigm to user interface development. We will 

look at this methodical integration from the perspective of models and modeling in 

the next section. 

2.4   Models of (Advanced) User Interfaces 

A model is, according to scientific theory, a representation of a natural or artificial 

original that focuses on those characteristics and properties of the original that are 

relevant for the given purpose of modeling, and abstracts from irrelevant proper-

ties. In an engineering process, models are used for specification, documentation, 

and communication. They are themselves objects of processing and transforma-

tion, and are a foundation for decision making, analysis, validation, verification, 

and testing. Models can be built upfront or retrospective in terms of forward engi-

neering or reverse engineering, respectively.  

The use of models has gained popularity in both software engineering and hu-

man-computer interaction over the years. Models have a long tradition in systems 

and software engineering. Eventually with the Unified Modeling Language 

(UML), model-based software development has become popular and common 

practice. Recently, model-driven development is attracting a lot of attention in the 

software engineering domain. 
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Likewise model-based user interface development has found its way into hu-

man-computer interaction design and user interface development. Models play an 

important role in today’s user interface development. The purpose of models in 

the development of user interfaces has been stated in [4]:  

“Models shall act as a kind of bridge between input from various people involved in 
UI development (end users, domain experts, UI developers, management people, 
etc.) to integrate all this knowledge and to transfer it into the software engineering 
process.” 

However, although both communities make extensive use of models in their de-

velopment methods, the modeling is still vastly independent. 

As in software engineering, the modeling of user interfaces deals with different 

aspects and happens on different levels of abstraction. In addition, it may also be 

done with a different degree of detail. Therefore, a holistic model has to combine a 

set of partial models that are dedicated to modeling specific aspects on a defined 

level of abstraction. The required degree of detail should be part of an accompany-

ing quality model. 

For example, the CAMELEON reference framework for user interface models 

in [2] structures the development lifecycle in four levels of abstraction: tasks and 

concepts, abstract user interface, concrete user interface, final user interface.  

Human-computer interaction and the development of advanced user interfaces 

naturally address a broad spectrum of aspects to be considered. They can be repre-

sented by a diversity of dedicated models. Different kinds of models have been 

widely used in the development of user interfaces. For example, task and dialog 

models are used in many developments, and traditional approaches for user inter-

face development provide abstract and platform-independent models for basic 

widget-based user interfaces.  

For example, the CAMELEON reference framework [2] proposes a set of  

models for the modeling of context-sensitive user interfaces. On the conceptual 

level, three groups of models are differentiated: domain, context, and adaptation. 

Domain concepts and tasks belong to the domain models. User, platform, and en-

vironment models are subsumed in the context models. Adaptation models  

comprise evolution and transition models. From these models, design models are 

derived. Among them are concepts and task models, abstract user interface  

and concrete user interface models and the final user interface model for a given 

configuration. A third group of models guide the adaptation process of the  

context-sensitive user interface at runtime. Obviously, there exist relationships  

between these models that call for systematic transformation. 

In our method for object-oriented modeling of multimedia applications 

OMMMA [10], we use four different types of models in combination: presentation 

model (structure and layout), state model (interactive control), class model (media 

and application structure), and sequence model (temporal behavior). Our 

GuiBuilder method [11] uses a concrete user interface model consisting of a pres-

entation model (structure and layout of user interface elements) and a dynamics 

model (interaction behavior). The GuiBuilder tool provides an editor and compo-

nents for model validation, UI prototype generation and simulation.  
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Abstract UI Model

Concrete UI Model

 

Fig. 1 A large variety of models is used in the development of (advanced) user interfaces 

In [12], we have given a list of models and sub-models that are commonly used 

in user interface development. This list of models does not claim to be complete, 

but already shows the diversity of models being used. A partly extended set of 

models is shown in Fig. 1. Some of them may be even further decomposed, e.g. 

the dialog model into dialog structure, dialog flow, and dialog state models; or the 

presentation model into presentation structure, presentation layout, and presenta-

tion state models.  

Which models are actually needed and best suited depends much on the given 

development task and context. In [5], we concluded that “it is very probable that 

there is no single set of models optimal for every kind of user interface”.  

However, not all of the aspects listed in Sections 2.1 and 2.2 can be easily rep-

resented by formal models in a user interface development method. Therefore, 

user interface development traditionally employs a number of informal techniques 

(see Section 2.3) to cover certain aspects, especially if development is performed 

on a higher level of abstraction. Their results can be considered to be informal 

models. Furthermore, development methods have not only to consider the system 

perspective, but also look from the perspective of the users. 
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Advanced user-orientation can be achieved by integrating methods of software 

engineering with (less formal) methods of user-centered design [8]. Therefore,  

the analysis and conceptual modeling of users, contexts of use, tasks and usage 

scenarios have to be covered by an advanced user interface development method 

as well. 

Hence, it is our objective to provide a methodological framework that allows 

method engineers to define, flexibly select and customize (semi-)formal models 

and to integrate them with other artifacts to cover all relevant aspects of their ad-

vanced user interface development in a coherent set of models and artifacts. The 

resulting methods combine modeling with informal techniques of other design 

disciplines such as interaction design, creative design, graphics design, media  

design, to name but a few. We call the result of such a method development an  

integrated method. 

2.5   Integrated Model-Driven Development of Advanced User 

Interfaces 

The guiding principle of MDDAUI is “the demand for a flexible composition of 

various different models to support the model-driven development of user inter-

faces with a high degree of usability and customization” [13]. 

Model Driven Development (MDD) is an important paradigm in software  

engineering. The basic idea is to systematically specify software using (platform-

independent) models, which are then gradually (i.e., using platform-specific  

models) and (semi-)automatically transformed into executable applications for  

different platforms and target devices.  

MDD employs another core concept in addition to models: model transforma-

tions. Model transformations can be used to transform the content of a model or 

between models. Models can be (semantically) transformed or (syntactically) 

translated. Model transformations can also be used to check and restore consis-

tency or other quality properties of models. The intention of MDDAUI is to apply 

this software engineering paradigm in the domain of user-interface development. 

2.6   Requirements for Integrated MDD Methods for Advanced 

User Interfaces 

From the aforementioned analysis, we can summarize important requirements for 

MDDAUI methods and, transitively, the method engineering meta-method. We 

classify the requirements by their origin: the product domain of (advanced) user 

interfaces (UI, AUI), the method domain of (advanced) user interface develop-

ment (UID, AUID), and the development paradigms model-based development 

(MBD) and model-driven development (MDD). The requirements are listed in 

Table 1. They will be answered by the meta-method in Section 4. 
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Table 1 Requirements for model-driven development methods for advanced user interfaces 

that need to be covered by the meta-method 

Requirement Type 

The method must be able to treat a user interface as part of an interactive system. UI 

The method must support typical user interface concepts such as user, goal, user 

interface, dialog, presentation, physical and logical user interface component, 

platform, device. 

UI 

The method must support typical concepts of advanced user interfaces and address the 

relevant aspects for the abstract user interface from the list in Section 2.2. 

AUI 

The method must allow user interface developers to use multiple methods and 

techniques that differ in formality and scope, such as creative techniques and formal 

techniques. 

UID 

The method must support a combination of different domains of knowledge in a 

multi-disciplinary development. 

UID 

The method must support multiple stages of development. UID 

The method must be able to account for implementation practices and techniques by 

specifying the use of technologies such as frameworks, toolkits, and tools. 

UID 

The method must account for usability and user needs.  UID 

The method must support informal development techniques for user interfaces. UID 

The method must support multiple views. UID 

The method must produce a set of artifacts that are related to each other. UID 

The method must be able to distinguish different stages of development. UID 

The method must provide an integrated artifact model that combines formal and 

informal representations. 

UID 

The method must support different disciplines of user interface development.  UID 

The method shall be integrated with software engineering practice. UID 

The method must provide restricted views for different developer roles.  UID 

The method must include the necessary methods for developing the relevant aspects 

of advanced user interfaces. 

AUID 

The method must allow for the combination of methods from software engineering 

and human-computer interaction. 

AUID 

The method must be capable of using models in the development. MBD 

The method must support multiple models. MBD 

The method must support models for different purposes, such as specification, 

documentation, and communication (as indicated in Sect. 2.4). 

MBD 

The method must support the use of models for capturing development knowledge 

about the advanced user interface.  

MBD 

The method must support modeling on different levels of abstraction. MBD 

The method must support the selection of a set of different models that model 

different aspects. 

MBD 

The method must allow for the differentiation of degrees of detail in models. MBD 

The method must include the definition of elements of models. MBD 
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Table 1 (continued) 

 

Requirement Type 

The method must include the definition of relationships between models. MBD 

The method must support model-driven development, i.e., the specification of model 

transformations within and among models, operating on models and model elements. 

MDD 

It must be supported by the meta-method to specify model transformations. MDD 

The model shall provide notions of platform-independent and platform-specific 

models. 

MDD 

3   Method Engineering for Advanced User Interfaces 

In this section, we will introduce the discipline of method engineering and will 

then discuss the use of meta-modeling for method engineering. This will lead us to 

the definition of our meta-method in the next section. 

3.1   Method Engineering 

Method engineering has been an active research area in the field of information 

systems engineering since the early 1990s. In general, method engineering is con-

cerned with formalizing the use of methods for systems development [14]. More 

precisely, method engineering can be defined as the engineering discipline to de-

sign, construct and adapt methods, techniques and tools for the development of 

(information) systems (based on [15], [14]).  The objective of method engineering 

is to develop a methodological approach for systems development in a given con-

text (and situation) such as an organization or project.  

Method engineering mainly addresses two perspectives: a) the systematic devel-

opment of methods and b) the enactment and execution of methods. Both aspects 

may themselves be supported by dedicated tools, such as a method development 

environment and a method workflow engine. 

Applying method engineering to the domain of advanced user interface devel-

opment provides a number of advantages: 

• method engineering provides a methodological framework and conceptual 

infrastructure for method knowledge, 

• method engineering supports a systematic development of model-driven 

development methods for advanced user interfaces, 

• by providing specific means for method adaptation, methods can be 

adapted to a particular situation and context of use (cf. situational method 

engineering, see ([14]) for a recent survey), 

• concepts of method modularization, reuse and configuration can be used  

to assemble methods from method building blocks, such as viewpoint  

templates [16], method fragments [15], method chunks or method services 

[17], 
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• the meta-models that are used for the definition of methods enable analysis 

and comparison of methods, even quantitatively by the use of metrics, 

• method engineering can ease reuse and provide means for compositional 

method development, and method integration,  

• method engineering builds a sound basis for tool support, e.g. computer-

aided software engineering (CASE) tools that may be built by using Meta-

CASE tools. 

The product of a method engineering process is a method. The users of this  

product are system and software engineers, and user interface developers in the 

case of MDDAUI. 

 

Evaluate MethodDeploy & Use MethodElicit Method 

Requirements

Develop Method

 

Fig. 2 The general overall method engineering lifecycle is similar to a software lifecycle 

The lifecycle of a method is similar to the lifecycle of a software system. We 

can interpret a method as a conceptual system for system development. Method 

engineering manages and controls this method lifecycle and may even itself be 

computer-supported by its own software system, a computer-aided method engi-

neering (CAME) tool [15]. The general overall process model of method engineer-

ing is depicted in Fig. 2. Once the domain of discourse has been identified 

(MDDAUI in our case), the requirements for the method are analyzed. It follows a 

multi-stage development process. Then the method is deployed, used, and evalu-

ated in order to start another evolution cycle. 

3.2   Meta-Modeling for Method Engineering 

Meta-modeling has been identified as a promising means for method engineering. 

Several meta-models have been defined in the literature by different authors, see 

e.g.[18], [19], [20], [21]. Two standards also exist that use meta-models for the de-

finition of software development methods: ISO 24744:2007 Software Engineering 

− Metamodel for Development Methodologies [22] and SPEM, the Object Man-

agement Group’s (OMG) Software & Systems Process Engineering Meta-Model 

Specification [23]. The latter provides a meta-model as well as a UML profile for 

the specification of software development methods. 

MOF, the OMG’s Meta-Object Facility [24], has defined a four-layer meta-

model architecture that is commonly used in object-oriented meta-modeling. In this 

hierarchy, elements of layer n-1 are instances of elements in layer n (1 ≤ n ≤ 3). 

According to this meta-model hierarchy, we can characterize the levels for the  

domain of method engineering: 
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M0 (Runtime layer) – M0 denotes the lowest level of the MOF 4-layer meta-

model hierarchy. In this layer, objects of the real world are denoted that exist at 

execution time of the modeled system. More generally, M0 represents the area of 

concern, which may be business, software engineering, or method engineering. In 

the domain of method engineering, the M0 elements are the concrete objects that 

are produced or modified during a concrete development endeavor.  

M1 (Model layer) – M1 is the layer where user models are located. Reality is 

modeled in a modeling language, such that elements of M0 are instances of ele-

ments in M1. In the domain of method engineering, the model of the method is al-

located on this level.  

M2 (Meta-model layer) – M2 is the layer where meta-modeling takes place. It 

contains meta-models (models of models) such as the UML meta-model or SPEM 

which define modeling languages to describe the user models of layer M1. Ele-

ments of user models from M1 are then instances of meta-model elements of layer 

M2. This level holds the meta-method’s product model in the domain of method 

engineering.  

M3 (Meta-meta-model layer) – M3 is the highest level of the 4-layer meta-

model hierarchy. Meta-meta-models are defined on this layer. They are used to 

describe the meta-models on layer M2. In the MOF hierarchy, the Meta Object 

Facility itself is defined on this level. Defining method engineering within an ob-

ject-oriented meta-model hierarchy, we use MOF for the domain of method engi-

neering on this level as well. 

We also build on meta-modeling in our meta-method for method engineering. 

However, we have discovered that simply employing object-oriented meta-

modeling has some shortcomings. In particular, the restriction to solely have 

MOF’s <<instanceOf>> relationship between meta-model layers, and to permit it 

only between directly neighboring layers, does not allow us to straightforwardly 

combine the product and the process parts within this framework. Yet for defining 

a method, we have to combine the method’s product model with its process  

model, as depicted in Fig. 3.  

The process model is composed of a work model and a workflow model. We 

apply this method pattern on both the meta-method level and the method level. 

However, while the meta-method process model must be an instance of a process 

meta-model to have execution semantics, all parts of the method are defined as an 

instance of the meta-method product model, since the complete method is the 

product of the method engineering process. Yet, the method process model must 

also be an instance of the process meta-model, since it is a process model itself. 

We solve this problem by bootstrapping the process meta-model into the meta-

method product model with a <<merge>> relationship (see [24]), like this was 

done for MOF and UML, too. The method is engineered by instantiating the meta-

method process model and enacting the thus instantiated process on the method 

level. This relation is represented by the dependency of type <<producedBy>> be-

tween the method and the instance of the meta-method process model. The same 

pattern applies on the M0 level for the production of the development project’s ar-

tifacts. Further details on the formal background of our meta-modeling approach 

for method engineering can be found in [1]. 
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Fig. 3 Applying the meta-modeling approach for the engineering of methods 

4   Meta-method for Engineering Development Methods 

Conforming to the model presented in the previous section, the meta-method of 

our method engineering approach consists of a product and a process model. We 

will give an overview of both in this section. For the process part, we will focus on 

the workflow model.  

4.1   Process Model of the Meta-Method 

In Fig. 4, the workflow of the composite activity “develop method” from Fig. 2 is 

shown. While we describe the process workflow in a rather waterfall-like structure 

for the ease of presentation here, it may in practice be enacted in a more incre-

mental and iterative fashion. 

The meta-method’s process combines activities of language engineering and 

method engineering. A first version of the process was published in [25]. There, 

we focused on the development of the domain model and artifact model together 

with language selection (steps 2 to 4 in the process depicted in Fig. 4). In [1], we 

provide a complete and revised description of the step 1-4, 6 and 7 of the above 

process in the context of the general method. However, in this work we have  

specialized and extended the general process for the domain of MDDAUI. We de-

scribe the specialized process in the following step by step. 
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Fig. 4 High-level process model of the meta-method for model-driven development  
methods 

 

1. Define domain and disciplines: The domain is MDDAUI in our case, and dis-

ciplines are used to further structure the development method into areas of con-

cern, such as requirements elicitation, conceptual modeling, interaction design, 

abstract user interface modeling, concrete user interface modeling, user inter-

face implementation, and so on. 

2. Specify domain model, aspects and domain concepts: The model of domain 

concepts is set up and organized according to the identified disciplines (in the 

form of packages that may be hierarchically nested). The disciplines may also 

correspond to stages of development or levels of abstraction. From the re-

quirements in Sect. 2.6, we have also derived the need for views that represent 

the perspective of a stakeholder or a particular aspect of the advanced user  

interface. Core tasks of this activity are the definition of domain concepts and 

assigning them to disciplines and views. 

Relationships between concepts are added such as composition and aggrega-

tion relationships, dependencies, associations.  

    The meta-model representation is accompanied by a glossary that contains  

an entry for each meta-model class. It describes the semantics, purpose and 

properties of the concept and relationships to other concepts. 

3. Select language candidates: In order to represent the domain concepts appro-

priately, languages, together with possible sub-languages (e.g., UML diagram 

types) and language elements must be identified as candidates. 

4. Specify artifact types and model types: Candidate languages and language 

elements from step 3 are assigned to domain concepts from step 2 according to 

the properties of the domain concepts that need to be expressed. While the 

model of domain concepts defines the semantics of the method elements in the 

product model, languages define the syntax and notation for their representa-

tion. The artifact model then links language elements with domain concepts. If 

existing languages or symbols are used, then the method engineer has to take 

care that the given semantics of the proposed candidate language elements is 

conformant with the semantics imposed by the composition of step 3, and the 
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semantics of each language element shall still be unambiguous. Composition 

hierarchies in the model of domain concepts and the artifacts model must be 

compatible.  

   This step of the process is further extended in the domain of model-based de-

velopment methods. In addition to general artifact types, models can be defined 

as specializations of the artifact concept. The required and allowed model ele-

ments are defined for each type of model, and relationships between models 

can be defined in the same way as for artifacts. 

5. Specify model transformations: Since we address model-driven development 

methods for advanced user interfaces in our approach, this step is an extension 

to the standard method engineering process of the meta-method. If a model-

driven development method is to be defined, the model transformations must be 

defined as transformation within or between models. This can be done in a rule-

based manner. 

6. Define development process: The definition of the development process rei-

fies the definition of a roadmap through the network of development artifacts. 

Activities are defined and ordered into workflows that produce the required ar-

tifacts in the specified order. 

We have to define tasks, activities for accomplishing tasks, steps of activities 

and workflows containing an ordered set of activities in this step of the meta-

method’s process. The process structure contains activities, milestones and con-

trol-flow elements. The process model can be extended by object flows of input 

and output artifact types, and roles that are responsible for executing activities. 

7. Provide methods, tools, techniques, and utilities: The selection or develop-

ment and the provision of methods (method modules), tools, techniques, and 

utilities as well as the provision of tool mentors are required for guiding and 

simplifying the works of user interface development and producing the required 

artifacts. Tools are assigned to artifact types, languages or development tech-

niques. Guidance on how to produce the artifacts of a particular type in the se-

lected language shall be explicitly provided, e.g. in the form of guidelines, good 

and best practices, whitepapers, checklists, templates, examples, or roadmaps. 

However, even the assignment of languages to software engineering concepts 

in step 3 can be interpreted as partly associating a technique for the develop-

ment artifact. Both languages and tools typically have implications on how to 

produce an artifact. Eventually, tools and utilities are thus related to the activi-

ties of the software engineering process model as well. By this, it is shown 

which activities are supported by tools and utilities and, in turn, which of them 

are to be used when accomplishing the task of the activity. 

4.2   Product Model of the Meta-Method 

 The product meta-model for method engineering that we propose for model-

driven development methods is depicted in Fig. 5. According to the meta-model, 

the domain is structured into disciplines. Artifacts are related to the disciplines, 

where they are used. An artifact is always related to a pair of concept and notation. 

All relevant concepts of the user-interface development domain are elements of 
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the domain model. Furthermore, aspect views are defined on the domain model to 

cover particular views on selected aspects of the domain model, e.g. a modeling 

view such as for task modeling or a view for a given developer role or stakeholder 

(then possible relations to the respective classes Model and Role are not mod-

eled as associations of this meta-model). 

Models are an important concept in model-centered, i.e., model-based and 

model-driven, development paradigms. To account for that, we introduced the 

class Model as a specialization of the class Artifact in our meta-method’s ar-

tifact model. Models contain model elements, as indicated by the composition re-

lationship between the classes Model and Model Element. This allows me-

thod engineers to define model types and their element types directly as they 

commonly define artifact types in their methods.  
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Fig. 5 Meta-model in the context of the model-driven development paradigm. 

In the model-driven development paradigm, model transformations play a 

prominent role. They should therefore be considered as first-class citizens of any 

model-driven development method. Thus, for model-driven development methods, 

we have included the class Model Transformation which has source and 
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target relations to class Model. A transformation rule then operates on the model 

elements (not modeled in this meta-model) of the related models. Activities are 

the binding element between the information and the process view of the method 

description. Activities are owned by disciplines and are the constituents of work-

flow processes. They operate on artifacts which they use as their input and output 

parameter objects. Each activity uses a defined method to produce its output. 

Alike the activity, the method is also associated with a discipline. Such a method 

can provide tools, techniques and utilities that support the performers in accom-

plishing the task that is related to the activity. Each model transformation is re-

lated to one or more activities, meaning that the transformation is executed as part 

of the activities in order to transform the elements of the related models as speci-

fied by the transformation. 

5   Applying the Meta-Method: Development of Model-Driven 

Development Methods for Advanced User Interfaces 

After we have seen the product model and the general workflow model of the me-

ta-method in the previous section, we will now look at some consequences when 

this approach for method engineering is applied in the MDDAUI domain. We will 

concentrate on some important aspects of such a method definition. 

The first major result of the method engineering process that is released to user 

interface developers as the users of the method is a structured model of artifact 

and model types, together with their relationships. This is typically represented as 

a model of packages, sub-models (see Fig. 1 in Section 2.4) and classes. Such 

model can become quite large, therefore it is important to employ the described 

means of structuring. An excerpt from such a model of an advanced user interface 

is depicted in Fig. 6. It shows five types of models and three classes representing 

model elements.  
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Fig. 6 Excerpt from the artifact model of a development method for user interfaces that is 
used as the type definition of a transformation rule 
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 The definition of workflows does methodically not differ from the definition of 

workflows for the meta-method as shown in the previous section. We will there-

fore omit to present another example here. However, the use of transformations 

for the specification of development tasks and their effect on the product model 

was not shown there. The same approach can also be deployed for the specifica-

tion of model transformations in model-driven development methods.  

Effects of development tasks as well as model transformations on the models of 

the user interface can only be expressed in a limited way by using activity dia-

grams or composite structures [1]. Even if object flows are represented, they can 

only make reference to the state of individual objects. They are insufficient for 

modeling the effect of a task or transformation on the object structure, i.e., the 

graph of objects that are connected by association links, of the modeled system. 

We therefore included collaborations in our methodical framework that are inter-

preted as graph transformation rules [26]. These transformation rules are typed 

over the product model of the method. 

performer:Role

task:Task

«model»

:Task Model

+performer

<<transformation>> Initiate Abstract UI Modeling

«model»

:Task Model

task:Task

performer:Role

«model»
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:Dialog

«model»

:Dialog State 

Model

«model»

Dialog Structure 

Model

+performer

+supporting

+user

 

Fig. 7 Example for a model transformation rule defined on the instances of the meta-model 

Fig. 7 gives an example of such a transformation rule. It states for the transfor-

mation “initiate abstract UI modeling” that for each occurrence of the pattern on 

the left-hand side in an instance of the product model, the structure on the right-

hand side must be produced by the transformation. In particular, it states that if a 

task model contains a task that is performed by the instance performer of class 

Role, then a dialog must be generated as part of the abstract user interface model 

which supports the given task and is used by the performer:Role to accom-

plish the task. Furthermore, two more models have to be instantiated: a dialog 

state model and a dialog structure model, that are both associated to the generated  

dialog element. The rule can be interpreted as a visual contract stating pre- and 

post-conditions of the transformation [27].  
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6   Conclusions 

We presented a meta-method for the development of systems, software and user 

interface development methods in this chapter. It builds on the concept of object-

oriented meta-modeling based on the 4-layer MOF architecture, yet extends it to 

account not only for the product model, but also for the work definitions and 

workflows that form the process model. 

We applied the concepts of method engineering in general and our meta-

method in particular to the domain of model-driven development of advanced user 

interfaces (MDDAUI). Based on the analysis of requirements for such a develop-

ment method stemming from both the product domain of (advanced) user inter-

faces and the method domain of integrated model-driven development, we adapted 

the general method engineering meta-method to cover models and model trans-

formations as first-class citizens of the method description. Finally, we briefly 

showed some results of applying the meta-method to the target domain, especially 

graph transformation rules for the specification of tasks, activities and transforma-

tions in a user interface development process. 
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Using Storyboards to Integrate Models and

Informal Design Knowledge

Mieke Haesen, Jan Van den Bergh, Jan Meskens, Kris Luyten,

Sylvain Degrandsart, Serge Demeyer, and Karin Coninx

Abstract. Model-driven development of user interfaces has become increasingly

powerful in recent years. Unfortunately, model-driven approaches have the inherent

limitation that they cannot handle the informal nature of some of the artifacts used

in truly multidisciplinary user interface development such as storyboards, sketches,

scenarios and personas. In this chapter, we present an approach and tool support

for multidisciplinary user interface development bridging informal and formal arti-

facts in the design and development process. Key features of the approach are the

usage of annotated storyboards, which can be connected to other models through an

underlying meta-model, and cross-toolkit design support based on an abstract user

interface model.

1 Introduction

The last few years, model-driven design of User Interfaces (UIs) is receiving an

increasing amount of attention in the computer science and software engineering

community. Model driven UI design can offer benefits in terms of quality, trace-

ability, efficiency and consistency. However, this discipline has not been widely

adopted in the field of Human-Computer Interaction (HCI). A major reason for this
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is that existing model-driven UI design approaches are not focused on UI design in

multidisciplinary teams. Since this is the most common way UIs are created, model-

driven approaches have to fit into an overall multidisciplinary design approach to

become usable for HCI practitioners.

Fitting within an overall multidisciplinary design approach means that artifacts

from other communities have to be incorporated into the model-driven design ap-

proach. Some challenges have already been tackled. User interface sketches can

already be integrated into a model-driven approach, based on sketch recognition to

recognize widgets within a sketch [1]. Furthermore, tools like Microsoft Expression

Blend support the transition from early prototypes (SketchFlow) to final designs and

integration with software development (through Visual Studio). But designers and

other people involved in a user interface development process also use other, often

informal, artifacts such as personas and scenarios (see section 2.1).

In this chapter, we present a model-driven development approach supporting

a transition from informal to formal artifacts using the MuiCSer process frame-

work [2]. This development approach has the advantage that experts in a multi-

diciplinary team can continue to use the artifacts that are most familiar to them,

yet allows for a smooth transition between them. Consequently, we present several

tools that support different roles in different stages of the development process as

one possible way of achieving support. More specifically, we offer annotated story-

boards, which can be connected to other models through an underlying meta-model

and cross-toolkit design support based on a abstract user interface model expressed

in UIML [3]. Finally, we compare our contribution with related work and provide

some further discussion.

2 Artifacts for User Interface Design

The design and development of interactive systems require a deep understanding of

various information sources and artifacts. Processing all information that is neces-

sary to create a usable, appropriate and useful interactive system is often done in an

engineering approach that processes this information gradually into the software and

accompanying user interface. Designers need to know about the targeted end-users,

the environment in which the software will be used, the devices on which it will run,

the typical tasks that need to be supported and other non-functional requirements.

A well-known approach that makes sure all this information does not interfere with

striving for an optimal user experience, is user-centered design (UCD). Unfortu-

nately, UCD is mostly a design approach and is hard to integrate with the actual

engineering of the software. UCD is often employed by designers and delivers a

user interface design, not an operational interactive system.

Connecting typical software engineering processes with UCD processes has been

an ongoing challenge tackled by many researchers to date [4, 5, 6].

The gap between interface design and engineering interactive systems is mainly a

matter of “design” language differences: an interface designer uses different artifacts

than a software engineer. In fact, each domain of expertise uses its own vocabulary
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Fig. 1 Examples of informal and formal artifacts

which complicates collaboration between people having different backgrounds. We

now give an overview of informal and formal (i.e. adhering to a meta-model) ar-

tifacts that are used in UCD processes and by software engineers to describe user

interfaces. Fig. 1 shows examples of these informal and formal artifacts.

2.1 Informal Design Knowledge

Informal artifacts in UCD have the advantage that they can be understood by all

team members, unregarded their expertise. Informal artifacts that are often used

include personas, scenario descriptions and storyboards. Natural text or an unstruc-

tured graphical representation are two types of languages often used. Typically, in-

formal artifacts are often presented in a narrative or sketched style so as to aid a

universal comprehensability.

Personas are defined as hypothetical archetypes of actual users and usually result

from a user analysis [7]. A persona describes a fictional person that represents a

typical group of end-users and includes personal details (such as name, age, gender

and photograph), roles, tasks, goals and skills. By personifying a group of end-users,

team members are more likely to focus on the users and their needs, which may be

beneficial for user experience of the resulting user interface [8].
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Although personas are created in the beginning of a UCD process, they are

supposed to be used during the entire process. Their primary goal is to commu-

nicate part of the user needs to all team members right after the user analysis. Fur-

thermore, personas should be used as a guiding artifact in several other stages, such

as UI design and development.

Personas contain a lot of information concerning user needs and requirements,

but a similar type of informal artifacts that include user requirements are Scenar-

ios. Scenarios are stories about people and their activities. A typical scenario de-

scribes a setting, includes a sequence of events or actions and represents the use of a

system [9].

Both, personas and scenarios, have a narrative style, but in contrast to a scenario,

a persona does not describe how a system is used. Consequently, personas and sce-

narios can be considered as complementary artifacts in UCD. In practice, personas

can be included as the actors of a scenario. Both types of artifacts represent user re-

quirements. Nevertheless, when personas or scenarios are poorly communicated or

accepted by the leadership team, or when other team members do not know how to

use them, a lot of information contained by these artifacts can get lost during a UCD

process. Furthermore, it may be problematic for people with a technical background

to translate narrative stories into technical specifications [10, 11].

The aforementioned types of informal artifacts are used as tools to communi-

cate user requirements in a team and are presented in a narrative style. Another

notation allows team members to communicate ideas visually through sketching.

During many meetings or brainstorm sessions, diagrams and sketches are created or

presented to express someone’s ideas [12]. Sketching is very accessible, pen and pa-

per suffice to start sketching, while even people with little drawing skills can present

an insightful picture. Furthermore, sketches can be helpful to discover ideas that are

very often invisible [13].

In UCD, sketches can have several shapes such as storyboards, diagrams or UI

designs. Storyboards, originating from the film industry, can be considered as a vi-

sual representation of a scenario, and are often used to communicate ideas about

a future system to stakeholders. The advantage of storyboards is that they pro-

vide a depiction of how a future system can be used that is less ambiguous than a

scenario [14].

Another way to use sketches in UCD, is drawing the first user interface mockups.

This technique is used to share ideas about what the UI should look like and to

discuss several UI considerations. Furthermore, these UI mockups can be used to

verify whether the first UI decisions meet the user needs. In practice, this can be

done during stakeholder meetings, but also informal evaluations together with end-

users can be conducted. When several screens in UI mockups are connected, they

do not only present the look and feel of a UI, but also part of its behavior.

Storyboards and UI mockups do not always need to be sketched. These arti-

facts can also have a higher detail, depending on their aim. For instance, a story-

board or UI mockup may be more detailed and polished when presenting it to the

management or at a later stage of UCD.
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Although many of the artifacts discussed in this section can be classified as info-

mal artifacts, part of their exact meaning is open for interpretation, they also contain

unambiguous information. A notable example is the formalization of sketched in-

terface designs using the formal specification language Z presented by Bowen and

Reeves [15]. Our approach does not strive for this level of formality rather aims

at structuring and extracting the information that can be linked to the models typi-

cally used in a model-driven engineering approach. The next section presents these

models relevant for the design of (context-sensitive) user interfaces. This provides

us with the required foundations to define a meta-model for informal artifacts such

as the storyboard.

2.2 Formal Artifacts

Several models are commonly used in model-driven development of

context-sensitive user interfaces. The reference framework for plastic user inter-

faces [16] lists the different kinds of models and their role in the development pro-

cess. UsiXML [17] is a single language that integrates most of these models. They

list the following abstractions of the user interface, from abstract to concrete.

Task models allow to express a hierarchical decomposition of a goal, into tasks

and activities, that can be translated into actions at the lowest level. The COMM

task model notation [18] illustrates this by allowing specification of modalities or

interaction devices in modal tasks, which are leaves in the task tree. They are mostly

used as a first step in designing an application to identify the tasks and later actions

that have to be performed to reach a certain goal.

Abstract user interfaces are high-level descriptions of user interfaces that are in-

dependent of a modality. They consist of abstract interaction objects arranged in

presentation units. An Abstract Interaction Object (AIO) is a part of the abstract

user interface that supports the execution of a leave task; it allows the user to give

input to the system (e.g enter a search term) or to start the execution of some func-

tion (e.g. start the search), or allows the system to present output to the user (e.g.

“searching” or the search result). Abstract user interfaces usually also define the

transitions between presentation units, although the latter fact is usually not empha-

sized in graphical representations of the abstract user interface. Most abstract user

interface languages have a formal basis in the form of a meta-model, the Canoni-

cal Abstract Prototypes notation [19] was first defined to allow more abstract paper

prototyping to encourage creativity and later integrated into a modeling environment

with a proper meta-model [20].

Concrete user interfaces realize abstract user interfaces for a specific context of

use, such as a desktop PC used by a journalist. It already represents the final look-

and-feel (e.g. following the Windows User Experience Interaction Guidelines) but

is independent of the user interface toolkit (e.g. Qt, MFC or GTK). A concrete user

interface is especially useful to port user interfaces among different toolkits. Porting

user interfaces between different platforms or modalities may require using a higher

level of abstraction (such as the abstract user interface) to enable transition between

radically different interaction objects.
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Final user interfaces are instantiations of the concrete user interface for a specific

toolkit (e.g. Qt on a HP PC running Windows 7). They can be interpreted or com-

piled to run on the target device. Final user interfaces are not considered in UsiXML

or any other user interface description language supporting multiple abstractions.

Besides these abstractions, there are some other models that are important to

user interface design, such as the domain model, describing concepts from the do-

main that are relevant to the user interface, and context models that capture the

context of use in terms of user, platform and environment. Although UsiXML cov-

ers a wide range of models that describe various aspects of an interactive system, it

has little support for typical informal artifacts. Besides the support for low-fidelity

prototypes [1], other artifacts such as storyboards and personas are not covered by

UsiXML. We think, a model-driven engineering approach for interactive systems

needs to include other informal artifacts in the overall development process in order

to support a complete design and development process.

Besides finding direct links between both informal and formal artifacts as to cap-

ture and reuse the information from the informal artifacts further down the enginee-

ring process, the process in which these artifacts are created is equally important.

In the next section, we focus on a process framework that structures how artifacts,

originating from UCD and software engineering, are created by a multidisciplinary

team, and how these artifacts make the transition from informal and unstructured

artifacts towards structured and formal artifacts that define the interactive system.

3 MuiCSer Process

In user-centered software engineering (UCSE), the traditional user-centered design

(UCD) approach is extended towards the practical engineering (as in creation) of

the software artifacts. MuiCSer1 [2] is a process framework for Multidisciplinary

user-Centered Software engineering that explicitly focuses on the end-user needs

during the entire software engineering (SE) cycle. MuiCSer embodies UCD with a

structured SE approach and organizes the creation of interactive software systems

by a multidisciplinary team. As such, it provides a way to define a process (based

on the MuiCSer process framework) that describes when and how the transitions

from informal to formal artifacts take place. The framework can be used to define a

UCSE process and supports different formal models, where each model describes a

specific aspect of an interactive system and represents the viewpoint of one or more

specific roles in the multidisciplinary team.

Processes derived from MuiCSer typically start with a requirements and user

needs analysis stage (Fig. 2-A) where the user tasks, goals and the related objects or

resources that are important to perform these tasks are specified. Several notations

are used to express the results of the analysis stage, but most of the results con-

cern informal artifacts such as personas, scenarios and storyboards. Other artifacts

that commonly result from this stage are use cases, which are more focused than

scenarios but provide less context [21].

1 Pronounced as “mixer”.



Using Storyboards to Integrate Models and Informal Design Knowledge 93

Fig. 2 The MuiCSer process that was used for the design and development of News Video

Explorer. Extracts of the most important artifacts are presented for each stage of MuiCSer. In

this diagram, informal artifacts have a solid border, while formal artifacts are distinguished

by a dashed border

During the structured interaction analysis (Fig. 2-B), the results of the first analy-

sis are used to proceed towards system interaction models, and a presentation model.

These formal models are often expressed using the UML notation, thus keeping in

pace with the traditional SE models. Both, the informal and formal artifacts, created

so far, are used by user interface designers to create UI mockups during the low-

fidelity prototyping stage (Fig. 2-C). In subsequent stages, low-fidelity prototypes

are transformed into high-fidelity prototypes (Fig. 2-D), which on their turn evolve

into the final interactive system (Fig. 2-E). For this evolution, informal artifacts as

well as formal models are used.

Fig. 2 shows an overview of the stages of a MuiCSer process for the design and

development of News Video Explorer, an application for TV researchers to browse a

vast video archive in order to search suitable video fragments. We use this example

throughout the remainder of this chapter to illustrate our approach. At the beginning

of the process (stage A), requirements and user needs were captured by conducting

user observations that involved several professional TV researchers. The results of

this analysis were a scenario and a storyboard that among others defined that News
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Video Explorer needs to be available in several situations: it should run on three

different platforms, namely desktop pc, large multitouch display and mobile device.

Based on these informal artifacts, structured interaction models (stage B), including

a task model and a context model, were created. These models, as well as the other

artifacts were used as input for sketched UI mockups and Canonical Abstract Pro-

totypes (stage C), which were later translated into more detailed designs (stage D)

and a final interactive system (stage E).

A MuiCSer process increases the traceability and visibility during the process.

By combining UCD and SE in one integrated process, informal artifacts such as a

list of requirements and low-fidelity prototypes can be made an explicit part of the

process and their influence on other artifacts can be traced. By evaluating the result

of each stage in the process, the support for user needs and goals and the presence

of required functionality is verified.

Evaluation of informal and formal artifacts often differs: while team members

have the background to read and understand the formal artifacts, informal artifacts

can also be evaluated by end-users. Thus, the latter are suitable for verifying re-

quirements with potential users and clients while the former are required to create

the concrete system implementing these requirements.

A survey that involved practitioners of companies active in UCD, showed that

there is insufficient support to translate artifacts created by non-technical team mem-

bers into a notation appropriate for software engineers or developers [22]. Although

the overall process to improve this situation is tackled by the MuiCSer framework,

the different viewpoints of a multidisciplinary team and notations in UCSE still

cause difficulties in the transition between some types of artifacts. From a study on

the alignment of tools and models for multidisciplinary teams, we conclude that it

is difficult to communicate informal artifacts on design decisions between designers

and developers with existing tools [2]. There is a clear need for a well-defined ap-

proach linking informal and formal artifacts without requiring team members to get

fully accustomed with each others’ roles. In the next section, we present a model-

driven approach to accomplish an elegant transformation between informal and

formal artifacts without interrupting the typical team member activities.

4 From Informal to Formal Artifacts with Storyboards

One of the biggest challenges in integrating informal design knowledge and for-

mal models is introducing a common language that enables multidisciplinary teams

to collaborate in creating advanced user interfaces. We found inspiration in the in-

tersection of storyboarding, comics and model-driven engineering. In this section,

we describe a storyboarding approach and tools that take into account storyboards

for the creation of more formal artifacts in MuiCSer processes. The proposed tools

are the COMuICSer tool for creating storyboards (Fig. 2-1), mapping and transfor-

mation support for UsiXML (Fig. 2-2) and the Jelly high-fidelity prototyping tool

(Fig. 2-3).
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Fig. 3 Screenshot of the tool for COMuICSer. In the tool, it is possible to load a scenario (1),

create scenes in the storyboard panel (2) and annotate scenes (3). One scene is enlarged (4)

to exemplify what annotations and contextual information can be available

4.1 Storyboards: Graphical Narrative Models

COMuICSer2 [23] is a tool we provide to support the integration of informal and

formal models through usage of a common visual language. It supports the MuiCSer

process framework and uses a natural, visual language. This is an effective and

clear way for communication amongst a multidisciplinary team, given that no other

universal languages for doing requirements engineering with multiple disciplines

involved exist. The graphical notation, typical for storyboarding, makes complex

details comprehensible and even allows to add contextual data.

In COMuICSer, a storyboard is defined as: a sequence of pictures of real life

situations, depicting users carrying out several activities by using devices in a cer-

tain context, presented in a narrative format. This specific definition immediately

provides us with a clear overview of the four primary pieces of information that can

be found in a storyboard: users, activities, devices and context.

The accompanying COMuICSer tool is shown in Fig. 3. This tool is mainly used

between the requirements and user needs specification and the creation of structured

interaction models in the MuiCSer process, shown in Fig. 2-1.

2 Pronounced as “comics-er”.
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The COMuICSer tool allows members of a multidisciplinary team to load a

scenario (Fig. 3-1). When creating scenes (Fig. 3-2), each scene in the storyboard

can be connected to a fragment of the scenario, and hence a connection between the

storyboard and the scenario is provided.

By annotating scenes, it is possible to provide a connection to structured engi-

neering models and UI designs. In the COMuICSer tool, rectangles can be drawn

on top of scenes, to specify particular annotations (Fig. 3-2). These annotations are

made in a similar way as the photo tagging features on Facebook or Flickr and can

concern personas, devices, activities and free annotations. The tool provides forms

to specify each annotation (Fig. 3-3).

Fig. 3-4 shows an enlarged scene of the storyboard that describes the use of

News Video Explorer, introduced in section 3. In this scene, we can identify three

personas: the TV researchers; one device: a large multitouch display; and two

equivalent activities: browsing the videos in News Video Explorer. Besides these

annotations, the scene shows more contextual details such as the connections be-

tween personas, device and activities and the fact that the scene takes place in a

room, where people are standing in front of the device.

These annotations and the scenes themselves implicitly capture this information

in a model that conforms to the storyboard meta-model. This meta-model forms the

basis for integration of COMuICSer storyboards with other models. This avoids a

completely manual transformation of high-level requirements that are contained in

a storyboard but at the same time does not exclude the creative input that is often

part of the storyboarding process.

4.1.1 A Storyboard Meta-Model

Our storyboard meta-model, shown in Fig. 4, is MOF-compliant3. There is one cen-

tral element in the meta-model: the Scene. A scene is a graphical representation of

a part of the scenario. A set of scenes that are related using TemporalRelationShip

elements in a Storyboard. The TemporalRelationShip element is based on Allen’s

interval algebra [24]. The before relationship indicates one scene happened before

another, and there is undefined time progress in between scenes. The meets rela-

tionship indicates that one scene is immediately followed by another scene, and the

time progress between two scenes is virtually none. Although the most common

relationships used in storyboarding are before and meets, we think, parallel activ-

ities should be supported since they are common in collaborative and multi-user

activities. Defining more precise temporal relationships between scenes, allows us

to exploit them later on, e.g. by mapping them on the temporal relationships that are

used in the task model.

When constructing a storyboard, the drawings or photographs used, often contain

a lot of contextual information. Dow et al. show storyboarding, especially contex-

tual storytelling, is useful for context-aware application design (in their case ubi-

comp applications) but lacks a good way of formalizing the context data [10]. In

3 MOF is an industry standard established by the Object Management Group.
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Fig. 4 Our initial COMuICSer storyboard meta-model. It contains the graphical depiction

with the objects of interest (context), personas, devices and activities. Scenes are related using

the Allen interval algebra operators

COMuICSer, a scene is annotated with different types of information: Persona spec-

ifies archetypical users, Device presents computing devices and systems, Activity

represents what happens in a scene. By providing tagging of scenes, we support a

rudimentary way of translating the context inferred from the graphical depiction of

a scene into a readable format. We showed a graphical depiction could have high

value to obtain a usable model of the context of use in previous work [25].

4.2 Mapping Storyboards to Models

In this section, we show a mapping from COMuICSer storyboards to UsiXml [17]

as one instance of a transition from informal to formal artifacts. We selected UsiXml

as the target model because it contains a consistent set of the models used in UCSE

(e.g. task model, abstract user interface model, context model, . . . ) and because of

the available tool support4.

The two UsiXml models that can be partially generated from a COMuICSer sto-

ryboard are: the task model, describing task sequences required to reach the user’s

goal, and the context model, specifying the application’s context of use.

4 The UsiXML website (http://www.usixml.org) gives an overview of the avaible

tools.

http://www.usixml.org
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Tasks of the UsiXml task model are in direct relation with activities that are de-

picted in a scene of a storyboard. For each activity, the activity2task transformation

(formalized in Fig. 5) creates a task in the task model with a name that corres-

ponds to the activity title. Some domain-independent properties of an activity are

also transformed into task properties through a one-to-one mapping. For example,

the activity importance and frequency are directly mapped to their task equivalent,

after a format adaptation. However, not all mappings are that straightforward: for in-

stance, the type of task can be either a system task, a user task or an interactive task.

The task type can be inferred by the number of devices and personas related to the

activity. If an activity is performed by a persona using no device, the corresponding

task is a user task, if no persona is performing the activity, the task is a system task,

otherwise it is an interactive task. A task is set as cooperative if multiple personas

are involved in the performance of corresponding activities. The scene shown in

Fig. 3-4, includes a cooperative task which involves two personas carrying out the

same activity: browsing the videos in News Video Explorer. The same reasoning on

the number of devices is used to infer if a task is a multi-device task or not.

rule activity2task{

from a : Mstoryboard3!Activity

to task : MUsiXmlTask!Task (name <- a.title,

importance <- a.getUsiXmlImportance(),

multidevice <- (a.performedUsing->size()>1),

frequency <- a.getUsiXmlFrequency(),

cooperative <- (a.performedBy->size()>1),

type <- if (a.performedBy->size()=0) then ’system’

else if (a.performedUsing->size()=0) then ’user’

else ’interactive’ endif endif)

}

Fig. 5 Activity to task ATL transformation

Two other generative transformations, the persona2userStereotype and the de-

vice2platform, focus on the partial generation of a context model from information

specified in a COMuICSer storyboard. Firstly, the persona2userStereotype trans-

formation creates a new userStereoType element for each Persona element, with

direct mapping of properties such as DeviceExperience and ActivityExperience.

Secondly, each Device is transformed to newhardwarePlatform and softwarePlat-

form elements. All the device properties related to hardware are mapped to their

hardwarePlatform equivalent: category, cpu, inputCharset, isColorCapable, screen-

Size, storageCapacity, . . . . The rest of the device properties (osName, osVersion,

isJavaEnabled, jvmVersion, . . . ) are mapped to softwarePlatform properties.

The mapping to the context model, straightforward as it may seem, does not

retrieve all the information available in the COMuICSer StoryBoard. Indeed, the

StoryBoard model provides by definition a lot more context information mainly all

the entities in the environment. We generate a new context model for every scene
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in a storyboard, even though it’s likely that some of this context can be shared across

scenes. Nevertheless, UsiXml does not allow to do this because variations are not

possible within one context model.

4.3 Generation of Model Constraints from Storyboards

Since storyboard operators and task operators are expressed in different paradigms,

a one-to-one mapping between the two is not desirable. Indeed, COMuICSer sto-

ryboards specify the relation between scenes using Allen interval algebra. . . [24]

with operators such as meets, after and overlaps. However, task models, including

the UsiXML task model, use LOTOS based temporal operators such as enabling,

choice and independent concurrency. Consequently, the operators of the task mod-

els can not be generated directly. What we can do however, is provide support by

restricting the choices to the ones allowed by the storyboard specification. We de-

cided to express these restrictions using OCL constraints, in order to remain at the

modelling level and exploit MOF-technology.

Below we list the transformations that take a COMuICSer storyboard instance as

input and generate several OCL constraints:

• Each after relation between scenes requires that the tasks corresponding to

the activities should have an enabling operator between them or between their

parents.

• Each meets relation require is translated into a enabling operator. However, no

task may be performed between performance of task related to operator argu-

ments. We achieve this by computing all possible performance paths from one

task to the other (after having removed all tasks that are achieved in parallel). Un-

fortunately, applying this complex rule has to be done manually, currently there

is no simulator available for the UsiXml task model.

• Other Allen’s algebra operators: overlaps, starts, during, finishes and equals, are

all generating constraints that impose related tasks or parents of them to have a

ConcurrencyWithInfoPassing or a IndependentConcurrency relation.

Finally, all activities within the same scene are also valid during the same period of

time. Thus, we can define that all activities of a scene are mapped on tasks from the

same enabled task set. An enabled task set is a definition from the ConcurTaskTrees

language that specifies a set of tasks is valid during the same period of time. Un-

fortunately, it is not possible to generate an OCL specification of this constraint, the

enabled task set computation has not yet been integrated in the UsiXml tools.

4.4 From Storyboard to High-Fidelity Prototype

Stage D of the MuiCSer process framework (Fig. 2-D) involves the design of

high-fidelity prototypes. In the MuiCSer process of the News Video Explorer,

high-fidelity prototypes were created using the multi-device Jelly [26] design tool

(Fig. 6 (a)). Jelly allows designers to design a concrete user interface (concrete UI),
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Fig. 6 The Jelly multi-device design environment, showing a video browser design for a

desktop computer (a). Jelly allows designers to copy widgets from one device (b) and to

paste these widgets as a similar component on a different device (c)

while it automatically maintains an abstract UI presentation model for this concrete

design. This allows designers to use a familiar notation, in this case a graphical user

interface design, and to use this artifact in a model-driven engineering process with-

out forcing them to change their working practices considerably. The abstract UI

presentation model is a structured well-defined model (based on UIML [3]).

Jelly can use storyboards that are created by the COMuICSer tool. For every de-

vice that is tagged in the storyboard, Jelly provides a separate design workspace.

This way, Jelly automatically takes the different contexts of devices into account

as indicated by a storyboard. For example, loading the storyboard for News Video

Explorer (Fig. 3) results in three design workspaces: desktop pc, large multitouch

display and mobile device. In each of these workspaces, designers create User Inter-

faces (UIs) by placing widgets from the toolbox (Fig. 6 (a)-A) on the canvas (Fig. 6

(a)-B) and dragging them around until the resulting layout is visually appealing.

These widgets’ properties can be changed through the properties panel (Fig. 6 (a)-

C). This usage model is very similar to traditional GuiBuilders, allowing designers

to reuse their knowledge of single-platform UI design tools in a multi-device design

environment. Under the hood, Jelly builds an underlying presentation model which

can be connected with other artifacts included in the MuiCSer process.
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The mappings between Jelly’s underlying presentation model and formal

artifacts such as Abstract Interaction Objects (AIOs, as introduced by the reference

framework in section 2.2) also help designers during the creation of high-fidelity

prototypes. It introduces the flexibility to copy a part of a UI on one device (Fig. 6

(b)) and to paste it as a similar part on another device (Fig. 6 (c)). A component is

considered as similar if it has the same AIO type and content datatype as the given

component [27]. We currently support four types of AIOs, differentiated according

to the functionality they offer to the user: (1) input components allow users to enter

or manipulate content; (2) output components present content to the user; (3) action

components allow users to trigger an action; and finally (4) group components group

other components into a hierarchical structure. As content datatypes, we currently

support the five primitive types of XML Schema (e.g. decimal, string, void, etc.), a

number of datatypes that are often used in user interfaces (e.g. Image, Colour, etc.)

and container datatypes that group content items of a certain type together (e.g. a

list of strings, a tree of images, etc.).

