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Preface

Unless you are Homer, the sensible course to take in any narrative, whether it be

fiction or somewhat factual, is to start at the beginning, proceed through the middle

and finish at the end. This book is not like that. CAD is something of a Gordian knot

in which it is difficult to find an end from which to start. The purpose of the book is

not to criticise, but to explain how CAD systems work, relate this to theoretical

aspects, explain shortcomings and limitations. The book is not supposed to be about

any one particular system, though some are mentioned. Many CAD systems have

similar functionality and, wherever possible, this functionality will be explained

rather than particular implementations. This is because CAD systems are dynamic

and, hopefully, will continue to change as new requirements and ideas appear. The

techniques behind, though, are more stable and, in order to understand what a CAD

system is doing, it is helpful to understand what is going on behind the interface.

CAD systems are a combination of knowledge from, at least, the three domains:

computer science, mathematics and engineering. They are complicated and hence

it is difficult to be an expert in all three domains. For this reason it is common that

software experts implement the software rather than the engineers for whom the

systems are intended. This means that there can be differences between the way

that a system works and what the user would expect.

The intended audience of this book is:

• CAD users—Both students and professional users who would like to understand

more about the CAD tool that they are using. The examples and exercises are

intended to give an insight into what is going on behind the functions so that it is

easier to avoid problems, but also to understand those problems which do occur.

• CAD teachers—People who would like to teach CAD at a higher level than just

which buttons to push to get a result. The exercises and examples in the book are

intended as a supplement to normal teaching with example exercises.

• CAD system developers—The book tries to present some of the ‘other side’ of

CAD, a little of where the current system philosophy is wrong or where it could

be improved.
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The way this book is organised is that the first chapter is intended to demon-

strate some simple object creation sequences and to pose some of the questions

that a user might put. These questions are a sort of introduction to the material in

some of the other chapters.

Chapter 2 explains some of the history, about different solid modelling

methods, before describing Boundary Representation (B-rep), the current main

method, in more detail. CAD systems worked with wire-frame modelling and then

constructive solid geometry (CSG) methods before settling for B-rep.

Chapter 3 describes two-dimensional definition methods and Chap. 4 describes

the main model creation operations that are used to create models. Along with the

operations are brief descriptions of algorithms and special cases. There are sug-

gestions for various experiments to illustrate some limitations and explain what is

happening. Chapter 5 describes, briefly, another important area, the geometry of

parts. Chapter 6 defines non-manifold models and examples of their use in a hybrid

modelling environment. Chapter 7 describes graphics input and output in CAD.

Together this group of chapters describes the core modelling functions of CAD

systems.

The next chapter, Chap. 8, describes information in models. This can be thought

of as an add-on to the basic model for improving the level of communication

between application areas. Chapter 9 describes current methods for exchanging

model data.

Chapter 10 describes some aspects of the complex topic of features. This is a

rather subjective topic and there is a wide variety of perception about what con-

stitutes a feature. The chapter presents some of the history and some of the uses of

features.

Chapter 11 presents some of the gaps in CAD. In general CAD systems are

often used as modelling systems to create detailed geometric models of products

whereas a lot of design precedes this phase. The chapter presents a little research

work in this area as an illustration of how CAD systems might (and should)

develop to provide a uniform design environment.

Chapter 12 presents some aspects of command files and their modern use as

history records in CAD is presented. The chapter also describes aspects of object

parametrisation. Often, products are collections of single models connected in

some way. Chapter 13 concerns the way that these collections, or assemblies, are

built up and connected. Chapter 14 describes different aspects of CAD in com-

munities. This concerns how to work with other people in CAD as well as analysis

methods to aid the designer communicate with other partners in the production

chain. Finally, Chap. 15 outlines some possible projects. These projects were used

in teaching at the EPFL to reinforce different aspects of CAD.

Good luck.

Lausanne, April 2008 Ian Stroud

Hildegarde Nagy
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Chapter 1

Case Studies

This chapter is about the end of the story. The purpose is to explain a little bit

about how CAD systems are supposed to be used so that the details in subsequent

chapters can be set into context.

The first examples here take a known example and try to explain how to model

it using a CAD system. This should not be confused with design. This is model-

ling. Design is a wider task, the aim here is to use examples to explain the

functionality of a CAD system so that it is easier to apply it to design problems. A

little about design is given in Chap. 11 where early phase design tools and

methods are mentioned.

The solid images for these examples have been created using CATIA version 5.

1.1 Linear Extrusion Piece

The first piece is a simple linear extrusion part, shown in Fig. 1.1.

A drawing with the dimensions is shown in Fig. 1.2. This part is made by

defining a set of shapes and extruding them linearly as additions or subtractions

from the shape.

1.1.1 Modelling Method

The following building method is arbitrary. The aim of this, and later exercises is

to introduce some basic working methods. The instructions here are not related to

any particular system, hence no icon pictures are included. Instead, the reader

should match the functionality to that of the CAD system available. When working

with systems it is, in my view, better to think in terms of the functionality rather

than the icon because this helps to switch between systems.

I. Stroud and H. Nagy, Solid Modelling and CAD Systems,
DOI: 10.1007/978-0-85729-259-9_1, � Springer-Verlag London Limited 2011

1

http://dx.doi.org/10.1007/978-0-85729-259-9_11
http://dx.doi.org/10.1007/978-0-85729-259-9_11


Fig. 1.1 Simple linear
extrusional part

Fig. 1.2 Simple linear extrusional part drawing
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The first part in these exercises is one which has the basic shape made by linear

extrusion. The part shape and dimensions are arbitrary and any resemblance to an

industrial part in existence now or in the past is purely accidental.

1.1.1.1 Step 1: The Basic Shape

Create a base with shape as shown in Fig. 1.3. Extrude this 20 units to create the

basic object, shown in Fig. 1.4. Extrusion is explained in Sect. 4.2.

The general idea with most current CAD systems is to create a base shape and

then add elements until the final shape has been created. This creates the design

incrementally. The alternative might be to create sets of elements, features

(described in Chap. 10), connecting to known parts and then fill in the gaps

between these. This type of method is not currently supported, hence the need to

create a basic shape and then add or subtract elements.

The basic shape is made as a simple, connected figure consisting of lines,

circles and maybe other curves. The methods for this are explained in Sect. 3.2.

The positions of these are usually, nowadays, controlled by what are called

‘‘constraints’’. These constraints may be relational, such as perpendicularity,

parallelism or tangency, say, and distances represented by dimensions.

The actual method of creating shapes varies a little. Rather than try to explain

existing systems, which are subject to variation, the intention is to try to explain

the techniques behind what the systems do. The techniques tend to be more stable

than the interfaces so it seems preferable to understanding the techniques rather

than a particular system. Also, CAD system vendors usually provide good

explanation material for learning their systems which helps match knowledge of a

technique to the system interface.

Two variants can be termed the absolute position variant and the relative

position variant. With the absolute variant the positions of the points and lines are

given in global coordinates relative to an origin. With the relative position variant,

the positions of points are given relative to each other, so that edge lengths are

correct, but that the position in space is not fixed. Usually systems have a mixture

of these, absolute positions can be defined but relative lengths tend to be preferred.

Fig. 1.3 Linear extrusion
example, basic shape
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In absolute positions the shape in Fig. 1.3 might be defined as a polygon with

the coordinate point sequence:

(80,-60) (80,60) (0,60) (-40,30) (-80,30) (-80,10) (-50,10) (-50,-10)

(-80,-10) (-80,-30) (-40,-30) (0,-60) (80,-60)

This produces a figure centred about the global origin. Note that the coordinates

are defined in two dimensions because shapes are created in planes, hence the third

coordinate is defined from the plane, and the coordinates of the points are relative

to the projection of the global origin onto this plane.

With the relative position method, the right-hand edge would be defined as

having a length of 120, the overall width of the piece as 160, etc. as in the sketch in

Fig. 1.3. The relative method has an obvious connection with drafting and is easy to

use, provided the rough shape is sufficiently close to the final shape. (If it is not then

there is a risk that the figure will be deformed when giving the correct dimensions).

Although the relative position method seems clearer and easier to use, it is

useful to have the global position known. With the pure relative method, you

might have the coordinates:

(83.3333,-67.652) (83.3333,52.348) (3.3333,52.348) (-36.6667,22.348)

(-76.6667,22.348) (-76.6667,2.348) (-46.6667,2.348) (-46.6667,-17.652)

(-76.6667,-17.652) (-76.6667,-37.652) (-36.6667,-37.652) (3.3333,

-67.652) (80,-67.652)

to take a wild example. In addition, the figure could be rotated. This should not

be a problem for a user because the local shape is more important than its global

position. However, in some cases it may be necessary to combine extruded shapes

using Boolean operations (see Sect. 4.1) If this is necessary, then it may be easier

to do if the objects have known positions. Note, also, that some systems provide a

Fig. 1.4 Base part
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grid so that it is easier to create a nearly correct shape before adding the relevant

constraints and dimensions to the shape. See Sect. 3.2 for more details of these.

1.1.1.2 Step 2: The Circular Extrusions

Draw a circle radius 25 on the top face (Fig. 1.5) and extrude it 10 units (Fig. 1.6

top). Draw a second circle, radius 22.5 and concentric on the top face of this

circular extrusion and extrude this upwards 5 units (Fig. 1.6 bottom). Create a

circular hole, radius 11.25, concentric with the two extrusions, and it extrude it

downwards to the end of the object to create a hole (Fig. 1.7).

Note the lines on the cylindrical faces of the extrusions. The presence, or not, of

side edges round a cylinder has varied over the years. See the glossary under the

headings ‘‘cylinder representation’’ and ‘‘fake edges’’, and Sect. 2.9, for more

explanation.

This is now an incremental extrusion, which is described in Sect. 4.2. What this

means in effect is that the shape, in this case a circle, is extruded to produce a

separate object which is then combined with the original body using a Boolean

operation. The use of Boolean operations has benefits for ensuring the correctness

of an object. The two positive extrusions create cylinders which are then ‘‘added’’

to the base object. To create the hole the extrusion creates a cylinder and then this

cylinder is subtracted from the object. This is explained in more detail in Sect. 4.2.

Note that some systems use feature names for operations. I have seen this in

CATIA v5, for example, and for me it runs contrary to feature theory. For linear

extrusions there is an operation called ‘‘pocket’’ in CATIA v5 which is a linear

extrusion and a subtract operation. There is another operation called ‘‘Groove’’

which is a circular extrusion and a subtract operation. There is also an operation

called ‘‘Hole’’ for creating round holes by creating a volumetric model and then

subtracting this. There are two main reasons why I am critical. The first is that the

‘‘feature’’ which results is not necessarily a pocket, groove or hole. The result

depends on the geometry of the extrusion shape and its position with respect to the

object. The cylindrical hole could be created as a ‘‘pocket’’, ‘‘groove’’ or hole. The

second reason for my criticism is that the feature is not maintained during

Fig. 1.5 Linear extrusion
example, circular extrusion
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modelling, which is a second criterion for having a feature-based modeller. More

of this later in Sect. 4.2 and Chap. 10.

1.1.1.3 Step 3: Complex Pockets on Top Surface

Make a shape like that shown in Fig. 1.8 on the top surface of the original

extrusion. The roundings have radius 4. Extrude it downwards, or cut it out to a

depth of 15. Make a mirror image shape on the other side of the object.

The positions of these are shown in the original drawing. Note that some CAD

Fig. 1.6 Circular extrusions
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systems let you perform a symmetry operation on an operation, so that it is easier

to produce the second cut-out.

As with the cylinders, creating the pockets is done by creating a base shape,

extruding this to create a volume and finally subtracting the volume from the solid.

Although this may seem complicated, the benefit is that if the extrusion cuts

through part of the object then a hole will be created. This happens in step 5. The

result of creating the two pockets is shown in Fig. 1.9.

1.1.1.4 Step 4: Small Extrusion on Underside

This is a simple extrusion but with a complex shape with roundings, or blends on

the edges. The extrusion shape partly follows the original contour at a distance of

five from the edges of the original contour. This is shown in Fig. 1.10.

The result of the extrusion is shown in Fig. 1.11. As always, this is done by

creating an extruded volume and then adding this to the basic figure. As with the

other extrusions, though, this is hidden behind the interface. The interface may

indicate only a positive or negative extrude, how the operation is implemented is

something else.

Fig. 1.7 Cylindrical hole
through extrusions

Fig. 1.8 Linear extrusion
example, Rounded pocket
shape
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Fig. 1.11 Bottom extrusion

Fig. 1.9 Complex rounded
pockets

Fig. 1.10 Bottom extrusion
shape
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The edges on the bottom of the extrusion and the edges where the extrusion is

attached to the basic shape are rounded, radius 1. This should make the side faces

disappear as the blends meet in the middle of each of the thin faces round the

extrusion. See Fig. 1.12. More on blending in Sect. 4.8.

1.1.1.5 Step 5: Slots on Bottom Face

Once the extrusion on the underside has been made it is possible to create two

simple pockets, depth 7. The size and placement of these is shown in Fig. 1.13.

By now you may be getting tired of all this extrusion, but these two slots show

what happens when one extruded shape meets another one, Fig. 1.14.

The advantage of using a Boolean operation is that when the second extrusion is

carried out the portion of the pocket bottoms where the two pockets touch is

removed. If a Boolean operation were not used you would have two back-to-back

faces with zero thickness between them. If you managed to produce an object like

this then, when it is manufactured, you would probably have a ragged hole shape

Fig. 1.12 Blended edges on
bottom extrusion

Fig. 1.13 Linear extrusion
example, bottom pocket
shape and placement
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or shapes as the tool partially breaks through. More on other effects of collisions

during extrusions in Sect. 4.2.

1.1.1.6 Step 6: Front Cutout

This is a simple rectangular cutout with blended edges, which is shown in

Fig. 1.15. This should be more or less routine, a rectangular shape is drawn on one

of the planar faces at the left of the object and then this is extruded and subtracted

from the object.

The edges in the step are then blended with a radius of 2 units.

Note, though, the feature result. This is a cutout, as with the pockets earlier, but

it is not a pocket. Which is what the comment in step 2 was about.

1.1.1.7 Step 7: Fixation Holes

There are four fixation holes in the object, two in the prongs and two in the wider

part, as shown in Fig. 1.16.

There are different ways to produce this result depending on what the system

allows. If the system has a special hole-making operation then this can be done in

one step. If not then it might be done in various ways.

Consider the stepped hole in Fig. 1.17.

With linear extrusions this can be done as shown in Fig. 1.18. A circle of the

desired radius for the top part is created centred at the position for the hole. This is

extruded downwards to create a circular pocket. A second hole of smaller radius is

inscribed on the bottom of this pocket and this second circle is extruded down-

wards to a specified depth or through the object.

Fig. 1.14 Pockets on bottom
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Another method is to create a planar section with the shape of the hole profile.

This is then rotated about the long vertical axis with option cutout (or similar) so

that the resulting volume is subtracted from the basic shape, as shown in Fig. 1.19.

A third method, similar to the second method, is to create a profile and rotate it

to create a separate object. This object can then be moved to the correct position

and subtracted, illustrated in Fig. 1.20. An advantage of this method is that the

object can be copied and arranged into a pattern to create multiple holes with the

same operation. This is explained in Chap. 4.

Fig. 1.15 Front rectangular
cutout
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Fig. 1.16 Fixation holes

Fig. 1.17 Stepped hole
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1.1.1.8 Step 8: Longitudinal Hole

This is a small hole through the centre of the object, as shown in Fig. 1.21. This

can be created by inscribing a circle of the correct diameter, here 4, and this circle

is extruded through the object with a cut-out. In the object in this exercise, which

was made using CATIA v5, there is an option to add a thread to a hole. Adding a

thread is another interesting variant. Geometrically, a thread is complicated, but

creating a threaded hole is a relatively straightforward manufacturing operation.

There was a lot of discussion about threads in the early days of modelling because

it is more efficient to simply attach an information entity to the hole with the thread

Fig. 1.18 Making a stepped hole with linear extrusions

Fig. 1.19 Making a stepped
hole with circular extrusions

Fig. 1.20 Making a stepped
hole with a hole object

Fig. 1.21 Longitudinal hole
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details. This is easier for the modelling system and also easier for downstream

applications to identify the thread information rather than trying to reconstruct it

from complex geometry. See Chap. 8.

Look closely at the curved edges in the model. Sometimes these appear facetted

rather than perfectly curved, but this is only a graphics effect. This will be

explained elsewhere, in Sect. 7.2.1. In the model the hole is exact, but if you look

closely at Fig. 1.21 you can see this effect.

1.1.1.9 Step 9: H-shaped Cutout

This is a simple cutout extended through the piece, and is shown in Fig. 1.22.

Note how the long hole created in the previous step is cut by the extrusion. This

is another example of the benefit of using Booleans in conjunction with modelling

operations.

1.1.2 Questions

1.1.2.1 Why Not Make Just a Half Piece and Reflect It?

The use of symmetry presupposes that it is known beforehand that the shape is

symmetric. Sometimes it is possible to determine this and so only half the piece

need be designed. See Fig. 1.23. It is also possible that part of the object is

Fig. 1.22 H-shaped cutout

14 1 Case Studies

http://dx.doi.org/10.1007/978-0-85729-259-9_8
http://dx.doi.org/10.1007/978-0-85729-259-9_8
http://dx.doi.org/10.1007/978-0-85729-259-9_7
http://dx.doi.org/10.1007/978-0-85729-259-9_7


designed using symmetry, and then this symmetric object is used as a base part. In

this example it seems a little ridiculous to create the circular extrusions in step 2 as

half shapes. This could be moved to after the symmetry operation.

This means that only one complex pocket on the top face, half the extrusion on

the bottom face, one simple pocket on the bottom face and one each of the two

different sized fixation holes created. The matching elements are created with the

symmetry operation.

1.1.2.2 What Shape Is the Base Shape?

There are many options about how to decide on the base shape. As well as that

shown in step 1, the half shape for symmetry is a second possibility. Yet another

possibility is that shown in Fig. 1.24. Here the prongs are created in a subsequent

shape by creating a rectangular shape and then extruding it through the object with

a cutout operation.

It is sometimes easiest to create simple shapes and then to add extra features.

This is connected with the design process. It also makes it easier to parametrise

part shapes, as discussed in Chap. 12.

1.1.2.3 How to Create Blended Shapes

Should you create rounded shapes and then extrude them or extrude square shapes

and then add blends? The complex pockets could have been made by extruding

shapes with sharp corners, as shown in Fig. 1.25, extruding this to create a pocket

and then rounding off the appropriate edges.

This is a question related to the reasons for which the shape has rounded elements.

This is something else that is connected with design. If the desired shape has

rounded elements then it is more logical to create a two-dimensional shape with

Fig. 1.23 Linear extrusion
example, basic half shape

Fig. 1.24 Linear extrusion
example, simple basic shape
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rounded elements and extrude this. If the rounded elements are there for functional

or manufacturing reasons, say, then it seems logical to round the edges with a

blend function. Design is not simply a matter of producing the right shape, the

design method should also be logical. For someone else using the design, a

manufacturer or another designer, say, it is not always easy to understand why the

elements of the design are present. If the design is to be modified later, using

the history tree (Chap. 12), then this needs to be logically structured to make the

modification easy. Ideally there should be yet another support structure which

describes the design decisions used to arrive at the final shape. This is not the same

as the history tree of the object, which is the translation of the designers ideas into

the modelling tools of the CAD system. Without this design decision tree the

history tree should be made as logical as possible.

1.1.2.4 How Do You Choose Limits for an Extrusion?

Should this be a depth, to next, to last or what? Actually this will be dealt with in

more detail in Chap. 4. Youmay have noticed these options for extrusion operations.

The classical parameter is a depth value, a real number, but the other options, such as

‘‘to last’’, ‘‘to next’’ and so on, offer the possibility to set this limit dynamically. This

is also important for parametric parts, which are described in Sect. 12.3.

1.1.2.5 How and Where Do You Make It?

This is now a difficult question because a manufacturing expert will decide on the

exact method. The question, though, concerns modelling modifications to adapt a

shape for manufacturing. It is possible to imagine that a design has two main shape

models and may have intermediate shape models in between. The first shape

model is the ideal shape, the shape that the designer would like. The final shape is

the shape that will be produced corresponding to the shape of the physical piece.

There may be other intermediate shapes. For example, if the part is to be made by

casting then the may be a model with some features removed, draft angles added

and blends. This would be used to make the mould cavity. The question is where

and how to adapt the ideal shape to the practical, realised shape. If the designer

introduces changes, such as blends or draft angles, then it may be difficult for the

manufacturing expert to know what is there for which reason. In some cases, for

particular firms who have a fixed manufacturing philosophy, this may be possible.

Fig. 1.25 Linear extrusion
example, Simplified step 3
pocket shape
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For other firms, there may be a wider choice. This problem has been addressed by

so-called ‘‘concurrent engineering’’, where a group of experts collaborates to

produce a design. However, what happens after ten years if a spare part is to be

made, maybe on the other side of the world? The manufacturing method for a one-

off spare part is usually different from that chosen for mass production. If the

changes made for a manufacturing are mixed with the model it may be difficult to

disentangle them later. This is a general problem. What would be useful is a design

decision history description, but this does not yet exist. The construction history of

the CAD system is simply a record of which operations were used to create a

design, not why they were used. For this reason it is useful to structure the

modelling sequence logically.

Note that using a CAD system effectively is not just about creating a shape but

also about communication between different partners in the production chain.

1.2 Rotational Piece

The next exercise concerns a rotational part, shown in Figs. 1.26 and 1.27. As with

the linear extruded part, this is made by creating a basic shape and then adding

elements incrementally.

1.2.1 Modelling Method

The part is basically rotational, so the base shape is made by creating a profile and

extruding it round an axis.

1.2.1.1 Step 1: The Basic Shape

The initial profile is shown in Fig. 1.28, and the result of rotating this around an

axis is shown in Fig. 1.29.

Fig. 1.26 Simple rotational
part

1.1 Linear Extrusion Piece 17



Note the same comments made in step 1 of the linear extrusion exercise apply

here as well. There are two philosophies, one to create shapes in absolute posi-

tions, the other to make the shape elements relative and ignore the exact positions.

Here it is slightly preferable to have the object in a known position because of the

hole making operation in step 3.

There are several variants that can be made with the same profile shape. Several

different shapes can be made by choosing the parameters differently. Choosing the

same axis, labelled ‘‘A’’ in Fig. 1.30, but rotating through 270� only, you get the

variant at the top left of Fig. 1.31. Choosing edge ‘‘B’’ as the axis gives the shape

at the top right of Fig. 1.31. Choosing edge ‘‘C’’ as the axis gives the shape at the

Fig. 1.27 Simple rotational part drawing

Fig. 1.28 Example 2, Basic
shape
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bottom left of Fig. 1.31. If an axis is used which is not an edge of the profile, as

axis ‘‘D’’ gives a through hole along the axis, as at the bottom right of Fig. 1.31.

What happens if you choose edge ‘‘E’’ as the rotation axis? In this case the

system usually complains and does nothing. This is because the axis cuts through

the object and rotating the profile about this axis will create a problem object. If

the rotation is less than 180� then the edge used as the axis will become a so-called

‘‘non-manifold’’ edge, an infinitely thin neck between two solid portions. This

topic is explained further in Chap. 6.

1.2.1.2 Step 2: Adding a Chamfer

The next step is to chamfer one edge to give the object shown in Fig. 1.32.

This is done in one step by selecting an edge and specifying a depth. The

chamfer operation, described in Sect. 4.7, is a classic example of what were called

‘‘local operations’’, another example is the blending operation. Local operations

were operations that took an isolated part of the object and made a specific change.

Sometimes such changes are difficult to create in another way. This is something

Fig. 1.29 Basic shape for
rotational part

Fig. 1.30 Example 2, basic
shape
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that provided an advantage to Boundary Representation, or B-rep, (Sect. 2.7) over

Constructive Solid Geometry, CSG, (Sect. 2.6).

1.2.1.3 Step 3: Adding the Hole Perpendicular to the Rotation Axis

A hole is made through the object, giving the object shown in Fig. 1.33. The

perpendicular hole is interesting because you need to describe shapes on planar

surfaces and, in this case, the logical surface is cylindrical.

Although it is possible to inscribe a shape on a curved space by creating the

shape in parameter space, this is probably not useful in general. A better technique

Fig. 1.31 Rotational variants

Fig. 1.32 Basic shape with
chamfer
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is to create the shape on a plane and then project it onto the curved surface or, the

solution usual in CAD systems, to create the shape on a plane, extrude this shape

to create a volume and then subtract the volume to create a hole.

If the profile shape from step 1 was created at an exact position then it is

possible to use the same plane to create a circle in the right place and then extrude

this, with a cutout operation, to create half the hole. If the CAD system allows

symmetric extrusion then this can be done in one step. If not, it may be necessary

to extrude the bottom of the hole in a second step to cut out the second half of the

hole. Yet another possibility is to create a plane tangent to the cylinder and use this

to define the circle to be extruded through the object to create the hole.

1.2.1.4 Step 4: Adding a Hole Pattern

A common concept in CAD is the notion of a pattern, rectangular or circular. In

this case the pattern is circular and might correspond to a set of fixation holes. The

result is shown in Fig. 1.34.

Patterns are usually created in current systems by copying solids and trans-

forming the copies into regular patterns. In some systems this is also done on

operations which produce a solid as a partial result by copying and transforming

the intermediate solid.

In this case the holes are simple cylindrical holes, unlike those in step 7 of the

linear extrusion exercise. These holes could be done using a hole-making opera-

tion, if one exists, or by making one hole-shape (a cylinder in this case) and

making a pattern of this, or as separate extrusions. This depends on the possibilities

offered by the CAD system. The least desirable is the last one, to make the holes

separately using extrusions because the holes then appear in the model as unrelated

shapes.

Note the positioning of the pattern, refer to Fig. 1.27 if necessary. For this

object the position of the hole created in step 3 is somewhat arbitrary because the

Fig. 1.33 Hole
perpendicular to the rotation
axis
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basic part is rotationally symmetric. The hole pattern should be positioned relative

to this through hole because the through hole provides an ‘‘anchor’’ for the angle of

the pattern about the axis of rotation.

1.2.1.5 Step 5: Adding the Keyway

The keyway, shown in Fig. 1.35, is a model part for fixing a part to an axis to

avoid rotation.

This can be done by inscribing a rectangle on the end face and then extruding it

downwards with a cutout operation, Fig. 1.36.

The width of the rectangle is 8 and it is placed ten units from the axis of

rotation. It is perpendicular to the through hole.

Fig. 1.34 Adding the hole pattern

Fig. 1.35 Adding a keyway
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1.2.2 Questions

1.2.2.1 Why Use a Chamfer, Why Not Incorporate the Angle

in the Basic Extrusion Shape?

The answer to this question is also related to the comments about creating models

in a logical manner in the linear extrusion exercise. If this angled edge is part of

the basic design then it should be part of the profile, if it is there for functional

reasons then it should be added as a chamfer. Chamfers are added to aid insertion

of pieces or to remove sharp edges, for example.

This also illustrates one of the difficulties of creating exercises with a known

solution. Because you, the reader, can see that there is a chamfer then it is possible

to consider adding it as part of the profile. Modelling a known shape is not design

and in this exercise the chamfer was considered as a separate element. There is

also another problem in communication, that of why the chamfer is there. If it is

there to avoid a sharp edge, for example, then it may be necessary to add if the part

is made by turning from a cylindrical stock. If the part is made by casting, say,

then the edge which has been chamfered may be blended for the moulded part.

This blend would be adequate for removing a sharp edge, but if this reason is not

evident for a manufacturer then an extra manufacturing operation may be planned

to create the chamfer from the blended part. This increases cost. Communicating

design decisions is not easy but it is helped by having a logical modelling sequence

rather than just creating the right shape.

1.2.2.2 Why Is There No ‘‘Make Keyway’’ Operation in a CAD System?

Maybe when you read this, or during the life of this book there will be a keyway

operation, but at the moment there isn’t, so this step can be used to make a small

point.

The existence or not of an operation depends on several factors. Many opera-

tions present in modern systems have a long history going back to the start of solid

modelling. Extrusions, circular and linear, were in Braid’s original system [1].

Boolean operations, at least in a simplified form, were there too, and these have

long been a central part of solid modelling. Chamfering appeared at the end of the

1970s as did drafting, tweaking, symmetry and other experimental operations.

Other operations, such as shelling and sheet modelling techniques appeared during

the first half of the 1980s. Sometimes these have found their way into commercial

Fig. 1.36 Example 2, Basic
shape
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software, sometimes not. Development of an operation, though, costs time and

money. If this development is not likely to show a commercial return then there is

less likelihood that it will appear. In contrast, if a strong industry, such as the

aeronautics or automobile industry ask for something then it may well appear

because of the size of those market sectors. An operation such as the keyway

making operation can be done relatively simply by other means, so is less inter-

esting. However, the need to provide a modelling history closer to a design

decision tree demands such operations. This topic will be discussed further in

Sect. 4.17.

1.2.2.3 How Do You Decide the Angle of the Keyway Round the Axis?

This question is about the use of multiple objects in design. Some systems now

impose a limitation that only one object can be designed per file. This seems to

be an arbitrary restriction which is imposed as part of the system philosophy

rather than for technical reasons. This can be a problem because it is normal that

parts are designed in an environment with other parts. The reason for the one-

object-per-file restriction seems to be that it is sort-of logical. CATIA v5 has the

one-part-per-file, but you can design in a product environment to have other

pieces around it. IDEAS ms9, at least, allowed multiple bodies in a file. See

Sect. 1.8.

The point is, and why the question was there, that the keyway is dependent on

two different parts, the rotational axis of this exercise and the part to which the axis

is connected. If the second part has to be oriented specifically, say with respect to

the hole created in step 3, then there has to be an agreement between the two parts.

The keyway is, therefore, a feature between two parts, which is not something that

is generally considered when talking about features. Multi-body features such as

the keyway and bolt holes were considered by Csabai [2] and will be mentioned

further in Chap. 11.

1.3 Hollowed Lofted Part

The third solid creation exercise concerns lofting. Lofting is a technique which

comes from the ship-building and aircraft industries. Apparently, the term comes

from the English word ‘‘loft’’ meaning the space at the top of a house, This was the

only space big enough to create the large scale drawings needed for the ship or

aircraft. The example, shown in Fig. 1.37 is not intended to be anything in par-

ticular, just an arbitrary shape.

The lofting technique creates a shape ‘‘interpolating’’ a series of sections. The

notion of interpolation and lofting are described in detail in Sect. 4.14.
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1.3.1 Modelling Method

As with the other examples, the modelling method consists of creating a basic

shape and then adding elements incrementally. In this case, though, the geometry

is more complex. The idea of the exercise is not to create an exact geometry but to

illustrate lofting as a method for creating a base shape and one or two other

facilities. If you want, vary the sections from those described, keeping in mind that

they should all have six edges. Later on this will be varied, but for this initial

exercise this is a suggestion.

Fig. 1.37 Simple hollow lofted part drawing
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1.3.1.1 Step 1: Creating the Sections

It is easiest to perform the lofting operation if the sections have the same topology.

However, this is not strictly necessary. Sections could be considered as a circuit.

The start point is considered as 0 and 1, and the other vertices have values between

0 and 1 depending on the length of the section. This is probably unclear now, it

will be discussed later in Sect. 4.14. What it means is that it is necessary for the

system to be able to match points on the sections in order to create the geometry.

The sections are shown in Figs. 1.38 and 1.39. These sections lie on different

planes. The first is on the plane z = -500, the second on the plane z = -250, the

third on the plane z = 0, the fourth on the plane z = 100 and the fifth on a rotated

plane (the plane z = 200 rotated 45� about the line y = 0, z = 200.

If the system allows sketching on arbitrary planes then the first step is to create

the section planes as free-standing geometric entities which are then referenced for

sketching entities. If the system has only one sketching plane then this is used to

create the sections which are then translated to the correct positions.

Fig. 1.38 Lofted part
sections

Fig. 1.39 Lofting example sections (not to scale)
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The shape and the positioning of these sections is not actually critical for the

exercise because the exercise is there to demonstrate a technique. The reference

point for the sections is the point X = 0, Y = 0 on each of the sections.

1.3.1.2 Step 2: Creating the Loft Between the Sections

The lofted shape is shown in Fig. 1.40. Be careful about the start points and

directions for the sections. There are various ways of showing this when selecting

the profiles, but there should be a start point and a direction. This establishes the

relationship between matching points on the sections. The curves passing through,

or interpolating, these points and the curves of the sections form a grid bounding

the surfaces of the lofted part.

Figure 1.41 shows some simple sections. In this figure section 1 starts at p1, and

continues through p2, p4, p3 and back to p1. Section 2 has the order p5, p6, p8, p7,

p5. Section 3 as the order p9, p10, p11, p12, p9. Section 4 has the order p13, p14,

p16, p14, p13. As shown in the figure, the points are matched in sets: (p1, p5, p9,

p13), (p2, p6, p10, p14), (p4, p8, p12, p16) and (p3, p7, p11, p15). Interpolating these

Fig. 1.40 Lofted part basic
shape

1.3 Hollowed Lofted Part 27



points gives the side curves for the surfaces. This may be one curve or several curves,

depending on the system. If there are several curves, though, you have more options

for shape control. One option is to control the magnitude of the tangent vectors

across the sections. Another option is to let the curves ‘‘break’’ at the sections,

meaning that the interpolation is done in sections so that the curves are not neces-

sarily curvature or tangent continuous at the sections. Yet another option is to make

the interpolation curves normal to the start and end section planes. The way this is

done is explained in more detail in Sects. 5.5 and 5.6.

If the start points are not aligned then the curves interpolating, or passing

through, the points becomes twisted. Imagine that point p6 in the second section is

taken as that start point. The point sets would become: (p1, p6, p9, p13), (p2, p8,

p10, p14), (p4, p7, p12, p16) and (p3, p5, p11, p15). This is why it is necessary to

take care in specifying the start points for the sections.

If the section orientation is not respected then you get a different effect. If, say,

the second section is reversed but with the same original start points you would get

the point sets: (p1, p5, p9, p13), (p2, p7, p10, p14), (p4, p8, p12, p16) and (p3, p5,

p11, p15).

There are many variations. Unfortunately the system cannot tell what you want

automatically. The technique of lofting is useful because it is general, but because

it is general all (or almost all) shapes that can be made are permitted.

Once the curves have been interpolated then it is possible to define a set of

surfaces bounding the new volume. The first surface, for example, is bounded by

the curves from p1 to p5, p5 to p6, p2 to p6 and from p1 to p2. This is explained in

Sect. 4.14 and Chap. 5 in more detail.

1.3.1.3 Step 3: Creating the Thickened Part

Figure 1.42 shows the result of this step. This is a part which also has to be

hollowed but is different from the lofting. The aim of this step is to show how

Fig. 1.41 Simple lofting sections
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extrusion is a compound operation involving a simple fextrusion and a Boolean

operation to join the new extrusion and the lofted part.

The shape itself is a simple rectangle with rounded corners. It is sketched on the

plane of the second section and extruded 100 units in the direction (0,0,1).

1.3.1.4 Step 4: Blending the Thickened Part

The thickened part can be blended to merge it into the lofted shape, as shown in

Fig. 1.43. This is another illustration of the use of blending. There can be some

difficulty in determining the blend radius. For the example a blend radius of 5 was

used on some of the edges of the extrusion from step 3.

Done at this stage the blended edges are included in the hollowed part, they

become part of the basic object shape.

1.3.1.5 Step 5: Hollowing the Object

This part creates a thin-walled part from a solid, Fig. 1.44. The basic operation is

relatively simple and is described in Sect. 4.9. The object to be hollowed is copied,

Fig. 1.42 Lofted part
thickened part

Fig. 1.43 Lofted part:
blended thickened part
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the copy negated and then the negated copy is put back into the original object as a

cavity. The original object and the negated copy are then offset, according to the

user’s wishes, to create the final part. It is usual to allow some faces of the object to

be removed at this stage and possibly to allow different thicknesses. In this step the

wall thickness is 5 towards the interior and the front and back faces of the object

are removed.

1.3.1.6 Step 6: Extruding the Flange

Figure 1.45. This involves inscribing and extruding a circular shape on the back

face of the object. The shape is a circle, radius 75 mm, extruded 15 mm.

1.3.1.7 Step 7: Creating the Hole Pattern

Figure 1.46. This is usually done in two parts. The first part creates one hole, or one

hole shape, as a prototype and the second part makes the pattern from the prototype.

If the system allows creation of a hole then the hole can be created directly. At

the time of writing this operation may well be done by creating a hole-shaped solid

and then subtracting this from the solid. Creating a pattern of a hole involves

copying the solid, making a pattern of this and then subtracting all the copies from

the object.

Fig. 1.44 Lofted part:
shelling

Fig. 1.45 Lofted part: flange
shape
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Another hole-makingmethod requires you tomake the hole shaped solid yourself,

make a pattern of the solid and then subtract this explicitly from the original object.

These two are very similar, the hole-making operation step just hides themechanism.

1.3.1.8 Step 8: Piercing the Flange

Figure 1.47. This is just to allow access to the interior of the object. A circle,

radius 25 mm, is created in the middle of the flange and then extruded 15 mm

towards the interior to pierce the flange.

Fig. 1.46 Lofted part: flange
hole pattern

Fig. 1.47 Lofted part: flange
piercing
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1.3.2 Questions

1.3.2.1 What Happens If the Start Point and/or Section Directions

Do Not Match?

This is one of the key considerations in using lofting. Look at the objects in

Fig. 1.48. This object is created by interpolating square cross-sections. The cross-

sections are simply translated. The ‘‘obvious’’ loft would simply match each edge

to the translated edge. However, the twisted loft is also a valid and useful appli-

cation of lofting. The system could, perhaps, propose start points in a more

intelligent manner by trying to match points, but in the end it is the user has to

decide what is required.

1.3.2.2 What Happens If the Sections Have Different Topology?

This can be handled but the question is whether or not it is what you want. A nice

demonstration in some systems is to produce a lofted shape between a square and a

circle. These have, of course, different topology, so the question is how to match

points. One way of doing this is to treat each section as a paramatrised path with

the start corresponding to parameter value 0 and the end point corresponding to

parameter value 1. If the section is closed then these are the same point, but every

other vertex on a section has a single parameter position. To match vertices, then,

you compare the parameter values. If the parameter values of vertices in succes-

sive match then the vertices are used. If a vertex cannot be matched then a point at

the same parameter position on the next section is calculated as an intermediate

point (Fig. 1.49).

1.3.2.3 Why Can’t the CAD System Judge If the Lofting Result Is

Correct or Not?

This is very difficult. The software cannot really tell you if there is an error unless

the error is really obvious. However, if lofting creates a surface which is

Fig. 1.48 Twisted lofts
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degenerate or self-intersecting then this is not necessarily wrong unless the

degeneracy or self-intersection occurs within a face. If the lofting is a solid cre-

ation tool then this can be checked, but not if lofting is used to create a complex

surface.

1.4 Creating Assemblies

The previous exercises were concerned with single parts. As indicated in the

rotational part exercise, though, products are often compound models. The set of

single parts is called, here, an assembly although it may have different names in

different systems.

Fig. 1.49 Simple assembly
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1.4.1 Creating the Parts

To illustrate an assembly the exercise uses a simple structure with six separate

parts, shown in Fig. 1.49. These are shown separately in Figs. 1.50, 1.51, 1.52,

1.53, 1.54 and 1.55.

First, make the objects shown in the drawings.

1.4.2 Creating the Assembly Structure

The next step is to import these objects into an assembly structure. Determining an

assembly structure is not always straightforward. However, it is important to

understand the mechanism used to represent assemblies in order to use them

correctly. This is described in Sect. 2.10 and, in more detail, in Chap. 13. Here,

though, all the parts are unique and appear only once in the assembly so they may

be imported simply one after the other, as shown in Fig. 1.56.

Fig. 1.50 Simple assembly base object
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The items in the assembly are termed ‘‘instances’’ and the assembly is a tree

structure of these. The instances refer to an object model or a sub-assembly for the

part geometry. They also have an associated placement, or transformation,

information entity. Such transformation entities could contain a variety of infor-

mation such as scaling or symmetry, but should only contain translation or rotation

information, as explained later. The transformation information describes how the

object which is instanced is moved from the position in which it was defined to the

position in the assembly. So, if an object, say a bolt, is used ten times in an

assembly then there is one bolt model and ten instances which refer to the single

model. This is illustrated in Fig. 1.57. Each of these ten instances has a separate

transformation matrix so that, when drawing the assembly for example, it appears

that there are ten bolts. If the assembly is set up correctly then a Bill Of Materials

(BOM) can be calculated directly from the assembly. Each object model in the

assembly is one element of the BOM, counting the instances referring to the

models gives the element count.

Fig. 1.51 Simple assembly winder
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Fig. 1.52 Simple assembly
rotor

Fig. 1.53 Simple assembly ferrule
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The transformation information can be set up explicitly, by saying how to

translate and rotate a part model into place in the assembly. This gives a correct

static picture of the assembly. However, if a part in the assembly is moved then it

is necessary to reposition all other related parts separately. In modern CAD sys-

tems the user sets up relationships, or constraints, between elements and the

corresponding transformation information is calculated from these relationships.

Fig. 1.54 Simple assembly
rectangular cover

Fig. 1.55 Simple assembly
circular cover

Fig. 1.56 Simple assembly
structure elements
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If an item is moved then the transformations of related elements are automatically

recalculated. The relationships for the simple assembly structure are described in

the next section.

1.4.3 Constraining the Elements

Constraints remove degrees of freedom between two objects. Objects have six

degrees of freedom: three translations and three rotations. Constraints remove

different degrees of freedom between the objects. The constraint combinations are

not always the same as the physical assembly methods used.

Fig. 1.57 Simple instance structure
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The first constraint is to fix the base part of the assembly. This means that all

degrees of freedom are removed and that other elements will be moved to this.

Other constraints relate planes, lines or points and these are described in

Sect. 13.4. There are six of these:

1. Plane–plane

2. Plane–line

3. Plane–point

4. Line–line

5. Line–point

6. Point–point

Note that there are directions for lines and planes. A plane–plane constraint can

have the plane normals aligned or in opposite directions. It is common to need to

align planes with opposed normals because this corresponds to one object face is in

contact with the face of another object, but aligned normal constraints are sometimes

useful, as well. Lines, too, can have the same direction or reversed direction.

Another common constraint is to align a cylindrical shape with a cylindrical

hole. Note that this is a variant of the line-line constraint because the axis of the

cylinder is aligned with the axis of the hole. It would be harder to align a square

peg in a round hole, for example, because there is no convenient central line for the

square peg.

So, take the flange and align the plane of the back face with the end plane of the

base object, Fig. 1.58. To do this it is usual to select a planar constraint function

and then the two faces. Planes can be thought of as being defined by a point and a

normal vector. The planar constraint function therefore translates object 2 so that

the point of plane 2 lies in plane 1. Object 2 is then rotated so that the normal of

plane 2 is parallel to the normal of plane 1. There are two solutions to this, one

solution has the two face normals aligned, the other parallel but in opposite

directions. Some systems distinguish between these two. If the normals are parallel

but in opposite directions then the two objects are in contact. This is quite a

common case so is sometimes preferred in CAD systems.

Note also that the position of object 2 with respect to object 1 is not constrained.

Sometimes the centre of one face is placed at the centre of the second face. The

constraint itself just removes the freedom of rotation about the x and y axes and

translation along z (if the plane normals are considered as the z axes). Translation

in the x and y directions and rotation about the z axis are not fixed. This is done by

subsequent constraints.

The first constraint can be a natural choice, but subsequent constraints are not

always obvious, depending on how the constraint solver works. One choice might

be to take one of the small holes in the flange and align it with one of the small

holes in the back face of the base object. Aligning two cylindrical holes is usually

done by aligning the axes of the two holes. Naturally you would then repeat the

process for the other hole to fix the flange completely.

One problem is that this will probably not work. It says ‘‘probably’’ there

because commercial software makes advances all the time, and this may change.

1.4 Creating Assemblies 39

http://dx.doi.org/10.1007/978-0-85729-259-9_13
http://dx.doi.org/10.1007/978-0-85729-259-9_13


What is wrong is that the same constraints are specified several times. If, having

created the planar constraint, you specify that the axis of one of the small holes in

the flange is to be aligned with the axis of a small hole in the base then you are

over-constraining the objects. Assuming that the lines are specified each by a point

and a direction then the line-line constraint means translating object 2 so that the

point of line 2 is on line 1 and then fixing the lines to be parallel. Moving the

points is all right, this just removes the x- and y- translations that were left as

degrees of freedom after the first constraint was applied. However, constraining the

axes to be parallel means that you are again removing the rotations about the

x- and y- axes that were already removed when the first constraint was established.

Your CAD system may or may not permit this. What you really should do is to

specify that a point on line 2 should be on line 1 and forget about the alignment of

axes. However, this is not particularly natural for a user.

The real problems come, though, if you try and align the other hole. Since the

flange and the base object are both rigid objects what you are implying is a

constraint between the relative positions of the holes in each object, not between

the objects themselves. If, for example, the hole axes in the flange are further apart

than the axes of the holes in the base object then there is no way that the con-

straints on the two holes can be satisfied at the same time. In one system the two

holes could be constrained by saying that the relative directions of the axes in the

two objects should be parallel. This is not particularly natural.

