

Analog Layout Synthesis

Helmut E. Graeb
Editor

Analog Layout Synthesis

A Survey of Topological Approaches

123

Editor
Helmut E. Graeb
Technische Universität München
Munich
Germany
graeb@tum.de

ISBN 978-1-4419-6931-6 e-ISBN 978-1-4419-6932-3
DOI 10.1007/978-1-4419-6932-3
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2010935721

c Springer Science+Business Media, LLC 2011
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Analog components appear on 75% of all chips, and cause 40% of the design effort

and 50% of the design errors detected after first silicon measurements, reported EDA

Weekly on March 21, 2005. Due to increasing functional complexity of system-on-

chips, the difficulties in analog design and the lack of design automation support

for analog circuits continually increase the bottleneck character of analog compo-

nents in chip design. Design methodology and design automation for analog circuits

therefore is a crucial problem for future system-on-chips.

Eminently critical is the layout synthesis part of the analog design flow. Although

there have been a lot of very good works from universities over the years, some

of which even found their way to commercial EDA tools, industrial application of

analog layout synthesis is still in its infancy when it is compared to its digital coun-

terpart! The industrial point of view even says that practicable EDA tools for analog

layout synthesis did not exist.

But it seems that this situation is about to change. In the face of increasing cir-

cuit complexity and high performance SoC designs, the once-sleepy analog EDA

market is experiencing an increasing shift from single vendor solutions to design

tool integration via alliances between many players. The attempt to create an inter-

platform reference, such as the Interoperable PDK Libraries (IPL) alliance, where

analog layouts made with a tool can be imported error-free to different frameworks,

is an example. Many EDA start-ups as well as major leaders are already announc-

ing key automated layout tools for the analog designer intended to boost his/her

productivity.

In this exciting scenario, academia continues to strive for new, more efficient, and

complementary approaches to this task and to the existing tools, and has recently

produced some very interesting new solutions. The intention of this book has two

parts. On the one hand, it summarizes and presents these latest results. On the other

hand, it is dedicated to give an introduction to advanced analog layout methods on

the graduate level.

The book is structured in three parts. The first part with three chapters covers

recent approaches to topological placement of analog circuits. The second part treats

the problem of routing. The third part with three more chapters deals with layout in

the design flow, namely, with the problem of retargeting an existing layout for a

new technology, with integrating layout in the sizing process, and with constraint

management in the design flow.

v

vi Preface

The first chapter starts with an introduction to the different ways of approaching

in CAD tools device-level placement problems for analog layout. It is elaborated

how the structural representation of the layout in the algorithm is crucial for the

efficiency and efficacy of the placement process. Besides the classical way of using

absolute coordinates for the module placement and slicing structures for topologi-

cal representations, which encode the relative positioning between cells, it describes

how the sequence-pair and tree-based topological representation can be applied to

dramatically reduce the search space to the tiny fraction, which satisfies the inherent

symmetry constraints in analog circuits. It further develops sufficient conditions to

ensure the symmetry constraints during the successive moves of a placement algo-

rithm and, based on these ideas, presents several topological algorithms that perform

the exploration process very efficiently.

The second chapter furthers the ideas presented in the first chapter and extends

them to a hierarchical module clustering. The analog devices can be hierarchically

clustered into groups according to models, circuit functionalities, or signal/current

flows. Following the B*-tree, a hierarchical B*-tree (HB*-tree) placement repre-

sentation is developed to model this circuit hierarchy and symmetry and proximity

constraints among modules and across the hierarchy. This hierarchical representa-

tion is fed into a placement algorithm to generate optimum device placements that

meet all device layout constraints. Performing a simulated annealing algorithm, the

placement of the device modules in different device groups belonging to different

clustering hierarchies is simultaneously optimized.

The third chapter first introduces a method to automatically derive the circuit

hierarchy and the resulting symmetry, proximity, and matching constraints from a

netlist. A deterministic algorithm is then presented that computes the shape function

of different aspect ratios of the circuit placement by a recursive bottom-up approach

through the derived circuit hierarchy starting from basic modules such as current

mirrors or differential pairs. For each hierarchy level, the shape function is deter-

mined by combining the placements of the next-lower hierarchy. These are stored as

so-called enhanced shape functions that include the corresponding B*-trees of each

individual shape. Algorithms are proposed to generate the vertical and horizontal

sum of two B*-Trees of placements while provably complying with the constraints.

As the algorithm bounds the enumeration according to the circuit hierarchy and

the constraints, it generates results very fast, while being deterministic without any

tuning parameter.

The second part of the book deals with analog routing. It gives a tutorial on

routing methods and corresponding placement and routing representations, includ-

ing constraints, for instance, for symmetry or crosstalk. A review of different routing

strategies and the corresponding state of the art follows. Early routing approaches in-

spired from digital design, cost-driven approaches, and parasitic-driven approaches

(including, e.g., performance sensitivities), as well as the A* algorithm are covered.

The connection to placement through templates and other integration approaches

is discussed afterward. Then, the partitioning of routing into global and detailed

routing, as in digital design, is described. The chapter concludes with specialized

routing approaches for RF circuits and analog arrays.

Preface vii

The third part of the book addresses analog layout issues arising from the ambient

design flow.

In Chap. 5, the task of retargeting an existing layout, including placement and

routing, is examined. Specific algorithms for layout retargeting may be beneficial

if the involved layout modifications are moderate or to extract and conserve the

knowledge contained in a layout. After a short introduction to the preparatory steps

of layer mapping, constraint generation and device recognition, the main algorith-

mic step of retargeting, i.e., layout compaction, is described in detail. Based on the

linear programming approach to its solution, a graph-based simplex method is pre-

sented with full details. The different types of constraints, the complexity of the

algorithm, and practical issues are discussed as well.

Chapter 6 is dedicated to the problem of integrating layout effects into the cir-

cuit sizing process, to avoid unnecessary iterations between electrical and physical

synthesis as much as possible. This has been called parasitic-aware synthesis. This

chapter reaches from the very basics (what is it, and why and when is it really nec-

essary) to a practical implementation of this type of synthesis process. Different

methods to carry it out as well as their pros, cons, and trade-offs (mainly effi-

ciency vs. completion time) will be explained. A technique will be presented that

uses a combination of simulation-based optimization, procedural layout generation,

exhaustive geometric evaluation algorithms, and several mechanisms for parasitic

estimation, to comprehensively incorporate the layout-induced parasitic into elec-

trical synthesis.

Chapter 7 concludes the book with a discussion of the management of the crucial

factor in analog layout — the constraints. It provides a problem formulation for

the classification, representation, transformation, and verification of constraints in a

top-down design flow, as well as a formulation of a constraint engineering system,

including its impact on the design flow and its algorithms.

This bow from placement to routing to the design flow, drawn by the structure

of the book, invites the reader to start from the beginning and read one chapter after

the other. At the same time, the chapters are self-contained and may be accessed in-

dividually and independently. In any way she or he approaches the book, the reader

will gain a deep insight into the tasks of analog layout and into the actual solution

approaches.

Munich Helmut Graeb

March 2010

The Authors

Hazem Abbas (Hazem Abbas@mentor.com) received the B.Sc. and M.Sc. degrees

in 1983 and 1988, respectively, from Ain Shams University, Egypt and the Ph.D.

degree in 1993 from Queen’s University at Kingston, Canada all in Electrical and

Computer Engineering. He held a postdoc position at Queen’s University in 1993. In

1995, he worked as Research Fellow at the Royal Military College at Kingston and

then joined the IBM Toronto Lab as a Research Associate. He joined the Depart-

ment of Electrical and Computer Engineering at Queen’s University as an Adjunct

Assistant Professor in 1997–1998. He is now with the Department of Computers

and Systems Engineering at Ain Shams University, Egypt, as a Professor on Com-

puter and Systems Engineering. Dr. Abbas is also working with Mentor Graphics

Inc., Egypt as a Senior Engineering Manager. His research interests are in the ar-

eas of neural networks, pattern recognition, evolutionary computations, and image

processing and their parallel and multicore implementations. He also serves as the

President of the IEEE Signal Processing Chapter in Cairo.

Florin Balasa (balasa@suu.edu) received the Ph.D. degree in computer science

from the Polytechnical University of Bucharest, Bucharest, Romania, in 1994, and

the Ph.D. degree in electrical engineering from the Katholieke Universiteit Leuven,

Leuven, Belgium, in 1995.

From 1990 to 1995, he was with the Interuniversity Microelectronics Center

(IMEC), Leuven, Belgium. From 1995 to 2000, he was a Senior Design Automa-

tion Engineer at the Advanced Technology Division of Conexant Systems (formerly

Rockwell Semiconductor Systems), Newport Beach, CA. He is currently an Asso-

ciate Professor of Computer Science at the Southern Utah University.

Dr. Balasa was a recipient of the US National Science Foundation CAREER

Award.

Rafael Castro-López (castro@imse-cnm.csic.es) received the “Licenciado en

Fı́sica Electrónica” degree (M.S. degree on Electronic Physics) and the “Doctor

en Ciencias Fı́sicas” (Ph.D. degree) from the University of Seville, Spain, in 1998

and 2005, respectively. Since 1998, he has been working at the Institute of Micro-

electronics of Seville (CSIC-IMSE-CNM) of the Spanish Microelectronics Center,

where he now holds the position of Tenured Scientist. His research interests lie

in the field of integrated circuits, especially design and computer-aided design

ix

x The Authors

for analog and mixed-signal circuits. He has participated in several national and

international R&D projects and co-authored more than 50 international scientific

publications, including journals, conference papers, book chapters, and the book

Reuse-based Methodologies and Tools in the Design of Analog and Mixed-Signal

Integrated Circuits (Springer, 2006).

Yao-Wen Chang (ywchang@cc.ee.ntu.edu.tw) received the B.S. degree from

National Taiwan University in 1988, and the M.S. and Ph.D. degrees from the

University of Texas at Austin in 1993 and 1996, respectively, all in computer

science.

Currently, he is Professor of the Department of Electrical Engineering and the

Graduate Institute of Electronics Engineering, National Taiwan University, Taipei,

Taiwan. His current research interest lies in electronic design automation, with an

emphasis on physical design for nanometer IC’s and design for manufacturability.

He has co-edited one textbook on Electronic Design Automation and co-authored

one book on routing and more than 180 ACM/IEEE conference/journal papers in

these areas. Dr. Chang is a four-time winner of the ACM ISPD contests (1st and 3rd

places in the respective 2009 and 2010 Clock Network Synthesis Contests, second

place in the 2008 Global Routing Contest, and third place in the 2006 Placement

Contest). Dr. Chang received seven excellent teaching awards, Best Paper Awards

at the 2007 and 2008 VLSI Design/CAD Symposia, a Best Paper Award at ICCD-

95, and 14 Best Paper nominations from DAC (four times), ICCAD (three times),

ISPD (four times), TODAES, ASP-DAC, and ICCD.

Dr. Chang is currently an associate editor of IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems (TCAD) and an editor of the

Journal of Information Science and Engineering (JISE). He has served as the ACM

ISPD General Chair, and the ACM ISPD and IEEE FPT Technical Program Chairs,

on the IEEE/ACM ICCAD Executive Committee, the IEEE/ACM ASP-DAC Steer-

ing Committee, the ACM/SIGDA Physical Design Technical Committee, the IEEE

CEDA Conferences Committee, and the technical program committees of major

EDA conferences, including ASP-DAC, DAC, DATE, FPL, FPT, GLSVLSI, IC-

CAD, ICCD, IECON, ISPD, SOCC, TENCON, and VLSI-DAT. He has served as

the chair of the EDA Consortium of the Ministry of Education of Taiwan, Principal

Reviewer of the SBIR Projects of the Ministry of Economic Affairs, Review and

Planning Committee Member of the National Science Council of Taiwan, Inde-

pendent Board Director of Genesys Logic, Inc., Technical Consultant of Faraday

Technology Inc., MediaTek Inc., and RealTek Semiconductor Corp., and Member

of Board of Governors of Taiwan IC Design Society.

Mohamed Dessouky (Mohamed Dessouky@mentor.com) received the Ph.D.

degree in electrical engineering from the University of Paris VI, France, in 2001.

In 1992, he joined the Electronics and Electrical Communications engineering de-

partment, University of Ain Shams, Egypt, where he was a Research and Teaching

Assistant, and is currently an Associate Professor. Since 2004, he is on leave to

Mentor Graphics Inc., Egypt, where he served as the head of the analog design team

The Authors xi

in the IP Division and is currently a Staff Engineer. His research interests include

the design of switched-capacitor circuits, analog-to-digital conversion and CAD for

analog, RF and mixed-signal integrated circuits.

Günhan Dündar (dundar@boun.edu.tr) got his B.S. and M.S. degrees from

Boğaziçi University, Istanbul, Turkey in 1989 and 1991, respectively, and his Ph.D.

degree from Rensselaer Polytechnic Institute in 1993, all in electrical engineering.

Since 1994, he has been with the Department of Electrical and Electronic Engineer-

ing, Boğaziçi University, where he is currently a professor, with some temporary

positions at the Turkish Naval Academy, EPFL (Lausanne, Switzerland), and the

Technical University of Munich during this period.

Dr. Dündar has published more that 100 papers in international journals and con-

ferences and a book on analog design automation. During his career, he has received

various awards, among which are the best paper award in the IEEE ASAP confer-

ence in 2008 and the Turkish Scientific and Technological Council Encouragement

Award for Research in 2009. His research interests include analog and mixed signal

integrated circuit design and design automation, especially for analog circuits.

Michael Eick (michael.eick@mytum.de) received the Dipl.-Ing. Degree (equiva-

lent to M.Sc.) in Electrical Engineering and Information Technology from Technis-

che Universität München, Munich, Germany in 2008. Since 2008, he is working

as a research and teaching assistant at the Institute for Electronic Design Automa-

tion, Technische Universität München, Munich, Germany. He is currently working

toward his Ph.D. His research interests cover the automatic analysis of circuit struc-

tures of analog circuits with application to layout and sizing.

Reem El-Adawi (Reem ElAdawi@mentor.com) received the B.Sc. and M.Sc. de-

grees in 1993 and 2001, respectively, from Ain Shams University, Egypt. Since

1995, she is with Mentor Graphics Inc., Egypt, where she has held various positions.

She is currently Engineering Manager for the team responsible for the development

of Chameleon ART, an analog retargeting tool.

Francisco V. Fernández (pacov@imse-cnm.csic.es) got the Physics-Electronics

degree from the University of Seville in 1988 and his Ph.D. degree in 1992. In 1993,

he worked as a postdoctoral research fellow at Katholieke Universiteit Leuven

(Belgium). From 1995 to 2009, he was an Associate Professor at the Dept. of Elec-

tronics and Electromagnetism of University of Seville, where he was promoted to

full professor in 2009. He is also a researcher at CSIC-IMSE-CNM. His research

interests lie in the design and design methodologies of analog and mixed-signal cir-

cuits. Dr. Fernández has authored or edited three books and has co-authored more

than 100 papers in international journals and conferences. Dr. Fernández is currently

the Editor-in-Chief of Integration, the VLSI Journal (Elsevier). He regularly serves

at the Program Committee of several international conferences. He has also par-

ticipated as researcher or main researcher in several National and European R&D

projects.

Jan Freuer (jan.freuer@de.bosch.com) received his diploma degree in Computer

Science from the Eberhard-Karls University in Tübingen, Germany in 2002. Since

xii The Authors

2004, he has been with the R&D department AE/EIM of the automotive electronics

division of Robert Bosch GmbH in Reutlingen, Germany. He is currently final-

izing his Ph. D. degree in computer science at the Carl von Ossietzky University

in Oldenburg, Germany. His main research interests are related to constraint-

engineering topics for analog design automation.

Helmut Graeb (graeb@tum.de) got his Dipl.-Ing., Dr.-Ing., and habilitation de-

grees from Technische Universität München in 1986, 1993, and 2008, respectively.

He was with Siemens Corporation, Munich, from 1986 to 1987, where he was

involved in the design of DRAMs. Since 1987, he has been with the Institute of

Electronic Design Automation, TUM, where he has been the head of a research

group since 1993.

He has published more than 100 papers, six of which were nominated for best

papers at DAC, ICCAD, and DATE conferences. His research interests are in design

automation for analog and mixed-signal circuits, with particular emphasis on Pareto

optimization of analog circuits considering parameter tolerances, analog design for

yield and reliability, hierarchical sizing of analog circuits, analog/mixed signal test

design, semidiscrete optimization of analog circuits, structural analysis of analog

and digital circuits, and analog placement.

Dr. Graeb has, for instance, served as a Member or Chair of the Analog Program

Subcommittees of the ICCAD, DAC, and D.A.T.E conferences, as Associate Editor

of the IEEE Transactions on Circuits and Systems Part II: Analog and Digital Signal

Processing and IEEE Transactions on Computer-Aided Design of Integrated Cir-

cuits and Systems, and as a Member of the Technical Advisory Board of MunEDA

GmbH Munich. He is Senior Member of IEEE (CAS) and member of VDE (ITG).

He was the recipient of the 2008 prize of the Information Technology Society

(ITG) of the Association for Electrical, Electronic, and Information Technologies

(VDE), of the 2004 Best Teaching Award of the TUM EE Faculty Students Associ-

ation, of the 3rd prize of the 1996 Munich Business Plan Contest.

Göran Jerke (goeran.jerke@ieee.org) received his diploma degree in Electrical

Engineering from the Dresden University of Technology in Dresden, Germany.

Since 2000, he is with the R&D department AE/EIM of the automotive electronics

division of Robert Bosch GmbH in Reutlingen, Germany. His research work focuses

on analog design automation and reliability-aware physical design of ICs where he

has published numerous papers. In 2004, he received the EDA Achievement Award

from the German edacentrum e. V. He is currently finishing his Ph.D. degree in

Electrical Engineering at the Dresden University of Technology.

Jens Lienig (jens.lienig@ifte.de) received the M.Sc. (diploma), Ph.D. (Dr.-Ing.)

and habilitation degrees in Electrical Engineering from Dresden University of Tech-

nology, Dresden, Germany, in 1988, 1991, and 1996, respectively. He is currently

a Full Professor of Electrical Engineering at Dresden University of Technology,

where he is also Director of the Institute of Electromechanical and Electronic De-

sign. From 1999 to 2002, he worked as Tool Manager at Robert Bosch GmbH in

Reutlingen, Germany, and from 1996 to 1999, he was with Tanner Research Inc. in

The Authors xiii

Pasadena, CA. From 1994 to 1996, he was a Visiting Assistant Professor with the

Department of Computer Science, University of Virginia, Charlottesville, VA. From

1991 to 1994, he was a Postdoctoral Fellow at Concordia University in Montréal,

PQ, Canada. His current research interests are in the physical design automation of

VLSI circuits, MCMs, and PCBs, with a special emphasis on electromigration, 3D

design, and constraint-driven design methodologies. Prof. Lienig has served on the

Technical Program Committees of the DATE, SLIP, and ISPD conferences. He is a

Senior Member of IEEE.

Mark Po-Hung Lin (marklin@ccu.edu.tw) received the B.S. and M.S. degrees in

Electronics Engineering from National Chiao Tung University (NCTU), Hsinchu,

Taiwan, in 1998 and 2000, respectively, and the Ph.D. degree in the Graduate Insti-

tute of Electronics Engineering (GIEE), National Taiwan University (NTU), Taipei,

Taiwan, in 2009.

From 2000 to 2007, he was with Springsoft, Inc., Hsinchu, Taiwan, where he

was involved in the design of automatic schematic generation in both VerdiTM Au-

tomated Debug System and LakerTM Advanced Design Platform, and the design

of custom placement and routing in LakerTM Custom Layout System. In 2008, he

was a visiting scholar in the Department of Electrical and Computer Engineering,

University of Illinois at Urbana-Champaign (UIUC), IL, USA. He is currently an

Assistant Professor of the Department of Electrical Engineering, National Chung

Cheng University, Chiayi, Taiwan. His current research interest lies in electronic

design automation, with an emphasis on physical design for analog IC’s.

Elisenda Roca (eli@imse-cnm.csic.es) received the physics and the Ph.D. degrees

from the University of Barcelona, Spain, in 1990 and 1995, respectively. From

November 1990 to April 1995, she worked at IMEC, Leuven, Belgium, in the field

of infrared detection aiming to obtain large arrays of CMOS compatible silicide

Schottky diodes. Since 1995, she has been with the Institute of Microelectronics of

Seville, (IMSE-CNM-CSIC), Spain, where she holds the position of Tenured Sci-

entist. Her research interests are centered in the design of CMOS Vision Systems

on-Chip (VSoC) with integrated high dynamic range sensors, and modeling and de-

sign methodologies for analog integrated circuits. She has been involved in several

research projects with different institutions: Commission of the EU, ESA, ONR-

NICOP, etc. She has also co-authored more than 50 papers in international journals,

books, and conference proceedings.

Hazem Said (Hazem.Said@eng.asu.edu.eg) received the B.Sc. and M.Sc. degrees

in Computer Engineering from Ain Shams University, Egypt, in 1999 and 2006,

respectively. He is currently pursuing his Ph.D. degree in electrical engineering at

the same University in the field of fast electrical simulation. He worked as a Senior

Development Engineer at Mentor Graphics Inc., Egypt, on automatic analog design

migration from 2002 to 2007. His research interests include Computer Algorithms,

Electronic CAD Algorithms, Artificial Intelligence, and Quantum Computing.

Ulf Schlichtmann (ulf.schlichtmann@tum.de) received the Dipl.-Ing. and Dr.-Ing.

degrees in Electrical Engineering and Information Technology from Technische

xiv The Authors

Universität München (TUM), Munich, Germany, in 1990 and 1995, respectively.

From 1994 to 2003, he was with the Semiconductor Group of Siemens AG which,

in 1999, became Infineon Technologies AG. There he held various technical and

management positions in design automation, design libraries, IP reuse, and prod-

uct development. Since 2003, he has been with TUM as Professor and Head of the

Institute for Electronic Design Automation. His research interests are in computer-

aided design of electronic circuits and systems, with special emphasis on designing

robust systems. Since 2008, he serves as Dean of TUM’s department of Electrical

Engineering and Information Technology.

Hussein Shahein (hussein.shahin@eng.asu.edu.eg) obtained his Ph.D. from the

Moore School of Electrical Engineering, University of Pennsylvania, PA, USA, in

1972. He was a postdoctoral Fellow with the University of Pennsylvania Computer

Center (Uni-Coll). He also worked at the IBM research Laboratories in San Jose,

CA, USA. He then joined the Computer and Systems Engineering Department,

Ain Shams University, Egypt. Prof. Shahein served as visiting Professor at King

AbdulAziz University, Jeddah, KSA, the Computer Science Dept., University of

Bahrain, and the Electrical Engineering Department, UAE University, Al Ain, where

he was the Department Chair. He also served as the Chair of the Computer and Sys-

tems Engineering Department, Ain Shams University, Egypt, and the Dean of the

Faculty of Computer Science, Misr International University, Egypt. He is the Chair-

man of the Board of Elmohandis Information Systems Company. Prof. Shahein has

supervised many Ph.D. and M.Sc. students. His research interests include Optimiza-

tion, Computer Networks, Networks and data Security.

Martin Strasser (strasser@tum.de) received his Dipl.-Ing. degree in Electrical

Engineering and Information Technology from Technische Universität München

(TUM), Munich, Germany, in 2005. From 2003 to 2005, he was with MunEDA

GmbH, before he joined the Institute for Electronic Design Automation at TUM.

In this institute, he is currently working toward his Dr.-Ing. degree. His research

interests are in electronic design automation for analog circuits, especially the au-

tomation of the layout generation.

Ahmet Unutulmaz (unutulm@boun.edu.tr) received his B.S. and M.S. degrees in

Electrical Engineering from Boğaziçi University, Istanbul, Turkey in 2008. Since

2008, he has been working as a research and teaching assistant at the Department of

Electrical Engineering, Boğaziçi University, Istanbul, Turkey. His research interests

include automatic synthesis of analog layouts and integration of design automation

tools.

Contents

Part I Placement

1 Device-Level Topological Placement with Symmetry

Constraints. 3

Florin Balasa

2 Hierarchical Placement with Layout Constraints . 61

Mark Po-Hung Lin and Yao-Wen Chang

3 Deterministic Analog Placement by Enhanced Shape

Functions . 95

Martin Strasser, Michael Eick, Helmut Graeb,

and Ulf Schlichtmann

Part II Routing

4 Routing Analog Circuits .149

Günhan Dündar and Ahmet Unutulmaz

Part III Layout in the Design Flow

5 Analog Layout Retargeting .205

Hazem Said, Mohamed Dessouky, Reem El-Adawi,

Hazem Abbas, and Hussein Shahein

6 Closing the Gap Between Electrical and Physical Design:

The Layout-Aware Solution .243

Rafael Castro-López, Elisenda Roca, and Francisco V.

Fernández

7 Constraint-Driven Design Methodology:

A Path to Analog Design Automation .269

Göran Jerke, Jens Lienig, and Jan B. Freuer

Index .299

xv

Part I

Placement

Chapter 1

Device-Level Topological Placement
with Symmetry Constraints

Florin Balasa

Abstract The traditional way of approaching placement problems in computer-

aided design (CAD) tools for analog layout is to explore an extremely large search

space of feasible or unfeasible placement configurations (called flat representations

of the layout), where the cells are moved in the chip plane by a stochastic optimizer

– like simulated annealing or a genetic algorithm.

This chapter discusses the possible use in analog placement problems with sym-

metry constraints of topological representations of the layout, encoding systems that

are not restricted to slicing floorplan topologies. First, the chapter gives an overview

of several data structures that may be used in the evaluation of various topological

representations of the layout – therefore, in building the placement from the lay-

out encoding. Afterwards, the chapter presents a subset of sequence-pairs – called

“symmetric-feasible” – that allows to take into account the presence of an arbi-

trary number of symmetry groups of devices during the exploration of the solution

space. Alternatively, the possible use of tree representations instead of “symmetric-

feasible” sequence-pairs is also discussed.

The computation times exhibited by the topological approaches are significantly

better than those of the placement algorithms using the traditional exploration strat-

egy based on flat representations, while preserving a similar quality of the placement

solutions.

1.1 Introduction

1.1.1 CAD for Analog Layout

In recent years, complete systems that used to occupy one or more boards have

been integrated on a few chips or even on a single chip. Examples of such

systems-on-a-chip (SoC’s) are networking interfaces, wireless designs, or new

F. Balasa (�)

Department of Computer Science and Information Systems, Southern Utah University,

Cedar City, UT 84721, USA

e-mail: balasa@suu.edu

H.E. Graeb (ed.), Analog Layout Synthesis: A Survey of Topological Approaches,

DOI 10.1007/978-1-4419-6932-3 1, c Springer Science+Business Media, LLC 2011

3

balasa@suu.edu

4 F. Balasa

generations of integrated telecommunication systems – that include analog, digital,

and eventually, radiofrequency (RF) sections on one chip. Although most functions

in such integrated systems are implemented with digital or digital signal processing

circuitry, the analog circuits needed at the interface between the electronic system

and the real world are now being integrated on the same die for reasons of cost and

performance.

In the digital domain, computer-aided design (CAD) tools are fairly well devel-

oped, especially for the lower level of the design flow. Unlike analog circuits, a

digital system can naturally be modeled in terms of Boolean representations and

programming language constraints; its functionality can easier be represented in

algorithmic form. Consequently, many lower-level aspects of the digital design pro-

cess are fully automated. Research interests are now moving in the direction of

system synthesis, where system-level specifications are translated into hardware–

software co-architecture. The level of automation is far from the “push-button”

stage, but the advance of CAD tools is keeping up reasonably well with the progress

of technology.

Unfortunately, the situation is worse on the analog side. Apart from circuit sim-

ulators, layout editing environments, or layout verification tools, real commercial

solutions are only beginning to appear as the result of a valuable research and

development (R&D) effort in the field [1–3]. Some of the main reasons for this lack

of automation are that analog design in general is less systematic and more heuris-

tic in nature than digital design, requiring specialized knowledge, design skills, and

years of experience; analog circuits are more sensitive to parasitic disturbances,

crosstalk, substrate noise, supply noise, etc.; in addition, the variety of schematics

and diversity of device sizes and shapes are much larger. These differences from

digital design explain why specific analog solutions need to be developed. Due to

the lack of mature, robust analog CAD tools, analog designs today are still largely

being handcrafted, with limited CAD support available (except simulators, inter-

active layout environments). The design cycle for analog (and mixed-signal) IC’s

remains long and error prone.

The physical implementation step in the analog design flow corresponds to a

variety of tasks that can be grouped into two major areas: (a) analog circuit-level

(or block-level) layout synthesis, which has to transform a sized transistor-level

schematic into a mask layout, and (b) system-level layout assembly, in which the ba-

sic functional blocks are already laid out and the goal is to floorplan, place, and route

them, as well as to distribute the power and ground connections. These two areas

are also interleaved as most design flows require a mix of top-down and bottom-up

approaches. This chapter will address placement issues in the field of block-level

layout synthesis.

The optimization-based place-and-route layout generation approaches consist of

synthesizing the layout solution by optimization techniques according to some cost

functions. They differ from the earlier procedural module generation techniques [4],

in which the layout of the entire circuit is precoded in a software tool that generates

the complete layout for the actual parameter values entered at run time. Also, they

differ from the related set of template-driven methods [5], where a geometric

1 Device-Level Topological Placement with Symmetry Constraints 5

template fixing the relative position and interconnection of the devices is stored

for each circuit. The advantages of the optimization-based approaches are their gen-

erality and flexibility in terms of performance and area. The penalty to pay is they

require a more significant computational effort; also, the layout quality is more de-

pendent on the algorithms, on the cost functions employed, on providing a complete

set of design constraints and taking them into account during the optimization.

1.1.2 The Device-Level Analog Placement Problem

The decision whether a given set of fixed-oriented rectangles, having widths and

heights real numbers, could be packed onto a chip of known width and height was

proven to be NP-complete [6], while the problem of finding a minimum area pack-

ing was shown to be NP-hard. Like many other VLSI placement problems – for

instance, chip floorplanning and macro cell digital placement – the analog place-

ment must also cope with optimally packing arbitrarily sized modules.

In addition to that, a placement tool must include specific capabilities to automat-

ically produce analog device-level layouts matching in density and performance the

high-quality manual layouts. Such specific features are, for instance, (1) the ability

to deal with topological constraints for symmetry and device matching; (2) the

ability to arrange devices such that critical structures are shared – design technique

known as device merging or geometry sharing [7], aiming to reduce both layout

density and induced parasitics; (3) the existence of a (built-in) library of predefined

module generators and the ability to exploit their reshaping capabilities during the

placement process [1].

1.1.3 Overview of Analog Placement Methods

Due to the complexity of the basic problem, several heuristic placement techniques

have been attempted first. The constructive approaches consist in evolving gradu-

ally the placement solution by selecting one module at a time and positioning it in

the “best” available location. Several systems for analog placement employed con-

structive methods: Kayal et al. developed an expert knowledge base to guide the

placement [8]; Mehranfar suggested a schematic-driven approach, using a construc-

tive scheme based on connectivity and relative positioning in the input schematic

[9, 10]. The constructive methods are fast, scaling well with the problem size; their

basic drawback is the dependence on the selection order of devices. Lacking a global

view in dealing with a variety of interacting quality measures, this strategy yields

sometimes poor placement solutions. A technique achieving a better global opti-

mization of the device positions – by iteratively combining min-cut partitioning and

force-directed placement – has been employed in an interactive environment for

full-custom designs [11].

6 F. Balasa

Other class of methods translates an analog placement problem into a constrained

(combinatorial) optimization. Earlier techniques extracted mainly (hard and soft)

nonquantitative constraints for the subsequent optimization phase [12]. In later ap-

proaches, the optimization was performance-driven, doing a quantitative evaluation

(based on estimation models) of the placement solutions, to ensure the performance

of the final layout [13, 14].

As combinatorial optimization engines, the simulated annealing [15] and ge-

netic algorithms [16] were effective choices for solving industrial analog placement

problems. These algorithms use stochastically controlled “hill-climbing” to avoid

being trapped in local minima during the optimization process. In addition, they do

not impose severe constraints on the size of the problems or on the mathematical

properties of the cost function – like most optimization algorithms in mathematical

programming. While efficiently trading-off between a variety of layout factors –

such as area, total net length, aspect ratio, maximum chip width and/or height,

cell orientation, “soft” cell shape, etc. – they support incremental addition of new

functionality (for instance, updates of cost function and/or constraints) and they

are relatively easy to implement (although good tuning needs more time). This is

why simulated annealing, the most mature of the stochastic techniques, provided

the engine for effective software packages both in digital (TimberWolfSC v7.0 [17])

and in analog design: ILAC [18], KOAN/ANAGRAM II [7, 12] – that evolved into

the NeoLinear system, PUPPY-A [13], LAYLA [14]. More recently, a two-phase

approach using both a genetic algorithm and simulated annealing with dynamic ad-

justment of the parameters has been reported [19, 20]. Another recent technique

derives linear inequalities from constraint graphs extracted from sequence-pairs,

and obtains the placement by linear programming within a simulated annealing

framework [21].

While this chapter will focus on optimization techniques for analog placement,

other effective analog layout tools are template-driven [22,23]. These tools are built

on template databases containing analog circuits designed by experienced experts.

Upon the arrival of a new design demand, the system selects a suitable template

from the database, adding information on the target technology, design rules, device

sizes, etc., to re-generate automatically the target layout.

1.1.4 Placement for Layout Symmetry

In high-performance analog circuits, it is often required that groups of devices are

placed symmetrically with respect to one or several axes. Differential circuit tech-

niques are used extensively to improve the accuracy, power supply rejection ratio,

and dynamic range of many analog circuits. The full performance potential of many

of these circuits cannot be achieved unless special care is taken to match the layout

parasitics in the two halves of the differential signal path. Failure to match these par-

asitics in, for instance, differential analog circuits can lead to higher offset voltages

1 Device-Level Topological Placement with Symmetry Constraints 7

and degraded power-supply rejection ratio [7]. The main reason of symmetric place-

ment (and routing, as well) is to match the layout-induced parasitics in the two

halves of a group of devices.

Placement symmetry can also be used to reduce the circuit sensitivity to thermal

gradients. Some VLSI devices (the bipolar devices, in particular) exhibit a strong

sensitivity to ambient temperature. If two such devices are placed randomly rela-

tive to the isothermal lines, a temperature-difference mismatch may result. Failure

to adequately balance thermal couplings in a differential circuit can even intro-

duce unwanted oscillations [24]. To combat potentially induced mismatches, the

thermally sensitive device couples should be placed symmetrically relative to the

thermally radiating devices. Since the symmetrically placed sensitive components

are equidistant from the radiating component(s), they see roughly identical ambient

temperatures and no temperature-induced mismatch results.

It is more often the case that a circuit has a mix of symmetric and asymmet-

ric components. For example, the two-stage Miller compensated opamp shown in

Fig. 1.1 has a symmetric differential input stage, but it has an asymmetric single-

ended output stage.

The typical forms of symmetry which should be handled by an analog placement

tool are [7]:

1. Mirror symmetry: Consists in placing a symmetry group of cells about a

common axis such that the cells in every pair have identical geometry and

mirror-symmetric orientation. It is the most standard form of layout sym-

metry. There are two major advantages of this placement arrangement. First,

because sibling devices are forced to adopt identical geometry, device-related

Fig. 1.1 Schematic of a two-stage Miller compensated opamp with asymmetric output stage

8 F. Balasa

parasitics are balanced and device matching characteristics are improved.

Second, mirror-symmetric placement aligns device terminals in a way that

makes mirror-symmetric routing1 possible.

2. Perfect symmetry: Differs from the previous by the identical (rather than

mirror-symmetric) orientations of the paired devices. This type of symmetry

is sometimes required in order to meet very stringent matching requirements.

When there is a possibility of anisotropic fabrication disturbances (e.g., oblique-

angle ion implantation) [7], the best matching is achieved when paired devices

are placed in identical orientations. Perfectly symmetric placement presents a

difficult layout problem: because the device terminals are no longer mirror-

symmetric, one cannot use mirror-symmetric routing to connect sibling devices

with parasitic matched wires. Instead, one has to route parasitic matched wires,

which are not geometrically symmetric. This can be particularly difficult when

there is a mix of symmetric and asymmetric circuitry.

3. Self-symmetry: Characteristic for devices presenting a geometrical symmetry

and sharing the same axis with other pairs of symmetric devices. Self-symmetric

devices have two uses. First, it is often desirable to place asymmetric devices

(e.g., devices in bias networks) in the middle of a mirror-symmetric layout. This

greatly simplifies wiring in the case that the device is highly connected to de-

vices on both sides of the symmetric signal path. Such an arrangement presents

mirror-symmetric terminals to the left and right halves of the circuit, so that they

can participate in mirror-symmetric routing. Second, self-symmetry is useful in

creating thermally symmetric layouts.

A subset of cells is called a symmetry group if all cells are exhibiting a form of

symmetry and, in addition, they all share a common symmetry axis. The symmetry

constraints for a pair of devices (Bi ; Bj) in the kth symmetry group have the form:

.xi C wi/ C xj D 2 � xsymAxisk
and yi D yj , where .xi ; yi/ are the left-bottom

coordinates of device Bi , wi denotes its width, and xsymAxisk
is the abscissa of the

symmetry axis of the kth group (assuming the axis is vertical). Similarly, a self-

symmetric device Bi must satisfy the constraint: xi C wi=2 D xsymAxisk
. In this

chapter, the symmetry axes will be considered vertical since this is the typical way

most layouts are designed.

1.1.5 The Absolute Representation of the Layout

A combinatorial optimization algorithm for solving placement problems can equally

operate with two distinct spatial representations of the placement configurations.

The earliest is the so-called absolute (or flat) representation introduced by Jepsen

and Gellat [25] in a macro-cell placement tool. In this representation, the cells

1 Mirror-symmetric routing assumes that paired nets be implemented using geometrically mirror

identical wire segments.

1 Device-Level Topological Placement with Symmetry Constraints 9

are specified in terms of absolute coordinates on a plane. The moves are simple

translations (coordinate shifts) or changes in cell orientation – rotations and mirror

operations. The cells are allowed to overlap even in illegal ways,2 as no restriction is

made referring to the relative position of a cell with respect to another cell. A penalty

cost term – typically, quadratic – is associated with the total illegal overlap, and this

penalty must be driven to zero during the minimization of the cost function. The flat

representation is well-suited to handle device matching and symmetry constraints

– typical to analog layout – since they are easy to model and maintain during suc-

cessive moves; it also allows to explore the beneficial device overlaps. For these

reasons and also its inherent simplicity, the absolute representation was the choice

for KOAN/ANAGRAM II [12], PUPPY-A [13], and LAYLA [14] systems.

However, this representation has also shortcomings explained, for instance, in

[17]. First, the optimization process is slow: since the exploration space is very

large, many moves can yield a small decrease of the cost function. Second, the total

illegal overlap (representing only one term of the cost function) is not necessarily

equal to zero in the final placement solution: a post-processing step aiming to elimi-

nate the gaps and overlaps must be performed, affecting even more the computation

time and degrading the solution optimality. Moreover, the weight of the overlap term

in the cost function must be carefully chosen: if it is too large, the search ability of

the optimizer for a good placement (in terms of area, total net length, etc.) may be

impeded; if it is too small, the cells may have the tendency to collapse since the

importance of illegal overlaps is small. To combat this effect, an earlier version of

the TimberWolf system [17] used a sophisticated negative control scheme to deter-

mine the optimum values of the cost term weights.

The flat representation approach trades off a larger number of moves for easier

and quicker to build layout configurations – which may not be always physically

realizable though. On the other hand, a second class of placement representations –

named topological – allows to trade off more complex (but physically correct!) lay-

out constructions per each move of the optimization engine against a smaller number

of moves.

1.1.6 Topological Representations of the Layout

Different from the flat representation where the cell positions are specified in terms

of their coordinates, in a topological representation a placement configuration is

encoded: the cell positions are relatively specified, based on topological relations

between cells. The first popular representations were employing the so-called slic-

ing model, introduced by Otten [26]. In this model, the cells are organized in a set of

slices, which recursively bisect the layout horizontally and vertically. The direction

2 In analog layout, cells can overlap not only in legal but also beneficial ways (“device merging”

or “geometry sharing” [12]).

10 F. Balasa

and nesting of the slices is recorded in a slicing tree or, equivalently, in a normalized

Polish expression [27]. The annealing algorithm (as a typical optimization engine)

does not move explicitly the cells – as in the flat representation: the moves are modi-

fications of the placement codes (for instance, small reorganizations of a slicing tree,

or small changes in a Polish expression that preserve the properties of the encoding).

These moves alter indirectly the relative positions of the cells. In topological repre-

sentations, cells cannot overlap illegally, which may lead to an improved efficiency

in the placement optimization.

However, the slicing model limits the set of reachable layout topologies. This can

degrade layout density, especially when cells are very different in size, which is of-

ten the case in analog layout. Furthermore, symmetry and matching constraints are

difficult to maintain between successive moves: for instance, a slicing-style place-

ment tool had to implement symmetry constraints in the cost function through the

use of virtual symmetry axes [28] – a less efficient solution. Although the ILAC

system [18] employed slicing trees, it is widely acknowledged today that this model

is not a good choice for high-performance analog layouts.

After 1995, several novel topological representations, not restricted to slicing

floorplan topologies, have been proposed. A remarkably elegant encoding system

was proposed by Murata et al., who suggested to encode the “left-right” and “above-

below” topological relations using two sequences of cell permutations (see Sect. 1.3

for more details), named a sequence-pair [29]. AO.n2 / algorithm (n being the num-

ber of cells) based on building a pair of horizontal and vertical constraint graphs was

used to construct a compact placement from its encoding, operation called sequence-

pair evaluation. More recently, a different approach – based on the computation of

the longest common subsequence in a pair of weighted sequences – was proposed

by Tang et al. [30, 31]. The latest evaluation algorithm achieves a O.n log logn/

complexity [31] using an efficient model of priority queue [32]. Nakatake et al. de-

vised a meta-grid structure without physical dimensions (called bounded-sliceline

grid or BSG) to define the topological relations between blocks. The construction of

the placement configuration from a BSG is of quadratic complexity [33].

Guo et al. proposed the ordered tree (O-tree) data structure to reduce the negative

effect of code redundancies from the two previous representations [34]. Indepen-

dently, Chang et al. [35] and Balasa [36] suggested similar representations based

on binary trees. These encodings are based on the natural correspondence between

forests of rooted trees and binary trees [37]. Due to the one-to-one transformation

mentioned above, all these tree representations can be regarded as equivalent.

The corner block list (CBL) [38] is a representation that is used to encode mosaic

floorplans (that is, floorplans with zero dead-space). The transitive closure graph

(TCG), introduced by Lin and Chang [39], is based on two directed graphs having a

node for each cell; their edges correspond to the horizontal and, respectively, vertical

topological relations between cells. Different from the tree representations [34, 35],

the sequence-pair, the bounded-sliceline grid, the corner block list, and the transitive

closure graphs define the topological relations between cells independent of their

dimensions.

1 Device-Level Topological Placement with Symmetry Constraints 11

1.1.7 Selecting a Topological Representation

for Analog Placement

The nonslicing topological representations were initially used in block placement

and floorplanning tools [40–42]. Could these representations be successfully used in

placement tools for analog layout? Which of the topological representations would

be better-suited? At a first glance, the main selection criteria should be the same as

in block placement: (1) a representation with a low (or even zero) code redundancy

to have an exploration space as reduced in size as possible, and (2) the existence of

an efficient code evaluation algorithm (preferably of linear complexity) building as

fast as possible the placement configuration from the current code in each inner-loop

iteration of the simulated annealing.

Without denying the importance of the above criteria, other features specific to

analog layout must be taken into account as well. As already explained in Sect. 1.1.4,

many analog designs contain an arbitrary number of symmetry groups of devices

(that is, groups of devices having distinct symmetry axes), each group containing an

arbitrary number of pairs of symmetric devices with the same geometry, as well as

self-symmetric devices – presenting a geometrical symmetry and sharing the same

axis with its group. Due to this characteristic, most of the codes of any topological

representation would be infeasible in symmetry point of view.

In preliminary experiments using sequence-pairs for solving analog placement

problems with symmetry constraints [43], a simple exploration scheme was initially

attempted: while searching the set of sequence-pairs in a simulated annealing

framework, the codes that proved to be infeasible in symmetry point of view during

the placement construction were disregarded. Unfortunately, this simple exploration

scheme proved to be extremely ineffective, the quality of the placement solutions

being very poor. The main reason was revealed to be the huge number of infea-

sible codes, which were overwhelming in comparison to the “symmetric-feasible”

ones.

These preliminary tests showed that symmetry is difficult to model within a topo-

logical representation: how to recognize the codes complying with the given set of

symmetry constraints without building the corresponding layout? Moreover, assum-

ing the current code is symmetric-feasible, how to prevent the annealer to move from

it to an infeasible code? Maintaining the “symmetric-feasibility” of the codes dur-

ing the annealer’s moves is, in general, a nontrivial task, specific to the topological

representation employed: how to restrict the exploration only to the subspace of

symmetric-feasible codes?

A topological representation would prove to be a good candidate for solving

analog placement problems with symmetry constraints if it possessed a property

characterizing codes able to generate placements such that symmetry constraints be

satisfied. In the absence of such a property, the fact that a certain representation has

an evaluation algorithm of linear complexity is of a lesser importance since most of

the codes would be symmetric-infeasible anyway. Such a property would allow to

efficiently restrict the exploration to a subspace of “symmetric-feasible” codes.

12 F. Balasa

Several topological exploration techniques for analog placement investigated

how to handle symmetry constraints more efficiently. Approaches using sequence-

pairs [21, 43], trees3 [45], and transitive closure graphs [46] have been developed.4

Notice that the complexity of the code evaluation can be affected when symme-

try constraints have to be taken into account. Dealing with an arbitrary number of

symmetry groups of devices during the code evaluation necessitates nontrivial al-

gorithmic modifications, paying also a significant computational toll. For instance,

the complexity of the evaluation algorithm in [44] is quadratic, while the evaluation

algorithm for O-trees in the absence of symmetry constraints is linear [34].

This chapter will present some data structures used in the evaluation of topo-

logical representation, followed by a few topological techniques for device-level

placement with symmetry constraints.

1.2 Data Structures for Rectilinear Border Contours

This section will give an overview of several data structures that may be used in

the evaluation of a given topological representation of the layout. The algorithms

in this section are independent of the choice of the topological representation. To

emphasize this independence, we shall take into account the horizontal/vertical

topological constraints between the cells rather than a certain abstract representation

(since the topological constraints are derived from the layout encoding in specific

ways that characterize the abstract representation).

1.2.1 Segment Trees

The segment tree, originally introduced by Bentley [48], is a data structure mainly

employed in computational geometry, designed to handle operations with inter-

vals whose extremes belong to a given set of coordinates. The coordinates of the

intervals can be normalized by replacing each of them by its rank in their minimum-

to-maximum order. Therefore, without any loss of generality, we may consider these

coordinates as integers in the range Œ0; n�.

The (complete) segment tree is, basically, a rooted binary tree, where each node

v has attached an interval v:I D Œc; d � with integer bounds. If d � c > 1, then

node v has a left and a right descendant – denoted below as v:left and v:right – hav-

ing associated the intervals
h

c; b c Cd
2

c
i

and, respectively,
h

b cCd
2

c; d
i

. The intervals

attached to the nodes are called standard, while those pertaining to the leaves and

having the length equal to 1 are named elementary.

3 Actually, the algorithm in [44] exploits properties of the ordered tree codes which are infeasible

in symmetry point of view, to efficiently detect and hence discard them.
4 Very recently, a CAD system for analog layout, including a topological placement tool that uses

the corner block list representation [38], has been proposed [47].

1 Device-Level Topological Placement with Symmetry Constraints 13

a b

Fig. 1.2 (a) Complete segment tree for the root interval [0, 7], and the nodes visited during the

insertion of the interval [4, 6]; (b) typical tour in the segment tree during the insertion of an interval

A complete segment tree is shown in Fig. 1.2a. This tree is balanced, all the leaves

belonging to at most two contiguous levels. The depth of the complete segment tree

is dlog2.r � l/e, where Œl; r� is the interval attached to the root [49].

The segment tree T .l; r/ is designed to store intervals whose extremes belong to

the set fl; l C 1; : : : ; rg in a dynamic fashion, that is supporting interval insertions

and deletions. The segmentation of an interval Œa; b� is completely specified by the

operation that stores (inserts) Œa; b� in the segment tree T .l; r/. To insert an inter-

val, one must visit the nodes in the segment tree along a tour having the following

general structure (see Fig. 1.2b): an (possibly empty) initial path P from the root to

a node called the fork – marked with a star in the figure, from which two (possibly

empty) pathsPL and PR issue. Either the interval being inserted is assigned entirely

to the fork (in which case PL and PR are both empty), or all the right sons of nodes

of PL, as well as all the left sons of nodes of PR identify the fragmentation of Œa; b�

into standard intervals. For instance, Fig. 1.2a shows the nodes visited during the

insertion of the interval [4, 6] in the segment tree T .0; 7/.

The assignment of an interval to a node v of the segment tree could take differ-

ent forms, depending upon the requirements of the application. Frequently, all we

need to know is the cardinality of the set of intervals assigned to any given node v.

This can be managed by a single nonnegative integer data member v:cnt, initialized

to zero, denoting this cardinality. If this is the case, the assignment of the interval

Œa; b� to the node v simply becomes v:cnt D v:cnt C 1. In other applications, there

is need to preserve the identity of the intervals assigned to a node v. Then we may

append to each node v a secondary data structure, for instance, a singly linked list,

whose records are the identifiers of the intervals. Removing an interval from the seg-

ment tree works in a symmetric way. Note that only deletions of previously inserted

intervals guarantee correctness.

The segment tree is a versatile data structure with numerous applications. It is

extremely used especially in the geometric searching algorithms and the geome-

try of rectangles [49]. For instance, if one wishes to know the number of intervals

containing a given point x, a simple binary search in the segment tree (that is, the

traversal of a path from the root to a leaf) readily solves the problem.

14 F. Balasa

In this section, we are going to use the segment tree data structure to com-

pute the device abscissae xi assuming the device ordinates yi are already known

[50], therefore the extremes of the intervals defining the left and right border con-

tours – the elements of the set S D
S

i fyi ; yi C hig – are currently fixed. Also,

it is assumed that a topological sort of the horizontal constraint graph is available:

this order of visiting the nodes ensures that the blocks to the left are visited before

the blocks to the right and, therefore, the horizontal topological constraints would

be satisfied.

During the visit of the topologically sorted nodes, a segment tree data struc-

ture will be gradually built. The creation of the segment tree is done in a top-down

manner, starting with the root and expanding the tree till the nodes associated with

elementary intervals. In our application, each node v of the segment tree has attached

an interval v:I and a value v:x used for the computation of the cell abscissae xi .

After each iteration, the segment tree will represent the contour of the right border

of the (partial) placement configuration (see the illustrative example towards the end

of this section).

First, the y-coordinates of the devices are “normalized”: after sorting them

increasingly (and eliminating the duplicate values), the y-coordinates are replaced

by their indexes (ranks) in the ordered sequence. Note that the algorithm operates

with intervals Œai ; bi � rather than Œyi ; yi C hi �, where ai ; bi are the indices of yi

and, respectively, yi Chi in S – the increasingly-sorted set of the interval endpoints.

In this way, the size of the segment tree will be kept minimal and, without loss of

generality, the y-coordinates can hence be considered integers in the range Œ0; n�

(n being the number of devices). Note also that the indices ai ; bi can be determined

while sorting the set S without affecting the complexity of the sorting operation.

Algorithm: Computation of the device abscissae (xi) using a segment tree

let xi D 0; // reset all the abscissae of the left-bottom corners of the devices

sort increasingly the set S D
S

i fyi ; yi C hi g;
// the duplicate elements of the set are eliminated during sorting

let m be the number of elements of set S;
SegmentTreeNode v0 D CreateNode .Œ0;m � 1�; 0/;

// create the root v0 of the segment tree

for each cell Bi (visited in the order of the topological sort)

let ai be the index of yi, and
let bi be the index of yi C hi in set S;
UpdateSegmentTree .v0; Œai ; bi �/;

UpdateRightContour .v0; Œai ; bi �/;

end for

W D maxfv:xg, 8v 2 SegmentTree;
// compute the width W of the placement

After the ordinate normalization, the segment tree is recursively built by the pro-

cedure UpdateSegmentTree (see below). The CreateNode procedure constructs and

inserts a new node v in the segment tree – the two parameters being the interval v:I

and the value v:x. The roots of the left and right subtrees of v are denoted v:left and,

respectively, v:right; they are initially NULL. The procedure UpdateSegmentTree is

1 Device-Level Topological Placement with Symmetry Constraints 15

inserting the normalized interval of Œyi ; yi C hi � – the spanning of block Bi along

the y axis – into the segment tree, decomposing it into standard intervals. At the

same time, the abscissa xi of the left-bottom corner of block Bi is computed by

taking the maximum over all the values v:x of the nodes with standard intervals.

procedure UpdateSegmentTree .v; Œai ; bi �/

if v:I � Œai ; bi � then

if v:x > xi then xi D v:x;
else let v:I D Œc; d � and mid D b cCd

2
c;

if v is currently a leaf of the segment tree then

v:left D CreateNode .Œc;mid�; 0/;
v:right D CreateNode .Œmid; d �; 0/;

if ai < mid then UpdateSegmentTree .v:left; Œai ; bi �/;
if mid < bi then UpdateSegmentTree .v:right; Œai ; bi �/;

end procedure

The procedure UpdateSegmentTree visits the nodes in the segment tree along

a tour having the general structure shown in Fig. 1.2b. Subsequently, the procedure

UpdateRightContour sets the values of all the nodes corresponding to these standard

intervals to xi C wi – the abscissa of Bi ’s right border.

procedure UpdateRightContour .v; Œai ; bi �/

if v:I � Œai ; bi � then v:x D xi C wi;
else let v:I D Œc; d � and mid D b cCd

2
c;

if ai < mid then UpdateRightContour.v:left; Œai ; bi �/;
if mid < bi then UpdateRightContour.v:right; Œai ; bi �/I

end procedure

The computation of each cell abscissa, based on the decomposition of the nor-

malized interval Œyi ; yi C hi � into standard intervals, is followed by an update of

the values v:x of the visited nodes. To avoid performing any computation twice, the

decomposition into standard intervals can be done top-down, using two stacks to

store the visited nodes, one for the standard nodes – the “white” nodes in Fig. 1.2b,

the other for the nodes on the paths P , PL, and PR – the “black” nodes in the same

figure. Then the update of the values v:x can be easily done bottom-up. Hence, the

implementation of the procedure UpdateRightContour can be performed more effi-

ciently than the recursive version given above for reason of clarity.

The decomposition of the root segment into standard intervals is done inO.logn/

time since the height of the segment tree is at most dlog2.m� 1/e (the root interval

being Œ0;m � 1�), hence upper-bounded by dlog2 ne. This entails the same com-

plexity for the procedures UpdateSegmentTree and UpdateRightContour. Since the

sorting of the set S, together with the computation of the indices ai and bi , take

O.n logn/ time, the overall complexity of the algorithm computing the device ab-

scissae is thus O.n logn/.

Example. Consider a layout with nine rectangular blocks having the widths

and heights indicated: A(140 � 30), B(40 � 20), C(50 � 50), D(20 � 60),

16 F. Balasa

E(20 � 60), F(20 � 30), G(50 � 60), H(20 � 10), and I(40 � 20). Assume the

cell ordinates are known or have been previously determined: ŒyA yB : : : yI � D

Œ0 40 60 30 30 30 60 30 40�. Let us assume that the order of the nodes in the

topological sort of the horizontal constraint graph is alphabetical: A,B, : : : ; I. This

example illustrates the computation of the device abscissae using a segment tree.

All the cell abscissae are initially zero. After the sorting and elimination of du-

plicates, the set S D
SiD9

iD1fyi ; yi C hi g D f0; 30; 40; 60; 90; 110; 120g has m D 7

elements. Due to the normalization, the root node v0 of the segment tree has associ-

ated the interval [0, 6]. (By normalization, the depth of the segment tree is reduced

from dlog2 120e D 7 to dlog2 6e D 3.) The interval ŒyA; yA C hA� D Œ0; 30� of the

first node visited in the preorder traversal is normalized to Œa; b� D Œ0; 1� (since the

indices of the elements 0 and 30 in S are 0 and, respectively, 1). As v0:I D Œ0; 6�

and mid D 3, two new nodes v1 and v2 are created having attached the intervals

[0, 3] and [3, 6]. UpdateSegmentTree.v1; Œ0; 1�/ is then recursively called and two

new nodes v3 and v4 – having the intervals [0, 1] and [1, 3] – are created (see

Fig. 1.3a). The execution of UpdateSegmentTree.v0; Œ0; 1�/ yields xA D v3:x D 0

since v3:I D Œ0; 1�. Afterward, UpdateRightContour will visit once again the same

nodes in the segment tree to update the values of the nodes. In this case, the only

node is v3 (which is actually the “fork,” the paths PL and PR being empty): there-

fore, v3:x D xA C wA D 140.

Figures 1.3a–i display the segment tree after the insertion of each normalized

y-spanning intervals Œai ; bi � in the segment tree, the cells being successively placed

in the order given by the topological sort. The nodes corresponding to the standard

segments are represented as double circles, while the “fork” nodes are marked with

a star. The computation of the cell abscissae yields successively: ŒxA xB : : : xI � D

Œ0 0 0 50 70 90 90 110 110�, and the final value of the root v0:x D 150 is the current

width of the analog block. The placement corresponding to the last segment tree in

Fig. 1.4a is shown in Fig. 1.4b.

Although in this illustrative example the final segment tree is complete, that is,

all the leaves have attached elementary intervals, this is not always the case – which

is quite desirable for the practical running times. ut

When this algorithm is embedded into a combinatorial optimization framework,

like simulated annealing, it is not efficient to create a new segment tree for every

inner-loop iteration of the annealer. Actually, the segment tree should be created

only once, at the beginning of the annealing process. A re-initialization of the seg-

ment tree at the beginning of each inner-loop iteration would suffice. The rationale

of this procedure is explained below.

The segment tree is used in our context for the computation of the abscissae of

n devices, the largest interval associated with the root being Œ0; n�. At each iteration

of the simulated annealing, the root interval will be of the form Œ0; k�, where k � n.

Since all these intervals are included in Œ0; n�, there is no need to build a new segment

tree for every evaluation of the topological representation (although the root interval

Œ0; k� is typically changing after each iteration of the annealer). In fact, it is suffi-

cient to build only once a segment tree having the root interval Œ0; n�. Indeed, since

1 Device-Level Topological Placement with Symmetry Constraints 17

a
b

c
d

e
f

g
h

F
ig

.
1
.3

(a
–
h

)
T

h
e

se
g
m

en
t

tr
ee

ev
o
lu

ti
o
n

18 F. Balasa

a

Cell I: Œ2; 3�

b

Fig. 1.4 Illustrative example: (a) the last segment tree (after the insertion of the normalized y-

interval of cell I , that is Œ2; 3�), and (b) the final device placement

at each iteration the root interval Œ0; k� � Œ0; n�, the current segment tree can actu-

ally be embedded in the “larger” one having the root interval Œ0; n�, updating only

the intervals v:I of the nodes. Flags attached to the nodes (denoted v:leaf) are used

to indicate the leaf nodes at any moment. This remark reduces significantly the prac-

tical computational effort since the creation and deletion of the segment tree nodes

actually happen only once – at the beginning and, respectively, at the end of the an-

nealing process, rather than in each inner-loop iteration. Failure to take this remark

into account increases the computation time of the evaluation algorithm by 15–20%.

1.2.2 Red–Black Interval Trees

The interval tree is a binary search tree, with each node having associated a closed

interval whose interior is disjoint from the intervals of the other nodes, but whose

union is a closed interval as well. In our case, the union of the node intervals will

always be Œ0;H�, where H is the chip height. In addition, the intervals of the nodes

in any left subtree are to the left (on the real line) of the node interval, while the in-

tervals in the right subtree are to the right of the node interval. (Thus, an in order tree

traversal of the data structure lists the intervals in sorted order by the low endpoints.)

Moreover, the interval tree is organized as a red–black tree [51] – a binary search

tree with an extra bit of storage per node: its color, which can be either red or black.

(This color convention was introduced by Guibas and Sedgewick [52] who intro-

duced red–black trees.) The reason of this organization is to ensure an amortized

time bound [51] of O.logn/ per each update of the data structure. In addition, if

a node is red, its children must be black (the NULL pointers or references, when

there are no children, are also considered black leaves), and every path from a node

to a descendant leaf contains the same number of black nodes. An example of a

red–black interval tree is displayed in Fig. 1.5. By constraining, the way nodes can

1 Device-Level Topological Placement with Symmetry Constraints 19

Fig. 1.5 A red–black interval tree (the red nodes are shaded, the black nodes are darkened)

be colored on any path from the root to a leaf, red–black trees ensure that no such

path is more than twice as long as any other [51], so the tree is approximately

balanced.

The general scheme of the algorithm computing the device abscissae is given

below [53]. The assumptions are similar to the ones in Sect. 1.2.1: the device ordi-

nates yi are already known and a topological sort of the horizontal constraint graph

is available. First, the root of the red–black interval tree is created, the node hav-

ing attached the interval Œ0;H�, where H is the height of the layout. Afterward, the

devices are visited in the order of the topological sort, such that the blocks to the

left are visited before the ones to the right, such that the horizontal positioning con-

straints be satisfied. The red–black interval tree is iteratively updated as a result of

the insertion of the new y-spanning interval Œyi ; yi C hi � of device Bi in the tree.

Algorithm: Computation of the device abscissae (xi) using a red–black interval tree

let xi D 0; // reset all the abscissae of the left-bottom corners of the devices

let H D maxifyi C hi g be the total height of the chip;
InsertNode .Œ0;H�; 0; black/; // create the root of the red–black tree

for each cell Bi (visited in the order of the topological sort)

UpdateRedBlackTree .root; Œyi ; yi C hi �/;
// modify the red–black tree to

end for

// model the new right border of the analog block

W D maxfv:xg, 8v 2 RedBlackTree;
// compute the width W of the placement

The procedures InsertNode and DeleteNode insert/delete a vertex v from the

red–black interval tree, preserving the properties of this tree, which were stated at

the beginning of this section. The insertion and deletion techniques take O.logn/

time each and are fully discussed in [51]. In addition, the InsertNode procedure calls

the constructor of a “red–black” node v having as parameters an interval denoted v:I

(its low and high extremes being denoted minfv:I g and maxfv:I g), an abscissa v:x

for the computation of the xi values, and the node color (red or black). The values

of v:x represent abscissae of vertical segments on the right border of the chip.

20 F. Balasa

c1 c2 c3 c4

ba

Fig. 1.6 The interval trichotomy for the two – possibly overlapping – closed intervals v:I

and Œa; b�

The procedure UpdateRedBlackTree follows the cases of the interval trichotomy

of the two intervals v:I and Œa; b�, that is, the three cases:

(a) maxŒa; b� � minfv:I g;

(b) maxfv:I g � minŒa; b�;

(c) the interiors of the closed intervals v:I and Œa; b� overlap; in this last case, there

are four situations shown in Fig. 1.6.

procedure UpdateRedBlackTree .v; Œa; b�/ // Œa; b� D Œyi ; yi C hi �

if b � minfv:I g then UpdateRedBlackTree.v:left; Œa; b�/; return;
// case (a)

if maxfv:I g � a then UpdateRedBlackTree.v:right; Œa; b�/; return;
// case (b)

if v:x > xi then xi D v:x;
// the interiors of Œa; b� and v:I overlap: cases (c1-c4)

if a < minfv:I g && b < maxfv:I g then // case (c1)

v:I D Œb;maxfv:I g�; UpdateRedBlackTree .v:left; Œa; b�/; return;
if minfv:I g < a && maxfv:I g < b then // case (c2)

v:I D Œminfv:I g; a�; UpdateRedBlackTree .v:right; Œa; b�/; return;
if minfv:I g � a && b � maxfv:I g then // case (c3)

if .I1 D Œminfv:I g; a�/ ¤ ; then InsertNode.I1; v:x; red/;
if .I2 D Œb;maxfv:I g�/ ¤ ; then InsertNode.I2; v:x; red/;
v:I D Œa; b�; v:x D xi C wi;
MergeAdjacentIntervalsWithSameAbscissae.v/; return;

if a � minfv:I g && maxfv:I g � b then // case (c4)

if .I1 D Œa;minfv:I g�/ ¤ ; then DeleteInterval.v:left; I1/;
if .I2 D Œmaxfv:I g; b�/ ¤ ; then DeleteInterval.v:right; I2/;
v:I D Œa; b�; v:x D xi C wi;
MergeAdjacentIntervalsWithSameAbscissae.v/;

end procedure

1 Device-Level Topological Placement with Symmetry Constraints 21

In the cases (a) and (b), the procedure UpdateRedBlackTree is recursively called

for the left and, respectively, right subtree. The cases (c1) and (c2) are similarly

handled; the only difference is that the interval v:I is shortened by eliminating the

overlap with Œa; b� since the intervals in the tree must be disjoint. The number of

nodes in the interval tree can increase only in the situation (c3) due to the fragmen-

tation of the interval v:I in at most three segments. On the other hand, the number of

nodes in the interval tree can decrease only in the case (c4), when all the nodes (but

one) having intervals completely overlapped by Œa; b� will be recursively deleted by

the procedure DeleteInterval, shown below.

The procedure MergeAdjacentIntervalsWithSameAbscissae identifies the nodes

v1, v2 having the intervals adjacent to v:I . If v and v1 and/or v2 have the same ab-

scissae, the interval of the ancestor is enlarged and the descendent node is removed.

For instance, if v is the root in Fig. 1.5 (v:I D Œ30; 40�), v1 is the node whose interval

is [20, 30] (i.e., left of [30, 40]) and v2 is the node whose interval is [40, 50] (i.e.,

right of [30, 40]). If, e.g., v1:x D v:x, then the root would get its interval modified

to [20,40], while v1 would be removed, being no longer necessary (since the two

segments of the contour would be collinear). Finding the successor and predecessor

nodes in a binary search tree is easy [51]. Note that a restoration after deletion of

the red–black tree is necessary in this situation; the worst-case complexity of this

procedure is O.logn/ [51].

The procedure DeleteInterval eliminates (using DeleteNode) the nodes with in-

tervals entirely overlapped by Œa; b�. It is basically working according to the interval

trichotomy (see Fig. 1.6) as well.

procedure DeleteInterval .v; Œa; b�/

if b � minfv:I g then DeleteInterval .v:left; Œa; b�/; return; // case (a)

if maxfv:I g � a then DeleteInterval .v:right; Œa; b�/; return; // case (b)

if v:x > xi then xi D v:x;
if a � minfv:I g && b < maxfv:I g then // case (c1)

if .I1 D Œa;minfv:I g�/ ¤ ; then DeleteInterval.v:left; I1/;
v:I D Œb;maxfv:I g�; return;

if minfv:I g < a && maxfv:I g � b then // case (c2)

if .I2 D Œmaxfv:I g; b�/ ¤ ; then DeleteInterval.v:right; I2/;
v:I D Œminfv:I g; a�;

else // case (c4): if v:I � Œa; b� (case c3 cannot appear)

if .I1 D Œa;minfv:I g�/ ¤ ; then DeleteInterval.v:left; I1/;
if .I2 D Œmaxfv:I g; b�/ ¤ ; then DeleteInterval.v:right; I2/;
DeleteNode.v/;

end procedure

The red–black tree can have at most n nodes since there are at most n segments on

the border contours determined by the y-spanning intervals Œyi ; yi C hi �, hence the

red–black tree has a maximum height of d2 log2 ne [51]. Since the node insertions

and deletions takeO.logn/, we may be tempted to considerO.logn/ the worst-case

time bound per iteration. But this is not always true: when new nodes are inserted in

22 F. Balasa

the red–black interval tree (in case (c3)), it can gain at most two nodes per iteration,

whereas when the tree decreases in size (in case (c4)), up to O.n/ nodes can be

deleted.5

However, using the aggregate method of amortized analysis [51], it can be shown

that the amortized time bound is O.logn/ per iteration. Intuitively, the reason is that

each node can be deleted at most once for each time it is created. In an amortized

analysis, the time required to perform a sequence of operations is averaged over

all the operations performed. Amortized bounds are weaker though than the corre-

sponding worst-case bounds because there is no guarantee for any single operation.

If an average is taken over a sequence of operations, the average cost of an operation

may be small, even though a single operation may be expensive.

Using the aggregate method of amortized analysis [51], we consider an en-

tire sequence of m UpdateRedBlackTree operations on the red–black interval tree

having initially only one node. Although the case (c4) can be expensive, the se-

quence of m operations can cost at most O.m logn/, since each node can be deleted

at most once for each time it is created. The amortized cost of an operation is

O.m logn/=m D O.logn/. Since in the algorithm computing the device abscissae

there are n iterations, the overall time complexity is O.n logn/. The space require-

ment of the algorithm is O.n/, since the red–black interval tree can have at most

2n � 1 nodes (the number of vertical segments of the right border contour being at

most 2n � 1).

Example. Consider a layout with ten rectangular blocks, having the widths and

heights indicated between parentheses: A(14 � 3), B(3 � 1), C(4 � 2), D(5 � 2),

E(4 � 3), F(2 � 6), G(2 � 6), H(2 � 3), I(5 � 6), and J(4 � 2). Assume the

cell ordinates are known or have been previously determined: ŒyA yB : : : yJ � D

Œ0 3 4 6 8 3 3 3 6 4�. Let us assume that the order of the nodes in the topo-

logical sort of the horizontal constraint graph is alphabetical: A,B, : : : ,J. This

example illustrates the computation of the device abscissae using a red–black

interval tree.

All the block abscissae are initially zero. The first root node v0 of the red–black

interval tree (the first tree in Fig. 1.7) has associated the interval Œ0;H� D Œ0; 12�

since the height of the chip is H D maxfyi C hig D 12. The y-spanning interval

ŒyA; yA C hA� D Œ0; 3� of the first node visited in the topological sort of the hori-

zontal constraint graph is the argument of UpdateRedBlackTree in the first iteration.

Since in the interval trichotomy the case is as in Fig. 1.6c3, and I2 D Œ3; 12� ¤ ;,

the root will get a new right child having attached the interval I2. The abscissa of

block A is xA D 0. The root interval is modified to v0:I D Œ0; 3� and the abscissa

of the root becomes v0:x D xA C wA D 14 (the second tree in Fig. 1.7).

The processing of block B will insert a new node as a red right child in the tree

interval (case (b), then case (c3) – Fig. 1.6 – in the recursive call). Since the red node

5 Such a situation could occur if the red–black tree had O.n/ nodes and in the next iteration the

block had the height of the whole chip; the red–black tree would be reduced to a single node with

v:I D Œ0;H�.

1 Device-Level Topological Placement with Symmetry Constraints 23

F
ig

.
1
.7

T
h
e

re
d
–
b
la

ck
in

te
rv

al
tr

ee
ev

o
lu

ti
o
n
.

E
ac

h
n
o
d
e

v
h
as

at
ta

ch
ed

an
in

te
rv

al
v:
I

an
d

an
ab

sc
is

sa
v:
x

24 F. Balasa

Fig. 1.8 The detailed modification of the red–black interval tree for ŒyD ; yD C hD � D Œ6; 8�

a b

Fig. 1.9 Illustrative example: (a) the last red–black interval tree (after the insertion of the y-

interval of cell J), and (b) the final device placement

Œ3; 4� has a red child Œ4; 12� (red–black property violation!), a left rotation as well as

a modification of the node coloring are performed to restore the red–black property,

the node having the interval Œ3; 4� becoming the root (the third tree in Fig. 1.7).

The operations implied by the processing of block D are displayed in Fig. 1.8: first,

a new node in the interval tree is created, followed by a rotation and a change of

colors as described in [51].

The successive modifications of the red–black interval tree are displayed in

Fig. 1.7. After each iteration, the inorder walk of the red–black interval tree de-

scribes exactly the contour of the right border of the chip. The computation of the

abscissae of the blocks yields: ŒxA xB : : : xJ � D Œ0 0 0 0 0 5 7 9 9 11�. Note that

in the “block F”-iteration the case is as in Fig. 1.6c4, since ŒyF ; yF C hF � D Œ3; 9�

covers the intervals Œ3; 4�, Œ4; 6�, and Œ6; 8� in the red–black tree. The interval of

the first node is modified and the other two corresponding nodes are removed by the

procedure DeleteInterval. The last tree is displayed in Fig. 1.9a; it corresponds to

the placement in Fig. 1.9b. The width of the layout is W D maxfv:xg D 15. ut

The evaluation algorithm could also use fully-balanced (AVL) binary search trees

[54] instead of red–black trees to achieve the same time complexity. However, in

AVL trees balance is maintained by as many as �.logn/ rotations (for the

1 Device-Level Topological Placement with Symmetry Constraints 25

asymptotic notations, see [51] Chap. 2) after a node deletion,6 whereas at most

two rotations are necessary to maintain the red–black tree after an insertion, and at

most three rotations after a deletion [51]. Red–black trees are only approximately

balanced, but they achieve the same complexity being more efficient in terms of

practical computation effort.

1.2.3 Deterministic Skip Lists

Historically, the probabilistic skip list (PSL) was introduced first by Pugh [55] as

an alternative to balanced search trees [51]. The main idea in the PSL is that each

of its keys (i.e., the information contained in the data structure) is stored in one or

more sorted linked lists. All keys are stored in sorted order in the linked list denoted

as level 1, and each key in the linked list at level k.k D 1; 2; : : :/ is included with

probability p.0 < p < 1/ in the linked list at level k C 1. A header contains the

references to the first key in each linked list (see the skip list in Fig. 1.10). The height

of the data structure, that is, the number of linked lists, is also stored.

A search for a key begins at the header of the highest numbered linked list. This

linked list is scanned until it is observed that its next key is greater than or equal to

the one sought, or the reference is NULL. At that point, the search continues one

level below until it terminates at level 1. By convention, the equality test is done

only at level 1 as the last comparison; this avoids two tests (or a three-way branch)

at each step.

Insertions and deletions are quite straightforward [55]. A new key is inserted

when a search for it ends at level 1. As it is put in the linked list k.k D 1; 2; : : :/,

it is inserted with probability p when its search terminates at level k C 1. This

continues until, with probability 1-p, the choice is not to insert. The counter for the

height of the data structure is increased, if necessary.

Deletions are completely analogous to insertions. A key to be deleted is removed

from the linked lists in which it is found. The height of the data structure is up-

dated by scanning the header’s pointers and decreasing the height until a non-NULL

pointer (or reference) is found.

PSLs maintain an average logarithmic search and update cost, even after a long

sequence of updates. This is in sharp contrast with binary search trees, where it was

shown that usual update algorithms lead to degeneration in behavior [56].

Fig. 1.10 A skip list having the gaps of sizes 1, 2, and 3

6 The deletion of the leftmost node in a Fibonacci tree [54] is such an example. Rebalancing after

insertion never needs more than a single or a double rotation though.

26 F. Balasa

It can be shown that the PSL exhibits an average logarithmic behavior. For in-

stance, consider the search cost for a hypothetical very large key denoted C1.

Clearly, all the n keys are at level 1, about pn keys will make it to level 2, about

p2n keys will make it to level 3, and so on. Therefore, the expected height of the

PSL is approximately log 1
p
n. Since, among all keys that made it to a certain level,

about every 1
p

th key will make it to the next higher level, one should expect to make
1
p

key comparisons per level. Therefore, one should expect 1
p

log 1
p
n in total when

searching for C1.

Despite the fact that on the average the PSL performs reasonably well (�.logn/

time for a search or an update [55]), in the worst case its �.n logn/ space and

�.n/ time complexity are considered rather high. In addition, the good average

case performance of the PSL, although independent of the input, does depend on

the random number generator behaving “as expected.” Should this not be the case at

a particular instance (if, for instance, the random number generator creates elements

(nodes) of equal heights7), the PSL may degenerate into a structure worse than a

linear linked list. On the other hand, a class of deterministic skip list (DSL) [57]

achieves logarithmic worst-case costs.

Assuming that a skip list of n keys has a 0th (Header) and a (n C 1)st node

(Tail) of height equal to the height of the skip list, two elements are linked when

there exists at least one pointer going from one to the other. Given two linked

elements, one of the height exactly h.h > 1/ and another of height h or higher,

their gap size is the number of nodes of height h � 1 that exist between them. For

instance, in the skip list of Fig. 1.10 the gap size between 20 and 40 is 3, while the

gap between �1 and C1 (Header and Tail) is 1. A deterministic skip list is a

skip list having the gap sizes in a given range.

It can be proven [58] that there is a one-to-one mapping between the set of

B-trees of order m [54], m � 3, and the set of DSLs with gaps of sizes d m
2

e � 1;

d m
2

e; : : : ; m � 2, or m � 1. Consequently, this class of DSLs achieves logarith-

mic worst-case complexities for search and update (insert/remove key) [57]. When

m D 2k C 2, this subclass of DSLs having gap sizes between k and 2k C 1, called

k � .2k C 1/ DSLs has an additional desirable property: the insertion and deletion

can be implemented using a top-down strategy in a relatively easy way. The simplest

DSL of this subclass (k D 1), the so-called 1-3 (or 1-2-3) DSL having only gaps of

size 1, 2, or 3 (like the one in Fig. 1.10), may be the main data structure used for the

computation of the layout contour in some evaluation algorithm.

1.2.3.1 Insertion and Deletion of a Key in a 1-3 DSL

Adopting a top-down approach, we choose to perform an insertion in a 1-3 DSL by

splitting any gap of size 3 on our way to the bottom level into two gaps of size 1. We

ensure in this way that the data structure retains the gap invariant with or without

7 The height of an element is the number of linked lists to which it belongs. The height of a skip

list is the maximum height of its list nodes.

1 Device-Level Topological Placement with Symmetry Constraints 27

Fig. 1.11 (a) A 1–3 skip list. (b) The skip list after the top-down insertion of the key 10. (c) The

skip list after the top-down deletion of the key 30

the inserted key. To be more precise, the search starts at the header, one level higher

than the height of the skip list. If the gap we are going to drop in has the size 1

or 2, then we simply drop. If the gap is of size 3, first we raise the middle element

in the gap, creating thus two gaps of size 1 each, and only then we drop. When the

bottom level is reached, we simply insert a new element (node) of height 1. Since

this algorithm allowed only gaps of sizes 1 and 2 before the proper insertion, the

newly inserted element does not modify the gap invariant and, therefore, leaves a

valid 1-3 DSL.

As an example, consider the case of inserting 10 in the skip list of Fig. 1.11a. We

start at level 3 of the header, we look at level 2 where 25 is raised, then we drop at

level 2. We move to level 2 of node 8, we look at level 1 and we raise the node 16.

Then we drop to level 1 of 8, and finally we insert 10 as a new node of height 1. The

resulting skip list is shown in Fig. 1.11b.

To delete a key from a 1-3 DSL, we work in a top-down manner as well. The

search preceding the actual key removal should have the side effect to leave each

gap legal, but above the minimum size of 1 as we pass through it. This is handled

by either merging with a neighbor, or borrowing from a neighbor. More precisely,

the search is started at the header and at the level equal to the height of the skip

list. If the gap G that we are going to drop in is of size 2 or 3, then we simply

drop. If the gap G is of size 1, we proceed as follows. If G is not the last gap on

the current level, then if the following gap G0 is of size 1, the gaps G and G0 are

“merged” by lowering the element separating the two gaps. If the following gap

G0 is of size 2 or 3, then we “borrow” from it: the node separating G and G0 is

lowered, whereas the first element of G0 is raised. On the other hand, if G is the last

gap on the current level, then we “merge” with or borrow from its preceding gap.

We continue in this way until the bottom level 1 is reached. There, we remove the

key if its node has the height equal to 1. Otherwise, the node is swapped with its

predecessor, followed by the removal. Since this algorithm does not allow any gaps

to be of size 1, what we are left with after the removal of the element of height 1 is

a valid 1-3 DSL.

As an example, consider the deletion of the key 30 in the skip list of Fig. 1.11b.

We start at level 3 of the header, we move to level 3 of node 25. We look at level 2

28 F. Balasa

and, since the gap has size 1 and it is the last one on the current level, we look at the

preceding gap whose size is 2. Then we “borrow” from the preceding gap, lowering

the node 25 separating the two gaps, while raising node 16 – the nearest element

from 25 in the preceding gap. Then we drop at level 2 and we look at level 1; we

drop at level 1 of 25, and finally remove 30. The resulting skip list is shown in

Fig. 1.11c.

This top-down insertion and deletion approaches are easily generalizable to any

k � .2k C 1/ skip list, for k D 1; 2; : : : . When inserting a key in a 2-5, 3-7, 4-9, : : :

DSL, we split a gap of size 5, 7, 9, : : : into two gaps of legal size 2, 3, 4, : : : before

we drop down a level. When deleting a key from such a DSL, we merge/borrow if

we are going to drop in a gap of size 2, 3, 4, : : : :

1.2.3.2 Implementation Aspects of 1-3 DSL’s

The 1-3 DSL achieves logarithmic worst-case search and update complexities if its

elements are implemented either as linked lists, or as arrays of exponential heights

(the so-called horizontal array implementation) [58]. Since the memory require-

ments for this placement algorithm do not impose severe constraints,8 we adopted

the linked list implementation as it is credited with more clarity, elegance, and

simplicity.

The implementation is somewhat tricky. The nodes do not contain arrays of for-

ward links as it would seem natural: with such a strategy, promoting a height h node

to height h C 1, O.h/ time is needed only to copy the h links, and the time bound

would result O.log2 n/ per insertion/deletion. Instead, favoring time versus space,

each DslNode in the implementation maintains a link down to descend a level, a

link right to the next node on the same level, and the key that is logically stored in

the next DSL element. The actual implementation of the DSL in Fig. 1.10 is shown

in Fig. 1.12. Notice that some keys appear more than once: if a node has height h in

the DSL, its key will appear in h places in the actual implementation. To make the

code faster and simpler (avoiding having special cases in the code), a dummy head
node, and two sentinel nodes bottom and tail are used to replace the NULL

links downward and, respectively, to the right.

An implementation (in C++ style) of the procedure inserting a key [58] is given

below. The data members of a DslNode are the key, and two pointers – one down-

ward and one to the right.

void DSL::insert (int KEY)

f DslNode *p = head, *t, *pdr, *pdrr;

bottom->key = KEY;

while (p!=bottom)

f while (p->key < KEY) p = p->right;

if (p->key > (pdrr=(pdr=p->down->right)->right)->key)

8 Analog circuits seldom contain more than 100 cells per hierarchical level [2].

1 Device-Level Topological Placement with Symmetry Constraints 29

Fig. 1.12 Linked list implementation of the 1-3 DSL in Fig. 1.10. Note the presence of several

DslNode’s having the same key for each element (node) in the abstract representation of the DSL

in Fig. 1.10. The sentinel nodes tail and bottom are also shown

f p->right = new DslNode(p->key,pdrr,p->right);

p->key = pdr->key; p->x = pdr->x;

g

else

if (p->down == bottom) return; // KEY already in the DSL

p = p->down;

g

if (head->right != tail) head = new DslNode(M,head,tail);

g;

Adopting a top-down approach, the insert procedure ensures that the DSL retains

the gap invariant with or without the inserted key by splitting any gap of size 3 on

the way from the head to the bottom level into two gaps of size 1. To be more

precise, we start the search at the head, and if the gap we are going to drop in is

of size 1 or 2, we simply drop; if the gap is of size 3, first the middle element in

this gap is raised one level, creating thus two gaps of size 1 each, and then we drop.