For example, assume we are looking for all Adobe Flex components that can

represent a Windows Mobile combobox. Since the combobox is linked to an input

AIO, the network is first searched for all Adobe Flex components that are linked to

an input AIO. This returns a huge list of controls such as checkbox, spinbox, list-

box, combobox, a custom fish-eye view container, etc. Secondly, this list is searched

for all components that support the same datatype as the Windows Mobile com-

bobox (i.e. a list of strings). This finally results in three Adobe Flex components:

listbox, combobox and custom fish-eye view container. These components are then

displayed in Jelly’s “paste as. . . ” menu (Fig. 6(c)).

5 Related Work

We are not the first to address the difference in “design language” between differ-

ent roles in a multidisciplinary team and to bridge between informal and formal

artifacts.

A study of Truong et al. [14] reports the need for a tool that offers all the functio-

nality necessary to create storyboards. Existing storyboarding tools such as Comic

Life5, Celtx6 and Kar2ouche7 support the creation of storyboards, but do not take

into account the characteristics of UCD processes.

Dow et al [10] present a speculative next generation storyboarding tool for ubi-

quitous computing. This concept of a tool provides a communication mechanism for

different roles in a multidisciplinary team and supports the connection with other

tools. This concept was implemented in ActivityDesigner [28], a tool that supports

an activity-based prototyping process. One of the first steps supported by the tool,

is the creation of a scene panel, based on everyday observations, accompanied by

roles of users and activity models. These first models can contribute to the first

5 http://www.comiclife.com/
6 http://celtx.com/
7 http://www.immersiveeducation.com/kar2ouche/

http://www.comiclife.com/
http://celtx.com/
http://www.immersiveeducation.com/kar2ouche/
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prototypes, that can include interaction sequences. Furthermore, the tool supports

the evaluation of the prototypes created. This work overlaps stages A (Requirements

and user needs), B (Structured interaction models), D (High-fidelity prototyping) in

the MuiCSer process framework (Fig. 2).

SketchiXML [1] allows creating concrete user interface models through sketches

by using sketch recognition. CanonSketch [29] offers different synchronized views

on a user interface presentation model (UML class diagrams with Wisdom stereo-

types [30], Canonical Abstract Prototypes [19] and final user interface). This ap-

proach allows immediate switching between the different views on the user interface

presentation model. Both tools mainly address step C (low-fidelity prototypes) and

the transition to D (high-fidelity prototypes) of the MuiCSer process framework in

Fig. 2, but in different ways. While SketchiXML mainly focuses on informal spec-

ification of models, CanonSketch focuses on fluent transitioning between working

styles; from detailed design to more high-level and abstract (re-)structuring of the

user interface.

Some initial work has been proposed to support transitioning from informal arti-

facts to an initial task model. CTTE [31] has some limited support to identify tasks

in a scenario description to ease the creation of a task model based on a scenario.

Although this is a useful feature, it identifies only part of the information contained

in a scenario; much information contained in the scenariomodel is not important to

represent directly in a task model. Other types of information, such as contextual

information is easily lost in this transition. While this work also addresses the tran-

sition from step A to B of the MuiCSer process framework (Fig. 2), it starts from a

purely textual scenario to extract tasks, while the task and temporal relation extrac-

tion in our approach is more gradual, by first structuring a scenario in an annotated

storyboard (section 3) and then guiding the transition to a task and context model

using model transformation (section 4.2).

Denim [32] allows to specify important information, such as overall screen layout

and navigation in a way that is easy to grasp for many people by using sketches that

can be made interactive. It however does not make an attempt to go to the next step;

there is no model-extraction nor code generation feature. This makes Denim a nice

way to make quick prototypes and to discuss design ideas. The resulting artifact is

however nearly as difficult to use in the remainder of the development cycle as a

plain paper prototype.

Jelly is a design environment allowing designers to create high-fidelity prototypes

for multi-device applications and to to exchange design parts across devices. This is

complementary with Damask [33], a multi-device design extension for Denim [32],

which is also oriented towards low-fidelity prototyping instead of designing high-

fidelity UIs. Most other multi-device design approaches generate UIs automatically

from a higher level model. It was shown that such approaches can be effective in

some specific application domains (e.g. Supple [34] and PUC [35]). However, a

major drawback of such tools is the lack of support for UI designers, which are not

familiar with the models and algorithms that are used to generate the final UIs [36].

Jelly overcomes this problem by hiding the models from the designers and allowing

them to work on the concrete representation of a UI.
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6 Discussion

This chapter discussed the problem of integrating informal knowledge into a

user-centered and model-driven process to design and develop user interfaces. This

problem mainly occurs during the design and development of small-scale, context

sensitive applications, which can benefit of the creativity of non-technical team

members, but also need to take into account technical issues. To effectively integrate

this informal design knowledge, an increased involvement of a multidisciplinary

team during the entire process is recommended. This means that particular artifacts

should be available to all team members in order to keep track of decisions made

during the process. Nevertheless, a technique to translate informal design know-

ledge into more formal models is also necessary to improve communication within

the team.

To accomplish this, we discussed three main tools that complement existing

work: the COMuICSer tool, mapping and transformation support for formal models

and Jelly. The COMuiCSer tool enables the structuring and visualisation of nar-

rative scenarios using annotated storyboards. Starting from an informal storyboard

that visualizes a narrative scenario and gradually adding more structured infomation

and annotations, assists all team members to understand and agree on the require-

ments for a future application. Furthermore, the annotations help in formalizing and

augmenting the knowledge captured by the storyboard and translating into a formal

model.

The model, obtained from the information extracted from the storyboard and its

annotations, supports the creation of a task and context model that conforms with

the storyboard through transformations that can create an initial set of tasks with

temporal operators between them and constraints.

Jelly leverages the knowledge captured by the abstract interface objects (AIOs)

and their relation to concrete and final interface objects to ease creation of multi-

platform user interfaces. It does this without exposing the AIOs to designers, which

stimulates designers’ creativity. Furthermore, the possibility to keep an eye on a

storyboard while using the Jelly tool, facilitates the possibility to keep in mind the

user requirements during the creation and verification of UI designs.

In our current work, we are extending these tools, but are also extending the

scope of our efforts to also include low-fidelity prototypes that include navigation.

To enable this, we are extending the Canonical Abstract Prototypes notation [19] to

also cover control and data flow. This extended notation (Fig. 2-4) will be supported

by a meta-model and Eclipse-based tool support. In this way, we hope to make

the abstract user interface model more accessible to designers, while encouraging

creativity [19] but keeping the door open for automation.

Acknowledgements. This work is supported by the FWO project Transforming human in-

terface designs via model driven engineering (G. 0296.08) and IWT project AMASS++

(SBO-060051).
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Optimized GUI Generation for Small Screens

David Raneburger, Roman Popp, Sevan Kavaldjian,

Hermann Kaindl, and Jürgen Falb

Abstract. More and more devices with small screens are used to run the same

application. In order to reduce usability problems, user interfaces (UIs) specific to

screen size (and related resolution) are needed, but it is time consuming and costly

to implement all the different UIs manually.

Automated generation of UIs has the potential to reduce time and costs in case

of many such devices. We extended the straight-forward approach to model-driven

generation by including optimization according to maximum usage of available

space on a small screen, minimum amount of clicks, and minimum scrolling. For

these optimizations, we also use automated layouting and calculate the space needs

of the possible variants. In effect, our new approach generates UIs optimized for

small screens, in order to reduce related usability problems.

1 Introduction

Automated generation of UIs has certainly advanced in recent years, especially

based on model-driven approaches. Still, such generated UIs pose many usability

problems. We think that this is partly due to insufficient flexibility of the current

generation approaches.

In particular, straight-forward model-driven generation only allows for matching

a single transformation rule for each source pattern. We extend this approach by

taking up means from rule-based programming, that have been around for a long

time. We allow matching of several transformation rules for any source pattern, and

we use so-called conflict resolution to determine which rule to apply (fire). Based

on that, we implement a simple form of optimization in the context of model-driven

UI generation.

It allows us to maximize the amount of information to be displayed on a small

screen (with related resolution), to minimize the number of navigation clicks, and
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to minimize scrolling. All this is important for reducing usability problems. Since

more and more devices with small screens of different size are used to run the

same application, we automatically optimize each generated UI for the given space

available.

The remainder of this chapter is organized in the following manner. First, we

present some background material in order to make our chapter self-contained.

Then, we introduce our new rendering process for small screens that allows for

certain optimizations. Based on that, we elaborate on our optimization approach in

the context of model-driven generation of UIs. Finally, we discuss our new approach

and relate it to previous work.

2 Background

In this section, we present our communication model, which is an interaction spe-

cification on a device-independent level of abstraction. Furthermore, we present our

basic approach on how we transform such high-level interaction specifications into

GUIs.

2.1 Our Communication Models

The input for our UI generation approach is a communication model [1], which

is based on human communication theories and consists of three main parts. The

most important part is the discourse model [2]. The other two parts are the action

model and the domain of discourse model. The discourse model is inspired by the

Speech Act Theory [3], Conversation Analysis [4] and Rhetorical Structure Theory

(RST) [5].

Such a discourse model serves as an interaction design on a high level of ab-

straction based on concepts of human language theories. Communicative acts repre-

sent basic units of language communication. Thus, any communication can be seen

as enacting of communicative acts, acts such as making statements, giving com-

mands, asking questions and so on. Communicative acts indicate the intention of the

interaction, e.g., asking a question or issuing a request.

A small excerpt of a larger discourse model for flight booking is shown in Fig. 1.

Communicative acts typically refer to propositional content represented by text. The

Closed Question communicative act on the left of Fig. 1 is for example about se-

lecting a departure airport. The text “departure airport” represents a variable refer-

ring to an instance of the class Airport defined in the domain of discourse model.

The Airport class has two attributes, a name and an airport code. For representing

the domain of discourse model, we use a UML class diagram.1

The text select specifies the requested action to be taken by the user. Such re-

quests are defined in the action model, which is only listed for completeness and

1 At the time of this writing, the specification of UML is available at

http://www.omg.org.

http://www.omg.org
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N1 N2 N3 N4

N5 N6

N7

(R1, R2) (R1, R2)(R3) (R3)

(R4, R5) (R4, R5)

(R4, R5)

Fig. 1 A communication model excerpt for flight selection

not explained in detail, because it is not used in the optimization context for GUI

generation per se.

Adjacency pairs are sequences of naturally-occurring “talk turns” to detect pat-

terns that are specific to human (oral) communication, e.g., a question should have a

related answer. Fig. 1 shows examples of adjacency pairs illustrated with a diamond

symbol. The Closed Question, e.g., offers the human user a list of available Airports

and asks her to select one. The selected Airport is conveyed by the Answer. Such

adjacency pairs are basic units for rendering a GUI.

RST relations specify relationships among text portions and associated con-

straints and effects. The relationships in a text are organized in a tree structure,

where the rhetorical relations are associated with non-leaf nodes, and text portions

with leaf nodes. In our work, we make use of RST for linking adjacency pairs and

further structures made up of RST relations.

Adjacency pairs can be related with each other, resulting in a tree structure. In

our example, the Joint relations N5 and N6 each relate two Question–Answer pairs.

These Joint relations state that the Question–Answer pairs in both nucleus branches

are of equal importance. The Joint relation N5 semantically connects the Closed

Question to select a departure airport with the Open Question to enter a departure

date, while the Joint relation N6 semantically connects the Closed Question to select

a destination airport with the Open Question to enter a return date. The Joint relation

N7 relates these two Joint relations N5 and N6.

A Joint relation means that each branch of the Joint relation has equal impor-

tance. Further, it does not imply a temporal order per se. For instance, both pieces

of information can be presented in parallel if there is enough space on the screen.

Otherwise, they can be uttered in a sequence. In contrast, a Sequence relation
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would imply a temporal order. In this case the nuclei would have to be performed

sequentially.

The relations are used to define the dynamic behavior, the largest possible screens

of a GUI, and the layouting of the GUI according to the semantics of the relations.

A more detailed description of how the relations define the dynamic behavior can

be found in [6].

2.2 Our Basic Transformation Process

We have developed a user interface generation process [7] that transforms communi-

cation models into WIMP-based (Windows, Icons, Menu and Pointers) GUIs. Our

basic user interface generation process is illustrated in Fig. 2 and consists of two

steps.

Model2Model

Transformation

Model2Code

TransformationCommunication

Model

Structural UI

Model

Final UI

Fig. 2 Our basic transformation process

The first step transforms a communication model into a Structural UI Model

[8] by applying transformation rules to communication model elements. The re-

sulting Structural UI Model represents the user interface’s widgets and their struc-

ture, but still abstracts from details of the final UI. We do not use a common UI

description language (e.g., UsiXML2), because our runtime environment is based on

the exchange of Communicative Acts. In our running example, some of the trans-

formation rules listed in Table 1 are applied to elements of the discourse model

excerpt shown in Fig. 1 for generating a model representing the structure of the final

UI shown in Fig. 4. The following paragraphs explain in detail which transforma-

tion rules get applied in which order to the discourse model excerpt of our running

example.

1. Joint Rule R4 gets applied three times, since it matches the three Joint relations

N7, N5, N6 and it adds three panels to the Structural UI Model. The panel hi-

erarchy is constructed according to the discourse tree. The panel resulting from

the Joint relation N7 contains the two panels for the Joint relations N5 and N6.

These panels act as containers each for one of the two radio button list and text

box pairs shown in Fig. 4, each of which corresponds to the two nucleus branches

of the Joint relations N5 and N6.

2. Closed Question Rule R1 gets applied twice, since it matches each of the two

Question–Answer adjacency pairs N1 and N3. For each adjacency pair, a panel

2 http://www.usixml.org

http://www.usixml.org
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Table 1 Transformation rules applicable in the flight selection example

Rule Rule Name Description

R1 Closed Question Rule matches a Closed Question–Answer adjacency pair and

adds a panel containing a label for a heading, a list of

radio buttons together with item labels, and a submit

button at the bottom to the Structural UI Model.

R2 Small Closed Question Rule matches a Closed Question–Answer adjacency pair and

adds a combo box element and a submit button to the

Structural UI Model.

R3 Open Question Rule matches an Open Question–Answer adjacency pair and

adds a panel containing a label for a heading, a text box

and a submit button at the bottom to the Structural UI

Model.

R4 Joint Rule matches a Joint relation and adds a panel to the Struc-

tural UI Model.

R5 Small Joint Rule matches a Joint relation and adds a tabbed pane to the

Structural UI Model.

containing a label for a heading, a list of radio buttons together with item labels,

and a submit button on the bottom are added to the Structural UI Model.

3. Open Question Rule R3 gets applied twice, since it matches each of the two

Question–Answer adjacency pairs N2 and N4. For each adjacency pair, a panel

containing a label for a heading, a text box and a submit button at the bottom are

added to the Structural UI Model.

All information displayed in the Structural UI part created by the Closed Question

Rule and the Open Question Rule is specified in the propositional content of the

adjacency pairs’ communicative acts. The messages displayed by the heading labels

are derived from the action that is defined in the communication model’s action

model. The rest of the widgets is used to represent a single domain element (or a list

of domain elements) that is specified in the domain of discourse model.

Each target device we render for, is characterized by an abstract device specifica-

tion that contains all style data used by transformation rules. These style data specify

default sizes for all widgets available on the target device, which can be overwritten

in a transformation rule. These device-dependent sizes are used to set the size for

each final UI element and allow calculating the exact size of each container (e.g.,

panel). For example, in our running example we set the size of list widgets expli-

citly. This makes them independent from the number of entries. If a list widget is

not able to display all entries, it becomes scrollable.

At the end of this transformation step, we try to layout each generated screen to

fit into the given space (with the given resolution). The layouting algorithm takes the

relations into account and tries to visualize the semantics of the relations. However,

we modify only the arrangement of the widgets that has not been fixed explicitly



112 D. Raneburger et al.

in a transformation rule. Therefore, we do not change the layout specified by the

Closed Question Rule (i.e., the layout of the heading label, the radio button list and

the submit button shown in Fig. 4). In our example, we modify the position of the

complete radio button lists in the panel created by the Joint relation, since the Joint

Rule does not contain any layout information.

In the second step of our transformation process, the Structural UI Model is used

to generate source code for a particular target platform, e.g., Java Swing in our

running example.

Our basic transformation process is a straight-forward model-driven generation

that only allows for matching a single transformation rule for each source pattern.

We are not aware of any optimization strategy in such a context. Therefore, we

extend the straight-forward approach by allowing that several transformation rules

may match for each source pattern, and by applying conflict resolution to select

which rule to apply (fire) in the model-to-model transformation.

3 Rendering Process for Small Screens

Rendering of communication models on small devices brings up new challenges.

For instance, the transformation process has to be capable of transforming multiple

occurrences of relations of the same type with different transformation rules. There-

fore, we need the ability to match multiple rules with the same discourse element

type. Our approach allows the generation of optimized UIs for a continuous scale

of screen sizes compared to a single-matching approach, where only a small subset

of possible UIs can be generated by matching all relations of a particular type with

the same rule. This involves a larger set of rules, where one discourse element can

be matched by more than one rule. Furthermore, we need optimization objectives to

identify an optimal solution.

3.1 Problem and Approach

The problem tackled by our extended approach is to fit a given amount of informa-

tion optimally (according to the optimization objectives defined in Subsection 3.2)

into small screens with limited resolution. It makes no sense to specify widget sizes

in pixels on an abstract level as this makes the actual size on the screen dependent

on the device’s dpi value. Therefore, we support the definition of widget sizes in

metric values (e.g., cm). These values are transformed into pixel values using the

device’s resolution (defined in dpi) during the generation process.

To solve the problem of how to find the optimal GUI according to our optimiza-

tion objectives described in the next section, we studied approaches to heuristic

search from the field of artificial intelligence [9, 10, 11]. However, we could not

identify an algorithm that provided a complete solution for our problem, so we came

up with an algorithm based on backtracking and branch-and-bound.
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3.2 Optimization Objectives

We assume that the following optimization objectives improve the usability of the

generated GUIs:

1. maximum use of the available space,

2. minimum amount of navigation clicks, and

3. minimum scrolling (except list widgets).

Whenever the information to be displayed does not fit into a single screen with

default widgets, we try to display it with widgets that use less space (i.e., either

not visualizing all information at the same time or even not rendering all informa-

tion, which we will call “higher information loss” throughout this chapter). If the

information still does not fit into a single screen, we split its display into two or

more screens. Splitting increases the number of navigation clicks, but it minimizes

scrolling. When we talk about scrolling in the optimization context, we do not con-

sider whether list widgets are scrollable or not, because this depends on the number

of entries the list displays during runtime. This information is not available during

our rendering process.

It is hard, if not even impossible, to include all usability aspects in a cost function.

Our optimization objectives reflect which aspects we consider in our approach and

in which order we consider their importance. To be able to use a sum cost function,

we treat the optimization objectives as independent from each other. Therefore, we

assume that splitting always means a less usable GUI than one without. This means

that we try to reduce the amount of used space before we split the screen, and we

only rely on scrolling if we cannot find a rule combination representing a Structural

UI Model that fits into the screen.

3.3 Our Extended Transformation Process

Our extended transformation process is presented in Fig. 3. It shows how we ex-

tended our basic transformation process in order to optimize the generated GUI

to the given screen size. We achieve this by executing an optimization loop that

transforms the communication model to a Structural UI Model with a different rule

combination in each cycle until an optimal UI is generated. In our approach, the

rules need not to be specifically designed for a particular screen size with a given

resolution. It is the way the rules are applied, that achieves the given optimization

objectives.

In order to implement such an optimization, the conflict resolution mechanism

needs to select the rule combinations in a certain order. For achieving the opti-

mization objectives given above, this selection order is defined according to the

calculated costs of each rule combination. Therefore, all rules matching the same

communication model element have to be classified by the designer according to

their information loss. The information loss of a transformation rule is set to a higher

value the fewer information is presented. Each rule that matches a discourse rela-

tion has to be classified according to whether it applies screen splitting or not. This
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Model

Structural UI
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No Further

Transformation
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Fig. 3 Our extended transformation process

information is used to calculate the costs of a rule combination. The more rules with

higher information loss, as well as splitting rules are included in a rule combination,

the higher are its costs. Subsequently the rule combinations are sorted according to

their calculated costs, starting with the lowest.

3.4 Optimization Strategy

The optimization strategy’s purpose is to provide a list of possible rule combina-

tions, sorted according to the optimization objectives defined in Subsection 3.2.

Overall, the optimization strategy performs three major steps:

1. A list of possible rule combinations is created. This step requires the communi-

cation model, a set of applicable rules and the device specification as input. Its

result is a list of rule combinations that might fit in the screen of the target device.

2. The second step calculates the costs for each rule combination. The costs reflect

the violation of our optimization objectives. The lower the cost of a combination

is, the closer it comes to an optimum according to our objectives. Subsequently,

the combinations are sorted from cheapest to most expensive.

3. The third step tries to calculate a valid layout for each screen. Subsequently, the

exact size for each screen can be calculated and thus can be checked whether

the rule combination fits the screen size with the given resolution. If it does not

fit, the next rule combination is checked. This process continues until a fitting

rule combination (i.e., Structural UI Model) is found. As the costs represent the

grade of violation of our optimization objectives, the fitting Structural UI Model

is optimal with respect to the defined objectives.

In the following, we explain these optimization steps in more detail.

3.4.1 Create List of Possible Rule Combinations

At the beginning, we assign each discourse node a list of transformation rules that

match this node. To uniquely identify each node in our communication model ex-

ample in Fig. 1, we marked each node with an N and a unique number. Each trans-

formation rule presented in Table 1 has been assigned an R and a unique number.

The matching rules for each node in Fig. 1 are presented in parenthesis right beneath

the node label. Nodes N1 and N3 are matched by the same rules R1 and R2 because
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Table 2 Rule selection strategy execution example for a 4.2”, 320×240 pixel display (see

Fig. 7)

Discourse Node pre/post Possible Rule Combinations

N7 pre not calculated

N5 pre not calculated

N1 {(N1,R1)},{(N1,R2)}

N2 {(N2,R3)}

N5 post {(N5,R4)(N1,R1)(N2,R3)},{(N5,R4)(N1,R2)(N2,R3)},

{(N5,R5)(N1,R1)(N2,R3)},{(N5,R5)(N1,R2)(N2,R3)}

N6 pre not calculated

N3 equal to N1

N4 equal to N2

N6 post equal to N5

N7 post {(N7,R4)(N5,R5)(N1,R2)(N2,R3)(N6,R5)(N3,R2)(N4,R3)},

{(N7,R5)(N5,R5)(N1,R2)(N2,R3)(N6,R5)(N3,R2)(N4,R3)}

both rules match an ClosedQuestion–Answer adjacency pair. Nodes N2 and N4 are

matched by rule R3. Nodes N5, N6 and N7 are matched by rules R4 and R5 as both

rules match a Joint relation.

Starting with the root node of the discourse, in our example the Joint relation

N7, the list of possible rule combinations is calculated recursively. At each node

we calculate all possible rule combinations of each subtree and combine them with

all matching rules of the current node (post-order tree traversal). Applying this al-

gorithm, the resulting set of possible rule combinations defines all possible rule

combinations for the discourse tree part and grows exponentially at each node. An

example of the calculation process is shown in Table 2 with the set of rule combina-

tions in pre- and post-calculation state.

To reduce the solution space of possible rule combinations, we start the calcula-

tion with the leaf nodes, as predefined by the post-order tree traversal and reduce it

at each node by applying branch-and-bound. After applying each matching rule to

a communication model node, we calculate the size of the occupied screen space at

the leaf nodes of the communication model tree. All rules leading to a GUI part that

does not fit the screen are immediately omitted.

Next, at each inner node, we apply each matching rule and calculate an estimated

size with a space-need assumption. The calculation of the space need assumption

is done differently, depending whether the matching rules apply screen splitting or

not. In case of a non-splitting rule, we calculate the overall estimated size by sum-

marizing the size (space need) of each subtree (arrangement/layout of the subtrees

is not considered yet, thus leading to an optimistic estimate). In case of a splitting

rule, we take the size of the largest subtree as the estimated size of the current in-

ner node. All rule combinations for communication model subtrees whose space

need assumption does not fit in the screen, is discarded (i.e., not added to the list of

possible rule combinations).

It is important that our space-need assumption is optimistic to guarantee that we

can achieve an optimal GUI. Introducing this discard mechanism, the list of possible
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GUIs will not grow dramatically for small screens. For large screens, however, this

algorithm may need a huge amount of memory. Therefore, we excluded such screens

from the scope of our current approach. The crossed out rule combinations in Table 2

are the removed because of the space-need assumption.

The list of fitting rule combinations at the root element of the discourse represents

the solution space for the next steps.

3.4.2 Sort List of Possible Rule Combinations

After we have built a list of possible rule combinations that optimistically fit the

screen during the first step, we now order this list according to our optimization

objectives. Therefore, we represent the optimization objectives in a cost function,

which we use to order the list of possible rule combinations. Each rule combina-

tion is classified according to the level of information loss and splitting that the

applied rules cause. For the sorting of the list, we only use the first two objectives

and do not include minimum scrolling, since this last objective is fulfilled by the

extended transformation process itself. Our cost function guarantees, that we sort

the list of rule combinations from minimum to maximum information loss before

screen splitting is used. All rule combinations that apply screen splitting are ordered

from minimum to maximum information loss, under the consideration of how many

screens are split.

3.4.3 Generate the Structural UI Model

Taking the sorted list of possible rule combinations, the first one (i.e., the cheapest

solution) is used to transform the communication model to a Structural UI Model.

While the size calculated during the first step has been an estimate, we now cre-

ate a valid layout for each screen, calculate the real space need and check if it still

fits the given screen size. If it fits the given screen, an optimal UI according to our

optimization objectives has been found. Otherwise the next possible rule combina-

tion from the list is tested. In case even the most expensive combination does not fit

in the screen, we create the Structural UI Model for this combination and rely on

scrolling.

3.5 Final UIs for Small Screens

Now let us illustrate the results after applying our approach to automatically gener-

ate optimized UIs for four target sizes and related resolutions. As input we use the

communication model excerpt shown in Fig. 1.

Our first GUI is rendered for an 8.3” display with a resolution of 640×480 pixels

(see Fig. 4). The transformation rules with no information loss and no splitting are

able to generate a GUI that fits such a screen. The rules applied are: {(N1,R1),

(N2,R3), (N3,R1), (N4,R3), (N5,R4), (N6,R4) and (N7,R4)}. These are the same

rules that have been applied in our basic transformation process. After having sorted

the list of possible rule combinations according to their costs, we calculate the size



Optimized GUI Generation for Small Screens 117

Fig. 4 Resulting UI for a 8.3”, 640×480 display

for each panel in the corresponding Structural UI Model. We can place them next

to each other without exceeding the screen. So, this GUI fits already and we trigger

the model-to-code transformation.

Next, we generate a GUI for a 6” display with a resolution of 480×320 pixels.

The rule combination that gets applied and fits the screen is: {(N1,R2), (N2,R3),

(N3,R2), (N4,R3), (N5,R4), (N6, R4) and (N7,R4)}, since the rule combination

applied before has been ruled out by branch-and-bound. This rule combination uses

the Small Closed Question Rule R2 instead of the Closed Question Rule R1 used for

generating the GUI in Fig. 4. This rule matches the same source element (Question–

Answer adjacency pair) as the Closed Question Rule, but has a higher information

loss and, therefore, creates a GUI structure which occupies less space on the screen.

A combo box element presents the content of the Closed Question communicative

act to the user and a submit button is generated to confirm the selection of the user.

The resulting GUI in Fig. 5 fits in the screen, using widgets with less space needs

(combo boxes instead of radio buttons). However, the panels with the combo boxes

do not fit next to each other. Therefore, the layouter arranges them vertically.

In a third run, we generate a user interface for a 4.8” display with a resolution

of 380×260 pixels. This time the rule combination that gets applied is: {(N1,R2),

(N2,R3), (N3,R2), (N4,R3), (N5,R4), (N6,R4) and (N7,R5)}. Even after all rule

combinations with more information loss have been tested, the generated GUI still

does not fit. Therefore, we start using rule combinations that split the screen, im-

plying an increase in the number of navigation clicks. In our example, this means

that the Small Joint Rule is applied instead of the Joint Rule leading to the screen in

Fig. 5. The Small Joint Rule matches the same source element (Joint relation) but

creates a different GUI structure (a tabbed pane element instead of a panel). Fig. 6

shows the outcome for such a smaller screen. The Small Joint Rule and the Small

Closed Question Rule have been applied, as well as the Open Question Rule, and

the fitting GUI has been generated. This time, no layout modifications are necessary

because each tab contains only one panel.
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Fig. 5 Resulting UI for a 6”, 480×320 display

Fig. 6 Resulting UI for a 4.8”, 380×260 display

Fig. 7 Resulting UI for a 4.2”, 320×240 display

Table 2 illustrates the execution of our optimization strategy for our example

communication model in Fig. 1. It shows how the list of possible rule combinations

is built for a device with a 4.2” display and a resolution of 320×240 pixels. The

resulting GUI is illustrated in Fig. 7. By eliminating the rule combinations that do

not fit the screen during the calculation process, the solution space can be reduced

significantly. The smaller the given screen, the more rule combinations can be ig-

nored during the transformation process. The rule combination applied is: {(N1,R2),

(N2,R3), (N3,R2), (N4,R3), (N5,R5), (N6,R5) and (N7,R5)}. This rule combination

uses the Small Joint Rule R5 instead of the Joint Rule R4 for additional splitting of

nodes N5 and N6 to fit the GUI in the screen. The information for the departure

airport and the departure date are presented on separate tabs of a Tab Control.
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The worst case in our extended generation process occurs if no more rule combi-

nations are available and the generated screen still does not fit the given screen. In

this case, we stop the optimization loop and rely on scrolling.

4 Related Work

A transformation system that fits Web pages automated and on-the-fly to screens of

small devices is presented in [12]. The transformations are performed in order to

minimize navigation and scrolling like in our approach. In contrast, however, this

process alters an already existing UI.

Declarative user interface specifications are used as input for multi-target UI gen-

eration in [13]. The user interface adaption is treated as an optimization problem

based on a user- and device-specific cost function. Compared to such user interface

specifications, our interaction models are on a higher level of abstraction.

The model-driven approach for engineering multi-target UIs presented in [14]

supports switching between predefined presentations during runtime. Our approach,

in contrast, is intended to automatically generate GUIs for different screens of small

size from a single discourse model.

An advanced approach for generating multi-device UIs is based on task models

[15]. Such a Task Model specifies the temporal relations among tasks and has to be

adapted according to the screen space available on the target device. Therefore, any

optimization and screen splitting has to be done explicitly during the creation of the

Task Model.

Parametric bidimensional semantic redesign is based on the MARIA framework

as in [15], and is an approach that supports desktop-to-mobile UI adaptation [16].

Its starting point is an existing desktop HTML/CSS page that is reverse engineered

in a first step. The subsequent redesign can be performed by the end user through

definition of parameters (e.g., maximum and minimum font size, text limit, etc.) that

influence the regeneration process of the Web page for small devices. In contrast

to this approach, we do not use an existing UI as a starting point and we apply

automated optimization to improve the usability of the GUI for small devices.

With respect to these approaches, we are not aware of any other approach that

performs optimization in the course of model transformations. Neither are we aware

of any model-driven GUI transformation process that takes optimization objectives

for transformation rule selection into account.

5 Discussion and Outlook

Our optimization approach supports the automatic rendering of GUIs for small

screens. The screen size is important for two reasons. First we do not (yet) opti-

mize layout according to, e.g., aesthetic criteria, which becomes crucial if no opti-

mization as defined in this chapter is needed. Second, the number of possible rule

combinations rises exponentially. Depending on the number of discourse nodes and

the number of transformation rules that match one node, this might lead to a memory
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problem if no combination exceeds the available space limit and cannot be discarded

during the rendering process.

To solve the “layout-problem”, we plan to apply heuristics and to give more con-

trol over the GUI generation to the designer [17]. Moreover, we plan to improve

our algorithm by sorting our transformation rules in advance regarding to their esti-

mated costs. This will allow us to combine them and to calculate the costs on the fly

instead of calculating all the combinations first and the costs subsequently. This will

make the algorithm more complex, but it will also improve another short-coming of

our current version. The screen that is generated if no combination fits so far is the

most “expensive” one. This is due to the fact that our algorithm does not consider

each subtree of the discourse tree separately. Therefore, we plan to implement this

in order to be able to optimize each screen separately.

Another layout optimization is to reduce the number of buttons on a screen. It

would be sufficient if on each screen only one button for submitting all values is

generated and not for each piece of information. This optimization cannot be solved

by the model-to-model framework as it stands, it can only be done by analyzing

the generated screens. Another point of analyzing the generated screens is to merge

tab controls within tab controls to one tab control with more panels, if there is no

semantic relationship implying a hierarchy between them.

6 Conclusion

In this paper, we address basic usability problems of GUIs for devices with small

screens. Our new and extended approach introduces straight-forward optimization

techniques into model-driven generation of GUIs to reduce such usability problems.

This allows us to optimize generated GUIs for devices with small screens in such a

way as to utilize the given space and to minimize navigation and scrolling.

We implemented this optimization approach by extending the straight-forward

approach of model transformations through more flexible rule matching and exe-

cution. In this way, we introduce a GUI generation process that allows the same

rule set to be used for generating GUIs for devices with small screens providing

different amounts of space. Through the automatic calculation of space need, it may

even have an advantage in this respect as compared to a human interface designer.
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Business Performer-Centered Design of User

Interfaces

Kênia Sousa and Jean Vanderdonckt

Abstract. Business Performer-Centered Design of User Interfaces is a new design

methodology that adopts business process (BP) definition and a business performer

perspective for managing the life cycle of user interfaces of enterprise systems. In

this methodology, when the organization has a business process culture, the business

processes of an organization are firstly defined according to a traditional methodo-

logy for this kind of artifact. These business processes are then transformed into a

series of task models that represent the interactive parts of the business processes

that will ultimately lead to interactive systems. When the organization has its en-

terprise systems, but not yet its business processes modeled, the user interfaces of

the systems help derive tasks models, which are then used to derive the business

processes. The double linking between a business process and a task model, and

between a task model and a user interface model makes it possible to ensure trace-

ability of the artifacts in multiple paths and enables a more active participation of

business performers in analyzing the resulting user interfaces. In this paper, we out-

line how a human-perspective is used tied to a model-driven perspective.

1 Introduction

User Interfaces (UIs) have been historically specified, designed, developed, and

tested according to multiple design methodologies that have reflected a particular

emphasis that was prevalent during a certain period. Each design methodology al-

ways adopted a certain viewpoint to drive the development life cycle. Over years,

we witnessed the following viewpoints:

Kênia Sousa
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Data-centered design: in this methodology, an interactive system is considered as

a structured collection of data that will result into a data model, from which one or

many UIs could be produced in order to properly manage this collection of data.

The main advantage of this methodology was that deriving a UI for a particular

data structure was straightforward. But the main disadvantage was that each data

structure was then associated to a single screen in which the user has to carry out

multiple functions that were not clearly identified [1]. It was then the responsibility

of the end-user to properly execute the functions as expected in his/her tasks, thus

resulting in several mismatches. In addition, data models did not initially consider

the relationships between the concepts. In this case, the different interaction objects

are derived from the information contained within the model, for instance, consid-

ering only the attributes of entities. It was clear at that point of the research that they

needed to consider modeling functions and tasks [1].

Function-centered design: in this methodology, an interactive system is consi-

dered a collection of functions working on data identified in the aforementioned data

model, that will result into a domain model. A domain model departs from a data

model in that not only it contains the relationships between the data structures (e.g.,

as associations in a UML class diagram), but also its related constraints, and the

functions associated to these data (e.g., the methods in a UML class diagram). The

main advantage of this methodology was that deriving a UI for a particular function

was possible to generate not only the layout of an interface, but also its dynamic be-

havior. The drawback of this approach was that only primitive functions were mainly

supported (e.g., create, read, update, delete, list, search, print), thus forcing the end-

user to re-interpret a task to be carried out in terms of such functions. Discovering,

locating, and executing these functions was considered as a burden for end-users

[2]. Therefore, researchers also acknowledged the need to consider task models for

user interfaces with highly complex and flexible dialog structures.

Task-centered design: in this methodology, an interactive system is considered to

support a collection of inter-related tasks that represent the user perspective of work,

not the system perspective of work, thus resulting into a task model for every task

of interest. A task model characterizes the way end-users carry out their effective

task, not the prescribed tasks as found in manuals or procedures. In this way, it is

expected that such a task model conveys a way of working that is close to the end-

user. The main advantage of this methodology is that a UI derived from a task model

is assumed to fit the end user’s purpose since it should reflect his/her way of wor-

king. The difficulty of this approach is that many different UIs could be derived from

the same task model and there is not enough effective knowledge today available

that guides this derivation in order to ensure the quality of the result [3]. In addition,

even though with some initiatives to consider user roles for a specific set of tasks in

multi-user applications [4], it does not necessarily differentiate how user’s profiles,

skills and other aspects impact and differentiate these tasks and the design of user

interfaces.

User-centered design: in this methodology, an interactive system is designed

by gathering requirements directly from the end-user and by modeling these
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requirements in such a way that they can drive the rest of the development life

cycle to maintain the end-user’s perspective. Several ways exist in order to establish

and follow a user-centered design, such as task modeling (as in the task-centered

design), user modeling (e.g., through a user model), participatory design, contextual

inquiry [5], etc. The main advantage of this methodology is that the UI resulting

from the process is expected to be as close as possible to the end-user’s expecta-

tions, abilities, and preferences. The difficulty with this methodology is that there

is a wide range of instruments in order to conduct a user-centered design and, even

with a high probability of success, there is no guarantee that a usable UI will be

obtained. Indeed, a good instrument could be used in an inappropriate way. A se-

cond difficulty is that one task is examined at a time, thus posing some challenges

in how to organize tasks in time and space. Indeed, an end-user is rarely working

alone in his/her context of use. Rather, the end-user is incorporated in a series of

interconnected tasks, some of these tasks could be collaborative, cooperative, com-

petitive, or coopetitive. Therefore, there is a need to proceed with the user-centered

design in order to encompass aspects that were not captured in the task model or

in the traditional user-centered design in the context of complex business process

applications.

Process-centered design: this methodology uses the business process model as

“a structured, measured set of activities designed to produce a specific output for

a particular customer or market” [6] in order to consider complex contexts. Dif-

ferent from the previous methodology, it does not start from the end-user’s view-

point. Although there are proven UI design methodologies, such as in user-centered

design, process-centered design [7] differentiates itself by precisely focusing on

business process intensive software which has not been the case with other UI de-

sign methodologies. More recently, a data-centered approach for business processes

called artifact-centric business process models [8] puts business artifacts at the cen-

ter of the approach. This approach focuses on key business-relevant entities, their

lifecycles, and how and when services are invoked on these artifacts. It has concepts

that are similar to traditional data models and business process models, but with

augmented data records that correspond to business-relevant artifacts and richer se-

mantic expressions for task conditions and consequences. Some recent works in this

area propose aligning business processes with UIs with direct links between activi-

ties in processes and elements on the UIs. However, such strategies leave aside the

consideration of the user interaction, which is much richer than what is specified in

business processes. For this purpose, we introduce the following methodology:

Business Performer-centered design: in this methodology, it considers business

processes, while not neglecting benefits brought by user-centered design by giving

equivalent importance for business process performers (or simply business perform-

ers), who are, at the same time, end-users of enterprise systems [9]. This dual and

balanced consideration is particularly challenging because end-users have been his-

torically ignored by business process notations and methodologies by favoring a

top-down approach when designing enterprise systems. Additionally to considering

user-centered design on this proposal, we not only emphasize the global aspects of
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the work, but also individual aspects of each end-user, which is more precise than

the attempt to summarize the human aspects using roles. Our main effort was to find

out how user-centered design would be formally represented in this approach and,

at the same time, keeping the compatibility with existing business process models.

In our case, we propose that this merging point is a task model that serves as the

cornerstone: the task model should be derived from the business processes that will

in turn produce one or many UIs corresponding to the derived tasks. In this way, the

expected win is that when a business process will change, the task model will change

accordingly and so does the UI model corresponding to this task model, implement-

ing a consistent alignment between business and user interfaces, and, consequently,

providing traceability.

Considering these different viewpoints, several design methodologies have been

defined over time with their specific purposes and aiming to be more thorough than

the previous ones (see Fig. 1). In a timeline, Trident [10] automates user interface

design from data models. In Mecano [2], each class in the hierarchy of the domain

model is assigned to a window. In a task-based approach, a task model is given

to identify UIs, for instance, CTT [11] recommends a task model where the in-

teractive task is recursively and hierarchically decomposed into sub-tasks; and the

UsiXML methodology [3] based on the Cameleon Reference Framework [12] has

task and domain models at its center to specify user interfaces independent of im-

plementation. In user-centered design, cognitive models of human users, known as

user models, are used to predict human error and learning time, and can thus serve

as a cheaper alternative to user testing, such as CogTool-Explorer [13]. Diamodl

[14] takes a process centered design, which advocates to adapt BP modeling to in-

clude aspects of task modeling using BPMN for both BP and task modeling. While

MDHI [15] is a design methodology and tool for the user interface life cycle that

has business modeling as a starting point, including the business data. Finally, the

UI-Business Alignment (or Usi4Biz) [9] considers business processes and their per-

formers (end-users) to manage enterprise systems.

The remainder of this chapter is organized as follows: Section 2 will define the

business performer-centered design as a way to align business process and UIs and

introduces the concepts that are underlying to this design methodology. Section 3

will detail how this design methodology has been applied in a corporate environ-

ment, i.e. a very large telecommunication company, and how model-driven engi-

neering has been used in order to support applying this methodology. Section 4 will

discuss the potential advantages of this model-driven engineering as expected or ob-

served in this case study, as well as identified shortcomings. Section 5 will conclude

this chapter by highlighting the main contribution and by presenting some avenues

of this research.

Fig. 1 Timeline of approaches
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2 Going towards Performers and Users

One of the main goals that are aimed with the evolution of methodologies is to go be-

yond individual users or groups within a single organization. Emerging methodolo-

gies aim to consider the complex behaviors between people, among groups, among

organizations, and between organizations and their environments. Fig. 2 depicts an-

other perspective of the evolution of these different paradigms.

Despite the evolutions on these approaches and on the needs to address more

complex behaviors, recent works [16, 17] still focus much more on how the artifacts

are linked, handled and maintained than on the people who actually conceptualize

and those who use enterprise systems. Thus, they end up failing to consider that

these people are actually the ones who are key to making the organization work.

Therefore, with a more human perspective, the business performer-centered ap-

proach considers the complexity of these relations intrinsic to business processes

and adds the viewpoints of the business performers as active agents.

With that purpose, the UI-Business Alignment Methodology [9] considers busi-

ness performers as active agents who open a new channel for business improvement

by informing any sort of issues they face with systems. These identified issues may

lead to changes on the processes, on the UIs or on both.

We rely on epistemological research to turn the recurring focus from business

analysts and place it on business performers. This is in accordance with Giddens

duality of structure theory [18], in which the organizational structure contains the

behavior of professionals, but their behavior also makes the structure possible be-

cause these professionals have and apply their knowledge when acting, which may

then change the organizational structure. Applying this theory to our methodology,

business performers must adhere to the corporate structure following business pro-

cesses, but they also bring changes to such structure since they think and behave

differently.

Concerning the first state of the dual structure, in order to be able to adhere to

defined processes, business performers must understand well how to perform these

processes. However, it is common to find business processes defined at a high level

that does not represent the tasks they should perform in their daily work. That is

an important consideration to have task models with a lower level of granularity

to specify performers’ tasks. This way, there are fewer deviations from the tasks

assigned to business performers. That is a reason for the growing interest from

Fig. 2 Evolution of approaches
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organizations to know how specific agents, not generic roles, accomplish their work

[19]. Therefore, we focus on actual users that we can identify within the organiza-

tion since they are the ones who actually perform the process.

Looking at the second state of the dual structure, in order to enable business

performers to bring changes to the corporate structure, they must play active roles

by suggesting improvements on tasks defined at a low level of granularity, which

is the manageable level of tasks corresponding to their work. Some works have

emphasized the importance of involving users in process modeling [20]. But they

had not yet realized how users can give more consistent contributions for business

process improvement using their own knowledge, without having to acquire new

skills (i.e. business analysis) before they are able to contribute.

In order to enable the active participation of business performers (a.k.a. end-

users), the UI-Business Alignment methodology advocates different approaches,

where different professionals can give their own contribution, depending on their

skills and goals. These stakeholders can mainly contribute in the following manner:

• Business analysts can identify prospective improvements on business processes

to address new corporate strategies;

• UI designers can identify improvements directly on the UI design to address

specific interaction needs;

• Usability experts can identify better user interactive tasks that impact business

operations;

• Operation managers can identify improvements on the performance of processes

to address market opportunities that impact the processes and systems as a whole;

• Users can give suggestions towards improving user interaction and their produc-

tivity to be considered in the business context.

Each of these stakeholders contribute more precisely on specific approaches. The

forward approach starts with business processes and stimulates the participation of

operation managers and business analysts. The middle-out starts with interactive

tasks and stimulates the participation of usability experts and UI designers. The

backward approach starts with UIs and stimulates the participation of basically any-

one in the organization, more precisely, UI designers and end-users.

UI-Business Alignment Methodology: The methodology proposes a strategy to

map the core models related to enterprise systems and build a network of links that

supports traceability and impact analysis when changes are requested in any of these

models. The core actions to create the network of links can be applied in two main

approaches: forward and backward:

Forward Approach simulates what could be the future user interaction to exe-

cute the process in situations where there is a process and there is no system.

Backward Approach uses navigation patterns in the system as a source of data

to exploit business processes in situations where there is a system and there is no

process.

The methodology is effectively adopted by starting with a critical process or sys-

tem, which could be a great source of data to be analyzed in an initial project. After

applying the methodology at the first time, a procedure is prepared to spread the
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methodology through other critical and non-critical processes and systems consi-

dering the organizational context in other projects.

After the mappings are created, the models are managed through the execution

of rules in three main approaches, as depicted in Fig. 3.

The forward approach starts with changes made on BP models, which can be

done from a variety of reasons, including new or alternative ways of doing things,

new business opportunities, organizational changes, new regulations; etc. When

changes are made, rules are executed from the business process to the task model,

persisting the changes on the task model, even if the task model does not yet exist,

thus deriving a task model from the business process. Then, the rules are executed

from the task model to the UI model, persisting the changes on the latter, assuming

the UI model has been created beforehand.

The middle-out approach starts with changes made on task models, which can

be done to perform new tasks that improve the user experience. In this approach,

the rules are executed from the task model to the business process, persisting the

changes on the latter, even if the business process model does not yet exist, thus

deriving a business process from the task model. Then, the rules are executed from

the task model to the UI model, persisting the changes on the latter, assuming the

UI model has been created beforehand.

The backward approach starts with changes on UIs because of defects to be

fixed, better user understanding of the systems’ features, new technology, etc. In

this case, rules are executed from the UI model to the task model, persisting the

changes on the task model, assuming the task model has been created beforehand.

Then, the rules are executed from the task model to the business process, persisting

the changes on the latter, even if the business process model does not yet exist, thus

deriving a business process from the task model.

There are no rules specified from the UI model to transform to the actual UIs of

systems. There is a synchronization to indicate what has to be updated in the UIs

directly by UI designers. This methodology considers that UI designers are relevant

to create UIs for enterprise systems considering their human interpretation over user

Fig. 3 UI-Business Alignment applying rules in different approaches
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experience, user needs, and design ideas. The use of rules is a primordial aspect in

this methodology because they enable tracing one element in the target model back

to its causing element in the source model and provide transformations from source

to target and vice-versa. But this tracing or transformation is useful only when peop-

le who perform the processes are active in analyzing and identifying bottlenecks in

the business processes and user interfaces that support these processes.

For that reason, the backward approach is primordial to enable the participation

of business performers. In this approach, end-users give suggestions based on their

own experience with the systems. This solution is independent of how processes are

designed and systems are developed. In most solutions in the market, business pro-

cesses must be executed in specific engines and the system must be developed in a

specific technology (e.g. web services) to allow collecting data as the system is used.

Our solution is applicable in a wider range of corporate scenarios since we can mo-

nitor any kind of system that are representations of certain business processes (e.g.

an order management system for provisioning products). In this approach, stake-

holders do not need specific skills in order to be able to delineate which part of the

system brings impediments for the successful completion of their goals. Therefore,

we present how business performers can be active participants and the application

of the rules aiming for better user interaction and improved process by presenting

details of the model-driven perspective in the backward approach.

3 Model-Driven Perspective

The main models used in the UI-Business Alignment methodology are: Business

Process Model, Task Model, User Interface Model. The UI-Business Alignment

methodology is founded on Business Process Modeling Notation (BPMN) [21] for

business process models and on the Cameleon Reference Framework and, more

precisely on UsiXML for the definition of the task and UI models.

Business Process Model: This methodology is founded on BPMN that provides the

standard for business process modeling. However, there are other business process

notations that could be used with the UI-Business Alignment methodology. The

main requirement to apply a business process notation in this methodology is that it

is able to decompose activities in smaller parts, such as a sub-process in BPMN that

can be decomposed in as many levels as needed to specify a complex activity.

Task Model: The types of UI Tasks in the task model are: (i) abstract, grouping of

related tasks; (ii) user, task performed manually by a human being with no inter-

action with a system; (iii) interactive, task performed by the user interacting with

the system; and (iv) system, task executed by the system itself. For the purpose of

mapping business process activities that are to be performed by users when interac-

ting with enterprise systems, we have delimited the scope to consider only interac-

tive tasks in the traceability chain. Because we deal only with UIs, we do not need

manual (user) tasks and automatic (system) tasks. Manual and automatic tasks by

themselves do not involve the direct user interaction with a system. Thus, we have
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restricted our needs to interactive tasks only. Consequently, we simplify the task

model with only one kind of task, which also contributes to increase the task model

acceptance by providing simplicity.

User Interface Model: UI is a means by which users interact with the system.

One of the main challenges of models aiming to formalize user interaction is to

follow the fast technological evolution of devices and new kinds of interactions.

This problematic has been our major motivation to investigate which model is the

most appropriate to cover so many possibilities. In a survey comparing existing UI

modeling languages [22], the abstract UI model seems to be the one that covers

the broadest possible range of targets for the broadest possible range of delivery

contexts. Therefore, we came up with an extension of the abstract UI model based

on UsiXML. The difference is that the terms are not used literally because this

UI model, for the purpose of UI-Business alignment, needs easy names and less

UI components for simplicity. This simplification of the UI model aims to make it

easily understandable by end-users when delineating the UI model. This different

representation of the UI model does not substitute the language, which is used to

guarantee interoperability. The UI model structure is comprised of UI components,

which are components used for user interaction that start in an atomic level and are

further composed in broader levels, namely: screen group, screen, screen fragment

and screen element.

The core models have been structured with a set of elements that are primordial

to be linked among them with the primary goal of UI-Business Alignment. In order

to facilitate modifying how the models are structured, depending on the strategies

adopted by the organization, an expert system approach based on production rules

has been selected. This approach provides flexibility since it enables updating the

rules whenever there is a change on how the models are structured and managed,

without the need for direct maintenance of the platform that supports the metho-

dology. This approach makes this framework adaptable to different organizational

contexts by accepting that organizations may adapt their strategies to model pro-

cesses and design user interfaces.