Consider again what these subsequent constraints mean. I chose them above

because they correspond roughly to what you would do when physically assem-

bling the parts, screwing a bolt into one of the holes and then another into the

second hole. However, this is not the way to consider the constraint process. What

you really want is that the central hole of the flange should be aligned with the

Fig. 1.58 Constraint
between base and ferrule
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large hole in the base. The two smaller holes in the flange and in the base should be

toleranced with respect to the central holes to achieve this effect. The small holes

are what Csabai [2] terms ‘‘connection features’’. In his terms you would want to

establish a ‘‘rigid’’ or fixed relationship between the two parts and the holes are

just there as a mechanism to do this. However, the constraint mechanism in CAD

systems has not really been developed with this in mind. It is possible to structure

the product information in a more logical manner than now, but this is a subject for

research. At the time of writing the onus is on the user to get it right, so you have

to think about how to do things. It is not just a case of getting a result, this is an

implicit means of communication. A personal point of view is that the constraints

above should be done by a planar face constraint, as above, then aligning the large

hole in the ferrule with the corresponding hole in the base. This still leaves one

degree of freedom, rotation about the z-axis. I would make the line joining the

centre points of the small holes in the ferrule parallel to the line joining the two

smaller holes in the base, but this is rather unsatisfactory.

Next take the winder and set the constraints. Again, it would be natural to align

the shaft with the ferrule and with the internal structure of the base. This, though,

creates a conflict. Consider Fig. 1.59.

The boxes represent elements in the model. The dotted lines represent rigid

relations, because the the elements are in the same object and therefore have fixed

relative positions. The solid lines represent constraints between different objects.

The lines marked with an ‘‘R’’ represent rotational relationships fixing movement

in the XY plane and allowing rotation about the Z-axis. These, together with the

fixed relation marked ‘‘F’’ form a loop, or cycle, in the constraint graph. Such

loops are potential sources of conflict, say if the base hole and the base internal

hole are not aligned, in which case it is impossible to satisfy all the constraints.

Such loops may cause an error message saying that the object is ‘‘over-con-

strained’’. What you are actually implying is that there should be a positional

tolerance between the internal hole and the hole in the end face of the base object.

This is something else that needs to be developed further, that the functional

Fig. 1.59 Constraint structure

1.4 Creating Assemblies 41



tolerance requirements are introduced in a logical way for manufacturing. For

current purposes, though, it is better not to specify the coaxial constraint between

the ferrule and the winder, just a co-planar constraint between the top face of the

ferrule and the appropriate handle face.

The cover of the base can be inserted by having a co-planar constraint between

the bottom face of the cover and the appropriate face of the base and then setting up

constraints between the matching holes, say. It is, perhaps, worth mentioning that

with a similar assembly task in an EPFL exercise, a student set a constraint of

coincidence for two point pairs expecting the cover to be fixed. This is illustrated in

Fig. 1.60. The idea was to constrain P3 to be at the same place as P1 and P4 to be at

the same place as P2. Ignoring the fact that this creates an over-constrained con-

straint set, even if the constraint solver of your CAD system allows this, the two

blocks are not fixed, there is a rotational degree of freedom about the axis P1P2. In

the physical world this would have been fine, in the CAD world there is a problem.

The reason for mentioning this is to illustrate the difference between the user logic

and the CAD system logic. The CAD system cannot take into account the physical

properties that disallow this rotation, because the constraint tool is mathematical.

This means that it is necessary to think more about the way of establishing con-

straints. Hopefully the user interface will improve, but at the time of writing, con-

straint setting is not always easy or logical from the point of view of the user.

The circular cover can be constrained using a planar face constraint and a

coaxial constraint. However, this still allows one degree of freedom, the cover can

rotate about the axis. If the cover is to be screwed into the base then there may be

no physical model elements which can be used to fix the two objects.

Now constrain the rotor. This involves a constraint of coaxiality and a planar

constraint. The planar constraint is from the bottom of the part holding the rotor

blades and the coaxiality constraint can be between the axis of the rotor and the

Fig. 1.60 Point–point
fixations
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hole in the circular cover. This is about the same as the other constraints, this

leaves one degree of freedom for rotation about the rotor axis.

What about the gear wheels? It would be good to be able to impose some sort of

relationship between them. This, however, may be a separate package for kine-

matic simulation. In any case, it is difficult to set up a set of constraints for the gear

wheels and is much easier just to have a rotation ratio relation between the two

shafts.

The final constraint graph, without the implicit fixed relations between elements

in the same object, is shown in Fig. 1.61.

1.4.4 Questions

1.4.4.1 Can You Assemble Parts Which Physically Do Not Fit?

This is why the handle and gear were made into one part in the assembly. If you

think about the assembly that you have just made, it is a really stupid assembly.

This is not due entirely to inattention on my part, it is deliberately bad. The reason

for this is to emphasise the need for the user to understand and think about what is

Fig. 1.61 Final constraint structure
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being done. It is not enough to assume that if the CAD system does it, it will be

possible to do it physically.

It is obvious that the winder cannot be inserted. The ferrule cannot be put on the

winder, the winder cannot be inserted into the base. So, why didn’t the system tell

you? Actually, to analyse this properly is complex. Constraints are usually used for

linking objects in an assembly. Constraints use points and lines, so it is possible to

constrain a diameter 20 pin in a diameter 10 hole, for example. Checking this

would require a global test which is expensive.

This is a variant on the Boolean operations (see Chap. 4) and involves per-

forming an intersection operation on each pair of objects in the assembly. If the

result is non-empty and a volume, not just surface contact, then there is potentially

a problem. This is neither sufficient nor necessarily correct, though. In some

assemblies there are parts which deform when assembled. These might be thin

parts or parts where the material has elastic properties, such as rubber. Boundary

representation models are implicitly rigid, so the above test would indicate a

collision where there is, in fact, no problem. It would be necessary for the user to

overrule the automatic error. For the assembly in the example all the parts just

touch, there are no volumetric overlaps, unless of course the two gears are not

positioned correctly. However, the winder cannot be inserted into the base. This is

a very complex geometric and volumetric reasoning task which you perform much

better than a computer. Even that is not enough because you could actually

manufacture this assembly if you really wanted to. With techniques such as rapid

prototyping you can build pre-assembled parts, although this is research rather

than practice.

Don’t throw up your hands in horror. What it boils down to is that you have to

know what you are doing when creating an assembly, which is why you have this

exercise.

There is a technique, called design-for-assembly, or DFA, which seeks to

analyse products in terms of their assemblability. This, though, works at a different

level from the geometry.

1.4.4.2 Do the Constraints Imposed Correspond to the Assembly

Constraints of the Real Objects?

This is another question which you need to understand. Assembly constraints do

not always correspond to real assembly operations. This was why the point was

made about trying to use realistic constraints whenever possible. You should not

just try and get a result, but try and decide logical connections between objects.

1.4.4.3 Why Did You Design the Housing and Covers Separately?

Because you had to, but should this be so? There are a lot of possibilities for

extra operations in CAD systems which are not there because they have not
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been thought of, or because they are too expensive to develop, or because they

would only be used by a small minority, or several other reasons. It is worth

noting shaping operations that you need frequently and asking the CAD sup-

plier if they exist or can be added. For some things it may be sufficient to

develop a command macro, for others it might provide an interesting new

operation. Being able to analyse the utility of a CAD system and specify new

operations is a skill that is lacking. In general CAD systems are developed by

computer specialists, because of their complexity, while the people who know

what is needed are the system users. Being able to communicate user needs to

system developers is an important skill to develop. In order to do this it is

useful to understand the basic system elements so as to be able to formulate

requests or suggestions in terms that a system developer can try. This, how-

ever, is not enough.

The example of the covers mentioned earlier are almost, but not quite, Boolean

operations. A lidding operation might be done as:

• Lid shape creation

• Shape projection

• Side wall creation

• Object rearrangement

• Object separation

It is important to identify the cases where the operation is supposed to work. It

might be only on planar faces or planar and cylindrical faces, or any surface. If the

operation is to work only on planar faces then the face plane can be used as the

sketch plane, if not, then it may be necessary to specify a projection direction as

well. The lid cutout also needs to be decided, if it is in one direction or if it is done

in the direction of the surface normal. For the purposes of this example, it is

assumed here that any surface will be cut and the surface normal will be used as

the cut direction. It is also assumed that the lid will be in one piece and not

multiple pieces.

The lid shape creation process involves sketching a two dimensional shape and

assigning edge profiles to the edges. The default profile is a straight profile, but a

lipped profile, as in the example of the base, should be possible as well. Curved

profiles might also be desirable. If the target face, which would be an input

parameter, is planar then the sketch plane can be the same as the plane of the face.

If the face is non-planar then it is necessary to give a point on the surface and the

sketch plane would be the tangent plane at this point.

The projection procedure is described in Stroud [3]. If the projection goes

outside the face then those faces should not be perpendicular to the projection

direction, nor undercut the give face.

The side walls of the projected shape are ruled surfaces, these are bounded by

edges which are the projections of the corner vertices. The side surfaces need to be

intersected with the faces of the object to find the internal boundaries of the lid and

the curves which limit the side faces.
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The external and internal boundaries need to be duplicated and pairs of side

walls created. These are then rejoined to create physically separate objects which

are then separated into two physical objects.

That, roughly, would be an operation specification for a lidding operation. That

should be enough for a system developer to produce something, although testing to

produce a stable commercial version would be necessary.

Being able to specify new operations is important for the general devel-

opment of CAD systems. Many of the operations appeared more than twenty

years ago, and several important ones more than thirty years ago. A brief list is

given at the start of Chap. 4. During the early research into solid modelling it

became clear that there were many operations that could be included in

Boundary Representation modelling. Introducing new operations into CAD

systems helps to keep the techniques dynamic, so it would be useful to have

active research in this area.

1.4.4.4 Why Was the Gear Pair Created as Two Separate Objects?

This is related to the previous question. It is preferable to maintain catalogue of

standard parts such as gears and just insert these into a design. The winder and

rotors were deliberately made as one piece with the gears. However, it is better

to make the gears as separate objects to be attached to the winder shaft and rotor

shaft. This would also improve the assemblability of the whole mechanism.

However, assuming that there are no standard gears available, it would be

preferable to design the two gears at the same time rather than as separate objects

in one operation. In general, though, CAD systems do not let you work with two

objects at the same time in this way. What they give you is tools for creating one

object and let you do the coordination. In the case in question, it is possible to

design one tooth on each wheel and repeat these as circular patterns to get the

complete gears. It is better to use standard gears or a complete gear design package

if possible.

1.4.4.5 What About Tolerances?

A CAD system is capable of creating exact geometry with an accuracy of 10�6

which is much more accurate than manufacturing processes. The assembly has no

tolerances assigned, that is something which the user has to think of.

Some comments about tolerances were made during the description of setting

constraints. In general, though, the question of tolerances is not easy to resolve.

For a start, there are different types of tolerance. There are functional tolerances

and manufacturing tolerances, for example. The functional tolerances are the

tolerances allowable so that the product will work. These, of course, affect the

manufacturing tolerances and the assembly tolerances.
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Then there is the ‘‘philosophy’’ of the system. In the early days of CAD there

were drafting systems which were sort of electronic drawing boards. These

changed the tools without changing the methods of design. Three dimensional

wireframe, surface modelling and solid modelling changed design into a three

dimensional task. However, for a long time now, annotated drawings have con-

tinued to be the main method of communicating shape information between

several areas of production. In other words, the old methods have still not been

fully replaced. Information such as tolerance information is still expected to be

communicated on two dimensional drawings and not via three dimensional

models. Then there is the question about what tolerances are there for. The idea

behind tolerances seems to be to communicate functionality indirectly, but why

not communicate this information directly? There is scope for rethinking the

whole process, deciding how and what to communicate. This requires a global

overview and research, though, while CAD systems need to keep their perspec-

tives to a commercially viable level.

1.5 Determining a Modelling Sequence

To start with, it is necessary to be clear that modelling an existing object is not the

same as design. This makes it difficult to set exercises because, having the final

result, it is easier to decide how to use a CAD system. The exercises earlier in the

chapter were intended to familiarise you, the reader, with the modelling tools. This

section tries to suggest how you can model a known solid.

It is very often convenient to start modelling with an extrusion operation,

linear or circular. If you want to start modelling a piece, just look at it and try

and work out what the core extruded shape is and what can be added on or

subtracted from it.

It is then usual to use extrusion, or sweeping operations (‘‘extrusion’’ and

‘‘sweeping’’ are used here to mean the same thing) up and down to create various

shape elements. It is best to distinguish between the basic shape and practical

shape elements. The basic shape may be that needed to solve a design problem, the

practical shape elements may things such as chamfers, blends, draft angles, fixa-

tion holes, keyways, and so on. The reason for distinguishing these is to try and

produce a logical sequence that can be parametrised, modified by you, or modified

by someone else.

The sequence itself is now usually recorded as part of the CAD system. In the

early days of solid modelling systems command files were used to create objects.

CAD systems themselves often created log files, lists of commands used by users

to create designs. As memory restrictions have eased it has become possible to

record these in memory and allow editing. The commands include the parameters

used to make the object parts, changing the parameters causes a rebuild from that

point to create a new object. This is described in Chap. 12.
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Some operations which might be classified as ‘‘general’’ are: Boolean opera-

tions, extrusions (circular, linear, along a path or curve), symmetry (or reflect or

mirror), shelling.

Special operations might include: chamfering, blending (or filleting), drafting,

hole-making, etc. As well as having a shape changing effect, these have a semantic

content which may be relevant. The operations mentioned above might be con-

sidered as finishing operations, operations to make adjustments to the design shape

for some reason. Chamfering may be used to taper off sharp edges for assembly.

Another reason is to smooth off sharp edges which might otherwise cause injuries

during handling. Blends may be added to avoid sharp edges in moulds or to

indicate that material may be left during milling for example. Draft angles are for

creating sloping sides, very often for mould making, an example of an operation

closely related to a specific manufacturing method. Hole making may add bolt

holes and fixing elements.

Information comes last. Information is volatile because it may be made invalid

during modelling if added too early. For example, if two parts having different

material types are added together, which material should be left on the result

object? There is no information mathematics corresponding to the mathematics of

geometry and topology to handle conflicts. The fewer modelling operations you do

after setting information elements the better.

Once again, it is necessary to stress that this is not design. The point of doing

exercises with CAD systems is to familiarise you with shape creation tools so that,

if you know what you want, you can find and use the tools needed to create it.

Sometimes it may be useful to remodel existing parts, especially if they come from

data exchange files with no structure. However, design is more difficult to teach

because you know the ‘‘answer’’ in advance if you get the final shape, but you need

to know how to use a CAD system before you can use it for design.

1.6 Design Exercises

The following exercises are intended to show a little of the difference between

design and modelling mentioned in the last section.

1.6.1 A Bracket

Imagine that you have to design a bracket. It should support a round shape with a

diameter of 200 mm. It should have three round fixation holes arranged in a

triangular pattern.

Ideally you would want to be able to create individual shape elements and

then join them together in a natural way. To some extent you can do this by

creating geometric elements and then linking them, but the tools for doing this
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are not perfect. The holes, for example, should be defined as three free-

standing holes before the material surrounding them has been created. A

method or doing this was invented in an old modelling system called UNI-

BLOCK by Katainen [4], but this system used a different type of modelling

than is used in CAD today. It could be done without much difficult as a special

operation, but the basic idea of CAD systems is that you start with a solid and

add the holes afterwards. There is a fair amount of scope for research into

building up designs from partial models.

Figure 1.62 shows the design elements that you would expect as a start.

1.6.2 A Flange

For the flange you have a different set of requirements. This description is based

partly on an early exercise by Helldén to create a flange. His requirements were

that the number of holes round the flange should depend on the diameter of the

main hole. In other words, it is necessary to build rules into a design. Some CAD

systems allow this facility and it is worth getting to know. It will be discussed in

Chap. 12.

Figure 1.63 shows elements in what might be a family of parts. The members of

such families are not just simply scaled versions of each other. The shapes of the

elements may be slightly different, as with a set of spanners, an early subject of

research into part families by Braid and Hillyard.

In Fig. 1.64 ‘‘r1’’ is set to be ‘‘Rþ 30’’, for example. A similar relation is

set up between ‘‘R’’ and the radius of the tube part of the flange, for example:

‘‘r2 ¼ Rþ 10’’. The radius of the hole pattern is Rþ 20, with the radius of the

holes less than 10, in the flanges shown in Fig. 1.63, the holes have radius 5

Fig. 1.62 Design elements
for a bracket
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and the counter-sinks radius 7.5. A more complicated relation needs to be

made between the radius of the hole pattern and the number of holes. For

example:

if ðR\25Þ then n ¼ 3 else if ðR\45Þ then n ¼ 5 else n ¼ 9 where n is the

number of holes in the pattern.

Note that, as well as the change in the number of holes, the flange outer

diameter is always 30 more than the radius of the large hole and the tube wall

thickness is always 10. If simple scaling were used then the flange outer diameter

and the tube wall thickness would vary.

It is not always easy to see these relationships before a design has been com-

pleted. If there are known formulae for elements then it may be possible to set

these up in advance. If not, then, after the first design is complete, it may be

desirable to go back and redo the design with relational dimensions set up. See

Chap. 12 for more examples.

Fig. 1.63 Flange entities
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1.6.3 A Car

This is a little ridiculous to do as a whole exercise, but it can be useful to show a

little of a design process as an illustration of the importance of early phase design

and communication. The notions here are from the work of Attila Csabai [2] and

will be elaborated further in Chap. 11. The following is only meant as a simple

introduction.

One classic description of cars was the ‘‘three box design’’, where one box was

the engine, one the passenger compartment and one the luggage compartment (or

‘‘boot’’ or ‘‘trunk’’, depending on which English you use). Figure 1.65 shows a

hypothetical example.

Note the overlaps between the three boxes. In most product designs the product

elements do not fit exactly into boxes, so bounding boxes overlap. These overlap

areas are not errors, according to Csabai, they are where designers need to

negotiate over the use of the common volume.

With this method of working, a chief designer starts the solution by dividing the

product into functional elements of the product being designed. In Fig. 1.66 the

solution to the design problem consists of three main functional units, named D1,

Fig. 1.64 Dimension
relations

Fig. 1.65 Three box car
design
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D2, D3 in the figure. D1 is subdivided into three new elements, D1.1, D1.2 and

D1.3, and D1.1 further into elements D1.1.1 and D1.1.2. D2 is broken into two

elements D2.1 and D2.2. D3 is broken into D3.1 and D3.2, and D3.1 into D3.1.1

and D3.1.2.

The elements to be designed are: D1.1.1, D1.1.2, D1.2, D1.3, D2.1, D2.2,

D3.1.1, D3.1.2, D3.2. In Csabai’s method each subdivision of the design problem

(called a ‘‘design space’’) is represented by a simple geometric form, rectangular

block or cylinder, for example. Connections are established between the elements,

and the design spaces and connection positions form a geometric framework

within which a designer can work. Of course, the number of elements in the

subdivisions and the number of levels will vary. The important thing is to sub-

divide the problem into subproblems until the subproblems can be dealt with. The

whole system also provides a framework within which the design solutions can be

constructed and understood.

In the three box solution for the car, for example, D1 might be the motor box,

D2 the passenger compartment and D3 the luggage compartment. D1.1 might be

the wheels, D1.2 the motor and D1.3 the lighting system. D2.1 might be the

gearbox and drive system, while D2.2 the seats. D3.1 might be the rear wheel

system and D3.2 the luggage space. Obviously there are more elements, but I do

not want to deal with a complicated example such as a car in detail here.

One obvious connection is between the motor and the gearbox. Other con-

nections might be fixation or attachment points. Many possibilities exist. These

connections have to be established jointly, or by a superior and then provide the

design framework around which a common interface can be coordinated. If an

assigned space is insufficient then the design space structure provides a framework

for establishing negotiations between designers.

Facilities for creating these types of models, layouts in Csabai’s terminology,

are not currently integrated into the majority of CAD systems. Nevertheless, this

way of working during the initial phases of design provides a logical, structured

way of integrating designs and design teams. This is why Chap. 11 will deal with

the topic in more detail.

Fig. 1.66 Design problem subdivision
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1.7 CAD System Structure

A block diagram of the elements of a CAD system is shown in Fig. 1.67.

At the heart of the CAD system is a modelling kernel which creates, modifies

and maintains the shapes defined by the system. This modelling kernel is accessed

via a user interface which is nowadays part of an integrated graphics environment.

The models are displayed via graphics systems which can provide visual feedback

to the designer. CAD systems often contain various application systems which use

the models created for other purposes. Database systems, in the simplest form just

a discfile, are used to record models between CAD sessions.

1.7.1 Geometric Kernels

It has become common practice for CAD software firms to use common modules for

the geometric modelling part. These are called geometric ‘‘kernels’’. At the time of

writing there are two notable ones in Boundary Representation, called Parasolid and

ACIS, and one Constructive Solid Geometry kernel called SvLis. Boundary repre-

sentation and Constructive Solid Geometry (CSG) are described in Chap. 2.

As shown in Fig. 1.67, the geometric kernel sits at the heart of the CAD system.

It provides the datastructures, basic routines and high-level routines commonly

used in solid modelling. The geometric kernel used to be developed by CAD

software developers, but developing and maintaining a full system is costly so

several software suppliers have opted to use well developed software modules and

to concentrate on interfaces. This means that there is some standardisation between

the functionality of different systems.

1.7.2 The CAD User Interface

There are lots of different CAD interfaces so it makes no sense to try to describe just

one. What is possible is to describe some features of modern interfaces in terms of

Fig. 1.67 The main elements
of a CAD system
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past interfaces and to describe what the interface is doing. Figure 1.68 is intended to

convey something of the feeling of using software with a user interface.

Computers and graphics have both gone through a period of evolution.

Graphics used to be done by plotters with ‘‘move-to x,y’’ and ‘‘draw-to x,y’’ type

commands. In early modelling systems commands were given as text commands.

Developments in interactive graphics have meant that CAD systems have become

interactive with rapid feedback.

In early interactive graphics the graphics screen was often a separate animal

onto which graphics information in two- or three-dimensions was loaded. This

meant that there was sometimes a separate text screen and keyboard in addition to

the graphics screen. Another implication of this early separation was that there

were various peripheral devices around to supplement the systems. For example,

there was a magnetic pad in front of the user to which there was attached a pen-like

device. The pen was moved across the pad and the pad sensed its position. Pressing

the tip of the pen caused a signal to be sent to the computer to initiate an action.

Paper templates could be put over the pad with menu commands written on them

so that the user had a command menu. Light pens were also used to address

graphics screens directly, although they were heavy and proved tiring to use for

long periods. Pads and light pens have now been superseded by the mouse and on-

screen menu commands. Another input device was a ‘‘button box’’ with a number

of physical buttons linked to the software. The software established a link to the

buttons so that when one was pushed it initiated a software action. At least one

graphics system had a set of knobs which could be used to drive graphics func-

tions. Each slight turn of the knob caused an interrupt. This was used by Wingård

and Palm (The GPM ASEA robot simulation. Private communication (1983)) to

move different elements of an ASEA robot (see Chap. 13).

At the time of writing there is a sort of standard workstation configuration of

keyboard, mouse and screen. Some of the early distinctions are still more-or-less

Fig. 1.68 Telling the CAD
system what to do
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there. One CAD system used button-like backgrounds to icons, possibly because

an earlier version of the system used physical buttons. It is usual to divide the

screen into functional windows, one is a graphics screen and there may be separate

text window or windows. The functions are kept separate. Some systems separate

the history tree and put it in a separate window. And so on.

The decisions about what to put where are part of the basic design of the system

and give it its look. There are many books on graphics and techniques which

describe the techniques in detail. There is also extensive literature on Graphics

User Interfaces (GUIs) and Computer and Human Interaction (CHI).

There is a difference, as well, in the range of applications supported in

CAD/CAM systems. The larger systems cram everything into the same environ-

ment as different modules. This means that communication between the modules is

simple, but the modules themselves may not be as advanced as dedicated appli-

cation code on the market. This means, though, that the system is layered. It can be

expected that there is a design module for object creation, an analysis module for

finite element analysis for example, a CAM module and so on. Which ones are

necessary, though, depends on the user and so cannot be generalised.

In general, putting lots of elements onto the screen gives a cluttered appearance

and makes it difficult to find the functions needed. One solution is to give the

modelling system a ‘‘Windows’’ appearance. Another solution is to put functions

and function groups onto the screen as icons, as mentioned earlier. Since there are

many possible functions there is a tendency to have to group them into functional

groups. You might have all extrusions (linear and circular) in one group, Booleans

in another group, chamfer and blend (or fillet) in a third group. Learning where

these are is a matter of practice. Learning which functions are available is also a

matter of practice, which is another reason why CAD exercises are useful. If the

CAD supplier has some predefined exercises then it is worth following some of

these to get to know the functionality and placement of the functions. Since the

layouts of individual systems may be considered as commercial property, no

examples are shown here.

The user interface reflects the functionality of the geometric kernel. There are a

number of ‘‘standard’’ operations which are likely to appear. Examples are

extrusion (linear and circular), Boolean operations, draft angles, chamfer, blend (or

fillet), thickening sheets, hollowing out solids, symmetry. In addition, customers

may ask CAD suppliers for special operations which are then developed by the

CAD firms. These are what you see in the user interface.

There are other ways of accessing CAD systems using programming tech-

niques, through so-called application programming interfaces, or APIs. At the user

level there is usually some kind of macro-language facility to allow users to

program common sequences of operations, or to build parts. These call routines in

the API using a command language. There may also be a programming interface

where a developer can access data structures and basic functions of the modelling

system. This programming interface is unlikely to be useful to the majority of

CAD users because it requires specialist modelling knowledge and programming

skills.
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Current CAD systems use interactive graphics windows for communication

with the modeller. Briefly, every point on the screen has a graphics address. When

a mouse, or other pointing device is used this causes a cursor to be moved in the

screen. Activating a mouse key, say, causes the cursor position to be passed to the

software. If the position is over a command window then a command is activated.

If the cursor position is over a model window then this needs to be interpreted as a

model element.

1.7.3 Graphics

There are two types of graphics commonly used in CAD systems: dynamic

graphics and static graphics. The dynamic graphics interface provides the user

with quick feedback about the shape of the part. Static graphics is used for pro-

ducing engineering drawings. Although both may use similar techniques they are

used for different purposes so are described separately here.

owadays, dynamic graphics uses a standard form, such as triangles, to commu-

nicate shape information from the CAD system to a graphics card which handles the

graphics screen. The triangle data resides in a local memory and is pushed through a

series of transformation matrices which reposition it, clip it, flatten it and eventually

the triangles are used to colour different parts of the graphics screen. The triangle

information stays the same, apparent rotation, translation, scaling, etc. of the screen

is performed by changing the transformation matrices.

Chapter 7 deals with the way that graphics works in more detail.

1.7.4 Applications

Applications add richness to the software environment, turning it from a strictly

CAD (Computer Aided Design) tool into a CAE (Computer Aided Engineering)

tool. There are advantages and disadvantages of doing this. One advantage is that

the user has the same tool for everything, with the same style and similar inter-

faces. If changes have to be made for, say, manufacturing, it is easy to switch back

to the design module and change the design. The disadvantage is that the appli-

cation modules may not be the most advanced in any particular domain because

the software developer does not have enough resources to keep every module up to

date.

The alternative to using complex, multi-module software is to use dedicated

software and use data exchange to switch between them. This can make changes

less easy and there is information loss, usually, in using data exchange. However,

the dedicated software may be easier to use and better than a module in a large

system. Also, an advantage for smaller companies is that the cost of a few smaller

software modules may be less than one integrated system.
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1.7.5 Discfiles and Databases

One of the fundamental necessities for a CAD/CAE system is to be able to save a

model for future use. This is described later in Chap. 9. Briefly, though, software

can output two types of data, proprietary discfiles or standard discfiles. Proprietary

discfiles are usually smaller than standard discfiles and so are commonly used. The

proprietary discfile is generally a textual version of the memory datastructure.

1.7.6 Standalone Systems and Multi-User Work

Design is often a multi-person activity, but CAD systems are typically single-user

systems. This leads to a fragmentation of effort because design information can

only be communicated when one designer saves work, essentially posting it to a

common area. This may involve data exchange between different systems, which

is often accompanied by data loss. Even worse is where the communication

happens by static means in terms of drawings. Then, human interpretation is

needed to ensure the communication.

The isolation of CAD systems is a weakness in the design process. Where the

user is someone responsible for all or part of the chain then this problem does not

exist, but this is not usually the case. Two methods exist for integrating CAD

processes, the first a methodology, the second a technical solution.

1.7.6.1 Concurrent Engineering

Concurrent engineering is a methodology, or technique for sharing technical

knowledge from different experts during the design process. The idea is that the

designer considers one set of tasks, the solution of the design problem, without

necessarily considering all production aspects. The designer would create a design

and then negotiate with a manufacturing expert in order to optimise manufactur-

ing, an assembly expert to check assembly, and so on. The aim is, of course, to

reduce the direct costs of, say manufacture or assembly labour costs, and to reduce

the costs involved in redesign to correct mistakes. Figure 1.69 illustrates this.

The experts talk to each other using normal communications means and

communicate using a common database. There are, of course, problems of version

control, to avoid more than one person changing the model at any one time, but

these can be solved as with any database system. A more difficult problem is that

the experts can only see the design when it is released by the current user. This

makes the process ‘‘reactive’’ and not ‘‘proactive’’. The reactive element is that the

designer makes a shape which is then analysed and corrected. In a proactive

system the designer would be helped to make an optimised shape. Nevertheless,

this methodology is well-known and used. Section 14.2 discusses this topic in

more detail.
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1.7.6.2 Multi-User Systems

An alternative to the reactive method is to have collaboration using multi-user

systems. With a multi-user system the different users can see and interact with

each other’s models during the design process. Multi-user systems exist for some

interactive tasks, but they do not seem to have been developed much for CAD. A

multi-user layout design system was developed by Attila Csabai [2], but this field

remains open.

Two methods of creating multi-user CAD systems are illustrated in Figs. 1.70

and 1.71.

In Fig. 1.70 there is a central computer which handles all the modelling. The

CAD systems function as graphical interfaces, sending commands to the central

unit which creates and manipulates the models. The commands are created from

menus and communicated in the internal language used to store construction

history. The central unit sends back the graphical information as a graphical model

for local manipulation.

In the second type of multi-user organisation, shown in Fig. 1.71, the CAD

systems do the local processing and communicate the same commands to other

connected CAD systems which reproduce all models locally. This can be done

using the DJINN standard [5] developed by the United Kingdom Geometric

Modelling Society. See Sect. 14.2.4.

The first type of method is similar to the old mainframe computer with terminals.

The second type of organisation is more appropriate for distributed computing.

Fig. 1.69 Concurrent engineering
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Neither of these exists at present, as far as I know, but could do in the future. There is

a tendency towards collaborative systems in the research environment.

1.8 The Modelling Environment

An important question in the design of a CAD system is whether to have single

model or to allow multi-model environments. Some modern systems limit the user

to designing a part as an isolated object and then putting products together as

assemblies in a different environment. This is an artificial restriction and some-

times the systems themselves allow the user to get round these restrictions.

A personal opinion is that the single model environment is too artificial and that it

has not been thought out sufficiently. There is a common problem, which will be

described more in Chap. 4, where ‘‘single’’ models may actually be composed of

several separate pieces without the user being informed. Another problem is when

the system allows the introduction of separate solids. This can be useful for

modelling different object parts which are then combined using Boolean

Fig. 1.70 Multi-user system
organisation I

Fig. 1.71 Multi-user system
organisation II
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operations. However, if there is no obligation to join the parts, then the rule

enforcing one model per file seems to be broken. This is not solved by modelling

in an assembly environment, as some systems propose. An assembly is a definite

structure with certain properties and strategies for handling its components

(instances). It is more natural to let users have multiple object environments and let

them build assemblies from these. The single-model-per-file problem can be

solved by associating file definitions with the objects.

Another difference between systems is how they integrate solids and partial

models. Figure 1.72 shows some examples of different model types.

Solids, in Fig. 1.72a are models of normal objects. Sheet objects, in Fig. 1.72b,

can either be surface models or compound models intended as idealisations,

described in more detail in Chap. 5. Wire models, in Fig. 1.72c, may be used for

various purposes, especially as early sketch elements.

If your CAD system allows you to mix these freely then you run the risk of

having objects which you think are solid but which are only partially defined. The

other option employed by CAD systems is to have solids in one module and sheets,

or surfaces, and wires in another module. This means that it is necessary to go

through a conversion step in order to make a partial model into a solid. Having the

models in separate modules means that using them is somewhat clumsy, but the

benefit is, or should be, consistency. An option is to colour the object types

differently in order to be able to check visually what you are working with.

1.9 Chapter Summary

This chapter is intended as an introduction to CAD systems where the reader can

match modelling intent to the modelling functionality of the CAD system used. The

chapter is also meant as an introduction to the topics handled in more detail in later

chapters. The questions after the exercises are intended to stimulate the reader and

indicate questions that he or she should be asking when using a system. In general,

when an error occurs, it is not necessarily so that the user has done something wrong.

Sometimes there is a difference in perception about the way that operations should

work from the user and implementer viewpoints. This book is intended to show the

implementer viewpoint and this chapter is the introduction to that.

Fig. 1.72 Solids, sheets and
wires
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1.10 User Exercises

1.10.1 The MBB Gehäuse Rohteil

This object, shown in Figs. 1.73 and 1.74 was used as a test part for com-

paring modelling systems in 1979 and again in 1983. The tests were organ-

ised by Computer Aided Manufacturing-International (CAM-I). Try making

Fig. 1.73 MBB Gehäuse
Rohteil

Fig. 1.74 MBB Gehäuse Rohteil drawing
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this object, deciding yourself on the steps needed. The aim is to avoid a

detailed set of instructions so as to give you more freedom on deciding how

to do things.

Fig. 1.75 ANC101 object

Fig. 1.76 ANC101 drawing
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1.10.2 The ANC-101 Object

Try a second example. The second object, shown in Figs. 1.75 and 1.76 is also a

piece from CAM-I, called the ANC-101 object. ANC stands for Advanced

Numerical Control and was the name of one of the CAM-I discussion groups.

1.10.3 Linear Extrusion Part Using Symmetry

This exercise is intended to show the different methods of working for a complete

part and a symmetric part. The intention is to make part of the part and then use

symmetry to complete it, as mentioned during the questions. Think about the part

in exercise 1 and how it could be recreated by using symmetry. In effect, model

half the part and then reflect it to create the full part. However, think about which

elements you should include in this. Where is the basic object symmetrical? Which

are the elements that should be added after the symmetry?
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Chapter 2

How Objects Are Modelled

Various methods have been developed for representing shapes. CAD systems have

included several of these techniques at different times in their development.

A short historical perspective is given in the first section of this chapter. At present

the main technique used is called ‘‘Boundary Representation’’, a solid modelling

technique which is described later in this chapter.

2.1 History

The history of CAD is quite long, but you won’t find it described here. The

purpose of this section is not to mention particular systems, however important,

but to introduce the techniques. Figure 2.1 shows the main time line of modelling

development.

Early modelling systems were capable of creating wireframe, or line, drawings

of shapes. However, while pictures may communicate information between people

they are not enough for computer applications. Both the car industry and the

aircraft industry needed to create and manufacture complex shapes. Surface

modelling techniques and systems were developed in order to facilitate toolpath

generation for machining. It was also realised by various people that solids could

also be modelled and these techniques arrived during the 1970s. In the beginning

there were several different techniques, but during the 1980s two became pre-

dominant and eventually only one technique became used for the majority of

CAD/CAM applications. Although these techniques were largely ignored by

the CAD developers at the outset, they became accessible and are now common.

An overview of various techniques is given below.

I. Stroud and H. Nagy, Solid Modelling and CAD Systems,
DOI: 10.1007/978-0-85729-259-9_2, � Springer-Verlag London Limited 2011
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2.2 3D Wireframe Modelling

Wire frame models consist of nodes, or vertices, and links between them, called

edges, as shown for a cube in Fig. 2.2.

Fig. 2.2 Simple 3D
wireframe model

2000

1990

1980

1970

1960

Graphics, wireframe modelling, surface modelling

Commercial wireframe modelling, commercial surface

modelling, solid modelling, surface modelling

Commercial solid modelling, surface modelling,

product modelling, applications

Commercial solid modelling, surface modelling,

product modelling, applications

Commercial solid modelling, surface modelling,

product modelling, PDM, PLM, applications

Fig. 2.1 Modelling and CAD timeline
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This is enough to produce pictures but several straightforward and useful

operations cannot be performed without surface information. Hidden line removal,

for example, for realistic image creation is impossible unless you have surface

information. Figure 2.3 shows a complex object in wireframe mode where it is

difficult to see the object represented in the figure. More importantly, automatic

toolpath generation for machining cannot be done without surfaces. This particular

shortcoming prompted development of surface modelling systems, described later.

Another problem is that it is possible to create objects which it is impossible to

realise. See for example Fig. 2.4 which shows a well-known optical illusion which

can be made with just point and lines.

Fig. 2.3 Complex wireframe
object

Fig. 2.4 Impossible object
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Wireframe modelling has a place, though, in modelling as a support for

other operations, as described in Chap. 4. It is important, though, to keep

wireframe modelling as a support, or to keep it simple. It is possible, with a lot

of effort, to create a complex model, but it becomes harder as the complexity

increases.

2.3 Drafting Systems

Drafting systems were essentially electronic drawing boards. They could be used

to create planar line drawings and made copying and amendment very easier.

However, while a step forward they preserved the problems of classic design

techniques, the possibility of creating incorrect drawings and that multiple views

had to be created separately.

Some of the operations in solid modelling, notably linear and circular

extrusion, seem to have their roots in 2D drafting. However, there are many

benefits from using 3D models so drafting systems will not be dealt with

here.

2.4 Surface Modelling

Surface modelling was a step forward in that these systems can represent the space

between the edges in a wireframe model. Geometric modelling as a subject has a

life separate from solid modelling and continues as an important subject for

research.

Surface modelling systems model portions of an object with complex surfaces.

Objects such as car bodies, aircraft and ships use complex surfaces of this type.

With some products it is not necessary to have a solid model behind and a surface

modelling system is sufficient. For other uses surface modelling systems have been

used to create objects which appear closed, although the surface patches are not

joined, simply placed adjacent in space. Such a lack of connection can cause

problems because there is no information to check consistent orientation and

connection. There are also problems which are inherent in the mathematics of

surfaces because surface patches have four sides, usually, though three-sided patch

mathematics has also been formulated. Real objects often disobey this requirement

leading to mismatches between patch boundaries.

However, the usefulness of surface modelling means that the techniques are

often incorporated into solid modelling systems. Perhaps the first such modelling

system was the GPM volume module by Kjellberg et al. [1]. The use of surfaces

and other complex geometry in CAD systems is something which will be

described in more detail in Chap. 5.
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2.5 Solid Modelling

This book is concerned with the application of solid modelling techniques in CAD

systems. Solid modelling began in different places sometime at the beginning of

the 1970s. In Cambridge Ian Braid, in the BUILD series of systems, developed the

boundary representation technique. Work was also done on this by Kimura in the

GEOMAP system. Also in Japan, in Okino, the half-space technique was being

worked on which emerged as the TIPS system. Similar ideas were being worked

on in Rochester by Voelcker and Requicha, which resulted in the important PADL

system using the CSG technique. Generalised sweeping was also used as a solid

modelling technique, representing objects as two-dimensional forms and extrusion

definitions. Cellular modelling, both with uniform cells and adaptive cells, the

so-called octree technique were examined. A good presentation of these is given

by Jared and Dodsworth [2] and more explanation than here is given in Stroud [3].

As far as CAD systems go, it is important to know that Constructive Solid

Geometry, or CSG, systems were used initially while now Boundary Represen-

tation has taken over. A simple illustration to show the way in which these two

methods work is shown in Fig. 2.5. On the left you have the CSG representation.

The object at the bottom is modelled as a tree structure in which a rectangular

block and a cylinder are first ‘‘added’’ and then a cylinder is subtracted to form

the hole. To the right you have the Boundary Representation version. The solid at

the top is modelled using a connected set of faces, each of which is a bounded

surface portion. The faces are shown in exploded form at the bottom right of the

figure.

Fig. 2.5 Representing solids with CSG and Brep
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To summarise, CSG models the part as a tree structure where the leaves are

positioned primitive objects and the intermediate nodes are Boolean operations to

combine them. Boundary Representation models the ‘‘skin’’, the interface between

solid and non-solid.

2.6 Constructive Solid Geometry

As stated above, constructive solid geometry, or CSG, systems represent an object

by combining a set of primitive objects. See Okino et al. [4], Requicha and

Voelcker [5] or the interesting monadic variant, UNIBLOCK, by Katainen [6].

Each of these primitives is made of a set of half spaces defining point sets. In two

dimensions, with lines instead of planes, this is illustrated in Fig. 2.6.

The central portion, the square, can be defined with the equation:

ðx� �1Þ ^ ðx� þ1Þ ^ ðy� �1Þ ^ ðy� þ1Þ

Similar sets of relations can be established to define a set of three-dimensional

primitive shapes. A set of normal primitives might be:

• Rectangular block

• Wedge

• Cylinder

• Cone

• Sphere

• Torus

When building a model, these primitives are created and positioned and then

they are combined by applying Boolean operations. These Boolean operations are

different to those described in Sect. 4.1. With CSG the Boolean operations are

logical combinations of type AND, OR, INTERSECT. Consider the two objects in

Fig. 2.7.

Fig. 2.6 Simple object with
half space representation
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These are two squares, one from -1 to 1 in the x and y directions, the other

from 0 to 2 in the x and y directions. The combination of the two can be repre-

sented simply by the following expression:

A _ B ¼ ððx� �1Þ ^ ðx� þ1Þ ^ ðy� �1Þ ^ ðy� þ1ÞÞ _ ððx� 0Þ

^ ðx� þ2Þ ^ ðy� 0Þ ^ ðy� þ2ÞÞ

The resulting area is shown in Fig. 2.8.

Subtraction can be done in a similar way. The relationship is essentially

everything in A which is not in B, or A ^ ð�BÞ or:

A ^ ð�BÞ ¼ ððx� �1Þ ^ ðx� þ1Þ ^ ðy� �1Þ ^ ðy� þ1ÞÞ ^ ððx� 0Þ

_ ðx� þ2Þ _ ðy� 0Þ _ ðy� þ2ÞÞ

The result is shown in Fig. 2.9.

For the intersection the corresponding equation is:

A ^ B ¼ ððx� �1Þ ^ ðx� þ1Þ ^ ðy� �1Þ ^ ðy� þ1ÞÞ ^ ððx� 0Þ

^ ðx� þ2Þ ^ ðy� 0Þ ^ ðy� þ2ÞÞ

Fig. 2.7 Addition of two squares
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which can be simplified to the equation:

A ^ B ¼ ðx� 0Þ ^ ðx� þ1Þ ^ ðy� 0Þ ^ ðy� þ1Þ

The result is shown in Fig. 2.10.

There is, though, a slight complication in that with some operations you can get

hanging geometry. If, from the result in Fig. 2.9, you subtract the block defined as:

ðx� �1Þ ^ ðx� 0Þ ^ ðy� �1Þ ^ ðy� þ1Þ

you get a hanging edge with the naive scheme mentioned above, as shown in

Fig. 2.11.

To get round this problem the CSG researchers developed the notion of

‘‘interior’’ and ‘‘closure’’. See Tilove and Requicha [7]. Since this book is not

about CSG techniques, rather than describe this in detail it is more important to see

how this works in practice.

To create a 3D model, a number of 3D primitives are created and combined in

the same way as outlined above. Consider the object in Fig. 2.12. This might be

modelled by the set of primitives and operations shown in Fig. 2.13.

Another alternative is shown in Fig. 2.14.

Which to choose depends on the way that a user mentally decomposes the

shape. As can be seen from the figures, though, while the end result is the same,

Fig. 2.8 Addition of two squares

72 2 How Objects Are Modelled



Fig. 2.9 Subtraction of one square from another

Fig. 2.10 Intersection of two squares
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the intermediate steps and the resulting tree structure are quite different. This has

been cited by several people as a problem with CSG because it means that shapes

cannot be compared by simply comparing the tree structure.

Another drawback of CSG modelling is that it is not always convenient to

formulate a design operation in terms of Boolean operations. Consider a chamfer

operation such as that shown in Fig. 2.15. This is conveniently defined in a CAD

system by picking the edge and giving an appropriate chamfer depth value.

In a CSG system how would you do that? For a start, it is necessary to note with

the edge is convex or concave. For a convex edge this means subtracting a wedge

of the appropriate size. For the concave edge in the figure this means adding the

wedge. In the case in the figure, the faces where the edge ends are perpendicular

to the edge. If they were not then it would be necessary to preshape the wedge.

The basic size of the wedge is, of course, computed from the length of the edge.

What is more awkward is that the edge doesn’t exist.