When the bottom level is reached, a new element of height 1 is inserted, and the new

DSL remains valid (therefore, it is still a 1-3 DSL).

1.2.3.3 Algorithm Computing the Border Contour of the Layout

In this section, we are going to use a 1-3 DSL data structure to compute the device

abscissae xi assuming the device ordinates yi are already known. Similarly as in the

previous sections, it is assumed that a topological sort of the horizontal constraint

graph is available (derived from the topological representation encoding the layout).

The deterministic skip list is used here to register the fragmentation of the right

or left contour of the (partial) placement configuration. The keys of the DSL are the

y-coordinates where the contour of the right border of the analog block is broken.

Therefore, the maximum key is H – the height of the analog block (which is already

30 F. Balasa

known since the y-coordinates have been already computed) – and the minimum key

is zero. Each element (node) n in the DSL has attached the key n.key and a value n.x,

which is the abscissa of the border segment starting from the ordinate n.key upward.

The devices are visited in the order of the topological sort, such that the blocks to

the left are visited before the ones to the right, such that the horizontal positioning

constraints (induced by the topological representation) be satisfied. When the node

Bi is visited, the DSL is updated storing the contour of the right border as a result

of the insertion of the new y-spanning interval Œyi ; yi C hi �.

Algorithm: Computation of the device abscissae (xi) using a 1-3 DSL

let xi D 0; // reset all the abscissae of the left-bottom corners of the devices

DSL.insert(0); // the key 0 is inserted as a sentinel in the DSL

for each cell Bi (visited in the order of the topological sort)

UpdateDSL .Œyi ; yi C hi �/; // modify the DSL to model the right border

end for // of the analog block; xi are updated as well

W D maxfn:xg, 8n 2 DSL; // compute the width W of the placement

The procedure UpdateDSL, shown below, modifies the DSL that stores the lat-

eral contour when a new device Bi is added to the partial placement as shown

in Fig. 1.13a. To modify the contour of the right border due to the block Bi , the

largest key (y-coordinate) � a (yj in Fig. 1.13a) is detected first. All the larger

keys inside the interval .a; b/ (that is, yj C1 to yk in Fig. 1.13a) must be removed

from the DSL and new keys a and b are inserted. (Special care is taken when a

and/or b coincide with yj , respectively, yk .) xi – the abscissa of the left-bottom

corner of Bi , is the maximum of the x-coordinates attached to the DSL nodes hav-

ing the keys yj ; yj C1; : : : ; yk . To keep minimal the number of nodes in the DSL,

the neighbors of the node having the key a are removed if they have attached the

same x-coordinates (since the segment AB in Fig. 1.13a would be collinear with the

neighbor segments of the contour).

a b

Fig. 1.13 (a) Modification of the border contour in the procedure UpdateDSL ([yi, yi C
hi]) when a new block Bi is processed. (b) Final device placement corresponding to the last 1-3

DSL in Fig. 1.14

1 Device-Level Topological Placement with Symmetry Constraints 31

procedure UpdateDSL .Œa; b�/ // Œa; b� D Œyi ; yi C hi �

let q be the DslNode in the DSL whose key
is the largest � a;

// that is, the node with the key yj as in Fig. 1.13a

xi = maxfp.xg, 8 DslNodes p such that p.key2[q.key,b)
if (b is not a key in the DSL)
f DSL.insert(b);

// insert new key b in the DSL if this key does not exist

DslNode(b).x = predecessor(DslNode(b)).x;
// ... and set the abscissa of its DslNode the same as its predecessor’s one

g // (that is, the DslNode with the key yk as in Fig. 1.13a)

if (q.key < a) DSL.insert(a);
// insert new key a in the DSL if it does not exist

for all the nodes p such that p.key2(a,b)
DSL.remove(p.key); // remove the keys covered by (a,b):

end for // that is, yj C1 to yk in Fig. 1.13a

DslNode(a).x = xi C wi;
// to keep the DSL size minimal, the adjacent collinear contour segments

// ... are merged by removing the keys with identical abscissae

if (DslNode(a).x == DslNode(b).x) DSL.remove(b);
if (a > 0 && predecessor(DslNode(a)).x == DslNode(a).x)

DSL.remove(a);
end procedure

Example. Consider a layout with ten rectangular blocks: A(14 � 3), B(3 � 1),

C(4 � 2), D(5 � 3), E(4 � 3), F(2 � 8), G(2 � 8), H(2 � 3), I(5 � 5), and J(4 �

2) – where the widths and heights are indicated between parentheses. Assume the

cell ordinates are known or have been previously determined: ŒyA yB : : : yJ � D

Œ0 3 4 6 9 3 3 3 6 4�. Let us assume that the order of the nodes in the topological sort

of the horizontal constraint graph is alphabetical.

The computation of the device abscissae is initiated by inserting the key 0 as a

sentinel into the empty DSL. In this way, the procedure finding the node whose key

is lesser than a certain positive value (see the pseudocode of UpdateDSL) will never

fail since all the keys yi � 0.

The first visited node in the binary tree is A; since the y-spanning interval of

device A is ŒyA; yA C hA� D Œ0; 3�, the keys 0 and 3 must be inserted in the DSL

provided they do not exist already, while removing the keys covered by the interval

[0, 3]. Only the key 3 needs to be inserted and no other key is deleted. The pro-

cedure UpdateDSL with the yields xA D 0 and assigns to the node 0 the x-value

xA C wA D 14 (see Fig. 1.14). The visit of the subsequent nodes B , C , D, and E

modifies the DSL in a similar way.

Since the y-spanning interval of the device F is ŒyF ; yF C hF � D Œ3; 11�,

the keys 4, 6, and 9 – covered by this interval – are removed, and the key 11 is

inserted into the DSL (see the 7th DSL in Fig. 1.14). The abscissa xF is the maxi-

mum of the x-values of the node 3 and of the removed nodes (4, 6, and 9), that is,

32 F. Balasa

Fig. 1.14 The 1-3 DSL during the computation of the device abscissae. Each list node has attached

the x-coordinate of a segment of the right contour starting at the y-coordinate equal to the key of

the node. The last skip list corresponds to the layout in Fig. 1.13b

xF D maxf3; 4; 5; 4g D 5. The x-value of the node 3 becomes xF CwF D 7, while

the x-value of the node 11 inherits the abscissa of node 9 (the last node removed),

that is, 4.

The last DSL in Fig. 1.14 corresponds to the placement in Fig. 1.13b. Note

that after each iteration, the DSL models the contour of the right border of the

partial placement, the keys being the y-coordinates where the contour changes

direction. ut

The 1-3 DSL can have at most n C 1 elements as there are at most n segments

on the border contours determined by the y-spanning intervals Œyi ; yi C hi �. Since

the key insertions and deletions take �.logn/ [58], we may be tempted to consider

O.logn/ the worst-case time bound per iteration. But this is not always true: when

the DSL grows, it can gain at most two new elements per iteration, but when it

decreases in size (see the visit of node F in Fig. 1.14), as many as O.n/ keys can be

deleted.9 Using the aggregate method of amortized analysis [51], it can be shown

that the amortized time bound is O.logn/ per iteration. Intuitively, the reason is that

each key can be deleted at most once for each time it is inserted. In an amortized

9 Such a situation could occur if the DSL had O.n/ elements and in the next iteration the block had

the height of the whole chip; the DSL would be reduced to only 2 nodes having the keys 0 and H.

1 Device-Level Topological Placement with Symmetry Constraints 33

analysis, the time required to perform a sequence of operations is averaged over

all the operations performed. Since there are n iterations – one for each device, the

overall time complexity is O.n log n/.

The space requirement of the algorithm is O.n/, since on each level k of the DSL

implementation (see Fig. 1.12a) there are at most b nC2
2k�1 c DslNode’s, therefore,

at most 2n C 7 in total, taking also into account the nodes header, tail, and

bottom.

1.2.4 Johnson’s Priority Queue

The keys, integers in the set f1; : : : ; N g, in Johnson’s priority queue model [32] are

kept in N buckets. The nonempty buckets, together with bucket 0 (always present

and used as a header) are kept in the bucket list, a doubly-linked list sorted on the key

values. The buckets in the list correspond to the leaves of a binary tree T. The nodes

of T are indexed by defining a complete [51] host binary treeH D f1; : : : ; 2h CN g,

where h D dlog2.N C 1/e. Each node q in H, different from the root, is a child of

the node bq=2c.

Example. Figure 1.15 shows a priority queue for keys in the set f1; : : : ; 6g, contain-

ing, in addition to bucket 0, only the keys 2 and 4. The list of buckets is shown below

the leaves of the tree T, drawn with bold solid lines. The host tree H is represented

with dashed lines. Because of reason of space, the figures in the rest of the chapter

will show only the bucket lists of the priority queue. ut

Fig. 1.15 Johnson’s priority queue [32]

34 F. Balasa

The driving idea is to conceive a complete binary tree with N C 1 leaves on

the lowest level, but dynamically to leave much of the tree incomplete. Whenever

a new bucket is inserted, its path would be constructed upward, until the new path

intersected the path of some nonempty bucket. Then, the path would be followed

downward toward leaves to find the nonempty bucket adjacent to which the new

bucket must be inserted into the list. Deletion would be a reversal of this process.

Since the height h of the host binary tree is O.logN/, and a path in the tree

T of length k is traversed using a mechanism somewhat similar to the binary

search, visiting at most 2dlog2 ke nodes [32], the key insertions and deletions take

O.log logN/ time.

An algorithm computing the devices’ abscissae will look very similar to the one

described in Sect. 1.2.3, where the deterministic skip list is replaced by a priority

queue with its list of buckets. The advantage is that updating the priority queue

would have an amortized time bound of O.log logn/, yielding an overall time com-

plexity of O.n log logn/, hence better than using a DSL.

1.3 Symmetric-Feasible Sequence-Pairs

Dealing efficiently with symmetry constraints in the framework of topological rep-

resentations implies addressing two problems:

a. How to recognize encodings complying with the given symmetry constraints,

without building the corresponding layout, and

b. How to restrict the exploration of the solution space of the representation only to

“symmetric-feasible” (S-F) codes.

This section will address the questions above assuming sequence-pair [29] as

the topological representation. The basic idea of the sequence-pair encoding, briefly

described below for the sake of consistency, is to represent any rectangle packing

as an ordered pair of cell sequences .˛; ˇ/. Denoting by ˛i , the cell of index i

(occupying the position i) in sequence ˛, and by ˛�1
A the position of the cell A in

the sequence,10 the topological relations between two cells A and B are given by

the following rules:

If ˛�1
A < ˛�1

B and ˇ�1
A < ˇ�1

B then cell A is to the left of cell B;

If ˛�1
A < ˛�1

B and ˇ�1
B < ˇ�1

A then cell A is above cell B .

For instance, a sequence-pair encoding of the 7-cell placement configuration

in Fig. 1.16a is .˛; ˇ/ D .CDAFBGE;DCBGAFE/. With the notations em-

ployed, we have, e.g., ˛1 D C; ˇ4 D G, and also, ˛�1
C D 1; ˇ�1

C D 2, etc. As

˛�1
F < alpha�1

B and ˇ�1
B < ˇ�1

F (4 < 5 and 3 < 6), it follows that cell F is

positioned above cell B .

10 Since ˛ and ˇ are one-to-one mappings, the inverse functions ˛�1 and ˇ�1 are well defined.

1 Device-Level Topological Placement with Symmetry Constraints 35

Fig. 1.16 (a) Placement configuration encoded by the sequence-pair .CDAFBGE;

DCBGAFE/. (b) Placement with symmetry group f(C,D), (B,G), A, Fg corresponding to

the S-F sequence-pair .EBAFCDG, EBCDFAG/

Now, let .˛; ˇ/ be the sequence-pair of a placement configuration containing a

number of symmetry groups (each group composed of pairs of symmetric devices

and self-symmetric devices relative to a common vertical axis). Denoting sym.x/

the symmetric pair of cell x, the sequence-pair .˛; ˇ/ is called symmetric-feasible

(S-F) [43] if for any distinct cells x; y in any of the symmetry groups

˛�1
x < ˛�1

y ” ˇ�1
sym.y/ < ˇ�1

sym.x/ (1.1)

Taking y D sym.x/, and noting also that sym.sym.x// D x, the condition (1.1)

shows that any symmetric pair of cells appears in the same order in both sequences

˛ and ˇ. In addition, two cells x; y belonging to distinct symmetric pairs appear

in one of the sequences in reversed order as do their symmetric cells in the other

sequence. Note that the condition (1.1) works neatly also when self-symmetric cells

(having x D sym.x/) are involved.

Example. Assuming that a given subset of the placeable cells must constitute a sym-

metry group, not all the sequence-pair codes are feasible any more. For instance,

suppose the pair of cells (C;D) in Fig. 1.16a should be symmetric relative to a ver-

tical axis: the encoding .˛; ˇ/ D .CDAFBGE; DCBGAFE/ is not feasible as it

leads to a placement configuration where cell C lays above D.

Figure 1.16b displays a placement corresponding to the S-F sequence-pair

.EBAFCDG, EBCDFAG/. Assuming a symmetry group f.C;D/; .B;G/;

A; F g composed of two symmetric pairs and two self-symmetric cells A and F ,

the sequence-pair above is symmetric-feasible. Indeed, taking the self-symmetric

cell A and comparing its positions ˛�1
A D 3 and ˇ�1

A D 6 in the sequences ˛

and ˇ to the corresponding positions of the other cells in the group, it follows that

the condition (1.1) is satisfied whenever cell A is involved. Similar comparisons

involving the positions of the other cells in the symmetry group will conclude the

verification. ut

Important remark: The property (1.1) is a sufficiency condition: it ensures the build-

ing of a valid placement in symmetry point of view, as it will be shown in Sect. 1.3.1.

Intuitively, the property (1.1) prohibits the situation when two cells from distinct

36 F. Balasa

symmetric pairs are in an “above-below” topological relation, while their pairs are

in the reverse relation, the two pairs preventing each other to align horizontally. It

also prohibits the situation when two symmetric pairs are intertwined, preventing

each other to align vertically about the same symmetry axis. Since the sequence-

pair typically presents redundancies, one can find sequence-pairs whose evaluation

yields a valid placement in symmetry point of view, but still do not satisfy the prop-

erty (1.1). We called the sequence-pairs having property (1.1) symmetric-feasible

since they can certainly generate symmetrically valid placements (see Sect. 1.3.1).

But it must not be construed that any sequence-pair not satisfying property (1.1) is

automatically symmetric-unfeasible. For instance, [21] shows a placement example

satisfying given symmetry constraints whose unique sequence-pair does not satisfy

the property (1.1). Such examples are rare though and they may be dependent on

the dimensions of the cells. The benefit of the sufficient condition (1.1) is that the

exploration of the solution space of placement problems with symmetry constraints

can be reduced to the exploration of those sequence-pairs, which are symmetric-

feasible, i.e., satisfy property (1.1) relative to every symmetry group of cells. The

positive outcome is a significant reduction in size of the search space. The magni-

tude of this reduction is given by the following

Lemma 1. The number of symmetric-feasible sequence-pairs corresponding to a

placement configuration with n cells and G symmetry groups, each group k con-

taining pk pairs of symmetric cells and sk self-symmetric cells (k D 1; : : : ; G), is

upper-bounded by .nŠ/2

.2p1Cs1/Š� ��� �.2pG CsG/Š

Proof. There are C
2p1Cs1
n sets of positions in the sequence ˛ (and the same number

in the sequence ˇ) for the 2p1 C s1 cells of the first symmetry group. Similarly,

there are C
2p2Cs2

n�2p1�s1
sets of positions in any of the two sequences occupied by the

2p2 C s2 cells of the second group, and so on.

Now, there are .2p1 C s1/Š possibilities of ordering the cells of the first group

in the sequence ˛. Note that for each order of these cells in ˛, their order in the

sequence ˇ is unique due to the condition (1.1) above. The same is true for any of

the G symmetry groups. However, the contribution of the cells that do not belong to

any of the groups is Œ.n� 2
P

k pk �
P

k sk/Š �
2 since their order in the sequence ˛

is independent of their order in ˇ.

In conclusion, the number of S-F sequence-pairs is upper-bounded by

h

C 2p1Cs1
n � C

2p2Cs2

n�2p1�s1
� � � �

i2

� .2p1Cs1/Š�.2p2Cs2/Š� � � ��

"

.n � 2
X

k

pk �
X

k

sk/Š

#2

which yields the result in the Lemma after expansion and simplification. ut

For instance, the number of S-F sequence-pairs for the example in Fig. 1.16b,

where n D 7 and p1 D s1 D 2, is .7Š/2=6Š D 35; 280, whereas the total number

of sequence-pairs is .nŠ/2=25,401,600 (therefore, a reduction of the search space of

99.86%).

1 Device-Level Topological Placement with Symmetry Constraints 37

1.3.1 Evaluation of Symmetric-Feasible Sequence-Pairs

Given a sequence-pair .˛; ˇ/, the maximal (i.e., which cannot be enlarged) sub-

sequences common to ˛ and ˇ represent paths in the horizontal constraint graph

of .˛; ˇ/. For instance, EBCDG, EBAG, and EBFG are common subsequences

of the sequence-pair .EBAFCDG, EBCDFAG/ (see Fig. 1.16b). If the cells are

weighted with their widths, the weight of the longest common subsequence (LCS)

EBCDG represents the width of the block placement [31]. Similarly, the maximal

subsequences common to ˛R (sequence ˛ reversed) and ˇ represent paths in the

vertical constraint graph of .˛; ˇ/ – as, for instance, CFA (see Fig. 1.17b). If the

cells are weighted with their heights, the longest common subsequence represents

the height of the whole placement. Based on these concepts, an evaluation algo-

rithm using the priority queue model described in Sect. 1.2.4 that builds the block

placement from a given sequence-pair in O.n log logn/ time was presented in [31].

This section will present an algorithm using the LCS approach building a place-

ment subject to symmetry constraints (as explained in the introduction section) from

a given symmetric-feasible sequence-pair. The analog devices to be placed on the

chip area are represented by n rectangular blocksB1; : : : ; Bn, each block Bi having

the width wi and the height hi , and having .xi ; yi / as coordinates of its left-bottom

corner. The algorithm presented in this section assumes for the time being that all

the devices subject to symmetry constraints belong to a single symmetry group. The

implementation takes into consideration an arbitrary number of symmetry groups,

though. The extension to multiple symmetry groups is addressed in Sect. 1.3.2.

The evaluation algorithm uses a priority queue whose model was presented in

Sect. 1.2.4. However, it must be emphasized that both the computation of the de-

vice ordinates and device abscissae can be slightly modified to work with given

topological sorts of the vertical and, respectively, horizontal constraint graphs of

the placement. Consequently, these computations can be done using either segment

trees (see Sect. 1.2.1), or red–black interval trees (see Sect. 1.2.2), or 1–3 determin-

istic skip lists (see Sect. 1.2.3).

a b

Fig. 1.17 (a) The horizontal and (b) vertical constraint graphs of the placement from Fig. 1.16b

38 F. Balasa

Similar to [31], each bucket in the priority queue has associated two keys (index,

length), where the index key is the cell position in sequence ˇ and length is the

length of the LCS until that cell in the sequence-pair. Since the number of buckets

is at most n C 1, the insertion and deletion operations take O.log logn/ time [32].

1.3.1.1 The Computation of the Device Ordinates

Step 1y: The device ordinates must be determined first. (The reason will become

apparent when computing the abscissae.) The algorithm deriving the y-coordinates

(initially, zero) of the devices performs the LCS computation with the sequence ˛

in reverse order. The basic difference from [31] is that the equality of symmetric

devices’ ordinates must be enforced. Also, if a y-coordinate that was previously

computed must be subsequently increased due to symmetry, then Step 1y must be

repeated since, otherwise, some vertical topological constraints may be violated.

insert bucket (0,0) in the priority queue;
// this special bucket acts as a sentinel

for each index i in ˛ (i D n to 1)
let l be the index in ˇ of cell Bj D ˛i;
find bucket predl whose index is the largest lesser
than l;

// predl does always exist due to the sentinel bucket (0,0)

yj = max fyj, length of predlg;
if Bj has a symmetric Bk

then if Bk has already been visited and yk < yj

then Step 1y is repeated; // restarting with the y’s obtained

yk D yj;
insert bucket (l , yj C hj) into the queue;
remove buckets with an index

greater than l and a length lesser than or equal
to yj C hj;

end for

remove all buckets from the priority queue;

Example 1. Let (EDCKAFGIHJBL, KACDEFGLHBJI) be a symmetric-feasible

sequence-pair relative to a symmetry group consisting of three pairs of symmet-

ric devices (F ,G), (K ,L), and (C ,J). The successive modifications of the bucket

list during the first four and last three iterations are displayed in Fig. 1.18a–h. The

current height of the placement is 11, the length field in the last bucket (5,11) in

Fig. 1.18h. A second execution of this step is necessary since yJ , initially set to 3

(see Fig. 1.18d), becomes equal to 4 when yC is computed, increase which creates

a topological violation.11 ut

11 Actually, one may resume from cell J ’s iteration: instead of (11, 5), the bucket (11, 6) will be

inserted in Fig. 1.18d.

1 Device-Level Topological Placement with Symmetry Constraints 39

a

b

c

d

e

f

g

h

i

j

k

Fig. 1.18 Example 1: the computation of y-coordinates for the symmetric-feasible sequence-pair

(EDCKAFGIHJBL, KACDEFGLHBJI) with a group of three pairs of symmetric devices (F;G),

(K;L), and (C; J). The widths and heights of the devices are: A(2 � 4), B(3 � 1), C (4 � 2),

D(5 � 3), E(4 � 2), F (2 � 10), G(2 � 10), H (2 � 3), I (5 � 5), J (4 � 2), K(3 � 2), and

L(3 � 2). (a–h) The update of the bucket list of Johnson’s priority queue during the first four and

last three iterations. The cell processed in the current iteration is mentioned, together with its index

in ˇ and its computed ordinate. The positioning along the axis Ox is irrelevant here. (i) Device

placements along the Oy axis: (left) after the first execution of Step 1y (note that cell J overlaps

cell I); (right) after the second execution of Step 1y. (j–k) Example where the computation of

y-coordinates necessitates �.p/ iterations, p being the number of symmetric pairs

40 F. Balasa

The “symmetric-feasibility” property (1.1) prohibits the situation when two cells

from distinct symmetric pairs are in an “above-below” topological relation, while

their pairs are in the reverse relation, the two pairs preventing each other to align

horizontally; therefore, it ensures that after a finite number of executions of Step

1y, all the vertical topological and symmetry constraints will be satisfied. More-

over, the height of the resulting placement is minimal since the y-coordinates are

computed using the longest common subsequence approach, the weights being the

heights of the cells, and also since the vertical symmetry constraints are fixed in a

bottom-up direction, with a minimum increase of the ordinate of the lowest cell in

the symmetric pair.

The priority queue has at most n C 1 buckets; the insert and remove operations

in this data structure can be performed in O.log logn/ time [32]. Although in some

iterations O.n/ buckets may be discarded, the amortized complexity per iteration is

O.log logn/. Note that Step 1y may need to be executed�.p/ times, where p is the

number of symmetric pairs in the group. Fig. 1.18j, k shows an example where the

p symmetric pairs (A1,A2), (B1,B2), etc., are aligned horizontally after d p
2

e C 1

executions of Step 1y. For such “pathological” examples, the computation of the

y-coordinates will take O.p � n log logn/ time. However, in most of the practical

cases, no more than three iterations are necessary to fix the vertical symmetry and

topological constraints, hence Step 1y runs typically in O.n log logn/ time.

1.3.1.2 The Computation of the Device Abscissae

Step 1x: The first traversal, called initialization, computes the block abscissae [31]

leaving aside for the time being the symmetry constraints. For consistency sake, the

pseudocode is given below:

insert bucket (0,0) in the priority queue;
// this special bucket acts as a sentinel

for each index i in ˛ (i D 1 to n)
let l be the index in ˇ of cell Bj D ˛i;
find bucket predl whose index is the largest lesser

than l;
xj = length of predl;
insert bucket (l , xj C wj) into the queue;
remove buckets with an index greater than l

and a length lesser than or equal to xj C wj;
end for

remove all the buckets from the priority queue;

The worst-case complexity of Step 1x is O.n log logn/.

Example 2. Given the symmetry group f(A1; A2), B , (C1; C2), (D1;D2), (E1; E2),

(F1; F2)g consisting of five pairs of symmetric devices and one self-symmetric cell,

1 Device-Level Topological Placement with Symmetry Constraints 41

let (F1E1BA1A2XE2YD1ZC1C2D2F2 , F1YD1ZC1C2D2E1A1A2BXE2F2) be

a symmetric-feasible sequence-pair. The placement after the execution of Step 1x is

shown in Fig. 1.19a. ut

Step 2x: Next, the position of the symmetry axis (xsymAxis) is chosen. Different

from [43], we employ a scheme for selecting the symmetry axis and initializing

the abscissae of the devices before the next two traversals (steps) in the symmetry

group such that the x-span of the group (and, ultimately, its area) is kept minimal

(relative to the topological constraints) by the end of the evaluation algorithm. This

axis selection scheme is described below.

The general idea of this step is to align the individual axes of the innermost

symmetric pairs and to position the other pairs to leave enough space (but not

more space than necessary) to satisfy the other horizontal topological constraints.

First, a directed acyclic graph (DAG) is built from the S-F sequence-pair, showing

the embedding relation between pairs along the Ox axis: each symmetric pair or

self-symmetric device is a node in this DAG, the node of an inner pair being the

successor of an outer one. E.g., for the example in Fig. 1.16b, a tree having the

root (B ,G) with three children (C;D), (A;A), and (F;F) is obtained, as shown

in Fig. 1.20a. The embedding DAG for the placement in Fig. 1.18i is shown in

Fig. 1.20b.

Initially, the DAG contains a node for each symmetric pair or self-symmetric

cell. Since, in this moment, the vertical position of each cell is already known, the

end points of the y-span intervals [ycel l ; ycel l C hcel l] of the cells in the symme-

try group are iteratively inserted as keys in an initially empty priority queue. The

order of insertion is given by sequence ˛, such that, at each moment, the priority

queue contains the end points of the segments part of the right contour of this partial

placement.

The construction of the embedding DAG will be illustrated using Example 2.

First, the end points of the interval [yF1
; yF1

C hF1
]D[0, 10] are inserted (see

Fig. 1.19b1), followed by the end points of [yE1
; yE1

C hE1
]D[6, 12]. Since this

latter interval covers from the right the top margin of the former, key 10 is removed

from the queue (see Fig. 1.19b2) and an arc from (F1; F2) to (E1; E2) is added to the

DAG. Note that the segments visible from the right are [0, 6] from the F1’s interval

and [6, 12] from the E1’s interval. The construction proceeds in this way, removing

from the queue the keys covered by a new interval and adding arcs in the DAG each

time segments from the right contour (belonging to cells in the symmetry group)

are covered by the y-span interval of the new cell (see Fig. 1.19b3–b6). The DAG

obtained for this example is shown in Fig. 1.19b7.

Afterward, the position of the symmetry axis is selected such that xsymAxis =

max
n

xj C.xkCwk/

2

o

, for all nodes without successors (Bj ; Bk) in the DAG. In our

example, xsymAxis=14, corresponding to the pair (C1; C2). Then, each node without

successors (Bj ; Bk) will receive a value d D xsymAxis �
xj C.xkCwk/

2
� 0 and

the abscissae of Bj and Bk computed at Step 1x will be updated: xj D xj C d ,

xk D xk Cd , therefore shifted to the right. Proceeding bottom-up in the embedding

42 F. Balasa

a

b

c

Fig. 1.19 (a) Placement after the initialization traversal (Step 1x) for the symmetric-

feasible sequence-pair (F1E1BA1A2XE2YD1ZC1C2D2F2; F1YD1ZC1C2D2E1A1A2BXE2F2).

The symmetry group is f(A1; A2), B , (C1; C2), (D1; D2), (E1; E2), (F1; F2)g. (b) Construction of

the DAG showing the embedding relations in the symmetry group. (c) Update of the abscissae of

the devices in the symmetry group at the end of Step 2x. The possible overlaps will eventually be

fixed

1 Device-Level Topological Placement with Symmetry Constraints 43

a b

Fig. 1.20 (a) The embedding DAG for the placement in Fig. 1.16a. (b) The embedding DAG for

the placement in Fig. 1.18i (Example 1)

DAG, each node will receive a d value equal to the minimum one among node’s

children (see Fig. 1.19b7); the abscissae of the node’s cell(s) are similarly updated,

as shown in Fig. 1.19c.

This operation is dominated by the building of the embedding DAG. The priority

queue contains keys in the set f0; : : : ;H g, where H is the height of the placement.

Since the key insertions and deletions take O.log logH/ each12 [32], we may be

tempted to considerO.log logH/ the worst-case time bound per iteration. However,

this is not always true: when the bucket list of the priority queue grows, it can gain

at most two new keys per iteration; but when it decreases in size, as many as O.n/

keys can be deleted.13 However, the amortized time bound [51] is O.log logH/ per

iteration. Intuitively, the reason is that each key can be deleted at most once for each

time it is inserted. In an amortized analysis, the time required to perform a sequence

of operations is averaged over all the operations performed. Since there are p C s

iterations (where p is the number of pairs and s is the number of self-symmetric

cells), the overall time complexity of this step is O..p C s/ log logH/ or, with a

less tighter bound, O.n log logH/.

If, in addition, H D �.n/, the overall complexity is O.n log logn/. Other-

wise, the y-coordinates of the devices can be “normalized” by replacing each of

them by its index in their increasingly-ordered set S D
S

i fyi ; yi C hig. In this

way, the y-coordinates can be considered, without loss of generality, integers in the

range Œ0; n� (n being the number of devices). Another important consequence of the

“normalization” is the fact that the size of the priority queue will be kept minimal.

For instance, in our illustrative example (Fig. 1.19a), after the sorting and elimina-

tion of duplicates, the set S D
S

ifyi ; yi Chi g D f0; 4; 6; 10; 12g has five elements

(for the cells in the symmetry group). Instead of inserting, say, for the cell E1 the

keys 6 and 12 (the end points of its y-span interval), we insert instead the keys 2

and 4, that is, their indexes in the set S. Note that the height of the host binary

tree of the priority queue (see Sect. 1.2.4) is reduced from 4 to 3 when normalized

12 Actually, according to [32], the asymptotic upper bound is even tighter: O.log log.maxi hi //,

where hi are the heights of the devices. But in the worst case, hi D �.H/.
13 Such a situation could occur if the priority queue contained O.n/ keys and in the next iteration

the new cell had the height of the whole analog block; the priority queue would then be reduced to

only two buckets having the keys 0 and H.

44 F. Balasa

coordinates are used instead. The normalization is not done with a general purpose

sorting algorithm (of worst-case complexity O.n logn/) since then the complexity

would be dominated by the sorting. Instead, the radix sort of complexity O.nCH/

[51] is used.14 When using the radix sort for normalization, the complexity becomes

O.H C n log logn/.

Step 3x: This traversal (sweep-to-the-right) is similar to the initialization step, but

before inserting the bucket (l , xj C wj) into the queue, if (Bk; Bj) is a symmetric

pair and d D 2xsymAxis �xj �.xk Cwk/ > 0, then xj is increased with d . For the

pair (D1;D2), for instance, d D 2�14�16� .7C3/ D 2, thereforeD2’s abscissa

will be further increased with 2, becoming 18 (see Fig. 1.21a); note that (D1;D2)

satisfy now the symmetry constraint.

Step 4x: At the end of the sweep-to-the-right traversal, some of the horizon-

tal symmetry constraints may still be unsatisfied since some rightmost cells in

the pairs were pushed further to the right (see, for instance, the pair (E1, E2) in

Fig. 1.21a). Then, a third traversal of ˛ (sweep-to-the-left) will fix all the symmetry

constraints:

insert bucket (n+1,W) in the priority queue;
// this bucket acts as a sentinel

for each index i in ˛ (i D n to 1)
let l be the index in ˇ of cell Bj D ˛i;
find bucket succl whose index is the smallest greater

than l;
// succl will always be found due to the sentinel bucket (n+1,W)

xj = (length of succl) - wj;
if (Bj,Bk) is a symmetric pair and d D xj C .xk C wk/ �

2xsymAxis > 0

then xj D xj � d;
insert bucket (l , xj) into the queue;
remove buckets with an index lesser than l

and a length greater than or equal to xj;
end for

remove all buckets from priority queue;

With a similar reasoning, both Step 3x and Step 4x take O.n log logn/ time.

Note that in the absence of symmetry constraints, the evaluation algorithm re-

duces to Step 1y and Step 1x, therefore identical to [31].

Besides the LCS-based approach, which improves the overall complexity of the

evaluation algorithm in comparison to [43], Step 2x ensures that the x-span of the

symmetry group is kept minimal relative to the horizontal symmetry and topolog-

ical constraints induced by the sequence-pair representation. First, the symmetric

pairs are positioned about the symmetry axis at the minimal distance allowed by

14 Sorting by key insertion in Johnson’s priority queue – of complexity O.n log log.H=n// [32] –

can be used, as well.

1 Device-Level Topological Placement with Symmetry Constraints 45

a

b

Fig. 1.21 Placements of the symmetric-feasible sequence-pair (F1E1BA1A2XE2YD1ZC1C2

D2F2, F1YD1ZC1C2D2E1A1A2BXE2F2) after the sweep-to-the-right (Step 3x) and after the

sweep-to-the-left traversal (Step 4x)

the topological constraints (as computed at Step 1x). Second, with the d -values

of the embedding DAG’s nodes, the leftmost cells of the pairs are positioned as

close as possible from the symmetry axis. (From Fig. 1.19c, one can observe that

no leftmost cell in the symmetric pairs can be brought closer to the symmetry axis

without producing topological violations.) Afterward, the sweep-to-the-right step

will shift the rightmost cells in the pairs just enough to satisfy the topological con-

straints (like E2 in Fig. 1.21a), or symmetry constraints (like D2), or both (like F2).

The subsequent sweep-to-the-left step will fix the remaining symmetry violations,

like E1 in Fig. 1.21b. Since the sequence-pair satisfies the property (1.1), there are

no situations when two symmetric pairs are intertwined preventing each other to

46 F. Balasa

align vertically about the same symmetry axis, so the algorithm ends after Step 4x.

Moreover, since the abscissae are updated from the innermost pairs to the outer-

most ones, the symmetry group is packed around the symmetry axis as much as the

topological constraints allow.

1.3.2 Handling Multiple Symmetry Groups

In order to handle an arbitrary number of symmetry groups, one must take the

precaution that any two symmetry groups do not prevent each other from being

correctly built. For instance, if two cells x, y belonging to different symmetry

groups satisfy simultaneously the inequalities ˛�1.x/ < ˛�1.y/ < ˛�1.sym.y// <

˛�1.sym.x// and ˇ�1.y/ < ˇ�1.x/ < ˇ�1.sym.x// < ˇ�1.sym.y//, then cell x

results above cell y, whereas cell sym.y/ results above sym.x/, the two pairs pre-

venting each other to align horizontally within the groups. Fortunately, it is possible

to design the move set to avoid such situations. The easiest way is to prevent the

cells from different groups to intermingle with each other in any of the sequences ˛

and ˇ, solution adopted in [43].

However, if the design requires embedded symmetry groups [59] – this being

revealed by the schematic of the circuit, the move set can be modified to al-

low cells from one group between cells of another group in both sequences

˛ and ˇ simultaneously. Figure 1.22 shows a placement with three symme-

try groups: Group 1 D f.A1; A2/; .B1; B2/; .C1; C2/; D; Eg, Group 2 D

f.U1; U2/; V g, and Group 3 D f.X1; X2/; .Y1; Y2/; W; Zg, the second and

Fig. 1.22 Placement with three symmetry groups, the groups 2 and 3 embedded in group 1

1 Device-Level Topological Placement with Symmetry Constraints 47

the third groups being embedded in the first one. An encoding sequence-pair is:

.A1B1U1VU2C1DEB2X1Y1WZX2Y2C2A2; A1C1U1VU2B1EDC2Y1X1ZWY2

X2B2A2/. Note that the cells of the groups 2 and 3 (written with bold characters)

are surrounded by the cells of Group 1 in both sequences ˛ and ˇ (although it is not

essential to occupy contiguous positions in any of the sequences). This constraint

on the move set is sufficient to guarantee the feasibility of the placement and the

completion of the placement algorithm.

With these remarks, the technique to handle an arbitrary number of symmetry

groups is similar to the single-group case, but more traversals of the (symmetric-

feasible) sequence-pair are necessary. The symmetry groups are processed one by

one, after each iteration the symmetry constraints relative to one symmetry group

being fixed, and the relative positions of the devices in that group being “frozen.” If

G is the number of symmetry groups, the complexity of the evaluation algorithm is

basically O.G � n log logn/. In the case of embedded symmetry groups, the inner

groups must be processed before the outer ones, therefore the order of the group

processing does matter. (An embedding DAG of the symmetry groups is used to

order the group processing.) But if the cells of the groups do not intermingle in the

sequence-pair, then the processing order of the groups is irrelevant. Note also that if

the sequence-pair is not symmetric-feasible relative to all the groups, the algorithm

may loop forever attempting to fix the symmetry constraints.

1.3.3 The Design of the Move Set

The move set of the simulated annealing algorithm was adapted to restrict the ex-

ploration of the sequence-pairs to the subset of those symmetric-feasible. To do

this, it is sufficient to start the exploration with an initial sequence-pair, which is

symmetric-feasible relative to all the symmetry groups [43]. Assuming for simplic-

ity only one symmetry group, such a sequence-pair is, for instance:

.˛; ˇ/ D
�

a1 � � �ap c1 � � � cs bp � � � b1 � � � ; a1 � � � ap cs � � � c1 bp � � �b1 � � �
�

where .ai ; bi /; i D 1; : : : ; p are the pairs of symmetric cells and cj ; j D 1; : : : ; s

are self-symmetric cells. This sequence-pair corresponds to a placement where the

pairs of symmetric cells are disposed in line, like embedded brackets, surrounding

the self-symmetric cells which are disposed one on the top of the other. More gen-

eral, we may pick randomly the order in ˛ of all the devices in the symmetry group,

and arrange in ˇ their symmetric pairs in exactly the reverse order.

Afterward, the move set can be customized such that the property of symmetric-

feasibility is preserved after each move. For instance, if two cells from distinct

symmetric pairs are interchanged in the sequence ˛, then their symmetric coun-

terparts must be interchanged as well in the sequence ˇ; if a cell is moved, changing

its position in the sequence ˛, its symmetric pair must be moved too in the sequence

ˇ, and the range of possible positions of this latter move depends on the move of

48 F. Balasa

the former cell. Device rotations and mirroring are also affecting simultaneously

two symmetric cells. Note that the moves of the cells in the asymmetric component

of the circuit (interchanges and changes of position in both sequences, device rota-

tions) are unrestricted (except for the move amplitude due to the cooling temperature

of the annealing), so the tool works also in the absence of symmetry constraints.

More complex moves operating with entire symmetry groups are also performed –

although with a low probability, decreasing with the temperature.

1.4 Topological Placement with Symmetry Constraints

Using Other Layout Representations

1.4.1 A Comparative Overlook on Transitive Closure Graphs

The transitive closure graph (TCG) representation, introduced by Lin and

Chang [39], is based on two directed graphs – the horizontal and vertical tran-

sitive closure graphs, denoted Ch and Cv – both having a node for each cell, the

edges corresponding to the topological relations between cells. For instance, the arc

(A;B) in Ch means that A is to the left of B; the same arc in Cv means that A is

below B . Each pair of vertices must be connected by exactly one edge either in Ch

or in Cv.

Since Lin and Chang addressed the placement problem with symmetry con-

straints within the TCG representation [46], this section comments on whether

working with the TCG sequence (TCG-S) instead of S-F sequence-pairs could lead

to a better exploration of the solution space in terms of speed and/or quality.

A key remark is that, actually, the TCG and sequence-pair representations are

equivalent. As noticed by Zhang and El-Masry [60] (but also by the authors of

TCG), the ˇ sequence in the sequence-pair is the topological sorting of both graphs

Ch and Cv. Indeed, A precedes B in sequence ˇ if there is an arc A �! B either

in Ch or in Cv. Normally, one can construct different topological sorting sequences

based on the same graph; but both graphsCh and Cv determine a unique topological

sorting sequence which can be built in O.n log n/ time employing a sorting algo-

rithm, where the comparison rule is whether the source vertex is ahead of the sink

vertex for any directed edge in Ch or Cv. Similarly, the sequence ˛ is the topological

sorting sequence of the graphs Ch and Cv, the latter with the arcs reversed [60].

From the arguments above, it follows that given a TCG for n cells, one can build

the corresponding sequence-pair in O.n logn/ time. Reciprocally, it takes O.n2/

time to transform a given sequence-pair into a TCG. Note that the latter complexity

cannot be improved since the total number of arcs in Ch and Cv is �.n2/.

In conclusion, the TCG and sequence-pair representations are equivalent, so the

sizes of their solution spaces are the same, that is .nŠ/2. Obviously, one can intro-

duce a symmetric-feasibility condition within the TCG representation: e.g., TCG is

symmetric-feasible if its corresponding sequence-pair is symmetric-feasible in the

1 Device-Level Topological Placement with Symmetry Constraints 49

sense of condition (1.1), or defining direct conditions in the two graphsCh andCv.15

However, we cannot find any advantage relative to the size of the exploration space,

or to the solution quality – both representations being P-admissible [29]. On the

other hand, the proposed evaluation algorithms for TCG-S (executed in each inner-

loop iteration of the simulated annealing, evaluating the layout cost after each

move) have quadratic complexity [60], whereas Sect. 1.3.1 presented an evalua-

tion algorithm for S-F sequence-pairs of better complexity. Therefore, using S-F

sequence-pairs is more advantageous in terms of computational speed.

1.4.2 A Comparative Overlook on Tree Representations

of the Layout

According to [34], a placement configuration of n rectangular blocks can be

represented by an ordered tree (O-tree), that is a tree with n C 1 nodes, en-

coded by .T ; �/, where T is a 2n-bit string identifying the branching structure

of the tree relative to a traversal order (a “0” corresponds to descending an

edge, while an “1” – to subsequently ascending that edge), and � is a permu-

tation of the block names. Figure 1.23a shows an O-tree having the encoding

.T ; �/=.00110100011011; adbcegf/.

Let T D .T1; : : : ; Tk/ be an O-tree, where T1; : : : ; Tk are its subtrees relative

to the root. The O-tree can be transformed recursively into a binary tree B.T / as

follows:

a b

Fig. 1.23 (a) O-tree representation; (b) binary tree representation

15 The feasibility of TCG in symmetry point of view is defined differently in [46], but the modifi-

cation of the size of the exploration space is not addressed.

50 F. Balasa

a. If k D 0 , B.T / is empty;

b. If k > 0 , the root of B.T / is the root of T1; the left subtree of B.T / is B.T1/;

the right subtree of B.T / is B.T 0/, where T 0 D .T2; : : : ; Tk/ is the initial O-tree

less the subtree T1.

The binary tree derived from the O-tree in Fig. 1.23a is shown in Fig. 1.23b, the

root of the binary tree becoming obsolete. As the inverse transformation is straight-

forward, it follows that there is a one-to-one correspondence between the sets of

O-trees and of binary trees having one node less.

The tree representations of the layout are important in our context since their

number is lesser than the number of sequence-pair encodings, yielding thus a

smaller exploration space for the block placement problems. Indeed, since in a

binary tree representation the nodes are labeled with the names of the cells, the

number of codes is bn � nŠ, where bn is the number of unlabeled binary trees

with n nodes – known as the nth Catalan number [37]: bn D 1
nC1

�

2n
n

�

, where
�

˛
n

�

D ˛.˛�1/���.˛�nC1/
nŠ

.

The relation between the number of tree topological representations and the num-

ber of sequence-pairs is given by the following

Lemma 2. The number of labeled binary trees with n nodes is smaller than the

number of n-block sequence-pairs.

Proof. Assuming n � 3, for any integer p such that 1 < p < n, we have the

inequality nCp
p

< n� p C 2. Indeed, by trivial computations, the inequality above

is equivalent to 0 < .n � p/.p � 1/. Substituting p D 2; 3; : : : ; n � 1 in the

inequality, we obtain nC2
2

< n; nC3
3

< n � 1; : : : ; 2n�1
n�1

< 3. Multiplying,
nC1

1
� nC2

2
� nC3

3
� � � 2n�1

n�1
� 2n

n
< .n C 1/ � n � .n � 1/ � � � 3 � 2.

This is equivalent to
�

2n
n

�

< .n C 1/Š, or bn < nŠ. Multiplying both sides of this

inequality by nŠ, we obtain the stated result. When n D 1; 2, the numbers of trees

and sequence-pairs are equal (to 1 and, respectively, 4). ut

Although the number of tree representations is smaller than the sequence-pair

encodings, the number of symmetric-feasible sequence-pairs may be smaller than

the number of tree representations when the symmetry groups are dominant (in

terms of number of cells). For instance, if all the devices of a circuit form a

symmetry group (n D 2p), from Lemma 1 the number of symmetric-feasible

sequence-pairs is upper-bounded by .2p/Š, whereas the number of trees is b2p �.2p/Š

– therefore, at least twice larger. On the contrary, when the asymmetric part of the

circuit is dominant, the number of tree representations becomes smaller.

A placement approach for analog layout with symmetry constraints, based on the

exploration of O-trees, was proposed in [44]. The main idea was to build horizontal

and vertical constraint graphs from the current O-tree: if the horizontal constraint

graph has cycles or if the vertical constraint graph has positive cycles, the O-tree

is infeasible in symmetry point of view and hence disregarded. The complexity of

these tests is quadratic.

1 Device-Level Topological Placement with Symmetry Constraints 51

However, a better strategy is to limit the exploration to a subset of binary tree

representations yielding layouts automatically satisfying the given symmetry con-

straints, exactly as we did in the case of sequence-pair encodings. The next section

will introduce such a subset of binary tree representations whose size is smaller

than both the number of symmetric-feasible sequence-pairs and the number of tree

representations.

1.4.2.1 Symmetric-Feasible Binary Trees

A binary tree layout representation, whose nodes represent the rectangular cells in

a placement configuration, induces the following vertical (y-) and horizontal (x-)

positioning constraints [36]:

a. Each cell whose node is in the left subtree is above the cell whose node is the

parent;

b. If the y- projections of two cells are overlapping, the cell whose node is visited

first in a preorder traversal of the tree (i.e., visit any node before its left and right

subtrees) is to the left of the cell whose node is visited the second.

The nodes of a binary tree can be visited in preorder, inorder, or postorder. A pre-

order traversal of a binary tree starts from the root, visiting the current node and then

recursively visiting its left subtree, followed by its right subtree. An inorder traversal

visits the current node in between recursively visiting its left and right subtrees. It is

well known that the pair of preorder and inorder traversals uniquely determine the

binary tree. Several algorithms building the tree from its traversals in optimal time

and space were proposed (e.g., [61, 62]).

Remark: The pair of sequences (inorder, preorder) traversals should not be

mistakenly confused with the sequence-pair representation .˛; ˇ/ proposed by

Murata et al. [29]. There are sequences ˛ and ˇ that do not correspond to the

inorder and preorder traversals of any binary tree: such a sequence-pair is, for

instance, .CAB;ABC/. More general, for any n > 3 one can build a pair of cell

permutations . : : : CAB; : : : ABC/ that does not correspond to the (inorder,

preorder) traversals of any binary tree. This can be seen as another proof of the

fact that the number of sequence-pairs is larger than the number of binary trees

for n � 3.

A binary tree representation is symmetric-feasible if its pair of (inorder, preorder)

traversal has the following property [45]: for any distinct nodes (cells) A, B in a

symmetry group,

A
inorder

� B ” sym.B/
preorder

� sym.A/ (1.2)

i.e., the node A precedes node B in the inorder traversal of the binary tree if and

only if the node sym.A/ – corresponding to cell A’s symmetric pair – succeeds

52 F. Balasa

node sym.B/ in the preorder traversal. In addition, any two nodes A, B belonging

to different symmetry groups cannot satisfy the inequalities16

A
inorder

� B
inorder

� sym.B/
inorder

� sym.A/

B
preorder

� A
preorder

� sym.A/
preorder

� sym.B/

Similar as in Sect. 1.3.1, one can develop evaluation algorithms for this subset of

symmetric-feasible (S-F) binary tree representations using any of the data structures

presented in Sect. 1.2 (see, for instance, [45, 53]).

1.4.2.2 The Design of the Move Set

The design of the move set when operating with topological representations based

on trees [34, 35] was a topic insufficiently addressed before. The problem is to

conceive a set of moves such that any code in the topological representation is the-

oretically reachable by applying a finite sequence of moves from any given code.

Besides cell interchanges that affect only the labels of the nodes, a typical move that

modifies the tree structure is to detach a subtree and re-attach it to another available

node [34]. This move cannot be used in our framework since the preservation of

property (1.2) is difficult to accomplish. Two less obvious move sets for the general

binary tree representation will be presented below. Due to the natural correspon-

dence between forests of rooted trees and binary trees [37], the equivalent moves

for O-trees can be easily derived.

(a) Move sets for binary trees with provable reachability

1. To transform a left-parenthesized product .:::..a0a1/a2/:::an/ into a right-

parenthesized product .a0.a1.:::.an�1an/::://, one may apply a sequence of

basic transformations ..xy/z/ 7! .x.yz//, involving three subexpressions x,

y, z [37]. A binary tree whose nodes have two children each can be repre-

sented by parenthesized products.17 The transformation ..xy/z/ 7! .x.yz//

can then be applied to binary trees replacing the subexpressions with subtrees:

..S1S2/S3/ 7! .S1.S2S3//. This operation may be thought of as “sliding” a

right-descendent subtree of a left-descendent node past its parent into a left-

descendent subtree of the corresponding right descendent: 7! . Since the

parenthesized products can be represented as the vertices of a polyhedron – a

Stasheff polytope [63] – where the neighbor vertices differ from one another by

the above transformation (or its inverse), a similar property is valid for the binary

trees whose nodes have two children each.

16 This second condition eliminates those trees where cell A results above cell B , whereas cell

sym.B/ results above sym.A/, the two pairs preventing each other to be aligned horizontally within

the groups.
17 See the parenthesized notation of trees in [37].

1 Device-Level Topological Placement with Symmetry Constraints 53

A binary tree representation is slightly different in the sense that each node

has at most two children (rather than exactly two children). However, if the

NULL pointers (or references) are viewed as dummy children, the nodes in the

binary tree representation will have two children each, and the basic transfor-

mation described above can be applied, along with its inverse. Moreover, these

transformations ensure the reachability of any unlabeled binary tree since they

represent vertices in the Stasheff polytope [63] – which are edge-connected.

Interchanging the labels of two nodes does not modify the branching structure

of the binary tree representation. This swap move ensures the reachability of any

labeled binary tree having a given branching structure, since a permutation of

node labels can be decomposed into a sequence of interchanges. Therefore, the

structural transformation ..S1S2/S3/ 7! .S1.S2S3// and the interchange of

node labels ensure the complete exploration of the binary tree codes.

2. It is well known [64] that there is a one-to-one mapping between the set of

rectangular-grid paths connecting two opposite corners of a square and which do

not cross the diagonal, and the set of unlabeled binary trees with n nodes, where

n is the number of grid units of the square side (see Fig. 1.24). If the horizontal

unit segments of such a path are denoted by E (from East) and the vertical ones

by N (from North), a path as described above can be represented by a sequence

of n Es and n Ns. In order to prevent the diagonal crossing, in any leading subse-

quence the number of N’s must not be larger than the number of Es. Therefore,

the branching structure of the tree can be uniquely described by such a sequence

of Es and Ns.18

A move that modifies the branching structure of the tree is the interchange

of an E segment and an N segment in the corresponding path – called a

Fig. 1.24 Correspondence between grid paths in a square and unlabeled binary trees

18 The O-tree encoding in [34] is similar, but this path analogy was not mentioned.

54 F. Balasa

swap E-N – such that the diagonal crossing is prevented (Fig. 1.24). The 2n-long

path 0: E� � � EN� � � N can be easily transformed into another path by a finite se-

quence of E-N interchanges: for instance, if the first N occupies position k1(� n)

in , the k1th and the (n C 1)th segments in 0 are swapped; if the second N

occupies position k2(k1 < k2 � n) the k2th and the (n C 2)th segments are

swapped, and so on. The transformation 1 7! 2 between two arbitrary paths

can be obtained as a combination of the transformations 1 7! 0 (which is

the inverse of 0 7! 1) and 0 7! 2. Consequently, the cell interchange to-

gether with the swap E-N ensure the reachability of any labeled binary tree and,

therefore, the complete exploration of the binary tree codes.

Our placement tool employs the second move set described above. In addition,

the move set is adapted to preserve the symmetric-feasibility property (1.2) – as

will be explained below.

(b) The move set in the presence of symmetry constraints

At the beginning of the simulated annealing, the placement tool builds a binary tree

satisfying the property (1.2) for each symmetry group [45]. Afterward, each move is

performed such that the property (1.2) be preserved. In the current implementation,

the moves are of three types. The first two moves are cell interchanges and swaps

E-N. The presence of symmetry constraints impose some restrictions (discussed

below) on the use of these moves to preserve the feasibility of the codes in symmetry

point of view. The third type of move is specific only to placement configurations

containing several symmetry groups.

1. Interchange of two cells

When the cells belong to the same symmetry group but they are not the symmet-

ric pairs of each other, the cell interchange must be accompanied by the swap

of their symmetric pairs to preserve the property (1.2). For the same reason, in-

terchanges between cells belonging to different symmetry groups, or when only

one cell belongs to a symmetry group are allowed only between cells whose

nodes are in a parent–child relation. This move – having a constant complexity –

ensures the reachability of any S-F binary tree having a given branching struc-

ture, since a permutation of node labels can be decomposed in a sequence of such

interchanges.

2. Move of cells

When a cell from the asymmetric part of the circuit is selected, the swap E-N is

performed exactly like in the absence of symmetry. When the randomly selected

cell is part of a symmetry group, two simultaneous swaps E-N of linear complexity

are performed – one for the cell and the other for its symmetric pair – based of

the sequences of traversals (inorder, preorder). The binary tree is locally modified

around the nodes corresponding to the chosen cell and its symmetric pair such that

the property (1.2) be maintained.

1 Device-Level Topological Placement with Symmetry Constraints 55

3. Move of symmetry groups

In placement problems with several symmetry groups, more complex moves (of

quadratic complexity) are also performed – albeit with a low probability that de-

creases with the temperature. They modify the position and the structure of an entire

symmetry group: the nodes corresponding to the devices belonging to a symmetry

group are extracted from the current binary tree, and a new symmetric-feasible sub-

tree is built with them. Afterward, this binary subtree is attached in the main tree.

In addition to these three types of moves, changes of cell orientation (rotations

and mirror transformations) are also performed. The changes of orientation take

into account the different forms of pair symmetry – mirror or perfect, the pairs

of symmetric cells having mirrored or identical orientations, as well as the self-

symmetry – when a device presenting geometric symmetry shares the same axis

with the group [7].

1.5 Experimental Results

A prototype placement tool for analog layout using selectable exploration al-

gorithms has been implemented in C++. The tool uses the simulated annealing

algorithm as the combinatorial optimization engine. In order to ensure a compar-

ative evaluation as correct as possible, the cost function, the simulated annealing

cooling schedule, and the inner-loop criterion were set identical during testing for

all the placement algorithms.

The tool can operate both with different topological representations (sequence-

pairs and trees) and different code evaluation algorithms, using the data structures

from Sect. 1.2. Besides symmetry constraints, the tool handles systematically-

induced device mismatches, alignment constraints, and performs shape optimiza-

tions for parametric cells and for “soft” cells like capacitors, with the aspect ratio

varying continuously between given limits. In addition, for the purpose of a com-

plete comparative assessment, a complementary placement algorithm based on the

traditional absolute representation has been embedded in the tool as well.

Figure 1.25 shows the placement for a telescopic opamp with gain-boost am-

plifiers. Figure 1.26 displays the placement for a frequency divider with selectable

ratio having five groups of symmetry.

Fig. 1.25 Placement for a telescopic opamp with gain-boost amplifiers

56 F. Balasa

Fig. 1.26 Placement for a frequency divider with selectable ratio (2/4) having five symmetry

groups

Table 1.1 Placement results

Design Constraints Nr. cells Area [�m � �m] Time [min]

Gain-boost amplifier Sym.,dev. matching 17 71.2 � 68.0 0.2

Telescopic opamp Sym.,dev. matching, 36 527.2 � 96.0 1.6

with gain-boost amplifiers and four soft cells

Programmable capacitor block 1 Six soft cells 28 175.2 � 115.2 0.5

Programmable capacitor block 2 12 soft cells 34 220.8 � 186 1.1

15 MHz buffer – 64 189.5 � 250.5 3.2

Amplifier with selectable gain – 79 191.5 � 251.0 4.3

Bias current generator – 85 237 � 186 5.0

Charge pump Sym.,dev. matching 98 220.5 � 333.0 12.6

Limiter Sym.,dev. matching, 111 177.5 � 375.0 16.9

(17 � 500MHz) and 14 soft cells

Frequency divider Five sym. groups 116 350 � 147 21.0

with selectable ratio

Table 1.1 displays only a part of the experimental results carried out on a SUN

Blade 100 workstation. The test benchmarks are analog blocks, several containing

symmetry groups of devices, components of a spread spectrum transceiver used in

wireless modems. Column 2 shows the type of constraints present in the design and

column 3 displays the number of devices. Values of the placement area and CPU

time are given only for the algorithm presented in Sect. 1.3.1. Evaluation algorithms

employing the other data structures presented in Sect. 1.2 are somewhat slower, but

not very significantly. The slowest appears to be the evaluation using segment trees

(Sect. 1.2.1); however, the evaluations using red–black interval trees and determin-

istic skip lists (Sects. 1.2.2 and 1.2.3) are almost as fast as the one using priority

queues.

1 Device-Level Topological Placement with Symmetry Constraints 57

The placement algorithm based on the exploration of symmetric-feasible binary

trees is typically faster than the algorithm based on symmetric-feasible sequence-

pairs (although the layout quality seems to be poorer). The difference in running

times is not unexpected since the solution space of the binary tree representation

is always smaller than the solution space of the sequence-pair representation for

any placement problem, with or without symmetry constraints. The quality of the

layout though depends also on the move set, on how uniformly the solution space

is explored. The evaluation algorithms based on symmetric-feasible sequence-pairs

seem to be better.

The running times are typically higher than those obtained by other topological

placement tools operating on examples without symmetry (e.g., [31]). This is not

unexpected since, when the cells belong to symmetry groups, their moves within

the simulated annealing optimizer are, typically, a few times more computationally

expensive; in addition, there are more traversals of the topological representation

than in the absence of symmetry constraints. Restricting the moves within the subset

of symmetric-feasible codes is costly for sure, but this strategy is significantly better

than the exploration of the entire solution space of the topological representation

employed.

The experiments also led to another conclusion: all the techniques exploring

symmetric-feasible topological representations exhibit a significantly better perfor-

mance, at least in terms of computational effort (but sometimes also in terms of

placement quality), than using the more traditional absolute representation. Also

the tuning of the simulated annealing optimizer was easier when using topological

representations.

1.6 Conclusions

This chapter has given an overview of topological placement techniques handling

symmetry constraints for analog layout synthesis. Different from most of the ex-

istent tools based on a simulated annealing optimization operating on absolute

representations of the layout, this chapter has explored the use of some topologi-

cal representations not restricted to slicing structures, where symmetry constraints –

typical in analog placement – are directly taken into account during the exploration

of the solution space.

References

1. R.A. Rutenbar and J. Cohn, Layout tools for analog ICs and mixed-signal SoCs: A survey,

Proc. Int. Symp. on Physical Design, pp. 76–83, San Diego CA, April 2000

2. G.G.E. Gielen and R.A. Rutenbar, Computer-aided design of analog and mixed-signal inte-

grated circuits, Proceedings of the IEEE, 88(12):1825–1852, 2000

58 F. Balasa

3. D. Leenaerts, G.G.E. Gielen, and R.A. Rutenbar, CAD solutions and outstanding challenges

for mixed-signal and RF IC design, in Proc. IEEE/ACM Int. Conf. on Comp. Aided Design,

pp. 270–277, San Jose CA, Nov. 2001

4. J. Kuhn, Analog module generators for silicon compilation, in VLSI System Design, 1987

5. G. Benkeer, J. Conway, G. Schrooten, and A. Slenter, Analog CAD for consumer ICs, in Ana-

log Circuit Design, J. Huijsing, R. van der Plassche, and W. Sansen (eds.), Norwell, MA:

Kluwer, 1993, pp. 347–367

6. B.S. Baker, E.G. Coffman, and R.L. Rivest, Orthogonal packings in two dimensions, SIAM J.

Comput., 9(4):846–855, 1990

7. J. Cohn, D. Garrod, R. Rutenbar, and L. Carley, Analog Device-Level Automation, Norwell,

MA: Kluwer, 1994

8. M. Kayal, S. Piguet, M. Declerq, and B. Hochet, SALIM: a layout generation tool for analog

ICs, in Proc. IEEE Custom Integrated Circuits Conf., pp. 7.5.1–4, 1988

9. S.W. Mehranfar, STAT: a schematic to artwork translator for custom analog cells, in Proc. 1990

IEEE Custom Integrated Circuits Conf., pp. 30.2.1–3, 1990

10. S.W. Mehranfar, A technology-independent approach to custom analog cell generation, IEEE

J. Solid-State Circuits, SC-26(3):386–393, 1991

11. E. Malavasi, J.L. Ganley, and E. Charbon, Quick placement with geometric constraints, in

Proc. IEEE Custom Integrated Circuits Conf., pp. 561–564, 1997

12. J. Cohn, D. Garrod, R. Rutenbar, and L. Carley, KOAN/ANAGRAM II: new tools for device-

level analog layout, IEEE J. of Solid-State Circuits, SC-26(3):330–342, 1991

13. E. Malavasi, E. Charbon, E. Felt, and A. Sangiovanni-Vincentelli, Automation of IC layout

with analog constraints, IEEE Trans. CAD of IC’s and Syst., 15(8):923–942, 1996

14. K. Lampaert, G. Gielen, and W. Sansen, A performance-driven placement tool for analog inte-

grated circuits, IEEE J. Solid-State Circ., 30(7):773–780, 1995

15. S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, Optimization by simulated annealing, Science,

220(4598):671–680, 1983

16. J. Cohoon and W. Paris, Genetic placement, IEEE Trans. on Comp.-Aided Design of IC’s and

Systems, 6(6):956–964, 1987

17. W.-J. Sun and C. Sechen, Efficient and effective placement for very large circuits, IEEE Trans.

on Comp.-Aided Design of IC’s and Systems, 14(3):349–359, 1995

18. J. Rijmenants, J.B. Litsios, T.R. Schwarz, and M. Degrauwe, ILAC: an automated layout tool

for analog CMOS circuits, IEEE J. of Solid-State Circuits, SC-24(2):417–425, 1989

19. L. Zhang, R. Raut, Y. Jiang, and U. Kleine, Two-stage placement for VLSI analog layout

designs, IEE Proc. Circuits, Devices and Syst., 153(3):274–280, 2006

20. L. Zhang, R. Raut, Y. Jiang, and U. Kleine, Placement algorithm in analog layout designs,

IEEE Trans. CAD of IC’s and Syst., 25(10):1889–1903, 2006

21. S. Kouda, C. Kodama, and K. Fujiyoshi, Improved method of cell placement with symmetry

constraints for analog IC layout design, in Proc. Int. Symp. on Physical Design, pp. 192–199,

San Jose CA, April 2006

22. N. Lourengo, M. Vianello, J. Guilherme, and N. Horta, LAYGEN – Automatic layout gener-

ation of analog ICs from hierarchical template descriptions, in Research in Microelectronics

and Electronics, 2006

23. N. Jangkrajarng, L. Zhang, S. Bhattacharya, N. Kohagen, and R. Shi, Template-based parasitic-

aware optimization and retargeting of analog and RF integrated circuit layouts, in Proc. IEEE

Int. Conf. on Comp.-Aided Design, pp. 342–348, San Jose CA, Nov. 2006

24. A. Grebne, Bipolar and MOS Integrated Circuit Design, NY: Wiley, 1984

25. D.W. Jepsen and C.D. Gellat Jr., Macro placement by Monte Carlo annealing, in Proc. IEEE

Int. Conf. on Comp. Design, pp. 495–498, Nov. 1983

26. R. Otten, Complexity and diversity in IC layout design, in Proc. IEEE Int. Symp. Circuits and

Computers, 1980

27. D.F. Wong and C.L. Liu, A new algorithm for floorplan design, in Proc. 23rd ACM/IEEE

Design Automation Conf., pp. 101–107, 1986

28. E. Malavasi, E. Charbon, G. Jusuf, R. Totaro, and A. Sangiovanni-Vincentelli, Virtual symme-

try axes for the layout of analog IC’s, in Proc. 2nd ICVC, pp. 195–198, Seoul, Korea, Oct. 1991

1 Device-Level Topological Placement with Symmetry Constraints 59

29. H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, VLSI module placement based

on rectangle-packing by the sequence-pair, IEEE Trans. CAD of IC’s and Syst., 15(12):

1518–1524, 1996
30. X. Tang, R. Tian, and D.F. Wong, Fast evaluation of sequence pair in block placement

by longest common subsequence computation, in Proc. Design Aut. & Test in Europe,

pp. 106–111, Paris, March 2000
31. X. Tang and D.F. Wong, FAST-SP: A fast algorithm for block placement based on sequence

pair, in Proc. Asia-S. Pacific Design Aut. Conf., pp. 521–526, Yokohama, Japan, 2001
32. D.B. Johnson, A priority queue in which initialization and queue operations take O.log logD/

time, Mathematical Systems Theory, 15:295–309, 1982
33. S. Nakatake, K. Fujiyoshi, H. Murata, and Y. Kajitani, Module packing based on the BSG-

structure and IC layout applications, IEEE Trans. on Comp.Aided Design of IC’s and Systems,

17(6):519–530, 1998
34. P.-N. Guo, C.-K. Cheng, and T. Yoshimura, An O-tree representation of non-slicing floorplan

and its applications, in Proc. 36th Design Aut. Conf., pp. 268–273, New Orleans LA, June 1999
35. Y.-C. Chang, Y.-W. Chang, G.-M. Wu, and S.-W. Wu, B*-Trees: a new representation for non-

slicing floorplans, in Proc. 37th Design Aut. Conf., pp. 458–463, Los Angeles CA, June 2000
36. F. Balasa, Modeling non-slicing floorplans with binary trees, in Proc. IEEE Int. Conf. on

Comp.-Aided Design, pp. 13–16, San Jose CA, Nov. 2000
37. D.E. Knuth, The Art of Computer Programming, vol. 1 (3rd ed.), MA: Addison-Wesley, 1997
38. X. Hong, G. Huang, Y. Cai, J. Gu, S. Dong, C.-K. Cheng, and J. Gu, Corner block list: an

effective and efficient topological representation of non-slicing floorplan, in Proc. IEEE Int.

Conf. on Comp.-Aided Design, pp. 8–12, San Jose CA, Nov. 2000
39. J.-M. Lin and Y.-W. Chang, TCG: A transitive closure graph-based representation for non-

slicing floorplans, in Proc. 38th Design Aut. Conf., June 2001
40. M. Sarrafzadeh and C.K. Wong, An Introduction VLSI Physical Design, NY: McGraw Hill,

1996
41. N. Sherwani, Algorithms for VLSI Physical Design Automation, 3rd ed., Boston: Kluwer, 1999
42. S.M. Sait and H. Youssef, VLSI Physical Design Automation: Theory and Practice, Singapore:

World Scientific, 1999
43. F. Balasa and K. Lampaert, Symmetry within the sequence-pair representation in the context

of placement for analog design, IEEE Trans. CAD of IC’s and Syst., 19(7):721–731, 2000
44. Y.-X. Pang, F. Balasa, K. Lampaert, and C.-K. Cheng, Block placement with symmetry con-

straints based on the O-tree non-slicing representation, in Proc. 37th ACM/IEEE Design Aut.

Conf., pp. 464–467, Los Angeles CA, June 2000
45. F. Balasa, S.C. Maruvada, and K. Krishnamoorthy, On the exploration of the solution space

in analog placement with symmetry constraints, IEEE Trans. CAD of IC’s and Syst., 23(2):

177–191, 2004
46. J.-M. Lin and Y.-W. Chang, TCG-S: Orthogonal coupling of P-admissible representations for

non-slicing floorplans, in Proc. 39th Design Aut. Conf., June 2002
47. S. Dong, J. Liu, and X. Hong, Signal-path driven symmetry constraint for analog layout in SOI

technology, manuscript, 2010
48. J.L. Bentley, Algorithms for Klee’s rectangle problem, Res. Report, Pittsburgh, PA: Carnegie-

Mellon University, 1977
49. F.P. Preparata and M.I. Shamos, Computational Geometry, Berlin: Springer, 1985
50. F. Balasa, S.C. Maruvada, and K. Krishnamoorthy, Efficient solution space exploration based

on segment trees in analog placement with symmetry constraints, in Proc. IEEE Int. Conf.

Comp.-Aided Design, pp. 497–502, San Jose CA, Nov. 2002
51. T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to Algorithms, NY: McGraw-Hill,

1990
52. L.J. Guibas and R. Sedgewick, A diochromatic framework for balanced trees, in Proc. 19th

Annual Symposium on Foundations of Computer Science, pp. 8–21, 1978
53. S.C. Maruvada, K. Krishnamoorthy, F. Balasa, L.M. Ionescu, Red-black interval trees in

device-level analog placement, IEICE Trans. on Fundamentals of Electronics, Communica-

tions and Computer Sciences, E86-A(12):3127–3135, 2003 (Special section on VLSI Design

and CAD Algorithms), Japan

60 F. Balasa

54. D.E. Knuth, The Art of Computer Programming, vol. 3, MA: Addison-Wesley, 1973

55. W. Pugh, Skip lists: A probabilistic alternative to balanced trees, Comm. of the ACM,

33(6):668–676, 1990

56. J. Culberson, J.I. Munro, Explaining the behavior of binary search trees under prolonged up-

dates: a model and simulation, The Computer Journal, 32(1):68–75, 1989

57. J.I. Munro, T. Papadakis, R. Sedgewick, Deterministic skip lists, Proc. 3rd Annual ACM-SIAM

Symp. on Discrete Algorithms, pp. 367–375, Orlando FL, Jan. 1992

58. T. Papadakis, Skip Lists and Probabilistic Analysis of Algorithms, Ph.D. Dissertation,

University of Waterloo, 1993

59. K. Lampaert, Analog Layout Generation for Performance and Manufacturability, Ph.D. Thesis,

K.U. Leuven, Belgium, Jan. 1998

60. L. Zhang and Ezz. I. El-Masry, Graph-based placement algorithm for analog LSI/VLSI physi-

cal designs, manuscript, 2006

61. A. Andersson and S. Carlsson, Construction of a tree from its traversals in optimal time and

space, Inform. Processing Letters, 34:21–25, 1990

62. E. Mäkinen, Constructing a binary tree efficiently from its traversals, Res. Report A-1998-5,

University of Tampere, Finland, April 1998

63. J.-L. Loday, Realization of the Stasheff polytope, http://lanl.arXiv.org/abs/math/0212126, 2002

64. J.A. Anderson, Discrete Mathematics with Combinatorics, NJ: Prentice Hall, 2001

Chapter 2

Hierarchical Placement with Layout Constraints

Mark Po-Hung Lin and Yao-Wen Chang

Abstract In analog layout design, devices are required to be placed with matching,

symmetry, and proximity constraints to reduce parasitic coupling effects and im-

prove circuit performance. In addition to these basic placement constraints, there

exist hierarchical symmetry and hierarchical proximity constraints due to circuit and

layout design hierarchies. This chapter first introduces the hierarchical constraints

induced by circuit and layout design hierarchies, and then presents a hierarchical

placement approach to better consider these hierarchical constraints and effectively

reduce the search space.

2.1 Introduction

According to [8, 11], the basic analog layout constraints include common-centroid,

symmetry, and proximity constraints, illustrated in Fig. 2.1. The common-centroid

constraint is usually applied to a subcircuit of a current mirror or a differential pair to

reduce process-induced mismatches among the devices. The symmetry constraint is

always required in the layout design of the whole differential subcircuit. It helps re-

duce the parasitic mismatches between two identical signal flows in the differential

subcircuit. The proximity constraint is widely used in the subcircuit of a common

device model or a certain circuit functionality. It helps form a connected placement

of a subcircuit so that the subcircuit can share a connected substrate/well region or

be surrounded by a common guard ring to reduce the layout area, the interconnecting

wire length, and the substrate coupling effect. In particular, the placement outline

of each subcircuit with the proximity constraint can be irregularly rectilinear for

better area utilization. Figure 2.1c shows an example placement of two subcircuits,

fE1; E2; E3g and fF1; F2; F3g, with the proximity constraint.

M.P.-H. Lin (�)

Department of Electrical Engineering, National Chung Cheng University, Chiayi, Taiwan

e-mail: marklin@ccu.edu.tw

H.E. Graeb (ed.), Analog Layout Synthesis: A Survey of Topological Approaches,

DOI 10.1007/978-1-4419-6932-3 2, c Springer Science+Business Media, LLC 2011

61

marklin@ccu.edu.tw

62 M.P.-H. Lin and Y.-W. Chang

Fig. 2.1 Basic analog layout constraints (a) common-centroid constraint (b) symmetry constraint

(c) proximity constraint

Fig. 2.2 Layout design hierarchy and the corresponding constraint in each subcircuit

Besides the basic layout constraints, there exist hierarchical symmetry and

hierarchical proximity constraints due to layout design hierarchy. The layout design

hierarchy may contain both exact and virtual hierarchies of analog circuit design.

The exact hierarchy is the same as the circuit hierarchy, while the virtual hierarchy

consists of hierarchical clusters [20]. Each cluster contains some devices and subcir-

cuits, which are gathered based on device models, subcircuit functionality [10, 27],

and/or other specific constraints [7]. Figure 2.2 shows an example layout design

hierarchy, where each subcircuit corresponds to a specific constraint.

In Fig. 2.2, a subcircuit with the hierarchical symmetry constraint may contain

some devices together with other subcircuits with the common-centroid and (hierar-

chical) symmetry constraints. Figure 2.3 shows an example hierarchical symmetric

placement of several hierarchical subcircuits in Fig. 2.2. Similarly, a subcircuit with

the hierarchical proximity constraint may contain some devices together with other

subcircuits with the common-centroid, (hierarchical) symmetry, and (hierarchical)

proximity constraints.

2 Hierarchical Placement with Layout Constraints 63

H

D E

A

I J K

Fig. 2.3 An example placement of the subcircuits A, D, E , H , I , J , and K with the hierarchi-

cal symmetry constraint in Fig. 2.2, where the subcircuits H and I are symmetric, J and k are

symmetric, and D and E are also symmetric

Based on the concept of the layout design hierarchy illustrated in Fig. 2.2, it is

essential to synthesize analog layout hierarchically for better efficiency and effec-

tiveness. It is also desirable to reduce the large search space by considering layout

design hierarchy. Modern analog placement techniques often simultaneously opti-

mize the placement in different hierarchical subcircuits, e.g., [17, 19, 20, 23, 24, 30],

instead of bottom-up integration, because the optimal placement of a subcircuit

may not lead to the globally optimal placement. Most of them apply simulated

annealing [13] based on the topological floorplan representations, such as Sequence-

Pair [28] and B*-tree [6], while the latest one [30] adopts a fully deterministic

approach. Among these works, the one based on the hierarchical B*-tree (HB*-tree)

in [19, 20, 23] discussed how to handle the hierarchical symmetry and hierarchical

proximity constraints together with the consideration of layout design hierarchy.

In the following sections, the basic hierarchical framework based on the HB*-tree

and symmetry-island formulation is first introduced to handle symmetry constraints.

The generalized HB*-tree is then presented to consider both hierarchical symmetry

and hierarchical proximity constraints.

2.2 Preliminaries

2.2.1 Symmetry Constraints

To reduce the effect of parasitic mismatches and circuit sensitivity to thermal gra-

dients or process variations for analog circuits, some pairs of modules need to be

placed symmetrically with respect to a common axis, and the symmetric mod-

ules are preferred to be placed at closest proximity for better electrical properties.

The symmetry constraints can be formulated in terms of symmetry types, symme-

try groups, symmetry pairs, and self-symmetric modules. In analog layout design,

a symmetry group may contain some symmetry pairs and self-symmetric modules

64 M.P.-H. Lin and Y.-W. Chang

Fig. 2.4 Two symmetry

types (a) symmetric

placement with the vertical

symmetry axis (b) symmetric

placement with the horizontal

symmetry axis

Table 2.1 The notations

in this chapter
b A module

S A symmetry group

.b; b0/ A symmetry pair

bs A self-symmetric module

br The representative of a symmetry pair or a

self-symmetric module

n Number of modules

m Number of symmetry groups

.xi , yi / The center coordinate of the module bi

wi , hi The width and the height of the module bi

Oxi , Oyi The coordinate(s) of the symmetry axis (axes)

of the symmetry group Si

with respect to a certain symmetry type. A symmetry type may correspond to a sym-

metry axis in either the horizontal or the vertical direction. Figure 2.4 shows two

different symmetry types with either the vertical or the horizontal symmetry axis.

For the symmetric placement with the vertical (horizontal) symmetry axis shown

in Fig. 2.4a (Fig. 2.4b), a symmetry pair with two modules of the same dimensions

and orientations should be placed symmetrically along the vertical (horizontal) sym-

metry axis. A self-symmetric module whose internal structure is self-symmetric

must have its center placed at the symmetry axis.

The notations listed in Table 2.1 are used throughout this chapter. Let S D

fS1; S2; : : : ; Smg be a set of m symmetry groups whose coordinate(s) of the sym-

metry axis (axes) is (are) denoted by Oxi or Oyi (Oxi and Oyi), 1 � i � n. A symmetry

group Si D f.b1; b0
1/; .b2; b0

2/; : : : ; .bp; b0
p/; bs

1; bs
2; : : : ; bs

qg consists of p symme-

try pairs and q self-symmetric modules, where .bj ; b0
j / denotes a symmetry pair and

bs
k

denotes a self-symmetric module. Let (xj , yj) and (x0
j , y0

j) denote the respective

coordinates of the centers of two modules bj and b0
j in a symmetry pair .bj ; b0

j /,

and (xs
k

, ys
k

) denote the coordinate of the center of the self-symmetric module bs
k

.

The symmetric placement of a symmetry group Si with the vertical (horizontal)

symmetry axis must satisfy (2.1) [(2.2)].

xj C x0
j D 2 � Oxi ; 8j D 1; 2; : : : ; p:

yj D y0
j ; 8j D 1; 2; : : : ; p:

xs
k D Oxi ; 8k D 1; 2; : : : ; q: (2.1)

2 Hierarchical Placement with Layout Constraints 65

xj D x0
j ; 8j D 1; 2; : : : ; p:

yj C y0
j D 2 � Oyi ; 8j D 1; 2; : : : ; p:

ys
k D Oyi ; 8k D 1; 2; : : : ; q: (2.2)

2.2.2 Symmetry Island

Before introducing the symmetry island, the effect of the symmetric device layout

on the electrical matching properties of the symmetric devices should be investi-

gated. Pelgrom et al. [29] measured the mismatch between MOS transistors with

various electrical parameters as a function of device areas, distances, and orien-

tations. According to [29], the difference of an electrical parameter P between

two rectangular devices is modeled by the standard deviation as shown in (2.3),

where AP is the area proportionality constant for P , W and L denote the respective

width and length of the device, and SP denotes the variation of P under the device

spacing Dx .

�2.�P / D
A2

P

W L
C S2

P D2
x : (2.3)

The device dimensions of modules in a symmetry pair are assumed to be the

same. According to the above equation, the larger the distance between the sym-

metry pair, the greater differences between their electrical properties. Therefore, it

is of significant importance for the symmetric devices of a symmetry group to be

placed in close proximity. Figure 2.5a shows an analog circuit of a two-stage CMOS

operational amplifier containing the differential input sub-circuit. The devices M1,

M2, M3, M4, and M5 in the differential input sub-circuit form a symmetry group

S D f.M1; M 2/; .M 3; M 4/; M 5g. Figures 2.5b, c show two corresponding lay-

outs with different placement styles for the symmetry group S . The layout style in

Fig. 2.5c is generally considered much better than that in Fig. 2.5b because the sym-

metric modules of the same symmetry group are placed at closer proximity (or even

adjacent) to each other. Consequently, the sensitivities due to process variations can

be minimized, and the circuit performance can be improved.

Based on the placement with the closest proximity for a symmetry group as

shown in Fig. 2.5c, the concept of symmetry islands is then introduced with its def-

inition given as follows:

Definition 2.1. A symmetry island is a placement of a symmetry group in which

each module in the group abuts at least one of the other modules in the same group,

and all modules in the symmetry group form a connected placement.

In the example of Fig. 2.6, the symmetry group S1 in Fig. 2.6a forms a symmetry

island, but that in Fig. 2.6b does not since it results in two disconnected components.

The placement style in Fig. 2.6a is preferred in analog layout design due to its better

electrical properties.

66 M.P.-H. Lin and Y.-W. Chang

Fig. 2.5 An example analog circuit and two different layout styles for the circuit. (a) The

schematic of a two-stage CMOS operational amplifier, where the differential input sub-circuit

forms a symmetry group. (b) A layout design of the circuit in (a), where the devices of a sym-

metry group are not placed close to each other. (c) Another layout design of the circuit in (a),

where the devices of a symmetry group are placed close to each other

b2’b2 b5 b5b6 b6

b3 b3b4 b4b1’ b1’b1 b1

b2 b2’

a b

Fig. 2.6 Two symmetric-placement examples of a symmetry group S1 D f.b1; b0

1/; .b2; b0

2/g.

(a) S1 forms a symmetry island. (b) S1 cannot form a symmetry island

2.2.3 Review of B*-Trees

A B*-tree is an ordered binary tree representing a compacted placement, in which

every module cannot move left and bottom anymore. As shown in Fig. 2.7, every

node of a B*-tree corresponds to a module of a compacted placement. The root

of a B*-tree corresponds to the module on the bottom-left corner. For each node

n corresponding to a module b, the left child of n represents the lowest, adjacent

module on the right side of b, while the right child of n represents the first module

above b with the same horizontal coordinate.

2 Hierarchical Placement with Layout Constraints 67

Fig. 2.7 (a) A compacted

placement (same as

Fig. 2.6a). (b) The B*-tree

representing the compacted

placement in (a)

b4

b0 b1 b2 b3

b7b6b5

n3

n2

n1

n0

n4

n5

n6

n7

a b

Given a B*-tree, we can calculate the coordinate of each module by a pre-

order tree traversal. Suppose the module bi , represented by the node ni , has the

bottom-left coordinate .xi ; yi /, the width wi , and the height hi . Then for the left

child, nj , of ni , xj D xi C wi ; for the right child, nk , of ni , xk D xi . In addi-

tion, we maintain a contour structure to calculate the y-coordinates. Thus, starting

from the root node, whose bottom-left coordinate is (0, 0), then visiting the root’s

left subtree, and then its right subtree, this preorder tree traversal procedure, a.k.a.

B*-tree packing, calculates all coordinates of the modules in the placement. Using a

doubly-linked list to implement the contour structure, the total packing time is linear

to the number of modules.