To define the knowledge of an expert system, it is necessary to specify the objects

that are important to the domain, the properties of these objects and the relationships

among them, and assertions about these objects, composing a working memory that

is constantly changing during the operation of the system [16]. The format of our

working memory is a graph with links among the model elements, forming the net-

work of links.

Building the network of links is the process of mapping the elements of the core

models of our methodology. These mapped elements form the working memory

elements, called objects, that are instances of these model elements. These objects

are of different types, represented by the entities of the models, such as BP activities,

UI tasks, UI components.

For each entity of the models, there is a set of rules that verifies the integrity of the

models when an event happens on any object of that entity. An event is any action

that changes the state of the object, such as create, update, delete, and other types
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of operations performed in the models. Performing an event on any given object

triggers the execution of rules for that object. Thus, when an event is done in any of

the objects, a set of rules is executed in order to generate an impact report that lists

all the elements on these models that have been impacted by the changes and the

proposed changes to maintain consistency.

As a contribution for this research, we have defined rules that adhere to the basic

properties of transformation rules [23] and follow the general format of production

rules [16]. The rules have been written using the Drools Rule Language (DRL)

because it is easy to understand, flexible, reusable, has a reasonable performance,

independent lifecycle, can be easily embedded into existing applications, among

other advantages of its declarative style solution [24].

To make the rules understandable by a larger range of stakeholders involved in

managing the rules, such as non-technical stakeholders, it is productive to adopt

human-readable rules using Domain Specific Language (DSL) [23]. A DSL is a

computer language that is focused on a clearly definable problem domain, rather

than a general purpose language that is aimed at any kind of software problem. A

DSL file specifies the translation of sentences from the problem-specific termino-

logy into rules. In Drools, a DSL file maps DSLR sentence (human-readable rule)

to a DRL rule (rule in the Drools rule language). DSLR is useful to demonstrate an

important reason for using rules; which is that rules can be customized by different

stakeholders. Therefore, stakeholders can update and create new rules according to

their approaches adopted for BP modeling, user experience, UI design, among other

aspects.

To execute the rules, it is necessary to verify if the object matches specific con-

ditions. For that, there are three main conditions that are checked, which are: if the

object has been recently created, updated or deleted. The object is understood as

recently created when its id is empty, since the id is generated automatically by the

database only when the object is permanently persisted. The object is understood as

updated when the id is different from empty, which means that the object already

exists with a valid id. The object is understood as deleted when the reference to it is

null, which means that the object does not exist anymore.

The Drools rule definition starts with the rule name; the condition and conse-

quence sections follow. Drools keywords are rule, when, then, and end.

rule ‘‘name of rule’’

when

conditions

then

consequence;

end

The condition defines the patterns that the rule matches with. The consequence is

a block of code that is executed when all of the patterns within the condition are

matched. The rule condition can declare variables of an object type. The variable

name starts with a $ symbol, it can be declared up front to be used later in the rule.

The condition verifies if the object field matches a certain value, which can be of
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different types, such as predefined variable, string, regular expression, date, boolean

and more. A condition can have multiple field constraints joined by additional key-

words, such as an implicit and (i.e. a comma), or, not, exists, etc.

$variable : Object (fieldi == valuei, field j == value j)

In the rule consequence, Drools has convenience methods to be executed as simple

actions:modify: to update existing facts in the working memory;insert to insert

new facts in the working memory;retract to remove existing facts in the working

memory.

Considering that each entity of the models has a set of rules that verifies the

integrity of the models when an event happens on any object, we add the rule set

name in the beginning of each rule definition. The rule set has the name of the

entity to which it is related. The name of the rule follows this format: impact on

<<element>> when <<operation>> <<element>>.

An example of a rule in the Drools rule language is presented as follows, which

verifies when there is an element of type activity that has just been created (i.e.

with a field id that is empty), then add to the working memory an element of type

UITask related to this activity.

ruleset ‘‘BP Activity’’

rule ‘‘impact on UITask when adding BP Activity’’

when

$activity: Activity(id == "")

then

insert(new UITask($activity));

end

The execution of these rules follows a cycle of three steps [16] that uses the rules

from a rule catalog, as follows:

• recognize: find the rules whose conditions are satisfied in the current working

memory (e.g. rules for a BP activity);

• resolve conflict: among these rules recognized in the first step, choose the one

that should be executed (e.g. rules that process the addition of a new BP activity

that is not yet related to any UI task);

• act: perform the consequent actions of the rules selected in the second step to

change the working memory (e.g. add the new UI task for this added BP activity).

This cycle continues until the conditions tested in the rules are false, which means

that the models are supposed to be consistent at this point.

The rules that have been defined as pertaining to a rule catalog are explained and

exemplified using a scenario from a case study at the telecommunications indus-

try. The execution of the rules and its results are presented applying the backward

approach.

Context of case study: This case study occurred in a customer-unit responsi-

ble for Business-to-Business transactions with twenty-three professionals, among
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managers, business analysts and IT professionals, who participated in meetings and

interviews during four months.

The context under analysis is the provisioning of the Integrated Telephony Solu-

tion (ITS) products of the enterprise Voice over IP (eVoIP) solution for large enter-

prises that want to integrate their data and voice traffics on the same data network.

From this context, we consider one category of these products that are determined

by the quantity of dialing numbers (number of the physical phones) that the cus-

tomer requires. Each dialing number may be associated to a package that represents

voice service packages, such as call center, auto-attendant, receptionist, etc.

This case study is suitable to illustrate the backward approach since it did not

have the business process modeled. For that reason, we start with UI model deriva-

tion from the UIs of the available system, followed by task model derivation and

business process definition.

3.1 User Interface Model Derivation

A business analyst explained how the provisioning of ITS products works in practice

and a system analyst presented how the provisioning is done using the system. After

understanding the system, we observed 8 users interacting with the ordering system

to provision eVoIP products.

During the observations, users mentioned that the selection of service packages

was one aspect of the provisioning of products that was slowing them down. First,

they selected voice service packages and then, they had to check if the packages

remained the same after the attribution of dialing numbers. But since the attribution

of numbers is an automatic process, this checking by users is unnecessary since they

cannot interfere on those numbers, just on the packages that they have themselves

selected previously.

Fig. 4 depicts exactly the two screens in which users first select service packages

for eVoIP products that have not yet received the dialing numbers (i.e. Negotiate

features). Once these products have the numbers, users can see the selected packages

for each dialing number (i.e. Update features). Each screen uses a different way to

display this information: the first one uses a tree and the second one uses a matrix.

This issue identified by end-users themselves decreases their productivity when

managing the orders of customers. End-users proposed to merge these two UIs in

one screen that is more efficient. Merging these UIs is done by selecting the most

relevant UI components.

Based on the existing UIs of the ordering system, we have specified the UI model

for the UIs. Fig. 5 depicts the UI model for the screen group to provide product, com-

posed of several screens, but here the focus is on these two screens where users can

select and check voice service packages. These screens have some screen elements

in common (marked with dashed lines).

When two screens are merged, what happens is that a new screen is created with

existing content. This change triggers a set of rules that supports deriving new UI

tasks and updating the task model.
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Fig. 4 Screens to select and check voice service packages

Fig. 5 UI model for the screens to select and check voice service packages

3.2 Task Model Derivation

Once the UIs were understood and the UI models created, the UI tasks in task

models were derived from the execution of the rules. An extract of the task model

to introduce products is depicted in Fig. 6.

Once this task model is created, whenever changes are made on its related UI

model, this task model needs to updated accordingly.

For two screens that are merged, the working memory receives an instance of the

new screen, of its pre-existing screen fragments and the UI tasks related to these
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Fig. 6 Task model related to introducing products

screen fragments. The conditions that are verified in this case are: if there is a new

screen with screen fragments, and this screen is not yet related to any UI Task, but

its screen fragments are already related to UITasks. If this is the case, the task model

needs to be updated. A set of rules related to Screen is triggered and the rule that

positively addresses this condition is executed. The execution of the following rule

creates a new UI task for this screen and creates sub-tasks for this UITask using the

existing sub-tasks related to its screen fragments:

ruleset ‘‘Screen’’

rule ‘‘impact on UI Task when merging Screens’’

when

The Screen has an empty id and does not have related

UITasks

The ScreenFragments have related UITasks

then

create UITask for the Screen;

modify this UITask with the association with

sub-tasks related to the ScreenFragment;

end

Fig. 7 shows that a new screen is created with existing screen fragments from the

two repeated screens. Since only the existing screen fragments are related to UI

tasks, the rule results in the creation of a new UI task and associating it with the

existing sub-tasks.

To delete the screens that have been merged, since a new screen is already substi-

tuting them, the working memory receives the instance of the deleted screen and

of the UI tasks related to it. A set of rules related to screens are triggered and

the rules that positively address the condition that verifies if a screen with related
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Fig. 7 UI model for the screens to select and check voice service packages

UI tasks was deleted is executed, thus deleting the related UI tasks through the

following rule:

ruleset ‘‘Screen’’

rule ‘‘impact on UI Task when deleting Screen’’

when

The Screen is null and

There is an existing UITask

then

remove UITask;

end

3.3 Business Process Definition

With the details of UI tasks, it was possible to specify the high level activities of

the business process to provide product, depicted in Fig. 8. This business process

model can be further refined by business analysts, checking accordance to business

rules and strategies. This refinement is done depending on the levels of granularity

adopted to model business processes: From an operational perspective, the activi-

ties are defined until the smallest action. From a process perspective, the activities

specify what is performed and not details of how it is performed [25].

Fig. 8 Business process model to provide product

For each added UI task in the task model, the following rule was also executed to

add the equivalent BP activities:
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ruleset ‘‘UITask’’

rule ‘‘impact on Sub Process when adding UI Task’’

when

The UITask has an empty id and does not have

related activity

then

create activity for UITask;

end

Once the business process is created, whenever changes are made on its related task

model, this business process model needs to updated accordingly. Considering that

some tasks were deleted because two screens were merged, some activities in the

business process model need to be deleted. When UI tasks have been deleted, the

working memory receives the instance of the deleted UI tasks and activities related

to it. A set of rules related to UI tasks is triggered and the rules that positively

address the condition that verifies if a UI task with related activities was deleted is

executed, thus deleting the related activities through the following rule:

ruleset ‘‘UI Task’’

rule ‘‘impact on Activity when deleting UI Task ’’

when

The UI Task is null and

There is an existing Activity

then

remove Activity;

end

This example has illustrated how the models are created and managed. Initially,

the associations between business process models, task models and UIs is created,

which builds a network of links. With this network built, it is possible to navigate in

the network in any direction, which aids in identifying the impact of changes, sup-

ported by the execution of rules and updating the models according to the changes.

This example particularly shows the analysis of the network of links starting with

the UIs through suggestions of business performers taking into consideration their

knowledge about the domain and expertise with the system.

4 Discussion

For the methodology to be efficiently applied, it is necessary to have a software plat-

form to support the execution of these rules. The behavior of the platform is based

on the methodology; accordingly, this platform can be used by different stakehold-

ers, depending on their goal within the organization. To support the creation of the

network of links, each stakeholder has a specific role.

Business analyst - When business analysts either create a new business process

or update an existing one, they import the business process model into the platform
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as a starting point to create the network in the forward approach. Once this is done,

the task model is automatically derived based on the imported business process.

Usability expert - Once a first version of the task model has been automatically

created, most of the repetitious work is done and usability experts can focus on

reviewing it and adding UI tasks that represent the user interaction.

UI designer - As the usability expert is working on the task model, the UI de-

signer lists: the systems used to perform this business process, the users of these

systems, and the UI components of each system. The level of detail given to the

list of UI components depends on the level of detail expected for the result of the

impact analysis. Once all these elements are listed and the usability expert finished

updating the task model, the UI designer can associate the UI tasks with the listed

UI components.

Operation Manager - When the network of links is created, the operation ma-

nager can request an impact analysis concerning a specific change that he/she

prospects. When the operation manager, views the result of the impact analysis with

the list of suggested changes, he/she can make a solid decision.

Each of these stakeholders is involved in managing specific models. We assume

that the models created are correct, consistent and complete. They are complete

considering that these models are designed in an iterative manner. Each iteration

produces a version that is complete for the current context, but they are still open

for changes and improvements. The platform is aimed to support stakeholders with

information to help them maintain consistency between the models. However, the

platform does not aim to indicate that a model is right or wrong because this is per-

taining to the human abstraction skill. On the other hand, the platform indicates if

a model is consistent or inconsistent, according to the conventions described in the

rules. Being wrong may mean that it is different from reality or that it has a dead-

lock in the process flow, as an example of an error that stakeholders may make when

modeling. As classified in [26], stakeholders normally fall in one of the seven sins

of specification, namely: noise (i.e. irrelevant information), silence (i.e. lack of sig-

nificant information), over-specification (i.e. specification of features out of scope),

contradiction (i.e. incompatible definitions of a same feature), ambiguity (i.e. pos-

sibility to interpret a definition in different ways), forward reference (i.e. mention

information before it is defined) and wishful thinking (i.e. lack of realistic aspects to

validate the feature specified). Therefore, it is an assumption that stakeholders are

confident in creating the models and that they at least try to maximize the correct-

ness, consistency and completeness of the models.

The rules have been defined to provide flexibility to the platform since they can

be updated whenever there is a change on how the models are managed, without the

need for direct maintenance of the platform. The platform provides functionalities

to make transformations from the business process into the task model, and back-

wards, avoiding creating models from scratch. The platform helps stakeholders to

update UI tasks, delineate UI models and create the mappings and the rules are at the

foundation of that support as they help maintain consistency between the models.

Besides the platform that can add productivity in the application of the metho-

dology, there is also the return on investment that the methodology can bring to
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specific projects. For each project, the methodology can be evaluated to check that

the benefits of applying it outgrow its costs, thus proving its feasibility in a corporate

setting and motivating stakeholders to continue applying it. Besides the profit that

the methodology might bring from resulting improvements on business processes,

the human perspective in this methodology makes end-users become active agents

in the company. The methodology enables a free channel where they can give their

opinion about user interaction. This opinion is translated into business processes

so operation managers can ponder on their impact. When end-users’ suggestions

are put into practice and these changes improve their work, they are motivated to

collaborate. The more an end-user’s suggestions helps other end-users, the stronger

is their reputation within the group (e.g. customer representative department) and

higher is the trust between people.

5 Conclusion

This methodology is aimed for enterprise systems in organizations with extensive

business processes and hundreds of users using thousand of user interfaces. The

main goal is to keep enterprise systems aligned with business processes from the

point of view of business process performers and business process designers, of-

fering a complementary approach to existing solutions of IT-Business alignment.

These complementary solutions are more concerned with requirements and imple-

mentations, while we focus on UIs, the part effectively in use by business performers

(who are also end-users).

Because of this concern with business performers, this methodology becomes

human-centered since it is concerned with the people who perform the business

processes and use enterprise systems; more than merely on technological or metho-

dological aspects, supported by the theory of structuration [18].

To demonstrate the effectiveness of the business process perfomer-centred ap-

proach, the methodology has been quantitatively analyzed using sensitivity analysis

[27] to evaluate the cost-benefit analysis of its application in a telecommunications

company. This quantitative analysis has demonstrated that applying it brings up to

60% of return on investment related to process improvement and user experience.

To further develop the human-centered aspects of this methodology, the authors

are analyzing techniques to be used by business performers to aid them in gi-

ving suggestions about the user interaction and how they collaborate with others

to achieve this goal. Another important aspect to be analyzed is how well business

process models are understood by different stakeholders, how data is handled in the

execution of business processes, etc. In the current state of the methodology, it does

not control the business process in execution time, especially since it is risky to exe-

cute the rules and change the models at runtime. But for guidance and visualization

purposes, a solution for stakeholders to be aware of the state of the process in ex-

ecution time would be to change corporate applications to store information when

users interact with specific UIs to know where they are in the process by looking at
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the mappings. Consequently, there are other requirements that can be considered as

an extension of this methodology.

Overall, this research has achieved good results both in the academia and in the

industry and it is differentiated by considering a human perspective for UI-Business

Alignment, which had not yet been addressed in the literature neither in the indus-

try. Its characteristic of being multi-disciplinary and complementary to existing IT-

Business alignment strategies opens new themes for collaboration with researchers

and practitioners from other communities.
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A Formal Model-Based Approach for Designing 
Interruptions-Tolerant Advanced User 
Interfaces 
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Abstract. Due to the omnipresence of multitasking features in modern working 

environments, interruptions become commonplace as users must temporarily  

suspend a task to complete unexpected intervening activities. Interruptions are un-

predictable and cannot be usually disregarded by users. They are quite often asso-

ciated with negative effects (e.g. resuming to task after interruptions is difficult 

and is time consuming) but also with positive ones (e.g. alert systems shift our at-

tention to matters that require immediate care to perform adequately a monitoring 

task). As users are facing more and more sources of information competing for  

attention, it is important to understand how interruptions affect user abilities to 

complete tasks. Despite multitasking environments are not new, interruptions are 

rarely considered explicitly in the design phases of interactive systems. In this 

chapter, we present how to integrate system models, task models and interruption 

models within a Model-Driven Approach (MDA). We show how formal descrip-

tions of system and tasks can be used for simulation purposes while assessing sys-

tem performance and how such simulations can be exploited to understand the 

consequences of interruptions on users’ work. These aspects are illustrated by a 

case study demonstrating that these simulations can support the assessment of 

various interaction techniques according to interruption rates. An application of 

such concepts is also presented in the case of dynamic reconfiguration of the user 

interface (after hardware or software failures for instance). 

1   Introduction 

Task analysis is widely recognized as one fundamental way to focus on the  

specific user needs and to improve the general understanding of how users may  
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interact with a user interface to accomplish a given interactive goal [22]. In many 

modern working environments, interruptions are commonplace and users must 

temporarily suspend their current task in order to complete unexpected (or un-

planned) activities [24, 62]. Interruptions are unpredictable and quite often un-

avoidable in working environment. Web page pop-ups, emails, phone calls, instant 

messaging and social events can also be disruptive when people need to concen-

trate on specific tasks. In this context, users are responsible for accomplishing 

multitasking (i.e. two or more tasks at the same time) and being able to do so is 

now identified as a desired skill for most job functions [58]. 

Interruptions raise questions of both practical and theoretical significance [48]: 

How many interruptions occur at work? How performance is affected by various 

interruption characteristics, such as complexity, duration, timing and frequency? 

Who takes benefit of the interruption? How disruptive are interruptions for the 

main task? What can be done to mitigate the disruptive outcomes? Most of the 

current research has tackled these questions by conducting empirical studies with 

users either under controlled conditions (i.e. usability labs) or within working en-

vironments (e.g. ethnographical studies). The work reported in this paper brings a 

new perspective for the research in that field by employing analytical modeling 

techniques to simulate disruptive effects of interruptions on user performance. 

This work proposes a model-based approach for the specification of interactive 

systems making it possible to reason about properties that emerge from the disrup-

tive effects of interruptions. Our ultimate goal is to explore the role that these 

properties play in terms of making interactive systems more resilient to unex-

pected and unavoidable interruptions. We employ a tool supported formal descrip-

tion technique for the design and development of interruptions-tolerant user inter-

faces. The justification of using formal description techniques is twofold: i) the 

behavior of interruptions, tasks and system can be defined in a complete and un-

ambiguous way; ii) it makes it possible to reason about models in order to assess 

the interruptions’ behavior (e.g. simulation and models co-execution). In addition 

the formal description technique we use offers interactive prototyping capabilities 

so that it is possible to adjust models according to different parameters associated 

to interruptions (i.e. frequency and duration). 

We begin by presenting a comprehensive state of the art of the research on in-

terruptions in the field of Human Computer Interaction (HCI). This state of the art 

structures related work in terms of anatomy of interruptions, sources and types 

factors influencing disruptiveness while users are interacting with computing  

devices or more generally in a working environment. Then, we discuss modeling 

aspects of interruptions in general. We present a set of abstract models describing 

user tasks, system behavior, and interruption behavior. The underlying idea 

around these models is to identify useful abstractions highlighting the aspects that 

should be considered when designing interactive applications with an explicit fo-

cus on interruptions. This work is grounded on the formal description techniques 

ICO (for the system and interruption models) [9] and HAMSTERS [6] (for the 

tasks models). The information related to user internal behavior (motor, perceptive 

and cognitive) is embedded as additional information in both tasks and systems 

models. We have defined a correspondence pattern for connecting system and task 
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models that are in fact two different views on the same world. Such connection 

makes it possible to use the user additional information for assessing the overall 

performance of the connected models. Lastly, this paper reports on a preliminary 

method that can be used to analyze and predict the disruptive effect of interrup-

tions taking into account different frequency and duration of interruptions. Using 

stochastic modeling it is then possible to measure the disruptive effects of inter-

ruptions when using different interaction techniques (or interaction styles) to per-

form a specific task. This method aims at producing an estimation of the level of 

resilience that could be reached by the interactive systems under unpredictable and 

unavoidable interruptions. 

2   Overview on Multitasking and Interruptions in HCI 

Literature about human interruption addresses this design problem from one the 

following different perspectives: a) psychology of human interruption [2, 3, 4, 14, 

49]; b) technologies for improving the quality of interruption generation [20, 30]; 

c) HCI methods for brokering interruptions [23, 56, 57, 59, 64]; d) the effects of 

interruptions in work settings [21,49]; and e) case studies describing the results of 

introducing technologies into the workplace in an attempt to improve coordination 

performance [31, 39,59]. This section summarizes the main advances made for the 

understanding of the nature of interruptions in working environments. 

2.1   The Anatomy of Interruptions 

There are relatively few reported task analyses including interruptions. However, a 

number of simple task analyses have been conducted across several different do-

mains to capture the critical aspects of the tasks [56, 57]. As depicted by Fig. 1, a 

person is working on a primary task, which can be thought of as similar to the 

complex, long-lasting task [21]. Next, an alert for a secondary task occurs. Alerts 

come in different forms—for example, a phone ringing, a person coming into the 

room to ask the person a question, or a fire alarm. During the interruption lag, the 

person has a moment (or longer) before turning his or her attention to the inter-

rupting task. Then, the person starts the secondary task. After the secondary task is 

completed, the person must resume the primary task. During the resumption lag, 

the person must figure out what he or she was doing during the primary task and 

what to do next. Finally, the person resumes the primary task. From this task anal-

ysis and the real-world examples, it is clear that different aspects of the cognitive 

system are relevant to the study of interruptions and resumptions. First, executive 

control is very important for all interruption/resumption tasks. Second, upon com-

pleting the secondary task, the person’s main goal is to remember what task he or 

she was working on and what to do next (though in some real-world situations, 

new task demands occur or the environment may have changed so that significant 

re-planning may need to occur). Third, people may or may not use some sort of 

cue in the environment to actively help them remember what they had been doing.  
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Fourth, there may or may not be a link between the primary and secondary tasks. 

Fifth, in some situations (e.g., an emergency), cues may not have been thought 

about—there may be relatively different preparatory processes that occur. 

 

 

 

 

Fig. 1 Time line: anatomy of an interruption (based on Trafton et al [56]). 

2.2   Sources, Types and Taxonomy of Interruptions 

Sources of task interruptions can be either external when caused in the environ-

mentor internal when users decide to break the current task flow due. Internal in-

terruptions are very difficult to detect; in some cases, they should be considered 

normal deviations on the user scenario, for example when the user gives up to 

reaching the initial goal. External sources are many and vary, ranging from social 

events from the environment (ex. phone calls) to alarms and notification systems. 

Some interruptions are beneficial such as warnings and alerts, reminders, noti-

fications and suggestions. Waliji et al. [64] provide examples in a healthcare con-

text, although these types of interruptions would also exist in other domains:  

• Warnings and alerts: are usually a sign or signal of something negative occur-

ring, or a notice to be careful. They are intended to make people aware of an 

impending danger or difficulty. They are designed to interrupt the current task, 

and alert to a potential adverse event. Although such warnings may be critical 

in preventing errors, it is found that in practice such warnings are often ignored 

or overridden, suggesting the need for better designed warnings. Warnings and 

alerts are often urgent and need to be handled quickly.  

• Reminders: is a form of interruption that causes an individual to remember or 

recall an event. Decision support systems often remind users of standard tests 

or procedures that conform to practice guidelines. Although the urgency or  

importance of reminders may vary, many will include an explicit associated  

action. For example, go to a meeting occurring in 15 minutes. 

• Suggestions: are ideas or proposals that are propagated to individuals. For  

example, patients often receive suggestions and recommendations from their 

physicians during appointments. Suggestions are unlikely to be of high urgency 

or importance. But effective suggestions may occur in due time and associated 

actions that are recommended. 

• Notifications: are usually described as the process of informing. Notifications 

are defined as the most generic type of interruption, with the least degree of 

importance or urgency. A notification may purely be informational in purpose 

with no explicit instruction for action. 

Begin 
primary task

Alert for 
secondary task 

Begin 
secondary task 

End 
secondary task 

Resume 
primary task 

End 
primary task 

Resumption lagInterruption lag
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A few researchers have attempted to define interruptions and establish a taxonomy 

that describes the different issues surrounding interruptions. McFarlane [36]  

developed taxonomy of human interruption, as a tool for answering interruptions 

research questions. McFarlane’s taxonomy lists eight dimensions of human  

interruption including: source of interruption, individual characteristics of person 

receiving interruption, method of coordination, meaning of interruption (e.g. alert, 

reminder, etc), method of expression, channel of conveyance, human activity 

changed by the interruption, effect of the interruption. Despite the fact the limited 

number of studies on interruptions taxonomy, there have some evidence of its use-

fulness to report human errors (due to interruptions). Brixey et al. (2004) [13] re-

port taxonomy of task interruption in healthcare systems as a tool to identify how 

the introduction of a technology might introduce new interruptions, by contribut-

ing to an avoidable medical error or changing the work of clinicians.  

2.3   Factors Influencing Disruptiveness 

Interruptions will ultimately affect our ability to complete tasks but their disrup-

tive effect varies according to the type of interruption [3, 4, 15, 26]. Quite often,  

interruptions are associated with negative effects: resuming to task after interrup-

tions is difficult and can take a long time [57], interrupted tasks are perceived as 

harder than uninterrupted ones [5, 37], interruptions cause more cognitive work-

load and they are quite often annoying and frustrating because they disrupt people 

from completing their work [5]. Interruptions can also lead to incidents due to 

human error. According to Trafton & Mon [56], pilots experiencing interruptions 

during preflight checklists have been blamed for multiple aviation crashes [40, 

42]. In addition, recent studies have shown that interruptions may be an important 

factor in driving [38], emergency room care [17], and nursing errors [62]. Indeed, 

frequent interruptions can reduce user performance, however not all interruptions 

bring negative impact: awareness systems such as alarms and alert systems effec-

tively shift our attention to matters that need immediate care [13, 32] and, at least 

for simple tasks, interruptions may actually increase performance [61]. 

Gillie and Broadbent [26] describe a series of experiments aimed at elucidating 

features of interruptions that make them more or less disruptive to an ongoing 

computer task. They manipulated interruption length, similarity to the ongoing 

task, and the complexity of the interruption. They showed that being able to re-

hearse one’s position in the main task does not protect one from the disruptive ef-

fects of an interruption. In addition, they discovered that interruptions with similar 

content could be quite disruptive even if they are extremely short. 

McFarlane [34] examined four methods for deciding when to interrupt someone 

during multitasked computing. He explored several interruption policies such as 

requiring an immediate user response, letting users to choose when to attend, dele-

gating to an intelligent agent the decision on when to interrupt, and interrupting at 

pre-arranged time intervals. It was found that performance was affected by the 

method used for coordinating interruptions, but there was no one best method for 

all performance measures.  
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Other studies focused on timing of interruptions, and how a warning can allow 

a person to anticipate an interruption [23, 57, 38, 28, 33]. These studies have 

shown that the interruption lag created by warnings can reduce the disruptive ef-

fects of interruptions, primarily by reducing reorientation time to the primary task 

after the interruption task is completed and thereby reducing overall performance 

time of the primary task. Interruption lags in these studies allowed participants to 

either finish what they were working on before attending to the interruption, or 

encode retrieval cues to allow for better task resumption following the interrup-

tion. Most of these studies have focused on computerized work, where an auto-

mated computerized system must intermittently interrupt a user for input, while 

the user is focused on other tasks. However, it is important to note that in safety 

critical environments, such as a hospital, it may not be possible for health care 

workers to anticipate interruptions and have a substantial interruption lag. 

2.4   Solutions and Design Support 

Although the research on interruptions is still relatively new, and much work still 

needs to be done at both theoretical and applied levels, there are some evidences 

on how to make interactive systems more resilient and how to reduce the disrup-

tive effects on user tasks. These strategies include human training, guidelines for 

design and tool support. 

Human training is one of the most striking findings in many studies as it has 

been shown that trained users scan rehearse or use environmental clues to mitigate 

the disruptive effects of interruptions [26]. Training people on the task itself 

would reduce the disruptiveness of the interruptions. However, if people are  

learning how to resume, then training on interruptions and resumptions should be 

built into current training programs. It has been found that interruptions became 

less disruptive over time with experience and practice on the resumption process 

itself; experience on the primary task alone (without interruptions) did not reduce 

the disruptiveness of interruptions.  

Based on empirical findings, some guidelines for reducing effects of interrup-

tions have been proposed [56, 57]. For example, within the prospective memory 

framework, McDaniel et al. [33] found that the use of a blue dot cue could im-

prove performance upon resumption of the task. This suggests that providing an 

external mnemonic may greatly benefit performance. Using the Long Term Work-

ing Memory (LTWM) perspective, Oulasvirta and Saariluoma [26] also made  

several applied suggestions. Based on the results of their experiments, they sug-

gested that system designers should keep “interaction chains” (the number of in-

terface actions that lead to a goal or subgoal) quite short. The amount of time does 

not seem to be theoretically determined, but 20 s seems to be a heuristic used by 

some designers. They also suggested preventing interruptions on tasks that require 

large amounts of encoding time (e.g., certain checklists that airline pilots go 

through). Finally, they suggested that user control of interruptions is beneficial 

(consistent with McFarlane [35]) because it allows the person to have control over 

the encoding time, which is critical under their framework.  
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Other solutions include the development of specialized tools. Based on theo-

retically grounded applied research principles [21], Czerwinski’s group at Micro-

soft Research has developed on a prototype tool called GroupBar that allows  

people to save and retrieve applications and window management setups, which 

can be extremely useful when switching tasks. Bailey and his colleagues also have 

built several tools based on empirical work [5]. They suggested that the best place 

to interrupt people is between “coarse” breakpoints between tasks. They have used 

an empirical approach to explore the linkages between traditional task analytic ap-

proaches (e.g., goals, operators, methods, and selection rules, or GOMS) and pupil 

size as a measure of mental workload. They have created a tool that is able to au-

tomatically detect times of high and low workload. They have suggested that in-

terrupting people at times of low workload is best. They currently have several 

demonstration systems that perform components of this task. 

3   A Model-Based Approach for Dealing with Multitasking 

and Interruptions 

There are several attempts to formalize cognitive models describing the impact of 

interruptions in the human behavior [1, 57, 59, 61]. However, only a few works in 

the literature have addressed formal description techniques to describe the occur-

rence of interruptions in system specifications [28, 65]. This section proposes a  

design process for the design and assessment of interruption-tolerant systems.  

Fig. 2 presents the iterative process of the construction of models using formal de-

scription techniques. In the beginning of the process, a preliminary model is con-

structed that is then analyzed in order to assess what kind of properties it fulfils. 

According to the result of the analysis process, it can be decided that the model has 

to be modified. In [49], the interested reader can find a detailed explanation on how 

to perform such verification in the field of interactive systems, in order to deal with 

that complexity. As the ultimate goal of a safety critical system is to allow opera-

tors to perform their goals in an efficient and error free manner, we have previously 

presented a process integrating tasks modeling and system modeling. The process 

made it possible to assess the compliance of the tasks and system models [43].  

That paper presented, on a case study, how iterations are performed, how models  

compatibility can be checked and what kind of properties can be proven. The 

 

 

Fig. 2 Iterative process for building a model. 
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current paper extends that previous work to exploit performance evaluation tech-

nique to compare the interruption-tolerance of systems. 

The basic assumption, in this design process, is that the interruptions are con-

sidered as an independent system (called Interruptions Source) located in the envi-

ronment of the interactive system under consideration. Here again, the modeling 

activity starts with a preliminary model that is subject to modifications according 

to the analysis results or to further understanding of the behavior of the Interrup-

tions Sources. Indeed, while we imply that there is only one interruption model 

there can be several whose behavior are integrated in a single model. It is impor-

tant to note that the model of the Interruptions Sources only triggers elements of 

the system and tasks models. However, it can also be the case that the model of In-

terruptions Sources can be accessed from the system model. This can only be the 

case if one of the Interruptions Sources provides an (Application Programming In-

terface) API for interfering on the predefined behavior of the Interruption Source.  

3.1   Modeling Activities 

In the safety critical domain, Interruptions Source can be both computing re-

sources (such as an alarm (as, for instance, a Ground Collision Avoidance System 

(GCAS) in a cockpit) and socio-technical resources (as an Air Traffic Controller 

sending a clearance to the pilot of an aircraft). For sake of brevity, and as it does 

not have an impact on the approach we propose, we consider that interruptions are 

only part of an external system model and will thus be modeled independently. 

Fig. 3 presents the extended process exhibiting system, tasks and interruption 

models. A task model is the description of the sequence of tasks that have to be 

performed by the user to reach a particular goal. A critical point in the process is 

the consistency assurance activity (centre of the diagram). Indeed, it is important 

 

 

Fig. 3 Iterative process involving system, tasks and interruptions models 
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to ensure that the three models are compliant as they represent 3 different views of 

the same world i.e. the operator (task model) interacting with a system (system 

model) while external sources (Interruption Sources model) can interfere with that 

activity. 
As the goal of the approach is to assess the interruption-tolerance, Fig. 4  

presents the process for performing such assessment on two different systems and 
in a relative way. The two boxes on the right-hand side of the figure correspond to 
them (system A on top and System B on the bottom). Both systems are aimed at 
supporting the same user goals and at receiving the same perturbations from the 
Interruptions Sources and, consequently, the interruptions model is the same in 
both cases. 

 

Fig. 4 Process for assessing the impact of interruption on user performance for two different  

systems 

3.2   Values Injections 

In order to be able to compute performance evaluation of the systems, perform-
ance values are inserted in the models. User performance values and cognitive 
theory are used to enrich and extend the task model to obtain a comprehensive 
model of user behavior according to the type of the tasks (motor, cognitive or per-
ceptual). Such values correspond to information available in the field of HCI such 
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as Fitts’ law data for motor values [25], Human processor for cognitive and per-
ceptual performance values [17] and ICS (Interacting Cognitive Subsystems) [7]. 
For instance, Human processor model states that cognitive processor cycle time 
has a mean of 70 ms (max-min being 25-170 ms). Other, more recent data can also 
be used as the field is evolving quickly and more research is regularly performed 
especially providing data for prediction related to interaction techniques as [1] for 
constraint movement and [11] for zoomable interfaces. 

The validity of such data is critical when performance evaluation of the triplet 
(system, tasks (extended with user values), interruption) is concerned. This phase is 
represented by the boxes labeled “performance evaluation” in Fig. 4 and Fig. 5. The 

results of the phase will be used as a re-design driver in order to decide (in the case of 
performance lower than required/expected) to modify the elements: the system (by 
for instance, by changing the interaction technique), the tasks (for instance, by  
modifying the training of the operators and, by consequence the tasks they have to 
perform), the interruption (if it is possible to influence that “external” element).  
However, it is important to note that the exact value of data is not important per se, as 
far as the comparative assessment is concerned, and the same values are chosen to 
model activities that the interaction techniques have in common. Indeed, such as-
sessment does not provide an absolute measure of interruption-tolerance but a com-
parison of two systems. Therefore, as the same (sub-)tasks are modeled by the same 
values, the actual values have no influence on the result of the assessment. This  
argument however does not hold if the interaction techniques are not similar.  

 

Fig. 5 Instantiation of the process presented in Figure 5. 

3.3   Instantiation of the Approach 

Fig. 5 presents the instantiation of the process of Fig. 4 including the notations and 

the values presented above. The light grey circles contain the underlying theories 

from which data are produced and the notations used for building the various 
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models. For instance, System and interruption models are described using the ICO 

notation. Performance analysis is performed using the Petri nets performance  

analysis tools. As these tools require, as input, only Petri nets, transformation 

needs to be defined from enriched HAMSTERS specification into the Petri nets. 

At this stage, the process remains theoretical making it applicable to a large set of 

interactive systems from various application domains. Even though critical for in-

teractive systems assessment, this performance analysis process is not further de-

veloped in the paper as we focus on the modeling aspects and more precisely on 

the multiple views (tasks, system and interruption) integration. The next section 

sketches how this approach can be instantiated on a case study, presenting the 

various models and their integration.  

3.4   Modeling Interruptions in Task Models 

In multitasking environments, interruptions should be seen just as a break in the 

current task execution that causes a (unexpected or intended) deviation on the con-
trol flow. This problem is well known in the domain of Operational Systems where 

several programs can run in parallel (i.e. multitasking). Previous work [60] has 
demonstrated that systematic description of all deviations on the system control 
flow is almost impossible as it would lead to an exponential and unpredictable 
number of states. The unpredictability of interruptions would favor the use of de-
clarative models to describe what should be accomplished by the user system 
(whatever it happens) rather than describe the steps required (i.e. control flow) to 
accomplish it [54]. Notwithstanding, in some cases an interruption should be con-
sidered as part of the user goals as, for example, to cancel document printing. In-
deed, some task model notations such as Concur Task Tree (CTT) [53] and 
HAMSTER [6] explicitly provides the operator suspend/resume (i.e. |>) that allow 
explicitly modeling between tasks as presented by Fig. 2. Similarly, West and Nagy 
[65] have added theoretical structures to the notation GOMS in order to overcome 
its limitations for analyzing interruptions when task switching are common. 

Jambon [28] has analyzed the idiosyncrasies of relationships between tasks 
(such as parallelism, interlacing and sequence) thus providing a formal semantics 
for interruptions in notations like MAD, UAN and Petri Nets. For example, if two 
tasks are specified for running in sequence, the interruption of one task could be  
interpreted as an definite disruption (e.g. starting task t2 will cancel the task t1) or 
an interlacing among tasks with an less disruptive effect on human activity  
(e.g. starting task t2 will interrupt task t1, but t1 could be resumed after task t2 has 
finished). Tasks resumption could be done at different steps on the task execution 
(i.e. restarting from the beginning, resuming the task at the point before interrup-
tion occurs, resuming at the end of the task assuming it has been accomplished). 

Hereafter, we provide a brief description of the task model notation HAMSTER 
that will be used in the case studies. 

Modeling with HAMSTERS 

HAMSTERS can be defined as a graphical and hierarchical notation to describe 

task models. It is delivered as part of a tool supporting edition and simulation of  
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Fig. 6 Example of task modeling with interruption operator “|>” in HAMSTER. 

task models. In a nutshell, HAMSTERS is open source, featuring a task simulator 

and provides a dedicated API for observing editing and simulation events. The 

main need that has triggered the design of these notation and tool is to have an  

extension of the current task modeling approaches making possible the synergistic 

support of task and system modeling activities. The notation is inspired from  

existing notations, especially from CTT [53] and has thus been designed to remain 

compatible with CTT (from the point of view of people building the models) as 

models are hierarchical, graphical with operators between the tasks. 

Table 1 Illustration of the task type within HAMSTERS 

Task type Icons in the task model 

Abstract Task 

 

System Task 

 

User Task 

 

Interactive Task

 

 
The elements of task models described by HAMSTER are illustrated by Table 1 

and include: 

• Abstract task is a task that involves sub tasks of different types. 

• System task is a task performed only by the system. 
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• User task is a generic task describing a user activity. It can be specialized as a 

Motor task (e.g. a physical activity), a Cognitive task (e.g. decision making, 

analysis), or Perceptive task (e.g. perception of alert). 

• Interactive task is an interaction between the User and the System; it can be re-

fined into Input task when the users provide input to the system, Output task 

when the system provides an output to the user and InputOutput task is a mix of 

both but in an atomic way. 

As in CTT, each particular task of the model can be either iterative, optional or 

both types (see Fig. 7): 

• Iterative: concerns a task that can be executed 1 or more times. It can be inter-

rupted or suspended by another task. It should not be a subtask of an ENABLE 

operator but of an INTERRUPT or SUSPEND_RESUME operator. 

• Optional: An optional task is a task that does not necessarily needs to be exe-

cuted. During the simulation, an optional task will be proposed with the follow-

ing task(s) to be executed. 

 

Fig. 7 Illustration of an Optional task Iterative task and of a task both iterative and optional 

Again, as in CTT temporal relationship between tasks is represented by means of 

operators as described by Table 2a. 

Table 2 Illustration of the operator type within HAMSTERS 

Operator type Symbol Description 

Enable  >> 

ENABLE operator shall allow its tasks and/or task group and/or operator 

groups to execute one after another, from left to right on the model. 

ENABLE operator can have more than 2 branches. 

Concurrent  

 
||| 

CONCURRENT operator shall allow tasks and/or tasks belonging to task 

groups and/or operator groups to execute at the same time in any order. 

CONCURRENT operator can have more than 2 branches. 

Choice  [] 

CHOICE operator shall allow the user to select the first available task to 

execute of each available branch. When a task is executed, HAMSTERS 

should disable all the branches that don’t contain the executed task. 

CHOICE operator shall have 2 and only 2 branches. 

Disable  [> 

DISABLE operator shall deactivate the execution of the first branch when 

a task is executed on the second branch. DISABLE operator shall have 2 

and only 2 branches. 

Suspend-resume |> 
SUSPEND-RESUME operator shall suspend the execution of the first task 

or branch when task is executed on the second branch. 

Order  

independent  
|=| 

ORDER INDEPENDENT (2x) operator shall allow its tasks and/or task 

groups and/or operator groups to execute one after another, in any order. 

ORDER_INDEPENDANT operator can have more than 2 branches. 
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In HAMSTERS, the notion of objects represents the part of the world managed 

by the tasks. HAMSTERS offers two types of relationships between tasks. The 

first one describes how tasks are related to other tasks (using the temporal opera-

tors presented above) and the second one represents the information flow between 

tasks (as illustrated by Fig. 8 where the PIN entered in the first task is conveyed to 

the next task by means of input and output ports). 

 

Fig. 8 Input and output flow between tasks in HAMSTERS 

Modeling interruptions with HAMSTERS 

As illustrated by Fig. 6, it is possible to represent in HAMSTERS the occurrence of 

interruptions that are related to user’s goals. Unpredictable interruptions (such as 

user errors that are not related to the goal) are outside of the scope of task models 

and should be represented as independent models. Following our approach, such 

unpredictable interruption models are represented using the ICO formalism 

(described in the following section) instead of HAMSTER. By combining task 

models and interruption models, we create a so called task model decorated with 

interruptions that can be used for assessing the impact of interruptions on tasks 

performance and to redesign the system or the tasks to better tolerate interruptions. 

3.5   Interactive System Modeling Using ICOs 

Hereafter, we present the main features of the Interactive Cooperative Objects 

(ICO) formalism which is dedicated to the formal description of interactive sys-

tems. We encourage the interested reader to look at [45] for a complete presenta-

tion of this formal description technique. 

ICOs are dedicated to the modeling and the implementation of event-driven in-

terfaces, using several communicating objects to model the system, where both 

behavior of objects and communication protocol between objects are described by 

the Petri net dialect called Cooperative Objects (CO). In the ICO formalism, an 

object is an entity featuring four components: a cooperative object which de-

scribes the behavior of the object, a presentation part (i.e. the graphical interface), 

and two functions (the activation function and the rendering function) which make 

the link between the cooperative object and the presentation part. 
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• Cooperative Object: Using the Cooperative Object formalism, ICO provides 

links between user events from the presentation part and event handlers from the 

Cooperative Objects, links between user event availability and event handler 

availability and links between state in the Cooperative Objects changes and 

rendering. 

• Presentation part: The presentation of an object states its external appearance. 

This presentation is a structured set of widgets organized in a set of windows. 

Each widget may be a way to interact with the interactive system (user å 

system interaction) and/or a way to display information from this interactive 

system (system å user interaction (3x)). 

• Activation function: The user å system interaction (inputs) only takes place 

through widgets. Each user action on a widget may trigger one of the Coopera-

tive Objects event handlers. The relation between user services and widgets is 

fully stated by the activation function that associates each event from the  

presentation part with the event handler to be triggered and the associated ren-

dering method for representing the activation or the deactivation. 

• Rendering function: the system å user interaction (outputs) aims at present-

ing the state changes that occurs in the system to the user. The rendering func-

tion maintains the consistency between the internal state of the system and its 

external appearance by reflecting system states changes. 

ICOs are used to provide a formal description of the dynamic behavior of an interac-

tive application. An ICO specification fully describes the potential interactions that 

users may have with the application. The specification encompasses both the "input" 

aspects of the interaction (i.e. how user actions impact on the inner state of the ap-

plication, and which actions are enabled at any given time) and its "output" aspects 

(i.e. when and how the application displays information relevant to the user). 

An ICO specification is fully executable, which gives the possibility to proto-

type and test an application before it is fully implemented [46]. The specification 

can also be validated using analysis and proof tools developed within the Petri net 

community and extended in order to take into account the specificities of the Petri 

net dialect used in the ICO formal description technique. This formal specification 

technique has already been applied in the field of Air Traffic Control interactive 

applications [47], space command and control ground systems [51], or interactive 

military [6] or civil cockpits [8]. The example of civil aircraft is used in the next 

section to illustrate the specification of embedded systems. To summarize, we pro-

vide here the symbols used for the ICO formalism and a screenshot of the tool. 

• States are represented by the distribution of tokens into places  

• Actions triggered in an autonomous way by the system are represented as  

and called transitions 

• Actions triggered by users are represented by half bordered transition  

ICOs are supported by the Petshop environment that makes it possible to edit the 

ICO models [10], execute them [52] and thus present the user interface to the user 

and support analysis techniques such as invariants calculation [49]. 
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3.6   Interruptions Modeling Using ICOs 

As discussed in the previous sections, any interruption that is not part of users’ 

goal should be represented as an individual model. For that very purpose, we em-

ploy ICO formal description technique. Using the same formalism to model inter-

ruptions and the system it is possible to run both models in parallel to observe the 

counter effects between them. Moreover, the ICO formalism support unique char-

acteristic that is very useful for modeling interruptions, as follows:  

• Support for time-based modeling (systematic occurrence of interruptions based 

on temporal evolution), simulating, for instance, the occurrence of instant mes-

senger popup; 

• Notification based modeling (the system state has evolved and the interruption 

model is notified and then triggers an interruption) – interruptions are related to 

system’s evolutions; 

• Information based modeling (some values have reached a certain threshold then 

an interruption occur) 

These features all illustrated in the next section.  

4   Case Study 

In order to exemplify the approach described above, we introduce a simple case 

study. The objective of the case study is to present the various phases of the ap-

proach on a simple but realistic application. 

4.1   Informal Description of the Case Study 

Fig. 9 presents the user interface of the case study. In the application, a set of 

icons is presented in a window on a grid. The icons can be moved to different  

locations and deleted. 

 

Fig. 9 User Interface of the case study 
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The user’s tasks are thus limited to the one presented in Fig. 10. The user’s goal 

(upper task in the tasks model) is to remove all the icons on the user interface. 

This can be achieved by doing, in any order, the selection of an icon and the trig-

gering of a deletion command. In order to reach the goal, users have to perform it-

eratively the selection and deletion of icons (represented in the model by the * 

symbol next to the upper abstract task “Clear Icons”. 

 

Fig. 10 Task model refined to be conformant with Drag & Drop behavior (system model A) 

To support this goal, two different systems have been constructed. System A 

(called Drag & Drop) features an interaction technique of type Drag and Drop. 

Icons on the user interface can be selected by moving the mouse cursor over them 

and pressing the left button. Once selected, icons can be dragged in the window at 

any new position. If the mouse button is released when the icon is positioned  

over the icon of the trash, then the icon is deleted. System B (called Speak & 

Click) features a multimodal interaction technique involving speech recognition 
 

 

Fig. 11 Task model refined to be conformant with Speak & Click behavior (system model B) 
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Fig. 12 Abstract tasks model expressed in HAMSTERS 

(for the deletion command) and gesture (for icon selection). Systems and tasks 

models related to these two systems are presented in the next sections. 

4.2   Formal Modeling of the Case Study 

Modeling System A (Drag & Drop) 

The behavior of System A has been fully modeled using the ICO notation and is 
presented in Fig. 13. Indeed, the model contains all the preconditions about the 
current state of interaction as well as the set and sequences of events that are 
available to the user. 

According to Fig. 3, system and task models need to be kept consistent as the 
system has an impact on how the tasks can be performed by the user. Thus going 
 

 

Fig. 13 ICO model of system A (Drag & Drop interaction technique) 
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from an abstract description of the tasks to a detailed one (fitting with a given sys-
tem), the tasks models are different. According to the description of System, the 
abstract tasks model presented in Fig. 12 has to be refined as presented in Fig. 10. 
Indeed, Selection and Deletion tasks can be now refined more precisely. Selection 
is performed first by deciding the icon to be deleted then by moving the mouse 
cursor on the icon and by pressing the mouse button. Deletion is performed by 
moving the selected icon over the trash icon, verifying that trash icon is high-
lighted and releasing mouse button. 

It is interesting to note that the temporal operator order independence between 
tasks Deletion and Selection is more constrained in the refinement as it has been 
replaced by a sequence operator. Adding constraints is allowed in the refinement 
process, as what is allowed in the refined model remains compliant with the ab-
stract description. Relaxing constraints is not allowed as it would make it possible 
for the users to trigger sequences of action (in the refined model) not accepted by 
the abstract model. 

Modeling System B (Speak & Click) 

As for System A, System B has been fully described using the ICO formalism and 
is presented on Fig. 14. 

 

Fig. 14 ICO model of system B (Speak & Click interaction technique) composed with the 
behavior of the interruption source 



162 P. Palanque, M. Winckler, and C. Martinie

 

This model allows users to either start by a speech command “delete” and then 

selecting an icon or selecting first an icon to be deleted and then uttering the word 

“delete”. That model is a refinement of the ICO model describing the application. 

It includes the interruption sources behavior and excludes manipulation errors or 

recognition errors. In any case, interaction must start either by the user moving the 

mouse (this is represented by the transition move on the upper part of the model) 

or by uttering a word (start-speak). As has been done for System A, the abstract 

tasks model presented in Fig. 12 has to be refined in order to be compliant with 

System B. Fig. 11 presents the refined task model. It is interesting to note that this 

task model is less constrained as it accepts Deletion and Selection in any order 

(modeled by using the concurrent operator at the first level). 

Modeling Interruptions 

According to the approach presented in Fig. 3, the last model to be built is the 

model describing the behavior of the Interruption Sources. While the state of the art 

section has explained the anatomy of interruptions and the various research results 

(especially in psychology about the impact of interruptions on users’ activity), we 

present in this section the simplest model of interruptions possible. Indeed, this 

paper is devoted to the description of a process integrating tasks, systems and 

interruptions models and how the resulting models can be used to compute 

performance evaluation on that triplet. We are currently integrating this process in 

the area of interactive cockpits, extending previous work in the re-configuration of 

cockpit applications when part of the hardware side of the user interface has failed 

[44]. Such failures and re-configurations are intrinsically perceived by the operators 

as interruptions and assessing pilot performance in such a context is critical. 

The interruption taken into account here behaves as follows. Each time an inter-

ruption occurs, a modal window occurs featuring an Ok button (see window in the 

center of Fig. 9) is displayed and the user has to click on it to be able to carry on 

the initial task. Fig. 15 presents such behavior using the ICO notation. In the initial 

state, the interruption model is idle (there is a token in the place Interrupt) waiting 

for an interruption to occur. 