In the strict CSG sense the object on the left of Fig. 2.15 would probably be

made by subtracting one block from another. The concave edges in the interior of

Fig. 2.11 Result with
hanging edge

Fig. 2.12 Simple object
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Fig. 2.13 First CSG decomposition of simple object
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Fig. 2.14 Second CSG decomposition of simple object

Fig. 2.15 Chamfering an
edge in an object
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the object appear as a bi-product of the definition. They aren’t actually explicitly

defined. In Okino’s system, graphical images were produced by slicing the result

object was sliced with planes and the resulting intersection lines drawn to show the

result. The ‘‘edge’’ is then just a visual element in the image. In the PADL system

of Requicha and Voelcker the strict CSG approach was eventually supplemented

with an explicit Boundary Representation model for graphics purposes. This

means that there is an explicit edge in the graphics model, but this is not strictly

part of the CSG model. In the CSG philosophy you would have to define the

wedge explicitly, shape its ends, if necessary, and determine whether to add it or

subtract it from your model. This is possible for modelling a known part but makes

design harder.

Another type of problem comes when a shape is to be extruded. This implies

that the 2D shape has to be decomposed into squares, circles, triangles, etc. Each

of these basic shapes corresponds to a primitive. The primitives are then added

together to produce the extruded shape as a volume. Extrusion is much more

straightforward in boundary representation modelling.

One of the obvious differences between CSG and Boundary Representation

modelling was the richness of the Boundary Representation modelling set. A whole

range of operations, linear and circular extrusions, Boolean operations, chamfers,

tweaks, etc. were defined compared to the Boolean operations of CSG. It is perhaps

this richness together with the flexibility of Boundary Representation for degenerate

and special objects that led to the current domination of boundary representation.

2.7 Boundary Representation

The currently widely used technique for solid representation in CAD/CAM is the

boundary representation technique. These techniques are described in detail in [3].

The purpose here is to put these into a context so that it is possible to understand

the implementation of CAD/CAM systems, how they work and why they work that

way. Some of the basic concepts are reproduced here to help explain these details.

Boundary representation models of solids have two basic parts: the topology

and the geometry. These are kept separate for practical reasons. The topology

defines the structure of the model, the geometry its shape, Fig. 2.16.

The main elements of the topology of a model are faces, edges and vertices.

There are other elements which are there for practical or efficiency reasons,

Fig. 2.17. The loop, for example, is necessary to represent multi-connected faces,

but it is accessed via the face which it bounds.

The topology provides links to other elements and so makes the structure

connected. For many operations you refer to a topological element of the model.

Blending, for example, might take a face, edge or vertex as input, depending on the

implementation. If it takes a face then the usual logic is that all edges around the

face will be blended. Similarly, if a vertex is given then all edges at the vertex will

be blended, usually with the vertex as well.
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Each face is part of a surface. Each edge is a portion of a curve and a vertex lies

at a point in space. This relation is illustrated in Fig. 2.18.

A full, single model data structure and definitions might be as shown in

Fig. 2.19.

The data structure definitions for this structure are shown below. It is not really

important to memorise these because this structure is not unique and is just a

simplified example structure. About the only place where you need be concerned

with these is for data exchange. They are shown here to explain how the models

work. Each entity is a block of computer memory consisting of a consecutive set of

memory words. The definitions are:

class body

int number;

shell *pshell;

edge *pedge;

vertex *pvert;

body *next;

Fig. 2.16 Basic data
structure subdivision

Fig. 2.17 Basic elements of the data structure
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Fig. 2.18 Faces-surfaces,
edges-curves, vertices-points

Fig. 2.19 Simple boundary representation data structure
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class shell

int number;

face *pface;

shell *next;

body *pbody;

class face

int number;

shell *pshell;

loop *ploop;

surface *surf;

face *next;

class loop

int number;

elink *eref;

loop *next;

face *pface

class elink

int number;

elink *cclink;

elink *cwlink;

loop *ploop;

edge *pedge;

class edge

int number;

elink *rlink;

elink *llink;

curve *pcurve;

vertex *svert;

vertex *evert;

edge *next;

class vertex

int number;

union(loop,edge) *pref;

point *pos;

vertex *next

As an example of how an object is modelled, consider an object such as a cube

(Fig. 2.20).

In memory, if you create such an object, you might have a structure like that

shown in Fig. 2.21, with the circular nodes representing entities and the lines

representing pointers. The elinks are shown as small circles without numbers, the

right elinks on the top row, the left ones on the lower row.
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If you were forced to build the datastructure manually in a CAD tool you would

probably not use a CAD system. You, or anyone, would probably also make many

mistakes because it is just too complicated. Frankly, the datastructure diagram in

Fig. 2.21 is a mess, but it illustrates graphically what is in memory. Building this

up is hidden by operations and suboperations so that you can work logically. [One

thing you should note, though, is that the boundary representation is a very

localised representation, which has advantages and disadvantages for CAD]. The

real data structure of a solid modeller is fundamental to a CAD system, but it is not

directly of interest to a user. To explain this, you might consider that the structure

of a modelling system is a little like an onion. This is illustrated in Fig. 2.22.

At the heart of the modelling system are the data structures, of course, but these

are hidden behind a set of interrogation and manipulation routines. This is done so

that the data structure can be modified without disturbing the whole modeller.

The geometry, also, is hidden. When working with algorithms the method is to

work with the categories curve and surface rather than with geometric types such

as straight line, circle, sphere, cone, etc. This makes it possible to change the

geometric set, if necessary. For the user the representation should be completely

transparent. It should not be necessary to know whether geometry is represented by

a general type, such as NURBS, or by explicit types such as planes, straight lines,

cylinders, etc.

On the next level up are simple traversal routines, for finding neighbouring

elements in the datastructure or finding sets of connected entities. Also, there is an

important class of operation, called the Euler operators, which are used to create

complex operations. There are also more complex utilities, such as copying and

transforming objects.

Complex operations, like Boolean operations or extrusions, are built on top of

the simple utility routines to make them more stable if changes are made to the

Fig. 2.20 A simple cube
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basic datastructures. Applications can be built on top of the high level routines.

The boundaries of these may be a bit fuzzy but this has been a general strategy

since it was established in the BUILD system.

2.7.1 Finding Entities from Each Other

The datastructure handling routines are described more fully in [3]. Among the

important topological routines are the traversal routines. There are multi-element

traversals, such as finding all edges in a body, or all connected faces edges and

vertices in a body part. These traverse the exact data structure and return a set of

Fig. 2.21 Simple cube topological datastructure
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elements in the form of a simple list. The exact connections between the

elements are handled by the routine, the user just sees the list, which is a well

understood form. There are also single entity traversals to return neighbouring

elements, such as the vertex at the opposite end of a given edge from a given

vertex. The geometrical routines include such things as intersections, curve

tangent at a point, surface normal at a point, creating surfaces by extruding, or

sweeping, curves.

The single entity traversal routines, from [3] are:

Orientation using an edge as a ‘‘bridge’’

vopev Find the vertex opposite a given vertex along a given edge.

lopel Find the loop opposite a given loop across a given edge.

Using an edge and a loop to find an edge or vertex

ecwel Find the edge clockwise around a given loop from a given edge.

eccel Find the edge counter-clockwise around a given loop from a given edge.

vcwel Find the vertex clockwise around a given loop from a given edge.

vccel Find the vertex counter-clockwise around a given loop from a given edge.

Using an edge and a vertex to find an edge or a loop

ecwev Find the edge clockwise around a given vertex from a given edge.

eccev Find the edge counter-clockwise around a given vertex from a given edge.

lcwev Find the loop such that the given edge is clockwise around that loop from

the given vertex.

lccev Find the loop such that the given edge is counter-clockwise around that

loop from the given vertex.

Fig. 2.22 Modelling ‘‘onion’’ or layered development
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Using a loop and a vertex to find an edge

ecwlv Find the edge clockwise from a given vertex around a given loop.

ecclv Find the edge counter-clockwise from a given vertex around a given loop.

Miscellaneous

eclev Find the edge clockwise or counter-clockwise from a given edge around a

loop in the direction of a given vertex.

vve Find the edge connecting two given vertices (if any).

Thenext level of operations above these arewhat are termedEuler operators. These

are very useful for developing different algorithms so are dealt with in more detail.

2.7.2 Finding Sets of Connected Entities

As stated in Stroud [3], the structure traversal procedures provide a standard way

of accessing the datastructure without having to know the exact relationship

between the owner entity and the subsidiary entities. These take a structure known

by the implementer and converts it to a simple list which can be handled by an

application routine.

Using the classification from Stroud [3], the traversal procedures can be divided

into four groups based on the usual type of datastructure.

Owner to single-level structure following:

• Vertices in body

• Edges in body

• Loops in face

• Faces in facegroup containing only faces

• Instances in a group of objects

• Notes in entity

Shared entity traversal:

• Surfaces in object

• Curves in object

• Single objects in a group of objects

Tree-structure traversal:

• Facegroups under object or facegroup

• Faces in body

• Faces in facegroup where the facegroup contains facegroups

• Instances under body

Topological set traversal:

• Edges in vertex

• Edges in loop

• Faces, edges and vertices in a shell
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Some entities can be shared in structures, so the shared entity traversals are

needed to make sure that you do not process the same entity twice. For example,

curves may be shared by several edges if, say, a single curve is broken into several

pieces. A possible structure is illustrated in Fig. 2.23, top (from [3]). This can be a

problem when transforming a body because it would be wrong to transform a

curve once for each edge referring to it. Another possibility is that there are shared

instances in assemblies, as illustrated in Fig. 2.23, bottom. The figure shows a

structure with six instances (shown as circles with the letter I), two assemblies

(squares with the letter B), and three basic objects (triangles with the letter b). The

top-level assembly consists of three instances, the first referring to a basic,

unshared object; the second to a sub-assembly; and the third to a basic object also

referred to from the sub-assembly. The sub-assembly contains three instances, two

referring to the same object, and the third to the same object referred to from the

instance at the top level.

The tree-traversal algorithms are used to process all faces in an object, for

example, or all single objects in an assembly.

The last group of traversal functions is important and uses topological rela-

tionships to traverse structures. The first two are more-or-less straightforward, but

the third is more interesting, necessary to separate the shells in bodies.

2.7.3 Euler Operators

This section is based on a chapter from [3]. Some of this text is copied directly

from there for completeness.

Fig. 2.23 Topological structures
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In mathematical terms the standard B-rep datastructure is a graph with certain

properties. In the datastructure described so far, volume objects, sheet objects and

combinations of these are called Eulerian objects. The name comes from graph

theory because the elements in the datastructure form a graph in mathematical

terms. Recent developments in non-manifold modelling mean that the nature of the

graphs representing a model may be non-Eulerian. This chapter describes the basic

Euler operators for the simpler datastructure, non-manifold datastructures will be

discussed in Chap. 6. Extensions for creating basic manipulation operators for

non-manifold datastructures are fairly straightforward. The importance of Euler

operators lies in their use for low-level manipulation of the datastructure. They

preserve the topological integrity of the object, making minimal changes only.

For Eulerian objects, the numbers of elements in the datastructure for a valid

object or objects are related by a series of rules, described by Braid, Hillyard and

Stroud [8] as:

1. v, e, f, h, g, b [ ¼ 0 [This is the condition that a valid object cannot have a

negative number of elements.]

2. if v = e = f = h = 0, then g = b = 0 [This condition means that an object with

genus 1, say, but with no other elements is disallowed.]

3. if b [ 0 then a) v [ ¼b and b) f [ ¼ b [A valid object must have one or

more vertices, and one or more faces.]

4. v -e +f -h = 2(b -g) [the Euler-Poincaré formula.]

where v is the number of vertices, e is the number of edges, f is the number of

faces, h is the number of inner-, or hole-loops, g is the genus, b is the multiplicity

or number of shells.

The Euler-Poincaré formula defines a five dimensional network in the six

dimensional space defined by the six topological parameters. The nodes of this

network, at positive integer values of the parameters, represent the valid Eulerian

objects. The operators to transform the Euler object corresponding to one node into

another object at any adjacent node are termed Euler operators. These were

described by Baumgart [9], by Braid et al. [8], by Eastman and Weiler [10], and by

Mäntylä [11, 12], and an extension to handle non-manifold models is described by

Luo [13]. The description given by Braid et al. is most appropriate here, so what

follows is based on that work.

There are 99 possible Euler operators which change the number of any element by

at most one, i.e. perform transitions between adjacent nodes in Euler space. Of these,

60 are obvious combinations leaving 39 unique operators. Any change, any simple

or complex operation can be described in terms of combinations of these Euler

operators. Since the ‘‘null’’ point, where there are no topological elements, is part of

the network, it also follows that any object can be built using a sequence of these.

The full list of Euler operators as well as the shorter list are given in Appendix A.

The numbers of vertices, edges, faces and hole-loops can be easily determined

from the datastructure. The multiplicity can be counted if object shells are

recorded explicitly, but the genus is more difficult to determine. Robin Hillyard

developed a package to calculate the Betti numbers (see e.g. Giblin [14] and Braid
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et al. [8]) from adjacencies in a model. This allows the genus to be determined

explicitly, rather than implicitly to balance the Euler equation of an object. If the

datastructure does not have a way of representing separate shells which form

cavities within a body, then their existence has to be determined in some way.

However, if the shells are recorded explicitly then low-level operations which

potentially split off parts of an object, such as the operation to make a face and kill

a hole-loop, have to make sure that a new shell has not been created.

From a practical point of view, Euler operators form a convenient building

block from which to construct complex modelling operations. They are also

interesting in that their use maintains consistency of the topology of a model.

However, not all of the Euler operators need be implemented. Indeed, the effect of

some of them is rather obscure.

2.7.3.1 Spanning Sets and Decompositions

As described by Braid et al. [8], it is possible to choose a set of five Euler operators

which form a ‘‘spanning set’’, combinations of which can be used to create or

modify the topology of Eulerian objects. To choose a spanning set it is necessary

to find five independent vectors. One possible set is:

(1, 1, 0, 0, 0, 0)—MEV, Make an Edge and a Vertex

(0, 1, 1, 0, 0, 0)—MEF, Make a Face and an Edge

(1, 0, 1, 0, 0, 1)—MBFV, Make a Body (new shell), Face and Vertex

(0, 0, 0, 0, 1, 1)—MGB, Increase the Genus and Make a Body (shell)

(0, 1, 0,-1, 0, 0)—MEKH, Make and Edge and Kill a Hole

together with their inverses.

Writing the Euler operators in matrix form, together with the final row which

corresponds to the coefficients of the Euler-Poincaré, formula gives the matrix, A:

1 1 0 0 0 0

0 1 1 0 0 0

1 0 1 0 0 1

0 0 0 0 1 1

0 1 0 �1 0 0

1 �1 1 �1 2 �2

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

Euler objects, and transitions to change one Eulerian object into another can be

described as combinations of these primitives, thus:

q ¼ pA

where q is a vector representing the numbers of the elements in the Euler object

or the change in the numbers of elements, and p is the vector of the numbers
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of times each primitive is to be applied. Multiplying by the inverse matrix,

A�1, gives:

qA�1 ¼ pAA�1 ¼ p

The inverse matrix to that representing the spanning set is:

1=12

7 �5 4 �2 �1 1

5 5 �4 2 1 �1

�5 7 4 �2 �1 1

5 5 �4 2 �11 �1

2 2 �4 8 �2 2

�2 �2 4 4 2 �2

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

For a cube, say, with topological element vector:

ð8; 12; 6; 0; 0; 1Þ

the vector describing the number of times each primitive is to be applied is:

ð7; 5; 1; 0; 0; 0Þ

A cube can thus be created with seven MEV (Make and Edge and Vertex)

operations, five MFE (Make a Face and Edge) operations, and one MBFV (Make

Body, Face and Vertex) operation. Since the cube has no hole-loops and a genus of

zero the other operators are not needed. Also, if any operator is to be applied a

negative number of times, -n say, this is equivalent to applying its inverse n times.

Note, though, that it is possible to create a series of cube creation sequences

from different combinations of these thirteen elements. Some of these are shown in

Figs. 2.24, 2.25, 2.26, 2.27 and 2.28.

The ratio of edges to vertices in the final object is 3:2 and the ratio of edges to

faces is 2:1. This means that every vertex has three edges and every edge runs

between two vertices. Similarly, every edge has two adjacent faces and every face

has four edges. Figure 2.24 shows what happens when trying to maintain the ratio

of edges to faces. Figure 2.25 shows what happens when trying to maintain the

ratio of edges to vertices.

Figure 2.26 shows what happens when all the MEV operations are applied first

followed by all the MFE operations.

Figure 2.27 shows the other extreme case, when all the MFE operations are

applied first followed by all the MEV operations.

Finally, Fig. 2.26 shows a real sequence when creating a cube.

Figure 2.29 illustrates some of what happens. The Euler space is six-dimen-

sional, as stated earlier, but taking just three of those, the edge, face and vertex

number dimensions you can just about represent this on paper. The small dots

represent all combinations of faces, edges and vertices in the cube range, that is:

0� v� 8, 0� e� 12, 0� f � 6: Not all these combinations are valid. The valid

combinations are governed by the simplified equation v� eþ f ¼ 2m;m is usually
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Fig. 2.24 Creating a cube with Euler operators (1)

Fig. 2.25 Creating a cube with Euler operators (2)
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Fig. 2.26 Creating a cube with Euler operators (3)

Fig. 2.27 Creating a cube with Euler operators (4)
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Fig. 2.28 Creating a cube with Euler operators (5)

Fig. 2.29 Creating a cube with Euler operators (1)
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1, but the origin is also a valid Euler point. The points which obey this equation are

shown larger in the figure. The points with v ¼ e ¼ 0; f ¼ 2 and f ¼ e ¼ 0; v ¼ 2

are excluded by the rules defined previously. The process of building a cube means

walking, more like staggering, through this point field in a particular sequence.

The previous five figures show some of these sequences.

The next section describes how the Euler operators are used.

2.7.4 Stepwise Algorithms

Normally you don’t see the Euler operators and the other lower level operators

when you use a CAD system. The onion-layer that you see concerns high-level

operations which make specific changes to a model. These, in their turn, are

usually built on sequences of small changes, using Euler operators and other

simple operations to make a set of small changes. Such a way of building an

operation is termed a ‘‘stepwise algorithm’’.

More history. In the BUILD system, which established many basic principles of

boundary representation modelling, there were two types of modelling operation:

(1) Boolean operations; and (2) everything else.

Boolean operators are a powerful general tool performing a global comparison

of two objects to produce a result. Many other operations were developed which

performed specialised changes which were sometimes difficult to achieve except

by using special code. This second category was important because, at that time,

the Boolean operations were relatively slow because they performed a global

check on objects. The other operations, sometimes called ‘‘local operations’’

performed localised changes, sometimes producing a global effect, but did not

check the consequences. This meant that it was sometimes possible to create

invalid objects termed ‘‘self-intersecting objects’’. Nowadays things have changed.

Boolean operations have become faster, based principally on results by Smith in

BUILD, and so several operations now create volumes and then apply a Boolean

operation to add or subtract this from the part being modified. This is explained in

Chap. 4, but since this is not the only way to do things, and since not every

operation can be done that way, here is an explanation of the stepwise

methodology.

2.7.4.1 Linear Extrusion

An example of this type of operation is the extrusion operation. The sequence for

creating a cube is shown in Fig. 2.28. Another example, for a six-sided shape is

shown in Fig. 2.30. Figure 2.30a shows the original figure. The first step in the

extruding the base shape is to add an edge and a vertex in the extrusion direction

using an MEV operation, Fig. 2.30b. A second edge is added in the same manner,

Fig. 2.30c and then a cross-edge added, Fig. 2.30d. The sequence then continues,
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add edge-in-extrusion-direction (Fig. 2.30e), add cross-edge (Fig. 2.30f), add

edge-in-extrusion-direction (Fig. 2.30g), add cross-edge (Fig. 2.30h), add edge-in-

extrusion-direction (Fig. 2.30i), add cross-edge (Fig. 2.30j), add edge-in-extru-

sion-direction (Fig. 2.30k), add cross-edge (Fig. 2.30l). Finally a single cross-edge

is added to join the last two extensions, (Fig. 2.30m).

A linear extrusion of a face (a flat shape has two faces, one on top and one on

the bottom) can be defined as a sequence of steps, one for each edge surrounding

the face. The very first step is to create a single extrusion edge. Then, for each edge

until the last, one extrusion edge and one cross edge are created. For the final edge

a single cross edge is created between the last extrusion vertex and the first

extrusion vertex created in the special first step. Each ‘‘step’’ is governed by an

edge. The edges are found from the loops, or contours, around the face.

Fig. 2.30 Linear extrusion in a stepwise manner
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In pseudo-code form this might look like:

for all loops in face do

for all edges counter-clockwise round loop do

BEGIN

if (edge IS start OF loop)

v0 = oldv = MEV(vcwel(edge, loop), extrusion direction);

if (edge IS last OF loop) v = v0;

else v = MEV(vccel(edge, loop), extrusion direction);

e = MFE(oldv, v); oldv = v

END;

The function ‘‘vcwel’’ finds the vertex clockwise from a vertex from a given

edge round a given loop. Similarly, the function ‘‘vccel’’ finds the vertex counter-

clockwise from a vertex from a given edge round a given loop. These are two of a

set of simple relational functions for traversing the data structure. The complete set

is described in [3].

This is the very simplest form of extrusion. Nowadays this is the extrusion that

is done. When you extrude a shape drawn on an existing face then the shape to be

extruded is made into a 2D shape, extruded and then combined using a Boolean

operation. More about this later.

2.7.4.2 Splitting an Object

Splitting an object with a plane can also be defined in a stepwise manner. In the

extrusion example the edges were found and extruded in an ordered sequence. For

the splitting algorithm here this is not done so there are some special cases which

need to be recognised and handled.

The pseudo code is:

for all faces in object do split_face_with_plane(face, plane);

pull_results_apart;

This is illustrated in Fig. 2.31.

Most of the work is in the split_face_with_plane function. As can be seen from

the outline of the split operation in Fig. 2.31 this inserts edges where the section

plane cuts the face (e.g. Fig. 2.31b). These edges are then sliced (e.g. Fig. 2.31c).

If one or both end vertices of the slice edges are also end vertices of other slice

edges, the vertices are split (e.g. Fig. 2.31f). Eventually, splitting the vertices

creates two disjoint loops which become the outer loops of two new faces.

A complete operation is a little more complicated. The basis is still a stepwise

construction centred around the central function, split_face_with_plane, but this

needs to identify different special cases. For example, what happens if they are

several new section edges in the face? What happens if an edge of a face lies in the
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section plane? Extending the function to identify special cases keeps the stepwise

character, though.

For the first question, if there are multiple section edges then these are created

and sliced separately, as shown on the top line of Fig. 2.32.

Multiple section edges may also just touch a boundary, as in the case shown on

the bottom line of Fig. 2.32. In this case, as well, the section edges are created and

sliced, but there is an extra step to slice the common vertex, leaving the result in

Fig. 2.32f.

For an edge lying in the section plane, such as that shown in Fig. 2.33, there are

two cases. If the edge is convex then the object does not cut the section plane at

that edge, so the edge is ignored. If the edge is concave, as in the figure, then the

edge is sliced. Note, though, that the sliced edge has to be ignored when the other

adjacent face is processed.

Fig. 2.31 Splitting an object with a plane
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The same set of simple steps are used to create the section seam. Once the

section seam, or seams, are complete the connected sets of faces are moved into

separate bodies.

These are just simple illustrations of how stepwise algorithms are built up from

repetitions of basic steps.

2.7.4.3 Etcetera

The aim, her,e is not to run through a lot of modelling algorithms. These are

described in Stroud [3] and short descriptions of several operations are given in

Chap. 4. The aim is to illustrate the stepwise notion of building up operations as

sequences of simple steps.

Fig. 2.32 Handling multiple section edges in a face

Fig. 2.33 Edge lying in section plane

96 2 How Objects Are Modelled

http://dx.doi.org/10.1007/978-0-85729-259-9_4
http://dx.doi.org/10.1007/978-0-85729-259-9_4


2.7.5 Complex Utilities

Finally in this section come the complex utilities. These are functions which

perform well-defined common operations which are useful to higher level func-

tions. Examples are copying objects, deleting objects, transforming objects, the

dual function.

2.7.5.1 Copying

Copying is illustrated in Fig. 2.34. The entities in the object to be copied are

renumbered temporarily so that they have consecutive numbers starting at zero.

Lists of new entities matching the original entities are created. The original entities

are then traversed and the corresponding new entities are linked into structures

using the numbers as logical pointers to list elements.

Take a cube as an example. The cube might have one shell, six faces, six loops,

twenty-four loop-edge links, twelve edges, eight vertices, six surfaces, twelve

curves and eight points. The shell is numbered 0, the faces, loops and surfaces are

numbered 0–5, the loop-edge links are numbered 0–23, the edges 0–11 and the

Fig. 2.34 Writing a face to disk
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vertices and points numbered 0–7. A list of one new shell is created, a list of six

faces is created and so on, for each type of entity.

Figure 2.34 shows what happens for face number 5 when linking the data. The

datastructure definition is used to interpret the data. If there are pure numerical

fields (except for the entity number), which there aren’t in this case, they are

simply copied. For the face, the first relevant field is the shell pointer field, pshell.

In the original face this shell is numbered zero, so a pointer to the shell in position

0 of the list of new shells is copied into the pshell field of the new face. Note that

the list indices start from zero, here. The next field is the loop pointer field, ploop.

The loop referred to in this field from the original face is numbered 5, so a pointer

to the loop in element 5 of the list of new loops is copied into the ploop field of the

new face. Similarly for the surface, the surface referred to in the psurf field of

the original face is numbered 5. A pointer to the surface in element 5 of the new

surfaces is copied into the psurf field of the new face. The final field, the next field

is a face pointer, but this is NULL, so the next field of the new face is set to NULL.

This process is repeated for all the entities of the original object.

2.7.5.2 Deleting

Deleting can be applied to single elements or to whole structures. It is useful to use

Euler operations to delete connected edges, faces, vertices or hole-loops in an

object. This means that the resulting structure left is correct. Once the element has

been deleted from the topological structure it can be removed completely by

disconnecting it from any lists in the object to which it belongs. This, again, is

done with specialised low-level routines which handle the datastructure directly.

However, although it is possible to delete complete objects, or shells also, using

Euler operators it may be more efficient to delete all entities more directly. At any

rate, it is necessary to understand the difference between deleting using Euler

operators, which disconnect elements, and pure deletion which probably doesn’t

tidy up completely surrounding elements.

2.7.5.3 Transforming

Transforming objects is done on three levels. What appears to be an object might

be an instance in an assembly, which means that the transformation is multiplied

into the instance transformation, and doesn’t change the original geometry.

Transformation matrices will be discussed in Sect. 5.2.2. If the object has a

transformation attached then, again, the transformation may simply be accumu-

lated with the object transformation instead of changing the real geometry. The

third level really changes the geometry.

Accumulating transformations tends to be preferred to really changing the

geometry for several reasons. First of all it is faster, second, some systems allow

non-uniform scaling, which changes the nature of the geometry, which is usually
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transformed to general numeric forms. However, it is harder to go back from the

numeric to the simpler forms, so you get what is called ‘‘geometric migration’’, to

be discussed later, in Sect. 5.3.

Really transforming single objects changes the geometry of an object but not its

topological structure. This is one example of where you need to identify elements

which are used several times and transform them only once. To transform the

geometry it is best to compile a list of geometric elements using the set traversal

tool described earlier and then process each one, changing its nature if necessary,

and applying the transformation.

2.7.5.4 Dualling

Dualling is a strange operation that normally you would not want to use, nor even

know about, but it is useful as a background structure for some operations. An

example is shown in Fig. 2.35.

In effect, the dual operation creates a new object with a vertex for each face and

a face for each vertex, which means that the dual of a cube (with eight vertices,

twelve edges and six faces) is an octohedron, with six vertices, twelve edges and

eight faces. It is a graph theoretic operation which is used, maybe directly for some

smoothing operations, or indirectly as a navigation aid for unfolding objects, for

example.

The operation also uses a technique such as that described for copying. The first

step, renumbering the entities, is the same as for copying. However, instead of

creating lists of new entities of the same number of elements as in the original

object, there is a switch. For a cube, a list of eight new faces and a list of six new

vertices are created. Edges are reconnected appropriately. For example, take an

Fig. 2.35 Cube and dual (from Stroud [3])
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edge lying between faces A and B, running between vertices C and D in the

original object. In the new object, the corresponding edge will run between

vertices A and B and lie between faces C and D.

2.8 Complex Geometry and Integration

The next topic to mention briefly concerns the use of geometry in modelling.

Geometry in modelling systems is usually of two types: analytic or numeric.

Analytic geometry concerns specific forms, such as plane surfaces, cylinder sur-

faces, cone surfaces. Numeric geometry is a general form the shape of which is

determined by a set of points called control points. Normally these are mixed in a

manner which is transparent for the user. You should not need to know which is

used because the system should use the appropriate one and modify it according to

set rules.

As an example, try the example in Fig. 2.36.

I don’t know who created this example, possibly Fjällström in his dissertation

[15], but it is a useful example to show the use of complex surfaces. Create the

object shown in the figure and then blend the six edges meeting at the central

vertex, marked ‘‘v’’ in the figure. Even though the original geometry is simple,

when the edges are blended it is usual that there is a complex blend surface, or

surfaces, instead of the vertex. Similarly, intersections between curved surfaces

may produce complex curves which are calculated automatically.

This is what happens in normal modelling and is taken care of automatically.

Complex geometry is used to model all surfaces not modelled explicitly. There are

other occasions, though, when numerical geometry is used explicitly. For example,

for car bodies or other products with aesthetic shapes, or for functional forms like

turbine blades. In this case the shape is usually created as a surface form, although

Fig. 2.36 Complex blend
example
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if these are used in isolation the problem is then to integrate them with solid

models.

The integration of solid and surface modelling has long been the subject of

research. One method was the sol-called ‘‘SETSURF’’ method, which sets a sur-

face into a face (Braid [16]). Another interesting method was to smooth polyhedral

models by inserting sort-of blend surfaces (Chiyokura and Kimura [17]). Hybrid

modelling, with elements suitable for representing surfaces, was introduced by

Kjellberg et al. [1]. This hybrid methodology is now common in CAD systems and

is described further in Chap. 6.

2.9 The Cylinder Test

The ‘‘cylinder test’’ is a small diversion from the main theme of this chapter. It

involves creating a cylinder and circular shape to identify how the system handles

closed geometry. This should be transparent for users, but this is not always so.

Identifying this gives clues to the way the system works.

In the original research system, BUILD, cylinders were represented with three

side edges, because the ‘‘point-in-face’’ test counted angles. The first commercial

kernel system, Romulus—a forerunner of today’s Parasolid and ACIS systems,

advanced this, but maintained a single edge down the cylinder side, presumably

also for the ‘‘point-in-face’’ test. The ACIS kernel has no side edges but has two

vertices on the top and bottom circular edges.

So, use your CAD system to create a cylinder and count the number of edges

around the cylindrical surface.

• Zero – The modeller in the CAD system is modern and transparent for the user.

• One – The modeller is a little old-fashioned, you will get artefact edges of

rotational objects.

• Two – CATIA has this, and this avoids another problem, that a single edge is a

so-called ‘‘wire’’ edge with the same face on the left and right. These are also

artefact edges and may not need to be at 180 degrees.

• Three or more – old-fashioned, maybe a BUILD derivative would have three,

but there should be no need to have these in modern systems.

A similar problem can be found at the level of 2D. Both cylinders and circles

are examples of ‘‘continuous’’ geometry, that is, geometry which curves back on

itself. A true circle may have neither start nor end, but this is not true for CAD

geometry. For practical purposes it is necessary to have a start and end, albeit at

the same place. This is connected with parametrisation of geometry, which is a

necessary mechanism in many algorithms. For a circle, the parametrisation may

run from 0 to 2p.

A test you can do in CATIA v5 is to create a circular curve and then cut it with

a vertical line, as shown on the left of Fig. 2.37. Instead of being divided into two

pieces the circle is in three pieces, as can be seen by selecting the parts. The parts
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are shown a little displaced on the right of Fig. 2.37. The reason is, apparently, that

the point dividing the right-hand ‘‘half’’ of the circle is the start- and end-point of

the circle. Instead of adjusting the circle and using one of the new intersection

points when it is cut, CATIA maintains the original point. There may be a good

reason for this, but I can’t think of one. For the user it provides an oddity which

does not seem logical at first glance. A personal opinion is that it would have been

better to make this sort of artefact invisible to the user.

2.10 Assemblies

Assemblies are a frequent problem because the implementation method is not well

understood. Chapter 13 explains more about assemblies. A modern assembly

structure is shown in Fig. 2.38.

A major conceptual difficulty concerns how objects which occur more than

once in an assembly are represented. There are two ways of doing this, by

physically copying the object or by referring to it more than once. The latter

Fig. 2.37 Cutting a circle

Fig. 2.38 General assembly datastructure
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method is the ‘‘computer science’’ solution, which has several advantages, but

many people seem to want to copy the object and then do not understand why the

CAD system does not ‘‘know’’ that the copies are the same object. Figure 1.57.

shows the expected structure of an assembly with multiple elements. A simplified

assembly is shown in Fig. 2.39.

A simple rule is that, in an assembly, if multiple parts with the same shape are

used, then there should be one object model of the part shape and multiple

instances. Each instance has a transformation associated with it containing the

information about repositioning of the part from its defined position to the position

at which it is needed. Transformations are described in Sect. 5.2.2.

If one of the instances is to be modified then it is normal to copy the common

object and to change the instance to point to the copy, which is then modified, as in

Fig. 2.40. If the referenced object is modified without copying then all instances

will show the change. It is, therefore, necessary to think about the effect you want

before modification, if you want the change propagated to all instances or to

change just one instance. Some systems let you perform the re-instancing opera-

tion explicitly, to ‘‘make-unique’’ one instance. This leaves you in control of the

changes.

There is a special type of part used in assemblies which is ‘‘standard’’. These

can be parts which are to be purchased from suppliers, such as nuts, bolts, motors,

etc. Normally these should not be modified and so may be ‘‘blocked’’ from being

changed. Such standard parts may come in 3D catalogues from suppliers. It is

necessary, then, to consider the format in which they are communicated. This

could be in a standard format, such as STEP (see Chap. 9) or in native format.

Fig. 2.39 Simple instance
structure

Fig. 2.40 Simple instance
structure
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If they are in a neutral format, like STEP, then you will probably only get the final

shape anyway, which makes modification difficult.

If parts, standard or otherwise, are to be modified physically, say by drilling a

hole in a baseplate, or cutting off a bolt, say, then the method mentioned above

for copying instances loses the connectivity between the parts. This is a pity,

since this is likely to increase the work in the manufacturing stage. A method for

doing this would be to assign local modification ‘‘trees’’ to the instances

themselves and to allow only material removal operations. I have not seen this in

any CAD system yet, so part association would have to be done on paper or by

some other means, such as an external database, or PLM (Product Lifecycle

Management) system.

2.11 Chapter Summary

This chapter describes, briefly, solid modelling methods. The details of solid

modelling are outside the scope of this book. However, the different modelling

methods have different implications for the user, and hence a cursory knowledge

of the methods is useful for understanding what is going on. The CSG method was

described, which uses Boolean operators on primitive objects to build models. The

method currently used for the majority of CAD systems, Boundary representation,

was also described. Boundary representation was described in more detail because

this is the current method used in most CAD systems. Specifically, some simplified

datastructures, the layered manner of implementing systems as well as some of the

more common operations were described.

2.12 Representation Exercises

These exercises are intended to test your understanding of representations.

2.12.1 CSG Decompositions

Figures 2.41, 2.42, 2.43 and 2.44 show simple objects to try decomposing into

CSG trees of primitive objects and Boolean operations.

2.12.1.1 The Cylinder Test

Perform the ‘‘cylinder test’’, described in Sect. 2.9, using your CAD system.
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Fig. 2.41 Object 1 to
decompose in CSG trees

Fig. 2.42 Object 2 to
decompose in CSG trees

Fig. 2.43 Object 3 to
decompose in CSG trees
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Chapter 3

2D Shape Definition

In this chapter the intention is to start decomposing CAD systems into different

functional units, to explain how they work, and to suggest experiments to try. The

experiments are important so that you can see what happens in different cases and

understand what is happening. The experiments are personal, they are things that I

try. You should build up your personal set to try so that when you are faced with a

new system, or a new version, you can start to analyse its functionalities.

Two dimensional shape construction is one of the basic building blocks of CAD

systems. This construction is normally done on a plane. It could, in fact, be

extended to drawing on curved surfaces by using the same tools to describe shapes

in the parametric plane of a surface and then converting them to real space.

However, while it might be interesting for some applications, especially for dec-

orative work, the common use is to create planar shapes. These shapes are then

extruded, in a line or circle, for example, to create base shapes for a design.

These techniques follow on from old drawing practice where the designer

created construction lines in pencil and then inked them in for the final drawing.

This 2D shape represents the projection of a shape, or the profile of a rotational

shape. In solid modelling two dimensional shape definition has been used since the

start. In Braid’s original BUILD system [1] this was done using simple command

interpreter commands. In further developments to the BUILD system the com-

mands were extended and improved by Jared. As interactive graphics techniques

have been developed the technique has changed somewhat, but the methods still

have relevance for history files, for example.

3.1 BUILD’s 2.5D

The BUILD system was the boundary representation modelling research system

which was (is?) the grandfather of the systems used today. The main development

period preceded the introduction of interactive graphics so BUILD worked with

I. Stroud and H. Nagy, Solid Modelling and CAD Systems,
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textual command files. BUILD contained an elegant shape sketching package

developed by Jared, which is described here.

The sketching package, called ‘‘2.5D’’, worked on the Z = 0 plane in global

space or on a specified face. When a face was specified as input then one of

its vertices was used as the origin of a local coordinate system, otherwise the

global origin was used. The system defined a geometrical framework of points,

lines and circles which could be used to ‘‘ink-in’’ a shape to be extruded. You

can see a real sequence from that period using the 2.5D command package in

Sect. 12.1.1.

Points on a shape could be defined explicitly or implicitly as intersections of

other elements. Lines and circles also had directions, so that extending round a

circle implied going in the direction of the circle, counter-clockwise by default. If

the opposite direction were needed then the circle would be referred to as ‘‘�c1’’,

for example.

A sequence to define a shape might be:

2.5d

circle c1 centre (70,70) radius 40

line l1 start (0,10) dir (1,0)

line l2 start (0,100) dir (1,0)

line l3 start (0,150) dir (1,0)

line l4 start (30,0) dir (0,1)

line l5 start (200,0) dir (0,1)

line l6 start (250,0) dir (0,1)

point p1 l 9 l l1 l6

point p2 l 9 c l2 c1 near (43.5,100)

start l 9 l l1 l4

extend to p1

extend to l 9 l l3 l6

extend to l 9 l l3 l5

extend to l 9 l l2 l5

extend to p2

extend round c1 to ltc l4 c1

joinup

The construction lines, circles and points are shown in Fig. 3.1. When ‘‘inked-

in’’ with the ‘‘start...joinup’’ sequence you get the shape in Fig. 3.2.

This method has some aspects in common with the way in which 2D paper

drawings were produce, with help geometries drawn in pencil and then the

required shapes inked in. This was a forerunner of the methods in current systems

although it was used in a static environment and not using interactive graphics.

A more complicated example, for the creation of the MBB Gehäuse Rohteil, is

shown in Figs. 3.3 and 3.4. These are from the sequence shown in Sect. 12.1.1.
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3.2 Two Dimensional Elements

This section introduces some of the basic elements used in two-dimensional shape

definition. First the shapes and dimensions, later grids and rulers.

3.2.1 Lines, Curves, Dimensions and Constraints

Although there are several similarities with modern systems, interactive methods

have introduced extra facilities. Modern methods set up a system of geometries

linked by dimensions and constraints. This makes it possible to change shapes in

Fig. 3.1 2.5D construction elements

Fig. 3.2 Inked in shape
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real time rather than setting up systems of help geometries and rerunning com-

mand files to make changes.

First of all, identify which drawing elements you have available. Common

drawing elements are lines, circles and splines. Polylines (connected sequences of

lines) are also common. Other geometries are possible, it is just a question of how

complicated the system developer wants to make the drawing facility. This in turn

depends on the customer needs. The spline shape is a sort of catch-all, allowing

any curve to be made if it doesn’t exist explicitly. Note also how the system allows

you to convert these shapes for extrusion. This subject is dealt with later, in

Sect. 3.7 Some systems demand that the shape is closed. Usually the shape is not

Fig. 3.3 Construction line framework for MBB Gehäuse Rohteil

Fig. 3.4 Inked in shape for MBB Gehäuse Rohteil
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allowed to be self-intersecting, for practical reasons. The reason for this is

explained in Sect. 3.7.

The dimensions give distances between elements, lines and points, circle radii

etc. Sometimes these also imply constraints. A dimension between two lines, for

example, is useless unless the lines are parallel.

A list of common (but not all possible) constraints that can be found in CAD

systems is:

1. Vertical

2. Horizontal

3. Parallel

4. Perpendicular

5. Bisector

6. Midpoint

7. Fixed

8. Tangency

9. Coincidence

10. Distance constraints

11. Angular constraints

This are used for establishing relationships between elements in a two

dimensional definition. Usually now geometry is visualised as being finite rather

than infinite. The geometry is ‘‘held together’’ by a set of constraints. Figure 3.5

shows a square shape (Fig. 3.5a), what happens if the top edge is moved without

the constraints between the end points (Fig. 3.5b), and the effect when the end-

points of the lines are constrained to be coincident (Fig. 3.5c).

Other common constraints are those of perpendicularity and parallelism, which

can be considered as special cases of angular constraints. These are illustrated in

Fig. 3.6. The original shape is shown in Fig. 3.6a. If there are no constraints and

the node marked ‘‘v’’ is moved you might get something like Fig. 3.6b. Con-

straining ‘‘e1’’ and ‘‘e3’’ to be parallel and moving ‘‘v’’ might give you something

like Fig. 3.6c. If ‘‘e2’’ and ‘‘e4’’ are also constrained to be parallel then you might

get something like Fig. 3.6d. Adding an additional constraint, such as that ‘‘e1’’

and ‘‘e2’’ are perpendicular might give Fig. 3.6e. If, instead of moving ‘‘v’’, ‘‘e1’’

is inclined then the shape might be as in Fig. 3.6f.

Fig. 3.5 Illustration of
effects of point-point
coincidence constraints
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The actual effects that you get vary from system to system because the ‘‘con-

straint solver’’ which is used to produce a consistent figure varies. Constraint

solving will be described further in Sect. 3.5.

Another common constraint is the distance constraint, the dimension. Dimen-

sioning and tolerancing have long been a part of geometric modelling. Robin

Hillyard worked on this subject with the BUILD system [2, 3]. Gossard and Lin [4]

worked with variational geometry. Bjorke [5, 6] is another well-known name in the

area. A survey was produced by Bob Johnson for CAM-I [7] during the 1980s.

Dimensions are essentially distance constraints. The common ones are point–

point, point–line, line–line or circle radii. Line lengths, for example, can be

specified as the distance between the end-points. Spline curves can be constrained

by setting up a set of points with distance constraints and then interpolating these.

Ellipses can be constrained by setting them in a box with tangency constraints and

dimensioning the box, and so on.

Note: point–point dimensions can be of three types. The default is to set a

dimension on the shortest distance between the two points. However, you can also

set vertical dimensions, which leave the points free to slide relative to each other

parallel to the x-axis; or horizontal dimensions, which leave the points free to slide

relative to each other parallel to the y-axis. All these three types may be useful. If

there is a choice, it may be better to set a dimension between a point and a line

rather than between points. This automatically defines the direction.

As an illustration of the use of dimensions, Fig. 3.7 shows examples of how a

four-sided shape might be dimensioned. In the example on the left the distances of

the corner points are fixed. In the example on the right, the distances between

opposite sides are specified.

Fig. 3.6 Illustration of effects of line-line perpendicularity and parallelism constraints
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The first thing to notice is that, in the example on the right of the figure, there is

an implicit constraint of parallelism between the edges with the opposite edges.

Were the edges not parallel then the distance constraint would have no meaning

since the the distance between the edges varies according to the point at which it is

measured. The figure on the left gives you more control over the shape, because it

is possible to set up different distances. However, is this what you really would

like? It is necessary to be careful when choosing the dimensioning scheme. Yet

another thing to note is that the scheme on the left is not sufficient, it would be

necessary to add at least an extra diagonal distance constraint, unless other con-

straints are used, Fig. 3.8. This is getting very clumsy, but the example is intended

to show why it is desirable to use other constraints as well, and not just distances.

Angular constraints can be set up between two lines. Perpendicularity and

parallelism are so often used that they are usually added automatically during

dimensioning. This is the system trying to be helpful and guess what you want.

This can often be helpful, but if you want lines that are nearly, but not quite,

parallel, for example, then it may be necessary to delete them afterwards. Another

help is to give you a grid of lines as a guide for shape definition. This is described

in the next section.
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Fig. 3.7 Dimensioning schemes
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Fig. 3.8 Dimensioning
scheme with diagonal
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3.2.2 Grids and Rulers

A grid is simply a pattern of vertical and horizontal lines which can be used as a

framework for defining shapes. This means that the shape has known coordinates

at the points. Take the example in Fig. 3.9.