2.3 Placement of a Symmetry Group

2.3.1 Automatically Symmetric-Feasible B*-tree

To consider the symmetric placement of a symmetry group and the packing of

the symmetry modules to make a symmetry island, the automatically symmetric-

feasible B*-tree (ASF-B*-tree for short) is proposed. Like B*-trees, the ASF-B*-

tree can represent only compacted symmetric placement; in particular, there exists a

unique correspondence between a compacted symmetric placement of a symmetry

group and its induced ASF-B*-tree which results in a symmetry island.

Before introducing the ASF-B*-tree, the representative of a symmetry pair, the

representative of a self-symmetric module, and the representative B*-tree are de-

fined as follows:

Definition 2.2. The representative br
j of a symmetry pair (bj , b0

j) is b0
j .

Definition 2.3. The representative br
k

of a self-symmetric module bs
k

is the

right (top) half of bs
k

in a symmetric placement with respect to a (horizontal)

symmetry axis.

For the example of Fig. 2.8, the representative br
1 of the symmetry pair fb1; b0

1g

is b0
1, while the representative br

0 of the self-symmetric module bs
0 is the right half

of bs
0.

It should be noted that each symmetry pair or self-symmetric module must have

its own representative module. Therefore, the number of the representatives in a

68 M.P.-H. Lin and Y.-W. Chang

b3
s

b2
s

b0
s

b2
,

b1

rightmost

branch
b3
r

n1
r n3

r

n2
r

n0
r

b2
r b1

r

b0
r

a b c

Fig. 2.8 (a) A placement example of a symmetry group have a vertical symmetry axis.

(b) Selecting a representative for each symmetry pair and self-symmetric module. (c) The ASF-

B*-tree (also a representative B*-tree) representing the placement of the symmetry group, where

the dash circled nodes represent the left-boundary modules

symmetry group should be the same as the number of symmetry pairs and self-

symmetric modules. The representative B*-tree is then defined as follows:

Definition 2.4. A representative B*-tree is a B*-tree containing only the represen-

tative nodes that correspond to representative modules.

Before explaining how to obtain an ASF-B*-tree by making a representative

B*-tree symmetric-feasible for symmetric placements with vertical and horizontal

symmetry axes, the mirrored placement of the representative modules for a symme-

try group is introduced and defined as follows:

Definition 2.5. The mirrored placement of the representative modules for a sym-

metry group Si is to place the nonrepresentative modules on the mirrored positions

of the representative ones for each symmetry pair or each self-symmetric module in

Si with respect to its symmetry axis (axes). Furthermore, the representative and the

nonrepresentative modules of each self-symmetric module are not disjointed.

Based on the definition of the mirrored placement of the representative mod-

ules, the symmetric-feasible condition of a representative B*-tree for the symmetric

placements can be further defined as follows:

Definition 2.6. A representative B*-tree is symmetric-feasible if the mirrored

placement of the representative modules can be obtained after packing the repre-

sentative B*-tree.

In Fig. 2.8a, the modules in the symmetry group S D f.b1; b0
1/; bs

0; bs
2; bs

3g are

placed symmetrically with respect to the vertical axis. To construct the correspond-

ing representative B*-tree, the representative module of each symmetry pair and

self-symmetric module should be selected with the consideration of the place-

ment on the right-half plane. Figure 2.8b highlights the representative modules,

and Fig. 2.8c shows the corresponding representative B*-tree of the symmetric

placement. Each node in the representative B*-tree corresponds to a representative

module.

2 Hierarchical Placement with Layout Constraints 69

To make the representative B*-tree symmetric-feasible, the following lemmas

are derived, which formulate the symmetry conditions for self-symmetric modules

and symmetry pairs.

Lemma 2.1. The representative of a self-symmetric module must abut the symmetry

axis.

Proof. Let S be a symmetry group with a vertical symmetry axis, and bs be a self-

symmetric module in S . The symmetry axis of S is denoted by Ox, and the center of

bs is denoted by .xs ; ys/.

Based on (2.1), the symmetry axis Ox always passes through the center .xs ; ys/

of the self-symmetric module bs, i.e., Ox D xs . According to Definition 2.3, the rep-

resentative b r of b s is the right half of b s . Therefore, the center .xs ; y s / of b s must

be on the left boundary of b r . To keep the symmetric-feasible condition Ox D xs , b r

must abut the symmetry axis Ox. The case for a symmetry group with a horizontal

symmetry axis can be proved similarly.

Lemma 2.2. The representative of a symmetry pair not on a symmetry axis is

always symmetric-feasible.

Proof. Let S be a symmetry group with a vertical symmetry axis, and .b; b0/ be a

symmetry pair in S . The symmetry axis of S is denoted by Ox. The respective centers

of b and b0 are .x; y/ and .x0; y0/, and the respective widths/heights of b and b0 are

w=h and w0=h0, where w D w0 and h D h0. The representative of the symmetry pair

.b; b0/ is b0.

Given the coordinate of the representative b0 and the vertical symmetry axis Ox,

the coordinate of the symmetric module b can be calculated by (2.1). We have x D

2 � Ox � x0 and y D y0. After transposing Ox to the left side and having the absolute

value on both sides, we have jx � Oxj D j Ox � x0j. Since the representative is not on

the symmetry axis, we have jx � Oxj D j Ox � x0j � w
2

. It means that the distances

from the symmetry axis to the centers of b and b0 are greater than or equal to half

of the width of b or b0. Since b and b0 are on different sides of the symmetry axis,

b and b0 will not overlap each other. Therefore, the symmetric-feasible condition is

always satisfied. The case for a symmetry group with a horizontal symmetry axis

can be proved similarly.

According to Lemma 2.1 and the boundary constraints [21] in the B*-trees, the

symmetric-feasible representative B*-trees have the following property:

Property 2.1. The left-boundary (right-boundary) constraint for the symmetric

placement with respect to a vertical (horizontal) symmetry axis: the representative

node of a self-symmetric module should always be on the right (left) most branch

of the representative B*-tree.

Based on the above property, the nodes representing the modules on the left

boundary should be on the rightmost branch as shown in Fig. 2.8c.

Similarly, the symmetric-feasible representative B*-tree of the symmetric place-

ment when the symmetry axis is in the horizontal direction can be derived. In this

70 M.P.-H. Lin and Y.-W. Chang

b1
s b2

s b3
s

b0

left most

branch

b0
,

b3
r n1

r

n3
r

n2
r

n0
r

b2
r

b1
r

b0
r

a b c

Fig. 2.9 (a) A placement example of a symmetry group with a horizontal symmetry axis.

(b) Selecting a representative module for each symmetry pair and self-symmetric module. (c) The

ASF-B*-tree (also a representative B*-tree) representing the placement of the symmetry group,

where the dash circled nodes represent the bottom-boundary modules

case, we only consider the top-half plane during the placement of the representa-

tive modules. Figure 2.9c shows the representative B*-tree of the symmetry group

S D f.b0; b0
0/; bs

1; bs
2; bs

3g having the symmetric placement with respect to the hor-

izontal symmetry axis in Fig. 2.9a. Again, the representatives of the self-symmetric

modules should abut the horizontal symmetry axis, which is on the bottom boundary

of the top-half plane. Therefore, the nodes representing the modules on the bottom

boundary should be on the leftmost branch, as illustrated in Fig. 2.9c.

Based on Definition 2.4 and Property 2.1, an ASF-B*-tree is defined as follows:

Definition 2.7. An ASF-B*-tree is a representative B*-tree, which satisfies

Property 2.1.

Once an ASF-B*-tree is packed, the coordinates of these representatives are

obtained, and the coordinates of their symmetric modules can be further calculated

based on (2.1) and (2.2) with the given coordinates of the symmetry axes, Oxi and Oyi .

The symmetric placement of a symmetry group automatically forms a symmetry

island.

Based on Lemmas 2.1 and 2.2, the following theorems are derived:

Theorem 2.1. An ASF-B*-tree is symmetric-feasible in a symmetric placement of a

symmetry group with respect to either a vertical or a horizontal symmetry axis.

Proof. An ASF-B*-tree is symmetric-feasible if all the representatives in the ASF-

B*-tree are symmetric-feasible. There are four kinds of representatives, and the

symmetric-feasible condition for each is defined and proved in Lemmas 2.1 and 2.2.

Therefore, an ASF-B*-tree is symmetric-feasible in a symmetric placement of a

symmetry group with respect to either a vertical or a horizontal symmetry axis.

Theorem 2.2. The packing of an ASF-B*-tree results in a symmetry island of the

corresponding symmetry group.

Proof. It is obvious that all the representative modules will form a connected

placement after packing. We set the coordinate(s) of the symmetry axis (axes) to

the left or (and) the bottom boundary (boundaries) of the connected placement

2 Hierarchical Placement with Layout Constraints 71

of the representative modules. The coordinates of the symmetric modules can be

calculated by (2.1) and (2.2). The symmetric modules also form a connected place-

ment, and the boundary of the connected placement also abut the symmetry axis

(axes). Therefore, the whole symmetry group form a connected placement, and each

module in the group abuts at least one of the other modules in the same group. The

packing of an ASF-B*-tree thus results in a symmetry island of the corresponding

symmetry group.

Theorem 2.3. There exists a unique correspondence between a compacted symmet-

ric placement of a symmetry group and its induced ASF-B*-tree.

Proof. According to [6], there is a unique correspondence between an admissible

placement and its induced B*-tree. After obtaining the placement of the representa-

tive modules, the mirrored placement of the symmetric ones is also obtained. The

mirrored placement is also unique. Therefore, there exists a unique correspondence

between a compacted symmetric placement of a symmetry group and its induced

ASF-B*-tree.

Based on the above theorems, a corresponding symmetric placement for an ASF-

B*-tree can correctly and efficiently be found by avoiding searching in redundant

solution spaces. It will be clear later in Sect. 2.6 that these advantageous proper-

ties of ASF-B*-trees lead to superior solution quality and efficiency for analog

placement.

2.3.2 ASF-B*-Tree Packing

The packing of the ASF-B*-tree is similar to that of the B*-tree [6], which follows

the preorder tree traversal procedure to calculate the coordinates of the modules.

During the packing, two double linked lists are implemented to keep both horizon-

tal and vertical contour structures. Figure 2.10 shows the packing procedure of the

example ASF-B*-tree in Fig. 2.13a. The bold (red) lines denote the horizontal con-

tour, while the dotted (green) lines represent the vertical contour.

After obtaining the coordinates of all representative modules in the symmetry

group, the coordinates of the symmetric modules and the extended contours can be

b1
,

b2
,b1

,

n1
r n1

r
n1
r

n2
r

n2
r n2

r

n0
r

n0
r n0

r

b0
,

b0
,

b0
,

Fig. 2.10 The packing procedure including the contour updates of the ASF-B*-tree in Fig. 2.13a

72 M.P.-H. Lin and Y.-W. Chang

horizontal

contour

vertical

contour

convex

point

b1
,

b2
,

b0
,

b2
,

b0
,

b1
,

b1 b1

b0 b0

b2 b2

a b

Fig. 2.11 The generation of the bottom contour of the symmetry island based on the dual vertical

contours. (a) The convex points obtained by traversing the dual vertical contours from bottom to

top. (b) The bottom horizontal contour connected by the convex points

calculated based on either (2.1) or (2.2). Figure 2.13b shows the resulting placement

of the symmetry group and the contours of the symmetry island for the ASF-B*-tree

shown in Fig. 2.13a. As shown in Fig. 2.13b, the symmetry island contains one top

horizontal and dual vertical contours. To further calculate the bottom horizontal con-

tour of the symmetry island, both vertical contours from bottom need to be traversed

to top and keep the convex points as shown in Fig. 2.11a. By connecting the convex

points horizontally, the bottom horizontal contour of the symmetry island can be

obtained as shown in Fig. 2.11b.

2.4 The Hierarchical Framework

2.4.1 Hierarchical HB*-Tree

The hierarchical framework, called hierarchical B*-tree (HB*-tree for short), is pro-

posed to handle the simultaneous placement of modules in symmetry islands and

nonsymmetric modules. In an HB*-tree, the symmetry island of each symmetry

group can be in any rectilinear shapes, and symmetry and nonsymmetric modules

are simultaneously placed to optimize the placement.

Figure 2.12 shows an HB*-tree for the placement in Fig. 2.6a. Two symmetry

groups, S1 and S2, are represented by two hierarchy nodes, nS1
and nS2

, and each

hierarchy node contains an ASF-B*-tree that corresponds to a symmetry island in

the symmetric placement.

2.4.2 HB*-Tree with Rectilinear Symmetry Islands

The symmetry islands are often not rectangular, but are of rectilinear shapes. For

example, in Fig. 2.13c, the symmetry island of the symmetry group S0 is of the

rectilinear shape. Therefore, the HB*-tree in Fig. 2.12 should be augmented to han-

dle rectilinear symmetry islands. Wu et al. [33] proposed a method to deal with

2 Hierarchical Placement with Layout Constraints 73

hierarchy node

non-hierarchy node

ASF-B*-tree in a

hierarchy node

n2
r

n1
r

n5

n6

n4

n3

nS1

Fig. 2.12 An HB*-tree for the placement in Fig. 2.6a

horizontal contour

vertical contour

hierarchy node

contour node

b1b2

b0

S0

c00

c01
c02 nS0

n00

n01

n02

b0
,

b1
,

b2
,

n0
r

n2
r

n1
r

a b

c d

Fig. 2.13 (a) An ASF-B*-tree of a symmetry group S0. (b) The horizontal and vertical contours of

the corresponding placement. (c) The symmetry island and its effective contours. (d) The HB*-tree

for the rectilinear symmetry island

rectilinear modules by slicing a rectilinear module into several rectangular sub-

modules along each vertical boundary. However, it is complicated to maintain the

relationship between the submodules during B*-tree perturbations.

Instead of slicing a rectilinear symmetry island, several contour nodes are in-

troduced to represent top horizontal contour segments of the symmetry island. In

Fig. 2.13c, there are three horizontal contour segments, c00, c01, and c02. The HB*-

tree is augmented by introducing the three contour nodes, n00, n01, n02, as shown in

Fig. 2.13d. Each contour node keeps the coordinates of the corresponding horizontal

contour segment. The relationship of a hierarchy node, its contour nodes, and other

regular module nodes is described as follows:

Property 2.2. Properties for an HB*-tree.

1. The left child of a hierarchy node, if any, must be a noncontour node.

2. The right child of a hierarchy node must be the contour node representing the

leftmost top horizontal contour segment of the symmetry island.

74 M.P.-H. Lin and Y.-W. Chang

3. The left child of a contour node, if any, must be the contour node representing

the next contour segment on the right side.

4. The children of a regular module node must be a noncontour node.

5. The right child of a contour node, if any, must be a noncontour node.

6. The parent of a contour node cannot be a regular module node.

Proof. Given a symmetry group S0, b S 0
denotes the symmetry island of S 0 , nS 0

denotes the corresponding hierarchy node, and n0i represents the i th top contour

segment of bS0
from left to right.

1. Since the contour node n0i represents the i th top contour segment of bS0
, it is

impossible for n0i to be the left child of nS0
that corresponds to the lowest,

adjacent module on the right side of bS0
, based on the B*-tree definition. The

property thus follows.

2. According to the definition of the B*-tree, the right child of nS0
represents the

first module above bS0
. Since the top horizontal contour segments of bS0

always

abut bS0
, other modules cannot be placed between bS0

and its top contour seg-

ments. Therefore, the right child of nS0
must be a contour node representing the

leftmost top horizontal contour segment of bS0
.

3. By the contour node definition, the contour node n0;i represents the i th top con-

tour segment of bS0
from left to right, and the left child of n0;i , if any, is n0;iC1

representing the next (.i C1/th) contour segments. If n0;i represents the last (the

rightmost) top contour segment, the left child of n0i is empty.

4. Based on the second and the third properties of the HB*-tree, the contour node

n0i cannot be the left or right child of a regular module node. The property thus

follows.

5. The right child of the contour node n0i represents the first module above the

i th top contour segment of bS0
. If there exists another contour node n0j that is

the right child of n0i , both contour segments will overlap each other with n0j ’s

contour segment on top of that of n0i , implying that n0i is not a contour node.

This is a contradiction.

6. Based on the construction of the HB*-tree, the parent of a contour node is either

a contour node or a hierarchy node.

Figure 2.13a shows the ASF-B*-tree of the symmetry group S0 = f(b0, b0
0),

(b1, b0
1), (b2, b0

2)g. In Fig. 2.13b, the horizontal and vertical contours are obtained

from the rectilinear outline after packing the ASF-B*-tree. Figure 2.13c shows the

symmetry island and the effective horizontal and vertical contours. The horizontal

contour segments are denoted as c00, c01, and c02 from left to right. Therefore, we

have a hierarchy node nS0
representing the symmetry island of the symmetry group

S0, and three contour nodes n00, n01, and n02 representing the contour segments.

The relationship between the hierarchy node and its contour nodes is shown in the

HB*-tree in Fig. 2.13d.

2 Hierarchical Placement with Layout Constraints 75

2.4.3 HB*-Tree Packing

The HB*-tree packing also adopts the preorder tree traversal procedure. When

a hierarchy node is traversed, the ASF-B*-tree in the hierarchy node should be

packed first to obtain the contours of the symmetry island described previously.

The contours are then stored in the corresponding hierarchy node. During packing a

hierarchy node representing a symmetry island, the best packing coordinate for the

bottom boundary of the symmetry island should be calculated based on the bottom

contour shown in Fig. 2.11b. The left child of the hierarchy node is then proceeded

to be packed. After the left child and all its descendants are packed, the first contour

node of the symmetry island is packed, followed by the second one, and so on. When

packing the contour nodes, their corresponding coordinates should be updated and

the hierarchy node should be replaced in the contour data structure of the HB*-tree.

Figure 2.14a shows an HB*-tree representing 20 modules with two symmetry

groups S0 and S1. For the packing, the two ASF-B*-trees in nS0
and nS1

are packed

first, and the rectilinear outlines of the two symmetry islands are obtained. Then, the

nodes, n5, n6, n7, n8, n9, are packed in the DFS order. The temporal contour list

n00

n3
r

hierarchy node

contour node

symmetry

module node

non-symmetry

module node

n4
r

n2
r

n1
r

n0
r

n9

n8

n7

n6

n5

nS1

nS0

n12

n14

b10
b11 b12

b5

b2
b1

b0
b0
,

b1
,

b2
,

b4
,

b3
,

b6

b7

b3
b4

b8

b9

b13 b14

n13

n11

n10
n01

n02

n10

n11

n12

a

b

Fig. 2.14 (a) An HB*-tree representing 20 modules with two symmetry groups S0 and S1. (b) The

resulting placement after packing the HB*-tree

76 M.P.-H. Lin and Y.-W. Chang

is < n5, n6, n7, n9 >. By calculating the rectilinear outlines between the temporal

contour list and the bottom boundary of the symmetry island S0, the dead space be-

tween the previously packed modules and the symmetry island can be minimized.

The updated temporal contour list becomes < nS0
, n7, n9 >. Continuing the pack-

ing procedure, the resulting placement of the HB*-tree is obtained as shown in

Fig. 2.14b finally. Although the purpose of the packing is to obtain a compacted

placement, sufficient white space might need to be allocated for the surrounding

wells or guard rings based on the device types, such as NMOS or PMOS transis-

tors. When packing a node, the device type of the corresponding module should be

compared with those of the previously packed modules in the current contour list.

If the device types are different, the currently packed module should be snapped to

a position to reserve sufficient white space for the surrounding wells or guard rings.

The following theorem shows the packing complexity.

Theorem 2.4. The packing for an ASF-B*-tree or an HB*-tree takes linear time.

Proof. Given a design with n modules (including symmetry and nonsymmetry ones)

and m symmetry groups, let On be the number of nonsymmetric modules and n.Si /

be the number of modules in each symmetry group Si , where n.Si / � 1. We have

n D On C
Pm

iD1 n.Si /.

For the HB*-tree representing the symmetric placement of the given design, there

are m hierarchy nodes, O.
Pm

iD1 n.Si // contour nodes, and On module nodes. For

the ASF-B*-tree of the symmetry group Si in a hierarchy node, there are O.n.Si //

representative nodes.

First, the packing for the ASF-B*-tree of the symmetry group Si in a hierarchy

node is considered. It consists of two steps. The first step is the packing for all

representative modules. The second step is the calculation of the coordinate of each

symmetric module.

According to [6], the packing for a B*-trees takes linear time, so the time com-

plexity of the first step is O.n.Si //. Since it takes constant time to calculate the

coordinate of a symmetric module, it also takes O.n.Si // time to compute the co-

ordinates of all the symmetric modules in Si . Combining both steps, we have the

O.n.Si // time complexity for the packing of an ASF-B*-tree of Si .

Second, the packing for the HB*-tree is considered. If all the symmetry islands

of m symmetry groups are in a rectangular shape, we can ignore the contour nodes

in the HB*-tree, and it takes O.m C On/ time to pack the HB*-tree. However, if any

symmetry island is in a rectilinear shape, we need to consider the packing of the

hierarchy node representing this symmetry island, especially the additional contour

nodes.

The bottom contour of the symmetry island of Si is obtained when the corre-

sponding ASF-B*-tree of the symmetry group is packed, and the number of the

bottom contour segments is O.n.Si //. By comparing the current packing contour

segments and the bottom contour segments of the symmetry island from left to right,

it also takes O.n.Si // time to get the coordinates of the modules in the symmetry

island Si .

2 Hierarchical Placement with Layout Constraints 77

To sum up, it takes O.m C
Pm

iD1 n.Si / C On/ time to pack the HB*-tree. Since

n D
Pm

iD1 n.Si / C On, the packing time can be reduced to O.m Cn/ time. Since the

number of symmetry group m is upper bounded by the number of total modules n,

the packing time is O.n/.

2.5 The Algorithm

The placement algorithm is based on simulated annealing [13]. Given a set of mod-

ules and symmetry constraints as the inputs, an initial solution represented by an

HB*-tree is constructed and then perturbed to search for a desired configuration un-

til a predefined termination condition is satisfied. The cost function, ˚.P /, of the

placement is defined in (2.4), where ˛ and ˇ are user-specified parameters, AP is

the area of the bounding rectangle for the placement, and WP is the half-perimeter

wire length (HPWL).

˚.P / D ˛ � AP C ˇ � WP : (2.4)

2.5.1 HB*-Tree Perturbation

The following operations are applied to perturb an HB*-tree.

� Op1: Rotate a module.

� Op2: Move a node to another place.

� Op3: Swap two nodes.

In the perturbation, the nonhierarchy nodes have higher probabilities to be se-

lected because rotating, moving, or swapping the hierarchy nodes might incur a big

jump in finding the next solution. It is well known that such a big jump might dete-

riorate the solution quality during the SA process. It should be noted that, due to the

special structure of the HB*-tree, a non-hierarchy node cannot be moved to the right

child of a hierarchy node or the left child of a contour node. The contour nodes are

always moved along with its hierarchy node which cannot be moved individually.

2.5.2 ASF-B*-Tree Perturbation

In addition to the aforementioned Op1, Op2, and Op3 for HB*-tree perturbation, the

operations, Op4 and Op5, are introduced to perturb the ASF-B*-trees. It should be

noted that Property 2.1 should always be satisfied when perturbing an ASF-B*-tree

according to the definition of the ASF-B*-trees in Definition 2.7.

� Op4: Change a representative.

� Op5: Convert a symmetry type.

78 M.P.-H. Lin and Y.-W. Chang

Fig. 2.15 Rotating the

self-symmetric module bs
1

in the symmetry group

S D fbs
0 ; bs

1g results in the

shape change of its

representative br
1

b1
s

b1
s

b1
r

b1
r

b0
s b0

sb0
r b0

r

2.5.2.1 Module Rotation

When rotating modules in a symmetry group, the corresponding ASF-B*-tree is

unchanged. Two cases of symmetry-module rotation should be considered.

� Case 1: Rotate a symmetry pair.

� Case 2: Rotate a self-symmetric module.

In Case 1, both modules of a symmetry pair should be rotated at the same time

so that they can still be symmetrically placed with respect to a symmetry axis. In

Case 2, after rotating a self-symmetric module, the shape of its representative should

be updated accordingly as shown in Fig. 2.15.

2.5.2.2 Node Movement

When moving a node to another place in an ASF-B*-tree, the following two cases

should be considered.

� Case 1: Move a node representing the representative of a symmetry pair.

� Case 2: Move a node representing the representative of a self-symmetric module.

In Case 1, the representative node of a symmetry pair can be moved to anywhere

in an ASF-B*-tree. In Case 2, however, the representative node of a self-symmetric

module can only be moved along the rightmost (leftmost) branch of the ASF-B*-

tree for vertical (horizontal) symmetric placement so that Property 2.1 is satisfied.

2.5.2.3 Node Swapping

When swapping two nodes in an ASF-B*-tree, the following two cases should be

considered.

� Case 1: Both nodes represent the representatives of two different symmetry

pairs.

� Case 2: At least one node represents the representative of a self-symmetric

module.

In Case 1, two nodes representing the representatives of two different symmetry

pairs can be arbitrarily swapped. However, for Case 2, if at least one of the swapped

2 Hierarchical Placement with Layout Constraints 79

nodes represents the representative of a self-symmetric module, the other node must

be located on the same branch (i.e., the leftmost or the rightmost branch) of the

ASF-B*-tree. Therefore, Property 2.1 is still satisfied after node swapping.

2.5.2.4 Representative Change

The purpose of changing a representative for a symmetry pair or a self-symmetric

module is to optimize the wire length, while the area is kept unchanged after

changing the representative. The representative of either a symmetry pair or a self-

symmetric module can be changed.

� Case 1: Change the representative of a symmetry pair.

� Case 2: Change the representative of a self-symmetric module.

In Case 1, for a symmetry pair (bj , b0j), the representative can be changed from

bj to b0j or from b0j to bj . Figure 2.16 illustrates that changing the representative of

the symmetry pair (b1, b01) from b01 to b1 may result in shorter wire length between

b1 and b3. Similarly, in Case 2, for a self-symmetric module bs
k

, we can change

its representative by flipping it horizontally or vertically according to its symmetry

axis. As illustrated in Fig. 2.17, changing the representative of the self-symmetric

module bs
1 by flipping it horizontally may result in shorter wire length between bs

1

and b3. Obviously, each operation takes constant time.

2.5.2.5 Symmetry-Type Conversion

For symmetry-type conversion of a symmetry group, both conversions between the

vertical symmetry and the horizontal one should be considered.

� Case 1: Convert the symmetry type from vertical symmetry to horizontal one.

� Case 2: Convert the symmetry type from horizontal symmetry to vertical one.

Fig. 2.16 Changing the

representative of the

symmetry pair (b1 , b0

1) from

b0

1 to b1 may result in shorter

wire length between b1 and b3

b1 b1

b3 b3

b2 b2b2
,

b2
,

b1
,

b1
,

Fig. 2.17 Changing the

representative of the

self-symmetric module bs
1

may result in shorter wire

length between bs
1 and b3

b3b3

b2 b2b2
,

b2
,

b1
s

b1
s

80 M.P.-H. Lin and Y.-W. Chang

b0
r

b0
r

b1
r

b1
r

b2
r

b2
r

b3
r

b3
r

n3
r n3

r

n2
r n2

r

n1
r n1

r

n0
r

n0
r

a b

Fig. 2.18 Converting the symmetry type from (a) vertical symmetry to (b) horizontal symmetry

b0
r

b0
r

b1
r

b1
r

b2
r

b2
r

b3
r

b3
r

n3
r

n3
r

n2
r n2

r

n1
r n1

r

n0
r n0

r

a b

Fig. 2.19 Converting the symmetry type from (a) horizontal symmetry to (b) vertical symmetry

To convert the symmetry type of a symmetry group from vertical symmetry

to horizontal one or vice versa, we first rotate every module including the repre-

sentative, and then swap the left and the right children of each node in the given

ASF-B*-tree. Figures 2.18 and 2.19 show the respective examples for the conver-

sions of Cases 1 and 2.

It should be noted that the symmetry type is usually predefined based on the

power/ground lines or signal flows in the layout by the analog designers. Therefore,

Op5 is seldom applied in real applications.

2.5.3 Contour Node Related Updates

Once an ASF-B*-tree is perturbed, the number of the corresponding contour nodes

in the HB*-tree might be changed. The tree structure might have to be updated

accordingly. If the number of contour nodes representing the horizontal contour

segments of the symmetry island is increased, the structure of the HB*-tree can

be kept unchanged. However, if that of the contour nodes is decreased, some other

nodes in the HB*-tree might not have parents. Such nodes, called dangling nodes

should be reassigned to new parents. To keep the relative placement topology before

and after perturbing an ASF-B*-tree, the nearest contour node is searched for each

dangling node. If the nearest contour node has no right child, it is the parent of the

dangling node, and the dangling node will be its right child. If the nearest contour

node has a right child, the leftmost-skewed child of the right child is traversed.

2 Hierarchical Placement with Layout Constraints 81

Fig. 2.20 An example of updating contour-related nodes. (a) An HB*-tree and its corresponding

placement containing the symmetry group S0 D f.b0; b0

0/; .b1; b0

1/g. (b) The intermediate HB*-

tree after perturbing the ASF-B*-tree in the hierarchy node nS0, and the corresponding symmetry

island of S0. The contour-related nodes, n3 and n5, become dangling. (c) The HB*-tree after up-

dating the contour-related nodes and its corresponding placement

The leftmost-skewed child will be the parent of the dangling node, and the dangling

node is assigned to its left child. It takes amortized constant time to update the

contour related nodes.

Figure 2.20 shows an example of updating contour-related nodes. In Fig. 2.20a,

there are initially three contour nodes representing the three top contour segments

of the symmetry island of the symmetry group S0. After performing Op2 to perturb

the ASF-B*-tree in nS0
, the representative node nr

1 is moved from the left child

to the right child of the other representative node nr
0. The placement of S0 forms

82 M.P.-H. Lin and Y.-W. Chang

a new symmetry island as shown in Fig. 2.20b, which has only one top contour

segment. Therefore, the contour nodes n01 and n02 disappear, and the nodes n3 and

n5 become dangling nodes. We first find the nearest contour node of n3, which is

n00. Since n00 already has the right child n2, the leftmost skewed child of n2 should

be searched. In this case, we directly assign n3 to be the left child of n2 because n2

has no left child. After n3 is assigned to a proper tree location, the nearest contour

node of n5 is then searched, which is also n00. Since n00 already has the right child

n2, the leftmost skewed child is searched, which is n3. Finally, n3 is assigned to be

the parent of n5, and n5 is assigned as the left child of n3.

2.6 Comparisons with Other Approaches

In this section, we compare existing topological analog placement methods con-

sidering symmetry constraints, based on theoretical and empirical studies. The first

subsection explores the time complexities of the perturbation and packing oper-

ations adopted by the existing topological methods, and the second subsection

conducts experiments based on the simulated annealing algorithm and two sets of

commonly used benchmarks.

2.6.1 Comparisons of Time Complexities

The problem of analog placement considering symmetry constraints has been ex-

tensively studied in the literature. Most of these works used the simulated annealing

(SA) algorithm [13] in combination with floorplan representations to handle sym-

metry constraints. These representations can be classified into two major categories:

(1) the absolute representation and (2) the topological representation.

For the absolute representation first proposed by Jepsen and Gellat [12], each

module is associated with an absolute coordinate on a gridless plane. It operates

on a module by changing its coordinate directly. The KOAN/ANAGRAM II [9],

PUPPY-A [25], and LAYLA [16] systems all adopted the absolute representation to

handle the placement of analog modules. The main weakness of the absolute method

lies in the fact that it may generate an infeasible placement with overlapped mod-

ules. Therefore, a postprocessing step must be performed to eliminate this condition,

which implies a longer computation time.

Recently, most previous works apply topological floorplan representations due to

its flexibility and effectiveness. The most popular floorplan representations include

the B*-tree [6], Sequence Pair (SP) [28], and TCG [18].

For the B*-tree representation, Balasa et al. derived its symmetric-feasible condi-

tion [1]. To explore the solution space in the symmetric-feasible B*-trees, they aug-

mented the B*-tree [6] using various data structures, including segment trees [3, 5],

red–black trees [4], and deterministic skip lists [26], to reduce the packing time.

2 Hierarchical Placement with Layout Constraints 83

Table 2.2 Comparisons of popular analog placement approaches considering

symmetry constraints based on topological floorplan representations. n: the

number of modules; m: the number of symmetry pairs

Analog placement approach Perturbation Packing

considering symmetry constraints time time

B*-tree [1] O.lg n/ O.n2/

B*-treeC Seg. tree [3] O.lg n/ O.n lg n/

BTC RB-tree [4] O.lg n/ O.n lg n/

BTC Skip list [26] O.lg n/ O.n lg n/

Sequence-pair (SP) [2] O.1/ O.n2/

SPC LP [14] O.1/ ˝.n2/

SP w. dummy [31] O.1/ O.n2/

SP w. priority queue [15] O.1/ O.m � n lg lg n/

TCG-S [22] O.n2/ O.n2/

TCG [34] O.n/ O.n2/

B*-tree w. ESFC LP [30] N/A ˝.n2/

ASF-B*-tree C HB*-tree O.lg n/ O(n)

More recently, Strasser et al. [30] proposed a deterministic approach based on the

B*-tree representation [6] with enhanced shape functions (ESF) and linear program-

ming (LP).

For the SP representation, Balasa et al. also derived its symmetric-feasible con-

dition [2]. By taking advantage of the symmetry-feasible condition, Koda et al. [14]

proposed a linear programming based method. Tam et al. [31] introduced a dummy

node and additional constraint edges for each symmetry group after obtaining a

symmetric-feasible sequence pair. Krishamoorthy et al. [15] proposed an O.m �

n lg lg n/ packing-time algorithm by employing the priority queue, where m is the

number of symmetry groups and n is the number of modules.

For the TCG representation, Lin et al. presented its symmetric-feasible con-

ditions [22]. However, it requires O.n2/ time to perturb and pack TCGs. Zhang

et al. [34] further improved the perturbation time of the TCG representation from

O.n2/ to O.n/.

Table 2.2 compares aforementioned analog placement approaches considering

symmetry constraints based on topological floorplan representations. It should be

noted that “ASF-B*-tree C HB*-tree” is the fastest algorithm among all these pop-

ular approaches, while “SP C LP [14]” and “B*-tree w. ESF C LP [30]” take at

least ˝.n2/ packing time due to LP. Since the approach [30] explores all placement

configurations for a small set of device modules and groups in each hierarchy, the

perturbation of the B*-tree is not required.

2.6.2 Comparisons of Experimental Results

The placement algorithms were implemented in the CCC programming language

on a 3.2GHz Intel Pentium4 PC under the Linux operation system. Two sets of

84 M.P.-H. Lin and Y.-W. Chang

Table 2.3 MCNC benchmark circuits

Circuit # of mod. # of sym. mod. Mod. area (mm2)

apte 9 8 46.56

hp 11 8 8.83

ami33 33 6 1.16

ami49 49 4 35.45

Table 2.4 Industry benchmark circuits

Circuit # of mod. # of sym. mod. Mod. area (103 �m2)

biasynth 2p4g 65 8C 12C 5 4.70

lnamixbias 2p4g 110 16C 6C 6C 12C 4 46.00

experiments were performed: one is based on the four MCNC benchmarks (apte,

hp, ami33, and ami49) used in [22], and the other consists of two real industry ana-

log designs (biasynth 2p4g and lnamixbias 2p4g) used in [5] and [14]. (Note that

they both were extracted by Koda et al. [14] from Figs. 9 and 10 in [5].) Table 2.3

lists the names of the MCNC benchmark circuits (“Circuit”), the numbers of mod-

ules (“# of Mod.”), the numbers of symmetry modules (“# of Sym. Mod.”), and the

total module areas (“Mod. Area”). Table 2.4 lists the names of the industry bench-

mark circuits (“Circuit”), the numbers of modules (“# of Mod.”), the numbers of

symmetry modules (“# of Sym. Mod.”), and the total module areas (“Mod. Area”).

Based on simulated annealing, a left-skewed HB*-tree was constructed as the

initial solution. The initial temperature T0 was calculated by (2.5), where �avg is

the average uphill cost and P is the initial probability to accept uphill solutions.

During the simulated annealing process, the temperature was reduced at the rate of

0.9 for each subsequent pass, and 20,000 iterations were performed at each temper-

ature/pass.

T0 D ��avg= ln P: (2.5)

In the first set of experiments, the HB*-tree is compared with the following

works: sequence pairs [2], segment trees [3], TCG-S [22], and sequence pairs with

dummy nodes [31]. Table 2.5 lists the names of the MCNC benchmark circuits

(“Circuit”), the total areas (“Area”), and the runtimes (“Time”) for the aforemen-

tioned works and the HB*-tree with area optimization alone, same as the other

works, and with simultaneous area and wirelength optimization. The results of the

works [2, 3, 22] are taken from the paper [22], and those of [31] are based on the

package provided by the authors. The results show that the HB*-tree achieves aver-

age area reductions of 3%, 2%, 1%, and 2% over [2], [3], [22], and [31], respectively.

Noted that the improvements should not be considered marginal since the other

works have pushed the solution quality close to their limits. The main reason for the

area improvement over the other works is that the HB*-tree benefits from both the

symmetry-island formulation and the short packing time of the proposed floorplan

representations. Based on the symmetry-island formulation, the undesired solutions

are pruned, and thus the time is saved to search inferior solutions during simulated

2 Hierarchical Placement with Layout Constraints 85

T
a
b

le
2
.5

C
o
m

p
ar

is
o
n
s

o
f

ar
ea

u
ti

li
za

ti
o

n
an

d
C

P
U

ti
m

es
fo

r
se

q
u

en
ce

p
ai

r
(S

P
)

(o
n

S
u
n

S
p
ar

c
U

lt
ra

-6
0

4
3
3
M

H
z)

,
se

g
m

en
t

tr
ee

(s
eg

.
tr

ee
)

(o
n

S
u
n

S
p
ar

c
U

lt
ra

-6
0

4
3
3
M

H
z)

,
T

C
G

-S
(o

n
S

u
n

S
p
ar

c
U

lt
ra

-6
0

4
3
3
M

H
z)

,
se

q
u
en

ce
p
ai

r
w

it
h

d
u
m

m
y

n
o
d
es

(S
P

w
.
d
u
m

m
y
)

(o
n

P
en

ti
u
m

4
3
.2

G
H

z)
,
an

d
o
u
r

H
B

*
-t

re
e

(o
n

P
en

ti
u
m

4
3
.2

G
H

z)
w

it
h

ar
ea

o
p
ti

m
iz

at
io

n
al

o
n
e,

sa
m

e
as

th
e

p
re

v
io

u
s

w
o
rk

s,
an

d
w

it
h

si
m

u
lt

an
eo

u
s

ar
ea

an
d

w
ir

el
en

g
th

o
p
ti

m
iz

at
io

n

(H
B

*
-t

re
e

(a
re

a
C

W
L

))
,

b
as

ed
o
n

th
e

M
C

N
C

b
en

ch
m

ar
k
s

S
P

[2
]

S
eg

.
tr

ee
[3

]
T

C
G

-S
[2

2
]

S
P

w
.
d
u
m

m
y

[3
1

]
H

B
*
-t

re
e

H
B

*
-t

re
e

(a
re

a
+

W
L

)

A
re

a
T

im
e

A
re

a
T

im
e

A
re

a
T

im
e

A
re

a
T

im
e

A
re

a
T

im
e

A
re

a
H

P
W

L
T

im
e

C
ir

cu
it

(m
m

2
)

(s
)

(m
m

2
)

(s
)

(m
m

2
)

(s
)

(m
m

2
)

(s
)

(m
m

2
)

(s
)

(m
m

2
)

(m
m

)
(s

)

ap
te

4
8
.1

2
2
5

4
7
.5

2
1
1

4
7
.5

2
3

4
6
.9

2
1
3

4
6
.9

2
2

4
7
.9

0
1
0
.2

0
3

h
p

9
.8

4
1
3
8

9
.7

1
6
2

9
.7

1
5
0

9
.4

3
1
3

9
.3

5
2

1
0
.1

0
3
0
.7

4
1
6

am
i3

3
1
.2

4
6
8
4

1
.2

3
3
0
7

1
.2

1
4
2
3

1
.2

4
2
3

1
.2

3
1
2

1
.2

9
4
7
.2

3
3
9

am
i4

9
3
7
.8

2
2
,0

3
8

3
7
.3

1
9
8
3

3
7
.0

4
1
,2

4
7

3
8
.3

2
2
9

3
6
.8

5
2
0

4
1
.3

2
7
6
9
.9

9
9
6

C
o
m

p
ar

is
o
n

1
.0

3
–

1
.0

2
–

1
.0

1
–

1
.0

2
4
.0

9
1
.0

0
1
.0

0
–

–
–

86 M.P.-H. Lin and Y.-W. Chang

annealing. With the short packing time, it is possible to search for more solutions

within the same time limit. Consequently, the HB*-tree has greater possibility to

find better solutions in shorter running time. For the running time, the HB*-tree

is approximately 4.09� faster than [31]. Since all the other works ran on different

platforms, it is not easy to report the speedups of our algorithm. Nevertheless, it is

obvious from the table that the HB*-tree runs much faster than the other works.

In the second set of experiments, the HB*-tree is compared with sequence pairs

in [2], segment trees in [5], sequence pairs with linear programming in [14], and

sequence pairs with dummy nodes in [31]. Table 2.6 lists the names of the indus-

try benchmark circuits, the total areas and the runtime for sequence-pairs, segment

trees, sequence-pairs with linear programming, sequence-pairs with dummy nodes,

and HB*-tree. The results show that the HB*-tree achieved average area reductions

of 7.1%, 6.6%, 1.6%, and 10.3% over [2], [5], [14], and [31], respectively. In some

applications, the orientations of analog device modules may not be allowed to be

changed. To make fair comparisons with the other works, the HB*-tree was also

performed without module rotation. The results show only 2.4% and 4% area over-

heads without the rotation, compared to the results of sequence pairs with linear

programming [14] and the HB*-tree, respectively. For the running time, the HB*-

tree achieves significant speedups over the other works, which is approximately

39.88� and 5.68� faster than those in [14] and [31], respectively. Again, the other

works [2, 5] ran on different platforms, and thus the corresponding speedups are

not reported, yet it is obvious that the HB*-tree runs much faster than the previ-

ous works. It is clear from the two experiments that the HB*-tree achieves the best

quality and efficiency than all the other works.

Figure 2.21 shows the resulting placement of ami49 with simultaneous area and

wirelength optimization, which contains the symmetry group S D f.b19; b21/;

bs
30; bs

48g. Figure 2.22 shows the resulting placements of biasynth 2p4g without

module rotation, while Fig. 2.23 shows the resulting placements of biasynth 2p4g

with module rotation.

2.7 Advanced Symmetry Constraints

For some analog layout applications, the symmetry constraints could be even more

complex than what we have considered. The handling of two kinds of such symme-

try constraints is summarized in the following:

2.7.1 Multiple Symmetry-Group Alignment

In some analog layouts, the symmetry axes of different symmetry groups are re-

quired to be aligned to share a common symmetry axis. To align multiple symmetry

groups with respect to a common vertical (horizontal) symmetry axis, a zero-height

2 Hierarchical Placement with Layout Constraints 87

T
a
b

le
2
.6

C
o
m

p
ar

is
o
n
s

o
f

ar
ea

u
ti

li
za

ti
o
n

an
d

C
P

U
ti

m
es

fo
r

se
q
u
en

ce
p
ai

r
(S

P
)

(o
n

S
u
n

B
la

d
e

1
0
0

5
0
0

M
H

z)
,

se
g
m

en
t

tr
ee

(s
eg

.
tr

ee
)

(o
n

S
u
n

B
la

d
e

1
0
0

5
0
0

M
H

z)
,

S
P
C

L
P

(P
en

ti
u
m

4
3
.2

G
H

z)
,

se
q
u
en

ce
p
ai

r
w

it
h

d
u
m

m
y

n
o
d
es

(S
P

w
.

d
u
m

m
y
)

(o
n

P
en

ti
u
m

4
3
.2

G
H

z)
,

an
d

H
B

*
-t

re
e

(o
n

P
en

ti
u
m

4
3
.2

G
H

z)
,

b
as

ed
o
n

tw
o

re
al

in
d
u
st

ry
b
en

ch
m

ar
k
s

S
P

[2
]

S
eg

.
tr

ee
[5

]
S

P
C

L
P

[1
4

]
S

P
w

.
d
u
m

m
y

[3
1

]
H

B
*
-t

re
e

A
re

a
T

im
e

A
re

a
T

im
e

A
re

a
T

im
e

A
re

a
T

im
e

A
re

a
w

/o
m

o
d

.
ro

t.
A

re
a

w
/o

m
o

d
.
ro

t.
T

im
e

C
ir

cu
it

(1
0

3
�

m
2
)

(s
)

(1
0

3
�

m
2
)

(s
)

(1
0

3
�

m
2
)

(s
)

(1
0

3
�

m
2
)

(s
)

(1
0

3
�

m
2
)

(1
0

3
�

m
2
)

(s
)

b
ia

sy
n
th

2
p
4
g

5
.4

0
7
8
0

5
.4

0
2
4
6

4
.9

6
2
0
6

5
.5

7
1
3
4

5
.1

5
4
.9

2
2
2

ln
am

ix
b
ia

s
2
p
4
g

5
0
.8

0
2
,8

2
4

5
0
.3

0
7
2
6

5
0
.1

5
3
,0

2
7

5
2
.2

1
2
2
7

5
0
.2

8
4
8
.6

3
4
3

C
o
m

p
ar

is
o
n

1
.0

7
1

–
1
.0

6
6

–
1
.0

1
6

3
9
.8

8
1
.1

0
3

5
.6

8
1
.0

4
0

1
1

88 M.P.-H. Lin and Y.-W. Chang

Fig. 2.21 The resulting

placement of ami49 with

simultaneous area and

wirelength optimization,

which contains the

symmetry group,

S D f.b19; b21/; bs
30; bs

48g

01

02

03 04

05 06

07 08

09

10

11

12

13

14

15

16

17

18

20

22

23

24 25

26

2728 29

31

32

33

34

35

36

37

38
39

40

4142

43

44

45

46

47

49

19 21

30

48

(zero-width) dummy block can be inserted right at the left (bottom) of each to-be-

aligned symmetry island. A dummy node is then introduced as the parent of the

hierarchy node representing the corresponding symmetry island in the HB*-tree,

where the hierarchy node is the left (right) child of the dummy node. By adjusting

the width (height) of each dummy block, the symmetry islands of different symme-

try groups can be aligned with respect to a common vertical (horizontal) symmetry

axis. Such an alignment technique is an extension of the work [32].

2.7.2 Consideration of NonSymmetry-Island Placements

In addition to the preferred symmetry-island placements in analog layouts, the

proposed ASF-B*-trees and HB*-trees can also generate a nonsymmetry-island

placement by integrating nonsymmetric modules as a self-symmetric module clus-

ter or a symmetry pair consisting of two module clusters in a symmetry group

represented by an ASF-B*-tree. Figure 2.24 shows two examples, including the

symmetric placements and the corresponding ASF-B*-trees, which integrate non-

symmetric module clusters into symmetry groups. In Fig. 2.24a, the nonsymmetric

modules, b3 and b4, form the self-symmetric module cluster C1 in the symmetry

group S1. After packing the B*-tree representing the placement of the nonsymmetric

modules, the representative node nr
C1

is introduced in the ASF-B*-tree representing

a symmetric placement of S1. Similarly, in Fig. 2.24b, the nonsymmetric modules,

b7, b8, and b9 form two clusters, C2 and C 02, as a symmetry pair in the symmetry

group S2. In the corresponding ASF-B*-tree, the representative node nr
C2

is intro-

duced to denote the larger dimensions of the placements of C2 and C 02.

2 Hierarchical Placement with Layout Constraints 89

1

2

3

4

598 67 1011 12

13

14 15

16

17

18 19

2021

22

23

24
25

26 2728 29 30

3132

33 34

35

36

37

38

39

40

41

4243

44

4546 47 4849

50

51

52

53

54

55

56

57

58

59 60

61
62

63

64

65

Fig. 2.22 The resulting placement of biasynth 2p4g without module rotation

90 M.P.-H. Lin and Y.-W. Chang

1

2

3

4

5678

9101112

13
14

15

16

17

18

19

20

21

22

23

24
25

26

2728

29

30

3132

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61
62
63
64

65

Fig. 2.23 The resulting placement of biasynth 2p4g with module rotation

b2 b2'

b6'

b1 b1'

nC1
r

n1
r

b3
b4

n3

n4

b5
s

b6

n5
r

nC2
r

n6
r

C1

C2

nC1

n7

n8

nC2

b7

b8

b9

C2
'

n2
r

a

b

Fig. 2.24 Integrating nonsymmetric modules into symmetry groups. (a) The nonsymmetric

modules form the self-symmetric module cluster C1 D fb3; b4g in the symmetry group S1 D
f.b1; b0

1/; .b2; b0

2/; C s
1 g. (b) The nonsymmetric modules form two clusters, C2 D fb7; b8g and

C 0

2 Dfb9g, as a symmetry pair in the symmetry group S2 D fb
s
5; .b6; b0

6/; .C2; C 0

2/g

2 Hierarchical Placement with Layout Constraints 91

2.8 Hierarchical Constraints

2.8.1 Hierarchical Symmetry

In some fully symmetric analog designs, such as the example in Fig. 2.3, the de-

vice layouts should be hierarchically symmetric. A symmetry group Si may also

contain a self-symmetry group S s
j and/or a symmetry-group pair .Sk; S 0

k
/. Conse-

quently, the top-level symmetry group STop contains all device modules and other

symmetry groups hierarchically. Based on the proposed symmetry-island and tree

formulation, a hierarchical tree structure [20] that mixes both the ASF-B*-trees

and the HB*-trees can be constructed. The optimized fully symmetric placement

with the hierarchical symmetry constraint can then be obtained by searching a de-

sired configuration of the tree structure and packing the trees to form the symmetry

islands hierarchically.

2.8.2 Hierarchical Clustering/Proximity

Besides handling the symmetry constraints based on the symmetry-island formula-

tion, the proposed hierarchical framework, HB*-trees, can also effectively manage

the hierarchical clustering constraint in analog placement or mixed-signal floorplan-

ning based on the intrinsic hierarchical tree structure.

Let C D fC1; C2; : : : ; Clg be a set of device module clusters. Each cluster con-

tains at least two modules, or one module and one of the other clusters, or two of

the other clusters. If the cluster Ci contains the cluster Cj , Ci is called a super-

cluster, and Cj is called a subcluster. The hierarchical clustering constraint limits

all the device modules and/or subclusters of the same super-cluster to a connected

placement.

Fig. 2.25 Example HB*-trees modeling the hierarchical floorplan of the design in Fig. 2.2

92 M.P.-H. Lin and Y.-W. Chang

To formulate the hierarchical clustering constraint using the HB*-trees, each of

the hierarchy nodes nC1
, nC2

, : : : ; nCl
denotes a cluster. Each hierarchy node nCi

further contains another HB*-tree to represent the topological relation of the device

modules and/or the subclusters in the supercluster denoted by nCi
. After hierarchi-

cally constructing the HB*-trees, the placement can be optimized by searching a

desired configuration of the HB*-trees while the inner placement of each cluster is

connected.

Figure 2.25 shows example HB*-trees modeling the hierarchical placement of

the design in Fig. 2.2. Consequently, the number of the HB*-trees will be equal to

that of the subcircuits plus one for modeling the top design. When perturbing the

HB*-trees, one of the HB*-trees should be selected first, and then any perturbation

operation for the B*-tree can be applied to the selected HB*-tree. When converting

the HB*-trees to a hierarchical placement, the packing procedure is also similar to

that for the B*-tree, which adopts a preorder tree traversal. Once a hierarchy node is

traversed, the nodes in the HB*-tree linked by the hierarchy node will be traversed

before traversing the next node in the HB*-tree to which the hierarchy node belongs.

During the HB*-tree packing, the properties of the proximity constraint should also

be considered [20].

The hierarchical framework based on the HB*-tree can easily integrate

other placement approaches for different subcircuits with different placement

requirements. Besides integrating the ASF-B*-tree, the HB*-tree can also integrate

both the corner block list (CBL) and the grid-based approach in [24] for a common-

centroid placement, the signal-flow driven approach [17] for the placement of a

specific subcircuit with clear signal flows, and other placement approaches.

2.9 Conclusion

This chapter has introduced hierarchical analog placement framework, HB*-tree,

with the consideration of layout design hierarchy and hierarchical placement

constraints. Different from the existent approaches with at least log-linear-time

algorithms, a linear-time packing algorithm has been presented based on the

symmetry-island formulation that prunes the solution subspace formed with

nonsymmetry-island placements. Experimental results have shown that such ap-

proach achieves high quality and runtime efficiency for analog placement.

References

1. F. Balasa, Modeling non-slicing floorplans with binary trees, Proceedings of IEEE/ACM Inter-

national Conference on Computer-Aided Design, pp. 13–16, 2000

2. F. Balasa and K. Lampaert, Symmetry within the sequence-pair representation in the context

of placement for analog design, IEEE Trans. Computer-Aided Design, 19(7):721–731, 2000

2 Hierarchical Placement with Layout Constraints 93

3. F. Balasa, S. Maruvada, and K. Krishnamoorthy, Efficient solution space exploration based

on segment trees in analog placement with symmetry constraints, Proceedings of IEEE/ACM

International Conference on Computer-Aided Design, pp. 497–502, Nov 2002

4. F. Balasa, S. Maruvada, and K. Krishnamoorthy, Using red-black interval trees in device-level

analog placement with symmetry constraints, Proceedings of IEEE/ACM Asia South Pacific

Design Automation Conference, pp. 777–782, Jan 2003

5. F. Balasa, S. Maruvada, and K. Krishnamoorthy, On the exploration of the solution space in

analog placement with symmetry constraints, IEEE Trans. Computer-Aided Design, 23(2):

177–191, 2004

6. Y.-C. Chang, Y.-W. Chang, G.-M. Wu, and S.-W. Wu, B*-trees: a new representation for non-

slicing floorplans, Proceedings of ACM/IEEE Design Automation Conference, pp. 458–463,

2000

7. E. Charbon, E. Malavasi, and A. Sangiovanni-Vincentelli. Generalized constraint generation

for analog circuit design, Proceedings of ACM/IEEE International Conference on Computer-

Aided Design, 408–414, 1993

8. J. M. Cohn, D. J. Garrod, R. A. Rutenbar, and L. R. Charley. Analog Device-Level Layout

Automation. Kluwer, Dordecht, 1994

9. J. Cohn, D. Garrod, R. Rutenbar, and L. Carley, Koan/anagram ii: new tools for device-level

analog placement and routing, IEEE J. Solid-State Circuits, 26(3):330–342, 1991

10. H. Graeb, S. Zizala, J. Eckmueller, and K. Antreich. The sizing rules method for analog inte-

grated circuit design, Proceedings of ACM/IEEE International Conference on Computer-Aided

Design, 343–349, 2001

11. A. Hastings. The Art of Analog Layout. 2nd Ed. Pearson Prentice Hall, 2006

12. D. Jepsen and C. Gelatt Jr., Macro placement by monte carlo annealing, Proceedings of IEEE

International Conference on Computer Design, pp. 495–498, Nov 1983

13. S. Kirkpatrick, J. Gelatt, C. D., and M. P. Vecchi, Optimization by Simulated Annealing, Sci-

ence, 220(4598):671–680, 1983

14. S. Koda, C. Kodama, and K. Fujiyoshi, Linear programming-based cell placement with sym-

metry constraints for analog ic layout, IEEE Trans. Computer-Aided Design, 26(4):659–668,

2007

15. K. Krishnamoorthy, S. Maruvada, and F. Balasa, Topological placement with multiple symme-

try groups of devices for analog layout design, Proceedings of IEEE International Symposium

on Circuits and Systems, pp. 2032–2035, May 2007

16. K. Lampaert, G. Gielen, and W. Sansen, A performance-driven placement tool for analog inte-

grated circuits, IEEE J. Solid-State Circuits, 30(7):773–780, 1995

17. D. Long, X. Hong, and S. Dong. Signal-path driven partition and placement for analog circuit,

Proceedings of ACM/IEEE Asia South Pacific Design Automation Conference, 694–699, 2006

18. J.-M. Lin and Y.-W. Chang, TCG: A transitive closure graph based representation for general

floorplans, IEEE Trans. VLSI Systems, 13(2):288–292, 2005

19. P.-H. Lin and S.-C. Lin, Analog placement based on novel symmetry-island formulation,

Proceedings of ACM/IEEE Design Automation Conference, pp. 465–470, Jun 2007

20. P.-H. Lin and S.-C. Lin, Analog placement based on hierarchical module clustering, Proceed-

ings of ACM/IEEE Design Automation Conference, pp. 50–55, Jun 2008

21. J.-M. Lin, H.-E. Yi, and Y.-W. Chang, Module placement with boundary constraints using

B*-trees, IEE Proceedings – Circuits, Devices and Systems, 149(4),:251–256, 2002

22. J.-M. Lin, G.-M. Wu, Y.-W. Chang, and J.-H. Chuang, Placement with symmetry constraints

for analog layout design using TCG-S, Proceedings of IEEE/ACM Asia South Pacific Design

Automation Conference, vol. 2, pp. 1135–1138, Jan 2005

23. P.-H. Lin, Y.-W. Chang, and S.-C. Lin, Analog placement based on symmetry-island formula-

tion, IEEE Trans. Computer-Aided Design, 28(6):791–804, 2009

24. Q. Ma, E. F. Y. Young, K. P. Pun. Analog placement with common centroid constraints, Pro-

ceedings of ACM/IEEE International Conference on Computer-Aided Design, 579–585, 2007

25. E. Malavasi, E. Charbon, E. Felt, and A. Sangiovanni-Vincentelli, Automation of ic layout with

analog constraints, IEEE Trans. Computer-Aided Design, 15(8):923–942, 1996

94 M.P.-H. Lin and Y.-W. Chang

26. S. Maruvada, A. Berkman, K. Krishnamoorthy, and F. Balasa, Deterministic skip lists in analog

topological placement, Proceedings of IEEE International Conference on ASIC, vol. 2, pp.

834–837, 2005

27. T. Massier, H. Graeb, and U. Schlichtmann. Sizing rules for bipolar analog circuit design, Pro-

ceedings of ACM/IEEE International Conference on Design, Automation and Test in Europe,

140–145, 2008

28. H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani. VLSI module placement based on

rectangle-packing by the sequence-pair, IEEE Transactions on Computer-Aided Design of

Circuits and Systems, 15(12):1518–1524, 1996

29. M. Pelgrom, A. Duinmaijer, and A. Welbers, Matching properties of mos transistors, IEEE J.

Solid-State Circuits, 24(5):1433–1439, 1989

30. M. Strasser, M. Eick, H. Graeb, U. Schlichtmann, and F. M. Johannes. Deterministic analog

circuit placement using hierarchically bounded enumeration and enhanced shape functions,

Proceedings of ACM/IEEE International Conference on Computer-Aided Design, 2008

31. Y.-C. Tam, E. F. Y. Young, and C. Chu, Analog placement with symmetry and other placement

constraints, Proceedings of IEEE/ACM International Conference on Computer-Aided Design,

pp. 349–354, Nov 2006

32. M.-C. Wu and Y.-W. Chang, Placement with alignment and performance constraints using the

B*-tree representation, Proceedings of IEEE International Conference on Computer Design,

pp. 568–571, Oct 2004

33. G.-M. Wu, Y.-C. Chang, and Y.-W. Chang, Rectilinear block placement using B*-trees, ACM

Transactions on Design Automation of Electronics Systems, 8(2):188–202, 2003

34. L. Zhang, C.-J. R. Shi, and Y. Jiang, Symmetry-aware placement with transitive closure graphs

for analog layout design, Proceedings of IEEE/ACM Asia South Pacific Design Automation

Conference, pp. 180–185, Mar 2008

Chapter 3

Deterministic Analog Placement by Enhanced
Shape Functions

Martin Strasser, Michael Eick, Helmut Graeb, and Ulf Schlichtmann

Abstract For analog integrated circuits, generating a layout represents the

bottleneck in the design flow. To automate the layout step, it is necessary to create

placements with respect to various constraints automatically. Since the constraints

can be numerous, an automatic generation of the layout constraints is crucial as

well. In this chapter, a comprehensive and deterministic methodology for analog

layout design automation is presented. An approach to automatically generate con-

straints for analog circuits is described. It recognizes building blocks, e.g., current

mirrors, and symmetry conditions in the circuit and, with prioritized rules, generates

constraints and hierarchy information. Then, a placement algorithm, called “Plan-

tage”, is presented, which is capable to handle all relevant constraints. It uses the

hierarchy information of the previous step to guide an enumeration process. Plan-

tage calculates a Pareto front of placements with respect to different aspect ratios.

The results show high quality in terms of area and postlayout circuit performance.

3.1 Introduction

Modern integrated circuits often contain digital as well as analog parts. The design

of the analog part is usually a time consuming step. While digital circuits can be

designed using a variety of layout approaches, analog circuits are still manual and

error-prone tasks for the designers in many cases.

The placement and the routing of an analog circuit have a severe impact on the

function and performance. Thus, layout constraints are defined to make sure that

the circuit fulfills the performance specifications. As an example, unbalanced para-

sitics, being a result of asymmetrical layout, may be detrimental to the power supply

rejection ratio or the offset voltage of an analog amplifier.

The number and diversity of constraints imposed on an analog circuit prevent

approaches used in the digital domain from being used for analog design.

M. Strasser (�)

Institute for Electronic Design Automation, Technische Universität München, Munich, Germany

e-mail: strasser@tum.de

H.E. Graeb (ed.), Analog Layout Synthesis: A Survey of Topological Approaches,

DOI 10.1007/978-1-4419-6932-3 3, c Springer Science+Business Media, LLC 2011

95

strasser@tum.de

96 M. Strasser et al.

3.1.1 Definitions

In this section, the terms used throughout this chapter are defined.

Definition 3.1 (Device). A device d is an elementary part of the circuit, e.g., a

transistor. The set of all devices is referred to as D in this chapter.

Definition 3.2 (Module). A module m is the smallest item the placer has to deal

with. It is represented by a rectangle on the placement plane. Modules will be re-

ferred to by Latin lowercase letters in the following.

A device consists of one to several modules. For example, several physical tran-

sistors (represented by different modules) may be interconnected to form one logical

transistor (represented by a single device). M is the set of modules. For every mod-

ule m 2 M, the lower left corner coordinates are described by xm and ym, and the

width and height are referred to as wm and hm, respectively.

Definition 3.3 (Center of gravity of a module). The coordinates of the center of

gravity (COG) of a module are defined as

xCOG.m/ D xm C
wm

2
; (3.1)

as well as

yCOG.m/ D ym C
hm

2
: (3.2)

Using vectors, the center of gravity can be formulated as xCOG.m/:

xCOG.m/ D

�
xCOG.m/

yCOG.m/

�
: (3.3)

Definition 3.4 (Distance between modules). The distance of module m from mod-

ule n is denoted by d.m; n/, defined as the minimum of the vertical and the

horizontal distance between m and n:

d.m; n/ D min.dhor.m; n/; dvert.m; n//; (3.4)

dhor.m; n/ D max

�
jxCOG.m/ � xCOG.n/j �

wm C wn

2
; 0

�
; (3.5)

dvert.m; n/ D max

�
jyCOG.m/ � yCOG.n/j �

hm C hn

2
; 0

�
: (3.6)

Definition 3.5 (Group). A group G is defined as a set of modules or as a set of

groups, which are intended to be placed in close proximity.

A group G0 consisting only of modules, which means G0 � M, is called a basic

group. The set of all basic groups is called G0, which is the power set of M without

the empty set:

G0 2 G0 D P.M/nf¿g: (3.7)

3 Deterministic Analog Placement by Enhanced Shape Functions 97

A group Gi , i � 1, only contains other groups Gi�1
j ; Gi�1

k
. It is called a hierar-

chical group of hierarchy level i . The set of all possible groups for hierarchy level i

is called Gi , which is the power set of Gi�1 without the empty set:

Gi 2 Gi D P.Gi�1/nf¿g: (3.8)

A function modulesOf.G/ � M is defined, which returns the set of all modules

of group G. It is defined recursively:

modulesOf.G/ D

8
<
:

G; if G 2 G0

S
C 2G

modulesOf.C / else:
(3.9)

Each module is allowed to be part of only one group:

8
j ¤k

modulesOf.Gi
j / \ modulesOf.Gi

k/ D ¿: (3.10)

The set of all possible groups G can be defined as:

G D
[

i

Gi : (3.11)

All groups are referred to by Latin capital letters in this chapter.

Definition 3.6 (Center of gravity of groups). Similar to Definition 3.3 of the cen-

ter of gravity of modules, a center of gravity of a group can be defined:

xCOG.G/ D

P
m2modulesOf.G/ wm � hm � xCOG.m/

P
m2modulesOf.G/ wm � hm

: (3.12)

Definition 3.7 (Module variants). For any module m 2 M, there may be several

different alternative layouts. The bounding rectangle of an alternative layout of a

module is called a module variant. The set of all module variants for m is referred

to as Vm, a single module variant is denoted by vm.

Examples for module variants are different numbers of gate fingers of transistors.

3.1.2 Analog Circuit Placement Requirements

In common layout approaches, the placement is generated before routing the circuit.

The placement is subject to various constraints. These constraints are formulated

to improve the matching of devices, which are intended to be identical by design.

Matching can be considered to be an umbrella term of different means to reduce the

influence of variations of the process and operating conditions, as well as parasitics.

98 M. Strasser et al.

� Variant constraints restrict the combination of possible realizations (variants)

of circuit modules to ensure matching of devices. When a module has a set of

possible variants, the placement algorithm faces a higher degree of freedom and

better placements can be achieved. In practice, however, the combination of the

different variants is not completely free. For example, a variant constraint is for-

mulated to make sure that both transistors of a differential pair are realized with

the same number of gate fingers.

� Device-proximity constraints are used to make sure that a group of modules is

placed in close proximity. Due to local variations during the fabrication process,

the parameters of the devices show unwanted deviations from each other (also

referred to as “mismatch”), which can result in performance degradation. Vari-

ations in the operating conditions, such as supply voltage or temperature, may

have the same effect. Placing matched devices in close proximity can limit the

impact of these variations [1].

� Symmetry constraints are used for geometric and electrical reasons. They allow

for symmetric routing and reduce the sensitivity to on-die thermal gradients. In

addition, parasitic resistors and capacitors can be balanced on both halves of a

differential circuit [2, 3].

The module i 0 denotes a module that is to be placed symmetrically to some

module i . For self-symmetrical modules, i is equal to i 0. Figure 3.1a shows an

example of symmetry constraints, where all modules are arranged with respect

to a vertical symmetry axis. For a vertical symmetry, linear equations can be

formulated as follows:

8i

�
1

2

�
xi C

wi

2
C xi 0 C

wi 0

2

�
D xsym

�
; (3.13)

8i

�
yi C

hi

2
D yi 0 C

hi 0

2

�
: (3.14)

The equations for a horizontal symmetry axis can be defined analogously.

� Common centroid constraints are formulated to arrange the centers of gravity for

groups of modules. It is a widely used constraint, which improves the beneficial

21 3 D 30 1020

w1 w3 D w30 w20w2

xsym

h
2

D
h

2
0

h
1

D
h

1
0

h
3

D
h

3
0

w10

a

b7

a7 b8

a8

a3

b3 a4

b4

a5

b5 a6

b6

a1

b1 a2

b2

b

Fig. 3.1 Placement with symmetry (a) and common centroid (b) constraint

3 Deterministic Analog Placement by Enhanced Shape Functions 99

effects of the symmetry constraint [2]. For example, a differential pair can be

formed by 16 transistors and arranged as shown in Fig. 3.1b. The transistors a1-

a8 (b1-b8) are connected in parallel. All transistors have the same size and the

two groups of transistors share the same center of gravity. For these two groups

of modules, A and B , a common centroid constraint can be defined as follows:

xCOG.A/ D xCOG.B/: (3.15)

Beyond those constraints, it is necessary to consider additional constraints for

minimum distances for technological reasons:

� Minimum distance constraints are formulated if modules must not abut on each

other directly, but need a minimum distance. These constraints can be defined

for technological reasons. There are two different types of minimum distance

constraints, linear minimum distance constraints, and piecewise-linear minimum

distance constraints. As an example, some transistors within the same well may

abut directly, but a minimum distance is required from transistors outside of the

well. Formally, this constraint can be defined as a linear inequality. Piecewise-

linear minimum distance constraints are required for special devices.

– Linear minimum distance constraints: To manufacture a CMOS circuit,

p-channel transistors usually need to be located in wells. Furthermore, a set

of modules can be surrounded by a guard ring to prohibit latch-up effects.

For both wells and guard rings, area needs to be reserved in the direct sur-

rounding. Figure 3.2 depicts a set of modules A with a guard ring. For the

example of Fig. 3.2, the guard ring has a width of dg. Thus, a minimum

distance constraint is formulated to make sure that all modules m within the

set of modules A keep a distance d.m; n/ � dmin.m; n/ D dg from all other

modules (n … A):

8
m2A;n…A

d.m; n/ � dmin.m; n/; dmin.m; n/ � 0: (3.16)

The constant minimum distance between m and n is denoted by dmin.m; n/.

The maximum distance required from module m to any other module is de-

noted by dmax.m/:

8
m¤n

dmax.m/ � dmin.m; n/: (3.17)

Since this minimum distance constraint is defined by a linear inequality, we

refer to this constraint as a linear minimum distance constraint.

Fig. 3.2 Group A

surrounded by a guard ring dg

A

100 M. Strasser et al.

Fig. 3.3 DTI transistors at

different distances:

(a) directly abutting, (b) with

stretched DTIs, (c) with

extended minimum distance

m

d(n,m)

d
D

T
I

Sr,n Sl,m

n

Module
DTI

a

b

c

Unstretched
Stretched

n m

n m

– Piecewise-linear minimum distance constraints are formulated for special

devices which require more complex minimum distance constraints. A good

example for such constraints are transistors with deep trench isolation (DTI).

DTI transistors can be used for switching high voltages on a chip [4]. Each

such transistor is directly surrounded by a DTI. Since the manufacturing

process of DTIs is complex, different layout restrictions apply. Figure 3.3

illustrates restrictions for distances between DTI transistors, which must be

considered during the placement step.

Neighboring transistors can share DTIs if they are placed in close proximity.

Figure 3.3a shows two modules being placed side by side, with a distance

d.n; m/ D 0. The vertical DTI in the middle is shared by both modules.

Since the distance from the DTI to the transistor influences its electrical

parameters, it is not allowed to arbitrarily modify the position, sizing, or shape

of the DTIs. In common processes, the DTIs surrounding transistors have to

be rectangular. It is allowable to stretch their width and height by a few per-

cent. In case the distance between the transistors needs to be increased (for

example, due to a symmetry constraint), the transistors can still share a DTI

between them within certain boundaries. Figure 3.3b shows two transistors

sharing the vertical DTI in the middle, with both DTIs stretched to the limit

on the right (sr;n) and left (sl;m) side of n and m, respectively. In this case, the

total stretching of both DTIs is d.n; m/ D sr;n C sl;m D smax.

In case the required distance between the two transistors exceeds the stretch-

ing limit of smax, the DTI between them can no longer be shared. Due to

manufacturing considerations, there is a minimum distance defined between

two parallel trenches. For this reason, the transistors must keep an extended

minimum distance of dDTI in that case, as shown in Fig. 3.3c.

Summing up, there are three ranges of the distance between two DTI transis-

tors. The first range starts from directly abutting transistors, with a distance

3 Deterministic Analog Placement by Enhanced Shape Functions 101

Fig. 3.4 Allowable distance

ranges between two DTI

transistors

3

0 d
D

T
I

s m
ax

d
allowed

Range

allowed fo
rb

.

1 2

of 0, sharing a DTI. It ends when the DTIs of both transistors are stretched

to the limit smax. There, the second range starts and ends at the minimum dis-

tance between two DTIs, i.e., dDTI. The second range can be considered as a

forbidden zone for the distance between two DTI transistors. The third range

is defined from the positive end of the second range to infinity. The ranges of

a distance d are depicted in Fig. 3.4, and defined by (3.18):

d � smax„����ƒ‚����…
Range 1

_ d � dDTI„�����ƒ‚�����…
Range 3

: (3.18)

These minimum distance constraints can no longer be formulated by single

inequalities. There are at least two inequalities for disjoint ranges. Thus, we

refer to these constraints as piecewise-linear minimum distance constraints.

The placement constraints are also crucial for the routability of the design. For

example, in differential circuits, the devices often need to be connected by sym-

metric wires to balance parasitic resistances and capacitances. A prerequisite for

symmetric routing is a symmetric placement.

In general, the layout of a circuit needs to be compact for economic reasons. As a

conclusion, successful analog layout automation algorithms must produce compact

results, considering various constraints.

3.1.3 Context of This Work

A number of methods for automatic placement constraint generation have been

published.

The methods proposed in [5–7] evaluate sensitivity analyses to identify para-

sitics, matching and symmetry constraints of a circuit. The authors of [8] proposed

a method that classifies the nets of a circuit according to their susceptibility. This

classification is then used to identify analog building blocks (e.g., current mirrors)

and their matching constraints. The algorithms presented in [9–12] use a structural

analysis of the circuit to find symmetry in the circuit. The underlying subgraph iso-

morphism problem is solved by graph labeling [9, 12] and recursive detection of

symmetric pairs [10, 11].

The generation of sizing constraints is a related problem, because both have to

consider matching requirements. The authors of [13] present a method to find basic

building blocks defined by a library from the netlist of a circuit. The building blocks

are used to assign sizing constraints.

102 M. Strasser et al.

Since the beginning of the 1980s, different approaches for integrated analog

circuit placement have been published. The approaches can be classified by the rep-

resentation they use to store the location of the modules.

The approaches of [14–17] use absolute coordinates of the modules. All

constraints are directly formulated using the coordinates. These approaches gen-

erate placements using simulated annealing [18]. Minimum distance constraints

can be considered by a special term in the cost function, being 0 if the constraints

are met, and greater than 0, if the constraints are violated. Because of the high

dimensionality of the search space of R
2N for N modules, the computation times

based on this representation are high.

In contrast, topological representations have a much smaller search space [19],

while still being able to store all admissible [20] placements. These represen-

tations do not allow overlaps. Prominent topological representations include the

O-Tree [20], B�-tree [21, 22], H/ASF-B�-Tree [23] (see Chap. 2), sequence pair

[24], bounded sliceline grid [25], corner block list [26, 27], and TCG-S [28]. The

placer Plantage, presented in this chapter, is based on B�-trees.

An example of a B�-tree and the corresponding placement is shown in Fig. 3.5.

Each node in a B�-tree represents a module. B�-trees use topological relations to

encode a placement [21]. The rules to generate a placement without constraints can

be summarized as follows: Any node in a B�-tree may have up to two child nodes:

One left and one right node. Each node represents a module. The module of a left

child is placed above the module of the parent node. The module of the right child

is placed right of the module of the parent node. In case the y projections of two

modules overlap, the module which comes first in a preorder traversal of the B�-tree

is placed left of the other module. The preorder traversal of the tree in the example

of Fig. 3.5 is ABCD. A and B are placed to the left of C, B is placed to the left of D.

The resulting placement is compacted to the lower left corner.

As described in Chap. 1 of this book, constraints can be used efficiently to restrict

the solution space [22, 29–32]. The authors of these papers propose Simulated

Annealing algorithms that consider symmetry constraints with a restricted solu-

tion space using O-trees [29], B�-trees [22], sequence pairs [30, 31], and sequence

pairs with Johnson’s priority queue [32]. In [23], a different approach is presented,

based on two modifications of the B�-tree: the first is to handle symmetry con-

straints with so-called symmetry islands and the second to combine these symmetry

islands with the rest of the modules. The authors of [33] presented a placement

algorithm with symmetry and other placement constraints. The concept of dummy

nodes in constraint graphs is introduced to fulfill symmetry constraints. All previous

works mentioned here use simulated annealing to optimize placement. In contrast,

Plantage is deterministic.

Fig. 3.5 B�-Tree and its

corresponding placement

B C

D

B

D

C

A A

“below of”

“left of”“below of”

3 Deterministic Analog Placement by Enhanced Shape Functions 103

3.1.4 Contributions

Analog integrated circuits are hierarchically built [1, 34]. For example, an

operational amplifier can be decomposed into a differential input stage and a

output stage. The input stage in turn can be divided into a differential pair and

several current mirrors. This hierarchy can be described as a hierarchy tree, whose

leaf nodes are the devices of the circuit. The root node of this tree represents the

whole circuit. All inner nodes of this hierarchy tree including the root node are

denoted as groups.

In this chapter, we first introduce a new method that automatically determines

the hierarchy tree of an analog circuit. This process is controlled by the required

matching, symmetry, and proximity constraints. These constraints are determined

automatically and are modeled in a placement requirement graph. Furthermore, we

show how the hierarchy tree can be efficiently used together with the constraints to

formulate so-called hierarchical placement rules.

Since B�-trees can generate all admissible placements, a complete enumeration

would yield the optimal solution. However, this is not practicable due to complexity

problems, because the number of B�-trees increases more than exponentially with

the number of modules. Plantage uses the hierarchy to bound the enumeration. For

small subparts of the circuit, all possibilities are enumerated. These partial solutions

are then combined, guided by the hierarchy, to generate placements for the complete

circuit. If the partial solutions were joined together using their bounding boxes,

the area usage would deteriorate. Thus, a new concept is used, which calculates a

new placement as a sum of the B�-trees of the partial placements. This concept is

designed to avoid white space while the two B�-trees are assembled to one. The

result of Plantage is a set of area-optimal placements (shapes) with different aspect

ratios.

The placement algorithm starts with basic groups. For the basic groups, the com-

plete solution space is enumerated. Since B�-trees are used for enumeration, the

process can be accelerated using feasibility checks, as described in Chap. 1. An

algorithm is proposed in Sect. 3.3 to generate a placement for a given B�-tree con-

sidering all constraints for analog circuits. To store all Pareto optimal placements

for the basic groups, enhanced shape functions are used and described in Sect. 3.4.

After all possible placements for the basic groups have been calculated, the

algorithm steps up to next level in the hierarchy. The results of the previously calcu-

lated placements for the basic groups are then combined. For the current hierarchy

level, the Pareto optimal results are stored in an enhanced shape function. Subopti-

mal combinations are removed in every hierarchy level to limit the computational

effort in subsequent steps. This methodology is repeated until the highest hierarchy

level is reached, covering the whole circuit. Finally, the enhanced shape function of

the whole circuit represents the Pareto front of optimal layouts with different aspect

ratios, in contrast to other state-of-the-art approaches, producing a single layout.

This enables the designer to choose among different valid designs having different

aspect ratios.

104 M. Strasser et al.

The approach presented in this chapter has the following key features:

� Generation of placement rules based on automatically detected symmetry condi-

tions and basic building blocks

� First approach, known to the authors, introducing a hierarchy concept for place-

ment rules of analog integrated circuits, which provides:

– A prioritization of placement rules by importance,

– A hierarchical clustering of the circuit,

– Cluster-specific constraint information.

� Automatic placement considering all beforehand generated constraints.

� Computation of a set of possible placements with different aspect ratios instead

of a single solution.

� Based upon a nonslicing topological placement structure, the B�-tree.

� Full enumeration of basic groups, guided by the hierarchy of the circuit.

� Deterministic algorithm, suitable for parallelization.

� Variant selection is integrated seamlessly in the enumeration.

This chapter is organized as follows: Section 3.2 describes an approach to au-

tomatically generate the hierarchy tree as well as constraints, based on a detection

of basic building blocks in the circuit. Section 3.3 describes the algorithm to gen-

erate a placement for a given B�-tree. In Sect. 3.4, enhanced shape functions are

defined. Section 3.5 describes the comprehensive hierarchical placement approach.

Section 3.6 shows experimental results. A conclusion is given in Sect. 3.7.

3.2 Placement Constraint Generation

Our constraint generation method is based on a set of five different placement re-

quirements concerning symmetry, matching, and proximity. At the beginning of this

section, this set and an associated order, describing the importance of each require-

ment, are introduced. After that, the generation method itself is described. Figure 3.6

gives an overview. It uses a set of recognized building blocks, like, current mir-

rors, and symmetry conditions to generate a graph of placement requirements with

respect to symmetry, matching, and proximity (SMP graph). Based on the SMP

graph, a tree of hierarchical symmetry, matching, and proximity groups is generated

(HSMPG tree).

3.2.1 Placement Requirements

3.2.1.1 Types of Placement Requirements

In the following, five different types of placement requirements are distinguished.

3 Deterministic Analog Placement by Enhanced Shape Functions 105

matching/proximity groups

Building Block

RecognitionAnalysis

Symmetry
Netlist

SMP graph

SMP graph generation

HSMPG tree generation

HSMPG tree

Constraint Preparation

Placement Constraints for Plantage

symmetry/matching/

proximity requirements

hierarchical symmetry/

Fig. 3.6 Overview of the placement constraint generation method

Table 3.1 Symbols and definitions of placement requirement types

Symbol Definition

MS Device matching requirement between devices of a symmetric device pair

MB Device matching requirement between devices of a building block

PB Proximity requirement of a building block

S Symmetry requirement

PN Proximity requirement from the netlist

Definition 3.8 (Placement requirement type). The type t of a placement require-

ment must be an element of

T D fMB; MS; S; PB; PNg:

Table 3.1 defines the different types t 2 T .

Types MB and MS describe matching requirements between devices of a circuit.

All devices subject to the same matching requirement must have equal electrical

properties. Matching requirements can originate from either building blocks (MB),

e.g., current mirrors, or concern devices that are symmetric to each other (MS).

Symmetry requirements (type S) represent conditions to the device coordinates, i.e.,

(3.13) and (3.14). Types PB and PN define a requirement for close spatial proxim-

ity. These requirements can originate either from building blocks (PB) or from the

connections in the netlist (PN).

3.2.1.2 Importance Order

Different placement requirements exist for every device in the circuit. These multi-

ple requirements may impose conflicts on the placement. In the following, a priority

106 M. Strasser et al.

Fig. 3.7 Detail of example

circuit (Fig. 3.10) with

constraint requirements

N3 N4
Matching (MB)

Symmetry, implying Matching (MS)

Matching (MB)

P1 P2

N1 N2

Matching (MB)

Symmetry, implying Matching (MS)

order for the five types of matching, proximity, and symmetry requirements is for-

mulated. This priority order is used by our HSMPG tree generation algorithm to

avoid conflicts.

In general, matching requirements, which are created from symmetric device

pairs (MS) and building blocks (MB), are most important. Symmetric device pairs

represent the matching between the two parts of a differential circuit, which is more

important than the matching inside each part.

This is illustrated by the following example. Figure 3.7 shows a detail of the cir-

cuit from Fig. 3.10. Transistors P1 and P2 form a differential pair and are therefore

subject to a matching requirement. N1 and N3, as well as N2 and N4, respectively,

form current mirrors, which require matching of their respective devices. The part of

the circuit shown in Fig. 3.7 is fully differential, which demands symmetry between

P1 and P2, between N1 and N2, and between N3 and N4. This implies a pairwise

matching of these devices in addition, resulting in four matching requirements be-

tween the transistors N1 to N4. Not all of these matching constraints are equally

important, as illustrated in the following: In case the matching from symmetry be-

tween N1 and N2, as well as between N3 and N4 is disregarded, performances such

as offset error are degraded. These performances are considered as critical for most

applications. If these transistors are matched, then a mismatch between N1 and N3

equals a mismatch between N2 and N4. This means the mismatch inside the building

blocks is equal. Consequently, the operating points in both parts of the differential

circuit are affected equally, leading to a degradation of, e.g., the gain, which is con-

sidered as less critical for most applications. Overall, the matching requirements

among the internal transistors of the current mirrors (N1,N3) and (N2,N4), are less

critical than the matching requirements emerging from symmetry between N1 and

N2, as well as between N3 and N4.

