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Preface

The book is devoted to the design and analysis of biomolecular circuits as

considered in systems biology and synthetic biology – two very dynamic and

promising fields of research. Combining expertise and know-how from the biolog-

ical and physical sciences with computer science, mathematics and engineering,

their potential to impact society is only limited by the imagination of those working

in the fields.

Synthetic biology promises to introduce new bio-therapeutic, bio-remediation,

and bio-sensing applications. For example, synthesizing bacteria to seek out and de-

stroy cancer cells, grass that glows red if planted on top of a land mine, cells that

perform arithmetic operations, and small organisms that detect and remove heavy

metals from the world’s most dangerous drinking water. These systems are all possi-

ble by introducing key concepts in the way we abstract and standardize the process

by which biological systems are developed. One of the current goals in synthetic

biology is showing that, starting with well characterized biological primitives, com-

plex systems can be composed using rules for system composition and automated

with algorithms, biophysical models, and liquid handling robotics. A prime example

of the synthetic biology community is the exciting International Genetically Engi-

neered Machine competition (iGEM) held every year at MIT in Boston (USA). This

event is just the tip of the iceberg. The field is in its infancy much the way the

semiconductor industry was in the 1940’s. Tremendous advances can be gained by

not only furthering our knowledge of the biological phenomenon underlying these

systems but also making sure the overall design process is formal, rigorous, and

standardized.

Underpinning the advance and application of systems and synthetic biology is

the development of appropriate modeling and computational tools for analysis and

design purposes. This is an important ongoing research area. The idea is to model

biological processes and reactions so as to allow experiments to be carried out

in-silico before moving to the wet-lab. This is strongly reminiscent of the early days

of electronics, where mathematical models had to be formulated to allow, for exam-

ple, computer aided design (CAD) of integrated circuits and the efficient testing and

design of complex devices.

v
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The idea for this book arose during a successful special session on “Design of

Biological Circuits and Systems” held at the IEEE International Symposium on

Circuits and Systems (ISCAS) in 2009 in Taipei (Taiwan) organized by co-editors

Heinz Koeppl and Gianluca Setti. The aim of the book is to present in a coherent

framework some of the most recent work on the analysis, simulation and design of

biomolecular circuits and systems reflecting the interdisciplinary and collaborative

nature of the field. The results discussed in the book range from how these systems

should be modeled and analyzed to how they should be physically designed and

implemented.

The book is organized around four general thematic areas:

A. Analysis and Simulation

B. Modularity and Abstraction

C. Design and Standardization

D. Enabling Technologies

Drawing parallels to electronic circuit design the chosen organization of the book

indicate – what the editors believe – are the important necessary steps to build com-

plex synthetic circuits. Based on an appropriate mathematical formalism of how

to describe, analyze and simulate basic cellular processes one can start to abstract

away part of this overwhelming complexity (Part A). Abstraction and the clear def-

inition of functional entities or modules that can be composed is the crucial step

toward large-scale integration (Part B). If well-defined building blocks with well-

defined interfaces are in place, standards can be created and the in silico design

process can be automated (Part C). The concluding theme of the book discusses the

experimental feasibility of the corresponding in vivo design and analysis process

(Part D).

Each of these themes is organized in different chapters that are self-contained so

that they can be read individually by experts but also read sequentially by some-

one wanting to get an overview of the field. The book is intended for computational

scientists, e.g. mathematicians, physicists, computer scientist or engineers as well

as for researchers from the life sciences. Special efforts have been made to make

the chapters accessible for a broad, multi-disciplinary readership. For instance, in

the experimental chapters of Part D, care has been taken so that computational re-

searchers can follow the otherwise rather technical expositions on the technologies

applied in experimental systems and synthetic biology.

We would like to thank Springer for their help and support in assembling this

book together. In particular, we want to thank Charles Glaser for his constant drive

behind this book project. The commitment taken and the effort invested by all con-

tributors to deliver the chapter on time is gratefully acknowledged.

We hope the reader will find this book enjoyable and motivating. Systems and

synthetic biology are exciting emerging research areas where skills and know-how
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from science and engineering are required. We believe this book offers a balanced

overview of the many open problems and research challenges in the design and

analysis of biomolecular circuits.

ETH Zurich, Switzerland Heinz Koeppl

Boston University, USA Douglas Densmore

University of Bristol, UK and Mario di Bernardo

University of Naples Federico II, Italy

University of Ferrara, Italy Gianluca Setti

April 29, 2011
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Chapter 1

Continuous Time Markov Chain Models
for Chemical Reaction Networks

David F. Anderson� and Thomas G. Kurtz�

Abstract A reaction network is a chemical system involving multiple reactions and

chemical species. The simplest stochastic models of such networks treat the system

as a continuous time Markov chain with the state being the number of molecules of

each species and with reactions modeled as possible transitions of the chain. This

chapter is devoted to the mathematical study of such stochastic models. We begin by

developing much of the mathematical machinery we need to describe the stochastic

models we are most interested in. We show how one can represent counting pro-

cesses of the type we need in terms of Poisson processes. This random time-change

representation gives a stochastic equation for continuous-time Markov chain mod-

els. We include a discussion on the relationship between this stochastic equation

and the corresponding martingale problem and Kolmogorov forward (master) equa-

tion. Next, we exploit the representation of the stochastic equation for chemical

reaction networks and, under what we will refer to as the classical scaling, show

how to derive the deterministic law of mass action from the Markov chain model.

We also review the diffusion, or Langevin, approximation, include a discussion of

first order reaction networks, and present a large class of networks, those that are

weakly reversible and have a deficiency of zero, that induce product-form station-

ary distributions. Finally, we discuss models in which the numbers of molecules

and/or the reaction rate constants of the system vary over several orders of magni-

tude. We show that one consequence of this wide variation in scales is that different

subsystems may evolve on different time scales and this time-scale variation can be

exploited to identify reduced models that capture the behavior of parts of the sys-

tem. We will discuss systematic ways of identifying the different time scales and

deriving the reduced models.

�Research supported in part by NSF grant DMS 05-53687
�Research supported in part by NSF grants DMS 05-53687 and DMS 08-05793

T.G. Kurtz (�)
Departments of Mathematics, University of Wisconsin-Madison, 480 Lincoln Drive,
Madison, WI 53706-1388
e-mail: kurtz@math.wisc.edu

H. Koeppl et al. (eds.), Design and Analysis of Biomolecular Circuits: Engineering

Approaches to Systems and Synthetic Biology, DOI 10.1007/978-1-4419-6766-4 1,
c Springer Science+Business Media, LLC 2011
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Introduction

The idea of modeling chemical reactions as a stochastic process at the molecular

level dates back at least to [12] with a rapid development beginning in the 1950s

and 1960s. (See, for example, [6, 7, 39].) For the reaction

AC B * C

in which one molecule of A and one molecule of B are consumed to produce one

molecule of C , the intuition for the model for the reaction is that the probability of

the reaction occurring in a small time interval .t; t C�t� should be proportional to

the product of the numbers of molecules of each of the reactants and to the length

of the time interval. In other words, since for the reaction to occur a molecule of

A and a molecule of B must be close to each other, the probability should be pro-

portional to the number of pairs of molecules that can react. A more systematic

approach to this conclusion might be to consider the following probability problem:

Suppose k red balls (molecules of A) and l black balls (molecules of B) are placed

uniformly at random in n boxes, where n is much larger than k and l . What is the

probability that at least one red ball ends up in the same box as a black ball? We leave

it to the reader to figure that out. For a more physically based argument, see [21].

Our more immediate concern is that the calculation, however justified, assumes

that the numbers of molecules of the chemical species are known. That assumption

means that what is to be computed is a conditional probability, that is, a computa-

tion that uses information that might not (or could not) have been known when the

experiment was first set up.

Assuming that at time t there are XA.t/ molecules of A and XB.t/ molecules of

B in our system, we express our assumption about the probability of the reaction

occurring by

P freaction occurs in .t; t C�t�jF t g � �XA.t/XB.t/�t (1.1)

where Ft represents the information about the system that is available at time t and

� is a positive constant, the reaction rate constant. Since Kolmogorov’s fundamen-

tal work [28], probabilists have modeled information as a �-algebra (a collection of

sets with particular properties) of events (subsets of possible outcomes) in the sam-

ple space (the set of all possible outcomes). Consequently, mathematically, Ft is a

�-algebra, but readers unfamiliar with this terminology should just keep the idea of

information in mind when we write expressions like this, that is, Ft just represents

the information available at time t .
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One of our first goals will be to show how to make the intuitive assumption in

(1.1) into a precise mathematical model. Our model will be formulated in terms of

XA, XB , and XC which will be stochastic processes, that is, random functions of

time. The triple X.t/ D .XA.t/; XB.t/; XC .t// gives the state of the process at

time t . Simple bookkeeping implies

X.t/ D X.0/CR.t/

0
@
�1
�1
1

1
A ; (1.2)

where R.t/ is the number of times the reaction has occurred by time t and X.0/ is

the vector giving the numbers of molecules of each of the chemical species in the

system at time zero. We will assume that two reactions cannot occur at exactly the

same time, so R is a counting process, that is, R.0/ D 0 and R is constant except

for jumps of plus one.

Our first task, in section “Counting Processes and Continuous Time Markov

Chains”, will be to show how one can represent counting processes of the type we

need in terms of the most elementary counting process, namely, the Poisson process.

Implicit in the fact that the right side of (1.1) depends only on the current values of

XA and XB is the assumption that the model satisfies the Markov property, that is,

the future of the process only depends on the current value, not on values at earlier

times. The representation of counting processes in terms of Poisson processes then

gives a stochastic equation for a general continuous-time Markov chain. There are,

of course, other ways of specifying a continuous-time Markov chain model, and

section “Counting Processes and Continuous Time Markov Chains” includes a dis-

cussion of the relationship between the stochastic equation and the corresponding

martingale problem and Kolmogorov forward (master) equation. We also include a

brief description of the common methods of simulating the models.

Exploiting the representation as a solution of a stochastic equation, in section

“Reaction Networks” we discuss stochastic models for chemical reaction networks.

Under what we will refer to as the classical scaling, we show how to derive the

deterministic law of mass action from the Markov chain model and introduce the

diffusion or Langevin approximation. We also discuss the simple class of networks

in which all reactions are unary and indicate how the large literature on branching

processes and queueing networks provides useful information about this class of

networks. Many of these networks have what is known in the queueing literature as

product form stationary distributions, which makes the stationary distributions easy

to compute. The class of networks that have stationary distributions of this form

is not restricted to unary networks, however. In particular, all networks that satisfy

the conditions of the zero-deficiency theorem of Feinberg [15, 16], well-known in

deterministic reaction network theory, have product-form stationary distributions.

There is also a brief discussion of models of reaction networks with delays.

The biological systems that motivate the current discussion may involve reaction

networks in which the numbers of molecules of the chemical species present in

the system vary over several orders of magnitude. The reaction rates may also vary
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widely. One consequence of this wide variation in scales is that different subsystems

may evolve on different time scales and this time-scale variation can be exploited

to identify reduced models that capture the behavior of parts of the system. Section

“Multiple Scales” discusses systematic ways of identifying the different time scales

and deriving the reduced models.

Although much of the discussion that follows is informal and is intended to

motivate rather than rigorously demonstrate the ideas and methods we present, any

lemma or theorem explicitly identified as such is rigorously justifiable, or at least

we intend that to be the case. Our intention is to prepare an extended version of this

paper that includes detailed proofs of most or all of the theorems included.

Counting Processes and Continuous Time Markov Chains

The simplest counting process is a Poisson process, and Poisson processes will be

the basic building blocks that we use to obtain more complex models.

Poisson Processes

A Poisson process is a model for a series of random observations occurring in time.

x x x x x x x x
t

Let Y.t/ denote the number of observations by time t . In the figure above,

Y.t/ D 6. Note that for t < s, Y.s/ � Y.t/ is the number of observations in the

time interval .t; s�. We make the following assumptions about the model.

1. Observations occur one at a time.

2. Numbers of observations in disjoint time intervals are independent random vari-

ables, i.e., if t0 < t1 < � � � < tm, then Y.tk/ � Y.tk�1/, k D 1; : : : ; m are

independent random variables.

3. The distribution of Y.t C a/ � Y.t/ does not depend on t .

The following result can be found in many elementary books on probability and

stochastic processes. See, for example, Ross [41].

Theorem 1.1. Under assumptions (1), (2), and (3), there is a constant � > 0 such

that, for t < s, Y.s/ � Y.t/ is Poisson distributed with parameter �.s � t/, that is,

P fY.s/� Y.t/ D kg D .�.s � t//k
kŠ

e��.s�t/: (1.3)
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If � D 1, then Y is a unit (or rate one) Poisson process. If Y is a unit Poisson

process and Y�.t/ � Y.�t/, then Y� is a Poisson process with parameter �. Suppose

Y�.t/ D Y.�t/ and Ft represents the information obtained by observing Y�.s/, for

s � t . Then by the independence assumption and (1.3)

P fY�.t C�t/ � Y�.t/ > 0jFtg D P fY�.t C�t/ � Y�.t/ > 0g
D 1 � e���t � ��t: (1.4)

The following facts about Poisson processes play a significant role in our analysis

of the models we will discuss.

Theorem 1.2. If Y is a unit Poisson process, then for each u0 > 0,

lim
n!1 sup

u�u0

ˇ̌
ˇ̌Y.nu/

n
� u

ˇ̌
ˇ̌ D 0 a:s:

Proof. For fixed u, by the independent increments assumption, the result is just the

ordinary law of large numbers. The uniformity follows by monotonicity. ut

The classical central limit theorem implies

lim
n!1

P

�
Y.nu/ � nup

n
� x

�
D
Z x

�1

1p
2�
e�y2=2dy D P fW.u/ � xg;

where W is a standard Brownian motion. In fact, the approximation is uniform on

bounded time intervals in much the same sense that the limit in Theorem 1.2 is

uniform. This result is essentially Donsker’s functional central limit theorem [13].

It suggests that for large n

Y.nu/ � nup
n

� W.u/; Y.nu/

n
� uC 1p

n
W.u/

where the approximation is uniform on bounded time intervals. One way to make

this approximation precise is through the strong approximation theorem of Komlós,

Major, and Tusńady [29, 30], which implies the following.

Lemma 1.3. A unit Poisson process Y and a standard Brownian motion W can be

constructed so that

� � sup
t�0

jY.t/ � t �W.t/j
log.2 _ t/ <1 a:s:

and there exists c > 0 such that EŒec� � <1.

Proof. See Corollary 7.5.5 of [14]. ut
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Note that ˇ̌
ˇ̌Y.nt/ � ntp

n
� 1p

n
W.nt/

ˇ̌
ˇ̌ � log.nt _ 2/p

n
�; (1.5)

and that 1p
n
W.nt/ is a standard Brownian motion.

Continuous Time Markov Chains

The calculation in (1.4) and the time-change representation Y�.t/ D Y.�t/ suggest

the possibility of writing R in (1.2) as

R.t/ D Y
�Z t

0

�XA.s/XB .s/ds

�

and hence

0
@
XA.t/

XB.t/

XC .t/

1
A � X.t/ D X.0/C

0
@
�1
�1
1

1
AY

�Z t

0

�XA.s/XB.s/ds

�
: (1.6)

Given Y and the initial state X.0/ (which we assume is independent of Y ), (1.6) is

an equation that uniquely determines X for all t > 0. To see that this assertion is

correct, let �k be the kth jump time of Y . Then letting

� D

0
@
�1
�1
1

1
A ;

(1.6) implies X.t/ D X.0/ for 0 � t < �1, X.t/ D X.0/ C � for �1 � t < �2,

and so forth. To see that the solution of this equation has the properties suggested

by (1.1), let �.X.t// D �XA.t/XB.t/ and observe that occurrence of the reaction

in .t; t C�t� is equivalent to R.t C�t/ > R.t/, so the left side of (1.1) becomes

P fR.t C�t/ > R.t/jFtg
D 1 � P fR.t C�t/ D R.t/jFtg

D 1 � P
�
Y

�Z t

0

�.X.s//ds C �.X.t//�t
�
D Y

�Z t

0

�.X.s//ds

��

D 1 � e��.X.t//�t � �.X.t//�t;

where the third equality follows from the fact that Y.
R t
0 �.X.s//ds/ and X.t/ are

part of the information in Ft (are Ft -measurable in the mathematical terminology)

and the independence properties of Y .
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More generally, a continuous time Markov chain X taking values in Z
d is

specified by giving its transition intensities (propensities in much of the chemi-

cal physics literature) �l that determine

P
n
X.t C�t/ � X.t/ D �l jFXt

o
� �l .X.t//�t; (1.7)

for the different possible jumps �l 2 Z
d , where FXt is the ��algebra generated by

X (all the information available from the observation of the process up to time t). If

we write

X.t/ D X.0/C
X

l

�lRl.t/

where Rl .t/ is the number of jumps of �l at or before time t , then (1.7) implies

P
n
Rl.t C�t/ � Rl.t/ D 1

ˇ̌
ˇFXt

o
� �l.X.t//�t; l 2 Z

d :

Rl is a counting process with intensity �l.X.t//, and by analogy with (1.6), we

write

X.t/ D X.0/C
X

�lYl

�Z t

0

�l.X.s//ds

�
; (1.8)

where the Yl are independent unit Poisson processes. This equation has a unique

solution by the same jump by jump argument used above provided
P
l �l.x/ <1

for all x. Unless we add additional assumptions, we cannot rule out the possibility

that the solution only exists up to some finite time. For example, if d D 1 and

�1.k/ D .1C k/2, the solution of

X.t/ D Y1
�Z t

0

.1CX.s//2ds
�

hits infinity in finite time. To see why this is the case, compare the above equation

to the ordinary differential equation

Px.t/ D .1C x.t//2; x.0/ D 0:

Equivalence of Stochastic Equations and Martingale Problems

There are many ways of relating the intensities �l to the stochastic process X , and

we will review some of these in later sections, but the stochastic equation (1.8)

has the advantage of being intuitive (�l has a natural interpretation as a ‘rate’) and

easily generalized to take into account such properties as external noise, in which

(1.8) becomes

X.t/ D X.0/C
X

�lYl

�Z t

0

�l .X.s/;Z.s//ds

�
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whereZ is a stochastic process independent ofX.0/ and the Yl , or delays, in which

(1.8) becomes

X.t/ D X.0/C
X

�lYl

�Z t

0

�l.X.s/; X.s � ı//ds
�
;

or perhaps the �l become even more complicated functions of the past of X . We

will also see that these stochastic equations let us exploit well-known properties of

the Poisson processes Yl to study the properties of X .

The basic building blocks of our models remain the counting processes Rl and

their intensities expressed as functions of the past of the Rl and possibly some

additional stochastic input independent of the Yl (for example, the initial condition

X.0/ or the environmental noise Z).

For the moment, we focus on a finite system of counting processes R D
.R1; : : : ; Rm/ given as the solution of a system of equations

Rl.t/ D Yl
�Z t

0

l.s; R/ds

�
; (1.9)

where the l are nonanticipating in the sense that

l.t; R/ D l.t; R.� ^ t//; t � 0;

that is, at time t , l.t; R/ depends only on the past of R up to time t , and the Yl are

independent, unit Poisson processes. The independence of the Yl ensures that only

one of the Rl jumps at a time. Let �k be the kth jump time of R. Then any system

of this form has the property that for all l and k,

M k
l .t/ � Rl.t ^ �k/ �

Z t^�k

0

l.s; R/ds

is a martingale, that is, there exists a filtration fFtg such that

EŒM k
l .t C s/jFt � D M k

l .t/; t; s � 0:

Note that

lim
k!1

EŒRl.t ^ �k/� D lim
k!1

E

�Z t^�k

0

l.s; R/ds

�
;

allowing 1 D 1, and if the limit is finite for all l and t , then �1 D 1 and for

each l ,

Ml.t/ D Rl.t/ �
Z t

0

l.s; R/ds

is a martingale.

There is a converse to these assertions. If .R1; : : : ; Rm/ are counting processes

adapted to a filtration fFtg and .�1; : : : ; �m/ are nonnegative stochastic processes

adapted to fFtg such that for each k and l ,
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Rl.t ^ �k/ �
Z t^�k

0

�l.s/ds

is a fFtg-martingale, we say that �l is the fFtg-intensity for Rl .

Lemma 1.4. Assume thatR D .R1; : : : ; Rm/ is a system of counting processes with

no common jumps and �l is the fFtg-intensity for Rl . Then there exist independent

unit Poisson processes Y1; : : : ; Ym (perhaps on an enlarged sample space) such that

Rl.t/ D Yl
�Z t

0

�l.s/ds

�
:

Proof. See Meyer [40] and Kurtz [35]. ut
This lemma suggests the following alternative approach to relating the intensity

of a counting process to the corresponding counting process. Again, given nonnega-

tive, nonanticipating functions l , the intuitive problem is to find counting processes

Rl such that

P fRl .t C�t/ > Rl.t/jFt g � l.t; R/�t;
which we now translate into the following martingale problem. In the following

definition JmŒ0;1/ denotes the set ofm�dimensional cadlag (right continuous with

left limits at each t > 0) counting paths.

Definition 1.5. Let l , l D 1; : : : ; m, be nonnegative, nonanticipating functions

defined on JmŒ0;1/. Then a family of counting processes R D .R1; : : : ; Rm/ is a

solution of the martingale problem for .1; : : : ; m/ if the Rl have no simultaneous

jumps and there exists a filtration fFtg such that R is adapted to fFtg and for each

l and k,

Rl.t ^ �k/ �
Z t^�k

0

l.s; R/ds

is a fFtg-martingale.

Of course, the solution of (1.9) is a solution of the martingale problem and

Lemma 1.4 implies that every solution of the martingale problem can be written

as a solution of the stochastic equation. Consequently, the stochastic equation and

the martingale problem are equivalent ways of specifying the system of counting

processes that corresponds to the l . The fact that the martingale problem uniquely

characterizes the system of counting processes is a special case of a theorem of

Jacod [23].

Thinning of Counting Processes

Consider a single counting process R0 with fFtg-intensity �0, and let p.t; R0/ be a

cadlag, nonanticipating function with values in Œ0; 1�. For simplicity, assume

EŒR0.t/� D E
�Z t

0

�0.s/ds

�
<1:
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We want to construct a new counting process R1 such that at each jump of R0,

R1 jumps with probability p.t�; R0/. Perhaps the simplest construction is to let

�0; �1; : : : be independent, uniform Œ0; 1� random variables that are independent of

R0 and to define

R1.t/ D
Z t

0

1Œ0;p.s�;R0/�.�R0.s�//dR0.s/:

Since with probability one,

R1.t/ D lim
n!1

bntcX

kD0
1Œ0;p. k

n ;R0/�

�
�
R0. k

n /

��
R0

�
k C 1
n

�
� R0

�
k

n

��
;

where bzc is the integer part of z, setting eR0.t/ D R0.t/ �
R t
0
�0.s/ds, we see that

R1.t/ �
Z t

0

�0.s/p.s; R0/ds

D
Z t

0

.1Œ0;p.s�;R0/�.�R0.s�// � p.s�; R0//dR0.s/

C
Z t

0

p.s�; R0/deR0.s/

is a martingale (because both terms on the right are martingales). Hence, R1 is a

counting process with intensity �0.t/p.t; R0/. We could also define

R2.t/ D
Z t

0

1.p.s�;R0/;1�.�R0.s�//dR0.s/;

so that R1 andR2 would be counting processes without simultaneous jumps having

intensities �0.t/p.t; R0/ and �0.t/.1 � p.t; R0//.
Note that we could let p be a nonanticipating function of both R0 and R1, or

equivalently, R1 and R2. With that observation in mind, let 0.t; R/ be a nonnega-

tive, nonanticipating function ofR D .R1; : : : ; Rm/, and let pl .t; R/, l D 1; : : : ; m,

be cadlag nonnegative, nonanticipating functions satisfying
Pm
lD1 pl .t; R/ � 1.

Let Y be a unit Poisson process and �0; �1; : : : be independent, uniform Œ0; 1�

random variables that are independent of Y , and set q0 D 0 and for 1� l �m
set ql.t; R/ D

Pl
iD1 pi .t; R/. Now consider the system

R0.t/ D Y

�Z t

0

0.s; R/ds

�
(1.10)

Rl.t/ D
Z t

0

1.ql�1.s�;R/;ql.s�;R/�.�R0.s�//dR0.s/: (1.11)
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ThenR D .R1; : : : ; Rm/ is a system of counting processes with intensities �l.t/ D
0.t; R/pl.t; R/.

If, as in the time-change equation (1.9) and the equivalent martingale problem

described in Definition 1.5, we start with intensities 1; : : : ; m, we can define

0.t; R/ D
mX

lD1
l.t; R/; pl.t; R/ D

l.t; R/

0.t; R/
;

and the solution of the system (1.10) and (1.11) will give a system of counting

processes with the same distribution as the solution of the time-change equation

or the martingale problem. Specializing to continuous-time Markov chains and

defining

�0.x/ D
X

l

�l.x/; ql.x/ D
lX

iD1
�i .x/=�0.x/;

the equations become

R0.t/ D Y
�Z t

0

�0.X.s//ds

�
(1.12)

X.t/ D X.0/C
X

l

�l

Z t

0

1.ql�1.X.s�//;ql .X.s�///.�R0.s�//dR0.s/:

This representation is commonly used for simulation, see section “Simulation”.

The Martingale Problem and Forward Equation

for Markov Chains

LetX satisfy (1.8), and for simplicity, assume that �1 D1, that only finitely many

of the �l are not identically zero, and that

EŒRl.t/� D E
�Z t

0

�l.X.s//ds

�
<1; l D 1; : : : ; m:

Then for f a bounded function on Z
d ,

f .X.t// D f .X.0//C
X

l

Z t

0

.f .X.s�/C �l/ � f .X.s�///dRl.t/
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and defining

eRl.t/ D Rl.t/ �
Z t

0

�l.X.s//ds;

we see that

f .X.t// � f .X.0// �
Z t

0

X

l

�l.X.s//.f .X.s/C �l/ � f .X.s///ds

D
X

l

Z t

0

.f .X.s�/C �l/ � f .X.s�///deRl.s/

is a martingale.

Define

Af .x/ D
X

l

�l .x/.f .x C �l/ � f .x//:

Allowing �1 <1, define X.t/ D1 for t � �1. If �1 <1,

lim
k!1

jX.�k/j D 1;

and this definition gives a ‘continuous’ extension of X to the time interval Œ0;1/.
Let f satisfy f .x/ D 0 for jxj sufficiently large, and define f .1/ D 0. Then for

any solution of (1.8),

f .X.t// � f .X.0// �
Z t

0

Af .X.s//ds (1.13)

is a martingale.

Definition 1.6. A right continuous, Z
d [ f1g-valued stochastic process X is a

solution of the martingale problem forA if there exists a filtration fFtg such that for

each f satisfying f .x/ D 0 for jxj sufficiently large, (1.13) is a fFtg-martingale.

X is a minimal solution, if in addition, X.t/ D1 for t � �1.

The following lemma follows from Lemma 1.4.

Lemma 1.7. If X is a minimal solution of the martingale problem for A, then there

exist independent unit Poisson processes Yl (perhaps on an enlarged sample space)

such that

Rl.t/ D Yl
�Z t

0

�l.X.s//ds

�
:
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The martingale property implies

EŒf .X.t//� D EŒf .X.0//�C
Z t

0

EŒAf .X.s//�ds

and taking f .x/ D 1fyg.x/, we have

P fX.t/ D yg D P fX.0/ D yg C
Z t

0

 X

l

�l.y � �l/P fX.s/ D y � �lg

�
X

l

�l.y/P fX.s/ D yg
!
ds

giving the Kolmogorov forward or master equation for the distribution of X . In

particular, defining py.t/ D P fX.t/ D yg and �y D P fX.0/ D yg, fpyg satisfies

the system of differential equations

Ppy.t/ D
X

l

�l.y � �l/py��l
.t/ �

 X

l

�l.y/

!
py.t/; (1.14)

with initial condition py.0/ D �y .

Lemma 1.8. Let f�yg be a probability distribution on Z
d , and let X.0/ satisfy

P fX.0/DygD �y . The system of differential equations (1.14) has a unique so-

lution satisfying py.0/ D �y and
P
y py.t/ � 1 if and only if the solution of (1.8)

satisfies �1 D1.

Simulation

The stochastic equations (1.8) and (1.12) suggest methods of simulating continuous-

time Markov chains, and these methods are, in fact, well known. Equation (1.8)

corresponds to the next reaction (next jump) method as defined by Gibson and

Bruck [18].

The algorithm obtained by simulating (1.12) is known variously as the embed-

ded chain method or Gillespie’s [19, 20] direct method or the stochastic simulation

algorithm (SSA).

If we define an Euler-type approximation for (1.8), that is, for 0 D t0 < t1 < � � � ,
recursively define

bX.tn/ D X.0/C
X

l

�lYl

 
n�1X

kD0
�l

�
bX.tk/

�
.tkC1 � tk/

!
;

we obtain Gillespie’s [22] �-leap method.
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Stationary Distributions

We restrict our attention to continuous-time Markov chains for which �1 D 1
for all initial values and hence, given X.0/, the process is uniquely determined as

a solution of (1.8), (1.12), or the martingale problem given by Definition 1.6, and

the one-dimensional distributions are uniquely determined by (1.14). A probability

distribution � is called a stationary distribution for the Markov chain ifX.0/ having

distribution � implies X is a stationary process, that is, for each choice of 0 � t1 <
� � � < tk , the joint distribution of

.X.t C t1/; : : : ; X.t C tk//

does not depend on t .

IfX.0/ has distribution� , then sinceEŒf .X.0//�DEŒf .X.t//�DPx f .x/�.x/,

the martingale property for (1.13) implies

0 D E
�Z t

0

Af .X.s//ds

�
D t

X

x

Af .x/�.x/;

and as in the derivation of (1.14),

X

l

�l .y � �l/�.y � �l/ �
 X

l

�l.y/

!
�.y/ D 0:

Reaction Networks

We consider a network of r0 chemical reactions involving s0 chemical species,

S1; : : : ; Ss0 ,
s0X

iD1
�ikSi *

s0X

iD1
�0
ikSi ; k D 1; : : : ; r0;

where the �ik and �0
ik

are nonnegative integers. Let the components ofX.t/ give the

numbers of molecules of each species in the system at time t . Let �k be the vector

whose i th component is �ik , the number of molecules of the i th chemical species

consumed in the kth reaction, and let �0
k

be the vector whose i th component is �0
ik

,

the number of molecules of the i th species produced by the kth reaction. Let �k.x/

be the rate at which the kth reaction occurs, that is, it gives the propensity/intensity

of the kth reaction as a function of the numbers of molecules of the chemical species.

If the kth reaction occurs at time t , the new state becomes

X.t/ D X.t�/C �0
k � �k:
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The number of times that the kth reaction occurs by time t is given by the counting

process satisfying

Rk.t/ D Yk
�Z t

0

�k.X.s//ds

�
;

where the Yk are independent unit Poisson processes. The state of the system then

satisfies

X.t/ D X.0/C
X

k

Rk.t/.�
0
k � �k/

D X.0/C
X

k

Yk

�Z t

0

�k.X.s//ds

�

�0
k � �k

�
:

To simplify notation, we will write

�k D �0
k � �k:

Rates for the Law of Mass Action

The stochastic form of the law of mass action says that the rate at which a reaction

occurs should be proportional to the number of distinct subsets of the molecules

present that can form the inputs for the reaction. Intuitively, the mass action assump-

tion reflects the idea that the system is well-stirred in the sense that all molecules are

equally likely to be at any location at any time. For example, for a binary reaction

S1 C S2 * S3 or S1 C S2 * S3 C S4,

�k.x/ D �kx1x2;

where �k is a rate constant. For a unary reaction S1 * S2 or S1 * S2 C S3,

�k.x/ D �kx1. For 2S1 * S2, �k.x/ D �kx1.x1 � 1/.
For a binary reaction S1CS2 * S3, the rate should vary inversely with volume,

so it would be better to write

�Nk .x/ D �kN�1x1x2 D N�kz1z2;

where classically,N is taken to be the volume of the system times Avogadro’s num-

ber and zi D N�1xi is the concentration in moles per unit volume. For 2S1 ! S2,

since N is very large,

1

N
�kx1.x1 � 1/ D N�kz1

�
z1 �

1

N

�
� N�kz21:

Note that unary reaction rates also satisfy

�k.x/ D �kxi D N�kzi :
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Although, reactions of order higher than binary may not be physical, if they were,

the analogous form for the intensity would be

�Nk .x/ D �k
Q
i �ikŠ

N j�k j�1
Y

i

 
xi

�ik

!
D N�k

Q
i �ikŠ

N j�k j
Y 

xi

�ik

!
;

where j�kj D
P
i �ik . Again z D N�1x gives the concentrations in moles per unit

volume, and

�Nk .x/ � N�k
Y

i

z
�ik

i � Ne�k.z/; (1.15)

wheree�k is the usual deterministic form of mass action kinetics.

General Form for the Classical Scaling

Setting CN .t/ D N�1X.t/ and using (1.15)

CN .t/ D CN .0/C
X

k

N�1Yk

�Z t

0

�Nk .X.s//ds

�
�k

� CN .0/C
X

k

N�1Yk

�
N

Z t

0

e�k.CN .s//ds
�
�k

D CN .0/C
X

k

N�1eY k
�
N

Z t

0

e�k.CN .s//ds
�
�k C

Z t

0

F.CN .s//ds;

where eY k.u/ D Yk.u/� u is the centered process and

F.z/ �
X

k

�k
Y

i

z
�ik

i �k:

The law of large numbers for the Poisson process, Lemma 1.2, implies N�1eY .Nu/

� 0, so

CN .t/ � CN .0/C
X

k

Z t

0

�k
Y

i

CNi .s/
�ik�kds D CN .0/C

Z t

0

F.CN .s//ds;

which in the limit as N !1 gives the classical deterministic law of mass action

PC.t/ D
X

k

�k
Y

i

Ci .t/
�ik�k D F.C.t//: (1.16)

(See [31, 33, 34] for precise statements about this limit.)
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Since by (1.5),
1p
N
eY k.N u/ D Yk.N u/�N up

N

is approximately a Brownian motion,

V N .t/ �
p
N.CN .t/ � C.t//

� V N .0/C
p
N

 X

k

1

N
Yk

�
N

Z t

0

e�k.CN .s//ds
�
�k �

Z t

0

F.C.s//ds

!

D V N .0/C
X

k

1p
N
eY k

�
N

Z t

0

e�k.CN .s//ds
�
�k

C
Z t

0

p
N.F.CN .s// � F.C.s///ds

� V N .0/C
X

k

Wk

�Z t

0

e�k.C.s//ds
�
�k C

Z t

0

rF.C.s//V N .s/ds;

where the second approximation follows from (1.15). The limit asN goes to infinity

gives V N ) V where

V.t/ D V.0/C
X

k

Wk

�Z t

0

e�k.C.s//ds
�
�k C

Z t

0

rF.C.s//V .s/ds: (1.17)

(See [32, 34, 42] and Chap. 11 of [14].) This limit suggests the approximation

CN .t/ � bCN .t/ � C.t/C
1p
N
V.t/: (1.18)

Since (1.17) is a linear equation driven by a Gaussian process, V is Gaussian as

is bCN .

Diffusion/Langevin Approximations

The first steps in the argument in the previous section suggest simply replacing the

rescaled centered Poisson processes 1p
N
eY k.N �/ by independent Brownian motions

and considering a solution of

DN .t/ D DN .0/C
X

k

1p
N
Wk

�Z t

0

e�k.DN .s//ds

�
�k C

Z t

0

F.DN .s//ds

(1.19)

as a possible approximation for CN . Unfortunately, even though only ordinary in-

tegrals appear in this equation, the theory of the equation is not quite as simple

as it looks. Unlike (1.8) where uniqueness of solutions is immediate, no general
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uniqueness theorem is known for (1.19) without an additional requirement on the

solution. In particular, setting

�Nk .t/ D
Z t

0

e�k
�
DN .s/

�
ds;

we must require that the solution DN is compatible with the Brownian motionsWk
in the sense that Wk.�

N
k
.t/ C u/ � Wk.�Nk .t// is independent of FD

N

t for all k,

t � 0, and u � 0. This requirement is intuitively natural and is analogous to the

requirement that a solution of an Itô equation be nonanticipating. In fact, we have

the following relationship between (1.19) and a corresponding Itô equation.

Lemma 1.9. If DN is a compatible solution of (1.19), then there exist independent

standard Brownian motions Bk (perhaps on an enlarged sample space) such that

DN is a solution of the Itô equation

DN .t/ D DN .0/C
X

k

1p
N

Z t

0

q
e�.DN .s//dBk.s/�k C

Z t

0

F.DN .s//ds:

(1.20)

Proof. See [34, 35] and Chap. 11 of [14]. For a general discussion of compatibility,

see [36], in particular, Example 3.20. ut
In the chemical physics literature, DN is known as the Langevin approximation

for the continuous-time Markov chain model determined by the master equation.

Just as there are alternative ways of determining the continuous-time Markov chain

model, there are alternative approaches to deriving the Langevin approximation. For

example, CN is a solution of the martingale problem corresponding to

ANf .x/ D
X

k

N�k.x/.f .x CN�1�k/� f .x//;

and if f is three times continuously differentiable with compact support,

ANf .x/ D LNf .x/CO.N�2/;

where

LNf .x/ D
1

2N

X

k

�k.x/�
>
k @

2f .x/�k C F.x/ � rf .x/;

and any compatible solution of (1.19) is a solution of the martingale problem for

LN , that is, there is a filtration fFNt g such that

f
�
DN .t/

�
� f

�
DN .0/

�
�
Z t

0

LNf
�
DN .s/

�
ds

is a fFNt g-martingale for each twice continuously differentiable function having

compact support. The converse also holds, that is, any solution of the martingale
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problem for LN that does not hit infinity in finite time can be obtained as a compat-

ible solution of (1.19) or equivalently, as a solution of (1.20).

Finally, the Langevin approximation can be derived starting with the master

equation. First rewrite (1.14) as

PpN .y; t/ D
X

l

N�l


y �N�1�l

�
pN



y �N�1�l ; t

�
�
 X

l

N�l.y/

!
pN .y; t/;

(1.21)

where now

pN .y; t/ D P fCN .t/ D yg:

Expanding �l.y�N�1�l/pN .y�N�1�l/ in a Taylor series (the Kramer-Moyal

expansion, or in this context, the system-size expansion of van Kampen; see [42])

and discarding higher order terms gives

PpN .y; t/ � 1

2N

X

l

�>
l @

2
�
�l.y/p

N .y; t/
�
�k �

X

l

�l � r
�
�l.y/p

N .y; t/
�
:

Replacing� byD gives the Fokker-Planck equation

PqN .y; t/ D 1

2N

X

l

�>
l @

2
�
�l.y/q

N .y; t/
�
�k �

X

l

�l � r
�
�l .y/q

N .y; t/
�

corresponding to (1.20). These three derivations are equivalent in the sense that any

solution of the Fokker-Planck equation for which qN .�; t/ is a probability density for

all t gives the one-dimensional distributions of a solution of the martingale problem

for LN , and as noted before, any solution of the martingale problem that does not

hit infinity in finite time can be obtained as a solution of (1.20) or (1.19). See [37]

for a more detailed discussion.

The approximation (1.18) is justified by the convergence of V N to V , but the

justification for taking DN as an approximation of CN is less clear. One can, how-

ever, apply the strong approximation result, Lemma 1.3, to construct DN and CN

in such a way that in a precise sense, for each T > 0,

sup
t�T
jDN .t/ � CN .t/j D O

�
logN

N

�
:

First Order Reaction Networks

If all reactions in the network are unary, for example,

S1 * S2
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S1 * S2 C S3
S1 * S1 C S2
S1 * ;;

then the resulting process is a multitype branching process, and if reactions of the

form

;* S1

are included, the process is a branching process with immigration. Networks that

only include the above reaction types are termed first order reaction networks. For

simplicity, first consider the system

;* S1

S1 * S2

S2 * 2S1 :

The stochastic equation for the model becomes

X.t/ D X.0/C Y1.�1t/
 
1

0

!
C Y2

�
�2

Z t

0

X1.s/ds

� �1
1

!

CY3
�
�3

Z t

0

X2.s/ds

� 
2

�1

!
;

for some choice of �1; �2; �3>0. Using the fact that EŒYk.
R t
0 �k.s/ds/�D

EŒ
R t
0
�k.s/ds�, we have

EŒX.t/� D EŒX.0/�C
�
�1
0

�
t C

Z t

0

�2EŒX1.s/�ds

��1
1

�

C �3
Z t

0

EŒX2.s/�ds

�
2

�1

�

D EŒX.0/�C
�
�1
0

�
t C

Z t

0

���2 2�3
�2 ��3

�
EŒX.s/�ds

giving a simple linear system for the first moments, EŒX.t/�. For the second mo-

ments, note that

X.t/X.t/> D X.0/X.0/>C
Z t

0

X.s�/dX.s/> C
Z t

0

dX.s/X.s�/> C ŒX�t ;
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where ŒX�t is the matrix of quadratic variations which in this case is simply

ŒX�t D Y1.�1t/

�
1 0

0 0

�
C Y2

�
�2

Z t

0

X1.s/ds

��
1 �1
�1 1

�

CY3
�
�3

Z t

0

X2.s/ds

��
4 �2
�2 1

�
:

Since

X.t/ � X.0/� �1t
�
1

0

�
� �2

Z t

0

X1.s/ds

��1
1

�
� �3

Z t

0

X2.s/ds

�
2

�1

�

is a martingale,

EŒX.t/X.t/>� D EŒX.0/X.0/>�

C
Z t

0

E

"
X.s/

 


�1 0

�CX.s/>
���2 2�3
�2 ��3

�>!#
ds

C
Z t

0

E

���
�1
0

�
C
���2 2�3
�2 ��3

�
X.s/

�
X.s/>

�
ds

C
�
�1 0

0 0

�
t C

Z t

0

�
�2EŒX1.s/�

�
1 �1
�1 1

�

C�3EŒX2.s/�
�
4 �2
�2 1

��
ds

D EŒX.0/X.0/>�C
Z t

0

�1

�
2EŒX1.s/� EŒX2.s/�

EŒX2.s/� 0

�
ds

C
Z t

0

 
EŒX.s/X.s/>�

���2 2�3
�2 ��3

�>

C
���2 2�3
�2 ��3

�
E
�
X.s/X.s/>

��
ds C

�
�1 0

0 0

�
t

C
Z t

0

�
�2EŒX1.s/�

�
1 �1
�1 1

�

C �3EŒX2.s/�
�
4 �2
�2 1

��
ds:

In general, the stochastic equation for first order networks will be of the form

X.t/ D X.0/C
X

k

Y 0k .˛
0
kt/�

0
k C

s0X

lD1

X

k

Y lk

�
˛lk

Z t

0

Xl.s/ds

�
�lk;
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where all components of �0
k

are nonnegative and all components of �l
k

are non-

negative except for the possibility that the l th component of �l
k

may be �1. The

martingale properties of the Y l
k

imply that the expectation of X satisfies

EŒX.t/� D EŒX.0/�C at C
Z t

0

AEŒX.s/�ds; (1.22)

where a DPk ˛
0
k
�0
k

andA is the matrix whose l th column is Al D
P
k ˛

l
k
�l
k

. Note

that the solution of (1.22) is given by

EŒX.t/� D eAtEŒX.0/�C
Z t

0

eA.t�s/a ds;

and if A is invertible

EŒX.t/� D eAtEŒX.0/�C A�1.eAt � I /a; (1.23)

where I is the identity matrix.

Similarly to before, the matrix of second moments satisfies

E
�
X.t/X.t/>

�
D E

�
X.0/X.0/>

�
C
Z t

0



EŒX.s/�a> C aEŒX.s/�>

�
ds

C
Z t

0



AE

�
X.s/X.s/>

�
C E

�
X.s/X.s/>

�
A>�ds

CB0t C
X

l

Z t

0

EŒXl.s/�Blds ;

where

B0 D
X

k

˛0k�
0
k�
0>
k ; Bl D

X

k

˛lk�
l
k�
l>
k :

See [3], Sect. V.7.

A system that only includes reactions of the form

;* Si

Si * Sj

Si * ;

can be interpreted as an infinite server queueing network, with ; * Si corre-

sponding to an ‘arrival’, Si * ;, a ‘departure’, and Si * Sj the movement of

a ‘customer’ from station i to station j . Customers (molecules) that start in or en-

ter the system move (change type) independently until they leave the system. This

independence implies that if fXi .0/g are independent Poisson distributed random

variables, then fXi .t/g are independent Poisson distributed random variables for all
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t � 0. Since the Poisson distribution is determined by its expectation, under the

assumption of an independent Poisson initial distribution, the distribution ofX.t/ is

determined by EŒX.t/�, that is, by the solution of (1.22).

Suppose that for each pair of species Si and Sj , it is possible for a molecule of

Si to be converted, perhaps through a sequence of intermediate steps, to a molecule

of Sj . In addition, assume that the system is open in the sense that there is at least

one reaction of the form ; * Si and one reaction of the form Sj * ;. Then A is

invertible, so EŒX.t/� is given by (1.23), and as t ! 1, eAt ! 0 so EŒX.t/� !
�A�1a. It follows that the stationary distribution for X is given by a vector X of

independent Poisson distributed random variables with EŒX� D �A�1a.

If the system is closed so that the only reactions are of the form Si * Sj and

the initial distribution is multinomial with parameters .n; p1.0/; : : : ; ps0.0//, that

is, for k D .k1; : : : ; ks0/ with
P
i ki D n,

P fX.0/ D kg D
 

n

k1; : : : ; ks0

!Y
pi .0/

ki ;

then X.t/ is multinomial .n; p1.t/; : : : ; ps0.t//, where p.t/ D .p1.t/; : : : ; ps0.t//

is given by

p.t/ D eAtp.0/:
Note that if the intensity for the reaction Si * Sj is �ijXi .t/, then the model

is equivalent to n independent continuous-time Markov chains with state space

f1; : : : ; s0g and transition intensities given by the �ij . Consequently, if the inde-

pendent chains have the same initial distribution, p.0/ D .p1.0/; : : : ; ps0.0//, then

they have the same distribution at time t , namely p.t/. The multinomial distribu-

tion with parameters .n; p/ with p D limt!1 p.t/ will be a stationary distribution,

but p is not unique unless the assumption that every chemical species Si can be

converted into every other chemical species Sj holds.

See [17] for additional material on first order networks.

Product Form Stationary Distributions

The Poisson and multinomial stationary distributions discussed above for unary sys-

tems are special cases of what are known as product form stationary distributions

in the queueing literature. As noted in Chap. 8 of [27] and discussed in detail in [2],

a much larger class of reaction networks also has product form stationary distribu-

tions. In fact, stochastic models of reaction networks that satisfy the conditions of

the zero deficiency theorem of Feinberg [15] from deterministic reaction network

theory have this property.

Let S D fSi W i D 1; : : : ; s0g denote the collection of chemical species, C D
f�k; �0

k
W k D 1; : : : ; r0g the collection of complexes, that is, the vectors that give

either the inputs or the outputs of a reaction, and R D f�k ! �0
k
W k D 1; : : : ; r0g

the collection of reactions. The triple, fS; C;Rg determines the reaction network.
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Definition 1.10. A chemical reaction network, fS; C;Rg, is called weakly

reversible if for any reaction �k ! �0
k

, there is a sequence of directed reactions

beginning with �0
k

as a source complex and ending with �k as a product complex.

That is, there exist complexes �1; : : : ; �r such that �0
k
! �1; �1 ! �2; : : : ; �r !

�k 2 R. A network is called reversible if �0
k
! �k 2 R whenever �k ! �0

k
2 R.

Let G be the directed graph with nodes given by the complexes C and directed

edges given by the reactions R D f�k ! �0
k
g, and let G1; : : : ;G` denote the con-

nected components of G. fGj g are the linkage classes of the reaction network. Note

that a reaction network is weakly reversible if and only if the linkage classes are

strongly connected.

Definition 1.11. S D spanf�k!�0
k

2Rgf�0
k
� �kg is the stoichiometric subspace of

the network. For c 2 R
s0 , we say c C S and .c C S/ \ R

s0
>0 are the stoichiomet-

ric compatibility classes and positive stoichiometric compatibility classes of the

network, respectively. Denote dim.S/ D s.
Definition 1.12. The deficiency of a chemical reaction network, fS; C;Rg, is ı D
jCj�`�s, where jCj is the number of complexes, ` is the number of linkage classes,

and s is the dimension of the stoichiometric subspace.

For x; c 2 Z
s0
�0, we define cx � Qs0

iD1 c
xi

i , where we interpret 00 D 1, and

xŠ �Qs0
iD1 xi Š. If for each complex � 2 C, c 2 R

s0
>0 satisfies

X

kW�kD�
�kc

�k D
X

kW�0
k

D�
�kc

�k ; (1.24)

where the sum on the left is over reactions for which � is the source complex and the

sum on the right is over those for which � is the product complex, then c is a special

type of equilibrium of the system (you can see this by summing each side of (1.24)

over the complexes), and the network is called complex balanced. The following is

the Deficiency Zero Theorem of Feinberg [15].

Theorem 1.13. Let fS; C;Rg be a weakly reversible, deficiency zero chemical re-

action network governed by deterministic mass action kinetics, (1.16). Then, for any

choice of rate constants �k , within each positive stoichiometric compatibility class

there is precisely one equilibrium value c, that is
P
k �kc

�k .�0
k
� �k/ D 0, and that

equilibrium value is locally asymptotically stable relative to its compatibility class.

Moreover, for each � 2 C,

X

kW�kD�
�kc

�k D
X

kW�0
k

D�
�kc

�k : (1.25)

For stochastically modeled systems we have the following theorem.

Theorem 1.14. Let fS; C;Rg be a chemical reaction network with rate constants

�k . Suppose that the deterministically modeled system is complex balanced with
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equilibrium c 2 R
m
>0. Then, for any irreducible communicating equivalence class,

� , the stochastic system has a product form stationary measure

�.x/ D M cx

xŠ
; x 2 �; (1.26)

where M is a normalizing constant.

Theorem 1.13 then shows that the conclusion of Theorem 1.14 holds, regardless

of the choice of rate constants, for all stochastically modeled systems with a reaction

network that is weakly reversible and has a deficiency of zero.

Models with Delay

Modeling chemical reaction networks as continuous-time Markov chains is intu-

itively appealing and, as noted, consistent with the classical deterministic law of

mass action. Cellular reaction networks, however, include reactions for which the

exponential timing of the simple Markov chain model is almost certainly wrong.

These networks typically involve assembly processes (transcription or translation),

referred to as elongation, in which an enzyme or ribosome follows a DNA or RNA

template to create a new DNA, RNA, or protein molecule. The exponential hold-

ing times in the Markov chain model reflect an assumption that once the molecules

come together in the right configuration, the time it takes to complete the reaction

is negligible. That is not, in general, the case for elongation. While each step of the

assembly process might reasonably be assumed to take an exponentially distributed

time, the total time is a sum of such steps with the number of summands equal to

the number of nucleotides or amino acids. Since this number is large and essentially

fixed, if the individual steps have small expectations, the total time that the reaction

takes once the assembly is initiated may be closer to deterministic than exponen-

tial. See [5, 8] for examples of stochastic models of cellular reaction networks with

delays.

One reasonable (though by no means only) way to incorporate delays into the

models is to assume that for a reaction with deterministic delay �k that initiates

at time t� the input molecules are lost at time t� and the product molecules are

produced at time t�C �k . Noting that the number of initiations of a reaction by time

t can still be modeled by the counting process Yk.
R t
0
�k.X.s//ds/, we may let �1

denote those reactions with no delay and �2 those with a delay, and conclude that

the system should satisfy the equation

X.t/ D X.0/C
X

k2�1

Yk;1

�Z t

0

�k.X.s//ds

�

�0
k � �k

�

�
X

k2�2

Yk;2

�Z t

0

�k.X.s//ds

�
�k C

X

k2�2

Yk;2

 Z t��k

0

�k.X.s//ds

!
�0
k;
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where we take X.s/ � 0, and hence �k.X.s// � 0, for s < 0. Existence and

uniqueness of solutions to this equation follow by the same jump by jump argument

used in Section “Continuous Time Markov Chains”.

Simulation of reaction networks modeled with delay is no more difficult than

simulating those without delay. For example, the above equation suggests a simula-

tion strategy equivalent to the next reaction method [1,18]. There are also analogues

of the stochastic simulation algorithm, or Gillespie’s algorithm [8].

Multiple Scales

The classical scaling that leads to the deterministic law of mass action assumes that

all chemical species are present in numbers of the same order of magnitude. For

reaction networks in biological cells, this assumption is usually clearly violated.

Consequently, models derived by the classical scaling may not be appropriate. For

these networks some species are present in such small numbers that they should be

modeled by discrete variables while others are present in large enough numbers to

reasonably be modeled by continuous variables. These large numbers may still differ

by several orders of magnitude, so normalizing all ‘large’ quantities in the same way

may still be inappropriate. Consequently, methods are developed in [4, 25, 26] for

deriving simplified models in which different species numbers are normalized in

different ways appropriate to their numbers in the system.

Derivation of the Michaelis-Menten Equation

Perhaps the best known examples of reaction networks in which multiple scales

play a role are models that lead to the Michaelis-Menten equation. Darden [9, 10]

gave a derivation starting from a stochastic model, and we prove his result using our

methodology.

Consider the reaction system

S1 C S2
�0

1•
�0

2

S3
�0

3
*S4 C S2;

where S1 is the substrate, S2 the enzyme, S3 the enzyme-substrate complex, and S4
the product. Assume that the parameters scale so that

ZN1 .t/ D ZN1 .0/ �N�1Y1

�
N

Z t

0

�1Z
N
1 .s/Z

N
2 .s/ds

�

CN�1Y2

�
N

Z t

0

�2Z
N
3 .s/ds

�
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ZN2 .t/ D ZN2 .0/ � Y1
�
N

Z t

0

�1Z
N
1 .s/Z

N
2 .s/ds

�
C Y2

�
N

Z t

0

�2Z
N
3 .s/ds

�

CY3
�
N

Z t

0

�3Z
N
3 .s/ds

�

ZN3 .t/ D ZN2 .0/C Y1
�
N

Z t

0

�1Z
N
1 .s/Z

N
2 .s/ds

�
� Y2

�
N

Z t

0

�2Z
N
3 .s/ds

�

�Y3
�
N

Z t

0

�3Z
N
3 .s/ds

�

ZN4 .t/ D N�1Y3

�
N

Z t

0

�3Z
N
3 .s/ds

�
;

where �1; �2; �3 do not depend upon N . Note that we scale the numbers of

molecules of the substrate and the product as in the previous section, but

we leave the enzyme and enzyme-substrate variables discrete. Note also that

M D ZN3 .t/CZN2 .t/ is constant, and define

bZN2 .t/ D
Z t

0

ZN2 .s/ds D Mt �
Z t

0

ZN3 .s/ds:

Theorem 1.15. Assume that ZN1 .0/ ! Z1.0/ and that M does not depend on N .

Then .ZN1 ;
bZN2 / converges to .Z1.t/;bZ2.t// satisfying

Z1.t/ D Z1.0/�
Z t

0

�1Z1.s/
PbZ2.s/ds C

Z t

0

�2.M � PbZ2.s//ds (1.27)

0 D �
Z t

0

�1Z1.s/
PbZ2.s/ds C

Z t

0

.�2 C �3/.M � PbZ2.s//ds;

and hence
PbZ2.s/ D .�2C�3/M

�2C�3C�1Z1.s/
and

PZ1.t/ D �
M�1�3Z1.t/

�2 C �3 C �1Z1.s/
: (1.28)

Proof. Relative compactness of the sequence .ZN1 ;
bZN2 / is straightforward, that is,

at least along a subsequence, we can assume that .ZN1 ;
bZN2 / converges in distribu-

tion to a continuous process .Z1;bZ2/ (which turns out to be deterministic). Dividing

the second equation by N and passing to the limit, we see .Z1;bZ2/ must satisfy

0 D �
Z t

0

�1Z1.s/dbZ2.s/C .�2 C �3/M t �
Z t

0

.�2 C �3/dbZ2.s/: (1.29)
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Since bZ2 is Lipschitz, it is absolutely continuous, and rewriting (1.29) in terms

of the derivative gives the second equation in (1.27). The first equation follows by a

similar argument. ut
Of course, (1.28) is the Michaelis-Menten equation.

Scaling Species Numbers and Rate Constants

Assume that we are given a model of the form

X.t/ D X.0/C
X

k

Yk

�Z t

0

�0
k.X.s//ds

�
.�0
k � �k/

where the �0
k

are of the form

�0
k.x/ D �0

k

Y

i

�ikŠ
Y

i

 
xi

�ik

!
:

Let N0 � 1. For each species i , define the normalized abundance (or simply, the

abundance) by

Zi .t/ D N�˛i

0 Xi .t/;

where ˛i � 0 should be selected so that Zi D O.1/. The abundance may be the

species number (˛i D 0) or the species concentration or something else.

Since the rate constants may also vary over several orders of magnitude, we write

�0
k
D �kN ˇk

0 where the ˇk are selected so that �k D O.1/. For a binary reaction

�0
kxixj D N

ˇkC˛i C˛j

0 �kzi zj ;

and we can write

ˇk C ˛i C ˛j D ˇk C �k � ˛:
We also have,

�0
kxi D N

ˇkC�k �˛
0 zi ; �0

kxi .xi � 1/ D N
ˇkC�k �˛
0 zi



zi �N�˛i

0

�
;

with similar expressions for intensities involving higher order reactions.

We replace N0 by N in the above expressions and consider a family of models,

ZNi .t/ D ZNi .0/C
X

k

N�˛iYk

�Z t

0

N ˇkC�k �˛�k.ZN .s//ds
� 

�0
ik � �ik

�
;

where the original model is Z D ZN0 . Note that for reactions of the form

2Si * *, where � represents an arbitrary linear combination of the species, the

rate is N ˇkC2˛iZNi .t/.Z
N
i .t/ � N�˛i /, so if ˛i > 0, we should write �N

k
instead

of �k , but to simplify notation, we will simply write �k .
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We have a family of models indexed by N for whichN D N0 gives the ‘correct’

or original model. Other values of N and any limits as N ! 1 (perhaps with a

change of time-scale) give approximate models. The challenge is to select the ˛i
and the ˇk in a reasonable way, but once that is done, the initial condition for index

N is given by

ZNi .0/ D N�˛i

�
N ˛i

Xi .0/

N
˛i

0

�
;

where bzc is the integer part of z and the Xi .0/ are the initial species numbers in the

original model.

Allowing a change of time-scale, where t is replaced by tN  , suppose

limN!1ZNi .�N / D Z1
i . Then we should have

Xi .t/ � N ˛i

0 Z
1
i .tN

�
0 /:

Determining the Scaling Exponents

There are, of course, many ways of selecting the ˛i and ˇk , but we want to make this

selection so that there are limiting models that give reasonable approximations for

the original model. Consequently, we look for natural constraints on the ˛i and ˇk .

For example, suppose that the rate constants satisfy

�0
1 � �0

2 � � � � � �0
r0
:

Then it seems natural to select

ˇ1 � � � � � ˇr0 ;

although it may be reasonable to impose this constraint separately for the binary

reactions and the unary reactions.

To get a sense of the issues involved in selecting exponents that lead to reasonable

limits, consider a reaction network in which the reactions involving S3 are

S1 C S2 * S3 C S4 S3 C S5 * S6:

Then

ZN3 .t/ D ZN3 .0/CN�˛3Y1

�
N ˇ1C˛1C˛2

Z t

0

�1Z
N
1 .s/Z

N
2 .s/ds

�

�N�˛3Y2

�
N ˇ2C˛3C˛5

Z t

0

�2Z
N
3 .s/Z

N
5 .s/ds

�
;
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or scaling time

ZN3 .tN
 / D ZN3 .0/CN�˛3Y1

�
N ˇ1C˛1C˛2C

Z t

0

�1Z
N
1 .sN

 /ZN2 .sN
 /ds

�

�N�˛3Y2

�
N ˇ2C˛3C˛5C

Z t

0

�2Z
N
3 .sN

 /ZN5 .sN
 /ds

�
:

Assuming that for the other species in the system ZNi D O.1/, we see that ZN3 D
O.1/ if

.ˇ1 C ˛1 C ˛2 C / _ .ˇ2 C ˛3 C ˛5 C / � ˛3
or if

ˇ1 C ˛1 C ˛2 D ˇ2 C ˛3 C ˛5 > ˛3:

Note that in the latter case, we would expect ZN3 .t/ �
�1Z

N
1
.t/ZN

2
.t/

�2Z
N
5
.t/

. If these con-

ditions both fail, then either ZN3 will blow up as N ! 1 or will be driven to

zero.

With this example in mind, define Z
N;
i .t/ D ZNi .tN  / so

Z
N;
i .t/ D ZNi .0/C

X

k

N�˛iYk

�Z t

0

N CˇkC�k �˛�k.ZN; .s//ds
� 

�0
ik � �ik

�
:

Recalling that �k D �0
k
� �k , for �i � 0, consider

X

i

�iN
˛iZ

N;
i .t/

D
X

i

�iN
˛iZNi .0/C

X

k

Yk

�Z t

0

N CˇkC�k �˛�k.ZN; .s//ds
�
h�; �ki;

where h�; �ki D
P
i �i�ik, and define ˛� D maxf˛i W �i > 0g. If all Z

N;
i D O.1/,

then the left side is O.N ˛� /, and as in the single species example above, we must

have

 Cmaxfˇk C �k � ˛ W h�; �ki ¤ 0g � ˛� : (1.30)

or

maxfˇk C �k � ˛ W h�; �ki > 0g D maxfˇk C �k � ˛ W h�; �ki < 0g: (1.31)

Note that (1.30) is really a constraint on the time-scale determined by  saying that

if (1.31) fails for some � , then  must satisfy

 � ˛� �maxfˇk C �k � ˛ W h�; �ki ¤ 0g:
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The value of  given by

i D ˛i �maxfˇk C �k � ˛ W �ik ¤ 0g

gives the natural time-scale for Si in the sense that ZN;

i is neither asymptotically

constant nor too rapidly oscillating to have a limit. The i are values of  for which

interesting limits may hold. Linear combinations h�;ZN;i may have time-scales

� D ˛� �maxfˇk C �k � ˛ W h�; �ki ¤ 0g

that are different from all of the species time-scales and may give auxiliary variables

(see, for example, [38]) whose limits capture interesting properties of the system.

The equation (1.31) is called the balance equation, and together, the alternative

(1.31) and (1.30) is referred to as the balance condition. To employ this approach

to the identification of simplified models, it is not necessary to solve the balance

equations for every choice of � . The equations that fail simply place restrictions on

the time-scales  that can be used without something blowing up. The goal is to find

˛i and ˇk that give useful limiting models, and solving some subset of the balance

equations can be a useful first step. Natural choices of � in selecting the subset of

balance equations to solve include those for which h�; �ki D 0 for one or more

of the �k . See section “First Order Reaction Networks” of [26] for a more detailed

discussion.

In the next subsection, we apply the balance conditions to identify exponents

useful in deriving a reduced model for a simple reaction network. For an application

to a much more complex model of the heat shock response in E. coli, see [24].

An Application of the Balance Conditions

Consider the simple example

;
�0

1
*S1

�0
2•
�0

3

S2; S1 C S2
�0

4
*S3

Assume �0
k
D �kN ˇk

0 . Then a useful subset of the balance equations is

S2 ˇ2 C ˛1 D .ˇ3 C ˛2/ _ .ˇ4 C ˛1 C ˛2/
S1 ˇ1 _ .ˇ3 C ˛2/ D .ˇ2 C ˛1/ _ .ˇ4 C ˛1 C ˛2/
S3 ˇ4 C ˛1 C ˛2 D �1
S1 C S2 ˇ1 D ˇ4 C ˛1 C ˛2

where we take the maximum of the empty set to be�1. Of course, it is not possible

to select parameters satisfying the balance equation for S3, so we must restrict  by

 � ˛3 � .ˇ4 C ˛1 C ˛2/: (1.32)
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Let ˛1 D 0 and ˇ1 D ˇ2 > ˇ3 D ˇ4, so balance for S1, S2, and S1 C S2 is

satisfied if ˛2 D ˇ2 � ˇ3, which we assume. Taking ˛3 D ˛2, (1.32) becomes

 � �ˇ4 D �ˇ3:

The system of equations becomes

ZN1 .t/ D ZN1 .0/C Y1
�
�1N

ˇ1 t
�
� Y2

�
�2N

ˇ2

Z t

0

ZN1 .s/ds

�

CY3
�
�3N

ˇ3C˛2

Z t

0

ZN2 .s/ds

�

�Y4
�
�4N

ˇ4C˛2

Z t

0

ZN1 .s/Z
N
2 .s/ds

�

ZN2 .t/ D ZN2 .0/CN�˛2Y2

�
�2N

ˇ2

Z t

0

ZN1 .s/ds

�

�N�˛2Y3

�
�3N

ˇ3C˛2

Z t

0

ZN2 .s/ds

�

�N�˛2Y4

�
�4N

ˇ4C˛2

Z t

0

ZN1 .s/Z
N
2 .s/ds

�

ZN3 .t/ D ZN3 .0/CN�˛3Y4

�
�4N

ˇ4C˛2

Z t

0

ZN1 .s/Z
N
2 .s/ds

�
:

There are two time-scales of interest in this model,  D �ˇ1, the time-scale of

S1, and  D �ˇ3, the time-scale of S2 and S3. Recalling that ˛2Cˇ3 D ˛2Cˇ4 D
ˇ1 D ˇ2, for  D �ˇ1,

Z
N;�ˇ1

1 .t/ D ZN1 .0/C Y1.�1t/ � Y2
�
�2

Z t

0

Z
N;�ˇ1

1 .s/ds

�

CY3
�
�3

Z t

0

Z
N;�ˇ1

2 .s/ds

�

�Y4
�
�4

Z t

0

Z
N;�ˇ1

1 .s/Z
N;�ˇ1

2 .s/ds

�

Z
N;�ˇ1

2 .t/ D ZN2 .0/CN�˛2Y2

�
�2

Z t

0

Z
N;�ˇ1

1 .s/ds

�

�N�˛2Y3

�
�3

Z t

0

Z
N;�ˇ1

2 .s/ds

�

�N�˛2Y4

�
�4

Z t

0

Z
N;�ˇ1

1 .s/Z
N;�ˇ1

2 .s/ds

�

Z
N;�ˇ1

3 .t/ D ZN3 .0/CN�˛3Y4

�
�4

Z t

0

Z
N;�ˇ1

1 .s/Z
N;�ˇ1

2 .s/ds

�
;
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and the limit of ZN;�ˇ1 satisfies

Z1.t/ D Z1.0/C Y1.�1t/ � Y2
�
�2

Z t

0

Z1.s/ds

�
C Y3

�
�3

Z t

0

Z2.s/ds

�

�Y4
�
�4

Z t

0

Z1.s/Z2.s/ds

�

Z2.t/ D Z2.0/

Z3.t/ D Z3.0/:

Note that the stationary distribution for Z1 is Poisson with EŒZ1� D �1C�3Z2.0/
�2C�4Z2.0/

.

For  D �ˇ3,

Z
N;�ˇ3

1 .t/ D ZN1 .0/C Y1
�
�1N

ˇ1�ˇ3 t
�
� Y2

�
�2N

ˇ2�ˇ3

Z t

0

Z
N;�ˇ3

1 .s/ds

�

CY3
�
�3N

˛2

Z t

0

Z
N;�ˇ3

2 .s/ds

�

�Y4
�
�4N

˛2

Z t

0

Z
N;�ˇ3

1 .s/Z
N;�ˇ3

2 .s/ds

�

Z
N;�ˇ3

2 .t/ D ZN2 .0/CN�˛2Y2

�
�2N

ˇ2�ˇ3

Z t

0

Z
N;�ˇ3

1 .s/ds

�

�N�˛2Y3

�
�3N

˛2

Z t

0

Z
N;�ˇ3

2 .s/ds

�

�N�˛2Y4

�
�4N

˛2

Z t

0

Z
N;�ˇ3

1 .s/Z
N;�ˇ3

2 .s/ds

�

Z
N;�ˇ3

3 .t/ D ZN3 .0/CN�˛3Y4

�
�4N

˛2

Z t

0

Z
N;�ˇ3

1 .s/Z
N;�ˇ3

2 .s/ds

�
;

and dividing the first equation by N ˇ1�ˇ3 D N ˇ2�ˇ3 D N ˛2 , we see that

Z t

0

Z
N;�ˇ3

1 .s/
�
�2 C �4ZN;�ˇ3

2 .s/
�
ds �

Z t

0

�
�1 C �3ZN;�ˇ3

2 .s/
�
ds ! 0:

Since Z
N;�ˇ3

2 is well-behaved, this limit can be shown to imply

Z t

0

Z
N;�ˇ3

1 .s/ds �
Z t

0

�1 C �3ZN;�ˇ3

2 .s/

�2 C �4ZN;�ˇ3

2 .s/
ds ! 0: (1.33)
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We emphasize that Z1
N;�ˇ3 is not converging, but it is oscillating rapidly and

averages locally so that this limit holds. It follows that the other components

.Z
N;�ˇ3

2 ; Z
N;�ˇ3

3 / converge to the solution of

Z2.t/ D Z2.0/C
Z t

0

�
.�2 � �4Z2.s//

�1 C �3Z2.s/
�2 C �4Z2.s/

� �3Z2.s/
�
ds

D Z2.0/C
Z t

0

�
�1 �

2�4Z2.s/.�1 C �3Z2.s//
�2 C �4Z2.s/

�

Z3.t/ D Z3.0/C
Z t

0

�4Z2.s/
�1 C �3Z2.s/
�2 C �4Z2.s/

ds: (1.34)

Hybrid Limits

Suppose that for some choice of  , Z

i D limN!1Z

N;
i exists and is a well-

behaved process. Then if ˛i D 0, Z
1;
i will be an integer-valued, pure-jump

process, and if ˛i > 0, Z

i will have continuous sample paths. In fact, if ˛i > 0,

typically Z

i will satisfy an equation of the form

Z

i .t/ D Zi .0/C

Z t

0

Fi .Z
 .s//ds:

Consequently, the natural class of limits will by hybrid or piecewise deterministic

(in the sense of Davis [11]) models in which some components are discrete and some

are absolutely continuous. See section “Reaction Networks” of [4] and Sect. 6.3 of

[26] for examples.

It is possible to obtain diffusion processes as limits, but these are not typical

for reaction networks. (Note that the diffusion approximations discussed in sec-

tion “Diffusion/Langevin Approximations” do not arise as limits of a sequence of

processes.) One example that is more naturally interpreted as a model in population

genetics (a Moran model) but can be interpreted as a reaction network would be

S1 C S2 * 2S1; S1 C S2 * 2S2;

where both reactions have the same rate constant. Suppose the normalized system

has the form

ZN1 .t/ D ZN1 .0/CN�1=2Y1

�
�N

Z t

0

ZN1 .s/Z
N
2 .s/ds

�

�N�1=2Y2

�
�N

Z t

0

ZN1 .s/Z
N
2 .s/ds

�

ZN2 .t/ D ZN2 .0/CN�1=2Y2

�
�N

Z t

0

ZN1 .s/Z
N
2 .s/ds

�

�N�1=2Y1

�
�N

Z t

0

ZN1 .s/Z
N
2 .s/ds

�
:
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If we center Y1 and Y2, the centerings cancel, and assuming

�
ZN1 .0/;Z

N
2 .0/

�
)


Z1
1 .0/;Z

1
2 .0/

�
;

.ZN1 ; Z
N
2 / converges to a solution of

Z1.t/ D Z1.0/CW1
�
�

Z t

0

Z1.s/Z2.s/ds

�
�W2

�
�

Z t

0

Z1.s/Z2.s/ds

�

Z2.t/ D Z2.0/CW2
�
�

Z t

0

Z1.s/Z2.s/ds

�
�W1

�
�

Z t

0

Z1.s/Z2.s/ds

�
:

Central Limit Theorems and Diffusion Approximations

In section “Derivation of the Michaelis-Menten Equation”, ZN2 and ZN3 do not

converge, but
R t
0
ZN2 .s/ds and

R t
0
ZN3 .s/ds do, that is, the rapid fluctuations in

ZN2 and ZN3 average out. Similarly, to obtain (1.34), we used the fact that for

 D �ˇ3, the rapid fluctuations in Z
N;
1 D ZN1 .�N / average to something well-

behaved.

Both of these examples have deterministic limits, and it is natural to seek the

same kind of central limit theorem that holds under the classical scaling. Define

F.z2/ D
�1 C �3z2

�2 C �4z2
.�2 � �4z2/ ;

and recall that we are assuming  D �ˇ3 and ˇ1 � ˇ3 D ˇ2 � ˇ3 D ˛2. For

fluctuations around (1.34), we have

V N .t/ D N ˛2=2
�
Z
N;
2 .t/ �Z2.t/

�

D V N .0/CN�˛2=2eY 2
�
�2N

˛2

Z t

0

Z
N;
1 .s/ds

�

�N�˛2=2eY 3
�
�3N

˛2

Z t

0

Z
N;
2 .s/ds

�

�N�˛2=2eY 4
�
�4N

˛2

Z t

0

Z
N;
1 .s/Z

N;
2 .s/ds

�

CN ˛2=2

Z t

0

�
Z
N;
1 .s/

�
�2 � �4ZN;2 .s/

�
� F.Z2.s//

�

� �3
Z t

0

V N .s/ds: (1.35)
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Assuming V N .0/ converges, the convergence of Z
N;
2 and

R
Z
N;
1 ds and the

functional central limit theorem for the renormalized Poisson processes imply the

convergence of the first four terms on the right and we would have a central limit

theorem similar to that described in section “General Form for the Classical Scal-

ing” if it were not for the fifth term on the right.

To treat the fifth term, we exploit the martingale properties discussed in sec-

tion “The Martingale Problem and Forward Equation for Markov Chains”. In

particular, if

fN .z1; z2/ D N�˛2=2z1
�2 � �4z2

�2 C �4z2
;

as in (1.13),

MN .t/ D fN

�
Z
N;
1 .t/; Z

N;
2 .t/

�
� fN

�
Z
N;
1 .0/;Z

N;
2 .0/

�

�
Z t

0

ANfN

�
Z
N;
1 .s/; Z

N;
2 .s/

�
ds

� N ˛2=2

Z t

0

�
Z
N;
1 .s/

�
�2 � �4ZN;2 .s/

�
� F

�
Z
N;
2 .s/

��
ds

is a martingale, and (1.35) becomes

V N .t/ D V N .0/CN�˛2=2eY 2
�
�2N

˛2

Z t

0

Z
N;
1 .s/ds

�

�N�˛2=2eY 3
�
�3N

˛2

Z t

0

Z
N;
2 .s/ds

�

�N�˛2=2eY 4
�
�4N

˛2

Z t

0

Z
N;
1 .s/Z

N;
2 .s/ds

�

CMN .t/CN ˛2=2

Z t

0

�
F
�
Z
N;
2 .s/

�
� F.Z2.s//

�
ds

� �3
Z t

0

V N .s/ds CO
�
N�˛2=2

�

D V N .0/CcMN .t/CN ˛2=2

Z t

0

�
F.Z

N;
2 .s// � F.Z2.s//

�
ds

� �3
Z t

0

V N .s/ds CO.N�˛2=2/;

wherecMN is defined by the above equality.

Define

�f.z1; z2; ı1; ı2/ D f .z1 C ı1; z2 C ı2/ � f .z1; z2/:
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Then the quadratic variation of MN is

ŒMN �t D
Z t

0

�fN

�
Z
N;
1 .s�/; ZN;2 .s�/; 1; 0

�2
dRN1 .s/

C
Z t

0

�fN

�
Z
N;
1 .s�/; ZN;2 .s�/;�1;N�˛2

�2
dRN2 .s/

C
Z t

0

�fN

�
Z
N;
1 .s�/; ZN;2 .s�/; 1;�N�˛2

�2
dRN3 .s/

C
Z t

0

�fN

�
Z
N;
1 .s�/; ZN;2 .s�/;�1;�N�˛2

�2
dRN4 .s/:

Observing that each of the integrands is asymptotically

N�˛2

 
�2 � �4ZN;2 .s/

�2 C �4ZN;2 .s/

!2

and that, for example by (1.33),

N�˛2RN2 .t/!
Z t

0

�2
�1 C �3Z2.s/
�2 C �4Z2.s/

ds;

we have ŒMN �t ! C.t/ where

C.t/ D
Z t

0

�
�2 � �4Z2.s/
�2 C �4Z2.s/

�2 �
�1 C �2

�1 C �3Z2.s/
�2 C �4Z2.s/

C �3Z2.s/

C �4Z2.s/
�1 C �3Z2.s/
�2 C �4Z2.s/

�
ds;

which, by the martingale central limit theorem (see, for example, Theorem 7.1.4 of

[14]), impliesMN )M whereM can be written as the time change of a Brownian

motion, that is, M.t/ D W.C.t//.
Unfortunately,M is not independent of the limits of the three renormalized Pois-

son processes, so rather than applying the martingale central limit theorem to MN ,

we need to apply it to cMN . The quadratic variation for cMN is

ŒcMN �t D
Z t

0

�fN

�
Z
N;
1 .s�/; ZN;2 .s�/; 1; 0

�2
dRN1 .s/

C
Z t

0

�
N�˛2=2 C�fN

�
Z
N;
1 .s�/; ZN;2 .s�/;�1;N�˛2

��2
dRN2 .s/

C
Z t

0

�
�N�˛2=2 C�fN

�
Z
N;
1 .s�/; ZN;2 .s�/; 1;�N�˛2

��2
dRN3 .s/

C
Z t

0

�
�N�˛2=2C�fN

�
Z
N;
1 .s�/; ZN;2 .s�/;�1;�N�˛2

��2
dRN4 .s/;
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and ŒcMN �t converges to

bC.t/ D
Z t

0

 
�1

�
�2 � �4Z2.s/
�2 C �4Z2.s/

�2

C
�
�2 � �4Z2.s/
�2 C �4Z2.s/

� 1
�2 �

�2
�1 C �3Z2.s/
�2 C �4Z2.s/

C �3Z2.s/
�

C
�
�2 � �4Z2.s/
�2 C �4Z2.s/

C 1
�2
�4Z2.s/

�1 C �3Z2.s/
�2 C �4Z2.s/

!
ds:

Consequently,cMN ) W.bC.t// and V N ) V satisfying

V.t/ D V.0/CW.bC.t//C
Z t

0

.F 0.Z2.s// � �3/V .s/ds;

which, as in (1.17) is a Gaussian process.

Let

G.z2/ D
 
�1

�
�2 � �4z2

�2 C �4z2

�2
C
�
1C �2 � �4z2

�2 C �4z2

�2 �
�2
�1 C �3z2

�2 C �4z2
C �3z2

�

C
�
�2 � �4z2

�2 C �4z2
� 1

�2
�4z2

�1 C �3z2

�2 C �4z2

!
:

Then the analysis above suggests the following diffusion or Langevin approximation

for Z
N;
2 :

DN .t/ D DN .0/CN�˛2=2W

�Z t

0

G.DN .s//ds

�

C
Z t

0

.F.DN .s//� �3DN .s//ds:

See [26] for a detailed discussion of the central limit theorem and diffusion ap-

proximations for multiscaled models. In particular, that paper contains a systematic

discussion of the treatment of integral terms with rapidly oscillating integrands.
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Chapter 2

Stochastic Simulation for Spatial Modelling
of Dynamic Processes in a Living Cell

Kevin Burrage, Pamela M. Burrage, André Leier, Tatiana Marquez-Lago,

and Dan V. Nicolau, Jr

Abstract One of the fundamental motivations underlying computational cell biol-

ogy is to gain insight into the complicated dynamical processes taking place, for

example, on the plasma membrane or in the cytosol of a cell. These processes are

often so complicated that purely temporal mathematical models cannot adequately

capture the complex chemical kinetics and transport processes of, for example, pro-

teins or vesicles. On the other hand, spatial models such as Monte Carlo approaches

can have very large computational overheads. This chapter gives an overview of the

state of the art in the development of stochastic simulation techniques for the spatial

modelling of dynamic processes in a living cell.

Keywords Plasma membrane � Chemical kinetics � Gene regulation � Stochastic

simulation algorithm � Multiscale stochastic modelling � Diffusion � Delayed

reactions � Stochastic simulators

Introduction

Why Do We Need Spatial Models of a Cell?

Recent progress in genetic sequencing, microscopy and other experimental methods

has shed light on membrane structures and phenomena, including the discov-

ery that the plasma membrane of a cell may possess significant lateral structure

(microdomains). Similar progress has been made in the understanding of trans-

port phenomena on the membrane, of ion channel function and of transport across
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the membrane [20, 58, 63]. Indeed, a number of research groups are now building

dynamic maps of all the ultrastructure within a living cell. The Visible Cell [47] is

one such project using electron tomography and 3D rendering to build a complete

view of the ultrastructure within a pancreatic Beta cell. However, the integration of

this information into comprehensive and coherent models of cellular transport and

kinetics, for example linking the plasma membrane with transport processes in the

cell to complex genetic regulatory processes, has been slow. In order to produce a

coherent picture of cellular dynamics, mathematical modelling and simulation pro-

vide an indispensable tool.

On the other hand, the modelling of cellular processes poses mathematical

challenges of its own. The main modelling challenges are due to the essential multi-

scale nature of the processes we are trying to understand. For example, the classical

view of the plasma membrane lipid bilayer as a two-dimensional fluid acting as

a neutral solvent for membrane proteins in which all particles diffuse freely [65]

has been substantially modified in recent years. The plasma membrane is in fact

a highly complex structure that is compartmentalized on multiple length and time

scales. This compartmentalization is driven by a variety of lipid-lipid, lipid-protein

and actin-cytoskeleton interactions [2,20,39,50]. In addition, an important role that

has been ascribed to all plasma membrane microdomains is that of selectively con-

centrating proteins to facilitate the assembly of signalling complexes [64]. However,

little quantitative analysis has been attempted to explore the basic mechanics of how

microdomains might drive protein-protein interactions as demanded of their role

in supporting the assembly of signalling platforms. For example, if microdomains

do aggregate proteins, are there any constraints on size and dynamics that need to

be imposed for them to achieve this function? If so, are these constraints realistic

and how do the predictions compare with recent estimates of microdomain size and

dynamics?

Thus, the building of mathematical models and innovative simulation techniques

provide a vital component when we attempt to understand the complex feedbacks

between dynamic processes on the membrane and, for example, genetic regulation.

In building these models we must address two fundamental questions, namely (1)

are the processes well-described by assuming homogenization and deterministic

principles, or (2) do we need to explicitly model the underlying heterogeneity and

stochasticity of these cellular processes?

Why Do We Need Stochastic Models?

There has been a long and successful history in computational cell biology of us-

ing rate kinetic ordinary differential equations to model chemical kinetics within

a living cell. These techniques have been applied on the plasma membrane, in the

cytosol, and in the nucleus of eukaryotic cells to understand gene regulation. Mod-

ifications via delay differential equations were first considered as far back as [31],

in order to represent the fact that the complex regulatory processes of transcription

and translation were not immediate but were in fact examples of delayed processes.
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It was the pioneering work of Gillespie [29] and Kurtz [38] who challenged this

deterministic view of cellular kinetics. They argued that when the cellular environ-

ment contained small to moderate numbers of proteins, that the Law of Mass Action

is not an adequate description of the underlying chemical kinetics because it only

describes the average behaviour. In this regard, the fundamental principle is that of

intrinsic noise. Intrinsic noise is associated with the inherent uncertainty in knowing

when a reaction occurs and what that reaction is. The variance associated with this

uncertainty increases as the number of proteins in the cellular environment becomes

small. Gillespie [29] and Kurtz [38] showed how to model intrinsic noise through

the concept of nonlinear discrete Markov processes, and Poisson processes, respec-

tively. These two approaches both model the same processes and are now lumped

together under the title the Stochastic Simulation Algorithm (SSA). The essential

observation underlying the SSA is that the waiting time between reactions is expo-

nentially distributed and that the most likely reaction to occur in this time interval

is based on the relative sizes of the propensity functions. However, the need for a

time step small enough to capture one reaction at each step can lead to prohibitive

computational costs.

The SSA describes the evolution of a nonlinear discrete Markov process and as

such this stochastic process has a probability density function whose solution is de-

scribed by the Chemical Master Equation (CME). The solution of the CME can be

reduced to the computation of the evolution of the exponential of a matrix times an

initial probability vector. As there is one equation for each possible configuration of

the state space this can be very computationally challenging, although recently de-

veloped methods can cope with some of these computational costs [23,35,43,44,55].

There is in fact an intermediate regime that can still capture the inherent stochas-

tic effects but reduce the computational complexity associated with the SSA. This

intermediate framework is called the Chemical Langevin Equation. It is described

by an Itô stochastic differential equation (SDE) driven by a set of Wiener processes

that describes the fluctuations in concentrations of the molecular species. Various

numerical methods can then be applied to this equation – the simplest method be-

ing the Euler-Maruyama method [37]. These temporal approaches are applied under

the principle of homogeneity. It is well known, however, that diffusion on the cell

membrane is not only highly anomalous but the diffusion rate of proteins on live cell

membranes is between one and two orders of magnitude slower than in reconstituted

artificial membranes with the same composition [50]. Furthermore, diffusion is de-

pendent on the dimensions of the medium so that diffusion on the highly disordered

cell membrane is not a perfectly mixing process and therefore the assumptions un-

derlying the classical theory of chemical kinetics fail, requiring new approaches to

modelling chemistry on a spatially crowded membrane [53].

Simulation Toolkits

Increasingly, scientists are using a mix of experimental, mathematical modelling

and simulation to extract deep biological insights at subcellular and tissue levels.
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Table 2.1 Spatial stochastic simulators ordered by their underlying simulation method

Simulation method Software Spatial mode
Spatial
scale Time Features

Lattice-
based

RDME-
based

MesoRD Lattice Meso E RDS
SmartCell Lattice Meso E RDS

GMP Lattice Meso ECF RDS
STEPS Tetrahedral

Mesh
Meso E RDS

Micro-
scopic
lattice

GridCell Lattice Micro F EV
E-Cell

(Spatiocyte)
Lattice MicroC

Meso
ECF RDS,

EV

Off-lattice
particle

ChemCell Continuuma Micro F RDS
MCell Continuuma Micro A RDS
Smoldyn Continuuma Micro F RDS,

EV

CellCC ContinuumC
Gradient

MicroC
Macro

F RDS

CyberCell Continuum Micro F EV

GFRD E-Cell
(eGFRD)

Continuum Micro E EV

E event-based, F fixed time steps, A adaptive, EV excluded volume effect is reproducible, RDS

reaction and diffusion on surfaces and between surfaces and volumes is supported (at different
degrees of accuracy)
aThese programs represent surfaces as lists of primitive objects. Depending on the program this
can be triangles, spheres, boxes, or others elements

This not only enriches biology but also enriches computer science and computa-

tional and applied mathematics through new methodologies operating at a variety

of spatial and temporal scales. Some of these ideas have been incorporated into

software toolkits, for example [42]. See Table 2.1 for a list of spatial stochastic sim-

ulators. At the same time markup language environments such as CellML [33] and

FieldML [17] are being developed which act as both a repository and an environ-

ment for simulating a variety of biological models.