The original grid is shown in Fig. 3.9a. When the use moves the cursor and

selects a point, the closest point on the grid is selected, for example the point

(0,40) in Fig. 3.9b. Selecting another position causes a new point, in Fig. 3.9c at

(40,20), and a line to be drawn. Continuing, in drawing mode, the user selects (20,

-20) in Fig. 3.9d, (-30,-20) in Fig. 3.9e and finally closes the shape in Fig. 3.9f.

Using a grid means that the points are exact to the resolution of the grid. In Fig. 3.9

the resolution is 10 between grid lines, but this is usually variable and can be set

according to the size of the object to be designed.

What the grid does is to give exact points for the first sketch. This can be

helpful in defining the first gross shape but the point positions are not binding and

will be changed according to dimension settings, if these are added. It can be

helpful, as well, to ensure that a basic shape is correctly dimensioned even if

the first sketch gives the right size. This is because it may be necessary to change

the size or shape later. If the shape is even mildly complex then it should be

dimensioned.

Fig. 3.9 Using a grid for shape definition
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Another related topic is the use of virtual rulers as guides to defining shape. One

version of this was implemented by Helldén and Andersson at KTH, Stockholm,

Sweden, during the 1980s. The idea was that the measure along the virtual ruler

from a fixed point is given, so that the user can draw lines of the required length.

You sometimes see dynamic position information when you move the cursor about

in the same way as the virtual ruler worked.

3.3 Shapes and Shape Modifications

There are some tools for modifying shape in two dimensions which can be useful

to know about.

3.3.1 Corner Round-Off

This mechanism is convenient for some purposes. It takes a node between two

shape elements, lines or circles, and replaces it by a circular element of specified

radius, Fig. 3.10.

This operation puts a circle between the two elements, breaks the elements

where they touch the circle and uses the portion of the circle between the two

contact points, Fig. 3.11.

Care has to be taken that the radius given is not so large so that the intersection

point on either line is not on the defined portion. Otherwise the CAD system

should signal an error and refuse to do the operation.

Fig. 3.10 Rounded elements

Fig. 3.11 Rounded elements
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3.3.2 Corner Shaving (2D Chamfer)

This is a simple variant of corner round-off, as shown in Fig. 3.12. With both

rounding-off and corner shaving it is important to distinguish between important

shape elements of a two-dimensional shape and chamfers for other purposes. Even

if you know that there will be a chamfer in that place, it is better to add it

specifically as a chamfer. If it is created as a specific element in a two-dimensional

shape and then extruded then the information that it is a chamfer is lost for later

users.

3.3.3 Polygons

Polygons are simple regular shapes which may be useful. The principle regular

polygons which are probably useful are the triangle, the square and the hexagon.

However, any number of sides could be allowed. The parameters are: the number

of sides, the radius of a circle, and a flag to say whether the circle surrounds the

polygon or is surrounded by the polygon. The number of sides must be greater than

2. It is also necessary to know a start point for the calculation. Usually at least one

side will be vertical or horizontal, but this is not really necessary.

Figure 3.13 shows some simple polygons. On the top row there are the poly-

gons surrounding the sphere of given radius, on the bottom row the polygons

enclosed in the circle of given radius.

Shape elements like these are easy to create as a CAD operation because the

shapes are regular. The shapes could be created using basic tools, but direct

operations provide a shortcut for the user.

3.3.4 Ellipses, Parabolae and Other Geometry

Ellipses are not difficult to produce, but need different control parameters. One

possibility is to define a rectangular box into which the ellipse fits.

A basic quadratic Bézier curve is a parabola, and Bézier created them as a tool

for designers who needed to specify only start and end points and tangents. This

kind of curve is also easy to provide as a redefined shape, the problem is where to

stop. Generally it should be expected that CAD systems provide a few basic shapes

Fig. 3.12 Corner shaving
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and then general tools for anything else. One exception may be the spiral curve.

It is difficult to create correct spiral curves using general mechanisms because of

the way that CAD systems perform interpolation through points. This is often done

in a stepwise manner without global optimisation, leading to complex curves with

uneven control points. Hence, because it is relatively common, the spiral curve

may be provided as an explicit shape.

3.3.5 Patterns

Students sometimes ask how they can do patterns in two dimensions. The answer

is that this mechanism doesn’t exist. More correctly, I haven’t seen it, but I haven’t

seen all CAD systems. The way that patterning works in CAD systems depends on

the way that operations currently work, as will be explained in Chap. 4. Briefly,

many operations create a separate solid object as an intermediate step and then

unite this with the original body using a Boolean operation (ADD, SUBTRACT or

INTERSECT). Defining a pattern means that the intermediate solid is copied and

repeated at different positions before being combined with the object. The

important thing about this is that the intermediate solid can be identified as a

convenient subunit to copy and repeat. In two dimensions you need this notion,

you would have to identify the subunit, probably by selecting the elements sep-

arately. These subunits would probably have to be named and put in a table so that

they can be selected, copied and the copies repositioned. This is certainly tech-

nically possible and not very difficult, but at the moment I haven’t seen it.

Fig. 3.13 Polygons
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3.4 Constraint Systems

The whole set of constraints and dimensions defining a shape is termed a ‘‘con-

straint system’’. Setting up a proper system of constraints can be tedious. You will

probably not believe this, but CAD systems try to be nice to you. They try and help

by establishing probable constraints dynamically as you create your sketch. This is

also helped if the system provides a grid structure of support geometry as a

framework for drawing. The disadvantage of this is that they don’t always set the

constraints that you want. An example is shown in Fig. 3.14.

Here, if a shape such as that in Fig. 3.14a is drawn then the side edges risk

being set to vertical. It is better to draw a caricature of a shape, such as that in

Fig. 3.14b, and then setting the angle dimension separately. This is because sys-

tems use tolerances for deciding positions and orientations and, if you want a

subtle shape, then slight angles or small details may be suppressed.

Another example is shown in Fig. 3.15.

This figure is based on an example used at the EPFL as a student exercise. The

shape was relatively complicated, as illustrated on the left of Fig. 3.15 There were

several cases where students could not define all the necessary constraints and

dimensions because the system had set up an unwanted constraint between points

and the diagonal line. On the right of Fig. 3.15 the dotted line shows the extension

of the angled edge. One vertex is on the line, another is close to it and these were

Fig. 3.14 Setting slight angles in a shape

Fig. 3.15 Unwanted
constraints
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defined by the system as being on the line, reducing the degrees of freedom and

disrupting the desired constraint set.

There are two suggestions when setting up two dimensional shapes:

1. Use caricatures and don’t try to get the exact geometry when sketching.

2. Keep shapes simple, combining several simple extrusions instead of packing

everything into one.

For the first, this is to avoid problems such as those mentioned, where slight

angles, or small distances are suppressed. The slight angles and small details can

be controlled using dimensions and setting distances and angles after the shape has

been defined. The second suggestion is to get round the other problem mentioned

above. Defining a complex shape is possible if you know the result you would like,

but often, a final shape is made up of many elements present for different reasons.

It is often easier to define simple shapes and add in new elements later rather than

cramming them into a complex two-dimensional form.

As an example, consider the linear extrusion shape from the first case study in

Chap. 1. The basic shape, annotated, is shown in Fig. 3.16 Note that the labels are

‘‘l’’ for ‘‘line’’, and ‘‘p’’ for point to distinguish them from edges and vertices in a

Boundary Representation model.

The lines in Fig. 3.16 are labelled l0–l11 in the order that they might be drawn.

You could actually draw them in any order, the details of the description below

will change, but not remarkably so.

When ‘‘l0’’ is drawn the system notes that it is approximately vertical, or really

vertical if you are using a grid support, and constrains it to be vertical. Next, ‘‘l1’’

is drawn and there may be an automatic constraint of horizontality, or it may be set

to perpendicular to ‘‘l0’’. After drawing the second line, examine the figure and try

to work out whether the system has set constraints and, if so, how they are

represented on the screen. The difference is in the effects. Setting a line to hori-

zontal or vertical is a global constraint which means it will stay horizontal or

global. A setting of perpendicularity is a relative contraint. Figure 3.17 illustrates

this.

l0

l1
l2

l3

l4

l5

l6
l7

l8 l9

l10

l11
p2

p3

p6

p7

Fig. 3.16 Linear extrusion
example, basic shape without
dimensions and constraints
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In Fig. 3.17a ‘‘l1’’ is constrained as being horizontal. If the perpendicularity

constraint on ‘‘l0’’ is removed and ‘‘l0’’ is rotated then ‘‘l1’’ remains horizontal. On

the other hand, in Fig. 3.17b, if ‘‘l1’’ is constrained to be perpendicular to ‘‘l0’’

then rotating ‘‘l0’’ will change ‘‘l1’’ as well.

Returning to Fig. 3.16, ‘‘l2’’ is drawn diagonally down. There is no obvious

relation to the existing elements so it is left unconstrained. ‘‘l3’’ may again be

marked as horizontal or as parallel to ‘‘l1’’. It is, perhaps, more useful to mark it as

parallel to ‘‘l1’’, because then you reduce the number of global constraints which is

maybe more flexible. Again, check the figure as you draw it and determine which

constraints have been set up by the system, global or relative. Determining this

will help you understand what will happen when rotating elements in the 2D

shape. Assuming that only one or two lines are globally constrained, ‘‘l4’’ will be

set to be parallel to ‘‘l0’’, ‘‘l5’’ will be parallel to ‘‘l1’’. ‘‘l6’’ will not be con-

strained, ‘‘l7’’ will be parallel to ‘‘l1’’. After drawing ‘‘l8’’ you have two alternative

constraint possibilities. It may be just considered as parallel to ‘‘l0’’ or it may be

considered to be ‘‘coincident’’, or ‘‘collinear’’ with ‘‘l0’’. Coincidence/collinearity

is stronger than parallelism. If ‘‘l0’’ is moved then ‘‘l8’’ will move with it. If they

are parallel then ‘‘l8’’ remains where it is. For this example it would be better to

make ‘‘l8’’ collinear with ‘‘l0’’. ‘‘l9’’ is parallel to ‘‘l1’’, ‘‘l10’’ is parallel to ‘‘l0’’

and ‘‘l11’’ is parallel to ‘‘l1’’ again.

Exactly what you get will vary between systems, which is why the description

above tries to stay on a general level.

Next come the dimensions. These are used to control the shape, including small

details. This is why it is not important to have the exact shape that you want, even

if you know it, and why you can use the caricatures mentioned earlier.

There are four small points to watch for. One is whether your system uses

absolute geometry or relative geometry. The second thing is whether or not your

system uses colour to indicate that elements are constrained or over-constrained.

The third thing is that the dimensions controlling the shape are not necessarily the

dimensions that are used to communicate the shape on a 2D drawing. The final

thing is that systems do not like negative dimensions.

With absolute geometry the global position of your shape is important and it

should be related to a global origin so that its position on the work-plane is well

defined. With relative geometry, the absolute position of the figure in space is not

important, only that the elements are positioned with respect to each other. Both

methods are valid, you just have to be aware of which one your system supports.

Colouring the figure is a useful feedback mechanism which helps to check that

everything has been constrained. If the figure is not fully constrained then, if a

dimension is changed the two-dimensional figure may be deformed in unexpected

l0

l1

l0

l1

(a) (b)

Fig. 3.17 Global versus
relative constraints
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ways. An important aspect of this is when a figure is over-constrained. Figure 3.18

shows a correctly dimensioned figure and one which is over-constrained.

In Fig. 3.18a the figure is correctly dimensioned. If the top dimension of 50 is

changed to 60, say, then there is no problem. Nor is there a problem if it is changed

to 120, or the bottom dimension of 100 is changed to 200, the new geometry

positions can be calculated. If, on the other hand, the dimensioning scheme in

Fig. 3.18 is set up, with edges e0; e1 and e2 parallel, then the dimensions are no

longer independent. If one of the top two dimensions of 50 is changed to 60, say,

then there is a conflict because one side of the figure is trying to be 110 units long

while the other side of the figure is trying to be 100 units long. With the constraints

of parallelism imposed on e0; e1 and e2, this is impossible. Two visual indications

of an over-constrained set, that I have seen, are to set the value of the over-

constraining dimension in brackets (I-DEAS) or to draw the whole scheme in a

violent colour, red or purple, say (CATIA). Both of these are acceptable and

useful. With both of them you still have to work out what exactly the reason for the

over-constraint. This is another reason for keeping shapes as simple as possible, as

mentioned earlier, to make it easier to find the reasons for such problems.

The third thing mentioned above is that the dimensions controlling the shape

are not necessarily the dimensions that are used to communicate the shape on a 2D

drawing. It may help to have similar dimensions but it is not absolutely necessary.

The dimensions used on engineering drawings are there for communicating

something about how a shape is to be measured. They provide higher-level

information as well as shape. This is also connected with the notion of tolerances

which is mentioned later in this chapter. For 2D shapes, though, the dimensions are

there simply for controlling shape and so can be chosen differently. This is also

connected with the problem of negative dimensions, mentioned next.

CAD systems do not like negative dimensions. If you take the dimensioning

scheme in Fig. 3.19a, by changing the top dimension 50–120 you can get the shape

(a) (b)

v0
100

100

50

50

v0

e0

e1

e2

100

50

50

50

50

100

Fig. 3.18 Constrained and over-constrained figures
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in Fig. 3.19b, but you cannot get the shape in Fig. 3.19d by attempting to change

the 50 to -20. Similarly, from Fig. 3.19c you can get to Fig. 3.19d by changing

the dimension 50–120, but you cannot get the shape in Fig. 3.19b. The logic is that

a dimension represents a distance and a distance cannot be negative. This is a

convention, though, because it is possible to interpret a negative value as a change

in relation of the dimensioned elements and a positive distance. You should check

whether your system allows this.

Consider the shape shown in Fig. 3.20. This is an example of a two-dimen-

sional figure you might draw.

First of all, create a square and two circles. They do not have to be in exactly

the right place or the right size (Fig. 3.21).

First of all, set up some constraints and dimensions for the circles. Circle c0
should be set to be tangent to line l0 and the centre of c0 should be set to be 11

units from line l3. The radius of c0 should be set to be 15. Circle c1 should be set to

(a)

120

(b)

100

100

50

(c)

120

(d)

100

100

50

50

50

Fig. 3.19 Different dimensioning schemes
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be tangent to line l3 and the centre 11 units from line l2. The radius of c1 should

also be 15 (Fig. 3.22).

It is useful to fix the circle centres inside the rectangular shape before changing

the shape of the rectangle so that the centres do not pass outside. The next stage is

to set the dimensions of the rectangle. If the lines have not been constrained so that

l0 is vertical, l2 is parallel to it, l1 is perpendicular to l0 and l3 is parallel to l1, then

these constraints should be set first.

The distance between l0 and l2 should be set to be 70 and the distance between

l1 and l3 also set to be 70. Personally, I prefer to set distances between lines rather

than between end points of lines. For example, the length of line l0 could be set to

70 to get the same effect, that is, by setting the distance of its endpoints to be 70.

Although this would set the right size, one of the endpoints of l0 will be deleted in

a later step, and this would cause the dimension to disappear. Setting the distance

between lines is more stable.

The rectangle should also be centred about the global origin. That is, line l0
should be 35 from the origin as should l1 (Fig. 3.23).

Fig. 3.21 First shape
elements

Fig. 3.20 Two-dimensional
shape to be made
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The geometric elements are now ready to ‘‘ink in’’ to create the shape. Some

systems require you to trim the figure to remove extraneous elements. This will be

described in Sect. 3.7. Other systems allow you to select elements dynamically

where there is a choice of continuation. Before explaining about trimming, though,

some words about how shapes and positions are changed using constraints and

then something about dimensioning systems.

3.5 Constraint Solving

At the heart of the system of constraints and dimensions is the constraint solver.

The constraint system solver is responsible for producing valid solutions from the

set of constraints and dimensions which have been specified. If the constraint

system is over-constrained it may be impossible to find a valid solution. If the

constraint system is not complete then strange effects may occur.

Fig. 3.22 Circular elements
constrained

Fig. 3.23 Rectangular
elements constrained
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In Fig. 3.24 l1 and l3 are parallel and l0 is perpendicular to l1. If the line l0 is

rotated, for example, as in Fig. 3.24b, then l2 is not constrained to be rotated so can

stay where it is when the other constraints are satisfied.

The constraints stated above are also true in Fig. 3.24c. There is no way that the

CAD system can tell what you want. The CAD system does not have a global view

of the elements and cannot evaluate if one figure is better than another.

Another type of problem is shown in Fig. 3.25a. In this figure, l0 is parallel to l2
and l1 is parallel to l3. The distance between p0 and p3 is 100 and the distance

between p1 and p2 is also 100. Although the figure is correct, it is over-

dimensioned.

If the distance between p1 and p2 is changed to be 80 as in Fig. 3.25b then the

system cannot maintain all the constraints, the distance is not respected. The

desired change is ambiguous, because Fig. 3.25a and c shows another interpre-

tation where the constraint of parallelism is not respected.

Looking at the points of the figure, each point has three degrees of freedom in

this two-dimensional environment. A point can move in the X- and Y-directions

and can also rotate about the Z-axis. Establishing a constraint of distance or other

relation blocks different degrees of freedom. If the degree of freedom has already

been blocked then you have a constraint loop and the figure is over-constrained.

The constraint system, or systems if you consider the different degrees of

freedom separately, should form a tree structure. If there are elements which are

not blocked, of if there are separate tree parts then the figure is under-constrained.

Fig. 3.24 Under-dimensioning
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The root of the tree is an element which is ‘‘grounded’’, that is, is fixed in global

space. Without such an element the figure can move.

3.6 Tolerance Analysis

Tolerance analysis is a method to analyse the validity of a tolerance scheme.

Figure 3.26 (not my figure) is something of a classical example used to explain the

difference between tolerancing schemes.

If you add a control dimension and tolerance to these systems, to create an over-

dimensioned scheme then it is possible to check the probability that the checked

dimension will be within the tolerance limits. This is the way that I-DEAS ana-

lysed tolerances. Different tolerancing schemes with different dimension loops

give higher or lower probabilities. The subject, though, is complex and not dealt

with here. If your CAD system allows this, then try it. It may only work in two

dimensions, though.

One question, though, is: ‘‘why add tolerance information?’’.

Tolerance information is added to drawings as a way of communicating critical

measurements between a designer and a manufacturer, say. Setting tolerances is a

notorious source of errors, so that fine tolerances may be set on object parts where

Fig. 3.25 Over-dimensioning
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they are not needed, raising the cost of manufacture. In the past drawings were the

means of communication between the designer and the manufacturer. However,

nowadays it is possible to communicate not only the 3D part but also the assembly

in which it is used. This gives more information for the manufacturer to choose

manufacturing methods and set appropriate tolerances. At the moment, though,

more work is needed to establish an improved flow of product information

throughout the production chain.

The dimensioning scheme that you set up to control a shape is not necessarily

the same as that you would communicate to someone else. However, look at the

different options and consider which you think is important and closest to how you

want to control the shape. This can be useful if you try and parametrise a part, as

described in Chap. 12.

3.7 From 2D to Solid

The 2D environment uses, or may use, separate, unlinked or partially linked ele-

ments. Before being able to use such a model in three-dimensional work, for

extruding for example, the shape has to be converted into a proper model, an

‘‘Eulerian’’ model (see Sect. 2.7.3). This is the ‘‘inking-in’’ procedure described in

Sect. 3.1.

The normal requirement is that the elements to be made into a shape are linked

with at most two lines at each node of the shape graph. If the system does not like

mixing solids and partial models (see Sect. 6.3) then there may also be a

requirement that there are exactly two lines at each point.

(c) (d)

(a) (b)

Fig. 3.26 Dimensioning
schemes
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A simple example of what is going on is shown in Fig. 3.27. The lines and

points are converted to edges and vertices, as at the top of Fig. 3.27. The structure

is a simple wireframe structure, with just a body, edges and vertices (and their

geometries) as shown at the bottom left of the figure. The structure needed after the

conversion, with faces, loops and elinks added is shown on the bottom right of the

figure.

The conversion phase involves adding elinks to all the edges, organising them

into loops which are in turn associated with faces. The faces are part of the same

new shell. Each edge has two elinks added, one is on the ‘‘left’’ side, the other on

the ‘‘right’’ side. Starting with edge e0, it runs from v0 to v1, say. The ‘‘counter-

clockwise’’ edge on the left side is set to be one of the links of e2. If e2 runs from

v1 to v3 then the link is the ‘‘left’’ link of e2 otherwise it will be the right link. The

‘‘clockwise’’ edge from e0 is set to be e1 in the same way. For the ‘‘right’’ link, the

counter-clockwise link is set to be one of the links of e1, the left link if e1 runs

from v0 to v2, otherwise the right link.

Once all links are set up you have two loops which, read in counter-clockwise

order, have the edges: e0, e2, e3 and e1; and e0, e1, e3, e2. This is easy if there are

Fig. 3.27 Linking edges into loops
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only two edges at each vertex, otherwise it is more complicated but still man-

ageable. Most systems insist on having two edges at a vertex.

There is also a geometric check, edges are now allowed to touch each other

except at vertices. Some error cases are shown in Fig. 3.28.

In Fig. 3.28a the two diagonal edges cut each other where there is no vertex. In

Fig. 3.28b the curved edges do not cut each other, but they touch at a point where

there is no vertex. In Fig. 3.28c two of the vertices have three edges, not two. The

fourth example, shown in Fig. 3.28d is ambiguous. It might be two triangles with a

common vertex, or it might be one body with what is termed a ‘‘non-manifold’’

vertex (see Chap. 6) Try this and determine which your CAD system produces.

The result is shown in Fig. 3.29.

A simple test is to try and round (or fillet, or blend) the edge marked ‘‘e’’ in the

Figure. If this is a non-manifold edge then CAD systems usually refuse. This will

be explained further in Sect. 4.8.

Continuing the exercise above, in Sect. 3.4, with a rectangle and two circles,

the final step of is to trim the shapes so that only the required geometric parts are

present. This is not obligatory. I-DEAS has, or had, a user-friendly way of doing

this at the stage of converting the 2D sketch into the 2D model for extrusion. Other

systems, though, oblige you to trim off extraneous shape elements so that there is a

clear form before doing the conversion.

Fig. 3.28 Error cases and an ambiguous case for 2D sketches

Fig. 3.29 Extruded triangles
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The extraneous elements can be identified as crossing points, where different

shape elements intersect. In Fig. 3.30 the crossing points are marked A, B, C, D, E

and F.

At point A, l2 intersects c1 and it is necessary to cut both. Note, though, that

there are two intersections between the line and circle, so the system needs a little

help to determine which one you mean. This is probably done by choosing the

intersection point closest to the curve selection point. The other thing to note is

which curve the CAD system chooses to cut, one or both. CATIA cuts the first

curve selected. Test this on your system. If you cut the curve and then select it the

curve is usually drawn in a different colour and lets you see what has been done.

So, cut c1 by selecting the operation, then select c1, click on the curve close to

point A, and then click on line l2, again close to point A just to be sure. Now

repeat, clicking first on line l2 close to A and then on c1 close to A. Delete, or mark

as a support geometry if you can, the upper portion of l2.

Point B can be ignored, there is no need to cut anything there.

Now cut c1 at point C by intersecting it with line l3. Since l3 is tangent to c1
there is only one intersection point. Cut l3, too, at point C. Now delete the right-

hand part of l3 and the left/bottom part of c1 (Fig. 3.31).

A similar process is needed to cope with the other crossing points on the left

hand side of the figure. Circle c0 and line l3 are broken at point D. Line l0 is broken

at point F and the appropriate parts deleted or marked as support geometry, giving

Fig. 3.32.

As far as CAD systems go, this is about the end of the story. However, it should

be mentioned that the restriction on having a maximum of two edges at every

vertex is artificial. Work by Müller [8] shows that it is relatively easy to relax this

rule and create valid shapes for extrusion from general graphs, assuming that they

don’t contain identical lines, circles and so on.

Take Fig. 3.33 as an example of a not tremendously complex figure.

Fig. 3.30 Extraneous
element trimming
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Perhaps the main reason why these sort of figures aren’t converted is because it is

necessary to decide what to do at vertices v0 and v2 to have a correct figure. The trick

is to notice that, when finding the next edge round the loop from a given edge, the

next counter-clockwise around a loop is the edge clockwise around the appropriate

end vertex from the edge with reference to the plane normal. This means that,

looking at Fig. 3.33, from edge e0, the next edge round the loop is e1, the edge

clockwise around v1. After that, the next edge is e4, the edge clockwise around v2
from e1. The next edge would be e0 so the loop is closed. Similarly, starting from e2
you would get the loop of edges: e2, e3, e4. Computing the underside you use the

normal in the opposite direction and get the loop: e0, e1, e2, e3.

This is not a complete solution, though. Look at the shape on the Fig. 3.34.

If you do the same thing then you would get a loop: e0, e5, e3, e4, e2, e5, e1, e4
because of the crossing edges. It is, therefore, necessary to perform a preprocessing

step and cut all geometric elements at intersections and insert new vertices.

Fig. 3.31 Extraneous
element trimming

Fig. 3.32 More extraneous
element trimming
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This would result in the shape on the right of Fig. 3.34. Processing this figure

would give you the four small triangular faces on the top and one four-sided face

on the bottom.

Even with a correct figure, though, the simplified extrusion algorithms used in

current CAD systems will not cope with sweeping multiple adjacent faces. In order

to do this a commercial system would have to sweep each face separately to create

a set of basic objects which would then be combined using a Boolean add

operation.

3.8 Inscribing on Faces

It is usual in CAD that you draw profiles on faces and then extrude these profiles.

The process of drawing the profile on a face is known as ‘‘inscribing’’. There is a

question, though, about what happens when the profile you draw on a face sur-

rounds other profiles in the face.

Consider the object shown on the left of Fig. 3.35. This is a simple block with a

toroidal shaped hole, shown in cross-section on the right of the figure.

e0

e1

e2

e3 e4

v0 v1

v2v3
Fig. 3.33 Slightly complex
2D sketch
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v0 v1

v2v3
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Fig. 3.34 Slightly more complex 2D sketch
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What happens if you inscribe a profile on the top face of that object? Consider

Fig. 3.36. In Fig. 3.36a you have the top face with the inscribed profile sur-

rounding the hole. Should the resulting profile include the hole, as in Fig. 3.36b?

Or should it just be the profile drawn, as in Fig. 3.36c?

If the system now extrudes the profile, if the hole is included then you get the

result shown on the left of Fig. 3.37, if it doesn’t then you get a result shown on the

right of Fig. 3.37.

Fig. 3.35 Basic object for face inscribing

Fig. 3.36 Inscribed profile
on face
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When extruding downwards you get some other weird results, depending on the

interpretation, as shown in Fig. 3.38.

You get another set of examples if the surrounded contour is the base of an

extrusion outwards, as in Fig. 3.39.

Fig. 3.37 Inscribing test object

Fig. 3.38 Inscribing test object
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If the inscribing contour is extruded downwards you can get two results, on the

left if the inscribed contour is not included and on the right, if it is.

If the inscribing contour is extruded upwards then there are, again, two alter-

natives, on the left is the case when the inscribed contour is not included and on

the right when it is.

In all cases, the inclusion of the surrounded contours, or only the profiles

explicitly drawn in the sketch, can be argued. CAD systems seem to use only the

profiles drawn explicitly as being part of a shape definition. In the above examples,

it seems logical to me to have the solution on the left of Fig. 3.37, the solution on

the right of Fig. 3.38, the solution on the right of Fig. 3.40 and on the left of

Fig. 3.41, but then I am an awkward person. Perhaps not. There is an algorithmic

way of choosing these solutions. Put simply, when extruding a contour down-

wards, i.e. removing material, then surrounded contours with concave edges

should be included while surrounded contours with convex edges should not.

When extruding upwards, i.e. adding material, surrounded contours with convex

edges should be included while surrounded contours with concave edges should

not. Contours with a mixture of convex and concave edges can be divided into

convex or convex sequences and treated accordingly.

It would, perhaps, be useful at the very least to ask the user what was meant, to

include the internal shapes or to leave them out, rather than just imposing one or

other solution.

Fig. 3.39 Second inscribing
test object
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3.9 Chapter Summary

This chapter describes how two-dimensional shapes are created and manipulated.

The chapter explains the origins of this technique, how shapes were created with

early non-interactive systems and how they are created in today’s CAD systems.

The chapter describes constraints and how they are used. The chapter also

describes briefly constraint solving and tolerance analysis. The chapter describes

how sketches are converted for use in solid modelling.

Fig. 3.40 Undercutting an extrusion

Fig. 3.41 Extruding outwards round an extrusion
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3.10 2D Exercises

3.10.1 Constraint Identification

Make a square and identify the constraints.

Make a rectangle centred about the origin. If there are horizontal and vertical

constraints then delete them. Delete constraints of parallelism and perpendicu-

larity. Now select the corner marked ‘‘v’’ in the shape on the left of Fig. 3.42 and

drag it around. You should see something like the shape on the right of the figure.

Do the same with other corners to show that they can be moved. Now re-establish

some constraints. Establish a constraint of parallelism between one pair of

opposing edges. Do the same with the other opposing pair. Finally establish a

constraint of perpendicularity between two adjacent edges. The rectangle is

re-established, but may not be oriented as before. It is possible to reorient it by

setting one of the edges vertical or horizontal.

If your CAD system uses global positioning and has a set of axes, then establish

a dimension between the x-axis and the bottom edge of the rectangle. Establish

another dimension between the left hand side of the rectangle and the y-axis. Note

whether the two edges change colour to show that they are fully constrained. Grab

and move the top right-hand corner. Finally add dimensions to the bottom edge

and the left hand edge and note whether or not the other edges change colour.

Note before starting the second part that there are different ways to dimension

objects. A dimension between two vertices implies a simple distance while a

dimension between two edges implies a distance and a constraint of parallelism. If

the edges are not parallel then there is an angular dimension between them.

Create a new rectangle and delete the horizontal and vertical constraints.

Establish dimensions between each pair of corner points (not the edges) and one

pair of opposing points, giving you the diagram shown in Fig. 3.43.

Fig. 3.42 Square and deformed figure
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The exact values are not important, but are shown as 100 here. Change the

different values to see how the figure transforms.

3.10.2 Shape Decomposition

This exercise is to decompose the shape in Fig. 3.44 into simpler component

shapes. Determine the order of defining them. This would correspond to making a

simple shape, extruding it, drawing a second simple shape, extruding it, and so on

to get a three dimensional figure with the shape defined in the figure. The shape

would be created in steps instead of trying to define the complete contour in one

step.

3.10.3 Over-Constraint Analysis

Make the shape shown in Fig. 3.45 and check what happens when the over-

constraining dimension is added.

Fig. 3.43 Square and
deformed figure

Fig. 3.44 Complex figure to
decompose
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3.10.4 Dimension Games

If you did not try the experiments with dimensions earlier in the chapter, try them

now. Make the shape shown in Fig. 3.46 with the dimensions as shown. Line l0
should be set to be vertical. Lines l2 and l4 are set to be parallel to l0. Line l1 is set

to be perpendicular to l0. Lines l3 and l5 are set to be parallel to l1. Assign the

dimensions as shown in the figure.

Change the dimension 50 (marked ‘‘A’’ in Fig. 3.46 to 120. Change it back to

50. Try and change it to �20 and check if the system allows this and, if it does,

what happens. Change the dimension back to get the original figure. Now do the

same with the other dimension of 50, marked ‘‘B’’ in Fig. 3.46, Finally, change

dimension A to be 100 and change it back. Is the figure the same? When the

dimension is changed e3 becomes zero length and e2 and e4 become collinear.

Some systems may remove e3 and merges edges e2 and e4. Really this should be

done when converting the figure before extruding it. You should check whether

your system performs the merge or not.

Fig. 3.45 Over-constrained
figure

Fig. 3.46 Experimental
figure
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Chapter 4

Operations and Functionality

This chapter is about the main operations that are used in CAD systems to make

objects. For each operation there is a brief description of the algorithm, a dis-

cussion of special cases and possible errors as well as experiments to do. A more

detailed description of solid modelling algorithms are given in a separate book, [1]

and are not repeated here. Hopefully the explanations here are enough to under-

stand what is happening without repeating everything.

It has become usual in CAD systems to implement some of the operations so

that they create a simple shape and then combine this with the model being created

using Boolean operations. The reasons for this are partly historical. It wasn’t

always so, but this methodology means that models are more likely to be correct

topologically and geometrically. Examples of these operations are the extrusion

operations and the symmetry operation. An example of where this is difficult is, for

example, the draft operation. An example of an operation which might or might

not be implemented this way is the chamfer operation.

The early modelling operations were divided into two types:

1. the Boolean operations;

2. everything else, also called ‘‘Local operations’’.

The Boolean operations performed a complete check and worked very well, but

were, in the original research system, a little slow and slowed down further as

object complexity increased. This was later improved in two ways, firstly com-

puters became larger and faster, but more importantly work was done on

improving efficiency by using bounding geometry for fast checking. Now, Boolean

operations are fast and can be used to add or subtract volumetric elements quickly.

In contrast, the local operations were diverse, performing a number of specialised

functions. The worked locally, hence the name, and so could create objects which

cut into themselves, so called ‘‘self-intersecting objects’’. These are objects where

one part of the boundary cuts or touches another part geometrically without being

connected topologically.

I. Stroud and H. Nagy, Solid Modelling and CAD Systems,
DOI: 10.1007/978-0-85729-259-9_4, � Springer-Verlag London Limited 2011
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Many of the Boundary Representation operations you find in CAD systems

today have a long history, some more than 30 years old. To give an idea here are

some operations and their origins.

• Boolean operations: Simplified Booleans in Braid’s dissertation 1974 [2], gen-

eral Booleans in BUILD 1976–1985.

• Linear extrusion: Braid’s dissertation 1974 [2], generalised 1976–1980.

• Circular extrusion: Braid’s dissertation [2], revised to allow partial circular

extrusion in BUILD 1976–1980.

• Chamfering: BUILD 1976–1980.

• Implicit blending: BUILD 1976–1980.

• Draft angles: BUILD 1976–1980.

• Symmetry, or reflection: BUILD 1976–1980.

• Extruding along a path: BUILD 1976–1980.

• Feature operations (Boss, pocket, for example). BUILD 1980–1985.

• Shelling: GPM 1980–1985.

• Thickening a sheet object to a volume: GPM 1980–1985.

• Setting a wire object into a surface: GPM 1980–1985.

Further work has been done on these, notably in the commercial modelling

kernels Parasolid and ACIS, at least. However, the ideas that generated these

operations are relatively mature.

4.1 Boolean Operations

The Boolean operations are usually present somewhere explicitly, but, as stated

above, they are used in the implementation of several other operations. For this

reason, and for their historical importance, they are presented first. The Boolean

operations, also known as ‘‘Set operations’’, or ‘‘Boolean set operations’’, combine

two objects in one of three main ways. There are, in fact, other related techniques,

but the three principle combinations are known as: ADD (or UNION), SUBTRACT

(or DIFFERENCE) and INTERSECTION. These are illustrated in two dimensions

in Fig. 4.1.

4.1.1 Parameters

Input:

Two objects

Output:

The result is combined with the original object, possibly as a collection of objects.
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4.1.2 Potential Errors

The Boolean operations are fairly robust, general operations with simple param-

eters. As internal functions they should provide return codes so that, at the CAD

level, the implementer can choose whether or not to print a message. Some

optional warnings might be:

• One object inside another—if adding this may make no change or return the

added object. For subtraction this might remove the whole object or create a

cavity. For intersection this is OK.

• Objects do not touch—for addition this would create a multi-piece object. For

subtraction this would mean no change. For intersection this is OK.

• Objects touch along an edge or vertex—only for addition, this means that a non-

manifold element has been created.

4.1.3 The Boolean Algorithm

The Boolean algorithm is roughly:

1. Compute the interactions between two objects.

2. Separate the object boundaries at the interaction edges.

3. Recombine the objects by joining elements from the two boundaries.

4. Separate bodies into shells and clean-up.

To calculate the interactions, all faces in the first body are intersected with all

faces in the second body. The method of calculating the intersection of a face pair

is shown in Fig. 4.2, from [1].

Fig. 4.1 Two dimensional Boolean operations
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This is shown in Fig. 4.3.

The subdivision method comes from Braid [2, 3]. The recombination described

above is due to Mäntylä [4].

4.1.4 Special Cases

There are fewer special cases for Boolean operations than for other operations

because they are general operations which work for a large range of inputs.

However some can be identified so that it is possible to experiment with Boolean

operations and learn about their limitations.

Fig. 4.2 Boolean operations—face–face comparison
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The special cases involve:

• One body contained in the other.

• One body separate from the other.

• Two bodies touching along a face set.

• Two bodies touching along an edge.

• Two bodies touching at a vertex.

Fig. 4.3 Decomposition and recomposition of Boolean results (based on a figure from [1])
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4.1.5 Sectioning

This is a special type of Boolean operation which takes an object and a cutter

surface or surfaces definition and returns two objects. Note, straightaway, that this

goes a little against the single model per workspace philosophy, but this is a detail.

This operation frequently exists as part of the engineering drawing production

function but seems less common as a modelling tool.

It is possible to distinguish two types of sectioning:

1. Single surface sectioning.

2. Multi-surface sectioning.

The difference between the two comes in the calculation of the Boolean, or

intersection boundary. For a single surface the surface is taken as infinite so the

intersections inside the faces of the object being sectioned are taken as the

boundary. The multi-sectioning surface is defined as a sort of sheet object (see

Chap. 6) and so it is necessary to check the intersection curves against the topology

of this object, as with Boolean operations. Note, though, that the sectioning objects

are infinitely thin, so the operation is not the same as subtracting a very thin solid

object, which will always leave a gap. Note that there is a problem if the surface

used for sectioning does not traverse the object being sectioned, or if the multi-

section surface ends inside the object.

Two last quick comments. The operation could optionally return both objects or

only one. Perhaps the most useful variant is planar sectioning.

4.1.6 Experiments to Try

These experiments may be combined with extrusion, since extruding a shape

drawn on a basic shape will have the same effect. See the section on extrusion.

4.1.6.1 One Body Contained in the Other

The arrangement is shown in Fig. 4.4.

You have three cases, according to the three Boolean operations: add, subtract

or intersect. The object to be operated on is called ‘‘A’’ and the object to be added,

subtracted or to intersect is ‘‘B’’.

If A is larger than B the results are:

• For ADD the result is A.

• For SUBTRACT there will be a B-shaped cavity in A.

• For INTERSECT the result is B.
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If B is larger than A the results are:

• For ADD the result is B.

• For SUBTRACT there will be nothing (A disappears).

• For INTERSECT the result is A.

The main difference in the result is what happens for the case of subtraction. If

A is larger than B then there will be a cavity inside A. If A is smaller than B then

the result is nothing. What is more interesting is what the system tells you about

when it gives the result. For the add results, if B is contained in A the user should

be warned that there is no change in A. If B is larger than A the system should

warn the user that A has been swallowed up by B. For the subtract results, if A is

larger than B then the result is correct but it would be useful to indicate to the user

that there is now a cavity. A warning may be optional, but if the result is shown in

shaded mode then no change will be visible and so a warning might help. If B is

larger than A then the user should be warned that A has disappeared. Both the

intersection results are the same, and correct. Intersection is used, among other

things, for testing for interactions between objects in an assembly, so the result is

useful. Testing these simple cases will tell you what to expect when bodies are

combined with Boolean operations in other operations. If the system does not warn

you about these special cases then you should check the results of operations and

use wireframe images as well to check for containment.

A variant for subtract is if the bodies being subtracted are identical. The normal

result should be nothing. A possible result is to create a sheet object with zero

thickness. However, normally you should get nothing as a result.

4.1.6.2 One Body Separate from the Other

The arrangement is shown in Fig. 4.5.

For SUBTRACT the result should be A. For INTERSECT there should be no

result, and perhaps a warning that there is no result. The main interest is what

happens with ADD. What normally happens is that the separate objects are treated

as one, at the datastructure level. This is not really correct. The justification is that

the user may change the parameters and create a single object. Alternatively, the

BedisniAAedisniB

BA

AB

Fig. 4.4 Arrangement of
overlapping objects
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user may join the separate parts in a subsequent operation. Why it is stated, above,

that the result is not really correct is because the object is made of two distinct

parts. At the very least, the result should be a compound object, not a simple

object, but this would introduce a new element into the datastructure. At the

moment there may not even be a warning for the user that the objects are separate

which makes it difficult for the user to know.

On the datastructure level the current mainstream solution is to have a single

object with two ‘‘shells’’ containing the separate object portions. It is possible to

see the difference in the datastructure, but not necessarily at the user level, where

small separations might not be noticed. This is done both in systems which insist

on working on single objects as well as those systems which allow multiple objects

in modelling space.

4.1.6.3 Two Bodies Touching Along a Face Set

This is more or less a normal case and should be handled easily. It is mentioned

here only for completeness.

4.1.6.4 Two Bodies Touching Along an Edge

This is shown in Fig. 4.6.

SUBTRACT should make no change to object A and INTERSECT should give

no result. The interesting question is what happens when ADDing the objects.

The ‘‘normal’’ result is to join the edges at the edge marked eA; eB and the

common edge becomes a non-manifold edge. Non-manifold objects and edges will

be described later in Chap. 6. The interesting thing is whether the system warns

you, because these edges can cause problems for other operations. If it doesn’t then

you risk having an edge which cannot be dealt with by other operations. The

problem is that, if these are created, then they should be fully integrated into

the CAD system and handled. Normally they are not. Another question is whether

the CAD system should actually create the object. Such objects are not realisable,

because you cannot make an object with zero thickness. They may be useful as

intermediate objects, idealisations, as explained in Chap. 6. If this is the case,

though, then there should be operations to expand them or adapt the edges,

BAFig. 4.5 Arrangement of
objects with separation

148 4 Operations and Functionality

http://dx.doi.org/10.1007/978-0-85729-259-9_6
http://dx.doi.org/10.1007/978-0-85729-259-9_6


which is probably not the case. I have never seen such operations in a CAD

system. If you create such an edge try chamfering it or rounding it, as explained in

Sects. 4.7 and 4.8.

4.1.6.5 Two Bodies Touching at a Vertex

This is similar to the bodies touching at an edge, and is illustrated in Fig. 4.7.

Fig. 4.6 Objects touching at
an edge

Fig. 4.7 Objects touching at a vertex
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Again, SUBTRACT should make no change to the object and INTERSECT

should give no result. The interesting case is, again, what happens with ADD.

The ‘‘normal’’ result is a non-manifold vertex. The same comments as before

are also relevant. It is not certain that the CAD system should do this without

comment. There should also be operations to identify non-manifold elements and

to expand them. The non-manifold case is more difficult to check that the edge

case, but you can try blending all edges at the vertex too see what happens

(normally the operation will be refused with some more-or-less obscure message).

4.2 Extrusion Operations

In modern systems there are two types of extrusion. The first type is where an

extrusion is made from an initial 2D shape. The second type is where an extrusion

is made as an increment to an existing 3D solid. The second type is more com-

plicated because it involves a Boolean operation. The Boolean can be an add or

subtract operation to create the result.

4.2.1 Parameters

Input:

Linear extrusion

Shape to be extruded

Vector extrusion

Circular extrusion

Shape to be extruded

Axis definition

Angle

Extrusion along a path

Shape to be extruded

Path definition

Output:

Result combined with the original object or perhaps a new multi-piece object.

4.2.2 Potential Errors

Some conditions that should be checked for are:

• Null vector—for linear extrusion.
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• Null axis definition—for circular extrusion.

• Zero angle—for circular extrusion.

• Zero-length edge in path definition—for sweeping along a path.

• Closed path—for sweeping along a path. This could be handled, so is an

optional error.

• Branching wire path—for sweeping along a path. Again, this could be handled

so is an optional error.

• Open shape—only an error if the CAD system cannot handle mixed sheet- and

solid-objects. If not an error should perhaps give a warning.

• More than two edges at a vertex of the shape being extruded—this is a commonerror.

4.2.3 The Simple Linear Extrusion Algorithm

The simple linear extrusion is a relatively simple operation. It has been around

since the early 1970s and was part of Braid’s original system reported in [2]. This

was shown in Fig. 2.30. It simply involves stepping round the boundaries of the

face extruding the edges.

The algorithm is, roughly:
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Note the way that the Euler operators are used to create the new topology. This

is a good example of a stepwise algorithm which builds up the model as a series of

small steps.

This algorithm seems to be the only extrusion algorithm used in CAD systems.

General extrusion is more complicated because there are more cases to take into

account. If, having created the basic shape, you extrude a shape, upwards or

downwards, from one of the faces of the base shape, then this is can be complex.

The modern CAD solution seems to be to cut off the shape to be extruded, extrude

this shape with the simple method and then add or subtract the new extruded shape

to the base shape using a Boolean operation.

One last point, extrusion directions are often normal to the plane defining the

shape to be extruded. This is not an absolute requirement, though, and some

systems let you define the normal. The normal, though, should never be perpen-

dicular to the normal of the plane of the shape being extruded.