Symmetry requirements always affect whole building blocks. Therefore, they are

not harmed by proximity requirements of type PB, which exist only inside building

blocks. Therefore, a higher priority is assigned to proximity requirements PB than

to symmetry requirements S. The remaining proximity requirements of the netlist

PN are least important.

Definition 3.9 (Importance order and importance ordered type set TI). The im-

portance order � is a strict order of the set of constraint types T . It holds:

MS � MB � PB � S � PN: (3.19)

3 Deterministic Analog Placement by Enhanced Shape Functions 107

The corresponding importance ordered type set TI is defined as:

TI WD .T; �/: (3.20)

3.2.2 SMP Graph and Its Generation

Definition 3.10 (SMP graph). The SMP graph GSMP.NSMP; ESMP; tSMP/ is an

undirected graph of placement requirements with respect to symmetry, matching,

and proximity. The nodes NSMP are formed by the devices of the circuit. Two nodes

e:a 2 NSMP and e:b 2 NSMP with e:a ¤ e:b are connected by an edge e 2 ESMP

iff they are subject to the same requirement. The function tSMP W ESMP ! T defines

the type of requirement of each edge. An SMP graph is a multigraph [35] allowing

multiple edges between two nodes.

The SMP graph is initialized with proximity requirements from the netlist.

For the routing of analog circuits, it is beneficial that nets are as short as possible.

To obtain this, a proximity requirement is defined between each pair of devices

connected to the same net n, leading to a complete subgraph n (Fig. 3.8).

Figure 3.9 shows the initial SMP graph for the example circuit from Fig. 3.10.

The SMP graph is then successively filled with further matching, symmetry, and

proximity requirements. These requirements are determined through building block

recognition and symmetry analysis.

Dm

D1 D2 D3

Di

Arbitrary
Device D2

Di

D1 D3Net n

Dm

Fig. 3.8 Edges in the SMP graph representing a proximity requirement from one net of the netlist

CC

P6P5 P7

N3 N1

P1

N2 N4

P2

P3 P4

N5

Fig. 3.9 Initial SMP graph for the circuit from Fig. 3.10. It contains only proximity requirements

originating from the netlist

108 M. Strasser et al.

in
p

in
n

cm2cm1

o
u

t
dp1

cm4

Ibias
cm3

CC

cm5

P5

P3

N3 N1 N2

P1 P2

P6
P4

P7

N5

N4

Fig. 3.10 A simple amplifier with recognized building blocks

3.2.2.1 Building Block Recognition

In the second step, the inherent building blocks of a circuit are identified.

The building block recognition is based on the algorithm published by the authors

of [13]. It recognizes the building blocks from a given library by finding subgraph

isomorphism.

For each element of the library, that has an independent function, placement re-

quirements for matching and proximity are defined in addition. Figure 3.11 shows

the corresponding assignments of the library elements.

For the two transistor building blocks, differential pair, level-shifter and simple

current mirror a matching of their two transistors is required. The complex cur-

rent mirrors, Cascode current mirror, four transistor current mirror, and wide-swing

current mirror, require a matching of the lower transistors T1, T2 and of the upper

transistors T3,T4. The routing requires the elements of the building block to be in

close spatial proximity in the final layout. Therefore, a building block proximity

requirement is defined between T1,T3 and T2,T4, respectively.

For the example from Fig. 3.10, the algorithm recognizes five simple current mir-

rors cm1 to cm5 and one differential pair dp1. Figure 3.12 shows the additional

edges, generated in the SMP graph for building blocks, which represent matching

and proximity placement requirements.

3.2.2.2 Symmetry Analysis

The symmetry analysis step determines symmetry conditions within the devices of a

circuit. All symmetric device pairs having the same symmetry axis form a symmetry

compound. The set of all symmetry compounds of a circuit is denoted by S . The

analysis algorithm is similar to the one presented in [10].

Two types of requirements are generated for each symmetry compound C

(Fig. 3.13). A matching requirement of type MS is generated for each symmetric de-

vice pair of a symmetry compound. A symmetry requirement of type S is generated

3 Deterministic Analog Placement by Enhanced Shape Functions 109

Placement Requirements

T3

T3

T1

T4

T2

T1 T2 T1 T2

Differential Pair (dp)

T1 T2 T1 T2

Level-Shifter (ls)

T1 T2

Simple Current Mirror (scm)

T1 T2

Building Block

Cascode Current Mirror (ccm)

T2

T3 T4

T1T1 T2

T3 T4

T1

T3

T2

T4

4 Transistor Current Mirror (4cm)

T1 T2

T4

T3

T1 T2

T4

Wide-Swing Current Mirror (wcm)

Fig. 3.11 Assignment of building blocks to placement requirements

CC

N2 N4

P2

P3 P4

N5

P6P5 P7

N3 N1

P1

Fig. 3.12 Matching and proximity placement requirements from building blocks generated in the

SMP graph for the circuit from Fig. 3.10

for the whole compound to reflect (3.13) and (3.14), which define the device location

with respect to the axis coordinate c. By eliminating the coordinate c, a complete

subgraph regarding the symmetry requirements is created.

110 M. Strasser et al.

Device D1

Dm

Di

D0m

D0i

D01 D1

Di

Dm

D0i

D01

D0m

c

D1

Di

Dm

D0i

D01

D0m

C

Fig. 3.13 Assignment of a symmetry compound C to matching and symmetry requirements

N3 N4

P2

N5

CC

P3 P4

P1

P5 P6 P7

N2N1

Fig. 3.14 Matching and symmetry requirements generated in the SMP graph for the circuit from

Fig. 3.10

For the example circuit, the symmetry analysis algorithm determines four sym-

metric device pairs,

p1 D .P1; P2/; p2 D .N1; N2/; p3 D .N3; N4/; p4 D .P3; P4/;

and one symmetry compound

C1 D fp1; p2; p3; p4g;

which forms the set

S D fC1g:

Figure 3.14 shows the additional edges generated in the SMP graph for matching

and symmetry requirements. The final SMP graph containing all symmetry, match-

ing and proximity requirements is depicted in Fig. 3.15.

3 Deterministic Analog Placement by Enhanced Shape Functions 111

P5 P6 P7

N2N1N3 N4

P2

N5

CC

P3 P4

P1

Fig. 3.15 SMP graph for the circuit from Fig. 3.10

3.2.3 HSMPG Tree and Its Generation

Definition 3.11 (HSMPG tree). An HSMPG tree is a hierarchical tree of

symmetry, matching, and proximity groups. It describes the hierarchy of an analog

circuit and placement requirements across the hierarchy. The leaf nodes of this tree

are formed by the devices of the circuit and the inner nodes are called groups (see

Definition 3.5). For every group, a type is defined that determines the placement

requirements applying for its children. There are three different types of groups:

A proximity group (PG) determines proximity requirements, a matching group

(MG) determines matching requirements, and a symmetry group (SG) determines

symmetry requirements.

3.2.3.1 Generation Algorithm

The SMP graph GSMP together with the importance order relation TI (3.19) are

the basis to generate the HSMPG tree. The corresponding algorithm is de-

noted as Algorithm 3.1. Our method is similar to agglomerative methods known

Algorithm 3.1: Algorithm for HSMPG tree generation

Input: SMP graph GSMP, importance ordered type set TI

Output: HSMPG tree

forall � 2 TI from max.TI / to min.TI / do
GSMP� filter(GSMP ,�);

GSMPC connectedComponents(GSMP �);

� createGroups(GSMP C ,�);

GSMP buildSuperNodes(GSMP ,�);

112 M. Strasser et al.

from hierarchical cluster analysis [36]. Every group corresponds to a cluster and

the similarity measure is given by the SMP graph GSMP and importance order

relation TI .

For each requirement type � 2 TI in the importance order, first the subgraph

GSMP� .NSMP� ; ESMP� / for this type is determined:

ESMP� D fe 2 ESMP tSMP.e/ D �g ; (3.21)

NSMP� D fn 2 NSMP 9 .e 2 ESMP� / W .n D e:a/ _ .n D e:b/g : (3.22)

It includes only edges ESMP� of type � and the nodes they connect. Next, all con-

nected components GSMPC;i 2 GSMPC of this graph are determined. A connected

component is the largest subgraph GSMPC;i .NSMPC;i ; ESMPC;i /, where every node

x 2 NSMPC;i can be reached from any other node y 2 NSMPC;i [35].

For every connected component GSMPC;i .NSMPC;i ; ESMPC;i / that has more than

one node, i.e., jNSMPC;i j > 1, a new group 2 � is created: The nodes NSMPC;i

form the children of the new group. The type of the group is determined by � . If

� 2 fMB; MSg, then a matching group is created. If � D S, then a symmetry group

is created. Otherwise, the new group will be a proximity group.

Finally, a super node S in GR is formed for every group 2 � . Edges e 2 ESMP

which would connect nodes inside and outside the super node are replaced by edges

that refer to the super node.

3.2.3.2 Example

Figure 3.16 shows how the SMP graph (Fig. 3.15) of the example circuit (Fig. 3.10)

is processed. The resulting HSMPG tree is shown in Fig. 3.16h. In the first iteration

of the algorithm, the matching requirements MS are evaluated (Fig. 3.16a) and the

matching groups MGS;1 to MGS;4 are created (Fig. 3.16b). For each group, a super

node is formed and the requirement edges are transformed to refer to the new super

nodes (Fig. 3.16c). Next, requirements of type MB are handled. In Fig. 3.16c, there

are three such requirements between the groups MGS;2 and MGS;3, between the

devices P5 and P6 and between the devices P5 and P7. MGS;2 and MGS;3 form the

new group MGB;1. The devices P5, P6, and P7 are all part of the same connected

component and form the group MGB;2 (Fig. 3.16d). The further processing leads

to the creation of symmetry group SG1 (Fig. 3.16e, f), representing the symmetry

compound. Proximity group PGN;1 is created because of the proximity requirements

from the netlist and represents the complete circuit (Fig. 3.16g, h).

3.2.3.3 Discussion

Our approach of a static importance order of the requirement types has led to correct

results for all our experiments. Nevertheless, a dynamic approach is also possi-

ble. For example, the influence of a constraint violation to the circuit performances

3 Deterministic Analog Placement by Enhanced Shape Functions 113

P5 P6 P7

P5 P6 P7

P4

CC

CC

CC

CC

P3

P1

N3 N1 N2 N4 N5

N5

N5

N5

P2

P
1

P
2

N
1

N
2

N
3

N
4

P
3

P
4

P
5

P
6

P
7

N
5

C
c

P
1

P
2

N
1

N
2

N
3

N
4

P
3

P
4

P
5

P
6

P
7

N
5

C
c

P
1

P
2

N
1

N
2

N
3

N
4

P
3

P
4

P
5

P
6

P
7

N
5

C
c

P
1

P
2

N
1

N
2

N
3

N
4

P
3

P
4

P
5

P
6

P
7

N
5

C
c

MGS,4

M
G
S
,1

M
G
S
,1

MGB,1

SG1

SG1

MGB,2

MGB,1

MGB,1 MGB,2

MGB,2

PGN,1

M
G
S
,2

M
G
S
,2

M
G
S
,3

M
G
S
,3

M
G
S
,4

M
G
S
,4

M
G
S
,1

M
G
S
,2

M
G
S
,3

M
G
S
,4

M
G
S
,1

M
G
S
,2

M
G
S
,3

M
G
S
,4

MGS,1

MGS,2

MGS,3

MGS,4

MGB,2

MGB,2

SG1

MGS,1

MGB,1

a b

c d

e

g

f

h

Fig. 3.16 Iteration steps for the circuit from Fig. 3.10 and the SMP graph from Fig. 3.15. SMP

graphs and HSMPG trees for iteration MS (a, b), iteration MB (c, d), iteration S (e, f), and iteration

PN (g). The final HSMPG tree is shown in (h)

could be determined by simulation. The result could be used to determine a priority

function ˚ W ESMP ! N. This function can then be used to determine the order in

which the constraint requirements are processed.

114 M. Strasser et al.

3.2.4 Constraint Generation

Besides information about the hierarchy of a circuit, the generated HSMPG tree

contains information about the constraints that have to be applied within each hier-

archical group and among hierarchical groups. This information has to be formatted

in the placer-specific constraint input format, including a constraint generation ac-

cording to Sect. 3.1.2.

Same layout variants and alignment constraints are generated for matching

groups. In addition, an inherent proximity constraint is valid because all devices

to match are in the same group. If the devices in the circuit consist of a number

of subdevices instead of a large single part (e.g., a transistor realized as parallel

subtransistors), then the alignment constraint is replaced by a common centroid con-

straint.

For symmetry groups, the computed hierarchy is exploited to generate constraints

implementing (3.13) and (3.14). Inside each MS-matching group, the centers of the

devices are aligned in the direction of the symmetry axis. For all groups belonging

to the same axis, a group alignment constraint is generated to align their centers

perpendicular to the symmetry axis. For example, four module-related constraints

would be created for the four symmetry pairs of the example circuit and a vertical

axis:

yP1 D yP 2 yN1 D yN 2 yN 3 D yN 4 yP 3 D yP 4: (3.23)

This constraint is denoted as symmetry (pair). For each of the matching groups

MGS;1 to MGS;4 the centers in x-direction xMGS;i
are calculated by

xMGS;i
D

1

2
.xm1

C xm2
/; (3.24)

where m1 and m2 are the modules of each group. These groups are then aligned in

horizontal direction:

xMGS;1
D xMGS;2

D xMGS;3
D xMGS;4

(3.25)

This constraint is denoted as symmetry (groups). Overall, (3.13) and (3.14) are im-

plemented by (3.23)–(3.25) for this circuit.

The placement algorithm presented in the following constructs the layout bottom

up using the hierarchy given by the HSMPG tree. It inherently keeps the elements of

each group in close spatial proximity. Therefore, no explicit proximity constraints

have to be formulated for proximity groups.

3 Deterministic Analog Placement by Enhanced Shape Functions 115

3.3 B�-Tree Placement Considering Linear

and Piecewise-Linear Constraints

The deterministic placer Plantage generates placements using a hierarchically

bounded enumeration. During the enumeration process, many different B�-trees

have to be evaluated for parts of the circuit as well as for the whole circuit.

The B�-trees are evaluated based on the corresponding placements. The proposed

methodology is used to generate placements with respect to arbitrary linear as

well as piecewise-linear constraints from a feasible B�-tree. Linear constraints are

needed for symmetry and common centroid constraints, as well as for linear min-

imum distance constraints. Piecewise-linear constraints are needed for minimum

distance constraints of special devices, such as DTI transistors (see Sect. 3.1.2).

Horizontal and vertical relationships between modules are modeled by two di-

rected constraint graphs, HCG D .Nh; Eh/, and VCG D .Nv; Ev/. HCG and VCG

both consist of a set of nodes Nh, and Nv, and a set of directed edges Eh, and

Ev. Any directed edge is an ordered pair of nodes. In this approach, each module

has a corresponding node in HCG as well as in VCG. A directed edge e 2 Eh,

e D .ni ; nj /, denotes that module i has to be placed left of j . A directed edge

e 2 Ev, e D .ni ; nj /, denotes that module i has to be placed below j .

In Fig. 3.17, an overview of the methodology is shown. Algorithm 3.2 generates

the VCG for the given B�-tree. An edge .ni ; nj / in VCG requires module j to be

placed above i . Thus, an inequality yi C hi < yj is formulated. For the example

in Fig. 3.5, the VCG is shown in Fig. 3.18. According to this VCG, the following

inequalities are formulated: ya � ys , yb � ya C ha, yc � ys , yd � yc C hc ,

ye � yb C hb , ye � yd C hd .

First, the methodology is explained in the next section for linear constraints only.

It can be solved by a linear program (LP), minimizing the height of the placement

c

d

b d

e

ca

a

b

s

a c

d

e

a

b

d

c

b

s

Placement

B*-tree
vertical CG

Alg. 3.2

horizontal CG

y coords

x coordsLP/MIP

LP/MIP

Symmetry, common centroid,

alignment, minimum distances„����������������������������������ƒ‚����������������������������������…

‚���������������������������������…„���������������������������������ƒ
Symmetry, common centroid,

alignment, minimum distances

Alg. 3.3

Fig. 3.17 Placement generation from a B�-tree considering constraints

116 M. Strasser et al.

Algorithm 3.2: buildVCG(VCGNode thisNode, predecessor)

(c IEEE 2008, [37])

begin

if B�-tree node of thisNode has a left child then
leftNode new VCG node for left child;

add edge from thisNode to leftNode;

buildVCG(leftNode, thisNode);

else
add edge from thisNode to the end node;

if B�-tree node of thisNode has a right child then
rightNode new VCG node for right child;

add edge from predecessor to rightNode;

buildVCG(rightNode, predecessor);

end

subject to symmetry, common centroid, and minimum distance constraints. The

results of the LP are the y coordinates of the modules. An approach to handle

piecewise-linear constraints is described later in Sect. 3.3.2.

3.3.1 Linear Constraint Handling

The vertical constraint graph is built as described in Algorithm 3.2: if module i is

a left child of module j in the B�-tree, then ni is the direct successor of nj in the

CG. If module i is a right child of module j in the B�-tree, then ni and nj share the

same predecessor. At the beginning of Algorithm 3.2, a start node is created. Also,

a node corresponding to the root node of the B�-tree is added with the start node

being its predecessor. Both nodes are passed to the algorithm.

A linear program is formulated using VCG:

yopt D arg miny ye ; (3.26)

s.t. Mv � y � dv„��������ƒ‚��������…
Minimum distance constraints

; (3.27)

Cv � y D kv„�������ƒ‚�������…
Symmetry & common centroid constraints

: (3.28)

The vector y is the vector of y coordinates for all modules and ye is the y coordinate

of the virtual end node. The matrix Mv, together with dv, defines the minimum

vertical distances between the modules. The matrix Cv, together with the vector

kv, defines the symmetry and common centroid constraints for the vertical axis.

Minimizing ye is equivalent to minimizing the total height of the placement. The

vector yopt represents the optimal y coordinates for the given B�-tree.

3 Deterministic Analog Placement by Enhanced Shape Functions 117

Fig. 3.18 Example: B�-tree

and its corresponding VCG

b c

d

s

a

b

e

d

c

a

(end node)

(start node)

Fig. 3.19 Expected

placement for the B�-tree

of Fig. 3.18 with additional

minimum distance constraints

b

c

d

a

d
m

in

dmin

Reserved area

An example placement for the B�-tree of Fig. 3.18 with the minimum distance

constraints

8
n¤a

d.a; n/ � dmin (3.29)

is shown in Fig. 3.19. After the computation of the y coordinates, the minimum

distance constraints are fulfilled for the y-axis for those modules, which have a

connecting edge in VCG. To ensure that all constraints are fulfilled, two cases need

to be considered for pairs of modules having a minimum distance constraint during

the generation of HCG:

1. If the y projections of the two modules are overlapping, an edge is created in

HCG between these two modules. The weight of that edge must be greater than

or equal to the minimum distance between the two modules.

2. If the y projections of the two modules are not overlapping, it must be checked

if their distance in vertical direction is sufficient to fulfill the minimum distance

constraint. If not, an extra edge has to be created to ensure the minimum distance.

To handle both cases efficiently, a shadowing algorithm is proposed to generate

HCG. During the generation of HCG, a module can cast a core shadow as well as a

partial shadow.

Definition 3.12 (Core shadow). The region on the y-axis, which is covered by

module m is called its core shadow:

�CS;m D ŒymI ym C hm�: (3.30)

The lower y-coordinate and height of module m are denoted by ym and hm,

respectively.

118 M. Strasser et al.

Definition 3.13 (Partial shadow). The partial shadow �PS;m that module m casts

on the y-axis is defined as:

�PS;m D Œym � dmax.m/I ym�[; (3.31)

Œym C hmI ym C hm C dmax.m/�: (3.32)

The region of the y-axis, where modules may be influenced by the placement of

module m, is covered by the partial shadow of m. The shadows of a module can be

illustrated as shown in Fig. 3.20.

To efficiently build HCG, y-regions are defined. Therefore, all lower and upper

y-coordinates ym and ym C hm of all modules m are stored in a list, sorted, and

unified. Any region between two entries of that list is called a y-region. A tree data

structure is used to store the sets of modules being associated with the y-regions.

This allows for more than one module to be registered with a single region. Using

these definitions, the shadowing algorithm can be formulated as in Algorithm 3.3.

The algorithm only creates edges, which are required to keep the minimum dis-

tances.

For the example in Fig. 3.19, the algorithm is demonstrated in Fig. 3.21. The re-

gions are initialized in Fig. 3.21a. Then, module a is registered in Fig. 3.21b. The

core shadow of a overlaps the lowest region, the partial shadow overlaps the two

regions above. Thus, a is registered with all of these three regions. A HCG edge is

created from the virtual start node to node of module a. Module b is registered with

the regions of its core shadow in Fig. 3.21c. The partial shadow of b is overlapping

regions, where a is already registered. Thus, b is appended to the list of registered

modules in those regions, and an edge from the start node to the HCG node of mod-

ule b is created. In Fig. 3.21d, module c overwrites the lower two regions. Since a

has been overwritten, a HCG edge is created. There is no edge created from b to c,

although b has been overwritten as well. This is because there is no minimum dis-

tance constraint defined between these two modules. Finally, in Fig. 3.21e, module

d overwrites regions, where a, b, and c have been registered. An edge from b to d is

created, and, due to the minimum distance constraints, an extra edge is created from

a to d. Figure 3.21f shows the complete HCG along with the corresponding valid

placement.

Using HCG, the optimization problem can be formulated as a minimization of

the x-coordinate of the virtual end node, xe, with respect to all constraints:

Fig. 3.20 Core shadow

�CS;m and partial shadow

�PS;m of module m

m

dmax.m/

hm

dmax.m/

�CS;m (3.30)

�PS;m (3.31)

�PS;m (3.32)

3 Deterministic Analog Placement by Enhanced Shape Functions 119

Algorithm 3.3: buildHCG()

begin
startNode new HCG node as start;

endNode new HCG node as end;

create tree of y-regions;

initialize all y-regions with startNode;

forall modules m in preorder do
modNode new HCG node for m;

forall regions r in �CS;m do

forall modules n registered in r do

if dvert.m; n/ < dmin.m; n/ then
add edge to modNode from HCG node of n;

remove all entries in r ;

register module in r ;

forall regions r in �PS;m do
register module in r;

remove multiple edges;

add edges from all nodes in region list to endNode;

end

s
s
s

s

s

s

a

s

a

s

s
a

a

a

a

s

a

b b
b

b
a

a

a

b

b

a

b

c
c

b

a

s

b

c

b

c

c
ac

c

b

a

s

a

b

c

dd

c

bb

d
d

c

c

d

c

d

d b

d
d

c

c

d

c

d

d

a

s

a

b

c

d
e

d

c

b

b

d

e

c

a

f

Fig. 3.21 New approach for building HCG with minimum distance constraints (a)–(e), and the

complete HCG in (f)

120 M. Strasser et al.

xopt D arg minx xe (3.33)

s.t. Mh � x � dx„���������ƒ‚���������…
Minimum distance constraints

; (3.34)

Ch � x D kh„��������ƒ‚��������…
Symmetry & common-centroid constraints

(3.35)

This optimization problem can be solved by a Simplex solver. The vector xopt

then contains the optimal x coordinates of all modules.

3.3.2 Piecewise-Linear Constraint Handling

As an example for piecewise-linear constraints, the allowable ranges for the dis-

tance between DTI transistors are shown in Fig. 3.4. Since there is a forbidden zone

between two allowable ranges, the solution space is concave. Due to this fact, the

problem can no longer be formulated as a linear programming problem.

To generate placements subject to piecewise-linear minimum distance con-

straints, a formulation of the problem is proposed, which can be solved by a

linear mixed integer programming (MIP) solver. W.l.o.g., the proposed approach

is described for HCGs and for the piecewise-linear constraints for DTI transistors,

as defined in Sect. 3.1.2. The same methodology is applied when solving for the

vertical coordinates.

In a constraint graph, a module is represented by a node. In general, there is at

least one edge ending at the node, and at least one edge starting from the node. The

weight of an edge represents the distance between the modules of the nodes being

connected. An example is depicted by Fig. 3.22.

The distance between two modules subject to the piecewise-linear minimum dis-

tance constraint (3.18) can be described by the two allowable ranges. For every edge,

a binary range variable is defined to indicate in which range the distance is located.

For an edge ei , the range variable is rei .

rei 2 f0; 1g: (3.36)

An equation rei D 0 indicates that the weight of ei is in Range 1, rei D 1 indicates

that the weight of ei is in Range 3.

n
e2

sr;n

m o

e1

sl;m sr;m

e1m o

sl;o

n

e2

Fig. 3.22 Example with three modules and a corresponding HCG. The stretch variables sr;n, sl;m ,

sr;m, and sl;o are only valid in case the trenches are shared

3 Deterministic Analog Placement by Enhanced Shape Functions 121

The following equations and inequalities are formulated for e1 in Fig. 3.22. For

e2, similar constraints need to be defined. Together with the range variables, two

inequalities are formulated to fulfill (3.18) with ˇ being a sufficiently large number:

e1 � re1 � ˇ � smax;e1 � sr;m; (3.37)

e1 C .1 � re1/ � ˇ � dDTI; (3.38)

e1 � sr;n C sl;m: (3.39)

Equations (3.37) and (3.38) include two cases:

1. For re1 D 0: Here (3.37) reduces to e1 � smax;e1 � sr;m, and (3.38) reduces to

e1 C ˇ � dDTI. Since e1 is positive, and with ˇ being greater than dDTI, inequal-

ity (3.38) is always fulfilled. Thus, (3.37) makes sure that e1 cannot exceed its

maximum stretching value smax;e1 minus the stretching of module m to the right,

sr;m.

2. For re1 D 1: Here (3.37) reduces to e1 � ˇ � smax;e1 � sr;m, and (3.38) reduces

to e1 � dDTI. With ˇ being a sufficiently large number (3.37) is always fulfilled.

In this case, the distance between n and m must be at least dDTI.

To make sure that the distance between the modules n and m is always sufficient

to generate the DTI, (3.39) is formulated. It can be shown that it is sufficient to set ˇ

to a value greater than the sum of all module widths plus their worst-case minimum

distances (times the number of symmetry constraints C1). An edge weight cannot

exceed this limit.

For the case of DTI transistors, an additional constraint needs to be considered:

As described in Sect. 3.1.2, the trenches surrounding a module m can be stretched

to the left (sl;m) and to the right (sr;m), up to a certain limit of

sl;m C sr;m � smax;m. (3.40)

The stretching variables sl;m and sr;m can be calculated from e1 and e2, respec-

tively:

e1 � sl;m � sr;n � re1 � ˇ � 0: (3.41)

e2 � sr;m � sl;o � re2 � ˇ � 0: (3.42)

In case e1 is in range 1 (re1 D 0), the trenches are stretched. Hence, e1

must be equal to sl;m C sr;n. This is made sure by (3.41) if the stretching vari-

ables are secondarily minimized due to a term in the cost function. For range

3, (3.41) is always fulfilled because of the ˇ term. Equation (3.42) can be explained

similarly.

To solve for the x-coordinates, the optimization problem (3.33)–(3.35) needs

to be extended as follows: For every edge i , an additional range variable rei 2

f0; 1g and constraints similar to (3.37)–(3.39), (3.41), and (3.42) need to be defined.

For every module m, a constraint similar to (3.40) needs to be added. Furthermore,

122 M. Strasser et al.

the cost function (3.33) is extended by a � term, secondarily minimizing the total

stretchings of all modules:

xe C � �
X

m

.sl;m C sr;m/: (3.43)

This formulation allows for the use of a linear MIP solver. The factor � must be

sufficiently small to make sure that xe is the main minimization objective. For DTI

transistors, it is sufficient to set � to a positive value of less than wmin

N �dDTI
, with wmin

being the width of the smallest module, and N being the total number of modules.

3.4 Enhanced Shape Functions

To handle the combination of different partial placements in an efficient, area-saving

way, enhanced shape functions are introduced in this section. First, a brief review of

standard shape functions is given. Then, enhanced shape functions and the enhanced

combination of shapes are described in the following.

3.4.1 Review of Shape Functions

Shape functions [38] can be used to calculate compact placements for a set of rectan-

gular modules. A shape function is defined as an ordered set of shapes. Each shape

represents a placement with a different aspect ratio. Therefore, a shape describes

one possible placement of a module set by its bounding rectangle size, which is for-

mulated as a tuple .w; h/, where w and h denote the width and height, respectively.

In order to generate placements, a recursive algorithm is defined to calculate the

shape function of the module set: First, the set of modules is partitioned into two

subsets. For each subset, a shape function is calculated, and the shape functions are

then combined to generate a shape function for the complete module set. If a sub-

set consists of only a single module, the shape function only consists of a single

shape, representing the width and the height of this module. To combine two shape

functions, all possible combinations of the shapes of both shape functions are eval-

uated. This can be done using a fast operation. Since shapes represent the bounding

rectangles of their corresponding placements, combining two shapes means cal-

culating a common bounding rectangle for the two corresponding placements.

Two placements can be combined either horizontally or vertically. For shapes,

this is called horizontal and vertical addition. The result of a horizontal addition

of two shapes .w1; h1/ and .w2; h2/ is .w1 C w2; max.h1; h2//. An example of

horizontal addition is shown in Fig. 3.23. A vertical addition results in a shape

.max.w1; w2/; h1 C h2/. An example of a shape function is shown in Fig. 3.24.

There, all combinations have been evaluated. In this diagram, there are suboptimal

3 Deterministic Analog Placement by Enhanced Shape Functions 123

Fig. 3.23 Standard shape

addition ([37],

c IEEE 2008) b

a

b

c

d

c

a

d

.w2; h2/

+ =

.w1 C w2; max.h1; h2//.w1; h1/

Optimal shapes

w

h

Suboptimal shapes

Shape function

Fig. 3.24 All shapes of a resulting shape function (SF)

shapes which have a bigger height than other shapes having the same or even a

lower width. These suboptimal shapes are removed before further calculations are

performed. Removing suboptimal shapes significantly reduces the time needed in

subsequent steps, while the quality of the solution remains unchanged. This can be

considered to be a key feature of shape functions. Based on the remaining shapes,

a continuous shape function can be drawn, as shown in Fig. 3.24. This continuous

shape function can be considered the Pareto front of possible placements.

When the recursive algorithm has terminated, there is a shape function for the

entire circuit. This shape function represents different placements, having different

aspect ratios. This is a second key feature of shape functions.

3.4.2 Definition of Enhanced Shape Functions

The corresponding placement of a shape can be described as a slicing tree, since

it is built by horizontal and vertical additions of other placements [39]. Nonslicing

placements cannot be handled by a slicing tree. Since the solution space is limited

by this fact, the solution quality may be degraded.

In this section, enhanced shape functions [37] are described, which preserve the

key features of shape functions while at the same time being able to handle non-

slicing placements. An enhanced shape is defined as .w; h; ˛/. The corresponding

B�-tree ˛ of a placement is stored in addition to the placement’s bounding box

.w; h/. In this chapter, B�-trees are denoted by Greek lowercase letters. Storing the

B�-tree allows for efficient combination of the enhanced shape functions and their

124 M. Strasser et al.

underlying modules, as described in the subsequent section. The widths and heights

of the enhanced shapes are used to calculate the Pareto front, and to identify the

suboptimal enhanced shapes to be removed. An enhanced shape is considered to be

suboptimal in two cases:

� The enhanced shape has a bigger height than other enhanced shapes having the

same or even lower width.

� The enhanced shape has a higher netlength than other enhanced shapes, having

the same width and height.

3.4.3 Combination of Enhanced Shape Functions

To combine two enhanced shape functions, all of their enhanced shapes are com-

bined in pairs. In contrast to standard shapes, the combination of two enhanced

shapes .wi ; hi ; ˛/ and .wj ; hj ; ˇ/ is calculated using the B�-trees. The widths

wi , wj and the heights hi , hj can be used to estimate the resulting enhanced

shape. For a horizontal addition, an upper bound for the size of the resulting place-

ment can be defined as .wi C wj ; max.hi ; hj //. For a vertical addition, the upper

bound can be defined as .max.wi ; wj /; hi C hj /. Using the B�-trees ˛ and ˇ, the

size of the resulting placement can be smaller than .wi C wj ; max.hi ; hj // and

.max.wi ; wj /; hi C hj /, respectively.

Figures 3.23 and 3.25 show the differences between the horizontal addition of

conventional and enhanced shapes for a simple example. It is obvious that w1 C w2

is greater than wsum. Generally speaking, more compact placements can be reached

if the enhanced shape function combination is used.

Two methods are proposed to add the B�-trees of enhanced shapes horizontally

and vertically. They are described in the following paragraphs. For both methods, it

is shown that the outcome of adding two feasible B�-trees is also a feasible B�-tree.

This is an important property of the addition operations. Due to that property, the

algorithm avoids calculations for many infeasible B�-trees.

d

c

d

a

b

c

d

a

b c

d

ca

b

a

b

.wsum; hsum; �/

+ =

.w1; h1; ˛/ .w2; h2; ˇ/

Fig. 3.25 Horizontal enhanced shape addition ([37], c IEEE 2008)

3 Deterministic Analog Placement by Enhanced Shape Functions 125

Fig. 3.26 An arbitrary

B�-tree to define the in- and

preorder traversal

...

a

cb

Horizontal Addition

For two given B�-trees ˛ and ˇ, a horizontal addition is performed by attaching the

root node of ˇ to the lowest, rightmost node of ˛. The lowest, rightmost node of a

B�-tree is defined as the node with no right child, while this node itself and all its

predecessors are either right children or the root node.

Due to the characteristics of the placement algorithm for B�-trees, the resulting

placement is compact to the lower left corner. Horizontal addition has a notable

property. Any constraint, which was satisfied by ˛ and ˇ before the addition is also

satisfied by the resulting B�-tree. This holds true for as long as no additional con-

straints apply for the superset of the modules of the two B�-trees. This property can

be derived from the in- and preorder traversals of the B�-trees, because they can be

used to determine the feasibility of constraints (see Chap. 1). As shown in Fig. 3.26,

the in- and preorder traversals of an arbitrary B�-tree, are defined as ordered lists

recursively by the following equations:

in.a/ WD in.b/; a; in.c/ (3.44)

pre.a/ WD a; pre.b/; pre.c/: (3.45)

Two order relations can be defined on the traversals:

� a
IN

� b means “a is a predecessor of b in the inorder traversal.”

� a
PRE

� b means “a is a predecessor of b in the preorder traversal.”

The topologies of the B�-trees ˛ and ˇ are not changed by the horizontal ad-

dition. There is only one edge added to connect the two B�-trees to generate

B�-trees � . The feasibility of the constraints can be checked using the relative

positions of the modules in the in- and preorder traversals [22]. Without loss of

generality, the node c can be considered the root node of ˇ, and a the lowest, right-

most node of ˛. Considering this fact together with (3.44) and (3.45), the relative

positions of the modules in ˛ and ˇ in the in- and preorder traversals do not change.

Thus, any constraint, which was satisfied before, is also satisfied after the addition

of the two B�-trees. The example given by Fig. 3.25 illustrates a horizontal addition.

Vertical Addition

A vertical addition is intended to arrange two partial placements vertically, gener-

ating compact results. In Fig. 3.27, a compact result of a vertical addition is shown

126 M. Strasser et al.

a

a

b d

c

c

a

b

d

da

c

cb

d

b

.w2; h2; ˇ/ .wsum; hsum; �/

=+

.w1; h1; ˛/

Fig. 3.27 Vertical enhanced shape addition ([37], c IEEE 2008)

...... ...

... ...

ˇi

r
Baseline modules

fˇ1 fˇ2

fˇ3

f

1st

3rd

i th

2nd

u

t

s Segments

Fig. 3.28 Baseline modules and segments of a B�-tree ˇ ([37], c IEEE 2008)

together with its corresponding B�-tree � . In contrast to the horizontal addition,

the resulting B�-tree � cannot be generated easily by adding an edge from ˛ to ˇ.

For this reason, an algorithm is proposed, which iteratively forms a new B�-tree

as the result of the addition of ˛ and ˇ. The topology is changed to achieve better

placements.

In a B�-tree, all modules, which can be reached starting from the root node

traversing right edges only are placed close to the baseline. These modules are

denoted as baseline modules in this chapter. The B�-tree ˇ is segmented in the

proposed approach, with the root node of each segment being a baseline module. In

Fig. 3.28, the baseline modules and the segments of a B�-tree are depicted. Further-

more, adequate nodes of ˛ are then determined, which serve as the new parents of

the segment root nodes. This is done using a contour-based algorithm, which assigns

one segment after the other, from “left to right,” in the order given in Fig. 3.28.

Figure 3.29 illustrates how the B�-tree � of Fig. 3.27 was built by the algorithm.

First, no segment of ˇ is added to ˛, as shown in Fig. 3.29a. A contour is drawn as a

thick line above the placement for ˛. After that, the first segment of ˇ, representing

the node d, is added in Fig. 3.29b. The projection of d on the x-axis shadows b and

parts of a. Thus, a and b are both potential parent nodes for d. Node d is added

as a left child of module b, because b limits the y-coordinate of d when shifting it

downward. According to the same rules, c is appended as a left child of a, shown in

Fig. 3.29c.

3 Deterministic Analog Placement by Enhanced Shape Functions 127

b

a

aα

β2

β1

b
b

a

d

d a

b

b

a

d
c

d

c

a

b

a b

c

Fig. 3.29 Iteratively changing the B�-tree topology for a vertical addition ([37], c IEEE 2008),

the initial B�-tree ˛ (a), adding the segments of ˇ in (b) and (c)

If the vertical addition is performed in this way, the constraints remain satisfied:

The i th and .i C 1/th segments of ˇ are denoted as ˇi and ˇiC1, and root.ˇi /

denotes the root node of ˇi . The segments of the B�-tree ˇ are added in ascending

order, as defined in Fig. 3.28. Before the addition, the in- and preorder positions of

the segments fulfill the following conditions:

in.root.ˇi //
IN

� in.root.ˇiC1//; (3.46)

and

pre.root.ˇi //
PRE

� pre.root.ˇiC1//: (3.47)

The root node of ˇi is then added to a node of ˛, denoted as parent.ˇi /, being its

left child. The segments are added “from left to right”. Therefore, the parents fulfill

the condition

parent.ˇi /
IN

� parent.ˇiC1/: (3.48)

and

parent.ˇi /
PRE

� parent.ˇiC1/: (3.49)

Thus, the relative positions of the modules in the in- and preorder traversals of ˛,

ˇi and ˇiC1 do not change. Consequently, the feasibility of the constraints remains

unchanged. Similar to the horizontal addition, this holds true for as long as no addi-

tional constraints apply for the superset of the modules of the two B�-trees.

Using this approach, the key advantages of standard shape functions are main-

tained. All suboptimal enhanced shapes are stripped after the addition of two

enhanced shape functions. This reduces the computational effort in subsequent steps

efficiently. Furthermore, a set of possible placements is stored, instead of a single

solution.

128 M. Strasser et al.

3.5 Hierarchically Guided Enumeration

It is obvious that the enumeration of the complete solution space yields the opti-

mal result. However, this cannot be performed for most circuits because of long run

times. This becomes clear when considering the number of different B�-trees for

n modules [22]. There are 336 different B�-trees for four modules, while for eight

modules, there are 57; 657; 600 different B�-trees. Thus, a complete enumeration

is impossible in practical cases. As a consequence, the presented enumeration ap-

proach is guided by the HSMPG tree, as described in Sect. 3.2, to limit the number

of elements, which are considered in an enumeration run. The hierarchy can be il-

lustrated as a hierarchy tree (see Sect. 3.2.3), where the root represents the whole

circuit. The leaf nodes represent the modules, their parents represent analog struc-

tures, such as differential pairs (DP) or current mirrors (CM). Figure 3.30 shows a

typical schematic of a Miller operational amplifier, together with its HSMPG tree,

which was automatically generated from the netlist.

inn

ibias

C

inp

CORE

DP

CM1

CM2

a

b

P1 P2

N3 N4

P5 P6 P7

N8

Basic

groups

CORE
CN8

P2P1

DP CM2

P5 P6 P7 N3 N4

CM1

OP AMP

Fig. 3.30 Miller op amp schematic (a) and HSMPG tree (b) ([37], c IEEE 2008)

3 Deterministic Analog Placement by Enhanced Shape Functions 129

The HSMPG tree is used to perform a bottom-up enumeration. First, all possible

placements for the basic groups are evaluated. These basic groups are formed by the

modules of leaf nodes having the same parent node in the hierarchy tree. In the given

example of Fig. 3.30, these sets are fP1, P2g, fN3, N4g, fP5, P6, P7g, and fC, N8g.

The enumeration of all possible placements of a basic group is done by

evaluating all possible B�-trees for the modules of this set. Considering the variant

matching constraints, the allowed combinations of variants are enumerated. This

procedure is called basic enumeration in this chapter and is depicted in Fig. 3.31.

For all feasible B�-trees, the basic enumeration evaluates all possible variants of the

modules. That means, e.g., it evaluates different numbers of fingers for a transistor,

or different aspect ratios for a capacitor. During the enumeration, variant constraints

are considered. The result of the basic enumeration is an enhanced shape function

for the basic group. The enhanced shape function only stores the placements,

which potentially contribute to a good result for the whole circuit. The basic

enumerations can be parallelized easily, since they are independent of each other.

a

b

d

c

a

b c

d

For all B�-trees for G0

PlacementB*-tree

See Section 3.3.

Store in enhanced shape function if
optimal, drop suboptimals

For all allowed variant combinations

w

h

function for G0
Enhanced shape

Basic group G0

Fig. 3.31 The basic enumeration

130 M. Strasser et al.

After Plantage has determined the enhanced shape functions of all basic

groups, the algorithm steps up to the next level of hierarchy (defined by the

HSMPG tree). At this level, the enhanced shape functions of the basic groups

are combined in every possible sequence (see Sect. 3.4.3). The algorithm ter-

minates as soon as the enhanced shape function for the complete circuit has

been calculated. This is the key algorithm in this approach, which is depicted

in Fig. 3.32 and described in Algorithm 3.4. In the example given by Fig. 3.30,

the algorithm combines the enhanced shape functions of the differential pair DP

and the two current mirrors CM1 and CM2 in every possible sequence.1 These

sequences are DP+CM1+CM2, DP+CM2+CM1, CM1+DP+CM2, CM1+CM2+DP,

a

b c

d

b

a

c

d

B*-tree

See Section 3.3.

Placement

ˇ3

ˇ4

Gi�1
k

Gi�1
l

w

h

1

2

3

4 5

Gi
m

˛i C
hor

ˇj , ˛i C
vert

ˇj

For all combinations of ˛i , ˇj

w

h

˛3

˛4

˛2

˛1

w

h

ˇ1

ˇ2

Fig. 3.32 The enhanced shape function addition

1 It can be shown that enhanced shape function additions are not commutative.

3 Deterministic Analog Placement by Enhanced Shape Functions 131

Algorithm 3.4: enumerateOnHierarchyLevelOf(element) ([37], c IEEE 2008)

begin
resultESF empty enhanced shape function;

if element is basic group G0
i then

basicEnumeration(basic group G0
i);

store resulting enhanced shape function in resultESF;

else
ESFList empty list of enhanced shape functions;

// Generate enhanced shape functions for the children
forall children of element do

childESF enumerateOnHierarchyLevelOf(child);

store childESF in ESFList;

// Try all combinations of the enhanced shape functions
forall combination sequences of the enhanced shape functions in ESFList do

forall enhanced shapes in two enhanced shape functions to be added do
combine B�-trees of the enhanced shapes (Sect. 3.4.3);

generate placements for B�-trees for evaluation (Sect. 3.3);

append resulting enhanced shapes to resultESF;

drop suboptimals from resultESF;

return resultESF;
end

enumeration

G0
4 D fN8, CgC

O
R

E

D
P

C
M

2

C
M

1
N

8
,
C

O
P
A

G2
1 D

˚
G1

1 ;
˚
G0

4

��

G0
2DfP5, P6, P7g

G1
1 D

˚
G0

1 ; G0
2 ; G0

3

�

G0
3 DfN3, N4g

Basic
enumeration

Enhanced shape
function addition

Enhanced shape
function addition

Basic
enumeration

G0
1 D fP1, P2g

Basic
enumeration

Basic

Fig. 3.33 The basic enumerations and enhanced shape function additions for the miller operational

amplifier of Fig. 3.30

CM2+DP+CM1, CM2+CM1+DP. Finally, the resulting enhanced shape function

is combined in every possible sequence again with the enhanced shape function of

the basic group fC, N8g (see Fig. 3.33).

The HSMPG tree determines the order in which the enhanced shape functions

are combined. Thus, proximity constraints are fulfilled, because modules will be

placed in close proximity, which are close to each other in hierarchy.

Finally, the result of this approach is a set of possible placements for the circuit,

having different aspect ratios.

132 M. Strasser et al.

3.6 Experimental Results

The approach proposed in this paper was implemented in C++. All results were com-

puted on a Pentium 4, running at 3.2 GHz with 1,024 MB RAM on Fedora Linux.

To demonstrate the approach, placements for different circuits are shown and dis-

cussed in Sect. 3.6.1. Publicly available benchmark circuits for analog placement

do not yet exist. To compare Plantage with other placement methods, two circuits

extracted from [30] are used. First, placements for these circuits are shown and

compared to the results of other placement approaches. Then, to demonstrate the ef-

fective handling of minimum distance constraints in Plantage, these two circuits are

modified by adding wells around symmetry groups. The comparison is discussed

in Sect. 3.6.2. Finally, an experiment with piecewise-linear minimum distance con-

straints is discussed in Sect. 3.6.4.

3.6.1 Discussion of the Presented Approach

To demonstrate the effectiveness of the proposed approach, placements for five dif-

ferent circuits have been generated. The results of the conducted experiments are

summarized in Table 3.2. The Examples 3–5 are discussed in more detail describing

their constraints and where they can be seen in the placements. The sizings of the

modules originate from a large semiconductor manufacturer and are taken from an

up-to-date process library. Thus, they can be considered representative for current

analog circuits.

Example 1 is a miller amplifier [40], Example 2 is the comparator shown in

Fig. 3.10, Example 3 is a folded cascode amplifier [40], Example 4 is a fully dif-

ferential amplifier similar to the circuit published in [41], and Example 5 is similar

to the buffer amplifier published in [42]. The number of devices which form these

circuits are shown in Table 3.2. For Example 1, 4, and 5, some devices have been

split into subdevices to enable common centroid placement, resulting in additional

modules. Furthermore, up to seven different variants are defined for the modules.

First, the HSMPG trees of the circuits have been generated. The number of

created groups and the minimum, average and maximum group size is listed in

Table 3.2. The HSMPG trees are used by the placement method to split the place-

ment problems into subproblems (see Sect. 3.5). Smaller groups lead to smaller

subproblems, which can be solved faster and are therefore preferable. It can be ob-

served that most generated groups are very small, which is advantageous. The SMP

graph for circuit 5 contains 14 super nodes after handling the constraint require-

ments of type MS to S. The root group, which is created due to proximity constraints

from the netlist, is very big and has been further divided by hand for placement.

Placement constraints of the circuit have been generated out of the HSMPG tree.

They are listed in Table 3.2. The types cover alignment constraints, which equal-

ize the x- or y-coordinates of two modules, same variant constraints which force

two modules to the same variant including same orientation, symmetry constraints

3 Deterministic Analog Placement by Enhanced Shape Functions 133

Table 3.2 Summary of example circuits and results generated by the proposed approach

Example 1 2 3 4 5

Name Miller Comparator Folded cascode Fully differential Buffer

of devices 9 10 22 30 42

of modules 13 10 22 32 46

of variants per module 3–6 2 2–4 2–3 2–7

Generated HSMPG tree

of Groups 5 8 17 19 21

Group size: Min-Max 2–4 2–4 2–3 2–5 2–14

Average 2.6 2.5 2.5 2.2 2.9

Generated constraints

Alignment 1 2 8 6 10

Device proximity 3 5 8 12 14

Symmetry (Pairs) 2 4 8 10 6

Common centroid 1 0 0 1 2

Variant 3 6 11 16 16

Hierarchical proximity 2 3 9 7 7

Technology constraints

Minimum distance 2 1 1 1 1

Computed placements

of placements 35 4 12 12 114

Best area usage 115% 110% 121% 129% 111%

Runtimes in seconds

Constraint generation 0.3 0.3 0.5 0.9 1.2

Plantage 14 1 44 691 134

for pairs of modules, which are given by (3.13), and (3.14) as well as proximity

constraints, which make modules stay in close proximity or to form a block in the

layout. In addition, minimum distance constraints have been defined between the

nMOS and pMOS transistors to reserve space for the n-well.

Finally, placements have been generated using the new methodology. Table 3.2

lists the number of generated Pareto-optimal placements and the achieved area us-

age. The area usage is the ratio between the area of the bounding rectangle and the

area used by modules and wells. Ideally, this value would be 100%. But this is not

possible in general due to constraints and device shapes. For the examples, the best

achieved result is 111%. The runtimes consumed by the constraint generation and

Plantage are shown in the last rows of Table 3.2. It can be seen that the runtime of

the constraint generation is small compared to the placer. But even for the largest

circuit, having many different module variants and constraints, the placer did not

need more than 12 min.

Example 3: Folded Cascode Op Amp

Example 3 is a folded cascode op amp. The schematic and hierarchical placement

rules of this circuit and its constraints, together with the HSMPG tree are shown

134 M. Strasser et al.

inp

inn

out

P1 P3 P5 P7

N7 N8

N2 N4 N6 N12N10

N1 N3 N5 N11N9

P9

P8 P10P2 P4 P6

V
A

+
C

C

V
A

V
A

V
A

P
R

S
Y

M

VA

V
A

V
A

V
A

V
A

P
R

ibias

P
R

+
S
Y

M

N
1

N
3

N
5

N
2

N
4

N
6

N
7

N
8

P
5

P
7

P
9

P
8

P
1
0

P
6

N
9

N
1
1

N
1
0

N
1
2

P
1

P
3

P
2

P
4

PGB,1

PGN,1

PGB,2

MGB,3 MGB,4

PGB,3 PGB,4

MGB,5 MGB,6

SG1

MGB,1 MGB,2

MGS,1 MGS,2 MGS,3 MGS,4 MGS,5

a

b

Fig. 3.34 Example 3 ([37], c IEEE 2008): Schematic (a) and HSMPG tree (b) of the folded

Cascode op amp

in Fig. 3.34. The differential pair and the output part (P7–P10 and N7–N12) must

be built symmetrically. In the HSMPG tree, this is reflected by MGS;1 to MGS;5,

resulting in a symmetry constraint with five symmetrical pairs of transistors as well

as variant constraints to achieve matching. For the differential pair, a common cen-

troid constraint is used. Additional variant, alignment, and proximity constraints are

defined by the other current mirrors. The generation of the constraints took 0.5 s.

Between the nMOS and pMOS transistors, a minimum distance constraint is de-

fined to preserve space for the n well. Plantage generates 12 different placements

with different aspect ratios in 44 s. Figure 3.35 shows the shape function and three

placements. The symmetry group is colored light gray. The placement is dominated

by four big modules P7–P10, causing a corner in the shape function, marked with

an “?”. An example of the close proximity constraints is that N1–N6 must always

be placed close to each other. The area usages of the placements are always above

121%, because of empty areas caused by the minimum distance constraints between

nMOS and pMOS transistors.

Example 4: Fully Differential Amplifier

Example 4 (Fig. 3.36a) is a fully differential amplifier similar to the one published

in [41]. It is characterized by a high degree of symmetry [43]. In the generated

3 Deterministic Analog Placement by Enhanced Shape Functions 135

h

w

(b)

(c)

(d)

N4 N6
N3

N
8

P4 P6

P
8

P
7

P
9

N10
N9 N11

P
5

P
1
0

P2

P
3

P
1N5

N2

N12

N
7 N1

P
5

N6N4
N3

N10
N9

P
7

P
4

P
6

P
3

P
1

P
2

P
8

P
1
0

P
9

N11

N8
N1
N2

N5

N12
N7

N5

N10
N9 N11
N4 N6

N3 N1
N2

N12

N7

P7

P8

P9

P10

P
5

P
4

P
6

N8

P
2

P
3

P
1

a
b

c

d

Fig. 3.35 Example 3 ([37], c IEEE 2008): placements (b)–(d) and the corresponding shape

function (a)

I0

P1 P2

P9P8

P3

N5

N3

N6 N7

N1 N2

N8 N9

N12

N13
N14N10

N11

N4

P4On Op
Ip In

P5 P6
P7

P10 P13 P12 P11 P14 P15 P16

N
1
0

N
4

N
3

N
6

N
7

N
8

N
9

N
5

N
1
1

N
1
4

N
1
2

N
1
3

N
2

N
1

P
1
2

P
1
5

P
1
4

P
1
1

P
1
3

P
1
6

P
5

P
6

P
3

P
2

P
1

P
7

P
4

P
8

P
9

P
1
0

PGN,1

MGB,1
MGB,2 MGB,3 MGB,4 MGB,5 MGB,6

PGB,1

SG1

MGS,1 MGS,2 MGS,3 MGS,4 MGS,5 MGS,6 MGS,7 MGS,8 MGS,9 MGS,10

a

b

Fig. 3.36 Example 4: Schematic (a) and HSMPG tree (b) of the fully differential Opamp

136 M. Strasser et al.

(b)

h

w
N13

N
3

N4

P
4

P
7

P
6

P
5

P
8

P
9

P
1
0

N10

P16P13

P12 P15

P14P11

N2(1)N1(1)
N1(2)N2(2)

N
6

N
9

N8N7

N12

N11

N14

N5

P1

P3
P2

a

b

Fig. 3.37 Example 4: Shape function (a) and placement (b)

HSMPG tree (Fig. 3.36b), this is reflected by the symmetry group SG1 and the

matching groups (symmetry) MGS;1 to MGS;10. The building blocks of the circuit,

mainly simple current mirrors and level shifters, determine matching groups MGB;1

to MGB;6. In addition to the generated constraints, a minimum distance constraint

between nMOS and pMOS transistors was defined. Figure 3.37 shows some place-

ments of the amplifier together with the shape function. All placements are quite

high and narrow because of the symmetry groupSG1.

Example 5: Buffer Amplifier

Example 5 is a CMOS buffer amplifier similar to [42], shown in Fig. 3.38.

Figure 3.38b shows the generated hierarchical placement rules. Before starting the

automatic placement, the top proximity group PGN;1 has been manually divided

into smaller groups. The two differential pairs DP1 (N1, N2) and DP2 (P3, P4) are

3 Deterministic Analog Placement by Enhanced Shape Functions 137

P37

P38

P39

N1 N2

N9 N10

P29 P5

P7 P8

P6

P30

P25 P27

N42

N41

N40

P33

inn inp out

VA

VA

VA+CC

VA+CC

VA

VA

VA VA

VA

VAVA

VA

P
R

P
R

P
R

N32

N31

P3 P4

N17

P18

N26 N28

N12N11

N13

P15

N23

P16

N14

P21

P34

N19

P20

N35

N36

N24

P22

P
3

P
4

P
5

P
6

P
2
9

P
3
3

P
3
7

P
7

P
8

P
3
0

P
3
4

P
3
8

N
9

N
1
0

N
1
1

N
1
2

N
2

,

N
4
1

N
3
5

N
3
1

N
3
2

N
3
6

N
4
2

N
2
3

N
2
4

N
1
4

N
1
9

N
1
3

N
1
7

M
G
B

,1

M
G
B

,2

M
G
B

,3

MG
B,4 MG

B,5

M
G
S
,1

M
G
S
,2

M
G
S
,3

M
G
S
,4

M
G
S
,5

MG
B,6

MG
B,7

PG
B,3

PG
N,1

SG
1

M
G
S
,6 M

G
B

,8

M
G
B

,9

M
G
B

,1
0PG

B,1
PG

B,2

P
1
5

P
1
8

N
2
6

N
2
8

N
4
0

P
1
6

P
2
0

P
2
1

P
2
2

P
2
5

P
1
5

P
3
9

N
1

a

b

Fig. 3.38 Example 5 ([37], c IEEE 2008): Schematic (a) and hierarchical placement rules (b) of

the buffer amplifier similar to [42]

realized by two common centroid arrays (N1a, N1b, N2a, N2b) and (P3a, P3b, P4a,

P4b), respectively. Three placements are shown in Fig. 3.39b–d. As demonstrated

by the figures, a minimum distance constraint is kept between nMOS and pMOS

transistors to reserve area for the wells. The differential pairs DP1 and DP2 are col-

ored light gray in the placements. DP1 and DP2 are placed in close proximity, since

they are close to each other in hierarchy. The same applies to the modules P22 and

N24, as well as P25, N26, P27, N28, marked in dark gray. For several transistors,

different variants with different sizings are given representing different numbers of

fingers of the transistor gate. For example, P39 has three different aspect ratios in

the shown placements. Figure 3.39a shows the shape function for this circuit. It rep-

resents 114 different placements, having different aspect ratios. Plantage calculates

these placements in 134 s. The HSMPG tree was built in 1.2 s.

138 M. Strasser et al.

w

h

(d)
(c)

(b)

P3b
N1b
N2bN1a

N2a
P4a
P3aP4b

N14
N13 N17

N19

N
2
3

P
2
1

P
3
9

N
4
0

N
3
1

N
3
2

N
3
6

P
3
4

P
2
9

P
1
8

P
2
0

P
3
7

P
3
0

P8 P7 P
3
8

N
1
2

N
1
1

N
4
2

N9 N35N10 N
4
1

P
3
3

P
6

P
5

P
1
6

P
1
5

N26
N28

P25P27

P
2
2

N24

P39: variant 1

N14

N13

N
2
3 P
2
1

N
1
7

N
1
9

P16

P15 P18

P20
P4b

P
3
4

P
2
9

N
3
1

N
3
5

N
1
0

N
9

N
4
1

N
3
2

N
3
6

N
1
2

N
1
1

N
4
2

P
3
3

P
3
7

P
3
0

P8 P7 P
3
8

P4a
P3a N2b N1a

P
3
9

N
4
0

P
6

P
5

P3b N1b N2a

P22N
2
4

N
2
8

N
2
6

P27

P25

P39: variant 2

N
2
3

P
2
1
P
3
0

P39 N
4
0

N32
N35 N9 N10 N31 N41

N11 N36N12 N42

P
8

P
3
4

P
3
8

P
2
9

a
3

P
a

4
P

P
1
8

P
2
0

N14

N13 N17

N19

P
3
b

P
6

P
1
6

P
1
5P

3
3

P
5

P
3
7

P
7

P27P25

N28N26

N
2
4

P22

P
4
b

N1a
b1N a2N

N2b

P39: variant 3

a b

c

d

Fig. 3.39 Example 5 ([37], c IEEE 2008): placements (b)–(d) and the corresponding shape

function (a)

3.6.2 Comparison with Other Approaches

This approach is compared with other approaches in the following. For that reason,

placements were generated using Plantage for the circuits named “biasynth 2p4g”

and “lnamixbias 2p4g” used in [22, 23, 30, 32, 33, 44–46]. The module sizings were

extracted from [22]. Plantage generates ten placements in 337 s for “biasynth 2p4g”.

For “lnamixbias 2p4g”, 32 placements are generated in 387 seconds. Since no

netlist information is given, no HSMPG tree can be calculated. Thus, balanced trees

with four to six children per node are used as hierarchy trees. The placements with

the lowest area usages are shown in Figs. 3.40 and 3.41, respectively. The symmetry

groups within these circuits are colored in different shades of gray. The runtimes

and area usages of other approaches are taken from [45] and [32]. For the given

examples, the total module area is constant. In this case, the area usage is inversely

proportional to the total area, and is taken as a quality metric.

The results are summarized in Tables 3.3 and 3.4. It can be seen from the numbers

that the area usages of this approach are approximately equal to the area usages of

the best recently published placers. The area usage of Plantage is 1% and 2% higher

than the best for the two examples, respectively, but approximately 10% lower than

area usage of other approaches. It should be noted that Plantage is the only deter-

ministic approach among the approaches used for comparison.

It is difficult to compare the runtimes of this approach with the runtimes of other

approaches, because they were measured on different computers. Since other ap-

proaches use simulated annealing, their runtimes may vary from run to run for

different seeds, but no mean values and standard deviations are known for the run-

times of other approaches. In contrast, the runtimes of Plantage are constant for

each example. On all accounts, the runtimes of Plantage, even for the big circuit

3 Deterministic Analog Placement by Enhanced Shape Functions 139

m
1
1

m
1
0

m
1
2

m
5

m
7

m
6

m
8

m
2
8

m
2
3

m29
m30
m31

m
2
5

m
2
4

m
2
7

m
2
6

m34
m33
m32

m46 m49 m
4
7

m45 m48

m
6
3

m56

m
4
0

m
5
5

m
5
3

m
2
1

m
2
2

m
1
4

m
1
5

m
3
7

m
6
1

m
1
3

m
6
2

m
1

m
1
9

m
5
0

m38
m
4
1

m60
m57
m51

m
2

m
2
0

m42
m
3
5

m
1
8

m
3

m
6
5

m4

m16

m
3
9

m52 m58 m43

m
4
4

m17
m54

m
5
9

m
3
6

m
6
4

m
9

Fig. 3.40 Result of “biasynth 2p4g” obtained by Plantage ([37], c IEEE 2008) (time: 5.6 min,

area usage: 104.96%)

m
5
3

m
6
1

m
6
0

m
5
9

m
5
8

m
5
2

m
5
1

m
5
0

m
5
6

m
5
5

m
5
4m21m18m17

m19m20 m22

m
4
5

m
4
3

m
4
2

m
4
4

m
4
1

m
4
6

m16m12m8m4

m3

m2

m1

m7

m6

m5

m11

m10

m9

m15

m14

m13

m
7
1
m
7
3
m
7
2
m
7
0

m
3
8
m
3
7

m35m34m33

m32m31 m36
m24
m25
m23m26

m29
m28m

2
7

m
3
0

m39m
4
7

m40

m
6
7

m64

m66

m65

m68 m
7
4

m
7
5

m
6
9

m
8
0
m
8
1

m
8
2m76

m
7
8

m
7
7

m
8
6

m
8
4

m91m
8
9

m88

m90

m
8
5

m
8
7

m
7
9 m
8
3

m
4
8

m49m
6
3

m
6
2

m108
m109

m104

m110

m106

m105
m107

m100

m101
m102

m103

m
9
2

m
9
4

m
9
3

m
9
5

m97
m96

m99m98

m
5
7

Fig. 3.41 Result of “lnamixbias 2p4g” obtained by Plantage ([37], c IEEE 2008) (rotated by

90ı clockwise) (time: 6.4 min, area usage: 107.68%)

“lnamixbias 2p4g” (110 modules), allow interactive use. In addition, the time to

set up a new design is short because the constraints and the HSMPG tree are gen-

erated automatically based on the netlist. Therefore, Plantage is fit for industrial

application.

140 M. Strasser et al.

Table 3.3 Description of the two example circuits [37].

Circuit description

Name No. of modules No. of sym. mods. Mod. area (103 	m2)

biasynth 2p4g 65 8 + 12 + 5 4:70bD100%

lnamixbias 2p4g 110 16 + 6 + 6 + 12 + 4 46:00bD100%

Table 3.4 Comparison of area usage and runtimes for different approaches, based on two indus-

trial circuits ([37], c IEEE 2008)

Results of different approaches

biasynth 2p4g lnamixbias 2p4g

Approach Area Time Area Time

Sequence pair [30] 114.89 780? 110.43 2,824?

Segment tree with segment tree [22] 114.89 246? 109.35 726?

Sequence pair and linear programming [44] 106.38 403� 108.59 3,252�

Sequence pair with dummy nodes [33] 118.51 134� 113.50 227�

Symmetry islands [45] 104.68 22� 105.72 43�

Sequence pair with Johnson’s priority queue [32] N/A N/A? 109 480?

Plantage 104.96 337� 107.68 387�

In [32], only the placement of “lnamixbias 2p4g” is shown. No area usage is given in that paper.

For comparison, the area usage in Table 3.4 was calculated based on Fig. 3 of [32]. All times

are measured in seconds (times which are marked with star were measured on a Sun Blade 100,

500 MHz, and times which are marked with dagger were measured on a Pentium 4, 3.2 GHz) and

all area usages in % of the total module area.

3.6.3 Experiment with Linear Minimum Distance Constraints

To demonstrate the effective handling of minimum distance constraints in Plantage,

“biasynth 2p4g” and “lnamixbias 2p4g” are modified: In the modified circuits, each

symmetry group is located in a separate well. Thus, various minimum distance con-

straints need to be considered between the modules. The resulting placements are

shown in Figs. 3.42 and 3.43. For example, Module m1 in Fig. 3.43 must keep a

distance of dwell to all modules outside of its own well, and a distance of 2 � dwell to

all modules being located in other wells.

Considering the minimum distances for these wells results in higher computa-

tional effort. Thus, the generation of placements takes 76% more CPU time (593s)

for “biasynth 2p4g”, and 72% more CPU time (664 s) for “lnamixbias 2p4g”. From

a practical point of view, the resulting placements are still compact. With the CPU

times still being in the range of minutes even for these large circuits, industrial

application is possible. Since other approaches do not address minimum distance

constraints in detail, no comparisons can be given.

3 Deterministic Analog Placement by Enhanced Shape Functions 141

m14

m37
m35
m50
m19
m18

m
3
8

m20

m41

m
4
2

m
6
0

m
5
7

m
5
1

m2

m22
m15

m
5
6

m53
m55
m40
m21

m
3
9

m
1
6

m
4

m
6
5

m
5
2

m
5
8

m
3

m
4
3

m
3
6

m
6
4

m
1
7

m54

m59 m44

m30
m32
m34

m
2
7

m
2
6

m
2
4

m
2
5

m
2
8

m
2
3

m33
m31
m29

m
4
8

m45 m
4
7

m
4
6

m49

m
1
0

m
9

m
6

m
5

m
7

m
8

m
1
1

m
1
2

m61
m1
m62
m13
m63

Fig. 3.42 Result of modified “biasynth 2p4g” with wells (time: 9.9 min, area usage: 107.74%)

m106
m105
m104
m102

m101

m99m98

m65

m68 m
7
5

m
7
4

m
6
9

m
8
4

m
8
5

m89m88m90 m
8
0

m
8
3

m
8
1

m
8
2

m78

m76

m79m77

m49

m
3
6m
3
5

m27m30

m
3
3

m32

m31

m
3
4

m26

m97
m96

m
9
5

m
9
3

m
9
4

m
9
2

m86

m87
m64

m67

m
6
6 m
4
7
m
6
2

m
6
3

m
4
8

m40m39

m
9
1

m24
m25
m23
m29
m28

m
3
7

m38

m21m17m19

m20m18 m22

m16m12m8m4

m3

m2

m1

m7

m6

m5

m11

m10

m9

m15

m14

m13

m
4
5m42

m43

m44

m41

m
4
6

m
5
9

m
5
8

m
5
1

m
5
0

m
5
5

m
5
4

m
5
6

m
5
7

m
5
2

m
5
3

m
6
0

m
6
1

m
7
2

m
7
0

m
7
3

m
7
1

m107

m100

m108m109m103

m110

Fig. 3.43 Result of “lnamixbias 2p4g” with wells (time: 11.1 min, area usage: 109.24%)

142 M. Strasser et al.

Stretchings

Trenches

N
1
a

N
1
b

N
2
a

P
3
b

P
3
a

P
4
b

P
4
a

N42

N11 P39

N40

N36 N12

N32
N41
N35

N31 N10

N9

P37

P29

P6

P8

P7

P5

P33
P30

P38

P34

N
2
b

P33
DTI Transistor

Unused Area

Fig. 3.44 DTI transistor example similar to [42]

3.6.4 Experiment with PWL Minimum Distance Constraints

An example consisting of DTI transistors is shown in Fig. 3.44. The modules are

shown as gray rectangles. White areas are caused by the stretching of the DTIs.

The circuit placement shows an unused area in the lower left part of the layout. The

circuit is similar to the input stage of the buffer amplifier of [42], consisting of 30

modules. The placement was generated in approximately 15 min, because the linear

MIP solver is significantly slower than the Simplex solver. The area usage of this

circuit is 110%. Although the runtime increases within reasonable bounds when

considering PWL minimum distance constraints, this methodology still produces

compact placements.

3.7 Conclusion

In this chapter, Plantage, a new deterministic approach for analog circuit place-

ment including a new method to generate placement constraints was introduced.

A HSMPG tree is presented, which represents a circuit as hierarchical groups and

the placement constraints inside each group. The generation process starts by iden-

tifying basic building blocks and generating symmetry conditions. These results are

used to model the constraints of the circuit in a graph of requirements with respect to

symmetry, matching, and proximity (SMP graph). This graph is used together with

an importance order of the constraints to generate a hierarchical tree of symmetry,

matching, and proximity groups (HSMPG tree).

The hierarchy is used to guide a bottom-up enumeration efficiently. All place-

ments are enumerated for small parts of the circuit. New concepts, the enhanced

shape functions, and the enhanced shape additions are used to combine these

3 Deterministic Analog Placement by Enhanced Shape Functions 143

placements efficiently with a recursive algorithm based on the hierarchy. In contrast

to other approaches, the final result of Plantage is a set of placements with different

aspect ratios instead of a single solution. An algorithm is presented in this chapter,

which generates a placement for a B�-tree considering linear as well as piecewise-

linear constraints.

Plantage considers device-proximity, symmetry, common centroid, minimum

distance, and variant constraints. This approach is the first to handle all these con-

straints deterministically. The results of this approach show an area usage, which is

comparable to the best-published results of other placers. Plantage generates results

in reasonable time allowing industrial application.

References

1. John M. Cohn, David J. Garrod, Rob A. Rutenbar, and L. Richard Carley. Analog Device-Level

Layout Automation. Kluwer, Dordecht, 1994.

2. Alan Hastings. The Art of Analog Layout. Prentice-Hall, Englewood Cliffs, NJ, 2001.

3. Enrico Malavasi and Alberto L. Sangiovanni-Vincentelli. Area Routing for Analog Lay-

out. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

12(8):1186–1197, August 1993.

4. L. Clavelier, B. Charlet, B. Giffard, and M. Roy. Deep trench isolation for 600 V SOI power

devices. In Conference on European Solid-State Device Research, pages 497–500, September

2003.

5. E. Charbon, E. Malavasi, and A. Sangiovanni-Vincentelli. Generalized constraint generation

for analog circuit design. In IEEE/ACM International Conference on Computer-Aided Design

(ICCAD), pages 408–414, 1993.

6. U. Choudhury and A. Sangiovanni-Vincentelli. Automatic generation of parasitic constraints

for performance-constrained physical design of analog circuits. In IEEE/ACM International

Conference on Computer-Aided Design and Manufacture of Electronic Components, pages

208–224, February 1993.

7. Enrico Malavasi, Edoardo Charbon, Eric Felt, and Alberto L. Sangiovanni-Vincentelli. Au-

tomation of IC Layout with Analog Constraints. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 15(8):923–942, August 1996.

8. D. J. Chen and B. J. Sheu. Generalised approach to automatic custom layout of analogue ICs.

In Circuits, Devices and Systems, IEE Proceedings G, volume 139, pages 481–490, August

1992.

9. Qinsheng Hao, Sheqin Dong, Song Chen, Xianlong Hong, Yi Su, and Zhiyi Qu. Constraints

generation for analog circuits layout. 2004 International Conference on Communications, Cir-

cuits and Systems, 2:1339–1343, volume 2, June 2004.

10. Bogdan G. Arsintescu. A Method for Analog Circuits Visualization. In IEEE International

Conference on Computer Design (ICCD), pages 454–459, 1996.

11. M. E. Kole, J. Smit, and O. E. Herrmann. Modeling symmetry in analog electronic circuits. In

IEEE International Symposium on Circuits and Systems (ISCAS), pages 315–318, May 1994.

12. Su Yi, Sheqin Dong, Qingsheng Hao, Xiangqing He, and Xianlong Hong. Automated Analog

Circuits Symmetrical Layout Constraint Extraction by Partition. In ASIC, 2003. Proceedings.

5th International Conference on, volume 1 of 1, pages 166–169, October 2003.

13. Tobias Massier, Helmut Graeb, and Ulf Schlichtmann. The Sizing Rules Method for CMOS

and Bipolar Analog Integrated Circuit Synthesis. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 27(12):2209–2222, December 2008.

14. D. W. Jepsen and C. D. Gellat Jr. Macro Placement by Monte Carlo Annealing. In IEEE Inter-

national Conference on Computer Design (ICCD), pages 495–498, 1983.

144 M. Strasser et al.

15. John M. Cohn, David J. Garrod, Rob A. Rutenbar, and L. Richard Carley. KOAN/ANAGRAM

II: New Tools for Device-Level Analog Placement and Routing. IEEE Journal of Solid-State

Circuits SC, 26(3):330–342, March 1991.

16. Koen Lampaert, Georges Gielen, and Willy M. Sansen. A Performance-Driven Placement Tool

for Analog Integrated Circuits. IEEE Journal of Solid-State Circuits SC, 30(7):773–780, July

1995.

17. Enrico Malavasi, Edoardo Charbon, Eric Felt, and Alberto L. Sangiovanni-Vincentelli.

Automation of IC Layout with Analog Constraints. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 15(8):923–942, August 1996.

18. S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi. Optimization by Simulated Annealing.

Science, 220:671–680, 1983.

19. Florin Balasa. Modeling Non-Slicing Floorplans with Binary Trees. In IEEE/ACM Interna-

tional Conference on Computer-Aided Design (ICCAD), pages 13–17, University of Illinois at

Chicago, Dept. of EECS, November 2000.

20. Pei-Ning Guo, Chung-Kuan Cheng, and Takeshi Yoshimura. An O-Tree Representation of

Non-Slicing Floorplan and Its Applications. In ACM/IEEE Design Automation Conference

(DAC), volume 36, pages 268–273, June 1999.

21. Yun-Chih Chang, Yao-Wen Chang, Guang-Ming Wu, and Shu-Wei Wu. B*-Trees: A New Rep-

resentation for Non-Slicing Floorplans. In ACM/IEEE Design Automation Conference (DAC),

volume 37, pages 458–463, 2000.

22. Florin Balasa, Sarat C. Maruvada, and Karthik Krishnamoorthy. On the Exploration of the

Solution Space in Analog Placement With Symmetry Constraints. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 23(2):177–191, February 2004.

23. Po-Hung Lin, Yao-Wen Chang, and Shyh-Chang Lin. Analog Placement Based on Symmetry-

Island Formulation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 28(6):791–804, June 2009.

24. H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani. VLSI Module Placement Based on

Rectangle-Packing by the Sequence-Pair. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 15(12):1518–1524, 1996.

25. S. Nakatake, K. Fujiyoshi, H. Murata, and Y. Kajitani. Module Placement on BSG-Structure

and IC Layout Applications. In IEEE/ACM International Conference on Computer-Aided

Design (ICCAD), pages 484–493, 1996.

26. X. Hong, G. Huang, Y. Cai, J. Gu, S. Dong, C.-K. Cheng, and J. Gu. Corner Block List: An

Effective and Efficient Topological Representation of Non-Slicing Floorplan. In IEEE/ACM

International Conference on Computer-Aided Design (ICCAD), November 2000.

27. Qiang Ma, Evangeline F. Y. Yong, and K. P. Pun. Analog Placement with Common Centroid

Constraints. In IEEE/ACM International Conference on Computer-Aided Design (ICCAD),

November 2007.

28. Jai-Ming Lin and Yao-Wen Chang. TCG-S: Orthogonal Coupling of P-admissible Represen-

tations for General Floorplans. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 23(6):968–980, June 2004.

29. Yingxin Pang, Florin Balasa, Koen Lampaert, and Chung-Kuan Cheng. Block Placement with

Symmetry Constraints based on the O-tree Non-Slicing Representation. In ACM/IEEE Design

Automation Conference (DAC), pages 464–468, June 2000.

30. Florin Balasa and Koen Lampaert. Symmetry Within the Sequence-Pair Representation in the

Context of Placement for Analog Design. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 19(7):721–731, July 2000.

31. Karthik Krishnamoorthy, Sarat C. Maruvada, and Florin Balasa. Fast Evaluation of Symmetric-

Feasible Sequence-Pairs for Analog Topological Placement. In 5th IEEE Int. Conf. on ASIC

(ASICON), pages 71–74, 2003.

32. Karthik Krishnamoorthy, Sarat C. Maruvada, and Florin Balasa. Topological Placement with

Multiple Symmetry Groups of Devices for Analog Layout Design. In IEEE International Sym-

posium on Circuits and Systems (ISCAS), pages 2032–2035, May 2007.

3 Deterministic Analog Placement by Enhanced Shape Functions 145

33. Yiu-Cheong Tam, Evangeline F. Y. Young, and Chris Chu. Analog Placement with Symmetry

and Other Placement Constraints. In IEEE/ACM International Conference on Computer-Aided

Design (ICCAD), November 2006.

34. David A. Johns and Ken Martin. Analog Integrated Circuit Design. John Wiley & Sons, 1997.

35. Frank Harary. Graph Theory. Addison-Wesley series in mathematics, 1969.

36. Brian S. Everitt. Cluster Analysis. Edward Arnold, 3 edition, 1993.

37. Martin Strasser, Michael Eick, Helmut Graeb, Ulf Schlichtmann, and Frank M. Johannes.

Deterministic Analog Circuit Placement using Hierarchically Bounded Enumeration and En-

hanced Shape Functions. In IEEE/ACM International Conference on Computer-Aided Design

(ICCAD), pages 306–313, November 2008.

38. R. H. J. M. Otten. Efficient Floorplan Optimization. In IEEE International Conference on

Computer Design (ICCD), pages 499–501, October 1983.

39. Gerhard Zimmermann. A New Area and Shape Function Estimation Technique for VLSI Lay-

outs. In ACM/IEEE Design Automation Conference (DAC), volume 25, pages 60–65, 1988.

40. Kenneth R. Laker and Willy Sansen. Design of Analog Integrated Circuits and Systems.

McGraw-Hill, New York, 1994.

41. Ivano Galdi, Edoardo Bonizzoni, Piero MALCOVATI, Gabriele Manganaro, and Franco Mal-

oberti. 40 MHz IF 1 MHz Bandwidth Two-Path Bandpass ˙� Modulator With 72 dB DR

Consuming 16 mW. IEEE Journal of Solid-State Circuits SC, 43(7):1648–1656, July 2008.

42. J. Fisher and R. Koch. A Highly Linear CMOS Buffer Amplifier. IEEE Journal of Solid-State

Circuits SC, 22:330–334, 1987.

43. Michael Eick, Martin Strasser, Helmut Graeb, and Ulf Schlichtmann. Automatic Generation

of Hierarchical Placement Rules for Analog Integrated Circuits. In ACM/SIGDA International

Symposium on Physical Design (ISPD), March 2010.

44. Shinichi Kouda, Chikaaki Kodama, and Kunihiro Fujiyoshi. Improved Method of Cell Place-

ment with Symmetry Constraints for Analog IC Layout Design. In ACM/SIGDA International

Symposium on Physical Design (ISPD), April 2006.

45. Po-Hung Lin and Shyh-Chang Lin. Analog Placement Based on Novel Symmetry-Island For-

mulation. In ACM/IEEE Design Automation Conference (DAC), pages 465–470, June 2007.

46. Po-Hung Lin and Shyh-Chang Lin. Analog placement based on hierarchical module clustering.

In ACM/IEEE Design Automation Conference (DAC), pages 50–55, June 2008.

Part II

Routing

Chapter 4

Routing Analog Circuits

Günhan Dündar and Ahmet Unutulmaz

Abstract This chapter presents a review of routers for analog circuits, some

practical issues for analog routing, and a template-based routing strategy. Basic

algorithms and methods used for routing are discussed first, starting from the maze

router and continuing towards more sophisticated routing algorithms. Then, data

representations commonly used for routing are described in some detail.

Analog design specific routing issues and methods are then discussed. Various

routing strategies from the literature and developed by the authors are presented in

some detail. Specialized routers for two analog applications, namely RF design and

analog arrays, are also presented. Manufacturing and yield issues for routing are

discussed briefly before conclusions and a discussion of various open problems in

routing of analog integrated circuits.

4.1 Introduction

Routing is one of the final steps in analog layout synthesis. Its main objective is to

electrically connect terminals of the layout modules—transistors, capacitors, differ-

ential pairs, etc.—and input/output ports. Due to the fact that the performances of an

analog circuit are critically dependent on layout parasitics, the routing of an analog

circuit requires more attention than that of a digital circuit. On the other hand, since

routing is one of the final steps, the quality of the routing and the final performance

of a routed layout is strongly affected by all the preceding synthesis steps.

Layout of the differential input stage of an OPAMP is shown in Fig. 4.1a, a

router is supposed to add the wires filled with black for this layout. Device merg-

ing reduces the required connections and also the parasitics. If the transistors are

merged, number of the required wires decreases as displayed in Fig. 4.1b. Even for

G. Dündar (�)

Department of Electrical and Electronic Engineering, Boğaziçi University, Bebek 34342,

Istanbul, Turkey

e-mail: dundar@boun.edu.tr

H.E. Graeb (ed.), Analog Layout Synthesis: A Survey of Topological Approaches,

DOI 10.1007/978-1-4419-6932-3 4, c Springer Science+Business Media, LLC 2011

149

dundar@boun.edu.tr

150 G. Dündar and A. Unutulmaz

VDD

a

vout

GND

vin1
vin2

vbias

Simple

VDD

vbias

vin1

vin2

GND

vout

b

Merged

Fig. 4.1 Quality of synthesized layout strictly depends on the synthesis steps before routing, such

as: folding, merging, placement, and shaping of the devices. Routing overhead depicted as black

rectangles in (a) decreased considerably in (b) after merging some of the transistors

this simple analog circuit, it is evident that the quality of the routing highly depends

on folding, merging, placement, and shapes of the devices. Thus, routing must be in-

tegrated with device generation and placement steps as much as possible. Although

one may use a very sophisticated routing algorithm for the layout in Fig. 4.1a, its

performance is bound to be worse than that of Fig. 4.1b. In addition to a review of

analog routers, some practical issues for analog routing will be presented in this

chapter. Basic algorithms and methods used for routing are discussed in Sect. 4.2,

and Sect. 4.3 describes some representations required for routing. Routing issues

and methods for analog circuits are mentioned in Sect. 4.4, and Sect. 4.5 contains

a review of the routing strategies. Specialized routers—for Analog Arrays and RF

circuits—are briefly mentioned in Sect. 4.6. Manufacturing and yield issues for rout-

ing are discussed in Sect. 4.7. Finally, Sect. 4.8 concludes this chapter.

4.2 Basic Routing Algorithms

The routing problem in layout design involves the process of formally defining the

precise conductor path necessary to properly interconnect the associated nets of

the system. This section concerns itself with basic routing algorithms utilized in

various applications. The routing algorithms used in analog integrated circuits are

in essence the same as those in digital integrated circuits, or even printed circuit

4 Routing Analog Circuits 151

boards. However, analog integrated circuits typically contain fewer paths, but more

constraints on each path. Thus, these basic algorithms are tailored accordingly to

obtain routes for analog integrated circuits.