Temporal Models of Chemical Kinetics

In a purely temporal homogeneous setting and when there are large numbers

of molecules present, chemical reactions are modelled by ordinary differential

equations that are based on the laws of Mass Action and that estimate reaction

rates on the basis of average values of the reactant density. Any set of m chem-

ical reactions can be characterised by two sets of quantities: the stoichiometric

vectors (update rules for each reaction) �1; : : : ; �m and the propensity functions

a1.X.t//; : : : ; am.X.t//. The propensity functions represent the relative probabili-

ties of each of the m reactions occurring. They are formed by multiplying the rate



2 Stochastic Simulation for Spatial Modelling of Dynamic Processes in a Living Cell 47

constant and the product of the reactants on the left-hand-side of each reaction. Here

X.t/ is the vector of concentrations at time t of the N species involved in the reac-

tions. The ODE that describes this chemical system is given by

X 0.t/ D
mX

jD1
�jaj .X.t//:

In the case of small numbers of molecules the appropriate formulation is the

Stochastic Simulation Algorithm (SSA) [29], as ODEs can only describe a mean

behaviour. The SSA is an exact procedure that describes the evolution of a discrete

nonlinear Markov process. It accounts for the inherent stochasticity (internal noise)

of the m reacting channels and only assigns integer numbers of molecules to the

state vector. At each step, the SSA samples two random numbers from the uniform

distribution U[0,1] to evaluate an exponential waiting time, � , for the next reaction

to occur and an integer j between 1 andm that indicates which reaction occurs. The

state vector is updated at the new time point by the addition of the j th stoichiometric

vector to the previous value of the state vector, that is

X.t C �/ D X.t/C �j :

The main limiting feature of SSA is that the time step can become very small, es-

pecially if there are large numbers of molecules or widely varying rate constants.

�-leap methods have been suggested in which the sampling of likely reactions is

taken from either Poisson [30] or Binomial [72] distributions. In these approaches

a much larger time step can be used at the loss of a relatively small amount of

accuracy.

A different approach is to compute the probability density function associated

with the SSA, which is the solution of the Chemical Master Equation (CME). The

CME is a discrete parabolic partial differential equation in which there is one equa-

tion for each configuration of the ‘state space’. When the state space is enumerated,

the CME becomes a linear ODE and the probability density function takes the form

p.t/ D eAtp.0/

where A is the state-space matrix. Even for relatively small systems, the dimension

of A can be in the millions, but a variety of techniques have been proposed [23, 35,

43, 44, 55] to make this a very feasible technique.

The regime intermediate to the discrete stochastic regime and the continuous

deterministic ODE regime is described by the Chemical Langevin Equation (CLE).

The CLE attempts to preserve the correct dynamics for the first two moments of the

SSA and takes the form

dX D
mX

jD1
�jaj .X.t//C B.X.t//dW.t/:
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Here W.t/ D .W1.t/; : : : ;WN .t//
T is a vector of N independent Wiener processes

whose increments�Wj D Wj .t C h/�Wj .t/ are N.0; h/ and where

B.x/ D
p
C; C D .�1; : : : ; �m/Diag.a1.X/; : : : ; am.X//.�1; : : : ; �m/

T :

Here h is the time discretisation step. Effective methods designed for the numerical

solution of SDEs [11, 13, 37] can be used to simulate the chemical kinetics in this

intermediate regime. Mélykúti et al. [48] have shown how to construct the CLE so

that it minimizes the number of Wiener processes. Furthermore, adaptive multiscale

methods have been developed that attempt to move back and forth between these

three regimes as the numbers of molecules change [10].

Sometimes temporal models are not sufficiently rich to capture complicated

spatial effects. But rather than abandoning temporality, it is possible to capture im-

portant spatial aspects and incorporate them into temporal models. This can be done

in a number of ways. For example, compartmental models have been developed

that couple together the plasma membrane, cytosol and nucleus – see for exam-

ple Tian et al. [73], in which an SSA implementation of Ras nanoclusters on the

plasma membrane is coupled with an ODE model for the MAPK pathway in the

cytosol. Diffusion and translocation can be captured through the use of distributed

delays that can then be incorporated into mathematical frameworks through the use

of delay differential equations or delay variants of the Stochastic Simulation Algo-

rithm (see [8], for example). Very recently, Marquez-Lago et al. [46] have explored a

number of spatial scenarios, run detailed spatial simulations to capture diffusion and

translocation processes and then incorporated this information into purely temporal

models through distributed delays. Another way in which spatial information can be

captured and then incorporated into purely temporal models is the area of anomalous

diffusion, where spatial crowding and molecular binding can affect chemical kinet-

ics. In this setting the mean square deviation of a diffusing molecule is no longer

linear but sublinear in time t and of the form

E
�
X2.t/

�
D 2Dt˛; ˛ 2 .0; 1�:

Here, ’ is called the anomalous diffusion parameter. If the value of ’ can be es-

timated, either experimentally or from detailed Monte Carlo simulations, then the

SSA can be modified so that the waiting time between reactions is no longer expo-

nentially distributed but has a heavy tail [53].

Monte-Carlo Approaches

In many cases, the heterogeneous nature of a living cell means that spatial models

are mandatory. The fundamental transport process within a cell is either diffusion or

the motion of proteins or vesicles along microtubules by molecular motors. To cap-

ture these processes, we can use continuum models based on partial differential



2 Stochastic Simulation for Spatial Modelling of Dynamic Processes in a Living Cell 49

equations in which diffusion is represented by a Laplacian operator and directed

transport by a convective term. If chemical kinetics are involved, then this leads

to the framework of the reaction-diffusion partial differential equation. However as

spatial structures become more and more complex, so that the homogenisation pro-

cess breaks down, Monte Carlo simulations become more appropriate. One such

environment is the plasma membrane.

The plasma membrane is an extremely complex and crowded environment that

has many roles including signalling, cell-cell communication, cell feeding and ex-

cretion and protection of the interior of a cell. It is heterogeneous – the cytoskeletal

structure just inside the plasma membrane can corral and compartmentalize mem-

brane proteins. Chemically inert objects can form barriers to protein diffusion on

the plasma membrane, and this can lead to anomalous diffusion rather than pure

diffusion. Trying to capture such complexity using higher-level mathematical frame-

works such as partial differential equations is extremely challenging, so instead

a stochastic spatial model using the Monte-Carlo technique becomes appropriate,

especially as the domain of interest is essentially two dimensional. In such a sim-

ulation the plasma membrane can be mapped to a two dimensional lattice, usually

regular but not necessarily so. The size of each computational cell “voxel” depends

on what biological questions are being asked, but taking into account volume-

exclusion effects, usually the voxel is such that at most one protein per voxel is

allowed. Given the dimensions of typical membrane protein anchors, a typical voxel

size is thus of the order of 1–3 nm. Assuming that we wish to model the dynamics

on the plasma membrane of a typical cell, say 10 � 10�m, then the computational

lattice has 5;000 � 5;000 voxels. In a spatial Monte Carlo simulation of this type, a

random walk is carried out by each protein on the membrane; a protein is selected

at random, and a movement direction (north, south, east or west, in the case of a

rectangular lattice arrangement) is randomly determined. The distance moved de-

pends on the diffusion rates for each species. Chemical reactions can be simulated

by checking the chemical reaction rules and then replacing that protein and/or cre-

ating a new protein at that location whenever a collision (volume exclusion event)

occurs. In one step, each protein must statistically (but not necessarily determin-

istically) be selected to move, so if we are interested in the dynamics over large

regions or long time scales, then this approach is computationally demanding. In

addition, since the approach is stochastic, a number of simulations must be run in

order to collect appropriate statistics. Nicolau et al. [51,52] have used this approach

to model the effects of compartmentalisation, anomalous diffusion and the motion

of lipid rafts on the chemical kinetics taking place on the membrane. However, only

relatively small sections of the membrane on short time scales are considered due to

the slow computational performance. There are a number of approaches to address

this issue, one of which we discuss below. As computational speeds and memory

sizes increase, longer times and larger systems will be able to be modelled.

Recently, in [12], a plasma membrane stochastic spatial model was implemented

in a parallel setting, so that both long-range diffusion rates could be investigated and

an entire cell membrane could be modelled with the simulation running for several

real-time seconds. Domain decomposition was applied to allocate portions of the
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membrane to different parallel processes; each membrane portion was populated

with molecules of various species, inert obstacles, cytoskeletal fences and mobile or

immobile lipid rafts. OpenMPI was used for message-passing between processes,

and MPI’s Cartesian topology management commands ensured the physical prox-

imity of processes with adjacent membrane portions. By allowing each parallel

process to have a “ghost” copy of its right-hand neighbour’s leftmost column and

its left-hand neighbour’s rightmost column of membrane data, along with its own

membrane portion, communication costs between processes can be minimised while

maintaining an accurate view of the current membrane state. Data moving between

processes was first moved into these “ghost” columns and these were then merged

with the neighbours’ membrane portions at every time step of the simulation. Slave

to slave implementations gained excellent speed-up [12] so a cross-cluster imple-

mentation can allow a simulation on the entire cell membrane to be run for several

real-time seconds and hence may provide valuable data and insights for biologists.

In a spatial Monte Carlo simulation of proteins diffusing on a lattice, diffusion

can be considered as a unimolecular reaction. Thus if we order the voxel elements

within the lattice into a vector, we can consider this approach in the SSA framework

and apply the same tools that have been developed in the purely temporal setting.

In particular, there is a spatial CME associated with this approach [19]. Finally, we

note that although we have emphasised Monte Carlo simulations for heterogeneous

models, there is a recent approach where a continuum finite element partial differen-

tial equation method has been used to understand the effect of lipid rafts on chemical

kinetics on the plasma membrane [62].

Multi-scale Modelling

Lattice Versus Off-Lattice Methods

Spatially resolved simulations are computationally expensive, a fact that becomes

more evident when compared with their solely temporal counterparts. Nevertheless,

adequate modelling of biological systems often requires spatially resolved simu-

lations. By consequence, one should always keep in mind the trade-off between

simulation time and necessary level of resolution.

Of all spatial methods, the option with the lowest computational cost consists

of solving reaction-diffusion partial differential equations, each of which represents

the concentration of a molecular species in the system. This approach is only valid

if and when: (1) all molecular species in the system have large molecular concen-

trations, and (2) noise is not amplified throughout the system. If at least one of these

conditions fails to hold, we must rely on spatial stochastic simulators, which can be

of discrete or continuous nature. In turn, the highly resolved end of the discrete spa-

tial stochastic simulators spectrum is represented by lattice and off-lattice particle

based methods.
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In off-lattice methods, all particles in the system have explicit spatial coordinates,

at all times. At each time step, molecules with non-zero diffusion coefficients are

able to move, in a random walk fashion, to new positions. In many cases, reaction

bins whose size depends on the particular diffusion rates are drawn around each

particle. If one or more molecules happen to be inside such a bin, appropriate chem-

ical reactions can take place with a certain probability, and if a reaction is readily

performed, the reactant particles are flagged, to avoid repetition of chemical events.

Noticeably, in off-lattice methods, the domains and/or compartments can still be

discretized, to aid the localization of particles within the simulation domain. Particle

methods can provide very detailed simulations of highly complex systems at the

cost of exceedingly large amounts of computational time and, possibly, restrictions

on the size of the simulation domain. Hence, such detailed simulations can often

only yield short simulation time spans that, in many cases, are of no interest to the

experimentalists.

For lattice methods, and within the context of Molecular Biology, a computa-

tional mesh (generally two dimensional or three dimensional) is used to represent

a cellular compartment, such as a membrane or the interior of some part of a cell

[49, 51, 75]. The lattice is then “populated” with particles of the different molecular

species that comprise the system, either at random or at chosen spatial locations,

depending on the theoretical question at hand. All particles with non-zero diffu-

sion coefficient are able to diffuse throughout the simulation domain by jumping to

empty neighbouring sites and, depending on user-specified reaction rules, appropri-

ate chemical reactions can take place with a certain probability. It is worth noting

the mesh can represent microscopic or mesoscopic domains. In the former, each lat-

tice site is allowed to host at most one molecule. These microscopic lattice-based

simulators are often called Kinetic Monte Carlo Methods, which might create some

confusion as this name is shared by general stochastic simulation strategies.

A less computationally intensive alternative, albeit still costly in many sce-

narios, is to consider molecular interactions in the mesoscopic realm. Here, the

discretization of the Reaction-Diffusion Master Equation (RDME) results in reac-

tive neighbouring sub-volumes within which several particles can coexist, while

well-mixedness is assumed in each subvolume. Following this line of thought, there

are a few algorithms in the literature extending discrete stochastic simulators to

approximate solutions of the RDME by introducing diffusion steps as first order re-

actions, with a reaction rate constant proportional to the diffusion coefficient. For

instance, in [7, 67] the authors provide the specific outline for extending discrete

stochastic simulators to the RDME regime, while the algorithms in [1, 21] provide

clever extensions of the ‘next reaction method’ [28], commonly known as the ‘next

subvolume method’. Additionally, a review on the construction of such methods can

be found in [25]. Figure 2.1 attempts to provide an illustration of the spatio-temporal

advancement scheme of lattice and off-lattice algorithms.

A few additional aspects are worth considering. First, in mesoscopic lattice meth-

ods, as well as inefficiently posed off-lattice methods, problems may arise due to

neglecting the ‘volume exclusion’ effect (for example, whenever a (sub)domain
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a b c

Fig. 2.1 Illustration of the advancement schemes for idealized (a) off-lattice methods, (b) micro-
scopic lattice methods and (c) mesoscopic lattice methods. Arrows in black represent diffusion
over the same time scale, while grey arrows represent diffusion over a considerable larger time
step. Dashed black lines represent potential reaction partners, over a single time step (before or
after diffusion changes, not simultaneously)

Table 2.2 Software and corresponding websites

MesoRD http://mesord.sourceforge.net/

SmartCell http://smartcell.crg.es/

GMP http://www.science.uva.nl/research/scs/CellMath/GMP

STEPS http://sourceforge.net/projects/steps

GridCell http://iml.ece.mcgill.ca/GridCell/

ChemCell http://www.sandia.gov/�sjplimp/chemcell.html

MCell http://www.mcell.cnl.salk.edu/

Smoldyn http://www.smoldyn.org/

CellCC http://www.compsysbio.org/lab/cell simulations

E-cell http://www.e-cell.org/

is populated by a large number of molecules that would not physically fit). The

same would hold for inefficiently posed microscopic lattice methods, where each

molecule is set to occupy a single site, irrespective of its physical size.

Secondly, molecular crowding can prevent reacting molecules from reaching re-

gions of the domain, due to the high concentration of macromolecules impeding

their passage [5]. While this effect can be explicitly treated by microscopic lattice

methods (as well as some off-lattice methods), mesoscopic lattice methods are in

a great disadvantage, their expected accuracy being low when treating these cases.

Lastly, the artificial nature of the lattice may not only limit the spatial resolution of

the simulation, but also introduce lattice anisotropy [59].

In the following section, we describe the Next Subvolume Method in more de-

tail, as well as a coarse-grained version that accelerates simulations by 2–3 orders

of magnitude. We additionally report recent extensions and corrections to these al-

gorithms. Lastly, we refer to Table 2.2 for a list of publicly available lattice and

off-lattice simulators.

http://mesord.sourceforge.net/
http://smartcell.crg.es/
http://www.science.uva.nl/research/scs/CellMath/GMP
http://sourceforge.net/projects/steps
http://iml.ece.mcgill.ca/GridCell/
http://www.sandia.gov/~sjplimp/chemcell.html
http://www.mcell.cnl.salk.edu/
http://www.smoldyn.org/
http://www.compsysbio.org/lab/cell_simulations
http://www.e-cell.org/
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The Next Subvolume Method and Its Coarse-Grained Version,

B�-SSSA

The Next Subvolume Method (NSM) [1, 21, 22, 32] is a generalization of the SSA

[29], where the simulation domain is divided into uniform separate subvolumes that

are small enough to be considered homogeneous by diffusion over the time scale of

the reaction. At each step, the state of the system is updated by performing an ap-

propriate reaction within a single subvolume, or by allowing a molecule to jump to

a randomly selected neighbouring subvolume. Diffusion is then modelled as a unary

reaction, with rate proportional to the two-dimensional molecular diffusion coeffi-

cient divided by the length of a side of the subvolume. In this way, diffusion inside

the algorithm becomes another possible event with a regular propensity function,

and follows the same update procedure as any chemical reaction. The expected time

for the next event in a subvolume is calculated in a similar way to the SSA algo-

rithm, including the reaction and diffusion propensities of all molecules contained

in that subvolume, at that particular time. However, times for subsequent events will

only be recalculated for those SVs that were involved in the current time step, and

they are subsequently re-ordered in an event queue.

Even though mesoscopic simulations are much faster than their microscopic

counterparts, often we will need to coarse-grain the simulation to provide for

a spatially resolved model that yields accurate chemical kinetics in meaningful

simulation times that are of actual biological interest to the experimentalists. With

this in mind, a very natural extension of the NSM comes down to performing

£-leaps (slightly larger time steps) that account for one or more diffusion and re-

action events, without significantly compromising spatio-temporal accuracy. This is

the idea behind the Binomial £-leap Spatial Simulation Algorithm, B£-SSSA [45]

where, at each iteration, the subvolume with shortest reaction-diffusion £-leap is se-

lected. Then, the algorithm performs a number of possible, yet randomly chosen,

events inside each subvolume, re-calculates a new £-leap for all subvolumes that

were affected by current reactive or diffusive events, re-orders the time event queue

in increasing time, and consequently chooses the subvolume indicated by the top of

the time event queue.

A few additional notes and issues are worth considering. First, in order to

calculate the expected time for the next event in any subvolume, the sum of dif-

fusion propensities needs to be multiplied by the number of directions in which the

molecules can diffuse, that is, the number of neighbours contained in the connectiv-

ity matrix for that subvolume. While this is explicitly stated in [22], it is implicitly

assumed in [21]. The same holds for the coarse-grained version presented in [45],

which implicitly considers the number of neighbouring subvolumes when calcu-

lating £-leaps. We have noticed that, neglecting the number of neighbours for the

calculation of the diffusion propensity yields radically low accuracy, whenever the

system contains zero-order reactions (namely, when one of the molecular species is

constitutively created).
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Secondly, and perhaps more importantly, it has been readily noticed that accuracy

is lost when considering commonly used implementations of bimolecular reac-

tions. Early on, [7] reported that: “Too large a cell size violates the cell statistical

homogeneity assumptions, whereas too small a cell size may compromise the sepa-

rability of reaction and diffusion viewed as independent elementary processes in

significantly small subvolumes”. Furthermore, the authors in [34] reported their

concern for the dependence of solutions to the RDME on mesh spacing. In res-

ponse to these open issues, Erban and Chapman suggested clever corrections for the

propensity values in lattice based models, hence homogenizing results with vary-

ing degrees of mesh finesse [26]. Extrapolations of these considerations are current

work in progress, and include several implications in: (1) two-dimensional domains,

(2) coarse-grained scenarios, and (3) unstructured meshes [41].

Hybrid Discrete-Continuous

There are probably many ways to create hybrid reaction-diffusion algorithms. For

example, we can group species according to size, treat small molecules determinis-

tically, and treat large particles and their interactions with large and small molecules

stochastically. The latter implies molecules exist in high numbers and/or diffuse

rapidly.

In another approach, Engblom et al. [24] split the time integration of the RDME

into a macroscopic diffusion (for species with large numbers of molecules) and a

stochastic mesoscopic reaction/diffusion part (for species with small numbers of

molecules) obtaining the mesoscopic diffusion coefficients from proper FEM dis-

cretizations. At the same time, as with purely temporal hybrid algorithms, there are

a number of options for designing a spatial hybrid algorithm, in particular with re-

spect to the methods being combined and the partitioning criteria.

Software and Other Spatial Approaches

Capturing Spatial Attributes

Despite increasingly available computational resources, simulating highly-resolved

spatial models of cellular processes and pathways can still be computationally de-

manding, if not prohibitively expensive. This motivates the search for alternative,

indirect ways to incorporate spatial information in purely temporal models, while

aiming at reasonable accuracy when compared to its fully spatial counterparts.

Recently, such an alternative methodology based on reactions with associated

distributed time-delay was presented in Marquez-Lago et al. [46]. The method con-

sists of two steps: (1) distribution fitting and (2) stochastic simulation. The delay

distributions stem from diffusion profiles and can be directly obtained from in silico
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Fig. 2.2 Simplification of the idea behind distributed delays. For a translocation process, we can
obtain first arrival (first passage) times either directly from experiments, from analytical or numer-
ical solutions of a corresponding PDE, or from particle simulators such as ChemCell (illustrated
in the figure on the left). We calculate the delay distribution (middle) and draw from it random
delays, to be used in the delay stochastic simulation algorithm whenever a translocation reaction is
occurring (right)

(particle-based) simulations, in vitro experiments, or by solving the correspond-

ing PDEs. Once these tailored distributions are calculated they are used with their

associated reactions in a modified version of the delay stochastic simulation algo-

rithm (DSSA) (Fig. 2.2).

The methodology captures some spatial processes with accuracy that is un-

matched by any other purely temporal method.

Spatial Simulation Software

In this section, we give a brief and not exhaustive overview of software pack-

ages for spatial modelling of chemical reaction networks and cellular processes.

Spatial stochastic simulation software can be classified according to its underly-

ing methodology, that is, the choice of spatial representation and the temporal

evolution scheme. It is customary to distinguish between lattice and off-lattice

(particle) methods. As explained above, the former can be subdivided into spatial

SSA implementations, leading to trajectories that are exact or approximate real-

izations of the reaction-diffusion master equation (RDME), and methods based
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on microscopic discretizations of the spatial domain, such as kinetic Monte Carlo

methods. Off-lattice methods can be subdivided into particle based methods with

fixed time-stepping, and Green’s Function Reaction Dynamics (GFRD) methods.

GFRD effectively reduce the multi-body reaction-diffusion problem into multiple

single-body and two-body problems that are then solved using Green’s functions.

The simulation advances from the time of one reaction to the time of the next re-

action. Table 2.1 summarizes the method and features of each approach. Table 2.2

lists the software packages and the corresponding webpages for additional informa-

tion and download links. More detailed summaries and recent comparisons between

particle-based simulators can be found in [4, 6, 70].

RDME-Based Methods

Stundzia and Lumsden [67] were the first to introduce diffusion reactions between

sub-volumes to the SSA framework [29, 30], followed by [7]. Essentially, Stundzia

and Lumsden implemented a spatial version of Gillespie’s Direct Method (DM)

and used it to simulate the propagation of an ionic reaction-diffusion calcium wave

through a cell. Later, Ander et al. [1] and Elf et al. [21] independently devel-

oped spatial schemes of the Next Reaction Method (NRM) [28] the latter being

coined the Next-Subvolume Method (NSM). This method is now included in two

software packages, namely in SmartCell (version 4.2) and MesoRD [32] (version

0.3). A recent extension of MesoRD allows also for a correct description of reac-

tion rates when the subvolume size is close to the reaction radii of the molecules.

The MesoRDToolBox is a MatLab toolbox for visualizing MesoRD simulation

data. SmartCell provides a Java GUI to process its outputs. Both SmartCell and

MesoRD allow the option of choosing other methods for simulating a chemical

diffusion-reaction system. MesoRD has been used to study spatial oscillation pat-

terns displayed by the Min system of Escherichia coli [27]. To our knowledge,

coarse-grained versions of NSM have not been implemented in any publicly avail-

able software package.

Other algorithms that have been recently proposed for simulating reaction-

diffusion systems include the Gillespie-Multi-Particle (GMP) method [60] and

the multinomial simulation algorithm (MSA) [40]. In GMP, the reaction and diffu-

sion processes are executed independently of each other (operator splitting scheme).

The method uses the multi-particle method (a.k.a. Lattice Gas Automata algorithm)

[14,15] to simulate diffusion: at each diffusion step, molecules from one subvolume

are uniformly distributed among its adjacent subvolumes. While diffusion steps oc-

cur at predetermined times, reactions are simulated in between those steps using

standard SSA. The fixed diffusion time step corresponds to the average time between

diffusion events in the RDME. In Dobrzyński et al. [18], GMP has been compared to

MesoRD, Smoldyn, GFRD, and (non-spatial) SSA, using a model of regulated gene

expression and diffusion of phosphorylated CheY in the E.coli chemotaxis pathway

as case studies.



2 Stochastic Simulation for Spatial Modelling of Dynamic Processes in a Living Cell 57

Unlike GMP, the MSA does not decouple reaction and diffusion events, instead

diffusive steps are taken until time to the next reaction is reached. The probabilities

for diffusion events are taken from a multinomial distribution and diffusion is not

limited to directly neighbouring subvolumes. However, the coupling of diffusive

steps and reactions causes a problem, namely when particles are chosen for diffusion

that have been chosen before as reactants in the next reaction event. The MSA deals

with this issue by removing reactants immediately once a reaction is chosen (such

that they are no longer available for diffusion) and adding the product(s) after the

reaction occurs. There is no source code available for MSA.

Finally, STEPS [78] (v1.1.1) is a platform for simulating reaction-diffusion pro-

cesses in 3D, using irregular, tetrahedral meshes for volume discretization. STEPS

has the spatial version of the direct reaction method implemented, but also allows

non-spatial SSA implementations on individual compartments ignoring the domain

discretization. Volumes are bounded by membranes that can contain stationary re-

action molecules such as channel proteins. It is intended to extend STEPS allowing

diffusion also on membranes.

Methods Based on Microscopic Lattices

GridCell [9] (v1.2) subdivides the 3D domain into microscopic compartments

(voxels), each having 26 surrounding neighbours plus itself (a so-called D3Q27

model) for diffusion and reaction. Each voxel may contain at most one molecule.

Molecules diffuse by hopping with a species-dependent moving probability to a ran-

domly chosen neighbour and can react with other molecules in neighbouring voxels.

Particle moves and reactions are independent events. The simulation evolves in fixed

time steps in which each particle may move and/or react only once. As with all other

methods based on microscopic lattices, GridCell is able to capture the effects of vol-

ume exclusion and molecular crowding by introducing inert particles.

Spatiocyte [5, 6] has been designed to simulate reaction and diffusion in 3D and

2D volumes and between 3D and 2D compartments, and to reproduce implications

of molecular crowding. In Spatiocyte, the domain is discretized into a hexagonal

close-packed lattice. Each compartment is a voxel with a radius equal to that of

the simulated molecules and has 12 adjoining neighbours. Aside from individual

molecules that are simulated on the microscopic scale, Spatiocyte also supports the

simulation of homogeneously distributed (HD) species on a compartmental scale.

Diffusion-influenced reactions are modelled using a discretized version of Collins

and Kimball [16] for obtaining a reaction probability. Temporal evolution is based

on hybrid time-driven and event-driven methods [69]. Diffusion steps occur at pre-

defined time steps while diffusion-independent reactions are performed according

to the NRM [28].

The spatiocyte algorithm has been implemented as a plug-in module to ECell

[5, 6]. ECell [5, 68, 74] (v3.2.0) is a simulation platform for modelling and analyz-

ing chemical reaction networks. Originally, it only supported temporal simulation
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algorithms ranging from stochastic simulation algorithms (such as SSA or explicit/

implicit tau-leap methods) to ODE and DAE solvers. Recently, it has been extended

by two spatial algorithms, one of which is Spatiocyte. This has been recently used to

investigate the MinDE system. Simulation results showed a link between transient

membrane attachment of E. coli MinE and the formation of E-rings [5].

Off-Lattice Particle Methods

ChemCell [56, 57], MCell [36, 66], and Smoldyn [3, 4] are the most popular

and widely used off-lattice stochastic particle-based reaction-diffusion simulators.

While ChemCell (last version 10 Sep. 2008) also allows for non-spatial simulations

using ODE solvers or standard SSA, MCell (v3.1.846) and Smoldyn (v2.1) offer

particle simulations only. Smoldyn is the only simulator that supports reaction and

diffusion of particles in 1D, 2D, and 3D. ChemCell and Smoldyn use a fixed time

step, whereas MCell uses an adaptive time-stepping, but allows the user to specify

an upper limit. These particle-based simulators vary in many more features, such

as system boundaries, geometric primitives, support of 0-order reactions, and sur-

face interactions, to name a few. We refer for a more detailed comparison of these

methods to the paper by Andrews et al. [4].

Another particle simulator is CellCC [61]. This spatial modelling and simulation

platform combines a cellular automata engine with Brownian dynamics. CellCC
allows the simulation of large numbers of small molecules (such as calcium ions,

pyruvate, ATP), while simultaneously treating larger molecules, such as enzymes, as

entities. The continuum domain is superimposed by a 3D lattice. Each cubic subvol-

ume describes the cellular environment (cytosol, nucleus, or membrane) and stores

the local concentration of small molecules. The simulation evolves in discrete time

steps. At each step, the relative flux of small molecule (metabolite) concentrations

between two lattice cells, the diffusion step of all large molecules (enzymes), re-

actions among large molecules and those between small and large molecules are

calculated. CellCC was designed to study the impact of spatial organization on

several biochemical systems including metabolism, signalling pathways, calcium

waves and lipid raft mediated signalling.

CyberCell [59] is a particle-based simulator that was built to study the volumet-

ric impact of macromolecular crowding on cellular reaction-diffusion systems. The

simulation advances in discrete time steps of fixed size. Particles diffuse by a fixed

length in a random direction, uniformly distributed over the surface of a sphere.

The moving probability depends on the diffusion constant. After the diffusion step,

particles that moved are checked for potential collisions with other particles. If a col-

lision is observed, it is determined if a reaction occurred. If no reaction happened,

the move is rejected. This approach is used to enforce volume exclusion.
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Greens-Function Reaction Dynamics (GFRD) Methods

The idea of Green’s Function Reaction Dynamics (GFRD) [76, 77] is to choose a

maximum time step that is still small enough such that only single particles or pairs

of particles have to be considered, and no particle can collide with more than one

other particle during this step. The corresponding Einstein equation (for propagating

single particles) and Smoluchowski equation (for the two-body problem) can be

solved analytically, using Green’s functions. From these solutions, probabilities for

the next unimolecular and bimolecular reactions to happen are derived, and these

probabilities can be subsequently used in an event-driven GFRD algorithm. This

algorithm iteratively (1) determines the maximum time step, the next reaction to

occur and the time when it occurs (within the maximum time step), (2) propagates

all particles, and (3) updates particles according to the reaction.

The GFRD algorithm is very accurate and much faster than other particle-based

methods for systems that are diffusion-dominated. However, the GFRD algorithm

is not exact since the decomposition into one-body and two-body problems involves

cut-off distances [71]. Also, the original GFRD can be computationally very in-

tensive due to the synchronized updates of all particles at each step, and the fact

that the system evolves according to the smallest tentative reaction time. Recently,

Takahashi et al. [71] introduced an asynchronous version of the GFRD, called

eGFRD, which was inspired by the work of Oppelstrup et al. [54]. In eGFRD,

spherical protective domains are placed around single particles and pairs of par-

ticles, making the new scheme exact.

In the upcoming E-Cell version 4 a particle-based simulator based on the eGFRD

algorithm will be included. In Takahashi et al. [71] eGFRD has been used to

demonstrate how spatiotemporal correlations can change the response of the MAPK

pathway.

Conclusions

The last few years have seen a rapid development in spatial algorithms and toolk-

its. The remaining challenges are to make these approaches robust and efficient in

multiscale heterogeneous environments and to allow them to be integrated in, for

example, whole organ models.
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Chapter 3

Graph-Theoretic Analysis of Multistability
and Monotonicity for Biochemical Reaction
Networks

Gheorghe Craciun, Casian Pantea, and Eduardo D. Sontag

Abstract Mathematical models of biochemical reaction networks are usually high

dimensional, nonlinear, and have many unknown parameters, such as reaction

rate constants, or unspecified types of chemical kinetics (such as mass-action,

Michaelis-Menten, or Hill kinetics). On the other hand, important properties of these

dynamical systems are often determined by the network structure, and do not depend

on the unknown parameter values or kinetics. For example, some reaction networks

may give rise to multiple equilibria (i.e., they may function as a biochemical switch)

while other networks have unique equilibria for any parameter values. Or, some re-

action networks may give rise to monotone systems, which renders their dynamics

especially stable. We describe how the species-reaction graph (SR graph) can be

used to analyze both multistability and monotonicity of networks.

Keywords Biochemical reaction networks � Multistability � Monotonicity

� SR graph

Introduction

There is great interest in methods that draw conclusions about the dynamical prop-

erties of a chemical reaction network based only on the network structure, i.e., with

limited or absent knowledge about many kinetic details [7, 26]. Here we will con-

centrate on the properties of multistability and monotonicity.

Multistability refers to the capacity of a biochemical system to operate at sev-

eral discrete, alternative steady-states, and plays an important role in cell signaling,

division, and differentiation [2, 23, 29].
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Monotone systems display well-ordered behavior that excludes the possibility

for chaotic dynamics [4, 20, 27]. Moreover, perturbations of such systems have un-

ambiguous global effects and a predictability characteristic that confers robustness

and adaptability [21].

In this chapter we describe some of the main results on the use of the SR graph

of a reaction network to analyze its multistability and monotonicity properties, as

described especially in [9] and [5] , respectively. Our focus will not be on presenting

the most powerful results in full generality (for these the reader should consult [5,9],

and also [6, 10]). Instead, we will concentrate on simpler versions of these results,

and will especially focus on pointing out how these results can be formulated in an

unified language based on the notion of SR graph.

Definitions and Notation

Dynamical Systems Derived from Chemical Reaction Networks

A chemical reaction system in which n reactants participate in m reactions has dy-

namics governed by the system of ordinary differential equations

dx

dt
D Sv.x/ (3.1)

where x D .x1; : : : ; xn/
t is the nonnegative n-vector of species concentrations,

v D .v1; : : : ; vm/t is them-vector of reaction rates, and S is the n�m stoichiometric

matrix.

Arbitrary orderings can be chosen on the sets of substrates and reactions.

Further, S is only defined up to an arbitrary re-signing of its columns, equiva-

lent to a switching of the left and right-hand sides of a reaction. The equation

(3.1) defines a dynamical system on the nonnegative orthant of R
n. If we also

assume that all species may have some inflow (which is allowed to be zero) and

some outflow which increases strictly with concentration, we obtain the related

system

dx

dt
D F C Sv.x/�Q.x/ (3.2)

Here F is a constant nonnegative vector representing the inflow, and the diagonal

function Q.x/ D .Q1.x1/; : : : ;Qn.xn//
t represents the outflow or degradation,

and we assume that @Qi

@xi
> 0 for each i .

For example, for the reaction network

X1 CX2• X3; 2X1• X2; X2 CX3• X4 (3.3)
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we can choose

S D

0
BB@

�1 �2 0

�1 1 �1
1 0 �1
0 0 1

1
CCA (3.4)

where each column of S corresponds to one reaction in the network. Sometimes

the inflow and outflow terms F and Q.x/ are included in the reaction network as

‘inflow reactions’ Xi ! 0 and ‘outflow reactions’ 0 ! Xj . Here we choose to

associate to a reaction network (such as (3.3)) either the closed system (3.1), or the

open system (3.2). Note that the dynamical properties of these two types of systems

may be very different from each other, and some theorems might apply to only one

or the other of them.

We assume that for each reversible reaction its reaction rate vi can be decom-

posed as

vi .x/ D vC
i .x/ � v�

i .x/;

where vC
i is the rate of the forward reaction, and v�

i is the rate of the reverse reaction.

In biochemical applications, the most common types of reaction rates are mass-

action, Michaelis-Menten, or Hill kinetics. For example, for the reactionX1CX2 !
X3, we could have

vC
1 .x/ D k1x1x2

or

vC
1 .x/ D

k1x1x2

1C k2x1x2
or

vC
1 .x/ D

k1x1x
2
2

k2 C x22
:

for some positive constants k1 and k2.

Given a reaction network we define its SR graph as follows. The SR graph is a

bipartite undirected graph, where the nodes are partitioned into species nodes and

reaction nodes. We draw an edge from a species node to a reaction node if that

species appears in the reaction, i.e., we draw an edge from species node i to reac-

tion node j if the sij entry of the stoichiometric matrix S is not zero. Moreover,

if sij > 0 we say that it is a positive edge (and will draw it with a solid line), and if

sij < 0 we say that it is a negative edge (and will draw it with a dashed line). Finally,

if the stoichiometric coefficient of a species within a reaction is two or more, then

we label the corresponding edge with this stoichiometric coefficient (so if an edge

does not have a numeric label, it will follow that the corresponding stoichiometric

coefficient is 1). The SR graph of reaction network (3.3) is shown in Fig. 3.1.
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Fig. 3.1 The SR graph of reaction network (3.3). Positive edges are shown as solid lines, and
negative edges are shown as dashed lines. Note that the graph contains three cycles, and any two

of them have S-to-R intersection. Also, all cycles are o-cycles

Note that the SR graph in Fig. 3.1 contains several cycles.1 We will show that

multistability and monotonicity of a network is strongly related to the types of cycles

present in its SR graph. For this we need to be able to distinguish among several

types of cycles.

Consider a cycle that has p edges, and q of them are negative edges. We say that

this cycle is an e-cycle if q � p
2

(mod 2), i.e., the number of negative edges along

the cycle has the same parity as the total number of edges along the cycle divided

by 2. (Note that the total number of edges along any cycle must be even, because the

SR graph is a bipartite graph.) Otherwise, i.e., if the number of negative edges has

different parity from the total number of edges divided by 2, we say that the cycle is

an o-cycle. For example, the cycle R2 �X2 �R3 �X3 �R1 �X1 �R2 in Fig. 3.1

is an o-cycle, since it has p D 6 edges and q D 4 negative edges, and the numbers

q and p
2

have different parities.2

Another relevant type of cycle is called s-cycle. A cycle C is called an s-cycle if

we have
p=2Y

iD1
�2i�1 D

p=2Y

iD1
�2i ;

where p is the number of edges of C, and �1; �2; : : : ; �p are the stoichiometric

coefficients of the edges of C, in the order in which they occur along C (it is easy to

see that it does not matter where we start along C). In other words, C is an s-cycle if

the two possible ways of multiplying the stoichiometric coefficients of every other

edge of C give rise to the same result. Obviously, if all the stoichiometric coefficients

along a cycle are 1, then that cycle is an s-cycle, and if exactly one stoichiometric

1 In [5] cycles are called ‘loops’.
2 The original definition of e-cycles and o-cycles in [11] describes these types of cycles in terms
of ‘c-pairs’: e-cycles have an even number of c-pairs and o-cycles have an odd number of c-pairs.
The two definitions are equivalent for networks that do not have one-step catalysis, which are our
main focus here. Compare also with Lemma 4.4 in [5].
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coefficient along a cycle is ¤1, then that cycle is not an s-cycle. For example, for

the SR graph in Fig. 3.1, the cycle X2 � R3 � X3 � R1 � X2 is an s-cycle, and the

cycles R2 �X2 �R1 �X1 �R2 and R2 �X2 �R3 �X3 �R1 �X1 �R2 are not

s-cycles.

Sometimes not only the types of cycles are important, but also the way cycles

intersect within the SR graph. We say that two cycles have an S-to-R intersection

if the connected components of their intersection are paths that go from a species

node to a reaction node (and not from a species node to another species node, or

from a reaction node to another reaction node). For example, consider the cycles

R2�X2�R3�X3�R1�X1�R2 andR2�X2�R1�X1�R2 in Fig. 3.1. Their

intersection has a single connected component, which is the pathR1�X1�R2�X2.

Therefore, these two cycles have an S-to-R intersection.

Consider some closed pointed convex coneK � R
n. We say that an autonomous

dynamical system

Px D f .x/ (3.5)

is monotone with respect toK if for any two solutions x1.t/ and x2.t/ of (3.5), such

that x1.0/ � x2.0/ 2 K , it follows that x1.t/ � x2.t/ 2 K for all t > 0. (Note that

we assume that solutions x.t/ exist for all times t > 0.)

A property relevant to monotonicity is persistence. A dynamical system defined

on a domain contained within the nonnegative orthant of R
n is called persistent if

any trajectory with positive initial condition does not have any !-limit points on

the boundary of the nonnegative orthant. In other words, the system is persistent if

for any solution x.t/ with positive initial condition such that x.tn/ ! L for some

sequence tn !1, it follows that all the coordinates of L are positive.

The Main Results

Throughout this chapter we assume that the following properties are satisfied by the

reaction network and its reaction rate functions:

Assumption 1. The reaction network does not have one-step catalysis, i.e., if a

species appears on one side of a reaction then it does not appear on the other side of

that reaction.

Assumption 2. For each irreversible reaction (and also separately for the forward

and reverse reactions of a reversible reaction), its reaction rate depends only on the

concentrations of the reactants, which are the species that are being consumed by

the reaction. Moreover, the partial derivatives of the rate function with respect to the

concentrations of the reactants are nonnegative.

Neither one of these two assumptions are very restrictive; on the other hand, nei-

ther one of them is truly necessary for analyzing multistability (see [10] for details).

In this section we formulate two theorems that use the SR graph of a reaction

network to analyze its multistability and monotonicity properties.
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Theorem 3.1 (Banaji and Craciun [9]). Consider a reaction network such that its

SR graph satisfies the following two conditions:

(1) all cycles are o-cycles or s-cycles (or both),

(2) no two e-cycles have an S-to-R intersection.

Then the system (3.2) does not have multiple positive equilibria, and the system (3.1)

does not have multiple positive nondegenerate equilibria within any affine invariant

subspace.

Note that, in the presence of any conservation laws, the relevant multistability

question is not whether there exists a unique equilibrium, but whether there exists

a unique equilibrium within any affine invariant subspace, since for well-behaved

systems we expect that one equilibrium should exist in every such invariant subspace

(see also [14, 18]). Note also that for the system (3.2) there can be no conservation

law, due to the presence of nondegenerate outflow or degradation terms.

Theorem 3.1 does apply for reaction network (3.3) because all cycles in Fig. 3.1

are o-cycles. For more examples see [9, 10].

If there exist conserved quantities, additional analysis is needed to rule out de-

generate equilibria. For mass-action systems, conditions that exclude the possibility

of degenerate equilibria are described in [15]. For non-mass-action systems such

conditions are described in [17, 19].

Consider now the system

dr

dt
D v.x0 C Sr.t//; (3.6)

where rj is called the extent of the j th reaction, j D 1; : : : ; m. The following

theorem allows us to analyze the monotonicity of this system (i.e., monotonicity

in reaction coordinates [5]), and also provides information on the dynamics of the

related system (3.1).

Theorem 3.2 (Angeli, DeLeenheer and Sontag [5]). Consider a reaction network

such that its SR graph satisfies the following two conditions:

(1) each species node is adjacent to at most two edges,

(2) each cycle is an e-cycle.

Assume in addition that all stoichiometric compatibility classes are compact sets,

that all reaction rates vanish if the concentrations of some of their reactants are zero,

and that all reaction rates are strictly increasing with respect to the concentrations

of their reactant species. Then the system (3.6) is monotone with respect to an order

induced by some orthant cone.

Assume moreover that the system (3.1) is persistent, and all reactions are re-

versible. Then almost all positive solutions of (3.1) converge to the set of equilibria,

i.e., the measure of the set of possibly non-converging initial conditions is zero.3

3 Often much more can be said, e.g., under some additional assumptions it follows that all positive
solutions converge to an equilibrium. See Theorem 2 in [5] for details.
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Fig. 3.2 The SR graph of reaction network (3.7). Note that the graph contains one cycle, and it is
an e-cycle. Also, note that each species node is adjacent to at most two reaction nodes

A proof of Theorem 3.2 follows from Proposition 4.5, Corollary 1, and Theorem

2 in [5]. In order to apply Corollary 1 in [5] note that, if all reactions are reversible,

then the connectivity of the ‘directed SR graph’ is the same as for the SR graph, and

if the SR graph has several connected components then they will generate uncoupled

subsystems.4

For example, consider the reaction network

E C S • ES • E C P: (3.7)

A version of this network was analyzed in detail in [5]. Theorem 3.2 does apply to

this network, since its SR graph, shown in Fig. 3.2, has the property that its only cy-

cle is an e-cycle, and each species node is adjacent to at most two edges. Moreover,

the network (3.7) is persistent (see [3]), and all its reactions are reversible.

In general, if there is only one cycle in an SR graph then Theorem 3.1 ap-

plies if this cycle is o- or s-cycle (or both), while Theorem 3.2 applies if the cycle

is an e-cycle and no species node is adjacent to more than two edges. Therefore

Theorem 3.1 also applies to network (3.7).

Note also that, if Theorem 3.2 does apply, and in particular if in the SR graph

each species has at most two adjacent edges, then no two cycles can have an S-to-R

intersection (because if a connected component of the intersection of two cycles is

an S-to-R path, then there must be at least three adjacent edges to the species node

at one end of the path). Therefore, if Theorem 3.2 does apply, and in addition all

stoichiometric coefficients are 1, then the hypotheses .1/ and .2/ of Theorem 3.1

also hold.

Finally, consider the reaction network

ACB • P; B C C • Q; C • 2A; (3.8)

which was also analyzed in [12] under the assumption of mass-action kinetics.

4 On the other hand, note that the notion of ‘directed SR graph’ in [5] is different from the notion
of ‘DSR graph’ (also called directed SR graph) introduced in [10].
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Fig. 3.3 The SR graph of
reaction network (3.8). The
graph contains only one
cycle, which is an e-cycle,
and each species node is
adjacent to at most two
reaction nodes. Moreover, the
cycle is not an s-cycle

The network (3.8) is persistent because it admits a positive P-semiflow, and every

minimal siphon contains the support of a P-semiflow (see [3] for details; see also

[1]). Since the only cycle in its SR graph is an e-cycle, and no species node is adja-

cent to more than two edges, it follows that Theorem 3.2 does apply for this network

(see Fig. 3.3). Note that the cycle A � R1 � B � R2 � C � R3 � A in Fig. 3.3 is

neither an o-cycle nor an s-cycle, so Theorem 3.1 does not apply. On the other hand,

if the kinetics of this network is mass-action, then deficiency theory [18] guaran-

tees that there is an unique equilibrium in each stoichiometric compatibility class,

and there also exists a globally defined strict Lyapunov function. This, together with

persistence, guarantees global convergence of all positive trajectories within a stoi-

chiometric compatibility class to the unique equilibrium in that class [28].

Discussion

The SR graph was first introduced in [11] for the analysis of mass-action systems,

inspired by the SCL graph of Schlosser and Feinberg [24,25]; see also [13,16]. The

case of networks that may contain one-step catalysis is discussed in [11, 13, 16] for

mass-action kinetics, and in [10] for general kinetics.

The free software package BioNetX provides algorithms for examining dynam-

ical properties of biochemical reaction networks [22]. In particular, this software

computes the SR graph of a network, and verifies the conditions .1/ and .2/ from

Theorem 3.1.
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Monotonicity was also considered in [30], were it was treated in an algebraic

fashion. In [8] conditions are determined in order to characterize the set of cones

and associated partial orders which make a certain reaction monotone, and it is

established that, under some minor assumptions, monotonicity of a network with

respect to a given partial order is equivalent to asking that each individual reaction

be monotone with respect to that same order. This result is also independent of

reaction kinetics.
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Chapter 4

From Structure to Dynamics in Biological
Networks

Murad Banaji

Abstract Biological systems often display behaviour that is robust to considerable

perturbation. In fact, experimental and computational work suggests that some be-

haviours are ‘structural’ in that they occur in all systems with particular qualitative

features. In this chapter, some relationships between structure and dynamics in bi-

ological networks are explored. The emphasis is on chemical reaction networks,

regarded as special cases of more general classes of dynamical systems termed inter-

action networks. The mathematical approaches described involve relating patterns

in the Jacobian matrix to the dynamics of a system. Via a series of examples, it is

shown how simple computations on matrices and related graphs can lead to strong

conclusions about allowed behaviours.

Keywords Biological networks � Chemical reaction networks � Jacobian matrix �
SR graph � Stability

Introduction

Crucial to the functioning of biological entities is the fact that they display behaviour

robust to internal noise and environmental perturbation. Providing mathematically

precise definitions and analyses of this ability to function reliably is, however,

not easy. Progress in this direction must involve: (1) Listing qualitative dynami-

cal behaviours which occur in biological systems, and which may be functionally

significant; (2) Providing some mathematical meaning to the notion of ‘structure’

in biological systems, and (3) Elucidating the relationships between structure and

behaviour.
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Qualitative behaviours include, amongst others, multistability, oscillation and

chaos. Asking when these might occur or be forbidden in a biological system is not

merely of mathematical interest. There are many examples in the literature of bio-

logical systems which permit multistability, with different attracting states having

different biological significance. Sometimes a great many attracting states may be

allowed [31]. Similarly, a number of important biological oscillators have been doc-

umented [27], and there is some evidence for subtle behaviours such as frequency

encoding of information [12]. There is also a significant literature on chaos in ex-

perimental and in silico biological systems. On the other hand, there are also many

biological systems which appear to allow only simple behaviour, such as global

attraction of all trajectories to a unique steady state.

Here, the emphasis is on defining easily computable conditions guaranteeing that

certain behaviours will not occur. This approach also provides insight into instability

of various kinds. For example, proving that some class of systems can have no more

than one equilibrium rules out saddle-node bifurcations in these systems; this, in

turn, may guide the search for these bifurcations in systems where they are not

structurally forbidden.

The starting point for any rigorous investigation of the structure-dynamics re-

lationship in biological systems must be an attempt to define ‘structure’ in ways

which are both natural, and allow tools from analysis, algebra, and combinatorics

to be brought into play. In this context, the characterisation of biological systems as

networks has proved particularly useful. After introducing some broad ideas, ex-

amples of particular strands of theory and model classes to which this theory can be

applied will be presented. The common thread is that all the approaches involve ex-

amining the Jacobian matrix to make claims about asymptotic behaviour in ordinary

differential equation (O.D.E.) models of biological systems.

The reader will notice a particular emphasis on chemical reaction networks

(CRNs). This springs not only from their central role in biology, but also because

theory developed initially for CRNs can provide insight into processes which are not

necessarily chemical in nature. This is true both an abstract level: theory on multi-

stationarity developed for CRNs was later generalised to much wider contexts; but

also more concretely: quantities such as membrane potentials may behave math-

ematically like chemicals, being increased and decreased by chemical processes,

except without certain formal requirements such as that they must remain nonnega-

tive, or obey stoichiometric rules.

Qualitative Models from Biology

Consider some biological system, and assume that the state of the system is defined

by a set of n quantities whose allowed values define a state-space X � R
n. Assume

that the evolution of the system can be modelled by the autonomous O.D.E.

Px D F.x/; (4.1)
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where xD .x1; : : : ; xn/T 2 X , F WX!R
n, and F 2C 1.X/, the set of

all continuously differentiable functions on X . Only this finite dimensional,

continuous-time, autonomous case is discussed here, although many of the fun-

damental ideas can be extended to other model classes.

Differentiability of F ensures the existence and uniqueness of solutions of (4.1).

Invariance of X is an a priori requirement, giving rise to certain restrictions on

F : for example, if xi � 0 (as, say, if xi is a chemical concentration), then in any

reasonable model, we must have that xi D 0 implies Pxi � 0. Beyond such automatic

restrictions, we can generally expect biological or physical constraints to provide

further information about F . Characterising these constraints, and thus the set of

allowed models of the system, is a task for the biological modeller. Assume that

this task has been carried out and F � C 1.X/ has been chosen as the set of all

models which may reasonably describe the biological system. F can be termed a

‘qualitative model’ of the biological system.

It is often the case that each F 2 F has restrictions on its Jacobian dF . A well-

known case is when entries in dF are of fixed sign over all of X (or sometimes,

the interior of X ). In this situation, the basic goal becomes to analyse how the

sign-pattern of dF , often best studied via the associated signed digraph or ‘I-graph’

(see Fig. 4.1), restricts the behaviour of the system. The conjectures and results

of Kaufman, Soulé and Thomas discussed in [21] provide examples of work in

this area. Some results, for example on the relationship between circuits in signed

digraphs and periodic attractors, have only recently been proved [2], while others

are still open.

The ideas to be presented involve factorisations of the Jacobian, and can be

seen as generalisations of work on systems with signed Jacobian. In general, there

may be an arbitrary number of matrices in these factorisations, and these may be

constant, or have entries of fixed sign. Moreover, the factors may have relationships

to each other. Similar to the signed Jacobian case, the techniques aim to make

claims about asymptotic dynamics of the systems. It is worth noting that Jacobian

−a −b 0
c −d e

f 0 g

1

23

a

dg
e

f
b

c

Fig. 4.1 The sign pattern of an n � n matrix corresponds to a signed digraph on n vertices. Left.

A 3 � 3 matrix. Assume that a; b; c; d; e; f; g > 0. Right. The corresponding signed digraph on
three vertices, sometimes termed an interaction graph or I-graph, with vertices and edges labelled
for clarity. Each edge corresponds to an entry in the matrix. Negative edges are dashed lines, while
positive edges are bold lines. A directed edge from vertex j to vertex i corresponds to the ij th
entry in the matrix
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factorisations can also play a role in numerical exploration of complex biological

networks for which only partial quantitative data is available [18]. The emphasis

here is on analytical approaches, but it is likely that these can also be used to guide

such numerical work.

Defining Structure in Biological Systems

Interaction Networks

It is useful to begin with the abstract notion of an interaction network. Consider

models where there are ‘species’ whose evolution we are interested in, and where

these species ‘interact’ with each other. The species may be chemical, biological, or

indeed physical quantities. An interaction is any event which affects some nonempty

subset of the species, and whose occurrence is affected by some subset of the species

(possibly empty). Since a continuous-time description is assumed, events occur at

a ‘rate’ which is a real number dependent on the ‘amounts’ (i.e., concentrations,

populations, etc.) of the species involved.

Assume that there are n species in some biological system. A successful model

will aim to describe the evolution of the amounts x1; : : : ; xn of these species. Define

x D Œx1; : : : ; xn�T . Assume that there arem interactions between the species, occur-

ing at rates v1.x/; : : : ; vm.x/, and define v.x/ D Œv1.x/; : : : ; vm.x/�T . To complete

the model, we need to describe how x1; : : : ; xn are affected by v1.x/; : : : ; vm.x/.

For this we need n interaction functions, where the i th interaction function,

fi .v.x//, is just the rate of change of species i as a function of the rates of in-

teraction.

Knowledge of the interaction rates and interaction functions gives the evolution

Pxi D fi .v.x//; i D 1; : : : ; n, or more briefly,

Px D F.x/ � f .v.x// ; (4.2)

where f .v.x// D Œf1.v.x//; f2.v.x//; : : : ; fn.v.x//�
T . Heuristically, this equation

tells us that to understand the evolution of xi at some moment in time, we need to

know the rates of all the interactions which affect xi , and how its evolution depends

on these rates. We assume continuous differentiability of the scalar functions fj ; vk .

Any dynamical system which can be constructed in this way can be termed an

interaction network. As each xi can be assumed to be a real number lying in some

interval (perhaps unbounded), the state-space for an interaction network is quite

naturally a rectangular subset of R
n, that is, the product of n intervals, defining

allowed values of each quantity. Each of these intervals may or may not be closed

and/or bounded.

At its most abstract, an interaction network is simply a dynamical system where

the right hand side can be written as a composition of two functions. In this formal
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sense, every dynamical system Px D F.x/ can be written as an interaction network

Px D F.id.x// or Px D id.F.x//, where id refers to the identity on R
n. Perhaps sur-

prisingly, this formal approach can indeed prove useful, and leads to generalisations

of results on systems with signed Jacobian [4]. But the power of treating a system as

an interaction network is generally most apparent when the decomposition is given

by the biology itself.

Jacobian Factorisations and Generalised Graphs

Differentiating F.x/ D f .v.x// gives

dF.x/ D df .v.x//dv.x/:

This application of the chain rule from basic calculus tells us that for an interaction

network, the Jacobian dF.x/ has a certain factorisation at each point. For the tech-

niques to be presented below, it is this factorisation which proves most important,

rather than the original composition structure of F which gave rise to it. More-

over, as will be seen by example below, sometimes one or both of the factors can

be further factorised. So, quite generally, assume that at each x 2 X we can write

dF.x/ D A.1/.x/A.2/.x/ � � �A.k/.x/, where the dimensions of matrices A.i/ are

such that they can be multiplied, and their product is square. Then, particular struc-

tures and relationships between the A.i/ can be used to make a variety of claims

about dF , and thus about F .

Before proceeding to examples of such analysis it should be mentioned that ma-

trices and lists of matrices have a variety of graphical representations. For example,

associated with any real square matrix is a signed digraph discussed earlier. Sim-

ilarly, corresponding to pairs of matrices whose products are square are bipartite

graphs termed SR graphs and directed SR graphs (DSR graphs). A starting point

for the definitions of these bipartite objects is the association of a simple, signed,

labelled graphGM , also termed an SR graph, with any matrixM (see Fig. 4.2).

M� =
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Fig. 4.2 Real rectangular matrices can be represented as signed, labelled, bipartite graphs. Left.

A rectangular matrix M . Assume that a; b; c; d; e; f; g; h; j > 0. Right. The corresponding SR
graph GM . Vertices corresponding to rows of M have been labelled S1; S2; S3 while vertices cor-
responding to columns have been labelled R1; R2; R3; R4. Each edge corresponds to an entry in
the matrix. Positive edges are bold lines while negative edges are dashed lines
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E + S0 ES0 → E + S1 ES1 → E + S2

F + S2 FS2 → F + S1 FS1 → F + S0

E

F

S0S1S2

ES0ES1

FS1FS2

Fig. 4.3 A system of reactions representing the MAPK cascade derived from [24], and the DSR
graph derived from factorisation of the associated Jacobian under weak assumptions on the ki-
netics. S0, S1 and S2 represent, respectively, the unphosphorylated, monophosphorylated, and
biphosphorylated forms of MAPK. E represents MAPK kinase, and F represents MAP kinase
phosphatase. ES0, ES1, FS1 and FS2 are complexes. In the DSR graph, the 9 reactants are labelled
vertices while the 8 reactions are filled circles. Dashed lines represent negative edges, while bold
lines represent positive edges. Edge-labels are all 1 and have been omitted. An interesting question
is whether this network permits stable oscillation for any kinetics

Associating SR graphs with matrices leads naturally to more complex construc-

tions. An example of a system of chemical reactions, the DSR graph derived from

a Jacobian factorisation of the system, and the kind of question we would like to

be able to answer using the DSR graph, are shown in Fig. 4.3. Note that the DSR

graph encodes certain weak assumptions about the kinetics [6], and is not simply

a convenient graphical representation of the reaction scheme. The DSR graph for a

CRN has certain formal relationships to other graphical objects such as Petri nets,

but some care is needed in interpreting this correspondence.

Going beyond SR/DSR graphs, more general graphs can be associated with a list

of matrices which can be multiplied, and whose product is square. Graphical objects

are useful not only because they provide a visualisation of the Jacobian structure,

but also as formal objects to which the tools of computational graph theory can

be applied to make claims about the underlying matrices. For example, it is well

known that a square matrix is irreducible if and only if its associated digraph is

strongly connected [9], and this is often the easiest test for irreducibility. A number

of results which involve checking conditions on cycles in graphs to make claims

about the associated matrices are known, and some of these will be described and

applied below.
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Qualitative Classes and Qualitative Rules

Qualitative biological and physical knowledge often translates into restrictions

on entries in the Jacobian of the associated dynamical system. Consider some

interaction network Px D f .v.x// with Jacobian dF.x/ D df .v.x//dv.x/. De-

fine Ik � f1; : : : ; ng (k D 1; : : : ; m) to be the indices of species which affect

vk , i.e., i 2 Ik if and only if @vk=@xi is not identically zero. Similarly, let

Jk � f1; : : : ; mg (k D 1; : : : ; n) be the indices of interactions whose rates af-

fect species k, i.e., i 2 Jk if and only if @fk=@vi is not identically zero. Suppose

there is a rule that ‘a species’ value is affected by a particular process only if

the species affects the rate of that process’. Mathematically this states that given

k1 2 f1; : : : ; mg and k2 2 f1; : : : ; ng, then .k1 2 Jk2
/ ) .k2 2 Ik1

/. This

implies a relationship between the zero entries in dv.x/ and df .v.x//, namely,

.Œdv.x/�j i D 0/ ) .Œdf .v.x//�ij D 0/. If ‘only if’ is changed to ‘if and only

if’ in the above statement, then, .k1 2 Jk2
/, .k2 2 Ik1

/, or in terms of the matri-

ces, .Œdv.x/�j i D 0/ , .Œdf .v.x//�ij D 0/, i.e., df .v.x// and .dv.x//T have the

same pattern of zeros.

In the case of chemical reaction networks, the chemical species interact with

fixed stoichiometries. As a consequence � D df .v.x// is a constant matrix, gener-

ally termed the stoichiometric matrix, and in fact Eq. 4.2 can be written

Px D �v.x/: (4.3)

Constant df .v.x// can arise in other models too, where the occurrence of some in-

teraction (e.g., a predation interaction in an ecological model) is assumed to cause

fixed changes in the amounts of species involved. A weak assumption about reac-

tion kinetics that is often satisfied is that (1) .�ij D 0/ ) ..dv/j i D 0/, and (2)

�ij .dv/j i � 0. In words: (1) if a species concentration affects a rate of reaction,

then it must participate in the reaction, and (2) if a species occurs on the left (right)

of a reaction, then increasing its concentration cannot decrease the rate at which the

reaction proceeds to the right (left).

To abbreviate such rules one can employ the notion of a qualitative class of matri-

ces, and generalisations of this idea [10,25]. A matrixM determines the qualitative

class Q.M/ consisting of all matrices with the same sign pattern as M . Explicitly,

Q.M/ consists of all matrices X with the same dimensions as M , and satisfying

.Mij > 0/) .Xij > 0/, .Mij < 0/) .Xij < 0/ and .Mij D 0/) .Xij D 0/.

The closure of Q.M/ is here denoted as Q0.M/. With this notation, the pair of

conditions �ij .dv/j i � 0 and .�ij D 0/) ..dv/j i D 0/ can be phrased as ‘dv lies

in the closure of the qualitative class of ��T ’, or more succinctly dv 2 Q0.��T /.
Several abbreviated or omitted proofs of results to follow rely fundamentally on

manipulations involving qualitative classes.
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Mathematical Background

Before proceeding to examples, some background material is needed. Define R
n
C to

be the nonnegative orthant in R
n, i.e.

R
n
C D fx 2 R

n W xi � 0 for i D 1; : : : ; ng :

From now on, in general, the state-space X is assumed to be some rectangular re-

gion, while in the case of CRNs, X D R
n
C.

Chemical reactions: left and right hand sides. Since the examples are drawn

mostly from the analysis of systems of chemical reactions, some basic observations

and terminology are needed. First, note that in chemical reaction networks, the sets

Ik can generally be partitioned as Ik D I�
k
[ IC

k
, where I�

k
(resp. IC

k
) are the

indices of reactants occurring on the left (resp. right) hand side of reaction k. Thus

the signs of entries in the kth column of the stoichiometric matrix � serve to define

I�
k

and IC
k

. Note however that � is not uniquely defined, as the notions of left and

right hand sides are interchangeable for each reaction (provided the reaction rates

are suitably redefined), and all theory must be robust to such interchange.

Chemical reactions: stoichiometry classes. Consider any vector p 2 ker.�T /,

i.e., such that pT� D 0. ThenHp.x/ � pT x is a conserved quantity of the system.

This is immediate as

PHp.x/ D pT Px D pT�v.x/ D 0:

Since Im.�/ D .ker.�T //?, this means that all trajectories of the system lie in

cosets of Im.�/. Since trajectories are also restricted to R
n
C, the intersections be-

tween cosets of Im.�/ and R
n
C are invariant sets for the system, and are termed

stoichiometry classes1 of the system (see also [14]). A stoichiometry class contain-

ing a positive vector is termed a nontrivial stoichiometry class.

Matrices: notation and terminology. For an n � m matrix A, A.˛jˇ/ will refer

to the submatrix of A with rows indexed by the set ˛ � f1; : : : ; ng and columns in-

dexed by the set ˇ � f1; : : : ; mg. A minor is the determinant of a square submatrix

of A. So, if A.˛jˇ/ is square, then AŒ˛jˇ� D det.A.˛jˇ//. A principal minor of a

square matrix A is the determinant of a principal submatrix of A, i.e., a submatrix

of the form AŒ˛j˛�. A square matrix A is sign nonsingular (SNS) [10] if all ma-

trices in Q.A/ are nonsingular. It is sign singular (SS) if all matrices in Q.A/ are

singular. A square matrix with nonnegative off-diagonal elements is termed quasi-

positive. A square matrix, with eigenvalues all having negative real part is Hurwitz.

A signature matrix is a diagonal matrix with diagonal entries˙1.

1 Stoichiometry classes are also sometimes referred to as ‘stoichiometric compatibility classes’.
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P-matrices and injectivity of functions. P -matrices are square matrices all of

whose principal minors are positive. P0-matrices are matrices all of whose principal

minors are nonnegative, i.e., matrices in the closure of the P -matrices. P .�/-
matrices (P

.�/
0 -matrices) are matrices which are P -matrices (P0-matrices) after

a reversal of sign. Differentiable functions on a rectangular domain with P - or

P .�/-matrix Jacobian at each point are injective [15]. This theoretical result has

proved highly applicable to proving injectivity of vector fields arising in biology

and chemistry [4, 30]. With some additional restrictions, the requirement of a P -

matrix Jacobian can be weakened to that of a P0-matrix Jacobian [29]. In the context

of a CRN, a P0 or P
.�/
0 -matrix Jacobian guarantees that there cannot be multiple

positive nondegenerate equilibria (henceforth abbreviated to MPNE) on any stoi-

chiometry class (see Fig. 4.4).2

Cones and order preserving dynamical systems. Any nonempty set of vectors

in R
n (finite or infinite) defines a closed, convex cone consisting of nonnegative

combinations of these vectors [9]. Suppose a coneK � R
n satisfies, in addition, that

K\ .�K/ D f0g, thenK defines a partial order on R
n. Cones which do not contain

x and �x for any nonzero vector x will be termed pointed.3 Given any cone K �
R
n, an n�n matrix J is termedK-quasipositive if for each y 2 K , there exists t 2

R such that JyC ty 2 K . When J is the Jacobian of a dynamical system, andK is

closed, convex, and pointed, K-quasipositivity implies monotonicity of the system

with respect to the order defined byK , i.e., ordered initial conditions remain ordered

under evolution. WhenK is also solid, i.e., has nonzero n-dimensional volume, this

has important dynamical implications [19]. Closed, convex, pointed and solid cones

are termed proper cones (see Fig. 4.5).

C

Fig. 4.4 The grey region C represents a portion of the relative interior of some nontrivial stoi-
chiometry class. It can be shown using results in [15] and arguments from degree theory [6] that a
CRN with P0-matrix Jacobian can have no more than one positive nondegenerate equilibrium on
each stoichiometry class. Thus the behaviour illustrated, where there are two positive equilibria on

C, each locally asymptotically stable on C, cannot occur in a CRN with P0-matrix Jacobian

2 Although conclusions for CRNs with P0 or P
.�/
0 Jacobian are stated in terms of the absence of

multiple positive nondegenerate equilibria, additional structure, for example involving inflow and
outflow of substrates, can imply a P or P .�/ Jacobian, and thus the existence of no more than one
equilibrium on all of state space.
3 There is some ambiguity in terminology in different strands of the literature. Cones referred to as
‘pointed’ here and in [9] are termed ‘salient’ in some references, with the word ‘pointed’ referring
to cones containing the zero vector. Since all cones discussed here are closed, they are all ‘pointed’
in this other sense too.
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Fig. 4.5 Proper cones generate orders which may be preserved by a CRN. Such order preserva-
tion has important dynamical consequences, including, for example, ruling out attracting periodic
orbits intersecting the interior of R

n
C. Stronger implications including convergence of most (in a

measure-theoretic sense), or even all, bounded orbits to equilibria, can follow from further assump-
tions. However, identifying preserved orders may be a nontrivial task

Graphs and cycles. Consider any signed graph or multigraph which may or may

not have directed edges. In the usual way, cycles in such graphs are minimal undi-

rected (directed) paths from some vertex to itself. The sign of a cycle is defined as

the product of signs of edges in the cycle. The size jcj of a cycle c is the number of

edges in c. If the graph is bipartite, then any cycle c has a parity

P.c/ D .�1/jcj=2sign.c/:

c is termed an e-cycle if P.c/D 1, and an o-cycle otherwise. Suppose that, in ad-

dition to the graph being bipartite, each edge e in the graph has associated with it

a numerical label l.e/. Then a cycle c containing edges e1; e2; : : : ; e2r such that ei
and e.i mod 2r/C1 are adjacent for each i D 1; : : : ; 2r is an s-cycle if:

rY

iD1
l.e2i�1/�

rY

iD1
l.e2i / D 0:

Two oriented cycles in a graph are compatibly oriented, if each induces the same

orientation on every edge in their intersection. Two cycles (possibly unoriented)

are compatibly oriented if there is an orientation for each so that this requirement

is fulfilled [6]. In a bipartite graph, two cycles have S-to-R intersection if they

are compatibly oriented and each component of their intersection contains an odd

number of edges.
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Applying the Theory

Ruling out MPNE in General CRNs

Define the following conditions on a matrix M , and the SR graph GM associated

with M :

C1. GM contains no e-cycles.

C2. All e-cycles in GM are s-cycles, and no two e-cycles have S-to-R intersection.

C3. Every square submatrix of M is either SNS or SS.

C4. Every square submatrix of M is either SNS or singular.

C5. M 0N is a P0-matrix for all M 0 2 Q0.M/, N 2 Q0.M
T /.

C6. MN is a P0-matrix for all N 2 Q0.M
T /.

Proposition 4.1. The following implications hold:

C1, C3, C5

+ + +
C2) C4, C6:

The implications C1) C2, C3) C4, and C5) C6 follow by definition, while

the other implications follow from results in [6–8], or minor generalisations of these

results.

Proposition 4.1 can be used to show the absence of MPNE in systems of chemical

reactions with only weak assumptions on the kinetics:

Theorem 4.2. Consider a CRN Px D �v.x/, with dv 2 Q0.��T /. If G� satisfies

Condition C2, or � satisfies Condition C4, then the system cannot have MPNE on

any stoichiometry class.

By Proposition 4.1, both Condition C2 and Condition C4 imply Condition C6

on the Jacobian �dv, which rules out MPNE on any stoichiometry class. Nontrivial

examples of applications of these results to biological systems have been previously

presented in the references above.

Interestingly, condition C1 can be used to show that the absence of MPNE some-

times follows regardless of the stoichiometries of substrates involved. An example

of a family of systems to which this applies is presented in Fig. 4.6.

Generalised Mass-Action Kinetics

Consider a CRN Px D �v.x/ where reactions are all assumed to be irreversible (i.e.,

a reversible reaction is treated as two irreversible ones). Assume for definiteness that

the system is written with substrates on the left and products on the right. As before,

let I�
k

be the indices of reactants occurring on the left hand side of reaction k.
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piAi + qiAi+1 riBi,

i = 1, . . . , n + 1
sAn+2 tA1

(n = 2)

Fig. 4.6 Left. A system consisting of n C 2 chemical reactions (n � 1). The stoichiometries
pi ; qi ; ri ; s and t are arbitrary. Right. The DSR graph for n D 2 with edge-labels omitted. Sub-

strates are represented as open circles, while reactions are filled circles. For each n, the DSR graph
contains only a single cycle. For even n this can be computed to be an o-cycle, while for odd
n it is an e-cycle. Thus, by Proposition 4.1, for even n, this system forbids MPNE for arbitrary
stoichiometries

Define ‘generalised mass-action kinetics’ by the choice of rate functions vk.x/ D
pk
Q
j2I�

k
x
ajk

j . The quantities pk and indices ajk are positive constants. Mass-

action kinetics is the special case, ajk D ��jk . Choosing any x in the interior of

R
n
C, and differentiating gives

@vk

@xi
D
(
aik

xi
vk i 2 I�

k

0 otherwise.

More succinctly, let V D Œ@vk=@xi �, Dx be the n � n positive diagonal matrix with

entries 1
xi

on the diagonal,Dv them�m positive diagonal matrix with entries vk.x/

on the diagonal, and A D Œaik�. Then the above equation can be written

V D DvA
TDx ; and so J D �V D �DvA

TDx : (4.4)

In the special case of mass-action kinetics, A D ��T� , where �� is the matrix �

with positive entries replaced with zeros. Then

V D �Dv�
T
�Dx ; and so J D �V D ��Dv�

T
�Dx :

A question of interest is when the structure of � and A in (4.4) ensure that J is a

P
.�/
0 -matrix, ruling out MPNE. A necessary and sufficient condition can be found,

which involves only basic computation on � and A:

Theorem 4.3. For fixed � and A, J D �DvA
TDx is a P

.�/
0 -matrix for all positive

Dv and Dx , if and only if �Œ˛jˇ�AŒˇj˛� � 0 for every nonempty ˛ � f1; : : : ; ng
and ˇ � f1; : : : ; mg with j˛j D jˇj.
The proof uses the Cauchy-Binet formula [16] and is a minor generalisation of re-

sults in [8]. Although the decomposition J D �DvA
TDx is only defined in the

interior of the nonnegative orthant, the result that J is a P
.�/
0 matrix applies, by
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closure arguments, on the boundary too. Thus a very basic computation involv-

ing only the stoichiometric matrix and the matrix of exponents suffices to rule out

MPNE.

Consider the reaction system:

AC B • C; 2ACB • D

which has stoichiometric matrix, in reversible and irreversible forms

�r D

0
BB@

�1 �2
�1 �1
1 0

0 1

1
CCA ; �ir D

0
BB@

�1 1 �2 2

�1 1 �1 1

1 �1 0 0

0 0 1 �1

1
CCA :

If we assume mass-action kinetics so that the matrix of exponents is

A D

0
BB@

1 0 2 0

1 0 1 0

0 1 0 0

0 0 0 1

1
CCA ;

then the conditions on �ir and A from Theorem 4.3 hold, and so MPNE are ruled

out. On the other hand, Condition C4 defined above does not apply (to �r or �ir ),

and so MPNE cannot be ruled out if more general kinetics are allowed.

Structural Conditions for Local Stability of Equilibria

Other functional forms arising in biological (not necessary strictly chemical) models

can give other useful factorisations. Here, an example is presented of a class of

systems with Jacobian which is everywhere Hurwitz. This guarantees local stability

of all equilibria.

Define

q.x/ D Œq1.x1/; : : : ; qn.xn/�T ;

where, for each i , dqi=dxi > 0. Such a strictly increasing diagonal function can be

termed an outflow function. Consider the system

Px D y C �v.x/� q.x/; (4.5)

where y is a constant nonnegative vector, representing inflow/production of the

quantities xi , while q.x/ represents their outflow or degradation.
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Theorem 4.4. Let hk; gj be differentiable scalar functions with positive derivative,

and assume that the rate functions vk can be written:

vk.x/ D hk

0
@�

X

j

�jkgj .xj /

1
A :

Then all equilibria of (4.5) are locally stable.

Such rate terms have been used, for example, in models of mitochondria [13],

where the physical interpretation is, roughly speaking, that the rate of each redox

reaction depends on a weighted sum of potentials corresponding to the associated

half-reactions.

The result can be seen quite easily, and as usual the process begins by finding a

useful form for the Jacobian. Differentiating, and abbreviating h0
k
.
P
j �jkgj .xj //

to h0
k

and g0
i .xi / to g0

i , gives

@vk

@xi
D �h0

k�ikg
0
i :

More succinctly,

Œ@vk=@xi � � V D �Dh�TDg ; and J D �V � dq D ��Dh�TDg � dq;

where Dh is the m � m positive diagonal matrix with entries h0
k

on the diagonal,

Dg is the n � n positive diagonal matrix with entries g0
i on the diagonal, and dq is

the derivative of q, again a positive diagonal matrix.

Define J0 D �Dh�
T . Applying the Cauchy-Binet formula, it is immediate that

J0 is a P0-matrix – in fact it is also symmetric and hence positive semidefinite. Now

�J D J0DgCdq D J 0
0Dg , where J 0

0 � J0Cdq D�1
g . Since J0 is a symmetricP0-

matrix, and dq D�1
g is a positive diagonal matrix, by basic properties of P -matrices,

J 0
0 is a symmetric P -matrix. Consequently J D �J 0

0Dg is Hurwitz [20], implying

local stability of any equilibria of such a system.

Monotonicity in General CRNs

An important and difficult question is to find necessary and sufficient conditions

for dynamical systems arising in biology to preserve a partial order on their state

space, with the goal of making claims about absence of periodic attractors, or con-

vergence of orbits. The special structure of CRNs makes this question somewhat

more tractable, and a variety of examples of order-preserving CRNs have appeared

in the literature (see [11,22,23] for example). A general, geometric approach to this

question was presented in [3]. Here a closely related, but more direct, algebraic,

approach is described.
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Any finite set of r vectors in R
n can be written as the columns of an n � r

matrix, and equally, any n � r matrix A generates the cone K.A/ � R
n consisting

of nonnegative combinations of its column vectors:

K.A/ D fAy W y 2 R
r
Cg :

Clearly K.A/ is closed and convex, but may or may not be pointed and solid. Such

a cone, generated by a finite number of vectors is termed polyhedral. The following

is a useful starting point for asking when dynamical systems preserve orderings

defined by polyhedral cones:

Proposition 4.5. Consider some n � r matrix A, some r � n matrix B , and define

J D AB .

1. J is K.A/-quasipositive if and only if given any y 2 R
r
C, there exists ˛ 2 R

and z 2 R
r
C such that .BA C ˛I/y � z 2 ker.A/. This condition is satisfied if

there exists an r � r matrix B 0 such that Im.B 0/ � ker.A/ (i.e., AB 0 D 0), and

BACB 0 is quasipositive.

2. If A has rank r , then J is K.A/-quasipositive if and only if BA is quasipositive.

The proof of this proposition is presented in the appendix. Three examples of its

application are now given. The first two involve applying the (easier) Claim 2, while

the third applies Claim 1 directly.

Example A. A first application of Claim 2 in Proposition 4.5 is the following.

Theorem 4.6. Consider a CRN Px D �v.x/ with � an n � m matrix, and dv 2
Q0.��T /. Suppose that (1) � has trivial kernel, (2) each row of � contains no more

than two nonzero entries, and (3) the SR graphG� contains no o-cycles. Then there

exists a signature matrix D such that the Jacobian �dv is K.�D/-quasipositive.

Note that Condition (3) can also be stated in terms of the the matrix � , but the most

brief and elegant statement is in terms of the SR graph. One dynamical implication

of Theorem 4.6 is that periodic orbits which include a positive concentration, and

are attracting on their stoichiometry classes, cannot occur for such systems. This

follows because restricting to Im.�/, K.�D/ is a proper cone, in that it closed,

convex, pointed and has non-empty relative interior in Im.�/.

To see why Theorem 4.6 holds, consider any m � m signature matrix D and let

� 0 D �D so that � D � 0D. Since � has trivial kernel, so does � 0. By Claim 2 in

Proposition 4.5, the Jacobian � 0Ddv is K.� 0/-quasipositive if and only if Ddv�D

is quasipositive. What remains is to show that the requirement dv 2 Q0.��T / along

with conditions (2) and (3) above imply that there exists some signature matrix D

such thatDdv�D is quasipositive. But it is well known that a matrix is similar, via a

signature matrix, to a quasipositive matrix if and only if the associated I-graph con-

tains no nontrivial negative cycles ([17] for example). The problem then reduces to

showing that all matrices in dv� belong in the closure of the same qualitative class,

and that the I-graph associated with this qualitative class does indeed contain no

nontrivial negative cycles. These facts are not proved here, but the proof is not hard.
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As a specific example of the use of Theorem 4.6, consider again the systems in

Fig. 4.6, this time with n odd. These systems fulfil assumptions (1), (2) and (3) in

Theorem 4.6, and thus, for any reaction rates satisfying dv 2 Q0.��T /, there can

be no positive periodic attractors on any stoichiometry class.

Related, but more powerful results than Theorem 4.6 are possible. Suspending re-

quirement (1) in the theorem, it is no longer necessarily possible to find a preserved

order for the system restricted to each stoichiometry class; however it is possible

to prove that the evolution of the so-called ‘extents’ of reactions is monotone. With

some effort, convergence properties of the original dynamical system (on the space

of chemical concentrations), can then be inferred from this conclusion [1].

Example B. A more nontrivial example of the use of Claim 2 in Proposition 4.5, is

the following:

Theorem 4.7. Consider a CRN Px D �v.x/ with � an n � m matrix, and dv 2
Q0.��T /. Further, suppose we can factorise � D ƒ‚ where

1. ƒ is an n � r matrix with exactly one nonzero entry in each row.

2. ‚ is an r � m matrix such that each column of ‚ contains no more than one

positive entry and no more than one negative entry.

Then the Jacobian �dv is everywhere K.ƒ/-quasipositive.

Note first that ker.ƒT / � ker.�T /, and hence Im.�/ � Im.ƒ/. So all stoichiom-

etry classes and hence all trajectories of the system lie in cosets of Im.ƒ/, which can

be termed ƒ-classes of the system. The assumption on ƒ implies that it has rank r ,

and hence K.ƒ/ is a closed, convex, pointed cone. Claim 2 in Proposition 4.5 then

implies that J.x/ is K.ƒ/-quasipositive if and only if ‚dv.x/ƒ has nonnegative

off-diagonal elements. It can be calculated directly with some effort that the assump-

tions imply that ‚dv.x/ƒ has nonnegative off-diagonal elements (and nonpositive

diagonal elements) for any x.

There is also a more explicit meaning in terms of recoordinatisation: the argu-

ments imply that on each ƒ-class of the system there exist local coordinates y,

whose evolution is cooperative. In other words, these coordinates evolve accord-

ing to Py D QF .y/ where d QF has nonnegative off-diagonal elements. Consider any

c 2 R
n
C and some vector x D c C ƒy lying on the same ƒ-class as c. Then

ƒ Py D Px D ƒ‚v.x/. Since ƒ has rank r , there exists a matrix ƒ0 such that

ƒ0ƒ D I . Multiplying both sides of the equation by ƒ0 gives Py D ‚v.c C ƒy/.
Defining QF .y/ D ‚v.c Cƒy/ and differentiating gives

d QF .y/ D ‚dv.c Cƒy/ƒ :

A similar interpretation in terms of recoordinatisation also applies to the previous

example.

In order to draw out the dynamical implications of Theorem 4.7, further assump-

tions and theory are needed. This is because the stoichiometry classes will generally

be of lower dimension than the ƒ-classes, and K.ƒ/ does not, in general, induce

an ordering on the stoichiometry classes. In fact it is possible for all points on the
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stoichiometry classes to be unordered with respect to the ordering induced byK.ƒ/.

However, with additional assumptions, ideas from [26], generalised in [5], can be

used to infer restrictions on the dynamics.

Example C. Directly applying Claim 1 in Proposition 4.5 is more difficult than

applying Claim 2. To illustrate the harder case where ker.ƒ/ is not trivial, consider

the system of chemical reactions

AC B • C; A• B:

We can factorise the stoichiometric matrix � D ƒ‚ as follows:

0
@
�1 �1
�1 1

1 0

1
A D

0
@
�1 0 0 1

0 1 �1 0

1 0 1 0

1
A

0
BB@

1 0

�1 1

0 0

0 �1

1
CCA :

Note that ker.ƒ/ consists of nonnegative multiples of .�1; 1; 1;�1/T , and that

K.ƒ/ is pointed and solid in R
3 [3]. Assuming that at each x, dv.x/ 2 Q0.��T /,

means that dv.x/ takes the form

�
a b �c
d �e 0

�
;

where a; b; c; d; e � 0. So ‚dv.x/ƒ � R takes the form

0
BB@

1 0

�1 1

0 0

0 �1

1
CCA
�
a b �c
d �e 0

�0
@
�1 0 0 1

0 1 �1 0

1 0 1 0

1
A

D

0
BB@

�.c C a/ b �.c C b/ a

aC c � d �.b C e/ b C c C e d � a
0 0 0 0

d e �e �d

1
CCA :

Clearly, not all off-diagonal elements of R are necessarily nonnegative. However,

defining

P D

0
BB@

�d 0 b C c C e �a
d 0 �b � c � e a

d 0 �b � c � e a

�d 0 b C c C e �a

1
CCA ;

one can observe that Im.P / D ker.ƒ/, and moreover R C P has nonnegative off-

diagonal elements. Thus, by Claim 1 in Proposition 4.5, the Jacobian �dv.x/ is

K.ƒ/-quasipositive at each x. Mild additional assumptions giving global conver-

gence of all trajectories to equilibria are provided in [5].
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The instructive point about this example is that the apparently redundant third

column of ƒ and third row of ‚ are crucial for the argument to work: removing

these givesƒ with trivial kernel, and ‚dv.x/ƒ fails to be quasipositive.

Conclusions

It has been illustrated that structural analysis of biological networks can lead to

surprisingly strong conclusions about dynamical behaviour. A variety of useful

approaches begin by deriving constraints on the Jacobian of the system from qual-

itative (biological) knowledge. This idea can sometimes reduce a difficult problem

in the qualitative theory of ordinary differential equations to simple calculations on

matrices or graphs. Apparently disparate strands of theory, for example on systems

with signed Jacobian, and on chemical reaction networks, can sometimes be brought

under a single umbrella via these techniques [4].

One important conclusion is that the stoichiometric matrix of a system of chem-

ical reactions contains a considerable volume of information. It is well known that

analysis of the stoichiometric matrix of a CRN can provide biologically useful in-

formation on conserved quantities [14], or optimal flux distributions [28]; but it is

far from obvious that it can also encode information on the type, number, and lo-

cal/global stability of limit sets.

Despite the successes, there still remains considerable progress to be made in this

area. For example, the problem of identifying when systems of chemical reactions

(with general or restricted kinetics) give rise to order preserving dynamical systems

is far from solved. Seeking structural conditions for local and global stability is

a difficult but important task. A starting point is to ask when matrix products are

structurally Hurwitz (see [25] for the case of when a qualitative class is Hurwitz).

Difficult and subtle questions remain on how best to deal with conservation laws in

CRNs.

Finally, as mentioned in the introduction, a number of results in this area po-

tentially have constructive converses, namely theorems which assert that certain

behaviours will occur in some model class, and provide rules for guaranteeing occur-

rence of these behaviours. As synthetic biology gains maturity, there is the exciting

possibility of using such theory to derive qualitative rules to aid the design of bio-

logical systems with novel behaviours.