 

Fig. 15 ICO model of Interruption Source 

This is modeled by transition Interrupt which is triggered according to a tempo-

ral evolution (represented by the symbol []). When the interruption has occurred, 

the token in place Interrupt moves to place InterruptOk and the transition ClickOk 

becomes available. This transition is connected to the Ok button, i.e. when the 

event is triggered by the user, the transition is fired and the model comes back to 

its initial state. 
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Such interruption model is extremely simple as it does not convey any pertinent 

semantic about the interruptions it describes. The fact that we are using the ICO 

notation for the description of interruptions makes it possible to describe more 

complex behaviors but also to have several interruptions models interacting with a 

system at the same time. This is when simulation and prototyping aspects are very 

important as it makes it possible to define in a complete and unambiguous way 

how such intertwined interruptions impact the usage of an interactive system. This 

impact can be assessed at the interaction technique level (as presented in [11]) and 

even at the dialogue level exhibiting classical human errors such as “strong habit 

intrusion” or “over shooting a stop rule” (when the interruption is not taken into 

account).  

However, interruptions can also arise not as an external event (and thus repre-

sented by a specific model), but from the system itself (for instance, when a failure 

occur) resulting in functions or information not being available anymore to the 

user. Such interruptions are very similar to service availability in the area of de-

pendability [18] and thus arise typically from a malfunction at the system level. We 

already addressed such issues in the field of interactive cockpits [44] where user in-

terfaces reconfigure themselves after a system failure. For instance, in the case of a 

display unit (sort of screen in a cockpit) failure, the interactive applications pre-

sented on that display may be re-allocated to other display units if they are critical 

for the current flight phase. In such a case, the crew tasks have to be re-organized 

according to the reconfigured interactive system. That reallocation is known by  

the crew (by means of training) and can be considered as an interruption. This is an 

interesting kind of interruption where users have to react to autonomous systems. 

The ICO notation is able to fully represent such interruptions behavior (not  

presented here due to space constraints).  

4.3   Co-execution of System Models, Task Models and 

Interruption Models 

While previous research activities done on the topic of interactive systems  

modeling made ICO mature enough to be the basis of the proposed framework, 

they pointed out the need of an extension of current task modeling approaches 

making it possible to support in a synergistic way tasks and system mode-ling ac-

tivities. With Hamsters, we propose a notation and a tool to answer these needs, 

making it an independent tool supporting task modeling activities, and enhancing 

it to be part of the framework (by means of interactive input and output tasks, ex-

plicit artifacts, dedicated API …). A snapshot of such integration is presented in 

Fig. 16. 

The integration framework presented in this paper allows for property checking 

during verification and validation phases of the development process as described by 

Hix and Hartson [27]. Validation phase relates to the question "do we have modeled 

the right system?" while the verification phase addresses the question "do we have 

modeled the system right?" At notation and tool level, our approach provides the  
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Fig. 16 Case tool integration of HAMSTERS and PetShop 

first bricks for the validation and verification of the synergistic exploitation of task 

and system modeling: 

• It is possible to assess the structural compatibility between models while  

editing the correspondences between them. 

• It is possible to verify if particular scenarios are playable on the system model. 

This makes it possible to highlight or verify system behaviors that ensure the 

non-occurrence of particular tasks scenarios as this impossibility could be re-

quired in the system (ex. Getting card before getting cash using ATM to avoid 

post completion errors or ensuring that an accident scenario cannot reoccur). 

This work could be extended to automatically extract scenarios from the task 

models and assess automatically to their compatibility with the system model. 

• It is possible to execute the system model driven by the simulation of the task 

model and it is possible to build scenarios driven by the system execution, but, 

even if the framework makes it possible, we did not present the complete co-

execution of the two models due to space constraints. One of the possible use of 

such complete co-execution could be to enhance the user providing contextual 

help at runtime: 

− While interacting with the system, it is possible to identify the current task 

in the task model, it is thus possible to provide the user with information 

about this task (for instance, how many actions and which actions are still 

required to reach the goal). 

− A scenario from task model can drive the execution of the system model, it 

is thus possible to extract scenario that illustrates how to perform a task, 
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and play it on the system to interactively show to the user how to achieve 

her goal (as training material for instance). 

Such model checking is part of the role of the correspondence editor that notifies 

any inconsistency between the HAMSTERS and the ICO specifications. More in-

formation about these tasks-systems relationship can be found in [40] for the archi-

tectural aspects and in [6] for the usability aspects and simulation aspects.  

5   Conclusion and Perspective 

This paper has presented a tool supported approach for bridging the gap between 

tasks, system and interruptions views in the design of interactive systems. To this 

end, we have briefly introduced a new notation called HAMSTERS for the descrip-

tion of tasks models. For the system side, we used the ICO notation supported by the 

CASE tool PetShop. 

While in earlier work [43] the bridge between task models and system models 

was performed in an asynchronous way by means of scenarios, the current paper 

has presented the principles of full integration of two dedicated tools and how this 

can support by various means the design interruption tolerant interactive systems. 

The interruption models are used for assessing the capability of both user and sys-

tem to manage their work within a “real-life” context, i.e. when interruptions of 

any type occur on a regular basis. 

The work presented here belongs to a longer term research program targeting at 

the design of resilient interactive systems using model-based approaches. Future 

work aims at exploiting these two models to support the usability evaluation of  

interactive systems and to provide task-based training material in the field of  

real-time command and control systems including cockpits and satellite ground 

segments. In such contexts, interruptions are of primary importance as they can  

result in accidents or incidents and in putting human life at stake. 

References 

1. Accot, J., Zhai, S.: Beyond Fitts’ law: models for trajectory-based HCI tasks. In: Proc. 

of ACM CHI 1997, pp. 295–302 (1997) 

2. Altmann, E.M., Trafton, J.G.: Memory for goals: An activation-based model. Cogni-

tive Science 26(1), 39–83 (2002) 

3. Altmann, E.M., Trafton, J.G.: Timecourse of Recovery from Task Interruption: Data 

and a Model. Psychonomics Bulletin and Review 14(6), 1079–1084 (2007) 

4. Bailey, B.P., Konstan, J.A., Carlis, J.V.: Measuring the effects of interruptions on task 

performance in the user interface. In: IEEE International Conference on Systems, Man, 

and Cybernetics 2000, vol. 2, pp. 757–762 (2000) 

5. Bailey, B.P., Konstan, J.A., Carlis, J.V.: The effects of interruptions on task perform-

ance, annoyance, and anxiety in the user interface. In: Proceedings of INTERACT 

2001, pp. 593–601. IOS Press, Amsterdam (2001) 

 



166 P. Palanque, M. Winckler, and C. Martinie

 

6. Barboni, E., Ladry, J., Navarre, D., Palanque, P., Winckler, M.: Beyond modelling: an 

integrated environment supporting co-execution of tasks and systems models. In: Pro-

ceedings of the 2nd ACM SIGCHI Symposium on Engineering interactive Computing 

Systems. EICS 2010, pp. 165–174. ACM, New York (2010) 

7. Barnard, P.J., Teasdale, J.D.: Interacting cognitive subsystems: A systemic approach to 

cognitive-affective interaction and change. Cognition and Emotion 5, 1–39 (1991) 

8. Bastide, R., Navarre, D., Palanque, P., Schyn, A., Dragicevic, P.: A Model-Based Ap-

proach for Real-Time Embedded Multimodal Systems in Military Aircrafts. In: ICMI 

2004 - Sixth International Conference on Multimodal Interfaces, pp. 243–250. ACM 

Press, New York (2004) 

9. Bastide, R., Palanque, P., Le, D., Munoz, J.: Integrating rendering specifications into a 

formalism for the design of interactive systems. In: DSV-IS 1998. Springer, Heidel-

berg (1998) 

10. Bastide, R., Navarre, D., Palanque, P.: A model-based tool for interactive prototyping 

of highly interactive applications. In: CHI 2002 Extended Abstracts on Human Factors 

in Computing Systems, pp. 516–517 (2002) 

11. ter Beek, M., Faconti, G., Massink, M., Palanque, P., Winckler, M.: Resilience of in-

teraction techniques to interrupts - A formal model-based approach. In: Gross, T., Gul-

liksen, J., Kotzé, P., Oestreicher, L., Palanque, P., Prates, R.O., Winckler, M. (eds.) 

INTERACT 2009. LNCS, vol. 5726, pp. 456–472. Springer, Heidelberg (2009) 

12. Bourgeois, F., Guiard, Y., Beaudouin-Lafon, M.: Multi-scale pointing: Facilitating 

pan-zoom coordination. In: ACM SIGCHI Conf. on Human Factors in Computing 

Systems, CHI 2002, pp. 758–759. ACM Press, New York (2002) 

13. Brixey, J.J., Walji, M., Zhang, J., Johnson, T.R., Turley, J.P.: Proc. 6th International 

Workshop on Enterprise Networking and Computing in Healthcare Industry. Propos-

ing a Taxonomy and Model of Interruption, pp. 184–188 (2004) 

14. Brudzinski, M.E., Ratwani, R.M., Trafton, J.G.: Goal and spatial memory following 

interruption. Paper presented at the 8th International Conference on Cognitive Model-

ing, Ann Arbor, MI (2007) 

15. Cades, D.M., Trafton, J.G., Boehm-Davis, D.A., Monk, C.A.: Does the difficulty of an 

interruption affect our ability to resume? In: Proc. of the Human Factors and Ergonom-

ics Society 51th Annual Meeting, Santa Monica, pp. 234–238 (2007) 

16. Caffiau, S., Girard, P., Scapin, D., Guittet, L., Sanou, L.: Assessment of object use for 

task modeling. In: Forbrig, P., Paternò, F. (eds.) HCSE/TAMODIA 2008. LNCS, 

vol. 5247, pp. 14–28. Springer, Heidelberg (2008) 

17. Card, S.K., Thomas, T.P., Newell, A.: written at London, The Psychology of Human-

Computer Interaction. Lawrence Erlbaum Associates, Mahwah (1983); ISBN 

0898592437 

18. Cervantes, H., Hall, R.S.: Autonomous Adaptation to Dynamic Availability Using a 

Service-Oriented Component Model. In: Proceedings of the 26th International Confer-

ence on Software Engineering, May 23 - 28, pp. 614–623. IEEE Computer Society, 

Washington (2004) 

19. Chisholm, C.D., Collison, E.K., Nelson, D.R., Cordell, W.H.: Emergency department 

workplace interruptions: Are emergency physicians “interrupt-driven” and “multitask-

ing”? Academic Emergency Medicine 7, 1239–1243 (2000) 

20. Czerwinski, M., Cutrell, E., Horvitz, E.: Instant Messaging and Interruption: Influence 

of Task Type on Performance. In: Paris, C., Ozkan, N., Howard, S., Lu, S. (eds.) 

OZCHI 2000 Conference Proceedings, Sydney, Australia, December 4-8, pp. 356–361 

(2000) 



A Formal Model-Based Approach  167

 

21. Czerwinski, M., Horvitz, E., Wilhite, S.: A diary study of task switching and interrup-

tions. In: Proceedings of the SIGCHI Conference on Human Factors in Computing 

Systems CHI 2004, Vienna, Austria, April 24-29, pp. 175–182. ACM, New York 

(2004) 

22. Diaper, D., Stanton, N.A. (eds.): The Handbook of Task Analysis for Human-

Computer Interaction, 650 p. Lawrence Erlbaum Associates, Mahwah (2004) 

23. Diez, M., Boehm-Davis, D.A., Holt, R.W.: Model-based predictions of interrupted 

checklists. In: Proceedings of the 46th Annual Meeting of the Human Factors and Er-

gonomics Society, pp. 250–254. Human Factors and Ergonomics Society, Santa 

Monica (2002) 

24. Dix, A., Ramduny-Ellis, D., Wilkinson, J.T.: Analysis: understanding broken tasks. In: 

Diaper, D., Stanton, N. (eds.) The Handbook of Task Analysis for Human Computer 

Interaction, Lawrence Erlbaum Associates, Mahwah (2004) 

25. Fitts, P.M.: The Information Capacity of the Human Motor System in Controlling the 

Amplitude of Movement. Journal of Experimental Psychology 47, 381–391 (1954) 

26. Gillie, T., Broadbent, D.: What makes interruptions disruptive? A study of length, 

similarity and complexity. Psychological Research 50(4), 243–250 (1989) 

27. Hix, D., Rex Harston, H.: Developing User Interfaces: ensuring usability through 

product and process. Wiley, Chichester (1993); 978-0-471-57813-0 

28. Horvitz, E., Apacible, J.: Learning and reasoning about interruption. In: Proceedings of 

the 5th International Conference on Multimodal Interfaces, ICMI 2003, November 5-7, 

pp. 20–27. ACM, New York (2003) 

29. Jambon, F.: Formal modelling of task interruptions. In: Human Factors in Computing 

Systems: Proceedings of CHI 1996, Conference Companion, pp. 45–46. ACM Press, 

New York (1996) 

30. Iqbal, S.T., Bailey, B.P.: Effects of intelligent notification management on users and 

their tasks. In: Proceeding of the Twenty-Sixth Annual SIGCHI Conference on Human 

Factors in Computing Systems, CHI 2008, April 5-10, pp. 93–102. ACM Press, New 

York (2008), http://doi.acm.org/10.1145/1357054.1357070 

31. Kapoor, A., Horvitz, E.: Experience sampling for building predictive user models: a 

comparative study. In: Proceeding of the Twenty-Sixth Annual SIGCHI Conference on 

Human Factors in Computing Systems, CHI 2008, Florence, Italy, April 5-10, pp. 

657–666. ACM Press, New York (2008),  

http://doi.acm.org/10.1145/1357054.1357159 

32. McCrickard, D.S., Chewar, C.M.: Attuning notification design to user goals and atten-

tion costs. Communications of ACM 46(3), 67–72 (2003) 

33. McDaniel, M.A., Einstein, G.O., Graham, T., Rall, E.: Delaying execution of inten-

tions: overcoming the costs of interruptions. Applied Cognitive Psychology 18(5), 

533–547 (2004) 

34. McFarlane, D.C.: Comparison of four primary methods for coordinating the interrup-

tion of people in human-computer interaction. Human-Computer Interaction 17, 63–

139 (2002) 

35. McFarlane, D.C.: Coordinating the interruption of people in human-computer interac-

tion. In: Sasse, A., Johnson, C. (eds.) Proceedings of Human-Computer Interaction, 

INTERACT 1999, pp. 295–303. IOS Press, Amsterdam (1999) 

36. McFarlane, D.C.: Interruption of People in Human-Computer Interaction: A General 

Unifying Definition of Human Interruption and Taxonomy (NRL Formal Report 

NRL/FR/5510-97-9870), US Naval Research Laboratory, Washington (1997) 



168 P. Palanque, M. Winckler, and C. Martinie

 

37. Mark, G., Gudith, D., Klocke, U.: The cost of interrupted work: more speed and stress. 

In: Proceeding of the Twenty-Sixth Annual SIGCHI Conference on Human Factors in 

Computing Systems, CHI 2008, Florence, Italy, April 05-10, pp. 107–110. ACM, New 

York (2008), doi= http://doi.acm.org/10.1145/1357054.1357072 

38. Monk, C., Boehm-Davis, D., Trafton, J.G.: Recovering from interruptions: Implica-

tions for driver distraction research. Human Factors 46, 650–663 (2004) 

39. Morris, D., Brush, A.B., Meyers, B.R.: SuperBreak: using interactivity to enhance er-

gonomic typing breaks. In: Proceeding of the Twenty-Sixth Annual SIGCHI Confer-

ence on Human Factors in Computing Systems. CHI 2008, pp. 1817–1826. ACM, 

New York (2008) 

40. Navarre, D., Palanque, P., Barboni, E., Mistrzyk, T.: On the Benefit of Synergistic 

Model-Based Approach for Safety Critical Interactive System Testing. In: Winckler, 

M., Johnson, H. (eds.) TAMODIA 2007. LNCS, vol. 4849, pp. 140–154. Springer, 

Heidelberg (2007) 

41. National Transportation Safety Board (1968). Aircraft accident report: Pan American 

World Airways, Inc., Boeing 707-321C, N799PA, Elmendorf Air Force Base, Anchor-

age, Alaska, December 26 (NTSB/AAR-69/08). Washington, DC (1969) 

42. National Transportation Safety Board (1987). Aircraft accident report: Northwest Air-

lines, Inc.,McDonnell Douglas DC-9-82, N312RC, Detroit Metropolitan Wayne 

County Airport, Romulus,Michigan, August 16 (NTSB/AAR-88/05).Washington, DC 

(1988) 

43. Navarre, D., Palanque, P., Bastide, R., Paternó, F., Santoro, C.: A tool suite for inte-

grating task and system models through scenarios. In: Johnson, C. (ed.) DSV-IS 2001. 

LNCS, vol. 2220, p. 88. Springer, Heidelberg (2001) 

44. Navarre, D., Palanque, P., Basnyat, S.: Usability Service Continuation through Recon-

figuration of Input and Output Devices in Safety Critical Interactive Systems. In: Har-

rison, M.D., Sujan, M.-A. (eds.) SAFECOMP 2008. LNCS, vol. 5219, pp. 373–386. 

Springer, Heidelberg (2008) 

45. Navarre, D., Palanque, P., Ladry, J., Barboni, E.: ICOs: A model-based user interface 

description technique dedicated to interactive systems addressing usability, reliability 

and scalability. ACM TOCHI 16(4), 1–56 (2009) 

46. Navarre, D., Palanque, P., Bastide, R., Sy, O.: Structuring Interactive Systems Specifi-

cations for Executability and Prototypability. In: Paternó, F. (ed.) DSV-IS 2000. 

LNCS, vol. 1946, p. 97. Springer, Heidelberg (2001) 

47. Navarre, D., Palanque, P., Bastide, R.: Reconciling Safety and Usability Concerns 

through Formal Specification-based Development Process. In: HCI-Aero 2002. MIT, 

USA (2002) 

48. O’Conaill, B., Frohlich, D.: Timespace in the workplace: Dealing with interruptions. 

In: Human Factors in Computing Systems, CHI 1995, pp. 262–263. ACM Press, New 

York (1995) 

49. Oulasvirta, A., Saariluoma, P.: Surviving task interruptions: Investigating the implica-

tions of long-term working memory theory. Int. J. Hum.-Comput. Stud. 64(10), 941–

961 (2006) 

50. Palanque, P., Bastide, R., Sengès, V.: Validating Interactive System Design Through 

the Verification of Formal Task and System Models. In: Proc. of EHCI 1995, Garn 

Targhee Resort, Wyoming, USA, August 14-18. Chapman et Hall, Boca Raton (1995) 

 

 



A Formal Model-Based Approach  169

 

51. Palanque, P., Bernhaupt, R., Navarre, D., Ould, M., Winckler, M.: Supporting Usabil-

ity Evaluation of Multimodal Man-Machine Interfaces for Space Ground Segment  

Applications Using Petri net Based Formal Specification. In: Ninth International Con-

ference on Space Operations, Rome, Italy, June 18-22 (2006) 

52. Palanque, P., Ladry, J.-F., Navarre, D., Barboni, E.: High-Fidelity Prototyping of In-

teractive Systems can be Formal too. In: Schaefer, R., Cotta, C., Kołodziej, J., Ru-

dolph, G. (eds.) PPSN XI. LNCS, vol. 6239, pp. 145–156. Springer, Heidelberg (2010) 

53. Paterno, F., Mancini, C., Meniconi, S.: ConcurTaskTrees: A Diagrammatic Notation 

for Specifying Task Models. In: Proc. of Interact 1997, pp. 362–369. Chapman & Hall, 

Boca Raton (1997) 

54. Pinheiro da Silva, P.: User Interface declarative models and Development environ-

ments: A survey. In: Paternó, F. (ed.) DSV-IS 2000. LNCS, vol. 1946, pp. 207–226. 

Springer, Heidelberg (2001) 

55. Ratwani, R.M., McCurry, J.M., Trafton, J.G.: Predicting post completion errors using 

eye movements. In: Computer Human Interaction, CHI 2008 (2008) 

56. Trafton, J.G., Monk, C.A.: Task Interruptions. Reviews of Human Factors and Ergo-

nomics 3, 111–126 (2007) 

57. Trafton, J.G., Altmann, E.M., Brock, D.P., Mintz, F.E.: Preparing to resume an inter-

rupted task: Effects of prospective goal encoding and retrospective rehearsal. Interna-

tional Journal of Human-Computer Studies 58(5), 583–603 (2003) 

58. Tsukada, K., Okada, K., Matsushita, Y.A.: Cooperative Support System Based on 

Multiplicity of Task. IFIP Congress (2), 69–74 (1994) 

59. Rukab, J.A., Johnson-Throop, K.A., Malin, J., Zhang, J.: A Framework of Interrup-

tions in Distributed Team Environments. Journal on Studies in Health Technology and 

Informatics, Part 2 107, 1282–1286 (2005) 

60. Silberschatz, A., Galvin, P., Gagne, G.: Operating Systems Concepts. John Wiley & 

Sons, Chichester (2008); ISBN 0-470-12872-0 

61. Speier, C., Vessey, I., Valacich, J.S.: The effects of interruptions, task complexity, and 

information presentation on computer-supported decision-making performance. Deci-

sion Sciences 34(4), 771–797 (2003) 

62. Su, N.M., Mark, G.: Communication chains and multitasking. In: Proceeding of the 

Twenty-Sixth Annual SIGCHI Conference on Human Factors in Computing Systems, 

CHI 2008, Florence, Italy, April 5-10, pp. 83–92. ACM, New York (2008) 

63. Tucker, A.L., Spear, S.J.: Operational failures and interruptions in hospital nursing. 

Health Services Research 41, 643–662 (2006) 

64. Walji, M., Brixey, J., Johnson-Throop, K., Zhang, J.: A theoretical framework to un-

derstand and engineer persuasive interruptions. In: Proceedings of 26th Annual Meet-

ing of the Cognitive Science Society, CogSci 2004 (2004) 

65. West, R.L., Nagy, G.: Using GOMS for Modeling Routine Tasks Within Complex So-

ciotechnical Systems: Connecting Macrocognitive Models to Microcognition. Journal 

of Cognitive Engineering and Decision Making 1(2), 186–211(26) (Summer 2007) 



H. Hussmann et al. (Eds.): MDD of Advanced User Interfaces, SCI 340, pp. 171–197. 

springerlink.com                                          © Springer-Verlag Berlin Heidelberg 2011 

Dynamic Distribution and Layouting of  
Model-Based User Interfaces in Smart 
Environments 

Dirk Roscher, Grzegorz Lehmann, Veit Schwartze, Marco Blumendorf, 

and Sahin Albayrak
*
 

Abstract. The developments in computer technology in the last decade change the 

ways of computer utilization. The emerging smart environments make it possible 

to build ubiquitous applications that assist users during their everyday life, at any 

time, in any context. But the variety of contexts-of-use (user, platform and 

environment) makes the development of such ubiquitous applications for smart 

environments and especially its user interfaces a challenging and time-consuming 

task. We propose a model-based approach, which allows adapting the user 

interface at runtime to numerous (also unknown) contexts-of-use. Based on a user 

interface modelling language, defining the fundamentals and constraints of the 

user interface, a runtime architecture exploits the description to adapt the user 

interface to the current context-of-use. The architecture provides automatic 

distribution and layout algorithms for adapting the applications also to contexts 

unforeseen at design time. Designers do not specify predefined adaptations for 

each specific situation, but adaptation constraints and guidelines. Furthermore, 

users are provided with a meta user interface to influence the adaptations 

according to their needs. A smart home energy management system serves as 

running example to illustrate the approach. 

1   Introduction 

The developments in computer technology in the last decade change the ways of 

computer utilization. The emerging smart environments make it possible to build 

ubiquitous applications that assist users during their everyday life, at any time, in 

any context. This requires the applications to adapt themselves to the current 
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context and provide a usable and suitable interaction at all times. In [4], five 

properties of ubiquitous user interfaces (UUIs) have been identified: 

1. Shapeability – to address different layouts for users, devices and usage 

contexts 

2. Distribution – the capability of being distributed across multiple 

interaction devices 

3. Multimodality – for being accessible through various input and output 

modalities 

4. Shareability – to support cooperative interaction of multiple users 

5. Mergability – the interoperability of different applications 

The availability of a variety of multimedia and interaction devices, sensors and 

appliances makes the development of UUIs for smart environments a challenging 

and time-consuming task. Furthermore, it is very complex to predefine adaptations 

of an application for every possible context. UUIs also have to respond to 

contexts-of-use unforeseeable at design time. This leads to the need for automated 

adaptations of the user interface intelligently handling changes of the context. 

Since the developer is no longer present while an application adapts to a 

context at runtime, she cannot guide the adaptation process directly. Hence a 

system must take over her role and the developer needs a language to stay in  

control over the adaptation results. Two main building blocks are needed to 

 

 

Fig. 1 Example layout and distribution adaptations of the SHEA for different interaction 

devices 
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address this: 1) a runtime system, dynamically handling the context specific 

interaction and automatically adapting the application based on design time 

information from application models; 2) a language that allows the developer to 

describe UUIs by providing relative hints or constraints guiding the automated 

adaptations, rather than specifying concrete adaptations. 

In the next section, we describe a smart home application with a ubiquitous 

user interface. Throughout this chapter, it will serve as an example of an adaptive 

application, very difficult to implement with traditional development technologies. 

1.1   Example Application and Scenario 

The Smart Home Energy Assistant (SHEA) is a home automation application with 

a special focus on energy consumption. In accordance with the current energy 

conservation and smart metering trends, the SHEA helps the users to save energy 

by providing them with energy usage information about their home appliances. By 

analyzing and comparing the energy consumption of their appliances, the users 

become aware of existing saving potentials. 

An example smart home environment, in which the SHEA could be deployed, 

consists of three networked interaction devices: a smartphone, a PC in the home 

office and a digital TV in the living room. Each device features a different 

combination of input and output modalities, e.g. the PC provides a standard mouse 

and keyboard input interface, the smartphone is equipped only with a touch 

surface and the TV with a remote control. While all interaction devices provide a 

display, the interaction capabilities of the displays vary in terms of screen size, 

ratio and resolution. An example scenario highlights the adaptation capabilities of 

the SHEA: 

• Step 1: The user starts the interaction with the SHEA in the office, by saying 

“SHEA”. SHEA’s user interface appears on the interaction device near the 

user's position – in this case the PC. The UI layout adapts to the PC display 

(SHEA on a 4:3 screen in Fig. 1). 

• Step 2: After checking the power consumption charts of some appliances, the 

user decides to continue the interaction in the living room. The user enables a 

“Follow Me”-mode and the SHEA seamlessly follows through different rooms 

by migrating from one interaction device to another, across platforms. The UI 

adapts to the current combination of interaction resources (IRs) on-the-fly. As 

the user walks into the living room, the UI follows from the 4:3 PC screen to 

the 16:9 HD-TV. The UI adapts to match the new screen ratio and resolution 

(SHEA on a 16:9 screen in Fig. 1) 

• Step 3: Although the UI adapted correctly to the current context, the user 

wishes to reconfigure the SHEA by migrating a part of it to the smartphone. 

Through a configuration wizard (“Meta-UI”), the user moves SHEA’s device 

controls to the smartphone, but leaves the power consumption chart on the big 

screen of the TV for better readability. 

• Step 4: With the device list and controls on the smartphone, the user walks 

around the living room and checks the power consumption of the devices. As 
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the user nears a device, the device list on the smartphone is reshuffled and the 

UI element representing the nearest device is put on the top of the list. 

In this chapter, we present how the adaptation capabilities exemplified in the 

above scenario can be defined in a model-based user interface development 

approach and implemented by a runtime architecture. 

1.2   Contribution 

This chapter deals with issues related to the adaptation of UUIs. On basis of the 

SHEA example, we show how runtime user interface models enable the provision 

and adaptation of UUIs. We focus on three of five ubiquitous user interface 

properties: shapeability, distribution and multimodality. We show how user 

interface distribution and layout algorithms can be designed to automatically 

handle the adaptation along these axes at runtime. The Multi-Access Service 

Platform (MASP) is presented as a user interface runtime architecture 

implementing the proposed algorithms. Thereby, information from the models 

defined by the user interface developer is utilized at runtime. We describe how the 

developer and user can influence the automatic adaptations and what impact the 

context information from the environment has on it. On basis of the SHEA 

example, we show how user interface models move away from absolute to relative 

specifications, giving free room for automatic adaptations at runtime. 

In the next section, we give an overview of related work in the area of model-

based user interface development. Afterwards we describe the MASP, a user 

interface runtime architecture enabling the generation and delivery of UUIs. The 

details of the underlying user interface models follow in the next section. Step-by-

step, we describe the models on the basis of the SHEA example. In the section 

thereafter, we describe how the combination of architecture and models enables a 

ubiquitous interaction with smart home applications. We elaborate the automated 

distribution of the user interfaces and discuss the dynamic layout of the graphical 

user interface. Afterwards, we describe how the described scenario is realized with 

the distribution and layout adaptations. Finally, we conclude our chapter and give 

an outlook on future work. 

2   Related Work 

Model-driven engineering is a promising approach to the development of complex 

systems and applications. It is based on the notion of models as a basis for software 

engineering and represents the shift from object-oriented to model-driven thinking. 

Since its emergence, MDE has also been researched as a possible approach to 

reduce the complexity of user interface development [41]. Based on the Cameleon 

Reference Framework [10], model-based user interface engineering aims at 

expressing different aspects of the user interface using models on different levels of 

abstraction at design time. Utilizing these formal user interface models takes the 

design process to a computer-processable level, on which design decisions become 
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understandable for automatic systems. User interface description languages like 

UsiXML [25] and TERESA [31] utilize this approach to generate user interface 

code from formal models at design time. 

Smart environments require the user interfaces to adapt dynamically to 

contexts-of-use, most often unforeseeable at design time. To address this issue, the 

use of user interface models at runtime has been proposed [38]. Runtime models 

make the design information available during the execution of the application. At 

runtime, the information in the models can be used for reasoning about the 

decisions of the designer, who is no longer available. The utilization of models at 

runtime is therefore a common approach for the design and adaptation of large, 

(self-)adaptive systems, like [39] and [20]. The designed adaptations are 

performed on the running system by transforming the models of the system. [36] 

proposes the Cumbia platform as a runtime system to execute runtime models, 

aiming at the provisioning of reusable monitoring and control tools. Other 

approaches, like [2], utilize models at runtime to debug and validate applications 

at runtime. 

Several user interface development approaches utilize models at runtime. [12] 

extends the DynaMo-AID design process with context data evaluated at runtime, 

supporting UI migration and distribution. Knowledge about the tasks the user is 

pursuing and the context the tasks are executed in can drive optimizations of 

output presentation and input processing [13]. In [17], the authors describe FAME, 

a model-based Framework for Adaptive Multimodal Environments, that utilizes a 

set of models to control an adaptation engine and create multimodal user 

interfaces. [24] deals with the execution of CTT-based user interface models. 

These approaches mainly aim at the utilization of static models to support the 

generation of user interfaces at runtime. But the creation of UUIs requires a more 

flexible approach and utilization of the models. Such user interfaces are 

distributed across multiple interaction devices (with different input and output 

modalities), while providing a presentation shaped to the properties of the user, 

device capabilities and the current context-of-use. 

The distribution of user interfaces to different IRs supporting various 

modalities has been a topic of various research activities, ranging from the 

characterization of distributed UIs [16] to development support for specifying 

distributed UIs [30]. The approach of Elting and Hellenschmidt [18] supports 

simple conflict resolution strategies when distributing output across graphical UIs, 

speech syntheses and virtual characters. The main goal is the semantic processing 

of input and output in distributed systems. The dynamic redistribution and 

definition of dynamic UI models have thus not been the focus of the approach. 

The I-AM (Interaction Abstract Machine) system [3] presents a software 

infrastructure for distributed migratable UIs. It provides a middleware for the 

dynamic coupling of IRs to form a unified interactive space. The approach 

supports dynamic distribution across multiple heterogeneous platforms, but does 

not support the arbitrary recombination of IRs and is limited to graphical output as 

well as mouse and keyboard input. Our approach utilizes the modeled design 

information at runtime to dynamically adjust the combination of the used IRs. 
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Such distributed graphical user interfaces and the heterogeneous and dynamic 

smart environments require a very flexible layout generation at runtime. Different 

to other approaches like [26], we shift the decision about which interpretations are 

relevant to support a specific context-of-use scenario from design time to runtime 

so we can flexibly adapt the layout to consider new device capabilities, user 

demands and user interface distributions. Some approaches like PUC [32] 

generate graphical user interfaces from a device description. Different to PUC, we 

are not focusing on control user interfaces, but on a domain independent layout 

model that specifies the containment, the orientation and the size of all individual 

user interface elements.  

Layouting adaptations for different context-of-use scenarios have been topic of 

various research activities. There are approaches ranging from adaptations of 

graphical user interfaces to mobile devices, like in [28], to adaptations depending 

on the user’s capabilities [21]. In most of these approaches, the adaptations are 

defined at design phase and no adjustments at runtime are possible. In [22], the 

authors describe an approach, to allow the user to (re-)layout virtual maps for a 

museum guide by dragging and dropping icons to the map and define routes. The 

tool provides an easy way to create a museum guide for users without 

programming experience, but the user interface adaptation for the used large 

screen and the mobile device are pre-defined. In difference, we provide a way for 

the end-user to adjust and adapt the layout model to different situations at runtime.  

The described approaches provide partial solutions for the considered aspects 

of UUIs. There are approaches for handling distribution of user interfaces (e.g. 

[16] [30]), and others that deal with the definition of dynamic and adaptive user 

interface layouts ([21], [28] or [32]). However, to provide UUIs an integrated 

approach covering the distribution, layouting and multimodality at runtime is 

required. The recent shift of user interface model utilization from design time to 

runtime is a promising approach for handling the dynamic interaction capabilities 

of smart environments. In the following, we present the Multi-Access Service 

Platform (MASP), which aims at the provision of UUIs by utilizing user interface 

models at runtime. We have used the MASP to implement the example SHEA 

application. A detailed description of its models is provided in the section 

thereafter. 

3   Multi-access Service Platform 

Aiming at the creation of UUIs for smart home environments, we have identified 

the need for a runtime architecture that provides support for the common 

properties of such interfaces and that can be used and configured by the designer 

as well as by the user. We thus applied a model-based approach, integrating user 

interface models with a runtime system, to separate shared logic and application 

specific properties. This leads to the implementation of the MASP, an architecture 

to enable distributed multimodal interaction, and its flexible adaptation to the 

current needs and the context-of-use [7]. The core of the MASP is a set of 

executable user interface models representing the interaction on different levels of 
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abstraction, according to the well-accepted Cameleon Reference Framework [10] 

(including task & domain, abstract, concrete & final UI models). 

At design time, the developer specifies the user interface as a set of models 

which comprises task-, domain-, service-, context- and interaction-model. The 

developed set picks up findings from other model-based approaches (Cameleon-

RT [1], DynaMo-AID [11], ICARE [9], the Framework for Adaptive Multimodal 

Environments (FAME) [17], Tycoon [27], SmartKom [35]), but puts a strong 

focus on the issues arising during the runtime interpretation of user interface 

models. In an additional mapping model, the developer defines mappings that 

interconnect the models. At runtime, the MASP generates the user interface based 

on the information from the models and context information held in a runtime 

context model. Rather than relying on pre-compiled user interface code, the 

MASP creates the final user interface on-the-fly, taking the current state of the 

environment into account. As the interaction with the user progresses, the MASP 

enriches the models of the UI with state information. This way, the models 

dynamically evolve over time and describe the application, its current state and the 

required interaction as a whole instead of providing a static snapshot only. The 

approach of utilizing dynamic, executable models enables the MASP to adapt the 

applications by means of model reconfiguration at runtime.  

Fig. 2 shows an overview of the MASP architecture comprehending the set of 

models, their relationships as well as components to provide the dynamic 

adaptation of the interaction at runtime. Each model describes a different aspect of 

the UI. While the service model allows interaction with backend systems, the task 

and domain model describe the basic concepts underlying the user interface. 

Based on the defined concepts, the interaction models (abstract interaction-, 

concrete input- and concrete presentation model) define the actual communication 

with the user. The abstract interaction model thereby defines abstract interactors 

aiming at a modality and device independent description of interaction. The 

concrete input- and concrete presentation model substantiate the abstract 

interactors by specifying concrete interactors targeting specific modalities and 

device types. Furthermore, the interaction model provide support for the definition 

of multimodal interaction. A context model provides interaction-relevant context 

information. It holds information about the available interaction resources and 

allows their incorporation into the interaction process at runtime. Additionally, it 

provides information about users and the environment and comprises context 

providers, continuously delivering context information at runtime. The model is 

continuously updated at runtime to reflect the current context-of-use of the 

interaction. 

The different models are connected by mappings as described in [6]. The 

mappings are also defined in a model (mapping model) and provide the possibility 

to interconnect the different models and to ensure synchronization and information 

exchange between models. By linking the task model to service and interaction 

models, the execution of the task model triggers the activation of service calls and 

interactors. While service calls activate backend functions, active interactors are 

e.g. displayed on the screen and allow user interaction. They also incorporate 

domain model elements in their presentation and allow their manipulation through  
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Fig. 2 The MASP runtime architecture, comprising interaction channels, fusion, distribution, 

layouting and adaptation components and a comprehensive user interface model 

user input as defined by the mappings. The context model finally also influences 

the presentation of the interactors that are related to context information. Thus, the 

execution of the task model triggers a chain reaction, leading to the creation of a 

user interface from the defined user interface model. The structure underlying this 

approach also opens the possibility to add additional models or change existing 

models in the future.  

The whole concept of the MASP is based on a client-server architecture with 

the MASP server managing multiple IRs with different interaction capabilities and 

modalities. The resources are connected via channels and each user interface 

delivered to a resource is adapted according to the capabilities of the resource and 

the preferences of the user. For this purpose, the MASP runtime architecture, also 

depicted in Fig. 2, combines the models and the related mappings with a set of 

components. While the models reflect the state of the current interaction and the 

UI, the components provide advanced functionality. 

An adaptation component allows the utilization of an adaptation model to 

directly adapt the user interface models according to the context-of-use (including 

device, user and environment information). Based on this adaptation model, an 

application can e.g. support mobile and static devices by adapting the user interface 

accordingly. Flexible multimodal interaction is supported by a distribution 



Dynamic Distribution and Layouting of Model-Based User Interfaces  179

 

component, segmenting the user interface across multiple modalities and devices if 

necessary. Achieving a suitable presentation of the possibly distributed user 

interface, is the task of a layouting component and finally a fusion component 

matches and interprets input from different modalities. All components utilize the 

underlying user interface model allowing the configuration of the components. 

In contrast to other multimodal approaches, we do not aim at the semantic 

analysis of any user input, but at the provisioning of a multimodal user interface 

guiding and restricting the possible interaction. As mentioned above, the 

connection of the IRs to the MASP is done via channels. The channels identify the 

connection to IRs and provide related APIs allowing their direct incorporation into 

the user interface delivery and creation process. The activation of different 

combinations of channels also allows changing the currently supported modalities 

during the interaction. A channel-based delivery mechanism is used for the 

delivery of the created final user interfaces to the interaction devices [5]. The 

combination of multiple devices allows combining complementary devices to 

enhance the interaction and support multiple modalities and interaction styles. A 

common example for this feature is the utilization of a mobile device as a remote 

control for a large display. This is possible by distributing an application across 

the two devices. Additionally, voice support can be added via a third device. Fig. 1 

shows this combination of mobile and static clients as an example on the very top 

of the image.  

4   MASP Models 

To actually use the architecture described above, the models are the core part that 

provides the application specific configuration of the whole system. The interface 

developer makes use of these models to express the design of the application and 

the underlying interaction. In the following, we illustrate the utilization of these 

models, by describing the models underlying the SHEA example application. 

Step-by-step we will present the models of the application. Due to space 

constraints we will limit our example to SHEA's device visualization and control 

part. For each device available in the home environment, the SHEA visualizes its 

status, functionality and, most importantly, its energy consumption over time. 

Additionally it enables the direct control of each appliance, e.g. by means of 

dimming of lights or configuring the heating program. All models are available at 

runtime during the execution of the application. A top of the models, we have 

implemented algorithms that utilize the information specified by the designer to 

optimize the adaptation process. 

4.1   Task and Domain Models 

The creation of a MASP application typically starts with the definition of a task  

tree describing the tasks that a user and the system need to perform during  

their interaction. The task tree models of MASP applications are based on the  

CTTE notation [34] extended with some constructs necessary for their runtime 

interpretation. 
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Fig. 3 shows the subtree of SHEA's task model, defining the user-system 

interaction for the device control and visualization part. There are four types of 

tasks in the subtree. Abstract tasks are refined by more concrete children tasks, 

Application tasks that are performed by the application, InteractionIn tasks, in 

which the user provides some input to the system, and InteractionOut tasks in 

which the system displays some information without user's interaction. 

Additionally, the tasks are annotated with information about the accessed domain 

objects. There are three types of access: R for reading an object, C for creating an 

object and M for modifying an existing object. 

The abstract DeviceControlAndVisualization task is the root task of our subtree 

and has four children tasks: 

• DeviceProgramming – enables the user to re-program a device (change dim 

level in case of lights or temperature in case of heating systems). First, the user 

must input a new program (InputProgram InteractionIn task) and then, the 

system programs the device accordingly (ProgramDevice Application task). 

• ProvideDeviceInformation – in this InteractionOut task, the system provides 

the user with information about the device (its type, state, current power 

consumption, etc.). 

• DeviceStateControl – enables the user to turn the device on or off. 

• EnergyConsumptionAnalysis – provides the user with an energy consumption 

chart. The system creates a chart for the device (GenerateChart Application 

task) for a given time span (defined in the timeSpan object). The chart is then 

made available for the user in the InteractionOut ProvideChart task. The user 

may modify the chart’s time span in the ConfigureChart InteractionIn task, 

which restarts the EnergyConsumptionAnalysis. 

 

Fig. 3 SHEA task subtree for the interaction with home appliances 

The MASP provides developers with a graphical editor for the task models. A 

task tree simulator integrated with the tool enables to simulate the execution of the 

created task trees. Using the simulator, the developer can verify the possible task 

performance sequences in an early design stage before proceeding with the 

definition of the user interface. 
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At runtime, the MASP interprets the task tree of each application and on-the-fly 

generates a UI for the current combination of tasks that can be performed (the so 

called enabled tasks set). For each activated Application task, the MASP executes 

an associated service call, defined in a service model of the application. For the 

InteractionIn and InteractionOut tasks, a user interface is generated on basis of 

abstract and concrete user interface models. 

4.2   Service Model 

In the service model, the developer refines the application tasks defined in the  

task model by specifying backend service calls performed by the application.  

The service model is thus the glue between the user interface and the backend 

service logic. 

The service calls of the SHEA device visualization and control tasks are 

ToggleDeviceState, ProgramDevice and GenerateChart. Every call has 

parameters (corresponding to the input objects of the tasks) and properties 

(describing the execution of the call). Additionally, each service call is associated 

with a service adapter, responsible for its execution. The MASP currently provides 

adapters for Java, Webservice and UPnP service calls. 

4.3   Abstract User Interface Model 

On the abstract user interface (AUI) level, the designer refines interaction tasks 

with device and modality independent AUI interactors. As explained in [7], there 

are five types of AUI interactors in the MASP’s AUI model: 

• OutputOnly – when the computer presents the user information without 

requiring feedback or input (e.g. images or text). 

• FreeInput – when the user inputs (unstructured) data into the system (e.g. 

providing a name or a password). 

• Command – when the user sends a signal to the system ordering it to perform 

an action (e.g. OK and Cancel buttons). 

• Choice – provides a list to the user and denotes the possibility to choose one or 

several options from this list. 

• ComplexInteractor – allows the aggregation of multiple abstract interaction 

objects into a more complex type. This provides e.g. logical grouping facilities. 

In our example SHEA application, there are five interaction tasks – two 

InteractionOut and three InteractionIn. The InteractionOut tasks are always 

mapped to OutputOnly interactors, because the user does not provide any input to 

the system while performing them. In the SHEA, the user is provided with an 

energy consumption chart in ProvideChart and with information about the device 

in ProvideDeviceInformation. Both tasks are mapped to OutputOnly interactors. 

The task RequestDeviceStateToggle is refined with a Command interactor, 

because by performing it, the user urges the system to perform an action. In 

ConfigureChart and InputProgram tasks, the user selects an item from a set of 
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alternatives (new time span for the chart and new program for the device 

respectively), so the tasks are represented by Choice interactors on the AUI level. 

4.4   Concrete User Interface Model 

The concrete user interface model allows refining the AUI interactors with 

different modality specific representations. In contrast to other approaches, the 

MASP concrete user interface (CUI) model is split into two parts – concrete 

presentation- and concrete input model. This is the basis for supporting a flexible 

combination of input and output capabilities. The details of both have been 

described in [7]. For this chapter, it should be sufficient to say that the concrete 

presentation model contains graphical elements like buttons, labels, text fields or 

images, signal interactors for haptic, sound and visual output and natural language 

and text output interactors for text and speech output. On the CUI input side, there 

are interactors describing gestures, natural language or text as well as signal or 

pointing input.  

Furthermore, both models support the definition of relationships between the 

concrete interactors by means of the CARE properties (Complentarity, 

Assignment, Redundancy, Equivalence) [15]. Thereby, the developer can specify 

how the related interactors can be used for multimodal interaction. Defining 

multimodal relations with the CARE-properties is similar to the ICARE software 

components [8]. In contrast to ICARE however, the components and thus the 

multimodal relationships are not statically related at design time, but can be freely 

configured between arbitrary modalities through the integration in the model and 

evaluated at runtime. The relationships make it possible to perform multimodal 

fusion and fission of the user interface and influence the behavior of the MASP 

distribution and fusion components. 

Although the information from the CUI model makes it possible to create a user 

interface, the results may suffer from the typical weakness of model-based user 

interfaces – their generic character. To overcome this issue, the MASP enables the 

designer to customize the user interface with special details on the final user 

interface level. 

4.5   Final User Interface Layer 

On the final user interface (FUI) level of the Cameleon reference framework, the 

user interface is specified in a platform-dependent language and is thus executable 

on the target platform. The MASP currently supports HTML and Media Resource 

Control Protocol (MRCP) platforms, as well as a non-standardized gesture 

recognition platform developed as a part of a student project. Depending on the 

runtime distribution of the user interface between the available interaction devices, 

the MASP generates the FUI and delivers it to the target devices via so called 

channels. The generation of the FUI is based on the Velocity Template Language 

(VTL)
1
 and can happen twofold: 

                                                           
1 http://velocity.apache.org 



Dynamic Distribution and Layouting of Model-Based User Interfaces  183

 

• The FUI can be automatically generated from the CUI model of the application 

by means of generic mappings between the CUI model and the FUI elements 

available on the platform. The MASP provides default VTL templates for the 

supported platforms (e.g. mapping CUI Image elements to <img> tags for the 

HTML platforms). 

• The developer may customize the FUI generation process by overwriting the 

generic templates with application-specific VTL templates. The MASP uses a 

Velocity engine and merges the application-specific templates at runtime. This 

way, the developer has the possibility to customize the resulting FUI and avoid 

its generic character. 

The models defined so far describe the basics of the dialog between the user and 

the system and provide details about the interaction capabilities of the application, 

as well as its communication with the backend services. In the following section, 

we present how the models are used to guide the automatic distribution and layout 

of the user interface at runtime. 

5   Adaptation: Distribution and Layouting 

The so far described models of the example SHEA application are independent of 

any static IR or modality combination, nor are they bound to a fixed context-of-

use. To simplify the development of UUIs, the MASP provides automated 

adaptation capabilities. Based on the information in the user interface models and 

the context data gathered from the environment, the MASP is capable of 

dynamically distributing and layouting the user interface to the current context-of-

use. However, automated algorithms are not always feasible. On the one side, the 

user interface developer may wish to provide some custom context-bound 

behavior in her application, e.g. define diverse UI layouts for different user types. 

On the other side, the user may wish to configure the application to best match her 

current mood or goal (which can hardly be detected at runtime and incorporated 

into adaptation algorithms). In order to provide the developer and user a 

possibility to influence the automatic user interface adaptation, the MASP 

supports three layers of adaptations: 

1. Automatic adaptations: Based on the user interface models and the information 

about the context-of-use, the MASP provides automatic adaptation capabilities. 

In the following sections, we describe how a default user interface distribution 

and layout are calculated for the currently available IRs. The decisions made 

by the automatic algorithms have the lowest priority and can be overwritten by 

statements of the developer and the user. 

2. Adaptations specified by the developer: In cases where custom, application-

specific adaptation behaviour is needed, the designer specifies distribution and 

layout guidelines. Rather than defining absolute statements about the user 

interface (e.g. the button B must be 100 pixels high), the designer provides 

relative specifications (e.g. the button B must be twice as big as the label L). 
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This way, the MASP still has some free room for automatic adaptation within 

the boundaries set by the developer. 

3. Adaptations specified by the user: The MASP provides the users with a so 

called Meta–User-Interface (Meta-UI). While hiding the technical details, the 

Meta-UI enables the user to influence the adaptation mechanisms of the MASP 

and configure them according to their preferences. The user can e.g. 

reconfigure the distribution of the user interfaces in her environment or disable 

some layout adaptations. It should be noted that the decisions made by the user 

have the highest priority for the MASP (e.g. the user may reconfigure a user 

interface distribution even if it was pre-defined by the developer). 

In the following subsections, we explain in more details how the MASP calculates 

and adapts the user interface distribution and layout according to the layers 

presented above. In the subsection thereafter, the application of the distribution 

and layout for the example SHEA application are described. 

5.1   Distribution 

Distribution is one of the properties of UUIs and denotes the capability of UUIs to 

be distributed to several IRs. This also includes IRs with different modalities and 

from different platforms as well as changing IRs over time. Thereby, the 

capabilities of smart environments with their numerous interaction possibilities 

can be exploited and overcome the still predominant interaction with only one 

device at a time. But this also raises the need for choosing the interaction 

possibilities at runtime (when the context-of-use is known). We refer to the 

process of choosing the IRs and integrate them into a suitable interaction as 

distribution. Within the MASP architecture, the distribution component is 

responsible for this task. In accordance with the adaptation layers presented in the 

previous section, the distribution component includes the three different types of 

adaptation. The automatic algorithm, utilizing the currently available IRs as well 

as the user interface model is presented next. 

5.1.1   Algorithm for Automatic Distribution 

An overview of the distribution algorithm is depicted in (Fig. 4). The automatic 

distribution algorithm is triggered whenever a new set of active interactors or a 

new IR is available. The discovery and management of interaction devices 

providing the IRs is accomplished by MASP's context model. Besides the 

information about the active interactors and the available IRs, the distribution 

algorithm is influenced by additional variables: previously calculated distribution 

configurations or configurations specified by the user for the same set of 

interactors in a similar context-of-use (history). The algorithm thus checks for 

suitable distributions from the past and selects every distribution specified for  

the same set of concrete interactors. Furthermore, the situation describing  

the circumstances under which the distribution was established is compared to the 

current situation. Therefore, the relevant context information is retrieved from the  
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Fig. 4 Overview of the distribution algorithm 

context model and compared to the saved context information from the selected 

distributions. All distributions where the context comprehends less or equal 

amount of information than the current context are marked as relevant for further 

consideration. These distributions were active when having at least the same 

“knowledge” as currently available and are thus relevant for further consideration.  