4.2.4 Compound Linear Extrusion

Normally this is not dealt with, however it is mentioned here in case CAD systems

change. Consider the shape shown in Fig. 3.34, reproduced in Fig. 4.8.

Using the simple extrusion algorithm, described above, gives something like the

image in Fig. 4.9, though the geometry has been distorted to show the structure.

After one sweep the structure would be as shown in Fig. 4.10.

At this stage, the edges labelled e0 and e1 are ‘‘concave’’ edges. This means

that, for example, when sweeping edge e1 in face f1 the edges e2 and e3 should be

used as side edges rather than creating new side edges. This is possible, but the
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Fig. 4.10 Complex sketch
with one swept face

Fig. 4.8 2D sketch with
multiple faces

Fig. 4.9 Complex sketch
with simple extrusion
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algorithm is more complicated than the simple algorithm for linear extrusion

described previously. A general method for extrusion was developed, though,

towards the end of the 1970s in the BUILD system.

There are other methods to handle compound solids, though. The second

method is shown in Fig. 4.11. From the original complex shape (Fig. 4.11a) the

faces are separated (Fig. 4.11b). These are then extruded separately (Fig. 4.11c)

and added (Fig. 4.11d).

This has a disadvantage, though, that the details of the complex shape are lost

during the Boolean operation.

A third method is related to that for lofting, described later. Figure 4.12 shows

the steps. First all the boundary edges are sliced (Fig. 4.12a). The matching cor-

ners are joined (Fig. 4.12b) creating the topology of the side faces. Finally the

geometry is changed to create the final object (Fig. 4.12c).

The point of describing these complex shape extrusion methods is to demon-

strate another ‘‘message’’. There are lots of extra things that can be done in CAD

systems. There is not a theoretical complete set of operations and algorithms that

you find. CAD systems do not allow complex 2D shape definition and complex

shape extrusion now, probably because they don’t want to. Chapter 3 explained

Fig. 4.11 Extruding 2D sketch with multiple faces, version 2
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how it is possible to create complex shapes. This section explains how they can be

extruded. The first method, of generalising extrusion to handle the special cases

was implemented. The other two methods are other possibilities which are equally

possible to implement. If you want to work in a different way to the way permitted

then you should communicate this to the software vendor, if possible, to encourage

continuing development.

Fig. 4.12 Extruding 2D
sketch with multiple faces,
version 3
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4.2.5 Incremental Extrusion Limits

Once the basic shape has been created it is common that new extrusions are made

to add or subtract elements to a model. There is a distance parameter but it is also

possible to use geometric reference elements to determine the extrusion extent.

Common ones are:

• Until last

• Until next

• Until surface

• Until face

It may not always be clear what the difference between these is and when one

should be used instead of another. Figure 4.13 is an attempt to illustrate these.

With a distance the length is what the user specifies. ‘‘Until last’’ calculates an

extreme point which is the extent of the object in the extrusion direction. ‘‘Until

next’’ calculates the extent until the next face in the extrude path. ‘‘Until face’’

calculates the extent to the specified face. ‘‘Until surface’’ calculates the extent to a

specified surface, and the entire shape should cut this surface.

There are two possibilities for calculating ‘‘last’’, ‘‘next’’, etc. One method is

that the extruded element is limited completely by a face, the other that the

extrusion limit is the surface of a face. To understand these, consider Fig. 4.14.

Make the sort of E-shape shown in the figure. Make the middle prong half the

height of the other two. Draw a square on the inside of one of the end faces and

extrude it ‘‘until next’’. Check whether it goes half way inside or the whole way

inside. There are two ways of interpreting the ‘‘next’’. It could be the next surface

that any of the contour being extruded touches or it could be the next face that

surrounds the extruded contour. It is necessary to do this kind of experiment to find

out how your CAD system interprets ‘‘next’’, ‘‘last’’ and so on.

Fig. 4.13 Extrusion limits
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Experiments with these options are suggested in Sect. 4.2.10.3. Essentially what

they are doing is providing a functional definition of the extrusion distance, but the

‘‘until’’ types are slightly more complicated because they perform a ‘‘setsurf’’

operation as well, to set the final geometry into a new surface. This is needed to set

the extrusion limit correctly. If they are just simple extrusions then there is a risk

that some of the extrusion will extend outside the existing surfaces.

4.2.6 The Simple Circular Extrusion Algorithm

Originally circular extrusion was a separate operation, but circular and linear

extrusion are closely related so they are now done in the same way. There is a

difference in the geometry of the side elements, which can be seen in Fig. 4.15.

Fig. 4.14 Extrusion limits

Fig. 4.15 Simple circular
extrusion
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The relation may be less obvious if an edge, or edges lie on the rotation axis, as

in Fig. 4.16 but this is also related.

For the edge on the face, were the same algorithm used as used for linear

extrusion, then there would be a degenerate face. To avoid this it is necessary to

check for some special cases.

The algorithm is, roughly:
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This method also means that it is possible to extrude round an axis to a degree

less than 360�. If the modeller does not like extruding round 360� in one step then

you might have two or three applications of the procedure to create the whole

object.

If a shape is extruded through a complete circle, there is one final step at the

end: to join the swept face and the back face of the original 2D shape to create a

closed solid.

Fig. 4.16 Simple circular
extrusion
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The rotation axis should not cut through the shape being swept, otherwise the

operation would create a self-intersecting object.

An example of this concerns a common error for producing a sphere, shown in

Fig. 4.17.

Why this is worth mentioning is that it is an example of where the user and

implementer philosophies differ. It is not that the user is wrong, it is rather a case

where CAD systems should be improved to cope with such cases.

The problem, or potential problem is that some users find it natural to draw both

sides of an object, it is a matter of perception. A workable solution to this is to cut

the 2D shape into two pieces, using the rotation axis as a separator, extrude each

shape through half the angle and then add the results. This is illustrated in

Fig. 4.18. Note, though, that normally the two halves will be the same. They are

shown here as different just to emphasise the solution.

On the left of Fig. 4.18 is the original shape, on the right is how the shape can

be adapted to produce a solid made of two parts. The result object might be as

shown in Fig. 4.19.

The point of explaining this is not to criticise the way things are done in

CAD systems. The point is that you can make different basic assumptions and

get different results for what appears to be the same operation. The way things

are done in CAD systems, that is, by defining half the shape and rotating it, has

some significant advantages. One of these is that the shape is rotationally

symmetric and, if swept through 360�, you get a shape which is appropriate for

turning. The shape shown in Fig. 4.18 is not symmetric and, therefore, there is

a discontinuity. Leaving that apart, what I am trying to explain here is the way

in which the implementer works. That is, the implementer makes some deci-

sions about the input parameters and the functionality of the operation and that

is what you see. Sometimes this is arbitrary, so different implementations may

Fig. 4.17 Example of illegal
and legal extrusion shapes to
create a sphere
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work slightly differently. This effect is lessened because several systems use the

same geometric engines, or modelling kernels, and hence have the same basic

functionality. However, it is useful, when starting with a new system, to per-

form some simple experiments to determine the limits of the functionality in

simple cases and hence avoid problems. This is one of the purposes of this

book. You should also be very clear about the fact that it is usually the case

that the software developers are computer scientists. Their perceptions may

well be different from those of the users. Another aim of this book is to try and

explain these differences.

Fig. 4.19 Circular extruded two-halved shape

Fig. 4.18 Handling 2D
shapes crossing the rotation
axis
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4.2.7 Extruding Along a Curve

Yet another variant of extrusion is extrusion along a curve, Fig. 4.20. This is

something like linear extrusion, but the sidewall geometry is more complex. There

are also more special cases. If the curve is too curved then there is a risk of

creating a self-intersecting object during the operation. This may or may not be

detected automatically by the system.

Looking sideways at the object, shown in Fig. 4.21 gives a clearer idea of the

potential problem.

The thick line at the bottom on the left represents the shape to be extruded along

the curve, on the right of the figure you see what would happen, with a small self-

intersecting part. This is a simple and rather artificial case, but the problem is to

find where the centre of curvature of the extrusion path curve lies inside the shape

being extruded. When this happens there is a self-intersection of the side surfaces

as well as the object. This also depends on how the path curve is positioned

relative to the object. This is a parameter of the operation.

Fig. 4.20 Extruding a 2D
shape along a curve

Fig. 4.21 Extruding a 2D
shape along a curve, from the
side
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4.2.8 Extruding Along a Path

Some CAD systems allow extrusions along a path composed of a set of edges. If

the edges are a sequence of straight and circular arcs then the operation can be

interpreted as a sequence of linear and circular extrusions. With other edge

geometries you extrude along a curve.

The operation can be useful for creating pipework, for example. The pipework

would be represented by a set of edges and the pipe cross-section extruded along

these to create a volumetric pipe shape which can then be hollowed out using a

shelling operation.

As with extruding along a curve, this operation can also be used sometimes to

create self-intersecting objects. It is normal to do some checking for each edge, but

this is not sufficient. The case shown above, Fig. 4.21, in Sect. 4.2.7 is also

relevant for sweeping along a path.

In Fig. 4.22 the ‘‘shape’’ to be extruded is represented by a vertical bar, with the

path the path on the left-hand side of the figure is not allowed because the second

element of the path, the vertical line in the figure, is perpendicular to the shape

being extruded. The resulting object would have a degenerate middle portion, as

shown on the right.

To manage the corners it is often necessary to round off the corners so that the

shape turns to be perpendicular to the straight sections, as shown in Fig. 4.23. It is,

of course, possible to have a path with only straight sections, but the must not be

perpendicular to the shape being extruded.

What happens is that the straight edges are interpreted as vectors for linear

extrusion, the circular arcs as defining an axis for circular extrusion. The axis

passes through the centre of the circle, with direction normal to the plane of the

circle. The individual extrusions may or may not be checked. It is more efficient

not to do too much checking, but this leads to other problems, as for the path in the

experiments, later.

It is also interesting to note what happens when the path starts in the plane of

the shape being extruded, and what happens when it is offset slightly. The vectors

defined by the straight edges can easily be taken as being relative to the face, but

the circle centre points defining the axes may be taken as either relative or absolute

positions.

4.2.9 Possible Variants

The older versions of extrusion performed extrusions ‘‘in situ’’ instead of creating

separate volumes and combining these with the base object using Boolean oper-

ations. This is still an option but would need a self-intersecting object evaluation as

a final step to check for interactions.
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For circular extrusions an early version did not need to close the shape.

As shown in Fig. 4.24, the initial wire, on the left defined the outside shape and

was processed to produce a closed shape before extrusion.

Some systems allow you to define complex relationships for defining extru-

sions, which can be termed: ‘‘functional extrusion’’. Examples might be:

Fig. 4.24 Circular extrusion
defined by a wire

Fig. 4.22 Illegal path and
resulting object

Fig. 4.23 Legal path and
resulting object
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• Allowing a scaling for the extrusion so the final shape is larger or smaller than

the starting shape.

• Allowing a displacement so that the final shape is displaced in a certain

direction, by a certain amount.

• Allowing a rotation about an axis normal to the plane of the extrusion shape.

These are just a few possible functional extrusion types. They allow you to

define some regular shapes relatively simply. If such functions do not exist it may

be possible to produce the shapes using sweeping along a curve, or lofting (see

Sect. 4.14) instead.

4.2.10 Experiments to Try

The first two experiments repeat some of the Boolean operation experiments to

demonstrate the use of the Boolean operations for extrusion.

4.2.10.1 Touching Objects

One experiment is where two objects just touch. Create a square shape, 100� 100

and extrude it by 100. On the top of this, create another square, 100� 100 which

touches one of the edges of the base shape, see Fig. 4.25a. Extrude this new shape

by 100. Verify whether the touching edge becomes a non-manifold edge or not, as

with the Boolean experiment.

4.2.10.2 Missing Objects

Another experiment is where the objects do not touch at all. Create a square shape,

100� 100 and extrude it by 100. On the top of this, create another square, 100�
100 which is outside the top at a distance of ten, say, from one of the edges of the

base shape, see Fig. 4.25b. Extrude this new shape by 100. Check whether or not

the CAD system signals that the result is a multi-body result, as with the Boolean

experiment.

(a) (b)

Fig. 4.25 Touching and non-
touching extrusions
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4.2.10.3 Experiments with Limits

It is worthwhile understanding how to use the limits defined in Sect. 4.2.5. There is

a longer exercise on this topic at the end of the chapter. Make the shape shown in

Fig. 4.26a, extrude it, say 40 units. Now select one of the two prongs for sketching

and draw a circle, lying between the two prongs but not touching them, as shown

in Fig. 4.26b.

Extrude the circle downwards 50 units. Now use the part construction history to

change the dimension marked da in the figure to 49.99. Does the extruded part still

make contact with the base object? Can you tell? Does the system report that you

have a multi-body result? Change dimension da to 25 and look again. What is to be

expected is that you do not always see whether or not the parts are connected and

that the CAD system does not tell you. However, if you can, use the part con-

struction history to change the parameter of the extrusion from a fixed length, 50,

to a calculated length, ‘‘until next’’ for example. Redo the experiments and check

that the extrusion length changes.

4.2.10.4 Multiple Components

The next experiment is with a contour with internal parts. Make a shape such as

that shown in Fig. 4.27.

Extrude the shape and look at the result. You might get something like that

shown in Fig. 4.28.

There are several possible variants. In Braid’s original BUILD system the con-

tours destined to be holes had to be explicitly ‘‘punched’’ through tomake them holes

(using Euler operator Kill Face Make Hole Genus—KFMHG). The current strategy

is that the internal contours become holes through the shape. The left hand circular

Fig. 4.26 Experiment with
extrusion length definitions
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shape becomes a hole as does the square shape. The second circular shape has to be

solid because it is then outside the shape and so becomes a positive shape.

4.2.10.5 Apex-to-Apex Triangles

Another experiment is with a contour consisting of two triangles touching at one

corner. This was mentioned in Sect. 3.7, the result is shown in Fig. 3.29. Make a

shape like that shown in Fig. 4.29. Make sure that there are six edges, the two

crossing edges should be broken at their intersection point.

Extrude this figure, it is not important exactly how much, the interesting thing is

what happens to the edge which derives from the common vertex. Try blending or

chamfering this edge to see if it is non-manifold or a duplicated edge. See also

Sect. 4.8.

Fig. 4.28 Multi-piece result

Fig. 4.27 Experiment with
multiple pieces
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4.2.10.6 Vertices on Axes for Circular Extrusion

Try creating a figure for circular extrusion with one vertex on the axis, as shown in

Fig. 4.30.

The question is what happens at the vertex on the axis when the shape is

extruded by 360� around the axis. The vertex could be a non-manifold vertex or

two vertices. Blend all the edges at the vertex and look at the result.

4.2.10.7 Along-Path Extrusion

The experiment with extrusion along a path is to try and create a self-intersecting

object. The path is shown in Fig. 4.31, the profile to be extruded is a 10� 10

square. First try with a corner radius of 5 to see if the system performs checks to

see if the axis intersects with the profile. (In the two systems I have tried this with,

one did and one didn’t).

Obviously, if you examine the path, there will be an overlap of the objects

at the end. The path itself does not intersect but extruded object does, as shown

in Fig. 4.32. On the left is the whole object and on the right is a detail of the

overlap. This is a self-intersecting object, and this is one of the few ways to

Fig. 4.30 Vertex on axis

Fig. 4.29 Touching vertices
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show it in commercial software. This problem has almost completely disap-

peared, though it is useful to be able to show it for historical purposes. If you

try subtracting a cylinder, or rectangular block from the overlapping region you

may well see more problems as the Boolean operations get lost in the object

reconstruction.

An interesting variant is if the start of the path is offset from the plane of the

profile shape. Figure 4.33 shows what happens if the offset is 10 mm.

In the implementation illustrated, the straight edge vectors are used to extrude the

profile shape from its current position. However, the circular sections are calculated

using the absolute centre of the circular arc as an axis point, hence the geometry is a

mixture of relative and absolute elements and not what would be expected.

Fig. 4.31 Path creating a
self-intersecting object

Fig. 4.32 Self-intersecting
path extrusion object
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4.2.10.8 Along Curve Extrusion

This experiment is to create a spiral, or a screw thread by extruding along a spiral

curve. The purpose is just to show that this method can be used for comparison

later with lofting.

The spiral path is simply an interpolation of nine points, in this case:

(50, 0, 0)

(0, 50, 20)

(-50, 0, 40)

(0, -50, 60)

(50, 0, 80)

(0, 50, 100)

(-50, 0, 120)

(0, -50, 140)

(50, 0, 160)

Fig. 4.33 Path not starting
on profile plane
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Note that this does not give a very good spiral, the interpolation does not always

give good results for regular shapes. Interpolation will be explained in Chap. 5. For

a more serious example it would be necessary to use more points and, perhaps,

tangents at the start and end of the curve.

The profile is defined in a plane perpendicular to the path curve and simply

extruded up to get the object. The original path is shown on the left of Fig. 4.34

and the final object on the right of the figure.

4.2.10.9 Sweeping an Open Figure

Some systems allow you to extrude open figures and mix surface and solid models.

This is more flexible, but the risk is that you create a sheet object instead of a solid.

Make an open shape like that in Fig. 4.35a and extrude it using a straight

extrusion. If that works then you can try two circular extrusions. Make a shape like

that shown in Fig. 4.35b and extrude it round an axis. If the system allows this,

then try making a hole through the thick part. If you get a result then it should be

two circles, but there is no linking surface. Try a third variant, based on the shape

in Fig. 4.35c. This time the open points lie on the rotation axis, so when you

Fig. 4.35 Open shape for
extrusion

Fig. 4.34 Spiral path and
profile, final object
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extrude it it may look solid, but it is not certain whether or not it is. To check,

punch a hole through it and see whether the hole is really a hole or two isolated

circles.

Note that some systems, like CATIA v5, use a different colour to indicate a

surface or sheet model, other systems may not show any difference so make sure

that sketches are closed. You can convert open sheet objects to solids by giving

them thickness (Sect. 4.11). Closed sheet models can be made solid like that, or

you may be able to fill them (Sect. 4.12).

4.3 Reflect or Symmetry

Reflection, sometimes known as symmetry, makes it possible to create part of the

object and complete it in a single operation by creating and joining the symmet-

rical part. This is useful if you know beforehand, but this is not always the case.

4.3.1 Parameters

Input:

Body to be reflected

Reflection plane

Output:

Result is combined with the original body, possibly as a multi-piece solid.

Optional new body if allowed as an option.

4.3.2 Potential Errors

Some conditions that should be checked for are:

• Non-planar reflection surface.

• Possibly object crossing reflection plane.

4.3.3 Reflection Algorithm

The original reflect/symmetry algorithm was:

1. Create reflect transformation matrix.

2. Copy object.
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3. Transform copy with reflect transformation matrix.

4. Join object and copy at coincident faces (3D object) or edges (2D object).

Modern tools have more options, as summarised in Fig. 4.36.

• The first option is simply to transform the original body.

• The second option is to create the copy and transform it without joining.

• The third option is to create the copy, transform it and join the copy and original

object.

4.3.4 Creating the Transformation Matrix

Transformations are described in Sect. 5.2.2. The transformation matrix is created

from a plane surface. Originally, in the BUILD system, this was a face of

the object being reflected, thus guaranteeing a join. In the Swedish system, GPM,

Fig. 4.36 Reflection
operation and options
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free-standing geometry was allowed and hence it was no longer a requirement to

pick a planar face. Now, any available plane can be used.

The reflection surface is currently only allowed to be planar. This is a realistic

limitation because otherwise the object shape would change. In the original

implementation the planar surface was not allowed to cut the object, as this would

have resulted in a self-intersection object. Now, with the use of Boolean operations

for joining this restriction has been lifted.

Reflection transformations along the three principal axes are simple:

Reflection along X:

�1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2

6

6

4

3

7

7

5

Reflection along Y:

1 0 0 0

0 �1 0 0

0 0 1 0

0 0 0 1

2

6

6

4

3

7

7

5

Reflection along Z:

1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 1

2

6

6

4

3

7

7

5

For reflection about a general plane it is possible to decompose the matrix into a

series of rotations, a reflect transformation and another series of rotations. Assume

that the vector normal to the plane is:

ðx; y; zÞ where x2 þ y2 þ z2 ¼ 1

and a point through which the plane passes is:

ðPx;Py;PzÞ

If x and y are both zero then the reflection is along the Z-axis. Otherwise it is

possible to rotate the object around the Z-axis to align it with the X-axis and then

reflect it along the X-axis.

First, for the case when x and y are zero, the sequence can be decomposed into a

translation, a reflection and another translation. The three matrices are:

1 0 0 Px

0 1 0 Py

0 0 1 Pz

0 0 0 1

2

6

6

4

3

7

7

5

1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 1

2

6

6

4

3

7

7

5

1 0 0 �Px

0 1 0 �Py

0 0 1 �Pz

0 0 0 1

2

6

6

4

3

7

7

5
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which, when multiplied together, give the single matrix:

1 0 0 0

0 1 0 0

0 0 �1 2Pz

0 0 0 1

2

6

6

4

3

7

7

5

This also shows that the movement in the X- and Y-directions is not necessary,

as would be expected.

Taking the general case you get seven matrices. These correspond to aligning a

vector with the X-axis, reflecting, and then the inverse to the alignment.

Translation to the origin:

1 0 0 �Px

0 1 0 �Py

0 0 1 �Pz

0 0 0 1

2

6

6

4

3

7

7

5

Rotation to the X–Z plane (using q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

):

x=q y=q 0 0

�y=q x=q 0 0

0 0 1 0

0 0 0 1

2

6

6

4

3

7

7

5

Rotation to the X-axis is simplified because the plane normal vector is

normalised:

ffiffiffiffiffiffiffiffiffiffiffiffi

1� z2
p

0 z 0

0 1 0 0

�z 0
ffiffiffiffiffiffiffiffiffiffiffiffi

1� z2
p

0

0 0 0 1

2

6

6

4

3

7

7

5

Reflection along X:

�1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2

6

6

4

3

7

7

5

Rotation back from the X-axis:

ffiffiffiffiffiffiffiffiffiffiffiffi

1� z2
p

0 �z 0

0 1 0 0

z 0
ffiffiffiffiffiffiffiffiffiffiffiffi

1� z2
p

0

0 0 0 1

2

6

6

4

3

7

7

5
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Rotation back from the X–Z plane:

x=q �y=q 0 0

y=q x=q 0 0

0 0 1 0

0 0 0 1

2

6

6

4

3

7

7

5

Finally, translation back:

1 0 0 Px

0 1 0 Py

0 0 1 Pz

0 0 0 1

2

6

6

4

3

7

7

5

Multiplying these together gives the final transformation matrix.

a b c d

e f g h

i j k l

0 0 0 1

2

6

6

4

3

7

7

5

where:

a ¼ �x2 þ ðx2z2þy2Þ
ðx2þy2Þ

b ¼ �xyþ ðxyz2�xyÞ
ðx2þy2Þ

c ¼ �2xz

d ¼ Px þ x2Px þ xyPy þ 2xzPz þ ð�xyz2Py�x2z2Px�y2PxþxyPyÞ
ðx2þy2Þ

e ¼ �xyþ ðxyz2�xyÞ
ðx2þy2Þ

f ¼ �y2 þ ðy2z2þx2Þ
ðx2þy2Þ

g ¼ �2yz

h ¼ Py þ xyPx þ y2Py þ 2yzPz þ ð�xyz2Px�y2z2Py�x2PyþxyPxÞ
ðx2þy2Þ

i ¼ �2xz

j ¼ �2yz

k ¼ x2 þ y2 � z2

l ¼ Pz þ 2ðxPx þ yPyÞzþ Pzðz2 � x2 � y2Þ
For example, if the reflection plane:

point: ð6; 7; 8Þ normal: ð0:3
ffiffiffi

2
p

; 0:4
ffiffiffi

2
p

; 0:5
ffiffiffi

2
p

Þ

you get:

Move to plane point and rotation about Z-axis:

0:6 0:8 0 0

�0:8 0:6 0 0

0 0 1 0

0 0 0 1

2

6

6

4

3

7

7

5

1 0 0 �6

0 1 0 �7

0 0 1 �8

0 0 0 1

2

6

6

4

3

7

7

5

¼
0:6 0:8 0 �9:2
�0:8 0:6 0 0:6
0 0 1 �8

0 0 0 1

2

6

6

4

3

7

7

5
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Multiply by the rotation to align the x-axis:

0:5
ffiffiffi

2
p

0 0:5
ffiffiffi

2
p

0

0 1 0 0

�0:5
ffiffiffi

2
p

0 0:5
ffiffiffi

2
p

0

0 0 0 1

2

6

6

4

3

7

7

5

0:6 0:8 0 �9:2
�0:8 0:6 0 0:6
0 0 1 �8

0 0 0 1

2

6

6

4

3

7

7

5

¼
0:3

ffiffiffi

2
p

0:4
ffiffiffi

2
p

0:5
ffiffiffi

2
p

�8:6
ffiffiffi

2
p

�0:8 0:6 0 0:6
�0:3

ffiffiffi

2
p

�0:4
ffiffiffi

2
p

0:5
ffiffiffi

2
p

0:6
ffiffiffi

2
p

0 0 0 1

2

6

6

4

3

7

7

5

Reflection along X:

�1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2

6

6

4

3

7

7

5

0:3
ffiffiffi

2
p

0:4
ffiffiffi

2
p

0:5
ffiffiffi

2
p

�8:6
ffiffiffi

2
p

�0:8 0:6 0 0:6
�0:3

ffiffiffi

2
p

�0:4
ffiffiffi

2
p

0:5
ffiffiffi

2
p

0:6
ffiffiffi

2
p

0 0 0 1
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4

3

7

7

5

¼
�0:3

ffiffiffi

2
p

�0:4
ffiffiffi

2
p

�0:5
ffiffiffi

2
p

8:6
ffiffiffi

2
p

�0:8 0:6 0 0:6
�0:3

ffiffiffi

2
p

�0:4
ffiffiffi

2
p

0:5
ffiffiffi

2
p

0:6
ffiffiffi

2
p

0 0 0 1
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7
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Rotation back from the X-axis:

0:5
ffiffiffi

2
p

0 �0:5
ffiffiffi

2
p

0

0 1 0 0

0:5
ffiffiffi

2
p

0 0:5
ffiffiffi

2
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0

0 0 0 1
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�0:3
ffiffiffi

2
p

�0:4
ffiffiffi

2
p

�0:5
ffiffiffi

2
p

8:6
ffiffiffi

2
p

�0:8 0:6 0 0:6
�0:3

ffiffiffi

2
p

�0:4
ffiffiffi

2
p

0:5
ffiffiffi

2
p

0:6
ffiffiffi

2
p

0 0 0 1

2
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7
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5

¼
0 0 �1 8

�0:8 0:6 0 0:6
�0:6 �0:8 0 9:2
0 0 0 1

2

6

6

4

3

7

7

5

Rotation back from the X–Z plane:

0:6 �0:8 0 0

0:8 0:6 0 0

0 0 1 0

0 0 0 1

2

6

6

4

3

7

7

5

0 0 �1 8

�0:8 0:6 0 0:6
�0:6 �0:8 0 9:2
0 0 0 1

2

6

6

4

3

7

7

5

¼
0:64 �0:48 �0:6 4:32
�0:48 0:36 �0:8 6:76
�0:6 �0:8 0 9:2
0 0 0 1

2

6

6

4

3

7

7

5
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Finally, translation back:

1 0 0 6

0 1 0 7

0 0 1 8

0 0 0 1

2

6

6

4

3

7

7

5

0:64 �0:48 �0:6 4:32
�0:48 0:36 �0:8 6:76
�0:6 �0:8 0 9:2
0 0 0 1

2

6

6

4

3

7

7

5

Giving the final matrix:

0:64 �0:48 �0:6 10:32
�0:48 0:36 �0:8 13:76
�0:6 �0:8 0 17:2
0 0 0 1

2

6

6

4

3

7

7

5

4.3.5 Copying and Transforming the Object

These are standard operations which are part and parcel of solid modelling systems

and are described in Sect. 2.7.5. For single reflections, though, the determinant of

the matrix is -1, which means that the transformed object is negated.

4.3.6 Joining the Objects

The original operation used a local face/face or edge/edge join, but this has now

also been replaced by a Boolean add operation (for better or worse …). One

advantage of the Boolean operation is that any plane can be used as a basis of the

transformation. Nor is it necessary to perform the check that the object does not

cross the plane, as with the local joining operation. A disadvantage, though, is that

Boolean operations lose information about why they have been applied. Another

disadvantage, which was already described for Boolean addition and extrusions, is

where the objects being added do not touch. This can happen where the reflection

plane is not a plane of the object, but a free-standing plane outside the object.

4.3.7 Sub-Operation Symmetry

Because of the tendency to perform modelling operations as a volume creation

task together with a Boolean operation it means that the volumes created can also

be subjected to symmetry operations. The volume created by the operation is

simply copied, transformed with a reflection transformation and the same type of

Boolean operation (addition or subtraction) as for the operation.

The same comments apply as for Boolean operations, if the reflected sub-

operation body lies outside the original body, and is to be added, you may get

multiple objects.

178 4 Operations and Functionality

http://dx.doi.org/10.1007/978-0-85729-259-9_2


4.3.8 Experiments

4.3.8.1 Reflection in a Curved Face

First of all, make an object with a curved face. Check whether or not you can reflect

the object in this face. You should not be able to, but it is worth checking once in case.

The reason to check this is, if it is possible, then the CAD system will go ahead and

reflect an object in any face, which may cause problems if you inadvertently select a

curved face when using it. It is not reasonable to expect the CAD system to be able to

do this, and it is not certain that it is very useful, but check it.

4.3.8.2 Reflection Creating a Cavity

This is a sneaky way of creating an internal cavity in an object. Make a rectangular

block, 100� 100� 50mm; say, but this is not too important. Sketch a 50� 50mm

square on the top face and extrude it downwards 25 mm to make a ‘‘pocket’’.

See Fig. 4.37.

Now reflect the object using the top face as the symmetry plane. You have

created an object with a cavity. The same comments apply as for subtracting one

object from another where the object being subtracted is entirely enclosed by the

other object. It would be useful to have a warning, or some indication that there is

now a cavity in the object. Otherwise, you might have trouble manufacturing it.

4.3.8.3 Reflection Creating Disjointed Objects

Create a sketch as shown in Fig. 4.38.

Extrude this shape 20 mm to create the three dimensional basic object

(Fig. 4.39).

Fig. 4.37 Basic object for
making a cavity
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Make a circle, radius 5, on face A. The centre should be ten units from each of

the closest edges, though so long as it is on the ‘‘prong’’ it is OK. Extrude this

shape 20 units, to give the shape in Fig. 4.40.

Now reflect the extruded cylinder in face B and face D to get the shape shown

in Fig. 4.41. Does the system warn you that the reflected elements are separate

from the body?

Fig. 4.40 Basic object with
extrusion for reflection

100

50

20 20 20 20

20

Fig. 4.38 Basic reflection
shape

Fig. 4.39 Extruded
reflection shape
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Now make a small extrusion inwards on another of the prongs, as shown on the

left of Fig. 4.42. Extrude this inwards 20 mm.

Reflect this negative extrusion in face D and in face C. Does the system warn

you? It may be different for a negative extrusion, because this should remove

material and when you try reflecting in face D there is no material to remove. The

second reflect in face C makes an intrusion, but the depth is not the same, only

10 mm. Although it is an intrusion it is not really a symmetrical intrusion to that

from which it was created. This makes the information in the construction history

of dubious value for downstream applications. If machining the pocket, say, the

pocket does not have depth 20 unless you start from a plane outside the object and

machine air.

Fig. 4.41 Basic object with
extrusion reflected in
different faces

Fig. 4.42 Object with intrusive shape (left) and reflected intrusive shape (right)
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These small exercises aremeant to show the effects of usingBoolean operations to

unite objects or subtract objects. There may be no real check that the operation has a

symmetric result, and the same problems with multiple-piece results emerges again.

4.3.8.4 Reflection with Limited Sub-Objects

Try a variant of the above. Make an object like that shown in Fig. 4.43. This is

similar to the object in the previous experiment, but there is an arm upwards with a

shaped extrusion. Make the same circular shape, as before, but extruded it upwards

to the under-surface of the shaped extrusion, as in the figure.

Now reflect the extruded shape in the faces equivalent to face E and face B in

Fig. 4.39. What happens? In CATIA version 5, which I used for this exercise, you

get the result shown in Fig. 4.44.

Fig. 4.43 Basic object with
extrusion to a limit face

Fig. 4.44 Object with
reflected sub-shapes
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Reflecting in face E is correct, but reflecting in face B gives a mixed result. The

position of the base of the circular extrusion is symmetrical about face B, but the

upper limit is strange. Instead of reflecting the limited extrusion with its geometry,

the top geometry is recalculated to be ‘‘up to the under-surface of the shaped

extrusion’’. This is an interesting result. It is not exactly a symmetrical copy of the

original sub-object. It might or might not be what you want and CATIA at least

gives a warning.

4.4 Giving a Face a New Surface (SETSURF)

SETSURF was one of the early methods for setting complex geometry into a

model and for manipulating geometry in a controlled way. This was developed by

Graham Jared in the BUILD system.

Similar operations appear in extrusion, when using the ‘‘extrude to …’’ or

‘‘extrude until …’’ options.

4.4.1 Parameters

Input:

Face in which the new surface is to be set

The new surface

Output:

The changed elements are modified in place.

4.4.2 Potential Errors

Some conditions that should be checked for are:

• Surface does not intersect surrounding geometry.

• Side elements disappear, possibly a warning.

4.4.3 SETSURF Method

What SETSURF does is illustrated in Fig. 4.45. You take an object, shown on the

left of the figure, a surface, shown in the middle and replace the surface of a

selected face with this, giving the object on the right of the figure. At the same
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time, all the geometry surrounding the face being resurfaced has to be adjusted to

ensure consistency.

The positions of the vertices are calculated by intersecting the side edges, that

is, the edges not in the face, with the new surface. This is shown in Fig. 4.46.

Then, the curves of all the edges around the face are calculated by intersecting

the side surfaces with the new surface. Finally the new surface is attached to the

face giving the final result (Fig. 4.47).

This is a very simplified explanation. There are lots of special cases which have

to be handled. A requirement is that the new surface is at least as big as the surface

in which it is being set. Another requirement is that the geometry of the elements

surrounding the face in which the surface is being set also intersect the new

surface.

All the elements to be changed are found from the face given as input parameter.

Fig. 4.45 Setting a surface into an object

Fig. 4.46 Adjusting vertex positions
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4.4.4 Experiments

4.4.4.1 Disappearing Topology

A simple experiment is to change the surface of a face to that of a neighbouring

face to see if the object elements between them disappear. Make an object like that

shown on the left of Fig. 4.48. Set the surface of face B into face A and see what

happens.

There are four likely results. The first is that the system tells you that it

won’t perform the operation because a face will disappear. The second is that

the system changes the geometry and leaves the topology in a degenerate form.

The third is that the system changes the geometry, removes the degenerate face

and leaves an edge in the middle. The fourth is that the system makes the

change, removes the degenerate face and also removes the edge between the

now coplanar faces.

4.4.4.2 Inserting a Doubly Intersected Surface

Make a tall block and insert a cylindrical surface into the face. This is illus-

trated in Fig. 4.49. The new surface could be interpreted either as adding a

cylindrical element to the top of the block (Fig. 4.49 middle), or making a

cylindrical cutout (Fig. 4.49 right). But, which of the results is given? What

distinguishes the cases shown is the direction of the surface normal. If the

cylindrical surface is normal, when the surface normals point away from the

cylinder axis, then the result in the middle should be given. If the surface

Fig. 4.47 Adjusting side curves
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normals point inwards, i.e. towards the axis, then the result on the right should

be given. One question is how to specify a negative surface for the operation.

If the system allows you to create a surface by extruding a circle then you may

have two sides to the cylinder. If you pick the cylindrical surface where you

see the inside then the surface may be negative. Picking the outside gives the

normal cylinder.

Note that this can be done with a spherical surface as well.

4.4.4.3 Inserting a Triply Intersected Surface

This is harder to arrange than with the doubly intersected surface, but is possible

with free-form geometry. The question is whether the CAD system allows this or

refuses on the grounds that the change is ambiguous. If the system does allow the

operation, then what is the result? Fig. 4.50 shows a block and a kind of S-shaped

surface to give a triple intersection result.

Fig. 4.48 Changing a
surface and removing
topology

Fig. 4.49 Changing a
surface which covers twice
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4.4.4.4 Inserting a Non-Covering Surface

This is to check how the CAD system reacts to a critical case. Make a surface

patch which does not cover the face for changing the surface, as shown in

Fig. 4.51. The system should complain, but make sure that you use a finite surface

for the experiment and not an infinite surface, like a plane.

4.5 Tweaking

Tweak is an operation which was present in the BUILD research system and still

exists but seems less common in modern CAD systems. Its use is illustrated in the

command files in Sect. 12.1.1 where it was used to adjust the geometry of certain

faces, like the example shown in Fig. 4.52. Tweaking is an application of the

SETSURF operation described in the previous section and was an example of the

local operations, where small incremental changes were made based on local

Fig. 4.51 Changing a
surface which does not cover
the face

Fig. 4.50 Changing a
surface which covers three
times
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model neighbourhoods. It is easiest to apply to a face directly, if applied to an edge

or vertex then it is necessary to adjust the surrounding faces as well by recalcu-

lating their surfaces. In Fig. 4.52 the face marked as the tweak face in the figure on

the left is rotated slightly about the rotation axis.

4.5.1 Parameters

Input:

Element to be tweaked

Tweak transformation

Output:

The changed elements are modified in place.

4.5.2 Potential Errors

Some conditions that should be checked for are:

• Invalid tweak type.

• Trying to tweak over-constrained element.

4.5.3 Tweaking Method

The tweak method is just an application of the SETSURF operation where the new

surface (or surfaces) is calculated from existing elements. The most straightfor-

ward version is face tweaking, where the face surface equation is modified and

reset into the face. Edge and vertex tweaking may be difficult because edges and

vertices are constrained by more than one surface.

Fig. 4.52 Tweaking a face to
produce a sloping element
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The change is specified by a transformation, i.e. a rotation, scaling or transla-

tion. At the user interface this may be given explicitly, for the operation the

information may be passed as a transformation matrix or as separate transforma-

tion elements. The difficulty comes in interpreting the transformation as an action.

If, for example, you scale a face, should that mean that the surface equation of the

face is scaled or should the elements surrounding the face be scaled? This is

illustrated in Fig. 4.53. If the top face of the cube shown at the top of the figure is

scaled by 1.5, should that mean that the surface is moved slightly in the Z direc-

tion, as shown on the bottom left of the figure, or should it mean that the edges and

vertices surrounding the face be scaled, as shown on the bottom right?

It is necessary to experiment with a tool, if one exists in your CAD system, to

see what the result is in order to understand how it is implemented. A general rule,

though, is to make simple changes rather than complex ones which may lead to

unexpected results.

4.5.4 Experiments

As stated at the beginning, you may not find this operation in your CAD system so

you may not be able to perform these experiments.

Fig. 4.53 Scaling a face in a cube
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4.5.4.1 Tweaking a Face

Build an object line that shown in Fig. 4.52 and tweak the top face by 15�. For

example, as illustrated in Fig. 4.54, make a square 100� 100 and extrude this 30

units. Draw a rectangle on the top face, 50� 35 and extrude this upwards 60 units.

The rectangle need not be aligned with an edge, it was done this way because of

the geometry of the MBB object.

Now tweak the front face of the prong by 15� about its bottom edge (from the

view direction shown in the figure). The result should be as in Fig. 4.55. This is

intended to be a tweak that works just to illustrate how it is used.

Fig. 4.54 Making an object with an extruded prong for tweaking

Fig. 4.55 Tweaking the
prong face
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4.5.4.2 Tweaking a Face Too Far

Repeat the previous experiment, but this time tweak the face by 45�, as shown in

Fig. 4.56.

One possible result is that the system simply refuses to perform the operation,

which may be the best solution. Another possibility is that the system simply

performs the operation without checking that the result is self-intersecting, as

shown on the left of Fig. 4.56. A third possibility is that the system trims the

object, as on the right of Fig. 4.56. However, this means that the topology of the

object changes.

4.5.4.3 Tweaking a Curved Face

What happens when tweaking a curved face? Make the object shown in Fig. 4.57.

This consists of a 100� 100 square extruded 30 units with a circle, radius 30,

drawn on the top face and extruded 60 units. Make sure that the circle is broken

into two pieces so that the extruded shape has two side edges.

Now tweak the front curved face 15� about the front bottom edge.What happens?

The system might complain that the front bottom edge is curved or it might take the

end points as defining an axis. The system might complain that it cannot rotate the

surface or it might add extra topology to make it possible to rotate the face.

4.5.4.4 Tweaking a Face with Internal Loops

This experiment is to see what happens if you tweak a face and change the

topology of surrounding elements. Make an object like that shown in Fig. 4.58,

Fig. 4.56 Tweaking the
prong face by an excessive
amount
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which is like Jared’s well-known feature object. This is basically a 80� 80� 80

cube with a 10� 10� 10 pocket, 50 units from the front face and a 10� 10� 10

boss.

Tweak the face marked ‘‘tweak face’’ by +15� and by -15� about the axis

shown in the figure and check what happens. For both these values one or other of

the features is swallowed up by the change. The system may refuse to do the

operation or may make an arbitrary decision about what to do.

Fig. 4.58 Object with
internal loops for tweaking

Fig. 4.57 Making an object with a cylindrical prong for tweaking
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4.5.4.5 Tweaking an Edge

Face tweaking is probably the most useful operation, but edge and vertex tweaking

may also be possible. Try different tweaks on the edge shown in Fig. 4.59. Tweak

the edge by moving it by the vector(1, 0, 1), by rotating it �10� about the axis

shown and by scaling it by 1.5 and by 0.75.

You could try similar tests for a curved edge and for a vertex to check what

happens with these cases.

4.6 Adding a Draft Angle

Adding a draft angle is an operation closely associated with mould making. From

this point of view it is a little strange to include it as part of Computer Aided

Design. The reason that it is present may be historical. One of the early local

operations in the BUILD system developed at the end of the 1970s was an oper-

ation to add a draft angle, as shown in Fig. 4.60, from a paper from 1979. The draft

operation was originally based on tweaking and hence is related to this operation.

Fig. 4.59 Object with
internal loops for tweaking

Fig. 4.60 Object with draft angle
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4.6.1 Parameters

Input:

Neutral elements (elements which stay unchanged)

Possibly faces to draft (if these are not derived from the neutral element)

Possibly the removal direction

Draft angle

Output:

The changed elements are modified in place.

4.6.2 Potential Errors

Some conditions that should be checked for are:

• Zero draft angle—not an error but silly.

• Possibly modified topology.

4.6.3 Drafting Method

At that time the operation was used as an illustration of the advantages of

Boundary Representation compared to CSG, at that time the other main solid

modelling method. The operation took a face, now usually called the ‘‘static face’’,

stepped round the edges bounding it and tilted the neighbouring faces by given

angle, as shown in Fig. 4.61.

This is reasonable enough if all the neighbouring faces are planes, but what

happens if the neighbouring face is curved?

The usual solution, at least if the neighbouring faces are cylindrical, such as

those created when blending side edges, is to convert these to cones, as illustrated

in Fig. 4.62b. Is this correct? If you perform the draft first and then blend the

object you get inclined cylindrical faces.

The purpose of pointing this out is to illustrate a difference between computer

logic and manufacturing logic.

4.6.4 Choice of Parameters

Setting a draft angle is an example of an operation with a more complex interplay

between the parameters. You can set positive or negative angles, choose different

elements as static elements, and so on.
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Figure 4.63 illustrates an example of this.

If the top face, from the point of view of the extraction direction, is chosen as

the static face then the object will get slightly smaller. However, if the bottom face

is chosen the object gets slightly larger. This may be important if the side faces

have a tight tolerance. However, if there is no restriction then it is not so important.

A slightly large object can be machined down to size, if necessary. However, if

this is not necessary then this would be a waste of material. This is not easy to

generalise and it is necessary to take this into consideration. At any rate, be aware

of this effect.

Fig. 4.61 Adding a draft angle to a block
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Before applying the final draft angle it may be useful to check with a larger

tolerance which makes the change visible to make sure that you get the effect

required. Angles can be positive or negative and this may interact with the

extrusion direction to give you the opposite of what you want.

Fig. 4.62 Adding a draft
angle and blends

Fig. 4.63 Influence of static
face choice
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4.6.5 Drafting Using Warping

This technique sort-of exists. It exists in the research environment and at least one

of the kernel modelling systems (ACIS) has a mechanism of applying ‘‘laws’’, or

rules to model elements. What this means is that you set up a rule to say how the

geometry should be modified rather than using model elements directly. This is

very useful for modifying facetted objects, where there are no convenient model

elements which can be used to guide the change. Figure 4.64 illustrates this.