Appendix: Proof of Proposition 4.5

By definition, J is K.A/-quasipositive if and only if for each y0 2 K.A/, there

exists ˛ 2 R such that Jy0 C ˛y0 2 K.A/. Suppose this is the case. Then for each

y such that Ay 2 K.A/ (which includes R
r
C by definition), 9˛ 2 R; z 2 R

r
C such

that ABAy C ˛Ay D Az, i.e., A.BAy C ˛y � z/ D 0. Conversely, suppose that for
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each y 2 R
r
C, there exist ˛ 2 R and z 2 R

r
C such that .BAC ˛I/y � z 2 ker.A/.

Given y0 2 K.A/, choose some y 2 R
r
C, such that Ay D y0, and fix ˛; z such that

A..BAC ˛I/y � z/ D 0, i.e., A.BAC ˛I/y D Az. So AB.Ay/C ˛.Ay/ 2 K.A/,
i.e., Jy0 C ˛y0 2 K.A/.

Suppose there exists an r�r matrixB 0 such that Im.B 0/ � ker.A/, andBACB 0

is quasipositive. By quasipositivity, there exists ˛ 2 R, such that BAC B 0 C ˛I is

a nonnegative matrix, and so, given any y 2 R
r
C, z � BAyCB 0yC ˛y 2 R

r
C. But

then A..BAC ˛I C B 0/y � z/ D 0, implying A..BAC ˛I/y � z/ D 0. (The last

implication follows because AB 0 D 0). This completes the proof of Claim 1.

IfA has rank r , then ker.A/ is trivial, andA..BAC˛I/y�z/ D 0 is equivalent to

.BAC˛I/y D z, so .BAC˛I/y 2 R
r
C. Since y is an arbitrary vector in R

r
C, ˛ can

be found to satisfy this restriction if and only if BA has nonnegative off-diagonal

elements, proving the second claim.
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Chapter 5

Contraction Theory for Systems Biology

Giovanni Russo, Mario di Bernardo, and Jean Jacques Slotine

Abstract In this chapter, we present a theoretical framework for the analysis,

synchronization and control of biochemical circuits and systems modeled by means

of ODEs. The methodology is based on the use of contraction theory, a powerful

concept from the theory of dynamical systems, ensuring convergence of all trajecto-

ries of a system of interest towards each other. After introducing contraction theory,

we present some application to biochemical networks. Specifically, we introduce a

graphical approach to verify if a system is contracting and apply it to synthesize net-

works of self-synchronizing Repressilators. We then present a more general analysis

of quorum sensing networks.

Keywords Contraction theory � Graphical algorithm � Entrainment �
Synchronization

Introduction

With the increasing number of biological circuits and devices being analyzed and

designed in Systems and Synthetic biology, the availability of appropriate mathe-

matical tools for the investigation of their properties is a pressing research problem.

A classical example is the study of synchronization in networks of biological os-

cillators coupled via quorum sensing or the analysis of their entrainment to some

external periodic input. Typically, when differential equations are used to model the

circuit of interest, Lyapunov-based techniques or methods based on linearization are

used to obtain global or local results on the stability of the synchronous evolution,

the possible entrainment of the network under investigation and so on. The aim of

this chapter is to review recent results on applying a different tool from dynamical

system theory, contraction theory, to systems and synthetic biology.
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Essentially, a nonlinear time-varying dynamic system will be called contract-

ing if initial conditions or temporary disturbances are forgotten exponentially fast,

i.e. if trajectories of the system converge towards each other with an exponential

convergence rate. It turns out that relatively simple algebraic conditions can be

given for this stability-like property to be verified, and that this property is preserved

through basic system combinations and aggregations.

A nonlinear contracting system has the following properties [24, 25, 41, 46]

� convergence rates can be explicitly computed as eigenvalues of well-defined Her-

mitian matrices

� many combinations and aggregations of contracting systems are also contracting

� robustness to variations in dynamics can be easily quantified

These properties, and in particular the aggregation property (which goes consid-

erably beyond standard passivity-like results) are particularly attractive for studying

biological systems [41].

Historically, ideas closely related to contraction can be traced back to [17]

and even to [23] (see also [4, 31], and e.g. [19, 26], for a more exhaustive list

of related references). For autonomous systems and with constant metrics, the

basic nonlinear contraction result reduces to Krasovskii’s theorem [42] in the

continous-time case, and to the contraction mapping theorem in the discrete-time

case [6, 24].

In this chapter, after briefly reviewing the main concepts and results concerning

contraction theory, we will introduce an algorithmic procedure to assess whether

a system of interest in contracting. The key idea is to make use of non-Euclidean

norms and matrix measures to prove contraction. This allows the derivation of a

graphical algorithm that can be effective in determining conditions for a biologi-

cal system (or network) under investigation to be contracting. We will then apply

the results to three representative biological applications. The theoretical derivation

will be illustrated by numerical simulations. The results reviewed in the chapter are

based on those recently presented in [37–40].

Contraction Theory: An Overview

Basic Results

The basic result of nonlinear contraction analysis [24] which we shall use in this

paper can be stated as follows.

Theorem 1 (Contraction). Consider the m-dimensional deterministic system

Px D f .x; t/ (5.1)

where f is a smooth nonlinear function. The system is said to be contracting if any

two trajectories, starting from different initial conditions, converge exponentially
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Table 5.1 Standard matrix measures

Vector norm, jxj Induced matrix measure, � .A/

jxj1 D Pm
jD1

ˇ̌
xj
ˇ̌

�1 .A/ D maxj

�
ajj CP

i¤j

ˇ̌
aij

ˇ̌�

jxj2 D
�Pn

jD1

ˇ̌
xj
ˇ̌2� 1

2

�2 .A/ D maxi

�
�i

�
AC A�

2

��

jxj1 D max1�j�m

ˇ̌
xj
ˇ̌

�1 .A/ D maxi

�
aii CP

j¤i j aij j
�

towards each other. A sufficient condition for a system to be contracting is that there

exists a constant invertible matrix ‚ such that the so-called generalized Jacobian

F.x; t/ D ‚ @f

@x
.x; t/ ‚�1 (5.2)

verifies

9� > 0; 8x; 8t � 0; �.F.x; t// � ��

where � is one the the standard matrix measures in Table 5.1. The scalar � defines

the contraction rate of the system.

For convenience, in this paper we will also say that a function f .x; t/ is contract-

ing if the system Px D f .x; t/ satisfies the sufficient condition above. Similarly, we

will then say that the corresponding Jacobian matrix
@f
@x
.x; t/ is contracting.

We shall also use the following two properties of contracting systems, whose

proofs can be found in [24, 41].

Hierarchies of contracting systems Assume that the Jacobian of (5.1) is in the

form

@f

@x
.x; t/ D

�
J11 J12
0 J22

�
(5.3)

corresponding to a hierarchical dynamic structure. The Ji i may be of different di-

mensions. Then, a sufficient condition for the system to be contracting is that (1)

the Jacobians J11, J22 are contracting (possibly with different‚’s and for different

matrix measures), and (2) the matrix J12 is bounded.

Periodic inputs Consider the system

Px D f .x; r.t// (5.4)

where the input vector r.t/ is periodic, of period T . Assume that the system

is contracting (i.e. that the Jacobian matrix @f
@x
.x; r.t// is contracting for any

r.t/). Then the system state x.t/ tends exponentially towards a periodic state of

period T .
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Partial Contraction A simple yet powerful extension to nonlinear contraction the-

ory is the concept of partial contraction [46].

Theorem 2 (Partial contraction). Consider a smooth nonlinear m-dimensional

system of the form Px D f .x; x; t/ and assume that the so-called virtual system

Py D f .y; x; t/ is contracting with respect to y. If a particular solution of the

auxiliary y-system verifies a smooth specific property, then all trajectories of the

original x-system verify this property exponentially. The original system is said to

be partially contracting.

A Graphical Approach to Prove Contraction

The use of matrix measures and norms induced by non-Euclidean vector norms

(such as �1, �1, k�k1, k�k1) can be effectively exploited to obtain alternative con-

ditions to check for contraction of a dynamical system of interest.

In this section we show that by means of these measures and norms, it is possible

to obtain a graphical procedure for showing that a system is contracting in a constant

diagonal metric, or for imposing such property (see [35,39] for further details). The

‘qualitative’ nature of the approach, combined with the aggregation properties of

contracting systems, favors the flexibility and conceptual robustness desirable in

studying biological systems [1], as will be shown later in the section “Entrainment

and Synchronization of Biological Systems”.

The outcome of the procedure is to provide a set of conditions on the elements

of the system Jacobian, J , (and hence on the dynamics of f .�; �/) that can be used

to prove contraction. Notice that (5.1) can represent, for instance, a closed loop

control system, in which the control input is a function of the system state. Thus, the

procedure presented here may be used both for checking (e.g. in a system analysis

context) and for improving contractivity and hence some desired behavior (e.g. in a

synthetic biology context).

Outline

The first step of the procedure is to differentiate the system of interest, in order to

obtain the Jacobian matrix, J WD @f
@x

:

2
664

J1;1 .x; t/ J1;2 .x; t/ : : : J1;m .x; t/

J2;1 .x; t/ J2;2 .x; t/ : : : J2;m .x; t/

: : : : : : : : : : : :

Jm;1 .x; t/ Jm;2 .x; t/ : : : Jm;m .x; t/

3
775 (5.5)

which is, in general, state/time dependent.
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The next step is to construct a directed graph from the system Jacobian. To this

aim, we first derive an adjacency matrix from J , say A, using the following rules:

1. initialize A so that A .i; j / D 0, 8i; j ;

2. for all i ¤ j , set A .i; j / D A .j; i/ D 1 if either Ji;j .x; t/ ¤ 0, or

Ji;j .x; t/ ¤ 0.

Such a matrix describes an undirected graph (see e.g. [15]), say G .A/. The sec-

ond step in the procedure is then to associate directions to the edges of G .A/ to

obtain a directed graph, say Gd .A/. This is done by computing the quantity

˛i;j .x; t/ D
ˇ̌
Ji;j .x; t/

ˇ̌

jJi;i .x; t/j
.m � n0i � 1/: (5.6)

In the above expressions n0i is the number of zero elements on the i -th row of A.

(Note that if Ji;i .x; t/ D 0 for some i , then, before computing (5.6), the system

parameters/structure must be engineered so that Ji;i .x; t/ ¤ 0, for all i .)

The directions of the edges of Gd .A/ are then obtained using the following

simple rule:

the edge between node i and node j is directed from i to j if the quantity ˛i;j .x; t / < 1

while it is directed from j to i if ˛i;j .x; t / � 1.

Note that, the quantities ˛i;j .x; t/ will be in general time-dependent, therefore the

graph directions might be time-varying.

Once the directed graph Gd .A/ has been constructed, contraction is then guar-

anteed under the following conditions:

1. uniform negativity of all the diagonal elements of the Jacobian, i.e. Ji;i .x; t/ < 0

for all i ;

2. for all t , the directed graph Gd .A/ does not contain loops of any length and

˛ij .x; t/˛j i .x; t/ � 1 for any i ¤ j .

Note that, when the above conditions are not satisfied, our approach can be used to

impose contraction for the system of interest by:

1. using, if possible, a control input to impose the first condition of the above pro-

cedure for all the elements Ji;i .x; t/ that do not fulfill it;

2. re-direct (using an appropriate control input, or tuning system parameters) some

edges of the graph Gd .A/ in order to satisfy the loopless condition;

3. associate to each reverted edge (e.g. the edge between node i and node j ) one of

the following inequalities:

� ˛i;j .x; t/ � 1, if the edge is reverted from j to i ;

� ˛i;j .x; t/ < 1, if the edge is reverted from i to j ;

� ensure that ˛ij .x; t/˛j i .x; t/ � 1.

We remark here that the procedure presented above is based on the use of

�1


‚J‚�1� for proving contraction. Other matrix measures and norms can also
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be used. In particular, it is easy to prove that, using �1


‚J‚�1�, yields the same

procedure applied on J T . If this is the case, the resulting procedure will follow

the same logical steps as those presented above, with the only difference being the

expression of ˛i;j .x; t/:

˛i;j .x; t/ WD
ˇ̌
Jj;i .x; t/

ˇ̌
.m � c0i � 1/

jJi;i .x; t/j
(5.7)

where c0i denotes the number of zero elements of the i -th column of J .

Entrainment and Synchronization of Biological Systems

In this Section, we illustrate two applications of the graphical approach presented

above.

Entrainment of Transcriptional Modules

We start with studying a general externally-driven transcriptional module ubiquitous

in both natural and synthetic biology [9]. We assume that the rate of production

of a transcription factor X is proportional to the value of a time dependent input

function, u.t/, and X is subject to degradation and/or dilution at a linear rate (more

general models are analyzed in [40]). The signal u.t/ might be an external input,

or it might represent the concentration of an enzyme or of a second messenger that

activates X . In turn, X drives a downstream transcriptional module by binding to

a promoter (or substrate) denoted by e, with concentration e D e.t/. The binding

reaction is reversible and Y denotes the complex protein-promoter. We remark that,

as the promoter is not subject to decay, its total concentration, i.e. ET D e C Y , is

conserved.

In [9] the following mathematical model was analyzed:

Px D u .t/ � ıx C k1y � k2 .ET � y/ x

Py D �k1y C k2 .ET � y/ x (5.8)

where: x denotes the concentration of X , y denotes the concentration of Y , k1 and

k2 are the binding and dissociation rates associated to the reaction X C e � Y .

We will show, using the procedure presented in section “Outline”, that this sys-

tem is contracting. This immediately implies in turn that, when forced by a periodic

input u.t/, system (5.8) tends globally exponentially to a periodic solution of the

same period as u.t/. That is, the system becomes entrained to any periodic input.

This property is often a desirable property for biological systems: many important

activities of life are, in fact, regulated by periodic, clocklike rhythms. We can think
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for example of the suprachiasmatic nucleus (SCN), whose activity is regulated by

daily dark-light cycles (see e.g. [43]). Contraction analysis of more general tran-

scriptional modules is presented and extensively studied in [40]. Computing the

Jacobian of (5.8) yields

J D
"
�ı � k2 .ET � y/ k1 C k2x
k2 .ET � y/ �k1 � k2x

#
(5.9)

In this case, the graph Gd .A/ associated to J contains only two nodes, labeled as

1 and 2. Thus, the only possible loop in such a graph has length 2. To avoid the

presence of such a loop, we have to ensure that the direction determined by ˛ .1; 2/

is the same as that determined by ˛ .2; 1/. Computation of these two quantities

yields

˛1;2 D
k2 .ET � y/

ı C k2 .ET � y/
< 1

and

˛2;1 D
k1 C k2x
k1 C k2x

D 1

Following the schematic procedure of section “Outline”, this in turn implies that the

directions determined by ˛ .1; 2/ and ˛ .2; 1/ are the same and that ˛1;2˛2;1 < 1.

In particular, the unique edge of the graph is directed from node 1 to node 2 and no

loop can be present. Contraction is then proven.

We refer the interested reader to [40] for a detailed contraction analysis of the

transcriptional module (5.8) using a matrix measure induced by a non-Euclidean

norm. In the same paper, some generalizations are provided including: the case

whereX is activated by enzyme kinetics, analysis of the interconnections of models

(5.8), analysis of a larger class of nonlinear systems presenting a structure similar

to that of (5.8). An application to synthetic biology is also presented: specifically, it

is shown how to use the proposed methodology in order to entrain a population of

Repressilators.

Synchronization of Biological Systems

The problem that we address in this Section is that of tuning the parameters of

synthetic biological oscillators so that, when coupled, they self synchronize (see

[35, 37, 39] for further details). We show that using the graphical approach of section

“Outline” one obtains a set of conditions for synchronization that naturally map onto

the biochemical parameters of each of the oscillators in the network of interest. As

a representative example, we consider a network of Repressilators.

The Repressilator is a synthetic biological circuit of three genes inhibiting each

other in a cyclic way [10]. As shown in Fig. 5.1, gene lacI (associated to the
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Fig. 5.1 Repressilator circuit and coupling mechanism

state-variable ci in our model) expresses protein LacI (Ci ), which inhibits tran-

scription of gene tetR (ai ). This translates into protein TetR (Ai ), which inhibits

transcription of gene cI (bi ). Finally, the protein CI (Bi ) translated from cI inhibits

expression of lacI, completing the cycle. In [11], a modular addition to the classical

Repressilator circuit is proposed with the aim of coupling different oscillators using

the quorum sensing mechanism.

Quorum sensing provides a broadcast strategy for the exchange of information

between bacteria (for further details see section “Generic Quorum Sensing Net-

works”). One could think of bacteria as nodes in a network that becomes fully

connected via an all-to-all topology when quorum sensing is present.

To model the dynamics of gene expression in the cell, one must keep track of

the temporal evolution of all mRNA and protein concentrations. Note that, for the

sake of simplicity, variations in the cell density are neglected here. The resulting

mathematical model for the network is

Pai D �ai C
˛

1C C 2i
Pbi D �bi C

˛

1C A2i
Pci D �ci C

˛

1C B2i
C kSi

1C Si
PAi D ˇAai � dAAi
PBi D ˇBbi � dBBi
PCi D ˇC ci � dCCi
PSi D �ks0Si C ks1Ai � � .Si � Se/

PSe D �kseSe C �ext
NX

jD1



Sj � Se

�
(5.10)
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having chosen the Hill coefficient equal to 2 as in [11]. We assume that the Repres-

silator circuits on which the approach is applied are all identical. Referring to [11]

we set the parameters ˇA D ˇB D ˇC D 2. In (5.10) the dynamical equations cor-

responding to the Repressilator circuits, i.e. the intracellular species concentrations,

are denoted with the subscript i , while Se is the dynamical equation for the coupling

auto-inducer.

The network of interest is an all-to-all network. Hence, the virtual system can

be chosen as having the same dynamics as the individual Repressilator circuit,

forced by the external coupling signal Se (see e.g. (see [35, 36, 39]) for further

details), i.e.

Pa D �aC ˛

.1C C 2/
Pb D �b C ˛

.1C A2/

Pc D �c C ˛

.1CB2/ C
.kSi /

.1C Si /
PA D ˇAa � dAA
PB D ˇBb � dBB
PC D ˇC c � dCC
PS D �ks0S C ks1A � � .S � Se/
PSe D �kseSe C �ext .S1 C :::C SN / � �extNSe (5.11)

Indeed, by direct inspection it is easy to check that, by substituting the state variables

of the nodes dynamics for the virtual variables (i.e. Œai ; bi ; ci ; Ai ; Bi ; Ci ; Si ; Se�

for Œa; b; c; A;B; C; S; Se�), the equations of the each Repressilator circuit in the

network are obtained. In this sense, the virtual system embeds the trajectories of all

network oscillators. Hence, contraction of (5.11) implies synchronization of (5.10).

We can now check contraction of (5.11) using the graphical approach of section

“Outline”. Computing the Jacobian matrix of the virtual system yields

J D

2
6666666666666664

�1 0 0 0 0 f1 .C / 0 0

0 �1 0 f1 .A/ 0 0 0 0

0 0 �1 0 f1 .B/ 0 f2 .S/ 0

ˇ 0 0 �ˇ 0 0 0 0

0 ˇ 0 0 �ˇ 0 0 0

0 0 ˇ 0 0 �ˇ 0 0

0 0 0 ks1 0 0 �ks0 � � �

0 0 0 0 0 0 0 �kse � kdiff

3
7777777777777775

(5.12)
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where f1 and f2 denote the partial derivatives of decreasing and increasing Hill

functions with respect to the state variable of interest and kdiff D �extN . Note that

the Jacobian matrix J has the same structure as (5.3) with

J11 WD

2
6666666664

�1 0 0 0 0 f1 .C / 0

0 �1 0 f1 .A/ 0 0 0

0 0 �1 0 f1 .B/ 0 f2 .S/

ˇ 0 0 �ˇ 0 0 0

0 ˇ 0 0 �ˇ 0 0

0 0 ˇ 0 0 �ˇ 0

0 0 0 ks1 0 0 �ks0 � �

3
7777777775

;

J12 WD
�
0 0 0 0 0 0 �

�T
, J22 WD �Kq . Thus it represents a hierarchical combi-

nation of dynamical systems, [24]. Furthermore, notice that J22 (associated to the

quorum sensing dynamics) is negative, i.e. such dynamics is contracting. This im-

plies that the overall dynamics of the virtual system is contracting if the submatrix

J11 is contracting (see section “Basic Results”). Thus, our approach can be applied

directly onto the submatrix QJ WD J11.

The diagonal elements of QJ are all negative, thus (see section “Outline”), Gd .A/

has to be constructed. In so doing, matrix A is derived:

A D

2
6666666664

0 0 0 1 0 1 0

0 0 0 1 1 0 0

0 0 0 0 1 1 1

1 1 0 0 0 0 1

0 1 1 0 0 0 0

1 0 1 0 0 0 0

0 0 1 1 0 0 0

3
7777777775

(5.13)

From (5.13), G .A/ is obtained as shown in Fig. 5.2 (left panel).

Then, computation of coefficients ˛ .i; j / (reported in Table 5.2) provides the

directions of the edges of G .A/. Notice that the elements of the left column of

Table 5.2 are all state-dependent. This implies that the directions of the corre-

sponding edges in Gd .A/ can be time-varying as they are associated to conditions

7

3614

52

7

3614

52

7

3614

52

Fig. 5.2 Graphs associated to J : Gun .A/ (left panel); Gd .A/ with state dependent edges (central

panel); choice for Gd .A/ (right panel)
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Table 5.2 Set of coefficients ˛ .i; j /

˛ .i; j / Algebraic expression ˛ .i; j / Algebraic expression

˛ .1; 6/
2˛C

.1C C 2/2
˛ .4; 1/

dA

ˇA

˛ .2; 4/
2˛A

.1CA2/
2

˛ .5; 2/
dB

ˇB

˛ .3; 5/
4˛B

.1CB2/2
˛ .6; 3/

dC

ˇC

˛ .3; 7/
2K

.1C Si /
2

˛ .7; 4/
Ks1

Ks0 C �

Table 5.3 Constraints on the biochemical parameters imposed
by the graphical approach

Direction between node i and node j Constraint

from node 4 to node 1
dA

ˇA
> 1

from node 2 to node 5
dB

ˇB
< 1

from node 3 to node 6
dC

ˇC
< 1

which are functions of the state. Moreover, due to biochemical constraints [11],

˛ .7; 4/ < 1. However, the other coefficients in the table can be easily tuned since

they depend only on biochemical parameters of the network. In Fig. 5.2 (central

panel), a partially directed graph is shown, obtained by assigning directions to

the edges between nodes corresponding to the first four rows and the last row of

Table 5.2. Notice that the edges associated to state-dependent conditions are all

denoted with a double arrow, as the directions of these links might vary in time.

The design task is then to use coefficients ˛ .4; 1/, ˛ .5; 2/, ˛ .6; 3/ to avoid the

formation of loops as required by the graphical approach. A possible choice is pre-

sented in the right panel of Fig. 5.2. The inequalities associated to the new directions

are reported in Table 5.3. To satisfy these constraints we can choose da D 2ˇA,

dB D 0:5ˇB , dC D 0:4ˇC . Simulation results, shown in Fig. 5.3, confirm that

under these conditions synchronization is indeed achieved.

Generic Quorum Sensing Networks

In section “Entrainment and Synchronization of Biological Systems” we studied the

problem of synchronizing a population of Repressilators by tuning their biochemical

parameters. One of the main features of such a network was that coupling between

nodes occurred by means of an autoinducer molecule. That is, network nodes make

use of the environment where they live to communicate and hence to achieve a

coordinated, synchronous, behavior.
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Fig. 5.3 Synchronization regime emerging for network (5.10)

This is a common feature of many natural synchronization phenomena, where

communication between individual elements occurs not directly, but rather through

the environment. One of these instances is bacterial quorum sensing, where bacteria

release signaling molecules in the environment which in turn are sensed and used for

population coordination. This mechanism [27,29,30] is believed to play a key role in

bacterial infections, as well as e.g. in bioluminescence and biofilm formation [3,28].

In a neuronal context, a mechanism similar to that of quorum sensing may involve

local field potentials, which may play an important role in the synchronization of

clusters of neurons [2, 8, 32, 44], or it may occur through a different level in a

cortical hierarchy [7, 13, 14, 20, 48]. Other examples of such a mechanism are the

synchronization of chemical oscillations of catalyst-loaded reactants in a medium of

catalyst-free solution [45], cold atoms interacting with a coherent electromagnetic

field [18] and the onset of coordinated activity in a population of micro-organisms

living in a shared environment [16, 34]. Besides its biological pervasiveness, quo-

rum sensing may also be viewed as an astute computational tool. Specifically, the

use of a shared variable significantly reduces the number of links required to achieve

a given connectivity [33, 46].

In this Section, sufficient conditions for the coordination of nodes communi-

cating through quorum-sensing-like mechanisms are presented which generalize

the analysis of section “Entrainment and Synchronization of Biological Systems”.

Those results, based on [38], can be used both to study natural networks and to

guide the design of communication mechanisms in synthetic or partially synthetic

networks.
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From a network dynamics viewpoint, the key characteristic of quorum

sensing-like mechanisms lies in the fact that communication between nodes (e.g.

bacteria) occurs by means of a shared quantity (e.g. the autoinducer concentration),

typically in the environment. Furthermore, the production and degradation rates of

such a quantity are affected by all the nodes of the network. Therefore, a detailed

model of such a mechanism needs to keep track of the temporal evolution of the

shared quantity, resulting in an additional set of ordinary differential equations:

Pxi D f .xi ; z; t/ i D 1; : : : ; N
Pz D g .z; ‰ .x1; : : : ; xN / ; t/ (5.14)

Here, the set of state variables of the i -th node, i.e. the i -th element composing

the network, is xi , while the set of the state variables of the common (shared)

medium dynamics is z and the number of nodes communicating over the common

medium isN . That is, in terms of the Repressilator example of section “Entrainment

and Synchronization of Biological Systems”, xi denotes the concentrations of the

biochemical species Œai ; bi ; ci ; Ai ; Bi ; Ci ; Si � composing the Repressilator and cou-

pling circuit of (5.10), while z denotes the extracellular autoinducer concentration,

Se in (5.10).

Notice that the nodes dynamics and the medium dynamics can be of different

dimensions (e.g. xi 2 R
n, z 2 R

d ). The dynamics of the nodes affect the dy-

namics of the common medium by means of some (coupling, or input) function,

‰ W R
Nn ! R

d . These functions may depend only on some of the components

of the xi or of z (as the example in section “Controlling Synchronization of Ge-

netic Oscillators” illustrates). A simplified version of the above model was recently

analyzed by means of the graphical approach presented above(see [35]).

We remark here that in the case of diffusive-like coupling between nodes and the

common medium, system (5.14) reduces to:

Pxi D f .xi ; t/C kz .z/ � kx .xi / i D 1; : : : ; N

Pz D g .z; t/C
NX

jD1

�
ux


xj
�
� uz .z/

�
(5.15)

For instance, in the mathematical model of the network of Repressilators coupled

by means of an autoinducer, i.e. (5.10) we have ux


xj
�
� uz .z/ WD �ext



Sj � Se

�

and:

f .xi ; t/ WD

2
666666666666664

�ai C
˛

1C C 2i
�bi C

˛

1C A2i
�ci C

˛

1CB2i
C kSi

1C Si
ˇAai � dAAi
ˇBbi � dBBi
ˇC ci � dCCi
�ks0Si C ks1Ai

3
777777777777775

kz.z/ � kx.xi / WD

2
6666666664

0

0

0

0

0

0

�� .Si � Se/

3
7777777775
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The following result is a sufficient condition for convergence of all nodes trajec-

tories of (5.14) towards each other (see [38] for a proof).

Theorem 3. All nodes trajectories of network (5.14) globally exponentially con-

verge towards each other if the function f .x; v.t/; t/ is contracting for any

v.t/ 2 R
d .

Theorem 3 provides a sufficient condition on the network nodes’ dynamics, i.e.

f .x; v; t/, ensuring synchronization. That is, under the condition of Theorem 3,

network synchronization is attained regardless of the common medium dynamics.

With the next result, we show that such dynamics can be used (and becomes indeed

crucial) to guarantee some desired property on the steady state synchronous evolu-

tion. Specifically, we consider the problem of synchronizing a network of interest

onto a periodic orbit having some desired period, T . To this aim, the idea is to use

some T -periodic control input, say r.t/, that acts on the dynamics of the media

shared by network nodes. A related problem has been recently addressed in [40] in

the context of entrainment of biochemical systems.

Theorem 4. Consider the following network

Pxi D f .xi ; z/ i D 1; : : : ; N
Pz D g .z; ‰ .x1; : : : ; xN //C r .t/ (5.16)

where r .t/ is a T -periodic signal. All the nodes of the network synchronize onto a

periodic orbit of period T , say xT .t/, if:

� f .xi ; v.t// is a contracting functions;

� the reduced order system .xc.t/ 2 R
n/

Pxc D f .xc ; z/
Pz D g .z; ‰ .xc ; : : : ; xc//C r .t/

is contracting.

We refer the interested reader to [38] for the proofs of the above results. In the

above cited paper some extensions are presented which provide sufficient conditions

for (cluster) synchronization of quorum sensing networks consisting of multiple

nodes and media.

Controlling Synchronization of Genetic Oscillators

As a representative application of the results presented in section “Generic Quo-

rum Sensing Networks” we consider the problem of synchronizing a population of

genetic oscillators onto a periodic orbit of desired period (see [38]).

We consider the genetic circuit presented in [22] (a variant of [21]), see Fig. 5.4,

top panel. Such a circuit is composed of two engineered gene networks that have

been experimentally implemented in E. coli; namely: the toggle switch [12] and
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Fig. 5.4 A schematic representation of the genetic circuit: detailed circuit (top panel) and the
simplified circuit using for deriving the mathematical model (5.17) (bottom panel). Notice that in

the simplified circuit both the promoters and transcription factors are renamed

an intercell communication system [47]. The toggle switch is composed of two

transcription factors: the lac repressor, encoded by gene lacI, and the temperature-

sensitive variant of the �cI repressor, encoded by the gene cI857. The expressions

of cI8547 and lacI are controlled by the promoters Pt rc and PL� respectively

(for further details see [22]). The intercell communication system makes use of

components of the quorum-sensing system from Vibro fischeri (see e.g. [30] and ref-

erences therein). Such a mechanism allows cells to sense population density through
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the transcription factor LuxR, which is an activator of the genes expressed by the

Plux promoter, when a small molecule AI binds to it. This small molecule, synthe-

sized by the protein LuxI, is termed as autoinducer and it can diffuse across the cell

membrane.

In [22], the following dimensionless simplified model is analyzed (see Fig. 5.4,

bottom panel):

Pui D
˛1

1C v
ˇ
i

C ˛3w
�
i

1C w
�
i

� d1ui (5.17a)

Pvi D
˛2

1C u

i

� d2vi (5.17b)

Pwi D "
�

˛4

1C u

i

� d3wi

�
C 2d .we � wi / (5.17c)

Pwe D
De

N

NX

iD1
.wi � we/� dewe (5.17d)

where ui , vi and wi denotes the (dimensionless) concentrations of the lac repres-

sor, � repressor and LuxR-AI activator respectively. The state variable we denotes

instead the (dimensionless) concentration of the extracellular autoinducer.

The control mechanism that we use here is an exogenous signal acting on the

extracellular autoinducer concentration, see also [40]. That is, the idea is to modify

(5.17d) as follows

Pwe D
De

N

NX

iD1
.wi � we/ � dewe C r .t/ (5.18)

where r .t/ is some T -periodic signal. The set up that we have in mind here is illus-

trated in Fig. 5.5, where multiple copies of the genetic circuit of interest share the

same surrounding solution, on which r .t/ acts. From the technological viewpoint,

r .t/ can be implemented by controlling the temperature of the surrounding solu-

tion, and/or using e.g. the recently developed microfluidics technology (see e.g. [5]

and references therein).

In what follows, we will use Theorem 3 to find a set of biochemical parame-

ters that ensure synchronization of (5.17a)–(5.17d). This, using the results of the

above Section, immediately implies that the forced network (5.17a)–(5.17c), (5.18)

globally exponentially converges towards a T -periodic steady state behavior.

System (5.17) has the same structure as (5.15), with xi D Œui ; vi ;wi �
T , z D we ,

and:

f .xi ; t/ D

2
6666664

˛1

1C v
ˇ
i

C ˛3w
�
i

1C w
�
i

� d1ui

˛2

1C u

i

� d2vi

"

�
˛4

1C u

i

� d3wi

�

3
7777775
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Fig. 5.5 Network control setup

kz .z/ � kx .xi / D

2
4

0

0

2d .we � wi /

3
5

g .z; t/ D �dewe
XN

iD1 Œux .xi / � uz .z/� D
De

N

XN

iD1 .wi � we/

The hypotheses of Theorem 3 are fulfilled if:

1. f .xi ; t/ � kx .xi / is contracting;

2. g .z; t/ �N uz .z/ is contracting.



110 G. Russo et al.

That is, contraction is ensured if there exist some matrix measures, �� and ���,

such that

�� .f .xi ; t/� kx .xi // and ��� .g .z; t/ �N uz .z//

are uniformly negative definite. We use the above two conditions in order to obtain

a set of biochemical parameters ensuring node convergence. A possible choice for

the above matrix measures is �� D ��� D �1 (see [39, 40]). Clearly, other choices

for the matrix measures �� and ��� can be made, leading to different algebraic

conditions, and thus to (eventually) a different choice of biochemical parameters.

We assume that ˇ D � D  D 2, and show how to find a set of biochemical

parameters satisfying the above two conditions.

Condition 1. Differentiation of @f
@xi
� @kx

@xi
yields the Jacobian matrix (where the

subscripts have been omitted)

Ji WD

2
66666664

�d1
�2˛1v

.1C v2/
2

2˛3w

.1C w2/
2

�2˛2u

.1C u2/
2
�d2 0

�2"˛4u

.1C u2/
2

0 �"d3 � 2d

3
77777775

(5.19)

Now, by definition of �1, we have:

�1 .Ji / D max

(
�d1 C

2˛2u

.1C u2/
2
C 2"˛4u

.1C u2/
2
;

�d2 C
2˛1v

.1C v2/
2
;�"d3 � 2d C

2˛3w

.1C w2/
2

)

Thus, Ji is contracting if �1 .Ji / is uniformly negative definite. That is,

�d1 C
2˛2u

.1C u2/
2
C 2"˛4u

.1C u2/
2

�d2 C
2˛1v

.1C v2/
2

�"d3 � 2d C
2˛3w

.1C w2/
2

(5.20)

are all uniformly negative. Notice now that the maximum of the function a .v/ D
Nav

.1Cv2/
2 is Oa D 3

p
3 Na
16

. Thus, the set of inequalities (5.20) is fulfilled if:
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�d1 C
6˛2
p
3

16
C 6"˛4

p
3

16

�d2 C
6˛1
p
3

16

�"d3 � 2d C
6˛3
p
3

16
(5.21)

are all uniformly negative.

Condition 2. In this case it is easy to check that the matrix Je WD @g
@z
� N @u

@z
is

contracting for any choice of the (positive) biochemical parametersDe , de.

Thus, we can conclude that any choice of biochemical parameters fulfilling (5.21)

ensures synchronization of the network onto a periodic orbit of period T . In [22],

it was shown that a set of parameters for which synchronization is attained is:

˛1 D 3, ˛2 D 4:5, ˛3 D 1, ˛4 D 4, " D 0:01, d D 2, d1 D d2 D d3 D 1.

We now use the guidelines provided by (5.21) to make a minimal change of the

parameters values ensuring network synchronization with steady state oscillations

of period T . Specifically, such conditions can be satisfied by setting d1 D 6,

d2 D 2. Fig. 5.6 shows the behavior of the network for such a choice of the

parameters.
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Fig. 5.6 Behavior of (5.17a)–(5.17c), (5.18), when forced by r .t/ D 1 C sin .0:1t/. Notice that
the nodes have initial different conditions, and that they all converge onto a common asymptotic
having the same period as r .t/



112 G. Russo et al.

Conclusions

We discussed how contraction theory can be used as an effective tool to inves-

tigate the properties of biological systems and networks based on a number of

recent results [37–40]. In particular, after introducing the basic results concerning

contraction theory, we presented a graphical algorithm that can be used to assess

effectively whether a given system (or network) of interest is contracting. Such a

methodology was based on the use of non-Euclidean norms and matrix measures

and was applied to a set of representative biological applications. Specifically, the

problems were studied of assessing entrainment and synchronization of biologi-

cal circuits. As a testbed example, we considered the synchronization of networks

of Repressilators coupled via quorum sensing. Firstly, we showed that, using con-

traction, it is indeed possible to derive conditions on the biochemical parameters

of each individual oscillator in order to guarantee convergence towards a syn-

chronous evolution. Then, we focussed on quorum sensing, giving conditions on

the coupling parameters that can be used not only to synchronize but also to con-

trol the biological network towards some desired evolution. As discussed in this

chapter, contracting systems share a number of useful properties that can be ex-

ploited in biological applications and their applications in biology is just at the

beginning.
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Chapter 6

Toward Modularity in Synthetic Biology:
Design Patterns and Fan-out

Kyung Hyuk Kim, Deepak Chandran, and Herbert M. Sauro

Abstract Modularity is a concept that is widely used in biological science with

various interpretations. In this chapter we will first give a general overview of modu-

larity in biology, and later focus on modularity in synthetic biology. In engineering, a

module is a component whose intrinsic functionality is independent of its surround-

ing milieu. In biology, however, modularity is less clear-cut; for example, modules

can be classified by network interactions or by functional distinctiveness such as the

reuse of protein domains. In synthetic biology the question of modularity is more

closely related to engineering where functional independence is important. One way

of defining synthetic modules is by specifying a generic pattern of regulations that

results in desired functionalities, which we term a design pattern. In this perspective,

connections between modules are described by the regulatory links, which are rep-

resented by molecular reactions. Under these reactions, the output of an upstream

module – the concentration of regulating molecules – is sequestered by the input

of the downstream module. This sequestration can cause changes in the upstream

module function. We quantify the maximally tolerable load from the downstream

input, which we term gene circuit fan-out. We provide an efficient and practical way

of estimating the fan-out by experiment.

Keywords Module � Design pattern � Fan-out � Retroactivity � Electrical circuit �
Gene expression noise � Stochasticity

Introduction

Why do we need to define the notion of ‘modularity’ in biology? There are

two answers. The first answer is that recognizing modules in a biological system

may allow us to reduce the system complexity by decomposing it into smaller
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more-manageable parts. The second is that understanding how to construct modules

will allow synthetic biologists to engineer a biological system more efficiently by

reusing existing modules. These two answers are not entirely distinct. Understand-

ing modularity in natural systems will inevitably help synthetic biologists design

artificial modules. Similarly, engineering synthetic modules enables us to gain better

understanding of the requirements for modules, allowing us to recognize modules

in natural systems.

The term modularity has different meanings for different biological systems of

interest. Modules in natural systems can be clusters of interacting proteins or mem-

bers of a complex pathway. Modules may also be patterns of biological interaction

that are repeated in different context and provide similar functions. In synthetic

biology, a module is a biological component that maintains its defined function. In

order for a module to retain its function in different surrounding milieu, it must have

functional independence. The majority of this chapter will discuss what factors can

disrupt a module’s function and how to maintain functional independence.

Modules in Natural Systems

The definition of a module and its interpretation are context-dependent in biology.

In this section, we will discuss four different definitions and interpretations. The first

two are concepts derived from classical graph theory, and the rest from computer and

electrical engineering.

Modules as Physically Interacting Molecules

With the coming of high-throughput methods, networks of interacting proteins have

been constructed for various organisms. These networks do not indicate the cause

or effect of an interaction; they state the fact that two molecules are capable of in-

teraction due to their physical structure. The networks formed by these interactions

have some resemblances of other evolved networks, such as social networks or the

Internet [1]. Such networks are often described by key words such as ‘scale-free’

and ‘small-world’. These terms follow from the fact that the networks have fractal-

like properties and that the path to reach any molecule from any other molecule is

usually very short (hence it’s a ‘small world’). The distribution of highly interacting

and weakly interacting molecules generally follow a power law distribution, and the

nature of such networks have been thoroughly studied in graph theory [3, 12]. At

the same time, they also have distinct properties, such as the distribution of network

‘motifs’, which are significantly recurring network subgraphs [2].

Modules in graph theory are based on clustering properties of nodes in a network

[33]. For example, in social networks, it is common to see clusters of individuals
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who are all socially acquainted with each other. Further, if additional information

such as ethnicity or gender are available, different clusters often show enrichment of

different features. Such clustering and enrichment are seen in interacting proteins;

clusters of interacting proteins often belong to the same biological process [44],

such as DNA replication or stress-response. These clusters that are enriched in a

biological process can be defined as biological modules. In this case, the concept of

a module is defined by physical interactions of related biological molecules. Since

the physical interactions do not imply any particular function describing an input-

output relationship, this definition of modularity is less useful for the purpose of

engineering.

Modules as Temporally Interacting Genes

Another definition of a module is a set of molecules that are temporally correlated

[39]. In other words, if one molecule of a set is present at a particular point in

time, then it is likely that the other molecules are also present. Similarly, if one is

absent, then it is likely that the others are absent as well. These correlations are

normally found from microarray data measuring expression of thousands of genes

across multiple experimental conditions [26]. When we see such correlations, the

most obvious hypothesis is that these correlated molecules are involved in common

cellular processes. Interestingly, many of these correlations are conserved across

multiple species [46], adding to the hypothesis that the common processes are used

as a module. Combining physical interactions and temporal correlations can often

result in more compact and meaningful modules [26]. Such definitions can be useful

in identifying components of natural systems that are related to a particular pathway

of interest. For example, suppose a metabolic engineer is interested in optimizing

production of a metabolite. For such an engineering goal, understanding the biolog-

ical players in the pathway will be crucial. Physical and temporal correlations from

high-throughput data will be useful for such purpose. Nonetheless, this definition of

modularity does not provide information on the functional input-output relationship

of the module, and therefore the definition is not entirely useful to synthetic biology.

Modules as an Input-Output System

A module can be defined as a functional component displaying a certain input-

output characteristics [36]. For example, the protein receptors and catalytic enzymes

involved in quorum sensing can be considered a potential module. This is because

the entire quorum sensing system has a specific ‘core’, or module, that can be reused

across different species to provide the same functionality in different context. Weiss

et al. [6] demonstrated that the quorum sensing system from A. thaliana can be

placed inside yeast cells to provide the cells with quorum sensing capability. This
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Fig. 6.1 Quorum sensing as a module. The quorum sensing system spans two or more cells. The
input for the system is the transcription factor and the promoter that it controls. The output is

defined as the downstream gene or the protein that the gene encodes. The input of the system
drives the production of an enzyme that produces the quorum sensing molecule. The receiving cell
contains a receptor that binds the specific signal molecule and triggers a transcriptional response,
which is the output of the module

demonstrates that the function of the quorum sensing system is fairly independent

of the host system, i.e. plant or yeast, although the system details, such as diffu-

sion rates and binding affinities, will probably differ between yeast and plants. The

quorum sensing system can be defined as a module that allows an input transcrip-

tion factor to control the production of an output protein in another cell (Fig. 6.1).

The definition of the module may include additional details such as time delay be-

tween the input and output.

Another good example of an input-output module are the numerous two-

component systems in bacteria. The two-component systems consist of a membrane

receptor that receives a specific extra-cellular signal and phosphorylates a protein

inside the cell. The phosphorylated protein can be a transcription factor that upregu-

lates one or more target genes. The two-component system is a module because each

of those systems can be ‘rewired’ to control the expression of different downstream

genes [50].

Modules as Design Patterns

The concept of ‘design pattern’ is frequently used in computer science [13], where

it refers to generalized solutions to specific types of computer programming prob-

lems. The term has been used in biology [22] to capture the same concept. In this

chapter, we define design patterns in the context of biology as general solutions to

achieve biological objectives. Examples of the objectives can be specific types of

signal-response curves, dynamic behaviors such as oscillations, or population level

distribution of phenotypes.

Natural biological systems often contain design patterns that are repeatedly

present in different contexts, and each pattern usually has specific characteristic
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Fig. 6.2 A two-component system module and its design pattern. The module (left) convert extra-
cellular signal to gene transcription and produce a sigmoidal response by using a design pattern:
activation-deactivation loop (right). The boxed region is the module, and the molecules outside the
boxed region are the inputs and outputs. The design pattern (right) can show a protein switching
states; the state transition is catalyzed by enzymes. The sigmoidal response – design objective – is
achieved when one of the enzymes is used as the ‘input’ and one of the states of protein is used as
the ‘output’. The two-component module (left) is a special case of the design pattern shown to the
right

features (objectives). For example, the entire class of two-component systems follow

a generic design pattern of an activation-deactivation loop (Fig. 6.2), which results

in a sigmoidal input-output response [35]. While each two-component system has a

specific molecule that acts as the input, the design pattern itself does not specify the

type of molecule that acts as the input signal or the downstream protein.

Design patterns can include network features such as feedback regulation, which

is commonly observed in natural systems as well as in synthetic systems. Nega-

tive feedback can also be used to maintain oscillations within a cell, and all natural

oscillations that have been investigated has some form of negative feedback [48].

In contrast, positive feedback can result in bistability [48]. An interesting design

pattern that combines oscillations and positive feedback is the one that causes seg-

mentation in insects and mammal bodies [7]. In this design, the oscillations are

interrupted by a morphogen gradient that recedes during the growth of the organism.

As the morphogen leaves the system, the oscillations stop. However, the stopping of

the oscillation triggers a switch, which causes the cell to differentiate into different

types depending on the phase of the oscillation. The net effect is that an oscillation

in time is converted to an oscillation in space. The design pattern, oscillator and

positive feedback, is used for the objective, conversion of a temporal oscillation to

a spatial one.

The definition of design patterns can overlap with that of network motifs [43],

although design patterns can be more abstract than network motifs. Network motifs

are frequently occurring network architectures. A design pattern need not have a
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specific network architecture. This can be demonstrated by the class of biological

networks that have a non-monotonic input-output response. In these networks, the

input acts as an activator until a specific threshold, after which it acts like a repressor.

There are many network architectures that can give this response [11], but the gen-

eral design pattern is the same: the input needs to upregulate and downregulate the

output in some way such that the upregulation dominates initially and the downreg-

ulation dominates after the specific threshold, causing the non-monotonic behavior.

The incoherent feed-forward motif [43] is a specific architecture, or network mo-

tif, that follows this design pattern, and it has been found to exhibit non-monotonic

input-output behavior [11]. The design pattern can be the same as this motif, but it

can also be something much more general. For example, a network where the down-

regulation and upregulation is achieved through protein phosphorylation would not

be the same network motif as the one without the phosphorylation, but it would be

the same design pattern.

Identifying design patterns in nature can greatly benefit biological engineering.

There are many themes that are often repeated in nature. For example, more than

half the genes in E. coli genetic regulatory networks have some form of auto-

regulation [43,47]. When we understand the reason for these many auto-regulations,

we might identify certain design patterns that nature uses in constructing gene regu-

latory networks. There may be similar repeated themes in protein networks as well.

Identifying design patterns that satisfy desired objectives will allow engineers to

decompose a challenging problem into manageable subproblems.

Modules in Synthetic Systems

The last two definitions of modularity, namely input-output systems and design

patterns, overlap with the concept of modularity in synthetic biology. Synthetic bi-

ologists often think of modules as input-output systems, which is exemplified by

the several Boolean logic abstractions that can be observed in synthetic genetic net-

works [24]. Similarly, design patterns such as feedback have been repeatedly used

in synthetic biology to achieve specific design objectives such as bistability [15,18]

and oscillations [14, 45, 49]. Additionally, concepts from classical control theory

have been used in conjunction with knowledge of biological systems to construct

simple devices such as linear amplifiers [27].

When modules are connected, the module interface can be described by reac-

tion processes. It is important to realize that the reactions between molecules cause

the involved reactants to become converted or sequestered during the process, e.g.,

through enzymatic reactions or binding-unbinding reactions. As a result, when we

consider a functional module, the output of one module can be affected by down-

stream modules, hence disrupting the function of the upstream. The remainder of

this chapter will discuss when such disruptions can occur and how they can be

prevented.
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Module Interface Condition: Fan-Out

In electrical engineering there exist guidelines and published constraints on how

many electronic parts can be connected and driven from a source. For example, in

analog circuits the impedance at the input is designed to be matched roughly at ten

times the impedance at the driving circuit. In digital circuits, such as TTL (transistor-

transistor logic) circuits (Lancaster DE: TTL Cookbook Indianapolis: Sams HW;

1974), the fan-out and fan-in – the maximum numbers of downstream and upstream

logic gates that can be connected to – are specified for a given electronic module.

Satisfying such constraints is crucial for the expected circuit functionality.

Similar criteria for connecting two synthetic biological modules has been pro-

posed recently [8,17,20,21]. The fan-out of a genetic circuit has been defined as the

maximum number of downstream promoters that can be driven from an upstream

circuit signal without significant time-delay or signal attenuation [20]. The fan-out

was shown to be closely related to retroactivity proposed by Del Vecchio et al. [8].

Here we will show how the fan-out is quantified and estimated.

Module Interface Process

Transcription factors (TFs) play a role of connecting two synthetic gene circuits. The

connection can be described by a set of reaction processes: transcription, translation,

degradation, and downstream-module promoter regulation. This set of reactions will

be called module interface processes (MIPs) (see Fig. 6.3).

Mapping Between a MIP and an RC-Circuit

We will show how a MIP can be mapped to an electric circuit composed of a resis-

tor and a capacitor connected in series – RC circuit, and use this mapping for the

interpretation of retroactivity [8].

Isolated Case When an upstream output is isolated, the interface process can be

considered as a simple TF translation-degradation process (Fig. 6.4a, b). The con-

centration X of the TF follows

dX

dt
D ˛.t/ � X; (6.1)

with ˛.t/ the translation rate and  the degradation rate constant. Consider a RC cir-

cuit shown in Fig. 6.4c. The voltage Vin is applied to both the resistor and capacitor:

Vin D RI C Vout ; (6.2)
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Fig. 6.3 Module interface process for gene circuits: (a) TetR repressors of the repressilator [10]
drives a multiple copy of a downstream module. The downstream module can be considered to be
placed on a plasmid. (b and c) The amplitude and period of signals in the upstream module can be
changed as the load from the downstream increases. The BioModel BIOMD0000000012 [23] was
used for the repressilator (refer to the supplementary information in [20])

Fig. 6.4 Isolated module output: A translation-degradation process for X as shown in (a) can be
simplified by a reaction process shown in (b). The process can be mapped to an RC-circuit as
shown in (c) by Vout DX , Vin D ˛= , and RC D 1=

with I the current and Vout the voltage drop across the capacitor. The current is

equal to the rate of charge accumulation (Q) in the capacitor: I D dQ=dt , and an

increment in the charge dQ increases the voltage drop across the capacitor: dQ D
CdVout, with C capacitance [28]. Thus, I can be expressed as
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I D C dVout

dt
:

By substituting this into Eq. 6.2, we obtain

dVout

dt
D Vin

RC
� Vout

RC
; (6.3)

where RC is known as the response time of the circuit [28]. From Eqs. 6.1 and 6.3,

we obtain the following correspondence:X D Vout , ˛ D Vin=RC , and  D 1=RC ,

and the response time �0 is expressed as

�0 D RC D
1


: (6.4)

Thus, the MIP in the isolated case can be directly mapped to the RC-circuit.

Connected Case When two modules are connected (Fig. 6.5a), the upstream mod-

ule output TFs are sequestered by the downstream promoters. This was shown to

slow down the interface dynamics and this effect was quantified by retroactivity [8].

In [8], they assumed that the binding-unbinding process of the TF is fast enough

that the process reaches the quasi-steady state and also assumed that the lifetime of

the bound TF is much longer than that of the unbound TFs.

Fig. 6.5 Connected Module Output: The upstream TFs (X) regulate the downstream pro-
moter (a). The corresponding MIP can be modeled as the reaction process shown in (b), where
Pf , Pb , and PT denote the numbers of free, bound, and total promoters, respectively. The reac-
tion process is mapped to an RC-circuit with an increased capacitance by C 0 as shown in (c). It is
shown that C 0 increases linearly with PT (refer to [20] for the proof)
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Specifically, they showed that the free TF concentration X changes in time by

the following equation

dX

dt
D .1 �R.X//.˛ � X/; (6.5)

whereR.X/ is the retroactivity that is always< 1 and non-negative. The extra factor

1 �R, that is also < 1 and non-negative, appears when compared with the isolated

case. This is mathematically why the dynamics of X slows down. The slow-down

is related to the increase in the apparent life time of X :

�a �
1

.1 �R/
: (6.6)

We will consider the MIP shown in Fig. 6.5a, b, and map it to a circuit as

shown in Fig. 6.5c. In the circuit, the total capacitance becomes the sum of the two

capacitances:

CT D C C C 0:

and the response time becomes RCT :

� D RCT :

Thus, the output voltage is governed by the following equation:

dVout

dt
D Vin

RCT
� Vout

RCT
D
�
1 � C 0

C C C 0

� �
Vin

RC
� Vout

RC

�
: (6.7)

From Eqs. 6.5 and 6.7, we obtain

R D C 0

C C C 0 ; (6.8)

and find that the response time � corresponds to �a (Eq. 6.6):

� D RCT D
1

.1 �R/
�a: (6.9)

We have shown that connecting downstream promoters is equivalent to connect-

ing extra capacitors in parallel. These extra capacitors increase the total capacitance

of the circuit, which means it takes a longer time to fully charge, resulting in the

longer response time. Biologically, the bound promoters sequester free TFs into a

nearly non-degradable state (one of the assumptions taken in [8]). This causes the

apparent lifetime to increase and the interface dynamics to slow down.

How is the response time � related with the load from the downstream, i.e.,

the number of promoters PT ? The response time was shown to increase with PT
[20] as
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�PT
D R.C C PTC1/; (6.10)

with C1 a proportionality constant. By comparing Eq. 6.10 with Eq. 6.9 the total

capacitance can be obtained as

CT D C C PTC1:

This indicates that a unit load of a single downstream promoter is C1. This linearity

appears since each downstream promoter acts as an independent sequestrator of the

upstream output TFs. Note that the linearity does not come from any linearization

approximation.

Gene Circuit Fan-Out

A gene circuit fan-out is defined by the maximum number of promoters in a down-

stream module that the upstream output can regulate without significant signal

distortion. For example, we consider a MIP described in Fig. 6.3. When the up-

stream output TetR regulates downstream tetR-promoters, the oscillation amplitude

of the TetR concentration can be significantly changed. In Fig. 6.3b, c, it was de-

creased by 40% when PT was increased from 0 to 100. Our interest is to quantify

the maximum value of PT that the upstream module can tolerate.

Consider again the RC-circuit shown in Fig. 6.5c as a map of the simple MIP

shown in Fig. 6.5a, and analyze the circuit frequency response between the input

and output voltages. The capacitor of the circuit acts as a low pass filter: The high

frequency components of the input signal are suppressed in the output due to the ca-

pacitor response time (charging time). When the capacitance no longer responds as

fast as the input signal changes (Fig. 6.6b), the corresponding frequency is called the

cut-off frequency (!c) (Fig. 6.6b) and this corresponds to the inverse of the response

time [28]:

!c D
1

RCT
:

Let us assume that the upstream module is the repressilator. In [10], the oscilla-

tor could generate a frequency 1=150min�1. The time delay in genetic regulation

may apply a certain upper limit !max in the frequency. If !max is smaller than the

cut-off frequency !c , the repressilator output will operate without any significant

signal loss. As the number of the downstream promoters increases, the cut-off fre-

quency (!c D 1=RCT ) decreases, and when !c becomes smaller than !max , the

signal output will start to be suppressed. Thus, it is desirable that the total number

of promoters must be smaller than a certain value. This will be called the fan-

out. The fan-out denoted by F!max
is obtained where !c equals !max by solving

for PT :

F!max
D C

C1

�
1=�0

!max
� 1

�
: (6.11)
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Fig. 6.6 Frequency response of the RC circuit shown in Fig. 6.5c: (a) The signal gain g.!/ is
defined by the ratio of the oscillation amplitude of the output signal (Vout ) to that of the input

(Vin): g.!/ D �Vout.!/

�Vin.!/
, and is described by g.!/ D

p
1C !2=.RCT /2

�1
[28]. (b) The cut-off

frequency (!c D 1=RCT ) decreases as PT increases. We assume that the output signal is desired
to be operated with the frequency less than a maximum operating frequency !max equal to 1 h�1.
(c) Fan-out is defined when !c D !max . Parameters of the model: dissociation constant of the TF,
Kd D koff=kon D 1 nM [kon D 10.1=nM/h/, koff D 10 .1=h/],  D 2.1=h/, ˛ D 20.nM=h/

In the fan-out equation (6.11), there are two unknown parameters:C=C1, and �0.

These can be experimentally estimated by performing two independent experiments

with and without any downstream module. In each experiment we measure the cor-

responding response time: �0 and �PT
(the operational method for measuring the
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response time will be presented later in this chapter). �0 can be measured, and now

how can we estimate the other unknown C=C1 from �PT
? If we know a priori the

copy number of the promoters PT , we can obtain the value of C=C1 from Eq. 6.10.

If the promoters are placed on plasmids, the copy number of the plasmids can be

estimated depending on what type of origin of replication is used, and thus the copy

number of the promoters PT can be known. By calculating �0=RC1, we can esti-

mate the other unknown, C=C1. The proposed estimation method for the fan-out is

very efficient in that a series of experiments for different values of PT do not need

to be performed. What we need is just two experiments.

Gene Circuit Fan-Out in more General Interfaces

We have hitherto considered a simple MIP without feedback and where the degra-

dation rate is assumed to be first-order. It was shown that the same or similar fan-out

function as Eq. 6.11 can be used in more general conditions [20] which include

� TFs are oligomer and under enzyme-mediated degradation and self-regulation

(Fig. 6.7a). The same fan-out expression as equation (6.11) holds.

� TFs regulate multiple promoters having different affinities. When there are two

kinds of promoters, MIP can be mapped to an RC-circuit having two different

capacitances connected in parallel to C as shown in Fig. 6.7b. The fan-out of each

promoter was shown to satisfy the following functional relationship between F1
and F2 [20]:

1=!max D �0
�
1C F1

C1

C
C F2

C2

C

�
: (6.12)

We note that the fan-out is not a single number but is given by a functional rela-

tionship between Fi ’s: We need to balance the number of plasmids of different

kinds depending on its unit load on the retroactivity, i.e., Ci=C .

� TFs regulate multiple operators (Fig. 6.7c). Regardless the number of the opera-

tors, the same fan-out function as Eq. 6.11 is obtained.

� Multiple output signals are used. When two output TFs (X and Z) regulate a

downstream promoter independently (Fig. 6.7d), i.e., if there is no overlap be-

tween the operator regions and somehow X does not interfere with the operator

region of Z and vice versa, the fan-out corresponding to each output TF can be

obtained.

Fan-Out is Enhanced with Inhibitory Auto-Regulation

To increase the fan-out, there are two ways based on the fan-out equations (6.11):

increasing C=C1 or 1=�0. To increase 1=�0, we can apply a negative feedback on

the translation of X or a positive feed-forward on the degradation rate. With either
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Fig. 6.7 Module interface processes that the fan-out function Eqs. 6.11 and 6.12 can be applied to:
(a) An oligomer TF is degraded by proteases. (b) A TF can bind two different promoter plasmids

having different binding affinities and different origins of replication. This can be mapped to an
RC-circuit with two different capacitances connected in parallel. (c) An Oligomer TF can bind
multiple operators. (d) Each different TF binds to its specific operator without affecting the binding
affinity of the other

of these two feedback loops applied, the concentration level ofX will be decreased.

To prevent this decrease it is desirable to amplify the translation rate. This is exac-

tly the same mechanism proposed by Del Vecchio et al [8] to reduce retroactivity;

when the retroactivity is reduced, the additional load from the downstream can be

applied to achieve the same signal output attenuation.

This mechanism of inhibitory auto-regulation is frequently found in Escherichia

coli transcription factors regulating a set of operons, e.g., for amino-acid biosynthe-

sis where a single TF may control multiple targets, likewise for flagella formation

[43]. Such motifs are called single-input-module motifs [43].
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The concept of fan-out is not limited to gene regulatory circuits. In principle,

as long as the same class of interface processes are found regardless of the type

of biological systems, the fan-out and retroactivity concepts can be applied [8, 36].

For example, in the eukaryotic MAPK pathway, doubly phosphorylated MAPK can

activate a number of downstream proteins and transcription factors in the nucleus.

This MAPK regulation can be described by the module interface process similar to

the one shown in Fig. 6.7b (in this case, many promoter plasmids instead of the two).

In the MAPK pathway, there is a negative feedback from MAPK to the phospho-

rylation of MAPKKK [37, 38]. The negative feedback increases the fan-out of the

MAPK module thereby permitting MAPK to effectively regulate multiple targets

and multiple homologous binding sites.

Measuring the Time Constant � from Gene Expression Noise

In the previous section, we introduced the concept of fan-out and quantified it for

various gene circuit module interfaces. To quantify the fan-out, we need to es-

timate the response time � for the case when the downstream is connected and

disconnected. In this section, we focus on an operational method for measuring

the response time by using the stochastic nature of gene circuits. Gene expression

is known to show significant stochastic fluctuations (for review, [19, 31, 32, 42]),

which often contains useful information [9, 25]. Because the noise can be consid-

ered an outcome of continuous perturbations (generated from both intrinsic and

extrinsic sources), it can be used to obtain the systems dynamical response to the

perturbations.

The response time of the circuit output was shown to be closely related to its

correlation time. The fact that the response time can increase significantly with the

downstream load indicates that the output noise can show much longer correlation

time, i.e., fluctuate much more slowly. Thus it was proposed that the response time

can be estimated from the measurable changes in the noise correlation time [21].

The proposed method does not require any externally manipulated signals or pulses,

but rather uses the noise present inherently in the system, yielding a practical esti-

mation approach.

Noise Correlation Time

In this section, we consider the MIP described in Fig. 6.8b in the stochastic regime.

The concentration level of TFs that are bound to their specific promoters, Pb , fluc-

tuates stochastically. The fluctuations are composed of two types of fluctuations,

fast and slow. The fast one comes from the rapid binding-unbinding reactions

and the other from the slow translation-degradation processes. We are inter-

ested in the time-scale of the slow process and assume quasi-equilibrium in the
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Fig. 6.8 Reaction models for a MIP: (a) Monomer transcription factors regulate promoters located
in a downstream module and this process can be modeled as shown in (b). This reaction model can
be equivalently described by (c). Y denotes the total copy number of the TFs. (d) The reaction
model (b) and (c) can be simplified under the quasi-equilibrium assumption for Pb

binding-unbinding processes (the quasi-equilibrium approximation is introduced

for formulating the concept of stochastic retroactivity, but not for simulations).

Under this assumption, we replace Pb with the mean value of Pb over the fast

fluctuations (Fig. 6.8d).

Isolated Case Consider first the isolated case. In the stochastic description,

stochastic fluctuations in X , that deviate from the stationary state mean value,

will spend a time 1= typically in reaching the mean value (Fig. 6.10), so that the

autocorrelation function GX .�/ becomes significant up to the time interval 1=

(called the correlation time; see Fig. 6.10): mathematically,GX .�/ D GX .0/e��=Ti

with Ti � 1= [4]. For the isolated case, the correlation time in the stochastic

framework equals the response time in the deterministic framework [4].

Connected Case The degradation rate of Y (D ŒY � P �
b
.Y /� as shown in

Fig. 6.8d) can become highly nonlinear: When the number of TFs is less than

the number of their specific promoters, most TFs are bound and less likely to

degrade. When the number of TFs are much larger than the number of the pro-

moters, most TFs are unbound and can degrade. This is why the degradation rate

can become highly nonlinear when the binding affinity of the TFs are strong (see

Fig. 6.9b). For example, consider the case that the total copy number, Y , fluctuates

for most of the time between 99 and 102 as shown in Fig. 6.9c. When the value of Y

is between 100 and 102, the corresponding degradation rate has a approximate slope
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a b

Fig. 6.9 Stochastic fluctuations in a fluorescence intensity from fluorescence-tagged TFs and its
autocorrelation function: (a) The intensity can be represented by the total number of the TFs,
free and bound. If the autocorrelation GY .�/ follows an exponential function GY .0/e

� �
T , the cor-

relation time corresponds to T [4]. The autocorrelation can show longer correlations when the
upstream module regulates the downstream. (b) For the connected case (Fig. 6.8b; here we do
not assume the quasi-equilibrium of Pb ), the autocorrelation function of Y approximates an ex-
ponential function and its correlation time also approximates the response time measured in the
deterministic case. However, the approximation does not hold for X . The lines labeled ‘Determin-
istic’ are drawn for comparison purposes. We used the Gillespie stochastic simulation algorithm
[16]. Parameters: (b) Kd D 0:1 nM with kon D 10 nM�1h�1, hXi D ˛= D 2 nM (˛ D 2 nM
h�1,  D 1 h�1), and PT D 0 nM (Disconnected Case) and 100 nM (Connected Case)

of  , indicating that the corresponding noise correlation time is approximately equal

to '1= . However, when the value of Y is between 99 and 100, the slope drops

significantly, indicating that the correlation time is much larger than 1= . Thus, as

the net effect of the two, the apparent correlation time increases. This result reflects

the increase in the response time in the deterministic framework, i.e., retroactivity.

We define the correlation time T as the slope of the autocorrelation of signal Y

(note for the isolated case that Y D X ):

1=T � �d logGY .�/

d�
: (6.13)

In the estimation of correlation times, we recommend to use the signal Y rather

than X . There are two reasons for this. The first is that Y can be observed exper-

imentally when the output TF is tagged for fluorescence and the bound TFs have

the same fluorescence intensity as the free TFs. The second is that Y is the variable
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a b

c

X (�Y )

Fig. 6.10 Degradation rate functions (X) for the MIP shown in Fig. 6.8d. (a and b) The rate
functions are compared for the deterministic isolated and connected cases. Xe and Ye represent
the equilibrium values of X and Y . (c) In the stochastic framework, the degradation rate function
hXiY can become highly nonlinear for the probable region of Y . The average copy number of
the unbound TFs hXiY is computed for the different values of the total copy number (Y ), and the
probability distribution function of Y , P.Y /, is numerically computed for the process shown in
Fig. 6.8d based on the Gillespie stochastic simulation algorithm [16]. Parameters: Kd D 1 pM,
and PT D 100 nM [˛ D 0:5 nM h�1,  D 1 h�1, kon D 10 nM�1 h�1, koff D 0:01 h�1]. We
set the volume of the host cell (e.g. E. coli) roughly equal to 1�m3, and a copy number of one
corresponds to 1 nM. As a result we interchange the unit of nM with that of copy number

relevant at the time scale of our interest (of the order of cell-doubling time or less).

In the time scale of our interest, the fast binding-unbinding reactions occur many

times, resulting in rapid fluctuations in X and the fluctuations can be considered av-

eraged out in this slow time scale. Thus it is natural to consider a variable that does

not fluctuate due to the binding-unbinding process. The total number Y satisfies

this property. Thus, the variable Y was considered a pure slow mode [8, 30]. Using

the signal Y results in more accurate estimates of correlation times when compared

with the case of usingX (e.g., see Fig. 6.10b). For the case ofX , the autocorrelation

of X is strongly affected by the fast binding-unbinding reactions and this is why we

have used the autocorrelation of Y .

Simulation Results We have numerically estimated the correlation time by per-

forming stochastic simulations. We have used parameter values appropriate for

degradation tagged TFs in E. coli host cells: The average copy number of the TF
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is set equal to 2 and the dissociation constant Kd of the TF specific promoters

between 0:001 and 100 nM [29,34,40,41] and the average copy number of plasmids

containing the specific promoters to 1 and 100. We have fitted the autocorrelation

of signals X and Y to exponential functions. The fit turns out much better for the

signal Y (one specific example is shown in Fig. 6.10). The noise correlation time

matches well with the response time estimated in the deterministic framework. For

more detailed discussion on the simulation results, we refer to [21].

Consideration of Extrinsic Noise We have not hitherto considered any extrinsic

noise, which appears due to cell replication and environmental fluctuations. Such

extrinsic noise has been shown to affect the autocorrelation functions [5, 9, 34, 51]

and thus needs to be taken into account for estimating the response time.

If a transcription factor with a fluorescence marker is tagged for degradation,

the lifetime of the TF can be comparable to the cell doubling time. Then, the au-

tocorrelation function of the fluorescence emitted from the TF can be fitted to the

multi-exponential function [21]:

GY .�/ D Ae�E� C Be�.EC1=T /� ; (6.14)

with E D log.2/=Td (Td is a cell doubling time and can be independently mea-

sured by experiment) and T the correlation time. The above form of the autocor-

relation has been investigated in its Fourier transform (power spectral density) by

Austin et al [5] for a half-life reduced GFP variant. By fitting the above nonlinear

function Eq. 6.14 to experimentally estimated autocorrelations, the correlation time

T can be obtained.

Fan-Out/Retroactivity Estimation

Let us consider the simple MIP shown in Fig. 6.5a as a model for TFs in

E. coli (without considering any extrinsic noise). We performed the stochas-

tic simulations with and without any downstream-module promoter (PT D 100
and 0) for experimentally reasonable parameter values (˛D 20 nM h�1,  D 2 h�1,

konD 10 nM�1 h�1, and koff D 10 h�1). For the simulation, we used the standard

Gillespie method [16]. The concentration levels of the total TF was recorded 100

times over 2 h. We observed the autocorrelations of the output signals and fitted

them to exponential functions: G.�t/DA exp.��t=�/ with � a correlation time

(we conducted a linear fit in the log-scale in the y-axis and the normal scale in the x-

axis and obtained the correlation time � from the fitted slope). We obtained the error

bar of the time constant from ten independent replicates of the autocorrelation [20].

When the translation rate ˛ was set to 20 nM h�1, we obtained �0 D 0:52˙0:06 h

and �100 D 0:9˙ 0:1 h. We obtained C=C1 D 140˙ 20, by using

C

C1
D PT

RC

RCT � RC

ˇ̌
ˇ̌
PT D100

D PT
�0

�PT
� �0

ˇ̌
ˇ̌
PT D100

;
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where we used CT � C D PTC1. From Eq. 6.11, we obtained the fan-out function

for this MIP:

F!max
D 140 Œ˙20�

�
1=0:9 Œ˙0:1�

!max
� 1

�
:

If the maximum operating frequency !max of the upstream module is 1 h�1, the

fan-out estimate is F D 130˙ 20. This means that we can use promoter plasmids

with low, medium, and high copy numbers without affecting the upstream module,

if a single TF-specific operator site resides on a plasmid. We can also estimate the

retroactivity by using R D .CT � C/=CT D .�T � �0/=�T : R D 0:4˙ 0:1.

If we reduce the translation rate by half (now, ˛D 10 nM h�1) the free TF con-

centration decreases by half. As the concentration decreases, the fraction of the TF

that are bound increases, resulting in higher retroactivity [8] and lower fan-out. We

estimated �0 D 0:52˙0:07 h and �100D 1:75˙0:04 h. For the same !max D 1 h�1

we obtained the fan-out: F D 40 ˙ 1. This would mean that we could safely use

only low copy number plasmids. The retroactivity is estimated to be 0:70˙ 0:05.

Summary

In this chapter we first gave a general overview of the concept of modularity in dif-

ferent biological contexts and introduced a modularity concept called design pattern

that describes a generalized network architecture for achieving certain types of de-

sign objectives. The modules in synthetic biology conform to the notion of design

pattern because synthetic biology is concerned with design of novel networks for

achieving specific goals. Later, we considered synthetic circuits in terms of a func-

tional module and investigated what conditions the modules require for minimizing

interference between modules. We have introduced the concept of fan-out, which

quantify the maximum load from a downstream module that can be tolerated by the

upstream module. We have proposed an efficient operational method to estimate the

fan-out experimentally by minimizing the number of experiments significantly and

by utilizing gene expression noise that is present inherently. We have shown that the

fan-out can be enhanced by self-inhibitory regulation on the output. In the estimation

process of the fan-out, the retroactivity can also be estimated. This study provides

a way for quantifying the level of modularity in gene regulatory circuits and helps

characterize and design module interfaces and therefore the modular construction

of gene circuits.1
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Chapter 7

Retroactivity as a Criterion to Define Modules
in Signaling Networks

Julio Saez-Rodriguez, Holger Conzelmann, Michael Ederer,

and Ernst Dieter Gilles

Abstract The concept of modularity has been widely studied in the context of

molecular biology. Since engineering sciences are used to work in a modular

manner, it is tempting to approach the definition of biological modules from an

engineering perspective. From a system-theoretical point of view an interesting cri-

terion might be the definition of modules where both the input signals and the output

signals are unidirectional, that is, there is no retroactivity. In this chapter, we review

the applicability of this concept to biological networks. We start describing which

biochemical situations can lead to absence of retroactivity. Then, we show how this

concept can be automatized into an algorithm to decompose biochemical networks

into modules so that the retroactivity among the modules is minimized. This decom-

position facilitates the analysis of complex models because the modules can, to some

degree, be studied separately. We complement this analysis with a consideration of

retroactivity in signal transduction processes using a domain-oriented description.

Finally, we explore the interplay between retroactivity and thermodynamics in the

domain-oriented description, and show how the binding site phosphorylation is a

mechanism that is able to realize unidirectional signal transduction.

Keywords Retroactivity � Modularity � Wegscheider condition � Domain-oriented

modeling � Signaling � Thermodynamics � Systems-theory � Network theory

� Unidirectionality � Futily cycles � Phosphorylation �MAPK �Michaelis-Menten

Introduction

The definition of functional units, i.e. entities whose function is separable from those

of other units, has been proposed as a promising rationale for the analysis of large

biochemical networks [1,12,25]. This modular approach follows a simple rationale:
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and analysis
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Fig. 7.1 General procedure of a modular analysis approach. The approach starts with the decom-
position of the model of a (typically large) network in a suitable manner into smaller, easier to
analyze subunits. Upon a thorough analysis of the resulting modules, they can be rewired together
(either in their original form or in a reduced one [7]), and new insights into the network as a whole
can be obtained [22]

divide and win. As depicted in Fig. 7.1, by decomposing a system into subunits,

one obtains modules which are significantly easier to handle. Once these relatively

simple units are well understood, they can be re-assembled in order to analyze the

emergent properties of the resulting systems [16]. Furthermore, one could set up

a kit of reusable elements, simplifying the setup of models, since many parts of

biological networks are found in several signal transduction pathways.

From this perspective of facilitating the analysis, what would be a good criterion

to define these modules? Since engineering sciences are used to work in a modular

manner, it is tempting to look at how modules are defined and constructed in a tech-

nical context. From a system-theoretical point of view an interesting criterion might

be the definition of elements where both the input and the output are unidirectional,

that is, it does not exist retroactivity1 [22, 33]. This is actually the form in which

most technical systems are devised, facilitating their analysis and design: for exam-

ple, a thermometer is constructed in such a way that it receives information about

the temperature of a certain object, but it does not affect significantly the energy

(and thus temperature) of the object itself.

These effects of elements downstream back to elements upstream have been

extensively studied [26, 33], and the effects of retroactivity on the behavior of bio-

chemical networks will be discussed in the chapter by Del Vecchio. Its impact on the

identification of biochemical systems is discussed in the chapter by Sontag, and the

connections between modularity and synthetic biology in the chapter of Chandran

et al. Here, we provide a complementary angle on retroactivity reviewing the dif-

ferent biochemical situations that can lead to absence of retroactivity [23], and how

to employ them to define modules within network [24]. We will approach this point

from different angles, from a bipartite representation of biochemical networks based

on the network theory of [11] to thermodynamic considerations applied to a domain-

oriented representation of biochemical systems [8].

1 We coined the term retroactivity in [22, 23] as a translation of the German word Rückwirkung,
that can be more accurately translated by the longer expression ‘backwards effect’.
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The Absence of Retroactivity as a Criterion

to Demarcate Modules

In this section we will introduce the definition of retroactivity, its description in

terms of network theory, and its implementation into an automatic algorithm.2

Consider a biochemical network as a general non-linear dynamical system de-

scribed by a set of ordinary differential equations (ODEs) of the form

PEc D dEc
dt
D f .Ec; Eu; Ep/; (7.1)

where d Ec
dt
2 IRn is the vector of the time derivatives of the concentrations ci , Eu the

vector of inputs and Ep the vector of parameters. A vector of outputs Ey D g.Ec/ may

also be defined. If we would like to decompose this system into two subsystems Ec1
and Ec2 that are decoupled we would need to find two subsets of states ci so that

PEc1 D f1. Ec1; Eu; Ep/
PEc2 D f2. Ec1; Ec2; Eu; Ep/. (7.2)

The decomposition into decoupled systems of the form of Eq. 7.2 is a well studied

problem in the field of systems theory [32]. However, biochemical – in particular

signaling – networks are characterized by a high degree of coupling, so that a clean

decomposition in the form of Eq. 7.2 is in most cases not possible.

We therefore introduce a less strict requirement, which we shall call the absence

of retroactivity [22–24]: two modules Ec1 and Ec2 are connected without retroactivity

if there is no pair of species (states), one in each module, which influence each other

(see Fig. 7.2), i.e.

À.i; j / W Pc1i D f1i .c2j ; : : :/ ^ Pc2j D f2j .c1i ; : : :/ (7.3)

C1i C2j

C1 C2

Fig. 7.2 Schematic representation of the concept of retroactivity. If the state c1i influences the
submodule state c2j (solid line), but the state c2j does not directly influence c1i (dotted line), the
connection between Ec1 and Ec2 is free of retroactivity, even if a unidirectional feedback from another
element Ec2 to Ec1 (dashed-dotted line) is present [22]

2 This section summarizes the work described in [23,24]. Some portions of the text and figures are
reproduced, with permission from Elsevier and Oxford University Press, respectively.
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where c1i is the i th element of Ec1 and c2j is the j th element of Ec2. Thus, instead

of the global decoupling between the modules as a whole imposed in Eq. 7.2, we

just require a local unidirectionality between all elements of one module and all

elements of the other module. A feedback effect between different components of

the modules does not imply a retroactive effect [22].

Network Theory and Retroactivity

Biochemical systems are often described as two sets of elements, species (sub-

stances) and reactions. This leads Eq. 7.1 to take the form

d Ec
dt
D EPc D N Ev, (7.4)

where Ev.Ec; Eu; Ep/ 2 IRm is the vector of them reactions, andN 2 IRn�m the stoichio-

metric matrix [13]. A suitable frame to describe such bipartite systems is provided

by the network theory introduced by [11], that consists of a combination of two types

of elementary units: components, which store physical quantities and storage-free

coupling elements, which describe the interactions between the components. These

elements can be aggregated into higher-order units in a hierarchical fashion. Compo-

nents and coupling elements are connected by two types of signal vectors: potential

vectors (from components to coupling elements) and current vectors (from cou-

pling elements to components). In biochemical networks the compounds (species)

are the components, the reactions the coupling elements, potential vectors carry

information about the concentrations from the compounds to the reactions and cur-

rent vectors would bring information about the rates back to the compounds (see

Fig. 7.3), leading to a system of differential equations of the form of Eq. 7.4. This

bipartite description is useful to cleanly characterize, from a biochemical point of

NiuvuNiwvw

ciNivvv

cj

Njvvv

ckNkuvu

ci ci

Njuvu

cj

vv

ck

ck

vu

cj

civw

Fig. 7.3 Representation of a certain set of biochemical reactions according to the network theory,
from [24]. Dashed lines represent potential (concentration) vectors solid thin lines current (rates)
vectors
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view, the coupling among modules. The different cases that lead to unidirectional

effects can be separated between those where a potential vector and a current vector

can be neglected.

Neglect of a Current The balance of the concentration of a storage ci is a function

of the reaction rates (Eq. 7.4),

dci

dt
D Pci D Ni1v1 CNi2v2 C � � � CNikvk C � � � CNimvm.

Therefore, a reaction vu does not influence significantly a storage ci (see Fig. 7.3) if

its contribution to the balance is negligible, that is to say, if

Niuvu �
mX

kD1
Nikvk )

NiuvuPm
kD1Nikvk

Dbgciu � 1; (7.5)

that corresponds to neglecting the arrow from vu to ci . This is the case if the amount

of a compound that is consumed or produced in a reaction is negligible compared to

the total amount. This definition might lead to numerical problems since in steady

state dci

dt
D Pm

kD1Nikvk D 0. Using the absolute values would circumvent this

problem; we use thus

jNiuvujPm
kD1 jNikvkj

D gciu � 1, (7.6)

which is a more strict condition than Eq. 7.5. Therefore, the time-dependent function

gciu defines the effect of the reaction vu on a storage ci .

A very common biological process that deserves a more detailed description is

an enzymatic reaction. If we consider the general case where a compound S is

transformed into P , by reaction with another compoundE , being E regenerated in

an additional step (Fig. 7.4(a)) defined by the equations

E 0 • E (7.7)

and

S C E • SE • P C E 0; (7.8)

we obtain a highly interconnected systems, without unidirectional connections. If

the second step of the second reaction (Eq. 7.8) is considered irreversible we obtain

S C E • SE * P C E 0 (7.9)
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Fig. 7.4 Representation of different schemes of enzymatic reactions according to the network
theory, from [23], where more cases as discussed. Dashed lines represent potential (concentration)

vectors, solid thin lines current (rates) vectors, and solid thick lines the borders of the modules; (a)
enzymatic reaction system defined by Eqs. 7.7 and 7.8; (b) system defined by Eq. 7.10; (c) same
system as in (b) but with a change of variable E0 D E C SE; (d) system defined by Eq. 7.11

instead of Eq. 7.8. The representation of the new system is obtained by deleting the

vectors 1 and 2 in Fig. 7.4(a). In this system, there is a unidirectional connection

defined by the irreversible step, but the connection between E and the reaction

S•P has still retroactivity (see Fig. 7.4(a)). If, additionally,E D E 0, the system

S C E
k1

k�1

• SE
k2

* P C E (7.10)

is obtained, which is shown in Fig. 7.4(b) and represents the irreversible conversion

of S into P catalyzed by an enzyme E. Defining a new variable E0 D E C SE we

obtain an alternative representation (Fig. 7.4(c)). Analyzing this schema we see that

a connection free of retroactivity from the enzyme to the reaction can be achieved if:

1. The external reactions that influence E0 are not influenced by E (e.g. they are

irreversibles), that is, we can neglect vector 1 in Fig. 7.4(c).

2. The dynamics of the compound SE can be neglected (i.e. dcSE=dt � 0, which

means that the vector 2 in Fig. 7.4(c) is negligible). This approximation is known
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as the quasi-steady-state assumption, and leads to the reduced system (see for

example [30])

S ! P; (7.11)

following the reaction rate r the classical Michaelis Menten equation [29]

v D Vmax � S
Km C S

D k2 �E0 � S
Km C S

; (7.12)

where Km D .k�1 C k2/=k1. We obtain thus a connection free of retroactivity

by absence of a current vector, as represented in Fig. 7.4(d). If, additionally, the

enzyme is saturated by the substrate (Km � S ), then the reaction rate r becomes

r D k2E0 (7.13)

and the system can be represented as in Fig. 7.4(d) deleting the vector 1, leading

to an additional connection free of retroactivity between the reaction r and the

substrate S .

The assumption dcSE=dt � 0 is correct for the system defined in Eq. 7.10 if

©� 1, where © D E0=.KmCS0/, beingE0 and S0 the total concentration ofE and

S , respectively [30]. This condition is fulfilled if E0 � S0 and ifE0 � Km.E0 �
S0 (much less enzyme than substrate, a usual situation in many in vitro experiments)

is the usual assumption for the application of Michaelis Menten equation.

The condition E0 � Km can be rewritten as E0k1 � k2 C k�1. Since k1 is the

kinetic constant for the formation of the complex SE , and k�1 and k2 the kinetic

constants for the dissociation of the complex SE (Eq. 7.10), this condition can be

interpreted as the decomposition of SE being much faster than the formation of SE.

The Michaelis Menten expression (Eq. 7.12) is widely used for enzymatic reac-

tions without considering whether the assumptions described above are fulfilled or

not. This implies that the substrate has a ‘high impedance’, and it therefore measures

the activity of the enzyme, without affecting it. However, the retroactive effects

due to the sequestration of enzymes can affect significantly the behavior of the

system [2].

Neglect of a Potential Since in the general case the reaction rates vu.Ec; Ep; Eu/ are

not a linear function of the concentrations, the effect of a storage cj on a reaction vu

can be estimated by the derivative

©�uj D
@vu

@cj
(7.14)

This derivative is known as (unscaled) elasticity in the field of Metabolic Control

Analysis [13], and we adopt this nomenclature here. For example, in the case of a

reaction v1

c1
k1

k2

• c2 (7.15)
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following simple mass action law kinetics, ©�11 D k1 and ©�12 D �k2. More

appropriate is the use of the scaled elasticity, defined by ©�
uj cj . Accordingly, a

storage cj does not affect significantly a reaction vu (see Fig. 7.3) if its effect is

negligible when compared to that of the rest of storages, i.e.

j©�uj jcj �
nX

kD1
j©�

ukjck )
j©�

uj jcjPm
kD1 j©�ukjck

D gp
uj � 1. (7.16)

The time-dependent function g
p
uj defines thus the effect of a storage cj on a reaction

vu. Note that, as in the case of the neglect of a current gc , we use absolute values. If

we divide numerator and denominator by vu we obtain

g
p
uj .t/ D

j©�
uj

jcj

jvuj
Pm
kD1

j©�
uk

jcj

jvuj
D j©uj jPm

kD1 j©ukj
, (7.17)

where ©uj .t/ is the scaled elasticity, ©uj D @vu

@cj

cj

vu
D @vu=vu

@cj =cj
[13]. A potential can be

neglected if the concentration of one compound does not affect the rate of a reaction

where it is consumed or produced (e.g. vector 1 in Fig. 7.4(a)). An example is an

irreversible reaction, where the product does not affect the reaction rate.

An Algorithm to Identify Modules Minimizing Retroactivity

In the previous section we saw that a system shows a junction free of retroactive

effects if a potential or current vectors can be neglected. We further analyzed typical

biochemical cases. We also discussed how to formalize within the framework of

network theory the concept of retroactivity, using the time-dependent matrices gp W
IRC ! IRn�m (Eq. 7.6) and gc W IRC ! IRm�n (Eq. 7.17). In this section, we will

see how this can be implemented in an algorithm to detect modules based on the

retroactivity.

The values of gcij or gcuj are strictly zero if there is a structural absence of retroac-

tivity. For example, a strictly irreversible reaction will lead to ©uj D 0 between the

reaction u and the product j , and an enzymatic reaction modeled with Michaelis

Menten kinetics will result in Niu D 0) gciu.t/D 0 between the enzyme i and the

reaction u.

However, in many other cases, gc or gp might not be strictly zero but have very

low values. For those cases, a criterion determining what is low enough is required.

In some cases a simple criterion such as the maximal or the average value be lower

than a certain threshold at a characteristic trajectory could be a reasonable crite-

rion. Alternatively, one could perform more exhaustive analyses using e.g. Monte

Carlo methods to explore the parameter space. To determine the stricter, structural

absence of retroactivity only the structure of the network is needed, while for the
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approximate, kinetic-dependent absence of retroactivity a parameterized model and

a particular operating condition have to be defined.