4.2.1 Maze Router

One of the earliest and most well-known algorithms for wire routing is Lee’s maze

routing algorithm [1]. Actually, this algorithm is an extension of the earlier work by

Moore [2] to uniform grids. The maze router starts by numbering every grid point

starting from the source. The wave consisting of increasing numbers is propagated

until the wavefront reaches the target. Then, the route is obtained by backtracing

the numbers. In Fig. 4.2, a wave starting from source S is propagated to the target

T and by backtracking the path filled with gray is found. In this figure, the assigned

numbers and letters (X) denote the wave numbers and the obstacles, respectively.

Lee’s algorithm is guaranteed to find a solution to the routing between two nets if

such a solution exists. In addition, this solution will be the shortest path. However,

its application to large grids requires extremely large memory structures as well

as having a time complexity of O.nm/, where n and m are the dimensions of the

grid. Here, each grid point must have a location in memory representing the layer(s)

assigned to that location. In spite of these drawbacks, Lee’s algorithm has been the

dominant solution in wiring, both at the PCB level and at the IC level for a long time.

In the meanwhile, researchers have suggested techniques to increase the efficiency

of the algorithm, in terms of both speed and memory usage over the years [3–7].

5 6 7 8 9 10 11 12 13 14

3 4 5 6 7 8 9 10 11 12 13 14

3 2 3 4 X X X 10 11 12 13 14 15 16

3 2 1 2 3 4 5 X 11 12 13 14 15 16 17 18

3 2 1 S 1 2 3 4 X X X X X X 17 18 19 20

4 3 2 1 2 3 4 5 X 23 22 21 20 19 18 19 20 21

5 4 3 2 3 4 5 6 X 24 23 22 21 20 19 20 21 22

6 5 4 3 4 5 6 7 X 23 22 T 20 21 20 21 22 23

7 6 5 4 5 6 7 8 X 22 21 20 19 20 21 22 23 24

8 7 6 5 6 7 8 9 X 21 20 19 18 19 20 21 22 23

9 8 7 6 7 8 9 10 X X X X 17 18 19 20 21 22

10 9 8 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

11 10 9 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

11 10 9 10 11 12 13 14 15 16 17 18 19 20 21 22

11 10 11 12 13 14 15 16 17 18 19 20 21 22

11 12 13 14 15 16 17 18 19 20 21 22

13 14 15 16 17 18 19 20 21 22

Fig. 4.2 A wave starting from source S is propagated to the target T. X and the assigned numbers

denote the obstacles and the wave numbers, respectively. By backtracking, the path filled with gray

is found

152 G. Dündar and A. Unutulmaz

4.2.2 Line Expansion Routers

One major improvement over the basic idea was to represent the search space in

terms of line segments rather than grid points. By this method, generally called line-

search, both run time and memory space requirements can be reduced drastically

since a memory location is not allocated to each grid point any more. Furthermore,

line searching algorithms tend to reduce the number of unnecessary bends in the

routes; however, they do not guarantee the shortest paths. The first algorithms were

suggested independently by [8] and [9]. Unfortunately, line searching algorithms

become more and more cumbersome as the routing becomes more complicated and

the memory and computation time requirements may even surpass those of the maze

router. Furthermore, [9] does not guarantee to find a solution even if one exists. In

Fig. 4.3, the general methodology of line searching algorithms is described. Here,

horizontal and vertical line segments are added around the source (S) and target (T)

ports and the obstacles. Then, these line segments are combined to construct a path

from S to T. An excellent discussion of maze routing as well as a review of the above

algorithms can be found in [10].

4.2.3 Channel Routing

A channel router is a specific router for integrated circuits and it is commonly used

in digital routing. Although it does not directly consider the layout parasitics, early

analog routers have applied this approach. As the name implies, the routing is done

in channels, where a channel is a horizontal area with fixed pins on the top and

bottom. The channel height is not specified, but calculated by the router. Numbers

Fig. 4.3 Horizontal and

vertical line segments are

added around the obstacles

and the ports. These line

segments are combined to

construct a path

T

S

4 Routing Analog Circuits 153

are assigned to the pins and these numbers indicate the nets corresponding to these

pins. Thus, those pins with different numbers must be electrically isolated to prevent

short circuits between different nets.

Given the positions and nets of the pins, two constraint graphs can be extracted,

namely: vertical constraint graph (VCG) and horizontal constraint graph (HCG).

VCG handles the vertical positioning of nets in a channel and it has a vertex vx for

each net x. A directed edge e D .vx; vy/ is added between two vertices, if two pins

in net x and net y overlap horizontally and the pin in net x is above the pin in net y.

On the other hand, HCG handles the horizontal spans of the nets and unlike VCG,

it is an undirected graph. Vertices in HCG correspond to the nets, the edges are

undirected. An edge e D .vx; vy/ is added between vertices vx and vy if horizontal

span of net x overlaps with that of net y. The VCG and HCG may be used to

completely represent an instance of the channel routing problem. Horizontal span of

the nets for the channel routing problem in Fig. 4.4a is shown in Fig. 4.4b, also VCG

and HCG are shown in Fig. 4.4c and 4.4d, respectively. If VCG does not contain any

edges, the routing may be fully done by the Left-Edge Algorithm [11]. One of the

solutions to the channel routing problem in Fig. 4.4a is depicted in 4.4e; this solution

is obtained by applying the Constrained Left-Edge Algorithm, a modified version

of the Left-Edge Algorithm. This algorithm can only handle noncyclic constraints

in the VCG. If there are cyclic constraints, the problem becomes more complex and

there are several approaches to solve it, such as [12–14]. Although these approaches

are used for routing of digital circuits, they are not commonly preferred in analog

tools, due to poor estimation of parasitic effects.

1

1

2

2

4

4

5

5

3

3

6

6

a

Problem

12 4 53 6

1
1

2

4
3

5
6

2 4 5 3 6

b

Horizontal Span of Nets

1

2

3

6

5

4

c

HCG

1 2

3

6 5

4

d

VCG

12 4 53 6

1 2 4 5 3 6

e

Solution

Fig. 4.4 Channel routing: (a) an instance of channel routing problem (b) horizontal span of the

nets (c) horizontal constrint graph (HCG) (d) vertical constraint graph (VCG) (e) A solution to the

problem in (a)

154 G. Dündar and A. Unutulmaz

4.2.4 Steiner Routing

The maze and line expansion routing algorithms are developed to connect two nets

to each other in the presence of obstacles. Thus, to complete the routing of a case

with many nets to be connected in pairs, the algorithm should be applied sequen-

tially. However, the quality, or even existence of a solution depends on the order on

which the pairs are selected. This problem is called net ordering and is discussed

in the ensuing sections. Furthermore, routing nets with more than two terminals

optimally is an NP-complete problem, usually called the Steiner Problem, named

after the Swiss mathematician Jacob Steiner (1796–1863), who solved the prob-

lem of joining three villages by a system of roads having minimum total length

[15]. Although Jacob Steiner’s solution was an independent work, the same prob-

lem had already been attacked and solved by several earlier mathematicians. The

corresponding solution called the Steiner-minimal-tree (SMT) is the tree connect-

ing the nets with minimum wirelength. Steiner-minimal-tree problem is simplified

to minimum-rectilinear-Steiner-tree problem (MRST), when only horizontal and

vertical paths are allowed. Compared to SMT, MRST is more efficient in terms

of computational costs. The MRST solution should not be confused with a rectilin-

ear minimum spanning tree (MST), where all wires are from terminal to terminal,

with no intermediate junctions. SMT, MRST, and the rectilinear-MST are depicted

in Fig. 4.5. It is shown in [16] that in the worst case rectilinear-MST solution is

1.5 times longer than the MRST solution. The SMT problem has many applica-

tions, thus it is a well-studied problem about which hundreds of papers and several

books have been written. Hence, many heuristics to this NP-complete problem ex-

ist. One would be to find an approximate Steiner point between these nets and

to apply maze routing between the terminals and the Steiner point. Another ap-

proach would be initially applying a maze router between a pair of points. Once

a path is found between these points, this path can be used as a new source for

the wavefront. Finally, all the above discussion has assumed that a single layer was

available for routing and that only horizontal and vertical wires are allowed. One of

the first extensions to this routing strategy was diagonal routing proposed in [17].

Over the years, multiple routing layers were introduced, performance criteria started

to be taken into account, and algorithms tailored specifically to integrated circuits

a

SMT

b

Rectilinear MST

c

MRST

Fig. 4.5 Comparison of trees: (a) SMT, (b) Rectilinear MST, (c) RST

4 Routing Analog Circuits 155

with special emphasis on various technology issues were developed. The interest in

routing has not disappeared and there is still much room for improvement as seen

by a recent global routing competition in [18].

4.3 Representations

The layout of an integrated circuit is quite a complex entity, and much attention

must be paid to the data representations utilized for any operation. It is well known

that the performance and/or complexity of an algorithm depend on how the data are

represented. This section initially discusses techniques for representing the layout it-

self and compares these techniques. Then, the issue of representing the connectivity

information is treated. Finally, the representation of layout rules is briefly discussed.

4.3.1 Layout Representations

There are traditionally three representations of layout for the routing problem, which

are grid-based, tile-based, or topological representations. These representations are

described in the following paragraphs.

4.3.1.1 Grid-Based Representations

Grid-Based layout representation is very simple and suitable for the area routing

problem; thus, it is very common in the literature. This representation is mainly

classified into two subgroups, namely, uniform and nonuniform grid representations.

The uniform representation has been used since the first routers – based on Lee’s

Maze Algorithm – and the nonuniform representation has been used since 1980s.

Uniform Grid Representation

The simplest grid-based representation is on a uniform grid. However, routing on a

uniform grid typically makes the wiring unnecessarily area hungry as well as using

too much memory. Using a fine grid will result in dense layouts, but requires ex-

cessive amount of memory, whereas using a coarse grid will result in larger layouts,

but the memory requirements are less. As shown in Fig. 4.6, the coarse grid is not

sufficient to represent the layouts of some wires, having horizontal and vertical di-

mensions comparable to the size of the grid, precisely. On the other hand, the fine

grid consumes huge amount of memory.

Moreover, variable width routing and layout constraint observance are nec-

essary for ensuring circuit performance. This is not the case for digital layouts,

156 G. Dündar and A. Unutulmaz

a

Coarse Grid

b

Fine Grid

Fig. 4.6 Uniform grids may be (a) coarse or (b) fine

where block sizes, wiring widths, and terminal locations can be fixed without

considerable performance loss. Several improvements on the fixed-width grid have

been suggested among which are routing on a uniform grid and compaction to ob-

tain a grid-free layout. However, these small improvements cannot yield satisfactory

layouts.

Nonuniform Grid Representation

A major class of grid-based representations are nonuniformly sized grids. The vari-

able size grid is more efficient than the uniform one in terms of memory usage. In

addition to its efficiency, the size of the grid may be much finer than a uniform grid

in the congested areas. Moreover, compared to the tile-based structures, it yields

faster evaluation of the parasitic effects. This is due to the fact that the neighbor-

hood information is embedded in the regular structure.

The variable size grid is constructed by extending the boundaries of the layout

components to the left, right, bottom, and top boundaries of the layout as shown in

Fig. 4.7a. The number of the grid cells may be reduced if the component boundaries

are used as blocks for the boundary extension process, such as done in [19] and

depicted in Fig. 4.7b.

Graph Theory is one of the basic concepts in computational science; thus, there

are a variety of algorithms in this subject. Due to this fact, graphs are commonly

used in Electronic Design Automation (EDA). Making use of these graph theory-

based algorithms, for the routing problem, is only possible if the constructed grid

is converted to a graph. Grid Graph G.V; E/ is consctucted (Fig. 4.7c), where V

is the set of empty cells and E is the set of edges connecting neigboring cells.

Any partition of a grid that cannot be further partitioned is called a cell. An empty

cell is defined as any cell in the grid that does not contain any layout component.

All the blank cells in Fig. 4.7b are empty cells. Moreover, two cells are neigbours

4 Routing Analog Circuits 157

a

Non-uniform Grid

b

Modified Non-unfiorm Grid

c

Grid Graph

d

With Layer Spacing

Fig. 4.7 Nonuniform grid is constructed by extending the boundaries of the layout components to

the left, right, bottom, and top (a) number of grids may be reduced as in (b) A grid graph extracted

from the grid in (a) is depicted in (c). In (d) some space around the components is left empty to

prevent design rule violations

Fig. 4.8 Channel intersection

graph is based on the

channels around the layout

components and it is suitable

for line expansion-based

routing. Vertices are the

intersection point of these

channels, and the edges are

the channel segments

between the vertices

when they have overlapping boundaries. When the graph G.V; E/ is constructed

it is used to find a path between the cells in V that correspounds to a route in the

layout. A variant of the Grid Graph is the Channel Intersection Graph (Fig. 4.8).

In this graph, vertices are the intersection point of the channels around the layout

158 G. Dündar and A. Unutulmaz

components, and the edges are the channel segments between these vertices. This

type of graph represents only the channels between layout components and it is used

with line expansion-based routing algorithms.

The described grid generation process ignores the design rules, where design rule

considerations are left to the path-finding algorithm. However, a simple extension on

the grid may be used to add the minimum space constraints into the Grid Graph. As

shown in Fig. 4.7d, dimensions of the layout components are updated by adding the

minimum space requirements for the layer of the component. Note that the dimen-

sions of the source and target terminals, being routed, are not updated. Otherwise

the space, added around these terminals, will not allow the router to connect them.

4.3.1.2 Tile Based Representations

Tile-based representations extend the concept of a grid by allowing different gran-

ularities for the blocks. This representation is based on the corner stiching data

structure [20], which ties the layout components by adding pointers at their corners.

Similar to the grid-based representation, this representation stores empty spaces as

well as layout components. The tile-based representation suits line expansion algo-

rithms better, such as in ANAGRAM II [21].

The main advantage of this representation is that it helps in expediting layout

synthesis as blocks can have very different dimensions; for example, capacitors are

much larger than other blocks. In such a case, a grid model will be inefficient, and

the memory ocupation will be much higher. Similar to the grid graph of the grid rep-

resentation, a tile graph G.V; E/ is extracted to be used with the graph algorithms.

Figures 4.9a, b depict a sample representation and the corresponding tile graph,

respectively. Although this representation is memory efficient, it is more compli-

cated. Also, it may be required to add escape points1 during the process of path

searching, which slightly enlarges the tile graph of the representation [22]. Effects

of the escape points to the path length is shown in Fig. 4.9. A path before adding

the escape points is shown in Fig. 4.9c and a path after adding the escape points is

shown Fig. 4.9d.

4.3.1.3 Topological Representations

In the previous sections, it was suggested that grid-based and tile-based nota-

tions have difficulties in expressing constraints on the relative positions of blocks.

Topological representations, including slicing trees [23], the sequence-pair (SP)

descriptions [24], and O-trees [25], present the relative positioning of blocks. Thus,

they are very efficient in modeling constraints on block placements including sym-

metries. Although these representations are used in placement, some of them are

also proposed for simultaneous placement and routing, such as, SP, multi-layer

sequence-pair (Multi-SP) [26], channeled-bounded sliceline grid (Channeled-BSG)

1 If a point is not a corner of a tile, it is called an escape point.

4 Routing Analog Circuits 159

a

Tiles

b

Tile Graph

c

Without Escape Point

d

With Escape Point

Fig. 4.9 Tiles for a layout are depicted in (a) the corresponding tile graph is in (b) Effects of

escape points are indicated in (c) and (d)

[27]. However, these representations are poor in extracting layout parasitics because

block and wire vicinities are only partially expressed in these notations. Thus, topo-

logical representations seem to be more suited to placement than routing.

4.3.2 Connectivity Representation

Routers often remove previous routes and add new ones – rip-up and re-route– to

improve the quality of the routing, which changes the connectivity information2 fre-

quently. Moreover, in every iteration of the router, checking the connectivity through

layout extraction will not be efficient in terms of time complexity. Thus, it is required

to handle the connectivity information in a special data structure.

2 Connectivity information refers to the physical connectivity information. Being in the same net

does not imply connectivity.

160 G. Dündar and A. Unutulmaz

The basic requirements for such a data structure may be listed as follows:

� Net-splitting will allow routing the high current paths seperately, which prevents

voltage drops on critical wires.

� Servicing of connectivity information should be fast.

� The nearest connectable layout component to a given component must be found

efficiently.

The netlist for a circuit is represented with set C D fNGnd; NVdd; Ni ; : : :g,

where the Ni ’s denote the nets. Every net (Ni) in C is a set of subnets3 Sij as

Ni D fSi1 ; Si2; Sij ; :::g. Sij are composed of groups (G’s). Formulation of the Sij

is Sij D fGij1; Gij 2; Gijk ; : : :g. The groups Gijk contains the layout components

(el’s). A schematic diagram for the nets of a circuit, C , is shown in Fig. 4.10. The G

sets are used in handling the connectivity information, such that being in the same

group means physical connection has been done. However, being in the same sub-

net but in different groups indicates an expectation for a physical connection. The

layout components e1 and e2 shown in Fig. 4.10b are in the same group G111. This

indicates a physical connection between them. However, the components e1 and e3

in the same figure are not in the same group but they are in the same subnet S11.

S11

S12

N1

S21

S22

N2
C

a

Subnets in Nets

e1

e2

e3

G111 G112
S11

b

Groups in Subnet

Fig. 4.10 Schematic diagram of the structure: (a) netlist is composed of nets, and nets are com-

posed of subnets, (b) each subnet contains groups. If two layout components are in the same group,

they are physically connected

3 A subnet is defined to achieve net-splitting and it covers the wires of a net on which the current

densities are similar.

4 Routing Analog Circuits 161

This condition indicates these components are going to be connected, but they are

not connected yet. Using the defined structure, checking the connectivity informa-

tion is very efficient, whereby it is done by controlling whether the components are

in the same group. Similarly, the nearest unconnected component is found through

a search in a given subnet.

4.3.3 Rule Representations

Most analog routers consider parasitic effects, such as wire resistances and crosstalk

capacitances. In the extraction of these parasitics, the electrical characteristics of the

layout components are frequently checked. Also during the construction of the lay-

out representation and path finding, design rules are frequently needed. Thus, the

time complexity of the router is directly related to the service time of the design

rules and electrical rules. For the data structure shown in Fig. 4.11, the layer iden-

tifiers are used as keys, this data structure returns the requested rule in constant

time. This structure is a hierarchy of Hash Tables,4 where the Hash Table in the

Hash

Function

Buckets

Hash Table

Layer1

(Key)

Hash

Function

Buckets

Hash Table

Layer2

(Key)

Property Value

Capacitance 50fF/mm2

Fig. 4.11 Data structure for rules

4 A Hash Table is a data structure, which uses a hash function to efficiently map keys to associated

values. The hash function is used to transform the key into the index of an array element.

162 G. Dündar and A. Unutulmaz

first level stores the addresses of the Hash Tables of the second level that store

the rules. The structure shown in Fig. 4.11 is equivalent to the pseudo code of

get capacitance between(layer1, layer2), which returns the capac-

itance between layer1 and layer2.

4.4 Routing Issues and Techniques for Analog Circuits

Performances of analog circuits are extremely sensitive to layout parasitics, which

are undesired effects due to physical properties of elements. Some of the parasitic

effects introduced due to routing and techniques for reducing these effects are dis-

cussed in [19, 21, 28–31]. Although it is impossible to eliminate the existence of

routing parasitics, it is possible to reduce their effects with the proposed techniques.

Splitting paths that are carrying high currents from the ones carrying low currents

or routing nets symmetrically are such techniques. In this sub-section, well-known

routing techniques and technology limitations are going to be described.

4.4.1 Net Splitting

Current densities in different portions of analog circuits may vary excessively. Thus,

there may be an order of magnitude difference between the current densities of two

paths in the same net. The resistance of a wire may be modeled as

Rwire D
�l � Rsh

�w
; (4.1)

where �l is the length and �w is the width of the wire and Rsh is the sheet re-

sistance. If this model is used for the grounded wires in Fig. 4.12a, there will be a

voltage drop of Vdrop D Rwire � I on the wire between the dashed lines. Because

of the voltage on the wire, the potential at the top end of the wire will be different

from the ground potential. This potential difference may vary with time and affect

the operation of the analog circuit. Therefore, it must be minimized. One approach

[28] is to separate the paths as in Fig. 4.12b and a different approach is to use wider

wires for the high current paths as in Fig. 4.12c.

4.4.2 Symmetric Routing

Analog circuit designers frequently introduce topological symmetries in differen-

tial circuits to optimize offset, differential gain, and noise. As the analog lay-

out tools have progressed, routers with the capability of symmetric routing were

4 Routing Analog Circuits 163

D l

Dw

a

Potential drops

b

Wires are separated

c

Increased wire width

Fig. 4.12 Current densities of wires in a net (a) branching wire is effected due to potential drop in

the wire segment between the dashed lines (b) branching wire is separated from the line on which

high currents flow (c) wire widths are increased to reduce the potential drop on the wire

a

a

b b
a

Symmetry axis

b

Mirrored obstacles

Fig. 4.13 Symmetry axis and nonsymmetric obstacles (a) the terminals are symmetric with respect

to the dashed symmetry axis (b) nonsymmetric obstacles are mirrored

developed [30]. These initial tools were followed by tools, such as ANAGRAM II

[21] and ROAD [19], having the capability of routing symmetrically in the presence

of nonsymmetric obstacles.

Symmetric routing may be considered if only the terminals of the paths being

routed are symmetric with respect to a symmetry axis. Figure 4.13a shows a sym-

metric layout, where the terminals are in gray, and the symmetry axis is the dashed

line. This axis splits the layout into two halves.

Initially, presence of nonsymmetric (with respect to symmetry axis) obstacles

were not considered [30]. In the absence of nonsymmetric obstacles, the tools route

one half of the layout and then mirror the new paths to the other half of the layout.

Later approaches [19, 21] considered nonsymmetric obstacles as well. The ap-

proach of ANAGRAM II [21] is to evolve both halves of a symmetric path simul-

taneously. With this extension, the line-expansion algorithm used by ANAGRAM

II became slightly more complex. Line expansion algorithm requires checking

164 G. Dündar and A. Unutulmaz

a

Crossing nets

b

Connector

Fig. 4.14 Matching parasitics of crossing-symmetric wires (a) matching is poor between symmet-

ric nets (b) matching is much better if a “connector” is used

whether both halves of the symmetric path can be legally placed on each side. In this

approach, a blockage that exists only on one side of the symmetry line effectively

becomes a blockage for the other side as well. Another approach used in ROAD

[19] is mirroring the obstacles (Fig. 4.13b) and then routing only for one side. Then,

the constructed path is mirrored to the other half.

An acceptable symmetric routing will not be possible with the mentioned ap-

proaches if the terminals are on different sides of the symmetry axis and the

paths cross. In Fig. 4.14a, such a case is demonstrated. Fortunately, good parasitic

matching can be obtained between the nets with the technique described in [31].

A connector (Fig. 4.14b) allows two symmetric segments to cross over the axis.

Although resistances and capacitances of the two nets are matched, there may be

some difference between the parasitics of the symmetric nets due to capacitive and

inductive coupling with the other nets. However, this structure is much better than

the one depicted in Fig. 4.14a.

4.4.3 Crosstalk and Shielding

Crosstalk between the nets may severely degrade the performance of an analog cir-

cuit; thus, it is required to extract these effects during the routing. There are 1-D,

2-D, 2.5-D, and 3-D extraction methods for parasitic capacitances [32]. The 1-D

extraction simply uses the equation

C1D D A � C˛ C S � Cˇ ; (4.2)

where A is the area of the overlapping region between two wires, S is the perimeter

of this region, C˛ is the capacitance per unit area, and Cˇ is the fringing capaci-

tance per unit length. The overlapping area is the dashed rectangle in Fig. 4.15. The

2-D extraction also includes capacitances due to nonoverlapping wires. If the 2-D

model is used for extraction, total capacitance for the first vertical wire in Fig. 4.15

is given as

C2D D C1D C
�l � C

d
; (4.3)

4 Routing Analog Circuits 165

Fig. 4.15 2-D extraction

involves overlaping and

nonoverlaping capacitances

d

D l

a

Same layer

b

Different layers

c

Shielding in Bulk

Fig. 4.16 Shielding reduce crosstalk (a) shielding on the same layer (b) shielding between differ-

ent layers (c) shielding to avoid crosstalk through bulk. Squares are contacts to bulk

where C is the crosstalk capacitance per unit length, �l is the length of overlap in

the vertical axis, and d is the separation between the wires. This model is commonly

used in routing, due to it is simplicity.

In 2.5-D extraction, fringing effects are considered in advance through the

cross-sections of the real 3-D structure. On the other hand, a library—including

parameterized 3-D geometric structures—is constructed in 3-D extraction and

extracted geometries from the layout are matched with the ones in the library.

Although 3-D extraction is more accurate than the mentioned extraction methods,

it may be cumbersome for path searching in routing due to its time complexity.

In RF circuits, inductive coupling may also be critical for the performance and

RLC models for interconnects, such as in [33] are used to observe these inductive

effects. Even EM simulations may be carried out to observe the parasitic effects

more accurately.

As discussed in the preceding paragraphs, long wires running in parallel affect

the performance of the analog circuits. One way to reduce the crosstalk between

these wires is to add space between them. If it is impossible to reduce the coupling

through adding space, the router may introduce a shield between the critically cou-

pled nets. The router ROAD [19] has the capability to add a shield line between

wires (Fig. 4.16a). In Fig. 4.16, three different shielding methods are displayed.

These methods may be used to reduce the crosstalk via the bulk or routing lay-

ers. Note that, not to worsen the effects of crosstalk, the shielding wire must be

connected to a dc potential or it must be grounded.

166 G. Dündar and A. Unutulmaz

4.5 Routing Strategies for Analog Circuits

This section covers various strategies for routing analog circuits. The discussion

starts from digital-like routers and proceeds to more complex optimization-based

strategies, roughly following a historical flow.

4.5.1 Digitally Inspired Early Routing Strategies

Advances in computer performance and algorithm theory as well as the need to

design complex circuits in a short time led to the appearance of the first design

automation tools for analog circuits in the late 1980s. Most of these tools also in-

cluded automated layout tools as a part of the tool suite. Automated routing tools

were also incorporated into the layout tools. The available experience at that time

led designers to develop digitally inspired routing strategies. The main character-

istics of these routers are a two-step routing approach and heuristic cost functions

used in a mostly feedforward manner.

Routing in digital circuits is typically performed in a two-step strategy; global

routing and detailed routing. A single step maze routing approach was generally not

preferred in the early analog routers because it is computationally less efficient than

channel routing. Moreover, since there is no global routing phase, nets are consid-

ered individually, and there is no global view of the interconnection problem. Since

a channel router routes all the nets at the same time, one achieves routing of higher

quality, compared to other routing strategies that route one net at a time. While using

channel routing for complete layouts, the problem is broken into smaller problems

of routing individual channels, resulting in much faster routing compared to the gen-

eral area-routing algorithms. Channel routing also allows for changes in placement

of blocks with relative ease during detailed routing.

This early two-step approach is evident in the ROSA router of the LADIES

automatic layout system [34], where routing areas are extracted and decomposed

into rectangles, initially. An adjacency graph is then formed from these rectangles.

Global routing is achieved by finding the shortest path on the adjacency graph.

Finally, the detailed routing is performed using the river routing algorithm. Here,

analog constraints are not seriously taken into account during the routing.

The constraints imposed on acceptable solutions generally involve one or more of

the following: (i) total area of interconnection, (ii) amount of crosstalk, (iii) number

of crossovers and vias, and (iv) density of wiring. In these early studies, the driving

factor of routing, as in placement, was the minimization of crosstalk. To achieve this

end, the tools tried to route the sensitive and noisy nets separately as well as trying to

minimize the crossover. Also, designer knowledge was somehow incorporated into

most routing tools, whereby the designer had to identify various nodes or interact

with the tool in the actual placement of the paths. In summary, the approach taken

was to augment digital routing methods with some additional constraints, which take

signal-coupling reduction into account. Nevertheless, the evaluation of the routing

4 Routing Analog Circuits 167

Fig. 4.17 Estimation of

the costs was used in a

feedforward approach. In

some cases, the costs are used

in a weak feedback loop

Estimation of

Net Costs

Net

Ordering

Routing

Layout

Cost

parasitics and alternatives in this class of tools do not go far beyond a qualitative

evaluation of the nets. In addition to the rather sketchy estimation of the costs, they

were used in a feedforward approach, (See Fig. 4.17) or in some cases in a weak

feedback loop. The feedback loop is called weak because it addresses intermediate

variables, such as overlap areas, which interact heuristically with the final perfor-

mance rather than the actual performance parameters. Thus, the performance of the

layout within a certain specification region was not guaranteed.

On the other hand, a priori estimation of the costs, however they may be prim-

itive, has a major advantage in that the net ordering problem can be addressed.

As mentioned in previous sections, the order in which nets are routed has a ma-

jor impact on the overall routing solution. Furthermore, routing more critical nets

initially allows them to occupy more privileged locations in the layout, thus mini-

mizing their length and possible crosstalk. These routes then act as obstacles to later

and less critical nets to be routed, whose routing inevitably becomes less efficient.

Such a net ordering approach was presented in MIGHTY [35], which is a part of

the OPASYN [36] tool. The order that the nets are routed is determined a priori by

classifying the nets into several categories according to their functions, such as input

nets, output nets, etc. MIGHTY uses a rip-up and reroute strategy for routing; that

is, when a particular net pair meets congestion, previously routed nets are ripped up

and rerouted to make space. The authors see this approach to be feasible due to the

relatively few nets in analog design.

A contemporary of OPASYN is IDAC, which has its companion layout tool

called ILAC [37, 38]. In ILAC, nets are classified into four categories; namely, sen-

sitive nets, noisy nets, noncritical signal nets, and power supply nets. A net ordering

strategy is also employed in ILAC. Power nets are routed first, followed by sensi-

tive nets, and then noncritical nets. Noisy nets are routed last, while the power nets

and noncritical nets provide shielding between the critical and the noisy nets. The

global router in ILAC is a maze router. However, it handles net couplings, undesired

crossings, planarity (for power nets), and congestion. After global routing is com-

pleted, channel sizes are estimated depending on the number of nets to be routed

inside the channel. The detailed router is a scan line based incremental channel

168 G. Dündar and A. Unutulmaz

router. The spacing between the prerouted wires is left as stretchable. When a new

net is routed, the exact location is determined to minimize some penalties, such as

distance, switching between layers, increasing channel size, and running adjacent

to noisy or sensitive layers. Once the optimal path is found, routing that net pair is

completed and the router proceeds to the next net pair.

The channels in SALIM [39, 40] are obtained automatically from the slicing

tree description of the floorplan. Thus, global routing is a simplified form of maze

routing which only tries to find the best sequence of crossed channels to minimize

the length of each interconnection. Detailed routing, on the other hand, completes

the routing in each channel under geometrical and electrical constraints. Among

the electrical constraints are low resistance paths for power supplies, minimum

number of crossings for signal paths, assigning routing priority for sensitive nets,

and abiding by symmetry requirements. Most of these constraints cannot be deter-

mined by the tool and are thus provided as rules by the user. An alternative router

for SALIM [41] is gridless and uses electrical constraints before the design rules.

The routing strategy is again a two-step router, where symbolic routing is carried

out to obtain zero-width tracks, whereby electrical parameters can be extracted and

constraints can be met as much as possible. Once crosstalk, resistivity, capacitance

to ground and electrical symmetry constraints are satisfied, detailed routing is car-

ried out to fulfill design rules. In performing the placement, SALIM uses expert

information to place critical blocks. This information is also utilized for ordering

the connections such that wiring is done in exactly the same order as the placement.

Electrical symmetry is again achieved by the use of expert knowledge. Detailed

routing follows the symbolic routing to complete the routing design.

SLAM [29, 42, 43] uses a routing approach similar to MIGHTY. However, it

performs a critical net analysis to determine various node types, such as noisy or

sensitive nodes. A distance constraint is assigned for each circuit node with differ-

ent priorities during this analysis. The circuit node with the highest-priority distance

constraint should require the shortest wire connections. In addition, a prioritized

spacing constraint for each pair of circuit nodes is also provided. The spacing

constraint between the sensitive and the noisy nodes will get very high priority.

Therefore, large spacing is reserved for those nodes to minimize the wire crossover

or adjacent wire crosstalk.

The proposed global router in [44] works in a hierarchical fashion, initially creat-

ing a slicing tree deep enough such that each module is left alone in its appropriate

box. The “hierarchical channel graph” thus constructed is utilized to determine the

routing areas, which are essentially the spaces between the modules. An approxi-

mate rectilinear-Steiner-tree (RST) algorithm is applied iteratively up the hierarchy

to obtain the routing. One should also note that the pins for combinations of mod-

ules in the hierarchy are not real pins, but pseudo pins, which should be assigned and

extracted hierarchically. Nets are classified into several categories, such as sensitive

or noisy nets. Special care is taken to obtain net-crossing-free routing for noisy nets.

This is achieved through traffic light routing algorithm and terminal grouping. Net

ordering based on the categorization of the nets is also carried out.

4 Routing Analog Circuits 169

A plan-based layout algorithm was proposed in [45, 46]. A design plan was ex-

tracted from a circuit by using AI techniques and hierarchy information for layout

generation. Initially, placement and orientation of the modules was achieved. Then,

the problem of routing was tackled. The possible routes were classified into two

terminal routes and multiterminal routes. These routes were ordered in a list based

on their sensitivity, on their distance, on the existence of constraints coming from

the knowledge base, or on whether they were straight or formed intersections with

other nets. The nets were fetched from these ordered lists in sequence and candidate

paths were identified. Thus, a list of option paths was produced and ordered, so that

if needed the system could suggest alternative paths without having to repeat the

whole process. It should be noted that the paths evaluated were treated by the sys-

tem as only a set of suggestions, as the solution could not be guaranteed until all the

conflicts were removed. One interesting feature of this layout generation algorithm

was the layout representation used. The data were anchored to a virtual grid. The

final layout was thus easily converted to a stick-diagram-like representation, which

could further be converted to an ordinary layout. This strategy was suggestive of

more recent template-based routing approaches.

4.5.2 Routing Based on Cost Minimization

The limitations of the digitally inspired routing methodologies, due to heuristic

estimation of costs were soon obvious. The late 1980s and early 1990s witnessed

the development of more “analog” routing approaches. The common themes in these

routers are area routing and the minimization of some cost function. ANAGRAM

[47], ANAGRAM II [21], and the area router in [30] are examples to these routers.

Area routing is used with any class of circuits and geometric complexity as opposed

to channel routing inherited from digital design automation. Since its cost function

can be built as a target function for a multiple objective optimization problem, it

is very flexible. The major drawback of area routing, which is its time complexity,

can be drastically reduced by means of heuristic techniques. The cost function is

typically composed of capacitance to ground for a certain node or inter-node capac-

itances or wire resistances. Thus, there is no explicit link between the performance

constraints of the layout and the cost that the router is trying to minimize. It was

assumed that individual minimization of these costs would result in a satisfactory

layout solution at the end.

In ANAGRAM, the routing engine utilizes a line expansion style router, which

models crosstalk directly. A uniform grid-based routing graph is defined over the

entire routing space, where a vertex defines a partition on the wiring space and an

edge defines a wire segment. A cost function is defined on each edge of this graph

and is associated with the represented wire. The cost associated with a route can be

given as:

Cost D Cost.P / C MaterialCost.C / C ParasiticCost.C /

C RoutabilityCost.C / C CostToTarget.C; T / (4.4)

170 G. Dündar and A. Unutulmaz

Cost.P / is the cost to reach this cell from the source, MaterialCost.C / accounts

for the incremental length added by cell C and the cost of routing on C ’s layer

or via, ParasiticCost.C / accounts for the incremental parasitic to each interacting

nearby net, RoutabilityCost.C / estimates how difficult it may be to embed this cell

in this region of the layout (wire crowding), and CostToTarget.C; T / is a lower

bound on the cost of the remainder of the path (to be estimated). The cost of a path

on the graph is defined as the sum of the costs of the edges in the path. In this way,

the routing problem is reduced to the search of a minimum cost path. The complexity

of this search grows as a quadratic function of the circuit size. Each net is composed

of a set of partial paths, which have a cost associated with them and are stored in a

cost ordered structure. The next partial path to be extended (by a segment) is the one

with the lowest cost. The line-expansion router thus operates by repetitively popping

the most promising partial path from a heap,5 expanding lines from the front of this

partial path to the next interesting feature in the layout, and adding these new paths

to the heap. A partial path here is simply a collection of connected wire segments.

The CostToTarget.C; T / ensures that the search is biased toward the target. This

routing style is especially effective when routing from distributed terminals, which

occur frequently in analog layouts, such as the perimeter of a capacitor plate or the

terminal of a module consisting of several transistors. Multiterminal nets can also be

routed in this manner. Evolving routes are penalized according to their coupling with

the previously routed wires. In addition, ANAGRAM uses this router in a rip-up-

reroute phase to eliminate crosstalk violations resulting from net ordering. Another

difference of this router from the previous ones is the direct inclusion of crosstalk

into the routing. Wires are classified into three categories; neutral, noisy, and sensi-

tive. Neutral wires are typically power supply and bias lines, whereas noisy wires are

those exhibiting high swings, such as wires of clock or output nets. Using some sim-

ple equations to model the interactions between noisy and sensitive wires, costs can

be calculated. Despite including the crosstalk into the initial routing, iterative rip-

up and reroute can also improve the routing considerably. The main problem with

ANAGRAM is that a cost function in terms of routing parasitics is used, but with no

explicit reference to performance specifications of the circuit. With this approach,

no provision is made for a constraint-driven synthesis approach. Net scheduling is

not fully addressed, and the solution of congestion problems relies on an aggressive

rip-up and reroute scheme.

A more advanced version of ANAGRAM; namely, ANAGRAM II was devel-

oped later [21]. Algorithmically, ANAGRAM II still employs a line-expansion

strategy. However, the original ANAGRAM router used a coarse-gridded represen-

tation that limited its ability to handle over-the-device wiring and arbitrary-width

wiring. Moreover, it had no support for guaranteed symmetric wiring of differential

paths. ANAGRAM II was designed to address these particular limitations. In addi-

tion, ANAGRAM II can support a more interactive style of routing as desired by the

5 A heap is a specialized tree-based data structure such that the smallest element is always in the

root node [48].

4 Routing Analog Circuits 171

user. The major difference between ANAGRAM II and the original ANAGRAM

router is that the path-segments explored during line expansion in ANAGRAM II

are actual rectangles of arbitrary shape rather than the line segments on an abstract

grid. In ANAGRAM II, the RoutabilityCost.C / term measures the cost associated

with ripping up nets in the neighborhood necessary to advance a path; ANAGRAM

II thus makes an explicit tradeoff between detouring around an obstacle, and simply

removing it (if its cost was sufficiently low) to reschedule it for later rerouting.

In [30], a modified version of Lee’s algorithm is proposed for routing. A cost

function is formed for each net based on the weighted distance between nodes, a

layer resistivity parameter, a layer-to-bulk capacity parameter, proximity parameter

dependent on the distance of the node from the already existing wires, and a con-

gestion parameter, based on the real wire crowding of the surrounding area and on

an estimate of its final crowding based on a fast first-attempt path-search for each

of the remaining wires. The weights corresponding to each component of the cost

function is set by the user on a net basis. Backtracing on the wires is also performed

to clean up extra corners. The approach also accommodates preconnected pins, such

as those in a stacked transistor structure. Symmetry is considered as an issue in [30]

as well. The routing system also proposes a scheduler, which determines the routing

order of the nets. The scheduler utilizes symmetry information, user information,

and congestion information to arrive at a priority list. Obviously, the scheduler does

not solve the ordering problem completely and provisions for rip-up and reroute are

also present.

4.5.3 Routing Based on Parasitic Bounds

The routers above including ANAGRAM II minimize crosstalk, but without any

specific, quantitative performance targets. On the other hand, the routers ROAD [19]

and ANAGRAM III [49] use improved cost-based schemes that route instead to min-

imize the deviation from acceptable parasitic supplied by the designers or derived

from sensitivity analysis. In Fig. 4.18, routing flow for these routers is depicted.

4.5.3.1 Constraint Generation and Sensitivity Calculation

As discussed above, the link between the performance of a circuit and the parasitic

bounds on a node can be determined either by the designer or by the sensitivity

analysis, which acts as a constraint generator. The process of constraint generation

is not trivial and is discussed in detail in [50, 51], and [52]. For meeting the per-

formance specifications of a circuit, finite degradation can always be allowed in the

performance functions during routing, as long as they are below certain thresholds.

The constraint generator is used to map a set of high-level performance specifi-

cations onto a set of bounds, which are then used during the layout synthesis to

control parasitics. The performance constraints during routing are the maximum

172 G. Dündar and A. Unutulmaz

Netlist

Connectivity

Information

Parasitic

Constraint

Generation

Router

Performance

Constraints

Sensitivity

Analysis

Sensitivity

Values

Fig. 4.18 Sensitivity based Routing

changes allowed in performance functions because of routing parasitics. All pos-

sible combinations of interconnect parasitics, which meet performance constraints

define a feasible region in the space described by the parasitics, which in fact can be

treated as the design parameters for routing. Hence, analog routing can be treated

as a constraint-driven optimization problem. The objective function is the chip area,

and the constraints are the performance constraints of the circuit. The parasitics

considered can be line resistances, capacitances, inductances or line-to-line capac-

itances and inductances. The parasitic constraints imposed on the router are of two

types: bounding constraints and matching constraints. Based on the performance

sensitivities, performance constraints, and a-priori estimates of maximum values of

parasitics, the set of parasitics, which can collectively cause negligible performance

degradation, are ignored for generation of bounding constraints. The rest of the par-

asitics on which bounding constraints are imposed are called the critical parasitics.

Please note that in general there will be many possible combinations of bounding

constraints, which meet performance constraints. These constraints can not only be

utilized for area routing, but also in modifying vertical constraint graphs in chan-

nel routing for mixed signal circuits [53, 54]. The sensitivity Sij of a performance

function W i with respect to a parasitic pj at the nominal value of W i is defined as;

Sij D

�

@W i

@pj

�

pjD0

(4.5)

One way to compute sensitivity is by using the perturbation method. In this

method, a parameter is perturbed and the performance is reevaluated using circuit

simulation. However, this method is very time consuming since a re-simulation of

4 Routing Analog Circuits 173

the circuit is required for each parameter of interest. This method can also be very

error-prone, particularly for transient simulations, since the circuit simulator output

has some inherent error, and while taking difference between two close numbers, the

percentage error gets larger. Sensitivities can be computed much more efficiently

and accurately, compared to the perturbation method, by using direct or adjoint

techniques of sensitivity computation. A similar approach can be used for match-

ing constraints as well. Once all the sensitivities are calculated, approximations to

performance constraints can be modeled by the following inequalities:

Np
X

jD1

SCij pj � �W Cimax
; 8Wi 2 W C (4.6)

Np
X

jD1

S�
ij pj � �W �

imax
; 8Wi 2 W � (4.7)

where Np is the number of parasitics and

SC
ij D

(

Sij ; if Sij � 0

0; if Sij < 0
, S�

ij D

(

�Sij ; if Sij � 0

0; if Sij > 0

Terms �W C
imax

and �W �
imax

are the maximum allowed change in Wi in the positive

and negative direction due to parasitics, respectively. Similarly, terms W C and W �

are the set of performance functions having constraint in the positive and negative

direction from nominal, respectively.

Please note that the above inequalities have infinitely many solutions and it is

quite difficult to select the “best” solution among these. That is, one can obtain

many different sets of bounds on parasitics pj starting from the bounds on Wi . Fur-

thermore, for any practical circuit, the number of parasitics and thus sensitivities are

quite large. A simple thresholding technique or Independent Component Analysis

can be applied to the sensitivities to simplify the problem since many parasitics have

very little effect or no effect at all on some of the performance metrics. Thus, the

dimensionality of the problem gets much smaller. Finding the actual solution is still

quite difficult thus requiring heuristics such as sensitivity graphs [55], which can be

simplified and later used by the router or flexibility values for parasitics [31].

The parasitic generator PARCAR defines a flexibility value for each parasitic in

addition to the above. This value is calculated from the minimum and maximum

values for the parasitics [31]. The maxima and minima for each parasitic are gen-

erally not known before the layout is drawn, but can be initially estimated. As the

layout evolves, the flexibility values get more accurate. The flexibilities can be used

inside a quadratic programming package. To ease the solution, the parasitics that

are not very effective are ignored. As a result, less flexible parasitics are tried to be

satisfied with more effort, whereas the layouts for more flexible ones can be more

easily drawn.

174 G. Dündar and A. Unutulmaz

4.5.3.2 Routers Based on Parasitic Bounding

The router in [56] runs in conjunction with a constraint generator, which computes

the sensitivities of performance functions to all possible parasitics in the circuit and

detects the critical parasitics. It also generates a set of bounds on critical parasitics to

satisfy performance constraints. In differential circuits, a set of matching constraints

on parasitics based on matched-node-pair information is evaluated, and worst-case

sensitivities are computed taking mismatch into account. Sensitivities are used to

generate the weights for the cost function driving the router. The router itself is a

maze router using the A* algorithm (A* algorithm is discussed at the end of this

section). The cost of a path is calculated not as a direct parasitic cost, such as the

total capacitance of the path, but as the cost it has on the performance of the circuit

by using the weights obtained from the sensitivity analyzer. Thus, the quality of the

routing is dictated by the accuracy of the weights. Linear approximations for sensi-

tivities are acceptable, because the goal is to keep each performance within a small

tolerance specified by the user. The way parasitic bounding constraints are gener-

ated is such that if the value of each critical parasitic remains within its bound, then

all the performance variations remain within their respective bounds too. Therefore,

if a performance constraint is violated, at least one parasitic must have exceeded its

bound as well. Hence, one possible approach to modify the weights automatically

is to increase the ones associated with the parasitics whose values resulted larger

than the bounding constraints and to decrease the ones associated with the para-

sitics whose values were smaller. But with such an approach weights could oscillate

indefinitely through iterations. The authors also present a heuristic method to adjust

the weights as well during the routing.

A router for analog design (ROAD) is a maze router based on the A* algorithm,

using a nonuniform grid with dynamic allocation. It allows over-the-device routing,

although routing over sensitive modules can be prevented. Two operating modes are

available. In interactive mode, the user can either accept the routing order suggested

by a scheduler, or define a different order and modify the circuit configuration with

rip-up and reroute operations. In batch mode, a routing session can be programmed

for execution without requiring the user’s attention. Automatic routing scheduling

or a predefined or partially defined order can be used. At the end, a comparison

between parasitic values and upper-bound specifications is performed and decou-

pling shields are built where necessary. At the same time, interactive mode provides

expert analog designers with high flexibility not contrasting with full automatic fea-

tures. The routing graph used by ROAD is a three-dimensional nonuniform grid; the

grid is further refined to reduce the maximum size and aspect ratio of rectangular

area portions. Every new wire determines a local grid refinement and the dynamic

allocation of new nodes. On the grid edges, wire segments are generated and the

cost function is computed. However, the grid does not constrain the wire size, pitch,

or position as fixed, or virtual grids do. In fact, local congestion and in general all

the parameters of the cost function are computed with respect to the whole space

locally available. As a result, the router achieves a complete control over all the

4 Routing Analog Circuits 175

details of routing geometry. Terminals and blockages can be arbitrary collections

of geometries. Over-the-device routing and crosstalk sensitivity analysis to pieces

of placed devices are possible without additional overhead, as required by sophisti-

cated data structures. The router ROAD can be used in conjunction with PARCAR

to complete the routing. In ROAD, the cost function is a weighted sum of several

nonhomogeneous items. These are local area crowding, resistance, capacitance to

bulk, and cross capacitance. Performance sensitivities to parasitics are used to gen-

erate the weights for the cost function driving the area router. The contribution of a

parasitic to performance degradation is proportional to the sensitivity and inversely

proportional to the maximum variation range allowed for that performance. The

routing schedule is determined with a set of heuristic rules set up and tuned with

experimental tests. The higher the number of constraints on a net, the higher is its

priority. The number of properties that a net can have, for instance symmetry, mem-

bership to supply or clock nets, etc. has already been defined. After performing the

weight-driven routing, parasitics are extracted and performance degradation is esti-

mated and compared with its specifications. If constraints are not met, the weights of

the most sensitive parasitics are raised and routing is repeated. When the weights of

all sensitive parasitics hit their maximum value, iterations stop. This means that even

considering maximum criticality for the sensitive parasitics, routing is not possible

on the given placement, without constraint violations. In this case, the circuit place-

ment needs to be generated again, using a wider range of variation for the detected

sensitive parasitics. In ROAD, nets are split according to a heuristic that estimates

the parts of a net carrying low current. The routing schedule is determined on the

ground of the priority assigned to each net according to its presumable difficulty

due to electrical and architectural requirements. Here, symmetric nets are given a

very high priority so that they can be routed first. ROAD provides provisions for

including shields. Shields are implemented into the layout as a “last resort” if no

other routing solution can be found to keep away sensitive nets from each other,

and are built after all the wires have been routed. Many parameters can be used

to modify the behavior of ROAD. Hence, it is important to provide the designer

with a user interface that allows full exploitation of its flexibility. A high-level com-

mand language, called net descriptor language (NDL), provides a user interface to

ROAD. The purposes of NDL commands are to assign weights for cost function and

scheduler (weight values can be directly specified by the user or automatically com-

puted), specify symmetry requirements, or declare the nets to which the net-splitter

is applicable.

As discussed above, Crosstalk-sensitive analog routers (ANAGRAM II, ROAD)

must rely on some variant of maze-routing with a cost-function comprised of four

terms: a material term (to minimize length, vias, bends), a crosstalk penalty (to min-

imize proximity to deleterious signals), a routability term to estimate how easily this

net fits into the layout, and a cost-to-target predictor (to accelerate search in algo-

rithms like A* routing). Crosstalk optimization substantially degrades the efficiency

of any area router because of the overhead of checking proximity effects at the head

of each evolving partial path (which is unavoidable), and because crosstalk obstacles

176 G. Dündar and A. Unutulmaz

are very hard to predict and frequently require deep path search to avoid. ANA-

GRAM III alleviates this problem by pruning parasitically nonviable paths as the

search progresses. The virtue of this scheme is that it does not make artificial trade-

offs between wirelength and crosstalk; instead, it can efficiently find the cheapest

path that does not violate hard parasitic bounds supplied by the user.

A* Algorithm

A* algorithm [57] is a general methodology for the shortest path calculations in

graph theory. In [58, 59], it is adapted to the area routing problem and used to

improve the average run time of the Lee—Moore algorithm. The upper-bound for its

run-time is O.n2/, as for the Lee—Moore algorithm, but its average performance

may be much better. This algorithm operates by making estimates for the cost of

connections before committing them and runs on a routing graph G.V; E/, extracted

from the layout. In A* algorithm, path searching continues till a path from source to

target is found or all vertices in V are visited. During this search, costs are assigned

to vertices and these costs and the corresponding vertices are stored in an ordered

list. This path search is performed in a loop and the vertex having the minimum

cost is chosen to continue with. The cost of vertex x is f .x/ and it is formulated as

follows:

f .x/ D g.x/ C h.x/ (4.8)

where g.x/ is the cost calculated from s – source wire – to x – an intermediate wire

– and h.x/ is the estimate of the minimum cost from x to t – target wire –. Note that

h.x/ in f .x/ must not overestimate the distance to the goal. If only the wire lengths

are considered, a preferable heuristic for h.x/ is the Manhattan distance from x to t .

In Fig. 4.19, these costs are simply depicted, where the total length of the solid lines

represents g.x/ and the length of the dashed line represents h.x/. In analog routing,

h.x/ may be defined as the resistive cost of the Manhattan path from x to t and

g.x/ as the weighted sum of the additional parasitics cost due to the new path from

Fig. 4.19 A* algorithm uses

estimates from candidate

nodes xn’s to target node

s xn-2

xn-1 xn

t

g(xn-1)-g(xn-2) h(x)

4 Routing Analog Circuits 177

s to x. If only resistive and capacitive parasitic cost are considered, g.x/ may be

calculated as:

g.x/ D A � .Gx�1 C �Gx/ (4.9)

g.x/ D
�

a1 � � � an

�

0

B

B

B

@

2

6

4

g1

:::

gn

3

7

5

x�1

C

2

6

6

6

4

�

P

8j cij1�Cij

�

C .r1�R/

:::
�

P

8j cijn�Cij

�

C .rn�R/

3

7

7

7

5

1

C

C

C

A

where A is a vector including the weights for different performance metrics, Gx�1

is the sum of the performance metrics from s upto x and �Gx is the change in

the performance metrics due to adding x. �Cij is the additional capacitance value

between net i – net of x – and net j – net of a neighboring wire or bulk – and

�R is the additional resistance value. Changing the coefficients cijn and rn, it is

possible to define different metrics, such that if rn D 0, only capacitive parasitics

are considered and if cijn D 0 only the resistive parasitics are considered.

As previously mentioned, the f .x/ costs are needed to be stored in a sorted

manner, such that the algorithm chooses the wire with minimum f .x/ cost and

continues path search. Thus, a sorted list of ff .x/; xg pairs is needed, where the

sorting must be according to the f(x) values. A red–black tree6 implementation may

be used to keep the ff .x/; xg pairs ordered. However, different vertices xi and xj

may exist such that f .xi / D f .xj /; in such a case, the tree representation will

not be capable of storing ff .xi /; xi g and
˚

f .xj /; xj

�

pairs. Storing
˚

f .x/; Lf .x/

�

pairs instead of ff .x/; xg pairs solves the problem of duplicated f .x/ costs, where

Lf .x/ is a linked list of the nodes having the same f .x/ value. This data structure is

depicted in Fig. 4.20 where the nodes of the red–black tree point to the linked lists,

associated with them.

Red-black Tree

f(x)

xi xj

Linked-List

Fig. 4.20 Data structure to store ff .x/; xg pairs

6 A red–black tree [60] is a binary search tree, it inserts and removes nodes intelligently to ensure

that it is balanced.

178 G. Dündar and A. Unutulmaz

Fig. 4.21 Pseudo Code

of A* Algorithm

The pseudo code for the A* algorithm is given in Fig. 4.21. In the code, two sets

are used, namely, the closed-set and the open-set. The closed-set, a hash set, contains

the visited vertices and the open-set, an ordered set with the structure in Fig. 4.20,

contains the ff .x/; xg pairs. In the pseudo code, calculate hCost(y) esti-

mates the resistive cost from y to target and calculate gCost(y.G) takes the

product of the input vector with the weighting vector A.

4.5.4 Integrated Placement and Routing

Conventionally, the execution of placement and routing has been sequential. If the

routing is a two-step procedure, the execution of the global routing and detailed

routing is also sequential. Thus, the global routing can be beneficial only for the

4 Routing Analog Circuits 179

detailed routing and it is of little use to the placement procedure. Normally, only a

rough wire-length estimator is employed during the placement. So the output place-

ment solution is likely not an optimum as viewed by the global routing. Although

the simultaneous performance optimization of the placement and the global rout-

ing can lead to a more accurate search, the computation time is impractically high

when applied to large digital circuits due to huge number of nets to be consid-

ered. However, compared to digital circuits, the number of nets in analog integrated

circuits is relatively small. This allows the global routing to be considered along

with the placement procedure. On the other hand, the performance of the analog

layout is very sensitive to the actual wire paths. Bringing the global routing into

the placement will ease the implementation of those parasitic constraints. The in-

tegration of placement and routing can be done at several levels of granularity. On

the one extreme, routing can be implemented between the iterations of placement.

This approach does not require much change in the existing placement and rout-

ing algorithms. On the other extreme, routing can be viewed as a placement of the

connecting wires. Thus, placement and routing are merged into a single enhanced

placement step.

A novel idea incorporated into the KOAN/ANAGRAM II system is to extend

the annealing-based KOAN placer so that it can manipulate both devices and wires

[61]. This is a very early example of simultaneous placement and routing and can

alleviate the need for separate complex routing algorithms. A simple routing solu-

tion can be improved over time together with the placement. The central problem

is how to represent fully detailed wire geometry in a manner that allows the same

freedom of incremental movement as the devices themselves. The simulated anneal-

ing algorithm of KOAN can place wires just like placing modules except for three

properties; the representation, the moves, and the cost function. The nets should be

represented such that they are always electrically connected correctly to their corre-

sponding devices. The feasibility or quality of connections is not important initially

as they will improve over time. It is enough for the router to find just a connection

between the devices. Also note that as the devices are moving, the wires are being

constantly reshaped. Not much thought is given into the allowable moves, but the

effort has been transferred into careful design of the cost function that coerces nets

to evolve into high-quality physical routes. The cost function includes design rule

violations, crosstalk, and total net area for one connection.

RACHANA [62] also describes an integrated placement and routing approach.

Initially, a graph of the circuit is created based on the schematic. This relies on the

widespread assumption that the best distribution of the elements is already present

in the schematic if the schematic is drawn properly. Then, constraint-driven module

generation is carried out. Some modules have been coded into RACHANA such that

it can recognize these simple subcircuits and create many layout variants for them. In

the third phase, which is the floorplanning phase, the best configuration among the

variants is selected. In the unified placement and routing algorithm, the placement

and routing steps are simply intertwined. In other words, a module is placed, then

the connections to that module are completed before the next one is placed. The

router itself is gridless and multilayer.

180 G. Dündar and A. Unutulmaz

The developers of GELSA [63, 64] claim that the integration of placement and

routing can be achieved by doing routing at every step of the placement process.

This in turn results in the solution of the routing problem, which is NP complete, at

every iteration of placement, thus resulting in extremely complex layout generation.

To avoid excessively long run times, the routing is not completed for every solution

at every step, but approximate routing is carried out. Slicing structures are used for

problem representation, whereas the optimization algorithm is simulated annealing.

The slicing structures are simply shown by a tree or a string. The optimizer also

takes symmetry into account. The approach for symmetry is quite interesting in that

two levels of symmetry are simultaneously considered in the cost function: global

symmetry with respect to virtual axes, and local symmetry affecting groups of cells.

In [65], the possibility of simultaneous placement and routing is also explored.

The sequence pair algorithm is utilized for the placement of blocks as well as wires.

Each wire is divided into a set of rectangles, and the following two extensions are

introduced to maintain the connection: one is to impose a condition of orders of

rectangles on a sequence-pair called wire-connectivity, and the other is to generate

horizontal and vertical constraint graphs for compaction.

The potential problems of the conventionally separate placement and global rout-

ing in analog integrated circuits, which often involve complex constraints, were also

addressed in [66]. This work presents a two-stage placement technique to solve the

analog macro-cell placement problem. The entire placement procedure is divided

into global placement and detailed placement stages. During the global placement,

a hybrid genetic placement approach using a half-perimeter wire-length estimator is

employed. It performs a rough but quick search to locate the region of the optimum.

In the detailed placement, a very fast simulated reannealing placement approach

and a minimum-Steiner-tree-based global routing are executed simultaneously. In

this manner, the optimum can be found by searching a relatively small region. For

each intermediate placement solution, the global routing elaborates the routing plan,

taking into account the net sensitivity and channel congestion. Moreover, the cost

obtained by the global routing is used to evaluate the quality of a placement solu-

tion. Thus, the placement solution with the lowest cost (i.e., the optimum in terms

of the global routing) will be sought when the optimization process progresses.

Simultaneous placement and routing was extended even further to integrate con-

straint transformation into the integrated place and route as well [67]. The circuit

was represented geometrically as tiles. The tiles could be moved, swapped, routed,

and resized. A tabu-search optimization algorithm was utilized with these available

steps. The end results were shown to be superior to conventional sequential con-

straint transformation-place-route methodology.

4.5.5 Global/Detailed Routing

In ALADIN [68, 69] two routing phases, namely, global routing and detailed rout-

ing are employed. The global routing is integrated into the placement procedure

4 Routing Analog Circuits 181

to improve the accuracy of routing estimation. The compaction-based constructive

detailed routing generates the final layout based on the output of the placement

procedure. Because nets play a critical role in analog circuits due to parasitic ef-

fects, crosstalk, etc., minimum-Steiner-tree-based global routing is developed. The

estimation of net-length is critical for the placement and the global routing. The

choice of a suitable net-length estimator is actually a tradeoff between the accuracy

and the computation efficiency. In ALADIN, several typical net-length estimators,

including the half-perimeter, the center-of-mass, the complete graph, and the mini-

mum spanning tree have been developed. All these methods are based on Manhattan

distance, which inevitably degrades the reliability of the estimation. Since nets

play a critical role in analog circuits due to parasitic effects, crosstalk, etc., this

problem is addressed by developing a method based on the minimum-Steiner-tree.

Not only is the minimum-Steiner-tree method used for net-length estimation, but

it also elaborates the routing plan, taking net sensitivity and channel congestion

into account. A weighted graph is used to model the routing regions. A rectilin-

ear channel graph is formed by passing channels (or edges) through critical regions

and forming vertices at their intersections (Fig. 4.8). Finding a global route becomes

equivalent to finding an optimal subtree (the minimum-Steiner-tree) in the routing

pin graph that spans the terminal vertices. A Dijksta shortest path algorithm [70] is

applied to solve this minimum-Steiner- tree problem.

A technique of simultaneous execution between the placement and global rout-

ing has been developed in ALADIN, where the global routing is executed for each

intermediate placement solutions. It makes better search results without losing the

solvability of the problem. This global-routing-driven placement strategy is espe-

cially effective for the analog layout designs, where the number of nets is relatively

small but with complex constraints. A potential problem in the traditional placement

and global routing procedures is whether the estimated channel width is accurate.

So a postprocessing procedure, such as compaction, is required. However, a dif-

ferent strategy is used in ALADIN, where the placement phase is followed by

a compaction-based constructive detailed routing phase that automatically mini-

mizes the channel space. The width of channels need not be considered during

the placement except for the channel congestion to avoid overburdened channels.

The congestion degree of a channel is represented by the number of the passed

nets in this channel. It is taken as a weight in the weighted graph of the global

routing model, apart from the channel length. The Dijksta shortest path algorithm

optimizes the routing paths and finds the one that is balanced and the shortest. In this

way, the conventional problems of routability and postprocessing are avoided. The

global routing is integrated into the placement procedure to improve the accuracy

of the routing path estimation . The compaction-based constructive detailed routing

completes the final layout based on the output from the placement procedure. In the

detailed routing phase, an initial preprocessing step is applied to determine the order

of the wiring. This preprocessing is heuristic and starts from symmetric modules

and more central modules. After ordering, for each module, the interconnections

within the module are first wired densely around the module boundary using a ring

router [71]. Then, this dense module is compacted toward others according to the

182 G. Dündar and A. Unutulmaz

position relationship extracted from the placement solution. The interconnections

between the compacting module and the reference module are routed within a rela-

tively small scope using a modified maze router [71]. In this way, the whole layout

area remains as small as possible because the compaction can assure high density.

Moreover, no estimation of routing area is needed and the problem of routability

can be solved during each compaction step.

The concept of symmetric routing was applied to net bundles, which may occur

both in digital and in analog designs in [72]. Previous discussions on differential

capacitance in net bundles was limited to digital design and consisted of simple

Miller effect-based approximations. In [72], the net length difference due to corners

in the routing of bundles is discussed. Furthermore, the slightly different effect of

the aggressor on each individual net in the bundle is investigated. The methodology

presented tries to minimize these effects by proper choice of the routing area. If this

is still not enough to balance the nets, extra routing paths and adjustment sections

are added.

In [73] and [74], a two-step routing strategy is suggested. A channel intersection

graph model is employed to represent the global routing structure such as in Fig. 4.8;

thus, a routable layout region is confined to intersection regions of the modules. The

routing model employed is also coherent with the slicing floorplanning model used

for placement.

Routing connections of the modules are projected on the enclosing routing chan-

nel as the first step of routing. The problem of global routing then reduces to

connecting the points on the intersection grid of the same node. An iterative maze

routing algorithm is employed for global routing. The implemented algorithm is

sequential; one connection is routed in a single iteration. Exploration of the maze

router is based on backtracking algorithm, so that all possible routing solutions are

explored. Although backtracking is very time-consuming, most of the branches that

exceed performance bounds are eliminated during routing. Physical routing is not

finished at this point but, it is possible to predict node-to-node and node-to-ground

capacitances using global routing information. Thus, it is possible to calculate the

effect of each routing option on the performance using predicted capacitances and

sensitivity information. Minimum performance degradation is allowed for all itera-

tions of the maze router.

The next step of routing is local routing, where the global routing information

is used to generate the actual physical routing. Routing information registered on

the intersection graph is mapped onto channels that are located between or beside

the modules. The results of mapping the intersection graph to the channel indicate

directions in which routing should be performed. The channel devoted for routing is

generated through four basic operations. These operations produce a channel route

plan clearly identifying the structure of detailed routing. A connection is inserted

into the channel via a “push” operation, while it is propagated to the next connec-

tion point by “propagate,” redirected by “peak,” and directed out permanently by

“pop.” Routing ends when all of the connections of the same label are connected.

A refinement step is run over the resulting plan to reduce transitions between routing

levels, producing a smoother routing.

4 Routing Analog Circuits 183

One more step is necessary to produce final routing. The final routing step used

to complete routing employs switchbox routing scheme to physically produce rout-

ing. Switchboxes are inserted at each position of the channel where a level transition

occurs. Given the node route depths and route directions, switchboxes generate the

detailed routing of the channel. Space between the switchboxes is simply filled

with connecting wires. Combining all switchboxes and interconnections between

the switchboxes, results in complete layout of the channel. Similar to the optimiza-

tion method utilized in global routing, local routing also uses a backtracking-based

exhaustive algorithm. Possible switchbox configurations are enumerated to achieve

coupling information. Note that a typical switchbox does not exceed a size of

3-by-3; thus, computation time is not a critical criterion for this step.

4.5.6 Template Based Approaches

Many layout tools do not generate the layout by themselves, but they use the

information provided by the user. This information may be in terms of a sample

layout or may be coded in a specific layout language. Although this approach may

seem to be much easier and much more primitive compared to the previously dis-

cussed routers, it has many applications. The general reluctance of analog designers

toward using automatic layout generation tools is because they are skeptical about

their success/reliability and they would like to have full control over the layout gen-

eration process. They would prefer the layout tool to be an assistant to them rather

than producing the layout itself. Thus, generating a template for the layout is quite

a good solution for them. Furthermore, in many cases, a designer may desire to

port a layout created in one technology to another similar technology. The designer

may also want to make an incremental change in the design after the layout, while

remaining in the same technology. Automatically generating the layout from scratch

for these problems is not only costly, but may also create inferior results. Since most

layout generators contain probabilistic components, the generated layouts from the

same circuit will not be the same for every run of the generator. Thus, when the de-

signer has a successful layout with all the parasitics estimated, he/she will not want

the tool to create a new layout from scratch, but will want an update of an exist-

ing design. In these cases, generation of a layout from a template with preextracted

parasitics will be much more desirable.

One of the earliest proposals for such a layout generation approach was in [75].

This approach uses a sample layout, the template, to graphically capture an expert’s

knowledge of analog device placement and routing for a given module type. To gen-

erate a module, one supplies the required electrical parameters for each device and

a geometrical constraint on the module’s shape e.g., a desired aspect ratio. Using

exhaustive floorplan area optimization techniques, the tool then determines the opti-

mum shape of each device to satisfy the user’s geometrical constraint. Subsequently,

the layout is generated by transforming (via compaction) the template into a mod-

ule, substituting the devices in the template by newly generated devices with the

184 G. Dündar and A. Unutulmaz

user-supplied electrical parameters and the determined geometrical shapes. This

technique produces good quality layout in a reasonable amount of time, by utilizing

the expert designer knowledge embedded in the template and by taking analog spe-

cific features such as device matching and merging into account during the layout

transformation phase. The routing in the template remains intact while the modules

are interchanged with the desired ones. The only job of the router, if one may call

it so, is to stretch or compact the interconnections according to the new module

sizes.

The template may also be described with a layout language, such as BALLISTIC

[76]. Layouts represented with this language can be transported across technolo-

gies easily as well as fitting into various aspect ratios. Interconnections are also

represented by a wiring command, which is relative just like the placement com-

mands. The interconnection is described via the layers utilized and the breakpoints

in the wire. A few hundred lines of code are enough for a medium complexity ana-

log cell. This code is then translated into the native layout code of a commercial

design tool.

Another language proposed in this manner (CAIRO) is composed of a doc-

umented superset of C functions [77, 78] rather than a specific language. Then,

this code can be compiled to generate the layout. The routing functions allow

relative routing description using predefined reference points. This results in a

shape-independent description of the routing.

The authors of [79, 80] propose a template-based approach for retargeting. The

proposed retargeting methodology relies on the previous existence of a block netlist,

layout templates for the block at hand, and, optionally, some tuning strategies in the

form of design constraints for such blocks. When parameterizing complex layout

cells, factors such as regularity, density, and symmetries are kept during the retar-

geting process. This is achieved by relying on a deep hierarchical decomposition

and a careful cell planning. Parameterized layout templates are first built for sin-

gle devices and small numbers of them (i.e., a set of matching transistors). These

basic structures are used to build more complex parameterized subcells, proceed-

ing up the hierarchy until the layout template for the objective block is obtained.

During this constructive process, much attention is paid to the complete parame-

terization of cells, relative positions and interconnections, so that, big changes in

device sizes can easily be accommodated. Parameterization of the interconnections

does not only consider the design rules but also the current densities that must be

carried. The parameterized layout templates have been built using a commercial tool

for easier acceptance by analog designers.

In LAYGEN [81, 82], the router uses the placement solution and the template’s

nets to produce the desired routing. The algorithm uses a two-stage generation pro-

cess; first, it adjusts the template routing to the newly created placement, then the

optimizer attempts to adapt the routing to the particular layout representation. The

new placement yields new pin positions so the template routing paths must be ad-

justed to the new pin locations. Each net is divided in a set of wires, each one

connecting two and only two pins. The adjustment procedure consists of the fol-

lowing: First, the template paths are scaled, then moved to set the wire start point

4 Routing Analog Circuits 185

on the new start-pin position and, finally the wire stop position is set to the new

stop-pin position to ensure connectivity. The adapted routing is then used as a start

point for the evolutionary optimizer. The optimizer uses the information in the new

placement and the adapted nets to minimize the cost function that incorporates de-

sign rule violations, connectivity requirements, wire length to increase area usage

and to decrease parasitic capacitances, and minimum distance between nets to sep-

arate nets as far as possible reducing the crosstalk. The genetic optimizer encodes

the routing information by assigning one gene to each adapted net. In this way,

crossover generates children that present a combination of their parents’ nets, and

mutation is performed in each net. The advantage of such a complex genetic encod-

ing is that the mutation operators can be designed to be more “intelligent” as they

use more information. It is also interesting to note that the validations required in

routing makes it more complex and computationally more expensive than placement

for LAYGEN.

4.5.6.1 A Simple Template Script

Simplicity and reusability are the main aims of a template. A simple template script,

called layout description script (LDS), will be described in this subsection. The

simplicity of this script comes from its representation, where absolute or relative

positions of layout elements are defined as simple equations. These layout elements

may be modules (transistors, capacitors, etc.), wires, or even wells. Top, bottom,

right, and left boundaries of these elements are used in the description. For instance,

the LDS code for symbolic layout in Figs. 4.22a and 4.22c are defined in Figs. 4.22b

and 4.22d, respectively. Note that the description does not include any redundant

information and a code line includes only horizontal or vertical information and

not both.

LDS is needed to be extracted from a placement before the script and the di-

mensions of the layout elements are used to synthesize new layout instances. Using

vertical and horizontal constraint graphs, LDS code may be easily extracted. For

the horizontal placement in Fig. 4.23a, the horizontal constraint graph in Fig. 4.23d

may be used to automatically extract the code. This graph has an edge if the right

boundary of an element sees the left boundary of another element. Similarly, edges

of the vertical constraint graph are between the top and the bottom boundaries of the

layout elements. The LDS code corresponding to Fig. 4.23d is given in Fig. 4.23f.

However, adding this code into the template will not suffice to synthesize over-

lap free layouts, due to the fact that the horizontal and the vertical information are

coded separately. In Fig. 4.23b, a layout synthesized from the code of Fig. 4.23f is

shown. Here, the width of b and the height of e are enlarged and the resulting layout

has overlapping elements. A way to prevent this overlap is to combine some verti-

cal information with the horizontal information. The constraint graph in Fig. 4.23e

guarantees nonoverlapping layouts for any size of elements. Such a graph is con-

structed by adding edges from the right boundary of an element to the left boundary

of the elements that have higher x positions and have no other elements in between.

186 G. Dündar and A. Unutulmaz

b is after a and a is aligned with b LDS code for (a)

d is above c LDS code for (c)

Fig. 4.22 LDS descriptions for the layouts in (a) and (c) are listed in (b) and (d), respectively

Corresponding LDS code and placement are given in Figs. 4.23g and 4.23c, respec-

tively; note that the overhead due to the extra edges is not much because of the fact

that edges are only added between the elements that may overlap. The extra space

after the sizing is removed by applying a compaction. This way, the template does

not need to contain any absolute position and the sizes of the modules may be freely

updated. Although such a template handles overlaps, it does not handle design rules.

For instance, there must be a spacing between wires of different nets if they are in

the same layer (constraints for each layer are extracted separately); this space de-

pends on the manufacturing technology. However, it should not be added between

the wires in the same net. Thus, during the extraction of constraints only some of

the elements are considered, such that these elements are in the same layer but they

belong to different nets.

In Fig. 4.24a, three wires are shown in the first metal layer and they are con-

nected. Extracted LDS code for the W2 is in Fig. 4.24e. This code takes care of

changes on the width of W2, and the wire W3 must be after wire W1. Due to the

fact that W3 must be after W1, the flexibility of the template is limited, where as

the structure in Fig. 4.24b is dynamic and does not restrict the wires horizontally as

shown in Figs. 4.24c, d. The structure in Fig. 4.24b uses four wires. LDS codes for

W2 and W4 are in Fig. 4.24f. The constraints in these LDS codes may be solved

with an LP solver.

4 Routing Analog Circuits 187

b

a

d

c
e

a

Initial

b

b

a

d

c

e

Overlap

b

a

d

c

e

c

No overlap

a

b

c

d

e

s t

d

Simple Graph

a

b

c

d

e

s t

e

Extended Graph

LDS for (d) LDS for (e)

Fig. 4.23 Resizing affects horizontal and vertical constraints: After resizing, placement in (a) may

result in an overlapping layout as in (b) if the horizontal graph in (d) and the corresponding LDS

in (f) are used. Overlap in the layout is prevented in (c) when the horizontal graph in (e) and the

corresponding LDS in (g) are used

Through LDS, a template is coded for the OPAMP in Fig. 4.25a. Using this tem-

plate, the sample layout in Fig. 4.25b is synthesized. The same template is also used

to synthesize the layout in Fig. 4.25c, however, the dimension of the M3–M4 tran-

sistor pair is enlarged. Note that the path between the M3–M4 pair and the M1–M2

pair is coded as the path in Fig. 4.24b and it is dynamic. Similarly, the same template

is used to synthesize the layout in Fig. 4.25d. In this sample, the dimensions of the

transistors, M6 and M7, are narrowed. For all these cases, the resulting layouts are

free of overlaps and they do not violate the specified design rules such as minimum

width, spacing, etc.

188 G. Dündar and A. Unutulmaz

W1

W2

W3

a

Wires

b

W1

W2

W4

W3

left(W3) = left(W4)

left(W1) = left(W2)

right(W2) = right(W3)

Dynamic

W1

W2

W4

W3

c

Right

W1

W2

W4

W3

d

Left

LDS of (a) LDS of (b)

Fig. 4.24 Coding paths in LDS: path in (a) and the dynamic path in (b) are described in LDS in

(e) and (f), respectively; orientation of a dynamic path may change as depicted in (c) and (d)

4 Routing Analog Circuits 189

VDD

GND

Vbias

Vin1 Vin2

Vout

M1 M2

M3 M4

M12

M11

M9

M7

M6M10M5

C1

a

Two Stage Compansated OPAMP

Synthesized Layout (LDS is compiled.) M3-M4 pair is enlarged

M6 and M7 are narrowed

Fig. 4.25 LDS code for the OPAMP of (a) is used to synthesize the layouts in (b), (c), and (d)

190 G. Dündar and A. Unutulmaz

4.5.7 Other Routing Strategies

One method utilized in digital routing to overcome the wire congestion problems

and address the net ordering effects has been probabilistic routing. Although the

number of connections in analog routing is much fewer, this approach can be gen-

eralized to include analog routing constraints as well. [83] proposes the assignment

of global routes to routing areas between modules. Then, a resistor array is cre-

ated where each resistor represents a possible routing area for a net. The value

of the resistor is assigned according to the probability of routing in that channel

which depends not only on geometrical information, but also on some constraint

information. The resistor array is then simulated and resistors corresponding to low

probabilities are removed iteratively from the network, updating the probability val-

ues at each iteration, thus completing the assignment. [84] does not use a resistor

array, but a heuristic, where the probabilities are converted to priorities for routing.

Furthermore, a probability is assigned to each grid point rather than to a routing area.

However, the probability formulation is quite detailed and calculates analog con-

straints including symmetry.

The analog router described in [85] implements x–y routing that utilizes an

efficient scheme for generating candidate routes for each net. A single-layer routing

option may also be used. These candidate routes are then simultaneously consid-

ered for compatibility, and finally a set of compatible routes is chosen. This routing

method has been used before for multichip modules and was also extended to dig-

ital routing. In x–y routing, two adjacent metal layers are routed simultaneously.

All horizontal segments are routed on one layer, with all vertical ones on the other.

Adjacent segments on different layers are connected through stacked vias. Routing

in each layer pair is done in phases, each phase generating candidate routes with

different numbers of vias. The number of phases is at the designer’s discretion, as

are the types of candidate routes the designer wishes to generate. The algorithm dis-

cussed in [85] assumes all nets are two-terminal nets. But multiterminal nets may

also be successfully routed. For any t-terminal net, a minimal spanning tree is deter-

mined consisting of t�1 edges. Each edge is considered as a two-terminal net during

routing. Most of the candidate routes are generated within the bounding box of the

net. The bounding box is the smallest rectilinear region containing all terminals of

the net. Once the candidate routes are generated in a particular phase, a compatibil-

ity graph G.V; E/ is constructed. Each vertex in the graph represents a candidate

route, and an edge placed between two candidate routes signifies that the two routes

are incompatible and cannot be selected together in the final routing solution. Once

the graph is constructed, it is reduced such that no edges remain in the graph. The

resulting graph called the reduced compatibility graph (RCG) represents the set of

vertices (or candidate routes) that are compatible with each other. A candidate may

be chosen from the RCG for each net under consideration. The constraints on the

parasitics and on the layout geometry and symmetry are a part of user specifications

and apply to the nets specified. Various other constraints such as specifying wire

widths, confining certain nets to specific layers, defining keep- out areas, specifying

parallel distances, and coupled lengths between two segments as a function of their

4 Routing Analog Circuits 191

widths, etc., can also be included by the designer. These are accounted for during the

routing process to obtain optimized routing solutions respecting given constraints.

This routing methodology based on candidate generation has an inherent global ap-

proach and tries to satisfy all the constraints simultaneously for all nets considered

together instead of using an incremental net-by-net approach, which may be unable

to route all nets respecting all the constraints as routing congestion increases. It was

also shown that x–y routing can be extended to 45ı routing as well [86].

4.6 Specialized Analog Routers

There are many applications in analog design, which may require entirely different

or enhanced routers compared to those discussed above. Two such applications,

namely, RF circuits and analog arrays are briefly illustrated below.

4.6.1 Routing for RF Circuits

The design of RF circuits has also been addressed recently in many design au-

tomation systems for analog integrated circuits. However, specific layout generation

technologies in this respect have been rather few. CYCLONE [87,88] is a tool for the

automatic design of VCO circuits. It proposes special module generation techniques,

but the placement and routing are done by LAYLA. It is thus implicitly assumed that

no special routing approaches are necessary for routing RF circuits.

On the other hand, CORAL [89] is a routing tool implicitly for RF circuits, and

it adopts area routing because of the importance of routing parasitics. The A* algo-

rithm is used for maze routing. Parasitic effects such as inductive and capacitive

crosstalk are modeled in terms of the degradation induced on the characteristic

impedance Z0 and loss. Alternatively, at low frequencies discrete (R,C,L) parasitics

can be used. Analytical models of all considered parasitics are obtained by fitting ap-

propriate mathematical expressions to data obtained from 2-D or 3-D field solvers.

The routing is performed in two phases. The first phase is constraint-based routing

as described earlier. Layout synthesis of RF and microwave circuits almost always

requires that the dimensions of some interconnect lines be fixed. However, length

constraints on interconnect cannot be effectively enforced during this phase. Hence,

the routing or constructive phase is followed by a refinement phase. The refinement

consists of progressive expansion of all nets simultaneously thus allowing enforce-

ment of all net constraints, while no new violations are created on the remaining

parasitic constraints.

192 G. Dündar and A. Unutulmaz

4.6.2 Routing for Analog Arrays

An important class of layout generation tasks has not been discussed yet. Frequently,

in analog blocks a highly regular architecture of basic cells is used. Examples of this

are flash type A/D converters, Cellular Neural Networks, or current-steering D/A

converters. Typically, the regular layout structures used in analog blocks contain an

array of unit cells (potentially with slightly different versions), which process one or

more input signals in a parallel way and steer one or more output signals. Although

routing automation for analog arrays was first mentioned in [90], this approach does

not go far beyond maze routing with genetic optimization.

A real router for array style analog design is Mondriaan [91, 92]. In Mondriaan,

the connections in and out of the array or internal to the array are realized through

routing channels across or between the cells. The connectivity for ground, biasing or

power supply connections is easily realized through abutment. Cells can be flipped

upside down or sideways to share lines by abutment. Thus, the offered placement

and routing functionality is much more powerful than the stretch and tile approach

and covers the requirements of a large variety of analog circuits. Note that the place-

ment and routing of field programmable gate arrays (FPGA) somewhat resembles

this approach. An essential difference is that in FPGA routing, the majority of the

connections are internal to the logic array, while in analog applications the majority

of the connections are to pins at the edge of the matrix. Furthermore, the placement

and routing of FPGAs are faced with a fixed number of wires and blocks and the

critical delay (caused by routing) is to be minimized. This is not the case in ana-

log applications: the number of wires is variable, but should be minimized, and

the performance depends on equal capacitance, resistance or matching rather than

the critical delay. Mondriaan generates a symbolic placement and routing from the

floorplan, netlist, and symbolic basic cell. To accomplish this, a search algorithm

is used to propagate the placement and connectivity information across the array.

First, the number of vertical wires for every column is determined (if not specified

by the user). Next, for all fixed IO pins free vertical wires are selected and the net

of the wire is updated. If the cell connected to this net is not placed, it is placed in a

free array slot. When all fixed IO pins have been connected, and all cells have been

placed, the cells can be scanned columnwise, to propagate their connectivity. As a

last step, the number of horizontal wires is determined (if it is not given by the user).

This is done by counting the number of vertical wires, which have to be connected.

Then the wires are scanned and free horizontal wires are selected to connect the ver-

tical wires. Of course if no vertical wires need to be connected, no horizontal wires

are created. The tool also contains special bus and tree generators.