One, more than one or no distribution can be found during the comparison 

process. If only one distribution is found, the distribution algorithm finishes and 

the distribution is set as current distribution. This triggers further UI generation 

steps, resulting in the rendering of the interactors on the IRs. If multiple 

distributions are found, the algorithm evaluates the creator of the distribution to 

determine the most suitable one. Distributions from the user are considered better 

than distributions of the application (which are based on constraints specified by 

the application developer) as user configurations are done by users to adapt the 

existing distribution to their needs. Similarly, application configurations are 

considered better than distributions calculated by the system as the application 

developer specifies distributions with a specific intention, which the system 

should not overrule. If the comparison of the saved distributions does not reveal 

any results, the current context comprehends more (detailed) information than the 

saved contexts. Thus, the distribution could probably be done with better certainty. 

The system then calculates a distribution based on information from the current 

context, properties of the user and constraints defined by the application developer 

as explained next. 

At first, the IRs that the user may access must be determined. Therefore, the 

available IRs are queried from the context model together with information about 

the premises and localization and direction information. Based on the type of the 

IRs, the algorithm calculates if the resources are currently usable. E.g. displays are 

considered usable when they are within the visible to the user and haptical input. 

IRs are considered usable when they are within the range of the user. The resulting 

set of usable IRs determines the usable modalities and thus the types of concrete 

interactors that can be distributed. Next, the distribution algorithm matches the 

supported modalities to the available modalities of the available IRs by adhering 

to the following goals:  

• Input: support as many (equivalent) input resources as possible while 

considering the specified CARE relations between the input elements. This 

aims at leaving the control about the used IRs to the user by supporting the 

widest possible range of input interactors. 
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• Output: find the most suitable combination of output resources while 

considering the specified CARE relations between the output elements. The 

algorithm decides between the different equivalent interactor combinations by 

selecting the one supporting the most modalities. This is based on the 

assumption that the designer utilizes the advantages of each modality, so that 

more modalities result in a better presentation. The Distribution of output 

interactors aims at utilizing the most suitable combination of IRs to convey the 

UI. The selection of IRs depends on their capabilities and context information 

like the resource location. 

To achieve the above goals, the distribution algorithm first analyzes the CARE 

relations of the active concrete interactors. The specified CUI model contains trees of 

complex interactors with simple elements as leaf nodes. As only the leaf nodes have 

to be distributed, the relations defined by their parent complex interactors influence 

their distribution. Single interactors are automatically of type "assigned" and can thus 

be directly distributed if a corresponding type of IR is available. Interactors combined 

via complex elements of type complementary or redundant must be distributed 

together to reflect their meaning. This means that to make an interaction, defined as 

redundant, available to the user, all modalities addressed by the children of the 

complex interactor have to be available. The equivalence relation is used to specify 

different (combinations of) interactors that transport the same information in case of 

output or allow the user to provide the same information in case of input. This makes 

the system more reliable and reduces ambiguity and inconsistency. With respect to 

the distribution goals specified above, a different handling of the equivalency relation 

for input and output has been realized. For input, the distribution of as many 

equivalent interactors as possible results in more possibilities for the user to provide 

the needed input. For output, a selection of the most feasible interactors avoids 

confusion and unwanted redundancy. 

 

Fig. 5 The metamodel of distribution models for storing the distribution configurations of 

the user interface elements 
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5.1.2   Distribution Model for Developer-Defined Distributions 

The metamodel, depicted in Fig. 5, provides a basis for the definition of 

distribution models. The models are used to store distribution constraints specified 

by the developer at design time (left part) as well as the runtime results, user 

settings and history of the distribution calculations (right part).  

The application developer can specify certain distributions for specific 

situations in a distribution model and the user can change and store distributions 

via the Meta-UI. Both specifications are considered by the algorithm for an 

automatic distribution. 

The design time configuration of distribution constraints allows the developer 

to specify application specific distribution hints. Constraints therefore contain 

configurations that map concrete interactors to IR types. This allows e.g. the 

assignment of a PDA display as preferred IR for one set of interactors and the 

definition of a fixed touch display for others. Situations acting as pre-condition for 

the constraint can be defined based on information modeled in the context model. 

Constraints are dynamically (de-)activated at runtime based on the fulfillment of 

the defined situation and only active constraints are considered throughout the 

distribution calculation. 

At runtime, the distribution model mainly acts as storage for calculated- and 

user distributions. The current distribution is expressed as a set of configurations 

that map concrete interactors to specific resources, based on the current context 

situation. This situation also contains the currently active constraints as this 

configuration can change and lead to a new distribution. Each applied distribution 

is also defined by a timestamp of its applications and the creator of the distribution 

(user, application, and system can also directly assign interactors to resources). A 

history stores all applied distributions for later consideration within the algorithm. 

Storing the current distribution within the model also makes this information 

available to the interaction model. A mapping can transport the information of the 

currently used IRs to variables in the interaction model. The storage of a new 

distribution configuration also triggers the layouting process of the MASP. 

Furthermore, the distribution model provides the basis for the user to change the 

distribution according to her needs as explained next. 

5.1.3   User-Defined Distribution via the Meta User Interface 

In addition to the distribution configurations specified by the developer and those 

calculated automatically by the MASP, the user also has the possibility to 

configure the distribution according to her needs. The manifold possibilities of 

combining different devices in numerous situations also make this a very useful 

and required addition for such flexible interaction. Users need a configuration tool 

that satisfies their specific needs, while hiding the underlying technical details. In 

case of the distribution, this results in providing high-level functions and not only 

the concrete interactor and IR tuples available in the distribution model. We have 

developed a Meta-User-Interface (Meta-UI) that provides configuration options to 

adapt the distribution according to the possible changes defined e.g. by Coutaz 

[14]. At any point of time, the user can access the Meta-UI and redistribute UI 
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elements to different IRs (at interactor level). The user has the possibility to move 

or clone interactors, migrate parts or the complete user interface to an IR, as well 

remould the existing user interface on one IR by adding or removing UI elements. 

In the current version of the Meta-UI, we distinguish four features the user can 

utilize to configure her interactive space. (1) The migration feature provides 

possibilities to migrate a service UI from one IR to another to e.g. transfer the UI 

to another screen better viewable from the users’ current position. Through the 

distribution feature (2), the user can distribute parts of the user interface to other 

IRs. Thereby, the user can also specify if the selected parts should be cloned or 

moved to the target IR. The third configuration feature is called multimodality (3) 

and provides possibilities to configure the utilized modalities within the 

interaction. This allows users to e.g. switch off audio output of the MASP if it is 

currently disturbing the user. The adaptation feature (4) allows the user to 

configure further functions of the MASP. E.g. the MASP supports a so called 

“FollowMe” modus which can be configured through the adaptation feature. The 

activation of the “FollowMe” modus leads to an automatic configuration of the 

interactive space by the MASP over time. The MASP monitors the available IRs 

of the user and reconfigures the interactive space according to the new resource 

combination. 

After creating a new distribution configuration via one of the three different 

possibilities, the layouting is responsible for generating a coherent presentation. 

Thereby, the layouting has to handle the dynamic distribution of user interface 

parts to different IRs, which makes it impossible to predefine layouts for every 

situation at design time.  

5.2   Layouting 

This section describes our layouting approach to generate adaptive layout for the 

numerous possible combinations of heterogeneous interaction resources in smart 

environments. Like the distribution, the layouting supports the automatic 

calculation of the presentation based on the user interface models of the 

application and provides configuration possibilities for application developers and 

users. The basis of our approach is a layout model that constrains and defines the 

presentation of the user interface. 

 

Fig. 6 Layout model overview 
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The model contains a structure of all user interface elements and related 

statements defining the design characteristics of the elements like containment, 

orientation and size. From the model, a constraint system is extracted from which 

the specific positions and sizes of the concrete interactors are calculated by a 

constraint solver. We shift the decision about which of the statements are applied 

from design time to runtime to enable flexible context-of-use adaptations of the 

user interface layout. This allows us to describe new context-of-use adaptations of 

the layout without the need to change the application itself just by describing the 

layout characteristics of a new platform or a new user profile. At design time, an 

initial layout model is automatically generated from the already specified 

information in the user interface models. The developer can then adapt this model 

by defining application specific statements with the support of a tool. At runtime, 

the layout influenced by the context-of-use and the distribution of the user 

interface is generated automatically from the model. The user can also adjust the 

layout according to her needs. 

5.2.1   Layout Model 

The layout model shown in Fig. 6 consists of the structure of the user interface and 

statements affecting the layout characteristics (containment, orientation and size). 

In the following paragraphs, we describe the two different parts of the layout 

model (structure and statements) and the automatic creation of the initial layout 

model in detail. 

The automatic generation of the initial layout model uses a logical structure of 

the user interface and semantic information annotated to the nodes to respect basic 

design rules defined in [40] to create a good initial layout. The user interface 

structure consists of containers and elements. Container consists of a set of nested 

containers and nested elements. Elements are the visible parts of the user interface 

structure and present information to the user. The initial structure of the layout 

model is retrieved from the user interface models. The task model is used to 

generate an initial hierarchy. Afterwards, the corresponding refinements of the 

abstract user interface model are attached as leafs and then the user interface 

elements from the concrete user interface models. 

For the example of the SHEA, the root task DeviceControlAndVisualisation is 

transformed into the root container of the user interface structure. Iteratively, the 

child nodes of the next level are attached if they are abstract or interaction tasks. 

In the end, abstract tasks only having one interaction task are replaced with this 

interaction task. The created structure has only interaction tasks as leafs and is 

extended with information derived from the representations of the abstract- and 

concrete user interface models.  

The elements of the tree structure can be configured by so called statements, 

which are the building blocks of the constraint system. They are divided into 

Node- and Type statements. Node statements affecting specific nodes of the user 

interface structure and influence their size or orientation. Type statements 

affecting an amount of user interface nodes with a specific characteristic defined 

within another user interface model like the representation at the concrete user 

interface model (e.g. all elements with type Button). The dimensions which can be 



190 D. Roscher et al.

 

influenced are containment, orientation and size. The containment characteristic 

describes the relation of elements as a nested hierarchy by abstract containers that 

can contain other abstract containers or UI elements and thus influence the 

structure of the layout. The orientation distinguishes between elements that are 

oriented horizontally or vertically to each other. Finally, the size specifies the 

width and height of containers and UI elements relative to other UI elements or 

abstract containers. 

For the initial layout model, default values for the statements are set as 

explained with the SHEA example. The algorithm moves from the container 

DeviceStateControlandVisualization of the structure to the leaf elements. The 

children nodes of the first layer (InputProgram, ProvideDeviceInformation, 

RequestDeviceStateToogle, EnergieConsumptionAnalysis) are vertical orientated 

because information normally needs more horizontal than vertical space. This 

follows from the behavior of textual information shown in [23] by the relation 

between the font size and the width and height of the text containing shape. The 

node ProvideDeviceInformation is moved to the top, because of the representation 

at the abstract user interface level. Information often describes actions user has to 

perform and depending on the reading direction (in Europe top-left to bottom-

right) this element must be read first. The space allocation depends on the amount 

of inherent elements of each child. Every child gets the percentage of space of the 

relative between its number of elements and the total number of elements of its 

parent. For example, the DeviceStateControlandVisualization has 7 elements in 

total and its child node EnergyConsumptionAnalysis has 4 elements resulting in 

4/7 amount of the total space for the child node. To optimize the ratio between the 

width and height for each element, the algorithm uses an alternating orientation at 

each level. As a result, the children of the node EnergyConsumptionanalysis 

should be orientated horizontal. Because the representation at the concrete user 

interface model of the nodes ProvideChart and ConfigureChart is well-defined, 

this information is used to change the orientation for these two nodes. The 

OutputOnly characteristic of the node ProvideChart and the Choice representation 

of the node ConfigureChart lead to the vertical orientation. Additionally, the 

original resolution of the image showing the chart is used to generate a constraint, 

assure that the constraint system respects the aspect ratio. In Fig. 7, the result of 

the automatic layout generation process is shown. The picture combines the tree 

visualisation of the user interface structure and spatial relations between the 

container and elements.  

Affected by the discussion about automatic layout generation for graphical user 

interfaces [33] and approaches like [29] to support the design process, we have 

developed a tool [19] for the definition of statements and the simulation of 

situations and effects to the user interface. The designer can manipulate the pre-

generated layout to match his aesthetical requirements by adding statements that 

relate information of the design models with a layout characteristic of a UI 

element. The layout editor supports this process though the interpretations of the 

user interface model and domain model information. In our example, the layout 

algorithm recommends to group the device control elements InputProgram and  
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Fig. 7 Automatic layout generation result for the SHEA application 

DeviceStateToggle to define a more abstract “control widget” container because 

both manipulate the domain object. The object representing the selected device is 

changed by both user interface elements, so the grouping function adds a 

description for the created ControlDevice node (element with the dashed border in 

Fig. 8) to give a hint for the end user about the motivations of the designer. This 

element additionally denotes an unsplittable node which means that the end user 

can only distribute the node ControlDevice to a different device. Because the 

graph of the energy consumption depends on the actual state of the devices, the 

designer arranges the node ControlDevice to the left side of the ProvideChars 

element. To realize the emerging free space, the layout editor adds a blank 

element to the container DeviceStateControlandVisualization Node. The result of 

the user interface design process is shown on the right side of Fig. 8. 

 

Fig. 8 Application specific design process 

To complete the design of the user interface, the designer defines style 

definitions statements for members of an element type (e.g. a button or a menu 

bar) or a specific user interface element. Because the style definition is bound to a 

statement, the designer can define different styles for specific characteristics of a 

platform or disabilities of the user.  

The layout algorithm is customizable for different situations. The designer 

creates statements affecting the orientation and size as well as the font size and 
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color of the elements. For each platform the font size is created depending on the 

display’s size and aspect ratio. Additionally, other dependencies like the 

interaction possibilities influence the size and the visual appearance of the user 

interface elements. To adapt the interface to specific situations, the designer can 

define context sensitive statements, these statements are only active for specific 

situations described by context information. The concept of situation adaptation is 

shown in [37]. The situation contains a function describing the relations between 

the different contexts variables and these variables are bound to dynamic 

properties stored into the context model. According to type statements, a 

recalculation is triggered if the value is changed.     

5.2.2   Context Sensitive Layout Adaptations 

The broad range of possible user interface distributions and the diversity of 

available interaction devices make a complete specification of each potential 

context-of-use scenario difficult during the application design. Necessary 

adaptations require flexible and robust (re-)layouting mechanisms of the user 

interface and need to consider the underlying tasks and concepts of the application 

to generate a consistent layout presentation for all states and distributions of the 

user interface. Our previous work is described in [19] and here we want to show 

some examples to adapt the control elements of the SHEA application to 

characteristics of the user. First, we define a situation depending statement, which 

supports left handed users by changing the position of control elements. While the 

user switches the device, the energy consumption isn’t longer disguised. The 

statement uses the information stored into the abstract user interface model to 

identify affected user interface elements.  

Another adaptation is described in [37] and adapts the interface to specific 

situations. The designer can define context sensitive statements to prioritize 

specific nodes of the user interface structure. In a smart environment, different 

places identify various situations. Applications can consider these spots to adapt 

their user interface layout to focus on those parts of the UI that are identified as 

most important for a certain spot. The algorithm allocates the space according to 

the weight (contained elements), so the increase depends on the amount of other 

elements. For example, if the algorithm prioritizes one of three nodes at the same 

level, so the algorithm adds a statement ensures that the selected node gets two-

thirds of the available space for the parent node. This kind of statement can 

improve the usage for a device overview, in this case, the algorithm prioritize the 

nearest device to control. 

5.2.3   User-Defined Layouts via the Meta User Interface  

Like for the distribution, the user is given the possibility to influence the layout 

adaptations through the Meta-UI. On the one hand, the Meta-UI provides the user 

with control over the automatic layout adaptations. At any time, the user can 

disable or enable the adaptations, for example the spot-based layouting described  
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in the previous section. On the other hand, the user can enhance the layout 

configuration for individual interactors. In its current state, the Meta-UI enables 

the resizing and repositioning of the interactors. This way the user can reorganize 

the layout of her applications according to her preferences or desires. A possible 

adaptation could be the enlargement of button elements to simplify the control via 

touch displays [42]. 

The layout configuration performed by the user is stored in the layout model  

in form of new statements with the highest priority. It is thus assured that the  

user configuration is always applied to the user interface, regardless of the 

configurations provided by the application developer or the automatic layout 

algorithm. 

5.3   Distribution and Layouting in SHEA 

In the introduction, we sketched the scenario of the SHEA being used through 

different devices with different interaction capabilities. This section describes, 

how the scenario is implemented using the MASP by explaining each step of the 

scenario from the MASP point of view. 

Step 1: The user starts the interaction with the SHEA by saying the word 

“SHEA” via a microphone in the office. This triggers the MASP’s distribution 

algorithm to determine the interaction resources that should be used for the current 

status of SHEA’s interaction model. As no distribution for the current context-of-

use exists in the history of the distribution model, the MASP calculates a new UI 

distribution across the interaction devices in the office. First, the available 

interaction resources are queried from the context model. In the next step, input 

and output interaction resources are selected, with the goal of supporting as many 

modalities as possible. In this context, the PC-monitor and the PC-loudspeaker are 

selected as output devices, the microphone (used by the user for the “SHEA” 

command), the mouse and the keyboard of the PC are used as input interaction 

resources. 

After the distribution calculation, the layouting is triggered to calculate the 

presentation. Therefore, the size and aspect ratio of the PC-monitor are requested 

from the context model and the constraint solver calculates the sizes and positions 

of the concrete user interface elements based on the defined layout model. 

Afterwards, the concrete user interface elements are transformed to the final user 

interface representation and sent to the interaction resources via the channels.  

The user can now interact with the SHEA and selects the light from the device 

overview with the mouse. The gathered input results in updates of the interaction 

model which in turn results in updates of the input possibilities and presentation. 

Thereby, the distribution is not changed as the context-of-use is not changing, but 

the layouting has to calculate the presentation whenever the set of concrete 

interactors changes. 

Step 2: The user decides to continue the interaction in the living room and  

thus enables the “FollowMe”-mode via the Meta-UI. Thereon, the distribution 

component monitors the context model for changes in the position of the user and 
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check if a redistribution is needed. When the user walks into the living room, the 

distribution determines that other interaction resources are available for the user 

and triggers the distribution algorithm. 

Step 3: The user calls the MASP Meta-UI again and accesses the distribution 

menu. Through it, the user selects the smartphone as target interaction resource 

and clicks on the UI elements, which are immediately redistributed. The 

configuration is stored in the distribution model and will be reused every time the 

user calls the SHEA in the living room in the future. 

Step 4: The automatic resizing of UI elements representing the appliances near 

the user is implemented in form of context-dependent layout statements specified 

by SHEA’s developer. The statements query information from the context model 

and influence the position and size of the UI elements. As soon as the user comes 

close to a specific light, the situation specific layout statement is activated and 

prioritizes the user interface element representing the device. 

6   Conclusion and Outlook 

In this chapter, we have presented an approach for the development of multimodal 

and distributable user interfaces, which dynamically adapt to unforeseen contexts-

of-use and combinations of interaction resources. Our approach combines a user 

interface runtime architecture and runtime user interface models. The architecture 

(called Multi-Access Service Platform) dynamically handles context information 

from the environment and adapts the user interfaces based on automatic adaptation 

algorithms. The algorithms are influenced by the adaptation guidelines defined by 

designer and the preferences specified by the user. In particular, we elaborated  

the distribution and layout algorithms. Using the example of a Smart Home 

Energy Assistant application we have shown how MASP applications are defined 

in form of models. We have also explained how the MASP utilizes the design 

information contained in the models for adapting the user interfaces at runtime to 

the context-of-use. 

The presented approach focuses on the provision of UUIs supporting 

multimodality, distribution and shapeability. In the future, we plan to extend the 

MASP architecture with support for the remaining two properties of UUIs: 

shareability (cooperative interaction of multiple users) and mergability 

(interoperability of different applications). For this purpose, we intend to explore 

further adaptation algorithms. Another issue, which we wish to explore in the 

future, is the evaluation of the runtime adaptations. Therefore, we currently pursue 

the idea of linking the adaptation algorithms with an automatic usability 

evaluation. The basic idea here is to simulate different adaptation alternatives, 

evaluate the usability of the resulting user interfaces and select the adaptation 

producing the best usable user interface. On the side of the MASP modeling 

language, we are considering the definition of a multimodal widget set that would 

reduce the efforts necessary to build user interfaces based on the different levels of 

abstraction in the interaction models. 
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Model-Driven Development of Interactive

Multimedia Applications with MML

Andreas Pleuss and Heinrich Hussmann

Abstract. There is an increasing demand for high-quality interactive applications

which combine complex application logic with a sophisticated user interface,

making use of individual media objects like graphics, animations, 3D graphics, au-

dio or video. Their development is still challenging as it requires the integration of

software design, user interface design, and media design.

This chapter presents a model-driven development approach which integrates

these aspects. Its basis is the Multimedia Modeling Language (MML), which in-

tegrates existing modeling concepts for interactive applications and adds support

for multimedia. As we show, advanced multimedia integration requires new model-

ing concepts not supported by existing languages yet.

MML models can be transformed into code skeletons for multiple target plat-

forms. Moreover, we support the integration of existing professional multimedia

authoring tools into the development process by generating code skeletons which

can be directly processed in authoring tools. In this way, the advantages of both –

systematic model-driven development and support for creative visual design – are

combined.

1 Introduction

With the evolution of end-user oriented applications in the last years – like the ad-

vancements in web applications, mobile applications, entertainment, or infotain-

ment area –, it has become widely accepted that a sophisticated user interface can

significantly contribute to an application’s success. Such user interfaces are often

highly interactive, provide a sophisticated user interface, and – depending on the
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purpose – make use of multimedia capabilities. Typical reasons for multimedia

usage are 1) to enhance efficiency and productiveness of the user interface, 2) to

achieve more effective information and knowledge transfer, and 3) to provide en-

hanced entertainment value [10].

This work deals with the development of interactive multimedia applications.

While the application areas mentioned above are typical for multimedia usage, mul-

timedia user interfaces can be found in almost any application area today. Tradi-

tionally, the term multimedia has been understood as a composition of continuous

(like audio, video, and animations) and discrete media elements (like 2D and 3D

graphics, text, and images) into a logically coherent unit [2]. However, from the

viewpoint of application development, the main difference today is much more the

integration of non-standard media objects into the application. This requires specific

experts and tools, like for graphics design, video production, or 3D design. Thus,

here we understand the term ”‘multimedia application”’ in a broad sense as any

kind of interactive application integrating individual media objects (like graphics,

animations, audio or video) to an extent relevant for its development.

The development of multimedia applications still lacks a systematic development

approach. Traditional approaches from multimedia domain provide extensive sup-

port for media creation but neglect the application logic and Software Engineering

principles [9, 15, 12]. On the other hand, existing approaches from software engi-

neering do not support user interface and media aspects yet (see Section 2).

In our opinion, the most important differences between the development of mul-

timedia applications and conventional application development (as considered in

Software Engineering) are:

1. Interdisciplinary development: Multimedia application development involves

three different kinds of design: 1) Software Design, as in conventional software

development, for developing the application logic 2) User Interface Design, as

usability is strongly important for multimedia applications, and 3) Media De-

sign as creation of media objects requires usually specific knowledge and tools.

Thus, different developers groups, tools, and artifacts have to be integrated into

the development process.

2. Importance of non-functional requirements: Requirements like entertainment

value, usability, and aesthetics, are strongly important for multimedia applica-

tions. Thus, visual authoring tools focusing on the creative, artistic visual design,

like Adobe Flash or Adobe Director1, have been established as development tools

[3, 7].

In our work, we aim to address these challenges by a model-driven development

approach which integrates the different developer groups and the artifacts they pro-

duce. For this, we provide a modeling language that integrates software design, user

interface design, and media design into a single, consistent language. The models

hence provide a kind of contract between the different developer groups, so that all

developed artifacts will fit together.

1 http://www.adobe.com/
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From the models, we then automatically generate code skeletons. As our model-

ing language is platform-independent, it is possible to generate code for any target

platform. In particular, to integrate the existing established authoring tools, we sup-

port them as target platforms and generate code skeletons which can be directly

processed within these tools. In this way, the development process becomes much

more systematic while still leveraging these established tools for the final user in-

terface and media design.

The remainder of this chapter presents our modeling language for multimedia

applications. The language integrates concepts from areas of Software Engineering

and model-based user interface development and extends them by new concepts

required for advanced multimedia integration.

For the purpose of this chapter, we use a 2D racing game application as a running

example. Gaming applications are well-suited examples because they are commonly

understood and make use of both, 1) a very complex and individual user interface

and 2) complex application logic. Nevertheless, it is important to note that our ap-

proach is not restricted to any specific application domain and has already been

applied to many other kinds of multimedia applications (see Section 9).

Our language supports five kinds of models: The Task Model describes the user

tasks to be supported by the application. It uses the existing ConcurTaskTree no-

tation [16] and is thus not further discussed in this chapter. The other models are

the Structure Model, the Scene Model, the Presentation Model, and the Interaction

Model, which are explained in the following. Afterwards, we give an overview on

the language, the interrelations between the different models, and the modeling pro-

cess. Finally, we describe the existing tool support and the basic concepts for the

code generation.

2 Related Work

This section briefly presents related approaches. As interactive multimedia applica-

tions integrate different aspects – application logic, user interface, and media –, it is

related to various existing modeling approaches.

To model the application logic, the Unified Modeling Language (UML) [14], can

be used. However, UML on its own is not sufficient for multimedia applications as

it does not cover neither the user interface aspect nor media types.

The user interface aspect is addressed by various approaches from the area of

Model-based User Interface Development (MBUID) [24] (including model-driven

approaches as described in this book). Their main concepts can be summarized as

follows [4]: The Task Model specifies the user tasks supported by the application,

e.g., specified as ConcurTaskTrees [16]. It is usually complemented with a Domain

Model, which can be a conventional UML class diagram. Based on the Task Model

and the Domain Model, the Abstract User Interface Model (AUI) specifies the user

interface in terms of Abstract Interaction Objects (AIOs) which are platform- and

modality-independent abstractions of user interface elements. The Concrete User

Interface Model (CUI) refines the AUI for a concrete target platform.
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Currently, a large amount of approaches from this area exist which nowadays

have evolved towards the model-based and model-driven approaches described in

this book, considering advanced user interface issues like specific target devices or

context-sensitivity. However, as existing approaches address user interfaces built

from standard widgets, they on their own are not sufficient for interactive mul-

timedia. However, they provide the basic concepts for the user interface aspect

in MML.

The area of Web Engineering [11] targets model-driven development of web ap-

plications. Typical models, besides a Domain Model, are the Hyperlink or Naviga-

tion Model which shows the links and navigation structure of the application, and

the Presentation Model which specifies the look and feel of the user interface and

sometimes also its behavior. While earlier approaches mainly address applications

with HTML-based user interfaces, latest work focuses on Rich Internet Applications

[5, 25, 23]. However, they still address user interfaces made of standard widgets

while individual multimedia user interface are not supported yet.

Finally, a few modeling approaches exist which already address multimedia.

However, most of them [8, 26, 2] focus on multimedia documents but do not cover

interactive applications. An exception is OMMMA [6] which supports interactive

multimedia applications as considered in this chapter. However, OMMMA does not

integrate the results from MBUID area and also lacks of the advanced concepts we

discuss in Section 3. Nevertheless, it provides substantial basic concepts which have

been included into MML.

First concepts of MML have been presented in [18, 17]. However, as discussed

in [20], there is a need for advanced modeling concepts for Media Components, like

different abstraction layers, inner structure, and variations (see Section 3). More-

over, the language has evolved based on the experience from its usage in several

student projects (see Section 9). In this chapter, we present the resulting integrated

version of MML. A full language reference can be found in [19].

3 MML Structure Model

The MML Structure Model describes the structure of the application. Fig. 1 shows

an example of a racing game application and is used throughout this section to

illustrate the introduced concepts.

The Structure Model contains the Domain Classes for the application logic. They

are described like in a conventional UML class diagram. For instance, a racing game

might contain classes Race, Car, Player, and Track. A Track contains Obstacles and

Checkpoints (like the start and the goal). Domain Classes have properties and rela-

tionships like in conventional UML class diagrams (Fig. 1).

In addition, the media elements are basic assets of the application as well and

their production can require much effort, specific experts, and specific tools. In ad-

dition, the usage of a specific kind of media content can be an essential requirement

for the application. For instance, the customer might want the racing game appli-

cation to use 3D graphics or an e-learning application to contain videos. For these
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<<Animation2D>>

TrackAnimation

{variationType = Quality}

checkpoint : CheckpointGraphic [1..*]

obstacle : ObstacleAnimation [*]

<<Animation2D>>

CarAnimation

{variationType = Quality}

frontwheel_right : Wheel

frontwheel_left : Wheel

Car

-speed : int

-rotation : Integer

-xPos : Integer

-yPos : Integer

-name : String

-completedLaps : Integer

-hasFinished : Boolean

-lastCheckpointNo : Integer

-damage : Integer

+start()

+move()

+leftRight( value : Integer )

+accelerate( value : Integer )

+addDamage( d : Integer )

+isBroken() : boolean

+addCheckpoint( no : Integer )

+isInFinish() : boolean

AudioFilter

+setPitch( percent : Integer )

ObstacleAnimation

{variationType = Quality}

CheckpointGraphic

{variationType = Quality}

Obstacle

-damageValue

-distractionFactor

+getDamage() : Integer

Checkpoint

-number : Integer

+getNumber() : Integer

Race

-elapsedTime : Integer

-totalLaps : Integer

+getScore() : Integer

<<VariationType>>

Quality

high

low

EngineSound

Track

-name : String

Indianapolis

RacingGamePlayer

-name : String

Porsche
Monaco

Ferrari
Monza

-track

0..*

-game

1-player

0..* -game

1

-track

1

0..*

-car

-game

1

speed
-checkpoint

0..*

-track

1

-obstacle0..*

-track
1

0..*

-car

0..*-race

-game 1

1-car

-player
1

Fig. 1 MML Structure Diagram Example

reasons, the media elements are modeled in MML as first-class entities in the Struc-

ture Model.

In interactive applications, media content is often associated with some function-

ality to render and control the media content. For instance, a video is usually shown

in a video player which allows to play, stop, rewind, etc., the video. Thus, in MML,

the media content is encapsulated together with basic playing and rendering

functionality as a Media Component. Each Media Component is of a certain me-

dia type which can be Audio, Video, 2D Animation2, 3D Animation, Graphics (i.e.,

vector graphics), Image (i.e., raster graphics), or Text.

A Media Component is denoted in MML similar to a Component in UML as a

rectangle with several optional compartments for additional properties. Like UML,

MML allows to choose between different alternative notations. The media type is

denoted by an icon and/or a keyword. In Fig. 1, the Media Components CarAni-

mation and TrackAnimation are displayed with a compartment showing their inner

2 “Animation” here refers to any kind of change over the time, like changing its position

on the screen or changing its shape.
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structure (explained below). The Media Components EngineSound, ObstacleAni-

mation, and CheckpointAnimation are denoted in collapsed notation with an icon

only.

Media Component are associated with Domain Classes which they represent.

This is specified in MML by a Media Representation relationship between a class

and a Media Component. In the example, the Domain Class Car is represented by

CarAnimation and EngineSound. Obstacle and Track are represented by animations

as well (ObstacleAnimation and TrackAnimation) while Checkpoint is represented

by static graphic (CheckpointGraphic). To specify that the Media Component repre-

sents a specific property or operation of the class, Media Representation relationship

is marked with the name of the property or operation. For example, EngineSound

represents the property speed of Car.

MML defines some standard operations for each media type, which have not

to be modeled explicitly and can be used in the Interaction Model (see Section 6)

to specify a Media Component’s behavior. For instance, a 2D Animation provides

operations to access its coordinates on the screen and its size. It is also possible to

define custom operations for Media Components in terms of Interfaces (like UML

Interfaces) which can be associated with Media Components. An example is the

interface AudioFilter which is associated with EngineSound in Fig. 1.

3.1 Abstraction Layers for Media Components

In [20], we have discussed advanced concepts for modeling Media Components in

interactive applications that have not been addressed so far. An important finding

is that different abstraction layers have to be considered: Media Components, like

CarAnimation, are abstract constructs which might be realized by multiple concrete

artifacts, like Porsche and Ferrari. It is beneficial to consider them as abstract ele-

ments, instead of dealing with the concrete artifacts only, because in this way, all

kind of cars can be handled in the same way. Moreover, the concrete artifacts are

often unknown in early phases, because it is not decided yet how many different cars

the final application will provide. In fact, in some cases the concrete artifacts are not

known at all at the design time, because they are dynamically loaded from a server

or because the user creates them himself dynamically at runtime (e.g., using a “car

editor” delivered with the application). Even when the concrete artifacts are known,

it might be desired not to model all of them, because their number is too large and

they will be loaded from a database later.

On the other hand, if the concrete artifacts are already known, there should be a

way to specify them in the model. Thus, we introduce Media Artifacts which can

be used to optionally specify concrete artifacts. In the example, CarAnimation is

manifested by two Media Artifacts Porsche and Ferrari and TrackAnimation by three

Media Artifacts Monza, Indianapolis, and Monaco.

One should note that there is a third abstraction layer for Media Components

which are the concrete instances of Media Components on the user interface (see

Section 5). Of course, a Media Component can be instantiated multiple times, like in
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a racing game where usually multiple cars take part. Again, it is possible to specify

the concrete Media Artifact used for a Media Instance but not mandatory; sometimes

they might be decided at design time (e.g., in the first level of the racing game the

user has always to use the Porsche) while sometimes it might be decided at runtime

(e.g., the user can select the car herself).

3.2 Inner Structure of Media Components

A second important finding from [20] is the need to define the inner structure of

Media Components. This is in particular important for interactive multimedia appli-

cations: For instance, let us consider, that the CarAnimation’s front wheels should

turn when the car drives through a turn. Then, the media designer needs to know

that the car’s front wheels have to be designed as own (graphical) objects which can

be accessed and modified by the application logic. The software designer in turn

needs to know how to access them (e.g., the names assigned by the media designer).

Thus, it is necessary to specify such inner structure in the model as a kind of contract

between the developers.

It is important to note that it is not intended in MML to model the complete

(visual) structure of the car. The inner structure is modeled only when it should be

accessed by application logic. This happens either when some media parts should

be accessed or modified, like in the example above, or when an event listener should

be attached to a media part (like, for instance, that the user can trigger some action

by clicking on the car’s wheels).

Again, the different abstraction layers have to be considered in a consistent way.

In MML, a Media Part represents an (abstract) part of a Media Component, like

Wheel. Each Media Part has a type depending on the Media Component it belongs

to. For instance, a video can consist of Audio Channels and Image Regions while a

3D animation consists of 3D Objects, Transformations, Light, etc. 2D animations,

like in the racing game example, consist just of graphical objects which we call

SubAnimations.

A Media Part can be instantiated multiple times, acting in multiple roles, similar

like properties in a conventional UML class. For instance, a car has multiple wheels

like frontwheel left and frontwheel right3. These instances are called Inner Properties

(to distinguish them from other properties of the Media Component).

An Inner Property can also be an instance of another Media Component, like

in TrackAnimation, which contains multiple instances of ObstacleAnimation and

CheckpointGraphic. As shown in the example, a multiplicity can be specified for

each Inner Property. The software developer can then access the single instances in

a way similar to arrays, e.g., ’wheel[1]’.

Analogously to Media Components, it is optionally possible to specify a con-

crete artifact for a Media Part, called Part Artifact, which can be useful if the devel-

oper wants to distinguish explicitly between PorscheWheel and FerrariWheel or to

3 Note that the back wheels have not to be modeled here as they need not to be accessed by

application logic.
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Intro Game

Help

Score

Menu

show Menu()

show Menu()

startGame( p : Player, t : Track )

show GameHelp()

resumeGame()

{resume}
show MenuHelp()show Menu()

show Intro()

show Score( race : Race )

show Menu()

Fig. 2 MML Scene Diagram Example

express that all car types reuse the same artifact for their wheels (specified by mark-

ing an Inner Property with the keyword unique) (see [20] for in-depth discussion of

all possible cases).

3.3 Variations of Media Components

A third concept, not discussed in previous work so far, is the need for an efficient

way to specify different variations of Media Components. For instance, Media Com-

ponents frequently have to be provided, e.g., in different qualities or different lan-

guages. Therefore, in MML, the modeler can introduce in MML a Variation Type

(like Quality in Fig. 1) and specify different Variation Literals for it, like high and

low. This means that each Media Component, where the Variation Type is assigned

to, must be created in each possible variation. For instance, all visual Media Com-

ponents in the example have assigned the Variation Type Quality which means that

the media designers have to provide them in the two different variations high and

low. Basically, the variations could also be combined with mechanisms for context-

sensitive user interfaces from MBUID (see Section 2), e.g., to select the appropriate

variation automatically at runtime based on the application context.

4 MML Scene Model

The Scene Model describes the application’s coarse-grained behavior or navigation

in terms of Scenes. A Scene represents an application state associated with a cor-

responding user interface. For instance, in the racing game, the scenes are Intro,

Menu, Help, Game, and Score. The Scene model shows the Scenes and the transi-

tions between them using an adapted notation of UML State Charts (Fig. 2).

An important multimedia-specific aspect of Scenes is their dynamic character.

One the one hand, this is caused by dynamic behavior of time-dependent media

instances (audio, video, animations) in the Scenes. On the other hand, user interfaces

are often generated dynamically at runtime, like the number of cars taking part in a
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racing game or the track chosen by the user. Thus, Scenes can be generic and receive

parameter values. Therefore, each Scene has Entry Operations and Exit Operations.

Entry Operations are used to initialize the Scene and pass parameters to it. Exit

Operations are used to clean up a Scene and invoke another Scene.

As shown in Fig. 2 for the racing game example, the Scenes are denoted as states

with the possible transitions between them. The transitions are annotated with the

names of Entry Operations executed in the target Scene when performing the tran-

sition. Exit Operations need not to be modeled explicitly as their names are by con-

vention derived from the transitions in the diagram.4.

By default, executing an Entry Operation initializes a Scene. However, some-

times a Scenes has already been active before and its previous state should be re-

sumed. This is specified by attaching the keyword resume to the Entry Operation.

For instance, when the user calls the Help during the Game he/she probably wants

to resume the game after the consulting the help. Thus, the Entry Operation re-

sumeGame() is marked with this keyword (Fig. 2).

Beside Entry and Exit Operations, it is also possible to define additional prop-

erties and operations for a Scene. Moreover, Media Components can not only rep-

resent Domain Classes, as explained for the Structure Model, but also Scenes. For

instance, a Media Component HelpText would probably not be associated with one

of the Domain Classes but with the Scene Help. Analogously to the Structure Model,

this is specified by a Media Representation relationship between the Media Compo-

nent and the Scene.

5 MML Presentation Model

The MML Presentation Model specifies the user interface for each Scene. It is ini-

tially modeled using Abstract Interaction Objects as common in the MBUID area

(see Section 2). However, as we deal with multimedia applications, in a second step,

the instances of the Media Components from the Structure Model come into play.

5.1 Abstract User Interface

In MML, each Scene is associated with a Presentation Unit. A Presentation Unit is

an abstraction from a screen in a graphical user interface. It contains Abstract Inter-

action Objects (AIO) which are platform- and modality-independent abstractions of

user interface elements. For instance, an InputComponent enables the user to input

some data, an Output Component presents some data to the user, an Edit Component

combines input and Output Component, and an Action Component allows the user

to trigger an action. It is also possible to apply further concepts from MBUID here,

like modeling the layout of the AIOs, but this is not further discussed here.

4 The names are composed of a prefix ’exitTo’, the name of the target scene, and the name

of the target Entry Operation, separated by , e.g. exitTo Menu showMenu().
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<<Scene>>

Game

<<PresentationUnit>>

help

{exitTo_Help_show GameHelp()}

quit

{exitTo_Menu_show Menu()}

obstcl : Obstacle

checkpoint [1..*]

cp : Checkpoint

lapsCompleted

player : Player

obstacle [0..*]

track : Track

playerName

race : Race

lapsTotal

car : Car

start

track

car

time

start()completedLapsname totalLapselapsedTime

Output

Component

Edit 

Component
Action

Component

Legend:

Fig. 3 AIOs in the MML Presentation Model for the Scene Game.

Fig. 3 shows as an example the Presentation Unit for the Scene Game. The Scene

acts as the overall container. It contains Domain Objects, which are instances of the

Domain Classes from the Structure Model, and a Presentation Unit containing the

AIOs. The Presentation Unit in the Scene Game contains, for instance, several Out-

put Components to show the track, the obstacles, and the checkpoints. The player’s

car is represented by an Edit Component as it presents the current state of the car

which is also manipulated by the user. There are some Output Components for addi-

tional information, like the playerName, time, and lapsCompleted, and some Action

Components to start the race or to navigate to the help or back to the menu.

Each AIO represents a Domain Object as specified by UI Representation rela-

tionships. Analogous to Media Representation relationships in the Structure Model,

it is possible to annotate the name of a property or operation to specify that this

specific property or operation is represented by the AIO. For instance, the Output

Component playerName represents the property Name of player. AIOs not associ-

ated with a Domain Object represent the Scene itself. In this case, the name of a

Scene’s property or operation represented by the AIO is denoted directly below the

AIO (in curly braces), like for the Action Component quit which triggers the Scene’s

Exit Operation exitTo Menu showMenu() (see Section 4).

Due to the possible dynamic character of multimedia user interfaces, it is possible

to specify a multiplicity for an AIO (like for obstacle) as their number is calculated

dynamically at runtime. Also, the Interaction Model can be used to specify that
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<<Scene>>

Game

<<PresentationUnit>>

<<Animation2D>>

trackAnim : TrackAnimation

checkpoint : CheckpointGraphic [1..*]

obstacle : ObstacleAnimation [*]

help

{exitTo_Help_show GameHelp()}

engineSound : EngineSound

quit

{exitTo_Menu_show Menu()}
carAnim : CarAnimation

<<CollisionSensor>>

checkpointSensor

<<CollisionSensor>>

obstacleSensor

obstcl : Obstacle

checkpoint [1..*]

cp : Checkpoint

lapsCompleted

player : Player

obstacle [0..*]

track : Track

playerName

race : Race

lapsTotal

car : Car

start

track

time

car

start()name completedLapstotalLapselapsedTime

<<test>>

<<test>>

Fig. 4 MML Presentation Diagram enhanced with Media Instances and Sensors for the Scene

Game

AIOs are added or removed from the user interface. To indicate that an AIO is

initially invisible on the user interface and becomes visible at runtime, the keyword

invisible can be attached to the AIO.

5.2 Multimedia User Interface

As we deal with multimedia applications, some of the AIOs can be realized by me-

dia objects. Therefore, the respective AIO is connected with a Media Instance by

a UI Realization relationship. Its semantics is that the AIO is implemented by the

Media Instance. In turn, the Media Instance must provide the interaction concepts

defined by the AIO. For instance, if an animation should realize an Action Compo-

nent, this means that, e.g., clicking on the animation triggers some action. Thus, not

any type of Media Instance can realize any AIO (see discussion in [18]). AIOs which

are not realized by a Media Instance are intended to be implemented in conventional

way, i.e. using standard widgets.

Media Instances are instances of Media Components from the Structure Model.

So, a Media Component can be used in different Scenes. For instance, the CarAni-

mation is not only used in the game itself, but also in the menu where the user can

select between different cars.

Fig. 4 shows the Presentation Model for the Scene Game enhanced with Me-

dia Components. For instance, the AIO car is realized by instances of the Media
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Components CarAnimation and EngineSound. It is also possible that AIOs are re-

alized by inner objects of a Media Instance, like checkpoint and obstacle in the

example.

Like in existing MBUID approaches, the AIOs trigger events during the user

interaction; e.g., an Action Component triggers an operation. However, Media In-

stances of temporal media type can trigger additional events independent of the

user. For instance, an audio object can trigger an event when it finishes playing or a

moving animation can trigger an event when collides with another one. This is mod-

eled in MML using the concept of Sensors adapted from 3D graphics domain [27].

In Fig. 4, two Collision Sensors (checkpointSensor and obstacleSensor) are associ-

ated with the CarAnimation instance. They test whether the car animation collides

with checkpoints or obstacles and trigger an event when this occurs.

Another type of sensors is the Visibility Sensor which triggers an event when

an object becomes visible, e.g., after it has been covered by another object or was

located outside the screen. A Proximity Sensor is relevant for 3D objects only and

triggers an event when the user navigates within a 3D world close to this object. A

Time Sensor triggers an event at specific points of time in the application. In MML,

this points in time can be either defined by fixed time interval or by one or more Cue

Points of temporal Media Instances.

A Cue Point (not shown in the example) can be defined for any temporal media

object and allows to refer to a specific point in time on the media object’s time line.

This can be used to specify synchronization between temporal media objects. Let us

consider that the racing game application shows as introduction a video and some

animated text. The text should appear after the first scene in the video is finished.

Therefore, a Cue Point can be defined, like “firstSceneFinished”. Using a Time Sen-

sor it is now possible to specify that, when firstSceneFinished occurs, an operation

is triggered on the Media Component for the text, like setVisible(). The advantage

of Cue Points compared to concrete time values is their abstract character as often

the concrete duration of the video is still unknown or may change later according to

the aesthetic considerations of the media designer.

6 MML Interaction Model

The Interaction Model specifies the user interaction and the resulting behavior of

the Scene. The core idea is to specify how events initiated by the user interface

trigger operations of Domain Objects or of user interface elements (AIOs or Media

Components). In that way, the Interaction Model specifies the interplay between the

elements defined in the foregoing models. The behavior of Domain Class opera-

tions itself is not part of the MML models as it is often quite complex and usually

specified directly in a programming language – in particular, as the operations in a

multimedia application (like moving the car in a realistic way) often require much

trial and error and cannot be specified in advance.

Existing work in MBUID often uses Task Models to describe the interaction. As

mentioned in the Section 1, MML supports Task Models as well. They are sufficient
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Fig. 5 Simplified extract from the Interaction Model for the Scene Game

to specify the interaction for less dynamic Scenes, like the Menu in the racing game.

However, dynamic multimedia Scenes, like the Scene Game, often require a more

detailed modeling of temporal behavior. Therefore, such Scenes are modeled using

the MML Interaction Model which is an adapted UML Activity Diagram. As shown

in existing work [1], extended UML Activity Diagrams can also be used to specify

similar operations like in Task Models, while on the other hand, as sometimes used

in UML, they also allow to model very detailed object-oriented behavior.

The objects which can be used in a Scene’s Interaction Model are the Domain

Objects, AIOs, Media Instances, and Sensors owned by the Scene as defined in the

Scene’s Presentation Model. Additional objects can be passed as parameters of the

Scene’s Entry Operations. An Action in the Interaction Model refers to an operation

call (like UML CallOperationActions) on one of the objects owned by the Scene. In

this way, by restricting the Activity Diagram to defined objects and operation calls,

it is possible to directly generate code from the model.

As mentioned before (Section Section 3), MML defines some standard opera-

tions for Media Components, like start, stop, play() for videos. Analogously, some

standard operations are predefined by MML for the AIOs (e.g., disable(), setVisi-

ble()) to save the modeler defining them manually.

Beside the operation calls, the Interaction Model contains events triggered by

AIOs and Sensors to model the interaction. They can be used analogous to Ac-

ceptEventActions in UML, e.g., in combination with InterruptibleActivityRegions

whose execution terminates when they are left via an interruptible edge. In this way,

it can be specified that, e.g., some user input interrupts the current program flow (i.e.

terminates tokens) and starts another one.

Fig. 5 shows an simplified extract from the Interaction Model for the Scene

Game. Like in UML Activity Diagrams, Actions have Input Pins to specify the
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parameters for an operation. An Input Pin called target is used to specify the ob-

ject on which the operation call is executed. Input Pins marked with the name of an

operation argument receive an argument of the operation, like value for leftRight().

In the simplified model, the input value to control the car is received from the Edit

Component car, and passed as parameter to the operation leftRight() of the Domain

Object car. Afterwards, the operation move() is called on car. This is executed in a

loop until an interruption occurs by the collision sensor obstacleSensor or by the

ActionComponent quit.

7 Overall Approach

Fig. 6 shows the overall modeling process with MML. The horizontal axis shows the

different developer roles involved in the process, i.e. software design, user interface

design, and media design. The vertical axis represents the temporal dimension. The

center shows the different MML models and the interrelations between them.

The modeling process is performed during the design phase of the application. It

starts after the requirements analysis, which is performed in the usual way and not

further considered here. The Task Model reflects the user tasks to be supported by

the application from the viewpoint of user interface design. They have to be derived

from the requirements specification. In parallel, the Structure Model is specified

which consists of Domain Classes and Media Components. Domain Classes can be

derived from the requirements specification similar to conventional object-oriented

development.

The Media Components are derived from the requirements specification as well,

as far as they are specified therein. Domain Classes and Media Components are re-

lated through Media Representation relationships. Thus, adding Media Components

can require additional Domain Classes which represent associated application logic.

In turn, for each Domain Class can be considered whether it is useful to represent

it by a Media Component. The Structure Model should be created in cooperation

between Software Designer and Media Designer as it defines how application logic

can access Media Components and how those must be structured for this purpose.

The Scene Model describes the Scenes and the navigation between them. The

decomposition into Scenes influences the application’s usability and is thus specified

by the user interface designer. The Scenes can be identified based on the Task Model,

for instance, using an approach like in [13].

For each Scene, a Presentation Model is defined by the user interface designer. It

specifies the AIOs which can be derived from the Task Model as well. The AIOs are

associated with Domain Objects which are instances from the Domain Classes in

the Structure Model. In the next step, the Presentation Model is complemented with

Media Components and Sensors. At this point, the user interface designer and the

media designer have to cooperate. The Media Instances refer to Media Components

in the Structural Model. During these steps, missing Domain Classes and missing

Media Components can be identified and added. In addition, the user interface de-

signer and the media designer can add Sensors to Media Components. Basically, it is
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Fig. 6 MML overall modeling process

also possible to refine the Presentation Model in terms of a Concrete User Interface

Model as in existing MBUID approaches.

Finally, the Interaction Model is specified in cooperation between the software

designer and the user interface designer. It specifies how user interface events and

Sensor events trigger operation calls on domain objects. Missing model elements,

like missing objects in the Scene or missing class operations, can be identified and
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added. The user interface designer is responsible for the interaction which can –

at least to some degree – be derived from the Task Model. The software designer’s

knowledge is mainly required for specifying the more complex behavior of dynamic

Scenes like the Game Scene in the racing game.

It is not mandatory to follow the modeling process always as described here.

Basically, it is possible to start with any kind of MML model or to specify the model

in several iterations. For example, it is possible to start the process with the Scene

and Presentation Models and to create the Structure Model on that base. Indeed,

it is also possible that all three developer groups iteratively specify all models in

cooperation or that there is an additional modeling expert who supports the different

developers in specifying the models.

8 Tool Support and Code Generation

MML is defined as a standard-compliant metamodel implemented with the Eclipse

Modeling Framework (EMF)5. The advantage of EMF is its integration with many

other existing tools from model-driven engineering, like tools for model transforma-

tion, validation, or model weaving6. As visual modeling tool for MML, we provide

an extension of the UML tool Magic Draw7. In addition, we provide a model trans-

formation to transform the models from Magic Draw into EMF so that they can be

further processed by EMF-based tools. The advantage of using Magic Draw instead

of creating our own EMF-based visual modeling tool is that a professional modeling

tool provides a degree of usability and robustness which is difficult to achieve with

an implementation of our own.

After MML models have been transformed into the EMF-based format, it is pos-

sible to generate code skeletons for different target platforms. To this end, we pro-

vide several model transformations in the Atlas Transformation Language (ATL)8.