Definition of the Retroactivity Matrix Once a certain criterion has been applied,

the matrices Rp 2 f0; 1gn�m and Rc 2 f0; 1gm�n can be obtained which define

which storages affect which reactions and vice versa. Now, at the connection be-

tween a storage ci and a reaction vj following cases are possible:

R
p
ij D 1; Rcj i D 1 retroactive connection

R
p
ij D 1; Rcj i D 0 unidirectional connection (neglect of current)

R
p
ij D 0; Rcj i D 1 unidirectional connection (neglect of potential)

R
p
ij D 0; Rcj i D 0 absence of connection

(7.18)

Importantly, if one considers only the structural retroactivity, since Nij D 0)
Rcij D 0 and ©ij D 0) Rp D 0,Rc andRp correspond to the matrices expressing

the occupancy of N and © (what we shall call the indicator matrices N I and ©I ),

respectively:

Rcij D N I
ij D

�
0 if Nij D 0
1 else

(7.19)

and, analogously,

R
p
ij D ©Iij D

�
0 if ©ij D 0
1 else

(7.20)

From now on we shall concentrate on the structural case, but the same arguments

can be applied to the general case.

Now, defining a matrix R 2 f0; 1; 2; 3gn�m, which we shall call the retroactivity

matrix, so that Rij D R
p
ij C 2Rcj i , we would obtain the information about the

retroactivity in a compact manner:

Rij D 0 absence of connection

Rij D 1 unidirectional connection (potential)

Rij D 2 unidirectional connection (current)

Rij D 3 retroactive connection

(7.21)

Posing the Minimization of Retroactivity as a Community Detection Problem

The next step should be to try to demarcate the modules in such a way that the

number of retroactive connections (where Rij D 3) among modules is mini-

mized (ideally zero), and maximized inside the modules. Considering the matrix

Rr 2 f0; 1gn�m where

Rrij D
�
1 if Rij D 3
0 else,

(7.22)

clustering techniques can be applied. The methods of Newman and colleagues, re-

lying on the maximization of a mathematical value of the modularity [19], seem

particularly suited for this task, since we are trying to minimize the number of
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retroactive connections. However, these approaches consider mostly (undirected)

interaction graphs of networks, but here we are dealing with a bipartite graph (since

there are two kinds of nodes: storages and reactions). Unfortunately, clustering al-

gorithms for bipartite graphs are much less developed. A detour to circumvent this

problem would be to convert the information about the relationships between the

storages and reactions coded in R into a quadratic matrix defining the connec-

tions among one type of elements (storages). This information defines a monopartite

graph.

A natural monopartite graph would be one reflecting the reciprocal influence

among the compounds. A compound ci does not influence directly a compound cj
if there is no connection from ci to cj through any reaction. The influence of ci on

cj via the reaction vv is determined by Rcj v � R
p
vi : the influence of ci on vv (R

p
vi )

multiplied by the influence of vv on cj (Rcj v
). Thus, extending this argument to all

reactions, one gets that the influence of ci on cj reads

Rcj1 �Rp1i CRcj2 �R
p
2i C � � � CRcjm �R

p
mi D

mX

kD1
Rcjk �Rpki , (7.23)

and thus, if this expression is equal to zero, there is no influence of ci on cj . And

for the structural case, from Eqs. 7.19 and 7.20,

mX

kD1
N I
jk � ©Iki D 0 (7.24)

There is a close relationship between this expression and the Jacobian J 2 IRn�n

with

Jij D
@fi

@cj
(7.25)

of a system of differential equations in the form of Eq. 7.1. The sign of Jij informs

whether cj has a direct positive or negative influence on ci , and a matrix consider-

ing the sign of these entries can be seen as the adjacency matrix of the underlying

interaction graph [14]. The relation to Eq. 7.24 is simply obtained by deriving fi
with respect to cj . From Eq. 7.4 it results

@fi

@cj
D Ni1

@v1

@cj
CNi2

@v2

@cj
C � � � CNik

@vk

@cj
C � � � CNim

@vm

@cj
; (7.26)

that is

Jij D Ni1©�1j CNi2©�2j C � � � CNik©�ij C � � � CNim©�mj ; (7.27)

or in compact manner

J D N©�. (7.28)
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Therefore, for the structural case that we are considering, the indicator matrix of

the Jacobian J I 2 f0; 1gn�n,

J Iij D
�
1 if Jij D

Pm
kD1Nik � ©kj ¤ 0

0 else
(7.29)

would provide a starting point for these algorithms.

To identify modules based on retroactivity the presence of a unidirectional

connection is equivalent to no connection at all. The connection between two com-

pounds ci and cj is retroactive if J Iij D J Ij i D 1. If J Iij D J Ij i D 0, there is

no connection between the elements, and if J Iij D 1 and J Ij i D 0 there is an

unidirectional connection from ci to cj (involving either the neglect of a current

or of a potential). The retroactivity can thus be captured via a symmetric matrix

J IR 2 f0; 1gn�n, so that

J IRij D J IRji D
(
1 if J Iij D J Iji D 1
0 else

(7.30)

This has also an advantage for applying Newman’s algorithms, since they are de-

vised for symmetric matrices. Newman defines modularity as the number of edges

within modules with respect to the number of edges within modules expected for a

random network [19], which reads for a network decomposed in two modules

Q D 1

4m

nX

ij

�
Aij �

kikj

2m

�
.si sj C 1/ (7.31)

with si D 1 if i belongs to module 1 and si D �1 if it belongs to module 2. A is

the adjacency matrix, and ki the number of edges connected to a node i . We will

use the Newman definition for Modularity (Eq. 7.31) applied to J IR. A number of

algorithms can be used to optimize the modularity of Eq. 7.31, and can be applied

in our context [24].

Characterization of the Connections Among the Modules After applying a

modularity analysis, one would like to know what kind of connections couple the

different modules. This information is, however, not present in the matrix J I alone.

One can obtain this information from the matrices Rp.©�/ and Rc.N /. Alterna-

tively, one can deduce the nature of the connections from J I and N . The latter

has the advantage that it is not required to compute ©� if it is not available (J I is

available from the previous steps and N is easily obtainable). Additionally, one re-

mains in the monopartite (concentrations) description and does not need to go back

to the bipartite (concentrationsCreactions) formalism. The matrixNC D N.�N/T
is a symmetric matrix so that NC

ij D NC
ji ¤ 0 if there is a mass flux between the

species i and j , and is 0 otherwise [9]. Considering conjunctly its indicator matrices

NCI 2 f0; 1gn�n and J I the different cases can be retrieved (see Table 7.1), allow-

ing us to characterize the connection among the modules.
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Table 7.1 Types of connections between two species as a function of J IR and N CI from [24].
All possible dependencies between two storages i and j can be unambiguously determined by the
values of J IRij , J IRji , N CI

ij and N CI
ji

0 0JI
i j

JI
ji 0 0

0 1NCI
i j

NCI
ji 0 1

1 0

0 1

0 0

0 0

1 0

0 1

1 1

1 1

1

1

0

0

1

1

1

1

No

connection

Products of

common irrev.

reaction

Control by

potential

(enzyme)

Control by

current

(irrev. reaction)

Reciprocal control

by potential

(enzyme)

Coupled

storages

(rev. reaction)

ci

vu vu vu vu vuvvvu

cj

ci

cj

ci

cj

ci

cj

ci

cj cj

ci

Integration of the Algorithm into ProMoT The identification of the modules un-

derlying a given model provides useful insights into its structure. Furthermore, it

allows one then to subsequently analyze the system in a modular manner. For exam-

ple, one would like to consider only one module in isolation, or the combination of

several of them, eventually testing different variants considering different connec-

tions between modules, a reduced version of one of the modules, etc [22]. Rewriting

by hand the model to consider all these possibilities is a cumbersome and error

prone task. Therefore, it would be convenient to have at one’s disposal a framework

where these tasks can be performed in an automatic manner. The modeling tool

ProMoT (Process Modeling Tool) [18] provides a natural environment for such a

modular modeling: ProMoT is based on an object-oriented modeling concept, facil-

itating the reuse and combination of modules. For this purpose, different libraries of

models and modules can be implemented, which can be easily combined via a user

interface. Thus, ProMoT allows to intuitively implement models in a modular and

hierarchical manner. Therefore, an extension for ProMoT was developed, which al-

lows to import models modularly decomposed according to the procedure described

above. Currently, the modularity analysis is performed in Matlab [17] and the re-

sults are imported into ProMoT. A full integration of those methods into ProMoT is

to be performed in the close future. A similar implementation should be feasible in

another modular modeling language such as antimony [31].

In the following, the applicability of the criteria to real cases will be exemplified

using the Epidermal Growth Factor signaling as an example.

Case Studies The algorithm was benchmarked against different models, describ-

ing signal transduction systems of different complexity, and formulated with either

mass-action law kinetics or the Michaelis-Menten simplification [24]. The systems
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modeled ranged from a simple Mitogen-activated Protein Kinase (MAPK) cas-

cade, to a complex signaling network downstream of the Epidermal Growth Factor

Receptor (EGFR).

For the later, we considered in particular two models of complementary complex-

ity: (1) a very comprehensive network [20], one of the largest models of a signaling

network, within a kinetic (stoichiometric) framework, and (2) a highly entangled

model of the EGFR induced MAPK cascade, including receptor internalization pro-

cess [27]. Because the model of Oda et al only contains a description of the network

elements and the reactions among them, we performed an analysis based on the

structural retroactivity. The decomposition as outlined above was able to separate

the model (comprising over 200 reactions and 300 species) into 55 modules [24].

In the case of the model of Schoeberl et al (comprising 94 species, highly en-

tangled via mass-action reactions), an analysis of the dynamic retroactivity was

also possible, since it is a fully parameterized model. The modules obtained cor-

responded well with those defined manually before using the retroactivity crite-

rion [23]. Furthermore, a simple analysis of the input/output behavior of these

modules was performed [22], and a model reduction was performed based on these

modules: if one can identify simple systems whose dynamic behavior is similar to

that of certain modules, they can replace them within the large model, leading to a

reduction of the model size [7].

These results showed the applicability of our algorithm to networks of realistic

size. We refer the reader to [24] for a more detailed description of these analysis.

Domain Oriented Modeling and Retroactivity

The previous section covered cases where the absence of retroactivity was directly

apparent from the kinetic rate equations. Two cases were distinguished: (1) The

influence of a rate on a concentration can be neglected if the rate is small com-

pared to the other rates that appear in the balance equation. (2) The influence of

a concentration on a rate can be neglected if the elasticity of the rate with respect

to the concentration is small compared to the elasticities of the rate with respect

to the other concentrations. These criteria are dependent on the choice of vari-

ables made during the modeling process, i.e. the choice of species and reactions.

Transformations of concentrations and fluxes may reveal an absence of retroactivity

in systems where the original kinetic rate equations seem to be strongly coupled.

A simple example for this case was already discussed in Fig. 7.4(d). The unidirec-

tional connection between the enzyme and the reaction becomes only apparent when

the system is formulated in terms of the total enzyme concentrationE0 D E CES
and is not visible in the concentrations of the enzyme species E and ES. In this sec-

tion, we show that such cases regularly occur in signal transduction networks that

are based on protein-protein interactions.

Here, we adapt the point of view that domains instead of molecular species

are the fundamental elements in signal transduction, which has been introduced
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Fig. 7.5 Example systems from section “Domain Oriented Modeling and Retroactivity”.
(a) A receptor R with two binding sites for L and E, respectively. The arrows indicate forward
and backward reactions. (b) A receptor with a binding site for L and a phosphorylation site. The
reactions are reversible and the arrows indicate the positive direction of the reactions. The numbers
on the equilibrium constants Keq correspond to the numbers of reactions in the text (see Eq. 7.37)

by [21]. These domains can be either occupied by other proteins or can undergo

post-translational modifications like phosphorylation. We define a binding process

as the sum of all reactions that change the level of occupancy of the considered

domain. Analogously, we define a modification process as the sum of all reactions

changing the degree of modification of a domain. Two arbitrary processes, no matter

if binding or modification processes, may be either completely independent, in-

teract unidirectionally or mutually. These different types of interactions shall be

exemplified considering a simple example which is taken from [6]. In this example

one considers a receptor R, which provides two binding domains for two ligands L

and E (see Fig. 7.5a). Hence, the system comprises two binding processes, namely

L-binding and E-binding. In this case the reaction system consists of four reversible

reactions (two describing L-binding to R00 and R0E, and two describing E binding

to R00 and RL0), for which the following reaction rates can be formulated using

mass action kinetics:

r1 D kC1 �R00 � L� k�1 �RL0; r2 D kC2 �R0E � L � k�2 �RLE;

r3 D kC3 �R00 �E � k�3 �R0E ; r4 D kC4 �RL0 �E � k�4 �RLE: (7.32)

We assume that the concentrations in this and the following kinetic equations are

dimensionless. Thus, the rate constants k˙i have all the same dimensions. For the

sake of simplicity, we assume that the concentrations of free L and E are constant.

The results can be generalized to the case where the ligand concentrations vary or

where more than two ligands are involved. According to [6] the following process

interaction types can be distinguished:
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� non-interacting processes: Complete independence implies that the kinetic

association and dissociation constants of one domain does not change upon lig-

and binding on the other domain. Hence, it follows for the parameters kC2 D
kC1, k�2 D k�1, kC4 D kC3 and k�4 D k�3.

� unidirectionally interacting processes: The binding of one ligand, say ligand

L, is not influenced by the binding of the other one, but binding of L does change

the kinetic properties of the other domain. In this case only the conditions kC2 D
kC1 and k�2 D k�1 have to be fulfilled.

� mutually interacting processes: In this general case, binding of a ligand has an

influence on binding of the other ligand and vice versa. Therefore, all parameters

can have different values.

Under certain reasonable conditions the absence of interactions or the occurrence of

unidirectionality allow model reduction and modularization [3, 4, 8, 10, 15].

The method of [8] assumes unidirectionally interacting processes and is based

on a hierarchical transformation of the system. This transformation leads to new

variables that correspond to the total concentrations of proteins and the degrees

of occupancy of the binding sites. For example, the system in Eq. 7.32 is trans-

formed into the new coordinates z0 D R00 C RL0 C R0E C RLE (total receptor

concentration), zL D RL0 C RLE (concentration of R-L complexes), zE D R0E C
RLE(concentration of R-E complexes) and zLE D RLE (concentration of R-L-E

complexes). The corresponding balance equations are

Pz0 D 0;
PzL D r1 C r2 D kC1 � .z0 � zL/ � L � k�1 � zL D fL.z0; zL/;
PzE D r3 C r4 D fE .z0; zL; zE ; zLE/

PzLE D r2 C r4 D fLE.z0; zL; zE ; zLE/; (7.33)

where fL, fE and fLE are functions of the indicated variables. In this representation

the unidirectional connection from the L binding module fz0; zLg to the E-binding

module fzE ; zELg becomes clear (cf. Eq. 7.2). These considerations are generaliz-

able to more complex systems and can be exploited for constructing reduced models

of large systems [8]. Therefore, unidirectionality, i. e. the absence of retroactivity

as defined by Eq. 7.2, may occur ubiquitously in signal transducing systems but a

transformation is needed to reveal the unidirectionality. The resulting modules are

not defined as a set of species and reactions, but rather a set of binding domains

and processes. In the following sections, we discuss under which conditions such

unidirectional interactions can occur.

Thermodynamic Constraints

The second law of thermodynamics in conjunction with the principle of microscopic

reversibility demands that, for a closed reaction system, a state of thermodynamic
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equilibrium exists that is a stable steady state where all thermodynamic forces and

fluxes vanish. In thermodynamic equilibrium the forward rate through any reac-

tion is equal to the corresponding backward rate such that the overall rate vanishes.

Although biochemical networks are usually not closed and do not reach a ther-

modynamic equilibrium, the laws of thermodynamics restrict their behavior. The

thermodynamic restrictions result from the fact that all thermodynamic forces and

fluxes are directed towards a state of thermodynamic equilibrium: if the systems

would be isolated from the environment, it will approach thermodynamic equilib-

rium. This results in constraints on the systems dynamics even if thermodynamic

equilibrium is never reached in an open system with energy and mass exchange

with the environment.

If a network can be described by generalized mass-action kinetics, these relations

lead to the generalized Wegscheider conditions [13, 28]

BT � ln. EKeq/ D 0; (7.34)

where the logarithm of EKeq has to be taken element-wise. The vector of equilib-

rium constants EKeq is defined by Keq;i D kCi=k�i , and if we use dimensionless

equations as in Eq. 7.32, the equilibrium constants EKeq are dimensionless. B is a

kernel matrix of the stoichiometric matrixN withN �B D 0, so that the columns of

the matrix B correspond to linearly independent cycles in the network. Therefore,

Eq. 7.34 states that the product of the equilibrium constants along any stoichiometric

cycle is unity.

Thermodynamic Restrictions on Process Interactions

For the example network (Fig. 7.5a), the Wegscheider conditions read

Keq;1 �Keq;4
Keq;2 �Keq;3

D 1: (7.35)

The Wegscheider conditions can be rewritten as aLEDKeq;4=Keq;3DKeq;2=Keq;1
where aLE is a constant. The constant Keq;1 describes the equilibrium of L binding

to the empty receptor R00 and Keq;3 describes the equilibrium of E binding to the

empty receptor R00. The equilibrium constants of L-binding to R0E and E-binding

to RL0 can now be described by

Keq;2 D Keq;1 � aLE and Keq;4 D Keq;3 � aLE: (7.36)

The factor aLE describes the interaction of L and E at the receptor, that is,the change

of the equilibrium ofE andL binding ifL orE are already bound, respectively. For

non-interacting binding processes aLE D 1. Note that the effect of bound L on bound
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E is equal to the effect of bound E to bound L. This imposes strong restrictions on

unidirectional signal transduction. A unidirectional interaction L! E can be real-

ized if kC2 D kC1, k�2 D k�1 (i.e. Keq;2 D Keq;1) and kC4 ¤ kC3, k�4 ¤ k�3
(which in general implies Keq;4 ¤ Keq;3). However, these requirements contra-

dict the Wegscheider condition, since from Keq;2 D Keq;1 it follows aLE D 1,

while Keq;4 ¤ Keq;3 would require aLE ¤ 1. Thus, thermodynamics does not

allow unidirectional interactions between binding processes at the level of equilib-

rium constants. One special case of unidirectional interaction is allowed, though, if

kC4 D kC3 b ¤ kC3 and k�4 D k�3 b ¤ k�3, where b > 0. In this case, the

equilibrium constantsKeq;4 and Keq;3 are equal but the two reactions proceed with

different velocities. In the example system, this would yield a transient influence

of the amount of bound L on the binding velocity of E. In equilibrium both pro-

cesses are independent, i. e. the degree of E-binding does not depend on the degree

of L-binding.

These restrictions also hold for scaffold proteins with higher numbers of binding

domains [5]. Unidirectionality is highly restricted and only feasible in terms of re-

action velocities but not of equilibrium constants. In the following section, we will

show how unidirectional signal transduction can be achieved by making use of futile

cycles that keep the system away from equilibrium.

Unidirectionality and Futile Cycles

The main idea of this chapter is that unidirectionality is an important feature of

signal transducing networks of all kinds because it defines clearly distinguishable

modules, but we have seen above that unidirectionality on the level of equilibrium

constant contradicts the laws of thermodynamics. To achieve a sustained unidirec-

tional signal transduction the system needs to be kept away from the thermodynamic

equilibrium by an external force. We will see how the ATP/ADP gradient can act

as this external force, but it may be any other subsystem that is able to constantly

deliver energy.

Consider the reaction network describing a scaffold protein R with two binding

domains (see Fig. 7.5b). One of the two domains can bind a ligand L and the other

domain can be phosphorylated. This is a fairly simple case, when compared to realist

systems such as receptor tyrosine kinases, but it is sufficient to demonstrate the

general principle.

The scaffold possesses two binding domains, as the one described in Eq. 7.32, but

the reaction network is different. The complete mechanistic model comprises four

phosphorylation reactions, two reactions in which ATP is converted to ADP (r3 and

r4), and two in which free phosphates bind to and dissociate from the domain (r1
and r2; see Fig. 7.5b). The equilibrium of the reactions 3a and 4a typically lies

very much on the product side (more R0P than R00) because the ATP/ADP gradient

drives these reactions. The equilibrium of 3b and 4b typically lies very much on

the educt side (more R00 than R0P) because the high binding energy of the phospho
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group. This reaction network consists of two independent true reaction cycles which

means that one has two Wegscheider conditions, namely Keq;1 � Keq;4a � K�1
eq;2 �

K�1
eq;3a D 1 and Keq;1 � Keq;4b � K�1

eq;2 � K�1
eq;3b

D 1. Assume that ligand binding

is not influenced by the degree of phosphorylation, i. e. kC1 D kC2, k�1 D k�2
and Keq;1 D Keq;2. As a result the thermodynamic constraints imply that both

phosphorylation reactions in which ATP is converted to ADP must have the same

equilibrium constantsKeq;3a D Keq;4a and both reactions in which free phosphates

bind or dissociate also must have the same equilibrium constants Keq;3b D Keq;4b .

Let’s assume that these reactions proceed with different velocities depending on

whether the scaffold has bound L or not, e.g. because L recruits or activates a kinase

or L stabilizes R in a form that is able to recruit or activate a kinase there is no

violation of the Wegscheider conditions since these are two independent cycles.

Hence, the six reactions of the regarded system can be written as

r1 D kC1 � L �R00 � k�1 �RL0
r2 D kC1 � L �R0P � k�1 �RLP

r3a D kC3a � ATP �R00 � k�3a � ADP �R0P
r4a D x � .kC3a � ATP �RL0 � k�3a � ADP �RLP/

r3b D kC3b � P �R00 � k�3b �R0P
r4b D y � .kC3b � P �RL0 � k�3b �RLP/ ; (7.37)

in which x and y are real positive numbers describing the change of velocity for

both forward and backward reactions that is caused by the ligand L. If we take the

reasonable assumption that the concentrations of ATP, ADP and P in the cell are

approximately constant, we can combine the reactions r3a and r3b as well as r4a
and r4b to two ‘virtual’ phosphorylation reactions

r�
3 D .kC3a � ATPC kC3b � P/„ ƒ‚ …

Dk�
C3

�R00 � .k�3a � ADPC k�3b/„ ƒ‚ …
Dk�

�3

�R0P

r�
4 D .x � kC3a � ATPC y � kC3b � P/„ ƒ‚ …

Dk�
C4

�RL0

� .x � k�3a � ADPC y � k�3b/„ ƒ‚ …
Dk�

�4

�RLP: (7.38)

The asterisk indicates that the described reaction is a virtual reaction. The resulting

reduced network structure now only consists of one single cycle as in Fig. 7.5a. The

virtual equilibrium constants of the two reactions r�
3 and r�

4 which we define as the

quotient of k�
Ci and k�

�i

K�
eq;3 D

kC3a � ATPC kC3b � P
k�3a � ADPC k�3b

; K�
eq;4 D

x � kC3a � ATPC y � kC3b � P
x � k�3a � ADPC y � k�3b

(7.39)
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are not identical. These constants describe the steady state of the futile cycles and

not a thermodynamic equilibrium of the system. Importantly, although the reduced

network has the same structure as Fig. 7.5a, the corresponding Wegscheider con-

dition does not need to be fulfilled, and the system can realize an unidirectional

process interaction from the binding of L to the phosphorylation of R. The con-

stant energy input from the ATP/ADP gradient keeps the two stoichiometric cycles

away from equilibrium and thus drives a futile cycle. This mechanism circumvents

the thermodynamic restrictions on unidirectional signal transduction that hold for

systems where the cycles are not driven by an external gradient (cf. Fig. 7.5a).

The considerations above show that unidirectional signal transduction at scaf-

fold proteins is possible and likely under reasonable assumptions. Requirements

are that the modification of a scaffold protein is realized by at least two different

reactions (which corresponds to the existence of a so-called futile cycle), and the

corresponding substrates required for the modification (like ATP, ADP and P) are

approximately constant. This may be one of the reasons for the ubiquitous occur-

rence of binding site phosphorylations in signal transducing networks.

Conclusion

The absence of retroactivity, that is, that the signal transmission is not influenced by

the state of the receiver but only by the emitter, is an important feature of technical

signal transmission systems. The question whether biological signal transduction

networks can and do utilize unidirectional interactions is of special interest, since it

would allow to deploy a battery of analysis methods developed in control theory.

In this chapter we have reviewed different biochemical cases that can lead to

this unidirectionality or absence of retroactivity [23], using the network theory as

a bipartite framework that facilitates the characterization of the different cases. We

have then seen how to define modules so that the number of retroactive connections

are maximized inside the modules and minimized among the modules, and its im-

plementation in an algorithm to automatically find modules from any biochemical

network, if at least its structure is known [24].

We have then focused on signal transduction networks described in a domain-

oriented manner, and have seen how unidirectionality of process interactions allows

to modularize them [8]. Even though there are strong thermodynamic restrictions

for mutual effects among protein domains that limit the possibility of unidirectional

interactions, we have seen that this restriction can be overcome by ATP driven phos-

phorylation of binding sites. It is therefore tempting to speculate that the ubiquitous

occurrence of phosphorylations and futile cycles in signal transduction networks is

evolutionary favourable because this mechanism allows to dissect signal transduc-

tion networks into clearly distinct modules that are unidirectionally coupled.
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Chapter 8

The Impact of Retroactivity on the Behavior
of Biomolecular Systems

A Review of Recent Results

Domitilla Del Vecchio

Abstract Modularity is a powerful property for analyzing the behavior of a system

on the basis of the behavior of its components. According to this property, any

two components maintain their behavior unchanged upon interconnection. Is mod-

ularity a natural property of biomolecular networks? In this review, we summarize

recent theoretical and experimental results that demonstrate that the answer to this

question is negative. Just as in many electrical, mechanical, and hydraulic systems,

impedance-like effects, called retroactivity, arise at the interconnection of biomolec-

ular systems and alter the behavior of connected components. Here, we illustrate the

effects of retroactivity on the static characteristics and on the dynamic input/output

response of biomolecular systems by employing a mixture of control theoretic tools,

mathematical biology, and experimental techniques on reconstituted systems.

Keywords Modularity � Retroactivity � Insulation � Transcriptional networks

� Signaling cascades.

Introduction

A common approach to either designing or analyzing a complex system is to

decompose it into smaller components, or modules, whose functions are well iso-

lated by those of the neighboring components. This approach has been employed

for long time in engineering disciplines, such as electrical engineering and com-

puter science and, more recently, it has been proposed also for the analysis of

biomolecular systems [1,16,24]. Specifically, scientists have been advocating for the

recognition of functional modules, which include signaling systems such as MAPK

cascades and covalent modification cycles, machinery for protein synthesis, and

DNA replication [3, 29]. However, whether modular organization is a general prop-

erty of biomolecular systems is still subject of debate. The need for understanding
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the extent of modularity in biomolecular systems has become particularly pressing

when designing synthetic circuits. In synthetic biology, in fact, a number of sim-

ple functional modules, such as oscillators, toggles, and inverters, are available, but

connecting these ‘modules’ together to engineer complex functionalities is still out

of reach [2, 4, 9, 12].

The fundamental assumption made when analyzing or designing a system modu-

larly is that the behavior of each component does not change upon interconnection.

However, as it occurs in several engineering systems such as electrical, mechanical,

and hydraulic systems, this assumption does not generally hold in biological sys-

tems. Upon interconnection, the behavior of an ‘upstream’ component (the one that

sends the signal) is affected by the presence of the ‘downstream’ component (the

one that receives the signal). Consider for example the oscillator of [4] as a source

generator to be employed to synchronize a number of downstream transcriptional

processes (Fig. 8.1). The oscillator is connected to these downstream processes by

having one of the proteins of the oscillator, say the activator A, serve as a transcrip-

tion factor for the downstream systems by binding to promoter sites in amounts

pTOT . These downstream processes in turn act as a load on the oscillator by using

up its output protein and by thus affecting its dynamics (right-side plot of Fig. 8.1).

We broadly call retroactivity the phenomenon by which the behavior of an upstream

component changes upon connection to a downstream client.
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Fig. 8.1 (Left) Diagram representing the activator-repressor clock of [4]. This clock is composed
of two proteins, A and B, in which A activates its own production and the production of B through
transcriptional activation, while B represses the production of A through transcriptional repression.
The downstream systems represent transcriptional components that take protein A as an input.
(Right) In the case in which A is taken as an input to downstream systems through the binding with
DNA promoter sites in total amount pTOT , the behavior of the clock changes and is disrupted for
high enough load
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These considerations strongly motivate the need for a novel theoretical

framework to formally define and quantify retroactivity effects. In this chapter,

we review a recently proposed framework for studying systems with retroactivity

along with theoretical and experimental findings on the effects of retroactivity on

biomolecular systems [6–8, 18, 51, 52]. We illustrate this framework through a sim-

ple transcriptional system example and we then review theoretical and experimental

results on the effects of retroactivity on the steady state and dynamic response of a

signaling system.

This chapter is organized as follows. In section “Modeling Retroactivity”, we

discuss the concept of retroactivity and its general modeling. In section “Example:

A Transcriptional System”, we illustrate the modeling and quantification of retroac-

tivity on a transcriptional system example. In section “Retroactivity Effects in

Signaling Systems”, we describe in detail the static and dynamic effects of retroac-

tivity in signaling systems along with experimental validation on a reconstituted

system. Section 8.10 concludes the chapter with a short discussion.

Modeling Retroactivity

The principle of studying complex systems through decomposition and intercon-

nection techniques is central in control theory. Approaches based on this gen-

eral principle range from passivity and more generally dissipativity-based analysis

[32, 49, 53, 55, 56], to the derivation of stability properties of large interconnected

systems from the graph-theoretic properties of interconnections and stability of in-

dividual systems [31, 54], to the use of backstepping feedback approaches [28, 43]

based on input to state stability [46]. The work we describe here complements,

but differs from, problems of optimally partitioning large networks into ‘modules’

for which retroactivity-like effects are minimized, which typically employ graph

theoretic and statistical approaches [2,27,30,35,41,44] . The contribution by Saez-

Rodriguez et al. in this book focuses on these problems. In contrast, and similar to

the work in [40], we are not concerned with network topology but with the under-

standing of dynamical behavior. Our ultimate goal is not top–down partitioning or

to necessarily minimize retroactivity, but to formally define and characterize these

effects especially in view of enabling modular assembly of synthetic biomolecular

networks.

The standard model, used in any control and systems theory mathematical and

engineering textbook since the 1950s, e.g. [45], is based on the view of devices

described solely in terms of input channels, output channels, and state (internal, non-

shared) variables. A notable exception to this standard model is found in the work of

Willems [37]. Willems has emphasized the fact that, for many physical situations,

directionality of signals is an artificial, and technically wrong, assumption. While

agreeing with this general point of view, we argue that, in certain circumstances

such as those illustrated in this work, it is appropriate to distinguish between input

and output channels. Thus, instead of blurring the distinction between inputs, states,
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Fig. 8.2 A system model S
with retroactivity. The s and r
signals originate from
retroactivity upon
interconnection

S

x

u y

sr

and outputs, we keep these three distinct entities but augment the model with two

additional signals, namely the retroactivities to inputs and to outputs, respectively

(Fig. 8.2).

Specifically, we add an additional input, called s to the system to model any

change in its dynamics that may occur upon interconnection with a downstream

system. Similarly, we add to a system a signal r as another output to model the

fact that when such a system is connected downstream of another system, it sends

upstream a signal that alters the dynamics of the upstream system. More generally,

we define a system S to have internal state x, two types of inputs (I), and two types

of outputs (O): an input ‘u’ (I), an output ‘y’ (O), a retroactivity to the input ‘r’ (O),

and a retroactivity to the output ‘s’ (I) (Fig. 8.2). We thus represent a system S by

the equations

Px D f .x; u; s/; y D Y.x; u/; r D R.x; u/; (8.1)

in which f; Y;R are arbitrary functions and the signals x; u; s; r; y may be scalars or

vectors. In such a formalism, we define the input/output model of the isolated system

as the one in Eqs. 8.1 without r in which we have also set s D 0. In practice, it is

simpler to model the isolated system first, and only later model the interconnection

mechanism to obtain model (8.1). Let Si be a system with inputs ui and si and with

outputs yi and ri . Let S1 and S2 be two systems with disjoint sets of internal states.

We define the interconnection of an upstream system S1 with a downstream system

S2 by simply setting y1 D u2 and s1 D r2. For interconnecting two systems, we

require that the two systems do not have internal states in common. For example, in

the case of transcriptional components, this would mean that the two transcriptional

components express different protein species; in the case of electrical circuits, this

would mean that the two circuits do not share common electrical parts except for

the ones that establish the interconnection mechanism.

Example: A Transcriptional System

Transcriptional networks are usually viewed as the input/output interconnection of

transcriptional components, which take transcription factors as inputs and produce

transcription factors as outputs [1]. We showed in [7] that the behavior of a tran-

scriptional component in isolation differs from that of the same component when

connected in the network. Specifically, consider a transcriptional component whose
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p

Transcriptional component

Z

x

X

Fig. 8.3 A transcriptional component takes as input u protein concentration Z and gives as output
y protein concentration X

output is connected to downstream processes (Fig. 8.3). The activity of the promoter

controlling gene x depends on the amount of Z bound to the promoter. For any

species X, we denote by X (italics) its concentration. If Z D Z.t/, such an activity

changes with time. We denote it by k.t/. By neglecting the mRNA dynamics, which

are not relevant to the current discussion, we can write the dynamics of X as

dX

dt
D k.t/ � ıX; (8.2)

in which ı is the decay rate of the protein. Equation 8.2 models the isolated sys-

tem dynamics. Now, assume that X drives a downstream transcriptional system by

binding to a promoter p with concentration p (8.3). The reversible binding reaction

of X with p is given by X+p •kon

koff
C, in which C is the complex protein-promoter

and kon and koff are the binding and dissociation rates of the protein X to promoter

site p. Since the promoter is not subject to decay, its total concentration pTOT is

conserved so that we can write pCC D pTOT . Therefore, the new dynamics of X

are governed by the equations

dX

dt
D k.t/ � ıX C koffC � kon.pTOT � C/X

dC

dt
D �koffC C kon.pTOT � C/X; (8.3)

in which s D koffC � kon.pTOT � C/X is the retroactivity to the output. Here, we

can interpret s as being a ‘flow’ between the upstream and the downstream system.

Equations 8.3 model the connected system dynamics. When s D 0, the first of

Eqs. 8.3 reduces to the dynamics of the isolated system given in Eq. 8.2.

The effect of the retroactivity s on the behavior ofX can be very large (Fig. 8.4).

This is undesirable in a number of situations in which we would like an upstream

system to ‘drive’ a downstream one as is the case, for example, when a biological

oscillator has to time a number of downstream processes. We next focus on quan-

tifying the retroactivity to the output s as function of measurable parameters (the

quantification of r is similar).
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Fig. 8.4 The dramatic effect of an interconnection. Simulation results for the system in Eqs. 8.3.
The solid line represents X.t/ originating by Eq. 8.2, while the dotted line represents X.t/ obtained
by Eqs. 8.3. Both transient and permanent behaviors are different. Here, k.t/ D 0:01.1C sin.!t//

with ! D 0:005 in the left side plots and ! D 0 in the right side plots, kon D 10, koff D 10,
ı D 0:01, pTOT D 100, X.0/ D 5. The choice of protein decay rate (in min�1) corresponds to
a half life of about one hour. The frequency of oscillations is chosen to have a period of about 12
times the protein half life in accordance to what is experimentally observed in the synthetic clock
of [4]

Quantification of the Retroactivity to the Output

We quantify the difference between the dynamics of X in the isolated system (8.2)

and the dynamics of X in the connected system (8.3) by establishing conditions on

the biological parameters that make the two dynamics close to each other. This is

achieved by exploiting the difference of time scales between the protein production

and decay processes and the binding/unbinding process to promoter p [1]. By virtue

of this separation of time scales, we can approximate system (8.3) by a one dimen-

sional system describing the evolution ofX on the slow manifold [26]. This reduced

system takes the form d NX
dt
D k.t/� ı NXC Ns; where NX is an approximation ofX and

Ns is an approximation of s, which can be written as Ns D �R. NX/.k.t/ � ı NX/ with

(see [7, 8] for details)

R. NX/ D 1

1C .1C NX=kD/
2

pTOT =kD

; (8.4)

in which kD D koff =kon is the dissociation constant. The expression R. NX/ quan-

tifies the retroactivity to the output after a fast transient when X.t/ � NX.t/.
Retroactivity is thus low if the affinity of the binding sites p is small (kD large)

or if the signal X.t/ is large enough compared to pTOT . Thus, the expression of

R. NX/ provides an operative quantification of retroactivity as a function of the con-

centration of the binding sites pTOT , the dissociation constant kD , and the range of
NX.t/, which are all directly measurable.
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Retroactivity and Noise

It is well known that biological processes are intrinsically stochastic [34, 38, 48].

Since retroactivity alters the dynamics of a biomolecular system, it may also alter

its noise properties. Here, we summarize some results that appeared in [18] about the

interplay between retroactivity and biological noise. One of the traditional metrics

used to assess noise in many electrical engineering applications is the signal-to-

noise ratio. This quantity is usually defined by taking the ratio between the power of

the signal and the power of the noise. Specifically, consider periodic input signals

of the form k.t/ D Nk C Qk.t/, in which Nk is a constant bias and Qk.t/ D A0sin.!t/

is a periodic signal with amplitudeA0 < Nk and frequency !. We assume that all the

information transmitted is contained in the signal Qk.t/. To obtain a signal-to-noise

figure of merit, the power of a signal is taken to be the square of its amplitude. The

power of the noise is quantified by the steady-state variance calculated when the

input is a constant and equals the bias, that is, k.t/ D Nk. Denoting A the amplitude

of a signal and N�2 the steady-state variance, the signal-to-noise ratio is given by

SNR WD A2

N�2 : (8.5)

To calculate the value of N�2, we set k.t/ D Nk and calculate the first and second

order moments from the master equation by employing the linear noise approxima-

tion [11,50]. For calculating the amplitudeA, we use the small signal approximation

and calculate the frequency response (see [18] for details of the derivations). This

leads to the signal-to-noise ratio for X given by

SNR.!/ D �

kı

1

1C !2

ı2 .1CRl /2
A20; (8.6)

in which Rl D kDpTOT

. Nk=ıCkD/
2

and � is the volume. Expression (8.6) shows that for a

signal with non-zero frequency retroactivity leads to a lower value of SNR. This is

mainly due to the fact that while the amplitude of response decreases in the presence

of retroactivity, the steady state variance does not depend on retroactivity. Notice

that the higher the frequency, the more sensitive SNR is to retroactivity.

Retroactivity Effects in Signaling Systems

Cellular signaling systems cover a central role in a cell ability to respond to both

internal and external input stimuli. These stimuli (often time-varying) include the

transient presence of nutrients, hormonal and morphogenic signals, and the peri-

odic excitation of cellular clocks. Numerous signaling systems consist of cycles

of protein covalent modification, such as phosphorylation, and in several cases

multiple cycles of covalent modification are linked to form cascade systems [39,42].
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The importance of these signaling systems has long been realized, and a wealth of

theoretical work has established the potential behaviors of such systems and the

mechanisms by which parameters and circuitry affect system behavior [5,13,14,47].

These milestone works described how covalent modification cycles would behave

in the absence of any loading caused by interconnection with downstream systems,

that is, how the cycle would behave as an isolated signaling module. But, of course

signaling systems are usually connected to the downstream targets they regulate. It

is thus important to determine the effect of retroactivity by these targets on the static

and dynamic response of the upstream system.

Here, we summarize the results of [51, 52], which explicitly quantify the effect

of retroactivity on the shape of the input-output static response of a covalent modi-

fication cycle and on the frequency response.

Model

Covalent modification cycles can be depicted according to the general scheme of

Fig. 8.5, in which a signaling protein is converted from its inactive form W to its

active form W� by enzyme E1 and back to its inactive form by enzyme E2. The

converting enzymes activities can be in turn controlled by an effector through al-

losteric modification [10]. Here, we have denoted the effector by u and have left

unspecified in the diagram whether it is an activator or a repressor of enzyme activ-

ity. The results obtained here are independent of the details of enzyme modification

and we will consider different cases to ease presentation. Usually, the active protein

W� transmits the signal to downstream systems (for example, other signaling tar-

gets or DNA binding sites) by binding with appropriate targets [1,22,23]. However,

some signal transduction systems display downstream targets both for the active and

inactive protein [21,33,36]. Hence, we analyze both cases and consider downstream

targets L for the inactive protein and downstream targets N for the active protein.

Fig. 8.5 Covalent
modification cycle subject to
loading due to downstream
target sites N and L for the
active and inactive protein
species, respectively
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Let C1 denote the complex of E1 with W and C2 be the complex of E2 with W�.

The standard two-step reaction model for the enzymatic reactions is given by

WC E1

a1��*)��
d1

C1

k1�!W � C E1 and W � C E2

a2��*)��
d2

C2

k2�!WC E2

to which we add the binding reaction of W with its downstream targets L in total

amountLT and the binding of W� with downstream targets N in total amountsNT :

WC L
kon��*)��
koff

C and W � CN
Nkon��*)��
Nkoff

NC :

The kinetic equations governing the system are given by

dW

dt
D �a1WE1 C d1C1 C k2C2 � konNW C koffC

dC1

dt
D a1WE1 � .d1 C k1/C1

dW�

dt
D �a2W �E2 C d2C2 C k1C1 � NkonNW� C Nkoff

NC
dC2

dt
D a2W �E2 � .d2 C k2/C2

dC

dt
D konLW � koffC

d NC
dt
D NkonNW� � Nkoff

NC : (8.7)

To this differential equations, we add the algebraic equations expressing the conser-

vation laws for the protein and the enzymes:WT D W CW �CC1CC2CC C NC ,

E�
1T DE1CC1; E�

2T DE2CC2, NT DN C NC ; LT DLCC; in which we have

denoted by E�
1T and E�

2T the total active enzyme amounts. If we assume that the

allosteric effector u acts, for example, as an absolute activator for E2 and a non-

competitive inhibitor for E1, we have that E�
1T D E1T

1Cu=k0
D

and E�
2T D E2T u

uC Nk0
D

, in

which k0
D and Nk0

D are the dissociation constants for the binding of u with E1 and

E2, respectively, andE1T andE2T are the total amounts of enzymes [25]. This spe-

cific choice of allosteric modification does not alter the results that follow and well

represents the experimental system used to test these predictions.

Steady State Effects

In order to quantify the effect of retroactivity on the static input/output characteris-

tics of the system, we solve system (8.7) for the steady state and determine the values

of W � and W as functions of the input u, and the amount of loads LT and NT .
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Letting kD WD koff =kon and NkD WD Nkoff = Nkon and assuming that kD � W and that
NkD � W �, the steady state value of C and NC satisfy

C D �W and NC D ˛W �; with � D LT

kD
and ˛ D NT

NkD
:

Note that in the case in which ˛ D 0, we have that NC D 0 and we obtain as a special

case of our derivations the situation in which the load is applied only on W .

From the conservation law for W in which we have neglected the complexes C1
and C2 (in analogy to what is performed in [13]), we obtain that

WT D W.1C �/CW �.1C ˛/: (8.8)

Further, from setting dC1

dt
D 0 and dC2

dt
D 0, we obtain

C1 D
E�
1Tw

K1 C w
and C2 D

E�
2Tw�

K2 C w� ;

in which we have employed the normalized quantities

w� WD W �

WT
; w WD W

WT
; K1 WD

d1 C k1
a1WT

; K2 WD
d2 C k2
d2WT

:

From the equilibrium equation k1C1D k2C2 and the conservation law 1 D w.1C �/
Cw�.1C ˛/ with

S WD E�
2T k2

E�
1T k1

and Nw� D w�.1C ˛/

we obtain that Nw� satisfies the equation

S D .1 � Nw�/.K2.1C ˛/C Nw�/
Nw�.K1.1C �/C 1 � Nw�/

; (8.9)

in which, we have that S is monotonically increasing with the input u. We have

chosen to study the effects of retroactivity on the steady state value of Nw� as opposed

to consider w� because in the experimental system we will illustrate, only the total

modified proteinW � C NC can be measured.

From expression (8.9), it is apparent that the net effect of a load on the steady

state response is to increase the ‘effective’ normalized Michaelis-Menten constants

K1 and K2 by factors of .1 C �/ and .1 C ˛/, respectively. It is well known, in

turn, that the values of these constants establish the steepness of the steady state

response of the cycle to the input stimulus S and that their relative values estab-

lish the point of half maximal induction [13]. We next mathematically quantify the

steepness, through the response coefficient, and the point of half maximal induction,

called S50.
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Effect of Retroactivity on Response Coefficient and S50 The steepness of the

characteristics and the point of half maximal induction are physiologically relevant

quantities in signaling systems as they determine how linear versus ultrasensitive,

i.e., switch-like, the response to input stimuli is [13, 14]. We thus mathematically

define the steepness and the point of half maximal induction and analytically deter-

mine how they are affected by retroactivity.

Since Nw� is a decreasing function of S , the response coefficient is defined as the

ratio between the value of S corresponding to 10% of the maximal value of Nw�,

denoted S10, and the value of S corresponding to 90% of the maximal value of Nw�,

denoted S90, that is,

R WD S10

S90
:

For a Hill equation with Hill coefficient nH , we have that

R D .81/1=nH ;

that is, R decreases as the Hill coefficient nH increases. Therefore, we can also take

R as a measure of the effective Hill coefficient of a steady state response.

The maximal value of Nw� corresponds to when w D 0 and is obtained from

1 D w.1C �/C w�.1C ˛/ as Nwmax D 1: As a consequence, we have that

R D S10

S90
D 81.K2.1C ˛/C 0:1/.K1.1C �/C 0:1/

.K1.1C �/C 0:9/.K2.1C ˛/C 0:9/
;

which is a monotonically increasing function of ˛ and �. As a consequence, inde-

pendently of where the load is applied, the steepness of the response decreases. For

the case of no load, i.e., ˛ D � D 0, the expression of R reduces to the same ex-

pression obtained by [13], while when both ˛ and � tend to infinity we have that

R D 81, corresponding to Hill coefficient nH D 1. That is, the response becomes

hyperbolic (Michaelis-Menten type of response). In the case in which the load is

applied only on W , that is, ˛ D 0, we obtain the same behavior for R. However,

while with load applied on both W and W � we have that R tends to 81 for large ˛

and � independently of the parameters K1 and K2, when the load is applied to W

only, we have that R D 81K2C0:1
K2C0:9 for � ! 1, which depends on K2 and tends

to 81 only when K2 is sufficiently large.

The expression of the half maximal induction point S50 is given by

S50 D
.K2.1C ˛/C 0:5/
.K1.1C �/C 0:5/

;

which is an increasing function of ˛ and a decreasing function of �. In the case

in which the load is applied only on W , that is, ˛ D 0, we obtain that S50 is a

monotonically decreasing function of the load.
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Fig. 8.6 (Left) Effect of the load on the steady state response of Nw� to S when the load is applied
only to W , that is, ˛ D 0. (Right) Effect of the load on the steady state response of Nw� to S when
the load is applied to both W and W�

These results are summarized in Fig. 8.6. With the load applied to W only, the

effect of the load is mostly to shift the point of half maximal induction to the left.

When the load is applied to both W and W� in comparable amounts, the effect of

the load is mostly on reducing the steepness of the response. Hence, retroactivity

from large enough loads transforms an ultrasensitive response into a more graded

Michaelis-Menten type response.

Finally, we directly study the behavior of the steady state value of Nw� when ˛

and � are varied. We thus solve Eq. 8.9 for Nw�, obtaining as the only root between 0

and 1 the expression

Nw� D .1 � NK2 � S. NK1 C 1//C
p
.1� NK2 � S. NK1 C 1//2 C 4.1� S/ NK2
2.1 � S/ ;

(8.10)

in which we have denoted NK2 WD K2.1C ˛/ and NK1 WD K1.1C �/. By computing

the derivative of this expression with respect to ˛ and �, we have that when the load

is applied to W only the steady state always decreases with the load for all values

of S . By contrast, when the load is applied on both active and inactive species,

the effect of the load depends on the input stimulation. Specifically, the steady state

increases for large input stimulations, while it decreases for small input stimulations.

This is depicted in the left plot of Fig. 8.6.
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Dynamic Effects

To study the effects of retroactivity on the dynamics of the signaling system of

Fig. 8.5, we consider a one-step model for the enzymatic reactions as found, for

example, in [17]. Also, we assume that u is an absolute activator for E1, while it

does not regulate the activity of E2. This substantially simplifies the analysis without

affecting the end result. In this model, we neglect the complexes formed between W

and E1 and between W� and E2:

WC E1

k1�!W � C E1 and W � C E2

k2�!WC E2:

Therefore, the new ODE model describing the covalent modification cycle is

given by

dW�

dt
D k1

E1T u.t/

k0
D C u.t/

.WT �W �/ � k2E2TW �; (8.11)

in which now u.t/ is a time-varying input for our study. We will refer to the ODE

system model (8.11) as the isolated system. For shortening notation, we denote

V1.t/ WD k1 E1T u.t/

k0
D

Cu.t/
and V2 WD k2E2T .

When the covalent modification cycle transmits its signal through W � to the

downstream system, we add to the isolated system model the reversible binding

reaction of W� with downstream target sites denoted p. These sites can either belong

to a substrate that is modified by XB through another covalent modification cycle as

it occurs in the MAPK cascades [39,42], or they can belong to promoter regions on

the DNA if W� is an active transcription factor [1]. We model this additional binding

reaction as W�C p
kon��*)��
koff

C; with pCC D pTOT ; in which C denotes the complex

of W� with p. The conservation law for W thus modifies toWCW �CC D WT . The

new ODE model describing the covalent modification system with its downstream

system is thus given by

dW�

dt
D k1

E1T u.t/

k0
D C u.t/

�
WT �W � � C

�
� k2E2TW �

�konW �.pTOT � C/C koffC

dC

dt
D konW �.pTOT � C/� koffC; (8.12)

which we refer to as the connected system. Retroactivity enters the dynamics of the

covalent modification cycle in two places indicated by the boxes. Specifically, the

term in the small box causes an effect on the steady state response of the system,

which we have analyzed in detail in the previous section, while the term in the large

box does not have any effect on the steady state and it affects the dynamics only.
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In order to precisely quantify how the dynamic response of the system is affected

by retroactivity, we linearize the system about its steady state and compute the trans-

fer function for both the isolated and connected systems. Linearization is a good

approximation of the system dynamics for sufficiently small amplitudes of the input

stimulus. A study on how large the amplitude of the input can be for maintaining a

good approximation can be found in [15].

Isolated System For the isolated system, let .Nu; NW �/ be the equilibrium point and

let Qu.t/ D u.t/ � Nu and QW �.t/ D W �.t/ � NW � denote the variations about the

equilibrium value. The linearized dynamics are given by

PQW � D ˇ Qu � ˛ QW �; (8.13)

in which we have defined

ˇ WD k1.WT � NW �/
E1T k

0
D

.k0
D C Nu/2

; ˛ WD
�
k1

E1T Nu
k0
D C Nu

C k2E2T
�
: (8.14)

Direct integration of system (8.13) starting from zero initial condition and with input

Qu.t/ D 1 leads to the time response to constant input stimuli as

QW �.t/ D ˇ

˛
.1� e�˛t /: (8.15)

The response time, that is, the time the signal takes to rise from 10% of its final

value to 90% of its final value is equal to tresponse D 2=˛: The transfer function from

Qu to QW � is given by T .s/ D ˇ
sC˛ ; in which T .s/ WD QW �.s/=Qu.s/, so that amplitude

and phase lag are given by

A.!/ D
p
T .j!/T .�j!/ D ˇp

!2 C ˛2

�.!/ D arctan

�
Im.T .j!//

Re.T .j!//

�
D arctan.�!=˛/: (8.16)

The frequency bandwidth, corresponding to the value of! such thatA.!/D 1p
2
A.0/,

is given by !bandwidth D ˛:
Connected System For the connected system, let the equilibrium point be given by

.Nu; NW �
c ;
NC/ and the variations about this equilibrium be denoted by Qu.t/ D u.t/� Nu,

QW �.t/ D W � � NW �
c , and QC.t/ D C.t/� NC . The linearized system is thus given by

PQW � D Ň Qu � .˛ C / QW � � .� C �/ QC
PQC D  QW � � � QC ; (8.17)
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in which we have denoted

Ň WD k1.WT � NW �
c � NC/

E1T k
0
D

.k0
D C Nu/2

; � WD k1
E1T Nu
k0
D C Nu

;

 WD kon.pTOT � NC/; � WD kon NW �
c C koff :

The transfer function Tc.s/ WD QW �.s/=Qu.s/ is given by

Tc.s/ D
Ň.s C �/

s2 C s.�C ˛ C /C �˛ C � :

Exploiting the fact that the binding and unbinding process of a protein to binding

sites is usually much faster than covalent modification reactions [10], we set � D
N�=� and  D N=�, in which � � 1 and N and N� are of the same order as k1 and

k2. By using the expressions of N� and N and setting � D 0, we obtain the reduced

transfer function for the connected system as

Tc.s/ D
Ň

s.1C �/C ˛ C ��; with � D pTOTkD

. NW �
c C kD/2

:

Therefore, the response of QW � to a constant input stimulus Qu.t/ D 1 is given by

(computing the inverse Laplace transform of Tc.s/
1
s

)

QW �.t/ D
Ň

˛ C ��
�
1 � e�.˛C��/=.1C�/t

�
: (8.18)

The response time is thus given by tresponse;c D 2
˛

�
1C�

1C�.�=˛/
�
; which is larger than

tresponse for the isolated system as � < ˛. Also, it is monotonically increasing with�:

for � D 0 it is equal to the response time of the isolated system while for �!1 it

tends to 2=� . In turn, � monotonically increases with pTOT and (for kD sufficiently

large) it also increases with 1=kD (the affinity of W� to sites p). For values of kD
close to zero, the value of � is not informative as the linear approximation does not

hold. Furthermore, since Ň < ˇ the amplitude of the response is also reduced for the

connected system. The difference Ň � ˇ is proportional to NC , so that the difference

between the amplitude of the responses increases as pTOT increases and/or kD
decreases. The amplitude and phase lag corresponding to Tc.s/ are given by

Ac.!/ D
p
Tc.j!/Tc.�j!/ D

Ň
p
!2.1C �/2 C .˛ C ��/2

�c.!/ D arctan

�
Im.Tc.j!//

Re.Tc.j!//

�
D arctan

��!.1C �/
˛ C ��

�
; (8.19)

so that the bandwidth of the connected system is given by !bandwidth;c D ˛ 1C�.�=˛/
1C� :

Therefore,!bandwidth;c < !bandwidth, that is, the bandwidth of the connected system is
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Fig. 8.7 Effect of increasing the amount of pTOT on the frequency response of the system. The
parameters are k1 D k2 D 0:01, E1T D 0:075, WT D 600, E2T D 1:36, k0

D D 100, kon D 50,

and koff D 50. The small panel shows simulation results for the input frequency as indicated by
the arrow in the left plots for the value pTOT D 100

strictly smaller than the bandwidth of the isolated system and the connected system

displays a phase lag with respect to the isolated system. This is illustrated in Fig. 8.7.

We thus conclude that the larger the value of � the larger the effect of retroactivity

on the dynamical properties of the cycle, that is, the larger the response time, the

phase lag, and the smaller the frequency bandwidth.

The bandwidth !bandwidth;c of the connected system can be increased by

increasing ˛. One way to increase ˛ is to equally (so not to alter the equilib-

rium of the system) increase the values of both E1T and E2T . The result is that the

behavior of the connected system becomes closer to the one of the isolated system

(Fig. 8.8). In the limit in whichAc.0/ D A.0/, the behavior of the connected system

approaches the one of the isolated system when both E1T and E2T are increased.

That is, the system becomes insulated from retroactivity. This is in accordance with

the principle for insulation based on time-scale separation, according to which faster

system time-scales contribute to better retroactivity attenuation [19]. Note that if Ň
is much smaller than ˇ, that is, Ac.0/� A.0/, the dominant effect of retroactivity

is on the steady state. In fact, increasing the frequency of the input stimulation will

not result in a dramatic decrease of the connected system response compared to the

isolated system response as these two responses are apart from each other already

at zero frequency.
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Fig. 8.8 Increasing the values of the enzymes E1T and E2T increases the bandwidth of the cova-
lent modification cycle. As a result, the response of the connected system becomes closer to the
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nected system behavior, respectively, while the bold solid and bold dashed plots correspond to the
isolated and connected system behavior, respectively, when the modification rates are increased by
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Experimental Results

The prediction that retroactivity makes an ultrasensitive response into a graded one

has been experimentally validated on a covalent modification cycle extracted from

the nitrogen assimilation control system of E. coli and reconstituted in vitro [51].

Here, we briefly summarize these experimental results.

The instance of the covalent modification cycle of Fig. 8.5 employed in the exper-

iments is highlighted in Grey in Fig. 8.9 [10, 20, 33]. This system was reconstituted

in vitro to allow well controlled experimental conditions. Referring to Fig. 8.5, pro-

tein W is the PII signal transduction protein, protein W� is the active (uridylylated)

protein PII-UMP, active enzyme E1 is the UT activity of the UTase/UR bifunctional

enzyme, while the active E2 enzyme is the UR activity of the UTase/UR enzyme.

The allosteric effector u is glutamine, which regulates both UT and UR activities

by binding to a regulatory domain of the UTase/UR. The protein PII has one down-

stream signaling target, NRII.

The PII protein is a homotrimer, and can be uridylylated on each of its subunits

(Fig. 8.10a). Hence, comparing Fig. 8.5 and Fig. 8.10a, we have that the modified
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Fig. 8.9 Experimental
system employed in [51]. The
part used in the experiments
is highlighted in Grey.
Reprinted with permission
from PNAS

Fig. 8.10 Experimental results from [51]. (a and b) Using the trimeric PII protein. (c and d) Using
a monovalent version of the PII protein

protein W� comprises all of the modified forms of PII (P1, P2, and P3 of Fig. 8.10a).

Also, partially modified forms of PII (P1 and P2, 8.10a) can bind to NRII. As a

consequence, we have that the downstream targets L and N are the same and are
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given by the NRII protein. Thus, the use of the trimeric PII protein results in a cycle

with ‘double load’ as depicted in Fig. 8.5, in which both the active and inactive

protein species have downstream targets. In order to study the effects of applying

the load on one side only of the cycle, which is a configuration often found in natural

systems, we employed a monovalent version of the PII protein (Fig. 8.10c), which

is obtained by proper mutation of two PII subunits.

Figure 8.10 illustrates how retroactivity makes an ultrasensitive input/output

static response into a more graded response independently of where the load is ap-

plied. Also, it illustrates how the value of S50 decreases when the load is applied

only on the inactive protein.

Discussion and Conclusion

In this work, we have summarized some recent results that illustrate how retroac-

tivity impacts the behavior of biomolecular systems. Retroactivity by downstream

targets slows down the dynamic response by decreasing the effective bandwidth and

reduces the sensitivity of the steady state input/output characteristics. These effects,

which are more dramatic as the amounts and affinity of downstream targets increase,

indicate that the behavior of a biomolecular system cannot be understood in isola-

tion. This is especially the case in signaling systems, in which covalent modification

cycles have several downstream targets. What is the role of retroactivity in these

systems? Signaling systems have been selected by nature for effective signal trans-

duction. Hence, retroactivity must have a clear evolutionary advantage, or there must

be insulation mechanisms to attenuate undesirable retroactivity effects. From a de-

sign point of view, the results summarized in this chapter indicate that retroactivity

must be taken into account when engineering biomolecular circuits and that suitable

insulation mechanisms should be designed in order to buffer connected components

from each other [6, 7, 19].
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Chapter 9

Modularity, Retroactivity, and Structural
Identification

Eduardo D. Sontag

Abstract Many reverse-engineering techniques in systems biology rely upon data

on steady-state (or dynamic) perturbations – obtained from siRNA, gene knock-

down or overexpression, kinase and phosphatase inhibitors, or other interventions –

in order to understand the interactions between different ‘modules’ in a network.

This paper first reviews one popular such technique, introduced by the author and

collaborators, and also discusses why conclusions drawn from its (mis-)use may be

misleading due to ‘retroactivity’ (impedance or load) effects. A theoretical result

characterizing stoichiometric-induced steady-state retroactivity effects is given for

a class of biochemical networks.

Keywords Retroactivity �Modularity � Reverse engineering

Introduction

The ‘reverse engineering problem’ in systems biology concerns itself with the

discovery of the networks of interactions among the components of biomolecular

networks, including signaling, gene regulatory, and metabolic control networks. The

objective is to map out the direct or ‘local’ interactions among components, which

capture the topology of the functional network, with the ultimate goal of elucidating

the mechanisms underlying observed behavior (phenotype).

Typically, the analysis is based upon data gathered from steady-state perturba-

tion experiments. Perturbations are done to particular gene or signaling components

by means of traditional genetic experiments, RNA interference, hormones, growth

factors, or pharmacological interventions. Observed are steady-state changes in

concentrations of active proteins, mRNA levels, transcription rates, and so forth.

A graph is used to summarize the deduced interactions. For example, if there are
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Fig. 9.1 Cascade and
feedforward architectures x y

u u
x y

two components, labeled A and B , one may perform an up-perturbation in A. If

this leads to an increased value of B , a directed edge A ! B labeled ‘activation’

is introduced. If it leads to a decreased level of B , an edge labeled ‘repression’ is

drawn. If there is no effect on B , no edge is put in. A major difficulty with such

steady-state (or even time-resolved) experiments is that perturbations propagate,

sometimes rapidly, throughout the network, thus causing ‘global’ changes which

cannot be easily distinguished from direct effects. To illustrate this difficulty, con-

sider the two graphs shown in Fig. 9.1 (arrows are supposed to be activating). In

both instances, up-perturbations of the external signal u or of the block labeled x

results in up-perturbations of the block y, but there is no obvious way to distinguish

the two architectures. A major goal in reverse engineering is to unravel the local

interactions among individual nodes from these observed global responses.

The ‘unraveling’, or ‘Modular Response Analysis’ (MRA) method proposed in

[7] and further elaborated upon in [1–3, 12], (see [4, 13] for reviews) provides one

approach to solving this global-to-local problem. The MRA experimental design

compares those steady states which result after performing independent perturba-

tions to each ‘modular component’ of a network. These perturbations might be

genetic or biochemical. For example, in eukaryotes they might be achieved through

the down-regulation of mRNA, and therefore protein, levels by means of RNAi, as

done in [10]. That work employed MRA in order to quantify positive and negative

feedback effects in the Raf/Mek/Erk MAPK network in rat adrenal pheochromo-

cytoma (PC-12) cells; using the algorithms from [12] and [1], the authors of [10]

uncovered connectivity differences depending on whether the cells are stimulated

with epidermal growth factor (EGF) or instead with neuronal growth factor (NGF).

Let us illustrate the underlying idea with the simplest non-trivial example. Sup-

pose that we are faced with the problem of distinguishing between the two possible

architectures schematically shown in Fig. 9.1. In general, components may be de-

scribed by single variables or by many variables. For instance, a gene expression

component might be described at various levels of resolution: by just one vari-

able (resulting protein levels), or by a far more complicated mechanism (including

binding and unbinding of transcription factors, transcription initiation and mRNA

polymerase dynamics, ribosome binding and translation dynamics, etc.). For sim-

plicity, let us discuss a simple model in which each component is described by a

scalar linear system. Thus both possible architectures are special cases of:

Px D �axC bu

Py D cx � dyC pu

where all parameters are positive but otherwise unknown (a; d > 0, so the model

is stable), and the question that we are interested in is that of deciding whether
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p D 0 or p 6D 0. (Obviously, it would be difficult to distinguish a small p 6D 0

from p D 0, if measurements are noisy. We assume for this introductory dis-

cussion that measurements are exact.) The available data are the steady states for

both x and y, for a constant (but unknown) input u, under these three scenar-

ios: (1) a D a0, u D u0; (2) a D a0, u D u1; (3) a D a1, u D u0. Once

again, we emphasize that u and a are not known. All we know is that they have

changed, one at a time, in experiments (2) and (3), which represent a change in

the concentration of u and a change in the degradation rate of x (e.g., due to a

protease concentration being changed) respectively. In general, the steady state, ob-

tained by setting Px D Py D 0, is (for constant u) given by x.1/ D .b=a/u and

y.1/ D .cb=a C p/u=d . Let us write x�u D .b=a0/u1 � .b=a0/u0 D .b=a0/�u,

the difference between the measured steady state of x for experiments (2) and (1),

and the corresponding quantity y�u D .cb=a C p/�u=d for y. Similarly, sub-

tracting the data from experiments (3) and (1) provides the measured quantities

x�a D .1=a1 � 1=a0/bu0 and y�a D .1=a1 � 1=a0/cbu0=d . Thus, we can com-

pute from the data: y�u=x�u � y�a=x�a D a0p=.bd/. If this last number is zero,

then p D 0 (cascade architecture), and if it is nonzero, then p 6D 0 (feedforward

architecture). Our objective of distinguishing between the two structures has been

achieved. (Moreover, we can even recover the numerical value y�a=x�a D c=d .

And, if u0 or u1 were also known, then we would be able to compute b=a0 from

the steady state value of x, and hence we would also obtain the value of p=d , as

.b=a0/ �.a0p=.bd//. Therefore, the relative strengths of all the terms in the equation

for Py have been computed. Note that this is the best that one can do: the actual values

of all three constants can never be obtained from purely steady-state data, because

multiplying all constants by the same number doesn’t affect the steady states.)

The MRA method generalizes the procedure shown for the above example, and

is reviewed in section “Modular Response Analysis” together with an application

and an extension to quasi-steady state data.

The name ‘modular’ arises from the fact that, in MRA, only communicating

intermediaries in-between ‘modules’ are measured. When applying MRA in a mod-

ular fashion, only perturbation data on these communicating signals are collected.

The connectivity strength among a pair of such intermediary signals (such as levels

of activated signaling proteins) is estimated, even if this apparent connectivity is

not due to a ‘directed’ biochemical interaction. In principle, an obvious advantage

of the modular approach is that it can be applied regardless the degree of internal

complexity of the nodes, since ‘hidden’ variables (such as non-activated forms of a

signaling protein) only affect connectivity in an indirect fashion, Thus, functional

interactions among communicating variables can be deduced without requiring de-

tailed knowledge of all the components involved.

Unfortunately, this analysis may be misleading, due to ‘impedance’ or ‘load’

effects. Following work by Saez-Rodriguez and others [9], we generically called

such effects retroactivity in [5]. In this paper, we wish to discuss how stoichiometric

constraints (conservation laws) might lead to erroneous conclusions when using the

MRA methodology. Let us illustrate this phenomenon with one of the simplest pos-

sible examples. Suppose that we want to study a system in which we postulate that
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there are two ‘modules’ involving enzymes X and Y , the ‘active forms’ of which

are the ‘communicating variables’. The active form X is reversibly produced from

an inactive form X0. We assume that Y is formed when X reversibly binds to a

substrate S producing a complex C , which may dissociate into X and S or into X

and Y (this is a standard Michaelis-Menten type of reaction). We also assume that

Y can revert to S in one step; a more complicated model could be used as well,

by modeling the phosphotase action in a Michaelis-Menten form, or by modeling

mechanistically its binding and unbinding to Y, but the principle is the same.

The network of reactions is as follows:

X0
1�*)�
1

X ; X C S
1=2��*)��
1

C
1=2��! X C Y ; Y

˛=2��! S

and we consider experiments in which X0.0/ D 3;X.0/ D 0;C.0/ D Y.0/ D 0, and

S.0/ D ˇ, and either ˛ or ˇ is to be perturbed experimentally. We think of X0 and X

as constituting the first ‘module’ and S;C;Y as the second one. The two parameters

˛; ˇ are usually viewed as affecting only the second module. The unique positive

steady state .X; S;C;Y/ is then obtained by solving:

2X C C D 3; C D XS; C D ˛Y; SC CC Y D ˇ

(and X0 D X).

We will consider perturbations around ˛D 1 and ˇD 3. For these nominal pa-

rameter values, .X; S;C;Y/ D .1; 1; 1; 1/. Taking implicit derivatives with respect

to ˛, evaluating at X D S D C D Y D 1, ˛ D 1, ˇ D 3, and denoting x D @X=@˛,

u D @S=@˛, v D @C=@˛, y D @Y=@˛, we have that:

2x C v D 0; v D x C u; v D 1C y; uC vC y D 0

which solves to:

x D �1=7; u D �3x; v D �2x; y D 5x

and thus ‘dX=dY’ computed as @X=@˛
@Y=@˛

equals 1=5 > 0.

The MRA method, or any other sensitivity-based approach, applied to the phe-

nomenological model in which only active X and Y are viewed as ‘communicating

intermediaries’ will lead us to include an edge Y ! X labeled ‘activating’. But such

an edge does not represent a true feedback effect: for example, it is not possible to

delete this edge with a ‘mutation’ in the system that does not affect the forward

edge. The edge merely reflects a ‘loading’ or impedance effect. In fact, the situation

is even more confusing. Taking implicit derivatives with respect to ˇ, evaluating at

X D S D C D Y D 1, ˛ D 1, ˇ D 3, and denoting x D @X=@̌ , u D @S=@̌ ,

v D @C=@̌ , y D @Y=@̌ , we now have that:

2x C v D 0; v D x C u; v D y; uC vC y D 1
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which solves to:

x D �1=7; u D �3x; v D �2x; y D �2x

and thus ‘dX=dY’ computed as @X=@ˇ
@Y=@ˇ

now equals �1=2 < 0. Now the (false) effect

is inhibition. (The intuition is that when we increase ˛, the substrate for X increases,

sequestering more of X, and also Y is smaller. If instead we over-express S, then

both X is sequestered more and Y is larger. But intuition is not enough: for some

parameters, dX=dY < 0 for both experiments.)

Experimentally, it is often the case that one measures X C C and Y, instead of X

and Y, so that one would be interested in the relative variations of Ox D xC v and y.

Since 2xC v D 0, it follows that Ox D �x. Thus, d.XCC/=dY D �dX=dY, so the

signs are reversed, but are, again, ambiguous.

Of course, there is a simple explanation for the problem: the parameter ˛ affects

the differential equation forX , and the variables S and C in fact enter that differential

equation. Thus, the conditions for applicability of MRA have been violated. The

point, however, is that a naive application of sensitivity analysis (as usually done

in practice) that does not account for these subtle dependencies is wrong. One way

to avoid this potential pitfall is to insure that the postulated mechanism (without

additional feedback loops) does not exhibit such ‘load’ effects. We will present an

algorithm to detect such effects (at steady state).

Modular Response Analysis

Precise Problem Formulation

We consider systems

Px D f .x; p/
where x D .x1; : : : ; xn/ is the state and p D .p1; : : : ; pm/ is a vector of parameters.

Parameters can be manipulated, but, once changed, they remain constant for the

duration of the experiment. We will assume that m � n. In biological applications,

the variables xi might correspond to the levels of protein products corresponding to

n genes in a network, and the parameters to translation rates, controlled by RNAi.

Another example would be that in which the parameters represent total levels of

proteins, whose half-lives are long compared to the time scale of the processes (such

as phosphorylation modifications of these proteins in a signaling pathway) described

by the variables xi . Yet another example would be one in which the parameters

represent concentrations of enzymes that control the reactions, and whose turnover

is slow. The goal is to obtain, for each pair of variables xi and xj , the relative signs

and magnitudes of the partial derivatives @fi

@xj
; which quantify the direct effects of

each variable xj upon each variable xi . The entries of @fi=@xj of the Jacobian F

of f with respect to x are functions of x and p. The steady-state version of MRA
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attempts to estimate this Jacobian when x D Nx is an ‘unperturbed’ steady state

attained when the vector of parameters has an ‘unperturbed’ value p D Np. The

steady-state condition means that f . Nx; Np/ D 0. Ideally, one would want to find the

matrix F , since this matrix completely describes the influence of each variable xj
upon the rate of change of each other variable xi . Unfortunately, such an objective is

impossible to achieve from only steady-state data, because, for any parameter vector

p and associated steady-state x, f .x; p/ D 0 implies that ƒf.x; p/ D 0, for any

diagonal matrixƒD diag .�1; : : : ; �n/. In other words, the best that one could hope

for is for steady state data to uniquely determine each of the rows

Fi D .Fi1; : : : ; Fin/ ; i D 1; : : : ; n

of F only up to a scalar multiple. For example, if we impose the realistic condition

that Fi i 6D 0 for every i (these diagonal Jacobian terms typically represent degrada-

tion and/or dilution effects, and are in fact negative), one could hope to have enough

data to estimate the ratios aij =ai i for each i 6D j . Note that Fi is the same as the

gradient rfi of the i th coordinate fi of f , evaluated at steady states.

The critical assumption for MRA, and indeed the main point of [7,8,12], is that,

while one may not know the detailed form of the vector field f , often one does

know which parameters pj directly affect which variables xi . For example, xi may

be the level of activity of a particular protein, and pi might be the total amount

(active plus inactive) of that particular protein; in that case, we might postulate that

pi only directly affects xi , and only indirectly affects the remaining variables.

Under the above assumptions, the steady-state MRA experimental design con-

sists of the following steps:

1. Measure a steady state Nx corresponding to the unperturbed vector of parame-

ters Np;
2. Separately perform a perturbation to each entry of Np, and measure a new steady

state.

The ‘perturbations’ are assumed to be small, in the sense that the theoretical analysis

will be based on the computation of derivatives. Under mild technical conditions,

this means that a perturbed steady state can be found near Nx. Note that there are

mC 1 experiments, and n numbers (coordinates of the corresponding steady state)

are measured in each. In practice, of course, this protocol is repeated several times,

so as to average out noise and obtain error estimates, as we discuss later. For our

theoretical analysis, however, we assume ideal, noise-free measurements, and so we

may assume that each perturbation is done only once.

Using these data (and assuming that a certain independence condition, which

we review later, is satisfied), it is possible to calculate, at least in the ideal noise-

free case, the Jacobian of f , evaluated at . Nx; Np/, except for the unavoidable scalar

multiplicative factor uncertainty on each row.

The obtained results typically look as shown in Fig. 9.2, which is reproduced

from [10]. The authors of that paper used MRA on their experimental data in order

to infer positive and negative feedback effects in the Raf/Mek/Erk MAPK network
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Fig. 9.2 Three reconstructed local interaction maps, in MRA experiments from [10]. Topologies
derived from data obtained after stimulation by EGF (left panel, 50) or NGF (middle panel, 50, and
right panel, 150)

in PC-12 cells, employing perturbations in which total mRNA, and thus protein,

levels are down-regulated by means of RNAi. The numbers in the arrows in Fig. 9.2

have been normalized to �1’s in the diagonal of the Jacobian.

Mathematical Details

We assume given a parameter vector Np and state Nx such that f . Nx; Np/ D 0 and so

that the following generic condition holds for the Jacobian of f : detF. Nx; Np/ D
det @f

@x
. Nx; Np/ 6D 0. Therefore, we may apply the implicit function theorem and

conclude the existence of a mapping ', defined on a neighborhood of Np, with the

property that, for each row i ,

fi .'.p/; p/ D 0 for all p � Np; (9.1)

and '. Np/ D Nx (and, in fact, x D '.p/ is the unique state x near Nx such that

f .x; p/ D 0).

We next discuss how one reconstructs the gradient rfi . Nx; Np/, up to a constant

multiple. (The index i is fixed from now on, and the procedure must be repeated

for each row fi .) We do this under the assumption that it is possible to apply n � 1
independent parameter perturbations. Mathematically, the assumption is that there

are n � 1 indices j1; j2; : : : ; jn�1 with the following two properties:

(a) fi does not depend directly on anypj : @fi=@pj � 0, for j 2 fj1; j2; : : : ; jn�1g,
and

(b) the vectors vj D .@'=@pj /. Np/, for these j ’s, are linearly independent.

Assumption (a) is structural, and is key to the method and nontrivial, but assump-

tion (b) is a weaker genericity assumption.

We then have, taking total derivatives in (9.1):

rfi . Nx; Np/ vj D 0; j 2 fj1; j2; : : : ; jn�1g:
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Thus, the vector rfi . Nx; Np/ which we wish to estimate, and which we will denote

simply as Fi , is known to be orthogonal to the n� 1 dimensional subspace spanned

by fv1; : : : ; vn�1g. Therefore, it is uniquely determined, up to multiplication by a

positive scalar. The row vector Fi satisfies

Fi † D 0 (9.2)

where† is defined as the n�.n�1/ matrix whose columns are the vi ’s. Generically,

we assume that there is no degeneracy, and the rank of † is n � 1. Thus, Fi can be

computed by using Gaussian elimination, as any vector which is orthogonal to the

span of the columns of†. Another way to phrase this is to say that Fi is in the (one-

dimensional) left nullspace of the matrix †. Of course, the sensitivities represented

by the vectors vi (entries of the matrix†, or†# in the noisy case) cannot be directly

obtained from typical experimental data. However, approximating the vectors vj
by finite differences, one has that rfi . Nx; Np/ is approximately orthogonal to these

differences as well.

Handling Noise We next briefly discuss how to modify the algorithm to account for

repeated but noisy measurements. In principle, such noise may be due to combina-

tions of internal sources, such as stochasticity in gene expression, external sources

affecting the process being studied, or measurement errors. Our discussion is tai-

lored to measurement noise, although in an approximate way may apply to internal

noise; however, the effect of internal noise on MRA has not been studied in any

detail.

In practice, one would estimate not merely the results of just n � 1 perturba-

tion experiments, but many repetitions, collecting the data into a matrix †# whose

columns are derived from the different experiments. We will think of each column

of†# as having the form vCe, where v is a vector .@'=@pj /. Np/, for some parameter

pj for which fi does not depend directly on pj , and where e is an ‘error’ vector. In

matrix notation, †# D †C E , where E denotes an error matrix. Note that Eq. 9.2

implies that† has rank n�1. On the other hand, because of noise in measurements,

†# will have full rank n, which means that there is no possible nonzero solution Fi
to Eq. 9.2 with the data matrix†# used in place of the (unknown)†. So, we proceed

as follows. Assuming that the signal to noise ratio is not too large, the experimental

matrix†# should be close to the ideal (noise-free) matrix,†. The best least-squares

estimate of †, in the sense of minimization of the norm of E , is obtained by a

singular value decomposition†# D UMV T : the matrix † of rank n � 1 for which

kEk is minimized is † D UMn�1V T , where Mn�1 is the matrix obtained from

M by setting the smallest singular value �n to zero. We now replace Eq. 9.2 by

Fi†
# D 0, which, because V is nonsingular, is the same as FiUMn�1 D 0. Under

the generic assumption that �1; : : : ; �n�1 are nonzero, this means that FiU D ˛eTn ,

where ˛ is a scalar and eTn D .0; 0; : : : ; 0; 1/. We then conclude that, up to a con-

stant multiple, F Ti D Uen is the right singular vector corresponding to the smallest

singular value �n.
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This procedure can also be interpreted as follows (see [1] for details). If we

normalizeFi to have its i th entry as ‘�1’ (in other words, we normalize the diagonal

of the Jacobian to�1’s), then the equationFi†
# D 0 can also be written as ‘Az D b’

where z represents the unknown n � 1 remaining entries of Fi , b is the i th column

of †#, and A is the matrix in which this column has been removed from †#. The

estimation method outlined above is the ‘total least squares’ or ‘errors in variables’

procedure. Statistically, the method is justified if the elements of the noise matrix

E are independent and identically distributed normal (Gaussian) random variables.

If these entries are normal and independent but have different variances, then one

must modify the above procedure to add an appropriate weighting, but in the general

non-Gaussian case nonlinear SVD techniques are required.

Modular Approach Let us suppose that the entire network consists of an inter-

connection of n subsystems or ‘modules’, each of which is described by a set of

differential equations such as:

Pxj D gj .yj ; x1; : : : ; xn; p1; : : : ; pm/; j D 1; : : : ; n
Pyj D Gj .yj ; x1; : : : ; xn; p1; : : : ; pm/; j D 1; : : : ; n;

where the variables xj represent ‘communicating’ or ‘connecting’ intermediaries of

module j that transmit information to other modules, whereas the vector variables

yj represent chemical species that interact within module j . Each vector yj has

dimension `j . The integers `j , j D 1; : : : ; n are in general different for each of

the n modules, and they represent one less than the number of chemical species

in the j th module respectively. Observe that, for each j , the rate of change of the

communicating variable depends only on the remaining communicating variables

xi , i 6D j , and on the variables yj in its own block, but does not directly depend on

the internal variables of other blocks. In that sense, we think of the variables yj as

‘hidden’ (except from the communicating variable in the same block).

We will assume, for each fixed module, that the Jacobian of Gj with respect to

the vector variable yj , evaluated at the steady state corresponding to Np (assumed to

exist, as before) is nonsingular. The Implicit Mapping Theorem then implies that

one may, in a neighborhood of this steady state, solve Gj .yj ; x; p/ D 0 (x denotes

the vector x1; : : : ; xn, and similarly for p) for the vector variable yj , as a function

of x; p, the solution being given locally by a function yj DMj .x; p/: Those steady

states that are obtained by small perturbations of Np are the same as the steady states

of the ‘virtual’ system Pxj D hj .x1; : : : ; xn; p1; : : : ; pm/ D gj .Mj .x; p/; x; p/,

j D 1; : : : ; n. From here on, the analysis then proceeds as before, using the hj ’s

instead of the fj ’s. A generalization to the case of more than one communicating

intermediate in a module, namely a vector .xj;1; : : : ; xj;kj
/, is easy.

Using Quasi-Steady State Data An example of the experimental data used to de-

rive the diagrams in Fig. 9.2 is provided by Fig. 9.3, which shows the level of active

(doubly phosphorylated) Erk1/2 when PC-12 cells have been stimulated by EGF and

NGF. (The Figure shows only responses in the unperturbed case. Similar plots, not

shown, can be derived from the data for the perturbation experiments given in [10].)
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Fig. 9.3 Active form of Erk1/2, in MRA experiments from [10]. Data shown only for unperturbed
case

The response to NGF stimulation allows the application of the steady-state MRA

method, and leads to the results shown in the right-most panel in Fig. 9.2.

However, the plots in Fig. 9.3 indicate that, in certain problems, steady-state data

cannot be expected to provide enough information, even for only finding the Ja-

cobian rows up to multiplicative factors. Such a situation occurs when the system

adapts to perturbations. In Fig. 9.3, notice that the steady state response to EGF

stimulation is (near) zero (this holds for perturbed parameters as well, not shown).

Thus, measuring steady-state level of activity of Erk1/2 after parameter perturba-

tions, in the EGF-stimulated cells, will not provide nontrivial information. One

needs more than steady-state data.

A variant of MRA, which allows for the use of general non-steady-state, time-

series data was developed in [12]. However, that method requires one to compute

second-order time derivatives, and hence is especially hard to apply when time mea-

surements are spaced far apart and/or are noisy. In addition, as shown for 50 and

150 NGF stimulation by the middle and rightmost panels in Fig. 9.2, the relative

strengths of functional interactions may change over time, so that a time-varying

Jacobian may not be very informative from a biological standpoint. An appealing

intermediate possibility is to use quasi-steady state data, meaning that one employs

data collected at those times at which a variable has been observed to attain a lo-

cal maximum (peak of activity) or a local minimum. Indeed, this is the approach

taken in [10], which, for EGF stimulation, measured network responses at the time

of peak Erk activity (approximately 5 min), and not at steady state. The left-most

and middle panels in Fig. 9.2 represent, respectively, the networks reconstructed

in [10] when using quasi steady-state data (at approximately 5 min) for EGF and

NGF stimulation.

We next describe the extension to quasi-steady state MRA. We consider the fol-

lowing scenario. For any fixed variable, let us say the i th component xi of x, we
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consider some time instant Nti at which Pxi .t/ is zero. Under the same independence

hypothesis as in the steady-state case, plus the non-degeneracy assumption that the

second time derivative Rxi .Nti / is not zero (so that we have a true local minimum or

local maximum, but not an inflection point), we show here that the MRA approach

applies in exactly the same manner as in the steady-state case. Specifically, the i th

row of the Jacobian of f , evaluated at the vector . Nx; Np/, is recovered up to a constant

multiple, where Nx D x.Nti / is the full state x at time Nti . The main difference with the

steady-state case is that different rows of f are estimated at different pairs . Nx; Np/,
since the considered times Nti at which each individual Pxi .t/ vanishes are in general

different for different indices i , and so the state Nx is different for different i ’s.

We fix an index i 2 f1; : : : ; ng, and an initial condition x.0/, and assume that

the solution x.t/ with this initial condition and a given parameter vector Np has the

property that, for some time Nt D Nti , we have that both Pxi .Nt/ D 0 and Rxi .Nt/ 6D 0. At

the instant t D Nt , xi achieves a local minimum or a local maximum as a function

of t . We describe the reconstruction of the i th row of the Jacobian of f , which that

is, the gradient rfi , where fi is the i th coordinate of f , evaluated at x D Nx and

p D Np, where Nx D x.Nt /.
To emphasize the dependence of the solution on the parameters (the initial condi-

tion x.0/ will remain fixed), we will denote the solution of the differential equation

Px D f .x; p/ by x.t; p/. The function x.t; p/ is jointly continuously differentiable

in x and p, if the vector field f is continuously differentiable. Note that, with this

notation, the left-hand side of the differential equation can also be written as @x=@t ,

and that x.Nt ; Np/ D Nx.

Consider ˛.t; p/ D @xi

@t
.t; p/ D fi .x.t; p/; p/: Thus,

@˛

@t
.t; p/ D @2xi

@t2
.t; p/ D rfi .x.t; p/; p/ f .x.t; p/; p/

and ˛.Nt ; Np/ D 0. The assumption that Rxi .Nt / 6D 0 when p D Np means that
@˛
@t
.Nt ; Np/ 6D 0. Therefore, we may apply the implicit function theorem and conclude

the existence of a mapping � , defined on a neighborhood of Np, with the property

that ˛.�.p/; p/ D 0 for p � Np and �. Np/ D Nt (and, in fact, t D �.p/ is the unique

value of t near Nt such that .@xi=@t/.t; p/ D ˛.t; p/ D 0). Finally, we define, also

in a neighborhood of Np, the differentiable function '.p/ D x.�.p/; p/ and note

that '. Np/ D Nx. Observe that, from the definition of ˛, we have that Eq. 9.1 holds,

exactly as in the steady-state case. From here, the reconstruction of rfi . Nx; Np/ up

to a constant multiple proceeds as in the steady-state case, again under the assump-

tion that it is possible to apply n � 1 independent parameter perturbations. A noise

analysis similar to that in the steady state case can be done here. However, there are

now many more potential sources of numerical and experimental error, since mea-

surements at different times are involved. In addition, internal (thermal) noise may

introduce additional error, since, in the quasi-steady state case, the state probabil-

ity distributions (solutions of the Chemical Master Equation) have not converged to

steady state.
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Retroactivity at Steady States

In this section, we analyze the retroactivity phenomenon of interconnections at

steady states. As discussed in the introduction, such an analysis is required in order

to understand the possible pitfalls of MRA. We will not define the term ‘retroac-

tivity’ as such, but instead use it only informally; the results to be given provide

a precise content to the term under slightly different contexts. The main question

is, in any event, to understand what is the relation between the steady states of in-

dividual systems (described by chemical reactions) and the steady states of their

interconnection.