With facetted objects there are toomany elements to allow picking. There is also a

great risk of error with picking. Instead it is possible to use a separate plane as a

neutral element. Vertex points are then moved inwards, compared with the average

normal vector of the facets surrounding the vertex, to a distancewhich depends on the

distance of the vertex from the plane. The object on the left of Fig. 4.64 shows this.

This can also be done with a plane which cuts through the object, as shown on

the right of Fig. 4.64.

4.6.6 Adding Draft Angles and Mould-Making

Note, though, that adding a draft angle is only one element of mould-making.

Separation lines are not always planar contours. There are also extra elements to

Fig. 4.64 Adding a draft angle using a rule
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add, ejector pins and cooling channels for example. Adding a draft angle is an

interesting operation, from one point of view, but it is not complete. It remains, in

my opinion, something of an oddity as part of design systems.

4.6.7 Experiments

Note that these experiments use a much larger draft angle than would be used in

practice. The reason is to illustrate what happens in extreme cases so that you can

better appreciate what the operation is doing.

4.6.7.1 Drafting with Volume Calculation

Make a cube 100� 100� 100: Set a draft angle of 5� on the side faces using the

top face as a static element. Measure the volume with the utility for this, which

should be present in the CAD system. Note the volume calculated. Redo the draft

using the bottom face as a static element and recalculate the volume. Note the

change. Now redo the experiment for a draft angle value of 1�.

4.6.7.2 Drafting with Blends

The next experiment is to try the experiment with blends, illustrated in Fig. 4.62.

Make a cube 100� 100� 100: Blend the side edges with a radius of 10, say. Now

add a draft angle of 5� and not the shape. Make a second cube 100� 100� 100;
add the draft angle and then blend the side edges and note the difference with the

first object.

4.6.7.3 Drafting with Undercut

Make a cube 100� 100� 100mm: On the bottom face, make a square 80�
80mm; that is, with a 10 mm border all round. Extrude this 100 mm. The resulting

object is shown in Fig. 4.65.

Using the top face as a neutral face, add a draft angle to the side faces of the

large cube, marked ‘‘face 0’’, ‘‘face 1’’, and the two hidden faces at the back. Add a

draft angle so that the size of the block decreases downwards. Try it with angles of

5, 7.5 and 15�.

With 5�, the offset at the bottom of the large block is about 8.716 mm, so the

10 mm border is not violated. With 7.5� the offset is about 13.053 mm, so the

offset faces are inside the lower extrusion. Finally, with 15�, the offset is about

25.882 mm, clearly inside the lower extrusion.

There are, at least, two interpretations of what to do, shown in Figs. 4.66 and 4.67.
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Fig. 4.65 Draft undercut
experimental object

Fig. 4.66 Adding a draft angle across a step. Series 1
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In Fig. 4.66 only the top faces are drafted, necessitating a changed orientation

of the lower face.

In Fig. 4.67 only the top faces are drafted with an angle of 5�, while the lower

faces are also drafted when the offset is so large that the borders are violated.

Which do you think is correct?

4.6.7.4 Draft Undercutting Again

Now repeat the experiment, but with the second extrusion not centred on the

original object. Make a rectangle 120� 110mm: Extrude this 100 mm and, on

the bottom face, create a 80� 80mm square, offset 10 mm in both X and Y from

one corner. See Fig. 4.68.

Fig. 4.67 Adding a draft angle across a step. Series 2

Fig. 4.68 Second draft undercut experimental object
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Extrude this square shape 100 mm. Now repeat the previous experiment with

draft angles of 5, 7.5 and 15�. If you got the second series, in Fig. 4.67, look how

the draft is propagated to the different parts of the object.

Repeat this experiment, but instead of extruding the square shape to create

a positive addition, extrude it back through the object to make an object with

a hole.

4.7 Chamfering

Chamfering is an operation which replaces sharp edges by small planar faces at

an angle to the faces adjacent to the original edge. It may be better to explain

that with some examples as the previous sentence, although true, is a little

opaque.

This might be done to remove a sharp edge, to add material at an extrusion or

for aesthetic reasons, for example.

4.7.1 Parameters

The parameters are illustrated in Fig. 4.69.

Input:

A face, edge or vertex

A depth value

Optionally an angle

Output:

Object shape modifications done in place.

Fig. 4.69 Chamfering parameters
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Normally the chamfer angle is symmetric to the two faces meeting at the edge.

The optional angle can be used to vary this.

4.7.2 Potential Errors

Some conditions that should be checked for are:

• NULL face, edge or vertex.

• Zero or negative depth.

• Disappearing elements surrounding the edge or vertex being chamfered.

4.7.3 Chamfer Algorithm

The chamfer operation is applied to edges or vertices. If a face is given then this is

interpreted as meaning that all edges surrounding the face should be chamfered. If

a vertex is given, then this may mean that only the vertex is chamfered. Alter-

natively it might mean that all edges at the vertex and the vertex itself are

chamfered.

The chamfering direction depends on whether the edge (or vertex) being

chamfered is ‘‘convex’’ or ‘‘concave’’. The edge marked ‘‘e’’ in Fig. 4.70a is

convex, and the chamfer operation removes material, as shown in Fig. 4.70c.

Fig. 4.70 Chamfering
convex and concave edges
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In Fig. 4.70b the edge marked ‘‘e’’ is concave and the chamfer operation adds

material, as shown in Fig. 4.70d.

There are two ways that an implementer might create this operation: (1) with

local changes; or (2) as a volume creation step and a Boolean operation.

For the local change version the edges around the start and end vertices of the

edge are cut at the appropriate positions and these are joined together creating a

face at the appropriate depth, as shown in Fig. 4.71.

The surface of this new face is calculated from the shape of the original edge. If

the edge is straight then this surface is planar. If the edge is circular then the

surface will be a cone, for example. If the edges at the vertex do not cut this

chamfer surface then ‘‘eaves’’ are created in the algorithm devised by Jared and

reported in [3].

For the Boolean version, the easiest way is to do something similar but, instead

of modifying the topology directly, build a small shaped volume to subtract from

the original part. Figure 4.72. In the middle is the original object model. The left

hand image shows the crossing points where the chamfer plane cuts the adjacent

Fig. 4.71 Local modification chamfering

Fig. 4.72 Creating a tool body for Boolean operation chamfering
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edges and the resulting body, the tool body, which is subtract from the original

body is shown on the right.

The two methods could be merged, to make a local change and then to modify

the object with a special kind of Boolean operation. This is an implementation

detail, though.

To see which method is used in your CAD system, try an experiment.

Create an object like that shown on the left of Fig. 4.73.

Extrude the object a distance of 100 to create an L-shaped block. Now chamfer

the edge marked ‘‘e’’ in the object on the right of Fig. 4.73.

Two of the results that might be expected are shown in Fig. 4.74. If the

operation has been implemented as a local operation you get the result on the left.

If the operation has been implemented using a Boolean operation you get the result

on the right.

Obviously the result on the right is correct and the one on the left is wrong.

Or is it?

Actually, no. The one on the right may be topologically and geometrically

correct but I somehow doubt that a manufacturer will thank you if the object being

made suddenly separates into pieces. The implementation on the left does, at least

mean that an object check may reveal the problem. The result on the right would

not reveal an error. Of course, both these operations can be modified in modern

systems by changing the parameters and reapplying them, if the fault is noticed. In

the experiment above the CAD system should, at the very least, warn the user that

there is a problem. If it didn’t, then it is up to you to check the results. Note, as

well, that in CATIA v5 you get different results if the L-shaped part is extruded in

a straight line or in a circle. Try it on your system.

Fig. 4.73 L-shape
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4.7.4 Chamfered Edges at a Common Vertex

For both chamfering and blending there are potential problems with multiple

modified edges meeting at a vertex. A traditional way of handling this was a two

stage approach. In the first step, a chamfer or blend depth value was attached to

each edge to be chamfered. In the second step the operation made the topological

changes necessary for the given depth values.

From an implementation point of view this is a good approach because the

changes can be made consistently. This was the method used in research system

and in I-DEAS, for example. However, from the user point of view it was less

successful because, at least at EPFL, students did not understand that, when they

assigned the depth value, there was no visible change.

From a user point of view it is useful to have a visual effect at once, but this

causes other complications. If you chamfer individual edges at a vertex one after

the other then the effect is not the same as if you chamfer all edges at the same

time.

Figure 4.75 shows the difference between chamfering just edges and cham-

fering the vertex as well.

On the left of the figure is the original arrangement, in the middle the result of

just chamfering the edges and on the right the result if the vertex is also chamfered.

Another problem of chamfering edges one-by-one, especially with different

parameters, instead of all at once is that, after the first chamfer, there may be short

edges which cause subsequent operations to fail because the next chamfer misses

the short edge.

Fig. 4.74 Chamfered L-shaped block
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4.7.5 Chamfering Non-Manifold Edges

Verboten!

Non-manifold edges are normally not chamfered, they are rejected when

selected. If a face to be chamfered contains non-manifold edges then these are not

included.

This is a pity.

It is also unnecessary to refuse these.

The problem is that, at non-manifold edges, more than two faces come together

and, with the currently popular representation method, the meaning is ambiguous.

This is illustrated in Fig. 4.76.

Chamfering the non-manifold edge in the object on the left of the figure

could lead to either of the results on the right. The object on the top right

interprets the non-manifold edge as where two objects touch but just miss. The

object on the bottom right interprets it as where two objects touch and just

join. There is no obvious answer because there are many arrangements which

might arise.

Fig. 4.76 Chamfering a non-manifold edge

Fig. 4.75 Chamfered edges and vertices
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As will be described later, in Chap. 6, there are links between the edge and loop

of each face meeting at the edge. For a valid object there has to be an even number

of links arranged in sequence around the edge. In order to handle the results it is

necessary to pair up the links and assign them to new edges. Then the original edge

and each new edge can be chamfered. Depending on how the links are paired you

get the two cases of bodies just missing each other or just touching. These could be

resolved by asking the user to define which is the desired result. It needs user

intervention but can be resolved.

An unlikely option is that the user may want to mix the missing/touching cases

if there are more than four links round the vertex, but this is not so likely. It should,

then, be possible to handle chamfering of non-manifold edges with a single sup-

plementary piece of information from the user. At the moment CAD systems do

not do this, but it may happen in the future.

4.7.6 Experiments

The following experiments are similar for both chamfering and blending, which

have several modelling similarities but use different geometry.

4.7.6.1 Simple Check

Check which elements your system allows you to chamfer. Just edges? Or are

vertices and faces allowed?

4.7.6.2 Meeting Chamfers

Make the objects shown in Fig. 4.77. The vertices marked with the dot in the

objects have zero (Fig. 4.77a), one (Fig. 4.77b), two (Fig. 4.77c) and three

(Fig. 4.77d) concave edges, respectively.

The exact geometry is not important, it is the arrangement of the edges which

should be considered.

However, make the object in Fig. 4.77a 100� 100� 100 cube.

The object in Fig. 4.77b can be made as a 100� 100� 100 cube with a 80�
100� 80 cutout.

The third object, in Fig. 4.77c could be a 100� 100� 15 base with an 80�
80� 85 extrusion.

Finally, the object in Fig. 4.77d can be made as a 100� 100� 100 cube with a

85� 85� 85 cutout.

Chamfer the edges at the marked vertices with chamfer depths of five and look

at the results. You should examine how the system arranges the topology at the

vertex.
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Chamfer the edges with depth 5. If your CAD system allows, do this twice,

once all the edges at the same time and the second time one edge at a time and

check whether they are different. Has the vertex also been chamfered?

Depending on the algorithm used you might get different results, and it is

important to know this because when you chamfer a real object. Real chamfers

with small depth are less visible and it is important to know what the CAD system

produces so that you can tell whether to apply the operation all at once or sepa-

rately. In general you should try and chamfer as many edges as possible at the

same time.

Now try the experiment with different depths for the edges, with depths of

5, 10 and 15, say. Again, do this for each edge separately and then for all

edges at once. Try it once for individual edges with depth order 5, 10, 15, and

once giving the depths in the reverse order, 15, 10, 5. You should be able to do

this using history tree modification so that you don’t have to make new objects

always.

Fig. 4.77 Objects for meeting chamfers experiment
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4.7.6.3 Thin Part Cutting

If you didn’t try the experiment proposed earlier, in Figs. 4.73 and 4.74, then do it.

You should check what your system does for these cases. Try it for a thin shape

with linear extrusion and circular extrusion to see if they do the same things.

At least one system, CATIA v5, does different things for these two cases

depending on whether the circular extrusion is through 180 or 360�.

4.8 Blending

Blending is sometimes called filleting, or rounding. The term blending is used

here.

Blending is similar to chamfering, but the geometry is different. Blending and

chamfering could almost be dealt with in the same section, but are not here

because it would get complicated to distinguish the cases. However, if you have

already read the section on chamfering you may have a sense of déjà vu when

reading about blending.

4.8.1 Parameters

Input:

Face, edge or vertex to be blended

Blend radius, or radii if non-uniform blending is required

Optional set-back offset

Output:

Object modifications are done in place

4.8.2 Potential Errors

Some conditions that should be checked for are:

• Zero or negative radii. (One zero radius may be allowable for variable radius

blending.)

• Too complex blend geometry.

• Partially disappearing blends.

• Blend radius too large so that start or end topology disappears.
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4.8.3 Blending Algorithm

Note that there are different types of blending. The common one is ‘‘constant

radius blending’’, which can be thought of as a portion of the surface of a ball, or

sphere, rolling along between two given surfaces. Another important type of

blending is ‘‘variable radius blending’’, where the blend radius varies from one

given value to another given value.

The general method is to create two cutback curves on the faces on either side

of the edge being blended, delete the original edge and then create a new surface

between the cutback curves. Figure 4.78 shows some examples of cutback curves.

Figure 4.78a shows the original object, with the edge to be blended marked

‘‘e’’. In Fig. 4.78b the cutback lines are for constant radius blending. Figure 4.78c

shows the cutback for variable radius with constant change. Figure 4.78d shows

the cutback lines for variable radius blending with variable change.

Fig. 4.78 Cut-back edges
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Determining the cutback curves for general surfaces can be complex. For

numerical, or sculptured surfaces, this may be done by calculating a series of

points on the curve and fitting a curve to these points. The general condition is that

the points on the curve are where a sphere, of given radius, touches the two

surfaces and is tangent continuous to them.

The sequence for blending a single edge is shown in Fig. 4.79.

Once the cutback edges have been created (Fig. 4.79a) the edge is deleted

(Fig. 4.79b) and the new blend surface and end curves added (Fig. 4.79c).

4.8.4 Blending Edges at a Common Vertex

As with chamfering, edges meeting at a vertex should be blended at the same

time. Figure 4.80 shows what happens in the two cases. If you do not blend the

Fig. 4.79 Blend sequence

Fig. 4.80 Blending edges meeting at a vertex
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edges at the same time you get the figure on the left, if these are blended at the

same time you get the figure on the right.

There is an extra parameter that some systems provide for blending vertices and

that is the ‘‘set-back’’ parameter. With different set-back values the vertex blend

starts further back and you get different rounding quality of the vertex blend.

Figure 4.81 shows roughly what happens with set-back curves.

The original vertex might look as in Fig. 4.81a. The result of simple vertex

blending is shown in Fig. 4.81b, with the dotted edges marking the vertex blend

boundary. A vertex blend with set-backs is shown in Fig. 4.81c.

What the set-back does is to move the boundary of the edge blend back and

replace it with the surfaces corresponding to the vertex blend. This sets up extra

constraints on the geometry of the vertex blend and hence changes the form of the

vertex blend. This is a mechanism for allowing users more control over the shape

of the vertex blend without necessitating them to manipulate control points

directly.

There is some variation over the parameters of the set-back. Obviously the set-

back cannot diminish the size of the blend radius, it must move the parameters

back. The setback distance could be consider as simply a positive value, deter-

mining how far back from the blend boundary the setback starts. However, some

systems interpret the set-back distance as the distance from the vertex, and hence it

should be not less that the blend radius. Check this.

4.8.5 Blending Non-Manifold Edges

The same comments apply to blending non-manifold edges as were made for

chamfering non-manifold edges. To handle these it is necessary to convert the

non-manifold edge as a set of simple edges which are then blended individu-

ally. This is explained in the section on chamfering, so will not be repeated

here.

Fig. 4.81 Vertex blend set-back
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4.8.6 Experiments

4.8.6.1 Meeting Blends Experiment

This is similar to the experiment for chamfers which meet, except that the

geometry is different. Make the figures shown in Fig. 4.82 and blend them with

blend radius 5.

Perform the same tests, that is, blend the edges all together and then separately,

using the construction history to repeat the task. Also try blending the edges with

different radii, say 5, 10 and 15. As before, do this for all edges together and then

singly, noting where errors occur.

Experiment, also, with the set-back mechanism as described earlier.

4.8.6.2 Complex Geometry Experiment

A classic figure (which I did not invent) for showing blending was shown in Fig.

2.36 and is shown in Fig. 4.83.

Fig. 4.82 Objects for meeting blends experiment
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Make an L-shaped figure, as shown in Fig. 4.84a. Make the long sides 100 and

the short sides 50, for example. Extrude the figure upwards 50 mm. On the top

face of the extrusion make a 50� 50mm square, with two sides common to the

extruded figure and a corner touching the concave corner of the L-shape, as in

Fig. 4.84.

Extrude the square shape upwards 50 mm to complete the work object. Note,

the exact dimensions are not too important, it is the arrangement of edges around

the vertex marked with a dot in Fig. 4.83. There are six edges, alternatively

concave, convex, concave, convex, concave, convex, marked e0–e5 in the figure.

If you blend all these edges, with radius 5, for example, you get an interesting

surface which replaces the vertex. Even though the geometry of the original

figure is planar, and the blend surfaces are all cylindrical, the surface where they

meet is a complex surface. It looks like a six-sided patch but is represented as

Fig. 4.84 Blending which creates complex geometry

Fig. 4.83 Blending which
creates complex geometry
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six four-sided patches using a subdivision scheme which will be described in the

next chapter.

Note that with CATIA v5 there is a strange variant. You get different results

depending on the order in which you select the edges, even though they are all

selected at the same time. If you select in the order e0, e1, e2, e3, e4, e5 you get

one result, if you select in the order e0, e2, e4, e1, e3, e5 you get a different result.

CATIA does not blend the common vertex by default and, apparently, the edges

are blended one after the other. Vertex blending is an option and, if blended, you

get the result with the six-sided complex surface area mentioned above.

4.9 Shelling an Object

The operation to shell a part is to create thin-walled objects from solids. As

described here, the operation creates a sheet object and then adds thickness, so

is related to the operation described in Sect. 4.11. The operation came about,

possibly originally, as a result of how to design parts in a refrigerator. There was

a desire to design a box containing electrical components as a solid for the

overall design and then convert it to a thin-walled object as part of the detailing

process.

4.9.1 Parameters

Input:

Body to be shelled

Outer thickness

Inner thickness

Output:

Object modifications are done in place

4.9.2 Potential Errors

Some conditions that should be checked for are:

• Sheet object given. Sheet object thickening is taken here as a separate operation.

• Wire-object given.

• Inner or outer thickness is negative.

• Inner and outer thicknesses are both zero.
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4.9.3 The Shelling Algorithm

The original shelling algorithm was quite simple. It can be summarised thus:

1. Copy the object.

2. Negate the copy.

3. Merge the two objects with the negated copy as a separate shell in the original

object.

4. Offset the geometry.

5. Check for collisions.

The first step is familiar from Sect. 4.3 on reflection or symmetry.

The negation stage is just to turn the copy ‘‘inside-out’’, to make it an object-

shaped cavity in a universe full of material. This is done by reversing all the

surface normals and exchanging the left- and right-loop pointers of each edge.

The third step, to merge the original and negated copy, is a simple data-

structure manipulation. The negated object becomes a new shell in the original

body, since there are no faces common between the two objects. There may be an

option to remove some faces in the shell object before thickening.

4.9.3.1 Offset Geometry

The first complicated step is creating the offset geometry for the object. Several

common surfaces have exact offsets but some need to be converted before offsetting.

Planes, cylinders, spheres and torii can be readily offset, which are the common

analytic surfaces, any others can be converted to numerical surfaces and offset.

Once the offset surfaces have been created the offset curves for the edges can be

recalculated as intersections of the offset surfaces. Similarly, the positions of the

vertices can be calculated from the offset edge curves, or directly from the offset

surfaces.

In the normal CAD system, the offset geometry does not give an exact offset of

the object. This is illustrated in Fig. 4.85.

The original shape is shown in Fig. 4.85a. The normal offset shape is shown in

Fig. 4.85b. The real offset shape is shown in Fig. 4.85c. However, the result you

get from shelling, that is the shape shown in Fig. 4.85b, is probably the correct

result, even though it is not technically the offset. It is more realistic to produce

this result and then let the user decide which edges should be blended. The choice

of which to produce could, though, be an option.

4.9.3.2 Checking for Collisions

In general it is best to use this operation with small offsets. With large offsets there

is a risk of collision between the offset parts of the object. However, it is not
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possible to exclude the use of this operation with large offsets, so it is necessary to

have a collision checking step to avoid self-intersecting operations.

Collision checking is an operation similar to the Boolean operations. There are

two variants:

1. Checking all internal faces against all internal faces and all external faces

against all external faces.

2. Checking all faces against all faces.

Figure 4.86 illustrates the difference between the two. The shape in Fig. 4.86a

is a 100� 50mm rectangle with a 20� 45 cutout.

The shelling operation is applied with an internal offset of 10 mm and an

external offset of 0 mm.

In the first type of check, the internal faces are checked only against internal

faces and you get an object such as that shown in Fig. 4.86b. If all faces are

checked against all faces then you would expect a result such as that shown in

Fig. 4.86c.

Which you consider correct is a matter of opinion, there are advantages with

both of these. The example is just an illustration of two variants you might expect

from a CAD system. It is, however, preferable to avoid collisions altogether and

use small offsets in practice.

Fig. 4.85 Offsetting the geometry
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Note, also, that some systems allow different offsets for specified faces. This

adds more flexibility to the operation but goes against the original meaning of the

operation, to convert solids into thin-walled parts which can be made by folding up

material.

4.9.4 Deleting Faces

It is common to allow some faces of the object to be deleted during the operation.

Figure 4.87 illustrates a simple case where the top face of a cube is deleted when

applying the shell operation.

Face deletion can be done at the stage where the original object and negated

copy are merged. The face to be deleted may be denoted as fp and the corre-

sponding face in the negated copy by fn: The outer loop of fn is moved to fp as a

hole-loop. The offsetting takes care of the rest.

Fig. 4.87 Deleting a face
when shelling

Fig. 4.86 Offsetting the
geometry
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A special case is if the face being deleted has hole-loops. In this case it is

necessary to block off either the hole-loop of fp and make the corresponding hole-

loop of fn a hole-loop in the new face, or vice versa. If the hole-loop of fp is

surrounded by concave edges, then that hole-loop is blocked off with a new face,

otherwise the hole-loop of fn is blocked off.

Note, though, that if the face being deleted does have hole-loops then this will

usually result in the creation of a new separate body.

4.9.5 Designing the Interior

This option does not exist, as far as I know, but could. There was a student project

at the Ecole Polytechnique Fédérale de Lausanne (EPFL) to create a model of an

aircraft, the Smartfish designed by Schafroth, to be built using Stereolithography.

The students had great difficulty producing the shell model because the shape to

be shelled had thin parts which disappeared during the offset process. It would

be possible, after the negation step above, to allow the user to modify the negative

shape before it is merged with the original object and offset. This is mentioned

here because it might be an option in a more specialised CAD system which you

can check for.

In effect this option would allow you to add material to the negated shape. Since

this is a negative shape, an object sized void in a universe of material, adding

material will affect only the cavity and not extrude through the outer skin. Such an

option would allow a user to trim off difficult thin parts or to build internal support

structures at the shelling level.

4.9.6 Experiments

4.9.6.1 Offsetting with Collisions

Make the shape shown in Fig. 4.88 and extrude it upwards 50 mm.

The idea of this shape is that you can examine the internal and external col-

lisions in one object. Shell the object with internal and external thicknesses of

2.5 mm. Change to wireframe drawing mode and change the internal and external

offsets to 5 mm, using the construction history. There should now be coincident

parts to the object, though you should not be able see if the object is correct unless

you section through those parts, possibly in an engineering drawing. Finally

change the offsets to 7.5 and there should be overlap, which will disappear if the

collisions have been detected and handled. If they have not, then be careful to keep

offsets sufficiently small when using this operation in practice, otherwise you will

get self-intersecting objects.
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Try offsetting the outside by 12.5 and the inside by 0. This should show you

whether the collision check is performed for all faces against all faces. If it is then

the outside offset should intrude into the inner space. If it doesn’t, then the outside

will just merge into the outside. Similarly, if you offset the inside by 12.5 and the

outside by 0 you can check whether the inside offset protrudes outside the object.

4.9.6.2 Offsetting Objects with Cavities

Cavities are interesting because they should give rise to separate objects when

shelling. Create a 100� 100� 100 cube and subtract a 50� 50� 50 cube from it.

Apply the shelling operation and check whether the CAD system indicates that the

result is a multi-piece object.

Another exercise with voids is to create a 100� 100� 100 cube and subtract a

50� 50� 50 cube from it, as before, and then to put 20� 20mm intrusions on the

top and bottom faces, depth 20 mm. You get an object with a cross-section as

shown in Fig. 4.89.

Shell the object with an internal offset of 5 and check whether or not the void

merges with the object.

4.9.6.3 Difficult Geometry

Some geometrical arrangements can cause problems when offsetting. Make an

object like that shown in Fig. 4.90.

Fig. 4.88 Shelling shape for
collisions
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The two large, radius 50, circles should be tangent to the baseline, but try to do

this without an explicit constraint. You should make the centre points of the circles

50 mm from the base line and 140 mm apart. Extrude the shape 40 mm.

Offset the exterior of this figure by 5 mm. At the two extreme points there is a

potential geometric problem. There, the surface normals at these points are in

opposite directions. When offsetting, the offset surfaces do no intersect, and so a

bridging face has to be constructed. The question is whether the CAD system can

handle this problem and, if so, what shape the bridging surface is, a plane or a

cylinder.

4.9.6.4 Deleting Faces with Hole-Loops

If a face with a hole-loop is selected for deletion, how should the hole-loops be

handled? Make the objects shown in Fig. 4.91. Shell the parts, specifying the faces

indicated as to be deleted and with a small offset, 5, say.

Does the CAD system indicate that a multi-piece solid has been created?

Fig. 4.89 Object with void
for shelling

Fig. 4.90 Shelling objects
with thin parts
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4.10 Unfolding Objects

This is a conversion operation in the opposite direction. The first time I heard of

unfolding was when it was used for a Christmas card in the early 1980s from

Shape Data, who produced Romulus and Parasolid. It takes a volume object and

produces the flattened shape which can be bent upwards to create the volume.

Figure 4.92 shows a simple example of unfolding a cube.

Fig. 4.91 Deleting a face with a hole-loop when shelling

Fig. 4.92 Unfolding a simple cube
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4.10.1 Parameters

Input:

The object to be unfolded

Interactively, the edges to be cut

Output:

Probably a new model of the flattened shape

4.10.2 Potential Errors

One error is if the object given is a wire object, but the algorithm should be able to

handle sheet- or volumetric-objects.

4.10.3 The Unfolding Algorithm

The algorithm described here is not necessarily that which is used in commercial

systems, it was developed for testing.

This algorithm uses a dual representation as a ‘‘map’’ to determine edges to be cut.

However, in any realistic object this has to be done under user control. The dual is

described in Sect. 2.7.5.4. For a cube, the object and its dual are shown in Fig. 4.93.

The manner in which the dual is used is shown in Fig. 4.94.

The first steps, as with the shelling operation, are to copy the object to be

unfolded, negate it and merge it back to create the interior of the object.

The dual is then used to control the cutting. The original status is shown in

Fig. 4.94a. The first edge in the dual (d0 in Fig. 4.93) is not a wire edge, so the

Fig. 4.93 Cube and dual
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dual edge is deleted and the cube is sliced along the corresponding edge, edge e0

in Fig. 4.93, as shown in Fig. 4.94b.

Here, slicing means combining edge e0 with its matching edge in the object

interior, just created. A ‘‘wire’’ edge is one which has the same loop to the left and

to the right.

The next edge in the dual, d1, is checked. This is not a dual, so d1 is deleted and

edge e1 is sliced as in Fig. 4.94c. Similarly, dual edge d2 is deleted and edge e2 is

sliced, Fig. 4.94d.

The next edge in the dual, d3, is now a wire edge, so it is left and the corre-

sponding edge, e3, left untouched. The object will be flattened out around this

edge.

Dual edge d4 is not a wire edge, so it is deleted and e4 sliced (Fig. 4.94e).

Similarly dual edge d5 is not a wire, so is deleted and edge e5 sliced, Fig. 4.94f.

Dual edge d6 is a wire so is left untouched. Dual edge d7 is then deleted and e7

sliced, Fig. 4.94g, and finally, dual edge d9 is deleted and e9 is sliced, Fig. 4.94h.

All dual edges are now wire edges and the object has been sliced to produce a

single unfoldable part. The remaining dual graph is termed a ‘‘spanning graph’’ of

the original dual if you want to be formal about it.

Fig. 4.94 Splitting using the dual as a map
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One face is then taken as a base face and the faces (and their attached object parts)

unfolded to this base plane. The process is repeated for each face, flattening adjacent

faces which have not already been dealt with until all faces have been handled.

Obviously this handles only simple planar polygonal cases and it is necessary to

generalise the algorithm to handle curved geometry as well. Closed geometry, such

as cylinders, need to be handled specially. Curved geometry needs to be flattened

into planar elements.

In general, though, not every object can be flattened as a single connected piece.

There are simple examples, though, objects which cannot be flattened in such a

way. Objects with pockets or through holes are simple examples. Any object

which is not convex, though, has potential problems with collisions between

flattened parts. The use of an automatic algorithm is not advisable because edge

slicing is better done interactively.

Unfolding is not one of the major shape creation tools and may only be in your

CAD system as part of a sheet-metal application. The purpose of this section is

partly to illustrate the easy flow between solids and sheet objects and partly to

show the use of the dual graph as a support tool for other operations.

4.10.4 Experiments

4.10.4.1 L-Shaped Objects

Make an L-shaped object such as that shown in Fig. 4.95. Extrude it 40 mm and

apply the unfolding operation on it.

Accept any proposals for cut edges that the system proposes. Check visually for

collisions. How is it possible to unfold this object without collisions? Can you use

the tool interactively to produce your solution? How does the system ask you

which edges to slice.

4.10.4.2 Objects with Pockets and Through Holes

Make a 100� 100� 100mm object and put a 50� 50� 20 pocket in the top face.

Use the unfolding tool to unfold it, accepting the slice proposals proposed by the

Fig. 4.95 L-shaped object
for unfolding
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CAD system. Examine the result to check visually for collisions. Did the system

warn you that the unfolded parts interact?

Do the same for a 100� 100� 100mm block with a 20� 20 hole through it.

4.11 Giving Sheet Objects Thickness

This is a conversion operation the other way from sheet objects to volumetric

objects. The effect is shown in Fig. 4.96.

4.11.1 Parameters

Input:

Object to be converted

Outer thickness

Inner thickness

Optionally different face thicknesses

Output:

Object modifications done in place or new object

Fig. 4.96 Converting sheet
models to volumetric models
(from Stroud [1])
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4.11.2 Potential Errors

Some conditions that should be checked for are:

• Either thickness negative

• Both thicknesses zero

• Wire body

4.11.3 The Shell-Thickening Algorithm

In a sheet object, certain edges can be characterised as ‘‘sharp’’, that is, the normal

vectors of the adjacent faces point in opposite directions. Such edges correspond to

small side faces which have been collapsed to edges for the sheet object. Once

these have been converted into faces again, the geometry can be offset to create the

volume object. In summary, the algorithm is:

1. Handle multi-link non-manifold edges.

2. Slice all ‘‘sharp’’ edges to create side faces. If a vertex of the edge has another

slice sharp edge then slice the vertex as well.

3. Offset the geometry.

4. Check for collisions.

4.11.3.1 Handling Multi-Link Non-Manifold Edges

The later parts of the algorithm assume that all edges are adjacent to two faces so

the first step needs to be to convert any non-manifold edges with more than two

faces adjacent, and possibly their vertices. The conversion process simply involves

duplicating the edge, once for each extra pair of links, and then transferring these

link pairs to the duplicated edges. It is also necessary to duplicate vertices as well

which have multiple edge sets so that each vertex has a single connected edge set.

4.11.3.2 Sharp Edge Slicing

Sharp edge ‘‘slicing’’ simply means putting another edge alongside the sharp edge

to create a small face with two edges. However, it is also necessary to separate

vertices, as shown in Fig. 4.97. If, after the geometry of these side faces has been

created, the edges connecting the split vertices lie between faces in the same

surface then they can be removed.

The left of the figure shows a vertex with two sliced edges. The vertex has to be

split into two, moving some edges to the new vertex, as shown on the right of the

figure. This has to be done for every vertex with two or more sliced edges.
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4.11.3.3 Offsetting the Geometry

Offsetting the geometry is the same as for shelling. However, it may not be clear

which side has which thickness, so CAD systems should indicate this, probably

graphically. You can perform a test by creating a simple sheet object, applying

one-sided thickness and looking at the offset direction.

The geometry of the side surfaces should be created as well, but not offset. The

surface is a ruled surface which can be generated as a line segment being swept

along the curve of the split edge. For straight lines and circular arcs this can be

generated directly, for other curves the resulting surface will probably be a

numerical form.

4.11.3.4 Collision Checking and Finishing

Again, this has already been described in the object shelling operation. Once the

geometry has been offset it is necessary to test all modified faces against each other

Fig. 4.97 Splitting a vertex (from Stroud [1])

Fig. 4.98 Branching wire for creating branched sheet object
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to discover if there are collisions. If there are, then the topology of the object

should be modified.

Any extraneous edges, edges lying between the same surface can also be

removed at the end of the operation. Not all CAD systems do this.

4.11.4 Experiments

4.11.4.1 Branching Sheet Objects

It may not be easy to generate branching sheet objects in your CAD system. The

simplest way of doing this is to extrude a branching wire, as in Fig. 4.98.

The problem for CAD system developers is to know what to do about the places

where more than two edges meet. For this reason there may be a limitation on what

you can extrude.

Another possibility for making a branched sheet object is to sweep two non-

branched wires separately and then join them, as in Fig. 4.99.

There is a similar problem to the extrusion problem, that is, to find with which

edge to merge the sheets. This is possible by using face normals, so it is not

inconceivable that it exists, it depends on the level of implementation.

If successful in creating the branched sheet object then add a thickness and

check whether the CAD system can handle it.

Fig. 4.100 Collision objects

Fig. 4.99 Branching wire for
creating branched sheet
object
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4.11.4.2 Colliding Object Parts

Make two shapes like those shown in Fig. 4.100.

The two figures have close elements. In Fig. 4.100a the collision should be

between different sides, whereas in Fig. 4.100b the collision is between the same

side of the object.

4.12 Filling Closed Shell Objects

This is another sheet conversion operation which is more or less trivial. It takes a

sheet object which has no sharp edges and pulls out the interior. Exactly the

opposite of the first stages of the shelling operation.

4.12.1 Parameters

Input:

Object to be filled

Output:

Possibly new object or modification in place

4.12.2 Potential Errors

The most common problem is that a non-closed sheet object has been given. The

boundaries should be indicated graphically. Another potential problem is if a flat,

but closed, sheet object is given, think of a deflated balloon. Checking for an open

sheet is done by checking for the ‘‘sharp’’ edges described in sheet thickening.

4.12.3 The Filling Algorithm

The requirement that the sheet object to be converted should be closed. If this is so,

then it is necessary to handle all non-manifold edges and vertices, which will leave

the object with distinct shells, and then pull out the interior shell. This is then

deleted and the result object is a solid.

Handling the non-manifold is as for thickening sheet objects: all non-manifold

edges are traversed and the links divided into pairs in the same way. Then, all non-

manifold vertices are traversed and multiple edge sets assigned to different vertices.

Pulling out the interior is not as simple as it sounds, because you have no means

of telling which shell is the interior and which the exterior just by their arrange-

ment in the original body. It is necessary to perform a geometric test using a
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standard function: ‘‘point-in-body’’. The simplest way is to take a point well

outside a box surrounding the shell being checked and test if it lies with the body

associated with the shell. If it does, then this shell is the negative one and should be

deleted, because the shell represents a cavity in a universe of material.

4.12.4 Experiments

There are no special experiments described here. It is possible to check this using a

simple extrusion. Make a shape such as that in Fig. 4.101.

Extrude it round the axis 270� and try to fill the resulting sheet. The system

should complain and tell you that it is not closed, check whether the system

indicates visually the open boundaries.

Next redo the extrusion through 360� and ask the system to fill the resulting solid.

4.13 Giving Wire Objects Thickness

Another conversion operation, but this one may not exist. It may exist in your

CAD system as part of an application package, pipe routing is one possibility. The

following description is based on an experimental version done to demonstrate the

technique. Some results are shown in Fig. 4.102.

The wireframe model is created as a set of edges with assigned profiles.

The idea is to allow users to create simple skeletal shapes and then perform an

automatic conversion to volumetric models.

4.13.1 Parameters

Input:

Wireframe model

Output:

Volume model

Fig. 4.101 Open wire for
extrusion
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4.13.2 Potential Errors

One condition to check for is an edge or edges with non-assigned profile, or

degenerate profiles.

4.13.3 The Wire-Conversion Algorithm

The simplest way to perform this is as a set of edge conversions and Boolean

operations to join the sub-volumes. This was done for the model in Fig. 4.103.

The model has mixed cylindrical and square profiles.

Fig. 4.102 Converting wireframe models to volumetric models
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The awkward thing about this method is handle the junctions where the shaped

wires meet. For circular profiles this was done by adding spherical endcaps. The

junctions for square and girder-like profiles is less clear. Ideally this would be done

by expanding the vertices rather than using endcaps.

4.13.4 Experiments

You can simulate the process using extrusion along a path curve instead of wire

conversion, if your system does not have this.

This experiment is based on a CATIA exercise I use for students, so the

information given for creating the geometry is what CATIA asks for. Create six

points with coordinates:

(-100, -100, 0) (100, -100, 0) (100, 100, 0)

Point 1 Point 2 Point 3

(-100, 100, 0) (0, 0, 250) (0, 0, 600)

Point 4 Point 5 Point 6

Create lines as follows:

Fig. 4.103 Converting a wireframe models to a volumetric model

Line 1 Point 1 Point 5

Line 2 Point 2 Point 5

Line 3 Point 3 Point 5

Line 4 Point 4 Point 5

Line 5 Point 5 Point 6
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These lines form a geometric framework aroundwhich a structure will be created.

Next come some planes. This exercise was developed for a course based on

CATIA and the planes were needed as supports for the conics. This may be

because the conic creation parameters are projected to the plane to ensure that a

conic is created and not a space curve. Create planes as follows:

Plane 1 Point 1 Point 2 Point 5

Plane 2 Point 2 Point 3 Point 5

Plane 3 Point 3 Point 4 Point 5

Plane 4 Point 4 Point 1 Point 5

Plane 5 Point 6 Point 5 Point 1

Plane 6 Point 6 Point 5 Point 2

Two other planes are needed: Plane 7 Offset 250 from the XY plane and Plane 8

Offset 600 from the XY plane.

Now create conics. These take a start point, an end point and two tangent

directions. You may also need to specify a plane for the curve, as mentioned above.

Conic 1 Point 1 Point 2 Line 1 Line 2 Plane 1

Conic 2 Point 2 Point 3 Line 2 Line 3 Plane 2

Conic 3 Point 3 Point 4 Line 3 Line 4 Plane 3

Conic 4 Point 4 Point 1 Line 4 Line 1 Plane 4

Conic 5 Point 6 Point 1 Line 5 Line 1 Plane 5

Conic 6 Point 6 Point 2 Line 5 Line 2 Plane 6

Conic 7 Point 6 Point 3 Line 5 Line 3 Plane 5

Conic 8 Point 6 Point 4 Line 5 Line 4 Plane 6

You now have a wireframe geometric framework with which to construct a

solid. Make a new sketch on the XY plane, a circle radius 5 centred at point 1.

Extrude this along conic 1 and conic 4. Create another sketch on the XY plane, a

circle radius 5 centred around point 3. Extrude this along conic 2 and conic 3.

Create a sketch on plane 8, a circle radius 5 centred at the origin and extrude this

along conics 5, 6, 7 and 8. Finally create a circle on plane 7, again a circle radius 5

centred at the origin. Extrude this along lines 1, 2, 3, 4 and 5.

This exercise is intended to show you how to work with wireframe models to

set up a geometric structure and then to use this to create a volume model.

4.14 Lofting

Lofting is an operation that creates an object from a series of sections. There is a

pure surface technique, to be described in Chap. 5 and a volumetric version. The

difference is that the volumetric version closes the end faces while the surface

technique leaves them open.
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Figure 4.104, from Stroud [1], shows a simple example of some sections and

the lofted body in wireframe mode.

As with most geometric tools in CAD systems, the developers hide the truth

from you! No, this is not because they are based on alien technology, it is simply

that the mathematics and the details are complex. Instead you are presented with a

set of indirect tools for shape control which are intended to be more natural than

manipulating control points and parameters. This is, in fact, in keeping with some

of the original work, by Pierre Bèzier, who created a geometric design system

more intuitive for users than that based on equations. Actually, you should be able

to find some tools to show the control polygons or move control points, but these

are not generally encouraged. More of this in Chap. 5.

4.14.1 Parameters

Input:

Sections to be interpolated with start point and direction

Optional shape control parameters for each section

Output:

New solid or possibly modified solid if one or more sections belong to a solid

4.14.2 Potential Errors

Some conditions that should be checked for are:

• Self-intersecting interpolation curves or surfaces.

• Multipiece sections.

• Less than two sections.

• Mixed open and closed sections.

Fig. 4.104 Lofted sections (from Stroud [1])
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4.14.3 The Lofting Algorithm

From a topological point of view the algorithm is simple. The sections are asso-

ciated in the same topological framework and then sets of points, for each set one

point from each section, are used to interpolate side curves. Edges are created

between the points, creating also the side faces, and finally surfaces are calculated

for these side faces.

4.14.3.1 The Topological Framework

Topologically, the sections are made into faces, one inside the other. Take the

sections in Fig. 4.105.

These are made into flat sheet objects and then ‘‘glued’’ together, as shown in

Fig. 4.106.

It should be stressed, though, that this is simply an organisational step, there is

no change in position of the sections. Topologically they are as shown in the

Fig. 4.105 Sections to be unified

Fig. 4.106 Unifying sections
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figure, but spatially they are as defined. This is necessary for matching the sections

and adding the side elements.

If the sections are open, as in Fig. 4.107a then there is a slightly different

approach. The ends of each section are connected in a ladder-like structure before

matching their internal topology.

4.14.3.2 Section Matching

If the sections have the same topology and the vertices can be matched then the

lofted body construction is straightforward, the vertices are joined to create the

body. However it is not always the case that section topology matches, so some

sections will need to have extra vertices inserted.

In Fig. 4.106 the third section has five vertices, so it is necessary to insert an

extra vertex in the other three sections, as shown on the left of Fig. 4.108.

Fig. 4.107 Unifying open sections

Fig. 4.108 Unifying sections
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The corresponding vertices are then joined with lines to complete the lofted body

topology, as shown on the right of Fig. 4.108.

Obviously vertices should not be inserted arbitrarily. Comparing sections can

be done by comparing vertex positions using the section length as a map.

Taking the two simple sections in Fig. 4.109, the length of the section on the

left is 400, and the length of the section on the right is (approximately) 348. This

gives the vertex maps:

v0 v1 v2 v3 v0

0 0.25 0.5 0.75 1

Comparing the values, the largest discrepancy is with v3 in the second section.

Inserting an intermediate vertex halfway between v2 and v3 in the first section, at

length 0.625 gives the required topology. An alternative is to create a single list

with all the different parameter values, i.e.

v0 v1 v2 v3 v4 v5 v6 v7 v0

0 0.25 0.29 0.46 0.5 0.64 0.75 0.83 1

and subdivide each contour at these positions, joining the matching vertices.

Note that if the section is closed the first and last vertices (at 0 and 1) are the

same, for open sections they will be different. In this way the open sections in

Fig. 4.107 can also be compared.

Placing the vertices may not be optimal using this technique. It may be that if

the sections are not too close in position it may be desirable to introduce new

Fig. 4.109 Vertex mapping

v0 v1 v2 v3 v4 v0

0 0.29 0.46 0.64 0.83 1
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vertices in both sections manually to try and get a matching set. Otherwise, though,

it may be necessary to rethink the sections so that the topology matches and maybe

to introduce supplementary sections.

Note, also, that the choice of start point and direction govern the values in the

map. It is not possible to make the selection totally automatic because the tech-

nique is used to create strange shapes.

4.14.4 Other Comments

In lofting you cannot change the topology. Two shapes which cannot be created

are shown in Fig. 4.110.

The figure on the left divides into two arms, the shape on the right ends in a

point. Neither of these shapes is theoretically impossible to create with a modified

technique, it is just that the implemented tools do not allow this.