The currently most mature transformation is one generating code skeletons for the

target platform Flash. A Flash application consists of Flash documents and associ-

ated code in the object-oriented programming language ActionScript which is part of

Flash. Thereby, we generate the Flash/ActionScript skeletons in such a way that they

can be directly loaded into the Flash authoring tool. The designers then can process

them using all the professional functionality of the tool. Other target platforms cur-

rently supported by prototypical model transformations are Java, SVG/JavaScript,

and Flash Lite for mobile devices.

The basic concepts for the Flash/ActionScript code generation are as follows:

The Domain Classes from the Structural Model are mapped to ActionScript classes,

analogous to existing mappings from UML class diagrams to Java code. The Media

Components are mapped to Flash documents containing placeholders according to

the Media Component’s inner structure defined in the model. These placeholders

5 http://www.eclipse.org/emf/
6 http://www.eclipse.org/modeling/
7 http://www.magicdraw.com
8 http://www.eclipse.org/m2m/atl/
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Fig. 7 Generated Skeletons for the Racing Game

then have to be filled out by the media designers using the Flash authoring tool. In

addition, an ActionScript class is created for each Media Component providing pre-

defined operations for the Media Component and skeletons for operations defined

in custom interfaces (see Section 3).

Each Scene is mapped to an ActionScript class containing the Entry and Exit Op-

erations defined in the model. The Exit Operations contain the code for the naviga-

tion between Scenes as defined by the transitions in the Scene Model. Additionally,

each Scene is mapped to a Flash document containing the Scene’s user interface.

For the user interface, each AIO is mapped to a corresponding widget in the Flash

document and an associated ActionScript class containing event listeners. For Me-

dia Instances, an instance of the generated Media Component is placed on the user

interface. All instances on the user interface have a name by which they can be ac-

cessed from the code in the Scene’s ActionScript class. Sensors are implemented

by corresponding code in the Scene’s ActionScript class, e.g., a Collision Sensor is

implemented by an operation which tests whether two visual objects overlap each

other on the screen. The Interaction Model is mapped to corresponding ActionScript

code in the Scene.

It is possible to directly open the generated code skeletons in the Flash authoring

tool. Fig. 7 shows a screenshot of the generated skeleton for the scene Game in the

Flash authoring tool. It shows the user interface elements and the placeholders for

Media Components (represented by simple rectangles) generated according to the

MML model from Fig. 4. The application can also be directly executed to test the

navigation between the generated Scenes.

To finalize the application, the developers have to complete the ActionScript

code, mainly the bodies of the Domain Class operations, as those are not
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specified in MML. The media designers need to fill out the placeholders gener-

ated for the Media Components using the whole functionality of the authoring tool.

The generated user interface can also be freely edited, arranged, and adapted in the

tool using all its visual functionality (e.g., in Fig. 7 a button is resized). However,

all relationships between the different application parts – like between an AIO and

its Domain Object, its event handling code, and its Scene – are generated from the

model. Moreover, the generated code is consistent and well-structured (using, e.g.,

design patterns, see [21, 19]). In this way, the advantages of both – 1) visual design

of media and user interfaces using established authoring tools and 2) systematic

development of well-structured application using model – are combined.

9 Conclusion and Outlook

In this chapter, we presented MML, a modeling language for interactive multime-

dia applications, and an associated model-driven development approach. It targets

the needs for a systematic development process considering the characteristics of

interactive multimedia user interfaces.

With respect to the main challenges for multimedia development from Section 1,

we address the interdisciplinary development by integrating software design, user

interface design, and media design into a single consistent modeling language. The

MML models thus act as a kind of contract between the different developer groups.

As discussed in Section 2, to our knowledge, none of the existing modeling lan-

guages covers all of these three aspects so far.

In particular, we show that modeling interactive multimedia requires new con-

cepts like different abstraction layers (Media Components, Media Artifacts, and

Media Instances) and modeling the (abstract) inner structure of Media Components.

MML also demonstrates how to integrate these concepts into a consistent modeling

approach. However, the general multimedia-specific concepts can also be used to

extend other existing modeling approaches with multimedia support.

The need for visual, artistic design is addressed by integrating authoring tools

through generation of code skeletons which can be directly loaded and processed

within established professional authoring tools like Flash. This concept has been

generalized beyond multimedia and Flash [22] and is an important aspect in prac-

tice as mature visual tool support is usually strongly important for user interface

designers and media designers.

To validate the language as far as possible, it has been applied three times in a

practical graduate course where students develop interactive Flash/ActionScript ap-

plications over three months in teams of four to seven students each. The developed

applications were multi-player blockout games, multi-player jump and run games,

and multi-player minigolf games. In addition, there were three student projects were

a student developed a small or medium-size Flash/ActionScript application for a

third party customer using MML. These were 1) an interactive multimedia applica-

tion for a hairdresser, 2) an interactive visual help system for a professional customer

relationship management system, and 3) an authoring tool for creating commercial
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interactive learning systems. In these cases, the final implementations made exten-

sive usage of the code generated from the language. Some other kinds of applica-

tions have been created and implemented prototypically using MML, including a

simple navigation system and a media player application. Although this validation

can not provide quantitative evidence, it strongly contributed to revisions which lead

to the version of the language as presented here.

For future work, it seems beneficial to combine the elaborated concepts with

those from other modeling approaches, like mobile applications, context-sensitivity

for multimedia user interfaces in ambient environments, or concepts from Web En-

gineering for Rich Internet Applications.
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Taking Advantage of Model-Driven Engineering 
Foundations for Mixed Interaction Design 

Guillaume Gauffre and Emmanuel Dubois* 

Abstract. New forms of interactive systems, hereafter referred to as Mixed Interac-
tive Systems (MIS), are based on the use of physical artefacts present in the  
environment. Mixing the digital and physical worlds affects the development of in-
teractive systems, especially from the point of view of the design resources which 
need to express new dimensions. Consequently, there is a crucial need to clearly 
describe the content and utility of the recent models associated to these new inter-
action forms. Based on existing initiatives in the field of HCI, this chapter first 
highlights the interest of using a Model-Driven Engineering (MDE) approach for 
the design of MIS. Then, this chapter retraces the application of a MDE approach 
on a specific Mixed Interaction design resource. The resulted contribution is a mo-
tivated, explicit, complete and standardized definition of the ASUR model, a model 
for mixed interaction design. This definition constitutes a basis to promote the use 
of this model, to support its diffusion and to derive design tools from this model. 
The model-driven development of a flexible ASUR editor is finally introduced, 
thus facilitating the insertion of model extensions and articulations. 

1   Introduction 

From the birth of Augmented Reality systems [1] to the expression of Tangible 
Bits [2], through the proposition of Ubiquitous Computing [3], new interaction 
forms have been explored and have now started to integrate some common inter-
active spaces. Indeed research works that previously targeted specific, very  
demanding and restrictive application domains now apply to arts, knowledge 
transmission, communication, sale, etc., thus demonstrating their potentials [4]. 
Through a tight combination of physical and digital artefacts, or by having  
“Tangible Bits” becoming a reality, such interaction forms offer advantages: tech-
nology disappearance, better appropriation of concepts, low-learning phases,  
full-body involvement, large and complex motions, mobile situations, etc. 

These potential benefits are in line with design philosophies coming from eco-
logical design [5] and the definition of “calm technologies” [6]. In return, resulting 
interactions, which merge physical and digital worlds, must take into account the 
dimensions and the content of the physical environment: designing Tangible User 
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Interfaces has to deal with the shape of the physical objects and the way they are 
manipulated or used to have an impact on digital data; with Augmented Reality 
systems, designers must handle the accuracy and the adequacy of the superimposi-
tion of digital data on the physical world; ubiquitous systems can integrate  
numerous sensors and their location and range are major concerns of the design, 
etc. Therefore, the design of these systems, hereafter referred to as Mixed Interac-
tive Systems (MIS), has to take into account some specific dimensions and thus 
requires design resources able to manage them. To explore and better understand 
these specificities, two approaches coexist.  

On the one hand, part of the HCI community is making great technological 

advances: many MIS prototypes are developed from scratch, thus solving techni-
cal issues, revealing and illustrating new possibilities. On the other hand, another 
branch of the community is focusing on abstract approaches for the design of 
these systems: technologies’ independent design reasoning is thus promoted. The 
elicitation of such abstract models and taxonomies now enables the analysis and 
comparison of different forms of mixed interaction, and also contributes to struc-
ture and stimulate their design. However, numerous approaches adopt different 
points of view [4], tend to overlap and remain difficult to select, understand and 
use appropriately for none experts. 

Practically, informal approaches, promoting participatory design and the use of 
scenarii or low-fi prototypes, are commonly adopted for the design of mixed inter-
action. But the gap remaining between a technological implementation and ideas 
or solutions informally expressed at the end of participatory design sessions is 
huge, thus requiring full expertise and experience to implement these systems. 
Therefore, structured and formalized expressions of design choices would help the 
transition to subsequent steps of the development: as a consequence using one of 
the above mentioned abstract approaches must be facilitated and no longer limited 
to expert. Concretely, their content and syntax must be made unambiguous and 
clearer to be used by none expert and increase their diffusion; their role or  

purpose must be clarified to express which aspects of the system can be described 
through the model; finally, their range has to be explained to facilitate their com-
parison and the selection of the most appropriate design resources, according to 
the design phase or specific facet of the system.  

In this chapter, we adopt a Model-Driven Engineering (MDE) approach to 
make the ASUR model [7], a MIS-specific design model, compliant with these re-
quirements. Indeed, recent developments in MDE demonstrated that MDE is a 
powerful approach to clearly describe the content and utility of models and their 
combination. The goal of this chapter is therefore to ease the understanding, visi-
bility and diffusion of the ASUR model, and to demonstrate the benefit of MDE as 
a vector to reach these objectives. 

The first section reviews the evolution of the use and content of models in HCI, 
then focuses on specific models, dedicated to advanced forms of User Interfaces. 
Given the complex nature of this domain, one unique model cannot be sufficient: a 
more global approach is required. Based on existing initiatives performed in HCI, 
we then highlight the interests of using Model Driven Engineering for the  
Design of Advanced User Interfaces. The second section introduces the ASUR 
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metamodel, the corner stone of MDE approaches: the metamodel construct has 
been thought to promote and take advantage of the potential MDE benefits identi-
fied in the first section. All along the introduction of the metamodel, illustrations 
are provided on the design of a concrete system. Finally, the third section  
describes the way the metamodel was used to provide a tool enabling the man-
agement of ASUR models and states perspectives with regards to other modelling 
tools and resources. 

2   Model-Based Design of Mixed Interactive Systems 

The use of models in HCI is based on advances related to software engineering. 
This has resulted in the development of several models, expressing different speci-
ficities of interactive software engineering. However, with the emergence of new 
software technologies, such as component and services, light multiplatform sys-
tems, etc., these initial models are no longer discriminatory nor sufficiently help-
ful: additional models are required to more specifically support the design of  
interactive systems regardless of technological aspects.  

This software engineering first influence has been complemented with cogni-
tive and psychological considerations. For example, the action theory [8] describes 
the different steps of the input and output interaction and the associated users’ ca-
pabilities: this layer-based description is central to the decomposition of an inter-
action modality as proposed in [9, 10]. Similarly, the interaction according to Arch 
[11] has a physical, a logical and a conceptual facet, the last one being in charge of 
the dialogue operated between the system and the users: this encourages the use of 
specific models for each aspect of the interaction, such as Statecharts or Petri nets 
to describe the interaction dialogue, hierarchical task models to represent links 
with users ‘activity modelling, etc.  

Finally, the development of interactive situations also triggered the apparition of 
new models. Models like GOMS [12], MVC [13] or ICO [14] were initially 
proposed and appeared to be useful to express the evolutions related to capabilities 
of the system-side of an interactive system (functional behaviour, rendering, 
metaphors, etc.). Current evolutions are now focusing on dimensions related to the 
user-side of an interactive system (physical environment, multimodality, ubiquity): 
specific models, that we are calling “interaction models”, are thus required to cover 
the multiple facets of tactile input, direct manipulation, multimodal interaction and 
more recently mixed interactive systems (MIS) (see Fig. 1). 

User-side 

dimensions 

enhancement

System-side 

dimensions 

enhancement

 

Fig. 1 From system-side enhancement to user-side enhancement of interaction capacities 
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MIS is one of the most recent forms of interactive systems: MIS takes  
advantage of the combination of the physical and digital worlds. In this context, 
the spaces and the elements that constitute an interactive situation have multiple 
scales, characteristics and roles; during design, the physicality of the interaction 
and the coupling of digital and physical elements therefore require a new set of 
models that recent works in MIS have explored. 

2.1   Mixed Interaction Models 

Among the works exploring the domain of MIS, many terms are used like perva-
sive, ambient or “everyware”. Works identified as Tangible User Interfaces (TUI), 
Ubiquitous computing and Mixed or Augmented Reality, focus more particularly 
on the interaction design. Considering different but complementary aspects, they 
brought several interaction models. TUI emphasizes the physical artefacts and 
their association with digital elements through the MCRit model [15], the TAC 
model [16] and Fishkin [17] or Hornecker [18] taxonomies. Ubiquitous computing 
primarily addresses the notions of contextual data and technical environments, and 
generally adopts a software point of view as with UCM [19]. Mixed Reality de-
scribes an interactive space by focusing on the amount of digital and physical arte-
facts and qualifying their integration and relationships, as proposed by Trevisan 
[20]. Finally, these different aspects are also captured by models drawing an over-
view of the interaction with a MIS (e.g., RBI [21], MIM [22], ASUR [7]) or  
describing the underlying software required (e.g. FIIA [23]). Without being ex-
haustive, models mentioned in this section illustrate the interest of researchers in 
MIS on the use of models. The following sections extract the major dimensions 
covered by MIS models as well as the major capabilities they offer.  

MIS Models’ Dimensions. The review of these models led to a list of seven major 
dimensions that characterize MIS and that prevail during interaction design. Each 
dimension is totally covered (X), partially covered (p) or not addressed (W) by the 
different models previously mentioned. Table 1 summarizes this characterization.  

Description of entities. As they involve physical and digital entities, MIS models 
often describe the different entities involved during the interaction. Characterized 
by their nature (physical or digital, possibly mixed in MIM), their physical dimen-
sions can be further characterized (e.g., TAC focus on physical entities), as well as 
the role played by digital entities (e.g., ASUR distinctions made between three 
forms of digital entities). 

Physical relationships. The major originality of MIS is the insertion of physical 
entity in the user’s interaction with the system. As their shapes and positions in-
fluence the interaction, expressing the physical relationships between them and the 
user is particularly relevant (e.g., TAC description of spatial constraints). 

Digital-physical coupling. With MIS, the main objective is to associate digital and 
physical artefacts to get the best of their coupling. The appropriateness of the  
coupling can be based on their respective characteristics (e.g., Fishkin. Metaphors 
and MCRit tangible and intangible representations). 
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Interaction modalities description. MIS involves various and new forms of sensors 
and effectors, thus offering unusual input and output modalities. Among the models 
covering this dimension, some models pay a particular attention to the characteriza-
tion of these modalities (e.g., ASUR and MIM), while others are limited to a list of 
devices (e.g., UCM), or a description of the manipulation types (e.g., Hornecker). 

Context involvement. This difficult part aims at providing the clearest definition of 
the interaction context, and listing the elements not directly implied in the interac-
tion. Since there is not a single description language, this element is not precisely 
characterized and is often limited to written document. 

Actions triggering. Most of the models analyzed adopt static points of view on the 
interaction. However, they embed some elements used to describe the essential 
parts of the dynamics of the interaction (e.g., impact of an action on the system). 

Interaction spaces. As the physical elements and space take importance with MIS, 
some models pay attention to it, to identify and characterize spaces (e.g., FIIA and 
Trevisan description of interaction spaces and their relationships). 

Table 1 Models’ coverage of MIS design dimensions 
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Entities involved W p W W X X W X X X 
P/D  coupling X X p p W W W X X W 
Modalities description W W W p p W p X X p 
Context W W W W X W X W W W 
Physical relationships W X X X X X W W X W 
Triggers W X W W X W W X p X 
Shared spaces W W W p W p W W W X 

Models’ Capabilities. Beyond the dimensions addressed by a model, the way it 
contributes to the development process is a second aspect of importance when 
dealing with models in MIS. We extracted four major types of capabilities that can 
be combined and proposed by MIS models. In the next paragraphs, we present 
these capabilities and mention models that offer them. 

Conceptual framework. MCRit, RBI, Fishkins metaphors and Hornecker taxonomy 
highlight dimensions that are essential to understand such systems, some of their 
specificities and the challenges of their design. Their abstraction level presents the 
advantage to clearly indicate the benefits and issues of one design solution. They 
constitute frameworks for comparing and justifying design choices at high level, 
but do not precisely describe the structure and behaviour of the interaction, as  
opposed to what a notation could do. 

Notational use. With TAC, MIM, ASUR, FIIA, UCM and Trevisan models, the 
authors provide notations to collect design results. MIM, FIIA, UCM and ASUR 
adopt graphical notations that depict the different facets of the user’s interaction 
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with digital entities and through physical ones. These graphical representations are 
also used to distinguish the different kinds of entities involved through icono-
graphic representations. TAC and Trevisan model only provide textual notation, 
with tabular representations for TAC and n-uplet for the second one. In both cases, 
the precision of the collected design results can be adjusted according to the de-
signer expertise with the model: the notation can be used with all or only a part of 
its attributes and elements.  

Edition tools. Such tools are required to ease the manipulation and saving of  
models, representing existing MIS or design solutions: elements of the models are 
represented in menus or tools pallets, connexion rules can be embedded in the edi-
tors, attributes of the different elements can be listed, contextual help can be pro-
posed, etc. According to our literature and web reviews, among the previously 
presented models only FIIA, ASUR and UCM provide such editing tools. An 
ASUR editor offers to create and edit models; but this editor does not include the 
latest updates of the model. UCM and FIIA also propose editors: they are directly 
connected to development environments. 

Models’ collaboration. This fourth models’ capability consists in providing ways 
to link concepts of a model with other modelling resources or concepts of another 
model. Different ways of linking models have been explored and developed for 
different needs. For example, FIIA and UCM established links for implementation 
purposes; links have been defined between task model and the ASUR interaction 
model to promote the consistency between design choices expressed at the task 
analysis level and the interaction design level. Such links promote the collabora-
tion between models and therefore contribute to increase the efficiency of the use 
of models: time spent to express the design decision in the form of a model consti-
tutes the basis of subsequent steps of the design. However, frameworks to more 
easily define and operate such articulations must be developed: operating complex 
transformation cannot be efficiently performed by hand. 

Outcomes of the Use of Models in MIS. The comparison of models’ contents re-
veals the variety of dimensions and capabilities covered by a set of MIS models. It 
also highlights existing overlapping between them, thus illustrating the diversity 
and complexity of MIS. However the analysis is based on research papers, which 
do not necessarily reveal the whole aspects and details of the models. Research 
paper most often chose to emphasize specific considerations related to the model. 
As a result, it is difficult to get an entire view and understanding of these models, 
thus complicating the possibility to share them or position each one with regards 
to the other models. To overcome this limitation, a clear and standardized expres-
sion of the models is required to concisely express their objectives and content. 
Such a clarification would also allow a more comprehensive comparison of these 
resources and contribute to help designers in choosing the most appropriate one at 
different steps of the design process. 

Furthermore, given the degree of maturity of MIS, additional models are still 
emerging. When proposing a new model that describes a specific aspect of a MIS, 
it seems rather hard to immediately provide all the capabilities identified in the 
previous section. Supporting the introduction of these capabilities into new models 
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or facilitating the reuse of some of the already exiting capabilities would facilitate 
the introduction and use of new models in the domain of MIS. 

In parallel to the evolution of the MIS domain, the contributions of the Model 
Driven Engineering (MDE) community are quickly developing and present some 
characteristics that are in line with the current needs and expectations of the MIS 
domain. The following section deeper analyses the benefits of MDE. 

2.2    Model-Driven Engineering Benefits 

MDE provides a framework to unify the different modelling technologies and to 
express the concepts necessary to their use and understanding [24]. It constitutes a 
development approach that takes advantage of descriptive and productive aspects 
of models. In particular MDE promotes the use and development of Domain-
Specific Languages (DSL) that address specific design and development goals. 
DSLs use small and dedicated models to address a particular domain. This leads to 
the clear identification of multiple design dimensions in the domain, just as re-
quired in MIS. The corner stone of MDE approaches is the metamodel: a meta-
model gives the opportunity to structure and document each model. Therefore, 
MDE also facilitates the understanding of the range of each model, the comparison 
of models, their articulation and diffusion.  

The following sections highlight the potential of MDE with regards to MIS. 
These potentials are organized along the descriptive and productive supports of-
fered by MDE. We then briefly review existing uses of these two aspects of MDE 
in the design of abstract user interfaces to motivate its applicability to MIS. 

Descriptive Support. Models have the capability of describing specific aspects of 
a system. Rothenberg mentioned in [25] “A model represents reality for the given 

purpose; the model is an abstraction of reality in the sense that it cannot represent 

all aspects of reality. This allows us to deal with the world in a simplified manner, 

avoiding the complexity, danger and irreversibility of reality.” In the case of MIS 
design, the concepts are innovative and unfamiliar. There is therefore a real need 
for a comprehensive presentation of these concepts to understand and manipulate 
them. MDE presents three potential benefits to support this first need:  

• (B1: characterization) A metamodel contributes to clearly identify and  

characterize the different elements constituting a MIS. The grammar it defines 
will be closely adapted to the specific concepts of the domain. This is particu-
larly required with MIS because they are complex systems involving many  
entities and there are many new systems that are hard to compare without a 
common solid reference language.  

• (B2: documentation) The metamodel supports documentation generation of 
the design. For a given metamodel, different representations of a single model 
that conform to this metamodel, can easily be generated: XML/HTML/etc. 
documents can be produced as well as textual, graphical representations or 
structured web navigation. Given that designing MIS requires a multidiscipli-
nary team, different representations are required to fit the abilities of each 
stakeholder and to facilitate its ability to understand the design. In addition, 
MIS models express unusual concepts that need to be well explained. 
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• (B3: evolution) MDE tools support the evolution of a metamodel. MDE facili-
tates further refinements and evolutions of a metamodel by enabling its rapid 
graphical edition and a clear decomposition of its constituting elements. This 
promotes a step by step definition of a metamodel. The domain of MIS is rich 
and complex and yet quite recent. Therefore it is still an open field that need fur-
ther investigations which will raise additional design challenges and considera-
tions. It is thus required to adapt, complement or further develop existing design 
models of MIS. Supporting this evolution is a crucial advantage for the domain.  

These first set of benefits of MDE for the design of MIS contributes to the specifica-
tion of the system by increasing the level of abstraction: better descriptions and 
analysis of this kind of systems are produced. A second set of benefits is driven from 
the ability of MDE to support the automation of some part of the development: this is 
the productive support of MDE. 

Productive Support. Several models, expressing different considerations and/or 
related to different levels of abstraction, are most often required in a system  
development. This is especially true with MIS systems, which have to take into ac-
count device properties, available APIs, characteristics of physical artefacts, soft-
ware structure, component definition, etc. MDE presents two major advantages to  
support these considerations:  

• (B4: articulation) MDE offers tool-supports for model transformations that con-
tribute to the articulations of different design facets. Early steps of a MIS de-
sign involve many different facets that need to be captured and understood: the 
manipulated domain objects, the resources of the environment, the users’ abili-
ties, the sequencing of the dialogue, etc. Through the use of transformations, 
one facet can be refined or can produce another one, even partially: for  
example, transformation can be used to ensure coherence between domain  
objects represented in task models and the corresponding interaction models. 

• (B5: process) MDE also offers tool supported transformations to link models 
expressed at different abstraction levels of the development. This second form 
of transformation supports the progression along the different development 

steps. It leads to the articulation of design and implementation resources, for 
example, interaction design models and software architecture models. Such 
links constitute a map of design resources involved for designing MIS with a 
detailed specification of their interlacing. This is crucial in MIS because it  
allows a designer to decompose the design problem into different steps related 
to MIS specificities (e.g., physicality, software architecture and modalities  
design). 

This second set of benefits of MDE for the design of MIS corresponds to an in-
crease of automation and coherence in MIS developments. It allows the combina-
tion of different points of view in the design of MIS and then, higher-level models 
can be transformed into lower level models. These subsequent transformations  
can automatically or semi-automatically lead to the generation of components  
assemblies or code generation. 

 



Taking Advantage of MDE Foundations for Mixed Interaction Design 227
 

Previous sections have illustrated how the use of MDE, in terms of descriptive 
and productive support, can be fruitful for MIS design: it contributes to better 
structure and thus better understand design aspects of MIS, it supports the articula-
tion of complementary design considerations and provides design tools based on 
modelling standards. The following section illustrates existing uses of MDE  
approaches in the field of HCI.  

MDE and Abstract User Interfaces Design. Benefits of the descriptive and  
productive supports of MDE have already been explored and illustrated in HCI: 
indeed some works propose means to describe part of the interaction and then to 
derive executable prototypes from it. Such works essentially consider Abstract 
User Interfaces models (AUI) in order to address multi-platforms implementations 
and the reuse of former developments.  

For example, on one hand, PervML [26] is used for pervasive systems devel-
opment: it enables the description of services constituting the system and their 
communications. On another hand, CUIML [27], MRIML [28], and APRIL [29] 
are models used inside development frameworks for Mixed Reality or Augmented 
Reality systems and focus on the description of the elements underlying the inter-
action (view/controller distinction, type of widgets, etc.); However, they are 
tightly linked to the technologies embedded into these frameworks. Finally, 
UsiXML [30] proposes a set of metamodels to describe AUI but limits the possi-
ble interaction forms. In comparison to the two first sets of models presented 
above, UsiXML also proposes task, user and platform description with links be-
tween each of them, in order to use models at runtime for context adaptation.  

These approaches mainly focus on a support to the software development un-
derlying the interaction, instead of the design of the interaction itself. In addition, 
they do not easily support the expression of aspects related to the physicality of 
the user’s interaction with a MIS. Therefore, based on these promising initiatives, 
additional resources are required to fit the expectations and requirements of MIS 
design, based on MDE. 

Previous sections have shown how interaction models for MIS design remain 
experimental, difficult to seize and how hard it is to capture and understand their 
range. In addition, most of these models are not associated with tools for editing, 
manipulating and transforming them; for those being equipped with such envi-
ronment, modelling standards are not used: this restrains their use with external 
and complementary design aspects. Considering the benefits of MDE approaches 
and the need for standardized and structured resources for MIS design we chose to 
exploit the promising link between MIS design and MDE with the ASUR model. 
The goal is twofold: first, it aims to structure and provide an explicit description of 
the ASUR model and second, it aims at using MDE frameworks to create tools 
based on modelling standards. 

Next section presents the proposed metamodel of ASUR, according to its latest 
evolution [31], and justifies parts of the structure adopted in the metamodel con-
struct. Then, we detail how an editor has been derived from this metamodel  
thanks to MDE tools. 
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3   Definition of a MIS-Specific Metamodel 

The ASUR model is intended to support the reasoning and design of MIS. ASUR 
particularly emphasizes the physicality of the interaction, the nature of the interac-
tion modalities and the existence of several design facets. Considering the design 
dimensions of MIS and the need for a clear description to ease their understand-
ing, a metamodel has been created for ASUR: this metamodel offers a high-level 
design resource, technology independent.  

 

 

Fig. 2 The Notepad Assisted Slideshow prototype and its ASUR modelling 

Among the current available metamodelling frameworks, the Ecore metameta-
model [32] has been chosen to express the ASUR metamodel. The following  
sections present and motivate the content and structure of this metamodel and  
illustrate the ASUR concepts on a prototype used for interacting with slideshow 
presentation systems: the Notepad Assisted Slideshow (see Fig. 2 - top). This  
prototype is based on the use of a notepad as “remote control” and feedback 
source: each page of this physical notepad is associated to one digital slide of the 
presentation. The speaker can thus write his own comments on the notepad and 
easily access to the corresponding slide. Furthermore, potential animation steps of 
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each slide are controlled through user’s tap on the notepad. The corresponding 
ASUR model (see Fig. 2 - bottom) involves three physical entities (notepad, user, 
attendees). One digital entity, the slideshow, is represented at the top of the model 
and adapter entities, bridging the physical and digital worlds, are positioned in the 
middle of the model representation. The arrows represent the interaction channels, 
supporting data transfer; they are linked to entities with connectors (circles). 
These different ASUR elements are detailed in the following sections. 

3.1   Structural Elements of the Interaction 

To depict the interaction between two entities, such as the interaction between the 
User and the RTool “notepad” (see Fig. 2 - bottom), several concepts of the meta-
model are required (see Fig. 3). Each concept, detailed in the following subsec-
tions, represents, describes and characterizes different elements of the interaction: 
the entities involved, the transmitted information, the way the emitter produces in-
formation and the way the receiver senses the information. These concepts are 
represented with distinct classes in the metamodel and each class displays its own 
attributes. This structure thus reinforces the visibility of the different forms of 
components involved in a MIS and their description. This is in line with the  
Benefit “B1: characterization” of use of MDE. 

 

Fig. 3 Participating Entity, Connector, Interaction Channel and Representation elements 

Participating Entities. The first main element, participating entity (PE) (see  
Fig. 3 - left), is used to represent an entity involved in the interaction; it can be 
physical or digital. Specific physical entities, Adapters, are used to interlace  
digital and physical worlds. To represent the decomposition of this class in the 
metamodel, the concept of class inheritance is used between elements as described 
in Fig. 4; this implies the existence of several abstract classes (e.g., physical entity 
and digital entity) to refine the role of each entity. 
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Fig. 4 Part of the metamodel describing Participating Entities 

Interaction Channels. The second main element, interaction channel (IC) (see 
Fig. 3 - right), is used to represent information exchange between Participating  

Entities. This class of the metamodel contains two major attributes: medium (light, 
physical contact, infrared, air, etc.) and information. Medium describes the element 
carrying the data and information depicts the content and meaning, i.e. the concept 
to which is related the message carried on this Interaction Channel. In the fragment 
of the Notepad Assisted Slideshow illustrated on Fig. 5, the Interaction Channel 
between the “user” and the “notepad” transmits information related to a “page  
selection” and is based on “physical contact” as medium. 

Representations. The third main element, representation (see Fig. 3 - right), is used 
to characterize the way the information is encoded on an Interaction Channel: it de-
scribes the elements that form the message carried along the interaction channel. The 
representation class of the metamodel refers to the Interaction Channel it is refining; 
it includes a list of attributes, which correspond to characteristics identified in ASUR 
and relevant to qualify an information flow. These attributes express the language 

form (how the elements are expressed), the dimension (2D, 3D, stereo …), the frame 

of reference (point of view on the scene) and four Bernsen properties - linguistic, 
analogical, arbitrary and dynamic. These attributes can be progressively defined as 
the design of the system becomes more precise. In the fragment of the Notepad As-
sisted Slideshow illustrated on Fig. 5, the representation is named “pages folding” 
and characterized by the language form “move”. 

As only one representation may be associated to one Interaction Channel, all 
of its attributes could be part of the Interaction Channel class. But we considered 
the representation as an independent class in the metamodel, because this distinc-
tion clearly marks the difference between the coding scheme of the information 
carried (representation class) and the properties of a channel expressed in the In-

teraction Channel class. The characterization of a representation can therefore be 
reused for refining another Interaction Channel, either in another model or be-
tween two other entities of the same model. It thus promotes the reuse of design 
solutions and facilitates the evaluation of coherence among the forms of the data 
exchanges in a given model. This separation also allows further evolution of the  
 



Taking Advantage of MDE Foundations for Mixed Interaction Design 231
 

representation that might need to include new characteristics, to refine some of 
them, or to introduce new kind of representations that would, for example, be  
specific to physical, visual or digital mediums. This is in line with the benefit “B3: 
evolution” of MDE and also facilitates the use of other models, as suggested by 
the benefit “B4: articulation”. 

 

Fig. 5 Interaction between two Participating Entities 

Sensing Mechanisms, Modification Methods and Connectors. The fourth main 
element of the metamodel is a set of three classes. Indeed, to complete the descrip-
tion of an information flow with ASUR, the source (emitter) and the target  
(addressee) of the interaction channel have to be characterized. Such elements are 
described in the metamodel respectively with the modification method to affect a 
medium used by an Interaction Channel and, the sensing mechanism for listening 
to the medium.  

Each Interaction Channel thus includes a reference to one sensing mechanism 
and one modification method. These two anchors inherit from the class connector 
which includes two attributes (see Fig. 3 - left). Share Level indicates how many 
elements can be connected on this connectors. The location attribute depicts where 
the information is perceived (sensing mechanism) or affected (modification 

method). Considering the fragment of the Notepad Assisted Slideshow illustrated 
on Fig. 5, the “hand” of the user is the modification method which affects the 
channel; resulted modifications on this channel are captured through a “physical 
impact” (sensing mechanism) on the “Notepad”.  

The connectors thus complete the description of modalities. They also allow 
expressing and exploring the potential multimodal input/output capabilities of a 
Participating Entity: indeed, several connectors can compose a Participating Entity 
and can also be linked to several Interaction Channels. In that way, each connector 
describes one communicating faculty of a Participating Entity. It is therefore 
possible to identify a set of reusable connectors: human’s sensing mechanisms 
(sensory organs - eye, ear, etc. -, skin), or APIs in the case of adapters. 

3.2   Additional Design Considerations 

With the introduction in ASUR of characteristics to better describe the physicality 
of the interaction [31], the notion of interaction groups has also been introduced. 
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Groups are intended to support the study of one property or specific design issue 
and to identify parts of the ASUR model required or involved in this considera-
tion. Therefore, each interaction group can be considered as a specific dimension 
for analyzing a MIS design solution. For example, a group may enclose entities 
and channels related to a given feedback: this group will foster the design team to 
consider all the elements of the group simultaneously when reasoning about this 
feedback design. Given this informal definition of an interaction group and  
the core elements of the metamodel, interaction groups clearly appear as a  
composition of Participating Entities and Interaction Channels.  

 

Fig. 6 Interaction Group composition 

We further investigate this concept by identifying two forms of groups: re-

source groups, gathering Participating Entities only, and communicating groups 
gathering Participating Entities and Interaction Channels (see Fig. 6). In the 
metamodels, both forms of communication groups inherit from the interaction 

group superclass that references Participating Entities. 

Resource Groups. This first kind of group, called Resource Group, contains  
Participating Entities only. A resource group referencing only digital entities is 
out of scope of this chapter, but might support the identification of constraints be-
tween digital elements: a link of composition or distribution constraints are such 
examples. Two other resource groups are presented and illustrated in Fig. 7. 

 

Fig. 7 Resource Groups and their attributes, illustrated on the case study 

Physical proximity. Among the two resource groups defined in ASUR (see  
Fig. 7), the physical proximity group exclusively includes physical entities. This 
group is used to express the fact that several Participating Entities are grouped in 
the same physical location: they either compose a unique object or they are  
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physically close during the user’s interaction with the MIS. The attribute  
dependence specifies the kind of proximity the Participating Entities are sharing 
(close to each others, included in, one over the other, etc.). 

Mixed proximity. This group contains physical and digital entities which are re-
spectively physical and digital representations of the same concept involved in the 
task. The representation of this group in the metamodel is a class that contains 
three attributes: (1) the link can be established statically or dynamically during the 
interaction; (2) there can be an analogy between the behaviour of all entities of 
this group or not, and (3) there can be an analogy between the appearance of all 
entities or not. 

 

Fig. 8 Communicating groups and their attributes 

Communicating Groups. This second kind of group, Communicating Group  
(see Fig. 8), also highlights concerns or specific issues to be explored when de-
signing an interactive solution. It is complementary to the Resource Groups as it 
more specifically focuses on the way the interaction occurs and not only on the  
entities involved. Therefore, the class representing Communicating Groups also 
references Interaction Channels and may contain attributes. Based on reported  
experiences with the ASUR model, the metamodel currently includes five useful 
Communicating Groups. We briefly present them in the following paragraphs. 

Interaction path. This group highlights elements of the models required to perform 
a specific part of the modelled task. IUM-content and IUM-context respectively 
express what the user is intending to perform and the context in which this can be 
performed. 

Group for action. This group expresses a causal relation between Participating 

Entities of the model and a transfer of information. A condition will trigger the 
execution of the predefined role of the group.  

Group for reuse. This group depicts an ASUR pattern, as defined in [7]. Such pat-
terns can be stored for further reuse in other models. A recommendation, such as 
ergonomic criteria, can be added to precise the most suitable situations in which to 
use it.  

Group for coherence. This group federates elements of the model that must  
be considered to evaluate a property on the model, such as the continuity of the  



234 G. Gauffre and E. Dubois
 

interaction [2]. Each property to assess is an instance of this group. The rule  
expressed in the language expLang describes how the property is assessed.  

Group for feedback. This last group reinforces the importance of a specific  
coupling between inputs and outputs with a MIS.  

Resource Groups and Communication Groups are original elements considered in 
a model. They both highlight design considerations, without requiring an immedi-
ate focus on it: they can be marked but treated later in the process which is in line 
with the benefit “B5: process”. In addition, the concept of group supports the use 
of complementary languages or models to better address these considerations 
(e.g., expLang may refer to another metamodel): this is in line with the benefit 
“B4: articulation”.  Finally, other kinds of interaction groups may be needed in 
the future. The structure of the metamodel enables to capture and characterize 
them easily: it is only required to add a class for each group, specify attributes and 
add references to existing elements of the metamodels. This is in line with the 
benefit “B3: evolution”.  

Based on this metamodel, it is now easier to correctly and entirely use the ASUR 
model for designing MIS. The specific point of view offered on the interaction as 
well as the elements taking part in a MIS, the way they interact and additional 
complementary facets are clearly documented and separated from each other. The 
metamodel itself offers a descriptive support to this design resource, structured 
with Ecore standards, and thus easing its understanding and promoting its diffu-
sion. Increasing its use also rely on the existence of tools for manipulating ASUR 
models. Thanks to the efforts of the MDE community, such environments can be 
derived from the metamodel; it thus contributes to a rapid development of a tool 
and the possibility to embed “grammar” constraints in the tool itself. The next sec-
tion presents the tool that has been derived using the frameworks of the Eclipse 
Modelling Project (EMP) [32]. 

4   Model-Driven Tools Derivation 

Facilitating the use of a model, necessarily requires a clear documentation but also 
takes large advantage of a computer assisted support for its use. We first review 
existing environments for manipulating some of the already mentioned models 
and highlight the benefits of MDE for creating such an environment. We finally 
present GuideMe, an ASUR editor based on the metamodel previously introduced.  

4.1   Existing Tools for Manipulating Models of MIS 

In the specific domain of MIS, model-based design tools that focus on the interac-
tion, independently of implementation resources, are not common. Actually, the 
rare ones are not based on a metamodel expressed with MDE standards and  
therefore, they cannot be updated according to the evolutions of the metamodels. 

However, tools have been created for editing models previously introduced like 
MRIML [27], CUIML [28] or APRIL [29]. Standard functionalities of these  
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editors enable the creation and modification of models and their storage as XML 
documents. But validation of models, storage with different technologies and  
export to different notations are not possible.  

Efficient tools for rapid-prototyping have been proposed, too, like d.tools [33] 
or Artect [34]. Their functionalities offer to directly run a prototype from the cur-
rent model designed, with adjustments of the software components at run-time. 
But their choice of developing the entire design environment without considering 
the potential need for collaboration with other models and technologies make 
them difficult to use and to extend: for example, proprietary software architecture 
may imply difficulties to use it on different platforms.  

Finally, tools based on TopCased to support the UsiXML metamodel manipula-
tion [30] give the possibility of creating models, validating and linking them with 
other tools. Developed in the context of critical applications and systems  
development, such an approach is more open to interconnection with other models 
and design or implementation resources.  

Given that the design of MIS requires multiple resources and need to consider 
different facets, using standards and articulation facilities seem to be particularly 
adapted to the domain of MIS. Such facilities are supported by MDE tools based 
on the Eclipse Modelling Project (EMP). Indeed, EMP regroups efficient tools to 
create models editor that include the most common editors’ functionalities. Fur-
thermore, MDE tools can generate models editors on the basis of the definition of 
the corresponding metamodel, expressed in EMF with ECore; it results in a 
straightforward maintenance of the editor when the metamodel evolves. More-
over, the extension principles promoted by Eclipse facilitate the development of 
additional features (validation, export, etc.) on the basis of concepts and  
functionalities such as the notion of plugin. Therefore, even if existing tools have 
interesting functionalities, they do not offer the flexibility of those generated 
within EMP. Following this approach, the ASUR metamodel has been associated 
to an editor based on EMF and GMF for three main reasons: 1) the use of a Do-
main-Specific Language dedicated to mixed interaction design; 2) the perspective 
to support a development process based on the combined use of ASUR and other 
complementary metamodels; 3) the possibility to maintain these tools all along the 
evolution of ASUR, without having to pay attention to the development of the  
underlying framework (Eclipse) and constraints for supporting extensions. 

4.2   Creation of a MIS-Specific Design Tool 

The development of GuideMe [35] is based on the ASUR metamodel expressed with 
Ecore. It defines an Eclipse “feature” easily pluggable to any Eclipse environment 
thanks to its extension support. The core of the feature is generated with EMF, which 
produces two plugins in charge of manipulating the models. In addition, GMF is used 
to generate a third plugin that allows the graphical manipulation of the ASUR  
models. Following the MDE philosophy, GMF allows to define a graphical notation 
as a separate model. By mapping the Ecore elements constituting ASUR and the 
GMF notational elements, the framework generates almost automatically a specific 
plugin that will provide models creation and validation.  
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The resulting editor (see Fig. 9) creates ASUR model, expressed according to 
the XMI standard and thus easily shareable. Currently only one graphical repre-
sentation is defined, i.e. one specific GMF plugin, but other ones can be easily  
developed to propose different visualisations of the ASUR models.  

 

Fig. 9 ASUR model edition in GuideMe/Eclipse environment 

      

Fig. 10 Lasso selection tool and ASUR elements repository view 

We developed additional tools based on model transformations to support the 
export to textual descriptions and HTML documents. Such functionalities are part 
of an extension that complements and modifies the default functionalities of GMF 
generated editors. This extension also contains a lasso-based selection facility to 
create ASUR groupings (see Fig. 10 - left), a panel for editing the attributes of 
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ASUR elements, with content proposals and operations on ASUR groupings 
(evaluation of rules for the Group for Coherence) and another panel to facilitate 
the reuse of existing ASUR elements stored in a repository (see Fig. 10 - right). 

4.3   Design Features Additionally Required and Envisioned 

The tool proposed remains in constant evolution because of the use of ASUR with 
other modelling resources. Therefore, additional features are required to edit other 
models and perform model-transformations. Currently, transformations between 
ASUR models, software architecture models and runtime environments dedicated 
to MIS are integrated into GuideMe [36]. 

Concerning the ASUR editor itself, its use in our research group allows to up-
date its functionalities and to prepare the evaluation of both the ASUR notation 
and the editor’s functionalities. If the existing functionalities require some evolu-
tions to satisfy their uses and usability, other ones are also necessary to provide 
more efficiency when using models during design. The following evolutions will 
mainly focus on the management of several ASUR models, to easily create design 
alternatives and to compare or merge several ones. Another important perspective 
is to support the tracking of these evolutions along the design process. For that 
purpose, collaboration between the modelling resources used and models for  
design rationale is one solution considered. 

As the works led around ASUR also imply informal approaches for design 
(coupling of ASUR and Focus-group), the modification of the interaction with 
GuideMe editor is also one of our major objectives. The goal is to enable collabo-
ration between several designers around a more or less simplified version of the 
ASUR model, and with tabletop interactions for example. Configuring the level of 
details of the model provided to the stakeholders and the interactions offered to 
manipulate the editing environment will benefit from the facilities brought that 
MDE brings and that is now embedded into GuideMe. 

5   Conclusions 

Motivating the role of MDE in the context of the design of MIS and adopting a 
MDE approach to describe the ASUR design model for mixed interactive systems 
constitute the main contribution of this chapter. After reviewing the challenges of 
using design models in the context of MIS and some of the currently available 
models, this chapter highlighted how existing models are suffering from a lack of 
clear description and access. As a result, this chapter raised the need for the do-
main of MIS to ease model diffusion and use, as well as the need for an easier 
comparison between models of the domain. To contribute to this challenge, this 
chapter discussed how the MDE framework can be positively used to express the 
full definition of a metamodel dedicated to mixed interaction design. It resulted in 
an explicit description of the semantics and range of the ASUR model. Following 
the advances of MDE tools, this chapter finally introduced the way the metamodel 
has been used to create a pluggable and flexible editor to ASUR, a first step for its 
integration to different studies on the model-based development of MIS. 
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This work now opens perspectives to quantify and qualify the effects of using 
one given model during the design: such a structured reference can be used for 
supporting the comparison of models. It also constitutes a basis to clearly identify 
which aspects of which model are best suited to address which part of the complex 
design process of MIS: guidelines and prerogatives to the use of each model could 
then be identified. Finally, developing a detailed and clear breaking down of such 
models is also a first step toward the elicitation of complementary models for MIS 
developments. 
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T:XML: A Tool Supporting User Interface 
Model Transformation 

Víctor López-Jaquero, Francisco Montero, and Pascual González* 

Abstract. Model driven development of user interfaces is based on the transfor-
mation of an abstract specification into the final user interface the user will  
interact with. The design of transformation rules to carry out this transformation 
process is a key issue in any model-driven user interface development approach. 
In this paper, we introduce T:XML, an integrated development environment for 
managing, creating and previewing transformation rules. The tool supports the 
specification of transformation rules by using a graphical notation that works on 
the basis of the transformation of the input model into a graph-based representa-
tion. T:XML allows the design and execution of transformation rules in an inte-
grated development environment. Furthermore, the designer can also preview how 
the generated user interface looks like after the transformations have been applied. 
These previewing capabilities can be used to quickly create prototypes to discuss 
with the users in user-centered design methods. 

1   Introduction 

Using models to document the design of a user interface is not a novel approach. 
Nevertheless, using models just for documenting is not enough to tackle the chal-
lenges posed by the current situation in software development. Models are now 
supposed to drive the development as first order artifacts, as constructs of the user 
interface. This trend in user interface design has been pursued from the 90s in 
model-based user interface design community [19], but it is not until now that this 
technology is reaching a state mature enough to be widely adopted in industrial 
environments. This model-based user interface trend conforms to the general 
software development philosophy proposed by different organizations. Therefore, 
it supports the path towards a common technological ground for both business  
logic and user interface design.   

A model can be as simple and informal as a paper prototype or as formal and 
complex as an algebraic representation. Using computable models, such as  
declarative models, supports using systematic approaches in the development of  
software, and user interface development is not an exception. 
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There are many variables that foster model driven approaches, and should  
prevent designers from using traditional approaches [11][22]: 1) Diversity of us-
ers: currently the profile of the users of software applications is shifting more and 
more towards a less advanced user profile. The traditional advanced user profile, 
usually even with some programming skills, has become a small percentage 
among the mass of users. 2) Richness of cultures: when an interactive application 
is going global, its user interface cannot remain the same for all languages,  
countries, and cultures. 3) Complexity of interaction devices and styles: there is a 
wide variety of interaction devices and styles to design to. 4) Heterogeneity of 
computing platforms: many different platforms are available, and they run  
different operating systems and have different capabilities. 5) Multiple target pro-
gramming languages: depending on the platform the developer can choose what 
language to use during development, but it is not the case for many platforms. 6) 
Multiplicity of working environments: the devices are being used under different 
physical environmental conditions (light, noise, etc). 

Taking into account all these variable parameters using traditional approaches 
for user interface design would require of different versions in order to couple 
with the many different parameter combinations that can arise. Nevertheless,  
creating several versions of the same application will easily result in version  
inconsistency and high monetary cost for maintenance. 

Unfortunately, using model-driven approaches to user interface design is not per-
fect, and one of the main critics has been the claim that it lacks the required mecha-
nisms to successfully imbue the model-driven design process with enough usability 
information. This is actually one of the main issues that still require more research ef-
forts, although some solutions are starting to emerge. For instance, in [15] patterns at 
different levels of abstractions are proposed as a means to include design experience 
in model-driven approaches to produce more usable user interfaces. 

Model-driven approaches to user interface design are based on the creation of 
different declarative models, staring with the more abstract ones (usually platform 
and computation independent) and transforming these models into more concrete 
ones until the user interface the user will interact with is generated. 

In this paper, a tool to support the design of the transformation rules required  
to perform the model manipulations to generate a user interface is described.  
This tool is called T:XML. The paper is structured as follows. First, a description 
of the model-driven foundations underlying T:XML is provided for a better  
understanding of the tool. Next, a discussion of the different transformation ap-
proaches available in the literature is shown, to justify the transformation approach 
selected. T:XML is described in detail next, showing how it works and how it can 
be used. Finally, some conclusions and future work round up the paper. 

2   User Interface Transformation Framework 

When using a model-driven approach one first issue is to decide what models to 
use for the specification of the system. In T:XML we are currently supporting 
those models used in UsiXML [21]. A description of these models and their  
relationships can be found in [2]. 
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The framework supported in the tool is described in [2] (see Fig. 1). In this 
framework the most abstract models are tasks and domain (concepts) models. 
These models are used for the generation of an abstract user interface independent 
from both modality and platform. Then, a concrete user interface is generated for 
each modality (but they are still platform independent). Lastly, the actual user in-
terface (final user interface) is generated by using renderers for different platforms 
and languages. 

‹ Task & Concepts

› Abstract UI (AUI)

fi Concrete UI (CUI)

fl Final UI (FUI)

‒ Task & Concepts

† Abstract UI (AUI)

‡Concrete UI (CUI)

· Final UI (FUI)

Context of use A Context of use B

Reification TranslationAbstraction

‹ Task & Concepts

› Abstract UI (AUI)

fi Concrete UI (CUI)

fl Final UI (FUI)

‒ Task & Concepts

† Abstract UI (AUI)

‡Concrete UI (CUI)

· Final UI (FUI)

Context of use A Context of use B

Reification TranslationAbstraction  

Fig. 1 User interface framework supported in T:XML 

Three transformation operations are considered in the framework: 1) reifica-
tion: a model can be reified into a more concrete model, 2) abstraction: a model 
can be abstracted into a more abstract model, and 3) translation: a model can be 
translated at the same level of abstraction to accommodate to changes in the con-
text of use. These operations elaborate on the idea of having different entry points 
in the development process [8], i.e. the developer could start from an abstract 
mock-up of the user generated by using tools such as Guilayout++ [14]. 

As aforementioned, in the model-based approach to user interface design a set 
of models is used to specify the system. These models are transformed from the 
more abstract models to the more concrete ones. Nevertheless, a set of rules to 
specify how the models are transformed is required. These rules can be designed 
by using our tool T:XML, but what transformation approach should be used for 
the execution of the rules? In the next section, a review of current approaches is 
introduced, along with the motivation for our choice. 

3   Transformation Approaches for Model-Driven Development 

Many different approaches can be found in the literature regarding the transforma-
tion of models into other models or code. These different approaches are aimed at 
the development of general systems, but some of them are specific (or have been 
adapted) for their use in the development of user interfaces. 

According to [3], the following generic approaches for model transformation 
are being used: (1) direct-manipulation approaches. (2) structure driven approach. 
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(3) relational approaches. (4) graph transformation based approaches. (5) template 
based approach. (6) operational approach. (7) hybrid approach. (8) other ap-
proaches: there are other approaches, such as XSLT (eXtensible Stylesheet Trans-
formation Language) [24], that doesn’t fall in any of the previous categories, but 
they are also commonly used in model transformation. 

On the other hand, there are some approaches in user interface model transforma-
tion frameworks that adapt some of the aforementioned techniques. For instance,  
in [8], an adaptation of the graph transformation approach for the development of  
UIs can be found. In this approach, the user interface model expressed in terms  
of UsiXML [21] user interface description language is transformed by using the  
attributed graph grammars. To perform this transformation, the API provided by 
AGG tool [20] is used. 