The routing problem for field programmable analog arrays (FPAA) was men-

tioned as early as 1999 in [93]. The router FAAR makes connections between cells

on a local and global level. The routing scenario is different from Mondriaan in

that the number of switches is limited, thereby limiting the possible number of con-

nections. The main properties of FPAA routers are as follows: The analog routers

discussed so far are specifically targeted for full-custom designs. FPAA routing is

more combinatorial in nature, and hence work needs to be done to extend ASIC

4 Routing Analog Circuits 193

routing heuristics for FPAAs. More routing constraints will have to be incorporated

since routing resources are fixed in number and preplaced, and there are constraints

on permissible connections. Classical analog channel routing algorithms are not

very suitable for array-based FPAAs because of the difficult nature of subdivid-

ing the routing problem into independent channels. FPGA routers cannot be used

in their current form since they are targeted for routing on typical FPGA architec-

tures. The FPAA routing considerations are different from the typical FPGA routing

considerations. Graph-based FPGA routers use minimum-rectilinear-Steiner-tree

(MRST) heuristics; this is not quite necessary in most FPAA cases because of the

inability to have bends in a route owing to the single-segment architecture. Some

FPGA routers can handle nonsegmented FPGA architectures or FPGA architec-

tures with various types of segmentation distributions, and different switch box

architectures. However, they do not describe completely the target FPAA routing

architecture. Several modifications need to be made to handle a typical connection

within switchbox architectures, as well as single-segment routing architecture. The

issue of performance degradation, which is critical in FPAA routing is not addressed

by any FPGA router. FAAR accepts as input a netlist of placed CABs (Computa-

tional Analog Block) and IO cells, and the parasitic bound for each net that limits

the number of switches used. This bound keeps the performance degradation within

acceptable limits. By modifying the architectural parameters including size of the

CAB array, number of tracks per horizontal channel and vertical channel, FAAR

may be used to route for array-based architectures. The following four subproblems

can be identified to simplify the explanation of the routing problem in FPAAs:

1. Routing between two terminals of a net: The problem is to find the shortest path

between two terminals of a net where the distance is defined by the number of

routing resources required. There are typically four possible alternative routes

for a source and destination terminal pair using the allowed connections:

a. Using the local interconnect to make a connection between the terminals with-

out utilizing any global wires.

b. Using one global wire if it is an allowed connection for both terminals.

c. Using two global wires (one horizontal and one vertical) if the terminals can-

not share the same wire.

d. Using three global wires, two horizontal and one vertical (or vice versa) if

neither terminal can make a connection to its allowed horizontal (or vertical)

wire because it was already used by another net.

2. Routing multiterminal nets: The problem is to find a minimum-length route be-

tween all terminals of a given net. Each net has one source terminal (output

terminal of a CAB or IO cell) and multiple destination terminals (input terminals

of CABs or IO cells). A multiterminal net can be viewed as a set of two-terminal

nets, one two-terminal net between the source terminal and each of the destina-

tion terminals, and these two-terminal nets can be routed sequentially. All local

connections are completed first and then the unconnected terminals are routed

using global wires. Given a partial multiterminal net-route, sharing should be

maximized and as few additional routing resources as possible should be used.

194 G. Dündar and A. Unutulmaz

3. Routing multiple nets: The problem here is to find satisfactory routes for several

nets simultaneously. This is the compatibility problem, and it is NP-complete.

However, FAAR uses sequential routing and this problem is not addressed.

4. Performance constrained FPAA routing: The main performance degrading para-

sitics are identified as the number of switches (which bring additional resistance

and capacitance to the corresponding net) and the number of net crossings (which

bring crosstalk). After each net is routed, its parasitic is checked for violation of

the bound. If the net’s parasitic bound is violated, the net fails to keep its per-

formance degradation within acceptable limits, and the net is ripped-up and the

routing is re-tried.

When routing a net, FAAR initially makes all possible connections using local

interconnect. FAAR then sequentially routes each unrouted destination terminal to

the source terminal using global interconnect. Each two-terminal route is added to

the existing partial net-route. As it builds the net-route, FAAR tries to maximize

reuse of the routing resources in the partial net-route. Every routing resource used

by a net is then blocked from future use.

To achieve high-performance, channel segmentation and buffer insertion are pro-

posed in [94]. These are actually ideas borrowed from FPGA design. Also, the

combined application of buffer insertion and segmentation will yield more optimal

results in terms of delay matching. Another interesting suggestion for better area

usage, and thus more optimal routing is hexagonal structures and reconfigurable

CABs [95]. The CABs in this example are all digitally configurable gm-C filters.

Thus, every CAB can be configured on location such that the necessary intercon-

nections are minimized.

A more recent approach [96], on the other hand, uses a simulator in the loop

approach, where the effects of the interconnect are included in the CAB simulation

and the CAB is configured accordingly. In the extreme case, the parasitics of the

interconnect can even be useful as they can form part of a filter.

4.7 Manufacturability and Yield Issues in Routing

The goal of a performance-driven routing tool is to route an analog circuit such that

the performance degradation caused by layout parasitics remains within the speci-

fication margins imposed by the designer. For a given set of circuit specifications,

several valid routing solutions can be found. Among these, the choice should be

toward those solutions with higher yield and easier manufacturability and testabil-

ity. Several algorithms have been proposed to increase yield in routing. However,

these have been only for digital channels. One of the first studies oriented toward

yield maximization in analog routing is [97]. Sensitivity analysis and line expansion

routing are at the core of the performance-driven router. If the performance-driven

routing phase is successful and there is enough performance margin left, a yield

and testability optimization loop is entered. During this loop, nets are removed

and rerouted until the available performance margin is consumed or no further

yield/testability improvement is found. During rerouting of a net, the geometry of all

4 Routing Analog Circuits 195

other nets is known. Therefore, the additional performance degradation introduced

by a partial path can be computed exactly, and if it exceeds the available perfor-

mance margin, the partial path can be removed from the search heap. During the

search, the expected number of bridging faults is calculated and these are added to

the cost, thus ensuring that these will be minimized while searching for the best

route. The bridging faults modeled are of two categories; dielectric pinholes and

photolithographic defects. Dielectric pinholes are defects, which often occur in chip

insulators. Their occurrence can result in a short between wires at different routing

levels. The critical area associated with these defects is the overlap region between

two wires. Photolithographic defects can cause shorts between wires on the same

routing level. The expected number of faults for two parallel conductors, separated

by a narrow slit can be calculated by combining the critical area in function of de-

fect size and a defect size distribution. This approach will result in higher yield, but

this measure is incapable of distinguishing between testable designs. Power supply

current monitoring technique was assumed to be the testing methodology for [97].

To this end, the distribution currents of the ‘good’ circuit were obtained via Monte

Carlo simulation. All faulty circuits were also simulated and their currents were ob-

tained for all cases and the configuration with the highest separation was selected.

The problem of electromigration was addressed by developing a current-driven

router in [98, 99] and further extended in [100] and [101]. The current in each

path was determined by simulation, either based on input patterns provided by the

user, or based on Monte Carlo type simulation. The wire widths were determined

accordingly. Connection of multiterminal nets is done in a Steiner-tree fashion.

However, a basic Steiner tree approach is not enough since the wire widths may

be different for each section of the wire. A greedy method was utilized in which a

Steiner point is constructed from three terminals. The currents from two terminals

are also summed at this Steiner point and the width of the wire segment is calculated.

A new Steiner point and a new current is found by combining the previous point with

the next two terminals to be routed. The algorithm continues in this fashion until the

whole tree is constructed. Finally, a current density simulator was developed to ver-

ify the layout. A complementary approach would be based on a terminal tree, which

defines a detailed terminal-to-terminal routing sequence with known terminal cur-

rents. A current-driven detailed router must solve the problem of altering current

strengths in a prior routed subnet whenever a new terminal is linked to it. To allow

for a current calculation based on Kirchhoff’s current laws prior to detailed rout-

ing, at least the sequence of all terminals to be connected must be known. Added

detailed routing connections which directly link a new (not yet connected) terminal

with its respective target terminal will then have no influence on current strengths

calculated in the prior routed subnet (with the calculation based on all terminals).

Hence, the most coarse grain approach possible for current-driven routing without

postrouting layout modification is based on a predefined terminal-to-terminal rout-

ing sequence. The integration of this methodology within a commercial layout tool

was also demonstrated.

The above algorithms calculate the wire widths after constructing a terminal

tree that obtains a minimum total length, and later minimize the total area of the

196 G. Dündar and A. Unutulmaz

routing net. Another approach would be to construct the terminal tree considering

area minimization first [102]. Then, simulated annealing can be applied, using the

terminal tree obtained above as the initial solution. The terminal tree will be con-

structed in a bottom-up manner from the leaf nodes to the root node. At each stage,

the terminal with minimum current value is selected, and its nearest neighbor is

found. Then, the pair of terminals is added into the terminal tree. While generating

a terminal pair, the width of the wire between the two terminals is determined. The

last terminal added into the terminal tree will be the root node.

4.8 Conclusions

This chapter has given an overview of routing techniques for analog layout syn-

thesis. Routers for full-custom analog circuits have been discussed based on the

cost functions they are trying to minimize. Furthermore, various data represen-

tation strategies have been presented, and their suitability for routing has been

explored. As a second routing problem, template-based routing has been dealt with.

A new approach for this routing problem has been presented. Finally, routers for

RF circuits and analog arrays have been discussed in addition to manufacturing and

yield issues.

In our opinion, the problem of routing analog circuits is still an open problem.

As mentioned in the very beginning of this chapter, the performance of routing

is directly affected by previous layout steps, such as placement, partitioning, and

module generation. One research direction would be to put more effort into one-

step layout generation rather than the conventional sequential approach. Another

open problem is the routing of RF circuits, where every interconnect is actually a

device. These interconnects must be carefully designed and modeled in the final

layout. As the technology moves to deeper submicron dimensions, design rules get

more complicated. Furthermore, manufacturability and yield of a circuit become

very important issues. Simple improvements over well-known routing approaches

will not be enough to perform analog routing in such advanced technologies. New

algorithms will have to be developed. Finally, template-based layout generation,

however primitive it may seem as an idea, has many applications and will probably

become a commonly used layout generation approach in the near future. The same

problems, namely, routing at RF frequencies, or yield aware routing will still be

valid for template-based approaches as well.

References

1. C.Y. Lee. An algorithm for path connection and its applications. Electronic Computers, IRE

Transactions on, EC-10:346–365, 1961
2. E.F. Moore. The shortest path through a maze. In Proceedings of the International Symposium

on the Theory of Switching, pages 285–292, 1959

4 Routing Analog Circuits 197

3. S. Akers. Design Automation of Digital Systems: Theory and Techniques, volume 1, chapter 6.

Prentice-Hall, NJ, 1972

4. S. Akers. A modification of Lee’s path connection algorithm. Electronic Computers, IEEE

Transactions on, EC-16(2):97–98, 1967

5. F.O. Hadlock. A shortest path algorithm for grid graphs. Networks, 7(4):323–334, 1977

6. P.E. Hart, N.J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of mini-

mum paths in graphs. Systems Science and Cybernetics, IEEE Transactions on, 4(2):100–107,

1968

7. J. Soukup. Fast maze router. In Proceedings of Design Automation Conference, pages

100–102, 1978

8. K. Mikami and K. Tabuchi. A computer program for optimal routing of printed circuit con-

nectors. In IFIPS Proceedings, volume H47, pages 1475–1478, 1968

9. D.W. Hightower. A solution to line routing problems on the continuous plane. In Proceedings

of Design Automation Conference, pages 1–24, 1969

10. C.J. Alpert, D.P. Mehta, and S.S. Sapatnekar. Handbook of algorithms for physical design

automation. CRC Press, 2009

11. A. Hashimoto and J. Stevens. Wire routing by optimizing channel assignment within large

apertures. In Proceedings of Design Automation Conference, pages 155–169, 1971

12. D.N. Deutsch. A “Dogleg” channel router. In Proceedings of Design Automation Conference,

pages 425–433, 1976

13. B.W. Kernighan, D.G. Schweikert, and G. Persky. An optimum channel-routing algorithm

for polycell layouts of integrated circuits. In Proceedings of Design Automation Conference,

pages 57–66, 1988

14. R.L. Rivest and C.M. Fiduccia. A “GGreedy” channel router. In Proceedings of Design

Automation Conference, pages 256–262, 1988

15. S. Gueron and R. Tessler. The fermat-steiner problem. The American Mathematical Monthly,

109:443–451, 2002

16. F.K. Hwang. On steiner minimal trees with rectilinear distance. SIAM J. Appl. Math., 30:

37–58, 1976

17. S. Futagami, I. Shirakawa and H. Ozaki. An automatic routing system for single-layer printed

wiring boards. Circuits and Systems, IEEE Transactions on, CAS-29(1):46–51, 1982

18. International Symposium on Physical Design 2007. http://www.sigda.org/ispd2007/rcontest/

19. E. Malavasi and A. Sangiovanni-Vincentelli. Area routing for analog layout. Computer-

Aided Design of Integrated Circuits and Systems, IEEE Transactions on, 12(8):1186–1197,

Aug 1993

20. J.K. Ousterhout. Corner stitching: A data-structuring technique for VLSI layout tools.

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, 3(1):

87–100, 1984

21. J.M. Cohn, D.J. Garrod, R.A. Rutenbar, and L.R. Carley. KOAN/ANAGRAM II: New

tools for device-level analog placement and routing. Solid-State Circuits, IEEE Journal of,

26(3):330–342, 1991

22. Z. Xing and R. Kao. Shortest path search using tiles and piecewise linear cost propaga-

tion. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on,

21(2):145–158, 2002

23. R.H.J.M. Otten. Automatic floorplan design. In Proceedings of Design Automation Confer-

ence, pages 261–267, 1982

24. H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani. VLSI module placement based on

rectangle-packing by the Sequence-Pair. Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on, 15(12):1518–1524, 1996

25. P.N. Guo, C.K. Cheng, and T. Yoshimura. An O-Tree representation of non-slicing floorplan

and its applications. In Proceedings of Design Automation Conference, pages 268–273, 1999

26. N. Fu, S. Nakatake, and M. Mineshima. Multi-SP: A representation with united rectangles for

analog placement and routing. In Proceedings of IEEE Computer Society Annual Symposium,

page 6, 2006

http://www.sigda.org/ispd2007/rcontest/

198 G. Dündar and A. Unutulmaz

27. S. Nakatake, K. Sakanushi, Y. Kajitani, and M. Kawakita. The channeled-BSG: A universal

floorplan for simultaneous place/route with IC applications. In Proceedings of the Interna-

tional Conference on Computer-Aided Design, pages 418–425, 1998

28. M. Mogaki, Y. Shiraishi, M. Kimura, and T. Hino. Cooperative approach to a practical analog

LSI layout system. In Proceedings of the Design Automation Conference, pages 544–549,

1993

29. D.J. Chen and B.J. Sheu. Generalised approach to automatic custom layout of analogue ICS.

IEE Proceedings of G Circuits, Devices and Systems, pages 481–490, 1992

30. E. Malavasi, M. Chilanti, and R. Guerrieri. A general router for analog layout. In Proceedings

of VLSI and Computer Peripherals, pages 5/49–5/51, 1989

31. E. Malavasi, E. Charbon, E. Felt, and A. Sangiovanni-Vincentelli. Automation of IC layout

with analog constraints. Computer-Aided Design of Integrated Circuits and Systems, IEEE

Transactions on, 15(8):923–942, 1996

32. W.H. Kao, C.Y. Lo, M. Basel, and R. Singh. Parasitic Extraction: Current state of the art and

future trends. In Proceedings of the IEEE, pages 729–739, May 2001

33. J.A. Davis and J.D. Meindl. Compact distributed RLC interconnect models-part II: Coupled

line transient expressions and peak crosstalk in multilevel networks. Electron Devices, IEEE

Transactions on, 47(11):2078–2087, Nov 2000

34. M. Mogaki, N. Kato, Y. Chikami, N. Yamada, and Y. Kobayashi. LADIES: An automatic

layout system for analog LSI’s. In Proceedings of International Conference on Computer-

Aided Design, pages 450–453, 1989

35. H. Shin and A. Sangiovanni-Vincentelli. Mighty: A “rip-up and reroute” detailed router. In

Proceedings of International Conference on Computer-Aided Design, pages 10–13, 1986

36. C.H. Séquin, H.Y. Koh and P.R. Gray. Automatic layout generation for CMOS operational

amplifiers. In Proceedings of International Conference on Computer-Aided Design, pages

548–551, 1988

37. J. Litsios, J. Rijmenants, T. Schwarz and R. Zinszner. ILAC: An automated layout tool for

analog CMOS circuits. In Proceedings of IEEE Custom Integrated Circuits Conference, pages

7.6/1–7.6/4, 1988

38. T. Schwarz, J. Rijmenants, J. Litsios and M.G.R. Degrauwe. ILAC: An automated layout tool

for analog CMOS circuits. Solid State Circuits, IEEE Journal of, 24(12):417–425, 1989

39. M. Declercq, M. Kayal, S. Piguet and B. Hochet. An interactive layout generation tool for

CMOS analog ICS. In Proceedings of International Symposium on Circuits and Systems,

volume 3, pages 2431–2434, 1988

40. M. Declercq, M. Kayal, S. Piguet and B. Hochet. Salim: A layout generation tool for analog

ICS. In Proceedings of IEEE Custom Integrated Circuits Conference, pages 7.5/1–7.5/4, 1988

41. S. Piguet, F. Rahali, M. Kayal, E. Zysman, and M. Declercq. A new routing method for full

custom analog ICS. In Proceedings of IEEE Custom Integrated Circuits Conference, pages

27.7/1–27.7/4, 1990

42. J.C. Lee, D.J. Chen and B.J. Sheu. Slam: A smart analog module layout generator for mixed

analog-digital VLSI design. In Proceedings of International Conference on Computer Design,

pages 24–27, 1989

43. S.M. Gowda J.C. Lee and B.J. Sheu. Fully automated layout generators for high-performance

analog VLSI modules. In Proceedings of IEEE Region 10 International Conference, pages

893–896, 1989

44. Z.M. Lin. Global routing techniques for an automatic mixed analog/digital IC layout com-

piler. In IEEE Proceedings of Southeastcon, volume 1, pages 392–396, 1991

45. M.F. Chowdhury and R.E. Massara. An expert system for general purpose analogue layout

synthesis. In Proceedings of Midwest Symposium on Circuits and Systems, volume 2, pages

1171–1174, 1990

46. M.F. Chowdhury, R.E. Massara, and H. Tang. Analogue layout synthesis based on a planning

scheme using artificial intelligence. In Proceedings of IEEE International Sympoisum on

Circuits and Systems, volume 5, pages 3094–3097, Jun 1991

4 Routing Analog Circuits 199

47. D.J. Garrod, R.A. Rutenbar, and L.R. Carley. Automatic layout of custom analog cells in

ANAGRAM. In Proceedings of International Conference on Computer-Aided Design, pages

544–547, 1988

48. R.L. Rivest, T.H. Cormen and C.E. Leiserson. Introduction to Algorithms. MIT, MA, 1990

49. B. Basaran, R.A. Rutenbar, and L.R. Carley. Latchup-aware placement and parasitic-bounded

routing of custom analog cells. In Proceedings of International Conference on Computer-

Aided Design, pages 415–421, 1993

50. U. Choudhury and A. Sangiovanni-Vincentelli. Constraint generation for routing analog cir-

cuits. In Proceedings of Design Automation Conference, pages 561–566, 1990

51. U. Choudhury and A. Sangiovanni-Vincentelli. Use of performance sensitivities in routing

analog circuits. In Proceedings of IEEE International Symposium on Circuits and Systems,

volume 1, pages 348–351, 1990

52. U. Choudhury and A. Sangiovanni-Vincentelli. Automatic generation of parasitic constraints

for performance-constrained physical design of analog circuits. Computer-Aided Design of

Integrated Circuits and Systems, IEEE Transactions on, 12(2):208–224, 1993

53. U. Choudhury and A. Sangiovanni-Vincentelli. Constraint-based channel routing for analog

and mixed analog/digital circuits. In Proceedings of International Conference on Computer-

Aided Design, pages 198–201, 1990

54. U. Choudhury and A. Sangiovanni-Vincentelli. Constraint-based channel routing for analog

and mixed analog/digital circuits. Computer-Aided Design of Integrated Circuits and Systems,

IEEE Transactions on, 12(4):497–510, 1993

55. G. Gad-El-Karim and R.S. Gyurcsik. Generation of performance sensitivities for analog cell

layout. In Proceedings of the Design Automation Conference, pages 500–505, 1991

56. E. Malavasi, U. Choudhury, and A. Sangiovanni-Vincentelli. A routing methodology for

analog integrated circuits. In Proceedings of IEEE International Conference on Computer-

Aided Design, pages 202–205, 1990

57. N. Nilsson. Problem-Solving Methods in Artificial Intelligence. McGraw-Hill, New York,

1971

58. G.W. Clow. A global routing algorithm for general cells. In Proceedings of the Design

Automation Conference, pages 45–51, 1984

59. S. Prasitjutrakul and W.J. Kubitz. A timing-driven global router for custom chip design.

In Proceedings of IEEE International Conference on Computer-Aided Design, pages 48–51,

1990

60. R. Bayer. Symmetric binary B-trees: Data structure and maintenance algorithms. Acta Infor-

matica, 1(4):290–306, 1972

61. J.M. Cohn, D.J. Garrod, R.A. Rutenbar, and L.R. Carley. Techniques for simultaneous place-

ment and routing of custom analog cells in KOAN/ANAGRAM II. In Proceedings of IEEE

International Conference on Computer-Aided Design, pages 394–397, 1991

62. N.U.D. Gohar, P.Y.K. Cheung, and C.K. Pun. Rachana: An integrated placement and routing

approach to CMOS analog cells. In Proceedings of IEEE International Symposium on Circuits

and Systems, volume 6, pages 2981–2984, 1992

63. J.A. Prieto, J.M. Quintana, A. Rueda, and J.L. Huertas. An algorithm for the place-and-route

problem in the layout of analog circuits. In Proceedings of IEEE International Symposium on

Circuits and Systems, volume 1, pages 491–494, 1994

64. J.A. Prieto, A. Rueda, J.M. Quintana, and J.L. Huertas. A performance-driven placement

algorithm with simultaneous place&route optimization for analog IC’s. Proceedings of Euro-

pean Design and Test Conference, pages 389–394, 1997

65. Y. Kubo, S. Nakatake, Y. Kajitani, and M. Kawakita. Explicit expression and simultaneous

optimization of placement and routing for analog IC layouts. In Proceedings of Asia and

South Pacific Design Automation Conference, page 467, 2002

66. L. Zhang and Y. Jiang. Global-routing driven placement strategy in analog VLSI physical

designs. In Proceedings of IEEE International Symposium on Circuits and Systems, volume

2, pages 1239–1242, 2005

200 G. Dündar and A. Unutulmaz

67. H. Zhang, P. Karthik, H. Tang, and A. Doboli. An explorative tile-based technique for

automated constraint transformation, placement and routing of high frequency analog filters.

In Proceedings of IEEE International Symposium on Circuits and Systems, volume 6, pages

5629–5632, 2005

68. L. Zhang and U. Kleine. A novel analog layout synthesis tool. In Proceedings of the Interna-

tional Symposium on Circuits and Systems, volume 5, pages V-101–V-104, 2004

69. L. Zhang, U. Kleine, and Y. Jiang. An automated design tool for analog layouts. Very Large

Scale Integration Systems, IEEE Transactions on, 14(8):881–894, Aug 2006

70. T.E. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms (Second

ed.), section 24.3. MIT, MA, 2001

71. U. Kleine L. Zhang and M. Wolf. Automatic inner wiring for integrated analog modules. In

Proceedings of Mixed Design of Integrated Circuits and Systems, pages 109–114, 2001

72. L. Schreiner, M. Olbrich, E. Barke, and V. Meyer zu Bexten. Parsy: A parasitic symmetric

router for net bundles using module generators. In International Symposium on VLSI Design,

Automation and Test, pages 71–74, 2005

73. E. Yılmaz and G. Dündar. New layout generator for analog CMOS circuits. In European

Conference on Circuit Theory and Design, pages 36–39, 2007

74. E. Yılmaz and G. Dündar. Analog layout generator for CMOS circuits. Computer-Aided

Design of Integrated Circuits and Systems, IEEE Transactions on, 28(1):32–45, Jan 2009

75. J.D. Conway and G.G. Schrooten. An automatic layout generator for analog circuits. In

Proceedings of European Conference on Design Automation, pages 513–519, 1992

76. B.R. Owen, R. Duncan, S. Jantzi, C. Ouslis, S. Rezania, and K. Martin. BALLISTIC: An

analog layout language. In Proceedings of IEEE Custom Integrated Circuits Conference,

pages 41–44, 1995

77. M. Dessouky and M.M. Louërat. A layout approach for electrical and physical design in-

tegration of high-performance analog circuits. Proceedings of International Symposium on

Quality Electronic Design, pages 291–298, 2000

78. M. Dessouky, M.M. Louërat, and J. Porte. Layout-oriented synthesis of high performance

analog circuits. In Proceedings of Conference on Design, Automation and Test in Europe,

pages 53–57, 2000

79. R. Castro-Lopez, F.V. Fernandez, M. Delgado-Restituto, F. Medeiro, and A. Rodriguez-

Vazquez. Creating flexible analogue IP blocks. In Proceedings of Solid-State Circuits

Conference, pages 437–440, 2001

80. R. Castro-Lopez, O. Guerra, E. Roca, and F.V. Fernandez. An integrated layout-synthesis

approach for analog ICS. Computer-Aided Design of Integrated Circuits and Systems, IEEE

Transactions on, 27(7):1179–1189, 2008

81. N. Lourenco and N. Horta. LAYGEN - An evolutionary approach to automatic analog IC

layout generation. In Proceedings of IEEE International Conference on Electronics, Circuits

and Systems, pages 1–4, 2005

82. N. Lourengo, M. Vianello, J. Guilherme, and N. Horta. LAYGEN - Automatic layout gener-

ation of analog ICS from hierarchical template descriptions. In Research in Microelectronics

and Electronics, pages 213–216, 2006

83. K. Okada, H. Onodea, and K. Tamaru. A global routing algorithm for analog circuits using

a resistor array model. In Proceedings of IEEE International Symposium on Circuits and

Systems, volume 4, pages 667–670, 1996

84. C. Du, Y. Cai, and X. Hong. A performance driven probabilistic resource allocation algorithm

for analog routers. In Midwest Symposium on Circuits and Systems, pages 730–733, 2008

85. K. Sajid, J.D. Carothers, J.J. Rodriguez, and W.T. Holman. Global routing methodology for

analog and mixed-signal layout. In Proceedings of IEEE International ASIC/SOC Conference,

pages 442–446, 2001

86. S. Kumar, J.D. Carothers, R.D. Newbould, and B.V. Krishnan. Candidate generation for 45

degree routing for mixed-signal layout. In Southwest Symposium on Mixed-Signal Design,

pages 233–236, 2003

4 Routing Analog Circuits 201

87. M. Steyaert .G. Gielen C. De Ranter, G. Van der Plas and W. Sansen. CYCLONE: Automated

design and layout of RF LC-oscillators. Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on, 21(10):1161–1170, 2002

88. C. De Ranter, B. De Muer, G. Van der Plas, P. Vancorenland, M. Steyaert, G. Gielen, and

W. Sansen. CYCLONE: Automated design and layout of RF LC-oscillators. In Proceedings

of the Design Automation Conference, pages 11–14, 2000

89. B. Donecker E. Charbon, G. Holmlund and A. Sangiovanni-Vincentelli. A performance-

driven router for RF and microwave analog circuit design. In Proceedings of IEEE Custom

Integrated Circuits Conference, pages 383–386, 1995

90. H.G. Wolf and D.A. Mlynski. A new genetic single-layer routing algorithm for analog tran-

sistor arrays. In Proceedings of IEEE International Symposium on Circuits and Systems,

volume 4, pages 655–658, 1996

91. G. Van der Plas, J. Vandenbussche, G. Gielen, and W. Sansen. Mondriaan: A tool for

automated layout synthesis of array-type analog blocks. In Proceedings of IEEE Custom

Integrated Circuits Conference, pages 485–488, 1998

92. G. Van der Plas, J. Vandenbussche, G.G.E. Gielen, and W. Sansen. A layout synthesis

methodology for array-type analog blocks. Computer-Aided Design of Integrated Circuits

and Systems, IEEE Transactions on, 21(6):645–661, 2002

93. S. Granesan and R. Vemuri. FAAR: A router for field-programmable analog arrays. In Pro-

ceedings of International Conference on VLSI Design, pages 556–563, Jan 1999

94. H. Huang, J.B. Bernstein, M. Peckerar, and Ji Luo. Combined channel segmentation

and buffer insertion for routability and performance improvement of field programmable

analog arrays. In Proceedings of IEEE International Conference on Computer Design,

pages 490–495, 2004

95. J. Becker and Y. Manoli. A new architecture of field programmable analog arrays for re-

configurable instantiation of continuous-time filters. In Proceedings of IEEE International

Conference on Field-Programmable Technology, pages 367–370, 2004

96. F. Baskaya, D.V. Anderson, and Sung Kyu Lim. Net-sensitivity-based optimization of large-

scale field-programmable analog array (FPAA) placement and routing. Circuits and Systems

II: Express Briefs, IEEE Transactions on, 56(7):565–569, 2009

97. K. Lampaert, G. Gielen, and W. Sansen. Analog routing for manufacturability. In Proceedings

of IEEE Custom Integrated Circuits Conference, pages 175–178, 1996

98. T. Adler, H. Brocke, L. Hedrich, and F. Barke. A current driven routing and verification

methodology for analog applications. In Proceedings of Design Automation Conference,

pages 385–389, 2000

99. T. Adler and E. Barke. Single step current driven routing of multiterminal signal nets for

analog applications. In Proceedings of Design, Automation and Test in Europe Conference

and Exhibition, pages 446–450, 2000

100. J. Lienig, G. Jerke, and T. Adler. Electromigration avoidance in analog circuits: two method-

ologies for current-driven routing. In Proceedings of Asia and South Pacific International

Conference on VLSI Design Automation Conference, pages 372–378, 2002

101. J. Lienig and G. Jerke. Current-driven wire planning for electromigration avoidance in analog

circuits. In Proceedings of Asia and South Pacific International Conference on VLSI Design

Automation Conference, pages 783–788, 2003

102. B. Xue and X. He. Electromigration avoidance aware net splitting algorithm in analog cir-

cuits. In International Conference on Communications, Circuits and Systems Proceedings,

volume 4, pages 2805–2808, 2006

Part III

Layout in the Design Flow

Chapter 5

Analog Layout Retargeting

Hazem Said, Mohamed Dessouky, Reem El-Adawi, Hazem Abbas,

and Hussein Shahein

Abstract This chapter focuses on analog layout process retargeting. Unlike

automatic placement and routing tools, retargeting starts with an input layout in

a given process. The main target is to conserve most of the layout physical intelli-

gence while migrating it to another given technology. This is usually achieved by

adapting existing layout compaction techniques borrowed from the digital world.

Historically, layout compaction used to rely on fast constraint-graph operations.

More recently, linear programming has been introduced to support hierarchy in ad-

dition to complex analog constraints. This chapter introduces a novel graph-based

simplex algorithm that combines the efficiency of graph-based methods together

with the generality of linear programming ones. It also allows symmetry, hierar-

chy, and cell replacement support to be integrated seamlessly without any artificial

modification of the algorithm. For simple layout constraints, the algorithm com-

plexity tends to be as linear as graph-based techniques, while for the most complex

constraints and objective function it tends to that of the simplex method.

5.1 Introduction

Driven by market needs, semiconductor fabrication houses continue to enhance

technologies toward smaller transistor feature sizes. This puts pressure on mixed-

signal design teams. From one side, they have to come up with new circuit architec-

tures that make use of such powerful technologies by pushing device characteristics

to their limits. From the other side, they have to migrate their legacy in-house

intellectual property blocks (IPs) to such new processes. Apart from the few state-of-

the-art blocks that benefit from the enhanced transistor performance, a lot of designs

are just retargeted to the new process without any major performance changes.

M. Dessouky (�)

Ain Shams University, 1 El-Sarayat St. Abbasia, Cairo 11517, Egypt

and

Mentor Graphics, 78 El Nozha St., Heliopolis, Cairo 11361, Egypt

e-mail: Mohamed Dessouky@mentor.com

H.E. Graeb (ed.), Analog Layout Synthesis: A Survey of Topological Approaches,

DOI 10.1007/978-1-4419-6932-3 5, cSpringer Science+Business Media, LLC 2011

205

Mohamed_Dessouky@mentor.com

206 H. Said et al.

On the digital side, most of the migration effort is a setup one spent in migrat-

ing the digital cell library. Digital designers are not involved during such phase.

Migrating most of digital designs is just a matter of re-running the fully-automated

design flow scripts already verified on the original design. This is not the case on

the analog side. Analog design reuse is still a mostly manual process. Due to device

characteristics change, the circuit is redesigned each time a chip is migrated to a

new technology, even to achieve the same performance of the original design. This

is a very time-consuming and resource intensive task. In fact, a lot of effort is wasted

in just retargeting these blocks to the new process without any major performance

changes. In some cases, specially on the IC component level, design migration is

driven by the sole fact that a process becomes obsolete, where all designs on such

process must be migrated to a newer one. As a result, there is an increasing demand

in redesigning functional mixed-signal designs for new processes.

New designs are mostly done manually by expert designers. Sometimes, the elec-

trical and/or physical design of those modified architectures are performed using

automatic optimization tools. However, the need for automation is even stronger in

the process migration case, where blocks are required to retain source design speci-

fications together with the corresponding layout placement and routing. While some

analog designers still argue on the use of automatic layout tools, when it comes to

design migration, where there is not much that creativity associated with a new de-

sign, designers seem to accept a large degree of automation.

This chapter focuses on automatic analog layout migration. It is shown that

layout compaction retains most of the source layout characteristics and heuristics

common in the analog world. Most of the chapter is devoted to different com-

paction algorithms, while introducing a newly presented generic graph-based one.

Section 5.2 presents previous work done in this direction. Section 5.3 introduces a

typical tool flow and shows where does the compaction engine fits. Section 5.4 dis-

cusses different compaction approaches while providing the necessary background

for the generic algorithm introduced in Sect. 5.5. Section 5.6 stresses the importance

of defining the right set of compaction constraints for layout migration. Section 5.7

rapidly goes through different practical issues that face any industrial tool for layout

retargeting. Some migration examples are then given in Sect. 5.8. They vary from

simple design cases to more complex industrial-level layouts. Finally, conclusions

are drawn in Sect. 5.9.

5.2 Previous Work

The need to migrate hard IPs was first investigated for digital cells [1]. Later, more

focus was reinforced on the special needs of digital library IPs, such as port match-

ing, power/ground size, etc. [2]. Analog IPs impose additional constraints to the

retargeting process, such as matching and symmetry [3]. In fact, the behavior of

many analog circuits is closely related to the corresponding physical design [4].

Therefore, source layout contains valuable design knowledge, which is usually

already verified through chip fabrication and testing.

5 Analog Layout Retargeting 207

Most designers have been reluctant to use optimization-based tools for retarget-

ing. Such tools tend to reinvent the wheel and produce newly optimized designs [5].

Despite the fact that resulting layouts might even look better than source ones,

designers prefer not to take the risk of a new design and prefer the original lay-

out, which has already gone through the whole fabrication cycle. In most cases,

designers want to keep all design choices and knowledge of the source design.

One of the first serious trials to migrate analog cells based on an original design

was presented in [6]. The information reused from the original layout was the rel-

ative positions of the building blocks and their aspect ratios. All blocks part of the

floorplan are then generated automatically. Nothing guarantees that the devices in

the building blocks will resemble their counterparts in the source layout.

Later, inspired by the work initiated in the digital domain for compaction-based

layout migration, analog-specific tools extended this work in [7, 8]. Layout migra-

tion by compaction keeps the same physical knowledge, i.e., floorplan, placement

and routing, so precious to analog designers. This approach is most appealing since

the target layout looks very close to the source one. A recent migration framework

aiming to achieve this has been presented in [8]. It comprises both device resizing

and layout migration. Both engines are based on a design extraction methodology,

during which all relevant design data are extracted. The layout part of this frame-

work is discussed in more detail in Sects. 5.3 and 5.5.

5.3 Analog Layout Retargeting Flow

A typical compaction-based layout migration flow is illustrated in Fig. 5.1. The

dashed box contains the different modules of the retargeting tool. The input to the

tool includes:

Fig. 5.1 Analog layout retargeting flow

208 H. Said et al.

� Source design netlist and layout.

� Target netlist with new device dimensions.

� Target process technology parameters and design rules.

� Optional user-defined constraints.

The flow includes three design extraction modules, namely: Layer Mapping,

Constraint Generation, and Device Recognition, followed by the layout migra-

tion Compaction step. Each of these modules is briefly described in the following

subsections. An important aspect of the flow is the multiple use of the industry-

standard physical verification tool Calibre R [9]. This has the following advantages:

� Handling all process information files. This saves a lot of development time.

� New process file updates are already available and updated in the proper format.

� Taking advantage of the tool high performance and multitude of functionalities

as will be shown below.

These makes the migration tool tightly coupled with the industrial one.

5.3.1 Layer Mapping

The layer mapping module copies all layout layers of the source process layout

to the corresponding layers in the target process. This is done using the Calibre

DESIGNrevTM [9] tool using a mapping file. This might involve mapping one layer

to several ones or vice versa, depending on the source and target layer definitions.

In addition, adjacent contacts and vias are merged to facilitate compaction, refer

to Sect. 5.6. In some cases, the entire device needs to be completely replaced by

another device in the target process due to the unavailability of a one-to-one cor-

respondence, refer to Sect. 5.7.4. The mapping rule file is prepared once for each

couple of source and target technologies. The output of this module is a layout that

is similar to the source layout but in the target process layers.

5.3.2 Device Recognition

The target netlist input is generated by a separate netlist migration engine [10],

where design performance is tuned in the target process to achieve the same source

design performance. During such stage, most device sizes are often changed. In

order that the migration tool applies such new device dimensions to the target layout,

it should be able to recognize each device in the source layout and link it to the

corresponding element in the netlist. A special device recognition module is thus

needed. It involves the same operations as in a conventional layout-versus-schematic

check tool usually used in a typical design flow. This is easily achieved using the

Calibre nmLVSTM [9] tool using a special rule file. The tool is capable of identifying

complex device structures such as finger and matched transistors and link them to a

single device.

5 Analog Layout Retargeting 209

5.3.3 Constraint Generation

The source layout complies with the source process design rules. These must be

translated to the corresponding target process rules and formulated in layout con-

straints that should be imposed on the target layout. This is not a one-to-one

translation, since design rules change considerably from one process to the other.

The Calibre nmDRCTM [9] tool is also employed in this module. The tool’s main

functionality is to check for design-rule errors in a given layout based on a rule file

supplied by the foundry for each process. In a special internal mode of operation, it

can also transform such rules to layout constraints by a modification of the rule file.

This masks any kind of constraint complexity and employs the latest industrial rule

check technology to generate them.

Constraint generation is critical to the compaction-based migration engine. The

number of constraints has a huge impact on the efficiency and accuracy of com-

paction. It is important to reduce the constraints to the minimum possible set and

remove any redundancy, refer to Sect. 5.6.

In addition to design-rule constraints, the updated geometrical device parameters

generated by the netlist migration engine, e.g., transistor new length and width, are

also converted to layout constraints on the physical device dimensions.

Layout migration is achieved by imposing both design-rule constraints and up-

dated device dimension constraints on the layer-mapped layout using a layout

compaction module. Details of the compaction engine are presented in Sect. 5.5.

5.4 Layout Compaction Methodologies: Background

The aim of compaction is to minimize the total layout area while satisfying all

design-rule constraints of a specific process. Most compaction implementations

in literature are based on various forms of constraint-graphs and linear program-

ming [11, 12]. In this section, an introduction to these two approaches is elaborated

showing strengths and weaknesses of each. This foundation is necessary to under-

stand the compaction algorithm introduced in Sect. 5.5.

5.4.1 The Constraint-Graph Approach

The constraint-graph is a one-dimensional compaction technique, which uses a di-

rected graph to capture design-rule constraints [13]. It remains one of the most

popular approaches, thanks to its flexibility and efficiency [11].

During horizontal compaction, each element is represented by the x-coordinates

of its edges. If the x-coordinates of all layout edges are indicated by the set:

x1; x2; : : : ; xk , a minimum-distance design-rule between two elements can now be

expressed by an inequality of the form:

210 H. Said et al.

Fig. 5.2 (a) Sample layout with design-rule constraints and (b) the corresponding constraint-graph

xj � xi � dij where i; j 2 .1 : : : k /; (5.1)

where dij is the minimum distance spacing between elements located at xj

and xi .

Consider the sample layout shown in Fig. 5.2a composed of a single transistor

to the right of a single layout rectangle. Design rules are indicated by arrows. If all

shown design rules are represented by inequalities of the form of (5.1), it is now

possible to represent such inequalities in a so-called constraint-graph, G.V; E /, as

follows:

� The vertex set, V , is constructed by associating a vertex �i with each variable xi

that occurs in an inequality.

� The edge set, E , is composed of directed edges ei . An edge is drawn for each

individual inequality of the form of (5.1), starting from xi and ending at xj . The

edge weight, w, is equal to the constraint value such that w.�i ; �j / D dij .

� There is a source vertex, �0, located at x D 0. An edge is drawn between the

source vertex, �0, and all vertices that do not have any other vertices constraining

them from their left side.

5 Analog Layout Retargeting 211

� There is an end vertex, �n, located after the last edge in the layout. An edge is

drawn between all vertices that do not have any other vertices constraining them

from their right side and the end source vertex, �n.

� All layout elements are assumed to have positive x-coordinates.

Following the above rules, the constraint-graph for the layout of Fig. 5.2a is shown

in Fig. 5.2b. A constraint-graph composed only of minimum-distance constraints

has no cycles [11]. It is usually called a directed acyclic graph (DAG).

Starting from the source vertex �0, there might exist several paths to reach a spe-

cific vertex �i . By taking the longest path from �0 to �i , summing all path weights

and assigning the result to xi , one makes sure that all inequalities in which xi par-

ticipates are satisfied. Therefore, the length of the longest path from �0 to �i gives

the minimal possible x-coordinate value, xi , of the vertex �i . This is the main idea

of the longest-path algorithm used in solving the constraint-graph [14], i.e., finding

the optimum x position of all elements for minimal area.

The main advantage of using the constraint-graph and the associated longest-

path algorithm is the computational simplicity and efficiency. However, it suffers

from two main drawbacks: First, all elements are pushed as close as possible to

the left boundary. Figure 5.3 shows the final compaction result after applying the

longest-path algorithm on the layout of Fig. 5.2a. It is clear that the gate contact

together with the enclosing metal have moved to the leftmost edge of the layout,

causing a well-known problem of the longest-path algorithm referred to as long

wires . Besides damaging layout shape and increasing the associated parasitics, long

wires also affect subsequent compaction in the other direction. This problem was

addressed in [15, 16].

The second main drawback is a fundamental one related to the graph itself.

By construction, the graph can support constraints with only two variables. Two-

variable constraints, as given by (5.1), represent the majority of layout constraints.

However, other types of constraints with more than two variables are essential while

describing matching and symmetry [12]. They have the general form of

xb � xa D xd � xc where a; b; c; d 2 .1 : : : k/: (5.2)

Fig. 5.3 Long wire problem

212 H. Said et al.

In addition, while dealing with hierarchical layouts, the number of variables

increases with the number of hierarchy depth involved [17]. To support more

general constraints with any number of variables, a more general approach has been

introduced. This is discussed in the following section.

5.4.2 Linear Programming: The Simplex Method

One-dimensional layout compaction can be formulated in two separate linear pro-

gramming (LP) optimization problems [17], one in the x and the other in the

y-dimension. As in the previous section, the decision variables are the x-coordinates

of all layout elements: x1; x2; : : : ; xk . The goal function to be minimized (or max-

imized) is a linear objective function, f , in the above decision variables. This

function is subjected to a set of linear constraints in the general form of

f i .x0; x1; : : : ; xk/

0

@

�

D

�

1

A dij : (5.3)

The majority of such constraints are minimum-distance separation constraints in the

form of (5.1). If constraints include more than two variables, they will be referred

to as multivariable or nondistance constraints. It is preferable to formulate all such

constraints as less-than by using some equation manipulations [18]. Then, for m

constraints, the linear programming problem can be defined as follows:

Minimize f .x1; x2; : : : ; xk/

Subject to: f1.x1; x2; : : : ; xk/ � df 1

f2.x1; x2; : : : ; xk/ � df 2 (5.4)

:::

fm.x1; x2; : : : ; xk/ � df m

x1; x2; : : : ; xk � 0

This kind of problems is often solved using the simplex method [18], which is briefly

explained in the rest of this section.

Starting from (5.4), all constraints are transformed to equal constraints by adding

slack variables. If there are k decision variables and m constraints, by adding a slack

variable in each constraint, the constraint equations become:

xkCi D df i � fi .x1; x2; : : : ; xk/ where 1 < i < m (5.5)

where m slack variables (xkC1; xkC2; : : : ; xkCm) are introduced by extending the

location variable set. This is a common practice, since during the simplex method,

5 Analog Layout Retargeting 213

all variables are subject to the same kind of operations. The problem can then be put

in the matrix form to become:

Minimize f D cT
x x

Subject to: Ax D d

x � 0 (5.6)

The vector x is an .n � 1/ vector containing all variables (both location and slack

variables), where n D k C m is the total number of variables. The vector cx is an

.n � 1/ vector containing all variable coefficients in the objective function, f . The

matrix A is an .m � n/ matrix containing all variable coefficients in each constraint

equation. The vector d is an .m � 1/ vector containing all constant terms in the

constraint equations.

Definition 5.1 (Basic feasible solution). A basic feasible solution (BFS) is a solu-

tion with m constraints and n variables that

� Satisfies all m constraints,

� Includes m basic variables with values greater than or equal to zero, and

� Includes k (D n � m) nonbasic variables with zero value.

The simplex algorithm starts from a BFS and iterates to other better feasible solu-

tions, in the sense that they have smaller objective function values, until an optimal

solution is reached. To show how to proceed from one iteration to the following one,

some mathematical manipulations are performed on the simplex problem definition

given by (5.6) to separate basic variables from nonbasic ones:

� The m basic variables are stored in the vector xB while the k nonbasic variables

are stored in the vector xN .

� Similarly, the vector cx is split into the vectors cB and cN , where cB contains the

coefficients of the basic variables in xB , while cN contains the coefficients of the

nonbasic variables in xN .

� In the same way, the A matrix is split into two matrices: matrix B, containing

all columns in A associated with the basic variables, and matrix N containing all

columns in A associated with the nonbasic variables.

Using this separation, the simplex problem defined by (5.6) becomes:

Minimize f D cT
BxB C cT

N xN

Subject to: BxB C NxN D d (5.7)

xB ; xN � 0

Both the basic variables vector, xB , and the objective function, f , are expressed in

terms of the nonbasic variables vector, xN , giving:

xB D B�1d � B�1NxN (5.8)

f D zT xN C cT
BB�1d; (5.9)

214 H. Said et al.

where z is defined as the cost rate vector of nonbasic variables. It represents the

rate of change or relative cost of f with respect to each nonbasic variable in xN ,

given by:

z D cN � .B�1N/T cB (5.10)

in a given BFS, since the value of all nonbasic variables are equal to zero, the basic

variables can be calculated using (5.8) to give:

x�
B D B�1d (5.11)

Therefore, as indicated by Definition 5.1, in a given BFS:

� All m constraints are satisfied,

� The basic variables are given by (5.11), and

� All nonbasic variables are equal to zero.

The simplex method starts with an initial BFS, all following iterations and eventu-

ally the final optimum solution must also lead to a BFS. Looking back at (5.9), the

only way to decrease f is to select a nonbasic variable from xN such that it has a

negative coefficient in z, then to increase it from zero to any positive value. Since

this variable is now nonzero, it becomes a basic one. However, according to the BFS

definition, the number of both basic and nonbasic variables are fixed. Therefore, one

of the basic variables must drop to zero and replaces this newly changed variable in

the nonbasic variable set. In summary, to move to the next BFS iteration in the sim-

plex method, exactly one nonbasic variable becomes a basic one, called the entering

variable. In the same time, exactly one basic variable drops to zero and becomes a

nonbasic one, called the leaving variable. The steps of the simplex method can be

summarized as follows, refer to Fig. 5.4:

Fig. 5.4 Flow diagram

of the simplex method

5 Analog Layout Retargeting 215

1. Obtain an initial BFS, refer to Sect. 5.5.2.3.

2. Construct the simplex problem in the form of (5.7).

3. Calculate the basic variable values using (5.11).

4. Calculate the cost rate vector, z, for the nonbasic variables in the objective func-

tion, f , using (5.10).

5. Using z, determine the entering variable, xe , as follows: From the set of nonbasic

variables, if all the corresponding coefficients in z are positive then f cannot be

minimized anymore. Otherwise, the nonbasic variable with the most negative

relative cost is selected to be the entering variable.

6. Determine the leaving variable, xl , from the set of basic variables as follows:

According to (5.8) and (5.11), the basic variables, xB , can be expressed in terms

of their values at the previous BFS, x�B , as follows:

xB D x�B � B�1NxN (5.12)

The vector xN will have all values set to zero except at the entering variable

position. The entering variable value will increase from zero to a certain positive

value, t , such that

xN D Œ0; : : : ; 0; t; 0; : : : 0�T D tae; (5.13)

where ae is a unit vector with all elements are zero except at the location of xe .

The t value should be as large as possible to minimize f , but at the same time

it should maintain the nonnegativity condition of the basic variables as given by

(5.12). Therefore,

xB D x�B � B�1Naet

D x�B � �xB t � 0; (5.14)

where the step vector �xB expresses the rate of change of each basic variable

when moving from a given BFS toward the next one in the solution space, and is

given by:

�xB D B�1Nae: (5.15)

The leaving variable is the first variable that will become zero while increasing t .

Therefore, from (5.14), the following condition should be satisfied

x�i � �xi t � 0 8xi 2 xB ; (5.16)

from which, the positive variable t should be selected as large as possible satis-

fying the condition:

t �
x�i

�xi

8xi 2 xB (5.17)

216 H. Said et al.

This ratio is calculated for all basic variables, with t acquiring the minimum value

of the whole set. The corresponding basic variable that has this minimum ratio

will reach zero after increasing the entering variable to t . It is then assigned to be

the leaving variable. In other words, the leaving variable is the one satisfying the

condition:

x�
l

�xl

D min

�

x�i
�xi

�xi > 0; 1 � i � m

�

(5.18)

7. Update the matrices B and N to reflect the new basic variable, xe, and the new

nonbasic variable, xl .

8. Go to step 3. Repeat until an optimal solution is reached in step 5.

It is noted that the simplex method is efficient as long as the number of variables

and constraints remain limited. The main resources and time intensive operation is

that of finding the inverse of the B matrix as required in (5.8), (5.9), and (5.10). The

inverse matrix, B�1.i/, at iteration i can be used to calculate the inverse of B at

iteration i C 1. Some techniques such as LU factorization [18] can render the in-

verse matrix calculations more efficient in sparse matrices, where most of the matrix

elements are zeros. This is somewhat true when the number of minimum-distance

constraints of the form of (5.1) is large compared to multivariable constraints of the

general form of (5.3). However, given the complexity of nowadays industrial lay-

outs and the associated design rules, applying the pure simplex method turns out to

be very time inefficient compared to graph-based techniques.

5.4.3 Graph-Based Simplex Methods

As a compromise of the aforementioned techniques, several methodologies were

introduced to solve the LP problem of layout compaction using graph techniques,

which are normally much faster [16, 19–21]. Such methodologies utilize the fact

that most constraints are in the form of minimum-distance separation constraints,

refer to (5.1). The number of other multivariable constraints, if they exist, is much

smaller than the number of minimum-distance constraints. Also, these methods limit

the shape of the objective function to be able to solve the problem using graph

operations.

Marple et al. [16] introduced a graph-based simplex method, which only sup-

ported minimum-distance constraints, in addition to a special optimization function

that minimizes long wiring lengths. Based on that, Onozawa [19] proposed an ef-

ficient graph-based algorithm that supports not only distance constraints but also

multivariable constraints with a limited number of three variables.

A more general graph-based method that supports multivariable constraints was

introduced by Wang and Lai [20]. It uses graph operations to speed up the calcula-

tions of the inverse of the basis matrix, B. The same constraint-graph is used, while

applying graph operations to calculate the elements of a reduced core matrix. Matrix

5 Analog Layout Retargeting 217

operations are performed on the core matrix instead of the large basis matrix. As the

size of the core matrix is proportional to the number of multivariable constraints,

this method outperforms the simplex method as long as the number of multivariable

constraints is lower than the number of minimum-distance constraints. However, a

problem exists in getting an initial feasible solution. The initial solution is calcu-

lated using an algorithm described in [21] for only a set of multivariable constraints

representing path delays in the layout. It lacks a procedure for getting a general ini-

tial solution for generic multivariable constraints. At the same time, the optimization

function is restricted to contain only one variable. More complex objective functions

are handled by adding more multivariable constraints.

As a conclusion, graph-based methods still remain limited either in the form

of objective function or in the form of the constraints that are supported by graph

operations. The multivariable constraint-graph based simplex method presented in

the next section alleviates both of these limitations.

5.5 Multivariable Constraint-Graph Based Simplex Method

This section includes the core of this chapter, namely a graph-based simplex method

that supports all forms of linear objective functions and linear constraints. This

graph-based method combines both the efficiency of graph-based techniques and

the generality of the simplex method. First, the graph definition is presented fol-

lowed by details of the algorithm.

5.5.1 Basic Coefficient Constraint-Graph

A new graph representation, referred to as coefficient Constraint-graph, is intro-

duced to model layout locations and multivariable constraints. The main idea behind

this graph is to represent both constraints and variables as a signal flow graph that

maintains the relation between them, while being general enough to handle any type

of constraint.

Definition 5.2. Coefficient constraint-graph: the coefficient constraint-graph is

constructed based on the following rules:

� Each variable, xi , including slack variables, is represented as a graph node.

� All constraints, cj , are also represented by separate nodes.

� For a constraint cj composed of p variables

cj W f .x1; x2; : : : ; xi ; : : : ; xp/ D 0 (5.19)

a weighted directed arc from a variable node, xi , to the constraint node, cj , rep-

resents the coefficient of the variable in such constraint.

� A directed arc can exist only from a variable node to a constraint node.

218 H. Said et al.

� Since constraints usually have a constant term, an additional variable node, xbias,

is added to account for this term. xbias is referred to as the bias node. By defi-

nition, it has the value of unity. A weighted arc connecting xbias to a constraint

represents the bias or the constant term of the corresponding equation. The gen-

eral form of a constraint becomes:

cj W f .x1; x2; : : : ; xi ; : : : ; xp; xbias/ D 0 (5.20)

� Another type of nodes is the supernode . It consists of a constraint node as-

sociated with a variable node, .cj ; xk/. The connection coefficient between the

variable node and the constraint node inside a supernode should always be equal

to �1. The .cj ; xk/ supernode represents an equation in the form

cj W xk D f .x1; x2; : : : ; xi ; : : : ; xp ; xbias/ k 2 1 : : : p (5.21)

� From (5.21), it is clear that the weight of the coefficient arc between a variable

xi and a supernode .cj ; xk/ represents @xk=@xi .

� An arc starting from a supernode Œcj ; xi � to a second supernode Œck ; xl � repre-

sents the coefficient of the variable of the first supernode, xi , in the constraint of

the second supernode, ck . This means that the supernode acts as a variable node

of its variable to successive nodes in the graph.

For example, the coefficient graph of the constraint

c0 W x1 � x0 � s0 D 0

is shown in Fig. 5.5a. Note that all variables are moved to the left-hand side of the

constraint. Another example with a bias node can be shown using the constraint

c1 W x2 � x1 � s1 D 5

To represent the constant term in the above equation, the constraint can be

expressed as
c1 W 5xbias � x2 C x1 C s1 D 0

Fig. 5.5 Coefficient constraint-graph

5 Analog Layout Retargeting 219

The corresponding coefficient graph is depicted in Fig. 5.5b. Note that when the

constant term is zero, as in c0, no connection arc exists between the bias node and

the constraint c0. Consider now the symmetry constraint

c3 W x2 � x1 D x4 � x3

It can be rewritten as

c3 W x2 � x1 � x4 C x3 D 0

such that it can be represented by the coefficient constraint-graph shown in Fig. 5.5c.

As an example of a supernode, the constraint c0, can be represented as

c0 W x1 D 0 C x0 C s0

This representation is actually the signal flow graph of this constraint. In this case,

the variable x1 is associated with the constraint node to form one supernode as

shown in Fig. 5.6. The weight of the coefficient connecting the node s0 to the su-

pernode .c0; x1/ is actually equal to the derivative @x1= @s0 D 1. The same for x0.

In conclusion, the coefficient constraint-graph can represent any type of linear con-

straint with unlimited number of variables.

Going back to the simplex problem definition in terms of basic and nonbasic

variables as given by (5.7), some modifications are needed to include the bias vari-

able, xbias, to account for the constant term in each constraint. Since the value of this

variable is always set to unity, it can be added to the constraint equation as follows:

BxB C NxN D dxbias (5.22)

Then, (5.9) and (5.14) for the objective function and basic variable vector become,

respectively:

f D zT xN C cT
BB�1dxbias (5.23)

xB D x�Bxbias � B�1NxN

D x�Bxbias � �xB t: (5.24)

The simplex problem definition can now be represented using a basic coefficient

constraint-graph.

Definition 5.3 (Basic coefficient constraint-graph). It is a coefficient constraint-

graph as described by Definition 5.2, where each constraint node is associated with

Fig. 5.6 Supernode Œc0; x1�

220 H. Said et al.

Fig. 5.7 Sample layout

with sample design-rule

constraints

a basic variable forming a supernode. An additional supernode is added, which con-

tains both the objective function, f , and a constraint representing the corresponding

equation.

For example, consider the layout shown in Fig. 5.7, the following inequalities

represent the shown minimum-distance constraints:

c0 W x1 � x0 � 0 c5 W x5 � x0 � 0

c1 W x2 � x1 � 5 c6 W x6 � x5 � 5

c2 W x3 � x2 � 10 c7 W x7 � x6 � 4 (5.25)

c3 W x4 � x3 � 5 c8 W x3 � x7 � 5

c4 W x4 � x1 � 10 c9 W x8 � x4 � 0

where all cj ’s represent distance constraints containing the xi location variables. As

in the simplex method, all constraints should be equal constraints by introducing

slack variables, refer to (5.5). Also, all constant terms are multiplied by the bias

variable, xbias. Assume that the initial BFS contains the following basic variable set:

x1; x2; x3; x4; x5; x6; x7; x8; s4; s8. Note that the number of basic variables is equal

to the number of constraints given in (5.25). Also, assume that the objective function

is given by the following equation:

f D x8 � x5 � x0 (5.26)

then, the simplex problem can be formulated as follows:

Minimize W f D x8 � x5 � x0

Subject to W c0 W x1 D 0 C x0 C s0 c5 W x5 D 0 C x0 C s5

c1 W x2 D 5xb C x1 C s1 c6 W x6 D 5xb C x5 C s6 (5.27)

c2 W x3 D 10xb C x2 C s2 c7 W x7 D 4xb C x6 C s7

c3 W x4 D 5xb C x3 C s3 c8 W s8 D �5xb C x3 � x7

c4 W s4 D �10xb C x4 � x1 c9 W x8 D 0 C x4 C s9

5 Analog Layout Retargeting 221

Fig. 5.8 Basic coefficient constraint-graph

The resulting basic coefficient constraint-graph of the above problem is shown in

Fig. 5.8. The number of supernodes is equal to the number of constraints in addition

to an optimization function supernode. The next section shows how to use such

graph to solve the optimization problem.

5.5.2 Multivariable Graph-Based Simplex Algorithm

The main idea of the Multivariable Constraint-Graph algorithm is to employ the

graph, described in Sect. 5.5.1, to replace complex matrix operations of the simplex

method, described in Sect. 5.4.2. The basic coefficient constraint-graph is the signal

flow graph representing algebraic equations of constraints and a given objective

function. The rules of the basic coefficient constraint-graph are those of a signal

flow graph [22]:

Gain Equation

For any two nodes xi and xj , the derivative @xj =@xi can be found by Mason’s

equation [22]. In case there are no loops, it reduces to

@xj =@xi D
X

i

Gi ; (5.28)

222 H. Said et al.

where Gi s are the gains of all paths from xi to xj . Equation (5.28) also defines the

connection value between any two nodes xi and xj . As will be shown, the connec-

tion value between graph nodes can be used to replace the corresponding matrix

operations.

Graph Mathematics

In what follows, a set of rules are introduced to obtain the required simplex method

vectors in terms of graph connection values. All rules assume that there are no loops

in the basic coefficient graph:

Rule 1 From (5.24), it is clear that in a given BFS, the basic variables matrix, x�B ,

can be deduced from the general basic variable equation as follows:

x�B D @xB=@xbias (5.29)

Hence, the individual basic variables in a given BFS can be calculated using

x�basic.i/ D @xbasic.i/=@xbias; (5.30)

Therefore, in a given BFS, the basic variable value, x�basic.i/, is the connec-

tion value between the xbias variable node and the xbasic.i/ basic variable

supernode in the basic coefficient graph.

Rule 2 From (5.23), the relative cost rate vector z can be expressed as

z D @f =@xN ; (5.31)

Therefore, the value of the cost rate vector element, z.i/, is the connection

value between the xnonbasic.i/ variable node and the f optimization function

supernode in the basic coefficient graph.

Rule 3 The step vector �xB can be calculated from (5.24). Since t is the value of

the entering variable xe , then

�xB D �
@xB

@t
D �

@xB

@xe

; (5.32)

Therefore, the value of the step vector element, �xbasic.i/, is equal to �1

multiplied by the connection value between the entering variable node and

the xbasic.i/ variable supernode in the basic coefficient graph.

The steps of the multivariable graph-based simplex algorithm are the same as

those of the simplex method presented in Sect. 5.4.2, refer to Fig. 5.4. However,

5 Analog Layout Retargeting 223

each step is performed using simple graph operations instead of complex matrix

ones. The proposed algorithm would go through the following steps:

1. Obtain an initial BFS, refer to Sect. 5.5.2.3.

2. Construct the corresponding basic coefficient constraint-graph.

3. Calculate the basic variables values, x�basic.i/. This is done using Rule 1, (5.30),

by calculating the connection value from the bias node, xbias, to all supernodes,

which contain the basic variables.

4. Calculate the relative cost value, z.i/, of each nonbasic variable in the objective

function, f . This is done using Rule 2, (5.31), by calculating the connection

value from all nonbasic variable nodes to the objective function supernode, f .

5. Using z.i/, determine the entering variable, xe , as follows: From the set of non-

basic variables, if all the corresponding values in z.i/ are positive then f cannot

be minimized anymore. Otherwise, a nonbasic variable with the most negative

relative cost is selected to be the entering variable.

6. Determine the leaving variable, xl , from the set of basic variables using (5.18).

To calculate the step vector elements �xbasic.i/, (5.32) of Rule 3 is applied. The

rate of change of each basic variable with respect to the entering variable, xe ,

is calculated by determining the connection value from xe to all basic variable

supernodes, then multiplying it by �1.

7. Update the graph so that the entering variable, xe , is associated with a constraint

node forming a supernode, while the leaving variable, xl , is deattached from its

supernode to become a nonbasic variable in the new basic constraint-graph, refer

to Sect. 5.5.2.1.

8. Go to step 3. Repeat until an optimal solution is reached in step 5.

5.5.2.1 Updating the Basic Coefficient Constraint-Graph

During a given iteration, after selecting both entering and leaving variables, the

graph should be updated to prepare for the next iteration. The leaving variable will

become a nonbasic variable, so it should be dissociated from any supernode. On the

other hand, the entering variable should be associated with a constraint to form a

supernode. For example, in the first iteration of the graph shown in Fig. 5.8, assume

that s5 is the entering variable while s8 is the leaving one. The graph should be

changed such that s5 becomes associated with a constraint and s8 should be detached

from its current supernode.

To update the graph, a path from the entering variable to the leaving one should be

established. In the layout example, this path is shown in Fig. 5.9a. After finding the

connecting path, all variables inside a supernode belonging to this path are detached

from their supernode. Then, each variable in the new path is associated with its

successive constraint in the path to form a new supernode. The new supernodes are

shown in Fig. 5.9b. During the construction of new supernodes, the basic variable

coefficients should be adjusted so that the coefficient connecting the constraint and

the basic variable inside the supernode should always be equal to �1.

224 H. Said et al.

Fig. 5.9 The path between entering and leaving variables: (a) before the graph update, and (b)

after the graph update

Fig. 5.10 Basic coefficient constraint-graph after the first iteration

The new basic coefficient constraint-graph of the second iteration is shown in

Fig. 5.10. The updated nodes are marked with a dashed polygon. Only the coeffi-

cients connected to updated nodes are changed in the graph. This means that any

coefficient arc connecting two nodes outside the updated area will stay intact during

such update.

5 Analog Layout Retargeting 225

5.5.2.2 Dealing with Loops

The main assumption that allowed the simple application of Mason’s formula, (5.28)

is that there are no loops in the graph. However, sometimes loops can not be avoided.

In this section, a method is presented to eliminate loops by successive substitutions

of constraint equations. For example, if there exists a simple loop of three con-

straints: cx , cy , and cz, such that

cx W x6 D 5 C 4x8 C s6

cy W x7 D 4 C x6 C s7

cz W x8 D 0 C x7 C s8

These equations are represented in the graph shown in Fig. 5.11a. It should be noted

that nonbasic variable nodes can never be inside a loop since they always have arcs

going outward to a constraint supernode. Also, each basic variable (supernode) in

a loop should appear in at least two constraints, its constraint supernode and the

successive constraint supernode in the loop. Substituting by equations cz and cy in

equation cx to remove x7 and x8 basic variables from such constraint will produce

cx W x6 D �7 C �
4

3
s7 �

4

3
s8 �

1

3
s6

as shown in Fig. 5.11b. It shows that the new coefficient graph representation has

no loops. By the employment of the above strategy, any loop can be eliminated by

successive substitution steps. However, this operation may result in an increasing

number of coefficient links in the graph.

Fig. 5.11 Loop cx , cy and cz (a) before and (b) after the elimination

226 H. Said et al.

Theorem 5.1. Each loop in the basic coefficient constraint-graph contains at least

one nondistance constraint.

Proof. Slack variables of minimum-distance constraints, si , cannot appear in a loop

since each slack variable appears only in one constraint. Assuming that there is a

loop of k distance constraints containing the basic variables x1; x2; : : : ; xk , the loop

constraints can be expressed as:

x2 D x1 � �1s1 C �1d1

x3 D x2 � �2s2 C �2d2 (5.33)

:::

xk D xk�1 � �ksk�1 C �k�1dk�1

x1 D xk � �ksk C �kdk

where � i can be either 1 or �1. By summing all the equations, this results in:

�1s1C�2s2 C� � � C �k�1sk�1 C�ksk D �1d1C�2d2C � � � C�k�1dk�1C�kdk:

(5.34)

Since all variables in the above equation are nonbasic ones, this row summing

operation has canceled all basic variables. This means that in the corresponding

basis matrix B, this summing can produce a row that contains only zeros in B, i.e.,

it is a singular matrix. This clearly contradicts the fact that B is a nonsingular ma-

trix [18], i.e., it contains no linearly dependent rows. Therefore, the loop assumption

of only minimum-distance constraints is not valid. So, no loops can contain only dis-

tance constraints. ut

5.5.2.3 Initial Basic Feasible Solution

The initial point greatly affects the performance of the algorithm. If the initial so-

lution is near the optimal point, only few iterations are needed to reach the optimal

solution. One way to get an initial solution is to use the dual simplex method [18].

However, this may increase the number of iterations resulting in an effective reduc-

tion in performance.

A good initial solution can be obtained by applying the longest path algorithm,

refer to Sect. 5.4.1. However, this algorithm only guarantees that all minimum-

distance constraints with two variables are satisfied, but not the general multivariable

ones. Hence, it does not produce a valid BFS. A solution to this problem was intro-

duced in [21] based on the special form of signal delay constraints. However, in the

general case, like in symmetry constraints, there is no guarantee to obtain a BFS

by this method. Based on the same idea, a more general method to obtain an initial

BFS is elaborated as follows:

5 Analog Layout Retargeting 227

1. The longest path algorithm is first applied. The obtained locations are used as

the initial solution. All other variables that are not involved in any distance con-

straints are initialized to zero.

2. Each general multivariable constraint is checked. If the constraint is satisfied,

then its constraint node is associated with its slack variable and no additional

operation is needed.

3. If the general constraint is not satisfied or the constraint does not contain slack

variables, e.g., symmetry constraint, an artificial variable is added. The value of

this variable is chosen such that the new constraint is satisfied. These artificial

variables should be zero in the final optimal solution. At the same time, a new

term is added to the objective function, f , to penalize the added variables. Such

new terms would be equal to the artificial variable itself multiplied by a huge

positive constant, M .

As an example, suppose that there exists the following symmetry constraint:

x4 � x3 D x2 � x1 (5.35)

If the x-values obtained by the longest path algorithm are:

x1 D 10; x2 D 30; x3 D 10; x4 D 50

applying these values, the symmetry constraint is not satisfied. Now an artificial

variable a1 is added so that the constraint becomes:

x4 � x3 D x2 � x1 C a1 (5.36)

the value of a1 is chosen to be 20 so that the new constraint is satisfied. At the same

time, the term Ma1 is added to the objective function, with a huge value of M . This

ensures that the variable a1 is reduced to zero in the final optimal solution such that

the original constraint (5.35) is satisfied.

Another important type of constraints is equal-constraints of the form

xj � xi D K: (5.37)

Such kind of constraints are essential to guarantee device dimensions are accurately

sized in the layout. Other layout shapes, e.g., contacts and vias need to resize for

well-defined dimensions to avoid design-rule violations. These constraints are han-

dled similar to the symmetry constraints by adding an artificial variable both in the

constraint and in the objective function and requiring that it drops to zero in the final

solution.

It is worth mentioning that the addition of new terms in the new graph-based

method is straightforward, which is not the case either in the constraint-graph

method [11] or in the graph-based simplex method [20].

228 H. Said et al.

5.5.3 Complexity Analysis

In this section, the complexity of the multivariable graph-based method is compared

to that of the original simplex one. It should be noted that a single iteration of the

graph-based algorithm results in the same output produced by a corresponding it-

eration of the matrix-based simplex method. Hence, if started from the same BFS,

both would have the same number of iterations. The complexity analysis is carried

out for only a single iteration.

The complexity of a single simplex iteration is dominated by the inversion of the

coefficient matrix, B, which is

Csimplex D O.R3/; (5.38)

where R is the number of rows (or columns) of the basis matrix [20]. Some sparse

matrix techniques such as LU factorization can help to reduce this complexity.

For constraint-graph techniques, the complexity of the whole longest path

algorithm is

Clongest path D O.N C E/; (5.39)

where N is the number of graph nodes, and E is the number of links [23]. Practi-

cally, the longest path algorithm is O.N /.

Comparing (5.38) and (5.39) explains the huge performance difference between

graph-based longest-path and simplex methods.

Multivariable Graph-Based Algorithm Complexity:

The complexity depends heavily on the kind of constraints present in the layout

and the corresponding equations. Both have a direct effect on the graph shape, and

whether there are existing loops or not.

Basically, there are two main operations in the multivariable graph-based

method:

1. The step of finding the connection value between a node and all other nodes in

the graph, i.e., steps 3, 4, and 6 in Sect. 5.5.2. This step has a similar complexity

of the longest path algorithm given by (5.39) [24].

2. Dealing with loops that might appear due to multivariable constraints, refer to

Sect. 5.5.2.2.

To estimate the complexity of each operation, let us assume the following:

� The number of location variables is k.

� The number of distance constraints is u.

� The number of multivariable nondistance constraints is v.

5 Analog Layout Retargeting 229

� The maximum number of variables in a nondistance constraint is p. This value

may vary from five for a simple symmetry constraint of the form of (5.2), to tens

of variables in case of multiple-level hierarchical layouts.

� The total number of constraints is m D u C v.

� After adding slack variables, the total number of variables will be N D k Cm D

k C u C v, refer to (5.5). Hence, the graph size (or the total number of nodes in

the graph) is N .

The number of supernodes (or the number of basic variables) and the number

of separate nonbasic variable nodes will be m D u C v and k, respectively. For

each distance constraint of the form xi � xj � sk D dk , there will be at most three

coefficients, one for each variable besides the bias node minus the basic variable,

refer to Fig. 5.8. Similarly, the number of links of nondistance constraints will be

.p�1/�v. Therefore, the total number of links in the graph will be E D v� (p-1)C

3 � u C kf , where kf is the number of links associated with the objective function

supernode. So, from (5.39), the complexity of finding connection values between a

given node and all other nodes of the graph-based method would be

Cgraph-connection value D O.N C E/

D O..k C u C v/ C .p � 1/ � v C 3 � u C kf /

D O.k C kf C u C p � v/ (5.40)

However, depending on the constraint complexity, each nondistance constraint

may be part of many loops. To eliminate all of these loops, the substitution technique

mentioned in Sect. 5.5.2.2 should be used. The maximum number of substitution

steps for each variable included in any nondistance constraint is equal to the to-

tal number of supernodes in the graph, O.u C v/. Since the maximum number of

variables in a single nondistance constraint is p, then the worst-case complexity to

eliminate all loops associated with one nondistance constraint would be

Cgraph-single non-distance constraint loop elimination D O.p � .u C v//: (5.41)

In the worst case, such process is needed for each nondistance constraint to elimi-

nate associated loops. Therefore, the complexity of all loop elimination would be

Cgraph-loop elimination D O.v � p � .u C v// (5.42)

Now consider the following special cases:

� There are only distance constraints, i.e., v D p D 0 and m D u:

Equation (5.40) becomes

Cgraph-v=0 D O.k C kf C u/ (5.43)

230 H. Said et al.

which is a linear complexity with time. In this case, there are no loops in the

graph as proved in Sect. 5.5.2.2. Therefore, the whole graph-based simplex single

iteration has the same linear complexity as the longest-path algorithm.

� The number of distance constraints is much larger than the number of nondis-

tance constraints, i.e., u >> v:

This is the most common case since most of the constraints are of the minimum

distance design rule of the form of (5.1). Equation (5.40) becomes

Cgraph-connection value-u >> v D O.k C kf C u/; (5.44)

which is still a linear complexity with time. In this case, loops may appear, there-

fore (5.42) reduces to

Cgraph-loop elimination-u >> v D O.v � p � u/; (5.45)

which is still a manageable complexity, specially if the number of variables in

nondistance constraints, p, is limited.

� A hypothetical limiting case for the algorithm in which the number of nondis-

tance constraints is much larger than that of the distance constraints, i.e., u << v.

In addition, the maximum number of variables in a nondistance constraint is

equal to the total number of variables, i.e., p D N D k C u C v � k C v.

Therefore, (5.40) and (5.42) become, respectively

Cgraph-connection value-u << v D O.k C kf C v � .k C v//

D O.v2/ (5.46)

Cgraph-loop elimination-u << v D O.v � .k C v/ � v/

D O.v3/: (5.47)

Comparing the last complexity with (5.38), this is the same complexity of matrix

inversion in the simplex method iteration.

If the matrix is a sparse matrix, the matrix inversion can be more efficient by us-

ing LU factorization. Similarly, the graph-based simplex algorithm becomes more

efficient because the number of links in the graph decreases in a matrix with many

zeros. Practically, the number of nondistance constraints, such as symmetry con-

straints, is small (u >> v) and the number of variables appearing in this constraints

is very small compared to the total number of variables (p << N). Consequently,

the complexity of the graph-based algorithm is very well below the hypothetical

limiting case complexity. In other words, the algorithm benefits from the sparsity

of matrices to reduce the computation time. This is an inherent property of the al-

gorithm without the need for any special sparse handling. The graph size increases

to be maximum when the connections are only between nonbasic variable source

nodes and basic variable supernodes. The number of coefficients of a supernode is

equal to the number of nonzero elements in the matrix row of the corresponding con-

straint. Hence, the size complexity of the graph is at most the same size complexity

of the simplex method.

5 Analog Layout Retargeting 231

To enhance the efficiency of the multivariable graph-based algorithm, only a

subset of nodes are processed. Those nodes are the updated nodes affected by the

entering variable, as shown in Fig. 5.10, in addition to any node that has a path in-

volving the objective supernode, f , and passing through any of the updated nodes.

All remaining nodes will maintain the same values as the previous iteration.

5.6 Layout Constraints Revisited

As shown in Sect. 5.5.3, the compaction problem complexity is closely related to

the number and kind of constraints in the corresponding layout. Both are closely

related to the total number of elements and the detailed manner in which the layout

of each is designed. Layout retargeting must keep all such details while going from

one process to another. In this section, different aspects related to layout constraints

are discussed: First, a method to reduce their number is introduced. Then, some

issues related to the one-dimensional nature of constraints are presented.

Constraint Number Reduction

Layout simplification can be attained by merging some structures before com-

paction, then re-expanding them in the target process after compaction during a

postprocessing step. Among the layout layers that add a lot of edges, and hence

many constraints are the contact and via layers. Structures in such layers are charac-

terized by their small size and large number. An example is the contact array found

at each transistor source and drain areas. Another example are the via/contact ar-

rays designed to handle high current densities as shown in Fig. 5.12a. In the figure,

arrows indicate design-rule constraints related to the shown array composed of six-

teen contacts. After migration, the space occupied by such arrays is susceptible to

Fig. 5.12 Contact array (a) before merging and (b) after merging

232 H. Said et al.

change according to the target device sizes and current densities. This problem can

be handled using the following three steps:

1. During layer mapping, see Sect. 5.3.1, each contact/via array is merged into

one single large contact/via occupying the whole area of the array as shown in

Fig. 5.12b. It is clear from the figure that the number of constraints is reduced

considerably.

2. The internal design-rule constraints that determine the size of the single large

contact in Fig. 5.12b is set to keep at least the same number of vias as in the

source layout, unless otherwise specified.

3. After compaction, a postprocessing step reconstructs the minimum-sized con-

tacts and vias from the corresponding large contact.

Complex Design-Rules

Traditionally, layout design-rules used to belong to either minimum width, min-

imum spacing, or minimum extension rules. Recently, design-rule complexity is

increasing by moving from standard edge-based rules to shape or polygon-based

ones. Moreover, some rules need to be specified by multivariable equations rather

than a fixed value constraint. This makes well-known constraint generation meth-

ods, e.g., the scan line method [25], more challenging to apply. In fact, the one-

dimensional nature of compaction puts some limitations on the kind of layout

design-rules that can be handled. For example, dealing with conditional rules rep-

resents a real challenge [26]. Conditional design-rules are ordinary intralayer or

interlayer design-rules in which the constraint parameter is conditional on some

outside factor. For example, the metal separation rule has a larger value if one of the

metals becomes a wide metal. Conjunctive or context-based design-rules represent a

specific class of conditional design-rules in which the constraint parameter depends

on the presence or absence of an otherwise unrelated layer. Attempts to deal with

such rules have been made in [27, 28]. The use of the Calibre nmDRCTM [9] tool

as mentioned in Sect. 5.3.3 easily captures such constraints, which are then trans-

formed to edge-based format.

Edge Order

Reformulating design-rule constraints in edge-to-edge-based ones triggers addi-

tional challenges. For example, if two edges overlap in the source layout, i.e., they

have a zero separation distance, while the target design-rules impose a minimum-

distance constraint between them, the constraint generator will have much difficulty

to assign an order for these edges. By default, minimum-distance constraints pre-

dictate a specific order that must be conserved. This might result in nonoptimal area

in the target process. For example, the following constraint:

xj � xi � dij (5.48)

5 Analog Layout Retargeting 233

Fig. 5.13 Compaction edge order: (a) source layout and (b) after migration

means that, after compaction, the value of xj will always be greater than that of xi .

In other words, the order of these edges cannot be reversed. In some cases, device

sizes and aspect ratio can considerably change from one process to the other. An ex-

ample is shown in Fig. 5.13a, which shows the placement of four devices: A, B , C ,

and D, with three horizontal distance constraints, namely: x, y, and z. After device

size recalculations in the new process, device shapes are shown in Fig. 5.13b. The

obtained device sizes would allow device D to move to the left up to the minimum

of the z-constraint as shown by the dotted rectangle. However, due to the existence

of constraint x between devices A and D, which now has no meaning, device D can

not be moved to the left and the x-constraint is maintained. In fact, the compactor

has no information on device relationships in the vertical direction during horizontal

compaction and vice versa. Possible solution to such problem is to iterate with sub-

sequent horizontal–vertical compaction trials till no more area reduction is achieved.

Each time, new constraints have to be generated. Two-dimensional compaction tech-

niques can also solve such problems [11]. However, such techniques are proved to

be nondeterministic polynomial (NP)-complete, which means that the computation

time increases exponentially with the problem size. Several heuristic techniques

are used to reach a solution in an acceptable time [29]. However, for practical

cases, this is still not feasible and most compaction tools opt for one-dimensional

techniques.

Nanometer Process Effects

With the advent of new process technologies, more constraints need to be added than

just design-rule ones to keep the same layout electrical performance. Some second-

order layout effects become so important to be neglected. Most of these effects are

still not accounted for in most analog design automation tools. For example, re-

cent publications on shallow trench isolation (STI) stress and well proximity (WP)

effects have demonstrated the profound impact of layout variations on transistor per-

formance [4]. The fact that the layout migration methodology does keep the layout

floorplanning, placement, and routing helps to mitigate such effects, if and only if

they were already accounted for in the source layout. In some cases, well dimen-

sions are increased to control the WP effect in the source layout. However, during

migration, the target of the compaction module is to minimize the dimensions of all

234 H. Said et al.

polygons to the specified constraints. This calls for special handling of well struc-

tures. Wells not adjusted to minimum sizes can be detected in the source layout

so that further manipulations become possible. Compaction objective functions that

privilege closeness to the source layout [2] can also help reduce such effects.

5.7 Practical Retargeting

Figure 5.1 shows the basic modules of a compaction-based layout retargeting tool.

This section discusses other complementary modules that are needed to be able

to handle industrial-level layout complexities. However, implementation details of

such modules are out of the scope of this chapter. The main target of this section

is to show that the multivariable graph-based simplex method presented in Sect. 5.5

allows the seamless integration of such modules in the automatic retargeting tool.

5.7.1 Symmetry Enforcement

Since the absolute value of integrated circuit components has large tolerances due

to process and temperature variations, successful analog design is usually based on

relative component accuracy rather than absolute one. Relative accuracy is strongly

related to layout matching and symmetry techniques. During retargeting, such lay-

out strategies must be detected in the source layout and replicated in the target one.

Symmetry constraints can be identified manually by the user for small layouts.

For large hierarchical layouts, multilevel symmetry detection has been handled

in [3] by utilizing the inherent circuit structure and hierarchy information from an

extracted netlist.

The enforcement of such constraints has been problematic to compaction algo-

rithms. As stated in Sect. 5.4.1, efficient graph techniques do not support symmetry

constraints of the form of (5.2). This is one of the main reasons that recent

implementations moved to LP techniques in spite of their excessively high com-

putational cost, refer to Sect. 5.4.2. As a compromise, in [12] Okuda et al. relied

on graph-based techniques to solve the main problem, while for symmetry con-

straints, another equivalent reduced LP problem that contains lower number of

constraints is constructed. The reduced problem is then solved using the revised

simplex method [30]. Revised simplex is a way of ordering the computations of the

simplex method to avoid unnecessary calculations. Once symmetry constraints are

satisfied, they are converted to more simple distance constraints and reflected back

on the main large graph. However, still more general constraints with many vari-

ables cannot be handled. Moreover, The optimization function is restricted to a very

simple form.

The presented multivariable graph-based algorithm would overcome all such

problems since it supports any kind of layout constraints. In addition, it allows com-

plex objective functions to be used in the same time.