Intuitively, one expects that retroactivity at steady state arises only when there

are more conservation laws imposed by an interconnection, in addition to those

that hold for each of the interconnected systems separately. Making this intuition

precise is not completely trivial. In fact, unless certain properties are imposed on

interconnections, the intuition is not even correct.

Our main results, Theorems 9.5 and 9.7, give sufficient conditions for retroac-

tivity to exist or not, respectively. Neither is necessary. However, we will define

a ‘consistency’ property for interconnections, under which Theorems 9.5 and 9.7

constitute a dichotomy.

See the Appendix for basic notations from chemical network theory. From now

on, we will assume that the vector S of species hasN D nCm components, which

we partition into two vectors x 2 R
n and z 2 R

m: S D .x0; z0/0 (we use primes

to indicate transpose). Corresponding to these coordinates, the reaction vector is

partitioned into two vectors R1.x/ and R2.x; z/ of dimensions r1 and r2 D r � r1
respectively: R.x; z/ D .R1.x/

0; R2.x; z/0/0. We also assume that, in terms of this

partition, the stoichiometry matrix looks as follows:

� D
�
P

Q

�
D

�
A B

0 C

�

where P 2 R
n�r , Q 2 R

m�r , A 2 R
n�r1 , B 2 R

n�r2 , C 2 R
m�r2 . (In some

contexts, it will be convenient to use the ‘.P;Q/’ form, while for other contexts

the ‘.A;B; C /’ form will be more useful.) The equations for the system take the

following partitioned form:

Px D AR1.x/ C BR2.x; z/

Pz D CR2.x; z/

When there are no reactions involving x alone, we write AD 0, thought of as an

n� 1 matrix. Observe that, of course, the actual reactions entering x and z need not

be the same, since B and C may multiply different elements of the vector R2.x; z/

by zero coefficients.

We think of the overall system as an interconnection of the ‘upstream’ subsystem

described by the x-variables, that feeds a signal to the ‘downstream’ subsystem

described by the z variables. The ‘x’ appearing in CR2.x; z/ is seen, in that sense,
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as an input signal to the second system. The role of BR2.x; z/ is different. This

term represents the ‘retroactivity to the output’, denoted by the letter ‘r’ in [5],

and is interpreted as a ‘load’ effect that arises due to the physical interconnection.

Of course, these interpretations are subjective, and partitioning a system into an

interconnection can be done in non-unique ways. However, the questions to be posed

depend on one such partition.

In this context, we call the system Px D AR1.x/ the isolated system, and the full

system PS D�R.S/ the interconnected system. We use the notation �1.x/ for the

stoichiometry class of a state x of the isolated system:

�1.x/ D .x C�1/
\

R
n
�0 ;

where�1 is the span of the columns of A.

Example 9.1. Our first example is this network:

X0
k1�*)�
k2

X ; X C S
k3�*)�
k4

C
k5�! X C Y ; Y

k6�! S

which represents the interaction of five species: an kinase which exists in inactive

(X0) or active (X, typically phosphorylated) form, a substrate S for the active kinase,

a complex C that is a dimmer of X and S, and a ‘product’ Y of the enzymatic reaction.

(For simplicity, we assume that the reverse transformation of Y back to S happens at

a constant rate; more complicated models can be studied in exactly the same way.)

We wish to think of this system of chemical reactions as consisting of the up-

stream system described by the vector x D .X0;X/
0 which drives the downstream

system described by the vector z D .S;C;Y/0. Thus, with n D 2, m D 3, r1 D 2,

and r2 D 3, we take, using mass-action kinetics, R1.x/ D .k1X0; k2X/0 and

R2.x; z/ D .k3XS; k4C; k5C; k6Y/. Note that

A D
� �1 1

1 �1

�
; B D

�
0 0 0 0

�1 1 1 0

�

C D

0
@
�1 1 0 1

1 �1 �1 0

0 0 1 1

1
A :

There are conservation laws in this system which tie together the isolated (x) system

to the downstream (z) system, and one may expect that retroactivity effects appear.

Indeed, this system will satisfy the sufficient condition for retroactivity given in

Theorem 9.5 below. �

Example 9.2. Consider these reactions:

1
u�! X ; X

ı�! 0 ; X C P
k1�*)�
k2

C:
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Then, with x D X and z D .P; C /0, and listing reactions in the obvious order:

A D 
 1 �1
�
; B D 
 �1 1

�
; C D

� �1 1

1 �1

�
:

Because of the production and/or decay of X , there are no conservation laws tying

together theX and the P;C systems, and there is no retroactivity effect. Indeed this

system will satisfy the sufficient condition in Theorem 9.7 for non-retroactivity. �

Example 9.3. Consider the following reaction:

X
k1�! Z ; Z

k2�! 0

with x D X and z D Z. Here B D .�1 0/ and C D .1 � 1/, and A D 0. This

example is one in which there are no conservation laws whatsoever, yet retroactivity

holds. Neither Theorem 9.5 nor Theorem 9.7 applies to this example, showing the

gap between the conditions. However, this example is somewhat pathological, as it

represents an ‘inconsistent’ interconnection in the sense defined below. �

Main Results Consider the following property:

rank

�
P

Q

�
D rankP C rankQ .�/

Remark 1. Since the weak inequality ‘�’ is always true, the negation of (*) is equiv-

alent to:

rank

�
P

Q

�
< rankP C rankQ . 6 �/

or, equivalently, the requirement that the row spaces of P and Q have a nonzero

intersection. �

If property . 6 �/ holds, then there is retroactivity at steady state. The precise state-

ment is as follows:

Lemma 9.4. Suppose that Property .�/ does not hold. Then, for each positive state
NS D . Nx0; Nz0/0 of the interconnected system, there exists a state S0 D .x0

0; z
0
0/

0 such

that

�.S0/ D �. NS/ but �1.x0/ 6D �1. Nx/ :
Moreover, S0 can be picked arbitrarily close to NS .

Proof. Suppose that . 6 �/ holds, and pick any positive state NS . By . 6 �/, there is some

nonzero row vector � which is in the row spaces of P andQ, that is to say, there are

two row vectors �0 and �0 such that � D �0P D �0Q 6D 0. Replacing �0 by ��0,

we will assume that �0P D ��0Q 6D 0. Let r be any vector such that �0P r 6D 0

(for example, one may pick r D P 0�0
0), and let u WD Pr and v WD Qr. Let, as earlier,

… WD �?. Note that, for each � D .�; �/ 2 …, �P C �Q D 0, by definition of…,
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and therefore also �uC�v D .�PC�Q/r D 0. In particular, .�0; �0/ 2 … satisfies

that �0u D �0Pr 6D 0 and also �0v D �0Qr D ��0Pr 6D 0. Since P D .A B/ and

Q D .0 C /, every element .�; �/ 2 … has the property that, in particular, �A D 0.

Notice that one could pick u and v as close to zero as wanted (multiplying, if

necessary, u and v by a common small positive factor). So, without loss of generality,

we assume that both x0 WD Nx C u and z0 WD Nz C v are non-negative, and write

S0 WD .x0
0; z

0
0/. We claim that S0 and NS are in the same stoichiometry class. Indeed,

for any .�; �/ 2 …: � NxC �Nz D � NxC �NzC 0 D � NxC �NzC�uC �v D �. NxC u/C
�.NzC v/ D �x0 C �z0 :

Finally, we claim that x0 and Nx are not in the same stoichiometry class for the

isolated system. Since�0A D 0,�0 is a conservation law for the isolated system. So

it will be enough to show that�0 Nx 6D �0�. Indeed,�0 Nx D �0.x0�u/ D �0���0u,

and �0u 6D 0. �

Lemma 9.4 implies a steady-state retroactivity effect, in the following sense. Sup-

pose that NS is an attractor for points near it and in �. NS/. If x0 is taken as the initial

state of a trajectory x.t/ for the isolated system, then every limit point � of this tra-

jectory is in�1.x0/. On the other hand, if the composite system is initialized at this

same state x0 for the x-subsystem, and at z0 for the z-subsystem, then the ensuing

trajectory converges to the steady state NS , with x-component Nx. But � 6D Nx, because

Nx 62 �1.x0/. The following result formalizes this fact.

Theorem 9.5. Suppose that there is some positive steady state NS D . Nx0; Nz0/0 of the

interconnected system which is a local attractor relative to its stoichiometry class. If

Property .�/ is false, then there exist x0 and z0 such that, with the initial condition

S0 D .x0
0; z

0
0/

0:

1. '.t; S0/! NS as t !C1, but

2. for the solution x.t/ of the isolated system Px D AR1.x/ with x.0/ D x0, Nx 62
clos fx.t/; t � 0g.

Proof. We use Lemma 9.4. Let S0 be as there. Since S0 can be picked arbitrarily

close to NS and in �.S/, we may assume that S0 belongs to the domain of attraction

of the steady state NS . Property (1) in the Theorem statement is therefore satisfied.

Finally, we consider the solution x.t/ of the isolated system Px D AR1.x/ with

initial condition x.0/ D x0, and pick any state � 2 clos fx.t/; t � 0g. As �0.�/ D
�0.x0/ 6D �0. Nx/, it follows that � 6D Nx. �

Next, consider the following property:

rank.A B/ D rankA .��/

i.e., the column space of B is included in that of A. Note that if this condition holds,

then .�/ holds too.

Lemma 9.6. Suppose that .��/ holds. Pick any two states NS D . Nx0; Nz0/0 and S0 D
.x0
0; z

0
0/

0 of the interconnected system. Then

�. NS/ D �.S0/ ) �1. Nx/ D �1.x0/ : (9.3)



198 E.D. Sontag

Proof. As NS � S0 belongs to the column space � of � , in particular, Nx � x0 is in

the column space of .A B/. Since the latter equals the column space of A, it follows

that Nx � x0 is in the column space of A, which means that x0 and Nx are in the same

stoichiometry class in the isolated system. �

Lemma 9.4 implies a steady-state retroactivity effect, in the following sense. Sup-

pose that there is a unique steady state in each stoichiometry class in the isolated

system, and that this steady state is a global attractor relative to its class. Then, ev-

ery omega-limit point of the composite system has the property that its x-component

equals this same steady state of the isolated system. The following result formalizes

this discussion.

Theorem 9.7. Suppose that .��/ holds. For any initial condition S0 D .x0
0; z

0
0/

0,
if a state NS D . Nx0; Nz0/0 of the interconnected system is in the omega-limit set of S0,

then x0 and Nx are in the same stoichiometry class relative to the isolated system.

Proof. If NS D . Nx0; Nz0/0 is in the omega-limit set of S0 then �.S0/ D �. NS/. The

conclusion thus follows from Lemma 9.6. �

There is a gap between the negation of Property .�/ in Theorem 9.5 and Property

.��/ in Theorem 9.7. In order to bridge this gap, we introduce the following

property:

kerC � kerB .C/

which we call consistency.

An interpretation of property .C/ is as follows. Suppose that S D . Nx0; Nz0/0 is a

steady state of the interconnected system. That is to say, AR1. Nx/C BR2. Nx; Nz/ D 0
and CR2. Nx; Nz/ D 0. Since then R2. Nx; Nz/ 2 kerC � kerB , this means that also

BR2. Nx; Nz/ D 0, and therefore we can conclude that AR1. Nx/ D 0. In summary,

under consistency, the x-component of every steady state of the interconnected

system is a steady state of the isolated system. Moreover, the ‘retroactivity’ signal

BR2.x; z/ also vanishes at steady state. This property is satisfied in most interesting

interconnections.

Property .C/ is equivalent to the requirement that the row space of B be a sub-

space of the row space of C . Under this property, rank� D rankA C rankC , and

therefore Property .�/, i.e. rank� D rank .A B/ C rankC is equivalent to Prop-

erty .��/. In other words, for consistent interconnections, the two Theorems provide

a dichotomy. Summarizing this discussion and consequences of the two technical

lemmas:

Corollary 9.8. Suppose that Property .C/ holds. Then, the following statements are

equivalent:

(a) Property .�/ holds.

(b) Property .��/ holds.

(c) Property (9.3) holds for any two states.
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Example 9.1 fails Property .�/: the ranks of P and Q are 2 and 3 respectively,

but the composite matrix has rank 4<5. Thus this example exhibits retroactivity, by

Theorem 9.5. Note that this example is consistent.

Example 9.2 does not exhibit any retroactivity effects, as is easy to see directly,

or appealing to Theorem 9.7, since Property .��/ is satisfied. Note that this example

is consistent.

Example 9.3 satisfies Property .�/, but nonetheless exhibits a retroactivity effect,

in the sense that every state of the isolated system is a steady state, but for the in-

terconnected system Px D �x, Py D x � y every solution converges to x D y D 0.

However, Property .��/ cannot be used to show retroactivity, since this property

also fails. Intuitively, this is a system that has no conservation laws, yet retroactiv-

ity fails. However, this system is ‘inconsistent’ in the sense that property .C/ does

not hold.

Appendix: Chemical Reaction Network Formalism

The differential equations for the evolution of the concentrations of the reactants in

a chemical reaction system are written in the following standard ‘chemical reaction

network’ formalism. Suppose that there are N species S1; : : : ; SN taking part in a

reaction system, where each Si D Si .t/ is a non-negative function of time that lists

the concentration of species i at time t � 0. (We use the same letter for a chemi-

cal species and for its concentration.) Collecting all entries into an N -dimensional

column vector S , one writes the evolution equations as follows: PS D �R.S/. The

matrix � 2 R
N�r is the stoichiometry matrix, and R.S/ 2 R

r is the vector of

reactions: R.S.t// indicates the values of the reaction rates when the species con-

centrations are S.t/. A technical assumption is that solutions that start non-negative

remain so. This property is automatically satisfied for all the usual chemical reaction

rate forms, including mass-action kinetics. Mathematically, what is required is that,

for each i 2 f1; : : : ; N g, the i th entry of �R.S/ is non-negative whenever Si D 0.

We will also assume that, for each initial condition S0 2 R
N
�0, the solution '.t; S0/

of PS D �R.S/ with S.0/ D S0 is defined for all times t � 0.

For any chemical reaction system PS D �R.S/, and any state S0, the stoichiom-

etry equivalence class of S0, denoted here as�.S0/, is the intersection of the affine

manifold S0 C � with RN�0, where � is the span of the columns of � . Thus, two

states S0 and S1 are in the same stoichiometry class if and only if S0 � S1 2 �,

or equivalently if �.S0/ D �.S1/. Observe that '.t; S0/ 2 �.S0/ for all t � 0.

Moreover, since �.S0/ is a closed set, any S in the closure of the forward orbit

OC.S0/ D f'.t; S0/; t � 0g is also in �.S0/.

We also introduce the vector space of ‘conservation laws’. This is the set of all

vectors perpendicular to the stoichiometry space, written as rows: … WD �? D
f� 2 R

1�N j�� D 0g Observe that a state S1 is in the stoichiometry class of a state

S0 (that is, S1 � S0 2 �) iff �.S1 � S0/ D 0 for all � 2 ….
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For any chemical reaction system PS D �R.S/, and any steady state NS (that is,

�R. NS/ D 0) we say that NS is a local attractor relative to its stoichiometry class

if there is some neighborhood U of NS in RN�0 such that, for each S0 2 U
T
�. NS/,

'.t; S0/ ! NS . A positive state S is one for which all components are strictly pos-

itive, that is, S 2 R
N
>0. Under certain hypotheses on the structure of the chemical

reaction network, one may insure that in each stoichiometry class there is at least

one positive steady state that is a local attractor relative to the class. Moreover, this

steady state is often unique, and is a global attractor relative to the class; see for

example [6, 11].
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Chapter 10

Computer-Aided Design for Synthetic Biology

Deepak Chandran, Frank T. Bergmann, Herbert M. Sauro,

and Douglas Densmore

Abstract Computer-aided design (CAD) for synthetic biology has been proposed

to parallel similar efforts in other engineering disciplines, such as electrical en-

gineering or mechanical engineering. However, there is an important distinction

between the fields, which is that the mechanisms by which biological systems

function are not currently fully understood in sufficient detail to make completely

predictive tools. Computational models of biological systems provide, at best, a

qualitative understanding of the system under investigation. Quantitative models

are limited by the large number of unknown parameters in any given biological

system as well the lack of understanding of the detailed mechanisms. It is difficult

to determine how much detail is required for predictable design of biological sys-

tems. Even assembling individual DNA sequences has shown to be unpredictable

due to secondary DNA structures. As a result, the phrase ‘computer-aided design’

takes a very different meaning in synthetic biology: designing biological systems

is as much an exploratory process as it is a rational design process. Through de-

sign and experimentation, the science of engineering biology is furthered, and that

knowledge must be explicitly fed back into the design process itself. Due to its

complexity, the challenge of predictably designing biological systems has become

a community effort rather than a competitive effort. Consequently, several software

developers in synthetic biology have recognized that supporting a community is a

necessary component in synthetic biology design applications. Existing software

tools in synthetic biology can be categorized into a three broad categories. First,

there are software tools for mathematical analysis of biological systems. This cat-

egory also includes tools from the field of systems biology. Secondly, there are

software tools for assembling DNA sequences and analyzing the structure of the re-

sulting composition. This category builds on concepts from genetic engineering for

manipulating DNA sequences. The third category of tools are for database access.

Synthetic biologists need a catalog of biological components, or ‘parts’, from which

systems can be built; therefore, databases, whether local or distributed, are integral

for synthetic biology research. This chapter will cover these categories of tools and
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how they contribute to synthetic biology. We also consider design by combinatorial

optimization, which may work well in biological engineering due to properties of

DNA replication.

Keywords Synthetic biology � Software � Computer-aided design � CAD � Systems

biology � Design � Specification � Assembly � Analysis �Modeling

Introduction

The purpose of computer-aided design (CAD) in synthetic biology is to assist an

engineer in the process of designing a system with a desired behavior (specification

and design) and understanding the system in sufficient detail to construct the physi-

cal realization of the system (assembly). Presumably the system being designed is at

a level of complexity that a manual design process is either too lengthy, error prone,

or costly. The specification and design process should encourage reuse, reduce de-

sign ambiguity, remove potential human error, and have the ability to simulate the

proposed design. A system’s desired behavior may be represented using mathemat-

ical formalism which is amendable to analysis by computer software. In synthetic

biology, the assembly of a system often is a cell with the specific DNA sequence that

encodes the designed system function. The following are some examples of desired

behaviors:

� Optimized production of a specific metabolite; [28]

� A specific input-output response curve, where the input might be a specific

molecule or environmental signal; [13]

� A specific temporal or spatial pattern; [1]

� A defined distribution of a cell phenotypes in a population; [4]

In biological engineering, there is no established design methodology for moving

from a specification, or desired behavior, to the end result, the living cell. Synthetic

biologists often attempt to mimic the procedures from other engineering disciplines

[9, 27, 42]; however, due to the fact that the underlying physical mechanisms in bi-

ological systems are different, it is impractical to assume that the procedures from

other engineering disciplines will directly transition into biology. The term, ‘bio-

logical circuit’ for example, often misleads scientists in thinking of biology in the

same way as electronic circuits. It is important to realize that the notion of ‘circuit’

can mean various things even in established engineering fields; hence, it is possible

that the term may restrict biological engineers to a specific perspective. Similarly,

Boolean algebra is an abstraction applied to only specific digital electronic sys-

tems; synthetic biologists often assume that biological systems can be abstracted

using Boolean logic, which can be arguably correct in some cases [53] but not in

other cases where molecular concentration-dependent response is important [13].

While there is no right or wrong approach at the current stage of synthetic biol-

ogy, it is important to understand that biological systems are inherently different,
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Fig. 10.1 Progression of synthetic biology: (a) illustrates the design growth in synthetic biol-
ogy and (b) illustrates synthetic biology system complexity as measured by regulatory regions.
From [39]

and therefore, the rules, abstractions, and techniques from other engineering disci-

plines cannot simply be applied broadly. Nonetheless, this does not preclude CAD

from being part of synthetic biology. Figure 10.1 illustrates that in fact synthetic

biology designs have grown in number but have not increased in complexity. This

just underscores the need for design methodologies utilizing CAD to help cope with

increased system complexity. We make the case that synthetic biology will not live

up to its true potential without developing such a design methodology. The fact that

biology is inherently different from mechanical systems or electronics simply im-

plies that novel methods, techniques, and interdisciplinary research will be required

for making CAD successful in synthetic biology. This is precisely why this field is

so fertile.

This chapter will illustrate how a rigorous, complete CAD methodology can as-

sist a synthetic biologist and where currently available software applications fit in

our vision of this design methodology.

Methodology

A CAD methodology in synthetic biology should start with a specification, which

is defined by the human engineer, and end with the manufacturing of the biological

system. The manufacturing process itself will be a mixture of automation and human

experimentation, but the design methodology should take a design up to the point

where it can directly enter the manufacturing protocol and process. The ideal de-

sign methodology can be described using six stages: specification, design, analysis,

composition of parts, and assembly. In the first stage of the methodology, the re-

quirements and constraints of the design are formally captured. In the second stage,

CAD assists an engineer transform the requirements into a conceptual design of a

biological network that can potentially satisfy the objectives under consideration.

Mathematical analysis will be used in the third stage to assess the design and may
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reveal potential issues with the design; the design may require refinements after the

analysis step. Once the conceptual design is satisfactory, it must be converted to the

set of real biological parts that represent the design in the fourth stage. Biological

parts are encoded as DNA sequence information, which will then be optimized for

manufacturing purposes in the fifth stage. In this last stage, the design process will

use standard manufacturing protocols so that the final design can be directly assem-

bled with minimal human labor. Of note is the role that feedback and iteration play

in the design process. Notice that the results of assembly feedback in the analysis

stage for use in future designs. Also notice that stages may require iteration in order

to proceed to the next stage. Figure 10.2 illustrates this design methodology.

As a note, an alternative method we will discuss is to use ‘directed evolution’

to generate a working design. Using directed evolution would shift the design and

analysis steps to the end of the design flow. CAD for directed evolution may become

necessary in synthetic biology as directed evolution becomes more commonplace.

However, using directed evolution does not remove the requirement for analysis

of design, because any results of directed evolution must be analyzed so that the

Fig. 10.2 A CAD methodology for synthetic biology. CAD will play the central role in an ef-
ficient design process in synthetic biology. The process includes specification, design, analysis,
composition, and assembly of the system. Software CAD tools would take the process up to the
construction step; in the ideal case, standard protocols will be used to automate much of the con-
struction as well
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ideas can be reused in future. Next sections of this chapter will cover the individual

stages of this design process and how existing software applications can be used in

each stage. After each section, a table is provided to summarize the list of software

tools that are useful for each stage of the design process (See Tables 10.1, 10.2,

10.3, and 10.4).

Table 10.1 Synthetic biology: design tools

Tool Description

Antimonya A modular model definition language where a system is defined as a set of
reactions or basic DNA parts. The modules can be connected to each
other, and the final system can be converted to a mathematical model for
analysis.

BioJADEb A visual design application where symbols from electrical engineering are
used to represent biological networks. With the support of a parts
database, BioJADE is able to associate DNA sequence information with
the visual design.

GECc A language for describing biochemical reactions in terms of events and rules
that govern interactions. DNA components such as promoters are be used
to to specify the types of components in a model. GEC also supports
modularity.

GenoCADd A web-based program where a sequence of parts are placed in accordance to
a set of grammatical rules. These motifs are later ‘mapped’ to physical
implementations. The graphical environment restricts the way in which
the functional motifs are composed to encourage a functioning final
product.

ProMoTe A modular model definition language and a visual tool where a system is
defined as a set of reactions. The modules can be connected to each other,
and the final system can be converted to a mathematical model for
analysis.

Spectaclesf A functional ‘schematic’ based approach to biological device design where
modules are individual functional motifs. These motifs are later ‘mapped’
to physical implementations. The graphical environment restricts the way
in which the functional motifs are composed to encourage a functioning
final product.

SynBioSSg A web-based and desktop-based tool that allows users to connect biological
parts, such as promoters and coding regions, and build a consistent
mathematical model

TinkerCellh A visual drawing tool for constructing modular and semantically structured
diagrams. Due to semantic descriptions, the network diagrams can be
automatically mapped to mathematical models or biological parts.
TinkerCell has extensive support for plug-ins.

ahttp://antimony.sourceforge.net/
bhttp://web.mit.edu/jagoler/www/biojade/
chttp://research.microsoft.com/en-us/projects/gec/
dhttp://www.genocad.org
ehttp://www.mpi-magdeburg.mpg.de/projects/promot
fSpectacles is a plugin for the Clotho design environment.
ghttp://synbioss.sourceforge.net
hhttp://www.tinkercell.com

http://antimony.sourceforge.net/
http://web.mit.edu/jagoler/www/biojade/
http://research.microsoft.com/en-us/projects/gec/
http://www.genocad.org
http://www.mpi-magdeburg.mpg.de/projects/promot
http://synbioss.sourceforge.net
http://www.tinkercell.com
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Table 10.2 Systems biology: mathematical analysis tools

Tool Description

JDesigner A visual model construction program where reaction networks are
constructed using nodes and reactions. In addition to basic simulation, the
SBW suite is used to perform various types of analyses.

Jarnac A text-based model construction program where simple scripts are used to
describe reactions and rate equations. Programming language features
such as loops and matrix operations are available for analysis of models.

CellDesigner A visual model construction program where reaction networks are
constructed using molecules such as RNA, proteins, and genes.
Simulation and other analyses are made available through simulation
libraries and SBW.

COPASI A graphical interface for analysis of models. Some of the types of analyses
supported include simulations, optimization, and parameter scans.

PySCeS A program that is built on Scientific Python and provides all the
programming flexibility of Python. PySCeS uses a simple text-based
language to describe reactions and nodes that comprise a model.
Available analyses include simulations, metabolic control analysis,
bifurcation analyses, and any function available in Scientific Python.

Table 10.3 Synthetic biology: part composition and management tools

Tool Description

BioMotara BioMortar is an application to facilitate the construction of
BioBricks by consolidating information is an easy to
access database and provide Standard Assembly-driven
lab protocols.

Clothob Connects users to repositories of biological parts. Plugin
tools then define the various functions that can be
performed. Clotho makes it easier to share data and get
it in a data model useful to synthetic biologists.

GenoCAD Web based tool for the design of biological devices using an
attribute grammar which defines the legal composition
of parts.

j5c Designs assembly strategies for a variety of different
assembly protocols given a list of initial parts. Works for
SLIC, Gibson, CPEC, and Golden-Gate based
assemblies.

MIT Registry of Standard Partsd A large repository of standard biological parts.

Viz-a-bricke A visual environment for navigating registries of biological
parts.

ahttp://igem.uwaterloo.ca/biomortar/
bwww.clothocad.org
chttp://jbei-exwebapp.lbl.gov/j5
dhttp://partsregistry.org/
ehttp://gcat.davidson.edu/VizABrick

http://igem.uwaterloo.ca/biomortar/
www.clothocad.org
http://jbei-exwebapp.lbl.gov/j5
http://partsregistry.org/
http://gcat.davidson.edu/VizABrick
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Table 10.4 Genetic engineering: sequence refinement tools

Tool Description

GeneDesigna An open-source web application that provides functions such as removal of
unwanted restriction sites, codon optimization, and annotation.

GeneDesignerb A proprietary desktop application for primer-design in silico cloning, codon
optimization, and visualization of DNA sequences.

Sequence Refinerc A package for modifying natural DNA sequences so that they conform to
specific synthetic biology standard. Part of the BIOFAB code collection.

Vector NTId A proprietary desktop application for primer-design in silico cloning, codon
optimization, finding restriction sites, finding markers and key features,
and visualization of DNA sequences.

ahttp://www.genedesign.org
bhttps://www.dna20.com/genedesigner2/
cSequence Refiner is a plugin for the Clotho design environment and a standalone application
created by researchers at the BIOFAB (http://www.biofab.org).
dA product of Life Technologies.

Specification: Stage 1

The first step in the design process is to have a well defined set of objectives that

the final product should implement. A well designed objective is one that can be

tested and described unambiguously. However that objective should not tie itself

too closely with a physical implementation so that alternate designs can be explored

from the same specification. For example, creating cells that are able to excrete

insulin at a specified rate during their optimal growth phase would be a testable

objective. An objective to create cells with a higher growth rate might be difficult to

test because growth rate depends on several factors such as nutrition and population

density. In such cases, a measurable aspect of growth needs to be specified along

with the conditions for performing the measurement.

In addition to the objectives, the specification should also detail any constraints

or requirements that system must adhere to. Using the previous example, perhaps a

certain volume of insulin must be produced. Constraints can detail which biological

building blocks should or should not be used in combinations. The Eugene program-

ming language1 provides constraints on part compositions explicitly in the form of

<operator operand operator>, for example promoter1 NOTWITH rbs2. These con-

straints should be modular so that the types of constraints and their parameters can

be swapped out to represent different operating conditions and requirements.

Design: Stage 2

An ideal CAD flow should provide a framework for an engineer to construct a de-

sign from the specification. This process should provide the engineer with a set of

1 http://www.eugenecad.org

http://www.genedesign.org
https://www.dna20.com/genedesigner2/
http://www.biofab.org
http://www.eugenecad.org
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building blocks that ease the task of making complex systems while ensuring that

the specification is adhered to. In mechanical engineering, a CAD program would

provide the engineer with building components such as dampers and gears. The

properties of these mechanical components are well defined, and therefore, there

are established ways in which each component should be used to achieve particular

design objectives as well as rules for their composition. An analogous set of com-

ponents in biology would include small networks motifs with known properties.

A phosphorylation-dephosphorylation cycle can be an example of such a biological

motif. This particular motif has a sharp sigmoid response curve, where the input

is the phosphorylating enzyme [15]. Another motif can be an expression cassette

with a positive feedback, which can either be used to provide a sensitive response

or memory [51]. Conversely, negative autoregulation expression cassettes can be

used to make the response more linear and less abrupt [36, 43]. Since the dynam-

ics of these small network motif have been investigated in the literature, they can

be used by engineers to satisfy particular aspects of the specification. However, in

comparison to mechanical components such as dampers or gears, network motifs in

biology are poorly studied for the purpose of design and composition. Specifically,

network motifs have been studied individually, but the consequence of connecting

one motif to another is not a well studied phenomenon. Hence, constructing a net-

work composed of several biological motifs may or may not have the anticipated

behavior. Subtle details, such as time scale separation, can play an integral role in

the interface of two biological motifs. Such minute details have been well studies in

physical systems, allowing mechanical and electrical engineers to accurately predict

the response of a system composed of multiple components. In order to reach the

same level of sophistication is biology, it is important to build models composed

of smaller building blocks and understand how the individual building blocks con-

tribute to the whole.

Figure 10.3 shows an example from the software application called TinkerCell

(www.tinkercell.com) where ‘biological modules’ are used to simplify a design

challenge [7]. In this example, the specification is a feedback oscillator using two

genes. The feedback needs to be strong in order to trigger oscillations, so the en-

gineer needs some method of increasing the strength of the feedback. A CAD

program such as TinkerCell with previously designed modules might contain a

phosphorylation-dephosphorylation cycle, a functional module that can convert a

linear input into a sigmoid output. This function is ideal for the increasing the

strength of the feedback. Without the help of CAD, the engineer would be required

to rediscover this network design. The design in Fig. 10.3 shows an oscillator con-

structed using three modules, where the phosphorylation module in the middle is

used to provide the necessary amplification for a genetic oscillator.

The Role of Modularity in Design

Ideally, CAD should automatically convert between biological parts and mathe-

matical models, as shown in Fig. 10.2. This is a difficult challenge for a number

www.tinkercell.com
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Fig. 10.3 Modules in TinkerCell. TinkerCell (www.tinkercell.com) allows users to define mod-
ules, or networks with interfaces, that can be connected to each other. TinkerCell checks whether
connections between modules are valid by looking at the type of components that are connected,
thus preventing connections that do not have any biological meaning

of reasons, including lack of knowledge of the underlying biological processes

and technical difficulties in constructing arbitrary systems. One solution used by

software developers has been to introduce some form of modularity in the design

process. For example, at the simplest level, individual components such as promot-

ers can be treated as modules. The software application SynBioSS [20] allows users

to construct a DNA sequence of functional components such as promoters, riboso-

mal binding sites, and protein coding regions. From the sequence of components,

a model is generated, with the assumption that the components behave relatively

independent of each other. Similarly, mathematical models for individual biological

components have been constructed with the hope that these models can be used to

map between annotated DNA sequences and mathematical models [41].

For systems with several interacting components, it may be impossible to com-

pose the mathematical model of the entire system from models of individual

components. For example, concentrations of metabolites might be part of the sys-

tem dynamics, and these processes may not be captured by the proteins coded in

the DNA. For such cases, the concept of biological modules may be required, such

as the one shown in Fig. 10.3. A few software applications support the concept of

computational biological modules. From the field of systems biology, ProMoT [35]

www.tinkercell.com
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and Antimony [48] are two examples where the user is allowed to describe chemical

reactions using scripts or visual diagrams. GEC [38] is another language for defin-

ing biochemical modules using rules of chemical interaction. The modules in these

applications can be linked to one another by declaring molecules that are shared

between modules. While such modules capture the chemical kinetic, they do not

contain the necessary information to be translated into a physical realization, i.e. a

DNA sequence, except perhaps GEC due to its use of semantics. BioJADE [16] was

one of the first applications to describe synthetic biology systems using modules

similar to electrical devices such as inverters. Each module, or device, in BioJADE

could be modeled computationally and had a corresponding DNA sequence stored

in a local database. The similar application, TinkerCell, uses semantic annotations

to describe modules, which also bridges the gap between the mathematics and the

physical system. Clotho [10] plugins, such as Eugene Scripter and Spectacles,2 al-

lows for the composition of functional concepts (e.g. promoters, ribosome binding

sites, coding regions) which can be mapped to actual DNA sequence information at a

later time. Eugene supports the concept of biological ‘devices’, or modules defined

by their individual components encoded in DNA. The device definition describes

the physical realization of a system as opposed to describing the mathematics of

the system. With ample annotations, it should be possible to map such physical de-

vice descriptions to modules describing system dynamics, but that is active area of

research at the moment.

Mathematical Analysis: Stage 3

An integral step in CAD is to perform analysis on a given design to quantitatively

investigate how well it satisfies the specification. This step requires formulating a

given design as a mathematical model. Mathematical models of a biological sys-

tem can be constructed in different ways [8]. The choice of modeling method will

depend on the specific objective. The most common type of models are differen-

tial equation models, where the concentration change of each molecular species

in the design is captured using an ordinary differential equation (ODE). The set

of ODEs can be understood as a matrix multiplication between the stoichiometry

matrix and the reaction rates. The stoichiometry matrix and the rate equations are

necessary for generating stochastic models of the biological system, which is a mod-

eling method that can capture random fluctuations in concentration values that may

impact the overall behavior of the system. More detailed modeling methods can

include simulations where the spatial distribution of molecules is also taken into

account. However, the more detailed mathematical models require more parame-

ters describing the biological system. Biological parameters are generally unknown

and difficult to measure, for which reason many researchers attempt to simplify

2 http://2009.igem.org/Team:Berkeley Software/Spectacles

http://2009.igem.org/Team:Berkeley_Software/Spectacles
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the models with reduced parameter sets. One of the simplest types of models are

Boolean models, which abstracts each molecules has being in a ‘on’ or ‘off’ state

[50]. A CAD program needs to explore the possible modeling paradigms and select

the one that is most fitting for assessing a given design and a given objective. For

example, if the objective specifies something about noise levels in the system, then

it would be mandatory to use some form of stochastic modeling procedure that can

capture noise levels. On the contrary, if the objective is highly abstract, then perhaps

a simple Boolean model might be sufficient to test the design. For metabolic control

analysis, the stoichiometry matrix becomes highly important. For example, opti-

mal enzyme concentrations can be determined using flux balance analysis, which is

essentially a linear programming method that uses the stoichiometry matrix to de-

fine the optimization problem. In summary, there are numerous methods available

for analysis of a given design, and the choice depends on the questions that are be-

ing investigated. The correct type of analysis is an integral part of CAD. For this

reason, we envision a horizontal integration of various approaches at the analysis

stage, each offering their own approach which the designer can select from.

Programming Languages for Mathematical Analysis

Once a biological system has been described mathematically, then the procedure

for analyzing the biological system is generally the same as analysis of any other

dynamical system. Numerous software packages exist for mathematical analysis

of dynamical systems. The commonly used commercial packages are scripting lan-

guages such as MATLAB (www.mathworks.com) and Mathematica (www.wolfram.

com). Open-source software packages such as R [25], Octave [12], SciLab [17],

SciPy (www.scipy.org), and Maxima (maxima.sourceforge.net) also provide much

of the functionality available in the commercial packages. All of these software

tools require the user to perform some amount of computer programming to con-

struct and analyze the model. However, the benefit of programming is that it allows

a great degree of flexibility. Further, many of these general-purpose scripting lan-

guages contain useful packages from fields such as statistics and control theory,

which increase the types of analysis that can be done.

One weakness of using programming languages to encode mathematical models

is that the models will be represented using custom code. In most cases, only the

author of the code would be able to interpret the biological significance of each

variable in the code. Therefore, the models are difficult to share. The field of systems

biology introduced a more standard method of representing a computational model

[23], allowing different software tools to exchange mathematical models without

requiring interpretation from the original author. As a result, numerous packages are

available from the field of systems biology for performing mathematical analysis, a

few of which are described next.

www.mathworks.com
www.wolfram.com
www.wolfram.com
www.scipy.org
maxima.sourceforge.net
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Systems Biology Software Applications

The Systems Biology community has developed a large toolset to aid in mathe-

matical analysis of computational models. Most of these tools are suitable for the

analysis stage of synthetic biology. Most software tools in systems biology support

the Systems Biology Markup Language (SBML) [23]. Thus to make it easy to use

one of these tools the synthetic model should be restated in SBML. This can be done

either directly, or via the aforementioned Antimony language.

Applications for Systems Biology fall into one of the following categories:

� Model Editors – used to construct mathematical models

� Simulators – used to simulate mathematical models

� Analysis Tools – used to perform other mathematical operations, such as opti-

mization or parameter scan

� Translators – used to convert one model format to another

Some software packages try to fulfill several categories. In the following we

briefly review a selection of popular software applications.

Systems Biology Workbench (SBW) The Systems Biology Workbench (SBW)

[2, 3, 22, 46] consists of a collection of model editors, simulators and analysis tools.

While the model editors are targeted towards metabolic or signaling networks, they

can be used to model the environment of the synthetic networks. In any case the tools

allow transcribing the mathematical model of a synthetic network. Specifically the

model editors are JDesigner and Jarnac:

JDesigner JDesigner [2, 46], a software application developed for the Windows

platform, was one of the first visual modeling applications available. It is tailored for

modeling generic biochemical reaction networks but the nodes in the network can be

used implicitly to modeling metabolic, signaling or gene-regulatory networks. Via

integration with the Systems Biology Workbench (SBW), JDesigner also provides

advanced capabilities for simulation and analysis of the active model.

Jarnac Jarnac [44] was developed for the Windows platform and is a successor to

SCAMP [45]. It is also one of the first simulation applications for Windows. Jarnac

features a simple model description language as well as a powerful control language

that operates on the model description. This makes even advanced simulation and

analysis tasks possible through the programming of looping constructs and manip-

ulation of matrices. Jarnac offers a very fast model development time and is thus a

good tool for prototyping models. The recent language called Antimony [48] is a

software library that can parse Jarnac-like scripts and has additional powerful fea-

tures such as modularity and capability to define genetic networks.

Apart from these model editors SBW also includes with RoadRunner a state of

the art deterministic simulator. A general simulation environment, the ‘Simulation

Tool’ (Fig. 10.4) allows users to experiment with the model by visually defining a

variety of simulation experiments.
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Fig. 10.4 Simulation tool ‘Signal Injection’ pulse/sine signal. Additional Simulation experi-
ments include Frequency Analysis, 1D and 2D parameter scans as well as network analysis

Finally the SBW comes with a selection of translators that translate models

defined in SBML into a variety of other formats, among them Matlab and

Mathematica.

CellDesigner CellDesigner [14] is widely known in the systems biology commu-

nity and used by many research groups. Similar to JDesigner, a user of CellDesigner

would place one of several nodes onto the graphics canvas in order to draw a path-

way. While JDesigner gives the user the freedom to adjust the graphics of a given

node freely, CellDesigner provides a fixed set of symbols, each with a given mean-

ing (e.g. forward-slanted parallelogram for RNA, backward-slanted parallelogram

for Antisense RNA and such). The notation using those symbols has been dubbed

a Process Diagram. In future versions CellDesigner will adopt the Systems Biol-

ogy Graphical Notation (SBGN). CellDesigner integrates the SBML ode Solver

[33] library to provide basic simulation capabilities for the currently active model.

CellDesigner is SBW enabled and so further analysis is possible through the SBW

menu, which allows the model to be sent to SBW capable applications. The CellDe-

signer team is also experimenting with a plug-in system, which will allow third

parties to interface with CellDesigner directly.

COPASI COPASI [21] is the successor of Gepasi [34], one of the first popular sim-

ulation applications for Windows. COPASI is a state of the art modeling, simulation
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and optimization environment for computational models. Since 2008, COPASI has

been SBW enabled. This enhances COPASI by an SBW menu, allowing models

to be exchanged between COPASI and other SBW enabled application. COPASI

also has the capabilities of exporting models to C code, Berkeley Madonna or XPP

AUTH.

PySCeS PySCeS [37] is a scripting environment built on top of the popular script

language Python . PySCeS model definition language looks rather similar to that of

Jarnac and the example given above would be written as follows in PySCeS:

X0 > S1
k1*X0

PySCeS uses SciPy at its core and Matplotlib [24] to generate a variety of plots.

Arguably, the biggest strength of PySCeS is that researchers have the full power of

the Python programming language at their disposal.

Biological Part Composition: Stage 4

The fourth stage our CAD flow takes a ‘satisfactory’ design and identifies the final

DNA sequence that represents the design. A DNA sequence can be considered as a

linear chain of biological ‘parts’, where each part is a DNA sequence that encodes a

specific function in the designed system. The CAD program needs to link the math-

ematical analysis with the parts that comprise the designed system. This is perhaps

the most difficult challenge faced by current applications, because the mathematics

is usually abstract and not directly connected to the parts. Moreover, the dynamics

of the system results from proteins and other molecules in the system, not the DNA

that encodes them. In the mathematics, the biological parts encoded in the DNA are

often hidden inside parameters or rate equations. For example, a promoter part that

is present in the DNA sequence might be reflected in the model as a parameter in the

mRNA production rate equation. In a different modeling scheme, the same promoter

might be reflected in two parameters. At this point, there are no established meth-

ods for deriving the mathematics from the parts alone. It is possible that there are

multiple models that can be derived from the same set of parts. The choice of model

may change depending on the circumstances and the questions being addressed by

the modeler.

The difficulties of interlinking mathematical modeling and biological parts is

often shadowed by difficulties in the physical construction step. Once a synthetic

biologist has a working design in terms of biological parts, the next stage is to con-

struct the DNA sequence where all the parts are placed in the correct order. Protocols

for efficiently obtaining parts and assembling multiple parts into a single construct

are still in active development [11]. DNA synthesis of the entire sequence is an

alternative, but that option is not affordable by many synthetic biology labs at this

time. As a result, software efforts have been placed in organizing parts so that reuse
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of existing parts would be easier. j53 is a software package developed at Lawrence

Berkeley National Lab which specifically creates assembly plans for a variety of

different assembly protocols and chemistries. Organizing parts means more than

simply placing the available set of parts in a database. Usually when a synthetic biol-

ogist wishes to construct a new design, they would like to find specific patterns, such

as promoters that are regulated by two transcription factors or expression cassettes

with fluorescent proteins. In order to find these patterns, it is important to represent

a sequence of parts in a well structured format. The web-based application called

GenoCAD [5] is one of the first tools to propose a structured representation for

defining sequences of biological parts. GenoCAD (Fig. 10.5) defines a grammar for

interpreting linear sequences of biological parts much in the same way the English

language defines grammatical rules for forming sentences from words. Similarly,

the domain specific language Eugene uses specific syntax to interpret a linear chain

of biological parts. The parser uses a flexible set of constructs where new rules and

terms can be defined. Such software tools provide a systematic way for interpreting

a sequence of biological parts. The systematic representation has two major bene-

fits. One, the parts that are constructed by synthetic biologists can be stored in an

organized format, allowing other researchers to search for specific patterns of parts.

Second, the structured representation opens possibilities for automatically linking

mathematical models with parts. For example, a chain of parts that is composed

of a promoter, ribosomal binding site, and protein coding region can be mapped to

Fig. 10.5 Composing a sequence of parts using GenoCAD. GenoCAD allows users to construct
sequence of parts similar to the way a sequence of English words are used to form a sentence. The
underlying grammar ensures that the sequence will be biologically meaningful

3 http://jbei-exwebapp.lbl.gov/j5

http://jbei-exwebapp.lbl.gov/j5
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a simple model for protein production. An ongoing effort in this direction is the

Synthetic Biology Open Language4 semantic, which represents parts and their rela-

tionships to each other using semantic connections.

Representing a system as a set of biological parts acts as a link between the

mathematical model and the final DNA sequence. The parts imply function, which

can be represented as mathematical models, and the parts consist of a unique DNA

sequence, which can be used to construct the final DNA sequence. Therefore, cor-

rectly defining biological parts is possibly the key step in building the complete

pipeline from design to construction of the DNA sequence. One of the ambitions

of the TinkerCell application was to represent synthetic biology diagrams in a way

that can be converted to mathematical models or DNA parts. TinkerCell adopted

semantic descriptions, similar to the Synthetic Biology Open Language semantics,

as the method of reaching this goal together.

Sequence Refinement

Once a design has been reduced to a set of parts, the DNA sequence can be con-

structed and refined based on specific criteria. Examples include avoiding specific

restriction sites or optimizing the codon usage. The sequence might also be opti-

mized to avoid repeated regions that may be prone to recombination or secondary

structures. Once the DNA sequence has been refined, the sequence can either be as-

sembled using genetic engineering techniques or synthesized using DNA synthesis

technology. The resulting DNA can be placed in a living cell and tested. The results

of the testing will be used to refine the original design.

Many sequence refinement tools are available from classical genetic engineering.

Some examples of commercial and free software applications that can be used to

perform sequence edits such as codon optimization or removal of restriction sites

include Gene Designer [52], Vector NTI [32], and GeneDesign [40]. The same tools

are used in synthetic biology at present. As synthetic biology matures, specialized

functions will be needed, particularly for standardization purposes. As a community,

synthetic biologists have begun to agree on certain standard procedures, such as use

of restriction enzymes. Such standard procedures allow better exchange or parts

between research labs. As a result, such standards would need to be supported by

software tools. Software efforts such as Clotho [10] that already make use of such

exchange standards will provide features for validating parts against the community

standards and offering options to edit the sequence to conform to the standards.

Further, while computer programs often treat DNA as a string of information, the

fact is that it is a three-dimensional structure, and certain sequences can influence

the structure of the DNA (or RNA) to produce unexpected results. For instance, the

region upstream of the protein coding region in the mRNA can often form secondary

4 http://www.sbolstandard.org

http://www.sbolstandard.org
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structures, preventing ribosomes from translating the mRNA into proteins. There-

fore, checking for undesired secondary structures is another analysis that must be

done at the sequence refinement stage.

Assembly: Stage 5

One major goal of sequence refinement is to make the conversion from parts to

the final product very simple and predictable. For instance, if all parts are stored in

DNA sequences with compatible sticky ends, then assembling those parts might be

much simpler. Similarly, if the possibility of any DNA or RNA secondary structures

are eliminated, then the parts may behave much closer to what is expected. If the

process of assembling parts can be streamlined in such manner, it may be possi-

ble to establish standard protocols for assembling parts, some of which are already

being practiced [47]. Efficient ways of assembling DNA fragments is an ongoing

area of research [30]. When this technology is perfected, it will undoubtedly boost

the progress of synthetic biology, because much of the time in any synthetic biol-

ogy experiment is spent in the physical construction of the system. DNA synthesis is

another area of research that will greatly enhance the development cycle in synthetic

biology. It is arguable that DNA synthesis will entirely replace DNA parts assem-

bly as the means of creating the final DNA encoding the designed system [6]. At the

same time, parts assembly will generally be cheaper and perhaps more efficient than

DNA synthesis due to the fact that individual parts have already been constructed.

In either case, the benefit of standard procedures for constructing synthetic systems

will eliminate the most time-consuming step in synthetic biology at present. In ad-

dition to assembly of DNA, it may even be possible to automatically test newly

constructed systems using standard protocols. Such automation has been demon-

strated for molecular biology experiments [49], but the cost of maintaining such

automated systems makes them impractical for synthetic biology labs at present.

Design by Evolution

While the five steps (Fig. 10.2) in CAD describe a rational design approach, it is

also possible to take a combinatorial approach to design. Combinatorial design is

especially advantageous in biological systems because of the natural machinery for

generating variety. Novel enzymes can be generated by creating trillions of different

versions of an initial design and screening for the enzyme’s desired activity. Sim-

ilarly, one can imagine generating variants of a network design and screening for

the network that satisfies an objective. This is a valid design process for biologi-

cal systems. However, there are no CAD software applications in synthetic biology

that support such design methodology at present. If design by selection becomes a

common method in synthetic biology, CAD applications may emerge to support this

methodology (Fig. 10.6).
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Fig. 10.6 Directed evolution. Direction evolution involves selecting for the few wanted cells from
a population of billions. The process will often involve repeated cycles of selection, where each
cycle produces slightly better cells. The challenge in directed evolution is designing a screening
process that correctly selects for cells with the desired behavior

Nature invents new systems by combining existing ones. For example, new pro-

teins are created by shuffling existing protein domains, and new organisms are

created by rewiring the regulatory or signaling networks of existing organisms.

Homologous recombination is often used by nature as a means of optimizing func-

tions; the immune system uses such an optimization method to generate antibodies

that target specific foreign particles [29]. There is evidence suggesting that homol-

ogous recombination is an important tool for evolution of viruses and microbes

[19, 31]. While protein engineers and synthetic biologists have used random muta-

tions as a means of optimizing the function of a proteins or adjusting a promoter site

[18,26], random mutations cannot be used to design an entire system. However, ho-

mologous recombination can be used to create new systems, because they can rewire

existing regulation sites or even protein binding domains, creating new networks.

The recombination sites can be planned ahead of time, much similar to the way

immune system uses specific recombination sites to evolve antibodies. Recombina-

tion sites can be planted in the DNA sequence such that only certain recombination

events are possible. This process can be summarized as a planned combinatorial

optimization of synthetic network.

The role of computer-aided design in such combinatorial optimization would be

to assist the engineer in designing the DNA sequence. The repeats in the DNA se-

quence would control the recombination events, and therefore the possible networks

that would be generated by the process can be modeled by a CAD program.

While directed evolution can be used to create the end product, it does not remove

the requirement for further analysis. Evolution can often discover design strategies

that human engineers might have overlooked. When such strategies are discovered

through evolution, those designs should be thoroughly analyzed and incorporated
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into the repertoire of design patterns for synthetic biology. Therefore, design by

evolution is not disjoint from rational design. Rather, they are two approaches that

should be used in conjunction with one another.

Education

The success of CAD in synthetic biology will require expanding on knowledge from

established fields such as systems biology, electronic design automation, control

theory, and genetic engineering as well as a community of researchers who can

understand concepts from multiple disciplines. One important aspect of software

development that is often missed is its impact on education. Using visual software

allows students as well as researchers understand some of the details of a foreign

discipline. For example, a student using Clotho can learn about how synthetic biol-

ogy data is related and create a plug-in to address a biological design problem using

that data; a student using TinkerCell would realize the details that are required to

transition from a cartoon diagram to a mathematical model. For researchers, well

designed software tools can bridge gaps in knowledge by automating many stan-

dard procedures. For example, TinkerCell allows users to draw abstract concepts

such as transcription regulation and automatically generates a default model to rep-

resent that abstract concept, which the user can opt to modify. As ‘best practices’ for

modeling and wet-lab protocols are establishes, such automatic features in software

will become more commonplace.

There are two excellent opportunities for designers of CAD software for syn-

thetic biology to engage the community:

� The International Genetically Engineered Machine Competition (iGEM) – The

premiere undergraduate Synthetic Biology competition. Student teams are given

a kit of biological parts at the beginning of the summer from the Registry of

Standard Biological Parts. Working at their own schools over the summer, they

use these parts and new parts of their own design to build biological systems and

operate them in living cells.

� The International Workshop on Bio-Design Automation (IWBDA) – Brings

together researchers from the synthetic biology, systems biology, and design au-

tomation communities. The focus is on concepts, methodologies and software

tools for the computational analysis of biological systems and the synthesis of

novel biological systems.

Summary

The goal of a CAD methodology in synthetic biology is to provide an efficient

design flow for creating and analyzing new biological systems. The difficulty in

building this design flow is due to lack of established methods in biology coupled
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with our relative lack of understanding regarding biological behavior. For instance,

modeling of biological systems is still a developing area of research, so there are

no ‘best practices’ for building predictive models of a given system. The difficulties

in modeling are amplified by the need to represent a model in terms of biological

parts that can be encoded as DNA. Even if the modeling aspect of synthetic biology

is resolved, no established procedures exist for describing a ‘biological part’ and

constructing a system using multiple parts. The construction of DNA from individ-

ual parts is an active area of research, where a few of the unresolved issues include

DNA secondary structure formation or interference with cell growth, both of which

can influence a system in unexpected ways.

Due to the numerous challenges in building an efficient CAD system, the syn-

thetic biology community has recognized obvious advantageous in collaborative

efforts to resolve common issues. The drive for collaboration is reflected in many

of the new software tools. Applications such as TinkerCell and Clotho are designed

so that different collaborators can add plug-ins that add new features and integrate

information. Web-based applications such as a GenoCAD and SynBioSS utilize

databases of parts to support reuse of biological parts, which was a feature first

seen in BioJADE [16].

We have presented a flow which we feel outlines the required design activities

that CAD can help introduce in the synthetic biology community. While the indi-

vidual algorithms and tools which participate in this flow will change, the general

structure provides a robust foundation to push forward the level of complexity, ro-

bustness, and reproducibility possible in synthetic biological designs.
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noise discriminates functionally analogous differentiation circuits. Cell 139(3):512–522

5. Cai Y (2010) GenoCAD: linguistic approaches to synthetic biology. PhD thesis
6. Carlson R (2009) The changing economics of DNA synthesis. Nat Biotechnol 27(12):

1091–1094
7. Chandran D, Bergmann FT, Sauro HM (2009a) TinkerCell: modular CAD tool for synthetic

biology. J Biol Eng 3(1):19
8. Chandran D, Copeland WB, Sleight SC, Sauro HM (2009b) Mathematical modeling and syn-

thetic biology. Drug Discov Today Dis Models 5(4):299–309



10 CAD for Synthetic Biology 223

9. Chinnery DG, Keutzer K (2000) Closing the gap between asic and custom: an asic perspective.
DAC ’00: proceedings of the 37th annual design automation conference, ACM, New York,
pp 637–642

10. Densmore D, Van Devender A, Johnson M, Sritanyaratana N (2009) A platform-based design
environment for synthetic biological systems. The fifth Richard Tapia celebration of diversity
in computing conference: intellect, initiatives, insight, and innovations, ACM, pp 24–29

11. Densmore D, Hsiau THC, Kittleson JT, DeLoache W, Batten C, Anderson JC (2010) Algo-
rithms for automated dna assembly. Nucleic Acids Res 38(8):2607–2616

12. Eaton JW, Bateman D, Hauberg S (1997) Gnu octave. Citeseer
13. Entus R, Aufderheide B, Sauro HM (2007) Design and implementation of three incoherent

feed-forward motif based biological concentration sensors. Syst Synth Biol 1(3):119–128
14. Funahashi A, Matsuoka Y, Jouraku A, Morohashi M, Kikuchi N, Kitano H (2008) CellDesigner

3.5: a versatile modeling tool for biochemical networks. Proc IEEE 96(8):1254–1265
15. Goldbeter A, Koshland DE (1981) An amplified sensitivity arising from covalent modification

in biological systems. Proc Natl Acad Sci USA 78(11):6840
16. Goler JA (2004) BioJADE: A Design and Simulation Tool for Synthetic Biological Systems.

PhD thesis
17. Gomez C (1999) Engineering and scientific computing with Scilab. Birkhauser
18. Haseltine EL, Arnold FH (2007) Synthetic gene circuits: design with directed evolution. Annu

Rev Biophys Biomol Struct 36:1–19
19. Hendrix RW, Lawrence JG, Hatfull GF, Casjens S (2000) The origins and ongoing evolution

of viruses. Trends Microbiol 8(11):504–508
20. Hill AD, Tomshine JR, Weeding E, Sotiropoulos V, Kaznessis YN, (2008) SynBioSS. Bioin-

formatics 24(21):2551–2553
21. Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer

U (2006) COPASI–a COmplex PAthway SImulator. Bioinformatics 22(24):3067
22. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle J, Kitano H (2002) The ERATO systems bi-

ology workbench: enabling interaction and exchange between software tools for computational
biology. In: Pac Symp Biocomput, vol 1. Citeseer, pp 450–461

23. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H et al (2003) The systems
biology markup language (SBML): a medium for representation and exchange of biochemical
network models. Bioinformatics 19(4):524

24. Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng 9:90–95
25. Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph

Stat 5(3):299–314
26. Kaur J, Sharma R (2006) Directed evolution: an approach to engineer enzymes. Crit Rev

Biotechnol 26(3):165–199
27. Keutzer K, Newton AR, Rabaey JM, Sangiovanni-Vincentelli A (2000) System-level design:

orthogonalization of concerns and platform-based design. IEEE Trans Comput-Aided Des
Integr Circuits Syst 19(12):1523–1543

28. Lee SK, Chou H, Ham TS, Lee TS, Keasling JD (2008) Metabolic engineering of microorgan-
isms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol
19(6):556–563

29. Lieber MR (1991) Site-specific recombination in the immune system. FASEB J 5(14):2934
30. Linshiz G, Yehezkel TB, Kaplan S, Gronau I, Ravid S, Adar R, Shapiro E (2008) Recur-

sive construction of perfect DNA molecules from imperfect oligonucleotides. Mol Syst Biol
doi:10.1038/msb.2008.26

31. Lonsdale DM, Brears T, Hodge TP, Melville SE, Rottmann WH (1988) The plant mitochon-
drial genome: homologous recombination as a mechanism for generating heterogeneity. Philos
Trans R Soc London Ser B, Biol Sci 319(1193):149–163

32. Lu G, Moriyama EN (2004) Vector NTI, a balanced all-in-one sequence analysis suite. Brief
Bioinform 5(4):378
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Chapter 11

High-Level Programming Languages
for Biomolecular Systems

Jacob Beal, Andrew Phillips, Douglas Densmore, and Yizhi Cai

Abstract In electronic computing, high-level languages hide much of the details,

allowing non-experts and sometimes even children to program and create systems.

High level languages for biomolecular systems aim to achieve a similar level of ab-

straction, so that a system might be designed on the basis of the behaviors that are

desired, rather than the particulars of the genetic code that will be used to implement

these behaviors. The drawback to this sort of high-level approach is that it generally

means giving up control over some aspects of the system and having decreased effi-

ciency relative to hand-tuned designs. Different languages make different tradeoffs

in which aspects of design they emphasize and which they automate, so we expect

that for biology, there will be no single ‘right language’, just as there is not for elec-

tronic computing. Because synthetic biology is a new area, no mature languages

have yet emerged. In this chapter, we present an in-depth survey of four representa-

tive languages currently in development – GenoCAD, Eugene, GEC, and Proto – as

well as a brief overview of other related high-level design tools.

Keywords Synthetic biology � Abstraction � High level languages � GenoCAD �
GEC � Proto � Eugene �Modeling � Design � XOR

Overview

A ‘high-level’ programming language is one that abstracts many of the details of

how a computation will actually be implemented. The programmer writes down a

simple description, capturing the essence of the computation, and this description is

automatically expanded to produce a complete implementation that can be executed

on the available computational substrate.
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On modern digital computers, this process can go through many different layers.

Consider, for example, an entry in a Microsoft Excel spreadsheet that adds up a

column of figures. The expression itself, something like ‘D SUM(C1:C10),’ is a

transparently simple statement in an arithmetic-centric high-level language. Within

Excel, this statement is interpreted into a set of calls to various functions within

Excel, in the process adding implicit behaviors like error handling. These Excel

functions were themselves written in some high-level language, and then compiled

into machine code that can execute on the computer where Excel is running, in the

process making routine decisions like how to implement each mathematical opera-

tion using the resources of the machine’s processor. Even that machine code goes

through another layer of interpretation, as the processor itself restructures the code

to operate more efficiently given the current state of the processor.

The essence of the idea behind high-level languages is this: as an engineering

field matures, finding good-enough solutions to sub-problems of design becomes

routine. Highly routine problem solving can then be automated, reifying the knowl-

edge of skilled engineers into a piece of software. The software solutions to

individual parts of the design process can then be connected together to form a

complete tool-chain, translating from high-level descriptions down to working im-

plementations without any need for human intervention.

Separating the programmer from the implementation details has three important

benefits:

� Accessibility: less knowledge is required to build a system, since much of the

required knowledge has been captured in software.

� Scalability: since routine design work is automated, it is possible to build larger

and more complex systems, and to re-use the same programs on different plat-

forms.

� Reliability: aspects of design that are automated are no longer subject to pro-

grammer error; software can also check for common errors in the programmer’s

high-level design.

On electronic computers, high-level languages have become so successful that

few people ever use anything besides a high-level language. In the programming of

biomolecular systems, high-level languages are just beginning to emerge.

For the purposes of this chapter, we will define a high-level language for

biomolecular systems as any system description language where the choice of

implementing biological parts may routinely be left unspecified. We will focus pri-

marily on programming languages for in vivo biomolecular computation, reviewing

four representative languages: GenoCAD, Eugene, GEC, and Proto in rough order

from lower to higher levels of abstraction. To aid comparison and understanding,

we apply each language to a simple example problem:

Express green fluorescent protein (GFP) when either of the small-molecule signals aTc or

IPTG is present, but not when both are present.

At the end of the chapter, we also review the scope of other related high-level design

tools for biomolecular computing systems.
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GenoCAD

GenoCAD (www.genocad.org) is one of the earliest CAD tools for synthetic

biology, built upon the foundation of formal grammars. In this section, we sum-

marize the basics of grammars, the theoretical foundation underneath GenoCAD

and also a brief tutorial on how programs are constructed using the GenoCAD web

service.

Formal Language & Syntactic Model

A formal language is a set of (possibly infinite) strings derived from an alphabet†,

which encodes information for communication purposes. There are several kinds of

languages, including natural languages (e.g. English and Chinese), computer lan-

guages (e.g. C and HTML), and mathematical languages (e.g. first-order logic).

However not all the strings over a language’s alphabet actually belong to that lan-

guage, only those which follow its rules. A grammar is a finite set of rules that

specifies the syntax (permissible structure) of a language. A grammar G contains

four components:

� A finite set N of non-terminal symbols.

� A finite set † of terminal symbols that is disjoint from N .

� A finite set P of rewriting rules, each rule is in the form of ˛ ! ˇ, where ˛

and ˇ are both strings of symbols, and ˛ contains at least one symbol from N .

More formally, a rewriting rule can be represented as .† [N/�N.† [ N/� !
.†[N/�, where � is the Kleene star operation (meaning zero or more copies of

the preceding statement) and [ is the set union operation.

� A distinguished symbol S 2 N that is the start symbol.

In the 1950s, Chomsky classified grammatical models into four classes based on

the forms of their production rules, which reflect their expressive power [13]. In a

nutshell, selecting a class of grammatical model as the representation of biological

sequences is a tradeoff between the expressivity and the compilation complexity.

Since GenoCAD uses a Context-Free Grammar (CFG), we will only give the math-

ematical definition of CFG. A good general introduction to formal languages and

the Chomsky hierarchy may be found in [37].

A Context-Free Grammar allows any production rule of the form A ! ˛. The

left-hand side only consists of a single non-terminal symbol A, and the right hand

side can be any string ˛, where A 2 N , and ˛ 2 .N [†/�. The corresponding au-

tomaton for a context free grammar is a push-down automaton. The computational

complexity to recognize a context free grammar is polynomial.

GenoCAD formalizes many generic design principles of molecule biology in

the form of a context free grammar. The biological parts are the terminals, while

the devices/systems composing multiple parts are categorized as non-terminals in

www.genocad.org
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Table 11.1 GenoCAD small
grammar set of terminal and
non-terminal symbols

Non-terminals Terminals

S �
Operon �
Cistron �
Promoter prom1; prom2; prom3

RBS rbs1; rbs2; rbs3

Gene lacI; tetR; gfp

Terminator b0012; b0015

Table 11.2 GenoCAD small context free grammar of gene
expression

Number Rule

P1 S ! Operon

P2 Operon ! Operon;Operon

P3 Operon ! Promoter;Cistron; Terminator

P4 Cistron ! RBS;Gene

P5 Cistron ! Cistron;Cistron

P6 Terminator ! Terminator; Terminator

P7 � � �P9 Promoter ! prom1jprom2jprom3

P10 � � �P12 RBS ! rbs1jrbs2jrbs3

P13 � � �P15 Gene ! lacIjtetRjgfp

P16; P17 Terminator ! b0012jb0015

the grammar. In this review, only a small grammar will be presented: two more

comprehensive grammars are published elsewhere [9, 11].

Table 11.1 summarizes the non-terminals and terminals used in this small gram-

mar. S is a special non-terminal which is used as the start symbol of the grammar.

Operon and Cistron are complex devices, which are composed of multiple basic

parts (terminals). In the category of Promoter, there are three terminals, namely

prom1; prom2 and prom3. Similarly, a ribosome binding site RBS can be chosen

from rbs1; rbs2 and rbs3, while a Gene could be lacI or tetR or gfp. Finally, there are

two terminals b0012 and b0015 belong to the non-terminal Terminator. Table 11.2

presents a context free grammar for designing gene expression cassettes. The whole

grammar can be divided into two sections: rules P1 – P6 transform the structure of

a design, while rules P7 – P17 are used to select a particular terminal for each non-

terminal category. The design starts with P1, where the start symbol S becomes

an expression Operon. Multiple Operons are allowed by applying rule P2 multiple

times: for a design with n cassettes, P2 is applies n�1 times. Rule P3 specifies the

structure of an Operon to be a Promoter, followed by a Cistron and a Terminator.

A Cistron can be broken down by rule P4 as an RBS and a Gene. Multiple Cistrons

and Terminators are allowed in a design by rules P5 and P6, respectively. After

the structure of a design is defined, rules P7 – P17 are used to transform each

non-terminal to a specific biological part (terminal). For instance, rules P7;P8 and

P9 specify prom1; prom2 and prom3 respectively to replace non-terminal Promoter

(the ‘j’ sign indicates OR relationship).
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R G R G R G R G

Key

ctcacttttgccctttagaaggggaaagctggcaagattttttacgtaataacgctaaaagttttagatgtgctttactaagtcat

P1

P2

P2P3

P3 P3P5

P4 P4 P4 P4

1

3

2

prom1 rbs1 lacI rbs1 tetR b0012 prom2 rbs2 gfp b0015 prom3 rbs3 gfp b0015

cgcgatggagcaaaagtacatttaggtacacggcctacagaaaaacagtatgaaactctcgaaaatcaattagcctttttatgc

atcaccaaggtgcagagccagccttcttattcggcctt......

caacaaggtttttcactagagaatgcattatatgcactcagcgctgtggggcattttactttaggttgcgtattggaagatcaag
agcatcaagtcgctaaagaagaaagggaaacacctactactgatagtatgccgccattattacgacaagctatcgaattatttg

Fig. 11.1 Grammatical design of a DNA sequence. Panel 1: A parsing tree showing the step-
by-step application of rules to generate the sequence (excepting terminal selection). Each step is

labeled with the rule applied. Panel 2: Representation of the generated DNA part sequence, using
a standard set of synthetic biology icons. Panel 3: The designed DNA sequence

Figure 11.1 shows how this simple syntactic model can be applied to generate

a sequence structurally consistent with the XOR gates developed below in our pre-

sentation of Eugene (Fig. 11.3) and GEC (Fig. 11.4). The design process starts with

applying P1 to the start symbol S to transform the design into a single Operon.

After applying P3 twice, the design becomes three Operons. In the next step, rule

P3 defines the structure of each Operon as a Promoter, a Cistron and a Terminator.

In order to express lacI and tetR under control of the same constitutive promoter,

P5 is applied to allow two Cistrons in the leftmost Operon. Finally, rule P4 breaks

down each Cistron into an RBS followed by a Gene. Once the structure of the design

is decided, a part is selected for each category (panel 2 in Fig. 11.1) and mapped to

a DNA sequence that can be exported for synthesis (panel 3 in Fig. 11.1)

If we operate the process in Fig. 11.1 in reverse, then rather than generating a

DNA sequence, we can validate whether a specified DNA sequence is consistent

with the syntactic model. This is carried out with an automated process known as

‘parsing’ in computer science. The parser operates in the reverse order of the design

process: the GenoCAD parser takes the DNA sequence (panel 3 in Fig. 11.1) as

input and breaks it into a series of biological parts (panel 2 in Fig. 11.1). It then

checks for the existence of at least one rule application tree that can generate this

series of parts using the context-free grammar. Realizing that we can build parsers

from the syntactic model opens up the possibility of viewing DNA sequences as a
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programming language. One can make changes to a DNA sequence just like writing

source code, and use the parser to check whether the new DNA sequence is still

consistent with the syntactic model (which formalizes the biological knowledge).

It should be noted that the syntactic model only checks the structure, but not the

meaning of the design. A syntactically correct sentence is not necessarily meaning-

ful. In the context of synthetic biology, this means the syntactic model only controls

the order of putting biological parts together to ensure a successful gene expression,

but the function of the DNA sequence (i.e., what does this sequence do?) remains

unknown. Recently, GenoCAD has been extended to address this area with the intro-

duction of an attribute grammar to develop semantic models of DNA sequences [10].

By associating biological attributes with parts, and coupling semantic actions with

each production rule, the semantic models are capable of translating a class of DNA

sequences to mathematical models that describe the encoded phenotypic behavior.

GenoCAD Web Service

Based on the syntactic model originally described in [9], an open-source web appli-

cation (www.genocad.org) has been implemented. GenoCAD constrains the design

space using the underlying syntactic models, and guides the user through the design

process in a ‘point and click’ fashion. This has been extended recently with a second

syntactic model, designed specifically for BioBrickTM-based constructs [11].

The GenoCAD web tool applies these syntactic models to support both de-

sign and validation of sequences [15] (though at the moment when this chapter

was written, the validation section was offline for development). The design space

(Fig. 11.2.a) has two distinct sections: on the left hand side is the ‘History Record’

which keeps track of each design step, while the right hand side shows the current

design. On top of the right hand side is an icon representation of the current design,

which will evolve as the design proceeds. Underneath the icon representation is the

main design space, where a user can point and click on a grammar rule to transform

the design or to decide on a specific biological part for a category. After the design

is finished (i.e., the structure is finalized, and all parts are selected), GenoCAD will

offer the user an option to export the DNA sequence being designed.

If a DNA sequence is designed outside GenoCAD, it can be taken into the vali-

dation section (Fig. 11.2.b) to check whether the composition of biological parts is

consistent with GenoCAD grammars. It should be noted that if a sequence fails in

the validation, it does not necessarily mean this sequence is non-functional. Rather,

it means that the GenoCAD grammar could not find a parsing tree to generate this

sequence, and that sequence requires a closer inspection by human experts. On en-

tering the validation page, a user firsts select a grammar to validate against, then

pastes the DNA sequence into GenoCAD. The tool will then interpret the DNA se-

quence into a series of parts and (if successful) report whether this sequence has a

correct structure as defined by the selected grammar.

www.genocad.org
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Fig. 11.2 Screenshots of the GenoCAD.org web service showing pages for sequence design
(a), sequence validation (b), part library customization (c), and the user’s workspace (d)

Finally, users who elect to register an account with the GenoCAD web tool have

more privileges in customizing their design space in GenoCAD. A registered user

can create new libraries (Fig. 11.2.d), add new parts, and save intermediate and final

designs for later use (Fig. 11.2.d).

Eugene

Eugene (www.eugenecad.org) [22, 23] is a human readable, executable specifica-

tion, which reflects the creation of biological systems by defining, specifying, and

combining collections of biological parts. Eugene is inspired by the languages of

the Electronic Design Automation (EDA) industry (e.g. Verilog, VHDL) in terms of

its ability to provide a biological design netlist (a collection of abstract components

and their connections) which can be synthesized (automatically transformed) into

collections of physical implementations in a design library.

Eugene bridges the synthetic biology ‘part’ and ‘device’ (composite of multiple

basic parts) hierarchy levels by explicitly addressing the components in different

levels of the hierarchy. These relationships are explicitly reflected in Eugene’s data

types: Device and Part declarations abstract low-level implementation details (cap-

tured by Property statements), while still providing the capability to capture the

lower level information through the encapsulation of specific design information

www.eugenecad.org
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with Part Instance objects composed of specific Properties. These features address

the need for flexibility in biological part and device specification. Moreover, Eugene

can directly interface with design tools like Clotho [8,17] which extract information

from repositories of biological parts and encapsulate that information as Eugene

‘header files.’ These files define specific instances of Parts and their Properties for a

given ‘design library.’ These header files are modular and allow changes from one

design library to the other with the inclusion of different files without modifying the

Eugene Device declarations.

Eugene is also an executable specification since it is an interpreted language. At

runtime, the Eugene interpreter can create collections of Devices based on condi-

tional execution statements (e.g. if) coupled with specific functions to create new

Devices at runtime. These features address the need for the combinatorial explo-

ration of devices from a wide variety of different biological parts. For example, if

a particular Part’s Property does not meet a specific threshold, the body of the con-

ditional statement can be used to swap that Part out with one that does meet the

requirements.

Finally, Eugene allows for the creation and assertion of design rules. A Rule

directly applies to the relationship between various Parts in a Device and provides

the validation mechanisms needed to ensure the successful creation of a construct.

These rules are not predefined in the language but rather created by the user from a

rich set of rule primitives. Such flexibility allows users to define and assert numerous

combinations of rules.

Eugene Constructs

The language supports five predefined primitive types. These are txt, num, boolean,

txt[] (a list of text sequences), and num[] (a list of numbers). Properties represent

characteristics of interest and are defined by primitives and associated with parts.

The data type Part represents a standard biological part, such as a BioBrickTMin the

MIT Registry. Part definitions do not construct any parts, but rather specify which

parts can be constructed. Declarations of those parts create instances of predefined

Parts and assigns values to their properties. Device statements represent an ordered

composite of standard biological parts and/or other devices. Below are examples of

these constructs:

//Eugene Primitives
txt[] listOfSequences = ["ATG", "TCG", "ATCG"];
txt specificSequence = listOfSequences[2];
num[] listOfNumbers = [2.5, 10, 3.4, 6];
num ten = listOfNumbers[1];

//Eugene Properties
Property Sequence(txt);
Property RelativeStrength(num);
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//Eugene Part Declarations
Part Promoter(ID, Sequence, Orientation);
Part ORF(ID, Sequence, Orientation);
Part RBS(ID, Sequence, Orientation);

//Eugene Part Instances
RBS rbs (.Sequence("gatcttaattgcggagacttt"),
.Orientation("Forward"));

ORF orf (.Sequence("gatcttaattgcggagacttt"),
.Orientation("Forward"));

//Eugene Device
Device BBa_K112234(rbs, orf);

Eugene Rules

The specification of rules provides the ability to validate Device declarations. Rule

declarations themselves do not perform the validation. They have to be ‘noted,’ ‘as-

serted’ or used as expressions inside an if-statement to affect program operation.

Rule declarations are single statements consisting of a left and right operand and

one rule operator. The rule operators BEFORE, AFTER, WITH, NOTWITH,

NEXTTO, NOTCONTAINS, CONTAINS, and NOTMORETHAN can be ap-

plied to Part instances or Device instances. These operators also have been defined

with specific semantics as well (e.g. their commutative properties). Property val-

ues of Part/Device instances or primitives in relation with one Part/Device can be

operators in rule declarations when using the relational operators <, <D, >, >D,

Š D, DD. These operators are overloaded when evaluating text and the text is com-

pared according to alphabetical precedence. The following are examples of rules in

Eugene:

Rule r1(rbs BEFORE orf);
Rule r2(rbs WITH promoter);
Rule r3(promoter NEXTTO rbs);

Rule r4(rbs.Sequence != orf.Sequence);

Rule r5(rbsStrong.RelativeStrength > rbsWeak.
RelativeStrength);

num relativeStr = rbsStrong.RelativeStrength;
Rule r6(p.RelativeStrength > relativeStr);

Assert(r6); // Strong enforcement of the rule
(stop compilation)

Note(r4); // Weak enforcement of the rule (warning)

Currently rules must be defined explicitly in the body of the Eugene program or

in a header file. However work is in progress to examine ways to associate rules with

Parts types and instances as well as generate constraints in response to experimental



234 J. Beal et al.

work done in laboratories which is fed back to Eugene at runtime. In addition, the

automated assembly system j5 [29] uses Eugene constraints as part of its combina-

torial exploration of alternate devices.

Eugene Functionality

The use of conditional statements breaks up the flow of execution and allows se-

lected blocks of code to be executed. Eugene supports two kinds of if statements to

achieve this: rule validating if statements and standard if statements. The three logi-

cal operators AND, OR, and NOT can combine statements of each type but cannot

mix them together.

Rule r7(rbs BEFORE orf);
if(on (BBa_K112234) r7) {

Block statement, in case of true evaluation
} else {

Block statement, in case of false evaluation
}

boolean test = true;
if(test) {

Assert(r7);
} else {

Assert(NOT r7);
}

The permute function automates the specification of many Devices that share

the same basic structure. Applying permute generates a Device for every combi-

nation of predefined Parts, maintaining the Part type of each component in the

original Device. For example, the following code will result in eight devices at the

completion of the permute operation.

Promoter p1(.Sequence("atc"));
Promoter p2(.Sequence("gcta"));
RBS rbs1(.Sequence("gatct"),.Orientation("Forward"));
RBS rbs2(.Sequence("gatcttaatt"), .Orientation("Forward"));
Device d2(p2, d1, rbs2);
permute(d2);

Permute also can be given additional parameters that limit the number of

Devices created or force the Devices to adhere to the rules currently defined.

The latter provides an intelligent design space exploration process. For example,

Permute.d2; 4; strict/ will create four Devices which adhere to the rules currently

defined while maintaining the overall structure of Device d2.

XOR Design Example

We now show how Eugene can be applied to design our example XOR system,

which only produces a green fluorescent protein (GFP) with either aTc or IPTG
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lacI tetR

IPTG aTc

GFP GFP
rpType1 gfp rpType2 gfpcp lacI tetR

Fig. 11.3 XOR Gate design example designed with Eugene

(but not both) present. Figure 11.3 shows the proposed network of parts and the

regulation present. The code snippet below shows what this design would look

like in Eugene. Of note is that since Eugene is based around the specification of

devices from individual parts, there is not a natural way to express small molecular

interactions. These manifest themselves as properties of the parts. Control state-

ments could then check these properties to create alternate networks reflecting the

presence or absence of these molecules. If the proper DNA sequences are provided

for all the parts, these interactions themselves would occur naturally in the physical

device. The provided design merely captures the topology of the XOR device as an

ordered collection of parts.

Property sequence(txt);
Property smallMoleculeInteraction(txt);

Property type(num);
//1 - neg regulated by lacI, pos regulated by tetR
//2 - neg regulated by tetR, pos regulated by lacI

Part ConstitutivePromoter(sequence);
Part RegulatedPromoter(sequence, type);

Part ORF(sequence, smallMoleculeInteraction);

ConstitutivePromoter cp("ACGT...");
RegulatedPromoter rpType1("ACGT...", 1);
RegulatedPromoter rpType2("ACGT...", 2);

ORF gfp("ACGT...", "none");
ORF lacI("ACGT...", "IPTG");
ORF tetR("ACGT...", "aTc");

Device xor(cp, lacI, tetR, rpType1, gfp, rpType2, gfp);

Notice that here no rules are actually specified. However, were this design actu-

ally given to a downstream tool chain for automated assembly, one would want to
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create many potential devices in case the provided device either fails to function or

assemble. Potential rules could be:

//This places the ConstitutivePromoter before lacI and tetR
Rule cpLocation1(cp BEFORE lacI);
Rule cpLocation2(cp BEFORE tetR);
Assert(cpLocation1 AND cpLocation2);

//Ensures that only two RegulatedPromoters are in the system
Rule UniquePromoter1(rpType1 NOTMORETHAN 1);
Rule UniquePromoter2(rpType2 NOTMORETHAN 1);
Assert (UniquePromoter1 AND UniquePromoter2);

For the sake of space, all the rules are not listed here but one should specify

the relationship between the gfp ORF part and the RegulatedPromoters as well.

This would be followed by a Permute.xor; strict/ function call which would create

a variety of devices (e.g. with the position of the lacI and tetR parts swapped). These

devices would then be given to an automated assembly program [4] for downstream

use with laboratory automation.

GEC

This section describes a programming language for Genetic Engineering of Cells

(GEC), initially presented in [31] and available at http://research.microsoft.com/

gec. The main goal of GEC is to facilitate the design, analysis and implementation

of biological devices inside living cells. GEC builds on previous research in the

field of synthetic biology, including a registry of standard parts (http://partsregistry.

org) together with experimental techniques for combining these parts into higher-

level devices. More recently, a range of software tools have been developed for

designing and simulating biological devices, as discussed for example in [31, 33].

The main innovation behind GEC is to take the design process a step further, by

allowing biological devices to be designed with little or no knowledge of the specific

parts available. The user needs only a basic knowledge of the available part types,

namely promoters, ribosome bindings sites, protein coding regions and terminators.

These elementary part types can be composed and the properties of the desired

parts can be expressed as constraints in the GEC language. Once a biological device

has been designed in this way, the GEC compiler automatically determines the set

of actual parts that satisfy the design constraints. In most cases, multiple solutions

are possible for a given design. GEC can compile each of the solutions to a set

of chemical reactions, which can then be simulated or analyzed by the user. The

solutions that exhibit the desired behavior can then be synthesized and put to work

in living cells. Although there is no guarantee that a solution which produces the

desired simulation results will function correctly inside a living cell, analyzing the

design on a computer is an effective way to rapidly detect design errors prior to

building the physical device – a process which can take several days and for which

even small errors can prove very costly.

http://research.microsoft.com/gec
http://research.microsoft.com/gec
http://partsregistry.org
http://partsregistry.org
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directive sample 2000.0 1000

directive plot c[gfp]

initPop A 10000.0 | initPop B 10000.0 |
c[

prom<con(RT)>;rbs;pcr<codes(PA)>;rbs;pcr<codes(PB)>;ter ;

prom<neg(PA),pos(PB)>;rbs;pcr<codes(gfp)>;ter ;

prom<neg(PB),pos(PA)>;rbs;pcr<codes(gfp)>;ter |

] | A -> c[A] | B -> c[B]

b

[(”A”, ”iptg”); (”B”, ”aTc”); (”PA”, ”lacI”); (”PB”, ”tetR”)]

[[r0051; b0034; c0012; b0034; c0040; b0015;
rU2; b0034; e0040; b0015;
rU1; b0034; e0040; b0015]]

APA

PA

c

PB

A B

B

BA

gfp gfp

PB

a

PA + A -> PA-A | PB + B -> PB-B | RT > 0.1

Fig. 11.4 Designing an exclusive OR (XOR) logic gate in GEC. (a) GEC code for the XOR gate,
together with its graphical representation, expressed in terms of part types, part properties and
logical variables. Note that none of the part identifiers are specified explicitly. The design yields a
number of possible solutions. (b) One of the solutions proposed by the GEC tool, expressed as a
mapping from logical variables to molecules, together with a list of the part identifiers that make
up the design

We illustrate the design approach of the GEC language on a simple exclusive

OR (XOR) logic gate (Fig. 11.4). The system is specified as a collection of three

transcriptional units, where each unit consists of a sequences of part types. The first

transcriptional unit consists of a promoter (prom), a ribosome binding site (rbs) a

protein coding region (pcr), followed by another ribosome binding site and protein

coding region, followed by a terminator (ter):

prom; rbs; pcr; rbs; pcr; ter
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Additional constraints on part types are specified in the form of part properties. In

the first transcriptional unit, the part prom<con(RT)> denotes a promoter with

a constitutive transcription rate RT, the part pcr<codes(PA)> denotes a protein

coding region that codes for protein PA, and the part pcr<codes(PB)> denotes

a protein coding region that codes for protein PB:

prom<con(RT)>; rbs; pcr<codes(PA)>; rbs; pcr<codes(PB)>; ter

The transcription rate RT and the proteins PA and PB start with an upper case

letter, which means that they are logical variables representing an unknown rate

and unknown proteins. Although the values of these variables are not known in

advance, the GEC compiler takes into account the full set of design constraints

in order to find suitable values that satisfy the desired properties. For example,

the property RT > 0.1 states that the constitutive transcription rate of the pro-

moter must be above a certain threshold. In the second transcriptional unit the part

prom<neg(PA),pos(PB)> denotes a promoter region that is negatively regu-

lated by protein PA and positively regulated by protein PB:

prom<neg(PA),pos(PB)>; rbs; pcr<codes(gfp)>; ter

This places additional constraints on the proteins PA and PB, which must act as

a positive and negative regulator, respectively. The third transcriptional unit places

further constraints on the proteins PA and PB, which must now act as both positive

and negative regulators simultaneously:

prom<neg(PB),pos(PA)>; rbs; pcr<codes(gfp)>; ter

Note that the protein gfp starts with a lower case letter, meaning that it represents

a known protein.

In order to map logical variables and design constraints to physical parts, GEC

includes a database of parts. Each of the parts in the database is associated with

a part identifier together with zero or more part properties. A subset of a GEC

parts database is shown in Table 11.3. The part properties are also associated with

rate constants, which are used to simulate the design solutions. For example, the

Table 11.3 A subset of the GEC parts database, which can be defined and
extended by the user. Each of the parts in the database is associated with a part
identifier together with zero or more part properties

ID Type Properties

e0040 pcr codes(gfp, 0.01)

c0012 pcr codes(lacI,0.01)

c0040 pcr codes(tetR, 0.01)

b0034 rbs rate(0.1)

b0015 ter

r0051 prom neg(cl, 1.0, 0.5, 0.00005), con(0.12)

r0040 prom neg(tetR, 1.0, 0.5, 0.00005), con(0.09)

rU1 prom neg(tetR,1.0,0.01,0.0), pos(lacI,1.0,0.5,0.1), con(0.0)

rU2 prom neg(lacI,1.0,0.01,0.0), pos(tetR,1.0,0.5,0.1), con(0.0)

rU3 prom neg(tetR,1.0,0.5,0.0), pos(lacI,1.0,0.5,0.1), con(0.0)
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database entry (c0040 7! pcr,codes(tetR, 0.01)) denotes a protein coding region

c0040, which codes for the protein tetR with degradation rate 0.01. The entry

(r0051 7!prom,neg(cI,1.0,0.5, 0.00005),con(0.12)) denotes a promoter r0051 that

is negatively regulated by the protein cI, which binds to the promoter at rate 1.0

and unbinds at rate 0.5, where the repressed transcription rate is 0.00005 and the

constitutive transcription rate is 0.12.