According to [16], there is a set of desirable features a model transformation 
approach should cover: 

− Transformation rules: the approach should provide a language supporting the 
specification of transformation rules. 

− Rule application control: a mechanism to control what rules to apply is  
required, since not every rule is applicable in a given context. 

− Rule organization: reusing the transformations is a key feature. By reusing trans-
formations we are not just reusing the time spent in creating the rules, but also 
the transformation rule design experience gathered during the development. 

− Source-target relationship: it is the ability of the transformation approach to  
be able to generate several output models. This is important in user interface 
generation also, since usually several output files are required. For instance, if 
we would like to generate an HTML presentation out of a set of models, usually 
the formatting of the web page is done by providing a separate CSS (Cascade 
Style Sheet) file. 

− Incrementally: because changes can occur both due to changes in the require-
ments and changes in the context of use, it is necessary to provide the ability to 
update an existing model. 

− Directionality and tracing: ideally, the transformations should be bidirectional, and 
log of what transformations have been applied should be maintained. This feature 
supports a very important issue in transformation: undoing transformations.  

These desirable features are applicable to user interface generation by model 
transformation. 

Currently, the only approach covering all these features is QVT [17].  
Nevertheless, the way QVT transformations are specified is complex, and it re-
quires additional knowledge about OCL (Object Constraint Language). Further-
more, the application of the transformation using the current engines implies using 
a considerable amount of computing resources. 

We have been using the graph transformation approach for some years now [8]. 
Although the way the transformations are specified if quite visual when using 
AGG tools [20], the amount of resources required for the transformation of an av-
erage user interface is somehow slow for its use in real-time environments. This is 
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especially true when using mobile devices, whose capacities are much scarcer than 
desktop devices. Furthermore, some of these devices don’t support the Java Run-
time Environment required to run AGG engine. Graph transformation supports all 
the desirable features for a model transformation approach, except it does not  
support directionality and tracing. 

On the other hand, XSLT is an approach very popular among software 
developers, and there are plenty of tools supporting both the design and the 
execution of XSLT. It provides a versatile tool to express the transformation rules. 
However, rule organization, rule application control and incrementally must be 
implemented by the developer. Furthermore, it does not support directionality and 
tracing. 

4   Transformation Engine in T:XML 

Because of our good experience in the design of transformation rules following the 
graph transformation approach, we have worked in the design of a transformation 
approach covering all our requirements. One requirement not usually considered in 
model transformation approaches is portability. Portability is paramount to user 
interface transformation, if run-time transformation should be supported. Thus,  
the transformation approach chosen must work for the different platforms the 
software was designed for, from desktop PCs to smartphones. This requirement  
can be overcome by using a client-server architecture, but it requires of a network 
connection constantly, that can eventually exhaust quickly the battery in portable 
devices. 

Thus, in our approach, we are using a graph transformation approach to the de-
sign of transformations, but these transformations are internally converted by our 
tool to generate XSLT code. This code can be executed in almost every platform by 
using either Java-based implementations or Javascript-based implementations [1]. 

Nevertheless, by using this approach, we are not supporting directionality and 
tracing. To support directionality, we have implemented an undo layer on top of 
XSLT. This undo layer takes advantage of the information regarding the applied 
rules stored in the model transformed. This kind of information is stored by means 
of mappings (or links) [12] that express the relationships between the elements in 
the models being transformed and the elements created in the target models. These 
mappings are supported by user interface description languages (UIDL) such as 
UsiXML [21], XIML [23] or the Teallach approach [5]. 

Source-target relationship requirement for model transformation can be imple-
mented in XSLT by using XSLT 1.1 or 2.0. In those versions of XSLT, several 
output files can be produced in a single transformation. 

Next, a description of T:XML, the tool that tries to cover all the requirements 
enunciated throughout this section, is included. 

5   T:XML: Visually Designing Transformation Rules 

T:XML is a tool supporting the specification, organization and validation of trans-
formation rules. This tool uses an approach for the specification of rules inspired 
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on the graph transformation tool AGG [16]. Nevertheless, the visual notation used 
has been adapted for an easier specification of the user interface transformation 
rules. 

 

Fig. 2 Transformation design workflow in T:XML 

Currently, the tool supports the definition of transformation rules that transform 
models specified in UsiXML language, but support for other user interface speci-
fication languages such as UIML [6] is planned, since the tool was designed as a 
generic transformation tool. Nevertheless, the dictionaries used for an easier  
editing must be updated for each language supported. 

The aim of the tool is the generation of the specified transformation for differ-
ent target transformation model languages, such as XSLT or QVT. By generating 
code for different transforming languages, we pursue maximizing the reuse and 
portability of the designed transformation. As a probe of concept, the tool cur-
rently supports the generation of XSLT code automatically for the visually de-
signed transformations. Furthermore, the tool supports the generation of the final 
code of the user interface in OpenLaszlo language [18], for previewing and de-
bugging the transformations designed. By doing so, the designer can easily  
discover unwanted effects or flaws in the designed adaptations. 

In T:XML, the designer follows an iterative process that fits perfectly in user-
centered design paradigm [7] (see Fig. 2). First, the designer should create the 
starting models. These models can be created either by hand (a very tedious job) 
or by using one visual tool such as IdealXML [13], GuiLayout++ [14] o gra-
fiXML. The designer can also create or modify the source model by using the edi-
tor available en T:XML. Next, the designer creates transformations by creating 
transformation rules and composing them. Once the designer has finished a trans-
formation, it can be previewed by using a renderer. This renderer will create a  
representation of how the actual user interface will look like. This rendered  
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representation can be used as a hi-fi prototype, so the designer can discuss with 
the end-user to find any usability issues. The designer will iterate through this 
process until a final version is agreed with the customer or/and the end-users of 
the designed application. 

5.1   Transformation Meta-model 

Since our aim is supporting multi-path user interface development [8], with sev-
eral different entry points, the transformation meta-model used does not force the 
designer to use a specific development process. This freedom in the process  
followed in the development process is positive since it supports multiple  
approaches. Nevertheless, the same freedom in the process can lead to the creation 
of transformations hard to reuse, and therefore losing one of the main benefits of 
model-driven development. 

The transformation meta-model underlying our tool is depicted in Fig. 3. The 
transformation model consists of a series of transformation steps. Each one repre-
sents a stage in the development process, for instance, the transformation from ab-
stract to concrete user interface. Nevertheless, in order to reduce the complexity of 
each step, they can be divided into other transformation steps. Each step also has a 
source input model and a target output model. A step consists of a set of ordered 
rules. The order of the rules represents the order in which the rules should be  
executed, within a specific step. 

 class Transformation Metamodel

transformationModel

- name:  String

- path:  String

transformationStep

- name:  String

- order:  int

sourceModel

- sourceFile:  String

targetModel

- targetFIle:  String

rule

- name:  String

- description:  String

Order

- order:  int

1..* 1..* 0..1

1..*

0..1

0..*

0..*

1..*

 

Fig. 3 Transformation meta-model supported in T:XML 

The metaphor used in T:XML to represent this transformation meta-model is 
the project folder structure (see Fig. 4). A project includes as many steps as desired 
(represented as folders). In the example, there are two steps Task2Abstract and  
Abstract2Concrete. These folders can include other folders (substeps). Every 
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folder can include XML input files (ATM.usi in the example). Finally, each input 
file includes some transformation rules that will be applied to this input file. By 
default, the input file for a step is the output from the previous one. Therefore, in 
the example, the ATM.usi file in Abstract2Concrete folder is generated by 
Task2Abstract step. The order in which steps and rules are executed is the same 
shown in the folder tree. It can be changed by using drag & drop. 

 

Fig. 4 The folder metaphor for transformation meta-model 

Next, a description of the functionalities provided by T:XML to designers is 
shown. 

5.2   Designing Transformations in T:XML 

When T:XML starts, the designer should create the structure of the project, that is, 
the steps that best fit the design process he is using. It can range from a single 
translation operation to accommodate the user interface to a new context of use to 
a full reification process starting from the most abstract levels or even an  
abstraction process to apply reverse engineering. 

The development environment has a menu, as an alternative to toolbars options. 
The project structure is located at the leftmost part of the environment. The struc-
ture is a tree hierarchy where the designer can create/modify the structure of the 
project, reshuffle the order of the steps and the rules, create/delete/browse  
transformation rules and add/delete/create UsiXML input files. 

5.2.1   The Graph Edition Area 

When a UsiXML input/output file is double clicked, the file is open in the design 
area. The UsiXML input file is an XML-based specification. Nevertheless, since 
our tool relies on graph transformation visual syntax for the creation of the trans-
formation rules, the UsiXML specification must be converted to a graph represen-
tation. To do so, every XML element in the specification will become a node in 
the graph, and implicit containment relationships will be used to create the hierar-
chical structure, i.e. if a window element has a button element inside its tag, then 
an edge will be created from the window node to the button one. The nodes from 
each model (task, domain, abstract user interface, …) are drawn in different colors 
to help the designer. Furthermore, some extra work is required to accommodate 
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the UsiXML representation to a graph representation. There are mapping relation-
ships that establish inter-model relationships. These inter-model relationships are 
represented as an edge between the elements from the different models, i.e. if a 
task is performed in an abstractContainer, then the isExecutedIn mapping rela-
tionship will be represented as a link between the task and the abstractContainer 
involved.  These mapping relationships are presented by light green edges, so the 
designer can distinguish them from regular edges. 

To keep clean this design area, the designer can collapse or expand those 
branches not currently in use. The branches that have been collapsed are marked 
with a “+” sign (see head element in Fig. 5).  

In the attribute edition area, the designer can modify any of the attributes of  
the elements in the model. Notice some nodes (see window element in Fig. 5)  
have a white tick within a green circle. This tick denotes that that element has an 
associated value in the resource model. This model is used in UsiXML to provide 
a separation of the contents from the presentation, supporting internationalization. 
For each context of use available in the model (see context elements in Fig. 5), a 
different instantiation of the resource can be provided. The resources can be modi-
fied in Resources tab. 

 

Fig. 5 T:XML: input file edition area 

The designer can freely modify the XML input file by clicking the code tab. 
Nevertheless, to do this, designer must be very familiar with UsiXML XML sche-
ma. Code tab and the graph-based representation are always in synch. Thus, any 
change made in either the graph-based representation or the XML code represen-
tation will be automatically reflected on the other representation. 
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5.2.2   Transformation Rule Editing Area 

When the user starts the transformation rule designer by clicking on the mask icon, 
the transformation design area appears. This area has four parts (see Fig. 6). It has a 
toolbar with buttons, and three areas for the specification of the transformation rule. 
To exemplify how transformation rules are created, a sample transformation rule 
will be created where a group of radio buttons is replaced with a dropdown list. 
This rule could be fired in different situations. For instance, a sensor could detect a 
change in the orientation of a mobile device when the user is switching from por-
trait orientation to landscape orientation. Since in landscape orientation the vertical 
space available is reduced, a set of radio buttons could be replaced with a drop-
down list in order to decrease the screen space required to show the user interface. 
If the user switches back to portrait orientation, the reverse transformation could be 
done to restore the radio buttons. This rule could be triggered also in a desktop en-
vironment when the user resizes the window and the vertical space available is re-
duced. This rule shows the flexibility of using graph transformation graphical nota-
tion for the specification of transformation rules. Notice, this rule is dealing just 
with the aforementioned CUI level of abstraction of the. Furthermore, this trans-
formation is a translation, since the transformation takes a CUI model and produces 
a new CUI model, but still at CUI level of abstraction.  

The basic notion underlying graph transformation rules is the specification of 
patterns to be found in the original input graph, and then the specification of how 
those matching parts in the graph will be transformed to generate a new graph. 

 

Fig. 6 T:XML: transformation rule edition area 

The transformation edition area is split in three areas (see Fig. 6). The central 
area (in white color) is the Left Part specification area. In this area, the designer 
defines the pattern that should be matched in the input model. In our example, we 
are searching for group boxes with some radio buttons in it (see Fig. 6). The right 
most is the Right Part specification area. In this area, the designer specifies how to 
transform those nodes matching the left part. Those elements in the left part of the 
rule not present in the right part will be deleted from in the resulting graph. The 
usual way to create a rule is first the specification of the left part of the rule, then 
replicate the left part in the right part and start modifying it until the desire result 
is achieved. To make easier this process, when the left part is specified, the de-
signer can select those parts that should be replicated in the right part and then 
click in the right part area to have it replicated in the right part. 
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Fig. 7 Steps in the definition of a sample rule 

In our sample rule, we start by specifying the pattern we are looking for, that is, 
a radio button that belongs to a group box (see step 1 in Fig. 7). Then, we have 
dragged the left part into the right part (see step 2 in Fig. 7). The matching num-
bers for groupBox and radioButton in both parts define a link between those 
nodes. In some way, it means that the element in the right and left parts with 
matching numbers is the same instance, and therefore, when we are changing the 
right part matched element, we are transforming the left part matched element into 
something else, i.e., we want to transform the groupBox into a comboBox and the 
radioButtons into items for the comboBox. Thus, in steps 3 and 4 in Fig. 7, we 
change the element type from groupBox to comboBox, and from radioButton to 
item. Therefore, all the parts of the model to be transformed matching the left part 
of the rule will be transformed into what we put in the right part.  

If the rule is applied to the input graph model shown in Fig. 8a, the result would 
be the one shown in Fig. 8b. As can be seen in the figure, the groupBox has  
become a comboBox, and all the radioButtons have become items. 

T:XML supports also the definition of variables. Variables can be used to apply 
arithmetic operations to the attributes in the model or to take the value of an at-
tribute to set the value of another attribute. For instance, in the previous example, 
we could create a variable x for the width attribute of the groupBox element and 
then use this value to customize the value of the width of the comboBox created by 
assigning x-10 to the width attribute of the comboBox element in the right part of 
the rule. Thus, the actual width of the comboBox would be the width of the 
groupBox minus 10. 

Finally, the leftmost part of the rule editing area is used to specify a NAC 
(Negative Application Condition). The NAC is used to specify situations in the in-
put graph that prevent a transformation rule from being applicable.  
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(a) Graph before transformation 

 

(b) Graph after transformation 

Fig. 8 T:XML: graph representation before and after transformation 

5.2.3   Previewing the Transformation Rule Results 

After the transformation rule is created, it is ready to be saved and applied. 
T:XML generates the code for the target transformation language chosen. Cur-
rently, it generates a set of four XSL transformations. This XSL Transformations 
can be run in any of the many engines supporting this transformation language. 
Once the transformation rule has been applied, it can be previewed in T:XML by 
using a renderer for UsiXML to render the new UsiXML specification resulting 
from saving the graph. After the transformation rule into a user interface the user 
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can directly interact with. The designer can configure the renderers and its pa-
rameters. By default, OpenLaszlo [18] language renderer is used. Thus, when the 
user clicks on the Presentation tab, T:XML automatically generates the preview 
for the graph currently displayed in the graph edition area. In the left part of Fig. 9, 
the preview for the input UsiXML specification used for the sample rule is  
shown. In the right part of the same figure, the presentation for the sample 
UsiXML specification after the transformation rule has been applied is shown.  

 

 

Fig. 9 T:XML: previewing the presentation for input and output in transformations 

6   Transformation Rule Design Issues 

Using this approach for transformation raises some concerns regarding the feasi-
bility of using this rule-based transformation paradigm for the development of the 
whole user interface, especially, when developing complex user interfaces. 

The main issue behind rule transformation is scalability. Scalability issues ap-
pear as a consequence of rule chaining during the transformation of the models to 
produce other models. The designer of a transformation rule must consider the ef-
fects in the models produced by previous rules. This is a general issue in rule 
transformation, not just in user interface rule-based transformation development. 
Nevertheless, this problem can be partly mitigated, and it actually is in the ap-
proach proposed in this paper, by having a clear separation of concerns in the con-
cepts and features represented at each model and level of abstraction. By adopting 
the framework proposed in [2], we are keeping a separation of concerns at the dif-
ferent levels of abstraction (Domain & Concepts, AUI, CUI and FUI). Neverthe-
less, this separation of concerns is not enough. The designer must get experienced 
in structuring the rules, as a programmer gets experienced in structured program-
ming. Otherwise the reusability and feasibility of the approach are clearly com-
promised, as it is also compromised the development of a medium-size (or bigger) 
program when no structure is provided during the coding activities. 

7   Conclusions and Future Work 

The specification of model transformation rules is one of the most important  
issues in any model driven development method.  
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T:XML is presented as a tool that supports the specification of transformation 
rules for model-based development environments. This tool aims at providing the 
designers with a visual notation to create the transformation rules. Furthermore, it 
pursues also providing an integrated environment where the designer can manage, 
create, modify and preview the transformation rules. 

T:XML is designed as a generic tool for model driven approaches where the 
models are expressed by using XML-based languages. Nevertheless, current ver-
sion is focused towards the specification of transformation rules for UsiXML user 
interface description language. 

Our tool supports model-to-model transformations, covering all the models that 
can be expressed in a model-based user interface development environment (tasks, 
domain, context, presentation, etc). Nevertheless, the development of a renderer 
that produces an XML interpretable language, such as XHTML, is possible with 
our tool. 

As future work, we would like to add new user interfaces description lan-
guages, such as UIML or XIML. Furthermore, to improve the versatility of the 
tool we would like also to add support for other target transformation languages. 
We are currently working in the generation of QVT transformation language, 
since it is probably the most powerful transformation language currently available, 
apart from being one of the most widely used for general software development. 

In the next version of the tool, we would like also to include predefined tem-
plates for different user interface development processes to help designers in the 
organization of their transformation rules. 

Acknowledgments. This work is partly supported by the PII2I09-0146-8894 project 
funded by the region of Castilla-La Mancha and the Project TIN2008-06596-C02-01, 
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Formalising Interaction Patterns

Paolo Bottoni, Esther Guerra, and Juan de Lara

Abstract. The use of patterns as a way to refer to common solutions in the field

of interface design is becoming widespread. However, contrary to the situation for

software patterns, definitions of interaction patterns do not enjoy a common standard

yet. Moreover, patterns are developed for design aspects as diverse as: user experi-

ence, layout, action coordination, or specification of entire widgets, reflecting the

complexity of the field. As a consequence, research on formalisation of interaction

patterns is not developed, and few attempts have been made to extend techniques

developed for design pattern formalisation. We show here how an extension to an

approach to pattern formalisation recently proposed by the authors can be usefully

employed to formalize some classes of interaction patterns, to express relations like

subtyping and composition, and to detect conflicts.

1 Introduction

Patterns in the field of Human Computer Interaction (HCI), often called interaction

(or HCI) patterns, capitalize on best practices in User Interfaces (UI) design, con-

cerning aspects as diverse as layout, navigation, coordination, and user experience.

Several collections of such patterns are available, presented in books [31, 34] or

dedicated websites [19, 36, 39].

The movement towards patterns in HCI started under the influence of their

success in Software Engineering (SE) [18], but had to face the specific problem
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of the conflict between the designer’s view of patterns (as typical forms of col-

laborations among software components) and the user’s view (where users are

interested in reusing their experience from familiar widgets, layouts or navigation

strategies) [16]. Hence, while the components of a pattern presentation are usually

the same (for example, the Pattern Language Markup Language [14] provides a

comprehensive list of elements with name, context, problem, forces, solution, dia-

gram, implementation, among others), there is no common notation to specify the

solution. In most cases, on the contrary, the solution is presented through examples

and explanatory text, leaving it to the developer to code its details. Hence, it be-

comes hard to answer questions like: “Is X a new pattern or just a variation of Y, or

even Z in disguise?”, “Can I use X and Y together?”, or “Does the use of X depend

on using Y in the same interaction?”. A pattern formalism able to support this kind

of reasoning would therefore be useful to designers and users alike.

As HCI patterns can refer to layout, behaviour of individual components and

their coordination, or even to the domain model, presenting them only via examples

makes it hard to separate what is essential to the pattern and what is a feature of

the application domain. This hinders the definition of a “real” pattern language in

which not only to give names to patterns, but also to express pattern composition,

sub-typing, dependency and conflict, thus supporting pattern-based design. In par-

ticular, in the field of Model-Based UI Development (MBUID), techniques for com-

pleting models with respect to patterns (see e.g. [5]) can support the automatic

generation of UI components from design knowledge expressed with patterns.

In this paper, we propose an approach to the foundation of a notion of HCI pattern

languages by extending our recently proposed algebraic formalisation of a general

notion of pattern [4], with applications beyond SE design patterns. We consider a

pattern as emerging from the synchronisation of specifications of different aspects

involving entities in different domains. To this end, we define mappings between

components of an abstract UI specification and the roles played by these compo-

nents in the pattern, thus developing effective methods to establish if a particular

implementation is an instantiation of a pattern, to construct interface parts from

specialisations of patterns, and to reason about the compatibility between patterns

which should share some component. We base our abstract interface specification

on the UsiXML meta-model [37]. Moreover, we extend the theory presented in [4]

to describe relations between patterns, in particular pattern subtyping, conflict and

composition, following the developments in [5, 6].

Organisation. After revising related work in Section 2, we introduce interaction

patterns in Section 3 and present our formalisation in Section 4. Section 5 formal-

izes relations among patterns, and Section 6 draws conclusions and points to future

work.

2 Related Work

Most research on pattern formalisation originates from describing design patterns

via diagrams from the Unified Modeling Language (UML). France et al. extend
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UML class and sequence diagrams with roles and constraints, checking

conformance of a model to a pattern as the standard relationship between model

and meta-model [17]. To avoid immediate reference to UML diagrams, Kim and

Carrington add stereotypes to the UML meta-model and use Object-Z for structural

aspects [21]. Constraints are enforced in [35] via pattern-specific high-level trans-

formations.

UML profiles are extended with stereotypes and tagged values in [12] in order to

visualize roles of elements in UML class and communication diagrams, and to allow

instance-based pattern composition. The proposal in [33] uses subsets of First Order

Logic for structural aspects and Temporal Logic of Actions for behavioral ones. It

also supports pattern combinations. In [24], rules are applied to abstract syntax trees

to annotate the found pattern instances, while in [28], models are transformed to

conform to patterns, exploiting graph queries that detect needs for transformations.

Attempts to formalize HCI patterns are more limited, even though literature on

HCI patterns is expanding. For example, studies on usability have met architec-

tural patterns to include interaction mechanisms early in the design process [20].

Folmer et al. relate architectural choices to usability patterns by identifying usabil-

ity requirements which might have an impact on the architecture [15]. These are not

expressed in terms of classes and relations, but define sets of problems the archi-

tecture has to solve. In this line, van Welie et al. [16] propose bridging patterns to

provide information, in typical SE notation, on how to implement usability patterns,

illustrating possible solutions to the requirements from interaction designers. Sup-

port to pattern selection and to generation of code from pattern templates is offered

by the Pattern-Driven and Model-Based UI approach, exploiting UsiXML models

and XUL code [1]. This approach is related to architectural levels in [32].

Although no standard exists for presenting HCI patterns, several researchers have

started publishing patterns in a structured Alexandrian style, aiming at the founda-

tion of a pattern language for HCI and interaction design. In particular, Borchers [3]

proposes a notion of pattern language as a directed acyclic graph, where nodes

are patterns and edges describe references from a pattern to another. However, the

description of individual patterns relies on text and illustrations, not on a formal

characterisation, so that the existence of a relation between two patterns must be

explicitly stated and cannot be derived from their analysis.

Categorisations of HCI patterns enable understanding and problem-based selec-

tion of patterns. Mahemoff and Johnston [22] identify task-related, user-related,

user interface element and system-based patterns, while van Welie and Tratten-

berg [40] classify end-user patterns under terms such as: Visibility, Natural

Mapping, Affordance, etc., drawn from HCI principles and heuristics. However, pat-

terns present different aspects, making it difficult to assign them to a unique cate-

gory. In this paper, we identify pattern roles pertaining to specific dimensions of the

interaction design, where patterns may require roles from several dimensions.

In the area of MBUID, Schattkowsky and Lohmann propose an abstract defi-

nition of interface as a composition of platform-independent widgets and views, to

be mapped to platform-dependent realisations [29]. An abstract view of components
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of interactive systems is also at the core of the UsiXML proposal, combining

approaches to model-driven platform-independent UI design [23] and abstract no-

tions of interface objects [8]. Pribeanu and Vanderdonckt present a methodology

which exploits abstract interaction objects to derive interaction patterns from anal-

ysis of domain and task models (e.g., patterns for creating/deleting/modifying en-

tities, or drawing associations between them) relating them to specific interaction

and presentation techniques [27]. The templates are partially defined in a formal

way, but the proposed methodology does not support the definition or evaluation

of relations among different patterns. A direct extension of the UsiXML model to

describe patterns is provided in [41]. The proposal facilitates automatic generation

of interfaces from patterns, but does not support formal reasoning on patterns.

With Interaction Patterns for Rich Internet Applications, platform specific trans-

formations map both abstract patterns – described through a meta-model and an

interaction semantics – and their concrete counterparts to code, based on platform-

specific transformations [38]. Pattern concepts are described through a meta-model.

An interaction semantics, specifying what must happen when the pattern is applied,

can be given using textual descriptions or additional models.

The Wisdom model [25] reduces HCI design elements to UML through stereo-

types extending the UML meta-model; the CanonSketch model integrates this

model by taking into account presentation aspects and mapping to code [9]. Finally,

Almendros-Jiménez and Iribarne specialize UML use-case and class diagrams [2].

In general, although several lines of research converge towards defining HCI pat-

terns, a solid formal foundation for their specification, composition and analysis is

still missing, thus hindering the possibility of pattern reuse independently of their

specific realizations, in the context of MBUID. The limitations of the current situa-

tion are discussed in [7]. In the rest of the paper, we propose such a foundation.

3 Interaction Patterns

As a full coverage of all the aspects of UI design is beyond the scope of this paper,

we focus on three axes in the interaction design space for visual interfaces, that we

deem Domain, (static) Presentation, and Dynamics, as shown in Fig. 1.

Presentation

Dynamics

Domain

layout

component

g

k
coord.config.

d

l

c

e f

j

h

b

component

domain

layout

coordination

configuration

dynamics

a
i

Fig. 1 Interaction design space
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We can thus categorize specific concerns of interaction design (and the related

patterns) with respect to positions in this space. In particular the domain axis refers

to the application data, while the presentation axis organizes aspects related to

components’ appearance, static configuration (i.e. interface composition), and lay-

out. While design can be concerned with data and presentation aspects alone, the

dynamics can only be defined with respect to the other two axes.

Hence, we identify an application-dependent (or component) dynamics, com-

pleting the definition of the domain space, and a layout dynamics, pertaining to the

modification of the visual arrangement of the components on the screen. Moreover,

components dynamics presents two aspects: coordination refers to the dependencies

between the states of the elements (hence their aspect), e.g., switching between en-

abled and disabled states, while configuration dynamics specifies which components

have to be created or destroyed as interaction proceeds. As examples of classifica-

tion, we deem Visual Framework as a purely presentational pattern (i.e. with design

choices involving nodes c and e in Fig. 1); Clear Entry Points associates specific

tasks with components in the initial interface (nodes a and h); Form supports user’s

specification of values for a complex task, relating data with component configura-

tion and layout (nodes c, f and j), while Left Aligned Labels specializes layout (node

e); Command Area and Button Group relate component configuration and layout to

task or data dynamics, usually with specific requirements on layout and coordination

(nodes b, e, i and l). Fig. 2 offers a reminder of the first five patterns.

Fig. 2 Examples of pattern realisations

We exploit the conceptualization in Fig. 1 to characterize roles of elements in a

pattern with respect to these axes. This is done by using as stereotypes combinations

of the icons shown to the right of the figure. Moreover, although independent of
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concrete technologies, this organisation of the design space can be easily mapped

to the models of the UsiXML meta-model, namely transformation, task, domain,

aui (abstract UI) and cui (concrete UI) models, with the first two models related

to presentation dynamics and domain dynamics, respectively, the third modeling

data, and the last two pertaining to static presentation. In the rest of the paper, we

will express presentation aspects of the discussed patterns mainly with reference

to the abstract interaction objects populating the auiModel, occasionally expressing

additional constraints on implementation via elements from the cuiModel.

4 Formal Model of Interaction Patterns

In general, a pattern expresses a complex relation among elements playing specific

roles and collaborating to provide experimented solutions to recurring problems.

For instance, in SE design patterns, collaborations are realized through message

exchanges, and roles are played by structural elements. In HCI patterns, collabora-

tions can be implicit and simply recognized by the users, and roles can be played

by any typed element populating the interaction space. In any case, we separate the

definition of a pattern vocabulary introducing the roles, from that of possible role

realizations. Moreover, we allow for different types of collaborations by specifying

a pattern as a collection of synchronized diagrams, with a designated structuring

diagram – usually the one regarding presentation – introducing the roles, and other

diagrams showing different features of their collaboration [4]. Also, diagrams con-

tain variability regions constraining the number of elements which can play the

same role in any given realization of the pattern. For example, the Button Group

pattern only makes sense when there are 2 or more buttons to be presented together.

As the resulting notion of pattern is domain-independent, domain-specific con-

cepts can be used to express roles and to specify the elements realising them. In

our approach, diagrams result from the annotation of model elements, typed on the

UsiXML meta-model, with roles from the HCI pattern vocabulary. In addition, pat-

terns are equipped with constraints (invariants), expressing contextual conditions

that must hold for the correct application of the pattern and which, to some extent,

express some of the consequences and intentions of the pattern.

Next, Section 4.1 introduces the meta-models for UsiXML and for the roles

vocabulary. Then, Section 4.2 presents the main concepts of our formalization.

4.1 A Meta-model for Interaction

We adopt the UsiXML meta-model as representative of the interaction domain and

relate its elements to pattern roles through a specific correspondence layer. UsiXML

provides a collection of modeling entities for the abstract and concrete definition of

interactive systems. The UsiXML meta-model allows a description of an interactive

system as composed of several models, in which an abstract user interface is realized

through concrete elements and is connected to domain objects and workflow de-

scriptions. Fig. 3 presents a fragment of it, relevant to the patterns we show.
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Fig. 3 Fragment of the UsiXML meta-model

In addition, we identify a vocabulary of roles composed of instances of the class

PatternRole defined in Fig. 4. In order to keep the domain and vocabulary mod-

els mutually independent, we adopt triple graphs [30], where a correspondence

graph contains maps to relate the graphs, called source and target graphs, speci-

fying the two models. This is similar to a weaving model [11] that relates elements

in the UsiXML and Vocabulary (roles) models and offers two advantages. First, we

can exploit any implementation of the domain specific meta-model, as we do not

need to modify it to accommodate pattern roles. Second, any meta-model for inter-

action can be used, without affecting role definition. Roles are recognizable by their

name, and are attributed with a list of labels defining their focus, as taken from the

Focus enumeration type, according to the classification given in Section 3. Different

UsiXML classes play different roles as given by the role maps in the correspondence

meta-model, for which we use abbreviations in Fig. 4. From left to right, we have

therefore Presentation, Affordance, Layout, Action, Container and Element maps.

Pattern

+name: String
PatternRole

+name: String

+space: Focus[*]
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method

triggers

output
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Container domain

Class

abstract

InterfaceObject

source target
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control
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Fig. 4 A fragment of the triple meta-model for the definition of Interaction Patterns
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4.2 Pattern Specification

In its simplest form, a pattern consists of one structure, called root, with the manda-

tory part that any pattern realization must contain, and a number of variable parts or

variability regions defining additional structures that can be replicated several times

for each instance of the root [4]. In order to represent root and variable parts, we use

the symbolic graphs proposed in [26], where the set of data nodes is replaced by a

finite set of sorted variables and a formula γ constraining the possible values taken

by the variables. For simplicity, we first present them without role annotations.

Variable parts can be nested: a nested part can only be instantiated by adding

structures to an instance of its parent. In addition, for each part, a variable name with

values ranging on integer is used in equations restricting the allowed number of its

replicas. Equations may contain relations between the allowed replicas of variable

parts, and the number of times a pattern can be instantiated in a model is restricted

by equations on the variability of the root. If the set of equations has no solution in

the natural numbers, then the pattern cannot be instantiated.

Defintion 1 (Pattern). A pattern is a construct VP = (P,root,Emb,name,var),
where:

• P = {V1, ...,Vn} is a finite set of non-empty graphs, where each Vi is called

variable part,

• root ∈ P is a distinguished element of P,

• Emb is a set of morphisms vi, j : Vi →V j with Vi,V j ∈ P, s.t. it spans a tree rooted

in root with all graphs Vi ∈ P as nodes and the morphisms vi, j ∈ Emb as edges,

• name : P → L is an injective function assigning each variable part a name from

a set of variables L, of sort N,

• var ⊆ TAlgIEq(name(P)) is a set of equations governing the number of

possible instantiations of the variable parts, using variables in name(P) ⊆ L,

arithmetic operations, and the <,≤,=,>,≥ relation symbols. We call this sig-

nature “Algebraic Inequalities” (ΣAlgIEq); TAlgIEq(name(P)) is the term-algebra

with variables in name(P).

Example. Fig. 5 shows a simple version of the VisualFramework pattern. The graph

VVF is the root and VVars, VVarCmp, and VFix are the variable parts, using UsiXML

types from the aui model (see Fig. 3). The pattern models a visual framework

through the presence of an abstract container f , contained in all the occurrences of

the main container for the application (or set of Web pages). The morphisms iden-

tify the object f in the root with objects f in each of the three variable parts. f may

contain an arbitrary number of interaction objects, forming the Fix region. On the

other hand, as defined by the vars region, each occurrence of the main container can

also present another abstract container, with a set of elements in a VarCmp region.

The occurrence of the container for the varying part of the interface is related to the

container for the fixed part through some abstract adjacency relation (typically pre-

venting their overlapping). For compactness, rather than this direct representation of

the formal definition, we adopt the notation shown in Fig. 6, where a coloured area

represents a variable part and region nesting is represented by containment. Note
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:absCont :absCont

f:absCont

VVF , name(VVF)=VisualFramework
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tgt
:absAdj

tgt
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Vvars, varCmp VvarCmp , name(VvarCmp)=varCmp

Fig. 5 VisualFramework pattern in theoretical form

Fig. 6 VisualFramework in compact form

that a morphism vi, j : Vi → V j represents a “graph difference”, or an embedding of

Vi in V j. We represent this visually by a colored polygon enclosing the elements of

V j not mapped from elements of Vi. Hence, in the example, the root contains only

the object f , and we depict with two disjoint regions (Vars and Fix) the elements

of the two variable regions different from the element in the root. In a similar way,

region VarCmp includes the elements in VVarCmp not present in VVars. The equations

below govern the number of times each variable part is allowed to be replicated.

The semantics of a pattern is given by the set of all valid expansions of its

variability regions.

Defintion 2 (Expansion). The expansion set EXP(VP) of a pattern VP is given

by the set of colimits {Ci} of all possible diagrams α obtained by replicating the

graphs in P, and the morphisms in Emb, s.t.: (i) the diagram α is consistent with

the morphisms in Emb, which means that if Vi → V j is included in α , then there is

a morphism vi, j : Vi →V j in Emb; and (ii) the number of replicas in each path from

root to Ci satisfies the equations in var.

Example. Fig. 7 shows the construction of one of the diagrams in the expansion

set EXP(VisualFramework). In particular, the variable regions Vars and VarCmp

are expanded once, and Fix twice. The expansion C results by glueing all graphs

through the elements identified by the morphisms.
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Fig. 7 One possible expansion of the VisualFramework pattern

A model satisfies a pattern when some pattern expansion is found in the model.

Defintion 3 (Satisfaction and Semantics). Given a pattern VP and a graph G, G

satisfies VP, written G |= V P, iff ∃ Ci → G injective with Ci ∈ EXP(VP). The se-

mantics of V P, SEM(VP) = {G | G |= VP} is given by the set of all graphs that

satisfy it.

As the definition of HCI patterns involves several models, in particular the aui and

cui models from UsiXML, the problem of checking whether a model M of a UI

satisfies a pattern VP has to take care of this fact. In particular, M could specify only

some components, say only an abstract UI model, leaving the choice of concrete

widgets to developers. Vice versa, one could have available only the specification at

the level of concrete UI model, while a pattern could only involve a specification at

an abstract level. In particular, when one has a pattern VP defined with types from

the aui model (but not from the cui model) and an interface model M expressed

in terms of the cui model (without reference to an aui model), a virtual aui model

AM = virt(M) can be reconstructed, using rules such as the following:

• for each element ae ∈ AM there exists an element ce ∈ M and an instance arc of

an isAbstractedInto relationship with arc.src = ce and arc.tgt = ae;

• if ce is an input element, ae has a facet input;

• if ce is an output element, ae has a facet output;

• if ce is a graphical container, ae is of type abstractContainer.

We say that M virtually satisfies VP (M |=m VP) if virt(M) |= VP.

We discuss now the annotation of the elements in the graph with the roles they

play in the pattern, thus using triple graphs, as introduced in Section 4.1, instead

of graphs as objects in the set P. In our approach, the source graph represents a
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model in a given domain-specific language (e.g. UsiXML), while the target graph

contains nodes with the different roles the elements can take. The assignment of

roles to elements is made through the nodes in the correspondence graph, which

have morphisms to source and target nodes, as shown in Fig. 4.

Example. To the left of Fig. 8, roles are added to the root of the VisualFramework

pattern via a triple graph. The lower compartment depicts the UsiXML model, while

the upper part contains the involved roles. The middle section is the correspondence

graph, linking elements in the domain with their roles. Node PatternInstance

aggregates the different maps of the same pattern instance to facilitate their recog-

nition. As the formalization is given categorically, all definitions remain the same

when replacing graphs by triple graphs. The right part of the figure shows the com-

pact notation for patterns with roles, where roles and focus are given as stereotypes,

roles being visualized as text, and focus via small decorations. In this case, all roles

are referred to the Presentation domain of Fig. 1.

:PatternRole

name=“fixedCont”

space=[Component]

:CntMap

f:absCont

:PatternInstance

Fig. 8 Adding roles to the root of VisualFramework (left). Compact notation with stereotypes

(right)

As the definition of a HCI pattern may extend over several diagrams, we intro-

duce synchronisation graphs, to specify correspondences between elements in the

variable parts of different patterns. In particular, we represent the synchronization

between regions in distinct patterns by equality of their names, whereas the ele-

ments that overlap in regions with the same name are formalized in the notion of

a synchronization graph, which factors out the common structure of the two pat-

terns to be synchronized. In general, given n diagrams (i.e. n annotated patterns)

to be synchronized with one structuring pattern, the n synchronization graphs are

given by the intersections of those regions with equal name with respect to the roles

(note that the diagrams to be synchronized share the same vocabulary model). Thus,

the synchronization graph has one region for each two regions to be synchronized.

Two elements in two annotated patterns mapped to the same role in two regions

with same name, will be related through an element in a region of the synchroniza-

tion graph. In [4], an algorithm is given for calculating the synchronization graph

between a structuring pattern and any other annotated pattern.

Example. Fig. 9 shows the presentation elements for the Wizard pattern. In this pat-

tern, a set of containers are presented one at a time (as indicated by the instances
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of the mutualEmphasis relationship) within a main container. For each step of the

wizard, the specific container offers the user a set of input components, thus allow-

ing the introduction of parameters for that step. Moreover, the main container has a

control component to start the whole process, and each step container has a control

element to indicate the completion of the step, committing the choices made.

Fig. 9 The presentation diagram for Wizard

In Fig. 10, the dynamics associated with the pattern are given. A global process

is composed of several tasks, each one connected with a step container, while the

inputs assigned through the interface are associated with attributes manipulated by

the task. The commit action can start one out of several tasks, depending on the ap-

plication and the choices made, as indicated by the Cmt variable region. Note that

only some of the components from the presentation (structuring) diagram are con-

sidered relevant to the dynamics and are marked with a bold I character, to indicate

that they are part of the synchronization graph. Fig. 11 shows the analogous dia-

gram expressing the navigational structure of the Wizard pattern, with an indication

of the structuring elements defining the synchronization graph. Note that in both the

navigation and the process diagram, the number of tasks which can be started, and

correspondingly of the step containers which can be reached, or which can reach

the current step, is limited by the global number of pages (i.e. step containers). The

mutual exclusions between step containers induce an analogous constraint on the

tasks: only one task at a time can be executed.

Patterns with Invariants. Patterns may include contextual conditions for their cor-

rect application, expressed as graph constraints and application conditions [13]. A

pattern with invariants is a pattern with sets PC(Vi) of pattern constraints defined

over any of its variable parts Vi. An atomic constraint over Vi, noted Vi → X → C j,

consists of one premise graph X related to the variable part Vi it constrains, and a set

of consequence graphs C(X) = {X →C j} j∈J . As in logic, the intuition behind con-

straint satisfaction is: if the premise graph X is found in a model, then some of the

consequence graphs C j have to be found as well. More complex constraints can be
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Fig. 10 The dynamics diagram for Wizard

Fig. 11 The diagram defining the navigational structure for Wizard

formed by using boolean formulae over atomic constraints. In particular, a negative

constraint is defined by forbidding the presence of any instance of X .

Example. Fig. 12 presents one of the constraints associated with the VisualFrame-

work pattern. In particular, the relation of adjacency between the fixed and the

varying containers must remain the same through all the occurrences of the main

container. Fig. 13 shows another constraint associated with the root part of Visual-

Framework, demanding the fixed container to be always visible. Other constraints

force equality of background colours, fonts, etc. for elements in the varying parts.

5 A Pattern Language

The proposed formalization allows the definition of several types of relations be-

tween patterns. In particular, in this section, we extend the formalism to handle

pattern subtyping, conflict and composition, thus providing an effective basis for the

construction of pattern languages.
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Fig. 12 Constraints on layout in Visual Framework (adjacency)
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Fig. 13 Constraints on layout in Visual Framework (visibility)

5.1 Subtyping

In several interaction patterns, we can identify an abstract notion of Unit as the

fundamental brick in pattern construction. A unit is formed by a container where

some individual components contain messages providing explanations to the user

and some others offer facets for user input. The left of Fig. 14 presents a unit as a

pattern where role realizations are given via abstract elements from the auiModel.

«Unit»

:abstContainer

«UserInput»

:absIndComp

:input

Inputs Explanations

Unit Form extends Unit

FormInput

extends Inputs

«Closeness»

:abstractAdjacency

:output

«Label»

:absIndComp

«Unit::UserInput»

:absIndComp

«Form, Unit::Unit»

:abstContainer

AlignedLabels

extends Form

Adj extends FormInput

s
rc tg

t

ASrc
«LabClose»

:abstractAdjacency

«Form::Label»

:absIndComp

ATgt

ASrc < 2,  ATgt < 2

«Explanation»

:absIndComp

:output

Fig. 14 Unit (left), Form as subtype of Unit (center), AlignedLabels as subtype of Form

(right)

A common type of unit is a Form, characterized by the presence of labels adjacent

to each user input. Hence, we define Form as a subtype of Unit, noted Form ⊑ Unit,

by adding new elements and describing their relation to the elements of Unit as

shown in the center of Fig. 14. As formalized in Def. 4 below, subtyping can add

new elements to a pattern, possibly introducing further constraints, or adding new

variable parts as children of the root or of other existing variable parts. However,

the subtype cannot relax the constraints on the parent type, nor can it introduce

intermediate regions between the root and the original regions. We only show in the
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child those elements of the parent pattern needed for the extension (but as in OO

programming, all elements of the parent are incorporated into the child).

Defintion 4 (Extension). Given two patterns V P and VP′, an injective morphism

Ext : VP → VP′ is defined as the tuple Ext = (E = (EV
,EE), f ), where E is an

injective morphism on trees that preserves the structure of the trees Emb and Emb′

with:

• EV : P → P′ s.t. EV (root) = root ′,

• EE : Emb → Emb′ s.t. EE(vi j : Vi →V j) = EV (Vi) → EV (V j) ∈ Emb′,

and f = { fi : Vi → EV (Vi) | Vi ∈ P} is a set of injective (triple) graph morphisms

s.t. the square (1) in the figure below commutes, and ∀Vi → X → C j ∈ PC(Vi),
∃EV (Vi) → X ′ → C′

j ∈ PC(EV (Vi)) s.t. squares (2) and (3) in the figure below are

pushouts and |C(X)| = |C(X ′)|. Regarding the set of equations var, we demand

EV (var) ⊆ var′ and that no formula of var′ \EV (var) contains variables in EV (P).

Vi

fi
��

vi j

��
(1)

EV (Vi)

EE (vi j)
��

Vi
��

��
(2)

X ��

��
(3)

C j

��

V j

f j
�� EV (V j) EV (Vi) �� X ′ �� C′

j

Given patterns VP and VP′, if ∃Ext : VP →V P′ s.t. Exp preserves role names and

focus we say that VP′ extends VP, and we write it VP′ ⊑VP.

The requirement of f for constraints of extended parts is that they should be pro-

vided exactly with the new elements added to the variable part they constrain (hence

the pushouts) and they should not add new consequence graphs. However, VP′ can

add new premises Xk. The condition on the formula states that VP′ cannot modify

the formulae of VP, but can add equations involving new variable parts. In Fig. 14,

if a variable part Vi of VP is extended by EV (Vi) of VP′, we label the extended part

as “name′(EV (Vi)) extends name(Vi)”.

The set-based semantics for patterns from Def. 2 provide the usual replaceability

of supertypes by subtypes as subsetting of the respective expansions, as stated in

Theorem 1, whose proof is immediate.

Theorem 1 (Subtyping). Given patterns VP and VP′, if V P′ ⊑ VP then

SEM(VP′) ⊆ SEM(VP).

Example. Specific types of Form require labels to be in well-defined alignment rela-

tions with the inputs and between themselves. The Quince pattern repository distin-

guishes between the Left Aligned Labels, Right Aligned Labels and Top Aligned

Labels patterns. To show their commonality, we introduce the abstract pattern

AlignedLabels ⊑ Form (right of Fig. 14), by adding a role describing the adjacency

between labels. Thus, each label is adjacent to one or two other labels (but labels at

the beginning or the end have only one neighbour). Constraints on the realization can

then be used to specify the type of alignment. Thus, all of Left Aligned Labels, Righ-

tAlignedLabels and Top Aligned Labels can be defined as subtypes of AlignedLabels

by adding a set of suitable constraints. As an example, the left of Fig. 15 shows
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the constraints for left alignment. The pattern contains three constraints Xi → Ci,

presented as overlapping graphs, with nesting of a Ci area within a Xi area repre-

senting the morphism. The first constraint states that if the user input and the la-

bel are reified by concrete interaction object (cio) elements (X1), those should be

horizontally aligned (grphAlign indicates an instance of graphicalAlignment).

The second constraint states that if the label has a closeness adjacency with another

label (of an instantiation of another AlignedLabel), then the cio reifications of both

should be vertically aligned. Finally, the third constraint states that if the output is

reified by the concrete outputText element, this should be aligned to the left.

«Form::Closeness»

:abstractAdjacency

«Form::Label»

:absIndComp

Left Aligned Labels extends AlignedLabels

:isReifiedBy

:cio

:isReifiedBy

:cio

X1«Unit::UserInput»

:absIndComp

:grphAlgn

isHoriz=true C1

:isReifiedBy:cio

«LabClose»

:abstractAdjacency

«Label»

:absIndComp

:output

:isReifiedBy:cio

:grphAlgn

isVert=true

X2

C2

:isReifiedBy

textHorizontalAlign=left

:outputText

C3X3LeftAdj extends Adj

:cio

:cio

:grphAlgn

NoTwoAdj (NAC)

:grphAlgn

:output

Fig. 15 Constraints for LeftAlignedLabels (left). Global Negative Constraint (right)

5.2 Pattern Composition

In order to compose two patterns, the idea is to select the elements to be identi-

fied in the root of both patterns, and then, to glue the roots through the identified

elements (via a pushout construction) yielding the root of a new composite pat-

tern. The process is repeated for the elements in the variable parts that one wants

to identify. Concerning the variability equations, both merged variable parts re-

ceive the same name, hence, we perform the union of the original equations (af-

ter renaming) so as to consider the most restrictive ones. As an example, Fig. 17

shows a composition of the Quince patterns Command Area and Clear Entry Points.

CommandArea

EntryPointArea

ClearEntryPoints

Ir

P.O.

Commands Entries

IVP

CEntries

P.O.

u= =

Fig. 16 Composition scheme

The first pattern groups commands together

(modelled by variable part Commands) into a

unified area of the interface (role Comman-

dArea). The second pattern provides a set of

clear entry points (region Entries) into an appli-

cation or Web site, based on their most common

tasks or destinations. The diagram in Fig. 16

shows the composition scheme. The resulting

pattern is obtained by identifying the elements

with roles Main and HomePage in the roots

(graph Ir) as well as Command and EntryPoint
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(and linked object control) in the variable parts (graph IVP). The composed pat-

tern is built by the pushouts of the roots and the variable parts, where the embedding

u of the resulting root is given by the universal pushout property. Altogether, the

resulting pattern groups commands to entry points into a common area.

Fig. 17 Composing patterns

5.3 Conflicts

The introduction of constraints together with the notion of composition allow the

identification of conflicts between patterns, when certain roles are identified with

each other. These conflicts may arise between the constraints of the pattern, or be

caused by incompatibilities with the integrity constraints of the domain specific lan-

guage (i.e. constraints of the UsiXML meta-model in our case). In order to achieve

a full management of such conflicts, one has to encode the meta-model constraints

using graph constraints, and then detect incompatibilities statically by using com-

position. For example, the right of Fig. 15 is a negative constraint stating that two

elements can only share one type of graphicalAlignment at most. Then, one can infer

that all the AlignedLabel specializations are in conflict with each other. This is so,

because if two pattern instantiations share a common UserInput, the constraint

X1 → C1 would demand two graphicalAlignments, in contradiction with the global

constraint. Interestingly, these conflicts can be computed statically by applying the

same procedure as for pattern composition. Once such conflicts are determined, then

one can annotate the pattern with such information, thus providing a formal basis

for the description of some of the consequences of pattern application.
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It might also be the case that two patterns cannot be composed, due to conflicts,

if certain identifications are performed, but a different set of identifications removes

the cause for conflict. For example, a conflict can be detected between VisualFrame-

work and ClearEntryPoints when we try to identify the abstract container playing

the role of Home Page for ClearEntryPoints with the container for the fixed part

in VisualFramework. Indeed, as the entry points must be present only in the home

page, they cannot be fixed. On the other hand, one can force one occurrence of the

varying container in the Vars region to host exactly the entry points, or provide a

specialization of the visual framework to host entry points in the fixed part.

6 Conclusions and Future Work

The theoretical foundation of a notion of HCI pattern language is challenged by the

heterogeneity of the aspects involved, from classical SE concerns to cognitive is-

sues. Currently, the definition of pattern languages is based on structured textual de-

scriptions of motivations, contexts and solutions, and exemplar realizations. Hence,

relations between patterns cannot be properly identified, nor can it be determined if

some implementation is a realizations of a known pattern.

In this paper, we have used a formal definition of pattern, based on triple graphs,

to describe the solution component of a pattern. In particular, by identifying relevant

roles in a pattern, from the point of view of the domain, presentation and dynamics

aspects of interaction definition, we provide a basis for determining the existence

of relations between patterns in particular, subtyping, conflicts and composition.

Moreover, based on this formalization, a number of techniques becomes available,

supporting pattern-based and model-based construction of UIs (see e.g. [10] .