5 Analog Layout Retargeting 235

5.7.2 Device Aspect Ratio

During analog circuit migration, device dimensions are subject to large variations

with respect to their original sizes. Even if the same electrical performance is con-

served, device characteristics change across different process technologies can lead

to large device area variations. The described methodology aims to keep the same

device placement and routing, in addition to all device related physical parameters,

such as the number of fingers for each transistor, the number of unit resistors, and

capacitors, etc. The initial relative device placement and orientation is normally op-

timized for the source layout. After the calculation of new device sizes, this might

not be the optimum placement, which might lead to some waste of area after migra-

tion. A device outline example is shown in Fig. 5.14a. After migration, both device

area and aspect ratio change to yield the result shown in Fig. 5.14b for the same

relative placement. It is clear that a considerable area loss exists at the top-right and

bottom-left corners. Using the same devices, area optimization is possible by just

moving device A to the top-left corner as shown in Fig. 5.14c. This result is possible

only using a two-dimensional compactor. However, as mentioned in Sect. 5.6, these

techniques prove to be difficult to apply.

Fig. 5.14 Layout shape optimization: (a) source layout, (b) migrated layout, (c) migration using

2-D compaction, and (d) using device aspect ratio control

236 H. Said et al.

In [31], device aspect ratio is changed while keeping the same device relative

placement. This can be done by investigating different realizations for each device,

e.g., varying the number of transistor fingers. Devices are then replaced by their

new realizations, refer to Sect. 5.7.4. Using this approach, the result of Fig. 5.14d is

obtained. The overall area utilization is far better than that of Fig. 5.14b.

5.7.3 Layout Hierarchy

It is important to preserve the hierarchy of the layout during migration. Hierarchi-

cal compaction has been first treated in [17] by formulating the problem as an LP

one. The key is to represent all constraints contained in each cell (intracell con-

straints) only once in the constraint set even if it is instantiated multiple times. This

is achieved by expressing edge locations inside hierarchical cells by their relative

position with respect to their cell origin location rather than their absolute flattened

position. For example, if an edge is located at a distance x
cellk
edge i from the cell ori-

gin, which in turn is placed at the absolute distance of xcel l k , the edge location

is expressed as xcell k ˙ x
cellk
edge i in all constraints. The cell location variable, xcell k ,

would then disappear from all intracell constraints, since it will be common to all

edges. Therefore, intracell constraints reduce to the same set of constraints even if

the cell is instantiated multiple times. This not only retains the layout hierarchy, but

also reduces variable count in the simplex problem. However, if there exists multi-

ple levels of hierarchy, the cell location variable, xcell k , would be in turn referenced

to the origin of its parent cell. Therefore, an edge in a n-hierarchical structure is

generally represented by

x
top cell

cell i ˙ xlevel 1
cell i : : : ˙ xlevel n

cell i ˙ xedge i : (5.49)

Apparently, the expense of using this method is the increase in the number of vari-

ables in the linear constraint equations. In [32], the algorithm is further modified to

trim down both the number of variables and the number of equations. Again, the

presented multivariable graph-based algorithm would be a natural fit since it does

not have any limitations on the number of variables in each constraint. While it is

general enough so that no artificial techniques are needed to limit this number.

5.7.4 Device Replacement

During retargeting, some devices might have different structures and/or layers from

one process to the other. For example, if the number of fingers of a given tran-

sistor needs to be changed, or if POLY resistors are not supported in the target

process, simple layer mapping is not applicable. The only solution is to replace

5 Analog Layout Retargeting 237

the entire device with a new one from the target technology design kit. This pro-

cess is facilitated by the adoption of parameterized cells or Pcells [33], where the

new device is regenerated using a special Pcell script. A methodology for device

replacement during migration has been presented in [34]. It is based on the ability

to describe the entire hierarchical layout using multivariable linear programming

constraints as described in Sect. 5.7.3.

5.7.5 Layout Parasitics

Layout parasitics have a significant impact on analog circuit performance, specially

when it comes to matched nets. This effect is expected to be magnified in modern

process technologies as parasitics control are getting worse. A recent publication

has employed nonlinear optimization to constrain layout parasitics within predeter-

mined bounds during retargeting [35]. This can be most useful for high-frequency

and RF designs. It should be noted that if the source layout has been carefully de-

signed with minimized and matched parasitics on sensitive nets, there is a quite large

probability that the target layout also satisfy such constraints, specially if device di-

mensions do not change significantly due to migration. In this case, compaction

objective functions that privilege closeness to the source layout [2] can greatly help

keeping parasitics under control.

5.8 Examples

In this section, several compaction examples are given. First, results of the mi-

gration of two opamps: a two-stage Miller opamp and a folded-cascode one, are

presented. Both have been migrated from a 0.35✝m process to a 0.18✝m one. New

device sizes were calculated using the netlist migration tool reported in [10]. During

layout migration, symmetry constraints were also considered. Using the multivari-

able graph-based method presented in Sect. 5.5, the CPU time of each test case was

compared to that of the same migration using one of the well-known packages for

the revised simplex method [36], both running on a 3.0-GHz, 512-MB RAM ma-

chine. Results are shown in Table 5.1. The table shows for each case, the number of

location variables, the total number of constraints, the average single iteration time,

and the total migration time for each algorithm. Since in the graph-based method,

the graph is updated after each iteration to reflect new entering and leaving vari-

ables, the single iteration execution time changes from one iteration to the other

depending on the new graph structure and the total number of loops in the graph.

In this case, the average execution time of a single iteration is reported in the table.

The table shows that the graph-based method is from two to four times faster than

the simplex method in executing a single iteration.

238 H. Said et al.

Table 5.1 Comparison between graph-based and revised simplex methods

Avg. iteration

time (ms) Total time (sec)

Case Direction # variables # constraints

Graph-

based

Revised

simplex

Graph-

based

Revised

simplex

Miller opamp X 521 1,831 2.517 4.555 0.375 3.594

Y 521 2,067 1.164 5.175 0.234 4.265

Folded-cascode X 2,431 8,599 9.270 21.492 8.232 91.345

Y 2,443 11,495 7.260 28.297 7.391 118.141

It should be noted that in both examples, the iteration CPU time of the graph-

based method in the X -direction is higher than that of the Y -direction in spite of the

fact that it has less number of constraints. This is due to the fact that the CPU time

of one iteration depends not only on the problem size but also on the complexity of

the coefficient constraint-graph, i.e., the number of loops that should be removed.

The total CPU time of the graph-based method is smaller than that reported for

the revised simplex method by a factor of ten or more. This is due to two reasons:

The first one is the much less CPU time needed for each iteration. The second reason

is that starting from a good initial solution, as discussed in Sect. 5.5.2.3, has resulted

in fewer number of iterations before a final optimal solution is reached.

For the Miller opamp, the source and target layouts are shown in Fig. 5.15a.

The source layout area is 6,060�m2, while the target layout is 2,800�m2. For the

folded-cascode, the source and target layouts are shown in Fig. 5.15b. The source

layout area is 10,270�m2, while the target layout is 4,445�m2. Although LP has

reached an optimal solution, there is still an empty area in the middle right part of

the layout. This area appeared because of nonrelevant edge-constraints discussed in

Sect. 5.6.

Another example of constraint problems is shown in Fig. 5.16. The source layout

is shown in Fig. 5.16a. Migration is performed from a 130 nm process to a 65 nm

one. After the first run, the obtained layout is shown in Fig. 5.16b. The relative size

of the MOS capacitor device on the left side was greatly reduced with respect to

devices at the top-right corner such that an empty space appeared on the top-left

corner. However, due to the maintaining of edge-order, these devices could not be

moved to the empty space. Similar problems can also be detected in the rest of the

layout. After manual deletion of such constraints, the resulting layout of Fig. 5.16c

has been obtained. A similar layout can also be obtained if another run of com-

paction is used in both directions. But in this case, a new set of constraints must be

regenerated starting from the layout of Fig. 5.16b.

A final more complex example is the astable oscillator shown in Fig. 5.17. It

contains several blocks, such as a bandgap reference, biasing cells, a digital de-

coder used for trimming, an amplifier, and a couple of comparators. The total

number of devices is approximately 500. The migration was done from a 0.6�m

process to a 0.25�m one. Table 5.2 shows the number of edges, the number of

5 Analog Layout Retargeting 239

Fig. 5.15 Examples: (a) Miller opamp (b) folded-cascode opamp – right source and left target

layouts

minimum-distance constraints, the number of symmetry and equal constraints, and

the total number of iterations in both directions. As mentioned before, the number of

minimum-distance constraints is by far greater than any other kind of constraints.In

this example, some capacitors and resistors needed to be completely replaced by

another device kinds as can be easily recognized from the layouts.

240 H. Said et al.

Fig. 5.16 VCO example: (a) source layout (b) migration with edge-order problems, and

(c) migration after edge-order constraints deleted

Fig. 5.17 Migration results for the oscillator migration

Table 5.2 Graph-based method compaction data of the example shown in Fig. 5.17

Direction # edges # min. constraints # symmetry/equal constraints # iterations

X 14,495 71,197 2,857 6,750

Y 14,469 75,494 2,676 6,540

5.9 Conclusion

In this chapter, it is shown that one of the most appropriate techniques for ana-

log layout process migration is that based on layout compaction. With an ap-

propriate objective function, compaction allows to preserve all physical design

5 Analog Layout Retargeting 241

knowledge embedded in the original layout. A novel multivariable graph-based

simplex algorithm to be used in layout compaction was presented. It combines the

efficiency of graph-based methods and the generality of linear programming ones.

The algorithm is general enough to support any kind of complex multivariable con-

straint and any shape of linear optimization functions. Therefore, it is a natural fit

for recently introduced symmetry, hierarchy and cell-swapping techniques based on

linear programming. It is shown that the complexity of the proposed algorithm de-

pends heavily on the source layout constraints and optimization function. In the limit

case of simple minimum-distance constraints and a simple optimization function, it

tends to the graph-based technique of linear complexity. In the opposite limit case

of complex multi-variable constraints and complex optimization functions it tends

to the complexity of the matrix-based simplex method.

Acknowledgements The authors would like to thank Mohamed S. Tawfik for initiating and super-

vising this project inside Mentor Graphics Egypt. Also, they would like to thank Hazem El-Tahawy

for his continuous support. Finally, special thanks also go to the Chameleon-ART team: Walid

Farouk, Heba Attwa, Sherif Hany, Manal Samy, Hoda El-Dawy, and Amr Ramadan.

References

1. J. Lakos. Technology retargeting for IC layout. In Design Automation Conference, IEEE/ACM,

pages 460–465, 1997
2. J. Zhu, F. Fang, and Q. Tang. Calligrapher: A new layout-migration engine for hard intel-

lectual property libraries. Computer-Aided Design of Integrated Circuits and Systems, IEEE

Transactions on, 24(9):1347–1361, 2005
3. S. Bhattacharya, N. Jangkrajarng, and C.-J.R. Shi. Multilevel symmetry-constraint genera-

tion for retargeting large analog layouts. Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on, 25(6):945–960, 2006
4. P.G. Drennan, M.L. Kniffin, and D.R. Locascio. Implications of proximity effects for analog

design. In Custom Integrated Circuits Conference. IEEE, pages 169–176, Sept 2006
5. E. Malavasi, E. Charbon, E. Felt, and A. Sangiovanni-Vincentelli. Automation of IC layout

with analog constraints. Computer-Aided Design of Integrated Circuits and Systems, IEEE

Transactions on, 15(8):923–942, 1996
6. K. Francken and G. Gielen. Methodology for analog technology porting including performance

tuning. In Circuits and Systems, IEEE International Symposium on, volume 1, pages 415–418,

Jul 1999
7. S. Bhattacharya, N. Jangkrajarng, R. Hartono, and C.-J.R. Shi. Correct-by-construction layout-

centric retargeting of large analog designs. In Design Automation Conference, 41st, pages

139–144, 2004
8. S. Hammouda, H. Said, M. Dessouky, M. Tawfik, Q. Nguyen, W. Badawy, H. Abbas, and

H. Shahein. Chameleon ART: A non-optimization based analog design migration framework.

In Design Automation Conference, 43rd ACM/IEEE, pages 885–888, 2006
9. Calibre R. Mentor Graphics Corporation. http://www.mentor.com

10. S. Hammouda, M. Dessouky, M. Tawfik, and W. Badawy. Analog IP migration using design

knowledge extraction. In Custom Integrated Circuits Conference, pages 333–336, Oct 2004
11. Y.E. Cho. A subjective review of compaction. In Design Automation. 22nd Conference on,

pages 396–404, June 1985
12. R. Okuda, T. Sato, H. Onodera, and K. Tamariu. An efficient algorithm for layout compaction

problem with symmetry constraints. In Computer-Aided Design, Digest of Technical Papers,

IEEE International Conference on, pages 148–151, Nov 1989

http://www.mentor.com

242 H. Said et al.

13. Y.E. Cho, A.J. Korenjak, and D.E. Stockton. FLOSS: An approach to automated layout for

high-volume designs,. In Design Automation Conference, IEEE/ACM, page 138–141, 1988

14. Y. Liao and C.K. Wong. An algorithm to compact a VLSI symbolic layout with mixed con-

straints. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on,

2:62–86, 1983

15. W.L. Schiele. Improved compaction by minimized length of wires. In Proceedings of the 20th

conference on Design Automation, pages 121–127, Piscataway, NJ, 1983

16. D. Marple, M. Smulders, and H. Hegen. An efficient compactor for 45ı layout. In Proceedings

of the 25th ACM/IEEE conference on Design Automation, pages 396–402, Los Alamitos, CA,

1988

17. D. Marple. A hierarchy preserving hierarchical compactor. In Design Automation Conference.

Proceedings, 27th ACM/IEEE, pages 375–381, Jun 1990

18. R.J. Vanderbei. Linear Programming: Foundations and Extensions, second edition. Kluwer,

Dordecht, 2000

19. A. Onozawa. Layout compaction with attractive and repulsive constraints. In Proceedings of

the 27th ACM/IEEE conference on Design Automation, pages 369–374, New York, 1990

20. L.-Y. Wang and Y.-T. Lai. Graph-theory-based simplex algorithm for VLSI layout spacing

problems with multiple variable constraints. Computer-Aided Design of Integrated Circuits

and Systems, IEEE Transactions on, 20:967–979, 2001

21. L.-Y. Wang, Y.-T. Lai, B.D. Liu, and T.C. Chang. Layout compaction with minimized delay

bound on timing critical paths. Circuits and Systems, IEEE International Symposium on, pages

1849–1852, 1993

22. R.C. Dorf. Modern Control Systems. Addison-Wesley, MA, 1995

23. P. Maidee and S. Choomchuay. Invisible edge and soft tied in compaction strategy. In IEEE

Asia-Pacific Conference on Circuits and Systems, pages 133–136, Nov 1998

24. T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT, MA, 1990

25. S.L. Lin and J. Allen. Minplex – a compactor that minimizes the bounding rectangle and

individual rectangles in a layout. In Design Automation. 23rd Conference on, pages 123–130,

June 1986

26. J.-F. Lee. A new framework of design rules for compaction of VLSI layouts. Computer-Aided

Design of Integrated Circuits and Systems, IEEE Transactions on, 7(11):1195–1204, 1988

27. M.A. Riepe and K.A. Sakallah. The edge-based design rule model revisited. ACM Transactions

on Design Automation of Electronic Systems, 3(3):463–486, 1998

28. S. Bhattacharya, S.H. Batterywala, Rajagopalan, H-K.T. Ma, and N.V. Shenoy. On efficient

and robust constraint generation for practical layout legalization. In Proceedings of the 9th in-

ternational symposium on Quality Electronic Design, pages 379–384, Washington, DC, USA,

2008. IEEE Computer Society

29. H. Shin, A.L. Sangiovanni-Vincentelli, and C.H. Sequin. “zone-refining” techniques for IC

layout compaction. Computer-Aided Design of Integrated Circuits and Systems, IEEE Trans-

actions on, 9(2):167–179, 1990

30. D.G. Luenberger and Y. Ye. Linear and nonlinear programming. Springer, Berlin, 2008

31. K. Okada, H. Onodera, and K. Tamaru. Compaction with shape optimization. In Custom

Integrated Circuits Conference. Proceedings of the IEEE, pages 545–548, May 1994

32. J.-F. Lee and D.T. Tang. Himalayas-a hierarchical compaction system with a minimized con-

straint set. In Computer-Aided Design. Digest of Technical Papers, IEEE/ACM International

Conference on, pages 150–157, Nov 1992

33. OpenAccess release 2.2. Silicon Integration Initiative. http//www.si2.org

34. S.H. Batterywala, S. Bhattacharya, S. Rajagopalan, H.-K.T. Ma, and N.V. Shenoy. Cell swap-

ping based migration methodology for analog and custom layouts. In Quality Electronic

Design, 9th International Symposium on, pages 450–455, March 2008

35. L. Zhang, N. Jangkrajarng, S. Bhattacharya, and C.-J.R. Shi. Parasitic-aware optimization

and retargeting of analog layouts: A symbolic-template approach. Computer-Aided Design of

Integrated Circuits and Systems, IEEE Transactions on, 27(5):791–802, 2008

36. lp solve mixed integer linear programming solver. http://lpsolve.sourceforge.net/5.5/

http//www.si2.org
http://lpsolve.sourceforge.net/5.5/

Chapter 6

Closing the Gap Between Electrical and Physical
Design: The Layout-Aware Solution

Rafael Castro-López, Elisenda Roca, and Francisco V. Fernández

Abstract Iterations between separate phases in any procedural design process,

usually a by-product of unexpected (or, simply, very complex to consider) adverse

effects, clearly play against any time-to-market requirements. In analog integrated

circuit (IC) design, going back and forth between electrical and physical synthe-

sis to counterbalance layout-induced performance degradations needs to be thus

avoided as much as possible. One possible solution involves the integration of the

traditionally separated electrical and physical synthesis phases, by including layout-

induced effects, in the form of layout parasitics, right into the electrical synthesis

phase, in what has been called parasitic-aware synthesis. This solution, as such, is

not yet complete since there are geometric requirements (minimization of the occu-

pied area or fulfillment of certain layout aspect ratio, among others), whose effects

on the resulting parasitics are not usually considered during electrical synthesis. In

this chapter, a layout-aware solution that tackles both geometric and parasitic-aware

electrical synthesis is proposed. This technique uses a combination of simulation-

based optimization, procedural layout generation, exhaustive geometric evaluation

algorithms, and several mechanisms for parasitic estimation. Thanks to the nature

of this combination, the solution benefits from, and also fosters, reuse of analog

intellectual property (IP) blocks. Several detailed design examples are provided.

6.1 Introduction

The CMOS semiconductor industry has continuously evolved and prospered since

the early 1970s. The ever-shrinking minimum feature size triggered a revolution in the

electronic industry, from ASICs (application-specific ICs), to SoCs (Systems-on-

a-Chip), SiPs (Systems-in-a-Package), and NoCs (Networks-on-a-Chip). A critical

R. Castro-López (�)

Instituto de Microelectrónica de Sevilla, IMSE-CNM-CSIC and University of Seville, Spain

e-mail: castro@imse-cnm.csic.es

H.E. Graeb (ed.), Analog Layout Synthesis: A Survey of Topological Approaches,

DOI 10.1007/978-1-4419-6932-3 6, c Springer Science+Business Media, LLC 2011

243

castro@imse-cnm.csic.es

244 R. Castro-López et al.

design productivity lag, however, has been reported [1]: with a 58% yearly growth

in IC complexity considerably surpassing the 21% yearly increase in productivity,

design cost is increasing rapidly. Taking into account the ever-demanding time-to-

market pressures, this picture is clearly worrisome. For analog and mixed-signal

(AMS) design, the situation is even worse, one of the most significant causes being

the scarcity of commercial CAD tools and methodologies to support the analog

design efficiently. In this scenario, productivity should be boosted to double every

year to bridge the gap. To achieve this goal, several research directions have been

suggested [1], among others: (1) increasing the fraction of the design coming from

reuse-based design practices, (2) improving hierarchical synthesis methods so that

subtle analog design knowledge is more efficiently managed, and (3) avoiding

iterations between separate design stages. However, the design of analog integrated

circuits is, in many ways, a very intricate process that demands to be systematized

as long as it is both possible and productive. Here, systematic means that the design

process is organized in such a way that it is efficient with respect to the available

resources (like CPU time); many, if not all, parts of the process could be, if wanted,

properly automated; and it provides equal, if not better, results when compared to

a traditional, nonsystematic, handcrafted design process.

The research and results described in this chapter focus on the three directions

mentioned above, with special emphasis on the third one, which will be undertaken

by minimizing the iterations between electrical synthesis (also known as sizing and

here understood as the process of mapping performance specifications into device-

level characteristics, such as transistor sizes and biasing conditions) and physical

synthesis (or layout generation). At the same time, this chapter also deals with the

systematization of both these electrical and physical parts of the design process,

by mixing them up and, in this way, getting to a design process that avoids time-

consuming iterations. In doing so, it is possible to completely implement those three

meanings of systematization.

To comprehend the goals to be achieved, it is necessary to understand that the

quality requirements in analog and mixed-signal (AMS) design, as well as produc-

tivity levels in the semiconductor industry involve many aspects [1]. Quality means

that the performance of the fabricated circuit is guaranteed even in the presence

of layout-induced parasitics. This goal is usually achieved through time-consuming

and unsystematic iterations between the electrical and physical design phases. Fail-

ing to attain the goal may eventually lead to product-to-market failure, but the

iterations are clearly a pitfall in designer’s productivity. In this sense, it is impor-

tant to note that the origin of this iterations is the disconnection in the design flow

that exists between electrical and physical design. Actually, an important aspect of

this issue is how to evaluate layout-induced parasitics early in the flow: in traditional

design, overestimation results in wasted power and area, while underestimation may

lead to fatal performance degradation. Another very important aspect of quality is

the effective use of silicon area because this is paramount to the final production

cost. This goal can be assured by carefully optimizing the design from the point of

view of geometry by, for instance, improving layout regularity and floorplanning or

attaining certain aspect ratios for the layout components.

6 The Layout-Aware Solution 245

These two quality aspects, area and parasitics, are nonetheless intimately related:

to optimize the design from point of view of the geometric unavoidably affects the

robustness of the design against parasitic-induced effects, and vice versa [2].

Beyond traditional analog circuit design techniques, the majority of the reported

solutions to implement more systematic and automated techniques cover only one

of the both problems, and just a few contributions have tried to address both of them

simultaneously. Another important aspect concerns the phase of the design cycle

where the solutions are applied: either after circuit sizing or concurrently with it.

The synthesis methodology presented in this chapter, so-called layout-aware siz-

ing, aims at concurrently solving the geometrical and parasitic problems by bringing

layout-related data into the very sizing process. Circuit sizing can then be carried out

with enough information on layout-induced degradations (parasitics) as well as with

a detailed description of the geometry of the eventually implemented layout. In this

way, circuit sizing ensures a solution that is robust enough against layout-induced

degradation effects and that fulfills a number of user-defined geometric goals, with

area minimization being the most important. The salient features of the proposed

solution are:

1. Thanks to the simulation-based approach, the methodology is very flexible and

general since many different types of circuits can be synthesized. Also, the use

of an electrical simulator provides a high level of accuracy in the simulation of

the circuit performances.

2. The global optimization techniques ensures that high-performance solutions (that

meet very demanding specifications) are attained.

3. Because accurate parasitics estimates are incorporated right into the electrical

synthesis phase, the performance of the design solutions is guaranteed.

4. The execution times are kept within reasonable limits thanks to the efficient

optimization-based and template-based layout generation techniques.

5. Minimization of area during electrical synthesis is done in a much more realistic

manner because, as opposed to traditional electrical design, every detail on the

layout implementation (e.g., routing, guard-rings, block separation, etc.) is taken

into account.

To the best of the authors knowledge, previously mentioned reported approaches

only meet some of the previous features. It is also worth noting that the methodol-

ogy presented here fosters reuse-based design practices for analog and mixed-signal

IP blocks, another featured direction toward new IC design methodologies. AMS

design expertise regarding electrical and physical IC design can be stored by using

techniques explained next. Thus, this expertise can be swiftly and efficiently reused

for many different design scenarios.

The layout-aware synthesis methodology here described is composed of two siz-

ing techniques, namely the parasitic-aware and geometrically constrained sizing

techniques. The latter technique concerns the inclusion of layout knowledge in the

sizing process to obtain a solution for which the area and shape of the eventually

implemented layout are optimized. Such a goal is accomplished by finding, dur-

ing the sizing process, the values of geometric parameters (e.g., number of folds

246 R. Castro-López et al.

of MOS transistors) that yield optimal geometric features. This optimization can

be defined either as a restriction on some geometric aspects of the layout (e.g., a

predefined aspect ratio, or a maximum width or height of the whole circuit layout)

or as a design objective (i.e., area minimization). Two aspects should be here care-

fully considered. First, adding new variables to the sizing process (i.e., geometric

variables in this case) must not simply consist in extending the design space be-

cause it would make the exploration of such a space exponentially more complex.

Second, to be able to include layout details into the sizing process, layout gener-

ation must be rapid enough so that retrieving these details does not overly slow

down the sizing process. In parasitic-aware sizing, the values of layout parasitics

are computed interactively during sizing, by using specific layout information (e.g.,

the possible implementation style of a group of MOS transistors) and actual de-

vice sizes. The eventually obtained sizing yields a performance that is also robust

when considering these layout-induced parasitic effects. As previously noted, these

two techniques have been carefully linked as different geometric variables may give

rise to various, different layout-induced effects (e.g., different foldings change the

junction capacitances of an MOS transistor).

The structure of this chapter is as follows. Following the review of previ-

ous work in Sect. 6.2, Sect. 6.3 describes the circuit sizing and layout generation

techniques used as foundations to develop the layout-aware synthesis of AMS cir-

cuits. Section 6.4 explains the geometrically constrained sizing technique, while

Sect. 6.5 completes the layout-aware sizing methodology with the parasitic-aware

technique. Several design examples are provided in both sections. Conclusions are

drawn in Sect. 6.6.

6.2 Previous Work

6.2.1 Circuit Sizing and Layout Generation

Synthesis can be carried out by following two different approaches, the first based

on knowledge, the second founded on optimization.

The basic idea behind knowledge-based synthesis is to use a predefined design

plan (in the form of design equations, design heuristic strategies, or both) to find

and combine the elements such that the set of requirements (for sizing or layout)

are met. The underlying principle is to capture the expertise of a designer so that an

optimum solution can be reached.

In knowledge-based sizing, design equations and heuristics are formulated in

such a way that, given the required performance characteristics, the component’s

characteristics can be calculated (e.g., [3]). Although it reaches solutions quickly,

this approach suffers from several drawbacks: limited accuracy due to the use of

simple equations, large preparatory time/effort and difficult migration to different

technologies.

6 The Layout-Aware Solution 247

Used for layout synthesis the intended captured knowledge refers to the wide

variety of techniques (from placement strategies, intended to improve device match-

ing and minimize the layout area, to routing techniques, used to minimize the

loading effects) that expert layout designers use to improve the quality of the lay-

out. There are two types of knowledge-based layout synthesis approaches, namely

rule-based and template-based approaches. Rule-based approaches store the lay-

out knowledge in a customizable rule set (defining what a “good” analog layout),

which are to be obeyed by whatever layout placement and routing algorithms are

to be used. However, most common knowledge-based approaches are template-

based tools [4–9]. The underlying idea with template-based tools is to capture

the layout designer’s expertise in a pattern that specifies all necessary component-

to-component and component-to-wiring spatial relationships, as well as analog-

specific constraints such as symmetry, device matching, and parasitic minimization.

In optimization-based synthesis, on the other hand, the problem is translated into

function optimization problems that can be solved through iterative numerical meth-

ods [10–21]. Although the optimization may be single or multi-objective (i.e., using

one or multiple functions that are minimized and/or maximized simultaneously),

the main idea is that the quality of the circuit performances are iteratively quantified

and compared with the performance specifications. This quantification requires an

evaluation that can be done by using equations (derived either manually or using

symbolic analyzers [11–16]), or by using a simulation tool [17–21]. Whereas the

simplicity of the equations may compromise the accuracy of the solution, using a

simulation tool improves the accuracy but the running time is typically much larger

than when using equations. However, the simulation-based optimization is concep-

tually more general since it can be used with many different type of circuits.

Regarding the optimization technique, two approximations are considered: sta-

tistical [16, 20, 21] and deterministic [17]. The main advantage of the statistical

techniques over the deterministic ones is their capability to escape from local min-

ima, thanks to a nonzero probability of accepting movements that may increase the

cost function. The price to pay is, however, a larger computational cost.

In optimization-based layout generation [22–24], the cost function typically con-

siders some design aspects such as area and net length, while penalizing violation of

analog design constraints, such as device mismatch, or crosstalk. The main benefit

is their generality since they can be applied to any AMS circuit. The drawbacks are

the complexity of the optimization problem, the relatively low quality of solutions,

the difficulty of the cost function setup, and the long turnaround times.

6.2.2 Previous Approaches to Layout-Aware Sizing

In this section, we analyze different reported approaches to layout-aware circuit

sizing. This analysis attends to several aspects, such as the engine used for sizing

(knowledge or optimization-based), the kind of evaluation of the circuits perfor-

mances (equations or simulation), the estimation method for parasitics (i.e., the type

248 R. Castro-López et al.

Table 6.1 Reported approaches for layout-aware sizing

Sizing Performance Estimation Layout Geometric

Ref. engine evaluation method generation constraints

[16] Performance Fitted 2.5-D Yes Equations

models & functions analytical-

genetic geometrical

algorithms

[25] Design plans Equations Analytical- No Linear

geometrical programming

[26] Simulation- Numerical Analytical- Yes No

based non- simulation geometrical

linear opt. (SPICE)

[27] Simulation- Numerical Analytical & No No

based opt. simulation look-up tables

(NG-SPICE)

[28] Simulation- Symbolic Off-the-shelf Yes No

based opt. analysis extractor

[29] Equation- Matrix nodal Analytical No No

based opt. analysis models

This work Simulation- Numerical Analytical & No Slicing tree

(1) [30] based opt. simulation layout-

(HSPICE) sampling

This work Simulation- Numerical Geometric & Yes Slicing tree

(2) [30] based opt. simulation 3-D analytical

(HSPICE) and geometric

and accuracy of the extraction process), the inclusion of geometry-aware informa-

tion, and the need for layout generation in the approach. The analysis is summarized

in Table 6.1, which includes also the solution described in this chapter.

In [16], the sizing engine uses simple performance models and evolutionary

algorithms, analytical–geometrical models for parasitics, and procedural layout gen-

eration. Geometrical concerns are addressed by using coarse equations describing

the geometries of the layout components that are required for each solution. The

information on extracted parasitics is, however, very limited.

A knowledge-based sizing approach that uses design plans is described in [25].

Parasitics are evaluated only for a relatively low number of iterations within the siz-

ing process. The estimation method for parasitics is based on analytical–geometrical

models. Geometrical concerns are considered by means of a linear programming

technique: the layout is optimized at the slice level and a simplex algorithm is ap-

plied to a vertically (or, correspondingly, horizontally) stacked set of horizontally

(vertically) arranged devices (a building block), called groups. Since this approach

uses design plans, the accuracy of evaluated solutions is compromised. Moreover,

even with the most accurate models for parasitic estimation, the resulting perfor-

mances may wrong when added to the approximate models used in the design plans.

Another drawback of this approach is that geometric aspects are not really consid-

ered as a part of the design space exploration during the sizing process. This means

6 The Layout-Aware Solution 249

that area is not an objective that is actually and comprehensively minimized during

sizing (it is only taken into account when near the optimum, i.e., during local opti-

mization). Besides, initial heuristic estimates are used to solve the problem, which

makes the solution highly dependent on starting guesses.

The solution in [26] consists in a first global sizing phase with no information on

layout followed by a detailed sizing phase, which generates a procedural layout at

each iteration. Therefore, parasitics are only considered for fine-tuning. Geometric

concerns are limited to the minimization of area through the number of folds in

MOS transistors.

The layout-aware technique presented in [27] uses simulation and optimization

combined with a parasitic estimation method based on analytical models and look-

up tables (the latter used for routing wires). The main drawback of this solution is

that no geometry-aware information is taken into account during the sizing process.

The solution in [28] uses layout with templates and commercial extractors.

Parasitics are incorporated into performance models by using symbolic analysis.

Although gain in sizing time is reported to be approximately 20% when compared

with traditional simulation-based techniques, the solution is limited to small-signal

performances. Besides, no geometric concerns are included.

The work in [29] uses equation-based models to evaluate circuit performances

and analytical models to estimate parasitics. Again, the use of equations limits the

accuracy of evaluated performances (added to the relative imprecision of parasitic

estimates). Also, geometry-related aspects are not considered.

6.3 Selected Approach to Layout-Aware Sizing

6.3.1 Sizing

Although knowledge-based sizing does reach solutions quickly, provided that de-

sign plans have been already derived, this approach suffers from several drawbacks.

The most important one is that the quality of the solutions in terms of both accu-

racy and robustness is not acceptable since the very concept of knowledge-based

sizing forces the design equations to be simple, thereby resulting in large deviations

of the real performance from the predicted one (several hundred percent in worst-

case scenarios). Other drawbacks are the large preparatory time/effort required to

develop design plans or design equations, the difficulty in using them in a different

technology, and the ad hoc nature of the approach itself. Optimization-based sizing

circumvents the need for a detailed design plan. Even though there is a clear gain

in running times when using equations, this type of performance evaluation method

may, however, compromise the accuracy of the solution. With optimization-based

sizing using simulation, better accuracy can be attained as long as accurate simula-

tion models are used, but the running times are typically much longer than sizing

with equations. However, optimization-based sizing is conceptually more general,

the simulator (i.e., the performance evaluator) being the component that determines

the applicability to different types of circuits and topologies.

250 R. Castro-López et al.

For these reasons, a simulator-in-the-loop, optimization-based engine has been

chosen to perform circuit sizing [20]. This engine features some characteristics in

the generation and acceptance of movements through the design parameter space

that allow to drastically reduce the computational cost, such as: preliminary explo-

ration of the design space using a coarse multidimensional grid to determine the

best regions for further exploration, adaptive control of the temperature in the sim-

ulated annealing statistical techniques, synchronization of movement amplitude in

parameter space with the temperature, among others. An outstanding feature is the

capability to incorporate design knowledge to the sizing procedures, which can be

done by making use of powerful tools like embeddable C-based programs. This is

very important because (as it is shown below) this capability makes it possible to

introduce layout-related aspects directly into the sizing process.

Then, the optimization problem is mathematically stated as:

Minimize y oi .x/; 1 � i � P ; (6.1)

Subject to y rj .x/ � Y rj and=or y rj .x/ � Y rj ; 1 � j � R ; (6.2)

where y oi .x/ stands for the value of the i -th design objective (e.g., minimize power

consumption); y rj .x/ is the value of the j -th design constraint (e.g., phase margin

larger than 45ı); Y rj is the targeted value of such a design specification; and x is the

vector of design variables (e.g., transistor sizes, capacitor values, bias currents, etc.).

In the context of circuit design, there is an important difference between a design

objective and a constraint. While the former are meant to improve the design, the

latter are set to defined what is a valid or feasible design. An example of design

objective is power consumption to be minimized; an example of constraint is to

have a phase margin above 45ı . It is also important to note that it is the choice of

the designer to state both constraints and objectives (sometimes, what is defined as

constraint can be used as objective, and vice versa).

In the work presented here, a single-objective optimization engine is used, so a

cost function is used. This cost function is defined according to the feasibility of the

point of the design space that is being evaluated during the optimization. If the point

does not satisfy any of the design constraints, the cost function is to be defined as:

 .x/ D maxŒ�wj log.yrj =Yrj /�; (6.3)

where wj is the weight associated to the j th constraint.

For those points of the feasible design space, the cost function is defined as

follows:

 .x/ D ˆ.yoi / D �
X

i

�wi log.jyoi j/; (6.4)

where wi is the weight associated with the i th design objective used to prioritize the

fulfillment of one or more design objectives over others.

The optimization engine explores the design spaces in two phases [20]. In the

first one, the best regions for further exploration are determined through a simulated

6 The Layout-Aware Solution 251

annealing technique combined with an adaptive temperature control. In the second

phase, a deterministic technique Powell’s method [31] performs the local optimiza-

tion of the design.

As evaluator of the circuit performances, any transistor-level simulator (e.g.,

HSPICE) can be used. In this way, the layout-aware sizing methodology described

here can be applied to any analog circuit that can be efficiently simulated at the

device level.

6.3.2 Layout Generation and Parasitic Extraction

The traditional design flow in AMS circuit design regarding layout-induced par-

asitics presents several drawbacks. The trial-and-error approach to counteract the

adverse impact of parasitics involves an unsystematic method to correct the circuit

sizing, its layout, or both. Oftentimes, the resulting degradation of the circuit per-

formance may be due not to a single parasitic but to the combined effect of several

parasitics. Moreover, the number of extracted parasitics (which depend on the com-

plexity of the circuit and the accuracy of the extraction tool) makes this correction

method even more time-consuming and error-prone. All in all, the number of re-

quired iterations to ease the impact of parasitics can be quite significative for typical

analog circuits.

On the other hand, accurate extraction of parasitics requires knowing the circuit

layout in detail. If parasitics are to be estimated during the sizing process, this layout

knowledge must be generated at each iteration of the sizing process. Therefore,

any method used to obtain this information must be fast enough to prevent circuit

sizing from taking prohibitively long. A feasible way to attain such information is

to generate the layout at each iteration. In this regard, optimization-based layout

generation is currently too slow to be called in the loop of an automated parasitic-

aware sizing process.

In this sense, template-based layout generation is a more suitable solution for

several reasons1: (1) the time required for layout generation (a few seconds [5])

is considerably smaller than those required by optimization-based approaches;

(2) layout templates are parameterized structures that contain all information on

the final circuit layout implementation, which is essential to accurately estimate

parasitics and, therefore, minimize the number of iterations between sizing and lay-

out [8,9,32]; (3) layout templates are very efficient at encapsulating design expertise,

both for placement and for routing.2

1 Layout templates, which are to be devised by following expert guidelines for analog layout, are,

however, relatively costly to generate. Providing that a library of basic building blocks (such as

transistors, resistors, and capacitors) is available, developing a layout template takes � 1:5 – � 2 the

time it takes to manually create the layout for the same block.
2 For instance, device symmetries can be coded right into the building block so that any instance

of the template ensures that pertinent symmetries are always kept.

252 R. Castro-López et al.

Despite these advantages, layout templates may not result the best solution in

terms of generality, since they lack flexibility (in terms of placement and routing

adaptation) for certain sizes of the circuit devices. Nevertheless, the geometrically

constrained sizing technique described below together with a careful design of lay-

out templates contribute to palliate their flexibility problems to a large extent. Our

template-based approach has been implemented [5] using the Cadence’s PCELLS

technology [33] and SKILL programming [34].

6.3.3 Putting It All Together

Figure 6.1 shows the flow diagram of the layout-aware sizing methodology. Its core,

the optimization engine based on simulation explained above, features the means

to add relevant designers’ expertise to such iterative optimization process. As, in

general, the design space of any circuit is a multidimensional space defined by all

the design parameters (e.g., physical parameters of transistors, resistors, and ca-

pacitors), adding such expertise is necessary to bind the exploration of the circuit

design space to only those regions yielding more suitable solutions, thereby im-

proving the efficiency of the procedure. By making use of powerful tools such as

embeddable C-based executables, it is possible to incorporate valuable design exper-

tise in the form of constraint-satisfaction equations. This capability enables carrying

out the floorplan-sizing task at each iteration of the optimization process. The C++

Fig. 6.1 Block diagram of the layout-aware sizing methodology ([30], cIEEE 2008)

6 The Layout-Aware Solution 253

program labeled geometric constraints module (hereafter referred as the GC mod-

ule) in Fig. 6.1 has been created to perform the floorplan-sizing task following the

technique explained above.

The data and information required in this flow are:

1. The circuit description (netlist) and the electrical performance to be posed as

goals of the optimization process.

2. Circuit template description: binary slicing tree representation of the layout tem-

plate the GC module works with.

3. Geometric goals: user-specified objectives concerning the geometric characteris-

tics of the eventually generated circuit layout

4. Fabrication process data, mainly layout design rules and process parameters.

The flow of optimization at any given iteration proceeds as follows:

1. A new vector for the design variables (within a prespecified range) is selected.

At the beginning of the optimization, this selection is done randomly. Otherwise,

the selection is done according to the optimization algorithm that is in place (e.g.,

following the simulated annealing optimization algorithm).

2. The vector of design variables is passed on to the GC module, which calculates

all possible combination of geometric parameters rendering all possible layout

styles for all of the circuit components. According to the required geometric

objectives (e.g., aspect ratio, maximum width, etc.), the GC module outputs the

combination of geometric parameters that attain those objectives while both area

and area loss are minimal.

3. With all necessary information to generate the layout, an instance3 of it is

extracted and the resulting parasitics are added to the circuit.

4. The circuit performances are evaluated in the presence of the extracted parasitics.

5. Electrical performances and geometric features are used in the cost function that

controls the optimization procedure.

6.4 Geometrically Constrained Sizing

The goal of geometrically constrained sizing is to help the designer in finding the

best use of the available silicon area. This is done by retrieving and using correctly

and accurately geometry-related information during the electrical design process.

Beyond the obvious benefits that this has in the physical implementation from the

geometry perspective (attaining a layout aspect ratio and improving the layout qual-

ity and area usage efficiency), an important benefit is that parasitic estimates can be

obtained and used right in the very sizing process.

3 An instance is the result generating an actual layout from a template, with a particular set of

values for the template parameters.

254 R. Castro-López et al.

6.4.1 Floorplan Sizing

The geometry optimization problem for integrated circuits is known as floorplan-

sizing problem. Given a collection of device sizes (e.g., width and length of MOS

transistors) for a given analog circuit and, since each device can be laid out in

multiple ways, the floorplan-sizing problem consists in finding out two things: the

placement (i.e., how the devices are place in relation to each other) and the geomet-

ric parameter (GP) values (e.g., the number of fingers of a MOS transistor) of all

components, such that some function �.W;H/ of the whole circuit layout width,

W , and height, H, is minimized. Note that the placement is already established by

the layout template that is being used, so the only problem is finding out the appro-

priate values of the geometric parameters.

In solving this problem, we thus seek to find the width and height of the layout of

each circuit component and, correspondingly, the values of its GPs that minimize� .

An example of such a function is the total occupied area �.W;H/ D W � H .

Another interesting function is the relative amount of area loss with respect to the

total occupied area. This loss results from the fixed, prestored placement, and rout-

ing of components in template-based layouts [5]. The area loss figure gives an idea

of how further could the layout be compacted if other device placement is used in-

stead. This figure is computed as the ratio between the total area and the area that

is not used by any block and routing wire, and that is not used with the design rules

(e.g., n-well spacing). The minimization of the area loss figure in the optimization

process provides an additional way to improve the efficiency (in terms of area usage)

and the flexibility of template-based layout solutions.

In our approach, the slicing style has been used to specify the layout floor-

plan [35]. A slicing floorplan is obtained when the layout components are arranged

such that the layout area is recursively divided into horizontal and/or vertical slices.

In a slicing floorplan, a slice is a combination of two or more components, either

building blocks or further slices. Although nonslicing floorplans are a more gen-

eral representation that can describe all kinds of tile packing, slicing floorplans have

important advantages over nonslicing, namely:

� Placement can be more easily specified by the relative positions of the layout

tiles, since the hierarchy of slicing structures is better defined.

� It yields more compact layout instances.

� It also allows evaluating other characteristics of the circuit layout, such as routing

more easily.

� It eases geometrically constrained sizing.

In our work, we have used rooted binary trees to represent the hierarchical struc-

ture of the slices in a slicing floorplan. These trees, also known as slicing trees, have

nodes that can be classified as leaf nodes and nonleaf nodes. In the tree, there are

m nonleaf nodes and n D m C 1 leaf nodes. Each node corresponds to a block

component (each of one implementing one or more circuit devices) of the layout.

For instance, the slicing tree for the fully differential amplifier in Fig. 6.3 is shown

6 The Layout-Aware Solution 255

Fig. 6.2 (a) Representation of the floorplan and (b) slicing tree for the circuit in Fig. 6.3 ([30],

cIEEE 2008)

Table 6.2 Slicing tree and devices of the circuit in Fig. 6.3

Slice Tile Devices Geometric parameter (GP) Building block

1 A Rz1 Rz m (no. of fingers) Folded resistor

B M3, M4, M10, and M11 m3 and m4 (no. of fingers) Cascode structure

C Rz2 Rz m (no. of fingers) Folded resistor

2 D Cc1 Xcc (horizontal dim.) Unit capacitor

E M14 m14 (no. of fingers) Folded transistor

F M1, M2 m1 (no. of fingers) Differential pair

G M15 m14 (no. of fingers) Folded transistor

H Cc2 Xcc (horizontal dim.) Unit capacitor

3 I M6–M9 m6 (no. of fingers) Cascode structure

4 J M5 m5 (no. of fingers) Current mirror

M12, M13 m12 (no. of fingers)

5 K RCM1 Rcm m (no. of fingers) Folded resistor

L RCM2 Rcm m (no. of fingers) Folded resistor

6 M M5c m5c (no. of fingers) Folded transistor

N M3c m3c (no. of fingers) Folded transistor

O M1c , M2c m1c (no. of fingers) Differential pair

P M4c m3c (no. of fingers) Folded transistor

in Fig. 6.2. The floorplan in Fig. 6.2a has six slices with one to five horizontally

distributed components. The corresponding slicing tree (which in this case has min-

imal depth) is shown in Fig. 6.2b.

The correspondence between the leaf cells and the devices of the opamp is ex-

plained in Table 6.2. Note that each leaf node has several possible shapes and,

therefore, several possible values of the pair fwidth; heightg. These pairs come from

varying one or more GP of the devices in the leaf node (see, for example, Table 6.2).

256 R. Castro-López et al.

The collection of Pareto-optimal4 pairs fwidth; heightg for a leaf node forms its

shape function; from the shape function it is possible to retrieve the height value

that corresponds to a certain with value, and vice versa.

6.4.2 Proposed Approach

For AMS circuits, there are two different approaches to solve the floorplan-sizing

problem. Both of them start from a predefined floorplan, and, therefore, the relative

block placement is fixed. The first approach is based on the Stockmeyer’s algo-

rithm [36], widely cited in the digital arena. The second approach is based on the

formulation of the floorplan sizing as a linear programming problem and the appli-

cation of the simplex method to solve it. An implementation of this second approach

is reported in [25], already discussed in Sect. 6.2.

Reported applications of the Stockmeyer’s algorithm on analog or mixed-signal

design tackle floorplan sizing only after circuit sizing [4, 37]. Therefore, neither

layout optimization nor layout-induced parasitics are concurrently considered with

sizing, in contrast with the solutions presented in this chapter.

To solve the issues that previous approaches have, such as separate electrical and

floorplan sizing, the solution we present in this chapter pursues the following three

goals to be undertaken during the sizing process:

1. Minimize both the occupied area and the ratio of unused silicon area (i.e., the

area loss).

2. Attain a complete and detailed description of the layout geometry (with the

values of all geometric parameters) to evaluate correctly all layout-induced par-

asitics and to have an accurate measure of the area that the layout occupies.

3. Provide solutions featuring user-specified constraints on the geometry, such as

the aspect ratio or the maximum width and/or height of the layout.

A key component is the GC module, which performs the floorplan-sizing task

based on a modified Stockmeyer’s algorithm. This algorithm considers for each

component two pair of width–height values that comes from taking only two pos-

sible shapes of the component (the second one being the 90ı-rotated version of

the first one). That is, the shape function of the component is formed by the pair

of values f.h;w/; .w; h/g, with h and w being the height and width of the compo-

nent, respectively. Applying this algorithm to the floorplan sizing problem in analog

circuits means that each building block has a list of heights and widths coming

from different styles of implementation (e.g., common-centroid, interdigitized, etc.)

and/or the different values of its GPs (e.g., different number of fingers or strips).

4 A Pareto-optimal element is an element that has lower width and/or height than the rest of ele-

ments. That is, it is not possible to find any other element that has a lower value of both width and

height than the Pareto-optimal element.

6 The Layout-Aware Solution 257

The GC module in Fig. 6.1 works in two phases. In the first phase, the bottom-up

phase, the slicing tree (see, for instance, Fig. 6.2b) is processed bottom-up, begin-

ning by associating a list with each leaf node of the tree (sorted according to the

rules hi > hiC1 and wi < wiC1) that represents the building block shape function.

To do this, there is a database of generators that provide the shape function given

the type of leaf node (e.g., a folded transistor, an MOS differential pair, an MOS

cascode group, a current mirror group, a capacitor array, or a folded resistor), the

size(s) of the device(s) and the fabrication process. Note that the pcells and tem-

plates that are used to implement each type of leaf node were made such that they

reflect several choices from the electrical and geometrical point of view, with pa-

rameters that make them flexible enough to ensure device matching, shielding, and

reliability5 [5].

Once every leaf node has been processed, the GC module combines them into

vertical, v, and horizontal, h, nonleaf nodes, according to the slicing tree that

has been defined for the circuit layout. For each nonleaf node, a list of s pairs,

f.h1;w1/; :::; .hs ;ws/g, is generated. This combination follows the rules of Stock-

meyer’s algorithm. The list of pairs is built with the following properties:

1. s �
QL.v/

iD1 li , where L.v/ is the number of leaf nodes of the subtree rooted at v

and li is the cardinality of the shape function of leaf node i .

2. Pair .hi ;wi / is kept in the list unless there is another .hj ;wj / that is strictly

better (lower) in the h or w dimension (or both) and is not worse than .hi ;wi / in

either dimension (remember that this is the definition of Pareto optimality).

3. Pairs are sorted according to the rules hi > hiC1 and wi < wiC1.

Additional information from the layout template (such as the physical separation

between slices) is provided to help composing the top-most shape function accu-

rately. By recursively applying the algorithm from bottom-up the slicing tree, the

first phase ends with the associated list or global shape function of the overall slic-

ing tree. As a side note, it is worth mentioning that the complexity of this shape

function algorithm is O.dlT / with d being the depth of the slicing tree and lT the

sum of the cardinalities of the shape functions of the leaf nodes in the slicing tree.

Once the global shape function is attained, any function �.W;H/ can be cal-

culated. Actually, the GC module’s main output is a matrix, called floorplan-sizing

matrix. The first two columns of this matrix are the width, W , and height, H , of

every point in the global shape function. The next columns account for several

�.W;H/-functions, such as the area and the aspect ratio. The area loss is calculated

as the difference between W � H (the occupied area) and the sum of all Wi � Hi

products (with i representing every leaf-node) plus the area required by the routing

wires. For the sake of illustration, Fig. 6.4a shows the shape function and the aspect

ratio of the opamp in Figs. 6.2 and 6.3, which in this case contains 3,000 points.

5 To prevent electromigration effects from taking place, wire width (for wires both within the block

and between blocks) is also a parameter here, which self-adapts to the current through the wire,

according to the layer’s maximum current density specified by the technology.

258 R. Castro-López et al.

Fig. 6.3 Opamp used to illustrate the concept of slicing floorplan ([30], cIEEE 2008)

In the second phase (top-down shape propagation), all the points (i.e., rows in the

floorplan-sizing matrix) that do not meet the geometric goals defined by the user are

removed. The following geometric goals are considered:

1. Aspect ratio, ARD W=H , with an acceptable deviation �AR, such that the final

layout aspect ratio remains bounded (AR��AR � W=H � AR C�AR).

2. Maximum and/or minimum width and/or height values.

For instance, if the user-specified geometric goal is to attain an aspect ratio be-

tween 0.9 and 1.1, the solution with minimal area can be found from the shape

function in Fig. 6.4a and the zoomed-in view in Fig. 6.4b, which also shows the

area occupation for these solutions. The optimum solution corresponds to the point

in the shape function with lower area occupation, as indicated in Fig. 6.4b. In this

way, the row with minimal area is selected from the floorplan-sizing matrix. Next,

the slicing tree is traversed top-down to obtain the corresponding shape (width and

height) of each leaf node. From these, the values of their GPs6 can be retrieved.

The description provided above is to show how the GC works for every circuit

that the optimization engine proposes to be evaluated by the simulator. Once a new

circuit is proposed by the optimization engine, and before simulation, the GC mod-

ule analyzes the sizing and returns the values of the geometric parameters that ensure

minimal layout area (that is, the evaluated design has minimal area when consider-

ing all layout realizations coming from the different values that each block’s GPs

can take), minimal area loss, and the specified geometric goals.

Area occupation is minimized at the template level by the GC module. But,

since a precise calculation of the area of the template instance is available right

after the application of the GC module at each iteration, area is also minimized by

6 Note that other layout features such as device symmetries are not targeted by the GC module;

rather, these other layout aspects are embedded in the layout template itself.

6 The Layout-Aware Solution 259

Fig. 6.4 (a) Example of global shape function for the analog cell in Fig. 6.3, and (b) area values

for each point of its shape function ([30], cIEEE 2008)

including it in the formulation of the cost function, as defined in (6.3). In this way,

the evolution of the optimization algorithm will tend to minimize area, pretty much

in the same way that other design objectives, e.g., power consumption, are mini-

mized. The inclusion of area loss as an optional, complementary design objective

serves the purpose of getting layout realizations that are very compact. Area loss

can be also included as a general design objective in the electrical optimization-

based sizing process.

6.4.3 Experimental Results

Four different experiments, with different geometric goals but the same set of elec-

trical performance specifications and design objectives, have been carried out to

validate the proposed solution. The demonstration circuit used is the opamp of

260 R. Castro-López et al.

Fig. 6.3. The geometric parameters considered are the number of folds of transis-

tors and resistors, and the side length of the unit rectangular capacitor implementing

Cc1 and Cc2. From a close inspection of Table 6.2 and the schematic of the opamp

in Figs. 6.2 and 6.3, the reader can notice that analog layout quality aspects, such

as symmetries in the signal path, were taken into account in the placement of the

layout template. The design variables for the set of experiments are the widths and

lengths of transistors M1, M3, M5, M8, M10, M12, and M1c, the nominal value

and strip width of resistors Rcm1 and Rz1, the nominal value of capacitor Cc1, and

the value of the biasing current. The variation ranges of these optimization variables

define the design space to be explored. Constraints are also added in the optimiza-

tion process. These constraints are circuit-specific design knowledge that is used to

guide the search in the complex design space. An example of such a constraint is

the one imposed on the aspects of M3c and M4c for current sources M3 and M4

to provide enough current for common-mode stabilization. The first two columns in

Table 6.3 show the electrical design specifications (constraints, as defined in (6.2))

for the four experiments. Table 6.4 shows the geometric constraints. In all four ex-

periments, the amplifier drives a resistive load of 50 k� and a capacitive load of

5pF. The design objectives that are defined for the set of experiments are the min-

imization of area, the minimization of power consumption, and the minimization

of area loss. The simulator used (see Fig. 6.1) is HSPICETM. The optimization re-

sults are shown in Tables 6.3–6.5. In all four experiments, all electrical performance

specifications are met, as shown in Table 6.3. Table 6.4 also shows the obtained val-

ues for the geometric goals of the resulting opamp layouts, and Table 6.5 lists the

attained design objectives. All geometric goals have been successfully addressed,

whereas minimization of layout area and power consumption have been carried out.

Table 6.3 Specified and obtained electrical performances in the GA-only experiments

Specification Goal Exp. #1 Exp. #2 Exp. #3 Exp. #4

DC gain (dB) �85 110.37 89.85 105.65 100.82

Unity-gain frequency (MHz) �50 65.79 50.64 75.95 50.37

Phase margin (deg) �50 57.26 71.78 52.93 68.94

CMFB loop DC gain �85 114.0 92.39 108.79 111.04

CMFB loop UGF (MHz) �25 27.64 25.15 29.28 27.52

CMFB loop phase margin (deg) �50 50.13 50.06 50.46 52.25

Output swing (V) �5.5 5.86 5.85 5.87 5.76

Slew-rate (V/�s) �55 59.15 57.25 71.72 59.96

Table 6.4 Specified and obtained values of the geometric goals in the GA-only experiments

Aspect ratio Width (�m) Height (�m)

Experiment Constraint Obtained Constraint Obtained Constraint Obtained

Exp. #1 [0.91,1.1] 1.00 – 165.7 – 165.85

Exp. #2 [1.95,2.05] 1.96 – 229.0 – 116.7

Exp. #3 – – <150 143.2 – 171.1

Exp. #4 – – <300 186.9 <150 138.1

6 The Layout-Aware Solution 261

Table 6.5 Attained design objectives and achieved area loss in the GA-only experiments

Feature Goal Exp. #1 Exp. #2 Exp. #3 Exp. #4

Power (mW) Minimize 3.18 3.21 4.93 2.98

Area (�m2) Minimize 27,481 26,724 24,502 25,811

Area loss (% of area) Minimize 1.94 3.06 0.93 0.57

Fig. 6.5 Resulting layouts from geometrically constrained sizing experiments ([30], cIEEE

2008)

Table 6.6 Number of iterations and elapsed CPU time in the GA-only

experiments

Figure Exp. #1 Exp. #2 Exp. #3 Exp. #4

Number of iterations 1,708 5,778 6,462 4,824

CPU time (s) 409.92 1380.9 1563.8 1157.76

The physical implementation for each experiment is shown in Fig. 6.5. Finally,

Table 6.6 displays the elapsed CPU time7 and the number of iterations of each

experiment.

7 The experiments were performed on a Pentium IV at 1.3 GHz.

262 R. Castro-López et al.

6.5 Layout-Aware Sizing of AMS Circuits

6.5.1 Completing the Layout-Aware Sizing Methodology

with Parasitic Extraction

One important fact in analog design is that accurate estimates of layout-induced par-

asitics can be only obtained with all the information on the eventually implement

circuit layout, with complete information on the values of each and every one of the

geometric parameters. The GC module in Fig. 6.1 determines the value of geomet-

ric parameters prior to parasitic extraction. Such information is then processed to

estimate layout-induced parasitics. Afterward, the electrical description of the cir-

cuit is completed with the parasitic estimates and the overall performance is checked

against intended performance specifications, which requires evaluation of the circuit

performance.

Another important fact about parasitics is that many different extraction tech-

niques exist [24]. The tradeoffs that these techniques expose relate accuracy and

computation time. For MOS transistors, extraction can be done by using geometric

methods and analytical methods. Geometric methods directly measure diffusion ar-

eas and perimeters. Analytical methods require having drain and source areas and

perimeters as functions of the number of fingers, the exact implementation style,

and fabrication process data. For interconnects,8 parasitics can be extracted by us-

ing numerical, A–G (analytical–geometrical), or table lookup methods. Numerical

methods try to solve the Laplace equation over the system of stratified layers. A–G

methods use analytical parameterized models9 for a number of commonly encoun-

tered interconnect configurations. Geometric methods are then used to obtain the

layout parameters directly from the layout geometries to evaluate each analytical

function and, thus, extract the capacitive parasitics. Lookup tables store the data

generated by numerical simulations or experimental measurements.

Regarding the accuracy-time tradeoff, numerical methods are slower (due to the

high computational resources demanded), but are accurate. Table lookup methods

can be reasonably accurate estimates with relatively low computation times, but the

data storage requirements grow very rapidly with the number and range of param-

eters describing a given interconnect configuration (that is, the higher the accuracy

required, the larger the data set required). On the other hand, A–G methods are

relatively fast and accurate.

Two approaches for parasitic estimation have been implemented in this layout-

aware approach. In the first one (approach A), parasitic extraction is done by using

geometric methods for transistors and 3-D A–G methods for interconnects and other

8 Resistive and capacitive devices, such as poly-silicon or well resistors and PIP or MIM capacitors,

can be treated as interconnect layers when extracting their related parasitics.
9 The complexity of these models (and, thus, the accuracy of the parasitic extraction) usually refers

to the dimensionality of the spatial configuration of stratified layers, such as the 2-D model, 2.5-D

model, or the more complex 3-D model.

6 The Layout-Aware Solution 263

devices, which are pretty much the same methods used by most commercial parasitic

extractors. The main objections with these extraction techniques is that, although the

parasitics obtained are very accurate, these techniques have usually been considered

to be slow to be included within an optimization loop [24, 27], and that they may

yield long simulation times due to the presence of the large number of parasitics that

are extracted.

The second approach (approach B) to parasitic estimation relies on analytical

methods for the calculation of the MOS transistor diffusion areas and perimeters.

For every layout style implementation for single, stacked, or interdigitized tran-

sistors, a set of equations were developed following the approach in [38]. These

equations relate the diffusion area and perimeter of a transistor to its width, length,

number of fingers, layout style, and fabrication process. With the equations, it is

then possible to accurately compute diffusion capacitances for every transistor size.

Estimates for the routing parasitics in this second approach are obtained by follow-

ing a layout template sampling technique. Layout sampling has been reported in

the literature with different approaches and purposes [5, 27, 28]. In our approach, a

number of different instances of the circuit layout template are generated prior to

any circuit sizing. This generation is done by sampling each of the n layout param-

eters (i.e., circuit design variables and geometric parameters) with m data points.

The interconnect parasitics of each instance are extracted with a 3-D A–G extrac-

tion technique (with a commercial parasitic extractor), and stored in a lookup table.

This table, relating the sizing and geometric parameters to the values of the routing

parasitics,10 can then be used in the sizing process to retrieve the values of these par-

asitics. The main issue of this approach is that, while it allows a very fast evaluation

of critical parasitics, the number of design variables, being relatively large, makes

it very time-consuming to generate and store the mn possible instances and, also,

the for the lookup table may be exceedingly large. To ease this issue, two sampling

steps are applied. In the first one, a reduced number of instances (e.g., 100) is gen-

erated. Electrical simulation of these instances allows identifying and eliminating

noncritical parasitics (those with negligible impact on the electrical performances

of importance). For instance, the application of this technique to the fully differen-

tial operational amplifier in Fig. 6.6 provides the relevant parasitics shown in gray

in the same figure.

The second step performs a denser sampling of only the relevant layout pa-

rameters, i.e., those parameters that are associated with the parasitics with a more

significant impact on performance (this knowledge is obtained from the layout tem-

plate). For those layout parameters with a nonsignificant impact on the critical

parasitics identified in the previous step, a single sample is used. As a result of

these two steps, only N instances (with N � mn) are generated and extracted, and

for those N instances, only the critical parasitics are stored.

10 Note that the generation of the lookup table must be performed only once for the circuit’s

template; the table remains valid for any sizing process applied to that circuit.

264 R. Castro-López et al.

Fig. 6.6 Case study for the validation of the layout-aware sizing technique ([30], cIEEE 2008)

Table 6.7 Specified and obtained electrical performances in the parasitic-aware experiments

Specification Goal Exp. I Exp. II Exp. III

DC gain (dB) �110 110.0 (111.0) 113.0 (113.0) 111.7

Unity-gain frequency (MHz) �90 91.8 (89.8) 105.7 (105.4) 106.6

Phase margin (deg) �65 67.6 (63.4) 65.4 (65.0) 66.2

Output swing (V) �5.25 5.3 (5.3) 5.3 (5.3) 5.4

Slew-rate (V/�s) �40 46.9 (46.8) 57.2 (57.0) 56.7

Power (mW) Minimize 7.3 (7.3) 8.0 (8.0) 8.3

Area (�m ��m) Minimize 195:8 � 358:8 173:8 � 191:25 189:6 � 193:05

Aspect ratio � 1 0.55 0.91 0.98

6.5.2 Experimental Results of Layout-Aware Sizing

To illustrate the layout-aware sizing technique proposed, three sizing experiments

have been carried on the operational amplifier shown in Fig. 6.6, with performance

specifications listed in Table 6.7. These experiments are:

� Experiment I. In this experiment, no geometry or parasitic-related information is

used. Global area minimization is pursued by minimizing the sum of the sizes

of all devices (e.g., the width-length product of a transistor). Since no geometry-

related aspect is used, no geometry goals (such as layout aspect ratio) can be

enforced.

� Experiment II. This experiment considers both geometry and parasitics, with par-

asitic extraction following approach B explained above.

� Experiment III. This experiment considers both geometry and parasitics, with

parasitic extraction following approach A explained above.

6 The Layout-Aware Solution 265

In all three experiments, the amplifier drives a 100-k� resistive load and an 8–pF

capacitive load. Table 6.7 shows the results of each experiment. For experiments I

and II, the performance characteristics obtained from electrical simulation of the

extracted layout using a commercial extractor are shown between parentheses. For

experiment III, the performances match since the extraction methods are the same.

Note that, although nominal performances (without including the impact of lay-

out parasitics) are all within specifications as shown in Table 6.7, some violations

of specifications may arise when actually including parasitics (see the nonfulfilled

phase margin and unity-gain frequency of experiment I). In these cases, additional

redesign iterations are certainly required.

The final layout instances of the three experiments are shown in Fig. 6.7.

Remarkably, when no geometry information is included, the layout implementa-

tions may end up with large empty areas and poor compaction, as it can be seen in

the layout solution of Experiment I (GPs in this experiment were set to their default

values).

Finally, Table 6.8 shows the number of iterations and the CPU times in the three

experiments. Note that the use of approach A for parasitic extraction (Experiment

III) requires approximately 15% more CPU time than when using the B approach

(layout instancing and extraction takes 17% of the total sizing time). The bene-

fit is that despite this increase in the CPU time all performance characteristics are

Fig. 6.7 Layout instances of experiments in Table VII ([30], cIEEE 2008)

Table 6.8 Number of iterations and elapsed CPU

time for the parasitic-aware experiments

Figure Exp. I Exp. II Exp. III

Number of iterations 2116 2437 3044

CPU time (s) 507.8 612.31 880.3

266 R. Castro-López et al.

guaranteed to be within specifications. Therefore, these results demonstrate that, at

least for analog cells with a few tens of devices, the first approach for parasitic ex-

traction is also reasonably fast to be included within an iterative optimization loop.

6.6 Conclusions

A layout-aware sizing methodology for analog circuits has been described in this

chapter. This methodology minimizes the iterations between electrical and physical

design phases in traditional design methodologies.

This is a flexible solution because it uses simulation-based optimization ap-

proach, which can be applied to many different types of analog circuits. Moreover,

accurate evaluation of the circuit performance characteristics is guaranteed because

of the electrical simulator used in the optimization loop. The inclusion of parasitics

in the electrical sizing process ensures that the design solutions that are attained

will meet the required specifications. Also, area is realistically minimized, both at

the template level and at the global level, during circuit sizing because all layout-

related geometrical information is included in the optimization. Thanks to the use of

a floorplan-sizing algorithm, geometric goals (such as a certain layout aspect ratio)

can be used as well as design objectives in the optimization process.

Future work on this topic includes the extension of the layout-aware sizing

methodology to larger circuits by introducing hierarchical decomposition and

specification transmission. Also, the use of multiobjective optimization instead of

single-objective optimization (used in this chapter) can provide a way to relate

the trade-offs between electrical performance and the use and efficiency of the

layout template for the complete design space, which can help introducing layout

template selection depending on the region of the design space the exploration is

taking place.

References

1. Int. Technology Roadmap for Semiconductors. [Online]. Available: http://public.itrs.net, 2005.

2. MEDEA+ Design Automation Roadmap. [Online]. Available: http://www.medeaplus.org,

2007.

3. M. Degrauwe, O. Nys, and E. Dijkstra, “IDAC: An interactive design tool for analog CMOS

circuits,” IEEE J. Solid-State Circuits, vol. SSC-22, no. 6, pp. 1106 – 1116, Dec 1987.

4. J. Conway and G. Schrooten, “An automatic layout generator for analog circuits,” in European

Design Automation Conference, Mar 1992, pp. 513 – 519.

5. R. Castro-Lopez, F. Fernandez, and F. Medeiro, “Generation of technology-independent re-

targetable analog blocks,” Analog Integrated Circuits and Signal Processing, vol. 3, no. 2,

pp. 157 – 170, Nov 2002.

6. N. Jangkrajarng, S. Bhattacharya, and R. Hartono, “IPRAIL – intellectual property reuse-based

analog IC layout automation,” Integration, VLSI J., Nov 2003.

http://public.itrs.net
http://www.medeaplus.org

6 The Layout-Aware Solution 267

7. S. Bhattacharya, N. Jangkrajarng, and C. Shi, “Multilevel symmetry-constraint generation for

retargeting large analog layouts,” IEEE Trans. Computer-Aided Design Integr. Circuits Syst.,

vol. 25, no. 6, pp. 945 – 960, Jun 2006.

8. S. Bhattacharya, N. Jangkrajarng, and C. Shi, “Template-driven parasitic-aware optimization

of analog integrated circuit layouts,” in ACM/IEEE Design Automation Conference (DAC), Jun

2005, pp. 644 – 647.

9. N. Jangkrajarng, L. Zhang, S. Bhattacharya, N. Kohagen, and C. Shi, “Template-based

parasitic-aware optimization and retargeting of analog and RF integrated circuit layouts,”

in IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Nov 2006,

pp. 342 – 348.

10. J. Harvey, M. Elmasry, and B. Leung, “STAIC: An interactive framework for synthesizing

CMOS and BiCMOS analog circuits,” IEEE Trans. Computer-Aided Design Integr. Circuits

Syst., vol. 11, no. 1, pp. 1402 – 1417, Nov 1992.

11. G. Gielen, H. Walscharts, and W. Sansen, “Analog circuit design optimization based on

symbolic simulation and simulated annealing,” IEEE J. Solid-State Circuits, vol. 25, no. 3,

pp. 707 – 713, Jun 1990.

12. P. Maulik, L. Carley, and D. Allstot, “Sizing of cell-level analog circuits using constrained

optimization techniques,” IEEE J. Solid-State Circuits, vol. 28, no. 3, pp. 233 – 241, Mar 1993.

13. M. Hershenson, S. Boyd, and T. Lee, “Optimal design of a CMOS op-amp via geometric pro-

gramming,” IEEE Trans. Computer-Aided Design Integr. Circuits Syst., vol. 20, no. 1, pp. 1–21,

Jan 2001.

14. F. Fernández, A. Rodrı́guez, and J. L. Huertas, Symbolic Analysis Techniques: Applications to

Analog Design Automation. IEEE Press, New York, 1997.

15. C. Shi and X.-D. Tan;, “Canonical symbolic analysis of large analog circuits with determinant

decision diagrams,” IEEE Trans. Computer-Aided Design Integr. Circuits Syst., vol. 19, no. 1,

pp. 1 – 18, Jan 2000.

16. P. Vancorenland, G. V. der Plas, M. Steyaert, G. Gielen, and W. Sansen, “A layout-aware

synthesis methodology for RF circuits,” in IEEE/ACM International Conference on Computer-

Aided Design (ICCAD), Nov 2001, pp. 358 – 362.

17. W. Nye, D. C. Riley, A. Sangiovanni-Vincentelli, and A. L. Tits, “DELIGHT.SPICE: An

optimization-based system for the design of integrated circuits,” IEEE Trans. Computer-Aided

Design Integr. Circuits Syst., vol. 7, no. 4, pp. 501 – 519, Apr 1988.

18. G. Stehr, M. Pronath, F. Schenkel, H. Graeb, and K. Antreich, “Initial sizing of analog in-

tegrated circuits by centering within topology-given implicit specifications,” in IEEE/ACM

International Conference on Computer-Aided Design (ICCAD), Nov 2003, pp. 241 – 246.

19. R. Phelps, M. Krasnicki, R. Rutenbar, L. Carley, and J. Hellums, “Anaconda: simulation-based

synthesis of analog circuits via stochastic pattern search,” IEEE Trans. Computer-Aided Design

Integr. Circuits Syst., vol. 19, no. 6, pp. 703 – 717, Jun 2000.

20. F. Medeiro, A. Pérez-Verdú, and A. Rodrı́guez-Vázquez, Top-Down Design of High-

Performance Sigma-Delta Modulators. Kluwer, Dordrecht, 1999.

21. E. Ochotta, R. Rutenbar, and L. Carley, “Synthesis of high-performance analog circuits in

ASTRX/OBLX,” IEEE Trans. Computer-Aided Design Integr. Circuits Syst., vol. 15, no. 3,

pp. 273 – 294, Mar 1996.

22. H. Chang, E. Liu, R. Neff, E. Felt, and E. Malavasi, Top-Down, Constraint-Driven Design

Methodology for Analog Integrated Circuits. Kluwer, Dordrecht, 97.

23. J. Cohn, D. Garrod, R. Rutenbar, and L. Carley, “KOAN/ANAGRAM II: new tools for device-

level analog placement and routing,” IEEE J. Solid-State Circuits, vol. 26, no. 3, pp. 330 – 342,

Mar 1991.

24. K. Lampaert, G. Gielen, and W. Sansen, Analog Layout Generation for Performance and Man-

ufacturability. Kluwer, Dordrecht, 1999.

25. M. Dessouky and M. Louerat, “A layout approach for electrical and physical design integra-

tion of high-performance analog circuits,” in IEEE First International Symposium on Quality

Electronic Design (ISQED), Mar 2000, pp. 291 – 298.

26. H. Onodera, H. Kanbara, and K. Tamaru, “Operational-amplifier compilation with performance

optimization,” IEEE J. Solid-State Circuits, vol. 25, no. 2, pp. 466 – 473, Apr 1990.

268 R. Castro-López et al.

27. A. Agarwal, H. Sampath, V. Yelamanchili, and R. Vemuri, “Fast and accurate parasitic capaci-

tance models for layout-aware synthesis of analog circuits,” in Design Automation Conference

and Test in Europe Conference (DATE), Mar 2004, pp. 145 – 150.

28. M. Ranjan, W. Verhaegen, A. Agarwal, H. Sampath, R. Vemuri, and G. Gielen, “Fast, layout-

inclusive analog circuit synthesis using pre-compiled parasitic-aware symbolic performance

models,” in Design Automation Conference and Test in Europe Conference (DATE), vol. 1,

Feb 2004, pp. 604 – 609.

29. A. Pradhan and R. Vemuri, “Efficient synthesis of a uniformly spread layout aware pareto

surface for analog circuits,” in 22nd International Conference on VLSI Design, Dec 2009,

pp. 131 – 136.

30. R. Castro-Lopez, O. Guerra, E. Roca, and F. Fernandez, “An integrated layout-synthesis ap-

proach for analog ics,” Computer-Aided Design of Integrated Circuits and Systems, IEEE

Transactions on, vol. 27, no. 7, pp. 1179 – 1189, Jul 2008.

31. R. P. Brent, Algorithms for Minimization Without Derivatives. Prentice Hall, Englewood Cliffs,

NJ, 2002.

32. G. Zhang, A. Dengi, R. Rohrer, R. Rutenbar, and L. Carley, “A synthesis flow toward fast

parasitic closure for radio-frequency integrated circuits,” in ACM/IEEE Design Automation

Conference (DAC), 2004, pp. 155 – 158.

33. Virtuoso Parameterized Cell Reference, 4th ed., Cadence Des. Syst. Inc., San Jose, CA, 2000.

34. SKILL Language Reference, 6th ed., Cadence Des. Syst. Inc., San Jose, CA, 2004.

35. R. Otten, “Automatic floorplan design,” in ACM/IEEE Design Automation Conference (DAC),

1982, pp. 261 – 267.

36. L. Stockmeyer, “Optimal orientations of cells in slicing floorplan designs.” Inf. Control, vol. 57,

no. 2/3, pp. 91 – 101, May/Jun 1983.

37. H. Koh, C. Sequin, and P. Gray, “OPASYN: a compiler for CMOS operational amplifiers,”

IEEE Trans. Computer-Aided Design Integr. Circuits Syst., vol. 9, no. 2, pp. 113 – 125, Feb

1990.

38. R. Naiknaware and T. Fiez, “Automated hierarchical CMOS analog circuit stack generation

with intramodule connectivity and matching considerations,” IEEE J. Solid-State Circuits,

vol. 34, no. 3, pp. 304 – 303, Mar 1999.

Chapter 7

Constraint-Driven Design Methodology:
A Path to Analog Design Automation

Göran Jerke, Jens Lienig, and Jan B. Freuer

Abstract Physical design for analog ICs has not been automated to the same degree

as digital IC design, but such automation can significantly improve the productivity

of circuit engineers. Analog design remains difficult to formalize due to a large

amount of expert knowledge involved, such as sophisticated constraints that are

specified manually and satisfied through manual layout. We therefore propose a

constraint-driven design methodology – a suite of algorithms and methodologies

to capture key rules governing analog layouts and to produce layouts that satisfy

these rules. In this chapter, we identify major challenges in analog physical design,

and relate them to constraints. We introduce techniques for constraint representation

and highlight the essential components of a constraint-driven design methodology.

Finally, we explain how constraint-driven design impacts a typical analog design

flow, layout algorithms, and the overall physical design methodology.

7.1 Introduction

While physical design automation of analog IC design has seen significant im-

provement in the past decade, it has not advanced at nearly the rate of its digital

counterpart. This shortfall is primarily rooted in the analog IC design problem it-

self, which is very complex even for small problem sizes [7, 16, 23, 29].

The quality of a design result is generally determined by the degree to which

compliance constraints have been met and predefined design objectives achieved.

Due to the lack of uniform representation and interpretation of design constraints

in the analog design flow context, most of the constraints in today’s analog designs

are still specified and considered manually by expert designers (expert knowledge).

Furthermore, analog constraints are often used implicitly (i.e., based on a designer’s

experience) rather than being explicitly defined, which prevents their effective use

J. Lienig (�)

Dresden University of Technology, IFTE, 01062 Dresden, Germany

e-mail: jens.lienig@ifte.de

H.E. Graeb (ed.), Analog Layout Synthesis: A Survey of Topological Approaches,

DOI 10.1007/978-1-4419-6932-3 7, c Springer Science+Business Media, LLC 2011

269

jens.lienig@ifte.de

270 G. Jerke et al.

19901980 2000 2010

A
b
st

ra
ct

io
n

E
v
o
lu

ti
o
n

Evolution Step

Prerequisite

Polygon

Pushing

Constraint-

Driven Design

Analog Design

Automation

Constraint

Verification

LVS

DRC

Verification of…

SchematicTechnology Expert Knowledge

Schematic-

Driven Layout

Fig. 7.1 The evolution of analog physical design methodologies, such as schematic-driven layout

and constraint-driven design, towards the goal of a fully automated analog design flow

in design automation. However, progress in physical design automation for analog

ICs is urgently needed as design sizes increase, along with significant challenges,

such as increasingly stringent reliability and robustness requirements, and a rapidly

widening verification gap.

Analog circuits are currently designed interactively, in terms of schemat-

ics, which are subsequently verified. Most researchers agree that this so-called

schematic-driven layout (SDL) methodology will be replaced by analog design

automation in the future, more in line with current practices for digital circuits.

As we will show, constraint-driven IC design is both a necessary step toward full

automation and also a precondition for it (Fig. 7.1).

The ultimate goal of fully automated analog design (analog design automa-

tion) can only be achieved if the schematic-driven design paradigm evolves into

a constraint-driven design paradigm. This is based on the belief that we first need

a methodology that allows for automatic inclusion of expert knowledge in the form

of constraints, which also must be verified automatically. Only then one is able to

tackle the task of analog layout synthesis in a comprehensive and consistent manner.

In other words, the abilities of “analyzing” and “verifying” are a precondition for

“synthesizing” [30].

This chapter provides an introduction to the concept of a constraint-driven

physical design approach for arbitrary ICs in general, and for analog ICs in par-

ticular. First, we identify key similarities and differences between the physical

design of analog and digital circuits, and the corresponding challenges, which

we show are primarily constraint-related (Sect. 7.2). We discuss the constraint

representation and classification in Sect. 7.3 and give an overview of the constraint-

driven design flow and its essential components in Sect. 7.4. Here, we introduce

fundamental components required in this flow, such as constraint representation,

management, transformation, and verification. The application and resolution of

7 Constraint-Driven Design Methodology: A Path to Analog Design Automation 271

constraints, through constraint engineering, is discussed in Sect. 7.5. In Sect. 7.6,

we then present the impact this methodology has on the overall IC design flow,

the core design of design automation algorithms, and the required paradigm adjust-

ments needed for analog physical design approaches. The chapter concludes with

an anticipatory look at open problems (Sect. 7.7).

7.2 Problem Description

7.2.1 The Design Problem

In general, any (IC) design problem represents a complex and constrained optimiza-

tion problem. The degrees of design freedom linked to the optimization problem

span a multidimensional solution space, which is at least partially constrained by

the given global design constraints. A feasible solution for a specific design problem

is obtained by sequentially removing all degrees of design freedom while traversing

and reducing the solution space and considering all context-relevant constraints and

application profiles.

This reduction is done by sequentially transforming functional representations

with many degrees of design freedom into equivalent ones with fewer degrees of

design freedom. For example, using suitable methods one may transform a given

functional specification into a netlist1, which is subsequently transformed into a

floorplan, a placement order, a wired layout and finally into a physical mask layout2,

which contains no further degree of design freedom.

Several functional transformations (design steps) can be active at the same time

during analog IC design (Fig. 7.2). The strategy of how and when to remove a degree

of design freedom during the design phase depends on several specific factors in

Fig. 7.2 Simplified design

flow for analog IC design

where design steps are

typically overlapping.

Multiple design steps are

active at the same point

in time [30]

100%0%

0%100%

Sp
ec

ifi
ca

tio
n

Circ
uit

 D
es

ign

Si
mula

tio
n

Plac
e a

nd
 R

ou
te

Phy
sic

al

Ver
ifi

ca
tio

n

Fl
oo

rp
lan

nin
g,

Dev
ice

 G
en

-
er

at
ion

D
eg

re
e

o
f

D
es

ig
n
 F

re
ed

o
m

Design Time

P
h
y
si
ca

l

R
ea

li
za

ti
o
n

Design Flow

1 Functional representation of the given specification.
2 Functional representation of the given netlist.

272 G. Jerke et al.

the design context. Among others, these factors may include the type of IC applica-

tion, its usage profiles, reliability and robustness requirements as well as the current

problem situation in a design phase with its linked constraints (design context).

In general, design constraints must be fulfilled, whereas design objectives may

be fulfilled. A design objective that must be fulfilled hence represents a constraint,

and must be treated as such. Similarly, any given design constraint that may be

fulfilled should be considered as a design objective. The design goal is to achieve

design results that fulfill all given constraints and which offer the highest level of

achievement toward predefined design objectives.

7.2.2 Analog Vs. Digital Design Automation

Analog IC designs often contain only a small number of devices as compared to dig-

ital IC designs. Nevertheless, the effort required to design analog function modules

often matches or even exceeds the effort for digital modules. This is mainly due to

a much richer set of constraints that must be considered simultaneously (Sect. 7.3).

On average, each design object (instance, net, path, etc.) in an analog IC design

must comply with a larger and more extensive set of constraints to fulfill its intended

function (compared to digital design). The primary reason for this observation is the

higher level of functional abstraction offered in digital designs. This allows digital

designs to use fewer top-level constraints to guarantee a robust function.

Furthermore, the majority of constraints may yet be unknown when the analog

design process begins. This renders automatic top-level design planning for analog

IC designs nearly impossible. It is one of the reasons that highly skilled design

engineers are still required to perform top-level design planning manually.

This constraint-related problem also makes algorithm and tool development

for analog IC design much more difficult because the number of specific design

algorithms may increase with each new type of constraint. Considering today’s

conventional design-algorithm development approach (one type of constraint and

one algorithm to handle it), this approach falls short when it comes to linked con-

straints (Sect. 7.3). This represents one of the primary reasons why analog design

automation is lagging behind its digital counterpart and why this gap is currently

still growing.