The design of the XOR gate in Figure 11.4 on page 237 also includes interactions

between proteins and transport reactions across the cell membrane. The following

constraints require that the protein A binds to PA and forms a complex PA-A, and

that the protein B binds to PB and forms a complex PB-B. A vertical bar is used to

separate multiple constraints:

PA + A -> PA-A | PB + B -> PB-B

This effectively specifies that the inputs A and B to the XOR gate can inhibit the

activity of the transcription factors PA and PB by forming inert complexes with

these transcription factors. Finally, the following properties require that both A and

B are able to cross the cell wall:

A -> c[A] | B -> c[B]

These properties are essential in order for the input signals of the XOR gate to be

read by the cell. In order to map these reaction constraints to physical parts, the

GEC system includes a database of reactions. Each of the reactions in the database

consists of a set of reactants, a set of products and a corresponding reaction rate. A

subset of a GEC reactions database is shown in Table 11.4. For example, the reaction

(lacI C iptg ! f1:0g lacI-iptg) denotes the formation of a complex between lacI

and iptg. In many cases accurate rate information for these reactions is missing, and

approximate rate constants are used instead.

The above design constraints for the XOR gate are solved by the GEC compiler

in order to find an appropriate solution. For example, the first protein coding re-

gion of the first transcriptional unit must produce a protein PA that can both inhibit

the promoter of the second transcriptional unit, activate the promoter of the third

transcriptional unit and also form a complex with a compound that is capable of

crossing the cell membrane. In the general case multiple solutions are possible for

a given design. One of the possible solutions is shown in Figure 11.4. The solution

maps the inputs A and B to iptg and aTc respectively, and the transcription factors

PA and PB to lacI and tetR, respectively. The corresponding part identifiers are also

listed, which denote specific nucleotide sequences that could potentially be inserted

inside a bacterium in order to program an XOR gate.

Table 11.4 A subset of the
GEC reactions database,
which can be defined and
extended by the user

Reactants Rate Products

lacI C iptg 1.0 lacI-iptg

tetR C aTc 1.0 tetR-aTc

iptg 1.0 c[iptg]

aTc 1.0 c[aTc]
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The main characteristic of the XOR gate is that green fluorescent protein (GFP)

is only produced when one of the input signals A or B is present, but not both.

When the user compiles the XOR gate design in GEC, they are presented with

a set of possible solutions that satisfy the design constraints. The user can then

simulate each of the solutions in order to choose the most desirable one. The

design can be further refined by specifying that certain rates such as transcrip-

tion, translation or transcription factor binding must lie within a specified range.

This helps to reduce the initial set of possible solutions. In the case of the XOR

design, one of the solutions represents a condition whereby GFP is produced

even in absence of both inputs A and B. This occurs because the rate of repres-

sion of one of the promoters by transcription factor PA is less than its rate of

activation by transcription factor PB, meaning that activation out-competes inhi-

bition. This unwanted solution can be eliminated by adding the constraint that

the inhibitor transcription factors bind more tightly than the activator transcription

factors.

In order to simulate a given design, GEC automatically compiles the design

to a set of chemical reactions, using the rates associated with the part properties

and reactions in the GEC databases. The set of reactions for the XOR gate design

is summarized in Fig. 11.7, and simulation of the reactions is shown in Fig. 11.5.

Additional details about the compilation to reactions are provided in [31], and a

screen shot of the tool is shown in Figure 11.6.

In this section we have illustrated the design of genetic devices in GEC using

a simple XOR gate as an example. In order to effectively design more complex

devices, however, further work is needed to characterize the properties of individ-

ual parts. At present only a few parts are well-characterized and many reaction

rates are unknown, so the part and reaction databases described here do not yet

exist on a large scale. As one potential consumer of such databases, GEC may

help guide how these are designed and populated with information about biological

devices.

No input aTc iptg aTc & iptg

Fig. 11.5 Simulation of gfp concentration over time for an exclusive OR gate in GEC, with four
combinations of inputs. The simulation uses the chemical reactions of Fig. 11.7, which were au-
tomatically generated from the chosen solution of Figure 11.4 on page 237. The solution exhibits
the desired behavior and is a candidate for synthesis
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Fig. 11.6 Screen shot of the GEC tool in action. The GEC program is entered on the left as a
collection of part types, part properties and logical variables. The design is then compiled to a set
of solutions, which can be individually selected. A given solution can then be simulated by the tool
in order to observe the expected evolution of the molecular species over time

Proto

Proto is a truly high-level language for synthetic biology, in the sense that a

programmer specifies the computation they wish to execute, but the implementa-

tion of that computation as a genetic regulatory network is entirely automated. This

greatly increases the power of the programmer, at the cost of programs that typically

consume more resources than hand-tuned systems. The same sort of optimization

techniques that apply to conventional processors, however, can be applied to the ge-

netic regulatory networks generated by Proto, making this a reasonable approach to

designing complex synthetic biology systems.

Amorphous Medium and Proto

The original focus of Proto [4] was not synthetic biology, and synthetic biology is

still not its primary focus. Rather, it was designed for programming spatial com-

puters – potentially large aggregates of locally communicating computing devices

distributed to fill a physical space, such as sensor networks, robotic swarms, smart

materials, or FPGAs. A colony of cells is also a spatial computer – albeit one that

may have billions or trillions of devices, rather than the paltry dozens in many sen-

sor networks. Proto’s continuous space-time abstraction lets it scale gracefully to

such large numbers and its functional dataflow semantics match well with genetic

regulatory networks, particularly for describing the spatial differentiation necessary

to construct complex multicellular systems like biofilms or tissues.
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Fig. 11.7 Network of reactions generated from the design of Figure 11.4 on page 237. The graph-
ical representation on the left was also generated by the GEC tool, and is equivalent to the textual
representation on the right
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neighborhood of P

P

Fig. 11.8 An amorphous medium is a manifold where every point is a general computational
device that knows its neighbors’ recent past state

Proto’s approach to the challenges of spatial computing is to focus not on the

network of devices, but on the continuous space that they occupy, using the amor-

phous medium abstraction. An amorphous medium [3] is a manifold with a general

computational device at every point, where each device knows the recent past state

of all other devices in its neighborhood (Fig. 11.8). While an amorphous medium

cannot, of course, be constructed, it can be approximated on the discrete network of

a spatial computer.

Proto uses the amorphous medium abstraction to factor programming a spatial

computer into three loosely coupled subproblems: global descriptions of programs,

compilation from global to local execution on an amorphous medium, and discrete

approximation of an amorphous medium by a real network.

Proto is a functional language that is interpreted to produce a dataflow graph of

operations on fields. This program is then evaluated against a manifold to produce a

field with values that evolve over time. Proto uses four families of operations: point-

wise operations likeC that involve neither space nor time, restriction operations that

limit execution to a subspace, feedback operations that establish state and evolve it

in continuous time, and neighborhood operations that compute over neighbor state

and space-time measures and summarize the computed values in the neighborhood

with a set operation like integral or minimum.

With appropriate operators, compilation and discrete approximation are straight-

forward. Thus, Proto makes it easy for a programmer to carry out complicated

spatial computations using simple geometric programs that are robust to changes

in the network and self-scale to networks with different shape, diameter, density of

nodes, and execution and communication properties [1].

For example, Weiss’ band detector [2] uses diffusing AHL to detect intermediate

distance from a high aTc concentration. This can be implemented using the Proto

program:

(def band-detect (signal lo hi)
(and (> signal lo) (< signal hi))))

(let ((signal (diffuse (aTc) 0.8 0.05)))
(green (band-detect signal 0.2 1)))

where aTc is a function for sensing aTc and green is an actuator that sets the

level of GFP expression. Figure 11.9 (from [5]) shows the Proto band detector

program interpreted to produce a dataflow graph, then evaluated against an irregu-

larly shaped space. Executing the Proto band detector in simulation produces results
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Fig. 11.9 A Proto program
specifies a dataflow graph of
operations on fields. When
evaluated on a space, each
operation produces a field of
values over that space. Here
the band detector program is
shown evaluated on an
irregularly shaped space, with
values shown as varying
levels of grey. The actuation
produced by green is shown
inside that operation

equivalent to Weiss’s band detector. Figure 11.10 (from [5]) compares execution on

a network of 2,000 simulated wireless devices distributed randomly through a 100

by 100 unit region with a 10 unit communication radius to Weiss’ original results.

Motif-Based Compilation and Optimization

Given a library of devices and standards to compile to, Proto programs can be

transformed into genetic regulatory network designs by a process of motif-based

compilation [5, 6]. The resulting design can then be optimized using adapted forms

of standard code optimization techniques.

The basis of this compilation are associations of each Proto primitive to be com-

piled with a genetic regulatory network fragment. These are declared as annotations

on primitives. For example, the logical not operator is associated with a biological

inverter motif by the statement shown in Fig. 11.11. The first line declares the not

operator as a primitive that takes a boolean as input and returns a boolean as output.

The second line annotates this declaration with a description of a genetic regulatory

region – in this case, a strong promoter repressed by whatever protein will represent

the not operator’s input, followed by coding regions for the proteins representing its

outputs (each of which is implicitly headed by the necessary ribosome binding site),

then finally a terminator.
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Fig. 11.10 Examples of the Weiss lab band detector in use (a), reprinted by permission from
Macmillan Publishers Ltd: Nature [2], copyright (2005). The circular regions in the center are ac-

tive sender bacteria, while the fuzzy areas around them are receiver bacteria expressing fluorescent
protein. A Proto implementation produces equivalent results (b) on a network of 2,000 simulated
devices

(primitive not (boolean) boolean
:grn-motif ((P high R- arg0 outputs T)))

Promoter with high basal expression

Repressed by operator input Terminator

coding for output proteins

outputsarg0

Fig. 11.11 Motif declaration for logical not operator

(primitive green (scalar) scalar :side-effect
:grn-motif ((P R+ arg0 GFP outputs T)))

Promoter with low basal expression

Induced by operator input Terminator

coding for output proteins

coding for Green Fluorescent Protein

GFP outputsarg0

Fig. 11.12 Motif declaration for green fluorescence actuator

Motifs can include many other elements as well. For example, a motif can spec-

ify particular chemicals to be used, as in the case of the green actuator shown in

Fig. 11.12, whose green fluorescence side effect is implemented by the inclusion of

a GFP coding region in the motif. Motifs can also include chemical reactions, as

in the case of the IPTG sensor shown in Fig. 11.13, which uses repression of LacI

to detect the presence of the small-molecule signal IPTG. They may even declare

internal signaling variables, to be filled in by the compiler, as in the case of the and

operator shown in Fig. 11.14, which implements a non-brancing logical AND using

inverter input to a NOR gate.
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(primitive IPTG () scalar
:grn-motif ((rxn LacI IPTG -> LacI*)

(P high LacI T)
(P high R- LacI outputs T))) Lacl

IPTG

outputs

Promoters with high basal expression

Lacl deactivated by binding IPTG 

Terminator

coding for output proteins

Repressed by Lacl

Fig. 11.13 Motif declaration for IPTG sensor. An aTc sensor uses the same motif, except that aTc
replaces IPTG and TetR replaces LacI

(primitive and (boolean boolean) boolean
:grn-motif ((P high R- arg0 ?X T)

(P high R- arg1 ?X T)
(P high R- ?X outputs T)))

arg1

arg0

outputs

?X

?X

Promoter with high basal expression

Repressed by second input

Repressed by first input
Terminators

coding for output proteins

Repressed by motif-internal proteins

Coding for motif-internal proteins

Fig. 11.14 Motif declaration for a non-branching logical AND operator. A logical OR uses the
same motif, except that all repressors are switched to activators and promoters have low base
activity

In order to transform a Proto dataflow computation into an abstract genetic reg-

ulatory network, the compiler maps each operator to its associated motif and maps

each dataflow edge and internal motif variable to a regulatory protein. These motifs

and proteins are then linked together, using the structure of the dataflow graph, to

form an abstract genetic regulatory network. The particular choice of chemicals and

sequences to implement this network is not fully determined, but left for a later stage

of compilation, such as might be provided by systems like GEC [31] or Eugene [7].

An initial set of target chemical rate constants for the network (to be modified as

the implementation is determined) are filled in from the motifs where specified and

filled in by a default set-point in the standards family where not specified.

Consider, for example, the following declaration and use of logical XOR to im-

plement our example program:

(def xor (a b)
(or (and a (not b))

(and b (not a))))

(green (xor (aTc) (IPTG)))

This program should create cells that fluoresce green when precisely one of IPTG

or aTc is present at high concentration.

This program is first interpreted to produce the dataflow computation shown in

Fig. 11.15. Each operator is then mapped to the motifs specified by the declarations

shown above, producing the network shown in Fig. 11.16. The dataflow edges are

assigned to arbitrary regulatory proteins A, B , etc. The consuming motifs set the

type of protein, such that A and B are activators, C is a repressor, etc.
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IPTG
not

green

aTc
not

and

and

or

Fig. 11.15 A Proto dataflow computation implementing the XOR example program

Lacl

IPTG

GFP

K

K

TetR

aTc

E

I

D

H

B

L

L

F

J

J

A

c

G

Fig. 11.16 A Proto dataflow computation is compiled to an abstract genetic regulatory network
in two stages. First, each operator is mapped to a motif and each dataflow edge is mapped to a
regulatory protein. These elements are then linked together, using the structure of the dataflow
graph, to form an abstract genetic regulatory network

We now have a genetic regulatory network design that implements our high-level

computation, though as yet it is still unoptimized and may be extremely inefficient.

As we have demonstrated in [5], standard code optimization techniques such as copy

propagation, dead code elimination, and common subexpression elimination, can be

adapted to operate on genetic regulatory networks.

For example, copy propagation tests whether a protein is being used only to copy

a value; if so, the original input may be used directly rather than the copy. In this case

of this XOR program, copy propagation changes the input of the GFP-expressing

element from A to J . This then leaves protein A not regulating anything. Similarly,

copy propagation switches the regulation of J from B to K and from F to L.

Dead code elimination deletes proteins that are not regulating anything, network

elements with no products, and proteins that can never be expressed. Since protein

A is no longer regulating anything, it is deleted, along with all of the protein coding

sequences that can produce it. Since A was the only product of one of the network

elements regulated by J , that whole network element is deleted. Likewise, B and F

and their producing elements are deleted by dead code elimination.
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Lacl

IPTG

GFP

K

K

TetR

aTc L

L

J

Jc

G

Fig. 11.17 Optimized genetic regulatory network for XOR example

Another example of optimization is double negative elimination, which looks for

sequences of two inverters and snips them out of the network. In the case of this

XOR program, this results in changing the production of E to production of K ,

since E’s only use is to repressD, which in turn represses K . Similarly production

of I is changed to production of L. This leaves I and E produced nowhere and D

and H unable to be expressed, so dead code elimination deletes another piece of

unneeded genetic regulatory network.

These optimizations and more are all applied automatically by the compiler,

eventually resulting in the network shown in Fig. 11.17. All told, the complexity

of the generated network is reduced by approximately 50% in every measure of

complexity: from 15 to 8 proteins, from 18 to 9 network elements, and from 7 to 4

stages of propagation delay.

We thus see that high-level computations specified in Proto can be automatically

transformed into an abstract genetic regulatory network through a strategy of motif-

based compilation. The resulting genetic regulatory network can be optimized using

adapted forms of standard code optimization techniques, and might then be mapped

onto particular parts from a database using lower-level languages like Eugene or

GEC. Although the network is more complex than a hand-optimized design like

those encoded in the other tools above, stronger optimizations will likely be able to

continue to close the gap, as they have for electronic computers.

Other High-Level Design Tools for Biological Computation

We have chosen to focus this chapter on high-level programming languages for in

vivo biomolecular computation, where the metaphor of cell as computer holds most

strongly. We have covered most of the existing tools in this space, omitting only a

few, such as [21], that are quite similar to those described. There are a number of

related areas outside of this scope, however, in which high-level design tools for

biomolecular systems have been developed, which we now briefly survey.
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Macroizing CAD Tools. A number of synthetic biology design tools, such as

TinkerCell [12] and SynBioSS [20], use biological rules to aid the programmer

in designing reaction networks. For example, SynBioSS (the Synthetic Biology

Software Suite) is a software suite for the generation, storage, and quantitative simu-

lation of synthetic biological networks. One component of this software suite, called

SynBioSS Designer, uses biological rules to create a reaction network given a series

of biological parts, such as promoters and ribosome binding sites, and the spatial

and temporal connectivity of these parts.

These systems also frequently include the ability to abstract a portion of the

network being designed. This type of ‘macroization’ is a step toward a high-level

language: the details of the abstracted portion are hidden and it can be given a name

that describes its overall function. The programmer must still be aware of the de-

tails, however, since the set of parts in the abstracted sub-network are fixed and can

interfere with other portions of the design.

Specialized Automated Design Tools. Complementary to Macroizing CAD tools

are specialized automated design tools, which might be thought of as limited high-

level languages. An example is the boolean circuit design tool recently described

in [25]. Given a truth table mapping inputs to desired outputs, this tool applies

the Karnaugh map method from electronic circuit design to find a minimal set of

boolean formulas, then maps these formulas onto a library of established biomolec-

ular boolean gates.

Cell-Free Biomolecular Computation. A number of biomolecular computation

systems have been constructed to operate in cell-free in vitro environments, and

the design challenges for many of these systems are being addressed with high-

level design tools. For example, the VERB compiler [35] transforms circuit designs

written in Verilog into a biochemical reaction network, and CAD tools have been

written to generate DNA origami structures [34].

Bio-Inspired Languages. There are a number of biologically-inspired languages

that have been designed to mimic the behavior of engineered biological systems.

For the most part, these are at a level of abstraction too high to currently be able to

map to a biomolecular systems implementation, though Weiss’ Microbial Colony

Language [38] is close. Many of these languages are focused on pattern forma-

tion, such as the Origami Shape Language [28], which develops geometric structure

through folding, and the Growing Point Language [14], which develops topological

structure through tropisms. Yet others either model high-level biological develop-

ment without connection to the details necessary to implement it, as in the case

of L-systems [32] and MGS [19], or use biological metaphors for decidedly non-

biological programming, as in the case of membrane computing [30].

Modeling Languages. Biological modeling languages such as Antimony [36],

ProMoT [26], iBioSim [27] and little b [24] raise the level of abstraction for con-

structing models of biomolecular reactions, but do not directly address the problem

of designing computations. For example, Antimony is a modular model definition

language that allows scientists to define and use reaction networks. It is designed to
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be human-writable and acts as an extension to other tools by translating the model

to SBML [18]. Antimony models composable DNA parts and also allows reaction

networks to be abstracted and parameterized, but does not provide any design au-

tomation for its user.

Summary

In this chapter, we have examined four high-level languages for the design of

biomolecular computing systems. Although the philosophy and the level of ab-

straction varies between systems, all are fulfilling the same basic goal of hiding

complexity from the programmer. Each thus allows a programmer to specify the

computing system they wish to create without the full details of how it will be im-

plemented, then automatically generates the remaining details.

At present, none of the available high-level languages can be considered ma-

ture. They are, however, an important and rapidly developing research area. Major

challenges in the near future for this area include:

� Development of concise high-level abstractions that map well to efficient

biomolecular implementations of a broad range of goals.

� Enhancing the range and quality of automation.

� Integration with other simulation, design, and assembly tools to form complete

tool-chains.

� Transitioning from research software to production quality software.

Assuming that progress continues in these areas, however, the advent of high-level

programming languages for biomolecular systems is likely to fundamentally trans-

form the field, much as they have done in computer science, by enabling much more

complex biomolecular systems to be designed more reliably by a vastly larger num-

ber of practitioners.
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Chapter 12

Rational Design of Robust Biomolecular
Circuits: from Specification to Parameters

Marc Hafner, Tatjana Petrov, James Lu, and Heinz Koeppl

Abstract Despite the early success stories synthetic biology, the development of

larger, more complex synthetic systems necessitates the use of appropriate design

methodologies. In particular, the integration of smaller circuits in order to perform

complex tasks remains one of the most important challenges faced in synthetic biol-

ogy. We propose here a methodology to determine the region in the parameter space

where a given dynamical model works as desired. It is based on the inverse problem

of finding parameter sets that exhibit the specified behavior for a defined topology.

The main issue we face is that such inverse mapping is highly expansive and suffers

from instability: small changes in the specified dynamic property could lead to large

deviations in the parameters for the identified models. To solve this issue, we discuss

regularized maps complemented by local analysis. With a stabilized inversion map,

small neighborhoods in the property space are mapped to small neighborhoods in

the parameter space, thereby finding parameter vectors that are robust to the prob-

lem specification. To specify dynamic circuit properties we discuss Linear Temporal

Logic (LTL). We apply these concepts to two models of the cyanobacterial circadian

oscillation.

Keywords Robustness � Inverse problems � Robust control � Optimal control

� Circuit design � Formal verification

Introduction

In recent years, a variety of synthetic circuits have been successfully implemented

and characterized [52]. These range from oscillators [21, 59, 61, 63], to toggle

switches [26, 35] and intercellular senders/receivers or quorum sensing communi-

cation systems [5,66,67]. In spite of the wide range of behaviors exhibited by these
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circuits, they were implemented from a small number of components configured in

well-known network topologies, with the appropriate choices of parameter values

found by trial-and-error.

Despite the early success of these synthetic circuits, the development of larger,

more complex synthetic systems necessitates the use of appropriate design method-

ologies. In particular, the integration of smaller circuits in order to perform complex

tasks remains one of the most important challenges facing synthetic biology [52].

In silico analyses can provide significant insights into the construction of complex

synthetic systems, but due to the poor understanding and quantification of biological

environments, the predictive capability of in silico models for in vitro implementa-

tions remains limited [59]. One way to remedy this shortcoming is to use robustness

as a design criterion, which has already been successfully utilized in engineering as

a way to deal with uncertainty. Due to the noisy and less controlled environment

encountered in biology, this should be an even more important criterion to consider.

In naturally occurring biological systems, robustness has been widely observed as

an intrinsic property [16, 20, 43, 53, 56, 57, 68] and there is strong evidence that nat-

ural selection favors robust biological systems [65]. This suggests that robustness,

alongside with performance, can be chosen as an important design principle in the

construction of synthetic systems.

In this chapter, a methodology based on robustness is presented as a way to

analyze and design synthetic circuits. In contrast to the task of model simula-

tion (Fig. 12.1a), robustness analysis with respect to parameter fluctuations can be

viewed as an inverse problem of mapping design constraints to the choice of model

parameters (Fig. 12.1c); this aspect is discussed in section “Robustness of Biological

Systems”. In section “Formalism for Robustness Analysis”, a formalism based on

linear temporal logic is introduced as a specific way to define the design constraints,

which is followed by discussions on parameter sampling and regularization of the

reverse map. Finally, an application of robustness analysis is presented in section

“Application on Circadian Clock Models”.

Robustness of Biological Systems

Robustness may be broadly defined as the ability of a system to maintain its function

in spite of external perturbations and internal fluctuations [34]. The term robustness

should be understood in a relative sense: in qualifying a system as being robust,

it has to be stated which of the system properties are being referred to, as well

as the types of perturbations under consideration. For biomolecular circuits, the

function of a system is context dependent: for instance, due to the role that cir-

cadian oscillators play in orchestrating the daily rhythm of biological processes,

their function is that of a clock exhibiting stable oscillations with a near-constant

period as well as an amplitude within a predetermined range. The perturbations

that a system may face include: changes in the network structure [47, 64] or
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Fig. 12.1 Illustration of forward and reverse problems: (a) simulation as a mapping from pa-
rameter vectors to trajectories; (b) parameter identification as a mapping from measured data to

parameter vectors; (c) robustness analysis as a mapping from specifications to consistent parame-
ter regions

kinetics values due to mutations; molecular noise resulting from low copy numbers

[28,38,60]; fluctuating external concentrations or parameters values due to variabil-

ity in environmental factors (including temperature [54], pH-value, ionic strength

and so on [9]). As this example indicates, the function of a system can be derived

from the constancy of multiple system characteristics under a number of variable

conditions.
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Methods for Robustness Analysis

Although there is evidence that robustness is prevalent in biochemical systems, few

methods have been developed to quantify it [4, 45, 53, 57]. In control engineering,

the notion of robustness already exists but its definition is too restrictive for it to

be applicable to biological systems: in parametric robust control, the property to be

maintained is typically stability, while for biology one would like to maintain system

functions of a higher-order nature. For instance, the heat shock (HS) system in E.

coli is able to adapt its fraction of mis-folded proteins to a temperature change by

producing specific HS proteins [20], while at the same time being able to cope with

molecular noise [19]. Therefore, the property that should be maintained in a robust

manner is homeostasis. As this example shows, robustness in biology is arguably

more complex to quantify than the existing robust stability measures.

Amongst the different robustness analysis methods are those that can be classi-

fied as local methods [15, 28, 56, 57]. These methods try to answer the underlying

question: ‘how sensitive are the system’s functions to small perturbations?’ The

classification ‘local’ means that the analysis is performed on a given model with a

specific choice of parameter vector. An example of these methods is sensitivity anal-

ysis, which is used to study the effect of parameter variations on different system’s

functions [1,56,57]. Another example is the quantification of the effect of molecular

noise on either a steady state value [19,62] or on the period of an oscillator [27,28].

In this local approach, the robustness of a system is measured as the insensitivity of

the property of interest.

The second category of methods that quantify robustness tries to answer the

following question: ‘how many parameter vectors allow the system to function as

described?’ As opposed to local methods, these ‘global’ methods aim to explore

large regions in the parameter space and try to characterize the geometry of the con-

sistent region, defined as the region(s) in the parameter space for which the system

shows the specified behavior [12, 18, 30]. The lowest-order geometric characteriza-

tion is the volume: a small volume of the consistent region forces a precise tuning

of the parameters. On the other hand, a consistent region of large volume allows a

system to successfully face changes in environmental conditions, because its param-

eters can adapt, sometimes by orders of magnitude, without impairing its systemic

properties. Hence, larger consistent volumes correspond to higher robustness. The

second characterization which plays another important role in a system’s robustness

is the geometrical shape of the consistent region. Strong correlations in the con-

sistent region have been widely observed in biological systems, a property called

sloppiness [10]. Consistent volumes with skewed geometries are more prone to be

left with little variations in the stiff directions. On the other hand, geometries close

to a sphere in normalized quantities are more robust as they permit moderate fluctu-

ations in arbitrary parameter directions without leaving the consistent region.

Existing global analysis methods take the forward approach, namely: many pa-

rameter vectors are generated, each of which is evaluated for the systemic properties

and those that are consistent are selected [12, 18, 30]; a method for parameter sam-

pling based on this approach is presented later in this chapter. Note that these
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approaches differ from parameter identification (Fig. 12.1b) as they yield a region in

the parameter space (Fig. 12.1c) rather than a single parameter vector. An alternative

approach to the forward sampling is to view the task as an inverse problem: in the

third part of section “Formalism for Robustness Analysis”, we discuss the issue of

stability that arises in this formulation and propose a way to regularize it.

Inverse Problems

In contrast to the task of simulating a given model, the task of design for robustness

is a problem of the inverse type: in particular, the specified system properties, as

codified in some set of specifications, play the role of input, to which the goal is

to find the consistent range of parameters. Inverse problems typically violate one or

more of the following conditions for well-posedness as defined by Hadamard [22]:

1. For all admissible data, a solution exists;

2. For all admissible data, the solution is unique;

3. The solution depends continuously on the data.

There are various ways to remedy the ill-posedness of a problem. First of all, by

appropriately enlarging the solution space or relaxing the specified properties, as

for instance by seeking the solutions of minimum-deviation, one may reformulate

the problem such that the first condition can be satisfied. In the context of design for

robustness, the second condition for uniqueness is usually not of particular concern:

in fact, one may wish to identify not only one but the set of all models that satisfy a

particular specification. The violation of the third condition merits the most concern,

as this implies that small changes in the specified properties could lead to vastly dif-

ferent geometries in the consistent parameter regions. In order to solve such inverse

problems, regularization strategies (as discussed in section “Formalism for Robust-

ness Analysis”) can be employed to replace the original unstable problems with

nearby, more stable approximations.

We remark that, while in this chapter only the parameter values are taken as vari-

ables, in general the task of circuit design involves solving inverse problems in the

space of network topologies together with the associated parameters. The issues of

stability and appropriate regularization strategies for sparsity [11,70] would become

important factors to consider.

Formalism for Robustness Analysis

Given an in vivo biomolecular reaction system, involving a set of genes, RNAs, pro-

teins, signaling molecules and so forth, we summarize its environmental operating

conditions together with its kinetic rate constants into an m-dimensional parame-

ter vector k. Biophysical constraints restrict the parameter space to some subspace

K � R
m (applying a logarithmic representation). For every k 2 K, we denote by
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'.k/ 2 L2.Œ0; T �IRn/ the corresponding system trajectory, upon which the ob-

servation operator  is applied to give the systemic properties  ı '.k/ 2 R
q ;

see (12.1). We denote by X � '.K/ the space of all (admissible) trajectories that

are mapped from the parameter subspace K. Depending on the choice of modeling

paradigm, we will be looking at different subspaces of L2.Œ0; T �IRn/: for the case

where ordinary differential equations (i.e. reaction-rate equations) are used, under

appropriate smoothness conditions on the vector field (i.e. kinetic rate laws) the tra-

jectories are at least continuously differentiable and hence X � C 1.Œ0; T �IRn/;
for stochastic models, the set of trajectories lie in the Skorokhod space of right-

continuous functions with left limits, X�D.Œ0; T �IRn/. In this chapter, we consider

applying the formalism to ordinary differential equation (ODE) models of bio-

logical circuits, where at each time point the trajectory takes on values from the

state space lying in the positive orthant, S � R
n
�0. Hence, a given trajectory

x 2 X � C 1.Œ0; T �IS/ is the function x W Œ0; T �! S. In terms of mapping between

spaces, the evaluation of systemic properties of a given model can be expressed as

follows:

K � R
m

„ ƒ‚ …
parameters

'�! X � L2.Œ0; T �IRn/„ ƒ‚ …
trajectories

 �! … � R
q

„ ƒ‚ …
systemic

properties

; (12.1)

where… �  ı '.K/ is the corresponding space of systemic properties.

Depending on the application, systemic properties take on various forms. For

instance, in calibrating a model to experimental time-course data, one may wish

to determine parameter regions exhibiting trajectories that stay within a predefined

interval around the experimental time-course, reflecting the uncertainty in the ac-

quired data due to error sources. In the section “Application on Circadian Clock

Models” of this chapter, in an application of robustness analysis to circadian models

for the cyanobacteria, elements of the property space   2 … contain the compo-

nents   D . T ;  M ;  A/, i.e. the period, peak value (maximum) and amplitude for

the circadian oscillation in the protein of interest, respectively.

We now look at the inverse problem of specifying constraints on the systemic

properties and derive the corresponding parameter intervals, which we refer to as the

consistent parameter region C. Let us denote by Q… the space of specified properties

that a circuit designer may wish to achieve. In general, the specified properties may

not be attainable with the given model, in which case Q… ª … and there might

be even no solution to the specification, i.e. C D ;. The goal is to find parameter

regions, if non-empty, that lead to the satisfaction of specified properties. That is,

for   2 Q… one would like to infer the corresponding consistent parameter region,

as given by the preimage '�1 ı  �1. /:

C � ; [K � R
m

„ ƒ‚ …
consistent

parameters

'�1

 �� QX � ; [L2.Œ0; T �IRn/„ ƒ‚ …
trajectories

 �1

 ��� Q… � R
q

„ ƒ‚ …
specified

properties

(12.2)
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More specifically, the preimages are set-valued, that is: for   2 Q…,  �1. / D fx 2
X j .x/ D  g. For non-attainable design specifications, the preimages are therefore

empty sets :  �1. / D ;; 8  2 Q… n….

The input–output relationship from parameters to properties is captured in the

forward map, consisting of the composition F D  ı '. The inverse problem is, in

turn, encapsulated by the map, F�1 D '�1 ı  �1. Once the space of properties…

has been endowed with an appropriate metric, one can study the stability properties

of the inverse problems.

We now focus on the second map shown in (12.1) – the map  from trajecto-

ries to specified properties. In order to consider inverse problems, we first need to

describe the space of specified properties Q… � R
q in a mathematical form.

Formal Specification Languages

Formal verification is the area of computer science which deals mainly with the

generally undecidable problem of how to prove that a system is behaving correctly

with respect to the formal specification [17, 29]. It also allows for the ‘bottom–

up’ approach in systems design – one could build systems which are ‘correct by

construction’, by performing the provably correct refinement steps to transform a

specification into a design, and the actual implementation (e.g. [2, 31]). One conve-

nient way to formally specify systemic properties is to use temporal logic, which

appears as an extension of the classical propositional reasoning, where the proposi-

tional variables may change their truth values over time. One such temporal logic

is the linear temporal logic (LTL), when the truth value of the propositions is in-

terpreted over a time line [50]. Time is viewed as a linear sequence of events, and

properties are specified over a single path. We can assert not only property such as

‘proposition p holds at current time’, but also for example ‘p holds at next time

step’ (denotedp), ‘p holds globally in time’ (denoted �p), ‘p will hold even-

tually in the future’ (denoted Þp), or ‘p holds continuously until the time point

where q is satisfied’ (denoted pUq). The combination of these properties allows for

defining safety properties (‘something bad never happens’), liveness (‘something

good eventually happens’), fairness (‘if something is requested, it eventually gets

granted’), or strong fairness (‘if something is repeatedly requested, it repeatedly

gets granted’). The other most widely used temporal logic is the computational tree

logic (CTL) [7], where the truth value of the propositions is interpreted over more

possible branches of a time line. CTL formulae are interpreted over a transition

graph, i.e. more paths may be quantified at the same time, allowing one to express

statements such as ‘there exists a path, such that a property p globally holds’. The

linear and branching temporal logics have strictly different expressive powers, in the

sense that there are formulae which can be expressed in LTL and not in CTL, and

vice versa – neither is superior to the other.

In order to consider the inverse problem (12.2), we have to describe the space of

specified properties Q… � R
q in a mathematically precise fashion. Inspired by [23],
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we define the robustness of the systemic properties expressed in LTL with respect to

a single sampled trajectory, which is then used to define the robustness with respect

to a set of sampled trajectories.

Linear Temporal Logic (LTL). Let P be the set of atomic propositions which

may be assigned to a time point. For the purposes of this text, these propositions

will refer to the sampled trajectory and they will be defined by statements such as

‘the current value is equal to s’. Let us observe the logical expressions generated by

the following grammar (Backus Normal Form [6])

� WD p 2 P j > j ? j :� j �^ j �_ j � j �� j Þ� j �U :

We denote the set of such formulae by FORM and we interpret the formulae in

a discrete, linear model of time M D .N; I /, where I W N ! }.P/ with }

denoting the powerset, maps each moment in time to a set of propositions from

P . In this way, the model is interpreted as assigning to each time point a set of

propositions which hold true. Note that, if the propositions are described by ‘the

current value is equal to s’, then exactly one proposition can be valid at one time

point, i.e. the interpretation sets will contain exactly one proposition. The truth

value of an LTL formula is interpreted over a particular model and time point by

a satisfaction relation ˆ� M � N � FORM, where .M; i; �/ 2ˆ is implicitly

written as .M; i / ˆ �, which is to say that the model M at time point i satisfies

the LTL formula �. The satisfaction relation is interpreted in the following way: the

model M at time point i satisfies the atomic proposition p, if the proposition p

belongs to the interpretation set of the time point i in model M,

.M; i / ˆ p iff p 2 I.i/: (12.3)

The composed formulae are interpreted with the following equivalences:

.M; i / ˆ :� iff .M; i / 6ˆ �

.M; i / ˆ �^ iff .M; i / ˆ �^.M; i / ˆ  

.M; i / ˆ � iff .M; i C 1/ ˆ �

.M; i / ˆ �U iff exists j: ..j � i/:.M; j / ˆ  ^ 8k 2 Œi; j �:.M; k/ ˆ �/ :

The rest of the operators may be defined as compositions of the previously defined

ones:

.M; i / ˆ >.D � _ :�/

.M; i / 6ˆ ?.D � ^ :�/

.M; i / ˆ �_ iff .M; i / ˆ �_.M; i / ˆ  .D :.:� ^ : //

.M; i / ˆ Þ� iff there exists j:.j � i/:.M; j / ˆ �.D >U�/

.M; i / ˆ �� iff for all j:j � i ) .M; j / ˆ �.D :Þ:�/:
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Finally, we say that M satisfies a formula �, if it satisfies it at the initial time point:

M ˆ � iff .M; 1/ ˆ �:
For the application of LTL on models described by ODEs, we consider the trajec-

tory space consisting of continuously differentiable functions, QX � C 1.Œ0; T �IS/.
For every x 2 QX we take samples at times ti with i 2 T D f1; : : : ; sg and ts � T .

We denote the space of sampled trajectories as OX � `2.T IS/, i.e. the space of

square-integrable sequences. The map � W QX ! OX is referred to as the sampling

operator and can be realized by a convolution with a comb of Dirac distributions.

Practically, this means that given x 2 QX , the sampled trajectory Ox 2 OX is given by
Ox.i/ D x.ti /. The atomic propositions are parametrized by the values s 2 S – we

denote by ps the proposition ‘the current value is s’. The trajectory Ox is considered

as a model M D .T ; I /, such that I.i/ D fpsg. In other words, the satisfaction

relation in (12.3) may now be written as

.Ox; i / ˆ ps iff .Ox.i/ D s/:

Since we have assumed that the state space S is finite, for any a; b 2 R, we

may introduce predicates in the form of inequalities over the projections of the

state vector to its components – the truth value of inequality ‘ Oxj .i/ � a’ ( Oxj .i/
denotes the j -th component of the vector Ox.i/) is equivalent to that of a disjunction

‘
W

fs2S:sj �ag ps’. Now we may write

.Ox; i / ˆ .sj � a/ iff . Oxj .i/ � a/; or

.Ox; i / ˆ .sj � b/ iff . Oxj .i/ � b/; (12.4)

whose conjunction defines a predicate ‘sj 2 Œa; b�’. Readers interested in more

technical discussion on testing interval temporal logic (MITL) specifications on con-

tinuous time signals using only discrete time analysis may refer to [24].

As a one-dimensional state space example, .Ox; i / ˆ  .s D 5/ stands for

.Ox; i / ˆ p5 and this means that at time point i C 1 the sampled value is 5.

Moreover, writing Ox ˆ � .s 2 Œ10; 12� ) Þ s � 1/ expresses that ‘it always

holds that if the value of s is between 10 and 12, then it will eventually in the fu-

ture fall below value 1’. Note that LTL formulae do not allow for ‘counting’ steps

in the sense of specifying something like ‘the property p holds at every second

time step’.

Distance Measure for Systemic Properties. The use of LTL allows for a succinct

and quantitative description for a given trajectory in terms of the systemic properties

of interest, as well as providing a distance measure to the specification. Each formula

� 2 FORM contains a particular composition of temporal and Boolean opera-

tors, and propositions in the form of inequalities as in (12.4). The values which are

present in the propositions are referred to as the quantitative part of the formula. For

example, the quantitative part of the formula � D � .s 2 Œ2; 6�) Þ .s � 3// con-

sists of the values 2, 6 and 3. For this example, these values define the specification
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vector, denoted by   2 R
q , as O  D .2; 6; 3/ (we write O  to denote a particular

instance of a vector of specifications). By � we denote a formula whose quantitative

part can be any vector   2 R
q .

Putting this into the context of the general robustness formalism introduced ear-

lier, the observation operator  can be viewed as a composition of ƒ ı �, with

ƒ W OX ! … � R
q . Informally, the functional ƒ maps a sequence Ox to a

vector  , that satisfies the formula � with equalities instead of inequalities. For

instance, in considering the formula � s 2 Œ O 1; O 2� we choose ƒ to map the one-

dimensional sequence Ox 2 OX to   � . 1;  2/ 2 … with  1 D mini2T Ox.i/
and  2 D maxi2T Ox.i/. In testing whether Ox satisfies the specification �. O /, the

computed maximum and minimum of the trajectory are then compared to the quan-

titative part of the formula, i.e. the specification O  D .2; 6/.
Once that the observation   is computed, we are able to define how well a partic-

ular trajectory Ox satisfies the specification �. O /. The safisfaction degree is a measure

of distance between a sampled trajectory Ox and a formula �. O /,

sd.Ox; �. O // D 1

1C dist.�. O /;DOx;�/
2 Œ0; 1�; (12.5)

where the satisfaction domain DOx;� is defined as the subspace of systemic properties

which are satisfied by the trajectory Ox,

DOx;� D f  2 R
q j Ox ˆ �. /g: (12.6)

The distance dist.�. O /;DOx;�/ measures how much the quantitative part of the for-

mula �. O / should be changed, so that the trajectory Ox falls in its satisfaction region.

If the trajectory Ox satisfies the properties given by �. O /, i.e. O  2 DOx;� , then the

distance equals to zero. Otherwise, the distance depends on which metric is chosen.

We illustrate the introduced terminology in Fig. 12.2; the reader can refer to [23] for

a more detailed explanation and analysis.

The above definition can be extended to the case where one has not a single, but

instead, a set of trajectories OX . The value which reflects the minimal change in the

formula such that satisfaction holds under all trajectories in the set is proposed to be

as follows:

Rsd�. O /; OX D
1

1C dist.�. O /;\Ox2 OXDOx;�/
: (12.7)

The effort involved in the computation of the satisfaction domains depends on

the structure of the LTL formula, and on the number of its parameters. Moreover, the

complexity grows with the size of the sampled trajectory. The authors of [23] have

implemented the computation of the robust satisfaction degree of an LTL formula

with respect to a single trajectory in BIOCHAM, which is a modeling tool for the

analysis of biological systems [3].
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Fig. 12.2 An illustration of how the distance between the LTL formula and a trajectory is eval-
uated. We observe a one dimensional state space, and the LTL formula �.a; b; c/ D � .s 2
Œa; b� ) Þ .s � c//. If we instantiate the parameters of the systemic property by �.2; 6; 3/, then
the trajectory x1 D .2; 4; 5; 7; 3; 3; 3; 3; 3; 3; 3; 3; 3/ satisfies the property, i.e. x1 ˆ �.2; 6; 3/.
On the other hand, we have that the trajectory x2 D .2; 3; 4; 5; 6; 7; 3; 3; 3; 3; 3; 3; 5/ does not
satisfy the formula �.2; 6; 3/, i.e. x2 6ˆ �.2; 6; 3/. Since changing the parameter c to 5 gives
an instance �.2; 6; 5/, such that x2 ˆ �.2; 6; 5/, using the Euclidian metrics we have that
dist.�.2; 6; 3/;Dx2;�/ � 2

We have used LTL to define the robustness of systemic properties with respect

to a single trajectory, which is subsequently used in defining the robustness with

respect to the set of sampled trajectories. In addition to this, each of the trajectories

may be weighted by a certain probability. In the following we discuss an alterna-

tive approach to capturing systemic properties, where all sampled trajectories are

captured in a model of a transition graph and branching temporal logic is used in-

stead. All possible ‘one-step’ transitions from a state s to s0 are specified, and the

probability for a transition to happen is independent of the previously visited states

on the trajectory (Markovian property). Then, instead of having a model M inter-

preted over a linear time line, we think of a transition graph where one state can

have either multiple successors or none. Each state of the transition graph is as-

signed a set of propositions. Such a transition graph allows for the interpretation of

CTL formulae at any of its nodes. These formulae reason about the subgraph whose

root is in the observed node. Moreover, one can enrich such models by assigning

weights (probabilities) to the transitions in the transition graph. These models en-

able one to ask questions such as ‘the state where property p holds is reachable with

probability larger than 0:5’. Verifying that a probabilistic system satisfies a property

with a given likelihood is called probabilistic model checking. The logic used here

are the probabilistic temporal logic (PCTL) [36], or even more general frameworks

which involve continuous state spaces, such as modal logics on labelled transition

systems [13].
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Parameter Sampling

The major task of system design is to ensure that the resulting circuit fulfills the

specified systemic properties. As discussed above, for a given model these proper-

ties depend on the choice of parameter values and the problem is reduced to one of

finding the region in the parameter space for which the model yields the specified

behavior, i.e. the subset of consistent parameter vectors

C D
˚
k 2 KjF.k/ 2 Q…

�
: (12.8)

This question relates to the global methods for robustness analysis as discussed pre-

viously, which can be reformulated as ‘how large is the parameter region where

the model functions according to the specification?’. The answer to this ques-

tion is relevant in system design, because parameter values in biology are never

accurate, moreover they may fluctuate in vivo. This observation rises to the con-

dition that a designed circuit should be insensitive to small parameter fluctuations.

The problem of parameter tuning can be approached in two different ways: as a

forward or inverse problem. In this section, we discuss the forward approach based

on parameter sampling to find consistent parameter vectors and quantify global

robustness.

Monte Carlo Integration. In this approach, a broad sampling is performed in the

parameter space and the systemic properties of the model are measured for each

vector. This gives, atop a large number of consistent parameter vectors, a quan-

tification of the global robustness of the model, i.e. the volume V DVol.C/ of the

region where the model functions as specified. The larger the consistent region C,

the more robust the system will be against parameter fluctuations.

This volume, V , can be evaluated with a Monte Carlo integration, which is a

numerical method used to obtain the integral value of a function [51]. For example,

to integrate the function f .x/ > 0 over a given range of x 2 Œa; b� (see Fig. 12.3a),

x

f(x)

B

a b
x

f(x)

B’

a b

ba

Fig. 12.3 Sketch of the Monte Carlo integration methods. (a) A uniform sampling is performed in
the boxB to evaluate the value of the integral of f .x/ in the range [a,b] (red surface). The estimated
value is the surface of B multiplied by the fraction of points under f .x/ (the white points). (b) To
optimize the sampling, a box B 0, tighter, could be defined for the sampling. It requires some a

priori knowledge to fit the function without missing some part of it
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one has to first define a box B that contains the function over the given range (e.g.

the box defined by the boundaries y D 0, y D maxx2Œa;b�.f .x//, x D a and

x D b). Secondly, the function f .xi / is evaluated for each element of the set f�i 2
Bj�i D .xi ; yi /; i D 1; : : : ; ng, uniformly distributed in B . An estimate of the

integral I D
R b
a
f .x/dx is given by

I Ñ
1

n
Vol.B/

nX

iD1
�.f .xi / � yi /; (12.9)

where Vol.B/ is the volume (or surface in this case) of the box B and the test

function � is the Heaviside function (i.e. equal to one if yi < f .x/, zero otherwise).

This expression has the interpretation that the integral is approximately equal to the

surface of B multiplied by the fraction of points in B below the function f .x/.

This approach can be extended to the high-dimensional parameter space, where

B is a hyperbox in the space K and the test function � is equal to one if for the

input parameter vector the model shows the specified systemic properties. This can

be formalized as

V Ñ OV D 1

n
Vol.B/

nX

iD1
�.ki /; (12.10)

where ki are uniformly distributed parameter vectors in B and �.ki / D 1 if F.ki / 2
Q… (implying ki 2 C), otherwise it is zero.

In order to compare models with different number of parameters, we define an-

other robustness property: the normalized consistent volume R D m
p
V . The value

R represents the average variation per parameter axis in the consistent space.

Although it is almost always the case that the consistent range varies along different

axes, R can still be thought of as a parameter robustness of a model.

An issue of the Monte Carlo integration is that a large fraction of tested parameter

vectors can be rejected if the sampling box is too loose. This problem becomes more

pronounced in higher dimensions and brute force approaches become unsuitable.

One way to remedy this is to follow the ideas of Monte Carlo integration [51] with

importance sampling, whereby one can adapt the sampling box B 0 to better fit the

consistent parameter region as shown in Fig. 12.3b. The construction of a region

enclosing the consistent space as tightly as possible prior to performing the Monte

Carlo integration is critical for algorithm efficiency and precision. We now describe

a method which helps in finding such an optimized box, B 0.

PCA Sampling Method. This method is based on iterative Gaussian sampling

and principal component analysis (PCA) to guide the sampling and obtain consis-

tent parameter vectors more efficiently [30]. Briefly, at every iteration this method

determines the mean value and the covariance matrix of the previously identified

consistent vectors in parameter space in guiding the additional sampling. This algo-

rithm is easy to implement and tune, but its efficiency depends on the convexity

of the consistent region and the number of consistent vectors obtained at each

iteration.
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In more details, at each iterative step j the method generates a finite set OK.j /
of vectors in K and identifies the subset of consistent parameter vectors OC.j /. The

first set OK.1/ is a Monte Carlo sample of the parameter space obtained via a large

(n > 104) number of p-dimensional Gaussian random variates, centered on a known

consistent parameter vector (Fig. 12.4a–b). The consistent subset OC.1/ of OK.1/, which

should comprise of around 100 to 1,000 elements (the number depends on the di-

mension of the parameter space) is then determined. The subsequent step of the

procedure consists of carrying out a PCA of OC.1/ [25], which is used to identify

associations among consistent parameters, thereby guiding the sampling in subse-

quent iterations. More specifically, the set OK.2/ and subsequent sets are generated

from previous parameter sets by

OK.j / D
n
ki D h OC.j�1/i C �.j�1/ �i j i D 1; : : : ; ns

o
; (12.11)

a b c

d

e f g
B’

Fig. 12.4 PCA sampling method for a hypothetical two-dimensional parameter space. (a–e) The
iterative Monte Carlo sampling defines the range of the consistent parameter space. (a–b) The first
sampling iteration uses Gaussian random sampling with independently and identically distributed
random variables around a given parameter vector. The tested parameter vectors are consistent
(black points) or not (light gray points). (c–d) For subsequent iterative steps, sampling occurs
according to the covariance matrix of consistent parameters estimated in the previous steps (gray

points). The procedure is iterated to convergence or until a predefined number of iterations is
reached (e). (f–g) Monte Carlo integration. To estimate the volume of the consistent region C,
a hyperbox B 0 (rectangle in f) that contains all the consistent parameters of the last iteration is
defined, which is then uniformly sampled (g)



12 Rational Design of Robust Circuits 267

for all j > 1, where h OC.j�1/i stands for the element-wise mean of parameter vectors

in the set OC.j�1/ and �i is the i -th realization of a p-dimensional Gaussian process

with zero mean and covariance matrix †.j�1/. The cardinality of OK.j /, ns , could

be adjusted such that the number of consistent vectors found at each iteration is

in the order of 100 to 1,000. The entries †
.j�1/
nm are then computed from the pair-

wise covariances of parameters kn and km in the set OC.j�1/, which assemble to give

rise to a matrix whose eigenvectors are the principal axes of the set OC.j�1/. The

real valued factor �.j�1/ determines the variance of the j -th Gaussian process by

scaling the standard deviations of the distribution along the PCA directions of the

.j � 1/-th iteration (Fig. 12.4c–d). In this approach, the use of PCA helps to avoid

wasting sampling effort in parameter regions where consistent parameter vectors

are not likely to be found. The procedure is iterated either to convergence or until a

predefined number of iterations is reached.

Finally, the Monte Carlo integration is then performed on the tight hyperboxB 0,
constructed in the parameter space K with axes parallel to the PCA axes of the last

iteration (Fig. 12.4f). In each dimension, the limits of this box are defined by the

most extreme components of the consistent parameters found in all the previous

samplings. Then, a set OK of a large number of parameter vectors sampled uniformly

within B 0 is generated. The size of this set should be adjusted according to the

desired precision (see the discussion below) and the dimensionality of the parameter

space. In the application shown later, we found 105 to be an adequate number of the

sampled vectors for the two models used. Finally, the set of uniformly distributed

consistent points is defined as OC D
n
k 2 OKjF.k/ 2 Q…

o
(Fig. 12.4g). This Monte

Carlo integration yields a global measure of robustness for any type of model: the

estimated consistent volume

OV D Vol.B 0/
j OCj
j OKj

; (12.12)

where j:j denotes the cardinality of the given set.

This method requires very little adjustments, the only potential limitation being

the initialization of the iterative procedure that requires a consistent parameter vec-

tor. In the application presented below, published data were used to define the seed.

However, even where such information is unavailable, random sampling and opti-

mization techniques [41] are available to find such a vector. The drawback of this

method is that its efficiency decreases when the consistent region differs strongly

from an ellipsoidal shape as in the case of non-convex or poorly connected spaces

for instance.

We cite here a second method that overcomes the limitation of the PCA sampling

method [69]. It consists of two stages: (1) a coarse-grained sampling of the con-

sistent space, which allows the identification of regions where consistent parameter

vectors are found. This procedure delivers starting points for stage (2), where a more

detailed subsequent local exploration consisting of various applications of the PCA

method is applied. The sampled points define a domain for the subsequent Monte
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Carlo integration in computing the volume. In this algorithm, in order to optimize

the coverage of non-convex consistent regions a stratified sampling [51, p. 412] is

implemented: the integration is performed on different sampling regions that cover

the entire consistent region. The first stage requires a cost function that maps contin-

uously and monotonically with respect to the degree of satisfaction of the specified

property. The distance function described above in the LTL formalism (Fig. 12.2)

could be used for this purpose.

Error in the Monte Carlo Integration. In deriving estimates for the sampling

errors in the consistent fractions and volumes, we note that j OCj as obtained by Monte

Carlo integration is a binomially distributed random variable [25, 51]. An estimate

of its standard deviation is

�.j OCj/ D
s
j OCj.j OKj � j OCj/

j OKj
: (12.13)

Of interest is the coefficient of variation, or relative error, defined as the standard

deviation divided by the mean. The relative error of R D m
p
V is equivalent to the

relative error on j OCj (Eq. 12.13 divided by j OCj) times m�1

�R

R
D
�
1

m

�s j OKj � j OCj
j OCjj OKj

; (12.14)

which scales as j OKj�1=2m�1.

Furthermore the necessary sample size j OKj for a given relative accuracy ı and

confidence can be estimated. Applying Hoeffding’s inequality [32] we obtain

Pr

( ˇ̌
ˇ̌
ˇ1 �

E.j OCj/
j OCj

ˇ̌
ˇ̌
ˇ � ı

)
� 2 e�2ı2

�
j OCj

j OKj

�2

j OKj
;

where E.�/ denotes the expectation operator. Thus, estimating the sampling ac-

ceptance ratio j OCj=j OKj from a sufficiently large ensemble and assuming it to be

constant for the successive sampling, one can compute a lower bound for the neces-

sary sample size. For example, asking for 10% accuracy with a confidence of 95%

at an acceptance ratio of 1=20, Hoeffding’s bound requires the sample size to be

j OKj > 60;000.

We advice caution since in practice, one can never be certain that the entire

consistent space is contained in the integration domain. The agreement between

the actual consistent volume V D Vol.C/ and the estimated consistent volume
OV D Vol.B 0/j OCj=j OKj, depends on the proportion of the consistent region C that

is enclosed in sampling region B 0. Due to the high dimensionality of the problem,

in order to keep the computational time within reasonable bounds it is necessary

to balance between a large and conservative sampling region (high accuracy) and a

tight region (higher efficiency).
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Regularizing the Design Problem

In the design for robustness, the issue of stability with respect to the specifications

needs to be examined since the number of properties of interest is typically much

smaller compared to the model dimensions, that is q � m. In particular, some

subsets of the parameters could be non-influential for the properties of interest,

hence the forward map F W K ! … from parameters to systemic properties would

be highly contractive along certain dimensions. This implies that the reverse map,

F�1, would be highly expansionary: small changes in the specified property   2 Q…
could, via the intermediary state trajectories, lead to large deviations in the param-

eters for the identified models. The consideration of stability is important not only

for problems involving inputs containing measurement noise but also when they are

the given design specifications. In both situations, an important factor to consider is

the inversion map '�1 from the trajectory space X onto the model space, K. If the

stability of the reverse map is lost, one obtains parameter solutions that change in

a discontinuous manner as one requests different quantitative values in the dynamic

features; since specified criteria are often not fixed a priori but may change as the

experimental data on the characterization of other circuit components accumulate,

the sensitive dependence on the design goal is undesirable. We would like to stabi-

lize the inversion map, '�1, such that small neighborhoods in the property space are

mapped to small neighborhoods in the parameter space, thereby finding parameter

vectors that are robust to the problem specification (see Fig. 12.5 for an illustration).
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(t

)
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(k

2
)

log(k1)

log(k1)
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b

−1

Fig. 12.5 Illustration on the mapping of specifications to consistent parameter regions: (a) unreg-
ularized case; (b) regularized case



270 M. Hafner et al.

One way to stabilize inverse problems is to employ regularization strategies to

find the right compromise between accuracy to the specified design goal and its sta-

bility. In the following we assume attainable specifications, i.e. Q… � …. In finding

parameter vectors k� 2 K that approximate a given specification   2 Q… via varia-

tional regularization, the following minimization problem is solved

k� 2 arg min
k2K

˚
kF.k/ �  k C �%.k;k0/

�
; with   2 Q…; (12.15)

where % W K � K ! R�0 is an appropriate regularization function, k0 an a-priori

choice of parameter values and �, the regularization parameter which trades off

between the stability of the solution and the fidelity to the design goal. We note

that in general, the minimizer may not be unique, in which case k� is a set of

vectors.

The above formulation provides an element-wise map from a single specification

to a parameter vector (or an ensemble of vectors, in the case where there is non-

uniqueness); this can be extended to the case where we wish to map a region in the

design space Q… to the corresponding regularized parameter region C�, parametrized

by �

C� D
�

k 2 K

ˇ̌
ˇ̌ 9  2 Q…; k 2 arg min

k2K
˚kF.k/ �  k C �%.k;k0/�

�
:

That is, C� consists of the set of parameter vectors that are minimizers of the reg-

ularized function corresponding to some point in the design space, Q…. Finally, we

remark that the choice of the regularization function % would depend on the appli-

cation of interest. For certain design applications, regularization terms can be used

not only to stabilize the solution but also as a way to bind the cost of the identified

design. For instance, if one wishes to redesign an existing component to perform

a different function (for instance, from a switch to an oscillator), the size of the

sparsity-based penalty terms [11, 70] can be related to the complexity involved in

such a modification.

Optimizing Robustness

The determination of the parameter region that shows consistency with respect to

a given specification yields information on the maximal parametric deviation. The

size of these deviations does not need to coincide with the assumed perturbation

scenario in vivo. Moreover, the perturbation scenario may be characterized by a

probability distribution giving particular kinds of perturbations higher chances to

occur. For instance, if we consider perturbations due to temperature variations one

expects to observe perturbations in kinetic parameters that are strongly correlated

due to the common biophysical principle of Arrhenius’ law [37]. Taking the general,
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but computationally less tangible robustness notion of Kitano [34] and applying it

to the formalism developed in this chapter we obtain

R.F; p; �/ D
Z

k2K
p.k/ �.F.k/I Q…/dk; (12.16)

where p W K ! Œ0; 1� is a probability density function representing the assumed in

vivo perturbation model and � W Rq � R
q ! R�0 a distance function in specifica-

tion space. The robustness functional (12.16) thus shows the expected dependencies,

namely on the particular model and its systemic properties characterized by the for-

ward operator F D  ı ', the perturbation model p and the specification metric � .

Assuming a standard `p metric we can define (with a slight abuse of notation) the

distance to the specification set Q… as

�. I Q…/ D
(
0 if   2 Q…,

min Q 2 Q… k  � Q kp otherwise.
(12.17)

The question of optimizing robustness comes up when one considers the forward de-

sign process. Although large uncertainties in the design process exist, the designer

needs to aim for a nominal parameter vector (e.g. on/off rates) and decide on nomi-

nal values for external and internal conditions around which they will fluctuate. We

encapsulate this nominal operating condition by k0 for which we naturally require

 ı '.k0/ 2 Q… and obtain the following stochastic optimal control problem [58],

max
k02C

E
�
�.F.k0 C ık/I Q…/

�

subject to:

Px D f.x;k0 C ık/ with x.0/ D x0, (12.18)

where the expectation operator E is taken with respect to the zero mean perturbation

variable ık. We have exemplified the dynamic constraint in terms of the reaction rate

equations; however, the constraint can take on other forms, for instance as Markov

jump processes or its diffusion approximation in terms of a system of stochastic

differential equations. In practice, the constraint k0 2 C can be relaxed to k0 2 K.

Due to the functional form of (12.17) the solution of problem (12.18) should lie

within C.

Accounting for the particular specification map realized by LTL constraints, de-

noted by ƒ ı�, one can define robustness in a similar manner to (12.16), using the

satisfaction degree (12.5) [23]

QR.'; p; sd/ D
Z

k2K
p.k/ sd.� ı '.k/I�/dk; (12.19)

where we denote by � ı '.k/ an element of the sequence space corresponding to

parameter k.
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Application on Circadian Clock Models

As an application of the robustness analysis with a global sampling, we focus on

two recent models of the cyanobacterial circadian oscillator [39, 55]. We chose this

study system for the following reasons. Firstly, it is an area of very active recent

model development, [8, 39, 42, 55], driven by recent insights into the molecular

mechanisms of the oscillator [44]. Secondly, the behavior and function of circadian

oscillators are well-characterized: they exhibit oscillations at substantial amplitudes

with a period of approximately 24 h [14] as well as low sensitivity to non-periodic

environmental perturbations. Thirdly, in vitro and in vivo experiments show that the

cyanobacterial circadian clock is robust to many perturbations [33, 40].

Two Cyanobacterial Clock Models

The in vitro experiments are based on the mixing of the three key proteins KaiA,

KaiB and KaiC with ATP [44]. We chose two models that capture the important

empirical observations about the cyanobacterial circadian cycle: phosphorylation

of KaiC with the help of KaiA [46], inhibition of this phosophorylation step by

KaiB when bound to phosphorylated KaiC [46, 49], and finally dephosphorylation

to complete the cycle [46]. However, the models are also fundamentally different

in some key assumptions about the underlying mechanism. These significant differ-

ences may play a decisive role in the model robustness.

The first model [39] (Fig. 12.6a) involves the complex formation of KaiC with

the other proteins, as well as the cyclic phosphorylation and desphosphorylation of

KaiC. In this model, KaiA first binds to KaiC (the top reaction in Fig. 12.6a). The

resulting complex KaiAC catalyzes the phosphorylation of KaiC, forming KaiAC*.

A central element of this model is that KaiAC* then exerts a positive feedback on

its own formation (denoted by the gray arrow in Fig. 12.6a). This autocatalysis is

inhibited in a subsequent step, by the binding of KaiB to the complex KaiAC*.

As the completion of the cycle, KaiA is released, followed by KaiB, and finally

KaiC* is dephosphorylated. We will refer to this model as the ‘autocatalytic model’.

It contains 8 states variables and 7 reactions with 7 individual parameters [39].

The second model [55] makes a distinction between the two phosphorylation

sites S and T of KaiC [46], resulting in three possible phosphorylated states: KaiCT ,

KaiCS and KaiCST (see Fig. 12.6b). KaiA catalyzes the phosphorylation of both S

and T sites and inhibits the dephosphorylation of KaiCST and KaiCS . These actions

of KaiA are inhibited by KaiCS (gray bar in Fig. 12.6b). Although KaiCS exerts its

effects on KaiA jointly with KaiB [49], KaiB does not appear in the equations,

because it is assumed to be at saturation level in this model. We will refer to this

model as the ‘two (phosphorylation) sites model’. It contains 4 state variables and 8

reactions with 12 parameters [55] since the concentration of KaiA is expressed as a

function of KaiCS concentration.
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Fig. 12.6 Two models of the cyanobacterial circadian cycle. (a) Autocatalytic model from Mehra
et al. [39]. ‘C*’ stands for phosphorylated KaiC. The cycle proceeds clockwise, starting from the

upper left. The sum of concentrations of the KaiC*-containing complexes (underlined) form the
output of the model. The gray arrow denotes the autocatalytic effect of KaiAC* on its synthesis.
(b) Two phosphorylation sites model from Rust et al. [55]. There are three possible phosphory-
lated states for KaiC: KaiCT , KaiCS and KaiCST . The sum of concentrations of phosphorylated
KaiC molecules (underlined) is the output of the system. KaiA catalyzes phosphorylation reactions
(curved arrows) and inhibits some dephosphorylation reactions (dashed bars). KaiCS (complexed
with KaiB, not explicitly modeled) inhibits the action of KaiA (gray bar). Only relevant parameters
are written, for additional details of the models refer to [30]

Specified Systemic Properties

In evaluating the global robustness of both models, we define K as a range of six

orders of magnitude for each parameter, centered at published parameter values

for both models [39, 55]. To obtain a uniform sampling of the consistent region

C, we used the PCA sampling method described above (see section “Formalism

for Robustness Analysis). For the systemic properties  , we chose the intervals in

which the period T , the (maximum) peak value  M and the amplitude A of phos-

phorylated KaiC concentration. The bounds of the specified range Q… D Œ ; � D
Q…T � Q…M � Q…A are chosen [48] to be 10% below and above the respective val-

ues of the properties  T ,  M , and  A for each model evaluated with the published

parameter vector [39, 55].

The specification is given in terms of three intervals: (1) the specified interval

for period oscillations: Q…T D ŒT ; T �; (2) the specified interval for the maximum

value: Q…M D ŒM ;M�; (3) the specified interval for the amplitude: Q…A D ŒA;A�.

Given the maximum value  M for the oscillations, the minimum should be in

the interval Œ M � A; M � A�. We may express the three constraints on O  D
.T ; T ;M;M ;A;A/ using the LTL specifications (see section “Formalism for Ro-

bustness Analysis”) by the formula

�. O / D �.T ; T ;M;M;A;A/

D 9T 2 ŒT ; T �:� . T sj ^ sj /
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^
�
9 M 2 ŒM ;M�:.� .sj �  M / ^Þ .sj D  M /
^ � .sj >  M � A/ ^Þ .sj �  M � A//

�
;

with the j -th component of Ox being the total concentration of phosphorylated KaiC,

i.e. for the autocatalytic model, the sum of KaiAC�, KaiABC�, KaiBC� and KaiC�

concentrations and, for the two-sites model, the sum of KaiCT , KaiCS and KaiCST

concentrations. Note that the periodicity condition enforces the alternation between

the maximal and minimal amplitudes.

Robustness Results

Figure 12.7a shows the normalized consistent volumesR for the two models. These

volumes can be interpreted as the average allowable variation per parameter that

leaves the circadian oscillations intact. The two-sites model is much more robust

than the autocatalytic model. Specifically, the value RD 0:718 for the autocatalytic

model means that the parameters can vary over 0.7 orders of magnitude, or 5.2-fold.

For the two-sites model, the value of RD 1:60 is more than twice as large as for the

autocatalytic model, corresponding to a 39-fold allowable variation.

We then asked what is responsible for the lower robustness of the autocatalytic

model. One possibility is that strong associations exist between individual pa-

rameters in C, such that some parameters cannot vary independently from others.

Figure 12.7b shows the standard deviations of consistent parameters along the prin-

cipal axes of both models. With one exception, the amount of variation along the

principal components are similar over the two models. The single exception (indi-

cated by the arrow in the Fig. 12.7b) is the lowest PCA standard deviation for the

autocatalytic model.

The high level of constraint along this axis is caused by a strong positive corre-

lation between the rate for the autocatalytic reaction, parameter k3, and the rate for

the formation of the complex KaiABC*, k4 (see Fig. 12.7c). This strong associa-

tion contributes to the lack of global robustness observed in the autocatalytic model.

The implication is that a perturbation of parameter k3 which is not be matched by a

corresponding perturbation in parameter k4 would prevent the model from preserv-

ing its systemic properties  . Examining the structure of the autocatalytic model

(Fig. 12.7a), we found that the mechanistic cause for this association lies in the dy-

namics of KaiAC*: on one hand, if k3 is too large, the concentration of KaiAC*

increases too fast and the autocatalytic effect is too strong; on the other hand, if k4
is too large, the concentration of KaiAC* is too low and the autocatalytic effect is

too weak. The parameters k3 and k4 need to be delicately balanced in order to have

the correct concentration of KaiAC* and result in the appropriate feedback strength.

Collapsing the highly correlated parameters k3 and k4 into one (assuming that k3
and k4 are linearly dependent) yields a global robustness estimate of R D 1:09,

from this we conclude that the strong correlation accounts partially for the lower

robustness of the autocatalytic model.



12 Rational Design of Robust Circuits 275

a b

Autocatalytic Two-sites

0

0.5

1

1.5

2
G

lo
b

a
l 
ro

b
u

s
tn

e
s
s
 R

(a
ll
o

w
a
b

le
 p

a
ra

m
e
te

r 
v
a
ri

a
ti

o
n

in
 o

rd
e
r 

o
f 

m
a
g

n
it

u
d

e
)

Autocatalytic Two-sites

S
ta

n
d

a
rd

 d
e
v
ia

ti
o

n

(i
n

 o
rd

e
rs

 o
f 

m
a
g

n
it

u
d

e
)

10−2

10−1

100

101

102

100

100

k3 [µM-1h-1]

k
4
 [

h
-
1
]

Consistent parameter vectors,

autocatalytic model

c

Fig. 12.7 Results of the global robustness analyses for both models. (a) The two-sites model
(right) has significantly greater nomalized consistent volume than the autocatalytic model (left).

Error bars (<1%) correspond to standard deviations over five independent estimates. (b) Standard
deviations along the principal axes of consistent parameters for the autocatalytic model and the
two-sites model. Note the logarithmic scale. The autocatalytic model has a strongly constrained
axis (arrow); amounts of variation along the other axes are overall smaller for the autocatalytic
model. (c) Projection of the consistent vectors of the autocatalytic model after the MC integration
on the plane .k3; k4/. These two parameters are strongly correlated, resulting in the lowest standard
deviation for the autocatalytic model (b)

Conclusion

With the advance of assembly technologies in synthetic biology, an increasing num-

ber of design choices for synthetic constructs are becoming available. In making a

rational choice amongst them, one should be directed by performance constraints or

behavioral specifications required for the particular synthetic circuit. Acknowledg-

ing the ubiquitous randomness and fluctuations in cellular environment we consider

a circuit’s robustness to those fluctuations to be a central design constraint.
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The chapter presents approaches on how to determine a circuit’s operating range

so that it is in accordance with a predetermined specification. The larger the oper-

ating range, the more robust we consider a circuit to be. The outlined formalization

allows one to assess objectively the robustness of different circuit architectures as

well as different nominal parameter sets. Based on this analysis, circuits can be dis-

criminated as well as optimized. We relate robustness analysis to inverse problems

in mathematics and discuss the algorithmic challenges that arise in such. Linear

temporal logic (LTL) is discussed as one framework to define general specifica-

tions for system behavior. Efficient sampling procedures to determine the parametric

operating region that is consistent with a specification are presented. The proposed

mathematical framework is general and can be extended to include additional en-

vironmental fluctuations and specifications with respect to which a circuit needs to

conform.
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Abstract While biological engineers strive to capture the biophysical theory

essential in predicting how a newly designed synthetic organism will behave,

the current state of this knowledge is far from ideal. To facilitate the research

towards this goal, specifically through the application of computational tools, the

data required to engineer biological systems should be electronically accessible and

interpretable. The challenge to represent such information computationally is com-

plicated by the enormous diversity and size of biological data. There is a plethora of

biological components, interacting physically and chemically, with implications for

behavior at multiple time and spatial scales. The many scientists working to move

the synthetic biology field forward have to communicate their research findings

and should understand each other despite their diverse academic backgrounds. The

challenge and demand for data standardization arises from the need to collaborate

in order to engineer ever more complex biomolecular circuits and to understand

and control biological systems. The bioinformatics field provides us with a history

of experience in its attempts to facilitate collaboration in the biomedical research

community. We draw on the lessons from the application of information technology

solutions to inform and inspire the new efforts in synthetic biology. Furthermore,

we acknowledge fundamental differences in the nature of the two fields and discuss

the need to standardize data models for the purpose of engineering and design of

novel biomolecular circuits and systems.
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Introduction

The need for data standards in the design and analysis of biomolecular circuits is

posited on the experience that once we move from individual examples, with of-

ten neatly hidden complexity, the number of components and their relationships

grows astronomically large. Applying abstraction is a powerful tool in overcoming

challenges in design due to complexity. Abstraction helps reduce such problems

to essential conceptualizations of relevant facts. Within the paradigm for complex-

ity engineering there is also the eventual goal to realize the design or to include

further details previously hidden. When working towards a goal of limited com-

plexity these functions maybe achievable by a ‘manual’ process. Today, it is likely

that most of that ‘manual’ process will be performed by using computer support.

If synthetic biologists are to move beyond designs limited to 5–20 genes, com-

putational assistance is necessary. To allow computer applications to work with

previously described data and information, there need to be standards which de-

fine the structure and meaning of that data. A call for the need to standardize data

in life sciences research [7] was heard within the field of bioinformatics when the

research focus moved beyond the one or a few genes to thousands of genes. Bioin-

formatics has concerned itself with the understanding, analysis, and management

of life sciences information for decades [39], lessons from success and failures

within this related field can serve to inform efforts in synthetic biology. While

the goal of synthetic biology is the design and implementation of new biologi-

cal systems the physical substrate with which we are concerned is the same as

the other life sciences. The ability to manipulate and interrogate molecular level

components, especially DNA, is what enables synthetic biologists to realize bio-

logical circuit designs. Software tools which aid in planning, performing molecular

techniques, and interpreting the results require a diversity of up-to-date informa-

tion. Standardized data from multiple sources and the capability to manipulate

those data structures allows for an improvement in the efficiency of research and

in some cases offers new possibilities. If computational analyses are to generate

meaningful results there need to be established conventions for naming and describ-

ing biological objects in terms relevant to the goal of the analyses. Additionally,

the information provided will need to be provided in a format which can be parsed

computationally, its descriptions will have to conform to a structure, and a con-

strained terminology. Once it is possible to interpret these vast information resources

computationally, the novel insights gained can be leveraged to improve new de-

signs. These questions of how to manage an ever increasing body of knowledge

about biological systems remain unanswered by either field. Challenges exist both

technically and socially to provide an information technology infrastructure that

meets the needs of both individual scientists and the broader community. How-

ever, significant progress is being made in understanding how to represent such

information and the successes of grass roots and institutional efforts to adopt stan-

dards offers hope in changing the research culture toward taking advantage of data

standards.
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Early Examples of Success: PDB

The Protein Data Bank (PDB), is the oldest electronic repository of biological data.

It contains standardized computational representation of structures of macromole-

cules, such as proteins and nucleic acids. These 3D structures are obtained by

methods such as X-ray crystallography or NMR spectroscopy. Not only are these

molecular structures an important source of knowledge to use in engineering novel

proteins and interaction, but its pourquoi story provides synthetic biologists with

a history of a successful standardized data model. The PDB began as a grassroots

effort around 1971, since then it has grown tremendously, as can be illustrated by the

number of structures archived, a dozen at the beginning, to now more than 68,000

entries (http://www.pdb.org). This success has created the authoritative source for

structural biology information and can be attributed to the responsiveness of the

PDB to the evolution of the field, technology and attitudes about data sharing [5].

Throughout the 1970s the PDB founders focused on personal communication with

the community. For example, writing letters to the authors of articles inviting them to

submit reported structures to the collection. Driven by the increased appreciation of

the value of structural biology, advances in the methods rapidly sped up the pace of

structure determination in the 1980s. The growth of the field, and a definitive source

of knowledge for the molecular basis of biology and medicine, created the impetus

for establishing a policy that would require data deposition into the PDB. By 1989,

a formal recommendation specifying requirements for data deposition was pub-

lished (International Union of Crystallography, 1989). Such policies are premised

on the future value that disclosing the detailed structures of macro-moecules will

provide tremendous value for downstream researcher. The recognition of this value

was echoed by major journals, hence requiring PDB submissions concurrently with

manuscripts. Furthermore, the National Institute for General Medical Sciences made

research funding dependent on such open sharing of data. To support such shar-

ing of structural data and management PDB researchers developed an information

infrastructure and new data representation methods. Now, the PDB coordinates

international efforts to integrate, or link, PDB information to related information

sources, for example GenBank [4], UniProt [1], etc. Understanding the experiences

of the PDB, especially during the early part of its history, is illustrative of the kinds

of challenges and possible solutions that the synthetic biology standards community

should learn from, to increase the likelihood of their own success.

Data Requirement Success – Microarrays

Another success story that inspires synthetic biologists, is the request of a checklist

of variables that should be included in every microarray publication [8]. This bioin-

formatics effort organized by the MGED society has become a standard known as

the Minimum Information About a Micro Array Experiment (MIAME) [8]. This

request was backed by not only the international repositories of microarray data

http://www.pdb.org
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Gene Expression Omnibus (GEO) [3, 18], ArrayExpress [35], and CIBEX [26], but

also by the support of editorial policy at major journals [2]. These helped estab-

lish the needed incentive which led to high adoption across the field. Throughout

the last decade the request has found broad support, compliance, and now MIAME

is required by editors for successful publication. The standard begets uniform in-

formation which then allows both meta-analysis and interpretation by any software

designed to read such a format. Today, the majority of microarray software is capa-

ble of reading and writing such standardized data files. The outcome of the MIAME

effort is that results of gene expression studies are now easily accessible for down-

stream analysis via the web. Synthetic biologists who hope to design ever more

sophisticated biological systems can draw upon this example to inform the process

of standardization of experimental data exchange.

Standards for Models – SBML and CellML

The systems biology field is known for the development of dynamic models of cellu-

lar systems. Researchers in this field use a variety of formalisms and computational

methodologies as appropriate to model the great diversity of biological dynamic be-

haviors. For example, some of the mathematical techniques used to represent how

biological components change over time are ordinary differential equations (ODEs),

deterministic hybrid models, differential-algebraic equations (DAEs), partial differ-

ential equations (PDEs), and stochastic modeling [38]. It should be noted that to

describe genetic regulatory systems, a common type of synthetic biomolecular cir-

cuits, alternative formalisms can also be used such as directed graphs, bayesian

networks, boolean networks, and rule-based formalisms [16]. Among this great

diversity of computational methods, quantitative models based on ordinary differ-

ential equations (ODEs) are the commonly used form [38]. In order to facilitate

the exchange of such models two XML-based exchange formats for computational

models in systems biology have been developed, the Systems Biology Markup

Language (SBML) [25] and the CellML language [34]. SBML relies on the def-

inition of fundamental concepts for dynamic biochemical models: the Species, a

chemical or other participant of a reaction; and Reaction, a statement describing

change to the quantity of species (reaction definitions link the product and reactant

species with their kinetic laws), other fundamental concepts such as Compart-

ment, Parameters, Unit definitions, and Rules are also included [25]. This model

structure allows for a relatively comprehensive representation of biochemical sys-

tems and it is consistent with the well established biochemistry perspective that

chemical reactions have reactants and products. CellML, on the other hand, rep-

resents cellular models using a mathematical description, more closely following

the structure of the mathematical equations of the model. This view is capable

of representing almost arbitrary mathematical models, providing greater generaliz-

ability, at the cost of complexity of the representation. Both CellML and SBML

use standard XML based metadata (using RDF) as described by the MIRIAM

requirements [32].
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One of the barriers to adoption by system biologists is the ease of encoding

models into the standard format created in the many specialized software appli-

cations for quantitative modeling. To enable the use of SBML its authors developed

a software library, libSBML [6], which could be used within existing software to

translate the software’s internal representation into SBML. The result of making the

source code of libSBML freely available, has been overwhelming success as indi-

cated by its adoption in more than 180 software systems such as simulators, model

editors, and databases (http://sbml.org/SBML Software Guide).

Both SBML and its development process are far from perfect, as not all kinetic

model formalisms are supported and individual software projects create models

with varied quality. However, the syntactic standardization, enforced by libSBML

produces a base line level of interoperability ‘good enough’ to have gained the con-

siderable buy-in from an active community of researchers. Additionally, the success

of SBML can be attributed to the initial effort of a small number of collaborators

who adopted the open-innovation model and encouraged community participation.

Through support from an international community of interested researchers and

participants, it has grown into the de facto standard format in its field. Ongoing

development is helping to expand the utility of SBML. For example, a new software

library, libAnnotationSBML, links SBML ontology annotations to the web services

that describe these ontological terms [41]. The growth of capabilities in creating

models and the ability to unambiguously annotate the concepts through a curatorial

process led to the creation of the BioModels database [31, Li 2010]. BioModelsDB

now holds 249 models, which have been validated by a professional team of cura-

tors, and 224 additional models unverified by human inspection (As of Sept 2010).

Not only is the SBML standards approach an important example of a successful

standardization effort, but the systems biology community offers direct benefit to

synthetic biologists designing new systems. The software applications for simula-

tion of quantitative models provide ready to use tools or at least an advanced starting

point for developing new tools that purposely serve the design-build-test engineer-

ing process for synthetic biologists. The library of the models in BioModelsDB

includes many genetic regulatory, metabolic, and signaling pathways, thoroughly

described, ready for download into SBML compatible tools, to serve as biological

inspiration for new designs.

Standards for Synthetic Biology

Synthetic Biologists deal with DNA which encodes biochemical systems of interest.

The tools they use are molecular techniques which manipulate the DNA sequence

and the mathematical models which predict their behavior. Both require software

which reads and then helps the researcher interpret the sequence or model. The

challenge is to facilitate the work process of engineering biological circuits in a

unified computational framework without limiting the ability of these researchers to

apply the latest tools available. In the engineering field such approaches have led

http://sbml.org/SBML_Software_Guide


286 M. Galdzicki et al.

to wild success, far exceeding the efforts in the life sciences to date. For example,

VLSI CAD applications use object models to distinguish between design objects

with a common interface but different implementations. One example, of a standard

in electrical engineering is the Electronic Design Interchange Format (EDIF) [27].

Motivated by prior success in both life sciences and engineering, synthetic biologists

attempting to create the infrastructure for engineering biological systems have begun

to standardize the biological substrates and the information about them.

The Registry of Standard Biological Parts

The Registry of Standard Biological Parts (partsregistry.org), is a pioneering ef-

fort to store and distribute BioBrick parts [37], standardized biological parts for

synthetic biologists [19]. The Registry, is the only publicly accessible resource of

information about BioBrick parts, plasmid DNA whose sequence conforms to phys-

ical assembly standards [29, 40]. There are more than 13,000 BioBrick part records

within the parts registry (As of Sept 2010). Furthermore, as in other biological re-

search, synthetic biology faces a rapidly growing body of literature and molecular

data. Exacerbating the data deluge, is the BIOFAB (biofab.org), a facility for the

fabrication and functional characterization of standard biological parts on a large

scale [12, 28]. Whilst immensely valuable in the pursuit of predicable biological

design, it will in the near future generate immense amounts of quantitative infor-

mation as part of its effort. A standard electronic form of such information would

allow synthetic biologists to effectively exploit the data within computational tools.

To make this data available to synthetic biologists there is now a need to standardize

the electronic form of the knowledge about biological components.

Visual Representation Standards

Visual standards are important in any field where diagrams are used to exchange

information. Electronics is the most prominent field where standard symbols such

as resistors, capacitors, and inducers are used to unambiguously represent electronic

circuits. However, fields such as mechanical engineering have a less obvious sym-

bol set. Biological systems will require a large symbol set due to the enormous

variety; however, since synthetic biology deals with a subset of the possible bi-

ological components, developing standard symbols may be convenient. There are

two approaches for generating the library of standard symbols: (1) adopt the com-

monly used symbols from the community or (2) construct a new set of symbols.

The first option will be easier to get community acceptance, but the symbol set

may not be well organized. The second option will produce a more organized and

systematic set of symbols, but getting community acceptance of a new symbol set



13 Data Model Standardization 287

may be challenging. The Systems Biology Graphical Notion (SBGN) [30], which

is a suggested set of standard symbols for biological networks, favors the second

option. See SBOLv for standard symbols in synthetic biology.

Software Data Models

Synthetic biologists designing new biological systems need software tools to aid in

managing the complexity inherent to these systems [14]. New software tools are

being actively developed to support the work of biological engineers. These ap-

plications range from those that will help the engineer at the laboratory bench to

those that help simulate model systems to predict possible behaviors. Custom data

models are almost a requirement for most software projects. This is because most

software tools will have custom data that is specific for the software application’s

data model and may not contain corresponding data in a standard data model. As a

result, software developers generally provide import and export functions for sup-

porting standard formats rather than using the standard data model as the default.

This general rule can be an exception if the standard format has an option allow-

ing software applications to add customized information. This option is available

in standard file formats such as GenBank and SBML, which is why many soft-

ware programs use these formats as the default format. Nevertheless, even this extra

freedom provided by the standard format can be limiting if the general structure

of a software application’s data model is different. An example is the data model

of the TinkerCell application [13]. While TinkerCell is essentially a program for

generating models of biological systems, it is not able to store the model in the

standard SBML format because of subtle differences in the underlying structure.

Additionally, all connections between molecular species in SBML represent reac-

tions, whereas connections between nodes in TinkerCell can mean multiple things.

The difference between TinkerCell and the SBML data model is due to the fact that

TinkerCell’s model is designed to represent a diagram rather than a dynamical sys-

tem, which is what SBML describes. Therefore, the basic perspective on the model

is different. This problem may exist for other software applications that have a dif-

ferent perspective on what a model of a biological system is. Applications such as

GenoCAD define a model using a special grammar describing the relationships be-

tween biological parts [9–11,15]. This perspective of a model is not compatible with

TinkerCell’s or SBML’s view of a model. Developing standards that bridges differ-

ent perspectives can be a challenging task due to these fundamental differences.

SBOL – An Emerging Standard

Taking inspiration from the success of prior efforts such as MIAME, PDB, SBML,

and CellML we have had the privilege to lead an effort to establish the Synthetic
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Biology Data Exchange Group. This group aims to develop standards and techno-

logies to facilitate the electronic exchange of synthetic biology information. The

overall goal is to describe data in the domain using a defined but extensible scheme

to enable electronic exchange and unambiguous communication of the information.

To address these goals two complementary projects emerged to define the Synthetic

Biology Open Language (SBOL). One is to develop an ontology, SBOL-semantic,

which serves both as an organizing structure for information and as a standard

exchange format through its use of RDF/OWL language. The second project is

the definition of a set of graphical symbols SBOL-visual (SBOLv) which assigns

a preferred icon for commonly used concepts, thereby reducing the ambiguity of

diagrams used informally, within graphical user interfaces, and published.

Community The Synthetic Biology Data Exchange group is following a grass

roots model, a community of researchers motivated to improve informatics capa-

bilities in synthetic biology. The goals for this group where established in a spirited

discussion at the Standards and Specifications in Synthetic Biology workshop on

April 2008 in Seattle, WA. The result of the meeting was the submission of a Re-

quest For Comments documents to the BioBrick Foundation [21], which specified

a core data standard for information about BioBrick parts. Emphasizing the prelim-

inary nature the format was named the Provisional BioBrick Language, (PoBoL).