The approach is being tested on existing collections of patterns and several ex-

amples have been presented in the paper. Among the expected outcomes of this ex-

ploration are the identification of common abstractions for families of patterns, and

the exploration of the limitations of the current proposal. In particular, we envisage

that imposing the structure of a directed acyclic graph, rather than of a tree, on the

set of morphisms between variable parts will conquer more patterns to formaliza-

tion. Another avenue of investigation regards the possibility of defining a notion of

satisfaction with respect to inheritance, to consider cases where a pattern VP uses

an element of some type T , and the model M uses elements which are instances of

sub-types of T . A standard approach to this would be generating all the versions of

VP where a type T is replaced by all its possible descendants T ′ [10]. More refined

solutions can be studied, for example by distinguishing the notion of sub-typing in

the definition of the pattern from that existing in the application model.
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Task Models in the Context of User Interface 
Development 

Gerd Szwillus
*
 

Abstract. Task models are widely used in the field of user interface development. 
They represent a human actor’s performance or the co-operation of a group of  
people on or together with a system. For considerable time, it was an open problem 
in the field how to switch from the analyzing step of task analysis and modeling  
to the synthesizing step of user interface design. In the meantime, interesting  
approaches have shown up dealing with this problem and helping to bridge the gap 
between task modeling and user interface development. In this chapter, some of 
these approaches are discussed, together with recent concepts used to improve the 
usability of user interfaces based upon underlying task models.  

1   Introduction 

Task modeling is an approach describing the behavior of one or more human ac-

tors grounded on rational consideration while explicitly pursuing specific goals. 

Within the context of model-driven development of user interfaces, task modeling 

is used for describing the users’ actions while working with an interactive system. 

Task modeling is a semi-formal specification technique, combining formal ele-

ments for the specification of task structures and internal rules with informal task 

descriptions expressed in colloquial language. 

Task modeling helps to understand and describe the way a human actor uses or 

will use an interactive system by concentrating on the sequence of actions per-

formed by the user, based on his or her intentions and objectives. Hence, it supports 

the task analysis process, by documenting the tasks users fulfill in a current, run-

ning system, and it enables the designer to propose action steps to be performed 

with a new system. As such, task modeling or usage modeling [1] serves as a first 

design step of the functionality of an interactive system, by clearly stating the 

user’s point of view on the task and his or her way of structuring it into subtasks 

and subsequent steps, referred to as the user’s mental model of the task.  

In the following, we will present basic common properties of the task modeling 

concept as such, and will discuss currently relevant task modeling approaches. 

Creating and maintaining realisticly-sized task models is laborious, hence we also 

cover tool support for this concept based on the partial formality of the models.  

                                                           
Gerd Szwillus  

Institute of Computer Science, University of Paderborn, Fürstenallee 11, D-33102  

Paderborn, Germany 
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When it comes to user interfaces, task models are used in two ways: First, they 

serve as a starting point for a transition into an actual dialogue, resp. a dialogue 

model. This has since long been identified as a non-trivial process [2] [3], but 

there exist some promising concepts now. Second, task models constitute a means 

to evaluate user interfaces in terms of task appropriateness, or usability. Although 

task models basically considered to deal with the user behavior on an abstract lev-

el, there are interesting approaches dealing with some usability issues as well. We 

discuss several of these approaches in the final part of this chapter. 

2   Task Modelling Concepts 

There are different task modeling approaches on the market which vary in several 

respects. Notwithstanding the differences, there is a common ground, however, 

supported by all these approaches, which can be considered to represent the  

essence of the task modeling concept. 

2.1   Basic Elements of Task Modeling 

Given the fact that the main purpose of task modeling is to document the way 

people understand and structure tasks, the dominant structure underlying all task 

modeling approaches is the decomposition of tasks into “smaller” subtasks, the 

task hierarchy. This hierarchy is in all cases depicted by a graphical representation 

of a tree structure. While the particular graphics differ, they all depict a task tree in 

some way or other. Hence, for instance, if the task “Sending a letter” includes the 

subtasks “Writing" (the letter), “Placing in envelope”, and “Posting” (the letter) 

with “Posting” including “Adding stamp” and “Putting into mailbox”, this would 

result in a structure as shown in Figure 1. 

 

 

Fig. 1 Simple Task Model for the task “Sending a letter” 

The hierarchy in itself only specifies the pure task-subtask-relations. More in-

formation is needed to properly model the user behavior when performing the 

Sending a letter 

Writing  Placing in envelope 

Adding stamp  Putting into 

mailbox 

Posting  
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task, most important being sequence information. Modeling the “Posting” task, for 

instance, would not be considered appropriate if it allowed the sequence of first 

doing “Putting into mailbox” and then doing “Adding stamp”. Information like 

this is subsumed in the task modeling concept under the term of temporal rela-

tions. Again, different approaches vary in their choice of temporal relations and 

the way they are depicted in the hierarchy, but there is general accordance  

about the following types of temporal relations being indispensable. In many  

approaches, the temporal relations are specified as properties of the supertasks, a  

representation we will follow here as well. Given that A and B are subtasks of T, 

• sequence denotes that first A and then B have to be performed to achieve T, 

• random sequence denotes that A and B have to be performed one after the other 

to achieve T, but the order is irrelevant, 

• parallel means A and B have to be performed simultaneously, meaning that 

there must be at least one point in time where A and B are both “running” at the 

same time,  

• unrestricted means that A and B have to be performed, but there is no  

restriction whatsoever about their mutual timing, and 

• selection means that only one of the subtasks needs to be done to perform T. 

In addition, a task can be specified to be 

• optional, hence it can, but need not, be executed, 

• or an iteration, hence it can be repeated several times. 

Figure 2 contains some additions specifying the necessary sequencing rules, and 

including the optional addition of a photograph to the letter, which can either be 

put into the envelope as first or as second step. 

Fig. 2 Some temporal relations added to the “Sending a letter” task tree 

This really small example can serve for illustrating three important points  

impacting the use of task models in real-world settings: 

Sending a letter 

Writing Placing in envelope 

Adding 

stamp  

Putting into 

mailbox 

Posting 

sequence

sequence 

Adding 

photo 
Adding 

text page 

rand. seq. 
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• Validation: The author of a task model must verify cautiously, whether the  

user’s actions are described correctly, i.e. if the user really behaves in the way 

the model defines. This is by no means trivial, as a task model in most cases 

does not describe exactly one sequence of action, but typically allows several 

variants of execution sequencing. To evaluate the model, we need the user’s 

expertise to assess whether the described behavior matches reality, but we can-

not in general assume that users can read and understand task models. We will 

deal with this validation problem later in the chapter. 

• Granularity: There is no universal rule at what level of detail the modeling 

process should end, as this depends on the objectives of the modeling process. 

The example of Figure 2 could easily be developed further, e.g., by refining the 

“Writing” task into “starting the computer”, “invoking the text editor”,  

“typing”, and “printing”. As we advocate the use of task models for specifying 

user behavior while using an interactive system, we should model deep enough 

to get a basic understanding of the functionality needed by the user when  

performing the task, without implicitly designing the future system already in 

the task model. 

• Variability: A task model in general cannot take into account every eventuality 

happening during task execution. Quite the contrary, it should be seen as a typi-

cal, standard way of performing a task, representing frequent and important 

variations, but not every potential variant. Some authors refer to this as a typi-

cal “80/20-situation”, meaning that 80% of the typical behavior is covered, 

while 20%, denoting the more special cases, are not. When task models are 

used for designing user interfaces, there is an obvious need to fully understand 

typical and frequent behavior, to allow the creation of an appropriate user inter-

face for these cases. In the example of Figure 2, we could, for instance, modify 

the model such that the subtask “Adding stamp” could be performed at any 

time in the process, provided it is done before posting the letter. Technically, 

this would be correct, but the task model would then loose the property of  

describing the “usual”, typical way of how the user structures and manages the 

tasks in semantically connected and clearly identifiable phases. 

2.2   Additional Elements of Task Models 

Task hierarchy and temporal relations have been identified as the basic building 

blocks of task models. There are, however, concepts, which are contained in single 

or several approaches, which have proven to be relevant additions to the concept 

of task modeling. There are good reasons, of course, to keep task models simple, 

especially when they are intended for different stakeholders to read and under-

stand. In many cases, however, it is equally useful to include additional elements. 

The most important of these are the objects manipulated by tasks, conditions  

other than the temporal relations imposed on task performance, the distinction of 

different actors or roles, and events and context information. There exist huge  

differences with respect to these additional elements when it comes to single task  

modeling approaches.  
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2.2.1   Objects 

In the concept as sketched out up to now that actual actions performed are simply 

stated in colloquial language as informal text (e.g. “Writing”). The objects being 

manipulated by the tasks are only mentioned as nouns in these short descriptions 

(e.g., “envelope”, “text page”), if at all. Several task modeling approaches go fur-

ther from here and allow the specification of the “things” used by tasks as formal 

elements. Typically objects are introduced as instances of classes, which define 

object attributes, as known from object-oriented programming languages. Objects 

can also own methods for attribute manipulation and a state concept. Within a 

task, it is possible to create, modify, and destroy objects. Also, this concept allows 

task execution results to be passed from one task to another.  

In the example of Figure 2, for instance, the task „Writing“ could create an ob-

ject “text page”, which is later used by “Placing in envelope”. This last task could 

be specified as first modifying the state of “text page” from “unfolded” to 

“folded”, then creating a new object of type “envelope” and changing its state 

from “empty” to “filled”. Approaches differ in their descriptive power of object 

manipulations; typically, they are described as effects to be achieved after a task is 

completed.  

It is obvious, that the remarks about granularity of the model apply to this  

modeling concept to a high degree. However, the concept allows the modeler to 

express object manipulation which later in the design process of a user interface 

should result in corresponding data displayed and edited by the user of the final 

system. 

2.2.2   Pre- and Postconditions 

Temporal relations specify the order in which subtasks are executed. However, 

this specification is limited to the subtasks of a common supertask; there is no 

means to express conditions holding between subtasks of different supertasks. As-

sume in our example model of Figure 2, for instance, that the task “Adding stamp” 

is influenced by the fact that a photograph is added to the letter (then we need 90 

Cent) or not (then we need 55 Cent only). 

Without the possibility to specify conditions, we could not describe that the user 

sticks the appropriate stamp on the letter, depending on the fact, whether a photo-

graph was added or not. By modeling that “Adding photo” modifies the attribute 

photoAdded of the object Envelope e to true, we could specify the condi-

tion Execute only, if e.photoAdded = true as a pre-condition for 

the task “Glueing 90 Ct.” and the inverse pre-condition to “Glueing 55 Ct.”.  

Apart from pre-conditions, some approaches use post-conditions as well, mean-

ing that a condition must hold, before a task can be finished. Also, conditions can 

be used for defining under which circumstances an optional task is skipped, or if 

and how often a task should be iterated. Some approaches provide “world” condi-

tions, i.e. conditions which are not influenced by the task model itself, but are set 

from the outside (e.g., “Sending a letter” could be dependent on the world  

condition “saturated” to avoid writing a letter while being hungry). 

Conditions are a powerful structuring mechanism which add important rules to 

task models. In most cases, they represent domain knowledge the user must be 
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aware of when performing the task. Hence, for eliciting the mechanics of task  

performance to be supported by an interactive system, conditions are extremely 

valuable and important. Sometimes they represent “tacit knowledge” from the ap-

plication area, information that is taken for granted, and easily overlooked in sys-

tem design processes. As conditions are typically not displayed in the graphical 

representation of the task hierarchy, they are a special challenge for the validation 

process. 

2.2.3   Roles 

Task models as described so far do not give any information about who performs 

the tasks at hand. Also, there is no distinction whether one person acts or a group 

of person co-operates. Some approaches explicitly deal with that situation.  

In the simplest case, a task model distinguishes between tasks that  

• the (one) human actor performs completely on his or her own (“user task”), and 

• an action that the interactive system performs (“system task”) for the user. 

Additionally, there can be tasks, which the user performs together with the system 

(“interaction task”). For instance, while using a text processor, thinking of the text 

to enter is clearly a user task, creating a table of contents after the user issued the 

corresponding command is a system task, and entering the text is considered an  

interaction task. In these cases, we still think of one user using a system.  

There are frequent work situations, however, where a group of persons co-

operates together on performing a task. To cope with such a situation, some  

approaches support an explicit role model. Such a model contains typically a  

hierarchy of actors or roles, where rights and duties are inherited. The actor is the 

person (or system for that matter) performing a task. This can be a specific indi-

vidual, or it can denote “one of a kind”, a role, e.g., a pilot. A role is characterized 

by a set of responsibilities, denoted by the tasks, a role can or cannot perform. The 

co-operation of the roles can be captured in one big task model, where the tasks 

are annotated with the respective roles; or there might be a separate task model for 

each role and an extra one for the co-operation specification. 

2.2.4   Events 

Objects and conditions provide mechanisms to link tasks within a task model, 

even if they are far distant from each other, to each other. A special case of such a 

link is established via events. A task execution can be triggered from events hap-

pening “outside” of the model or as something “happening” within the model. 

Likewise, executing a task can trigger an event into the “world”, or towards an-

other task in the model. Similar to conditions, events represent important implicit 

domain knowledge, which should be detected during the task analysis phase and 

documented in the task model.  

In the example of Figure 3, several implicit events and triggers are assumed, 

but not stated explicitly. After writing the letter, for instance, the task “Placing in  

Envelope” can be performed, and typically the user, as being aware of this action 

sequence, does so; otherwise writing the letter would not have been necessary in  

 



Task Models in the Context of User Interface Development 283

 

first place. Or, assume that in an organization there is one role responsible for 

writing a letter, but another person is responsible for posting it. In such a case, 

there must be a clear trigger from the task “Placing in Envelope” to the task “Post-

ing”, otherwise the letter might remain unsent. Again, information like this is very 

important for creating a correct design of an interactive system, which is modeled 

along the tasks performed by the users. 

Sending a letter

Writing Placing in envelope

Adding

stamp

Putting into

mailbox

Posting

sequence

seq.

Adding

photo

Adding

text page

*

rand. seq.

Glueing

90 Ct.

Glueing

55 Ct.

selection

 

Fig. 3 Using conditions in task models (dependencies shown as dotted lines) 

2.2.5   Context 

With a task model, we want to specify how a human user performs a task with an 

interactive system. The purpose of the modeling process is to understand the  

action steps to be taken and the rules governing execution. Apart from the pure 

functional aspects covered so far, there can be a myriad of situational information 

relevant for the user’s behavior. This applies to the physical situation (such as  

the physical conditions of the environmental situation), issues of timing (e.g., are 

there time constraints, is the user pressed, are the tasks executed rarely or  

frequently), organizational issues (such as whether the task is a single user task or 

a co-operative task), and user-specific properties (such as experience with the task, 

the application, the operating system, or computers as such). The sum of all these 

elements is referred to the task model context. For every task model either an  

explicit description of the context is given, or it is implicitly assumed. Just like for 

the design and implementation of every user interface context-information of this 

kind is extremely important for its success. 
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3   Current Task Modeling Approaches 

In this chapter, we will give a short overview of six task modeling approaches. Of 

course, there are more (e.g., [4], [5]), but the ones discussed here cover the typical 

bandwidth of task modeling as it exists today. Interestingly enough, a recent  

approach named HOPS (Higher-Order Processes Specification language) [6] com-

bines most elements of task modeling approaches as mentioned above in a unify-

ing way, overcoming the dominance of the task hierarchy structure, coining the 

term of the “Situated Task Model” [7]. Within this chapter, we will take a look at 

the following approaches: 

• HTA, the Hierarchical Task Analysis concept originating from the first paper 

on task models from Annett and Duncan in 1967 [8], and undergoing major 

modifications until today when it is supported by an appropriate tool, 

• GTA, Groupware Task Analysis [9], an approach from the University of  

Amsterdam, Netherlands, 

• CTT, the ConcurTaskTree concept [10] from CNR-ISTI in Pisa, Italy, 

• K-MADe, the Kernel of Model for Activity Description environment [11] from 

INRIA, France, 

• VTMB, the Visual Task Model Builder [12], and  

• AMBOSS (Task Modeling for Safety-Critical Systems [In German: “Auf-

gabenmodellierung zur Bedienung von sicherheitskritischen Systemen”]) both 

developed at the University of Paderborn, Germany [13], and 

• CTML (Collaborative Task Modeling Language) [14] from the University of 

Rostock. 

3.1   Basic Elements 

As mentioned above, there is a common understanding of task models as task  

hierarchies structured with temporal relations. Differences show up in the way  

temporal relations are dealt with. 

• K-MADe, VTMB, AMBOSS and CTML apply the specification technique as 

used in the figures above, allowing roughly the same set of predefined temporal 

relations. 

• GTA does so as well, only the temporal relations are not predefined, but are just 

(informal) text strings. This is less stringent, but gives the user more flexibility. 

• HTA does not link predefined temporal relations to task nodes, but allows the 

explicit specification (as text) of how the different subtasks of a task are exe-

cuted. This includes skipping, iteration, choice, but also conditions. Hence, it is 

the most flexible concept in that respect. 

• CTT, as the most prominent and widely-used task modeling approach specifies 

temporal relations as a relation between neighboring subtasks. Its predefined  

set of temporal relation definitions is the most developed in the field. Figure 4, 

for instance, displays the top part of figure 1 in CTT notation, where the  

sequence of the three subtasks is expressed with the “enabling” operator >>. 
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Fig. 4 Top part of Figure 1 rewritten with CTT 

In the case of CTT, K-MADe, VTMB, AMBOSS, and CTML the set of prede-

fined temporal relations assures that the models have well-defined execution se-

mantics. Accordingly, the corresponding tools offer a simulation resp. animation 

of the models. 

3.2   Additional Elements 

When it comes to the additional elements of task models, identified above, the  

differences between the approaches are significant.  

• Hierarchical Task Analysis (HTA) in its original form has concentrated on 

human operators’ goal structures and their decomposition into subgoals. This 

included explicitly the distinction between a systematical plan for typical situa-

tions and the coverage of untypical, exceptional situations, also treatment of  

erroneous behavior. Hence, an HTA model can include pre- and postconditions, 

also events, but does not cover manipulated objects or context information. The 

HTA tool existing now [15] is based on this original work, but includes a very 

rich environment to specify object, role, and context information of all kind. 

• Groupware Task Analysis (GTA) explicitly contains two object hierarchies  

apart from the task hierarchy: an “is-a”-hierarchy (inheritance) and a “part-of”-

hierarchy (aggregation). As such, GTA has the richest object model part from 

all approaches mentioned here. The user can specify in a very detailed way how 

objects are structured and used. But also with respect to all other additional 

elements, GTA is the most complete approach: The user can define roles  

(another hierarchy), assign responsibilities to roles, define who is allowed to  

or has to do which tasks, how a group co-operates on a task, define pre- and 

postconditions for tasks, can define the creation of and reaction to events, and 

has numerous possibilities to denote context conditions. A GTA model is a 

highly linked data structure which enables the user of the concept to define and  

interlink all relevant concepts. 

• ConcurTaskTrees (CTT) stands out in its capacity to explicitly define how 

several actors together fulfill a task. The task-oriented behavior of every single 

role is defined in a task tree; then all these are linked by an additional tree. This 

is the most developed approach for co-operative tasks. In its original version, 

Sending a letter 

Writing 
Placing in 

envelope 
Posting >> >> 
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CTT does not allow any specifications of objects, conditions, events, or context 

information. CTT is the most popular task modeling approach, sometimes re-

ferred to as de-facto-standard – the typical CTT trees can be found all over the 

task modeling literature.  

• K-MADe explicitly covers roles, objects and events in its concept. The ap-

proach is highly detail-oriented and can be considered as being almost a pro-

gramming environment, as transformations of objects and other calculations 

can actually be defined to full detail. Also, the approach explicitly covers time 

and timely behavior, which is an important aspect of context. 

• The Visual Task Model Builder (VTMB) proposes a simple object model 

based on a class hierarchy, and incorporates pre- and postconditions, as well as 

effects of tasks, based on object attribute manipulation. It does not distinguish 

different roles, and does not cover events or context information. The approach 

concentrates on the decomposition of tasks and the sequence rules governing 

task performance. 

• AMBOSS is a task model approach specifically targeted towards the analysis 

and documentation of safety-critical systems. Most of these are sociotechnical 

systems; hence, the definition of roles is essential. In addition, a hierarchical 

object system is included. Apart from that, several context parameters of task 

execution are captured, as they are relevant to safety issues. An important ex-

ample is the communication between actors; others deal with spatial  

distribution of objects and actors, and barriers, protecting humans and material.  

• CTML refines the behavior specification of single tasks, temporal relations and 

as such of the whole task model, by adding structured behavior to the single 

elements based upon a finite state machine. Task execution is not taken  

as atomic, but being subject to transitions between states such as “disabled”, 

“enabled”, “running”, etc., thus allowing for a much more detailed behavior 

specification, which leads to a sophisticated specification concept for  

co-operation and task execution. 

3.3   Tool Support 

As seen above, there are big differences between the existing task modeling ap-

proaches with respect to the degree to which objects, conditions, roles, events, and 

context information are included. This has also consequences on the tool support 

existing for the approaches. First of all, the tool support is intended to release the 

designer from the editing and drawing load imposed by the use of task models. 

Second, however, task modeling tools can have tremendous impact on the use of 

task models by providing some way of visualizing the actual execution of a task 

model. There are basically two approaches to this: Either the graphical task tree is 

animated by dynamical, step-by-step annotations of the executed tasks (anima-

tion), or the set of currently executed tasks is visually represented by some dy-

namical graphics separate from the tree (simulation). In both cases, the designer 

can “see” the flow of actions, and can validate, if the model corresponds to reality. 

• The historically “oldest” approach (HTA) was originally not supported by  

any tool. It was a pure pen-and-paper concept and its merit was in the  
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ground-laying ideas of refining tasks into subtasks, governed by temporal  

relations. The ideas were later picked up by an institute
1
 founded by the UK de-

fense ministry, who developed the HTA tool to use the computer for creating 

and maintaining big HTA models. This tool, however, does not allow any kind 

of animation or simulation of the task model, as one of the most important 

building blocks, the plans, are specified as informal text to maintain utmost 

flexibility. 

• Euterpe was
2
 a tool supporting the GTA approach. It allowed the user to specify 

detailed information about the tasks into a highly interlinked structure, which 

could subsequently be printed as large graphics or be exported as a clickable 

website, showing both detail and context. Due to the fact that the temporal rela-

tions were not predefined there were no formally defined execution semantics, 

hence the model could only be documented, not simulated.  

• CTTE is the environment to use CTT, and it provides sophisticated editors and  

a powerful animation of the model. A CTT model consists of one big task  

tree, which is used as the basis for a graphical animation process – currently  

activated tasks are depicted as “highlighted”. A co-operative model combines 

several task trees into one construct, which can also be animated. This is a very 

powerful means to understand the mechanics of how several actors together 

work on a task. As a special highlight, CTTE animations can move forward and 

backward, thus allowing an easy way of exploring alternate routes. 

• K-MADe comes with an even richer, sophisticated editing and simulation envi-

ronment. It is close to being more of a programming environment, as a huge set 

of details can be specified which all are taken into account during simulation. 

While the approach’s richness is astounding, the price paid is a big effort for 

specifying even small task models. 

• VTMB has a simple-to-use editor component, which allows a quick construc-

tion of the task hierarchy with temporal relations. With a little more effort, ob-

jects and conditions can be included in the model, which enables the designer 

to define in a quite detailed way the human’s behavior during task execution. 

Within the same tool the model can be simulated, which allows the user to 

watch task execution and corresponding object manipulation.  

• AMBOSS comes with an editor and simulation environment as well. As the ap-

proach contains more detail than, e.g., VTMB, editing has to be “richer” with 

respect to object, roles, and safety-critical context information. The model can 

be simulated which takes into account most of the information specified. One 

of the strong points in modeling, the communication between actors, however, 

is not reflected in the simulation. 

• CTML, finally, contains an editor and simulation environment. The task model 

specification is based upon the CTT concept and objects are described with 

UML, including a class hierarchy and object associations; the editor allows de-

fining conditions and effects. A complete CTML model is compiled into a net-

work of communicating state machines, which is interpreted by the simulator. 

                                                           
1 HFI DTC – the Human Factors Integration Defence Technology Centre. 
2 We say „was“, as it is no more available and was never completed. 



288 G. Szwillus

 

The simulation is fine-grained with respect to the behavior and allows a  

detailed analysis of the model’s execution mechanics, including visibility of 

single states, conditions, and effects.  

As can be seen, all approaches have their strengths and weaknesses. Overall, the 

field of task modeling approaches and tools is still emerging, and largely in the 

hands of academia. Only CTT with its environment CTTE has found its way into 

industry to some degree as a de-facto-standard for task modeling. 

4   Using Task Models for User Interface Development 

There exists a rich literature on modeling user behavior with goal and action hier-

archies, notably under the name of GOMS modeling [16]. This psychologically 

founded approach reflects the fact that rational human behavior can appropriately 

be modeled with hierarchies, decomposing user goals into subgoals down to 

atomic operations. Hence, to understand and document the user’s way of planning, 

deciding, and acting, goal or task hierarchies such as in the approaches described 

above are proven to be adequate for this purpose.  

Such a task model could be created for describing a current situation, i.e. the 

way a user acts with a currently existing system (current task model), or it can be 

used for specifying the intended user behavior for a new, envisioned system (envi-

sioned task model). A current task model is created as a first step of the design 

team to understand how the work is done in the domain under consideration; with 

the help of this model, all stakeholders can make sure that the work situation has 

been properly understood. An envisioned task model aims at defining the way the 

work will be done with the new system; hence, in a model-based development ap-

proach, it is a first constructive step towards user interface design. This situation 

has also been described as the analysis-synthesis bridge model [17].  

4.1   Multi-platform User Interface Development 

When discussing the issue of granularity above, it was mentioned that the task 

model should concentrate on modeling the human operator’s performing and or-

ganizing the tasks, and should reflect decisions and operation sequences referring 

to the task. At best, this should only relate to task properties and not to user inter-

face properties. Only the user’s cognitive process concerning the task to be 

achieved should be subject to contemplation, not the concrete actions within the 

user interface into which the human user has to translate the pursuit of his or her 

goals. Otherwise the task model would implicitly state properties of the future user 

interface. For instance, if a task is decomposed down to actions such as “Drag the 

file to the trash can and drop it there”, this would imply that the user interface is 

designed as an object-oriented graphical user interface, which provides icons for 

files and the trash can usable in drag-and-drop-actions. Design decisions like this, 

however, should be postponed to the user interface design phase. As a rule of 

thumb, task models should not contain references to actual user interface  

elements, neither in the informal task descriptions nor as formal objects.  
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If the task model sticks to its proper designation, the model-based development 

approach also supports the growing problem of device-dependent design. No de-

veloper can afford to create dedicated individual applications or web pages for the 

wide range of interactive devices available, i.e. desktop computers with big 

screens, laptops, notebooks, smart phones, or cell phones. These devices differ 

widely in screen space and resolution, computing power, communication band-

width, and storage capacity. Still, the user wants to be able to use all these systems 

concurrently and consistently, such as booking a hotel room in the Internet from 

the office, from home, or while on the road. While the user accepts variants in the 

layout, graphical extent, and richness of textual information when using these dif-

ferent devices, the basic flow of action which performs the task should be the 

same in all cases. Task modeling as the basis of the user interface design can serve 

as a unifying entity: If the task model is independent of the finally implemented 

user interface, then it can serve as a basis for different implementations for  

different devices, hence, the flow of actions will essentially always be the same. 

In the following, we will discuss approaches supporting the development of 

dialogue models as a transitional step from task models, thus enabling the designer 

to create different device-dependent dialogue structures from a single task model. 

Dialogue models define the state space of a user interface, the valid inputs in any 

situation, the resulting outputs displayed to the user, and the occurring state transi-

tions. A dialogue model, other than a task model, takes a system-oriented point-of-

view. It defines the reaction of the system to any input in every situation, which 

will later on in the process be actually implemented by the software developer. 

Dialogue models come in different forms, such as state chart diagrams, transition 

networks, Petri nets, or event-oriented specifications; they are either specified ex-

plicitly as artifacts in an editing environment or are defined implicitly with the 

help of interface builders. 

4.1.1   TADEUS 
The TADEUS approach [18] as developed at the University of Rostock during the 

1990s is covered here as typical example of one of the first developments of this 

type. It defines an explicit method for transforming a given envisioned task model 

into a dialogue structure. The starting point of the process is a task model, given as 

a task hierarchy with temporal relations, and a corresponding object model, de-

scribing the objects needed for and transformed by task performance.  

As a first step, subparts of the task tree are identified as dialogue views, which 

the designer considers to be semantically linked functional units. The basic idea is 

that the tasks performed and the objects needed within this subpart of the task tree 

should be presented to the future user together in one view, such as a single dia-

logue box or a window, because they are highly semantically connected. Overall, 

a partition of all tasks in the task tree into disjoint dialogue views is created. One 

can imagine these to represent the different dialogue windows of the final user  

interface.  

As the user’s task performance sequence is described by the temporal relations 

within the task model, this enables the designer to define the transitions between 

different dialogue views accordingly. While the user is only performing tasks 



290 G. Szwillus

 

within a dialogue view, this view remains active and visible; when switching to a 

task within another dialogue view, this has to be presented to the user, e.g., by 

opening a corresponding dialogue box. Within the TADEUS approach, dialogue 

view transitions are specified as the so-called N-graph, where N stands for naviga-

tion, while the activities happening within a dialogue view, are described in a  

B-graph, where B stands for editing (in German “Bearbeiten”). 

Both N-graph and B-graph are formally based on Petri nets; hence, they contain 

places and transitions.  

• Within N-graphs places represent the different views; distinctions can be made 

with respect to modality of views, or whether views can exist only once or in 

several independent instances. Views can be characterized as being active,  

visible, and/or manipulable, with rules governing the behavior of the transitions 

between views with respect to these categories. Transitions can be specified as 

being sequential (start view is closed on transition) or concurrent (start view 

remains open). The definition of the dialogue view and transition behavior has 

to be compatible with the temporal relations defined for tasks in the task model 

which lead from the corresponding tree partitions to the next. There exists  

significant freedom in defining the navigation behavior, but the designer has to 

make sure that the temporal relations as given within the task model are  

respected.  

• A B-graph is created for defining the behavior in the inner part of a given 

dialogue view. Places represent the different tasks contained in the tree 

partition; they are referred to as abstract interaction elements, as they will later 

in the process be transformed into concrete interaction elements, allowing the 

user to input data, or trigger actions, which represent the corresponding task 

performance, and presenting the relevant objects to him, as specified in the task 

model. Again, these interaction elements are characterized as being active, 

visible, manipulable, and additionally as sensitive, with transitions describing 

the dependencies between them. These transitions have to be defined in 

accordance to the temporal relations defined in the task model within the 

corresponding tree partition identified as dialogue view.  

Overall, the task model with its subtask structure, temporal relations, and related 

objects, is used to define a global navigation structure between different views. 

These views contain interaction elements allowing the single subtasks to be per-

formed, by providing adequate input elements and display of the necessary  

objects, needed for the tasks. As the dialog definition process is based upon the 

envisioned task model, the designer can ensure that the resulting dialogue respects 

the task structure accordingly. Of course, the quality of the end result depends on 

the validity of the task model, the adequate partitioning of the model into dialogue 

views, and the correctness of the translation of the task structures into transitions 

between views and interaction elements.  

Although TADEUS as environment is outdated, its basic approach for the tran-

sition from task to dialogue models is worthwhile to contemplate, as the idea of 

partitioning the task tree is in itself interesting and the basis for other approaches 

as well.  
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One of these efforts picked up the ideas and used them to create an editing and 

simulation environment based on the Java Eclipse IDE, thus applying up-to-date 

software technology to the early ideas [19]. In this approach, a task model  

represents the basis for the definition of the so-called dialog-graphs [20], which 

correspond to the N-graphs mentioned above. As in the original concept, the nodes 

of the dialog-graph represent views, which are connected to task partitions, and 

transition within and between views are defined in accordance to the temporal  

relations. The EMF- and GEF-frameworks are used within Eclipse to create  

powerful graphical editors to create and maintain the dialog-graphs [21].  

In a second step, the nodes of the dialog-graphs are refined by the composition 

of dialogue elements on different abstraction levels, such as abstract “task execu-

tion” buttons, text input fields, complete structured dialogue boxes, or special 

components like video players. This more pragmatic approach replaces the B-

graph notation mentioned above and is based on the XUL user interface specifica-

tion language. As all elements are functional complete, the whole dialog-graph 

model can be simulated, even while still incomplete, thus allowing the designer to 

get an early feedback on the system behavior. 

While the issue of creating device-specific user interfaces for the same tasks 

was not important when the TADEUS concept was created, this is different today. 

The dialog-graphs as discussed in the end of this chapter allows to re-use a large 

part of the design work (the task model and the associated dialog-graph) when 

user interfaces have to be re-implemented for different platforms. In fact, the re-

vival of classical ideas such as developed in TADEUS was mostly due to the fact 

that multi-device design can significantly be reduced when applying model-based 

concepts. Typically, when re-arranging a user interface for a hugely different  

device, just exchanging the components of the single dialogue elements is insuffi-

cient. Changes have been made to the whole interaction strategy. The editor  

supporting dialog-graphs is implemented to allow for re-arrangement of dialog 

elements and to still conserve the link to the underlying task model. Ideally then, 

this method enables designers to re-use design results, and still “implement” the 

same task model.  

4.1.2   TERESA 

TERESA is a development environment [22] explicitly designed for creating user 

interfaces from task models. While in the beginning one was primarily interested 

in mastering this transition, recent developments in mobile device technology 

have increased the interest in such systems, as already mentioned. TERESA has 

been developed into a powerful environment for creating multi-modal, multi-

device applications, based on underlying task models. With respect to the basic 

underlying concepts there are relevant and interesting differences to the view  

definition approach of the TADEUS type. 

As TERESA was created by the inventors of CTT, the starting point for  

creating a user interface based on a task model is a ConcurTaskTree (CTT), i.e. a 

task hierarchy with temporal relations. The most important concept employed is 

the generation of so-called presentation task sets (PTS), which is the analogue to 

the partitioning process of the TADEUS type. At any moment in time while a task 
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model is “running”, there exists a well-defined set of tasks which are currently  

enabled, i.e. which can be executed. This set of enabled tasks (ETS) can be  

computed from the given temporal relations; in fact this computation is the core 

activity of every task model simulator. As the current ETS contains all next possi-

ble tasks, a user interface that behaves accordingly must provide the possibility  

to perform all tasks from the ETS to the user in this situation. The computed  

collection of all ETS is the basis for deriving the presentation task sets.  

While the ETS can be computed automatically, the definition of PTS is a de-

sign decision. It has to be done manually, but can be guided by experience, cap-

tured in so-called heuristics. As the number of ETS can be very large as a result of 

combinatory explosion, the goal is to minimize the number of PTS by combining 

ETSs. An example of such a heuristic is the combination of single-element ETSs 

to one, if the tasks contained are semantically strong related. Overall, this process 

of reducing ETS to fewer PTS is the analogue to the view definition in the 

TADEUS type of approach. In [23], algorithms are presented which define the  

resulting automaton in a semi-automatic way under the term “Activity Chain  

Extraction“. 

Once a reasonable set of PTS is found, the elements within the PTS, which are 

task names from the task model, are arranged in a so-called abstract user interface 

representation. For this process, principles frequently found in user interfaces, 

such as grouping, ordering, or relating semantically close elements, are used. 

Again, these are design decisions, which have to take into account the temporal re-

lations of the tasks under consideration, as defined in the task model. Subse-

quently, the task names in the PTS are replaced by appropriate interactors, which 

are suitable for the task. For instance, if a task represents some choice the user has 

to make, a selector interactor is chosen, with some basic parameters (such as  

single-choice or multiple-choice) adequately defined for the task.  

The abstract user interface definition process is finalized by specifying the tran-

sitions from one PTS to the next. This is done by defining rules, which state, e.g., 

that control flows from some PTS 1 to some other PTS 2, when the user has per-

formed task t within PST 1. These rules must, however, be defined such that the 

transitions respect the temporal relations of the underlying task model. This final 

step corresponds to the creation of the N-graph (navigation graph) within the 

TADEUS approach.  

Once the process has reached this point, there exists a model of the user inter-

face, which identifies the set of views that the user will see in the final interface, 

the set of proposed abstract interaction elements contained in every view, and a 

specification of which user action leads to the presentation of which other view. If 

all steps were carried out appropriately, it is assured that the user can operate with 

the user interface in the way the task model has defined.  

In the subsequent process, the abstract interactors are replaced by concrete  

interactors which are dedicated to a special platform. The multi-device supporting 

property of TERESA, however, takes into account that this alone will not be suffi-

cient to really create appropriately adapted user interfaces for such different  

devices as a desktop computer and a cell phone. To solve this, the underlying task 

model itself can contain device-dependent structures. In fact, it can be n models  
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in 1, one for every platform (such as cell phone, PDA, desktop). This gives up the 

concept of one task model for all platforms, but has been found useful (and neces-

sary) in practice. In addition, CTT was enhanced with a component to specify ob-

jects needed or manipulated by tasks individually for every platform, so the degree 

to which information is presented or not can be made dependent on device used. 

Both TADEUS and TERESA start from an envisioned task model and combine 

subsets of the task model into groups, define their “content” and the transitions be-

tween them. This structure is taken as abstract user interface definition and can 

then be refined further into actual user interface implementations. Both ap-

proaches ensure that the user interfaces “behave” like the underlying task model, 

and provide different means to adopt the interfaces to device-dependent proper-

ties. Emphasis in these approaches is to bridge the gap between the description of 

intended user behavior and user interface construction. Recently, the European 

USIXML project has started picking up ideas like these and turning them into a 

complete working tool suite for model-based user interface development [24]. 

4.2   Task Models and Usability 

Task models can also be helpful in dealing with usability issues. At first sight, this 

may sound as a contradiction to the fact that task models should not reflect ele-

ments of the user interface. Task models should certainly not deal with a large part 

of usability issues, such as the look & feel of user interfaces, button design, or font 

and color choices. However, the conceptual model of a system and its user inter-

face are subject to usability considerations as well. The “dialogue logic” has to be 

“understood” by the user of the interactive system; or, in other words, the user’s 

mental model of the application should match the conceptual model of the system, 

otherwise he or she would frequently be confused or irritated by the system’s  

responses.  

The user’s view on the tasks is captured in the task model envisioning the fu-

ture system. If the dialogue model is derived systematically from that task model, 

we ensure that the dialogue logic ultimately implemented matches the user’s per-

spective on the tasks to be performed. Turning this argument upside down, it is 

possible to design the basic dialogue logic of an interactive system, by defining a 

corresponding envisioned task model. This model can be subject to critique and 

evaluation with respect to several usability issues. 

Consider, for example, a train schedule information website, and a user who 

just wants to know how long a trip from A to B takes. The website may ask for the 

names of start and end point of a ride first, date and time as second information. 

For purposes of price calculation, it then requests the user to enter potential price 

reduction reasons, and asks about different train types and special needs for the 

trip. Only then does it return a list of train connections from A to B. One  

could model this behavior of the website as a task model without any reference to 

graphics, layout, or other visual information. But it would be easy to assess even 

on that pure task model level that the order of inputs required does not match the 

user’s expectation about quick information on travel times.   
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Nielsen provided ten well-known usability heuristics [25] which can be seen as 

a generally accepted landmark for usability guidelines. It is obvious that a lot of 

violations of the usability heuristics can only be evaluated fully, when the concrete 

physical appearance of a user interface is defined. This holds for the heuristic 

“Speak the user’s language”, for instance, as without knowing what the user inter-

face looks like in detail, we cannot tell whether the symbols shown and wording 

used make sense to the user. Other heuristics, however, can – at least partially – be 

taken into consideration even when a specification as abstract as a task model is 

given. This holds especially for the first heuristic “Use simple and natural dia-

logue”, as the dialogue logic, the structure and ordering of the steps, is already 

visible in the underlying task model. Table 1 lists some of the heuristics and their 

potential applicability on task model level. Being vigilant on respecting these heu-

ristics supports the implementation of a system and user interface which is better 

understood by the user. Faults in this area are hard to repair in the final system, as 

they concern the overall dialogue structure, much harder than “cosmetic” correc-

tions of surface elements such as graphics, textual inscriptions, colors, or fonts. 

Table 1 Applicability of Heuristics to Task Models 

We will discuss three approaches which connect usability issues to task modeling. 

We start with discussing the potential of directly assessing an (envisioned) task model 

underlying the definition of a web site. In the second approach, task model simulation 

information is used for making user interface design decisions towards better 

usability. Finally, we present some ideas for allowing experts to evaluate user 

interface usability, guided by the underlying task model. 

4.2.1   Canonical Abstract Prototypes 

In the following, we present a concept [26] for creating what Larry Constantine re-

ferred to as canonical abstract prototype [27] for a task model intended for de-

scribing the use of a website. The approach allows the designer of a task model to 

describe and simulate requested inputs and delivered outputs in an abstract way, 

such that it is possible to try and observe the sequencing of inputs and outputs. 

This enables a usability analysis and iterated improvements of the task flow, 

which will determine the dialogue logic of the final system. 

Heuristic Applicability 

Use simple and natural dialogue Natural dialogue explicitly refers to the user’s “natural” 

understanding of the task 

Minimize memory load Partly refers to task models when it comes to switching  

between tasks 

Provide clear exit points Task interruption or cancellation must be covered in the 

task model and must be appropriately handled by the user 

and/or the system 

Prevent errors Task models can ensure action sequencing which help to 

create fault-tolerance 
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The approach was implemented as a prototype system [28] in the wider context 

of a web development environment. The starting point of the development was a 

rich task modeling editor, which includes a detailed object model. While the user 

moves in the Internet, he or she typically inputs data, receives information, makes 

decisions based on this information and re-enters data. To be able to model this 

type of behavior, the task model is enhanced by additional information about 

which data a task provides to the user, which data the user delivers to the task, and 

which information is to be remembered (like “carried around” in a back pack) by 

the user within this session. These facts are added as so-called “actions” to the 

tasks. Actions can, for instance, request an input value from the user, or provide 

information to the user. Additionally, action objects can be used for definition of 

task conditions: the availability, as well as the absence of data can be specified, for 

instance, as necessary pre-condition for a task.  

Enhancing the envisioned task model with this “action” and “condition” infor-

mation is done very straightforwardly and typically only means to formalize  

the informal task description. In a case study of a web site selling train tickets, this 

involved the transition from a task named “define start point” to a task which re-

ceives a text object named “start point” from the user. Hence, defining the actions 

does not substantially change the task model but only states more precisely what is 

already there.  

The objects formally included into the task with actions can be characterized in 

terms of their types (such as integer, boolean, date, time, text, password, email ad-

dress) which frequently are used in the web. If the user is supposed to enter a 

value, an appropriate interaction element is included, such as a text input field or a 

dropdown list. Optional and default values can be defined, to enable a realistic 

simulation of the future behavior in the web. 

 

 

Fig. 5 Situation during an abstract prototype simulation 

Once this formalization step is done, the task model can be simulated and as-

sessed by users knowledgeable in the domain. The visual representation has not 

undergone a specific design phase, all simulations created with the tool look alike 

(see Figure 5). The task representations contain the task names, optionally a de-

scription, the interaction elements specified for performing the actions on objects, 



296 G. Szwillus

 

and standard buttons, if applicable, to skip or finish a task. Only the tasks which 

are currently available are shown. Figure 5 shows a situation of the train ticket 

web site simulation, where the user has entered the start point “Dortmund”, has  

selected “Bremen” as end point, and can optionally insert stopovers. At all times 

during the simulation, the user can enter comments about the flow of the simula-

tion, by clicking on the small “add a comment” the right) contained in every task 

box. This information can later be systematically evaluated by the designer. 

Overall, the concept starts from a conventional (envisioned) task model, and 

visualizes its behavior in terms of information provided to and required from the 

future users or an expert substituting the users. While doing so, the dialog logic 

can be experienced and thus validated. Once the underlying task model has itera-

tively been modified such that it is adequate for the tasks at hand, it can serve as a 

basis for implementing the final website. Important design decisions influencing 

the usability of the future system with relation to the heuristics mentioned in  

Table 1 can be supported by this simulation in a very early development stage. 

4.2.2   The Key Task Concept 

The primary purpose of a task model is to define the user’s understanding of the 

task as such, independent from the details of a concrete user interface. If, however, 

a concrete user interface of some application supporting the tasks at hand is given 

and has to be analyzed with respect to its usability, we can let us guide by the task 

model to perform the analysis. Starting from the task model which is independent 

from the user interface (referred to as the abstract task model) we refine the tasks 

down to the level of single user interface actions, resulting in the concrete task 

model, which of course is dependent on the user interface. The creation of the 

concrete user interface is a laborious but not a complicated step.  

Based on the concrete task model, a usability expert inspects this model, while 

executing the corresponding steps in the application under consideration. Every 

action the user performs in the application is reflected by a task within the model. 

For every such action, the usability expert is now challenged to inspect this step 

for the presence of potential usability problems, such as “missing feedback”,  

“inappropriate metaphor”, or having to deal with a large number of objects 

(“count”). Based on general usability experience or dedicated domain-specific  

experience, the usability expert works from an existing list of potential usability 

problems. Assuming that working around these problems takes a certain effort on 

the user’s side, additional tasks (referred to as key tasks) are added to the task 

model describing these additional efforts to deal with the user interface deficien-

cies [29]; on the other hand, positive user interface properties, helping the user are 

also noted as key tasks. 

Table 2 shows a list of key tasks found useful in the studies performed with the 

approach up to now. Key tasks can describe usability problems (negative), or us-

ability properties actively helping the user (positive), but can also be neutral, i.e. 

having no positive or negative effect. 



Task Models in the Context of User Interface Development 297

 

Table 2 Types of key tasks used 

Name of the key task Description 

CONVENTION A dialogue does (positive) or does not (negative) behave or look  

according to established conventions in the field 

COUNT The number of elements to understand is too big (negative) or  

acceptable (positive) for the user 

EXIT A dialogue does not have a clearly marked exit (negative) 

FEEDBACK The user is not informed appropriately about the status of an important 

action / process (negative) 

GUIDE The user is not guided through some options or input alternatives, but 

has to remember things (negative) 

ICON The user is irritated by a misleading icon (negative) or properly advised 

by an appropriate icon (positive) 

MENU ORIENTATION The user has to digest a big (negative) or appropriate (positive) menu 

METAPHOR An inappropriate metaphor confuses the user 

ORIENTATION A new page or dialogue asks considerable effort from the user to orien-

tate (negative) 

SCROLLING The user has to scroll the page or dialogue to reach the necessary  

element (negative) 

SHORTCUT The system provides a shortcut to the user (positive) 

WORDING The language used here is appropriate (positive) or not (negative) 

 

Fig. 6 Extract from a concrete task model describing a log-in process in the web with  

associated key tasks  

Figure 6 shows a part of a concrete task model (grey boxes) with associated key 

tasks, as created and analyzed in the TEEAM prototype environment [30] to de-

scribe part of an electronic book shop in the web. In the visual representation, the 

key tasks are linked to the task where the usability issue shows up; they are not 

part of the task hierarchy. “Exit” was included as potential usability problem, as 

the web page does not include a clearly-marked exit from the log-in process; 

“Convention” was added as positive usability property because the web page 

sticks to certain conventions the user typically expects on log-in pages in the web; 

and the “Orientation” key task symbolizes that the user sees a new dialogue resp. 

web page for which considerable time is needed to scan its content and orientate 

himself on that page.  
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As can be seen from these examples, key tasks represent the effort on the user’s 
side to fulfill the task in the corresponding dialogue element; this effort can have a 
negative effect, thus delaying or confusing the user, or a property of the dialogue 
can influence the user action in a positive, supportive way. In both cases, these  
effects can simply be existent or not, in which case a Boolean parameter is  
assigned to the key task defining whether the problem is present or not. Or the key 
task can depend on a numerical value, as, for instance, in the case of the key task 
“count”: When the user is presented a large number of alternatives, such as a list 
of countries with 230 elements where he or she has to choose the own country 
from, then the key task “count(230)” can be specified. The user interface expert, 
on the other hand, can specify that a “count” with 1 to 20 elements is no problem, 
but a list with more than 20 is. On the other hand, providing a short cut to the user 
can be reflected as a positive usability property.  

 

Fig. 7 Analysis results 

During the analysis of an application, or a website, the analyst may discover 
facts, which are not described by any of the available key tasks. Hence, the editing 
tool allows creating new key tasks fulfilling the needs of the analyst, or modifying 
existing ones.  

Once the concrete task model is created and enhanced with the key tasks the 
tool counts the occurrences of the key tasks within the model (see Figure 7). The 
count is based on assumed probabilities of choices and expected numbers of itera-
tions which can be specified in the task model. As a result, the tool presents a list 
of positive and negative usability properties and their expected occurrences during 
the real execution. Based on this list, the analyst can assess the overall usability 
quality of the user interface with respect to the usability properties as captured in 
the key tasks. This result can be subject to targeted modifications, which then 
could again be annotated with key tasks, allowing a summative comparison be-
tween design variants. 

4.2.3   The ReModEl Approach 

At the University of Rostock, an integrated model-based development process was 

created, which builds on transformation processes between models, hence  
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supporting the complete user interface development cycle [31]. The approach  

uses task models, object models, user models, and environment models; the task 

models are refined by including abstract user interface objects, which are then 

transformed into concrete user interface elements dependent on the target  

platform. The transformation steps are not automated as they incorporate creative 

design steps, but they are supported by appropriate tools. Within this approach it is 

ensured that the transformational steps keep track of the elements manipulated or 

refined. Hence, the elements of the intermediate and finally reached user inter-

faces are linked to the underlying tasks structures.  

The ReModEl system [32] is a simulating environment which can interpret 

such a chain of models on the (abstract) task model level, the level of abstract user 

interfaces, or the concrete user interface prototype. A concrete user interface pro-

totype, for instance, can be employed in a usability test with “real” users, or it can 

be used by a domain expert for validating the chains of events, as offered by the 

tool. The ReModEl tool keeps track of the user actions and reports frequently per-

formed tasks or transitions between tasks on task model level. The analysis results 

are presented in a heat map like style to the analyst. This visualization enables the 

analyst to identify certain situations which have to be taken into account for the fi-

nal user interface design. For instance, if it is found that users frequently switch 

back and fourth between two tasks, it is recommended that these tasks are either 

presented together or can be reached easily from each other. Or, if a certain group 

of users frequently works in a special part of the task model, this hints at a special 

responsibility of the user group for these tasks. Also, wizard-like sequences or 

other typical patterns of actions can be detected. Apart from that, the link to the 

underlying task model can be used to specify expected, “correct” behavior and 

comparing it to actual behavior, either for guiding the user or learning something 

about potential orientation problems in the user interface. 

5   Conclusions and Outlook 

This book chapter has introduced several approaches for employing the concept of 

task modeling within model-based user interface design processes. On one hand, 

task models were advocated as a means for describing, documenting, and in fact 

designing natural task-oriented action sequences while performing certain tasks. 

On the other hand, there exist approaches to transform the task model information 

into a corresponding dialogue model which represents the underlying task model 

“logic” as dialogue logic presented to the user. Apart from this constructive use of 

task models in model-based user interface design, we proposed the assessment of 

important aspects of usability by creating and validating the performance of proto-

types or the evaluation of user interface performance by enriching the task model 

with the usage details of a concrete interface.  

In the area of multi-platform user interface development the model-based ap-

proaches have experienced a vivid renaissance, as they inherently provide a strong 

abstraction from device-dependent details. Especially the work on UsiXML [24] – 

a large European project which started in 2009 – looks promising, as for the first 

time it covers all aspects of user interface development, including the task model 
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level. On the other hand, the work of Paterno and his group in Pisa, which started 

with classical task modeling and ultimately created the TERESA environment [22] 

for device-independent UI generation has a lot of potential. This is in particular 

stressed by the very recent publication of the MARIAE environment [33], which 

enhances the TERESA approach by incorporating web services into the design 

process. 
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