The figure on the left could be produced by have one complex section where the

section has an internal dividing curve, just before the multiple element sections.

Joining them together might also be possible. At present, though, you can only

make a shape like this using two overlapping lofts.

For the figure on the right, if the final section is a point, or even degenerate, you

would generate degenerate side surface patches, where one side has zero length.

This is possible, but creates an unwelcome singularity at the point, so other

methods may be preferable for creating the end shape.

4.14.5 Experiments

4.14.5.1 Experiment with Sections

Make four square sections, 50� 50mm on planes spaced at 50 mm from each

other. The square sections should be aligned, as shown in Fig. 4.111.

Fig. 4.110 Topology
changes
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Loft these sections in the ‘‘obvious’’ manner, in the order section 0, section 1,

section 2, section 3, using v00; v10; v20 and v30 as alignment points and all sections

having the same direction. You should get a straightforward, rectangular block

shape.

Next, loft the sections but change the order, section 0, section 1, section 3,

section 2, using v00; v10; v30 and v20 as alignment points and all sections having the

same direction. If the system lets you do this you should get a strange bell shape. If

the system objects you could try enlarging section 3 and reducing the size of

section 2.

For the third step, loft the sections in the normal order, section 0, section 1,

section 2, section 3, using v00; v10; v30 and v20 as alignment points but reverse the

direction of section 2. If the CAD system allows this then you should get a twisted

figure with a degenerate point somewhere.

Finally, loft these sections in the order section 0, section 1, section 2, section 3,

using v00; v11; v21 and v31 as alignment points and all sections having the same

direction. This should give you a perfectly valid figure, but there is no way that the

CAD system could be expected to know that you want to align the sections in this

way. This is why you have to be in control.

4.14.5.2 Shape Changing

One popular test is to change from circular to square cross-section. Create sections

on three parallel planes, 100 mm apart, with a 100� 100 square section, a circular

section, radius 25 mm, and finally another 100� 100 square section. Figure 4.112.

Create a lofted body with these three sections. The thing to note is how your

system handles the transition. Is it automatic or do you have to break the circle into

segments? You should also note what options you have for determining how the

section mapping is done. Is it only by vertices? Do you have a proportional

measure?

Fig. 4.111 Vertex mapping
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4.14.5.3 Proportion Changing

This experiment is to look at sections which have the same topology but different

proportions. Figure 4.113 shows three section shapes on planes 100 mm apart. The

first is 100 mm wide and 20 mm high. The second is square, 20� 20mm: The
third is 20 mm wide and 100 mm high.

Fig. 4.112 Section shape changing

Fig. 4.113 Proportion
changing
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Try lofting between the first and third section, first of all. Again, check

what types of connection the system allows. Do you only have a vertex con-

nection? If so, then the proportion differences do not matter. If there is a

proportional option then the vertices will not match and you should see extra

vertices and connection lines. Repeat the loft, but using the second section as a

bridge. If you have the proportion option then check how the connection lines

change.

4.15 Patterns

The creation of a pattern is usually associated with either objects or with opera-

tions that create volumes and then combine these with the basic shape. This is not

a necessity, though.

Normally, patterns come in two flavours: rectangular or circular. In this case,

‘‘pattern’’ is used to mean ‘‘repeated elements’’. Another type of pattern is

described in Sect. 4.16.3 as one of the ‘‘Weird operations’’.

4.15.1 Parameters

For rectangular patterns

Input:

Number in X direction

Number in Y direction

X spacing, or total X distance

Y spacing, or total Y distance

Possibly elements to skip

Output:

Changes made in place

For circular patterns

Input:

Number of elements

Pattern centre

Pattern radius

Start angle

End angle

Output:

Changes made in place
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4.15.2 Potential Errors

There are not many conditions to check for, these are mainly numerical.

• X or Y number less than 1.

• X or Y distance approximately zero.

• Circular pattern number less than 1.

• Circular pattern radius approximately zero.

4.15.3 Patterning Algorithm

Patterning is, at present, positioning and a Boolean operation. The positioning can

be done on the sub-volumes created by some of the operations, such as positive or

negative extrusions, or even the basic object. The sub-volume is copied and

translated to each place in the pattern. The movement is either a translation, or a

translation and rotation, depending on the type of pattern. Note, though, that you

may not be informed if one of the pattern elements misses the target object

completely and so makes no change.

Another way of creating a pattern is to use the parameters of the sub-operation with

the pattern positions as parameters. There is a subtle difference between these two.

4.15.4 Experiments

4.15.4.1 Disappearing Holes

Make an object like that in Fig. 4.114.

Extrude the figure 40 mm. Make a hole on one part of one of the lower faces, as

shown in Fig. 4.115. The hole should have depth 20. If your CAD system has a

hole making function use that, if not, extrude a circle downwards 20 mm into the

material.

Fig. 4.114 Basic figure for disappearing holes
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Put the graphics into ‘‘shaded image’’ mode. Make a rectangular pattern of six

elements in the direction shown with a step length of 13.33.

Where are the middle two holes?

Put the graphics mode into wireframe to see them. If the CAD system has a hole

making operation, then the middle two holes should really extrude to the outside of

the object. More about this, though, in Chap. 10.

4.16 Weird Operations

This section just illustrates some other operations that are not found in CAD

systems to show that there are more possibilities. In general there are many more

possibilities for useful operations than have been realised. The problem is to

identify what is needed and then to create a stable algorithm. This could be done

by code developers or by users, if the users can frame their suggestions in an

appropriate way. More in the next section.

4.16.1 Rebating Edges

The first extra operation is an operation to create shaped edges, shown in

Fig. 4.116.

The algorithm for this operation is described in [1, 5]. It was developed for a

stone product shaping application and is related to blending and chamfering. In

Fig. 4.116a you see the original object. Figure 4.116b shows the edges around the

top face with a simple cutout rebate. In Fig. 4.116c there is a quarter-round shape

in the rebate. In Fig. 4.116d there is a square shape added into the rebate and in

Fig. 4.116e a wiggly form has been added.

All four operations take the edge to be rebated. For the square rebate the other

parameters are the offsets in each direction. For the quarter-round rebate the extra

parameter is the radius of the quarter-round. For the square shape the extra

Fig. 4.115 Basic figure for disappearing holes
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parameters would be the offsets back in each direction. Finally, for the wiggly

rebate the extra parameters would be the radius of the positive cylinder and the

radius of the two negative radii.

Creating such shapes is possible using CAD systems, but laborious and

therefore error prone.

4.16.2 Bending Objects

Bending was developed to show the final state of a model of a paper clip, shown in

Fig. 4.117a and b.

Fig. 4.116 Aesthetic cutout examples (from [5])
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Figure 4.117c and d show bend applied to another object. The operation is an

unusual application, developed around 1979, and has not been transferred into

CAD systems.

The operation takes an axis, an angle, a face or edge in the object part to be

moved.

4.16.3 Creating Simple Celtic Patterns

The algorithm for producing Celtic patterns is based on descriptions from a lovely

book by Bain [7]. However, whereas Bain explains a wide range of patterns, only

very simple patterns were implemented.

Celtic patterns are different from the patterns described earlier because the

repeated elements are arranged alternately. There is a simple creation, shape filling

method which can be used to create complex shapes. Figure 4.118 shows a planar

example, Fig. 4.119 cylindrical and spherical examples and Fig. 4.120a ring

design and a ball design using the same technique.

The shape definition is done interactively, defining an m� n grid with basic

crossovers as the basic shape and then emptying sections, defining turns, etc. until

the final shape has been defined. The conversion method then creates the three

dimensional shape from the two dimensional flat pattern, with wrap arounds for

the cylindrical or spherical patterns. The method is described in [1, 5].

Fig. 4.117 Bent objects (from [6])
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Fig. 4.118 Celtic cross-shape and 3D models (from [5])

Fig. 4.119 Cylindrical and spherical Celtic patterns (from [5])

4.16 Weird Operations 247



4.16.4 Sculpting

Sculpting applies a well-defined function to an object to warp or change the shape

in controlled ways. The five images in Fig. 4.121 show the original object

(Fig. 4.121a) and the object scaled twice along the X-axis (Fig. 4.121b). On the

next row the object has one part enlarged (Fig. 4.121c) and after that, with a

twisted rule applied (Fig. 4.121d). Finally the object with the central bridge part

bulged (Fig. 4.121e).

This sculpting method is applied to facetted shapes, which are easy to

manipulate. It would be relatively simple to develop an application to modify the

geometry of general objects. Scaling in one direction sometimes exists, but

twisting and local shape changing is not generally available.

4.17 Creating New Operations

This section is intended to give a guide to determining new operations. It is likely

that you, the user of the system, could identify more useful operations than the

software developers. This is because you know your application, and what would

make it easier to develop your designs. The software developer knows how to

create such operations, but not necessarily what operations would be desirable.

The following are some suggestions to help develop operations.

1. Define the potential users, as this may help the software developer to evaluate

the economic benefits of new operations.

2. Create ‘‘before’’ and ‘‘after’’ models to show the effect intended by the oper-

ation. For some operations this may be difficult, but it is important to be able to

define clearly what is supposed to happen.

3. Define the expected parameters. The parameters may be topological elements,

such as face, edge or vertex; geometric parameters, such as surfaces, curves or

points; or other things, such as real values or vectors.

Fig. 4.120 Celtic style ring and ball
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Fig. 4.121 Sculpted facetted objects
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4. Define the possible error conditions, the critical cases which have to be avoided

because they would lead to errors.

Existing operations, possible parameters and critical cases are described in this

chapter as an aid to developing these. It is difficult to be precise about new

operations because the nature of these new operations has to be determined on an

individual basis.

The algorithms mentioned in this chapter fall roughly into two groups. On one

side there are operations which add or subtract material by defining a new volu-

metric part and then applying a Boolean operation (e.g. extrusions, symmetry).

The other group make changes to the structure locally to create the result (e.g.

expanding sheet objects or shelling). It is useful if you can formulate an algorithm

in one or both of these categories when you talk to a developer, although not

essential. It may be easier for a developer to use an algorithm which creates a

volumetric part and then adds, subtracts or intersects this with the main body. This

can be easier for the system developer because the Boolean operations are standard

operations and so it saves time. It may also make it easier to create patterns of your

operation or a symmetrical operation. However, using Boolean operations hides

potential problems. If you look back at Sect. 4.7 two alternative problem chamfers

are shown in Fig. 4.74. Using Boolean operations it is easy to get an object which

is technically correct geometrically, but the result may not make sense in the

application world. This is why it is also important to be able to identify critical

cases and say what should happen when these arise.

Finally, please note that the system you use does not necessarily have to be the way

it is. Often system developersmaymake arbitrary decisions to solve problemswithout

knowing that there may be a different option which would be preferable to the users.

This is not intended as a criticism of software developers, simply an observation that

the systems are complicated to develop. Development is probably best done by

software engineers but they need to hear about what users want. For users, it is

important to realise that there are alternatives and not to accept awkward manipula-

tions when it might be simple to change the software tools. An example is the way in

which blended edges are handled during drafting, the software solutionmay be correct

as a solution, but should the operation really function that way? It is important to

establish a dialogue with the system developers to suggest alternatives in order that

CAD systems become tools function for the benefit of the user.

4.18 Chapter Summary

This chapter is intended to help users understand what is being done by CAD

operations and to create their own test procedures to map out the functionality of a

CAD system. Many ‘‘classical’’ operations are described, with a list of possible

parameters, error conditions and a brief outline of algorithms. Possible experi-

ments are described to clarify implementation details.
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4.19 Operation Exercises

Many experiments for individual operations were described in the chapter.

4.19.1 Exercise 1: Sweeping

In many CAD systems modelling operations are a combination of an operation to

create a solid and a Boolean operation to unite this solid with the original object.

This exercise is to demonstrate some aspects of this.

Draw a sketch on the xy plane, as in Fig. 4.122.

Extrude the shape 200 mm. Now on the back face, the large face, 200�
170mm; sketch a rectangle 160� 60 as shown in Fig. 4.123.

Extrude the rectangle to cut out a rectangular hole through the object. You can

choose whether to extrude the rectangle 50 mm or ‘‘until last’’.

Change the visualization mode to wireframe.

On the top inside face, markedwith an arrow in Fig. 4.124, draw a circle, radius 10.

Fig. 4.122 Basic shape

Fig. 4.123 Basic shape
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Fig. 4.124 Basic shape with first hole

Fig. 4.125 Basic shape with cylinders
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Extrude the circle ‘‘until last’’. Repeat the sketch to add a circle centred in the

face (i.e the dimension 30 should be 80). Extrude the circle ‘‘until next’’. Add a

third circle, symmetrical with the first, that is the 30 should be 130. Extrude it

60 mm. The resulting shape should be as shown in Fig. 4.125.

Add a blend (or fillet), radius 5 to the cylindrical faces. Make sure that the blend

is added to the face and not the individual edges around the face.

Edit the first sketch, as shown in Fig. 4.126.

Change the dimension 20 to 19 and exit the sketcher. Note the change to the

blend in the column on the right. Now, the specific extrude is not long enough and

so the edges round one blended end of the column are convex, hence the change in

shape. The other two columns are adjusted automatically.

Now, go back and edit the sketch which created the rectangular hole through

the object. Add a second rectangle to the face, as in Fig. 4.127.

When you update the operations you should get a shape like that shown in

Fig. 4.128.

Note that the first column now extends through the extension. It is interesting to

note whether the face blend has been transferred to the second part as well. If it

has, as happens in CATIA v5 for example, this is due to a mechanism called

‘‘persistent naming’’, which will be described in Chap. 7 and in Chap. 12. This

mechanism enables the system to identify that the cylindrical part seen in the hole

after the modified hole extrusion is also part of the face which was blended. It is a

mechanism for trying to estimate what you intended to do, but will be described in

more detail later.

The different options, length, until next, until last, until plane, define the sizes of

the simple volumes added to the basic shape to give the result of the extrusion

operation. It is difficult to be precise about how to use these, so this exercise is

Fig. 4.126 Basic shape
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Fig. 4.128 Basic shape with cylinders after the second cutout

Fig. 4.127 Basic shape
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intended to show some effects. If parts are intended to be parametric then it can be

dangerous to use explicit dimensions. ‘‘To next’’, ‘‘To last’’, ‘‘To surface’’ can be

more useful for such cases.

A small extra task is to change the dimension ‘‘40’’ in Fig. 4.122 to 30 and to 25

and watch what happens to the cylinder extruded ‘‘until last’’. In CATIA v5 the

definition of ‘‘last’’ is the last face which totally intersects the shape being extruded,

so that the end edge geometry can be calculated. Other definitions are possible,

though. It is possible to define ‘‘last’’ as the last surface intersected by the shape.

4.19.2 Exercise 2: Complexity Testing

An important general test is to check the level of complexity supported by a CAD

system on the hardware available. The tests described here involve two methods:

symmetry or reflection; and pattern operations. Symmetry has an exponential

build-up and is easier to create huge objects quickly, but both symmetry and

patterns use Booleans to combine elements.

Make a shape such as that in Fig. 4.129. This shape is a 40� 40� 40 cube with

three perpendicular 80� 20� 20 blocks added.

Make a pattern of 10� 10� 10 elements with a distance of 82 between each

element. This is just to build a pattern with size which can be increased pro-

gressively. You keep doing this until the system cannot cope. Note that the first

shape has 56 vertices, 84 edges, 36 faces and 6 hole-loops. With the first pattern

Fig. 4.129 Basic shape for
complexity analysis
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you should have 1,000 of these models, to calculate the number of elements in the

models.

Another method is to use the symmetry operation. Reflect about each of the

extrusions in turn, as shown in Fig. 4.130. This has a slightly more complex

progression in the number of elements. The second shape has 104 vertices, 156

edges, 66 faces and 12 hole-loops. The third shape has 192 vertices, 288 edges,

120 faces, 24 hole-loops, it also has a genus of 1, but that is not recorded in the

datastructure. The fourth shape has 352 vertices, 528 edges, 216 faces, 48 hole-

loops, and a genus of 5. The numbers almost double each time but some elements

are merged, hence the diminution. Note, if you use a pattern with distance of 80

instead of 82 you get the same kind of increase because the individual elements are

merged. Count the number of times you can perform the symmetry operation to

give a rough estimate of the number of elements allowed.
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Chapter 5

Geometry

Geometry is one of the parameters of a modelling system. For curves and surfaces

various ‘‘philosophies’’ have existed. Some early systems used planar approxi-

mations to the real geometry and so had facetted models. One system supple-

mented this facetted model with exact geometry so that real geometric calculations

could be done as well to refine the approximation during modelling. Another

philosophy was to use numerical forms for all the geometry, which complicates the

algorithms but means that the system has a uniform approach. Perhaps the

mainstream approach, though, is to have a mixture of simple analytic forms for

common geometries and use numerical forms for everything else. This approach

will be assumed here.

Note that there are many good books on different aspects of geometry. The first

important one was by Faux and Pratt [1] on general geometry. Numerical geometry

is a complex subject, though, and there exist other, more detailed books on dif-

ferent aspects of numerical geometry. One is by Farin [2] and another by Piegl and

Tiller [3], which is on the important modern form, the NURBS form. Hoschek and

Lasser [4] is yet another book which I find useful. It is not intended to go into great

detail about numerical geometry in this chapter. The role of this chapter is to put

geometry into a modelling and CAD perspective so other aspects are emphasised

here.

5.1 Tolerances

Perhaps the first thing to mention is tolerances. These are not the same as design or

manufacturing tolerances, these are numerical tolerances used for comparing

values.

A list of tolerances, based on the work of Hans-Ulrich Pfeifer [5] is:

• Absolute tolerance—a measure of machine precision.

• Relative tolerance—a measure for comparing scaled values.

I. Stroud and H. Nagy, Solid Modelling and CAD Systems,
DOI: 10.1007/978-0-85729-259-9_5, � Springer-Verlag London Limited 2011
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• Point tolerance—the minimum distance between distinct points.

• Angular tolerance—the minimum difference discernible between angular

measures.

• Polynomial tolerance—A tolerance for polynomial evaluation.

You probably won’t see all these, they may not all be present in the code,

however you do sometimes need to know about tolerances and what they mean.

The problem arises with the representation of real numbers in computers. In

general you should not write a line of code like:

ifa ¼ b then. . .

where a and b are ‘‘real’’ numbers, that is, numbers which are not whole numbers

or integers, and the ‘‘=’’ is a test for equality. In general, the test is done in this

way:

ifabsða� bÞ\tol then. . .

This is because real numbers are not exact, there might be a small error which is

significant for a computer, even though it is not really large. It is usual to have

statements like the following for comparing numbers in different ways.

ifða� bÞ[ tol then a is larger than b

else ifða� bÞ\� tol then a is smaller than b

else a is equal to b

The value of tol is the type of tolerance mentioned at the beginning of this

section and is what you consider to be a reasonable difference, how to tell the

computer what is ‘‘really’’ a significant difference. Work has been done on

exact calculation using fractions, for example, but this is not the place to

describe that.

In real terms it is to be expected that CAD systems will be able to work with

differences of about 10�6, though this depends on how many bits are assigned to

representing a real value. If this is in millimetres then it is smaller than you can

make, but it is still significant in computer terms. It is not possible just to increase

the tolerance value arbitrarily because this will lose precision for the models. In

early research this was called the ‘‘bolt-on-battleship’’ problem, because the size of

a bolt with respect to the size of a battleship was small, but the bolt itself was not

insignificant in size.

What you find, in several commands which use geometry, especially free-form

geometry, let you specify the size of the tolerance used in the command. Tolerance

values should certainly be less than 1, and probably not larger than 10�4 but it is

difficult to be precise. Just be aware of the tolerances in commands and, if the

system does not recognise geometric elements as being coincident that you think

are coincident, it may be a tolerance problem.
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5.2 Positions, Vectors and Transformations

This section describes some basic geometric elements.

5.2.1 Positions and Vectors

You are probably used to positions and vectors being simple three-element vec-

tors: ðx; y; zÞ, but in modelling there is implicitly an extra element to make what is

called ‘‘homogenous coordinates’’.

Homogenous coordinates have the form:

ðx; y; z;wÞ

The ‘‘w’’ is a scaling factor dividing the vector elements, so this is equivalent

to:

x

w
;
y

w
;
z

w
; 1

� �

This method of representing points allows them to be treated using transfor-

mation matrices, described in more detail in Chap. 13.

5.2.2 Transformations

Transformation matrices are 4� 4 matrices which operate on homogenous coor-

dinate systems. For the purposes of transformation matrices the homogenous

coordinate element w can be considered to be 1.

The matrix has the form:

a b c d

e f g h

i j k l

m n o p

2

6

6

4

3

7

7

5

The sub-matrix:

a b c

e f g

i j k

2

4

3

5

controls rotation and scaling. The column:

d

h

l

2

4

3

5
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controls translation. The bottom row:

m n o½ �

may be all zeroes and, finally, the element:

p½ �

is usually 1. Note, though, that if it is not 1 then this is equivalent to an implicit

scaling because it changes the value of w in the homogenous coordinates.

Some common examples are:

Rotation by h about the X-axis:

1 0 0 0

0 cos h � sin h 0

0 sin h cos h 0

0 0 0 1

2

6

6

4

3

7

7

5

Rotation by h about the Y-axis:

cos h 0 sin h 0

0 1 0 0

� sin h 0 cos h 0

0 0 0 1

2

6

6

4

3

7

7

5

Rotation by h about the Z-axis:

cos h � sin h 0 0

sin h cos h 0 0

0 0 1 0

0 0 0 1

2

6

6

4

3

7

7

5

Translation by ðd1; d2; d3Þ:

1 0 0 d1
0 1 0 d2
0 0 1 d3
0 0 0 1

2

6

6

4

3

7

7

5

Uniform scaling by s:

s 0 0 0

0 s 0 0

0 0 s 0

0 0 0 1

2

6

6

4

3

7

7

5
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Unequal scaling by s1; s2; s3 in the ðx; y; zÞ directions:

s1 0 0 0

0 s2 0 0

0 0 s3 0

0 0 0 1

2

6

6

4

3

7

7

5

Note that it is common to allow only uniform scaling in CAD systems. This is

because unequal scaling often changes the character of the geometric elements

transformed. This is possible to do but the standard solution is to change the form

of the geometry from simple, analytic forms to numerical geometry, so-called

‘‘geometric migration’’. This will be described later.

5.2.2.1 Transformation Combinations

Transformation matrices may be combined simply by multiplying them. In this

way it is possible to decompose complex transformations into simple sub-steps.

This has already been described in Sect. 4.3.

Suppose you have an object centred at (5, 10, 8) and you want to rotate the

object about an axis through this centre in the Z-direction rather than the Z-axis

through the origin. This can be done by moving the object to the origin, rotating it

about the Z-axis through the global origin and then moving it back. The three

matrices to do this are:

1 0 0 5

0 1 0 10

0 0 1 8

0 0 0 1

2

6

6

4

3

7

7

5

0:866 �0:5 0 0

0:5 0:866 0 0

0 0 1 0

0 0 0 1

2

6

6

4

3

7

7

5

1 0 0 �5

0 1 0 �10

0 0 1 �8

0 0 0 1

2

6

6

4

3

7

7

5

Instead of applying these separately, though these can simply be multiplied

together to produce a single matrix:

0:866 �0:5 0 5:67
0:5 0:866 0 �1:16
0 0 1 0

0 0 0 1

2

6

6

4

3

7

7

5

This kind of transformation combination is used to accumulate a sequence of

modifications for assemblies. They are also used for combining different graphics

operations in a graphics ‘‘pipeline’’.

5.2.2.2 Transformation Blacklist

Obviously the values of the matrix elements are very general and could be any-

thing, but certain combinations should be avoided.
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Zero Scaling

The transformation matrix:

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2

6

6

4

3

7

7

5

would ‘‘squash’’ all X values to be zero. A related matrix:

0 0 0 50

0 1 0 0

0 0 1 0

0 0 0 1

2

6

6

4

3

7

7

5

would project the object onto the plane X ¼ 50.

Projection matrices are useful for graphics purposes, but they are non-invert-

ible. That is, you cannot recover the transformed geometry.

Shear Transformations

Shear transformations skew an object, creating changes to the coordinates which

depend on original coordinate position. An example is the matrix:

1 2 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2

6

6

4

3

7

7

5

which would change the X position depending on the Y coordinate. This kind of

matrix changes object geometry in strange ways.

5.2.2.3 Transformation Exercises

Use the shape in Fig. 5.1 for the exercises.

(0, 0, 0)

(0, 10, 0)

(10, 0, 0)

(10, 5, 0)

(5, 10, 0)

(5, 5, 0)

Fig. 5.1 Basic shape for
transformation
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5.2.2.4 Transformation 1

What does the following transformation do?

0:866 �0:5 0 0

0:5 0:866 0 0

0 0 1 0

0 0 0 1

2

6

6

4

3

7

7

5

5.2.2.5 Transformation 2

What does the following transformation do?

1 0 0 5

0 1 0 2

0 0 1 3

0 0 0 1

2

6

6

4

3

7

7

5

5.2.2.6 Transformation 3

What does the following transformation combination do?

0:866 �0:5 0 5

0:5 0:866 0 2

0 0 1 0

0 0 0 1

2

6

6

4

3

7

7

5

5.2.2.7 Transformation 4

What does the following transformation combination do and how is it related to

the previous example?

0:866 �0:5 0 3:330
0:5 0:866 0 6:830
0 0 1 0

0 0 0 1

2

6

6

4

3

7

7

5

5.3 Analytic and Numerical (Free-Form) Geometry

With the mixture of analytic and numeric forms, the simple forms are used

whenever possible and numerical, or free-form geometry is used for complex or

unusual forms. This means that it is sometimes necessary to convert between
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geometric forms. ‘‘Geometric migration’’ is a term used to describe the change

from analytic geometry to free-form, or numeric geometry.

A set of analytic curves might be:

Line

Circle

Ellipse

A set of analytic surfaces might be:

Plane

Cylinder

Cone

Sphere

Torus

There are several forms of free-form geometry, the most common are Bézier,

BSpline and NURBS.

Exactly which type of geometry is used in the CAD system should be invisible

to you. There have been different choices. One early implementation used only

free-form geometry, a common philosophy now, though, is to mix analytic and

free-form geometry. Analytic geometry is used for the common cases, free-form

geometry is used for everything else. It is easy to give examples of uses of free-

form geometry. One of these was given in the blending examples (Sect. 4.8.6.2,

Fig. 4.83). If you intersect two cylinders of different radii, or if the axes do not

intersect, then you get a complex intersection curve.

As stated above, the important thing is that you are not aware of what type of

geometry is being used. About the only way I know of checking is to export a

model using STEP AP203, for example, and read the resulting file. Free-form

geometry ‘‘closes the gap’’, that is, it provides a way of representing all geometry

which cannot be represented by an explicit analytic form.

The notion of geometric ‘‘migration’’, mentioned above, comes when an

operation changes the form of the geometry. Consider a system which has only

planes, circular cylindrical surfaces and free-form surfaces. If a cylinder, with the

Z-axis as cylinder axis, is scaled in the X direction by 2, then the only way to

represent this is to convert the analytic cylindrical surface into a free-form surface

and scale the free-form surface unevenly. The analytic form becomes a free-form

geometrical entity, hopefully without you realising it, but what happens if you now

scale in the Y direction by 2? The cylindrical shape is re-established, but which

geometry is now used?

The answer is probably that the free-form geometry is still used because it is

more difficult to return and check that a free-form geometry corresponds to a

simple form than to handle the free-form geometry. The disadvantage, though, is

that analytic forms are more precise; they allow exact determination of some

results and are less prone to small precision errors.

In general, be aware of the problem and avoid operations such as uneven

scaling whenever possible.
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5.4 Geometry and Modelling

As described in Stroud [6], as a general strategy in modelling, the topology and

geometry are handled separately. Geometry is handled in terms of the general

entities: point, curve, surface, and it is up to the geometric package to sort out the

geometric types.

This means that the geometry is handled via a functional interface consisting of

some general geometry handling functions. The main ones, from [6], are these:

1. Geometric intersection package.

2. Calculate a curve tangent.

3. Calculate a surface normal.

4. Calculate the parameter value of point on curve.

5. Calculate the parameter values of a point on a surface.

6. Calculate coordinates from a parameter value on a curve.

7. Calculate coordinates from parameter values on a surface.

8. Create a surface by sweeping an edge in a straight line, circular arc, or along a

curve.

9. Modify geometry.

10. Reparametrise a curve.

11. Produce an offset curve from a given curve.

12. Produce an offset surface from a given surface.

If you have to develop extra code for a CAD system application, then what you

expect to see is something like this list as part of what is called the ‘‘Application

Programmer’s Interface’’, or API. You do not need to know details of the data-

structure, just be able to handle the general structures.

A widely used facility is the geometric intersection package. The six possible

intersection combinations are as follows:

• Point–point intersection. This is a check to see whether two points are coincident.

• Point–curve intersection. This is a check to see whether a point lies on a curve.

• Point–surface intersection. Check if a point lies on a surface.

• Curve–curve intersection. Check (and return intersection results) if two curves

cut each other at points, are coincident, or are partially coincident.

• Curve–surface intersection. Check (and return intersection results) if a curve lies

on a surface, cuts through it, or is partially coincident with it.

• Surface–surface intersection. Check (and return intersection results) if two

surfaces cut each other along a curve, touch at a point, are coincident, or

partially coincident.

The intersection between the elements is then sorted out on the other side of the

interface. This means that the geometry set can be changed without modifying

code in many places.

The main geometric handling function, which you would use, would take two

geometric entities of any type and, if you could see the code, might look like:
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IF (point(g1) IS TRUE) THEN BEGIN

IF (point(g2) IS TRUE) THEN point_X_point(g1, g2);

ELSE IF (curve(g2) IS TRUE) THEN point_X_curve(g1, g2);

ELSE IF (surface(g2) IS TRUE) THEN point_X_surf(g1, g2);

END

ELSE IF (curve(g1) IS TRUE) THEN BEGIN

IF (point(g2) IS TRUE) THEN point_X_curve(g2, g1);

ELSE IF (curve(g2) IS TRUE) THEN curve_X_curve(g1, g2);

ELSE IF (surface(g2) IS TRUE) THEN curve_X_surf(g1, g2);

END

ELSE IF (surface(g1) IS TRUE) THEN BEGIN

IF (point(g2) IS TRUE) THEN point_X_surf(g2, g1);

ELSE IF (curve(g2) IS TRUE) THEN curve_X_surf(g2, g1);

ELSE IF (surface(g2) IS TRUE) THEN point_X_surf(g1, g2);

END

The curve_X_curve function would then handle the different types, breaking

down the curve into sub-types, thus:

IF (straight(g1) IS TRUE) THEN BEGIN

IF (straight(g2) IS TRUE) THEN straight_X_straight(g1, g2);

ELSE IF (circle(g2) IS TRUE) THEN straight_X_circle(g1, g2);

ELSE IF (ellipse(g2) IS TRUE) THEN straight_X_ellipse(g1, g2);

ELSE IF (freeform(g2) IS TRUE) THEN

straight_X_freeform(g1, g2);

END

ELSE IF (circle(g1) IS TRUE) THEN BEGIN

IF (straight(g2) IS TRUE) THEN straight_X_circle(g2, g1);

ELSE IF (circle(g2) IS TRUE) THEN circle_X_circle(g1, g2);

ELSE IF (ellipse(g2) IS TRUE) THEN circle_X_ellipse(g1, g2);

ELSE IF (freeform(g2) IS TRUE) THEN circle_X_freeform(g1, g2);

END

ELSE IF (ellipse(g1) IS TRUE) THEN BEGIN

IF (straight(g2) IS TRUE) THEN straight_X_ellipse(g2, g1);

ELSE IF (circle(g2) IS TRUE) THEN circle_X_ellipse(g2, g1);

ELSE IF (ellipse(g2) IS TRUE) THEN ellipse_X_ellipse(g1, g2);

ELSE IF (freeform(g2) IS TRUE) THEN

ellipse_X_freeform(g1, g2);

END

ELSE IF (freeform(g1) IS TRUE) THEN BEGIN

IF (straight(g2) IS TRUE) THEN straight_X_freeform(g2, g1);

ELSE IF (circle(g2) IS TRUE) THEN circle_X_freeform(g2, g1);

ELSE IF (ellipse(g2) IS TRUE) THEN ellipse_X_freeform(g2, g1);

ELSE IF (freeform(g2) IS TRUE) THEN freeform_X_freeform(g1, g2);

END
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Note the order of the geometric entities, g1 and g2, changes to make sure that

they are in the correct order for the basic routines. Note, also, that the more

analytic types there are, the more separate basic routines have to be implemented.

This is a limiting factor which tends to keep the number of explicit, analytic

geometric types to a minimum.

If a new curve type is introduced then the curve_X_curve only needs to be

changed to called the new curve type functions. This usually happens during early

development phases but by the time the CAD system comes to the market such

changes are rarer. However, this should be invisible to the user.

The results have to be returned in a uniform set which has not only geometric

entities, points, curves, or surfaces, but also extra information. The result set used

in the pioneering BUILD system, was:

• COINCIDENCE (same orientation)

• COINCIDENCE (reverse orientation)

• POINT

• CURVE

• SELF-INTERSECTING CURVE

• SURFACE

The result set is a list of entities, which may be empty, have one element or

several elements.

Similarly for the other functions. The curve tangent function takes a curve, you do

not call ‘‘line_tangent’’, ‘‘circle_tangent’’, ‘‘ellipse_tangent’’, etc. functions yourself.

Exactly the same is done for surfaces, the programmer supplies a surface

geometric entity to the interface and the interface breaks it down into types, plane,

cylinder, cone, sphere, torus or free-form surface.

One thing to notice, though, is that all geometry is taken as parametric, not just

the free-form geometry. Parameter values are very important for several algo-

rithms that form the backbone of a CAD system. Drawing and Boolean operations,

for example, both use parameters.

5.5 Working with Curves

The first thing to do is to extract the analytic curve types and handle these. The

main interest comes, though, with free-form geometry, which is dealt with in more

detail here. Note, though, that the presentation is based on work by other people

and is an interpretation of that. If you are interested in the mathematical aspects

and details then there are several good textbooks which can be consulted instead.

See the list at the beginning of this chapter. The information presented here is

intended to be enough to understand the CAD tools.

The principles for free-form curves and surfaces are very similar. It is easiest to

explain the curves first and then extend this for surfaces. In this book the emphasis

is on Bézier forms because these are easy to explain. The same types of operation

5.4 Geometry and Modelling 267



are needed for other free-form curve types as well, but the explanation is more

complicated.

5.5.1 Bézier Curves

Bézier geometry is an example of free-form geometry which has the advantage of

having a simple mathematical background. These curves have been named after

Professor Pierre Bézier, who developed them for Renault, but similar work was

done by de Casteljau at Citroën and in the United States of America. Farin [2]

gives a better account of this.

Bézier’s idea was to provide designers with a more intuitive way for designing

curves based on the end points and tangents at these end points.

The general form for a point on the curve is:

pðtÞ ¼
X

n

i¼0

f ðtÞbi

where the functions f ðtÞ are weighting functions, called the Bernstein polynomials,

dependent on the parameter t. The terms bi are a set of points, called ‘‘control

points’’ which govern the shape of the resulting curve. The value of t usually varies

between 0 and 1 (inclusive) for a curve, but the formula is valid for other values of

t as well.

For Bézier curves the functions f ðtÞ are the expansion of:

ðð1� tÞ þ tÞn

Giving the general formula for a Bézier curve as:

X

n

i¼0

n!

i!ðn� iÞ! ð1� tÞn�i
tibi

A quadratic Bézier curve has the form:

f ðtÞ ¼ ð1� tÞ2b0 þ 2tð1� tÞb1 þ t2b2

A cubic Bézier curve (a common form) has the form:

f ðtÞ ¼ ð1� tÞ3b0 þ 3tð1� tÞ2b1 þ 3t2ð1� tÞb2 þ t3b3

A quartic Bézier curve has the form:

f ðtÞ ¼ ð1� tÞ4b0 þ 4tð1� tÞ3b1 þ 6t2ð1� tÞ2b2 þ 4t3ð1� tÞb3 þ t4b4

It is also possible to write these in matrix form. For example, for the cubic

Bézier can be written as:
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t3 t2 t 1
� �

�1 3 �3 1

3 �6 3 0

�3 3 0 0

1 0 0 0

2

6

6

4

3

7

7

5

b0
b1
b2
b3

2

6

6

4

3

7

7

5

There are a number of important properties that can be observed.

1. From the function form, ðð1� tÞ þ tÞn it is easy to see that the sum of the

weighting functions, f ðtÞ must be 1 for any value of t.

2. When t = 0 only the first function is non-zero, so the curve passes through the

first point. Similarly, when t = 1 only the last weighting function is non-zero,

so the curve passes through the last point.

3. The tangent at the start of the curve is in the direction b1 � b0 and the tangent at

the end of the curve is in the direction b3 � b2. This can be verified by dif-

ferentiating the curve function with respect to t and substituting 0 and 1 into the

differentiated version.

4. If t is between 0 and 1 then the curve lies within the convex hull of the control

points.

5. The curve can be transformed (rotation, translation, scaling) by transforming its

control points.

6. There are two descriptive elements for a curve the degree and the order. The

degree is the power of the polynomials, the order is the number of points.

degree = order - 1.

A simple example of a Bézier curve is shown in Fig. 5.2.

5.5.2 B-Spline Curves

B-spline curves are another common example of free-form geometry which has

some advantages over the Bézier geometry described in the previous section.

The‘‘B’’ in the name stands for ‘‘Basis’’ and this works in a similar way to the

Bézier curve, but with different functions.

Instead of having a simple set of basis functions, as with Bézier, the basis

functions are derived using simple rules. This may seem a disadvantage but there

are a number of benefits.

Fig. 5.2 Simple Bézier
curve and control polygon
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The basis functions for a cubic B-spline are:

t3=6
ð1þ 3t þ 3t2 � 3t3Þ=6

ð4� 6t2 þ 3t3Þ=6
ð1� 3t þ 3t2 � t3Þ=6

There are different properties for B-splines to those for Bézier curves. For a

start, only one of the equations is zero at t = 0 and at t = 1, which means that the

curve does not pass through any of the control points. B-splines are useful for

representing compound curves.

An example of a simple B-spline is shown in Fig. 5.3.

Stroud [6] gives an explanation of the basis function derivation, but you should

consult dedicated geometric books, such as Faux and Pratt [1] or Farin [2].

These equations are shown plotted in Fig. 5.4.

In fact the conditions determine that the first basis function is a multiple of t3

and the last a multiple of ð1� tÞ3.
A simple conversion between Bézier and B-spline control points can be found

by comparing the basis functions. Suppose the control points of two equal curves

are Be
0;B

e
1;B

e
2;B

e
3; and Bs

0;B
s
1;B

s
2;B

s
3; respectively.

Evaluating both sets of basis functions at t ¼ 0 and at t ¼ 1 gives:

Be
0 ¼ ðBs

0 þ 4Bs
1 þ Bs

2Þ=6
Be
3 ¼ ðBs

1 þ 4Bs
2 þ Bs

3Þ=6

Differentiating the basis functions and evaluating these at t = 0 and t = 1 to find

the tangents gives:

Fig. 5.3 Simple B-spline
curve and control polygon
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Be
1 ¼ ð2Bs

1 þ Bs
2Þ=3 and

Be
2 ¼ ðBs

1 þ 2Bs
2Þ=3

Solving the other way gives:

Bs
1 ¼ 2Be

1 � Be
2

Bs
2 ¼ 2Be

2 � Be
1

and:

Bs
0 ¼ 6Be

0 � 7Be
1 þ 2Be

2

Bs
3 ¼ 6Be

3 � 7Be
2 þ 2Be

1

Examining the control points for the two examples in Figs. 5.2 and 5.3, that is:

Bézier: (-1, -1, 0), (2, 2, 1), (4, -1, 5) and (6, 1.5, 7)

B-spline: (-12, -22, 3), (0, 5, -3), (6, -4, 9) and (12, 20, 9) which are the

same curve, shows that these relationships hold.

The basis functions for a quadratic B-spline can be derived to give the

functions:

t2=2;
ð�2t2 þ 2t þ 1Þ=2;
ðt2 � 2t þ 1Þ=2

For a quartic B-spline, you get the following basis functions:

t4=24;
ð�4t4 þ 4t3 þ 6t2 þ 4t þ 1Þ=24;
ð6t4 � 12t3 � 6t2 þ 12t þ 11Þ=24;
ð�4t4 þ 12t3 � 6t2 � 12t þ 11Þ=24;

ðt4 � 4t3 þ 6t2 � 4t þ 1Þ=24

Substituting ð1� tÞ for t in the B-spline basis equations and calculating the new
equations gives the same equations as a result but in reverse order. This demon-

strates that the equations are symmetric.

5.5.3 Rational Curve Forms

The geometric methods described thus far cannot be used to represent all shapes.

As a simple example, a circle cannot be represented exactly. Take a Bézier form,

Fig. 5.4 Bézier basis
functions
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for example, approximating a circle. You might consider a quadratic form with

three control points at: ð0; rÞ; ðr; rÞ; ðr; 0Þ. Evaluating this at t ¼ 0:5 gives:

f ð0:5Þ ¼ 0:25ð0; rÞ þ 0:5ðr; rÞ þ 0:25ðr; 0Þ ¼ ð0:75r; 0:75rÞ

For a circle the correct value would be: r
ffiffi

2
p

2
; r

ffiffi

2
p

2

� �

.

The method that was developed to produce exact geometry is to assign weights

to the control points. The rational Bézier form with weights looks like:

PðtÞ ¼ ð1� tÞnB0w0 þ ntð1� tÞn�1
B1w1 þ � � � þ ntn�1ð1� tÞBn�1wn�1 þ tnBnwn

ð1� tÞnw0 þ ntð1� tÞn�1
w1 þ � � � þ ntn�1ð1� tÞwn�1 þ tnwn

For the quadratic example, above, you would have:

PðtÞ ¼ ð1� tÞ2ð0; rÞw0 þ 2tð1� tÞðr; rÞw1 þ t2ðr; 0Þw2

ð1� tÞ2w0 þ 2tð1� tÞw1 þ t2w2

According to Farin, w0 and w2 can be set to 1 without losing generality, which

lets you solve for w1 to find the weight for a circle. Doing this, with t ¼ 0:5 gives:

PðtÞ ¼ ð1� tÞ2ð0; rÞ þ 2tð1� tÞðr; rÞw1 þ t2ðr; 0Þ
ð1� tÞ2 þ 2tð1� tÞw1 þ t2

r
ffiffiffi

2
p

2
;
r

ffiffiffi

2
p

2

� �

¼ 0:25ð0; rÞ þ 0:5ðr; rÞw1 þ 0:25ðr; 0Þ
0:25þ 0:5w1 þ 0:25

ffiffiffi

2
p

2
;

ffiffiffi

2
p

2

� �

¼ 0:25ð0; 1Þ þ 0:5ð1; 1Þw1 þ 0:25ð1; 0Þ
0:25þ 0:5w1 þ 0:25

ffiffiffi

2
p

2
;

ffiffiffi

2
p

2

� �

¼ ð0:5w1 þ 0:25; 0:5w1 þ 0:25Þ
0:5þ 0:5w1

ffiffiffi

2
p

2
¼ 0:5w1 þ 0:25

0:5þ 0:5w1

ffiffiffi

2
p

ð0:5þ 0:5w1Þ ¼ w1 þ 0:5

ffiffiffi

2
p

ð1þ w1Þ ¼ 2w1 þ 1
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ffiffiffi

2
p

� 1 ¼ w1ð2�
ffiffiffi

2
p

Þ

w1 ¼
ffiffiffi

2
p

� 1

2�
ffiffiffi

2
p ¼ ð

ffiffiffi

2
p

� 1Þð2þ
ffiffiffi

2
p

Þ
ð2�

ffiffiffi

2
p

Þð2þ
ffiffiffi

2
p

Þ

w1 ¼
ffiffiffi

2
p

2

Figure 5.5 shows normal and rational Bézier forms corresponding to a circle.

On the left is the standard Bézier form, on the right the same control points but

with the weights set to
ffiffi

2
p

2
for the middle control point of each quarter circle. The

two shapes are shown overlapping in the centre.

5.5.4 NURBS Curves

The geometric method which is most used at present is the NURBS method. The

name NURBS stands for Non-Uniform Rational B-Splines. In this, the term ‘‘Non-

Uniform’’ indicates that the basis functions need not be uniformly spaced, as with

the other two forms, but are controlled by elements called ‘‘knots’’.

Piegl and Tiller [3] define a NURBS curve as:

PðuÞ ¼
Pn

i¼0 wi � Bi � Ni;kðuÞ
Pn

i¼0 wi � Ni;kðuÞ

and the B-spline basis functions NikðtÞ are defined as:

Ni;kðuÞ ¼
u� ti

tiþk � ti
� Ni;k�1ðuÞ þ

tiþkþ1 � tiþ1

tiþkþ1 � tiþ1

� Niþ1;k�1ðuÞ with: Ni; 0ðuÞ
¼ 1 if ti\ ¼ u\tiþ1; 0 otherwise:

Although NURBS geometry is the geometry used in advanced CAD systems I

use Bézier geometry for the explanations because of its mathematical simplicity.