Following this meeting, other researchers interested in participating joined and

continued to meet annually as the Synthetic Biology Data Exchange Group (sbol-

standard.org). The members of this group represent stakeholders from the synthetic

biology community, especially those developing software. Following the next meet-

ing at Stanford University in 2009, the name of the main effort was changed to

better reflect its broader ambition to Synthetic Biology Open Language (SBOL).

This group of researchers is attempting to forge a consensus on terminology and

the technical requirements needed to standardize the computational representation

of information used by synthetic biologists.

Standard Symbols The Synthetic Biology Open Language visual standard

(SBOLv) symbols are based on many symbols that are already in use today. The

key contribution is to limit the number of different symbols which correspond to

the same concept. For example, symbols to indicate a promoter, ribosome binding

sequence (RBS), coding sequence (CDS), and transcription terminator the symbols

have been proposed (Fig. 13.1). (www.sbolstandard.org/sbol-visual).

A standardized nomenclature is needed to reduce ambiguity. The experience

of the HUGO nomenclature committee (HGNC) in human gene names and sym-

bols illustrates difficulties that can face an organization in attempting to establish

unique and meaningful names [42]. While attempting to reduce ambiguity such

as synonymy, multiple terms for the same concept, and homonymy, one symbol

used for multiple concepts, the HGNC has struggled to increase the adoption of the

official gene symbols throughout the broader community. While supported by jour-

nal policies, actual usage of the official gene symbols in publications has not gained

broad adoption. The increase of mentioned official symbols over other aliases only

rose from 35% in 1994 to 44% in 2004 [42]. The success of a standard is measured

www.sbolstandard.org/sbol-visual
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Fig. 13.1 Examples of proposed standard symbols to represent types of biological parts used in
synthetic biology. This example depicts a transcriptional unit starting with a promoter regulatory
region through its termination signal sequence. Such symbols defined by SBOL-visual help dia-
gram composition of biological parts in an unambiguous visual form. The SBOLv project aims
to define the many symbols needed to clearly communicate biological part designs (http://www.
sbolstandard.org/sbol-visual)

by how well the community adopts it. Due to its early introduction and the small

size of the synthetic biology software developer community, who needed sym-

bols for visual representation, SBOL-visual has been readily adopted. For example,

the software tools Spectacles/Clotho [17], TinkerCell [13], SynBioSS [24, 43], De-

viceEditor (http://jbei-exwebapp.ibl.gov/j5), and GenoCAD [11] use SBOL-visual

symbols.

Standard for data and information SBOL-semantic is an ontology which de-

scribes common concepts used in synthetic biology. It aims to standardize and

facilitate information exchange for synthetic biologists using recommended infor-

mation technologies for data on the web. At the heart of SBOL-semantic is a core

ontology, a set of fundamental synthetic biology concepts and their relationships.

SBOL defines these concepts such as Parts, Sequence Features, and Assembly Stan-

dards (Table 13.1) as a hierarchy and specifies how they connect to each other

(sbolstandard.org). These core concepts are the result of an approximate consen-

sus reached by the Synthetic Biology Data Exchange Group. To easily allow for

further expansion of the standard the group follows an open process for the evo-

lution of SBOL [23]. The SBOL implementation conforms to W3C recommended

technology for the Semantic Web. Use of formats such as RDF/OWL, allows data to

be read, manipulated, and interpreted using generic Semantic Web tools. Encoding

SBOL in these languages allows for compatible software tools to read and interpret

data annotated using SBOL. The ontology is written in the Web Ontology Language

(OWL), the W3C standard language for the definition of ontologies, chosen for its

capabilities in modeling knowledge using a computable and standardized format.

For example, enabling query based information retrieval of information from Parts

Registry information translated into SBOL [22]. The overall objective of the SBOL

effort is to represent and manipulate data that spans scales from plasmids, to cells,

to tissues. Tackling the challenge to organize the vast and inherently complex bio-

logical systems information needs a robust and systematic solution for knowledge

management.

Policy In the attempt to provide a long term solution to aid the vision of engineering

biology, there is also the complementary, top down model to consider. The top-down

model would involve, funding organizations to enact policies which require sharing

of data. Historically, policies mandating data sharing in a standardized form were

http://www.sbolstandard.org/sbol-visual
http://www.sbolstandard.org/sbol-visual
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Table 13.1 SBOL-semantic root classes which represent generalized concepts, with examples
of a subclass (italicized) below its parent class as a hierarchy. Terms correspond to com-
monly used concepts in synthetic biology. Each class is used to describe sets of individual data
elements as categories of common information objects used in the synthetic biology engineering
process. SBOL terms also include a simple definition to clarify their intended use. As the SBOL
ontology is expanded it will provide a richer vocabulary for the description of synthetic biology
constructs

Class Definition

Sample Aliquot of Cells or DNA material in a physical container

Cell Basic functional unit of life

Physical DNA Continuous DNA molecule

Plasmid Extra-chromosomal DNA capable of replicating apart from chromosomal
DNA

Part A standardized DNA component for synthetic biology

Vector Backbone A kind of Part into used as a carrier for a construct of interest

Assembly Standard Set of Sequence Features which designate a physical composition
standard

Sequence Annotation Position and direction describing the region for a Sequence Feature
of a Part

Sequence Feature Description of primary Annotations of nucleic acid sequence

BioBrick Scar Sequence between adjacent Parts, byproduct of BBF Assembly
Standard 10

Terminator Transcriptional terminator sequence

found in the environmental and social sciences, where studies can last 30 years and

require long term information management plans [20]. Field et al make a case for the

need to enact such policies in the ‘omics’ or high throughput data fields which are

generating massive amounts of data. Such an approach may be eventually needed

for synthetic biology to incentivize participation in submission of standardized data,

a process which places a significant cost on the individual researcher in terms of

time and consequently funds. In creating and maintaining institutional infrastructure

to manage the information, centralizing such an effort does provide economies of

scale, although with a substantial direct cost. Additionally, regulatory agencies have

a strong interest to encourage participation in order to review outcomes of synthetic

biology efforts as necessary. Such policies can be enforced by grant application data

sharing plans, specified time periods, and in a accordance with international stan-

dards. Journal referees and editors can uphold and extend these policies analogous

to the accession number for DNA sequences. Once consensus is reached on the

value and need for an information sharing, a policy mandating timely and public

release of data will be needed [20]. Such policies, which obligate the researchers

to submit information in a standardized form would serve a common aspiration in

synthetic biology, to make biological systems easier to engineer [36]. Standardized

data aids in the gathering, preservation, and amalgamation of research output by

greatly reducing the barrier to accessing the knowledge created.

Taking advantage of well supported technology developed for information man-

agement on the web will provide long term benefits for the synthetic biology
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community. Specifically, standardization and dissemination of synthetic biology

knowledge resources will greatly increase the potential for its re-use by downstream

researchers and engineers.
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Chapter 14

DNA Assembly Method Standardization
for Synthetic Biomolecular Circuits and Systems

Nathan J. Hillson

Abstract As molecular biology tasks progress from single gene expression to the

implementation of entire metabolic pathways and behavioral genetic circuitry, DNA

assembly, the process of cloning/constructing a contiguous piece of DNA from a set

of composite parts, poses an increasingly formidable challenge. Standardized DNA

assembly methodologies have recently emerged that enable and facilitate part re-

use, assembly design automation, and high-throughput physical assembly protocols.

This chapter reviews the BioBrick, SLIC, Gibson, CPEC and Golden Gate methods,

and compares and contrasts their respective strengths, limitations and extents of

standardization.

Keywords Synthetic biology � DNA assembly � BioBricks � SLIC � Gibson

� CPEC � Golden Gate

The DNA Assembly Challenge

Simply put, the DNA assembly challenge is to take a set of double-stranded DNA

fragments, and physically (as well as informatically) stitch them together in the

proper order and proper orientation to yield a single, potentially circular, assembled

DNA sequence. These DNA sequence fragments are often referred to as ‘parts’ in

the synthetic biology lexicon, especially when the fragments are each associated

with a particular biological function, such as a promoter, a coding sequence, a ter-

minator, etc.

Figure 14.1 depicts a representative DNA assembly. We start with 8 non-

degenerate (non-repeated) composite biological parts (shown at the bottom of

the figure): a vector backbone, 5 protein coding sequences (orfA to orfE) with

upstream ribosome binding sites (RBS), a terminator, and a promoter. We assemble
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Fig. 14.1 The DNA assembly challenge

these 8 parts into the target expression vector (shown at the top of the figure). Note

that in this particular example, we used the same terminator and promoter parts

twice to achieve the target expression vector.

The Traditional Multiple Cloning Site Approach

Figure 14.2 shows an expression destination vector designed with the traditional

approach in mind. In this specific example, a multiple cloning site (MCS) follows

a T7 promoter, and is in turn followed by a T7 terminator. If a researcher wants to

integrate a protein coding sequence of interest into this expression vector, he or she:

(1) identifies two restriction sites present in the MCS, but absent from the coding

sequence of interest, (2) PCR amplifies the coding sequence of interest with DNA

oligo primers flanked with the selected restriction sites, (3) digests the PCR product

as well as the destination vector with the corresponding restriction enzymes, (4) gel-

purifies the digested PCR product and the destination vector backbone, (5) ligates

the purified digested PCR product and destination vector, and (6) transforms the

resulting ligation reaction into competent E. coli.

This approach works well for integrating a single coding sequence into the MCS

of the destination expression vector. The large number of multiple cloning sites

(11 in the vector shown in Fig. 14.2) results in a high likelihood that at least two of

the sites will be absent from the coding sequence of interest. However, as soon as

we would like to incorporate multiple DNA sequence fragments into the same des-

tination vector, such as an entire metabolic pathway or genetic circuit, as shown in
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Fig. 14.2 A typical multiple cloning site expression vector

the previous DNA assembly example, Fig. 14.1, the odds are less on our side. Now,

we must find as many distinct restriction sites (or resulting overhang sequences, to

be more precise; with sequential sites absent from the DNA fragment they flank) as

the number of DNA fragments to be assembled (including the destination vector),

and two of these (flanking the linearized destination vector) must be present in the

MCS. In Fig. 14.1, with ten fragments total (the terminator and promoter were each

used twice), we would need ten restriction sites with distinct resulting overhang

sequences, including two from the MCS, with the corresponding requirement that

each is absent from its flanking assembly fragments. Generally speaking, it becomes

increasingly unlikely that this constraint will be met with each additional sequence

fragment to be assembled.

Molecular biologists have tackled this recurring obstacle with various strate-

gies. A non-exhaustive set of examples includes: adding (silent) point mutations

to DNA fragments to disrupt restriction site sequences, splicing together two or

more fragments with PCR (e.g. splicing by overlap extension (SOE) [9]), using

cohesive single-stranded overhangs that (when ligated) do not result in a recog-

nizable/recleavable restriction site, partial DNA digests, annealing single stranded

DNA fragments to yield double stranded DNA with the desired single stranded over-

hangs, site specifically protecting a methyl-sensitive restriction enzyme site from

methylation with a DNA oligo/RecA complex [7], sequentially performing the as-

sembly hierarchically (so that the same restriction site may potentially be used more

than once; however, this makes downstream cloning and re-use more difficult), and

the list goes on and on. It should be explicitly pointed out here that direct DNA

synthesis, while perhaps cost-prohibitive at the moment (although certainly less so

in the near future), is a very viable alternative to DNA assembly in general, and has

the capacity to make many of these obstacles and concerns obsolete.
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The BioBrick [13], SLIC [11], Gibson [8], CPEC [12] and Golden Gate [6] DNA

assembly methods utilize, or are derived from, many of these modifications to the

multiple cloning site method. What sets these methods apart from the traditional

approach is ‘standardization’. In traditional cloning, the set of selected restriction

enzymes (as well as the point mutations made to disrupt undesired replicate re-

striction sites) is entirely dependent on the number, sequences and order of the

fragments to be assembled. Thus, every different assembly might require a differ-

ent combination of restriction enzymes, point mutations, reaction temperature and

buffer conditions. Furthermore, a given sequence fragment may have to be re-cloned

entirely for each new assembly, precluding re-use. While restriction enzyme com-

panies (such as NEB and Fermentas), have made much progress in ensuring that all

of their restriction enzymes can operate under a single reaction condition (tempera-

ture, buffer, etc.), in general, it is very unlikely that a single enzymatic ‘master mix’

can be applied across independent traditional assemblies, making the process less

amenable to parallelization and automation (especially via high-throughput liquid

handling robotics platforms). The BioBrick, SLIC/Gibson/CPEC and Golden Gate

methods, in contrast, use the same (standardized) set of enzymes and reaction con-

ditions for every assembly. When point mutations are required (as is potentially the

case for BioBrick and Golden Gate assembly, which utilize restriction enzyme(s)),

the same mutations are required for every assembly, and thereby each sequence

fragment only needs to be cloned once, facilitating re-use. Thus, these standard-

ized methods are much more amenable to parallelization and automation than the

traditional approach.

The BioBrick Approach

BioBricks standardize the DNA assembly process, facilitating automation and part

re-use. There are several BioBrick assembly standards, such as that originally de-

veloped at MIT [13], as well as the UC Berkeley BglBrick standard [1], which is

depicted in Fig. 14.3.

In the BglBrick standard, a part (or DNA sequence fragment that is nominally

associated with a biological function) is flanked with two restriction enzyme sites

at its 50 end, namely EcoRI and BglII, and is flanked with BamHI and XhoI at its

30 terminus. To comply with the BglBrick standard, these four restriction sites must

be absent from the sequence of the part itself. The ‘BglBrick’, then, spans from the

EcoRI to the XhoI site, and the BglBrick-bearing vector backbone makes up the

residual plasmid sequence, which should also be devoid of the four BglBrick re-

striction sites. To assemble partA followed by partB, followed by the partA-bearing

vector backbone, the partA BglBrick vector is digested with BamHI and XhoI, and

the partB vector is digested with BglII and XhoI. The resulting digest fragments con-

taining partA and partB are then ligated together, resulting in the desired plasmid.

The overhang sequences resulting from BamHI and BglII digest are complementary

(base-pair/anneal perfectly and are cohesive with one-another), but the resulting
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Fig. 14.3 BglBrick assembly of partA, partB, and the partA-bearing vector backbone

ligation product sequence is not recognized/recleaved by either BamHI or BglII.

Thus, the assembly results in a new BglBrick, containing partA followed by a 6 bp

scar sequence, followed by partB. Since assembling two BglBrick’d parts results in

a new BglBrick, this process can be iterated successively to assemble an arbitrary

number of parts together, using the same protocol repetitively. It is possible to as-

semble partB in front of partA, and/or to select the partA or partB-bearing vector

backbone for the resulting construct, by using different combinations of the four

BglBrick restriction enzymes. Other BioBrick standards are completely analogous

to BglBricks, and simply use alternate sets of the four restriction enzymes.

Contrasting with the traditional approach, there are several advantages to us-

ing BioBricks: (1) only four restriction enzymes are utilized, (2) once a part is

BioBrick’d, it is never necessary to re-clone it (or even re-PCR amplify it, reducing

the probability of PCR-derived mutations), and (3) assembling an arbitrary number

of parts (in any desired arrangement) is no more difficult than putting two together

(plasmid size considerations aside). It should be highlighted that, in contrast with the

SLIC, Gibson, CPEC and Golden Gate methods, BioBrick assembly not only stan-

dardizes the assembly process (e.g. the set of four restriction enzymes, protocols,

etc.), but also physically standardizes the BioBrick’d parts themselves, as they all

have the same 50 and 30 terminal sequences, and internally share the same 6 bp scar

vestiges of prior assemblies. There are burgeoning repositories of these standardized

parts (physical and/or informatic), such as the MIT Registry of Standard Biological

Parts [10] and the Joint BioEnergy Institute (JBEI) Registry, and supporting organi-

zations, such as the BioBricks Foundation, that allow and facilitate researcher re-use

of characterized and validated parts, preempting wasteful redundant efforts.

Returning to the DNA assembly challenge presented in Fig. 14.1, Fig. 14.4 shows

how we could use BioBrick assembly to put together the pathway. Note that there

are many different possible routes (assembly trees) to put together this pathway us-

ing BioBricks. Some of the intermediate parts, such as the terminator fused to the

promoter, need only be made once, and can be re-used multiple times. Recently,
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Fig. 14.4 BioBrick pathway assembly

algorithms have been developed [4] to optimize the design of binary BioBrick

assembly trees, and the development of an automated in vivo BglBrick assembly

process utilizing liquid-handling robotics is currently underway (J.C. Anderson, per-

sonal communication).

BioBrick Limitations and Obstacles

Despite the many merits of the BioBrick approach, there are some drawbacks. First,

there is no control over the existence and sequence of the 6 bp scars resulting from

each binary BioBrick assembly. While in many cases, these scars will not prove

problematic, there are scenarios where the scar sequences, affecting coding se-

quences or mRNA secondary structure, can adversely perturb the desired protein,

RBS, terminator, etc. function. Second, unless every intermediate part is archived

along the binary assembly tree, it is necessary to repeat the entire process from

scratch in order to replace a composite part (e.g. orfC in the example shown in

Fig. 14.4) in the assembled BioBrick; even if all intermediate parts are archived,

many of the steps must still be repeated. Third, combinatorial library diversity gen-

eration is potentially at odds with the BioBrick assembly process, because diversity

must be recaptured after each and every binary assembly step (which requires ag-

gregating approximately 5 times as many post-transformation colonies per binary

assembly as the sequence diversity to be retained). Fourth, BioBrick assembly only

works with previously BioBrick’d parts, and another cloning method must be used

to first create the BioBricks to be assembled.
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The SLIC, Gibson and CPEC Assembly Methods

SLIC, Gibson, and CPEC are related methods that offer standardized, scarless,

(largely) sequence–independent, multi-part DNA assembly. Some discussion of the

advantages of each method over the others is provided below.

SLIC

SLIC, or sequence and ligase independent cloning [11], as its name implies, does not

utilize restriction enzymes or ligase. A DNA sequence fragment to be cloned into

a destination vector is PCR amplified with oligos whose 50 termini contain about

25 bp of sequence homology to the ends of the destination vector, linearized either

by restriction digest or PCR amplification. Sequence homology regions are depicted

in white and grey in Fig. 14.5.

The linearized destination vector and the PCR product containing partA are

mixed together with T4 DNA polymerase in the absence of dNTPs. In the absence of

dNTPs, T4 DNA polymerase has 30 exonuclease activity, which begins to chew-back

the linearized destination vector and the PCR product from 30 to 50. Once the termini

of the linearized destination vector and the PCR product have sufficient complemen-

tary single-stranded 50 overhangs exposed, they will be able anneal to each other

once mixed. With the addition of dCTP, the T4 DNA polymerase changes activity

Fig. 14.5 SLIC assembly of partA with a linearized destination vector
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from 30 exonuclease to polymerase, but stalls because not all dNTPs are present,

retaining most, if not the entirety, of each chewed-back overhang. Alternatives to

the 30 chew-back with T4 DNA polymerase in the absence of dNTPs include the

use of mixed or incomplete PCR products (so this does not apply to the linearized

vector backbone if it is derived from a restriction enzyme digest), which can also

result in the desired 50 overhangs, as described in the original SLIC publication [11].

The chewed-back linearized destination vector and PCR product are mixed together,

and annealed to each other. Since there is no ligase in the reaction, this results in a

plasmid with four single stranded gaps or nicks. Once transformed into competent

E. coli, the gaps are repaired. Note that SLIC assembly is standardized, in that it

always uses the same reaction components and conditions, scar-less, since there

is no sequence in the resulting assembly that is not user-designed, and sequence–

independent, as the method is not (at least to a large extent, but see below) sensitive

to the sequences of either the destination vector or the part to be incorporated.

Gibson

Gibson DNA assembly, given its name after the developer of the method [8], is

analogous to SLIC, except that it uses a dedicated exonuclease (no dCTP addition

step), and uses a ligase to seal the single stranded nicks, as shown in Fig. 14.6.

The linearized destination vector and the PCR product containing partA are

mixed together with T5 exonuclease, which chews-back the linearized destination

vector and the PCR product from 50 to 30, Phusion polymerase, which (with the

annealed linearized destination vector and PCR product effectively priming each

Fig. 14.6 Gibson assembly of partA with a linearized destination vector
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other) fills in the gaps, and ligase, which seals the four single stranded nicks. The

polymerase chases the exonuclease around the plasmid, with the polymerase even-

tually overtaking, as the exonuclease is gradually heat-inactivated (and Phusion is

extremely fast). Like SLIC, Gibson assembly is standardized, scar-less, and largely

sequence–independent. Gibson is advantageous over SLIC in that it is a simultane-

ous one pot reaction (the two-step addition of dCTP is not required), the presence of

ligase may boost assembly efficiency, and since the assembly reaction occurs at an

elevated temperature relative to SLIC, there may be fewer problems when somewhat

stable secondary structures occur at the ends of assembly pieces; the disadvantage of

the Gibson method is that the T5 exonuclease, Phusion polymerase, and Taq ligase

cocktail is more expensive than that required for SLIC (only T4 DNA polymerase, or

none at all if mixed or incomplete PCR products are used). An anecdotal/empirical

limitation of the Gibson method is that it works best to assemble DNA fragments

that are at least 250 bp in length or longer; this is perhaps due to the likelihood that

the T5 exonuclease would entirely chew through a short DNA fragment before it

has a chance to anneal and prime the Phusion polymerase for extension. While the

same could be said for SLIC, the timing of dCTP addition provides some control in

switching from the exonuclease to the polymerase activity of T4 DNA polymerase

(the use of mixed or incomplete PCR products can prevent this problem all together),

although caution should be applied when using SLIC to assemble small DNA frag-

ments. Prior to Gibson (or SLIC) assembly, it is recommended to SOE (splice by

overlap extension) together neighboring assembly fragments until their cumulative

size is larger than 250 bp. Fortunately, the very same PCR products designed for

Gibson (and SLIC) assembly, already contain the flanking homology sequences re-

quired for SOEing.

CPEC

CPEC, or circular polymerase extension cloning [12], is analogous to SOEing to-

gether the fragments to be assembled, except that no external amplification oligos

are utilized (the linearized destination vector and PCR product prime each other, as

in Gibson assembly) and there are typically only a few thermo-cycles required, as

shown in Fig. 14.7.

Since there are no (or very few) re-amplifications of a given template sequence,

PCR-derived mutations are not propagated to the same extent as one would an-

ticipate for standard SOEing reactions. Like SLIC and Gibson assembly, CPEC is

standardized, scar-less, and largely sequence–independent. CPEC is advantageous

in that, since there is no exonuclease chew-back, small sequence fragments can be

assembled directly without a preliminary SOEing step, there is no dCTP addition

step (unlike SLIC), there is only a single enzyme (polymerase) required (unlike

Gibson), and since the CPEC assembly reaction occurs at higher temperatures than

either SLIC or Gibson, stable secondary structures at the ends of assembly pieces

are relatively less of a concern. The main disadvantages of CPEC is that it is more
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Fig. 14.7 CPEC assembly of partA with a linearized destination vector

likely to result in polymerase-derived mutations than SLIC or Gibson, mis-priming

events are now possible anywhere along the sequences of the fragments to be assem-

bled (as opposed to only at the termini of the fragments), and parts that are difficult

to PCR amplify (such as those that contain direct sequence repeats) are also difficult

to assemble with CPEC, although the Gibson method, depending on how much of a

head start the T5 exonuclease has, could suffer from similar drawbacks.

SLIC, Gibson, and CPEC Similarities

Despite their differences in implementation, the SLIC, Gibson, and CPEC assembly

methods all start with the same input materials and result in the same final products,

as shown in Fig. 14.8. Thus, an assembly designed for CPEC will be equally applica-

ble to SLIC or Gibson assembly. Returning to the previous DNA assembly challenge

presented in Figs. 14.1 and 14.9 shows how we could use SLIC/Gibson/CPEC as-

sembly to put together the pathway.

In Fig. 14.9, each homology region is distinctly color-coded, from light to dark

and in various gradient patterns, in an analogous fashion to the white and grey

homology region coloring in the single part example in Fig. 14.8. It should be

noted that with SLIC/Gibson/CPEC, unlike BioBrick assembly, we can put together

many parts at the same time in the same pot (multi-part assembly). Consequences

of multi-part, in contrast with hierarchical binary BioBrick, assembly is that we

have immediate access to each and every part to be assembled, and with only

one transformation step, combinatorially generated diversity is captured a single
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Fig. 14.8 SLIC, Gibson and CPEC assembly similarities

Fig. 14.9 SLIC/Gibson/CPEC pathway assembly

time. As shown in Fig. 14.9, we can use SLIC/Gibson/CPEC assembly to generate

a BioBrick (BglBrick) vector, although since we didn’t use BioBrick assembly dur-

ing the construction process, we did not introduce any undesirable scar sequences.

The downside of SLIC/Gibson/CPEC assembly is that we must now design the 50

flanking homology sequence of each oligo specifically for each assembly junction,

a process that can be tedious, laborious, and error-prone.

SLIC, Gibson, and CPEC Limitations and Obstacles

A major limitation to SLIC/Gibson/CPEC assembly is that the termini of the DNA

sequence fragments to be assembled should not have stable single stranded DNA

secondary structure, such as a hairpin or a stem loop (as might be anticipated to

occur within a terminator sequence), as this would directly compete with the re-

quired single-stranded annealing/priming of neighboring assembly fragments. To

some extent, it may be possible to mitigate this by padding these problematic termini
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with sequence from their neighboring assembly fragments. Repeated sequences

(such as the repeated terminators and promoters in Fig. 14.9) are often obstacles

to SLIC/Gibson/CPEC assembly, since assembly is directed by sequence homol-

ogy, and if two distinct assembly fragments are identical at one terminus (such as

the 30 termini of the terminators in Fig. 14.9), this can lead to assemblies that do not

contain all of the desired parts, or may contain parts arranged in the wrong order.

To circumvent these obstacles, it is often necessary to perform a sequential hier-

archical assembly so as not to place assembly fragments with identical termini in

the same assembly reaction at the same time. When ever possible, it is highly pre-

ferred to substitute repeated sequences with sequence pairs that are not identical,

yet encode comparable biological function; this provides a benefit not only to the

DNA assembly process, but will also enhance the DNA stability of the resulting

construct. Finally, SLIC/Gibson/CPEC might not be the optimal choice for com-

binatorial assembly if sequence diversity occurs at the very ends of the sequence

fragments to be assembled (within about 15 bps of the termini), since this will pre-

clude the reuse of the same homology sequences throughout all of the combinations.

These limitations, which assert that the SLIC/Gibson/CPEC assembly methods are

not completely sequence–independent, are largely addressed by the Golden Gate

assembly method.

The Golden Gate Assembly Method

The Golden Gate method [5, 6] offers standardized, quasi-scarless, multi-part DNA

assembly, and is an excellent choice for combinatorial library construction. The

Golden Gate method relies upon the use of type IIs endonucleases, whose recog-

nition sites are distal from their cut sites. Although there are several different type

IIs endonucleases to choose from, the example in Fig. 14.10 uses BsaI (equivalent

to Eco31I) (the Golden Gate method only uses a single type IIs endonuclease at

at time).

The BsaI recognition sequence ‘GGTCTC’ is separated from its 4 bp overhang

by a single bp, and BsaI activity is independent of the sequences of the single bp

spacer and the 4 bp overhang. The recognition site for BsaI is not palindromic, and

is therefore directional. In the notation used here, the recognition site is abstractly

represented by a rectangle below the dsDNA line (with an arrowhead on the bottom

segment of the rectangle pointing to the cut site), and the 4 bp overhang sequence

is represented by a colored box (with different colors indicating different 4 bp se-

quences). Using this notation, the PCR product containing partA in Fig. 14.10 is

flanked by two BsaI recognition sites, both pointing inward towards partA, with a

gray overhang at its 50 terminus and a dark gray overhang at its 30 end. The lin-

earized destination vector is similarly depicted. If the PCR product is mixed with

BsaI and ligase, the PCR product is (reversibly) digested, resulting in three DNA

fragments (the squiggly line abstractly representing the double-stranded cut), and

ligated back together again. The same is true of the linearized destination vector.
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Fig. 14.10 A variant of Golden Gate assembly of partA with a linearized destination vector

However, if the PCR product and the linearized destination vector (each of which

contains one gray and one dark gray 4 bp overhang) are both mixed together with

BsaI and ligase, as shown, the cut linearized destination vector will irreversibly lig-

ate (dead-end reaction product) with the cut PCR product containing partA. This

particular ligation is irreversible, because the ligation product no longer contains

any BsaI recognition sequences. Thus, over time, all reactions will tend towards the

desired assembly product. It should be pointed out that the sequences of the of gray

and dark gray 4 bp overhangs are (almost) entirely user-specifiable. In this regard,

Golden Gate assembly is scar-less, since we have complete control over the se-

quence of the resulting assembly product. There are some exceptions to this (such as

the overhang sequences themselves must not be palindromic (or they would be self-

complimentary), and any two (e.g. the gray and the dark gray) overhang sequences

must differ by at least one and preferably 2 bps so that the different overhangs are

not cross-complimentary), but in general this is not an issue, because for each as-

sembly junction there are multiple overhang sequences to choose from, within a

region spanning from several bp to the 50 to several bp to the 30 of the junction, that

still result in a scar-less assembly. It should be pointed out that the original Golden

Gate method calls for the assembly using uncut plasmids, in contrast with the PCR

product and the PCR-linearized destination vector shown in Fig. 14.10 [5, 6]. The

proposed benefit of using uncut plasmids as the source material is that it is eas-

ier to control the assembly stoichiometry, and with each of the plasmid substrates

sequence verified and without the use of PCR, accumulating PCR-derived point

mutations is not a concern. The limitation of using uncut plasmids as the source ma-

terial is that the destination vector, and all of the parts to be assembled, must already

be cloned into a Golden Gate format plasmid system with fixed overhang sequences,

which is very analogous to the physical composition standardization enforced by

BioBrick assembly. While PCR amplifying the destination vector backbone and the
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Fig. 14.11 A variant of Golden Gate pathway assembly

parts to assemble may result in PCR-derived point mutations, using PCR products

as the Golden Gate assembly source material provides the freedom to use any des-

tination vector, and any parts to be assembled into it, without an initial round of

cloning that locks in the overhang sequences. One additional point is that for opti-

mal performance of Golden Gate assembly, the linearized destination vector and the

part to be incorporated should lack any additional BsaI recognition sites, other than

those explicitly depicted in the example above. Since the digestion/ligation reaction

is reversible for any internal BsaI recognition sites, it is generally not obligatory to

make (silent) point mutations to remove them, however it is usually preferable to do

so to maximize efficiency, and to assure that the internal overhang sequences will

not anneal to the designed overhangs, and lead to incorrect assemblies.

Returning to the previous DNA assembly challenge presented in Figs. 14.1

and 14.11 shows how we could use Golden Gate assembly to put together the

pathway. In Fig. 14.11, each 4 bp overhang is distinctly color-coded, from light

to dark and in various gradient patterns, in an analogous fashion to the gray and

dark gray overhang coloring in the previous single part example in Fig. 14.10 (the

BsaI recognition sites, while present and inwardly facing in all of the sequence

fragments to be assembled, are not explicitly depicted in Fig. 14.11). As is true of

SLIC/Gibson/CPEC assembly, we can put together many parts at the same time in

the same pot (multi-part assembly), and consequently Golden Gate assembly pro-

vides immediate access to each and every part to be assembled, and with only one

transformation step, combinatorially generated diversity is captured a single time.

As shown in Fig. 14.11, and as is the case for SLIC/Gibson/CPEC assembly, we

can use Golden Gate assembly to generate a BioBrick (BglBrick) vector, and since

we didn’t use BioBrick assembly during the construction process, we did not intro-

duce any undesirable scar sequences. The downside of Golden Gate assembly (as

for SLIC/Gibson/CPEC) is that we must now design the 4 bp overhang sequences

for each assembly junction and incorporate them into the 50 flanking sequence of

each oligo, a process that can be tedious, laborious, and error-prone.
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Fig. 14.12 A variant of Golden Gate combinatorial library assembly

Golden Gate assembly is a particularly good choice for constructing combina-

torial libraries. As shown in Fig. 14.12, every part in each combinatorial bin (the

linearized destination vector is the first bin; partA, partB and partC the second;

and partD, partE and partF the third) is flanked by the same two 4 bp overhang

sequences. Any two parts in a bin are completely interchangeable with respect

to Golden Gate assembly, and only a single pair of oligos is required for each

part across the entire assembly. Since the same 4 bp overhang sequences are used

throughout a combinatorial bin, it is optimal to place the overhangs in sequence re-

gions that are identical across all of the DNA fragments in the bin. If there are no

4 bp stretches of sequence identity at the termini of the bin’s sequence fragments,

the combinatorial Golden Gate assembly will result in scars (between 1 and 4 bp in

length). Even so, this is far superior to BioBrick assembly that always results in 6 bp

scar sequences, and very preferable to SLIC/Gibson/CPEC assembly which, while

potentially scarless if all sequences have about 15 bp of sequence identity at their

termini, will either result in longer scar sequences, or require many more oligos per

combinatorial part to achieve a comparable scar length.

Golden Gate Limitations and Obstacles

Perhaps the most significant limitation of the Golden Gate method is that it is less

sequence–independent than SLIC/Gibson/CPEC, in the sense that, like BioBrick

assembly, the selected type IIs recognition site (e.g. BsaI) should be absent from



310 N.J. Hillson

the internal portions of all of the DNA fragments to be assembled. However, like

BioBrick assembly, once the modifications are made to remove these sites, they

never have to be remade. In addition, since the overhangs are only 4 bp in length, and

we would like at least 1 and preferably 2 bp to be different between each and every

overhang in an assembly reaction, it may not be possible to find a set of overhangs

that are compatible with each other that allows for a single multi-part assembly step,

especially if the number of fragments to assemble together becomes large (greater

than about ten fragments), or if the %GC content of the fragment termini is highly

skewed to one extreme or the other. While rarely necessary in practice, in these

circumstances, it is possible to do a hierarchical Golden Gate assembly.

Conclusion

In contrast with the traditional multiple cloning site approach, standardized DNA as-

sembly methodologies, including BioBrick, SLIC, Gibson, CPEC and Golden Gate,

enable and facilitate part re-use, assembly design automation, and high-throughput

physical assembly protocols (putatively utilizing liquid-handling robotics). The util-

ity of these standardized methods is becoming increasingly compelling as molecular

biology tasks progress from single gene (over-expression) to the implementation of

entire metabolic pathways and behavioral genetic circuitry, and as the emergence of

parts characterization data further motivates the repeated use of well-specified parts.

The standardized DNA assembly methodologies described in this chapter (see

Table 14.1) are complementary; no single method is universally preferable to the

others. For example, while in vivo BioBrick assembly does not require PCR, pu-

rification, or intensive sequence validation steps, a different technique must be used

to package the set of DNA fragments into BioBrick format in the first place. The

SLIC/Gibson/CPEC methodologies provide largely sequence–independent scar-less

multi-part DNA assembly (unachievable with BioBricks), but Golden Gate is often

a better choice for combinatorial library generation.

The list of standardized methodologies presented here is far from exhaustive.

Other comparable approaches, such as uracil-specific excision reagent (USER) as-

sembly [2], offer their own sets of advantages and drawbacks. It is also important

to point out that, although standardized, some methodologies, including multi-site

Gateway cloning [14], which is currently limited to 4 non-vector backbone parts and

results in large scar sequences, are not flexible enough for many modern synthetic

biology applications, including metabolic engineering and genetic logic systems,

and as such have not been discussed here.

The extent of standardization differs for each DNA assembly methodology.

While the BioBrick, SLIC, Gibson, CPEC and Golden Gate methods all utilize stan-

dardized sets of reagents and protocols, BioBrick assembly additionally constrains

the physical composition of the parts to be assembled. Such physical standardization

may bolster the reproducibility and robustness of the assembly process, but at the

same time can limit sequence design flexibility. Although not strictly necessary, it is
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Table 14.1 Comparison of the presented DNA assembly method variantsa;b

Method Reagents

BioBricka EcoRI, BglII, BamHI, XhoI, ligase

SLIC T4 DNA polymerase

Gibson T5 DNA exonuclease, Phusion DNA polymerase, ligase

CPEC Phusion DNA polymerase

Golden Gateb BsaI, high-concentration ligase

Method Pros

BioBricka No PCR required; very cost-effective (in vivo);

physical composition standardization yields high

reproducibility and robustness.

SLIC Sequence and ligase independent; scar-less multi-part assembly;

inexpensive reagents.

Gibson Sequence independent; scar-less multi-part assembly;

less sensitive to secondary structure at termini than SLIC;

possibly higher efficiencies than SLIC.

CPEC Sequence and ligase independent; scar-less multi-part assembly;

less sensitive to secondary structure at termini than Gibson;

small assembly pieces allowed.

Golden Gateb Scar-less multi-part assembly; excels at combinatorial assembly.

Method Cons

BioBricka No internal BioBrick restriction sites allowed;

6 bp obligate scar sequences; only binary assembly possible;

parts to assemble must already be in BioBrick format.

SLIC PCR-dependent; two-step assembly protocol;

sensitive to stable secondary structure at assembly piece termini.

Gibson PCR-dependent; expensive reagent costs;

minimum assembly piece size 250 bp.

CPEC PCR-dependent;

termini mis-priming possible throughout assembly pieces;

direct sequence repeats problematic.

Golden Gateb PCR-dependent; no internal BsaI restriction sites allowed;

high-concentration ligase expensive.

aBglBrick variant
bPCR-dependent variant without physical composition standardization

similarly possible to standardize the physical composition of the flanking homology

sequence regions for SLIC/Gibson/CPEC assembly and the overhang sequences for

Golden Gate assembly. Going forward, as increasing numbers of flanking homology

and overhang sequences are validated (utilizing laboratory information management

systems), and as design rules are honed (with design specification tools such as

Eugene [3], it is very likely that highly reproducible and robust assembly processes

will be achievable without physical composition pre-requisites. Besides physical

composition, an additional layer of standardization can be applied to the SLIC,
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Gibson, CPEC and Golden Gate methods through the use of DNA assembly design

automation tools, such as the j5 software package currently in development at JBEI,

which consistently design assembly protocols, greatly facilitating the aggregation

of multiple independent cloning projects in to the same work flow, and even into the

same sets of 96-well plates.

As the cost of direct DNA synthesis decreases, forgoing in-house DNA assembly

and outsourcing to synthesis companies will become increasingly time and cost-

effective. For the forseeable future, though, it is likely that the construction of large

combinatorial libraries, especially when coupled with a functional screen or selec-

tion that identifies a small subset of candidates of interest for sequence identification

and validation, will be accomplished with variations of the standardized DNA as-

sembly methods presented here, with the underlying composite parts putatively

derived from direct DNA synthesis.

Glossary

cloning site A restriction site within a vector into which a particular sequence of

interest may be inserted, or cloned.

direct DNA synthesis Directed chemical, or chemo-enzymatic, synthesis of

(doubled-stranded) DNA with a specified sequence.

DNA assembly The process of constructing a contiguous piece of DNA from a set

of composite parts.

DNA hairpin A type of DNA secondary structure in which the strand immediately

(with only a loop of a few bases) folds back and anneals to itself.

DNA ligase An enzyme that catalyzes the formation of a covalent bond between

two adjacent terminal DNA bases.

DNA oligo A short (generally less than 100 bp) single-stranded DNA fragment

(oligomer).

DNA part A DNA sequence fragment that is often associated with a particular

biological function, such as a promoter, a coding sequence, a terminator, etc.

DNA polymerase An enzyme that extends the 30 terminus of a DNA strand (or

DNA oligo) using the strand opposite as template.

DNA scar sequence An obligate (non-researcher specifiable) sequence that is in-

troduced into a DNA fragment as a by-product of the DNA assembly process.

DNA secondary structure The physical three-dimensional structure (or two-

dimensional projection there of) resulting from a single-stranded DNA fragment

annealing to itself.
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endonuclease An enzyme that cuts (makes (staggered or blunt) double-stranded

breaks) a DNA fragment within (or adjacent to) specific recognized sub-

sequence(s).

exonuclease An enzyme that digests a DNA fragment from its termini inward.

expression vector A circular piece of DNA, or plasmid, that can be introduced, or

transformed, into a host organism such as E. coli, that, in addition to (replicative

and) selective (e.g. antibiotic resistance) functionalities, may additionally contain

sequence that encodes particular genes of interest and enables the expression of

these genes within the host organism.

hierarchical DNA assembly Assembling multiple DNA parts together by means

of a multi-level assembly tree (as shown in Fig. 14.4).

overhang sequence The sequence of the 50 or 30 single-stranded DNA protrusion

extending from a non-blunt terminus of a DNA fragment.

PCR-derived mutation A DNA sequence mutation (insertion, deletion, point

mutation) introduced into a PCR product as a consequence of imperfect DNA poly-

merase fidelity during the amplification process.

PCR product A DNA fragment resulting from polymerase chain reaction (PCR),

which utilizes DNA oligos and DNA polymerase to amplify a sub-sequence of a

DNA template.

restriction enzyme See endonuclease.

restriction site A site within a DNA fragment that will be cut by a restriction

enzyme.

(silent) DNA point mutation A single base pair mutation in a DNA fragment;

considered ‘silent’ if the mutation falls within a protein coding sequence and does

not affect the resulting translated protein sequence.

type IIs endonuclease An endonuclease that cuts distal to the sub-sequence(s) it

recognizes; see for example BsaI in Fig. 14.10.

vector backbone Commonly refers to the portion of a DNA vector sequence that

minimally encodes (replicative and) selective functions.
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Chapter 15

Gene Synthesis – Enabling Technologies
for Synthetic Biology

Michael Liss and Ralf Wagner

Abstract Biotechnology has enabled us to render the adaptation of living natural

resources from a top-down approach (breeding) to a bottom-up process (designing).

Common modern cloning techniques allow for the rearrangement of genetic build-

ing blocks, the removal of cross-species boundaries and minor modifications of the

DNA sequence itself. The availability of in silico gene optimization and in vitro

gene synthesis from synthetic oligonucleotides has ushered a new era by confering

independency of natural templates. The fast development of this technology during

the last decade has dramatically advanced the availability of this service to a present

level that by now outperforms classical cloning techniques in terms of flexibility,

speed and costs. The exponential increase of biological sequence database contents

and the growing need for genes designed for industrial applications, rather than natu-

ral function, further drives this market. The fast-growing demand for synthetic genes

is attended by a rapid improvement of techniques to enable their stable and reliable

production. Downscaling reaction volumes, massive parallelization and automation

are integral parts in this development. With the emerging field of synthetic biology

the requirements for gene synthesis expand particularly in terms of synthesis speed

and construct size to allow for the construction of pathway operons or even complete

viral and bacterial genomes. This challenges the engineering of novel techniques to

assemble and manipulate synthetic DNA building blocks to large molecular entities

efficiently to provide the necessary tools for tomorrows biotechnology.
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Introduction

The foremost attribute of evolved natural biological systems is an adapted design

to survive in particular natural ecological niches, not necessarily matching specific

human needs. Nevertheless, for millennia mankind has employed the principle of

consecutive selection of random mutations to breed the phenotypes of crops, live-

stock, pets and even microbes (e.g. brewers yeast) towards features and behaviour

that benefit our own survival.

Not long ago, this top-down approach was improved chiefly by accelerating the

speed of mutagenesis, e.g. through colchicine or radiation treatment of seeds. How-

ever, as recently as the late 1970s the dawn of modern molecular biology allowed

systematic genetic manipulation and redesign of novel strains and genetically mod-

ified organisms, mainly by removing cross-species boundaries, rearranging natural

genetic building blocks and introducing minor modifications into the natural DNA

sequence itself. The key prerequisite for this bottom-up development is the univer-

sality of the genetic code, since at that time all genetic templates originated from

natural sources. In fact, most attempts to generate organisms with novel phenotypes

still rely on a trial-and-error approach due to the fact that living systems are ex-

tremely complex by nature and far from being fully understood.

This progress in genetic engineering was a big leap, but somewhat unsatisfying,

since true construction and genuine design of machines or other man-made items

aim to be as flexible, yet as standardized and predictive as possible. A programming

language, for example, consists of a defined syntax that is usually very compliant

to solving a given problem, highly predictive and suitable for simulation. Although

programming software still involves debugging cycles, this takes place on a much

more rational basis than is currently the case in biotechnology.

The big goal for synthetic biology is applying such a regime to biological sci-

ences: working with standardized parts, combining these elements according to

given syntax rules but in a highly flexible way, and finally, being able to predict the

effect of an assembly as precisely as possible. The prime requirement for this task

is the actual availability of genetic elements that do not exist in nature. As such, de

novo gene synthesis is considered the key enabling technology for synthetic biology.

Several Technological Developments Enabled Gene Synthesis

When the Nobel Prize in physiology or medicine was awarded to Werner Arber,

Daniel Nathans, and Hamilton O. Smith for discovering restriction enzymes and

their application to molecular genetics in 1978, an editorial comment in Gene

pointed out that “: : :The work on restriction nucleases not only permits us easily

to construct recombinant DNA molecules and to analyze individual genes but also

has led us into the new era of synthetic biology where not only existing genes are

described and analyzed but also new gene arrangements can be constructed and

evaluated [1]”.
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This cornerstone in molecular biology gave birth to the success story of genetic

engineering that we have witnessed over the last three decades. Other important

milestones during this period were certainly the invention of the polymerase chain

reaction (PCR) [2], cheap automated production of oligonucleotides, and high

throughput dye-deoxy sequencing systems.

The ability to amplify DNA and related molecular protocols dramatically boosted

the availability of natural templates otherwise inaccessible in sufficient amounts for

genetic manipulation. In conjunction with easy and cheap accessibility to oligonu-

cleotide synthesis, PCR also allowed direct and flexible manipulation of amplified

DNA fragments, although usually limited to minor modifications. Introduction of

larger mutations and/or rearrangements of DNA fragments remained only possi-

ble through consecutive rounds of alterations, in other words time-consuming and

expensive. Furthermore, the switch from radioactive Sanger DNA sequencing to au-

tomated fluorescence-based cycling techniques significantly accelerated molecular

cloning and facilitated easy examination of each intermediate step. High throughput

sequencing also led to the exponential growth of available sequence information in

publicly available databases. With a doubling rate of �18 months, this in turn moti-

vated the development of sophisticated algorithms and web applications to manage

and use this vast amount of data (Fig. 15.1).

By the mid-1990s, the records of DNA and protein sequences, structural data,

protein interaction networks, expression profiles, etc., became comprehensive

enough to substitute for real-life experiments. Today, it is difficult to perform

BLAST analysis of a sequence that has not been previously identified, in addition

to finding numerous related sequences from many different species, alive or ex-

tinct. Moreover, modern next generation high throughput sequencing of complete

genomes or even metagenomes predominantly store the data electronically on hard

drives, rather than in tangible genomic or cDNA libraries.
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Fig. 15.1 Exponential increase in gene sequence entries in the public GenBank database (ftp://ftp.
ncbi.nih.gov/genbank/gbrel.txt)
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Ideally, this could free the experimenter from genetic source material, which

is often difficult or impossible to obtain. Still, there remains the problem of the

fundamental difference between written or electronic sequence data and its phys-

ical counterpart preserved in a string of DNA nucleotides. A machine capable of

quickly converting a copy/pasted input sequence into a cloned DNA molecule was

needed. Consequently, it was primarily the massive expansion of accessible data

that created a demand, and therefore a market for such services.

Growing knowledge about biological systems and sequences also provided im-

petus from a different direction. Although the genetic code, the “language” of life,

is universal, the specific requirements or “dialects” of different species can be

quite unique, and also increasingly better understood with the availability of data

(Fig. 15.4). If a coding sequence is to be manufactured synthetically, why not adapt

the frequency of alternative codons towards the preferences of the projected host;

and in addition, adjust the GC content, avoid RNA secondary structures, exclude re-

striction sites, and so on. This not only necessitates data-to-molecule conversion, but

involves redesigning the in silico sequence itself. Computational optimization of a

protein-coding gene, however, is not trivial. Since 61 codons code for 20 amino

acids, the average number of possible alternative codons per protein position is

61=20 � 3. Even a small protein of only 100 amino acids can thus be translated

by 3100 � 5 � 1047 different codon combinations. For multiparameter optimiza-

tion, taking all the above-mentioned constraints into account, it is impossible to test

all possible reading frames for an optimal match. The development of novel algo-

rithms together with sufficient computational power was necessary to cope with this

challenge [19].

Historical Overview of Gene Synthesis Milestones

The first example of de novo synthesis of a DNA sequence was demonstrated

by Khorana and co-workers in 1970 [3]. In an effort taking several years they

assembled a 77 bp gene encoding yeast alanine transfer RNA using short oligonu-

cleotides obtained through organic chemistry methods. Five years later, Koester

et al. synthesized the first protein-encoding gene (angiotensin II) [4] comprising

33 bp, and in 1977 scientists from Genentech and academic partners not only

achieved the first example of recombinant expression of a human protein (somato-

statin) in E. coli, they also did so without using a natural gene [5]. At that time, 9

years before PCR, it was easier to design the 14 amino acid long somatostatin gene

rationally and synthesize it with organic chemistry methods rather than cloning it

using a natural template. While in those days gene synthesis was still restricted by

the limited availability of synthetic oligonucleotides, the development of automated

oligo synthesizers and the subsequent decline in prices of related services motivated

the emergence of novel gene synthesis methods. In 1981, Edge et al. used a T4 DNA

ligase approach to assemble enzymatically phosphorylated oligonucleotides into a

514 bp synthetic gene encoding human leukocyte interferon [6]. The isolation of

heat stable ligases by Barany and Gelfand in 1991 [7], and the introduction of the
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ligase chain reaction (LCR) made this strategy quite robust and reproducible, since

many repeated ligation cycles can be performed at high temperatures, providing

stringent hybridization conditions [8]. However, this protocol depends on phospho-

rylated oligos, full coverage of oligonucleotides for both DNA strands, and a limited

possibility to design unique sticky ends providing enough hybridization specificity

for controlled assembly. Nonetheless, this technique was the first to be commercially

successful, although still labour intensive, time consuming and expensive.

Indeed, it was the invention of the polymerase chain reaction by Kary B. Mullis

in 1985 [2] that made de novo gene synthesis accessible to the broad market. After

PCR was introduced into genetic engineering, several PCR-based oligonucleotide

assembly methods emerged based on one or more primer extension steps with subse-

quent amplification. Their application crossed the 1,000 bp size barrier in 1990 with

the synthesis of a 2.1 kbp fully synthetic plasmid by Young and colleagues [9], and

in 1995 when Stemmer et al. used 132 oligonucleotides in a single primer extension

reaction of overlapping complementary oligonucleotides with subsequent PCR am-

plification to construct a 2.7 kbp sized vector in one step [10]. Since then, ever larger

synthetic DNA molecules have been constructed, although usually put together from

smaller de novo synthesized 1–2 kbp modules by classical ligation and/or recombi-

nation. The first example of in vitro construction of a complete viral genome was in

2002 when Cello et al. reported the synthesis of an infectious �7:5 kbp poliovirus

cDNA [11]. Only 2 years later, Kodumal et al. described the assembly of a contigu-

ous 32 kbp polyketide synthase gene cluster [12], and demonstrated the functionality

of the operon by successfully expressing recombinant polyketide synthase in E. coli

and confirming its enzymatic activity. In 2006, the same laboratory synthesized a

redesigned polyketide synthase gene cluster, this time taking the codon usage of E.

coli into account. The resulting operon expressed significantly more protein than

the wildtype cluster, even requiring subsequent down-regulation by promoter at-

tenuation in order to balance relative recombinant and wildtype protein levels for

optimal polyketide synthesis [13]. The current pinnacle of this advance is the com-

pilation of an entirely synthetic bacterial genome. The group around J. Craig Venter

designed, synthesized and assembled the 1.08 Mbp Mycoplasma mycoides JCVI-

syn1.0 genome starting from digitized genome sequence information. Synthetic

building blocks of �1 kbp were first assembled from oligonucleotides and then

recombined into �10 kbp fragments in yeast. In a next step these were likewise

recombined into �100 kbp intermediates, then into the complete bacterial genome,

which was further transplanted into recipient Mycoplasma capricolum cells. This

resulted in the first self-replicating organism derived from a fully synthetic genome

[14] (Fig. 15.2).

Development of Commercial Services Providing Synthetic Genes

In the setting of the brief technological overview above, it is evident that reports

of de novo fabrication of long DNA molecules without requiring a natural template

created an awareness of new technological opportunities and visions.
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Fig. 15.2 Milestone timeline of longest so-far published synthetic DNA construct

Provided that an accessible source for synthetic genes and comprehensive

databases of DNA sequences are available, these are some of the visions:

1. Working with hazardous biological organisms or tissues to isolate genetic mate-

rial is obsolete and related projects can be operated solely under biosafety level

one conditions.

2. Also the availability of non-hazardous DNA sources, such as genomic or cDNA

libraries is dispensable.

3. Unwanted sequence variations present in many DNA samples are irrelevant and

do not need to be verified or corrected.

4. Novel non-natural gene constructs can be conceived without taking the technical

and temporal limitations of classical molecular biology into account.

5. The design of artificial genes can consider special requirements of the host

organism to incorporate criteria such as high expression rate, genetic stability,

methylation status, etc.

Taken together, de novo gene synthesis has the potential to massively influence

safety, availability, reliability, throughput, flexibility, and last but not least, total

project costs. Its application not only completely changes the way in which scien-

tists think when designing cloning strategies, but also allows outsourcing of related

experimental steps in order to concentrate on less trivial scientific operations. One

could electronically access DNA sequences through databases, design constructs on

the computer that specifically fit given requirements, with no compromise between

utility and production – and then push a button so that the molecule is synthesized

and shipped within a matter of days.
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These promises were so tempting that consequently around the year 2000 several

new startup companies appeared on the market offering such services. By then, most

technologies were based on ligation of phosphorylated double-stranded oligonu-

cleotides and protocols for their assembly involved many manual steps. Costs for

oligonucleotides were still in the range of 50 ct per base and demand for syn-

thetic genes in the market was still limited. Consequently, the business started

out with a relative high price for artificial genes amounting to US$12 per bp or

US$10,000–20,000 for an average sized gene. Therefore, at the dawn of commer-

cial gene synthesis, the application of synthetic genes in scientific projects involved

careful preparation and budgeting and was still far from wide-spread. It was actu-

ally a tempting alternative for researchers to accomplish the synthesis themselves.

However, during the following 10 years the price for such services rapidly declined

exponentially with a half-life period of �24 months. Today (July 2010), gene syn-

thesis costs are about 1=30th of their original figure and have reached a level that is

highly competitive with any alternative cloning method.

What was the reason for this remarkable price drop and what was the reaction

of the market? Well, when around the turn of the century the demand for synthetic

genes became evident, no less than 30 companies started offering this service. Some

were young startups, specializing in gene synthesis; others were established enter-

prises incorporating it into their existing portfolio. This rapidly led to challenging

competition between the providers, not only at the level of product prices but also

in service coverage, quality, capacity and delivery time. In the beginning, however,

pricing was the deciding factor for the customer and providers started to undercut

each other. The falling market price for synthetic genes forced them to drive tech-

nological and administrative developments towards being cost-effective in a tight

market and coping with an exponential increase in demand. Hence, the number of

profitable gene synthesis companies decreased rapidly down to the current status of

only a few major providers.

Additionally, the plummeting prices had another notable impact on the market

size itself. For the first 6 years the growing demand for synthetic genes was predomi-

nantly driven by increasing awareness of their applicability through word-of-mouth

recommendation and associated publications, yet it was somehow limited by the

relatively high costs. Then, during 2007 the price per base pair dropped below the

US$1.00 threshold – and triggered a massive burst in gene synthesis orders, con-

firming the previous reluctance due to pricing (Fig. 15.3).

Since nowadays related costs are no longer the vital or limiting factor for deciding

to work with synthetic genes, providers concentrate more on total synthesis capacity

and the reduction and reliability of delivery time. With the ever growing market and

the beginning of the era of synthetic biology, the business model for gene synthesis

companies changed from a high-priced low-quantity niche market provider to a high

throughput supplier of a common research reagent.
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Technological Background of de novo Gene Synthesis

The first step in gene synthesis is actually determining and specifying the sequence

itself. Given the flexibility to synthesize any conceivable string of nucleotides, it is

logical to alter a natural gene to ensure its best performance in the required applica-

tion or experiment.

The most commonly employed modification of protein-coding genes is adapting

codon usage. With the rapidly growing size of natural sequence databases, numerous

sequenced genes are listed for many species – up to fully sequenced genomes of the

most studied organisms. This information is also compiled into a register, reflecting

the relative frequency of alternative codons in each organism, which is deposited in

the Codon Usage Database (http://www.kazusa.or.jp/codon/).

Figure 15.4 illustrates part of the codon usage distribution for a representative

prokaryote, fungus, plant and mammal. The preferred codons for each organism dif-

fer significantly for each amino acid. Different strategies and algorithms have been

developed to best adapt a coding gene to the codon usage of the host organism. One

possibility is distributing alternative codons within an optimized gene to mirror the

codon frequencies of the overall target species. For example, all proline codons in a

gene optimized for yeast should occur roughly in the following distribution: CCG :

CCA : CCT : CCCD 12% : 42% : 31% : 15%. It is obvious that this also comprises

the inclusion of rare codons, albeit only at some randomly chosen positions. An-

other approach is to copy the positional frequencies of the alternative codons in the

wildtype gene into the frequencies of the host. For instance, a proline at position 42

within a human protein is coded by CCA, which is the third best codon for proline

in humans. Optimization for yeast expression applies the 3rd best proline codon in

http://www.kazusa.or.jp/codon/
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E. coli Yeast Corn Human

Pro CCG 51% 12% 28% 11%

42% 25% 28%

31% 23% 29%

32%

Arg CGC 37% 6% 25% 18%

CGT 36% 14% 10% 8%

4%

CGA 11%

AGA 5% 48% 26% 21%

AGG 3%

Leu CTG 49% 11% 28% 40%

28%

29%

6% 8%

14% 13%

CCA 19%

CCT 17%

CCC 13% 15% 24%

CGG 11% 16% 20%

7% 7% 8%

21% 15% 21%

TTA 13%

TTG 13%

CTT 11% 13% 17% 13%

CTC 10% 6% 27% 20%

CTA 4% 14% 8% 7%

% GC 52% 40% 55% 52%

amino acid codon

Fig. 15.4 Part of a codon usage table from Escherichia coli, Saccharomyces cerevisiae, Zea mays

and Homo sapiens for the amino acids proline, arginine and leucine. The numbers represent the

overall frequency of a particular codon amongst all codons for a given amino acid in that species.
Frequencies <25% are in bold and <10% are in grey. The bottom line indicates the GC content of
all coding genes in that organism

yeast, which is CCC. This system tends to assume that a protein-coding gene is al-

ready optimized for high expression in its natural organism. However, in an evolved

composite context with a focus on regulation rather than maximum productivity this

is rarely the case.

The most common optimization strategy to date is completely avoiding rare

codons, and aiming for maximum saturation with the most frequent ones. It has

been demonstrated that in E. coli these codons correlate with the most abundant

tRNA pools [15–17] and that the relative tRNA levels do not change with expres-

sion or cellular growth. Thus, the prevalent codons still access the largest available

tRNA pools feeding the translational machinery [18].
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Codon choice, however, is not the only parameter when contemplating a well-

designed gene. Other variables to consider are adjusting GC content, and avoiding

direct and reverse repeats, restriction sites, ribosomal entry sites, cryptic splice

motifs, polyadenylation signals, sequences controlling mRNA half-life, RNA sec-

ondary structures, etc.

Together, this results in multiparameter optimization, requiring sophisticated al-

gorithms and significant computational speed [19].

When it comes down to actually synthesizing the designed gene, the initial build-

ing blocks must be produced chemically without an available template. This is still a

significant cost factor in gene synthesis and different strategies have been conceived

to reduce these expenses.

An appealing idea is to build the complete sequence from an existing collection

of oligonucleotides covering every possible nucleotide combination – rather like

writing an article via copy/paste from a collection of all possible words instead of

typing single letters. That way the oligonucleotides only need to be synthesized

once and can be reused. The automated sequential assembly of 6-mers from a set

of all 46 D 4;096 possible combinations has been described [20], but it remains

challenging to repeatedly use and store such a collection of molecules without facing

degradation problems.

Another promising, though not yet fully developed option to reduce organic

chemistry costs is the application of array-based oligonucleotide synthesis meth-

ods – either using microfluidic [21] or photo-programmable chips [22] – and

combining this with classical PCR-based gene synthesis techniques. Although con-

sumption of chemicals can be dramatically reduced, after release into solution the

oligonucleotides are only present in femtomolar concentrations, which is too low to

allow bimolecular priming necessary for de novo gene construction. Therefore, the

oligonucleotides released from the chip need to be re-amplified by PCR using uni-

versal primers, followed by endonuclease treatment to remove the universal priming

region, and finally purification. These extensive post-synthesis treatments, in addi-

tion to the setup costs of the oligonucleotide chip, add to the overall costs of this

new and visionary gene synthesis method [22].

Another issue with chip-based oligonucleotide synthesis is the poor accuracy

of the molecules produced. The large number of sequential chemical reactions on

the elongated chain, together with the inherent imperfection of each step lead to

an increasing probability of incorporating a mutation within the molecule. Usually

these are single nucleotide deletions, insertions or depurinations that occur with a

frequency of 0.1–0.5% (0.1%D every 1,000th nucleotide has an error, or 1 out of 50

20-mers carries a mutation). When assembling many oligonucleotides into a longer

contiguous molecule, the statistical clustering of mutations within a synthetic gene

increases exponentially. Length of the gene and error rate of the oligonucleotides

both have a dramatic effect on the final sequence accuracy. Figure 15.5 demonstrates

that a synthetic gene of 1,000 bp made from oligonucleotides with an error rate of

0.1% will have a total accuracy of .100%–0:1%/1;000 D 37%, while an error rate

of 0.3% decreases the final accuracy down to 5%. In the first case one out of three

sequenced clones contains the accurate sequence, in the second case one has to

sequence 20 clones to find a correct one.
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gene length75% oligonucleotide

error rate

25%

50%

fraction of correct full-length molecules
0%

500 bp 1000 bp 1500 bp 2000 bp

0.1% 60.638% 36.770% 22.296% 13.520%

0.2% 36.751% 13.506% 4.964% 1.824%

0.3% 22.263% 4.956% 1.103% 0.246%

0.4% 13.479% 1.817% 0.245% 0.033%

0.5% 8.157% 0.665% 0.054% 0.004%

500 bp 1000 bp 1500 bp 2000 bp

Fig. 15.5 Effect of oligo-synthesis error rate and gene length on total synthesis accuracy

Different techniques can be applied to reduce remaining errors in the initial gene

synthesis product before ligation and transformation. After denaturation and rean-

nealing it is highly unlikely that two synthesized complementary DNA strands with

matching mutations in complementary positions will find each other. Only strands

with the correct sequence can form perfect duplex DNA – all erroneous molecules

will result in dsDNA carrying mismatches. These can serve as entry points for di-

gestion by different enzyme systems or affinity purification by mismatch binding

proteins [8, 23, 24]. So far, these procedures are not fully efficient either, and do not

guarantee 100% sequence accuracy. They also involve additional production steps

and can quickly reduce the total quantity of the DNA product to the extent that

additional amplification is required before ligation is possible.

It is obvious that oligonucleotides of the highest possible grade must be used for

gene synthesis to reduce downstream efforts and expenses. Compared to other reac-

tions mentioned above, classical phosphoamidite-based solid phase oligonucleotide

synthesis still provides unsurpassed quality. Unfortunately, for reasons of cost and

delivery speed, most oligo providers have not designed their synthesis protocols to

avoid as many errors as possible. However, the protocols can be optimized to elim-

inate mutations to a higher extent, while concurrently allowing for miniaturization

to reduce chemical consumption, for example by conversion into DNA synthesizers

in 96-well and even 384-well formats. It is likely that this technique will remain

the method of choice over the next few years to provide the raw material for syn-

thetic genes.

The next step in gene synthesis is assembling the oligonucleotides to yield longer

contiguous sequences. As discussed above, the maximal final length of these con-

structs must be considered carefully, in order to limit the likelihood of errors in

the product as well as the number of transformants to screen. Currently, the most

cost-effective size of these synthetic building blocks is between 1 and 2 kbp. The

assembly process is basically a multiplex primer extension reaction, taking place un-

der controlled temperature cycling conditions (Fig. 15.6). In the first cycling round,

overlapping primers anneal to each other and are filled in by polymerase to form

short double strands. These can again anneal to each other in the subsequent cy-

cle and are extended to fragments bridging four oligonucleotides. This progression

continues until fragments arise containing the complete length of the intended prod-

uct. Once achieved, terminal primers, present in excess, take effect and amplify the

full-length product exponentially.
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Fig. 15.6 Schematic overview of gene synthesis workflow. In silico designed sequence data are
converted into a set of oligonucleotides by automated organic chemistry. These are stepwise as-
sembled, elongated and amplified into a full-length fragment (see box), which is then ligated into
a cloning vector. After transformation, E. coli colonies are screened for error-free insert sequences
and a correct colony is cultivated for plasmid isolation. After a final sequence verification of the
plasmid preparation it is ready for shipping or further assembly into larger constructs

In a next step, this PCR product is ligated into a minimal cloning vector using

classical restriction endonuclease techniques. After transformation into E. coli and

bacterial cultivation, some colonies are selected for plasmid preparation and the

accuracy of the synthesized DNA construct is verified by sequencing. Altogether,
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conditions for mass production are chosen to have a >95% chance of picking at

least one correct fragment with a single screen. This sets a limitation on the total size

of the initial product, since longer molecules accumulate mutations exponentially –

accordingly resulting in increased necessary screening efforts for correct fragments.

Therefore, in order to compile synthetic gene constructs exceeding 1–2 kbp, they

are reassembled from the sequence-verified first building blocks. Since assembling

DNA elements is the nuts and bolts of biotechnology, several techniques exist to

do so efficiently, although not all of them are equally apt for sequence-independent

gene synthesis.

The straightforward approach for DNA fragment linkage is classical manipu-

lation with restriction enzymes and ligase [25]. This method, however, is quite

inflexible in terms of junction sequence design and involves well-known prob-

lems regarding availability and uniqueness of appropriate restriction sites. Type II

class S restriction sites can eliminate scar sequences at the boundaries. These

enzymes can produce sticky ends outside their recognition sequence, while the

nucleotides of the adjacent cohesive stretch can be chosen freely, representing a

common part of the intended compound product for ligation [26]. Designing this

common part to have a length of �20 bp allows flexible and specific attachment

of two or more DNA fragments by fusion PCR, but is limited to moderate overall

size and inherits an additional source of sequence errors [27]. The DISEC-TRISEC

and LIC-POR methods employ the exonuclease activity of Klenow or T4 DNA

polymerase to generate compatible single stranded overhangs, which are then com-

bined with or without ligase, respectively [28, 29]. In vitro recombination extends

this technology by annealing the overhangs under more stringent conditions at ele-

vated temperatures and then filling and closing gaps with a heat stable polymerase

and ligase. This already allows for efficient assembly of molecules in the range of

100–200 kbp [30]. To access even larger fragment sizes, recent protocols took ad-

vantage of the recombination efficiency of yeast, enabling the assembly of complete

bacterial genomes of sizes exceeding 1 Mbp [14] (Table 15.1).

The complete process of gene synthesis – from sequence submission to ship-

ping the final plasmid – is a process involving many different disciplines: sales,

bioinformatics, organic chemistry, molecular biology, export and logistics must all

play hand in hand to shift the entire workflow from small-scale to an industrial

high throughput operation. A laboratory information management system (LIMS) is

essential to track every intermediate in the multi-step production when dealing with

hundreds and thousands of syntheses in parallel. Equally, an increasing degree of

automation is mandatory to avoid exponential growth in production volume necessi-

tating an equivalent increase in manpower. Pipetting robots communicate flawlessly

with a LIMS network and vice versa. Some steps are also simply not manageable

by humans anymore, such as the move from 96 to 384-well plates, or the decrease

of reaction volumes below 1�L. It is the interplay between LIMS, automation and

miniaturization that creates the prerequisites necessary for a smooth and robust pro-

duction platform enabling cheap and fast production of synthetic genes.
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Table 15.1 Overview of available techniques for DNA fragment assembly

Method Description

Accessible
size/Sequence
independent? References

Type II class P
restriction
endonucleases

Conventional cleavage with
restriction endonucleases
and ligation of cohesive
palindromic ends

�25 kbp No Maniatis [25]

Type II class S
restriction
endonucleases

Usage of restriction enzymes
cutting outside their
recognition sequence and
generation of
non-palindromic cohesive
ends

�25 kbp Yes Padgett [26]

Fusion PCR Short sequence overlaps allow
dsDNA to act as
megaprimers in PCR
reaction and elongate to
full-length constructs

�10 kbp Yes Mullinax [27]

DISEC-TRISEC Concerted action of Klenow and
T4 DNA polymerase
produce compatible
cohesive ends for ligation

�25 kbp Not fully Dietmaier [28]

LIC-POR Ligation-independent assembly
of compatible cohesive ends
produced by T4 DNA
polymerase

�25 kbp Not fully Aslanidis [29]

In vitro
recombination

Compatible ssDNA overhangs
generated by 30 exonuclease
are annealed at high
temperatures, filled in by
Taq DNA polymerase and
linked by Taq ligase

�150 kbp Yes Gibson [32]

Transformation
associated
recombination

Homologous recombination of
dsDNA in yeast

�1:1Mbp Yes Gibson [14]

Fields of Application for Synthetic Genes

The first reports of genes constructed from synthetic oligonucleotides were

primarily motivated by the relative complexity of attaining these molecules us-

ing alternative, perhaps not yet developed molecular techniques [4, 5]. The ensuing

rapid development of genetic manipulation, in particular the invention of PCR,

later offered much faster access to natural genetic material. Thus, for some years

the potential of synthetic genes fell into oblivion, until the coverage of sequence

databases and the limited flexibility and performance of natural genes stimulated a

new need for synthetic genes.
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Availability and Safety

Today, the conversion of electronic sequence data into actual bioactive molecules is

a vital tool in biotechnology. In many cases, the natural source material for possi-

bly isolating genes is simply not available, or it is too labour-intensive to conduct

the necessary steps required to attain a full-length gene. Biosafety may also be

an issue for choosing artificial genes, since working with isolated genes removed

from the context of the complete organism is classified as level 1 (no risk) in most

cases. An example where both conditions were relevant was the recent outbreak

of the 2009 influenza H1N1 pandemic. The immediate public release of the hea-

magglutinin and neuraminidase sequences from Mexican patient isolates enabled

researchers and vaccine developing companies to obtain the corresponding genes

within a matter of days, without necessary shipment of potentially infectious mate-

rial nor the need for biosafety precautions. Another protective measure of synthetic

genes using alternative codons is their decreased ability to recombine with other-

wise homologous wildtype sequences, which may be an issue with viral sequences

or human oncogenes.

Origin and Reliability

Particularly industrial projects require most steps in research and production to

be well documented and certified for regulatory and intellectual property reasons.

This also includes the audit trail of the origin of research reagents. It can some-

times be challenging to retrace a gene’s laboratory history, or it may derive from

sources or collections that do not meet regulatory demands. The source of a physical

gene manufactured by an ISO certified provider circumvents this problem and is a

straightforward strategy for gapless documentation. It also assures the full sequence

fidelity according to project design requirements, since according to experience,

many constructs derived from in-house, public and commercial gene collections are

not identical to the documented sequence.

Expression Efficiency

To date, most experiments in biotechnology include the recombinant expression of

proteins, either to change the host’s phenotype or to directly obtain and purify the

overproduced polypeptide. As described before, the dissimilar genetic and biochem-

ical setup of different species usually causes non-optimal transcription, processing,

stability and translation of the extrinsic gene or mRNA. Employing multiparame-

ter optimization allows adaptation of a coding sequence to the requirements of the

host so that it performs like a native gene. Moreover, since most natural genes have
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not evolved for maximum expression, optimization can introduce this feature. With

an overall effect on protein production yields ranging from a 10% increase to ob-

taining high expression of a previously undetectable gene product, optimization not

only improves cross-species performance but also autologous expression, for exam-

ple the production of human genes in mammalian cells [33].

Protein Performance

It is not only the genes that are in sub-optimal shape for technological and indus-

trial purposes but also their products. Ever more recombinant proteins are being

employed in healthcare, the chemical and food industry, agriculture and everyday

household products. Here, they must perform under conditions that are substantially

different from their previous natural environment. Viral antigens for immunization

ought to be highly immunogenic, humanized antibodies for cancer therapy must

recognize distinct cellular targets, enzymes in laundry detergents have to perform

under the harsh conditions of a washing machine, to name just a few. Proteins need

to be engineered in order to be of commercial use. However, rational computation

and prediction of necessary alterations is extremely difficult, and in most cases un-

achievable, since we still lack sufficient knowledge to deduce the three-dimensional

protein structure from its amino acid sequence. It is common practice to involve

methods of directed evolution here – the generation and selection of many protein

variants. While earlier methods to produce gene collections or gene libraries for

this purpose involved tedious targeted, or random mutagenesis, gene synthesis pro-

vides access to these collections much faster and on a more rational basis. During

gene fabrication the use of oligonucleotides carrying controlled impurities (degen-

erations) at defined positions allows the production of libraries that result in proteins

where only the relevant amino acids are prone to substitutions. This narrows down

the desired fuzziness of the variants to the areas of interest and dramatically in-

creases the success rate of protein improvement through directed evolution.

Cost, Capacity and Speed

The considerable decline in prices for synthetic genes has today created a source

of biological DNA sequences that economically outcompetes the classic genetic

engineering methods. Molecular cloning steps, necessary in many projects as

groundwork, can be outsourced and internal resources focused on genuine research

goals. Relocating the manual DNA manipulation to an automated industrial manu-

facturing process also dramatically increases the processable unit size – more genes

can be obtained in a shorter time – a vital necessity in the competitive domains of

commercial and scientific biotechnology.
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Flexibility of Design: Artificial Genes, Operons and Genomes

The freedom to access any imaginable DNA sequence not only allows the mod-

ification and adaptation of naturally occurring molecules, but also enables the

manifestation of some very new visions of synthetic biology [31]. A major goal

within this field is to design and construct new metabolic pathways within a pro-

ducer cell. This must address three major obstacles. First, for a stable and efficient

series of reactions, the enzymes involved must be expressed in a highly concerted

manner. Very much like other engineering technologies, this demands the avail-

ability of standardized regulatory parts and elements. Ideally, promoters, ribosome

binding sites, terminators, DNA-binding proteins, corresponding protein landing

sites, etc., should be available with various well-characterized potencies and speci-

ficities. Together with sophisticated computer-aided design and simulation tools,

these elements ought to be combined a priori to compile novel pathways. Secondly,

fast and efficient congregation of new gene clusters or operons requires the simulta-

neous assembly of such parts in a robust, yet flexible way. Classical restriction sites

do not allow for arbitrary combination of multiple elements simultaneously. Novel

in vitro recombination technologies in conjunction with artificial modular junction

sites can offer solutions in this direction.

Thirdly, establishing an extrinsic (foreign) biochemical pathway within a living

cell must always be perceived in the context of the entire metabolism. The availabil-

ity of only one diffusion space does not allow efficient spatial separation of distinct

reaction steps, and participating intermediates can always interfere with both the

projected pathway and total cell fitness. Therefore, one aim is to construct simplified

“chassis” strains with genomes reduced to the lowest number of genes necessary for

cellular survival and growth [32]. Here again, knocking out dispensable genes one

by one by conventional methods is likely to be a highly tedious strategy. More likely,

the in vitro synthesis of complete genomes, designed from scratch, will provide a

much faster and more flexible way to bring these organisms to life. The technical

feasibility of this approach was just recently demonstrated by the synthetic con-

struction of a complete Mycoplasma mycoides genome comprising 1.08 Mbp and

its transplantation into and reprogramming of Mycoplasma capricolum [14]. It is

reasonable to assume that this cornerstone will drive further developments towards

modular gene construction kits in conjunction with compatible host strains, allowing

for true engineering strategies in biological sciences.
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Chapter 16

On the Construction of Minimal Cell Models
in Synthetic Biology and Origins of Life Studies

Pasquale Stano and Pier Luigi Luisi

Abstract In this chapter we describe the concept of minimal living cells, defined

as synthetic or semi-synthetic cells having the minimal and sufficient number of

components to be endowed with the main biological properties of living cells. The

construction of minimal cells starting from isolated compounds is an issue in syn-

thetic biology, origins of life studies, and biotechnology. We start by discussing the

different concepts underlining the three above-mentioned fields, by comparing the

different viewpoints and highlighting common perspectives. We focus on the first

two approaches, firstly describing our recent investigation on the construction of

semi-synthetic minimal cells (developed in the Synthcells project), based on the

use of liposomes as cell models. A short review of most relevant studies in the

field is also given. The emphasis is then shifted to more basic biophysical aspects

that emerged from these studies and that can significantly contribute to the under-

standing of the origins of primitive cells. In particular, we report the unexpected

finding of spontaneous self-concentration of proteins and other solutes inside lipid

vesicles. This recent discovery gives rise to a several theoretical and experimental

implications that are shortly discussed. As a conclusion, we comment on the state-

of-the-art in the field, next developments, and future challenges, and highlight how

this research may contribute to improve our understanding of life.

Keywords Autopoiesis � Minimal living cells � Autopoiesis � Self-reproduction

� Semi-synthetic cells � Liposomes � Origins of life � Protocells � Fatty acids

Why Minimal Cells?

In recent years we have been involved in a novel aspect of chemical-biological in-

vestigation, namely the laboratory construction of cell models. Such investigation

is relevant in different avenues of research, from the new emerging discipline of
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synthetic biology (SB), to biotechnology, to more basic science as in the case of

origins of life studies. To date, several research groups in US, Europe and Japan are

developing and studying liposome-based cell models following an approach that

was experimentally pioneered by one of us (PLL) in the early 1990s at the Swiss

Federal Institute of Technology (Zurich). A parallel input to modern developments

was also given by David Deamer (University of California Santa Cruz), who also

focused his research on fatty acid vesicles as primitive cell models.

The current experimental approach to the construction of “synthetic” cells is

based, as anticipated, on the use of lipid vesicles (liposomes) as microscopic

self-boundary systems capable of hosting simple or complex biomacromolecular

systems. In such way, the structural and functional analogy of liposome-based cells

with natural cells is very evident. However, concepts, experimental approaches and

historical developments of such studies vary with the different perspectives and

contexts.

From the viewpoint of origins of life studies, that are at the roots of early studies,

liposome-based cell model are physical model of primitive cells. They are used to

gain knowledge about the transition from non-living, non organized matter to the

first living systems, which are necessarily confined in cellular or cell-like structures.

In this context, “minimal” cells are those cells or cell models that contain the min-

imal number of molecules in order to display living-like properties. The need of

specifying that such number should be minimal comes from the fact that realistics

model of primitive cells cannot be so complex as modern (evolved) cells. To be re-

called here is the fact that the simplest living cells on our planet contain at least 500

genes, and a total of several thousand of molecular components. But precisely this

high complexity elicits the question, whether all this complexity is essential for life,

or whether instead the main biological functions can be accomplished with much

simpler systems. This question comes also from the consideration that early cells,

the ones which started our life on Earth, must conceivably be much simpler than the

modern cells. In this way, then, minimal cells should be simpler than current liv-

ing cells. The construction of a minimal cell would experimentally show a possible

route for the emergence of living systems from non-living molecules, taking advan-

tage of simple physico-chemical factors such as self-assembly, self-organization,

and self-confinement. We will see later how the theory of autopoiesis helps in codi-

fying the desired pattern in a rigorous way.

From the viewpoint of biotechnology and SB, synthetic cells can be seen as (1)

a biotech tool or (2) a product of modern and sophisticated bioengineering. In the

simpler version, synthetic cell-like systems (not necessarily living systems) are com-

plex molecular systems organized within a membrane boundary that can be used for

a variety of application, such as molecular screening, bioreactors, biosensors, and

ultimately as advanced drug delivery systems [85]. A visionary perspectives – also

described by Le Duc and coworkers in a recent review [118], foresees the use of

synthetic cells, endowed by synthetic genetic circuitry inside, as targetable vehicles

for in vivo nanomedicine. A short description of this view will be given below. On

the other hand, also for the quickly growing SB, the concept of minimal cells is very

germane [28,29,42]. From the viewpoint of classical SB (bioengineering-inspired),
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the construction of minimal cells might mean the minimization and/or reduction

approach of already-existing cells at the aim of removing unessential part, so that the

resulting still-living cells can be manipulated for useful applications. Such approach

can be developed only thanks to recent technical and theoretical advancements (of-

ten integrating systems biology), but the companion concept of genome reduction

and minimal genome has been largely discussed from the viewpoint of comparative

genomics. The work of Craig Venter and coworkers on the assembly of a synthetic

genome and its transplantation [33] can be seen as an example of synthetic cells in

the SB paradigm.

Very recenty, however, one of the authors (PLL) has coined the term “chemical

SB” for describing another SB approach to synthetic cells, which remarkably differs

from the standard SB way [58]. By chemical SB we mean the research on synthetic

biological systems (from molecules to whole cells) that shares with SB the con-

structive and sometimes engineering approach, but does not aim to optimize systems

by genetic manipulation for achieving a pre-determined performance. In chemical

SB we aim to construct synthetic systems, e.g., synthetic or semi-synthetic mini-

mal cells, at the aim of understanding why a certain kind of system is successful,

and another is not. We therefore aim to achieve a kind of biological learning by

constructing models, i.e. a constructive approached opposed to the analytical (dis-

secting) one. We believe that in this way we can see some underlying principles

of the emergence of cellular life. This approach actually complements the classical

approach of origins of life studies (bottom-up pathway from simple low molecular-

weight molecules to macromolecules to molecular systems) because many of the

key transitions in molecular evolution have been not clarified yet or give rise to

unanswered questions (the reader interested in open questions in origins of life can

find two recent overviews in Stano and Luisi [89, 99]). The philosophical impli-

cations of this approach are discussed in a recent article on the epistemic basis of

synthetic biology [59].

In this chapter we will shortly review the most relevant experimental approach

to the construction of semi-synthetic minimal cells, which is one of our currently

developed research program (e.g. in the FP6 Synthcells project), starting from early

studies on liposomes to most modern systems based on transcription-translation

inside liposomes, to important biophysical effects at the basis of cell assembly.

Autopoiesis and Minimal Life

Autopoiesis (from the Greek, self-production) is a theory developed by Maturana

and Varela [109] dealing with the question “what is life?”, and attempts to define, be-

yond the diversity of all living organisms, a common denominator that allows for the

discrimination of the living from the non-living. Despite its simplicity and logical

robustness, autopoiesis is not a familiar concept in mainstream biological sciences.

This is partly due to the fact that autopoiesis theory is not centered on DNA,

RNA and on replication, and makes only a minimal use of the term “information”.
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Fig. 16.1 Autopoiesis and minimal autopoietic systems. (a) The circular logic of autopoiesis as
minimal life. The process of living is seen as cyclic, one in which the internally produced molecular

components assemble into the self-bounded functional structure, which generates the microenvi-
ronment reaction (metabolic) network, which then produces the molecular components: : : and so
on. The system exchange energy and matter with the external environment. (b) A minimal au-
topoietic system is constituted by a self-bounded system, which can uptake a precursor P from
the environment, transform it by one or more reaction(s) into the boundary element S, which can
also undergo a degradative process to W. Depending on the relative rates of these processes, the
autopoietic system can grow, stay in a homeostatic state, or die (Reproduced from Stano and Luisi
[100]. With permission from The Royal Society of Chemistry)

Autopoiesis is a systems theory dealing with the logic of cellular life, identifying

the main activity of the cell as the maintenance of its own dynamic and structural

organization. This occurs despite the large number of transformations taking place

inside its boundary and involving all elementary components of the cell (enzymes,

metabolites, RNA, etc.). Self–maintenance is carried out by a constant regenera-

tion (from the inside) of all components (boundary molecules included), that are

also continuously transformed and/or disposed of. This is possible thanks to a net-

work of processes that produces all components, that in turn generate the processes

producing such components, and so on (Fig. 16.1a) [56]. The outcome is a kind

of circular organization. This dynamics is sustained thanks to the external supply

of chemicals or energy, being the autopoietic cell a thermodynamically open sys-

tem. Notice, however, that the internal set of transformation can be maintained and

sustained only if the dual entities of process and components are consistently and

recursively linked to each other, a feature typical of an operational closure [56,109].

Can autopoiesis be used as a theoretical framework for the development of exper-

imental research? The answer is yes, and the first examples of “autopoietic chemical



16 Minimal Cell Models in Synthetic Biology and Origins of Life Studies 341

systems” have been given by Luisi in the early 1990s [62] by using self-assembling

supramolecular systems as micelles [3], reverse micelles [2] and vesicles [111]. We

will discuss the latter case in details in the next paragraphs, but let see how and at

what extent is it possible to design and construct autopoietic (molecular) systems

in the laboratory. By autopoietic we mean in this case, that the synthesis of new

elements takes place from within the boundary of the original system. This con-

cept is very clear in the case of aqueous micelles of fatty acids, which are taking

up the water-insoluble precursor-like fatty acid esters [3]. The term autopoietic has

been used by our group also in the case of self-reproduction of vesicles. In this case

the chemistry leading to self-reproduction takes place on the bilayer of the vesicle

[111], but this can still be considered chemistry taking place within the boundary.

Self-reproduction is only one mode of the activity o fan autopoietic system, and

Fig. 16.1b shows a simplified cartoon representing the complete activity of a mini-

mal autopoietic system.

An autopoietic system sustains itself by transforming external components (here

indicated as P) into the elements (S) of the autopoietic system, which self-organize

into the autopoietic unit. The transformation, here indicated by a simple process

(P becoming S) occurs within the system, i.e. within the self-generating boundary

that separates and distinguishes the system from the environment. In other words,

working out of equilibrium, an autopoietic cell continuously uptakes from the en-

vironment the precursor P that is internally transformed into the building block S.

Eventually S is destroyed to give a waste product W. In more general terms (by

imaging a more complex autopoietic cell), all structural components are continu-

ously renewed by two concurrent anabolic and catabolic processes; but despite this

continual turnover of components, the whole organization of the autopoietic unit

does not change. Thanks to this mechanism, it is possible to imagine (and possibly

construct in the laboratory) simple or complex molecular systems that are based on

an autopoietic mechanims. The difference will be in the nature of P, S and of the

P-to-S transformation. The building block(s) S can be a single molecule or a set

of molecules or macromolecules. The P-to-S transformation can be a single reac-

tion or a set of multiple reactions, like a minimal metabolism. What is important

is that the peculiar self-producing dynamics is maintained. From the viewpoint of

minimal life, we are therefore interested in finding, first conceptually and then ex-

perimentally, the set of (bio)chemical transformations that give rise to an autopoietic

system, looking for its minimal complexity. This would correspond to a minimal

autopoietic system, possibly living (for a discussion on the definition of life and au-

topoiesis, see [8,54,56]). Looking at the transformation rates depicted in Fig. 16.1b,

it is easy to see that an autopoietic cell grows when the rate of production of S

overcome the rate of its disappereance. When the opposite is true, the autopoietic

cell dies; and only when the two rates are the same, the autopoietic cell enter into

a stationary state that keeps it unchanged (homeostasis). Of the three different out-

comes, the first one is particularly interesting, because the growth can be followed

by a division of a large autopoietic unit into two or more daughter units, so realizing

a self-reproduction of autopoietic cells, i.e., the way to the proliferation of cellu-

lar structures from a parent one. Several experimental studies have been devoted to
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growth and self-reproduction, whereas there is only one report on autopoietic home-

ostasis [117]. We will shortly comment the results with “naked” lipid vesicles (the

interested reader can refer to a recently published review [100]), whereas a more

detailed discussion will be focused on liposome-based minimal cells.