Another important reason for the design gap is rooted in the level of com-

pleteness and consistency that can be applied to the consideration of constraints

during IC design. Today’s digital design tools already offer consistent and seam-

less design solutions. This is mainly due to their focus on a small set of various

types of constraints, such as delay and clock skew. A unified description of con-

straints is not used in today’s analog design tools and algorithms.3 A common

3 If not stated otherwise, the term “design algorithm” is subsequently used for both, design tools

and their built-in algorithms due to their close relationship.

7 Constraint-Driven Design Methodology: A Path to Analog Design Automation 273

understanding of design implications due to constraints is not guaranteed with

existing approaches. Hence, many analog constraints must still be considered manu-

ally or semi-automatically leading to their often inconsistent and noncomprehensive

consideration.

Any inconsistent or noncomprehensive consideration of constraints widens the

existing constraint verification gap. This gap exists because the design rule check

(DRC) and the layout versus schematic check (LVS) do not include the verification

of all constraints. A tremendous amount of research effort has already been ex-

pended for the tailored consideration and verification of special types of constraints,

such as signal delay, device matching, and IR-drop. Nevertheless, a unified approach

capable of dealing with all constraints during the entire design and verification phase

is still missing.

Another difference between analog and digital IC designs is found in the way the

functional transformations, i.e., the design steps, are linked and carried out. While

most steps in digital IC design are separated from each other, the design steps of

analog ICs are typically overlapping, and hence, tightly linked due to the impact

of analog constraints (Fig. 7.2). For example, device generation, preplacement, and

global routing usually occur simultaneously during the floorplanning phase of ana-

log ICs. Analog design algorithms must thus consider various types of constraints

simultaneously. This greatly reduces the impact of specialized design algorithms

that handle only a small set of types of constraints.

To address the current shortcomings discussed in this section, a constraint-driven

design approach is required that considers constraints in a comprehensive and con-

sistent manner. Its cornerstones will be introduced in Sects. 7.4–7.6.

7.3 Constraint Classification and Representation

Constraints for IC design (hereafter, constraints) are classified by their complexity,

category, form, and type. The classification criteria are discussed in this section.

From a formal point of view, constraints define relations between values of design

variables (hereafter, variables). A relation between independent variables represents

a simple constraint. Relations between dependent variables are denoted as com-

plex constraints (Fig. 7.3). Constraints for IC design are linked to design objects,

which represent data objects in the database of a design tool, such as cell, cellview,

instance, net, terminal.

In general, constraints belong to one of the following four categories:

� Technology constraints enable manufacturing for a specific technology node

(e.g., wire width, spacing, layer thickness).

� Functional (electrical) constraints ensure the intended IC functionality (e.g.,

maximum IR-drop between two net terminals, minimum gain, maximum offset

voltage).

� Design methodology (geometry) constraints reduce the overall complexity of

the design process. They also guide transformations, enforce a specific design

274 G. Jerke et al.

Design parameter unification

Design parameter unification

Simple

Constraint C1

Simple

Constraint C2

Simple

Constraint C3

Complex Constraint Cc

Simple

Constraint C4

Simple

Constraint C5

starShaped(N) ∧netPin(N;P2) ∧netPin(N;P1) ∧irDrop(P1;P2,V) ∧ V<0.1V

Fig. 7.3 Four simple constraints (starShaped.N /, netPin.N; P2/, netPin.N; P1/,

irDrop.P1; P2; V/, and V <0:1V) form a complex constraint Cc through a conjunction defined

in constraint logic programming (CLP) notation. The complex constraint Cc is satisfied if all four

simple constraints are satisfied. The simple constraints are tightly coupled through the design pa-

rameters N , P1, P2, and V that must be substituted (unified) to resolve Cc

pattern, or describe a context to which other constraints are associated with (e.g.,

maximum design hierarchy depth, maximum number of devices in a cluster, pre-

defined layer for power-routing, bus width).

� Commercial constraints (e.g., maximum die area, number of layers).

A constraint is given in either an implicit or an explicit form. An implicit con-

straint is not clearly expressed and may be given as plain textual note or may

arise from assumptions intrinsically built into circuit descriptions or design algo-

rithms. Implicit constraints represent nonformalized design knowledge. Contrary

to implicit constraints, explicit constraints are clearly expressed and represent

formalized design knowledge. Examples of implicitly defined constraints are the

placement requirements of differential pair transistors – they must be placed sym-

metrically to maximize device matching. While this is obvious to any layout

designer, the inclusion of such complex rules into both layout and verification tools

is often not possible for applications that contain additional requirements, such

as parasitic interconnect matching. Hence, due to its nonformal nature, implicit

constraints cannot be utilized for any type of controlled and automated constraint-

driven design. On the other hand, explicitly defined constraints are accessible

to design algorithms and thus are a primary requirement for any constraint-driven

design flow.

Each constraint belongs to a specific constraint type that represents a classifi-

cation property for the same class of constraints. The type of a constraint always

corresponds to the type of the corresponding design variables. Constraint types have

a clearly defined physical, electrical, mechanical, mathematical, or geometrical unit

(e.g., the constraint type “IR-drop” has the unit Volt, the type “signal delay” the

unit Seconds). The relevance and impact of a constraint type strongly depend on the

specific design context.

7 Constraint-Driven Design Methodology: A Path to Analog Design Automation 275

To formalize design constraints, all constraints and all related design variables

must be uniformly represented in an abstract form. The conversion of constraints

into a uniform representation must be complete and unambiguous. A uniform rep-

resentation enforces a common understanding of constraints among all involved

design algorithms. Hence, it is a primary requirement for addressing the analog

(constraint) design problem [11, 26]. Constraint logic programming (CLP) [8, 19]

embodies a feasible approach for uniform constraint representations. In CLP, con-

straints are defined in the body of conditions (clauses) (Fig. 7.3). All constraint

examples discussed in this chapter are based on the CLP notation.

Assume an IR-drop constraint VIR.P1; P2/ < 0:1V stating that the IR-drop be-

tween two layout pinsP1 andP2 must be less than 0.1 V. This functional constraint

is simple since it is completely independent from any other constraint. If this ex-

ample is transferred to a more formal representation, such as CLP, the IR-drop

constraint must be written as a relation between design parameters. A possible

representation is the relation irDropLessThan.P1; P2; 0:1/. However, this ap-

proach is very restrictive. For example, neither equality nor any other inequality

can be expressed. To obtain a more general representation, it is advisable to split

this constraint into a conjunction of a functional and an arithmetic constraint

irDrop.P1; P2; V / ^ V < 0:1 with V representing the actual IR-drop between

pins P1 and P2.

The IR-drop between two net pins P1 and P2 is usually considered within a

specific design context, in our case the net N , which owns both pins. This introduces

two structural constraints netPin.N; P1/ and netPin.N; P2/. In addition, if the

IR-drop needs to be considered only for nets with, for instance, a star-shaped layout

topology, another structural constraintstarShaped.N / must be added. Figure 7.3

depicts the conjunction of these constraints that form the complex constraint Cc.

The coupling of the simple constraints is obtained via substitution (unification) of

the design variables N , P1, P2, and V (Sect. 7.5.1).

7.4 Components of a Constraint-Driven Design Flow

A design flow that considers all relevant constraints in a consistent and compre-

hensive manner is subsequently denoted as constraint-driven design flow. This flow

requires several complementary design flow components that are shown in Fig. 7.4.

Constraint management provides the management of constraint data and the

assignment of constraints to design objects (Sect. 7.4.1). To obtain design results

meeting their specification, constraints are derived from design objectives (con-

straint derivation, Sect. 7.4.2). Constraints are transformed between the physical,

electrical, or geometrical domain to be suitable for design algorithms in a particu-

lar design context (constraint transformation, Sect. 7.4.3). The constraint sensitivity

analysis (CSA) determines the sensitivity of a design parameter with respect to re-

lated constraints. The CSA finds the most constraint-sensitive design parameters

in a particular design context. Constraint sensitivity information can then be used

276 G. Jerke et al.

Simulation

Circuit Design

Placement

Routing

Compaction

Verification

Manufacturing

Test

Constraint

Derivation

Constraint

Management

Constraint

Sensitivity Analysis

Constraint

Transformation

Constraint

Verification
Verification

Rules

Constraint

Templates

Transform.

Models

Start

Constraint

Data

Design

Data

Floorplanning

Device Generation

Fig. 7.4 Essential components of a constraint-driven design flow

to guide the design generation (Sect. 7.4.4). Finally, despite the use of a constraint-

driven layout generation, the compliance of a design result with its given constraints

must be verified using constraint verification (Sect. 7.4.5).

7.4.1 Constraint Management

The task of constraint management is to administer the storage of constraint data

while synchronizing the link between constraints and design objects. The manage-

ment system must also guarantee the semantic integrity of the constraints across

different levels of abstraction, and support hierarchical relations between design ob-

jects and dependencies [6, 22]. In addition, it is responsible for keeping constraints

consistent and valid, which requires close interaction with design databases as well

as with constraint and design data manipulating design algorithms. Furthermore,

constraint-driven design algorithms require fast access to constraint information

through (standardized) application programming interfaces.

The detection of over-constraints is an important subcomponent of a constraint

management system. It is made available by the constraint verification (Sect. 7.4.5).

Over-constraints represent a condition in which not all given constraints can be

fulfilled simultaneously. The related formal mathematical problem is denoted

as constraint satisfaction problem (CSP). Over-constraints must be resolved by

7 Constraint-Driven Design Methodology: A Path to Analog Design Automation 277

T

I1 I2

I11 I12 I21 I22

I211 I212 I213

T

I1 I2

I11 I12 I21 I22

I211 I212 I213

T

I1 I2

I11 I12 I21 I22

I211 I212 I213

C1

C2

C3

Top-Down

Assignment

Bottom-Up

Assignment

Top-Down & Bottom-Up

Assignment

Fig. 7.5 Assignment of constraints to design objects in a design hierarchy tree. In this example,

T represents a top cell incorporating several cellview instances I1–I213

constraint satisfaction methods, such as constraint propagation, constraint relaxation

or backtracking, to obtain feasible design results [20]. The use of constraint weights

as a decision criterion to resolve over-constraint conflicts is a common approach.

However, this method is likely to become unsuitable if the number of constraints

increases since many constraints may have equal or similar weights, thus making

them unusable as decision criteria.

Constraint management also incorporates the assignment of constraints to design

objects (a) in the existing design hierarchy, (b) across the extent of design objects

and design steps, as well as (c) within a design hierarchy that is defined by design ob-

jects and linked constraints (virtual design hierarchy). The use of these assignment

options strongly depends on the specific constraint. Furthermore, constraint assign-

ment is either permanent or temporary depending on the particular design context.

The assignment of constraints within a hierarchical design can be either per-

formed top-down, bottom-up, or combined top-down-bottom-up (Fig. 7.5). For

instance, a net shielding constraint may be assigned from the I/O pad in the top cell

down to a specific instance terminal in a subcell (top-down assignment). The shield-

ing constraint is then assigned to all connected net objects in the design hierarchy.

The assignment can also be performed across the extent of design objects, such

as instances. Using the previous example, cellview instances (e.g., metal resistors)

must be skipped if the net shielding constraint is to be assigned to all nets that are

physically connected on the chip mask. The net shielding constraint is then also

hierarchically assigned to all subnets that would connect to the main net if the metal

resistors were shorted.

In case the I/O pad is located in a subcell, then the shielding constraint must be

assigned to all connected lower level nets as well as to all higher level nets that

are connected to the I/O pad cell’s instances (top-down and bottom-up assignment).

Here, net shielding constraints are assigned within a virtual design hierarchy that is

defined by the I/O pads’ location in the design hierarchy tree and the hierarchical

connectivity of the nets to be shielded.

During top-down assignment of a single constraint, only one constraint is as-

signed to each related design object in the cellviews that are traversed in the design

278 G. Jerke et al.

hierarchy tree. In contrast, the bottom-up assignment allocates as many constraints

in the design hierarchy tree as instances of that cellview exist in the flattened design

hierarchy, making it computationally more expensive.

7.4.2 Constraint Derivation

The process of deriving constraints from design objectives is denoted as constraint

derivation or constraint generation. Design objectives are given as specification

goals or requirements that must be met, but they can also arise from a local design

context.

Design objectives are translated into constraints using (a) derivation rules, (b) de-

duction processes based on logic calculus, or (c) the designer’s expert knowledge.

The first two derivation methods can be applied with a high degree of automation

in case the IC specification is given in a computer-processable form, such as an

executable specification. The derivation process creates constraints belonging to

the technology, functional, design methodology, or commercial constraint category

(Sect. 7.3).

The rule-based derivation of constraints utilizes a fixed rule to transform a design

objective into a set of constraints while considering the particular design context.

The constraint transformation discussed in Sect. 7.4.3 is a form of indirect constraint

derivation since it creates lower level constraints that depend on higher level con-

straints.

Deduction-based constraint derivation can be seen as a high-level extension of

rule-based derivation methods. Here, a logic reasoning system draws conclusions

from design and constraint data and then applies a set of constraint derivation rules

to relevant design objects. For example, based on a logical conclusion that MOS

and bipolar transistors both belong to the same category of devices “transistor”, a

specific constraint rule may be applied to both MOS and bipolar transistors, even

in the case where the derivation rule was only defined for one transistor type. This

functionality permits the development of high-level constraint derivation methods

and offers an important level of abstraction required for the reuse of analog blocks.

Expert knowledge is still often required to translate critical design objectives into

constraints. This is especially the case for global design objectives that would result

in various sets of complex constraints and cannot be easily resolved by automatic

rule-based approaches. Unfortunately, the expert knowledge only exists in an un-

structured and nonformalized form. Nevertheless, making expert knowledge more

accessible represents a good starting point for further analog design automation.

7.4.3 Constraint Transformation

Constraint transformation translates higher level constraints into a set of equiva-

lent lower level constraints and vice versa (inverse constraint transformation) using

7 Constraint-Driven Design Methodology: A Path to Analog Design Automation 279

transformation rules [21]. Multiple transformation rules may apply for a specific

higher level constraint resulting in different sets of lower level constraints. The

choice of an appropriate transformation rule inherently constrains the solution

space, thus reducing the number of global degrees of design freedom.

The choice of a transformation rule depends on the particular design problem and

design context. Any transformation process must ensure a complete and unambigu-

ous transformation result. The same applies to the inverse constraint transformation,

which must be defined for constraint verification purposes (Sect. 7.4.5).

The transformation of constraints is based on a particular transformation model,

which is translated into a set of transformation rules. Transformation rules for sim-

ple constraints are represented by independent equations. They contain the involved

design variables in the higher transformation level and the variables in the lower

level. Transformation rules for complex constraints are represented by a set of cou-

pled equations containing all coupled design variables.

The relation of subconstraints specific to each complex constraint type is not

affected by the transformation since the transformation of simple constraints only

focuses on their specific context. This statement is made here since it is assumed

that any transformation will only produce lower level constraints that do not affect

higher level constraints. In the case where lower level constraints affect higher level

constraints, design iterations are very likely to occur (i.e., the design steps must be

reversed and redone with another design strategy).

In general, more than one transformation rule may exist for a particular type of

constraint. The decision which transformation rule to use is specific to the design

context, the design algorithm, and the applied design strategy. For example, sup-

pose the functional specification of a circuit results in a specific maximum IR-drop

between an I/O pad and a specific instance terminal in a subcell. Assuming that

the current flow in the interconnect is known, the transformation of the IR-drop

constraint may result in constraints for I/O pad and subcell placement and a corre-

sponding set of routing constraints. A constraint-driven design algorithm can then

decide whether the placement in this context is more critical to deal with than the

routing and act accordingly (see also Sect. 7.4.4). For instance, in case the place-

ment is fixed, the final transformation of the given IR-drop constraint would then

yield a set of routing constraints and local degrees of design freedom (i.e., routing

design parameters, such as wire length, layer, wire width). These can then be used

by a routing algorithm to find a suitable interconnect layout.

7.4.4 Constraint Sensitivity Analysis

Constraint sensitivity analysis (CSA) determines the context-specific sensitivity of

numerical design parameters with respect to related constraints. The CSA consists

of two modules: a module that determines sensitivity of design parameters with

respect to output parameters and a module that determines the relative distance of

a design parameter value to its related constraints. Both modules provide valuable

information that can be utilized by designers and by design algorithms.

280 G. Jerke et al.

The sensitivity analysis is based on a mathematical model, which describes the

physical, electrical, or geometrical nature of a particular design subproblem. The

model represents an equation system that contains all relevant design parameters

and output parameters. Several approaches are reported to determine the sensitivity

of design parameters. Among these approaches, local methods based on the partial

derivatives of the model output parameter and statistical methods based on sam-

pling, Bayesian and Monte Carlo methods are the most important ones [4, 18].

Considering a set of constraints xl � x � xu, the relative distance d of design pa-

rameter value x to a lower constraint boundary xl and an upper constraint boundary

xu is determined as follows:

dl.x/ D exp.xl � x/ � 1 and du.x/ D exp.x � xu/ � 1: (7.1)

The parameter value x matches with the lower bound constraint value if the relative

distance dl D 0. A constraint violation is detected in (7.1) if dl > 0 while no

violation occurs if dl < 0. The same applies to du while considering the upper

bound constraint value.

Design decisions can be made by design algorithms based on the sensitivity infor-

mation of parameters, the relative distance of parameter values to related constraints

and a given design strategy. Design algorithms may use that information in several

ways. Depending on the design strategy, a design algorithm may point its focus to

the fixation of design parameters with a high sensitivity toward an important output

parameter or it may focus on low sensitivity parameters. The information about the

parameter distance lets the design algorithm recognize the severity of constraint vi-

olations. For example, design parameters violating related constraints may then be

considered with a higher priority.

It is also of interest for a design algorithm to know which design subproblems

are independent from each other. A low sensitivity of design parameters toward a

common output parameter means that they are weakly coupled with respect to that

output parameter. The sensitivity analysis can be used as a method to identify local

design task parallelism by searching for groups of design parameters and constraints

that are either not or only weakly coupled. They can be dynamically partitioned into

independent groups for which the next design step can then be performed indepen-

dently from each other.

An example of a CSA application is given in Fig. 7.6. Here, a constraint sen-

sitivity analysis is applied while routing a wire closely located to a heat source

(e.g., a power transistor). Given an IR-drop constraint VIR � VIR�max, a design de-

cision has to be made whether to move the wire away from the heat source, thus

varying the interconnect temperature T , or to fix the wire width w. The design

parameters and the constraint in Fig. 7.6 are denoted as follows: wire width w,

length l , thickness d , reference temperature Tref, IR-drop constraint VIR � VIR�max,

VIR D i � � l
w� d

� .1 C TK1 � .T � Tref//, DC current i . A constraint violation is likely

in case T is varied while w � w1, whereas it becomes less likely in case w > w1.

To avoid an IR-drop constraint violation, the modification of the design parameter

w is the primary choice if w � w1 due to its high local sensitivity related to the

7 Constraint-Driven Design Methodology: A Path to Analog Design Automation 281

Constraint violation!

VIR-max

w1 w2 w3 w

VIR

Sensitivity of w and T with respect to VIR

Sensitivity of w with respect to VIR

T >Tref

T =Tref

T<Tref

Fig. 7.6 A constraint sensitivity analysis is applied to parameters of a wire segment that is closely

located to an on-chip heat source. A constraint violation is likely in case the interconnect temper-

ature T is varied (by moving the wire’s location) and a wire width w with w � w1, whereas it

becomes less likely in case w > w1. To avoid an IR-drop constraint violation, the modification of

w is the primary choice if w � w1 due to its high sensitivity toward VIR while w loses its sensitivity

for w �w1. (See text for parameter denominations and further explanation.)

output parameter VIR while w loses its impact for w � w1. If CSA is used as a filter

to find all sensitive design parameters, then w is only required to be considered if

w � w2.

The CSA allows designers to study the impact of local design decisions and to

trace root causes in case compliance requirements cannot be met by the given set

of constraints. Sensitivity analysis is the key to the power of decision analysis in

situations where the influence of design parameters is not known precisely, since

it considers the design context in which constraints apply. As is obvious from this

explanation, the availability and application of the CSA allows new approaches for

algorithm development and analog design automation.

7.4.5 Constraint Verification

Constraint verification comprises the verification (a) whether a set of constraints is

fulfilled for a particular design result and (b) whether a given set of constraints raises

mutual conflicts (over-constraint, Fig. 7.7). Constraint verification represents a key

component of the constraint-driven design flow. This is due to its formidable contri-

bution to reduce the verification gap discussed in Sect. 7.2.2. Constraint verification

ensures correct application functionality, and it is essential to improve design

quality, reliability, and robustness. Commercially available constraint verification

282 G. Jerke et al.

Set of valid constraints

VIR,1 ≤ VIR,2 ∧ w1 > w2

Set of mutual

conflicting constraints

VIR,1 ≤ VIR,2 ∧ w1 ≤ w2

(a)

(b)

P11 P21

P22

l2 l1 = const.

l2 = const.

lj

wj

w2
i

iw1

l1

P12

General constraints

Rj = R .

VIR, j = i .Rj

Fig. 7.7 Constraints illustrated in a two-net topology. A DC current i is present in both wires

leading to a static IR-drop voltage VIR. While the set of constraints in (a) is feasible, the two

constraints in (b) are mutual conflicting (over-constraint). Here, a smaller IR-drop within one of

two wires cannot be achieved if this wire is not allowed to be wider than the other one

tools with yet limited verification capabilities currently comprise Mentor Graphics

Calibre R PERC [24] and the constraint verification engine integrated into Cadence

Virtuoso R IC 6.1 [5].

As mentioned earlier, a rich set of constraints must be considered during the

design of analog ICs. A significant fraction of these constraints are complex con-

straints, whose fulfillment cannot be verified with conventional verification ap-

proaches. This is due to the fact that all of today’s verification approaches require

one specific verification algorithm for each type of constraint. Clearly, conventional

constraint one-to-one verification approaches (one verification algorithm for one

type of constraint) are not feasible for the complete verification of analog IC designs.

Making matters worse, many constraints (and constraint types) are still unknown at

the beginning of the design process.

An approach to address the verification problem for complex constraints, the

“meta-verification approach”, was introduced in [11] and is discussed in more detail

in Sect. 7.5.2. The core idea of meta-verification is that each complex verification

problem can be subsequently resolved into smaller and usually independent ver-

ification subproblems. These subproblems can then be addressed using existing

verification algorithms. The meta-verification references functionality accessible

from external tools (e.g., design data access or specialized verification functions

offered by a particular tool) to perform verification tasks. The meta-verification

framework creates an abstraction layer around multiple design and verification tools,

and it manages correct execution of the defined meta-verification tasks.

The CLP-based verification approach in [11] is capable to address independent as

well as coupled, i.e., dependent verification problems. It also allows the detection of

mutual constraint conflicts (over-constraints) by drawing logical conclusions from

the given constraint and design data information. The approach is described in more

detail in Sect. 7.5.

7 Constraint-Driven Design Methodology: A Path to Analog Design Automation 283

The definition of verification tasks for a meta-verification system to check

constraint compliance is generally done as follows. First, the constraint verifica-

tion task is defined and formalized. The formal description of a verification problem

is then translated into a set of constraint verification rules. Finally, the verification

rules are used by circuit and layout designers to perform constraint verification tasks.

The application of these rules may depend on the design context of the particular

constraint verification problem.

Significant effort must be taken by PDK developers and designers to develop,

optimize, and verify the set of rules for constraint derivation, transformation, and

verification. The sequence in which subverification tasks are processed has a signif-

icant impact on the required overall time for constraint verification. For example,

suppose there are short-running and long-running subverification tasks defined in

a specific CLP-based meta-verification rule. If feasible for a particular verification

task, it is beneficial to shift all long-running subverification tasks to the end of that

rule in order to execute them later than the short-running subverification tasks. Sub-

verification tasks are not executed if a previous subverification task of a rule already

revealed constraint violations. This approach will effectively prevent unnecessary

and potentially long-running subverification tasks from being executed. As obvi-

ous, verification rule development and optimization requires a deep understanding

of the underlying verification task.

Practical application of the meta-verification approach has revealed that the re-

quired initial effort is comparable to the effort needed for the development of DRC

and LVS rule sets [11]. The reuse of rules for constraint derivation and meta-

verification is simple and efficient since, in general, data and rule abstraction can

be used for technology, design, and constraint data (Sect. 7.5).

Constraint verification is divided into static and dynamic constraint verification,

based on the constancy of the constraint and design data. The corresponding con-

straint satisfaction problems (CSP) which are to be solved are denoted as static CSP

and dynamic CSP [15]. For example, any sign-off verification of an IC design must

be based on constant design and constraint data, hence, static constraint verification

is applied in this case. Nevertheless, constraint-driven design algorithms can also

use constraint verification for specific “what–if” analyses. Since these algorithms

can change design and constraint data during their analyses and during the design

step, the related constraint verification is based on dynamic data. Hence, the latter

case represents dynamic constraint verification. Both, static and dynamic constraint

verification can be applied either to the full set of constraint and design data, or to a

design-context specific subset.

The required overhead for static constraint verification is typically significantly

smaller compared to dynamic constraint verification. The additional overhead in

the latter case is primarily caused by a cumulative data latency effect that occurs

if design and constraint data are frequently accessed by design algorithms and/or

the verification framework. Hence, low-latency access to design and constraint data

will significantly speed up dynamic constraint verification. For static constraint ver-

ification, design and constraint databases are usually accessed only once during

initialization, thus mostly avoiding data access latency issues.

284 G. Jerke et al.

7.5 Constraint Engineering

The application and handling of constraints during the IC design process is denoted

as constraint engineering. In this section, we first provide a brief overview of

computational approaches to address the constraint resolution problem (constraint

programming). We then introduce the constraint engineering system (CES), which

represents a framework that combines several constraint programming approaches

in a single software framework. This framework integrates the previously discussed

design flow components into a unified design environment, which facilitates the

inter-operability between these components. It also increases the ability to perform

design tasks on a higher level of abstraction, thus enabling new possibilities for

analog design automation.

7.5.1 Constraint Programming

Constraint programming represents a programming paradigm where relations be-

tween (design) variables are stated in the form of constraints. These relations form

a constraint satisfaction problem, which is resolved by constraint solvers.

The resolution of constraints usually occurs when multiple constraints are sim-

plified or when the existence of one or more constraints leads to new (lower level)

constraints. The constraint engineering uses specialized constraint solvers to handle

all aspects of the constraint handling. The specialization is required since the han-

dling strongly depends on the domain (or type) of the constraints. For example, a

boolean constraint must be handled differently than a constraint that is defined over

real numbers. The solving of arithmetic constraints, for instance, highly depends on

the constraint complexity, such as linear or polynomial. Different constraint-solving

approaches exist that are tailored to address various constraint satisfaction problems

[3, 31].

As mentioned before, the formal constraint representation is a key requirement

for a constraint-driven design flow. A formalism is required to describe the inter-

action of constraints, which are mainly the constraint derivation (Sect. 7.4.2) and

constraint transformation (Sect. 7.4.3).

There are many approaches where constraints have been integrated into tra-

ditional programming languages [1, 10, 17, 27]. Due to the stateless character of

constraints, the family of constraint logic programming (CLP) languages [8,9,32] is

the natural choice for the formalization of constraints. The declarative logic calculus

approach in CLP has also the advantage that only the problem has to be formalized

but not its solution. Compared to other constraint programming approaches, the ap-

plication of CLP significantly reduces the effort needed to provide the required rules

for constraint derivation, transformation, and verification. Therefore, the core of the

constraint engineering system discussed in the next section is based on a logic cal-

culus engine (Fig. 7.8).

7 Constraint-Driven Design Methodology: A Path to Analog Design Automation 285

Layout

Editor

TIK TIK TIK TIK TIK TIK

Schematic

Editor

Constraint

Management

DRC &

LVS

Other

Tool

Requirement

Management

Design specfic

Rules

General

Rules
Technology Abstraction

Tech.

1

Tech.

2

Tech.

n

Constraint SolverCore Extensions

Ext. Lin-ArithmeticCSA

CHR

Other Solvers

CLP Core

Constraint

Engineering

System

…

…

Fig. 7.8 Architecture and data flow of the constraint engineering system (CES). The tool integra-

tion kits (TIK) transform tool-specific data into the CLP language and vice versa

With the introduction of constraint handling rules (CHR) in 1991 [12], it became

very easy to define new constraint solvers that are perfectly tailored to a specific

constraint problem. Via CHR, new constraint solvers can be defined through two dif-

ferent kinds of handling rules. The propagation rule creates one or more constraints

from a given set of constraints. Assume for instance the less-equal constraint “�”.

If there already exist two constraints A � B and B � C , a suitable propagation

rule would derive the constraintA� C . The second rule represents a simplification

rule that removes one or more constraints from a given constraint set. Regarding the

previous example, assume that there are two constraintsA� 5 andA� 7. The sim-

plification would remove A� 7 since it is overridden by A� 5. Due to efficiency

reasons, there is usually also a third rule in CHR, the “simpagation”. It combines

simplification and propagation within a single rule.

286 G. Jerke et al.

7.5.2 The Constraint Engineering System

The application of constraint engineering is an important step toward a constraint-

driven design flow. A flexible software architecture is required to integrate the new

design flow components introduced in Sect. 7.4. Our approach of such an architec-

ture will be subsequently denoted as constraint engineering system (CES), whose

structure is depicted in Fig. 7.8 [11].

The CES is designed to act as a middleware between various design tools that

offer an accessible application programming interface. The CES core engine is ca-

pable of making logical decisions based on multiple knowledge bases, which are

provided from various external sources.

As shown in Fig. 7.8, the CES is based on a plug-in architecture that allows the

flexible extension of its functionality. An extension point of the CES regards the

access to all design tools that are accessible within the existing design flow. A trans-

lation layer, denoted as Tool Integration Kit (TIK), transforms the tool-specific data

into logic calculus knowledge using CLP language so that it can be accessed by

meta-verification. Vice versa, the TIK also provides the functionality of transferring

data from the meta-layer back to the connected design tool. This allows the back-

annotation of constraints that were processed in the CES to an external design tool.

A TIK also enables a high-level access to the functionality of a design tool, which

can then be utilized by particular design algorithms or the constraint verification.

For example, a schematic entry editor provides access to netlist (design) data, and

a DRC tool provides the functionalities to merge polygons and to measure the dis-

tance between the edges of two layout polygons. Since every external tool is very

unique in its functionality and the design data it processes, a specific TIK is required

for each connected design tool.

Another extension point of the CES regards its internal handling of constraints.

The CES enables the integration of arbitrary constraint solvers that are directly

connected to its CLP core. The standard solver currently considers linear arith-

metic constraints and nonlinear constraints that can be subsequently reduced to

linear constraints. This solver is very efficient due to the use of the simplex

algorithm.

In addition, the meta-verification rule developer can define new constraint solvers

via CHR. The flexibility of CHR allows the definition of reusable solvers that are

highly tailored to a specific constraint satisfaction problem. If neither the extended

linear constraint solver nor the definition of new solvers via CHR leads to a suitable

solution, new constraint solvers can be added via this extension point to the CES

core. It is, for instance, expected that the resolution of polynomial and statistical

constraints within CHR would not lead to constraint solvers that are efficient enough

to handle complex constraint problems of that domains. Hence, specific solver could

be added that resolve these constraint problems more efficiently.

Constraint compliance is the main matter of interest in a CES application. As

previously mentioned, meta-verification ensures that all complex constraints are

fulfilled by the design result. The definition of meta-verification rules within the

CES is simple. Figure 7.3, where several simple constraints form a complex con-

straint, can be used as an example.

7 Constraint-Driven Design Methodology: A Path to Analog Design Automation 287

It is advisable for the demonstration to slightly modify the complex constraint

Cc in Fig. 7.3, so that all star-shaped nets within an IC design can be reported

whose IR-drop between two pins is greater than a maximal allowed IR-drop VIR-max.

The following CES meta-verification rule depicts the definition of such a deduction

using CLP:

starShapedIRDrop(P1, P2, V, Virmax) :-
starShaped(N), netPin(N, P1), netPin(N, P2),
irDrop(P1, P2, V), V > Virmax.

The predicate starShapedIRDrop(P1,P2,V,Virmax) encapsulates Cc

so that it can be reused for other verification purposes. To obtain all pins of star-

shaped nets that do not meet the criterion VIR � 0:1 V, the following query is to be

submitted to the CES:

starShapedIRDrop(P1, P2, V, 0.1).

With that query, the CLP core tries to find suitable bindings for the unbound

variables P1, P2, and V. If a solution is found, the CES reports a tuple consisting

of two pins and the actual IR-drop between these pins. The search can be contin-

ued until all solutions, i.e., star-shaped nets violating the IR-drop constraint, are

found.

The example of the complex constraint Cc in Fig. 7.3 demonstrates the appli-

cation of constraints that originate from different external sources. The simple

constraint C4 instruments an external tool that is capable of computing the IR-drop

between two given pins in a net layout. From the verification point of view, C4 is a

standard relation like the other constraints of this example. The CES then forwards

the calculation of the IR-drop to an external IR-drop calculation tool. The transfor-

mation of parameters and the evaluation are performed by the TIK of this tool. The

same applies to all other constraints with the difference that C1, C2, and C3 origi-

nate from a layout editor tool. Finally, the constraint C5 is evaluated by the build-in

arithmetic constraint solver.

Regarding the constraint sensitivity analysis example illustrated in Fig. 7.6, the

sensitivity of the wire width w and the temperature T can be determined with the

CLP example below. To enable the CSA, the sensitivity variables need to be limited.

The temperature T in this example should range from 218 to 448 K and the wire

width w from 0.18 to 2:0 �m. These ranges are added as additional constraints to

the temporary constraint list.

{T>=218, T<=448, W>=0.18e-6, W<=2e-6}
@ csa(V,[W,T],[SW,ST]).

The csa predicate performs the actual sensitivity analysis. The first argument

denotes the target function represented by the variable V (D VIR), the second a list

of variables for which the sensitivity has to be determined (W D w and T D T), and

the last argument the resulting list of normalized sensitivity coefficients.

The CES provides a graphical user interface that simplifies the practical work

with meta-verifications. The graphical user interface provides a uniform access to

288 G. Jerke et al.

Fig. 7.9 The tabular result of the IR-drop constraint verification applied to an IC design. The

shown star-shaped nets contain pin-to-pin connections having an IR-drop VIR > 0:1 V

all meta-verification runsets that are associated with an IC design. Queries can be

task-centric chosen and executed by a designer from the user interface. This releases

the designer from the burden to manually specify verification queries. Figure 7.9

depicts the result of the previously described starShapedIRDrop query that has

been applied to an IC design.

Constraint transformation, assignment, and derivation can be directly obtained

by providing assignment and transformation rules using CLP and CHR. The CES

regards the reuse aspect such that these rules can be applied to multiple IC designs.

The CES also supports multiple process technologies by providing specific technol-

ogy properties as well as an abstraction of technology properties.

7.6 Impact Analysis

In this section, we discuss the impact of an automated constraint-driven approach on

the overall IC design flow, the core design of algorithms used for design automation

and the required paradigm adjustments for analog physical design.

7 Constraint-Driven Design Methodology: A Path to Analog Design Automation 289

7.6.1 Impact on Design Flow

A holistic approach to analog design automation requires several new design flow

components to enable an automated constraint-driven IC design. The components of

the constraint-driven design flow, such as constraint management, derivation, trans-

formation, constraint sensitivity analysis and verification have been introduced in

Sect. 7.4. Hereafter, they will be denoted as “new design flow components” whose

impact on the analog IC design flow will be discussed in this section.

The new design flow components complement the existing analog IC design

flow. They must be perpetually available during all design stages to allow a compre-

hensive derivation, application and verification of constraints throughout the entire

design process (Fig. 7.4). Any breach of the constraint application can lead to incon-

sistent design and constraint data, and hence, to a reduction of constraint verification

coverage and an inconclusive verification result. The persistent use of automatic

constraint verification offers greater verification coverage and reproducibility than

manual verification.

All utilized design tools must fully understand the syntax and semantics of the

used constraint representation. If different constraint representations exist within

the design flow, then constraints must be converted between design tools that are

mutually linked by a particular design task (e.g., conversion of device placement

constraints within a layout editor to be used by a connected external third-party

layout compaction tool). Furthermore, linked tools must support all constraint types

that are relevant within a particular design context.

Constraint verification complements existing verification methods (e.g., DRC

and LVS) required for sign-off in order to guarantee the intended circuit function-

ality. The achievable verification coverage depends on the traits and capabilities

of the constraint verification framework as well as on the set of verification rules

(Sect. 7.4.1). The chance of design iterations may increase if constraint verification

is applied consistently due to better verification coverage. A back-annotation of con-

straints and verification results is required in order to minimize these iterations by

addressing only relevant violations.

The constraint management system must guarantee low-level constraint data con-

sistency by keeping each constraint and its referencing design object synchronized.

Additionally, the high-level constraint data consistency, i.e., the maintenance of de-

sign data and constraint data as single data entity on file and cellview level, must be

guaranteed by design guidelines and design data management systems.

7.6.2 Impact on Design Methods

Several challenges have to be addressed for a successful practical application of

constraint-driven design. Among others, these challenges comprise new responsi-

bilities for designers and the way how designers communicate with each other. The

impact of these challenges is strongly dependent on the structure of the design team

and the IC applications to be designed.

290 G. Jerke et al.

Several challenges arise from the change of design responsibilities since design-

ers must now provide all necessary constraint information in a formalized fashion.

This may lead to additional and possibly error-prone design work, whose effort must

be considered in the project schedule.

As demonstrated in Fig. 7.2, the analog IC design flow exhibits overlapping de-

sign steps to account for concurrent design problems. This is partially addressed

by assigning constraints and using them in subsequent design steps. Here, the key

question is to clarify which constraints are to be defined at which design step. This

question can be answered with good confidence for constraints having an immedi-

ate impact in the next design step. Unfortunately, it cannot be easily answered for

constraints either having a continuous impact or only having an impact on remote

design steps. Here, designers must currently rely on their expert knowledge while

future research should address this problem.

The assignment of constraints also has an impact on the partitioning of now sepa-

rated design tasks with many positive but also negative effects. While the availability

of complete constraint information may now allow the use of fully constraint-

driven design tools, there is also an increasing chance of over-constraining. An

over-constraining done in a previous design step may aggravate or even prevent an

optimization in a later design step. After performing a root cause analysis to iden-

tify that cause over-constraints designers may consider two options: (a) return to a

previous design step while avoiding the causing over-constraints (design iteration),

(b) override or elimination of the causing over-constraints and continuation. If root

causes cannot be found then unwanted design iterations are very likely. The elegant

consideration of over-constraints is a critical issue which strongly influences the

acceptance and practical success of a constraint-driven design flow. This considera-

tion is also subject to further research.

Simultaneous semi-automatic and manual design styles must complement each

other as long as the relevant constraint types cannot be considered at all or in case

their consideration is limited to a specific design context only. For example, in the

latter case a constraint would only be considered by a design algorithm within a

cellview instead of considering it within the design hierarchy (e.g., hierarchical

IR-drop constraint).

To address the tight interaction between these design steps and to consider the

concurrent nature of the analog design problem, all artificially introduced bound-

aries between existing design steps should be gradually dissolved in the future. The

removal of degrees of design freedom should occur gradually rather than abruptly

to keep them available for design optimization as long as possible. While the au-

tomatic approach to achieve this goal is still subject to further research, this issue

is also of relevance for semi-automatic and manual design. In current analog de-

sign approaches, the strategy by which the degrees of design freedom are removed

strongly depends on the designer’s expert knowledge and the design task partition-

ing in a design team.

The reuse of analog IP often fails because small differences may prevent a direct

IP reuse. A direct reuse is often not feasible if all degrees of design freedom were

already removed from an IP block. However, the consistent definition of constraints

7 Constraint-Driven Design Methodology: A Path to Analog Design Automation 291

between design objects allows design reuse of structural information based on IP

templates such as circuit and layout templates that already include constraints. The

structural information represents the most valuable part of the design knowledge,

and hence, it enables a more flexible reuse since relevant degrees of design freedom

are not fixed yet. In that respect, analog design automation should address low-level

layout generation and high-level design planning as discussed in the next subsection.

7.6.3 Impact on Design Algorithms

In this section, we discuss the impact constraint-driven design has on design

algorithms and design planning. Furthermore, we briefly discuss new concepts and

ideas for constraint-driven IC design. While some of these design approaches are

new, others, such as the application of the constraint sensitivity analysis or the

introduction of standardized algorithm interfaces, have already matured and thus

have led to new insights into the analog design problem [14, 23, 25].

Present design algorithms are special-built for a particular purpose (e.g., focusing

on placement, global or detailed routing). While this provides several benefits, such

as an optimized execution time and memory footprint, it also introduces several

significant limitations to “conventional design algorithms”, such as incompatible

interfaces for design and constraint data and a lack of functional abstraction. These

limitations aggravate further advances in analog design automation.

A primary limitation in conventional algorithm design is the narrow focus on

fast, but low-level execution without an implementation of standardized data inter-

faces. A standardized data interface creates a layer around a core algorithm to enable

a common understanding of the syntax and semantic of the design and constraint

data representation. This layer connects a design algorithm to the design and con-

straint databases as well as to other concurrently executed design algorithms. Thus,

all design algorithms share a common understanding of the syntax and semantic of

the design and constraint data representation.

Standardized algorithm interfaces enable the modularization and abstraction of

design algorithms. The abstraction of their algorithmic work greatly improves algo-

rithm reuse and flexibility because a single algorithm can be used to solve similar

design tasks (this concept is similar to algorithm abstraction available in various pro-

gramming languages). In turn, this flexibility enables the construction of high-level

design algorithms that utilize modularized low-level design algorithms to perform

specific design tasks on a higher level of abstraction.

The strategy in which the degrees of design freedom are removed must be care-

fully chosen as mentioned earlier. A removal strategy can be applied to actuate

high-level design algorithms. The actuation greatly benefits from the constraint sen-

sitivity analysis (CSA, see Sect. 7.4.4).

First, CSA can be used to identify design task parallelism by searching for tem-

porary groups of design variables and constraints that are either not or only weakly

coupled (dynamic design task partitioning). For these groups, the next design step

292 G. Jerke et al.

can then be performed independently of each other. Note that the independency of

design variables and constraints in these groups may only be temporary, and hence,

may not exist anymore after the design step is completed.

Second, CSA can also be used to determine the most sensitive design parameters

in a particular design context that will more likely violate a constraint than non-

sensitive parameters. Sensitive design parameters could then be considered with a

higher priority within the specific design context.

A dynamic hierarchy of concurrent design tasks can be established in which de-

sign algorithms perform functional transformations (instead of conventional distinct

design tasks) (Sect. 7.2.1). These transformations could be governed by either a

fixed execution regime or more flexible approaches, such as high-level design plan-

ning algorithms that are guided by a design strategy.

Another major advantage for the development of high-level design algorithms

is the possible dynamic consideration of new constraint types without the need to

introduce major low-level algorithm changes. High-level design strategies can be

used to solve low-level design problems by eliminating degrees of design freedom

in a top-down methodology. This approach typically leads to better design results

because low-level constraints are now less likely to break high-level constraints

(Sects. 7.4.2 and 7.4.3).

Most of these introduced approaches promise great potential, namely the dy-

namic design task partitioning, the actuation of high-level design algorithms and

the replacement of conventional algorithms by a sequence of continuous functional

transformations. Nevertheless, all of them are still subject to further research.

7.7 Outlook

Despite the recent advances in constraint-driven design for analog IC design, there

are several problems that need to be addressed in the near future to further broaden

the applicability of analog design automation approaches. Methods to check the

completeness of a set of constraints and constraint (meta-)verification rules, as well

as the achieved verification coverage, must be developed to guarantee IC functional-

ity, reliability, robustness, etc. The set of meta-verification rules must be optimized

to allow time-efficient constraint verification. Today, such optimization is done man-

ually but automatic rule-optimization methods should be developed to reduce this

burden.

As mentioned earlier, constraint sensitivity analysis is a powerful tool to drive

and support high- and low-level design decisions, and to develop high-level design

algorithms that allow more gradual IC design. The scalability of existing constraint-

sensitivity analysis approaches is still limited to a few thousand design variables.

This is sufficient for mid-sized analog blocks with typically several hundreds of

analog devices. Application to top-level design problems requires the development

of new complexity reduction methods, as well as fast constraint sensitivity calcula-

tion methods to improve scalability.

7 Constraint-Driven Design Methodology: A Path to Analog Design Automation 293

Key factors for next generation analog design automation are design techniques

that reduce the degree of design freedom gradually rather than abruptly while per-

forming several conventional design steps concurrently. This will require that the

current artificial boundaries between conventional design steps be (gradually) dis-

solved. While breaking with conventional design approaches, this paradigm change

could lead to a new class of (higher level) design algorithms that brings us one step

nearer to the goal of full-scale analog design automation.

Acknowledgment We would like to thank Jürgen Scheible of Robert Bosch GmbH and Ammar

Nassaj of IFTE at Dresden University of Technology for the many fruitful discussions related to

the topic of this chapter.

Glossary

Constraint Constraints define relations between values of design variables.

Constraints defining a single relation are denoted as simple constraints. Constraints

defining a set of interdependent relations are denoted as complex constraints.

Constraint Assignment Process of linking constraints to design objects. In case

the corresponding design objects are located in different design hierarchy levels,

the linking is done by traversing the hierarchy tree either strictly top-down, strictly

bottom-up or in a mixed top-down and bottom-up manner. The link can be perma-

nent or temporary.

Constraint Derivation Process of deriving constraints from design objectives.

Constraint derivation is also known as constraint generation.

Constraint-Driven Design Design paradigm that considers all constraints in a con-

sistent and comprehensive manner.

Constraint Engineering Design paradigm that comprises the use of several design

flow components, such as constraint assignment, derivation, propagation, transfor-

mation, and verification.

Constraint Engineering System (CES) Software architecture that implements the

constraint engineering concept so that all components of the constraint-driven de-

sign flow are available during the design process [11].

Constraint Handling Rules (CHR) Programming language that, among others,

allows the definition of problem-specific constraint solvers [12].

Constraint Logic Programming (CLP) Form of constraint programming, in

which logic programming is extended to include concepts from constraint satis-

faction. The unification process in CLP is extended by constraint handling in the

boolean, real or integer constraint domain [13]. CLP is often implemented as an

enhancement of Prolog-like computer languages with additional constraint solving

mechanisms.

294 G. Jerke et al.

Constraint Management Software architecture to enable the storage, manage-

ment, access, and synchronization of constraint data. Features of the constraint

management are used by all components of the constraint-driven design flow.

Constraint Programming Programming paradigm where relations between vari-

ables are stated in the form of constraints.

Constraint Satisfaction Problem (CSP) Mathematical problem defined as a set

of objects whose state must satisfy a number of constraints. These problems repre-

sent the entities in a problem as a homogeneous collection of finite constraints over

variables.

Constraint Sensitivity Analysis (CSA) Method to determine the sensitivity of a

design parameter in relation to an objective function and related constraints.

Constraint Solver Mechanism to solve a given constraint satisfaction problem.

Constraint Transformation Process of transforming a higher level constraint into

a set of lower level constraints of the same or a different domain and vice versa

(inverse constraint transformation).

Constraint Type Type of a constraint that corresponds to the type of design vari-

ables which share a relation defined by that constraint.

Constraint Verification Verification process to ensure that no over-constraints ex-

ist and that all constraints are fulfilled by the design result [11].

Design Context Local context in which a particular design task is performed.

Design Object Data object represented in the database of a design tool, such as

cell, cellview, instance, net, terminal, etc.

Design Objective Design goal to be achieved or specification requirement to be

met by either a final or a partial design result.

Design Rule Check (DRC) Verification process to ensure that all manufacturing-

related constraints are fulfilled by the design result.

Design Tool Software tool for IC design generation and verification.

Expert Knowledge Entity of a designer’s problem-specific design knowledge in

formalized and nonformalized form.

Layout Versus Schematic (LVS) Verification process to ensure that a given device

netlist matches a netlist extracted from the layout representation.

Logic Programming (LP) Software language paradigm based on logic, more

specifically on resolution theorem proving in the predicate calculus [28].

Meta-Verification Verification process to ensure that all complex constraints are

fulfilled by the design result [11].

7 Constraint-Driven Design Methodology: A Path to Analog Design Automation 295

Over-Constraint Condition in which not all given constraints can be fulfilled si-

multaneously.

Predicate (! LP, CLP) Mathematical sentence that describes a common property

by which a subset of objects can be identified within a global set of objects.

Propagation (! CHR) The propagation within CHR is the derivation of one or

more new constraints from a given set of constraints. It is triggered by the exis-

tence of one or more constraints that are already part of the constraint set. After the

propagation took place, the new constraints are part of the constraint set [12].

Root Cause Analysis Class of problem solving methods aimed at identifying the

root causes of problems or events. One approach of solving an existing design prob-

lem is to eliminate its root causes. Root cause analysis is often used iteratively

(continuous improvement).

Schematic-Driven Layout (SDL) Design paradigm in which the layout generation

is driven by the schematic representation of the circuit.

Simpagation (! CHR) The simpagation is a combined application of propaga-

tion and simplification. While it can be expressed by solely using propagation and

simplification rules, it can be handled more efficiently [12].

Simplification (! CHR) The simplification within CHR removes one or more

constraints from a given set of constraints. It is triggered by the existence of one or

more constraints that are already part of the constraint set [12].

Tool Integration Kit (TIK) Data interface of the constraint engineering system

that translates tool-specific data into the CLP language and vice versa.

Unification (! CLP) Process that tries to match symbolic expressions by assign-

ing subexpressions to variables that are part of two expressions [2]. Unification is a

core concept of logic programming.

References

1. S. Abdennadher, E. Krämer, M. Saft, and M. Schmauss. JACK: A Java constraint kit. In Proc.

Int. Workshop Functional and (Constraint) Logic Programming, volume 64, pages 1–17. Else-

vier B.V., Amsterdam, 2001.

2. F. Baader and W. Snyder. Handbook of Automated Reasoning, volume 1, Unification Theory,

pages 445–533. Elsevier Science B.V., Amsterdam, 2001.

3. R. Barták. Theory and practice of constraint propagation. In Proc. 3rd Workshop Constraint

Programming for Decision and Control (CPDC), pages 7–14, 2001.

4. D. G. Cacuci, M. Ionescu-Bujor, and I. M. Navon. Sensitivity & Uncertainty Analysis: Appli-

cations to Large-Scale Systems, volume 2. Chapman & Hall/CRC, 2005.

5. Cadence Design Systems, Inc. http://www.cadence.com.

6. J. A. Carballo and S. W. Director. Constraint management for collaborative electronic design.

In Proc. IEEE/ACM 36th Design Automation Conference (DAC), pages 529–534, Berlin, 1999.

296 G. Jerke et al.

7. H. Chang, E. Charbon, U. Choudhury, A. Demir, E. Felt, E. Liu, E. Malavasi, A. Sangiovanni-

Vincentelli, and I. Vassiliou. A Top-Down, Constraint-Driven Design Methodology for Analog

Integrated Circuits. Springer, 1999.

8. J. Cohen. Constraint logic programming languages. Commun. ACM, 33(7):52–68, 1990.

9. M. Dincbas, P. van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F. Berthier. The constraint

logic programming language CHIP. In Proc. Int. Conf. 5th Generation Computer Systems,

pages 693–702, 1988.

10. B. M. Freeman-Benson. Constraint Imperative Programming. PhD thesis, University of

Washington, Department of Computer Science and Engineering, 1991.

11. J. Freuer, G. Jerke, J. Gerlach, and W. Nebel. On the verification of high-order constraint

compliance in IC design. In Proc. IEEE/ACM Int. Conf. Design Automation and Test in Europe

(DATE), pages 26–31, 2008.

12. Th. Frühwirth. Introducing simplification rules. Technical Report ECRC-LP-63, European

Computer-Industry Research Centre, Munich, Germany, 1991.

13. Th. Frühwirth, A. Herold, V. Küchenhoff, Th. Le Provost, P. Lim, E. Monfroy, and M. Wallace.

Constraint logic programming – an informal introduction. Lecture Notes In Computer Science,

636:3–35, 1992.

14. G. J. Gad El-Karim, R. S. Gyurcsik, and G. L. Bilbro. Sensitivity-driven placement of

analog modules. In Proc. IEEE Int. Symp. Circuits and Systems (ISCAS), pages 363–366,

1994.

15. V. Gerard and Th. Schiex. Solution reuse in dynamic constraint satisfaction problems. Proc.

Association for the Advancement of Artificial Intelligence (AAAI), pages 307–312, 1994.

16. H. Gräb, F. Balasa, R. Castro-Lopez, Y.-W. Chang, F. V. Fernandez, P. -H. Lin, and M. Strasser.

Analog layout synthesis – recent advances in topological approaches. In Proc. IEEE Int. Conf.

Design Automation and Test in Europe (DATE), pages 274–279, 2009.

17. M. Grabmüller and P. Hofstedt. Turtle: A constraint imperative programming language. In

Proc. 23rd SGAI Int. Conf. Innovative Techniques and Applications of Artificial Intelligence,

2003.

18. D. R. Insua. Sensitivity Analysis in Multi-Objective Decision Making. Springer, Berlin, 1990.

19. J. Jaffar, S. Michaylov, P. J. Stuckey, and R. H. C. Yap. The CLP(<) language and system.

ACM Trans. Programming Languages and Systems, 14(3):339–395, July 1992.

20. V. Kumar. Algorithms for constraint-satisfaction problems: A survey. AI Magazine, 13(1):

32–44, 1992.

21. E. Malavasi and E. Charbon. Constraint transformation for IC physical design. IEEE Trans.

Semiconductor Manufacturing, 12(4):386–395, 1999.

22. E. Malavasi, E. Charbon, B. Arsintescu, and W. Kao. A constraint management system for IC

physical design. In Proc. 11th Brazilian Symp. Integr. Circuit Design, pages 240–243, 1998.

23. E. Malavasi, E. Charbon, E. Felt, and A. Sangiovanni-Vincentelli. Automation of IC layout

with analog constraints. IEEE Trans. CAD of Integr. Circuits and Systems, 15(8):923–941,

1996.

24. Mentor Graphics Inc. http://www.mentor.com.

25. P. Miliozzi, I. Vassiliou, E. Charbon, E. Malavasi, and A. Sangiovanni-Vincentelli. Use of

sensitivities and generalized substrate models in mixed-signal IC design. In Proc. IEEE/ACM

33rd Design Automation Conference (DAC), pages 227–232, 1996.

26. A. Nassaj, J. Lienig, and G. Jerke. A new methodology for constraint-driven layout design

of analog circuits. In Proc. IEEE Int. Conf. Electronic, Circuits and Systems (ICECS), pages

996–999, 2009.

27. J.-F. Puget. A CCC implementation of CLP. Tech. rep. 94-01, ILOG SA, Gentilly Cedex,

France, 1994.

28. J. A. Robinson. A machine-oriented logic based on the resolution principle. ACM, 12(1):

23–41, 1965.

29. R. A. Rutenbar and J. M. Cohn. Layout tools for analog ICs and mixed-signal SoCs: A survey.

In Proc. IEEE/ACM Int. Symp. Physical Design (ISPD), pages 76–83, 2000.

7 Constraint-Driven Design Methodology: A Path to Analog Design Automation 297

30. J. Scheible. Constraint-driven Design – Eine Wegskizze zum Designflow der nächsten Gener-

ation (in German). In Proc. VDE ANALOG’08, 2008.

31. G. Tack. Constraint Propagation – Models, Techniques, Implementation. PhD thesis, Saarland

University, 2009.

32. M. Wallace, S. Novello, and J. Schimpf. ECLi PSe : A platform for constraint logic program-

ming. Technical report, IC-Parc, Imperial College, London, UK, 1997.

Index

A

A* algorithm, 174, 176, 191

A–G parasitic extraction, 262

Absolute representation, 8

Analog arrays, 192

Analog layout generation, 244

Analog sizing, 244

Analytical parasitic extraction, 262

Area loss, 254, 257, 259

Area routing, 155, 169, 172, 176, 191

Area usage, 133

ASF-B*-tree, 67, 70–81, 83, 88, 91, 92

Automatically symmetric-feasible B*-tree, see

ASF-B*-tree

B

B*-tree, 63, 66, 67, 69, 71, 73, 74, 76, 82, 83,

88, 92, 115

Backtracking, 151, 182, 183

Basic enumeration, 129

Boundary constraint, see Constraints boundary

Bounded-sliceline grid (BSG), 10

Bounding constraints, 172, 174

Bridging fault, 195

C

Cadence’s PCELLS, 252

Cadence’s SKILL language, 252

Catalan numbers, 50

Center of gravity, 96

groups, 97

CES, see Constraint Engineering System

Channel

intersection graph, 157, 182

routing, 152, 166, 172

CHR, see Constraint Handling Rules

Clause, 275

CLP, see Constraint Logic Programming

COG, see center of gravity

Combinatorial optimization, 6

Congestion, 167, 170, 171, 174, 180, 181, 190,

191

Connectivity, 159, 180, 185, 192

Constraint graph, 153, 172, 185, 209

basic coefficient, 219

coefficient, 217

gain equation, 221

horizontal, 115, 153

long wires, 211

longest-path algorithm, 211

loops, 225

mathematics, 222

multi-variable simplex, 217, 221

simplex, 216

super-node, 218

vertical, 115, 153

Constraints, 293

assignment, 277, 288, 293

automatic generation, 104–114

boundary, 69

category, 273

classification, 273

common centroid, 61, 62, 98

complex constraint, 273, 274, 275, 278,

279, 282, 286, 287, 293

derivation, 275, 278, 283, 284, 288, 289,

293

distance, 210

driven design, 276, 286, 288, 291, 293

engineering, 271, 284, 284, 293

engineering system, 285, 286, 286, 288,

293

extraction, 186

generation, 171, 174, 209

graph, see Constraint graph

handling rules, 285, 293

299

300 Index

importance order, 105

layout, 231

logic programming, 275, 282, 284, 293

management, 275, 276, 289, 294

matching, 104, 108, 172–174

meta-verification, 282, 286, 287, 294

minimum distance, 99, 117

multi-variable, 212

over-constraint, 276, 281, 282, 290, 295

piecewise-linear minimum distance, 100,

120

programming, 284, 294

propagation, 277, 285, 295

proximity, 98, 107

representation, 273

satisfaction problem, 276, 283, 294

sensitivity analysis, 275, 279, 281, 289,

291, 292, 294

simple constraint, 273–275, 279, 287, 293

solver, 284, 286, 287, 294

symmetry, 61, 63, 77, 82, 83, 86, 91, 98,

108

transformation, 275, 278, 278, 288, 289,

294

type, 272, 274, 284, 289, 294

uniform representation, 269, 275

variant, 98

verification, 276, 281, 283, 288, 289, 294

Contour node, 73–77, 80, 82

Corner block list (CBL), 10

Critical net, 167, 168

Crosstalk, 161, 164, 171, 175, 179, 185, 191

CSA, see Constraint Sensitivity Analysis

CSP, see Constraint Satisfaction Problem

D

Deep trench isolation, 100, 120

Design

algorithm, 272–275, 279, 280, 283, 286,

290, 291

automation, 270, 272, 278, 284, 293

context, 272, 278, 289, 294

freedom, 271, 279, 290, 292

gap, 272

hierarchy, 274, 277, 290

methodology, 270, 289, 292

object, 289, 294

objective, 269, 272, 294

problem, 271, 275, 292

task partitioning, 290–292

tool, 272, 286, 289, 294

Design Rule Check, 273, 283, 289

Design rule check, 294

Design rules, 158, 161, 168, 179, 184–186

Detailed routing, 166, 167, 168, 178, 180, 183,

195

Deterministic optimization techniques, 247

Deterministic skip list (DSL), 25

Device, 96

recognition, 208

replacement, 236

Device merging, 5

Distance between modules, 96

DRC, see Design Rule Check

DTI, see deep trench isolation

E

Electrical rules, 161

Electrical synthesis, 244

Electromigration, 195

EM simulations, 165

Enhanced shape functions, 122

combination, 124, 130

Enhanced shapes

horizontal addition, 125

vertical addition, 125

Estimation, 153, 167, 169, 181, 182

Expert Knowledge, 269, 278, 290, 294

Extraction, 159, 161, 164

F

Flat representation, 8

Floorplan sizing, 254, 256

Floorplan-sizing matrix, 257

Functional Transformation, 271, 273, 292

G

Genetic algorithms, 6

Geometric Constraints Module, 253

Geometric constraints module, 256, 262

Geometric parasitic extraction, 262

Geometrically constrained sizing, 245, 253

Geometry sharing, 5

Global routing, 155, 166, 167, 168, 178, 180,

182, 190, 191

Grid, 151, 155, 158, 168–170, 174, 179, 190

graph, 156

Group

basic, 96

hierarchical, 97

matching, 111

of modules, 96

proximity, 111

symmetry, 111

Index 301

H

HB*-tree, see Hierarchical B*-tree

HCG, see constraint graph, horizontal

Hierarchical B*-tree, 63, 72, 75–77, 80, 81,

83–88, 91, 92

Hierarchical proximity, 62, 63

Hierarchical symmetry, 62, 63, 91

Hierarchy, 161, 168, 184

Hierarchy node, 72–77, 81, 88, 92

HSMPG tree, 111, 128

I

Integrated placement and routing, 178, 179

J

Johnson’s priority queue, 33

K

Knowledge-based layout synthesis, 247

Knowledge-based sizing, 246

L

Layout

compaction, 209, 212, 216

description script, 185

design-rule, 208, 209, 232, 233

hierarchy, 236

language, 183, 184

layer mapping, 208

migration, 207

parasitics, 237

retargeting, 207, 234

symmetry, 234

Layout aware’s geometric goals, 259

Layout design hierarchy, 62, 63, 92

Layout geometric parameters, 254, 262

Layout parasitics, 244, 262

Layout sampling, 263

Layout slicing style, 254

Layout Versus Schematic, 273, 283, 289, 294

Layout-aware sizing, 245

Layout-aware’s geometric goals, 258

Line expansion, 152, 154, 158, 163, 169, 171,

194

Linear Programming, 212

Logic Programming, 294

Longest common subsequence (LCS), 37

LP, see Logic Programming

LVS, see Layout Versus Schematic

M

Manufacturability, 194

Matching constraints, see Constraints matching

Matching requirement, 108

Maze router, 151, 154, 167, 174, 182

Meta-Verification, see Constraint Meta-

Verification

Mirror symmetry, 7

Module, 96

N

Net ordering, 154, 167, 168, 170, 190

Net splitting, 160, 162

Non-slicing placement, 10

Numerical parasitic extraction, 262

O

O-trees, see Ordered trees

Optimization-based layout synthesis, 247

Optimization-based synthesis, 247

Ordered trees, 10

P

Parasitic extraction techniques, 262

Parasitic-aware sizing, 245

Parasitics estimates, 245

Path search, 158, 165, 176

Perfect symmetry, 8

Performance-driven analog placement, 6

Perturbation method, 172

Physical synthesis, 244

Powell’s method, 251

Predicate, 287, 295

Probabilistic routing, 190

Probabilistic skip list, 25

Proximity constraint, 61

Proximity requirement, 107

PSL, see probabilistic skip list

R

Red-black interval tree, 18

Red-black tree, 18

Representative B*-tree, 67–70

Retargeting, 184

Reuse-based design, 245

RF circuits, 165, 191

Rip-up and re-route, 159, 167, 170, 171, 174

Root Cause Analysis, 290, 295

Rooted binary trees, 254

302 Index

Routing

analog circuits, 149, 151, 153, 155, 157,

159, 161, 163, 165, 167, 169, 171,

173, 175, 177, 179, 181, 183, 185,

187, 189, 191, 193, 195, 197, 199,

201

parasitics, 162, 167, 170, 172, 191

Rule-based layout synthesis, 247

S

Schematic-Driven Layout, 270, 295

SDL, see Schematic-Driven Layout

Segment tree, 12

Self-symmetry, 8

Sensitivity, 169, 171, 173–175, 180–182

Sequence Pair, 63, 82–87

Sequence-pair, 10

Shape function, 256

Shape functions, 122

Sheet resistance, 162

Shield, 164, 167, 174, 175

Simpagation, 285, 295

Simplex, 212

basic feasible solution, 213, 214, 226

entering variable, 215

graph-based, 216, 217, 221, 237

leaving variable, 215

revised, 234, 237

steps, 214

Simplification, 285, 295

Simulated annealing, 6, 63

Simulated annealing optimization, 250

Simultaneous placement and routing, 158, 179,

180

Slicing floorplan, 254

Slicing placement, 9

Slicing tree, 10

Stasheff polytope, 52

Statistical optimization techniques, 247

Steiner tree, 154, 168, 180, 181, 193, 195

Stockmeyer’s algorithm, 256

Subnet, 160

Symmetric

net, 175

routing, 162, 182

wiring, 170

Symmetric-feasible (S-F) binary tree, 51

Symmetric-feasible (S-F) sequence-pair, 35

Symmetry constraint, see Constraints

symmetry

Symmetry group, 8

Symmetry island, 65, 65, 66, 67, 70–76, 80–82,

84, 88, 91, 92

Symmetry requirement, 108

Symmetry-island, 63

T

Table lookup parasitic extraction, 262

Template-based approaches, 183

Template-based layout synthesis, 247, 251

Template-driven layout generation, 6

TIK, see Tool Integration Kit

Tile, 156, 158, 180

Tool Integration Kit, 285, 286, 295

Topological, 158, 162

Topological representation, 9

Transitive closure graph (TCG), 10

Traversal of a binary tree

inorder, 51, 125, 127

postorder, 51

preorder, 51, 125, 127

Two-step routing, 166, 168, 178, 182

U

Unification, 275, 295

V

Variants, 97

VCG, see constraint graph, vertical

X

X-y routing, 190

Y

Yield, 194

	Analog Layout Synthesis
	Preface
	The Authors
	Contents

	Part I Placement
	Chapter1 Device-Level Topological Placement with Symmetry Constraints
	1.1 Introduction
	1.1.1 CAD for Analog Layout
	1.1.2 The Device-Level Analog Placement Problem
	1.1.3 Overview of Analog Placement Methods
	1.1.4 Placement for Layout Symmetry
	1.1.5 The Absolute Representation of the Layout
	1.1.6 Topological Representations of the Layout
	1.1.7 Selecting a Topological Representation for Analog Placement

	1.2 Data Structures for Rectilinear Border Contours
	1.2.1 Segment Trees
	1.2.2 Red--Black Interval Trees
	1.2.3 Deterministic Skip Lists
	1.2.3.1 Insertion and Deletion of a Key in a 1-3 DSL
	1.2.3.2 Implementation Aspects of 1-3 DSL's
	1.2.3.3 Algorithm Computing the Border Contour of the Layout

	1.2.4 Johnson's Priority Queue

	1.3 Symmetric-Feasible Sequence-Pairs
	1.3.1 Evaluation of Symmetric-Feasible Sequence-Pairs
	1.3.1.1 The Computation of the Device Ordinates
	1.3.1.2 The Computation of the Device Abscissae

	1.3.2 Handling Multiple Symmetry Groups
	1.3.3 The Design of the Move Set

	1.4 Topological Placement with Symmetry Constraints Using Other Layout Representations
	1.4.1 A Comparative Overlook on Transitive Closure Graphs
	1.4.2 A Comparative Overlook on Tree Representations of the Layout
	1.4.2.1 Symmetric-Feasible Binary Trees
	1.4.2.2 The Design of the Move Set

	1.5 Experimental Results
	1.6 Conclusions
	References

	Chapter2 Hierarchical Placement with Layout Constraints
	2.1 Introduction
	2.2 Preliminaries
	2.2.1 Symmetry Constraints
	2.2.2 Symmetry Island
	2.2.3 Review of B*-Trees

	2.3 Placement of a Symmetry Group
	2.3.1 Automatically Symmetric-Feasible B*-tree
	2.3.2 ASF-B*-Tree Packing

	2.4 The Hierarchical Framework
	2.4.1 Hierarchical HB*-Tree
	2.4.2 HB*-Tree with Rectilinear Symmetry Islands
	2.4.3 HB*-Tree Packing

	2.5 The Algorithm
	2.5.1 HB*-Tree Perturbation
	2.5.2 ASF-B*-Tree Perturbation
	2.5.2.1 Module Rotation
	2.5.2.2 Node Movement
	2.5.2.3 Node Swapping
	2.5.2.4 Representative Change
	2.5.2.5 Symmetry-Type Conversion

	2.5.3 Contour Node Related Updates

	2.6 Comparisons with Other Approaches
	2.6.1 Comparisons of Time Complexities
	2.6.2 Comparisons of Experimental Results

	2.7 Advanced Symmetry Constraints
	2.7.1 Multiple Symmetry-Group Alignment
	2.7.2 Consideration of NonSymmetry-Island Placements

	2.8 Hierarchical Constraints
	2.8.1 Hierarchical Symmetry
	2.8.2 Hierarchical Clustering/Proximity

	2.9 Conclusion
	References

	Chapter3 Deterministic Analog Placement by Enhanced Shape Functions
	3.1 Introduction
	3.1.1 Definitions
	3.1.2 Analog Circuit Placement Requirements
	3.1.3 Context of This Work
	3.1.4 Contributions

	3.2 Placement Constraint Generation
	3.2.1 Placement Requirements
	3.2.1.1 Types of Placement Requirements
	3.2.1.2 Importance Order

	3.2.2 SMP Graph and Its Generation
	3.2.2.1 Building Block Recognition
	3.2.2.2 Symmetry Analysis

	3.2.3 HSMPG Tree and Its Generation
	3.2.3.1 Generation Algorithm
	3.2.3.2 Example
	3.2.3.3 Discussion

	3.2.4 Constraint Generation

	3.3 B*-Tree Placement Considering Linear and Piecewise-Linear Constraints
	3.3.1 Linear Constraint Handling
	3.3.2 Piecewise-Linear Constraint Handling

	3.4 Enhanced Shape Functions
	3.4.1 Review of Shape Functions
	3.4.2 Definition of Enhanced Shape Functions
	3.4.3 Combination of Enhanced Shape Functions

	3.5 Hierarchically Guided Enumeration
	3.6 Experimental Results
	3.6.1 Discussion of the Presented Approach
	3.6.2 Comparison with Other Approaches
	3.6.3 Experiment with Linear Minimum Distance Constraints
	3.6.4 Experiment with PWL Minimum Distance Constraints

	3.7 Conclusion
	References

	Part II Routing
	Chapter4 Routing Analog Circuits
	4.1 Introduction
	4.2 Basic Routing Algorithms
	4.2.1 Maze Router
	4.2.2 Line Expansion Routers
	4.2.3 Channel Routing
	4.2.4 Steiner Routing

	4.3 Representations
	4.3.1 Layout Representations
	4.3.1.1 Grid-Based Representations
	4.3.1.2 Tile Based Representations
	4.3.1.3 Topological Representations

	4.3.2 Connectivity Representation
	4.3.3 Rule Representations

	4.4 Routing Issues and Techniques for Analog Circuits
	4.4.1 Net Splitting
	4.4.2 Symmetric Routing
	4.4.3 Crosstalk and Shielding

	4.5 Routing Strategies for Analog Circuits
	4.5.1 Digitally Inspired Early Routing Strategies
	4.5.2 Routing Based on Cost Minimization
	4.5.3 Routing Based on Parasitic Bounds
	4.5.3.1 Constraint Generation and Sensitivity Calculation
	4.5.3.2 Routers Based on Parasitic Bounding

	4.5.4 Integrated Placement and Routing
	4.5.5 Global/Detailed Routing
	4.5.6 Template Based Approaches
	4.5.6.1 A Simple Template Script

	4.5.7 Other Routing Strategies

	4.6 Specialized Analog Routers
	4.6.1 Routing for RF Circuits
	4.6.2 Routing for Analog Arrays

	4.7 Manufacturability and Yield Issues in Routing
	4.8 Conclusions
	References

	Part III Layout in the Design Flow
	Chapter5 Analog Layout Retargeting
	5.1 Introduction
	5.2 Previous Work
	5.3 Analog Layout Retargeting Flow
	5.3.1 Layer Mapping
	5.3.2 Device Recognition
	5.3.3 Constraint Generation

	5.4 Layout Compaction Methodologies: Background
	5.4.1 The Constraint-Graph Approach
	5.4.2 Linear Programming: The Simplex Method
	5.4.3 Graph-Based Simplex Methods

	5.5 Multivariable Constraint-Graph Based Simplex Method
	5.5.1 Basic Coefficient Constraint-Graph
	5.5.2 Multivariable Graph-Based Simplex Algorithm
	5.5.2.1 Updating the Basic Coefficient Constraint-Graph
	5.5.2.2 Dealing with Loops
	5.5.2.3 Initial Basic Feasible Solution

	5.5.3 Complexity Analysis

	5.6 Layout Constraints Revisited
	5.7 Practical Retargeting
	5.7.1 Symmetry Enforcement
	5.7.2 Device Aspect Ratio
	5.7.3 Layout Hierarchy
	5.7.4 Device Replacement
	5.7.5 Layout Parasitics

	5.8 Examples
	5.9 Conclusion
	References

	Chapter6 Closing the Gap Between Electrical and Physical Design: The Layout-Aware Solution
	6.1 Introduction
	6.2 Previous Work
	6.2.1 Circuit Sizing and Layout Generation
	6.2.2 Previous Approaches to Layout-Aware Sizing

	6.3 Selected Approach to Layout-Aware Sizing
	6.3.1 Sizing
	6.3.2 Layout Generation and Parasitic Extraction
	6.3.3 Putting It All Together

	6.4 Geometrically Constrained Sizing
	6.4.1 Floorplan Sizing
	6.4.2 Proposed Approach
	6.4.3 Experimental Results

	6.5 Layout-Aware Sizing of AMS Circuits
	6.5.1 Completing the Layout-Aware Sizing Methodology with Parasitic Extraction
	6.5.2 Experimental Results of Layout-Aware Sizing

	6.6 Conclusions
	References

	Chapter7 Constraint-Driven Design Methodology:A Path to Analog Design Automation
	7.1 Introduction
	7.2 Problem Description
	7.2.1 The Design Problem
	7.2.2 Analog Vs. Digital Design Automation

	7.3 Constraint Classification and Representation
	7.4 Components of a Constraint-Driven Design Flow
	7.4.1 Constraint Management
	7.4.2 Constraint Derivation
	7.4.3 Constraint Transformation
	7.4.4 Constraint Sensitivity Analysis
	7.4.5 Constraint Verification

	7.5 Constraint Engineering
	7.5.1 Constraint Programming
	7.5.2 The Constraint Engineering System

	7.6 Impact Analysis
	7.6.1 Impact on Design Flow
	7.6.2 Impact on Design Methods
	7.6.3 Impact on Design Algorithms

	7.7 Outlook
	Glossary
	References

	Index
	Cover
	Analog Layout Synthesis
	Preface
	The Authors
	Contents

	Part I Placement
	Chapter1 Device-Level Topological Placement with Symmetry Constraints
	1.1 Introduction
	1.1.1 CAD for Analog Layout
	1.1.3 Overview of Analog Placement Methods
	1.1.2 The Device-Level Analog Placement Problem
	1.1.4 Placement for Layout Symmetry
	1.1.5 The Absolute Representation of the Layout
	1.1.6 Topological Representations of the Layout
	1.1.7 Selecting a Topological Representation for Analog Placement

	1.2 Data Structures for Rectilinear Border Contours
	1.2.1 Segment Trees
	1.2.2 Red--Black Interval Trees
	1.2.3 Deterministic Skip Lists
	1.2.3.1 Insertion and Deletion of a Key in a 1-3 DSL
	1.2.3.2 Implementation Aspects of 1-3 DSL's
	1.2.3.3 Algorithm Computing the Border Contour of the Layout

	1.2.4 Johnson's Priority Queue

	1.3 Symmetric-Feasible Sequence-Pairs
	1.3.1 Evaluation of Symmetric-Feasible Sequence-Pairs
	1.3.1.1 The Computation of the Device Ordinates
	1.3.1.2 The Computation of the Device Abscissae

	1.3.2 Handling Multiple Symmetry Groups
	1.3.3 The Design of the Move Set

	1.4 Topological Placement with Symmetry Constraints Using Other Layout Representations
	1.4.1 A Comparative Overlook on Transitive Closure Graphs
	1.4.2 A Comparative Overlook on Tree Representations of the Layout
	1.4.2.1 Symmetric-Feasible Binary Trees
	1.4.2.2 The Design of the Move Set

	1.5 Experimental Results
	1.6 Conclusions
	References

	Chapter2 Hierarchical Placement with Layout Constraints
	2.1 Introduction
	2.2 Preliminaries
	2.2.1 Symmetry Constraints
	2.2.2 Symmetry Island
	2.2.3 Review of B*-Trees

	2.3 Placement of a Symmetry Group
	2.3.1 Automatically Symmetric-Feasible B*-tree
	2.3.2 ASF-B*-Tree Packing

	2.4 The Hierarchical Framework
	2.4.1 Hierarchical HB*-Tree
	2.4.2 HB*-Tree with Rectilinear Symmetry Islands
	2.4.3 HB*-Tree Packing

	2.5 The Algorithm
	2.5.2 ASF-B*-Tree Perturbation
	2.5.1 HB*-Tree Perturbation
	2.5.2.1 Module Rotation
	2.5.2.3 Node Swapping
	2.5.2.2 Node Movement
	2.5.2.5 Symmetry-Type Conversion
	2.5.2.4 Representative Change

	2.5.3 Contour Node Related Updates

	2.6 Comparisons with Other Approaches
	2.6.1 Comparisons of Time Complexities
	2.6.2 Comparisons of Experimental Results

	2.7 Advanced Symmetry Constraints
	2.7.1 Multiple Symmetry-Group Alignment
	2.7.2 Consideration of NonSymmetry-Island Placements

	2.8 Hierarchical Constraints
	2.8.1 Hierarchical Symmetry
	2.8.2 Hierarchical Clustering/Proximity

	References
	2.9 Conclusion

	Chapter3 Deterministic Analog Placement by Enhanced Shape Functions
	3.1 Introduction
	3.1.1 Definitions
	3.1.2 Analog Circuit Placement Requirements
	3.1.3 Context of This Work
	3.1.4 Contributions

	3.2 Placement Constraint Generation
	3.2.1 Placement Requirements
	3.2.1.1 Types of Placement Requirements
	3.2.1.2 Importance Order

	3.2.2 SMP Graph and Its Generation
	3.2.2.1 Building Block Recognition
	3.2.2.2 Symmetry Analysis

	3.2.3 HSMPG Tree and Its Generation
	3.2.3.1 Generation Algorithm
	3.2.3.3 Discussion
	3.2.3.2 Example

	3.2.4 Constraint Generation

	3.3 B*-Tree Placement Considering Linear and Piecewise-Linear Constraints
	3.3.1 Linear Constraint Handling
	3.3.2 Piecewise-Linear Constraint Handling

	3.4 Enhanced Shape Functions
	3.4.1 Review of Shape Functions
	3.4.2 Definition of Enhanced Shape Functions
	3.4.3 Combination of Enhanced Shape Functions

	3.5 Hierarchically Guided Enumeration
	3.6 Experimental Results
	3.6.1 Discussion of the Presented Approach
	3.6.2 Comparison with Other Approaches
	3.6.3 Experiment with Linear Minimum Distance Constraints

	3.7 Conclusion
	3.6.4 Experiment with PWL Minimum Distance Constraints

	References

	Part II Routing
	Chapter4 Routing Analog Circuits
	4.1 Introduction
	4.2 Basic Routing Algorithms
	4.2.1 Maze Router
	4.2.3 Channel Routing
	4.2.2 Line Expansion Routers
	4.2.4 Steiner Routing

	4.3 Representations
	4.3.1 Layout Representations
	4.3.1.1 Grid-Based Representations
	4.3.1.2 Tile Based Representations
	4.3.1.3 Topological Representations

	4.3.2 Connectivity Representation
	4.3.3 Rule Representations

	4.4 Routing Issues and Techniques for Analog Circuits
	4.4.2 Symmetric Routing
	4.4.1 Net Splitting
	4.4.3 Crosstalk and Shielding

	4.5 Routing Strategies for Analog Circuits
	4.5.1 Digitally Inspired Early Routing Strategies
	4.5.2 Routing Based on Cost Minimization
	4.5.3 Routing Based on Parasitic Bounds
	4.5.3.1 Constraint Generation and Sensitivity Calculation
	4.5.3.2 Routers Based on Parasitic Bounding

	4.5.4 Integrated Placement and Routing
	4.5.5 Global/Detailed Routing
	4.5.6 Template Based Approaches
	4.5.6.1 A Simple Template Script

	4.5.7 Other Routing Strategies

	4.6 Specialized Analog Routers
	4.6.1 Routing for RF Circuits
	4.6.2 Routing for Analog Arrays

	4.7 Manufacturability and Yield Issues in Routing
	4.8 Conclusions
	References

	Part III Layout in the Design Flow
	Chapter5 Analog Layout Retargeting
	5.1 Introduction
	5.2 Previous Work
	5.3 Analog Layout Retargeting Flow
	5.3.2 Device Recognition
	5.3.1 Layer Mapping

	5.4 Layout Compaction Methodologies: Background
	5.4.1 The Constraint-Graph Approach
	5.3.3 Constraint Generation
	5.4.2 Linear Programming: The Simplex Method
	5.4.3 Graph-Based Simplex Methods

	5.5 Multivariable Constraint-Graph Based Simplex Method
	5.5.1 Basic Coefficient Constraint-Graph
	5.5.2 Multivariable Graph-Based Simplex Algorithm
	5.5.2.1 Updating the Basic Coefficient Constraint-Graph
	5.5.2.2 Dealing with Loops
	5.5.2.3 Initial Basic Feasible Solution

	5.5.3 Complexity Analysis

	5.6 Layout Constraints Revisited
	5.7 Practical Retargeting
	5.7.1 Symmetry Enforcement
	5.7.2 Device Aspect Ratio
	5.7.3 Layout Hierarchy
	5.7.4 Device Replacement

	5.8 Examples
	5.7.5 Layout Parasitics

	5.9 Conclusion
	References

	Chapter6 Closing the Gap Between Electrical and Physical Design: The Layout-Aware Solution
	6.1 Introduction
	6.2 Previous Work
	6.2.1 Circuit Sizing and Layout Generation
	6.2.2 Previous Approaches to Layout-Aware Sizing

	6.3 Selected Approach to Layout-Aware Sizing
	6.3.1 Sizing
	6.3.2 Layout Generation and Parasitic Extraction
	6.3.3 Putting It All Together

	6.4 Geometrically Constrained Sizing
	6.4.1 Floorplan Sizing
	6.4.2 Proposed Approach
	6.4.3 Experimental Results

	6.5 Layout-Aware Sizing of AMS Circuits
	6.5.1 Completing the Layout-Aware Sizing Methodology with Parasitic Extraction
	6.5.2 Experimental Results of Layout-Aware Sizing

	References
	6.6 Conclusions

	Chapter7 Constraint-Driven Design Methodology:A Path to Analog Design Automation
	7.1 Introduction
	7.2 Problem Description
	7.2.1 The Design Problem
	7.2.2 Analog Vs. Digital Design Automation

	7.3 Constraint Classification and Representation
	7.4 Components of a Constraint-Driven Design Flow
	7.4.1 Constraint Management
	7.4.3 Constraint Transformation
	7.4.2 Constraint Derivation
	7.4.4 Constraint Sensitivity Analysis
	7.4.5 Constraint Verification

	7.5 Constraint Engineering
	7.5.1 Constraint Programming
	7.5.2 The Constraint Engineering System

	7.6 Impact Analysis
	7.6.2 Impact on Design Methods
	7.6.1 Impact on Design Flow
	7.6.3 Impact on Design Algorithms

	7.7 Outlook
	Glossary
	References

	Index