Minimal Cells: Concepts and Experimental Approaches

The starting point of our discussion will be the realization of liposome-based cell

models and the transition from such simple systems to minimal biological cells.

Self-reproduction of Liposomes

Liposomes, or lipid vesicles, are microscopic water-filled hollow structures

(Fig. 16.2) formed spontaneously by self-assembly of lipids or of other molecules

Fig. 16.2 Model of the cross
section of a (quite small)
spherical unilamellar
liposome (a), and liposomes
as seen by cryo-transmission
electronmicroscopy (b)
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(fatty acids, cationic surfactants, block-copolymers). Since the time of their

discovery by Alec Bangham [5] it was immediately clear that they could have

been used as cell model, initially to study biological membranes, and later on as

more complex cell models. The hydration of lipids in aqueous solution brings about

the formation of liposomes in short time, and it has been demonstrated that a variety

of molecules (small and large molecular weight; polar or ionic), initially present in

the aqueous phase, can be entrapped inside liposomes. Hydrophobic molecules are

also entrapped by solubilization in the membrane. Today, together with the classical

medical application of liposomes (essentially as drug delivery systems) their use as

cell model is well recognized. In particular, there is a large consensus on the fact

that in a certain stage of prebiotic evolution liposomes have played a key role for

the emergence of cellular life.

This shared view is based on two important pillars, namely: (1) the discovery

that very simple molecules as fatty acids (found in meteorites [51] and possibly

synthesized abiotically [24,69,90] spontaneously form stable vesicles [32,37]); and

(2) the discovery of the spontaneous self-reproduction of fatty acid vesicles at the

expenses of a precursor [9, 53, 86, 111].

Fatty acid vesicles, e.g., “oleate” vesicles, form vesicle in a pH range from ca. 7.5

to 9.5. At this pH, the carboxylic group of oleic acid is partially transformed into

carboxylate (approximatively 50% when pH D 8:5) so that the oleic acid/oleate

mixture is structurally competent for self-assembly in the lamellar phase, giving

rise to membranes and therefore vesicles. At lower and higher pH values oleic acid

is present in form of oil droplets and oleate micells, respectively. It has been shown

that oleic acid vesicles may grow and divide at the expenses of externally added pre-

cursors, namely oleic anhydride or oleate micelles (reviewed in [100]). In this way,

they establish an autopoietic self-reproduction mechanism that closely resembles

the general scheme shown in Fig. 16.1b.

In the first series of experiments, oleic anhydride has been used as a precursor of

fatty acid vesicles [111]. In particular, when oleic anhydride (a water insoluble com-

pound that forms a separate oily phase) is added to an aqueous solution at pH 8.5,

only a very small amount of anhydride is converted to oleate, namely the tiny solu-

ble fraction and possibly the molecules at the anhydride/water interface. In contrary,

when preformed oleate vesicles are present in the solution, the hydrolysis of the oily

anhydride proceeds much faster. In both cases a sigmoidally-shape kinetic profile

indicate that the underlying mechanism is autocatalytic. Following mechanistic in-

vestigations, essentially based on kinetic data and light scattering experiments, it has

been shown that oleate vesicles uptake oleic anhydride in their membrane, where it

is hydrolized to form two new oleate molecules, so that the vesicle surface growth.

Such growth brings about new vesicles by division of the parent one, most probably

because of the physical instability of the enlarged vesicles. The fact that the overal

vesicle number increases means that more and more oleic anhydride molecules are

then taken up by the newly formed vesicles, and the product of such dynamics is that

the number of vesicles further increases, in autocatalytic fashion. This mechanism

has an autopoietic signature, but its specific feature comes from the fact that vesicle

growth is followed by vesicle division (this is not implicit in autopoiesis), and it can

be seen as an outcome of vesicle physics. Taking advantage of such mechanism, it
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was shown that it is indeed possible to design and realize vesicle-based cell models

by enclosing a biochemical reaction such as the poly(A) synthesis from ADP cat-

alyzed by polynucleotide phosphorilase [112], or the RNA replication catalyzed by

the Qbeta replicase [78] into self-reproducing liposomes. More recent studies have

used ferritin-containing vesicles to address the question of mechanism and solute

redistribution in self-reproducing vesicles [6, 7].

One of the limits of the anhydride-based approach is that the reaction occurs in

a biphasic system, making a real-time monitoring of oleate vesicle transformation

difficult, and hindering mechanistic investigation. The second approach to autopoi-

etic vesicle self-reproduction is based instead on oleate micelles [9, 15, 20, 53, 66,

86, 88, 102, 119]. As described before, oleate form vesicles or micelles depending

on the pH, i.e., depending on the protonation state of the carboxylate group. This

means that it is possible to transform oleate micelles into oleate vesicles thanks to a

pH change. Such transformation is analogous to the oleic anhydride to oleate vesi-

cle one, but has the advantage of occuring in one phase (the aqueous phase), and

of being subject of spectroscopic observations. Spectroturbidimetry, dynamic light

scattering, fluorescence measurements, stopped-flow techniques, laser-scanning mi-

croscopy and electronmicroscopy have been used to investigate in great detail such

phenomenon, that is analogous to the growth and transformation of oleate vesi-

cles fed by oleic anhydride. Also in this case, oleate molecules are taken up by

pre-existing vesicles, whose surface increase brings about to a growth and a di-

vision into new vesicles. The progression of vesicle number is also in this case

autocatalytic and sigmoidal kinetic profiles are obtained. Although there is still not

full agreement on the molecular detail of such process (for critical reviews, see

[65, 100]), a remarkable effect has been described, namely the “conservation” of

vesicle size in different generation of vesicles obtained by self-reproduction. This

effect has been named “matrix effect” to emphasize how the size of pre-existing

vesicles (the matrix) affects the size of newly formed one [9,53,86]. Freeze-fracture

electronmicroscopy studies evidence the presence of possible self-reproduction in-

termediates, the “twin-vesicles” (Fig. 16.3) [102] that may account for a possible

pseudo-symmetric division mechanism.

Fig. 16.3 Freeze–fracture electron microscopy of oleate vesicles (taken after 40 s from the ad-
dition of oleate micelles) reveals that “twin vesicles” can be the actual intermediates of the
self-reproduction. Twin vesicles are not present at the end of the reaction (Reproduced from Stano
and Luisi [100]. With permission of the Royal Society of Chemistry)
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In recent years the number of investigation on fatty acid vesicles increased

considerably, and more information is now available on their membrane perme-

ability, stability in the presence of magnesium, growth and other transformations.

Reviews of this work (from Szostak’s laboratory) have been recently published

[10, 67, 93].

In conclusion, the self-reproduction of “naked” vesicles and a rich landscape of

vesicle behavior are well established facts, that can be seen as the one of the funda-

ments of more complex studies on vesicles as cellular model (the other fundament

is provided by the realization of simple enzymatic reactions inside vesicles, see next

section). Clearly, due to the key importance of self-reproduction in living systems,

the fact that it occurs in very simple vesicles readly prompted the next question,

namely: is it possible to build a vesicle-based cell model that self-reproduce thanks

to a minimal internal chemical “metabolism”? Such question is equivalent to say

(see Fig. 16.1b): is it possible to build a minimal autopoietic cell capable of self-

reproduction?

Vesicle-Based Minimal Synthetic Cells: From the Origins of Life

to Synthetic Biology

In the context of synthetic cells, the concept of autopoietic self-reproduction can

therefore be exploited to design and build vesicle-based systems that share with

living systems some of their essential properties. Before starting the discussion,

it must be recalled that also other surfactant-based self-assembling compartments,

such as micelles and reverse micelles, are capable of self-reproduction, and actually

their behavior was discovered before the case of vesicles [2, 3, 62]. Clearly, from

the viewpoint of biological analogy, both from the side of origins of life and syn-

thetic biology the use of such structures – more distant from the cellular structure

than lipid vesicles – is not very appealing. However this cannot be true if one is

interested in making a purely synthetic molecular system without the need of being

bound to cell-like architecture. This is the case of a research program called “Los

Alamos Bug” that aims to construct micelle-based minimal living particles by com-

bining micelles self-reproduction, PNA as genetic material, and a minimal catalytic

mechanism based on transition metal catalists [87].

Coming back to vesicle-based systems, constructing a minimal cells means to

design – according to the requirement of the study – a kind of minimal metabolism

that should be implemented within the compartment, in order to mimic as much

as possible the autopoietic mechanism of Fig. 16.1. One of the first attempts dates

back to 1992, when Luisi and coworkers [92] designed a lipid-producing enzymatic

system inside lipsomes (see below).

In general terms, to design such kind of systems (not only limited to the lipid

production, however, but aimed to build an autopoietic cell) we can find at least two

possibilities which may conceptually differ in the question they would like to answer

to, but essentially follow experimentally similar methodologies (Fig. 16.4a). The
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Fig. 16.4 Comparison between semi-synthetic and prebiotic approach to minimal cell (a). The
notion of semi-synthetic minimal cell based on the entrapment of DNA, RNA, and proteins inside

lipid vesicles (b)

two main routes are sometimes known as “bottom-up” and “top-down” approaches,

although such nomenclature needs some specification (and possibly be revised

accordingly). Modern living cells – the only autopoietic living structures we know –

derive from millions of years of evolution. Minimal cells, on the other hand, are

structures composed by the minimal and sufficient number of components. We have

to find a connection between these two aspects thanks to two different perspectives:

primitiveness and minimization.

The first route, sometimes known in literature as “bottom-up” [55, 63] is char-

acterized by the research of a plausible path that starts with simple molecules and

ends with living cells. It is therefore a typical origin of life scenario, where pre-

biotic plausibility has as dominant role. In particular one has to look for chemical

compounds that may give rise to an autopoietic mechanism and that are allegedly

formed in prebiotic conditions. Here the schools of metabolism-first or RNA-first

scenarios foresee, respectively, the emergence of minimal cells based on the en-

capsulation of primitive metabolism based on small molecule catalysis, primitive

enzymes, transition metal ions, etc. (for a general discussion on the origins of

early cells see [73, 94]); or the formation of RNA-based cells containing only ri-

bozymes capable of self-replicantion, peptide ligase or peptide transferase activities,
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and lipid synthesis [104]. Both views have pros and cons, but both lack extensive

experimental investigations. This is clearly due to the difficulty in defining pre-

biotically plausible compounds, intermediates, and conditions like pH, temperature,

redox regime, and so on. To date, this route to minimal cell has not been very suc-

cessful, but it is in principle the preferred way for constructing realistic chemical

models of primitive cells.

Investigation on minimal living cells based on well-known biochemical species

is the second route, sometimes known in literarture as “top-down” [63]. Clearly,

primitiveness in strict sense cannot be associated to this route, but it can be of

great interest when the resulting minimal cells are viewed as simplified cell mod-

els endowed by a minimal set of functions, with a minimal complexity. From the

experimental viewpoint, the “top-down” approach (also known as semi-synthetic

one) is already quite advanced, due to the availability of compounds to be used in

constructing such simplified cells (DNA, RNA, ribosomes, enzymes, etc.). It con-

sists in the insertion of the minimal number of present-day biomolecules inside

liposomes, aiming at obtaining a minimal living cells (Fig. 16.4b). The “minimal

genome” specify the minimal number of genes required for a minimal cell. One of

the latest version of the minimal genome – based on comparative genomics – is due

to the group of Moya [34], consisting in 206 genes, classified as follows: 16 genes

for DNA processing, 106 genes for RNA processing and protein synthesis, 15 genes

for protein processing, 5 genes for cell processing, 56 genes for basic metabolism,

8 poorly characterized genes. A functional genomic analysis has provided the num-

ber 151 for the number of genes for a minimal cell [28]. The hypothetical organism

characterized by the minimal genome is simple when compared with natural living

microorganisms, but still represents a challenge for laboratory construction.

A possibly alternative (and third) route to minimal cells could be instead

instead quite different from the first two, we may call this as fully synthetic

route and foresees the use of metal catalysts entrapped inside polymersomes

(liposomes made by block copolymers), or by other fully synthetic or hybrid

combinations.

Relevance in Basic Science, Biotechnology, Drug Delivery

Before starting the more technical discussion on the state of the art of minimal cell

research, it is important to emphasize their multi-facets relevance in diverse fields.

Clearly, the construction of a synthetic or semi-synthetic minimal cell is per se a

fundamental scientific enterprise, regardless possible applications in biotechnology

or medicine. In fact, the first scientific question that a minimal cell address is on

the capability of demonstrate that life is indeed an emergent property of a chemical

system composed by elements that are non-living. This view is probably accepted

by the majority of scientists, but has not been experimentally demonstrated yet.

Constructing minimal life in the lab does not mean “playing God”. It is firstly a way

to deepen our knowledge on what is life and what are the minimal phisico-chemical
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and organizational features that allow the emergence of it as a system property.

Being a property of the whole (higher hierarhical level), it stems from the properties

of the single chemical components at the lower hierarhical level, but there is no

need of a central control unit, as evident in the autopoietic mechanism (Fig. 16.1).

It is possible to get such knowledge by the synthetic approach, which nicely com-

plement the analytical (dissecting) one, typical of many biological investigation

of the twentieth century. In the context of origin of life, it is also clear that the

synthetic approach to the understanding of the origin of cellular life is the only one

that can be follow experimentally, due to the fact that we do not have primitive cells

to analyze. Therefore, keeping in mind two main constrains, namely the prebiotic

plausibility of chemical structures and a kind of continuity between primitive and

modern cells, the research on primitive cell models might actually fill some of the

gaps in the scientific scenario of origin of life hypothesis. The last aspect inherent to

basic science is related to the field of complex systems, which are often investigated

by computer simulation, and the need of experimental approaches would enrich

significantly such studies.

Biotechnological applications of synthetic cells (intended here as produced by

a SB approach) can be sketched only approximately, because the potential appli-

cations are so wide that it is difficult to foresee the scenarios. These goes from

fabrication of fine chemicals for pharmaceutical industry to hydrogen production,

from polymer synthesis to bioremediation, to biosensing. The recent report of Craig

Venter and colleagues on the assembly of a synthetic cell from a synthetic chromo-

some and a natural cytoplasm [33] of a recipient cell has created interests and fear

in the society. Actually, despite the tremendous impact of synthetic biology on the

media, the real challenge is now to produce something useful [49].

The third field of interest of synthetic cells (possibly not alive) is in pharma-

cology and medical diagnostics. In recent years, considerable progress has been

made toward using liposomes as drug delivery vehicles [50]. From the viewpoint

of synthetic cell, however, one can imagine more sophisticated systems, aimed,

for instance, to protein delivery or to the use of minimal cell as nanofactories for

local production of drugs. Due to their low bioavailability, many naturally occur-

ring proteins can not be used in their native form in diseases caused by insufficient

amounts or inactive variants of those proteins. The strategy of delivering proteins

to biological compartments using carriers represents the most promising approach

to improve protein bioavailability [4]. On the other hand, it is very fashinating the

idea of creating a minimal cell that can reach the site of desease, establish a two-

way communication with natural cells and act consequently, providing the optimal

response to the requirements (Fig. 16.5).

This visionary scenario implies that a synthetic minimal cell should be endowed

of internal genetic/metabolic circuitry that are able to send/receive chemical signal

and capable of being activated consequently [118]. These performance are not yet

achieved experimentally but it seems that the semi-synthetic approach can indeed

be developed in such direction.
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Fig. 16.5 Minimal semi-synthetic cell for nanomedical applications, as proposed by LeDuc and
coworkers. Redrawn after [118]

The State of the Art of Minimal Cell Studies

A road map for the construction of semi-synthetic cells consists in sequential steps

of increasing complexity, starting from very simple biochemical reactions inside li-

posomes, to more complex design, up to reach the desired (minimal) complexity

of a semi-synthetic living cell. We have classically distinguished the milestones

in this research as: (1) simple enzymatic reactions inside liposomes, (2) tran-

scription/translation reactions; (3) self-reproduction of the core and of the shell

components. We will shortly review some of the most relevant advancements.

Notice, however, that milestone 3 is not yet reached whereas milestones 1 and 2 can

be considered as almost standard achievements. Further discussion can be found in

Luisi [18, 57, 63, 100].

Enzyme Reactions Inside Liposomes

The realization of simple enzyme reactions inside liposomes can be seen as the first

milestone toward the construction of semi-synthetic cells. It is important to men-

tion, however, that the research on confined enzymes is not only relevant to the
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construction of semi-synthetic cells. One of the (still open) question is whether –

and at what extent – enzyme reactivity might change inside small compartments.

This can shed light on unexpected behavior of confinement and compartmentation

of metabolic-like reactions. Experiments with one enzyme inside liposomes can

be considered a standard achievement, although particular enzymes could have a

problematic manipulation procedure, due to sensitiveness to standard liposome for-

mation methods, to their specific properties (for instance, membrane enzymes),

or to biochemical incompatibility with lipids forming the liposome membrane.

Liposomology has a variety of techniques that allow the formation of liposomes

in quite different way, so that it can be said that is virtually possible to entrap

all kind of enzymes inside liposomes. The use of enzyme-containing liposomes

generally aims to study the properties of the enzymes in confined space, or as

indirect to study the membrane permeability of a certain solute, or to develop a

simple “bioreactor”. In many cases, the substrate is added externally and it pene-

trates into the liposomes by diffusion, by using a channel (e.g. porins [36,107,115],

hemolysin [76]), or by doping the liposome membrane with sublytic concentra-

tion of detergents [80, 105]. Once inside, the product of the reaction diffuses away

or stays entrapped inside. It is not possible to list here the very huge amount of

work done with entrapped enzymes inside liposomes (including: alkaline phos-

phatase, amylase, asparaginase, chymotrypsin, elastase, galactosidase, lysozyme,

pepsin, perossidase, glucose oxidase, glucose-6-phosphate-dehydrogenase, hexok-

inase, glucuronidase, phosphotriesterase, superoxide dismutase, tyrosinase, urease,

carbonic anhydrase, luciferase, lipase, etc.). A recent review has been published by

Walde and Ichikawa [110].

Multi-enzyme Reactions Inside Liposomes

In contrary to the simpler cases, less work has been done on performing multi-

enzymatic reactions inside liposomes. Clearly, this is a relevant issue to be investi-

gated because the cellular metabolism is indeed a multi-enzymatic reaction network

catalyzed by enzymes. Therefore, investigating the properties of simpler networks

is of great value for origin of life studies (recalling the concepts of minimal and

primitive metabolism, and of the spontaneous onset of metabolic and autocatalytic

cycles), as well as in synthetic biology (in order to develop bioreactors for diverse

biotechnological applications or in drug delivery).

Although not very well known, the work initiated by Thomas M.S. Chang about

40 years ago on encapsulation of cell homogeneate inside 50 mm cellulose or

nylon artificial microcompartments can be considered as the first attempt to con-

struct multi-enzymatic vesicle-based systems. Aiming to develop what he defined

“enzyme therapy” (i.e. the administration of enzymes in order to counterbalance

physiological deficiency in the blood), Chang designed several systems contain-

ing cyclic enzymatic routes. For example, it is described the preparation of a

four-enzymes system (urease, glutamate dehydrogenase, glucose dehydrogenase,

glutamate-pyruvate transaminase) that converts urea, pyruvate and glucose to ala-

nine and glucuronate (glutamate and ketoglutarate are intermediates) [14].
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Modern research has been also carried out, although in limited way, by

encapsulating enzymes in the vesicle’s water core or by chemical binding on

the membrane. Again, our report of 1991 on the co-entrapment of four enzymes

inside lecithin vesicles aimed at synthesizing lecitin from within must be recalled

here [92]. This work also started the modern attempts to develop semi-synthetic

minimal cells. As it will be mentioned later, the aim of this work was the in vitro

biosynthesis of phosphatidylcholine from glycerol-3-phosphate, acyl-CoAs and

CDP-choline by exploiting a four-enzymes path reconstituted inside liposomes.

Looking at recent literature, the preferred coupled system is composed by glu-

cose oxidase and horseradish peroxidase inside liposomes [39,44] or polymersomes

[25,108], possibly with the involvement of a third enzyme (a lipase). The other sys-

tem that has received attention is the couple bacterhodopsin/ATP synthase (both

membrane proteins) that have been reconstituted in liposomes at the aim of produc-

ing ATP after irradiation [19, 30, 84]. Interestingly, this system shows how physical

energy (photons) is transformed into chemical concentration energy (proton gradi-

ent), which is finally converted into chemical bond energy (ATP molecules).

It is clear that, in contrary to DNA or RNA based systems that will be introduced

in the next section, no much attention has been given to the realization of metabolic

cycles inside liposomes. The field of multi-enzymic reactions inside lipid vesicles,

being not well investigated, can indeed help in understanding the establishment of

confined biochemical networks and their physico-chemical properties. We argue that

next generation of enzyme-containing vesicles might well involve multi-enzymic

routes and cycles.

DNA Synthesis, RNA Replication, Protein Synthesis

We have now reached the main corpus of experiments on minimal cell construction,

namely the synthesis of biopolymers (DNA, RNA, proteins) inside lipid vesicles.

These advancements can be defined as the state of the art. In our previous review

[63] we listed about 15 papers that describe DNA synthesis (via PCR inside lipo-

somes), RNA synthesis, and protein synthesis by coupled transcription-translation.

To date, there are more than 30 of such reports, and the technical sophistication

increased correspondingly. This impressive acceleration (C100% in 4 years) is cer-

tainly due to the fact that more scientist find the construction of synthetic cells

very attractive and challenging. Moreover, the popularity of SB certainly affected

positively on the spreading of this research. It is not the aim of this chapter describ-

ing in details all published results; a compilation of records can be find elsewere

[18, 63, 101].

Here we would like to comment on the general strategy related to such stud-

ies and their relevance for the construction of minimal living cells by commenting

few selected examples. Emphasis will be given to the connection between such sys-

tems and autopoietic mechanims that should underlie the dynamics of a minimal

living cell.
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Two Selected Cases of Pioneering Research

Historically, the first reaction of this type (synthesis of biopolymers) carried out

inside lipid vesicles was reported independently by Luisi and coworkers [112] and

by Deamer and coworkers [13]. It consisted in the polymerization of ADP to give

poly(A) (a ribonucleic acid, although with the trivial sequence A-A-A-: : :) catalyzed

by the enzyme polynucleotide phosphorilase (PNP). The reaction was called “the

Oparin’s reaction revisited” [112] by referring to the analogous reaction carried out

decades before by Oparin inside coacervates, the early cell models based on coagu-

lation of macromolecules into microparticles [83]. The reaction has some relevance

because it is a way to synthesize RNA from activated nucleotides without a template.

Here, coacervates were substituted by lipid vesicles, in particular oleate vesicles

[112] or DMPC vesicles [13]. In the first case, it was possible to carry out poly(A)

synthesis inside liposomes and a simultaneous liposome self-reproduction, by feed-

ing vesicles with oleic anhydride (see section “Self-reproduction of Liposomes”). In

other words, during the occurrence of poly(A) synthesis, the vesicles grow thanks

to anhydride uptake and hydrolysis, divide and give new vesicles. Quite probably

(but it was not demonstrated) the new vesicles could still support poly(A) synthesis,

at least until PNP is present in each vesicle [112]. In this way, it was possible to run

simultaneously liposome internal reactions and the liposome shell growth.

The results of a similar approach were published 1 year later by Oberholzer et al.

[82], who carried out RNA synthesis inside oleate vesicles. RNA synthesis was

achieved by means of a RNA-dependent RNA polymerase (Qbeta replicase; [38,70],

at the expenses of nucleotides triphosphates and on a RNA template (co-entrapped).

Also in this case, the internal RNA synthesis was carried out simultaneously to

external oleic anhydride addition, so that the well-known mechanism of uptake-

hydrolysis and vesicle growth/division could take place. Again, in principle the

reaction could occur also in second- and third-generation vesicles if Qbeta repli-

case was still contained inside such vesicles.

It is important to remark the similarity of these two first examples (Fig. 16.6).

In both an internal chemical reaction produced a ribonucleic acid (RNA) thanks

to enzyme catalysis (PNP or Qbeta replicase). In both, the vesicle self-reproduction

was triggered by external oleic anhydride addition. Despite the success of observing

the desired behavior, such design was not totally satisfactory for two reasons: (1) it

would be advisable to synthesize lipids from an internalized reaction, as requested

by autopoietic scheme (Fig. 16.1b); (2) the internal reaction proceeds only if the

catalyst (PNP or Qbeta replicase) is maintained after generations, but this is clearly

impossible because their number is constant and they do not undergo reproduction.

In other words, some of the new vesicles will be not capable of supporting internal

RNA synthesis because of the “dilution” of the catalyst among newly generated

vesicles. We have called this problem as “death by dilution”.

How to face these two limitations? The first one can be approached by insert-

ing the lipid-synthesizing enzymes inside liposomes, and produce lipids at the

expenses of some available precursors. Early attempts have already focused on

the enzymatic production of lecithin in lecithin liposomes [92]. The metabolic
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Fig. 16.6 Synthesis of: (a) poly(A) [112]; (b) and RNA [82] in self-reproducing vesicles. See text
for details

pathway chosen for carry out this synthesis was the so-called salvage pathway,

which converts glycerol-3-phosphate to phosphatidic acid, to diacylglycerol and,

finally, to phosphatidylcholine. The four enzymes needed to accomplish these re-

actions were simultaneously inserted into liposomes by the detergent depletion

method, and the synthesis of new phosphatidylcholine (10% yield) was followed

by radioactive labelling, but it was not possible to clearly demonstrate the liposome

self-reproduction. More recently, we have studied again this system by expressing

the first two enzymes of the path inside liposomes (namely, glycerol-3-phosphate

acyltransferase G3PAT and lysophosphatidic acid acyltransferase LPPAT), starting

from the corresponding genes (Fig. 16.7) [47]. After careful optimization of the con-

ditions for liposome encapsulation, protein synthesis and protein/lipid interactions,

the two proteins were expressed in functional form. Despite the great success of syn-

thesizing for the first time an active membrane-enzyme inside liposomes (G3PAT),

the low lipid production yields hindered any morphological change observation.

It is therefore evident that one of the key step for assembling a minimal living

cell is the synthesis of the vesicle shell. Such synthesis should be carried out by

elements of the minimal cell itself, as indicated by autopoiesis. From the chemical

viewpoint, “membrane synthesis” means “lipid synthesis”, or – in more general

terms – synthesis of water-insoluble compounds typically characterized by long

aliphatic chains. The lipid salvage pathway uses, as source of long acyl chains,
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Fig. 16.7 Semi-synthetic minimal cell designed to produce dioleolyphosphatidic acid (DOPA)
starting from glycerol-3-phosphate (G3P) and oleoyl-coenzyme A (oleoyl-CoA). See text for
details (Reproduced from Kuruma et al. [47]. With permission of Elsevier)

oleoyl- or palmitoyl-coenzyme A, which can be added externally in forms of mi-

celles. But would it be possible to design a total synthesis of fatty acids? Looking at

the modern prokaryote fatty acid synthase (FAS) system (around 20 proteins), it is

evident that the complexity of multi-enzyme system goes beyond our current capa-

bility. Mammalian FAS (540 kDa), despite its very complex architecture, has been

recently tested for fatty acid synthesis inside liposomes [74], giving a low yield of

palmitate (0.1% with respect to the amount of already present lipids).

The second limitation of the PNP/Qbeta replicase systems, namely the need of

a reproduction of the whole set of catalysts entrapped inside the cell, can be solved

only by designing a set of core reactions that are overall autocatalytic, i.e., where

all components of the network are produced from within, as suggested by the au-

topoietic theory. From a conceptual viewpoint, this could be done by any molecular

system that perform such transformation chains. In practice, however, we simply

do not know any other chemical system different than cellular metabolism. The

simplest thing to do is therefore the use of a minimal genetic/metabolic network

that is still capable of self-producing all its molecular elements. We notice here

that the shift from a minimal version of modern cell reactions to simpler systems

(possibly of prebiotic relevance), namely those involving small molecule catalysis,

ribozyme catalysis or metal complex catalysis, would be very interesting, especially

if a logical thread can join such primitive systems and the cellular metabolism.
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Clearly, this corresponds to the above-mentioned bottom-up approach (see section

“Vesicle-Based Minimal Synthetic Cells: From the Origins of Life to Synthetic

Biology”). As already emphasized, we simply miss the “tools” for constructing a

minimal cell by using primitive catalysts (we do not even know what they are), ex-

cept the nature of the liposome membrane, which very probably consisted of fatty

acids mixed with other hydrophobic or amphiphilic molecules. Let us therefore see

how nucleic acids and proteins can be used to build a minimal cell. In section “What

Next”, we will see a possible way to reduce the molecular complexity associated

with the use of modern (evolved) molecules.

Working for the Production of Nucleic Acids and Proteins Inside Liposomes

The main ingredients for achieving the reproduction of nucleic acids and proteins

are the enzymes that duplicate DNA and transcribe it into RNA and the ribosomal

system for protein synthesis. In principle, if a minimal cell produces the minimal

set of enzymes and RNAs to carry out these transformation it can reproduce all its

internal components, as requested by the autopoietic dynamics. Clearly, this should

be accompained by the synthesis of the cell membrane.

To date, there has been several efforts to synthesize functional proteins inside

liposomes. The first report was due to Oberholzer et al. [81] who performed the

ribosomal synthesis of poly(Phe) inside liposomes by using a poly(U) chain as mes-

senger RNA. Shortly after, the group of Yomo [116] showed the synthesis of the

green fluorescent protein (GFP); next, several other groups have reported on this sys-

tem [41,76,77,79]. Remarkably, the work of Noireaux and Libchaber [76] involved

the simultaneous synthesis of GFP and alpha-hemolysin, another water soluble pep-

tide (33.2 kDa), which forms a membrane pore by self-assembly into eptamers, so

that the internal liposomal synthesis of GFP could be sustained for 4 days, fed by

externally added precursors (amino acids, ATP, : : :). In the report of Ishikawa et al.

[41], a second water-soluble protein was also synthesized, namely the T7RNA poly-

merase, that contributed to produce GFP by a well designed two-step genetic circuit

(the t7rna polymerase gene, under SP6 promoter is firstly transcribed by SP6RNA

polymerase, producing the T7RNA polymerase, which – in turn – transcribe the gfp

gene under T7 promoter, to give finaly GFP). It can be said that although only a

handful of functional water-soluble proteins have been actually synthesized inside

liposomes (GFP, T7RNA polymerase, alpha-hemolysin, beta-glucuronidase [40],

beta-galactosidase [45, 103] and Qbeta-replicase [45]) there is a common agree-

ment on the possibility of producing water-soluble proteins inside liposomes. This

is remarkable because the synthesis of protein is the way for achieving the minimal

number of functions for minimal cells.

More complex is the case of membrane proteins. The only available study, car-

ried out in our laboratory [47] shows the difficulties involved, especially due to the

requirement of correct insertion of the protein in the membrane and the need of

well defined lipid microenvironment around the protein in order to be active. Very

recently, it has been described the cell-free production (on the external surface of

liposomes) of the F0 subcomplex of F0/F1-ATP synthase [48].
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Fig. 16.8 Reactions occurring in the PURE system (Reproduced from Shimizu et al. [96]. With
permission of Elsevier)

Protein synthesis inside liposomes is achieved by coentrapping all components

of the transcription/translation machinery, from RNA polymerase to ribosomes,

to tRNAs, to aminoacyl-tRNA-synthases, and an energy recycling system. This

mixture can be derived by cell extracts (e.g., from E. coli, from yeast, from rab-

bit reticulocyte, from insect muscle) or created artificially by mixing purified

components of known composition. The latter transcription/translation kit is now

commercially available with the tradename of PURE system R [95, 96]. We have

emphasized the great importance of using the PURE system for minimal cell con-

truction [75] because it fulfills the requirement of using the minimal number of

components, in contrary to the not well-defined (black-box) composition of cell ex-

tracts. Research dated after 2006 is typically done (when possible) by incorporating

the PURE system inside liposomes (Fig. 16.8).

PURE system is composed by 36 purified enzymes, ribosomes, a set of t-RNAs

and other low molecular weight compounds. We have estimated that the PURE sys-

tem contains ca. 80 different macromolecules [98], which become ca. 130 when

the ribosomal proteins are explicitally taken into account. It follows that in first

approximation the reproduction of the transcription/translation minimal machinery

should involve the production of ca. 130 different macromolecules (proteins and

tRNAs/rRNAs).

From the viewpoint of DNA and RNAs synthesis inside liposomes, less work

has been done, possibly because these productions are seen as more feasible and

less critical than protein synthesis. However, the control of DNA replication as

well as the synthesis of functional ribosomes and tRNA might not be trivial. The

first experiment was again coming by the Luisi’s group in Zurich [78], consisting

in the accomplishment of PCR inside conventional liposomes. DNA strands were
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produced from a template, dNTPs and DNA polymerase by the classical thermal

method, without damaging the phospholipid vesicle structure. A more recent work

from the group of Szostak [68] shows that also fatty acid vesicles can be used at

high temperature, demonstrating the enzyme-free oligomerization of activated nu-

cleotides (phosphorimidazolides) that diffuse passively into the vesicles and react

on an oligo-dC template in the presence of a primer. Shohda and Sugawara [97]

demonstrated that DNA polymerase Klenow fragments from E. coli, DNA template

and dNTPSs react inside giant vesicles to give new DNA strands.

From the viewpoint of RNA synthesis inside vesicles, we can distinguish among

messenger RNA and transfer/ribosomal RNAs. The several report on protein pro-

duction clearly demonstrated that DNA transcription occurs readly. The direct

demonstration was given several years ago by several groups [27,71,106] (who also

studied the passive diffusion of externally added NTPs into vesicles [71]). These

reports are based on DNA transcription without any kind of regulation mechanism.

A very recent report by the team of the New England Biolabs [1] describes the in

vitro genetic reconstruction of bacterial transcription initiation by coupled synthesis

and detection of RNA polymerase holoenzyme. This could be useful to control the

transcription of genes in vitro, by a totally self-produced molecular machinery.

RNA, however, has a key relevance in origins of life scenario, in the well-known

hypothesis of RNA world [35, 113]. According to this hypothesis, RNA was the

first functional biopolymer, capable of carrying genetic information and performing

catalysis (by a “ribozyme”). In particular, it should be able to replicate itself. Re-

search on self-replicating RNA has been a classical subject in the field, where the

recent report of Joyce and coworkers [52] on the self-sustained replication of 80-

nucleotides long ribozymes remarkably show the latest efforts to find a “replicant”

RNA molecule. In the past years, a hypothetical scenario with ribozymes entrapped

inside liposomes has been put forward [104]. This RNA-based minimal cell should

contain at least two ribozymes: a replicase and a lipid synthase. The replicase repli-

cates itself and the lipid synthase; whereas the lipid synthase produces lipids. These

reactions occur at the expenses of a rich medium containing all the required building

blocks. In such way, all the components of the cell are produced from within, i.e.,

the system should display an autopoietic organization.

The experimental efforts to construct a RNA-based minimal cells focus on RNA

replication inside vesicles. This is implemented by using Qbeta replicase, an RNA-

dependent RNA polymerase. This enzyme has been classically used in in vitro

RNA evolution experiments [38, 70]. The goal is to produce alternatively sense and

anti-sense RNA strands from a template and NTPs. As mentioned in section “Two

Selected Cases of Pioneering Research”, the Qbeta replicase system was firstly

used by Oberholzer et al. [82] to obtain the RNA production inside self-reproducing

oleate vesicles. A most recent report, due to the Yomo’s group [45] is based on a

RNA strand that codes for Qbeta replicase. Coentrapped with the ribosomal ma-

chinery inside liposomes, the RNA strand acts a template for the in situ synthesis of

Qbeta replicase, that in turn synthesize the antisense RNA strand. The overall reac-

tion is an autocatalytic cycle producing RNA and Qbeta replicase. In principle, such

system could be coupled with vesicle self-reproduction to obtain a more complex
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core-and-shell self-reproducing system, but also in this case one of the catalysts (the

ribosome needed for the Qbeta replicase synthesis) is not produced, so that a fully

autopoietic scheme cannot be developed.

The need of a in vitro synthesis of ribosome is therefore one of the key step

for the minimal cell project. Prokaryote ribosomes self-assemble from isolated 58

components (55 proteins and 3 RNAs), but until now no one succeeded to produce

functional ribosomes starting from the corresponding 58 genetic sequences. In this

respect, a first attempt to fill the gap has been provided by Jewett and Church (work

presented as poster at the Fourth Synthetic Biology conference, Hong Kong 2008),

who looked for in vitro (cell-extract based) conditions for E. coli ribosome assembly

starting from rRNA synthesis.

Toward Self-reproduction of Core and Shell Components

We can now discuss the central theme of the minimal cell construction, namely

the achievement of a simultaneous (coupled) reproduction of core-and-shell cell

components. The distinction between “core” components and “shell” components

is only a useful way to dividing the problem into two parts, but, as requested by the

autopoietic organization, we should look at autpoietic systems as a unity rather than

separate parts.

Here an important remark must be done. In agreement with autopoiesis, the es-

sential feature for a living system is the self-production of all its components, which

are continuously synthesized and degraded, so that an homeostatic state is reached.

We may call this dynamics as a self- maintenance one. When we speak of self-re-

production, however, we generally means an increase of the number of molecular

species in autopoietic systems so that after growth, they can divide to give rise

to new units. This is clearly possible if anabolic (constructive) routes overcome

catabolic (destructive) ones, and if the division follows the growth phase. Self-re-

production is important for biology because it lets a population of living systems

numerically grow, but – strictly speaking – such transformation is not necessary in

autopoietic systems.

According to the semi-synthetic approach, a minimal cell is constructed from

genes, RNAs, proteins and lipids. In order to self-reproduce the whole cell, it is

needed a molecular mechanism for DNA duplication, RNA synthesis, protein syn-

thesis, and lipid synthesis (Fig. 16.9).

We have seen in the previous sections the relevant advancements done in these

directions. In particular, it is given as granted the synthesis of messenger RNA and

the synthesis of water soluble proteins, whereas there are still obstacles in the syn-

thesis of ribosomal RNA, transfer RNA and membrane proteins. The replication of

long DNA strands with a minimal set of enzymes and protein factors has not been

achieved yet, despite the success of copying short DNA sequences.

Vesicle growth by external addition of lipid precursors (oleic anhydride or oleate

vesicles) is a feasible route, and it has been used to self-reproduce vesicles which

were simultaneously synthesizing poly(A) or RNA inside [82, 112], respectively),
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Fig. 16.9 A schematic view of a semi-synthetic minimal cell that is be able to synthesize DNA,
RNA, proteins and lipids

but there are no recent reports on the self-reproduction of vesicles expressing a

protein inside, for example. An attempt to divide a GFP-synthesizing water-in-oil

compartment has been given by Fiordemondo and Stano [26]. Phospholipid syn-

thesis by entrapped enzymes or in situ synthesized enzymes has been reported by

Schmidli et al. [92] and Kuruma et al. [47], respectively, but in both cases the lipid

production was not sufficient to observe the growth-division process.

In other words, there are still several open questions and technical gaps to be

solved before the experimental goal of a self-reproducing minimal cell can be

reached. Moreover, several aspects are involved for such desired behavior: (1) the

redistribution of water- and membrane-solutes from parent vesicle to daughter ones,

in order to be sure than the second generation is still capable of sustain the whole

mechanims; (2) the synchronicity of the events, in order to avoid that, e.g., a faster

shell reproduction results in production of new cells missing not-yet-replicated in-

ternal components; (3) the need of a good (balanced) surface-to-volume growth

ratio, in order to avoid osmotic crisis or hamper the division mechanism.

What Next?

In addition to the well established goal of achieving a self-reproducing minimal cell,

there are other two relevant directions that can be followed in next years.
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The first one is oriented to a further reduction of semi-synthetic minimal cells

toward “primitiveness”. Luisi et al. [63, 64] have already discussed the hypotheti-

cal strategy for further reducing the apparent minimal complexity of semi-synthetic

cells. We may recall here that according to the concept of minimal genome (see for

example, [34]), about 200 genes are needed for a minimal cell construction. We have

also recalled that the number of different macromolecules (RNAs and proteins, in-

cluding the 55 ribosomal proteins) contained in the PURE system is about 130 (the

“missing” 70 genes – to get the minimal genome of 200 genes – codify for metabolic

enzymes). One possible way to redesign a minimal cell is not limited to number re-

duction, but also to qualitative changes. For example, we can imagine enzymes that

have lower specificity and can process (at lower efficiency) diverse substrates, e.g.

a single polymerase that synthesize DNA and RNA. Another possibility is a reduc-

tion of the ribosomal proteins, from 55 to a lower number, or possibly eliminating

all proteins in favour of simpler peptides (preliminary results in our laboratory show

that simple polycationic peptides like polyarginine condense rRNA in ribosomal-

like particles); since it is known that the peptidyl-trasferase activity of ribosomes

is due to rRNA, it can be reasonable to observe a minimal peptidyl-transferase ac-

tivity in extremely reduced ribosome [22, 60]. It has been estimated that the very

small number of about 50 genes would support – in well established conditions and

at very low efficiency – cellular life [64]. Clearly, such extremely reduced minimal

cell would strongly interest the origin of life community.

The second direction for future developments, instead, is oriented to shift the

classical approach focused on the synthetic cell as isolated object to the concept of

synthetic cell population and of the interaction among cells. Here there are several

intriguing possibilities, such as: (1) exploiting the fusion between minimal, per-

haps “limping cells” [63] as a way to exchange/redistribute functional molecules

so that the resultant population has higher chance to develop a fully functional cell

[12]; (2) design and perform dedicated investigation of phenomena occurring at the

population-level, like competition [16, 17] and selection [72] among minimal cells;

(3) studying explicity the diversity of minimal cells within a population – derived

from stochastic events – and exploit it to design selection/competition experiments

[11,91,114]; (4) move from single-cell scenario a multi-cells one (cell clusters) (this

is currently under investigation in our laboratory, [11]); (5) focus on communication

between synthetic cells or between synthetic and natural cells [21, 31].

Biophysical Aspects of Minimal Cell Construction

One of the open questions in biology, with clear relevance also in origin of life, is

about the minimal physical size of cells. Several speculations have been published

on the subject [46], based on calculations and on the controversial existence of

nanobacteria [43]. We have approached the problem from the experimental view-

point by creating a minimal system for protein production in 200 nm (diameter)

lipid vesicles. The argument of using protein synthesis as a paradigm of cellular
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metabolism holds because – as we have seen before – more than one half of the

minimal genome actually serves to decodify the DNA sequences into proteins. To

date, expressing a protein inside liposomes does not correspond to entrap ca. 130

genes corresponding to the compounds necessary for transcription/translation, but

only one gene of interest, the remaining macromolecular compounds are given in

form of RNAs and proteins (these are ca. 80 different macromolecules, not 130,

because 55 ribosomal proteins and 3 rRNAs count as a single object).

We have then prepared small liposomes in the presence of ca. 80 different macro-

molecular compounds, each present at a concentration around 0:1–1�M, including

the gfp gene. External GFP synthesis was avoided by the addition, after liposome

formation, of RNase, and then internal fluorescence was monitored in real-time,

showing that GFP was actually synthesized inside 200 nm (diam.) vesicles. The

yield, when normalized for the very small entrapped volume was surprisingly six

times higher than the corresponding reaction in bulk water. The most interesting

conclusion, however, was that accurate statistical analysis suggest that the prob-

ability of co-entrapping about 80 different macromolecules (each in single copy)

inside 200 nm (diam.) vesicles is vanishing small, namely 10 to the �27th power.

Moreover, this value further decreases if multiple copies of each compounds are

considered. We concluded that in order to justify the experimental observation, a

strong deviation from Poisson statistics is expected, which will therefore bring about

a kind of super-concentration of solutes inside liposomes should occurs in the mo-

ment of liposome formation [98].

Recently we have investigated in greater details the physical mechanism of lipo-

some formation at the aim of verify the above mentioned hypothesis. It is interesting

to remark that the construction of minimal cell models, as in this case, may indeed

reveal interesting biophysical phenomena. We believe that this facet of the synthetic

or constructive approach (i.e., gaining knowledge on biological systems by con-

structing them) is an additional value that cannot be found in classical analytical

approaches.

In particular, we have entrapped ferritin inside spontaneously formed liposomes.

Ferritin is a water soluble protein containing a core of about 4,500 iron atoms –

and therefore visible by electronmicroscopy. After liposome formation, a large

number of liposomes (ca. 8,000) have been visualized by cryo-transmission elec-

tromicroscopy and analyzed in terms of size, lamellarity and ferritin content. The

expected behavior was a ferritin occupancy distribution that follows the Poisson

distribution around the average value given by the expected ferritin concentration.

In contrary, we have found that the large majority of vesicles were empty and only

few of them were filled with a very high amount of ferritin (Fig. 16.10). Detailed

numerical analysis suggests that the ferritin occupancy distribution follows a power

law rather than the Poisson pattern [61]. In addition to ferririn, recent experiments

have shown that the entrapment of ribosomes follow a similar behavior (Souza et al.,

submitted).

These results gives a new vista on the mechanism of liposome formation and

more in general on the biophysics of the origin of the metabolism. One question

in the origin of life is indeed the timing at which membrane compartments came
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Fig. 16.10 Cryo-transmission electronmicrographs showing empty and ferritin-filled vesicles

into the picture as host for the first forms of metabolism. If we assume proteins and

nucleic acid first, then it is difficult to conceive how all macromolecular compo-

nents would have been entrapped at a later time into a single compartment. On the

other hand, the hypothesis that metabolism originated from inside the compartment,

meets the difficulty that we would then have to conceive semi-permeable, sophis-

ticated membranes in prebiotic times, which does not appear plausible. With the

present study we believe to be able to offer a partial solution to this riddle, opening

at the same time a new vista on the principles of entrapment of solute in vesicles. In

other words, thanks to their spontaneous formation, functional compartments (rich

of functional solutes) might have been selected for further steps along the pathway

from inanimate to living matter.

Concluding Remarks

The great interest shown by the synthetic biology community for minimal cell re-

search [23] witnesses that the central idea of constructing synthetic cells is one of

the main question in biology, helps the understanding of what is life, and promises

interesting applications in modern biotechnology and medicine.
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Abbreviations

Acyl-CoAs Acyl-coenzymes A (oleoyl-CoA, palmitoyl-CoA)

ADP Adenosindiphosphate

CDP-choline Cytidinediphosphocholine

dNTPs Deoxynucleotide triphosphates

DMPC Dimyristoylphosphatidylcholine

NTPs Nucleotide triphosphates

Poly(A) Poly(adenylic acid)

PNP Polynucleotide phosphorilase
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Chapter 17

Fluorescent-Based Quantitative Measurements
of Signal Transduction in Single Cells

Serge Pelet and Matthias Peter

Abstract Budding yeast (Saccharomyces cerevisiae) has been widely used as a

model system to study fundamental biological processes. Genetic and biochemi-

cal approaches have allowed in the last decades to uncover the key components

involved in many signaling pathways. Generally, most techniques measure the aver-

age behavior of a population of cells, and thus miss important cell-to-cell variations.

With the recent progress in fluorescent proteins, new avenues have been opened to

quantitatively study the dynamics of signaling in single living cells. In this chapter,

we describe several techniques based on fluorescence measurements to quantify the

activation of biological pathways. Flow cytometry allows for rapid quantification

of the total fluorescence of a large number of single cells. In contrast, microscopy

offers a lower throughput but allows to follow with a high temporal resolution the

localization of proteins at sub-cellular resolution. Finally, advanced functional imag-

ing techniques such as FRET and FCS offer the possibility to directly visualize the

formation of protein complexes or to quantify the activity of proteins in vivo. To-

gether these techniques present powerful new approaches to study cellular signaling

and will greatly increase our understanding of the regulation of signaling networks

in budding yeast and beyond.

Keywords Cellular signaling � Fluorescent proteins � Microscopy � Flow

cytometry � FRET � FCS

Introduction

Cells have engineered elaborate capacities to sense their environment in order to

detect nutrient sources, hormones or stress. These extra-cellular cues are often

sensed by membrane-associated receptors, which transduce this information inside

the cell via signaling cascades. These highly interconnected biochemical pathways
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can integrate multiple inputs to deliver the appropriate response such as prolif-

eration, differentiation, adaptation or apoptosis. These various cellular fates are

generally controlled by the activation of key signaling molecules and/or the acti-

vation of a specific transcriptional expression program.

To better understand these signaling networks and to build predictive mathemat-

ical models, it is essential to gather quantitative measurements at different steps

along the information transduction cascade. For many decades, biologists have op-

timized standard biological methods such as western blotting and mass spectrometry

to deliver more accurate and quantitative estimations of protein levels and modifi-

cations. However, their requirements for large quantities of material generally limit

these techniques to the measurements of the average response of a population to a

stimulus.

Single Cell Analysis

Since the seminal work from Ferrel and Machleder performed on single matur-

ing oocytes [1], it has been realized that population averaged measurements can

prevent the discovery of more complex regulatory mechanisms. As schematically

represented in Fig. 17.1, the output of a pathway can increase gradually with stimu-

lus or display an all-or-none output pattern. However, due to stochastic differences

Fig. 17.1 Schematic difference between a graded and binary response to an increasing stimu-
lus. The graphs show how different single cell behaviours .ı/ can lead to an identical population
measurement .�/
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between individual cells, the population averaged measurements can be identical in

both situations. Only measurements performed at the single cell level can reveal this

fundamental difference in signal transduction.

In the case of the maturing oocyte [1], the averaged population response displays

an apparent Hill coefficient of one, which is typical for a graded response. Fitting

of the single cell measurements results in a Hill coefficient of 42, which describe a

highly switch-like activation. The discovery of this ultra-sensitive response allowed

the authors to postulate the presence of a positive feedforward loop, acting at the

transcriptional level. Inhibition of the protein production by addition of cyclohex-

imide renders the output of the signaling cascade more graded.

This example of the ability of single cell measurements to uncover hidden regula-

tory mechanisms is being applied to a wide variety of signal transduction pathways

[2, 3]. Signaling cascades often include such feedback or feedforward loops to

exquisitely control the output of the pathway or generate ultra-sensitivity of the

cellular response. Moreover the dynamics of signal transduction can be best stud-

ied at the single cell level since many informative behaviors, such as oscillations or

activity bursts, could be averaged out in population measurements [4, 5].

Cellular Noise

As mentioned in the previous section, the different outcomes measured at the output

of a signaling cascade can arise from small stochastic differences between individual

cells [6]. Therefore single cell experiments have been designed to study the source of

cellular noise. Using a set of yellow and cyan fluorescent reporters, which are under

the control of the same promoter, Elowitz and co-workers [7] defined the concept of

intrinsic and extrinsic noise.

As sketched in Fig. 17.2, if all cells were well-stirred chemical reactors with an

identical number of internal components, one would expect them to produce the

same amount of cyan and yellow fluorescent proteins. However, it is well known

that each cell is different from the others with a unique composition of proteins (for

instance: number of polymerases and ribosomes), even within a clonal population

[7,8]. Under these conditions, one would expect each individual cell to have various

abilities to express proteins. However, in a given cell, the cyan and yellow fluores-

cent proteins should be expressed at the same level. This cell-to-cell variation is

defined as the extrinsic noise. There is an additional component of noise that will

uncouple the cyan and yellow expression levels. Due to a limited number of compo-

nents, the expression of each individual gene can become more stochastic. If there

are for instance only a small number of transcription factors that can promote the

expression of the cyan and yellow reporters, the final amount of protein produced

will depend on the stochastic binding event of the transcription factor to either pro-

moter and will therefore not be identical for both genes. The noise, which results in

the variation of the cyan and yellow proteins levels in the same cell, is defined as

the intrinsic noise.

The ability to isolate the origin of the cellular noise can help understand the

processes that control the signaling dynamics of a given systems. As an example,
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Fig. 17.2 Representation of intrisic and extrinsic noise in a biological system. In absence of noise,
the expression of yellow (YFP) and cyan (CFP) reporter proteins under the control of the same
promoter would be identical in all cells .�/. In the sole presence of extrinsic noise, the expression
of YFP and CFP would be highly correlated .�/. In the presence of stochastic variations in each
cell, YFP and CFP can be expressed at different levels in the same cell .N/

Colman-Lerner et al. [9] found a high level of correlation between the expression

of a reporter specific for a signaling cascade and the expression of a constitutively

expressed gene. This implies that most of the noise in expression comes from the

ability of the individual cells to produce proteins (defined as expression capacity).

Importantly, this demonstrates that the transduction of the signal occurs in this path-

way with a high fidelity although the number of signaling molecules varies from

cell to cell.

Single Cell Measurements

In the study from Ferrell and Machleder [1], the large size of the oocyte allowed

them to perform biochemical experiments directly on individual cells. This is un-

fortunately not the case for the majority of the commonly used biological model

systems where proteins are found at too low abundance for biochemical investiga-

tions. Although recent advances in mass spectroscopy have allowed to reach single

cell detection levels for some proteins or metabolites [10, 11], this technique is not

yet generally used to analyze signal transduction pathways but might add, in the

future, a different approach to analyze the content of single cells. For this chapter,

we will focus our discussion on the experimental methods that currently offer single

cell resolution which are optical methods such as microscopy and flow cytometry.
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Table 17.1 Differences between flow cytometry and microscopy

Microscopy Flow cytometry

Number of cells per measurement 102 105

Data analysis Complex Simple

Time-lapse Yes No

Measurement Sub-cellular resolution Total cellular intensity

Different imaging modalities can be used to visualize cells in a microscope.

Absorption or interference methods generate a contrast in the image. However,

their sensitivity is limited by the fact that one measures a relative change in the

intensity of the transmitted light. On the opposite, fluorescence microscopy offers a

much higher sensitivity, since one measures the apparition of a signal over a dark

background. Detectors such as photo-multiplier tubes or electron-multiplying-CCD

have single photon sensitivities. Within the linearity range of the detector, the flu-

orescence signal will scale linearly with the amount of fluorophore present in the

sample. The possibility to image single proteins in living cells has been demon-

strated recently [12, 13]. Therefore fluorescent microscopy has evolved as the most

commonly used imaging modality with high specificity and unmatched sensitivity.

Flow cytometry has been specifically developed to analyze single cells in so-

lution. While the first instruments were based on impedance or absorption mea-

surements, fluorescence rapidly emerged as the preferred detection method, thus

enabling the development of fluorescent probes used for both microscopy and flow

cytometry.

Although both techniques allow the quantification of fluorescent signal emerging

from cells, the resulting measurements have different characteristics (Table 17.1).

The typical number of cells measured by microscopy is on the order of 100 per

image, while flow cytometry can easily measure 10,000 cells, thereby generating

statistically more significant measurements. Microscopy with time-lapse imaging

and subcellular resolutions can offer more insight in the sample at the expense of a

more complex data analysis. Therefore these two techniques provide different and

complementary measurements.

Fluorescent Proteins

For many decades chemical dyes were the only contrast method used for fluorescent

detection. A large variety of compounds have been synthesized specifically to tag

organelles or report on ionic changes in cells. Fluorescently-tagged antibodies have

also been extensively used to target fluorescent probes to specific proteins. Unfortu-

nately, these dyes are often toxic for the cell and use of antibody staining requires

fixation of the specimen, thereby excluding live cell imaging. The discovery of the

green fluorescent protein (GFP) [14, 15] has opened a new area in the field of flu-

orescent microscopy. It became possible to genetically encode a fluorescent tag for
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Table 17.2 Commonly used fluorescent proteins

Protein œExcitation œEmission Other variants

ECFP 433 475 Cerulean, CyPet, mTFP

EGFP 488 507 Emerald, Azami green

EYFP 514 527 Venus, mCitrine, YPet

mCherry 587 610 mRFP, dsRed, tdTomato

any protein by extending its sequence with the one from GFP. It therefore became

feasible to visualize, in living cells, the location and dynamic behavior of any pro-

tein [16]. As shown in Table 17.2, a large variety of fluorescent proteins have been

engineered [17]. From the original GFP, a number of spectral variants have been

created by mutations of only a few residues, such as the cyan and yellow fluorescent

proteins. Generation of bright and monomeric red proteins has been more challeng-

ing, but many variants are now also available. Codon optimized variants for different

organisms have been generated to allow for better expression of the proteins.

There are however a few drawbacks associated with the use of fluorescent

proteins. Firstly, as with any other protein tags, the addition of the fluorescent pro-

tein (�240 amino acids) to the native sequence of a protein can sometimes impair

its function and thereby lead to a mis-localization of the protein. Secondly, the flu-

orescence of the protein can be affected by its environment in the cell. Although

the chromophore is shielded by the “-barrel structure of the protein, cations often

lead to changes in the brightness of the proteins. This can also be taken advantage

of as, for instance, a pH-sensitive fluorescent protein has been generated [18]. The

photo-stability of the fluorophore can also be an issue, which can lead to degradation

of the signal after extended illuminations. Researchers have also put that draw-

back to use by studying the recovery of a fluorescence signal after photo-bleaching

(FRAP) [19, 20]. This method has allowed to uncover very fast protein dynamics

and the possible applications of this technique have been extended by the engineer-

ing of photo-activable (PA-GFP) [21] or photo-switchable (Kaede) [22] fluorescent

proteins.

Finally, the slow maturation time of GFP can result in some experimental arti-

facts. The fluorescent protein is expressed and folded rapidly, but the apparition of

the fluorescence is delayed by roughly 30–45 min due to a slow oxidation reaction

which needs to take place at the core of the protein to form the chromophore [14].

Despite these few technical issues, fluorescent proteins have revolutionized the bio-

imaging field in the last two decades. Engineering of newer, brighter and more stable

version will allow to image less abundant proteins for extended periods of time.

Budding Yeast As a Model Organism

Saccharomyces cerevisiae is a small single cell, eukaryotic organism. It is character-

ized by an asymmetric cell division, which coined its common name: budding yeast.

The daughter cell grows as a bud from the mother cell and separates after nuclear
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division and cytokinesis. Its genome has been sequenced more than 10 years ago

[23] and to date approximately 75% of the open reading frames have been assigned

a function. The biochemical tools developed in yeast to manipulate its genome offer

a great advantage over other model systems. It is possible to modify genes at their

endogenous genomic locus and therefore express proteins tagged with GFP at their

physiological level. Since over-expression of proteins often perturbs the dynamics

of signal transduction, retaining the native conditions of a signaling cascade avoids

artifacts.

As a unicellular fungus, budding yeast shares many properties common to both

plants and animals. Due to the evolutionary conservation of cellular pathways, it

has been widely used as model system to study cell cycle regulation, metabolism

and signal transduction. Mechanisms used in yeast to transduce information from

the exterior to the interior of the cells are also present in higher eukaryotes. As

an example, the mitogen activated protein kinase (MAPK) pathway, which consists

of a module of three kinases that activate each other is conserved from yeasts to

mammals [24]. Misregulation of MAPK signal transduction in mammalians cells

has been implicated in multiple diseases such as cancer and inflammation. These

pathways are therefore considered as potential drug targets. Although they serve

different functions, the general architecture of MAPK pathways is conserved. There-

fore considerable work has been invested into understanding the regulation of these

pathways in the simplified setting offered by yeast.

Possibly the best understood signal transduction cascade is the MAPK mating

pathway in budding yeast [25,26]. Decades of thorough genetic and biochemical ex-

periments have allowed to identify the components and architecture of this signaling

pathway. The challenge is now to understand how these proteins work together to

generate a faithful and robust output in response to the stimulus. Quantitative single

cell measurements have been widely employed to achieve this task. Below, we will

illustrate each technique presented by an example of their application to the yeast

mating pathway.

Haploid yeast (mat-a or mat-’) sense mating pheromones (’- or a-factor) se-

creted by a cell of opposite mating type. As depicted in Fig. 17.3, the pheromone

binds to a G-protein coupled receptor (Ste2p) which triggers dissociation of the

trimeric G-protein. The free G“”-subunit (Ste4p/Ste18p) recruits the scaffold pro-

tein Ste5p to the plasma membrane. This scaffold protein has binding sites for all

three kinases of the MAPK cascades: Fus3p, the MAP kinase; Ste7p, the MAP ki-

nase kinase; Ste11p, the MAP kinase kinase kinase. This latter protein is the most

up-stream components of the cascade and resides pre-activated at the plasma mem-

brane. Recruitment of Ste5p to the membrane brings Ste7p in close proximity of

Ste11p, and results in the activation of the pathway by phosphorylation of Ste7p

which, in turn, phosphorylates Fus3p [27]. Activated Fus3p orchestrates the mating

response by phosphorylating multiple targets, among them Dig1p, which represses

transcription of pheromone response genes by inhibiting the transcription factor

Ste12p. All these events will result in the arrest of the cell cycle in G1 and the

extension of a polarized mating projection towards the source of pheromone.
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Fig. 17.3 Schematic drawing of the pheromone signalling pathway. Relocation of the scaffold
protein Ste5p to the plasma membrane results in the activation of the MAPK Fus3p, which can in
turn promote expression of pheromone responsive genes (PRG)

Flow Cytometry

Fluorescence-based flow cytometry has been developed in the late 1960s. While

it has mostly been used with immuno-fluorescent staining and DNA marker dyes,

with the advent of fluorescent proteins, it has become a tool of choice for signal

transduction studies in yeast. Its ability to provide quantitative measurement for a

large number of cells within a relatively short amount of time allows to access single

cell measurements with a high statistical significance [28].

Instrumentation

To observe individual cells in suspension, the solution is aspirated at a low flow rate

in the flow cytometer. A fast flow of so-called sheath fluid surrounds the medium to

generate a thin core of sample (Fig. 17.4). This hydrodynamic focusing technique

allows to precisely position the flow of medium in the laser beam and present the

cells one by one in front of an excitation source. Every time a cell crosses the laser

path it will lead to scattering of the excitation light. The forward scattered light is

detected by blocking the main laser beam and detecting the amount of light that

passes around the obscuration bar. The amount of forward scattered light detected

scales with the volume of the cell. The light scattered at a 90ı (Side-Scattering) is
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Fig. 17.4 Schematic drawing of the flow cytometer detection system. Hydrodynamic focusing
with the sheath fluid forces cells to pass one by one in front of the excitation laser. The resulting
fluorescence and side-scatters are separated by appropriate optics and detected by photo-multiplier
tubes (PMT). The forward scatter is detected by blocking the excitation beam

also collected and provides an estimate of the granularity of the cell. Using the same

excitation source, multiple fluorescence signals can be detected using appropriate

filters to select the portion of spectrum of interest. The light is detected by photo-

multiplier tubes, which have a high sensitivity and large dynamic range. For every

scattering event, the fluorescence intensity is measured in all channels, therefore

allowing to obtain for each individual cell a measurement of forward and side scatter

along with multiple fluorescence measurements at various wavelengths. The rate of

event detection is in the order of 1000 cells per seconds, thus enabling to obtain in

a short amount of time statically significant data sets.

Typical flow cytometers are equipped with a laser at 488 nm and multiple fluores-

cence detection channels around 530, 580 and 660 nm optimized for the detection

of common synthetic dyes. Except for the GFP and YFP variants, which can both

be excited at 488 nm, this configuration is unfortunately not ideal for detecting com-

binations of fluorescent proteins. More complex set-up offer however multiple laser

lines and a dozen of fluorescent detection channels which can be selected to measure

CFP or RFP variants.

Applications

Flow cytometry is mostly used in conjunction with antibodies to label specific pro-

teins. This technique is extremely successful in the analysis of the mammalian

immune system to identify specific cell types or probe for the expression of surface

receptors [29, 30]. It has also been exploited to quantify cell cycle profiles. Using

DNA intercalating fluorophores, it is straightforward to follow doubling of the DNA

content thereby monitoring the progression of cells through the cell cycle [31].

In yeast, since it is possible to tag a protein with GFP at its genomic locus, it

becomes feasible to precisely quantify its expression level in single cells and study
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the variability of its abundance in a population. Given that the expression of a protein

is mainly controlled by the promoter region upstream of the ORF (�1;000 base pairs

before the start codon), synthetic constructs can be generated based on a promoter

driving the expression of a fluorescent protein. The promoter can be selected among

the proteins that are known to be transcriptionally induced by a specific pathway

[32]. Flow cytometric measurements can then be used to quantify the expression of

this fluorescent reporter as function of stimulus to obtain a dose-response curve or

the temporal evolution of the expression of this construct.

As an example, we show in Fig. 17.5a, the expression of a fluorescent reporter

driven by the promoter of the pheromone-responsive gene (FIG1). Each sample is

induced with 1�M of ’-factor and cycloheximide is added at different time points

to block protein expression. After 1–2 h of incubation to allow for protein matura-

tion, 10,000 cells are measured for each sample. The sample taken before induction

displays a basal level of fluorescence. This signal comes from the auto-fluorescence

of the yeast and is certainly a limiting factor for the sensitivity of this method. Two

hours of pheromone treatment leads to a 20-fold increase in fluorescence intensity

of the cells. Interestingly, 30 min after induction only a fraction of cells expressed

the fluorescent reporter. This is due to the fact that only cells in the G1 phase of the

cell cycle can induce the pathway [33, 34]. The other cells will first need to com-

plete cell division before becoming signaling competent (as shown by microscopy in

Fig. 17.5b). This explains the large extrinsic noise in the cellular response observed

in the flow cytometry measurements.

Fig. 17.5 Temporal evolution of the expression of a fluorescent reporter (pFIG1-YFP) upon ac-
tivation of the mating pathway. (a) Flow cytometry. Cells were treated with cycloheximide and
fluorescence was quantified after full maturation of the protein. (b) Live-cell microscopy. The bud-
ding cell (arrow) clearly show a delayed expression of the fluorescent reporter
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One shortcoming of the flow cytometric measurements is that every cell can only

be measured once. Therefore one cannot follow the fate of a given cell after path-

way induction. This is somewhat compensated by the fact that the number of cells

quantified in each measurement is so large that the sampling represents the behavior

of all cells in the population. Another strategy, which can be used in certain situa-

tion, is the ability of the device to sort cells based on a set of measured parameters.

For instance, it is possible to separate cells expressing and not-expressing a fluo-

rescent reporter upon activation of the pathway. These cells can be re-cultured and

stimulated a second time to verify if their behavior is inherited [35].

Microscopy

Microscopy has always been a tool of choice for biologists to study individual cell

morphologies and phenotypes. With the recent advances in electronic detectors and

image analysis software, this method is becoming highly quantitative and therefore

can provide valuable data for mathematical modeling of biochemical pathways.

Instrumentation

Quantification of signaling pathways requires the measurements of the output by

recording changes in the fluorescent signal. Many technical improvements have

increased the sensitivity and reliability of microscopes in the last years. But it is

probably equally important to properly control the stimulus applied to the cells.

Given that microscopes offer the possibility to monitor cells over long periods of

time, it also provides the opportunity to control the stimulus during the course

of the experiment. Therefore researchers have employed flow channels and mi-

crofluidic devices to improve their understanding of the dynamics of signaling

pathways.

Microscopy Samples and Microfluidic Devices

To perform live imaging, cells are typically attached to the bottom of a well slide.

The media present on top of the cells allows to sustain growth for many hours. If re-

quired, the microscope can be enclosed in an incubation chamber with temperature,

humidity and CO2 control to provide the best conditions for cell growth. Stimulation

of a signaling pathway can be achieved by adding soluble chemicals, such as sugars,

drugs, pheromone or stress agents to the medium in the well. The cellular response

induced by these compounds can then be observed microscopically in real time.

A limitation from this set-up is the inability to remove compounds from the

medium. Therefore, for more refined experiments, flow chambers with coverslip
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Fig. 17.6 (a) Light path in an epi-fluorescent microscope. The wide band emission of the fluo-
rescence lamp is filtered and reflected by the dichroic mirror. The light is focused by the objective
on the specimen. The emitted fluorescence is collected by the objective and is transmitted by the
dichroic mirror. It is filtered by the emission filter before an image is recorded by the CCD camera.
(b) In a flow channel, cells are attached to the coverslip and the medium flows in the channels
molded in the polymer. (c) Picture of a gradient generating micro-fluidic device. The two inlet
flows are mixed to generate a smooth concentration ramp in the observation channel

bottoms have been developed (Fig. 17.6b). This allows to keep a constant input of

fresh medium and thereby offers the possibility to rapidly change the content of the

medium allowing both addition and removal of stimuli to the cells.

A particular type of flow chambers are microfluidic devices, which are made of

10–100�m channels molded in a polymer [36, 37]. As shown in Fig. 17.6c, these

devices are much more than a simple small dimension flow channel because they

integrate all the element of the flow control and mixing within the chip. The small

dimensions of the channels prevent turbulent mixing of flows and thereby allow

the generation of complex temporal stimulation patterns such as pulses or ramps

[38, 39]. Due to the small volume present in these devices, the media switching

times can be in the order of a few seconds. Using diffusion between two different

media, it is also possible to generate stable concentration gradients for example to

study the establishment of oriented cell polarity [40]. Another benefit of the small

dimensions of microfluidic devices is the possibility to keep all cells in the same

focal plane for multiple generations by designing chambers with a height of only a

few microns [41, 42].
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Microscope Light-Path

The light source in most epi-fluorescence microscopes is a mercury or metal-halide

lamp. These lamps have a very broad emission covering the UV and visible part of

the spectrum. An excitation filter is necessary to select the band of wavelength used

for the excitation of the sample. Since the lamp is continuously emitting light it is

also necessary to place a fast shutter in front of the lamp to precisely control the

illumination time of the sample. High power light-emitting diodes (LED) are a new

alternative for fluorescence imaging with the great advantage of being switched on

electronically within a few microseconds. LEDs have well-defined emission spectra

of 10–30 nm width, thus four to six units have to be coupled together to excite a

wide range of fluorophores.

The filtered excitation light is reflected by a dichroic mirror and sent to the ob-

jective to excite the sample. The fluorescent light is emitted isotropically and only a

small fraction is collected by the objective. It will pass through the dichroic mirror

and is then filtered by an emission filter before being detected by the CCD camera

(Fig. 17.6a). The exposure time of the sample to the excitation light determines the

brightness of the image. This parameter has to be selected carefully to obtain a good

signal-to-noise ratio in the image while avoiding saturation of the high intensity pix-

els. For time-lapse imaging, it is also crucial to take into account the bleaching of

the sample to avoid a decrease in the image quality at later time points.

The choice of the objective is always a trade-off between the size of the field

of view and the optical resolution. For yeast cells, a 40� objective is usually ideal

to quantify overall cellular fluorescence and allows to observe about 100 cells si-

multaneously. To observe cellular organelles, a higher magnification is necessary

(60� or 100�) at the expense of fewer cells being imaged. To increase the statis-

tics of the measurements, it is possible to record images at different locations in the

sample. Microscopes are often equipped with highly reliable motorized XY-stages,

which allow to repeatedly record multiple fields of view. The trade-off lies now be-

tween the number of stage positions to acquire and the dynamics of the process to

be quantified. For very fast signaling events, this is clearly a limiting factor (1 min

time interval can allow imaging of approx. ten positions).

Image Analysis

While flow cytometric assays directly provide a measure of the total cellular

intensity, microscopy provides an image, which needs to be analyzed to extract

the desired information. This is a complex task, which requires advanced image

analysis algorithms. As shown in Fig. 17.7, a microscopy image is in fact a 3D

intensity map of pixel intensities. The thresholding process consists in finding the

optimal intensity value to discriminate between background and object pixels. To

identify the contour of individual cells, a water-shedding algorithm is often applied,

which is based on the shape or intensity information from the segmented objects.

Multiple fluorescent tags can be used to identify organelles and generate secondary

objects within the cell. Once the final object shape has been obtained, it becomes
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Fig. 17.7 The original image (a) can be represented as 3D surface, where each pixel of the image
has a given intensity (b). An intensity threshold is placed on the image to distinguish background
and object pixels (c). The thresholded image is split between individual cells with a watershedding
algorithm and each cell is labeled (d)

relatively straightforward to extract the desired information. Geometrical measure-

ments such as area, diameter or eccentricity can be extracted from the shape of the

object. By quantifying the intensity in each pixel of the object it is possible to obtain

many more features such as the mean, maximum or total fluorescent intensity of the

object.

Multiple software packages have been developed to analyze microscopy images

[43, 44]. In addition, ImageJ (http://rsb.info.nih.gov/ij/) and the image processing

toolbox from Matlab (Mathworks) offer many low level routines that can be com-

bined to generate a specific analysis workflow combining segmentation, objects

recognition and feature measurements.

Applications

Using the same expression reporter described for the flow cytometry assays, it is

possible to follow in real time the apparition of the fluorescence signal in a cell

after inducing the signaling pathway. Unfortunately, due to the slow maturation of

http://rsb.info.nih.gov/ij/
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Table 17.3 Examples of relocation assays for signal transduction
quantification

Relocation to Stimulus Protein

General stress Msn2p [49]

Nucleus Osmotic shock Hog1p [47]

G1 cell cycle stage Whi5p [45]

Plasma membrane Mating pheromone Ste5p [48]

Vacuolar membrane Glucose levels Vma5p [50]

Vacuole Autophagy Atg8p [51]

Polarity landmark ’-factor gradient Cdc24p [52]

the protein, a roughly 30 min. delay is observed between the expression of the pro-

tein and the apparition of the fluorescence (Fig. 17.5b). The other issue with these

types of reporters is the fact that the fluorescent proteins have a long lifetime in

the cell. Observing the shut-down of a transcriptional process is therefore problem-

atic because the cells remain fluorescent for many hours after protein production

has been stopped. To circumvent this problem, destabilized fluorescent protein have

been generated which have a short lifetime [45].

For more dynamic measurements of signaling cascade activation, it is sometimes

possible to use a GFP-tagged protein that changes location upon stimulation of

the cell. These types of experiments cannot be performed by flow cytomery be-

cause there is no net change of fluorescence. The sub-cellular resolution from the

microscope is required to detect these events. Table 17.3 lists a few examples of

relocation assays that can be used to quantify the activity of different signal trans-

duction cascades.

One commonly used assay is the relocation of a protein to the nucleus of the

cell. Many transcription factors or transcriptional regulators can display large varia-

tions in their nuclear concentration upon activation [46]. Figure 17.8a illustrates the

nuclear relocation of the Hog1p MAP kinase. Within a few minutes after osmotic

stress, the change in fluorescence localization is apparent. This nuclear accumula-

tion of the MAPK is closely linked to its activity state [47] and therefore serves as a

read-out for the activity of this pathway in single cells [38, 39].

In the mating pathway, activation of the signaling cascade can be assessed by

the membrane relocation of the scaffolding protein Ste5p. This assay was used to

demonstrate the presence of a negative feedback loop from the MAPK, which tunes

down the activation of the pathway after induction [48]. As shown in Fig. 17.8b,

Ste5p relocation can already be detected a few minutes after addition of pheromone

to the cells. This clearly demonstrates the high temporal resolution, which can be

obtained by these assays in contrast to the slow dynamics measured for fluorescent

protein expression, which are further hindered by the delay due to maturation of the

fluorophore.

One general consideration when using reporters based on full-length proteins

or endogenous promoters is that they often integrate multiple signals from various

pathways. As an example, the Msn2p nuclear relocation is sensitive to a wide range

of stresses such as starvation, osmotic shock or light-induced stress. The response
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Fig. 17.8 Quantification of signaling by relocation of active proteins. (a) The MAPK Hog1p
tagged with mCherry accumulates in the nucleus upon activation of the osmo-stress pathway with
NaCl. (b) Relocation of the scaffod protein Ste5p to the plasma membrane upon treatment with
mating pheromone (scale bar 5�m)

to the stimulus can therefore be strongly influenced by the experimental conditions.

In the case of Msn2p, after careful analysis of its phosphorylation pattern, a shorter

version of the protein has been constructed to report specifically to glucose starva-

tion and not to other stresses [50]. Engineering of synthetic reporter based on short

regulated region of signaling proteins might offer more specificity and sensitivity to

the assay.

Functional Microscopy

Activation of a signaling cascade triggers the assembly (or disassembly) of protein

complexes and the change in activity of proteins by modifications such as phos-

phorylation, acetylation or ubiquitination. Relocation and expression assays report

on the integration of multiple elements of the signaling cascade. Functional imag-

ing techniques such as Förster resonance energy transfer (FRET) and fluorescence

correlation spectroscopy (FCS) techniques can monitor one single interaction or

modification in a signaling cascade.
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Förster Resonance Energy Transfer

Förster Resonance Energy Transfer is defined as the transfer of excitation energy of

a donor to an acceptor fluorophore via dipole-dipole interaction. Due the nature of

this interaction, the efficiency of the transfer (E) decreases with the sixth power of

the distance between the two dyes R [53, 54].

E D 1 � IF

ID

D R60
R60 C R6

Where IF and ID are respectively the fluorescent intensities of the donor in presence

and absence of FRET. The Förster distance R0 corresponds to the separation where

50% of the donor fluorescence is converted into the energy transfer process.

R60 D
90001n .10/ ›2QD

128 5NAn4
J

This parameter depends on the index of refraction of the medium, n; Avogadro’s

number, NA; the fluorescence quantum yield of the donor molecule, QD; the ori-

entation factor between the two dipoles, › and the overlap integral, J. This integral

scales with the overlap of the emission spectrum of the donor and the absorption

spectrum of the acceptor. For a well-matched fluorophore pair, R0 is on the order of

50–60 Å [55, 56].

Due to the high sensitivity of the FRET process with distance it is possible to

probe the association of two proteins in vivo by tagging them with a set of fluores-

cent protein (CFP and YFP or GFP and mCherry). Indeed, unless these two proteins

belong to the same complex, it is extremely unlikely for them to come by chance

close enough to generate a FRET signal (Fig. 17.9a).

This technique has been used to study the activation of the mating pathway at

two different points along the signal transduction cascade. A loss of FRET was ob-

served upon dissociation of the hetero-trimeric G-protein in ’-factor treated cells

[48,57]. Moreover, dissociation of the repressor Dig1p from the transcription factor

Ste12p has also been probed by FRET. Since this dissociation is triggered by phos-

phorylation of Ste12p and Dig1p by Fus3p, the loss of FRET reports faithfully on

the nuclear activity of the MAPK [48].

The FRET efficiency is commonly quantified by measuring the acceptor sen-

sitization (i.e. the additional fluorescence generated by the FRET process in the

acceptor channel upon donor excitation). For FRET measurements, it is necessary

to acquire at least three images for the donor, the acceptor and the emission of the

acceptor upon donor excitation [58].

Although appealing, the application of this technique is challenging. Indeed, the

size of the interacting proteins and of the fluorescent tags can lead to a large distance

and unfavorable orientation between the chromophores, which can result in an un-

detectable FRET signal. Moreover, due to the variation in the level of expression

of the two proteins, it is hard to decouple the change in FRET efficiency from the
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Fig. 17.9 Two different strategies to make use of the FRET process in vivo to quantify signal
transduction. (a) Protein-protein interraction: upon binding of the two fluorescently-tagged pro-
teins, the two flluorescent protein variants come in close proximity and energy transfer can occur.
(b) FRET sensor: a synthetic construct made of two fluorescent proteins separated by a functional
linker which will undergo a large conformation change upon modification or ligand binding

changes in the intensities of the donor and acceptors. Finally, the FRET efficiency

measures a combination of the amount of energy transfer and the number of com-

plexes formed. The same efficiency value can be measured from a sample with a

high transfer efficiency and only few complexes present or a sample with low en-

ergy transfer but with all donors engaged in complexes.

Only the measurement of the fluorescence lifetime of the donor can decouple the

efficiency of the FRET process, the amount of complexes formed and the concen-

tration of donor present [59].

E D 1 � £F

£D

The deactivation of the donor excited-state by FRET shortens the lifetime of the

excited state of the dye .£F/ compared to a non-fretting donor .£D/. This technique

requires a complex acquisition set-up to record the lifetime of the fluorescence in

every pixel of the image [60, 61]. This method was used to detect a gradient of

MAPK activity arising from the tip of the mating projection. The authors quantified

by fluorescence lifetime imaging the FRET between a GFP-tagged Fus3p and a

Cy3-labeled antibody specific for the active form of the MAPK [62].

Another way to use Förster resonance energy transfer for signaling studies is

to develop FRET sensors. These sensors consist of pair of fluorescent proteins

linked by a short peptide. Due to the high sensitivity of the FRET efficiency to

chromophore distance and orientation, a change in the conformation of the linking

peptide can lead to a strong change in the FRET signal (Fig. 17.9b). This strategy
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has been used to sense intracellular metabolites by engineering a binding site in the

linker region [63, 64]. It is also possible to probe kinase activity by combining in

the FRET sensor a phospho-acceptor site for a specific kinase and a sequence bind-

ing to this phophorylated residue [65, 66]. This can offer a direct read-out for the

activity of a protein upon stimulation of the pathway. The great advantage of this

technique is that the two chromophores are linked together and therefore are always

expressed at the same level. Many of the problems involved in quantification of the

FRET process for protein interactions are thus circumvented. The FRET efficiency

can be simply calculated from the ratio between two images acquired with donor

excitation and emission filters for the donor or the acceptor.

Fluorescence Correlation Spectroscopy

In contrast to FRET, Fluorescence correlation spectroscopy (FCS) offers the possi-

bility to study protein complex formation quantitatively and with a high sensitivity

independently of distance or orientation [67–69]. This technique relies on the mea-

surement of the fluctuations in the fluorescence signal generated by single molecules

moving through the confocal volume of a microscope. This volume is on the order

of 10�14 L and contains on average ten molecules for a concentration of approx.

10 nM. If one of these molecules leaves the observation volume, a drop of 10% in

the fluorescent signal should be detected. Based on Poisson statistics, if the aver-

age number of molecule is 10, the standard deviation is the square root of 10, and

we therefore expect a variation in the signal of roughly 30% over time. The rate at

which those fluctuations happen is directly related to the diffusion coefficient of the

molecule in the medium and therefore the residence time of each molecule in the

confocal volume (Fig. 17.10).

To analyze these fluctuations an auto-correlation of the fluorescence signal as

function of time is calculated. The auto-correlation curve G.£/ will obey to the

following equation for a simple diffusion model:

G .£/ D G0

hNi
1

1C £
£D

1r
1C r2

0

Z2

£
£D

The brightness factor G0 as well as the lateral r0 and axial Z dimensions of the

confocal volume are parameters that have to be determined experimentally with

a reference sample. Interestingly, the amplitude of the correlation function scales

with the inverse of the average number of molecules in the volume hNi. This fol-

lows naturally from the fact that relative changes in intensity, when one molecule

leaves the confocal volume will be smaller as the concentration increases. There-

fore the sensitivity of FCS is maximized at low concentrations. The other parameter

which can be extracted from the fitting of the auto-correlation function is the dif-

fusion time of the dye .£D/. This parameter could be used to measure the binding
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Fig. 17.10 Random diffusion of fluorescent particles through the confocal volume of a microscope
(a) generates a fluctuating fluorescence signal (b). Autocorrelation of these fluctuations allows the
determination of the concentration (c) and the diffusion time (d) of the fluorescently-tagged particle

of a fluorescently-tagged protein to a complex. Unfortunately, since the diffusion

constant scales approximately with the cubic root of the mass, the change in size

between the free and complex-bound protein needs to be very large to be able to

quantify it. It is however possible to probe homo-dimer formation due to a change

in brightness of the particles [70].

Studying the interaction of two proteins can be achieved by tagging both of them

with different fluorescent protein variants (typically GFP and mCherry). Under these

conditions, one can record the fluctuations in both color channels in parallel and cal-

culate a cross-correlation curve [71,72]. If the two proteins of interest are present in

the same complex, they will generate similar fluctuations in both detection channels,

which will result in an increased cross-correlation signal. This technique allows to

obtain the absolute concentration of the proteins along with the ratio of proteins

engaged in the complex and therefore enables the characterization of the affinity

constant of the two proteins. This method has been applied successfully in vitro, but

experimental artifacts such as autofluorescence have slowed down its adoption for

live cell assays.
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Two groups investigated complex formation in the mating pathway by FCS

[62, 73]. Maeder et al. studied the pair-wise interactions between Ste11p, Ste7p,

Ste5p and Fus3p in the cytoplasm of ’-factor treated and untreated cells. They

quantified the cytoplasmic concentration of each proteins and by cross-correlation

measurements the concentration of the complexes between the two proteins. Their

measurements lead them to conclude that there is no change in the cytoplasmic

complex formation upon ’-factor treatment for any of the complexes investigated.

In contrast to this, Slaughter et al. [73] performing similar measurements found a

regulated interaction for Fus3p and Ste7p upon ’-factor stimulation. They could not

detect an interaction between the two proteins in cycling cells but measured the for-

mation of a complex upon ’-factor stimulation. Both studies however agree on the

fact that most of the change in protein interactions happen at the cell membrane and

particularly at the tip of the mating projection were these proteins accumulate. Un-

fortunately, it is difficult to probe this region by FCS since the proteins will have an

increased residence time due to their involvement in membrane bound complexes

and therefore will not give rise to fluctuations.

Outlook

Flow cytometry and quantitative microscopy significantly improved our understand-

ing of signal transduction in single cells. While flow cytometry allows to rapidly

quantify the total fluorescence of a large number of cells, microscopy allows to fol-

low in real time the dynamics of signal transduction in the same cell by monitoring

the relocation or expression of reporter proteins. Using FRET or FCS, it becomes

possible to track directly the changes in activity or binding affinity of key signaling

molecules.

The pace of the technical development of microscopy and flow cytometry will

keep increasing in the coming years and will blend the boundary between these two

complementary techniques. The cytometer, which offers excellent statistics, delivers

poor information content for each cell. A newer generation of instruments provide

the capability of imaging the cells in the flow [74, 75]. This allows to extract more

complex features from each cell and will for instance allow to study a nuclear relo-

cation event with high temporal resolution and improved statistics.

On the other side, genome-wide screens have been performed on microscopes,

which resulted in the development of high-throughput acquisition and image anal-

ysis techniques [76]. These screens, which involved the measurements of millions

of cells, were mostly performed for endpoint measurements. Signaling studies with

their special needs for high temporal resolution are less prone to such approaches,

but a combination of microfluidics and microscopy could solve this issue [77].

The major challenge will remain the development of sensitive and high fidelity

sensors for the measurements of signal transduction. We have presented in this chap-

ter a number of tools used to monitor the activation of signaling cascades such
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as expression reporters, relocation assays or FRET sensors. It is now possible to

combine several of these sensors in the same cell to correlate the activity of the

pathway at multiple levels in single cells.
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