Fig. 5.5 Bézier and rational
Bézier forms for a circle
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5.5.5 Multi-Piece and Closed Curves

It is sometimes necessary to use curves which are logically of one piece, but made

up mathematically of a series of sub-portions. A related topic is that of closed

curves where you need some degree of curve characteristic ‘‘similarity’’ at the

ends. Note, this section talks about curves but the same discussions apply also to

surfaces.

The term for similarity is ‘‘continuity’’. Continuity comes in different levels:

• Continuity 0—Curves just touch.

• Continuity 1—Curves have the same tangent (direction).

• Continuity 2—Curves have the same curvature.

• Continuity 3—Curves have the same torsion.

• Curvature n—etc.

Depending on the degree of the curve you can go up and up. In fact, from a

naive point of view, if you have curvature continuous quadratic curves then they

will also be torsion continuous since both have torsion 0. However, this is not

always so interesting.

Which is the best type of continuity to have between two curves?

Wrong question. You need to decide what the curves are there for, then decide

which type of continuity you need. Some CAD tools give you these options, some

do not. For example, if you interpolate a set of points then the result may well be in

terms of a set of curve segments rather than a single curve and so the curve may

need a high level of continuity. If you are designing then maybe you only need

tangent continuity.

As an illustration, consider the shape shown in Fig. 5.6. This shows a shape

with various types of continuity. As should be obvious, all three types are useful

even though the example shows a shape which is not typically an engineering

shape.

Tangency continuity constrains two control points of a curve to be collinear

with the constraining curve. Curvature continuity constrains the positions of three

control points. Torsion continuity constrains four control points, and so on. This

means that if you have a curve which you want to have particular continuity and

you want to change the shape, then you have to add control points. This technique

is called ‘‘raising the degree’’ and comes later. Figure 5.7 illustrates this.

Figure 5.7a shows the original arrangement, with a quadratic Bézier curve

constrained to be tangent continuous with two lines. The control polygon is shown

dotted. If you want to change the shape of this curve then you cannot without

breaking the tangency constraints. In order to give more freedom you can change

the curve into cubic Bézier, as shown in Fig. 5.7b. This lets you change the two

internal control points. So long as they remain collinear with the constraining lines

then you can move them, flattening or sharpening the curve. If you want still more

freedom then you can raise the degree of the curve to a quartic, as shown in

Fig. 5.7c. Here you have one totally free control point, shown as an open circle,
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which you can move as you want to change the shape of the curve. The four outer

control points maintain the tangency constraints.

If you have a tool to show the control points and can constrain a curve to

different extents then you will be able to see the growth of the control points as you

impose the constraints. If, say, you were to impose a curvature constraint between

the lines and the quadratic Bézier, so that the curve changes, then you would see an

immediate increase in the number of control points.

5.5.6 Nasty Curves

Since free-form geometry is controlled by point positions it is possible to create

many special cases. Figure 5.8 shows a simple two-dimensional Bézier curve with

the control points: (-10, 0) (10, 10) (-10, 10) (10, 0).

What is the position at t ¼ 0:5 and what is the tangent vector?

For convenience it is possible to use the vector form of the Bézier:

f ðtÞ ¼ t3 t2 t 1
� �

�1 3 �3 1

3 �6 3 0

�3 3 0 0

1 0 0 0

2

6

6

4

3

7

7

5

ð�10; 0Þ
ð10; 10Þ
ð�10; 10Þ
ð10; 0Þ

2

6

6

4

3

7

7

5

Fig. 5.6 Continuity types

Fig. 5.7 Degree raising for manipulating constrained curves
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Multiplying the 4� 4 matrix with the control points allows you to calculate

easily the position and first derivative of the curve.

f ðtÞ ¼ t3 t2 t 1
� �

ð80; 0Þ
ð�120;�30Þ

ð60; 30Þ
ð�10; 0Þ

2

6

6

4

3

7

7

5

For t ¼ 0:5 you get:

f ð0:5Þ ¼ 0:125 0:25 0:5 1½ �
ð80; 0Þ

ð�120;�30Þ
ð60; 30Þ
ð�10; 0Þ

2

6

6

4

3

7

7

5

¼ ð0; 7:5Þ

For the derivative of the curve, which is the tangent, you use the derivative of

the matrix with terms in t, thus:

f 0ðtÞ ¼ 3t2 2t 1 0
� �

ð90; 0Þ
ð�120;�30Þ

ð60; 30Þ
ð�10; 0Þ

2

6

6

4

3

7

7

5

giving:

f 0ð0:5Þ ¼ 0:75 1 1 0½ �
ð90; 0Þ

ð�120;�30Þ
ð60; 30Þ
ð�10; 0Þ

2

6

6

4

3

7

7

5

¼ ð0; 0Þ

meaning that the tangent has no direction at the point, which is a ‘‘singularity’’.

Alternatively, differentiate the Bézier function with respect to t.

f ðtÞ ¼ ð1� tÞ3b0 þ 3tð1� tÞ2b1 þ 3t2ð1� tÞb2 þ t3b3

f 0ðtÞ ¼ �3ð1� tÞ2b0 þ 3ðð1� tÞ2 � 2tð1� tÞÞb1 þ 3ð2tð1� tÞ � t2Þb2 þ 3t2b3

Fig. 5.8 Bézier curve with
singularity
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Simplifying gives:

f 0ðtÞ ¼ ð�3þ 6t � 3t2Þb0 þ ð3� 12t þ 9t2Þb1 þ ð6t � 9t2Þb2 þ 3t2b3

or:

f 0ðtÞ ¼ ð3b3 � 9b2 þ 9b1 � 3b0Þt2 þ ð6b2 � 12b1 þ 6b0Þt þ ð3b1 � 3b0Þ

Substituting the values for the control points gives two equations, one for x and

one for y.

f 0xðtÞ ¼ ð30þ90þ90þ30Þt2þð�60�120� 60Þtþð30þ30Þ ¼ 240t2� 240tþ60

f 0yðtÞ ¼ ð0�90þ90�0Þt2þð60�120þ0Þtþð30�0Þ ¼�60tþ30

Finding the roots of these gives a double root for x at 0.5 and a root for y, also at

0.5. If only x has a root, then the tangent is vertical. If only y has a root then the

tangent is horizontal. When both have coincident roots there is a singularity. Note

also that the curvature at t ¼ 0:5 is infinite, as can be understood by looking at the

formulae in Sect. 5.9.

However, despite all this, the curve might be useful anyway as part of a model

if a portion of the curve without the singularity is used. If, say, an edge refers to the

portion of the curve between t ¼ 0 and t ¼ 0:4 then the curve is defined along the

whole portion of the edge using it. However, it is better to avoid such curves if

possible because, if an operation needs to extend the edge for some reason then the

singularity might become part of the edge, causing problems.

Figure 5.9 shows another simple two-dimensional Bézier curve with the control

points: (-5, 0) (10, 10) (-10, 10) (5, 0).

This curve has no singularities, but has a self-intersection. The curve has the

same position at the parameter values t ¼ 0:172673 and t ¼ 0:827327, approxi-
mately. This does not have the same significance as the singularity because the

curve is fully defined at all places. As with the previous example, the curve can be

used in part without problems but, as before, there is a risk that, if the edge is

extended the self-intersecting part will fall within the edge.

Another possible cause of awkward geometry is if control points coincide. This

causes discontinuities of various types and so should be avoided. This should not

be a problem for most users, but if you do manipulate control points directly, avoid

putting them in the same place.

Fig. 5.9 Self-intersecting
Bézier curve
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5.5.7 Raising the Degree of a Bézier Curve

For the Bézier curve this is simple. Figure 5.10 shows a simple example.

Starting with a simple quadratic curve, shown at the top of the figure, new

control points are added according to a simple rule. If the original control points

are denoted p00; p
0
1 and p02, then two new points are added, p11 and p12.

p11 ¼ p00 þ 2
3
ðp01 � p00Þ. p12 ¼ p01 þ 1

3
ðp02 � p01Þ. The reason for the value 2

3
is that you

have two spans (between p00 and p01; and between p01 and p02) which should become

three spans in the cubic curve. The control points for the cubic Bézier curve with

the same form as the original quadratic curve are: p00; p
1
1; p

1
2 and p02.

To convert this cubic curve to a quartic curve you follow the same procedure,

but the ration is 3
4
because you are going from three spans to four spans. The

intermediate points are:

p21 ¼ p00 þ 3
4
p11 � p00
	 


p22 ¼ p11 þ 1
2
p12 � p11
	 


p23 ¼ p12 þ 1
4
p02 � p12
	 


:

The final control points for the quartic curve are: p00; p
2
1; p

2
2; p

2
3 and p02. You may

ask about the ratio of 3
4
, which is in evidence in the first equation but then seems to

disappear. To understand this, think of the three spans as being numbered 0, 1 and

2. The span between p00 and p11 is span 0, the second, between p11 and p12 is span 1

and the span between p12 and p02 as being span 2. The first extra point is at 3
4
of the

spans, the second point is at 3
4
þ 3

4
¼ 1 1

2
and the third at 3

4
þ 3

4
þ 3

4
¼ 2 1

4
. So, the new

points are at ratio 3
4
of span 0, 1

2
of span 1 and 1

4
of span 2.

Finally, to go from a quartic curve to a quintic curve you have the ratio 4
5
. The

new intermediate points are:

p31 ¼ p00 þ 4
5
p21 � p00
	 


p32 ¼ p21 þ 3
5
p22 � p21
	 


p33 ¼ p22 þ 2
5
p23 � p22
	 


p34 ¼ p23 þ 1
5
p02 � p23
	 


:

The final control points are: p00; p
3
1; p

3
2; p

3
3; p

3
4 and p02.

Note how the control polygon gets closer to the shape of the curve as you raise

the degree. You can also verify that the curve is the same by substituting the new

control points into the appropriate formulae.

Raising the degree of B-spline curves is more difficult. This is dealt with by

Farin [2], for example.
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5.5.8 Subdividing Bézier Curves

De Casteljau’s method can be used for subdividing Bézier curves. This is shown in

Fig. 5.11.

To subdivide the curve at t, there is a recursive procedure. The first stage is to

create a secondary control polygon based on the original polygon. New points are

created at a ratio of t along each span. These points are then connected to create

the new control polygon which has one span less than the original polygon. The

process is repeated until there is only one span and the division point is a point at a

ratio of t along the final span. Certain of the new points are then used to create the

control polygons of the divided curve.

In Fig. 5.11 the value of t for subdivision is 0.6. Figure 5.11a shows the original

cubic curve and control polygon with four control points: p00; p
0
1; p

0
2 and p03. In

Fig. 5.11b the first-level secondary polygon is shown, connecting the three new

points p10; p
1
1 and p12. p

1
0 ¼ ð1� tÞp00 þ t p01, where t = 0.6, so p10 ¼ ð1� 0:6Þp00þ

0:6p01. p
1
1 ¼ ð1� 0:6Þp01 þ 0:6p02 and p12 ¼ ð1� 0:6Þp02 þ 0:6p03. In Fig. 5.11c the

second-level secondary polygon is shown, a line connecting two points: p20 and p21.

p20 ¼ ð1� 0:6Þp10 þ 0:6p11 and p21 ¼ ð1� 0:6Þp11 þ 0:6p12. Finally, the separation

point p30 ¼ ð1� 0:6Þp20 þ 0:6p21.

Fig. 5.10 Raising the degree
of a Bézier curve
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The control points for the first part of the subdivided curve are: p00; p
1
0; p

2
0 and p

3
0.

The control points for the other half are: p30; p
2
1; p

1
2 and p03.

This can be conveniently written in pyramid form as:

p30
p20 p21

p10 p11 p12
p00 p01 p02 p03

For a simple, two dimensional Bézier example, with control points

ð0; 0Þ; ð50; 50Þ; ð75; 0Þ and ð125; 50Þ, and subdividing at t ¼ 0:6 you have:

ð73:8; 25:2Þ
ð51; 24Þ ð89; 26Þ

ð30; 30Þ ð65; 20Þ ð105; 30Þ
ð0; 0Þ ð50; 50Þ ð75; 0Þ ð125; 50Þ

5.5.9 Interpolation

Curve ‘‘interpolation’’ is a technique for determining a curve passing through a

given set of points. The problem to be solved is that you have a set of points and

want to pass a curve through them. The problem is that there are an infinite number

of solutions for the result. What creates the different solutions is the choice of the

parameter values of the points on the solution curve.

Fig. 5.11 Subdividing a
Bézier curve using de
Casteljau’s method
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Take, for example, a curve which spans four points:

ð�2;�2Þð1; 2Þð4;�2Þð16; 3Þ

Take the parameter values of the points as 0, t1; t2 and 1, respectively. It is

possible to formulate the problem in terms of a matrix, which gives a method of

solution more tractable for a computer. Formulating the problem for a cubic Bézier

curve in matrix terms gives:

1 0 0 0

ð1� t1Þ3 3t1ð1� t1Þ2 3t21ð1� t1Þ t31
ð1� t2Þ3 3t2ð1� t2Þ2 3t22ð1� t2Þ t32

0 0 0 1

2

6

6

4

3

7

7

5

b0
b1
b2
b3

2

6

6

4

3

7

7

5

¼
p0
p1
p2
p3

2

6

6

4

3

7

7

5

where b0; b1; b2, and b3 are the unknown control points and p0; p1; p2, and p3 are

the points to interpolate. In order to find the points of control it is necessary to

multiply by the inverse, giving:

b0
b1
b2
b3

2

6

6

4

3

7

7

5

¼
a b c d

e f g h

i j k l

m n o p

2

6

6

4

3

7

7

5

p0
p1
p2
p3

2

6

6

4

3

7

7

5

where the 4� 4 matrix is the inverse of the matrix formed from the Bézier basis

functions. For the Bézier curve case above it is possible to simplify the inverse

directly because a ¼ 1; b ¼ c ¼ d ¼ 0 and also m ¼ n ¼ o ¼ 0 and p ¼ 1. Simi-

larly f, g, j and k are simple to write down because they are just the inverse of the

central 214:132 portion of the matrix, giving the simplified matrix:

1 0 0 0

e 3
q
t22ð1� t2Þ �3

q
t21ð1� t1Þ h

i �3
q
t2ð1� t2Þ2 3

q
t1ð1� t1Þ2 l

0 0 0 1

2

6

6

4

3

7

7

5

where q ¼ 9ðt1t2ð1� t1Þð1� t2ÞÞðt2ð1� t1Þ � t1ð1� t2ÞÞ:
The next step is to choose the values for t1 and t2. Two ‘‘obvious’’ methods are

the equal step value, which would mean t1 ¼ 1
3
and t2 ¼ 2

3
, and the arc-length

method. The arc-length method seems to give better results than with even spacing

and seems to be commonly used in CAD systems.

Figure 5.12 illustrates the principle. The total length of the curve is taken as

approximately l1 þ l2 þ l3 and the internal parameter values t1 ¼ l1
l1þl2þl3

and

t2 ¼ l1þl2
l1þl2þl3

:

The final values can be determined by substituting the arc-length values, that is,

t1 ¼ 5=23 and t2 ¼ 10=23 in the matrices above, which gives:
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1 0 0 0

0:479329 0:399441 0:110956 0:010274
0:180570 0:416701 0:320539 0:082190

0 0 0 1

2

6

6

4

3

7

7

5

b0
b1
b2
b3

2

6

6

4

3

7

7

5

¼
ð�2;�2Þ
ð1; 2Þ
ð4;�2Þ
ð16; 3Þ

2

6

6

4

3

7

7

5

or:

b0
b1
b2
b3

2

6

6

4

3

7

7

5

¼
1 0 0 0

�1:6333 3:9185 �1:3564 0:0712
1:56 �5:0941 4:8831 �0:3490
0 0 0 1

2

6

6

4

3

7

7

5

ð�2;�2Þ
ð1; 2Þ
ð4;�2Þ
ð16; 3Þ

2

6

6

4

3

7

7

5

which gives the control points:

ð�2;�2Þ; ð2:899146; 14:030200Þ; ð5:734186;�24:121311Þ; ð16; 3Þ

5.5.10 Curve Experiments

5.5.10.1 Interpolating a Circle

Create four points on the XY plane at positions: (-100, 0), (0, -100), (100, 0) and

(0, 100). These lie on a circle, radius 100, centred at (0, 0). Interpolate a curve

passing through the four points. Is it a circle?

The problem is that CAD systems interpolate as they go, giving you a result

which is built up successively, rather than taking all the points at the end. The

result of this exercise is not usually a circle. In any case, note that the curve at the

start and end should be contangential. Create a line, through (-100, 0), direction

(0, 1), to set the tangents for the start and end of the curve.

5.5.10.2 Make a Self-Intersecting Curve

Create five points:

ð�10;�10; 0Þ; ð2; 5; 0Þ; ð0; 10; 0Þ; ð�2; 5; 0Þ and ð10;�10; 0Þ:

Fig. 5.12 Arc-length
parameter estimation
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Create a curve passing through these in the order shown. Does your CAD

system warn you that you have created such a curve?

5.5.10.3 Make Another Self-Intersecting Curve

Create seven points:

ð�10;�10;0Þ;ð�0:5;5;0Þ;ð�0:5;8;0Þ;ð0;12;0Þ;
ð0:5;8;0Þð0:5;5;0Þandð10;�10;0Þ

Create a curve passing through these in the order shown. Does your CAD

system warn you this time that you have created a self-intersecting curve?

Something else to note about this curve is the direction of the curve at the start

and end points. The curve is more complex, and hence a bit wilder than the first

self-intersecting curve. If you want to control the shape of the curve at the start and

end then you need to create extra curves at these points so that you can impose

continuity constraints. Try this with straight lines from (-20, -10, 0) to (-10,

-10, 0) and (10, -10, 0) to (20, -10, 0).

5.5.10.4 Continuity Experiment

Try making a circle and a line which is tangent. If your CAD system permits,

create a constraint of curvature continuity between the line and circle. One of them

has to deform, in I-DEAS it was the second curve selected. Try it in both directions

and check the deformations. What happened in I-DEAS was that the curve which

deformed was converted to a free-form curve and the control points of the curve

placed accordingly. This is another example of the sort of geometric migration

mentioned earlier where simple forms are converted to free-form curves.

5.6 Working with Surfaces

The most commonly used surfaces are a type called ‘‘tensor product surfaces’’.

Actually, there are other surface types with three sides, but in current systems there

are usually four sides, so only four-sided surface patches are mentioned here. Each

four-sided surface element may also be termed a ‘‘patch’’, because multi-patch

surfaces are sometimes generated to fill regions.

Some examples are given in Fig. 5.13. In Fig. 5.13a you have an example of a

simple translational surface. In Fig. 5.13b there is an example of a ruled surface. In

Fig. 5.13c you have a surface patch which is quadratic in one direction and cubic

in the other. In Fig. 5.13d you have a patch which is cubic in both directions.

5.5 Working with Curves 283



5.6.1 Bézier Surfaces

The general form of a Bézier surface patch is:

X

n

i¼0

X

m

j¼0

n!

i!ðn� iÞ!
m!

j!ðm� jÞ! ð1� uÞn�i
uið1� vÞm�j

vjbij

The two values m and n are the orders of the patch in the v and u directions,

respectively. These need not be the same. In the examples in Fig. 5.13 the surfaces

are of degree 3 in one direction, and degree one (Fig. 5.13a, b), two (Fig. 5.13c)

and three (Fig. 5.13d) in the other direction.

The surface is defined over a parametric space of 0� u� 1 and 0� v� 1:
If you look at the description it can be seen that this is like multiplying two

curve functions together, except that the control points are combined. A surface

can be thought of as a continuous set of curves. Defining a point at parameter

position u,v can be done by evaluating the surface equations at u, which gives the

control points of a secondary curve. Evaluating this secondary curve at v gives the

point on the surface.

5.6.2 Creating Surfaces by Extrusion

Extrusion is an easy way of creating surfaces. Taking any curve, the resulting

patch has the original curve as one boundary, a translated copy of the curve as its

matching boundary, and two linear sections.

Suppose you have a Bézier curve with the control points:

ð0; 0; 0Þ; ð10; 10; 0Þ; ð20; 0; 0Þ; ð30; 10; 0Þ

Fig. 5.13 Surface patch examples

284 5 Geometry



Sweeping this curve with the vector (0, 0, 40) gives a cubic-linear patch with

the control points:

ð0; 0; 0Þ ð10; 10; 0Þ ð20; 0; 0Þ ð30; 10; 0Þ
ð0; 0; 40Þ ð10; 10; 40Þ ð20; 0; 40Þ ð30; 10; 40Þ

� �

The curve in the example is a planar curve and the vector is normal to this

plane. If the vector were: (5, -3, 30) then the surface would not be perpendicular

to the curve plane. The curve does not need to be planar either, the same method

applies whatever the original control points, although it is preferable that these are

not linear and in the extrusion direction. These examples are shown in Fig. 5.14.

The original curve is shown in Fig. 5.14a. In Fig. 5.14b you have the surface

created when extruding by a vector (0, 0, 40). In Fig. 5.14c you have the surface

extruded along the vector (5, -3, 30). Finally, in Fig. 5.14d you have a curve with

the control points: (0, 0, 0), (10, 10, 10), (20, 0, 10), and (30, 10, 0) extruded along

the vector (0, 0, 40).

5.6.3 Lofting

The lofting operation as a solid modelling operation has already been described in

Sect. 4.14. This section describes how the geometry for the solid is created.

Figure 5.15 shows three arbitrary curves across which it is desired to create a

surface. Suppose that the first curve is a cubic Bézier with control points:

ð�10;�15; 10Þ; ð�10;�5; 5Þ; ð�10; 5; 15Þ and ð�10; 15; 10Þ

The second curve is a quadratic Bézier with control points:

ð�4;�10; 5Þ; ð�4; 0; 12Þ and ð�4; 10; 8Þ

Fig. 5.14 Extruding a curve to obtain surfaces
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The final curve is a line from ð14;�12; 0Þ to ð14; 10; 0Þ. For the interpolation

the second section is considered to be at t ¼ 0:25 for all points, just to simplify the

explanation.

The first step is to make sure that all curves have the same degree. Since the

highest degree is a cubic, then it is necessary to raise the degree of the quadratic

curve once and the line twice.

The quadratic goes from:

ð�4;�10; 5Þð�4; 0; 12Þð�4; 10; 8Þ
to:

ð�4;�10; 5Þð�4;�3:333; 9:667Þð�4; 3:333; 10:667Þð�4; 10; 8Þ

The line goes from:

ð14;�12; 0Þð14; 10; 0Þ
to:

ð14;�12; 0Þð14;�1; 0Þð14; 10; 0Þ
to:

ð14;�12; 0Þð14;�4:667; 0Þð14; 2:667; 0Þð14; 10; 0Þ

The interpolation matrix is:

1 0 0

0:5625 0:375 0:0625
0 0 1

2

4

3

5

and its inverse is:

1 0 0

�1:5 2:667 �0:1667
0 0 1

2

4

3

5

The two side curves are found using this matrix.

1 0 0
�1:5 2:667 �0:1667
0 0 1

" # ð�10;�15; 10Þ
ð�4;�10; 5Þ
ð14;�12; 0Þ

" #

¼
ð�10;�15; 10Þ

ð2;�2:166667;�1:666667Þ
ð14;�12; 0Þ

" #

Fig. 5.15 Curves for lofting
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and

1 0 0

�1:5 2:667 �0:1667
0 0 1

2

4

3

5

ð�10; 15; 10Þ
ð�4; 10; 8Þ
ð14; 10; 0Þ

2

4

3

5 ¼
ð�10; 15; 10Þ

ð2; 2:5; 6:333333Þ
ð14; 10; 0Þ

2

4

3

5

The resulting curve set is shown in Fig. 5.16.

To find the internal surface control points it is necessary to interpolate the two

sets of control points:

1 0 0

�1:5 2:667 �0:1667
0 0 1

2

4

3

5

ð�10;�5; 5Þ
ð�4;�3:333; 9:667Þ

ð14;�4:667; 0Þ

2

4

3

5 ¼
ð�10;�5; 5Þ

ð2;�0:611; 18:2778Þ
ð14;�4:667; 0Þ

2

4

3

5

1 0 0

�1:5 2:667 �0:1667
0 0 1

2

4

3

5

ð�10; 5; 15Þ
ð�4; 3:333; 10:667Þ

ð14; 2:667; 0Þ

2

4

3

5 ¼
ð�10; 5; 15Þ

ð2; 0:944; 5:944Þ
ð14; 2:667; 0Þ

2

4

3

5

This gives the surface shown in Fig. 5.17, with the final set of control points as:

ð�10;�15; 10Þ ð2;�2:167;�1:667Þ ð14;�12; 0Þ
ð�10;�5; 5Þ ð2;�0:611; 18:278Þ ð14;�4:667; 0Þ
ð�10; 5; 15Þ ð2; 0:944; 5:944Þ ð14; 2:667; 0Þ
ð�10; 15; 10Þ ð2; 2:5; 6:333Þ ð14; 10; 0Þ

5.6.4 N-Sided Patches

Mathematical surfaces are nice regular structures with four sides. The world is an

awkward uneven place with surface regions with multiple sides. What do you do?

There has been a lot of work on this subject. The topic was introduced in

Sect. 4.8 where one of the examples concerns a six-sided surface patch. The

Fig. 5.16 Curves for lofting
and side curves
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intention there was to perform an experiment to see the solution in the CAD

system you are using.

A solution which seems to be in common use is that shown in Fig. 5.18. A point

is created at the middle of each edge in the N-sided region and joined to the centre

point. This creates N four-sided regions instead of one N-sided region.

The problem is that the position and surface normal at the centre point are not

defined. This data has to be estimated, but the technique works quite well.

Depending on how the system works, you may be able to see this result by

blending a multi-edge vertex and looking at the result in wireframe graphics mode.

Note, though, that this is not the only solution. It is something that the CAD

system developer chooses, it is another of the topics in the complex area of surface

modelling.

5.6.5 Filling Areas

A common operation is filling boundary curves. Figure 5.19 shows a simple

example of a four-sided filling problem.

Fig. 5.17 Lofted surface

Fig. 5.18 Subdividing non
four-sided areas
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The original curves are shown on the top left of the figure. These have control

polygons, as shown in the image on the top right. The corner control points define

planes, in this case, as shown on the bottom left of the figure. Control points lying

on these corner planes preserve the necessary surface characteristics, as shown on

the bottom right.

5.6.6 Surfaces on Curve Frameworks

Another common method is to create a set of curves and then add a surface. This is

a method of working in the car industry, for example, where designers can set up a

system of space curves representing ‘‘style lines’’. The car surfaces are then cre-

ated between these curves.

This is related to the method of putting a surface in a boundary and lofting. This

lets you take an arbitrary boundary and cover it, with the addition that you can

define an internal structure with extra curves.

The extra information in the curve structures helps in setting the internal control

points of the surface pieces. The positions of the curves, tangent and curvature

continuity across the curves, all set up constraints on the positions of the control

points.

However, it is not arbitrary how you arrange these curves. As an example,

consider Fig. 5.20.

The corner points for the surfaces are shown, but note especially the points

marked p1 and p2. Here, the tangent vectors of the side curves which meet there are

collinear. This means that the surface normal disappears to zero and so the position

of the control point is not well-defined. A possible solution may be to add extra

curves, as shown in Fig. 5.21.

This, though, also brings problems. There are two three-sided surfaces. A three

sided surface can be created by allowing the control points along one of the edges

Fig. 5.19 Filling a square
frame
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to coincide. This means that there is, again, a problem with degenerate surface

normals along the degenerate side. This can create continuity problems. The

solution of inserting a central point and subdividing the three-sided patch into

three four-sided patches has already been described. Yet another solution is to

create a real four-sided patch which extends outside the region being filled, but

only half of it is used.

5.6.7 Surfaces and Topology

This is less of a subsection than a comment. Surfaces in common use in CAD have

a regular, four-sided structure. This is not absolutely necessary because there are

three-sided patches, but three-sided patches do not seem to be in common use in

CAD systems, so are ignored here. In surface modelling it is helpful if all the

surface patches match exactly along one side. This is not always convenient for

designing with surfaces. The method described for dealing with N-sided areas

creates mismatched patches, for example. Várady and his team worked on general

topology methods for surface modelling, but this will not be discussed here.

Fig. 5.20 Surface on curve
framework

Fig. 5.21 Surface on curve
framework with internal
curves
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What is relevant, I think, is to know that mismatching surfaces mean that the

control points do not match and so there is a risk that small geometric errors may

creep in creating gaps. This is a limitation on numerical representations in com-

puters, not in the modelling techniques themselves, and small geometric errors

continue to dog the use of CAD in general, both in surfaces and solids.

Another, related topic concerns the order of the control points. If you look at the

order given for the lofted surface in Sect. 5.6.3 you see that there are four rows of

three points. This was done because of width restrictions, because three rows of four

vectors is too wide for the page. However, you could specify the surface this way,

without problems. You could give the last row, then the third row, then the second,

finally the first, if you want. What this means is that the position corresponding to the

parameter position u ¼ 0; v ¼ 0 could be any of the corners. So, if you traverse a

multi-patch structure it is not certain that the patches are aligned in parameter space.

If you want to generate a tool-path, for example, along two or more patches then,

when you traverse the boundary, you have to check the parameter position of the

common point and arrange the parameter traversal from there.

A final point about separate surface patches is that the orientations may be

different. With a topological structure such as that described in Sect. 5.8.1 you can

overcome this problem.

5.6.8 Reverse Engineering

A method which is sometimes used to create complex geometry is known as

‘‘reverse engineering’’. There is a simple meaning of the term which indicates the

simple disassembly of products and their remodelling in CAD, but this is not dealt

with here. Reverse engineering, here, is taken to mean the reconstruction of sur-

faces from clouds of measured points. This is a very brief summary, more can be

found in Marshall and Martin’s book [7] and surface techniques in Besl’s book [8].

The usual procedure is:

1. Measure an object.

2. Divide the measured data into point sets corresponding to surfaces.

3. Fit surfaces.

4. Possibly, recreate the topology.

5. Merge models.

There are several measuring methods, which can be grouped roughly into

two groups: contact measurement and optical measurement. Contact measure-

ment is more accurate than optical measurement, but is slower and cannot be

used with delicate or deformable objects. It involves extending a probe to an

object and recording the point where the probe stops. The method can also

provide a surface normal approximation which helps in surface reconstruction.

Optical measurement uses visual inspection to estimate 3D point position. One

method involves shining a laser beam on the object, recording the image and
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using triangulation to gauge the point position in space. Another method

involves projecting patterns onto an object and calculating the point positions

from the pattern deflection.

Dividing the points into sets corresponding to surfaces is difficult. This process

is called ‘‘segmentation’’. Besl [8] describes one method based on curvature

approximation. Points are segmented into sets with the same curvature charac-

teristics. If using a CMM machine for inspection, say, it may be possible to use a

manual method to measure critical points on a surface and fit a known surface to

these, but this is not always convenient. If you do not segment the points then you

can get distorted surfaces which are generally complex.

Calculating surfaces from point sets involves a technique called ‘‘surface fit-

ting’’. Unlike interpolation, where the surface passes through the points, surface

fitting assumes that the surface passes close to the points being fitted. This is

necessary because there can be measurement errors, generally smaller with contact

measurement than optical measurement. Surface fitting will be dealt with further

below, because it is an important topic.

The last two steps, recreating topology and joining partial models are for rec-

reating complex models or solids. It is difficult to create a solid from measured

points because there are usually holes in the measured data. Recreation can either

be done by building a facetted model and then deleting edges between facets in the

same surface or by creating faces from the segmented surface sets and making

intersection edges between two neighbouring surface patches. It can be more

realistic, though, to measure isolated surfaces, fit a surface and then use the surface

as part of another model. Joining partial models is a technique for merging partial

models created from measured point sets in different ‘‘views’’ of the object. The

big difficulty with this, though, is to match the object parts.

For surface fitting, some important characteristics are the number of segments

for the surface and the degree, or order, of each portion. If you have many seg-

ments and a high degree of surface then you approach, or maybe even achieve,

interpolation. However, if there are errors in the surface then this may result in a

wavy surface. If there are fewer segments and lower degree then the surface will

be smoother, but may be less accurate in approximating the points. It is not easy to

fit surfaces and it may take several experiments to get a satisfactory result.

5.6.9 Surface Experiments

5.6.9.1 Lofting Experiment

Make the self-intersecting curve in the curve examples, that is, create five points:

ð�10;�10; 0Þ; ð2; 5; 0Þ; ð0; 10; 0Þ; ð�2; 5; 0Þ and ð10;�10; 0Þ. Create a curve

passing through these in the order shown. Extrude this curve 20 mm to create a

self-intersecting surface. Does your CAD system warn you that you have created

such a surface?
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Try and thicken this surface, by a little, say 0.25 mm. Does the operation to

create a solid by thickening a surface warn you?

Now try modifying the point positions to: ð�10;�10; 0Þ; ð2; 5; 2Þ; ð0; 10; 4Þ;
ð�2; 5; 6Þ and ð10;�10; 8Þ. The curve is no longer self-intersecting, but repeat the

extrusion and thickening steps to check whether or not you get a warning.

5.6.9.2 Surface Interpolation Experiment I

Create three lines:

1. From ð�10;�10; 10Þ to ð�10; 10; 10Þ
2. From ð0; 10; 10Þ to ð0;�10; 10Þ
3. From ð10;�10; 10Þ to ð10; 10; 10Þ

Note the direction of the second curve. You need not absolutely create a line in

this direction because you control the direction at the lofting stage. Create a lofted

surface through these with the second line in the opposite direction to the other two

lines. The CAD system should warn you about this. If it does, try lowering the

middle line by one in Z, so that it runs from (0, 10, 9) to ð0;�10; 9Þ and try again.

Keep lowering the line until the CAD system allows you to make the surface. This

should give you an idea of how sensitive the system is to critical geometry.

5.6.9.3 Surface Interpolation Experiment II

Create three lines:

1. From ð�10;�10; 10Þ to ð�10; 10; 10Þ
2. From ð0;�10; 10Þ to ð0; 10; 10Þ
3. From ð10;�10; 10Þ to ð10; 10; 10Þ

Now the direction of the second curve is the same as for the other two. Create a

lofted surface through these in the order: 1, 3, 2. The CAD system should again

warn you about this. If it does, as before, lower the middle line by one in Z, so that

it runs from ð0; 10; 9Þ to ð0;�10; 9Þ and try again. Keep lowering the line until the

CAD system allows you to make the surface. This is another test to see the

sensitivity of the CAD system to degenerate surfaces.

5.7 Surface Analysis

There are several methods of visual analysis. Figure 5.22 shows some surface

analysis figures from work by Várady (no reference).

Figure 5.22a shows the original surface as a shaded image. Figure 5.22b shows

analysis basis on slicing through the surface in a direction chosen by the user, with
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different sections coloured. Figure 5.22c shows what is called the isophote image,

where the surface is divided into bands according to the angle between the surface

normal and a light source. Figure 5.22d shows the surface coloured according to

the mean curvature. Figure 5.22e shows the surface coloured according to the

Gaussian curvature. Note that all these images are based on facetted approxima-

tions to the surface, which cause some visual artefacts.

The slicing and isophote images will show discontinuities in the bands if they

cross surface patch boundaries which are not curvature continuous. The mean

curvature analysis is based on the sum of the two principle curvatures.

The Gaussian curvature is the product of the two principle curvatures. Both of

these techniques will show up wavy surfaces as being stripy.

There are other techniques which are not illustrated here. Reflection lines are

similar to the isophote method. There are also ‘‘hedgehog’’ displays showing the

normal vectors on the surfaces.

Surface analysis is intended to provide a quick visual check of the quality of a

surface. It can be very useful for checking fitted surfaces, for example, to gauge the

effect of different parameter settings from the point of view of smoothness.

It is worth exploring these tools if you are going to work with free-form

surfaces. Personally I found Várady’s methods and the I-DEAS implementation

Fig. 5.22 Surface analysis methods
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straightforward to use. By contrast, the CATIA v5 implementation seems to me to

be unnecessarily clumsy.

5.7.1 Surface Analysis Experiments

5.7.1.1 Cylindrical Surface Experiment

Create a cylinder and analyse the cylindrical surface using the mean curvature

analysis tool and the Gaussian analysis tool. The mean curvature shows you the

sum of the principal curvatures while the Gaussian curvature analysis tool shows

you the product. What can you conclude about the result from the Gaussian

analysis?

5.7.1.2 Wavy surface experiment

Create five lines:

1. From ð�20;�10; 10Þ to ð�20; 10; 10Þ
2. From ð�10;�10; 8Þ to ð�10; 10; 8Þ
3. From ð0;�10; 10Þ to ð0; 10; 10Þ
4. From ð10;�10; 8Þ to ð10; 10; 8Þ
5. From ð20;�10; 10Þ to ð20; 10; 10Þ

Interpolate a surface passing through these lines in the same order. Analysis the

curvature to see the ripples.

5.7.1.3 Doubly Curved Surface Experiment

Create three curves interpolating the points:

1. ð�10;�20; 20Þð�10; 0; 10Þð�10; 20; 20Þ
2. ð0;�20; 0Þð0; 0; 10Þð0; 20; 0Þ
3. ð10;�20; 20Þð10; 0; 10Þð10; 20; 20Þ

Interpolate these three curves to give a doubly curved surface as in Fig. 5.23.

Along the centre line of the surface there is a straight portion. How is does this

appear when analysing the surface for Gaussian curvature?

5.7.1.4 Discontinuity Analysis

Now create two surfaces adjacent to each other to see what happens with the

discontinuity analysis.
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Create five lines:

1. ð�50;�50; 50Þ to ð�50; 50; 50Þ
2. ð�25

ffiffiffi

2
p

;�50; 50� 25
ffiffiffi

2
p

Þ to ð�25
ffiffiffi

2
p

; 50; 50� 25
ffiffiffi

2
p

Þ
3. ð0;�50; 0Þ to ð0; 50; 0Þ
4. ð25

ffiffiffi

2
p

;�50; 50� 25
ffiffiffi

2
p

Þ to ð25
ffiffiffi

2
p

; 50; 50� 25
ffiffiffi

2
p

Þ
5. ð50;�50; 50Þ to ð50; 50; 50Þ

Create one surface interpolating lines 1, 2 and 3. Create the second surface

interpolating the lines 3, 4 and 5. Analyse the surface with isophote, or by pro-

jecting lines onto the surface. Now change line 5 to run from ð50;�50; 50Þ to

ð50; 50; 100Þ and redo the analysis. Note the changes in the results.

The intention of this experiment is to get you used to using different types of

analysis and interpreting the results. By all means try other surfaces, this type of

analysis is useful for examining properties of designed surface sets.

5.8 Integration of Geometry

OK, once you have your geometry, what do you do with it? Techniques for

thickening surfaces to produce solids have already been described in Sect. 4.11.

Filling closed sheet objects has also been described, in Sect. 4.12 if you have

defined a complete set of surfaces bounding an object. This section presents some

of the methods for integrating geometry.

5.8.1 Standalone Geometry

The boundary representation can be extended to provide a unified modelling

environment for geometric entities as well as solids. A surface can be thought of as

being like a piece of paper. For the purists, I know that a piece of paper has

thickness but a surface does not, but it is a simple an analogy. Something like that

Fig. 5.23 Doubly curved surface
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is shown in Fig. 5.24. Note that face 1 might have a flag to say that the geometry is

negated to be consistent with the topological normal.

Free-form surfaces have a natural topology made from the four edges which

consist of bounded curves. Spheres and toruses are limited surfaces, but planes,

cones and cylinders need to be delimited somehow. This can be done by using the

degenerate forms shown in Fig. 5.24. This is the same structure as is used for

modelling solids and will be described in Chap. 6. Curves also need to be limited,

which can be done by assigning them to edges which are attached to vertices.

These are so-called ‘‘wireframe models’’, which will also be described more fully

in Chap. 6.

Joining two surfaces is illustrated in Fig. 5.25 If the edges of two surfaces

match, as at the top of the figure, then joining is simple. The edges just swap one

face pointer and you end up with a structure such as that shown on the top right of

the figure. This double edge can be collapsed back to a single edge, but this is not

strictly necessary. It is slightly more natural to maintain these edges separate.

If the edges do not match, as at the bottom of the figure, then it is necessary to

break one or both edges so that there are matching edges. These edges are then

joined in the same way, as shown at the bottom of the figure.

This is the nice case. What can happen all too frequently, though, is that there is

a mismatch between the edges and they are not joined. Near misses, such as those

shown in Fig. 5.26 can easily happen.

The difference between points may be 0.0001 mm, less than you can manu-

facture, but the software is able to distinguish between 0.000001 mm. This dif-

ference is usually controlled using a parameter of the system, a ‘‘tolerance’’ value.

Sometimes you can persuade the system to join edges by increasing the tolerance

value, but it is not always easy to find a good value. If the tolerance is too large

then this risks causing errors by uniting points which should be distinct.

As already mentioned, the joined sheet objects can be thickened or, if closed,

converted to a solid by ripping out the inside. Once a solid they can be developed

further with standard volumetric functions.

Fig. 5.24 A degenerate form
for integrating surfaces into
CAD
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Note that an advantage of having this double-sided method for representation is

that you don’t have to worry about surface orientation. A common effect in surface

modelling systems was that the surfaces designed separately had different orien-

tations. This means that there was no consistent definition of where the material of

a body was. Graphically the object appears correct. For machining the toolpaths

could be calculated on the surface while the user indicated manually the approach

side. For rapid prototyping, though, the facets produced from the surface set would

have different orientations and there could also be mismatches from neighbouring,

non-joined surfaces. This caused problems because the contours used for rapid

prototyping had badly oriented portions and/or gaps. Joining surface patches in the

manner outlined above is important to avoid such problems.

5.8.2 Adding Surfaces to a Solid

How do you get isolated surfaces into a model? Two early techniques were the

SETSURF technique, by Jared, and sectioning, by Smith, for the BUILD system.

Neither of these is ideal for creating a sculpted shape. They can be used for small

modifications, but are not intended for creating a global smooth shape.

SETSURF was described in Sect. 4.4 and is illustrated in Fig. 4.45. Require-

ments mentioned there are that the new surface is at least as big as the surface in

which it is being set and that the new surface intersects all the surfaces surrounding

Fig. 5.26 Non-matching
curve examples

Fig. 5.25 Joining degenerate
surface models
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the face in which the new surface is being set. SETSURF is a natural method to use

for inserting geometry into an object but is potentially awkward if there are several

neighbouring faces to be changed. This is because you might need to create

intermediate topology and geometry, which is awkward.

Sectioning is a sort of Boolean operation that has already been described in

Sect. 4.1.5. It acts as though there is infinite material behind the sectioning surface.

A requirement is, though, that the surface is at least as big as the object being

sectioned. Otherwise the object would only be partially cut.

5.8.3 Object Smoothing

An elegant technique for creating smoothed models from planar polyhedra was

published around 1983 by Chiyokura and Kimura [9–11]. Some work was also

done on the same topic by the commercial company Shape Data who produced the

Romulus, and then the Parasolid kernel modelling systems (their smoothing

package was called ‘‘Remus’’).

Chiyokura and Kimura’s system, MODIF, required the user to build a poly-

hedral model of an object and then indicate which edges were static, which were

rounded. The conversion operation then recalculated the topology and geometry to

produce a smoothed object. The technique was published, in a book as well as

papers, but does not seem to have been incorporated into modern CAD systems,

unfortunately.

Remus was once described as working by continuously chamfering edges to be

smoothed, and then the resulting edges of these, and so on, until some limit was

reached. This may be an analogy of what happens rather than the actual algorithm.

This technique, too, seems to have disappeared and is not currently available in

CAD systems.

5.8.4 Rounding Example

The following is a small worked example of creating surfaces to round off a vertex.

Figure 5.27 shows the geometric basis for the example.

The task is to round off the vertex, or corner, at (10, -10, 10). Since there are

three edges meeting at the vertex the result is a three-sided region. Since it is

necessary to use four-sided patches it is necessary to divide the region into three

four-sided patches meeting at a common point. In order to do this it is necessary to

decide on the position of the central point and the common normal at this point.

For this exercise the central point is taken as being at (9, -9, 9) and the normal

vector as (1, 1, 1), which will be normalised during the calculations.

The figure is symmetric in this case, so to shorten the exercise the control points

for one surface patch will be calculated and the others derived from this.
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The first thing to do is to split the curve P1P2 to find the point P4. To do this it is

possible to use the de Casteljau method.

The original curve has the control points: (0, -10, 10), (10, -10, 10) and

(10, 0, 10). With the value of ‘‘t as 0.5 this gives the triangular form of de

Casteljau as:

ð7:5;�7:5; 10Þ
ð5;�10; 10Þ ð10;�5; 10Þ

ð0;�10; 10Þ ð10;�10; 10Þ ð10; 0; 10Þ

This gives the first control points of the surface patch. The patch structure is as

shown in Fig. 5.28. From what has been determined:

P1 ¼ ð0;�10; 10Þ
P14 ¼ ð5;�10; 10Þ
P4 ¼ ð7:5;�7:5; 10Þ
P0 ¼ ð9;�9; 9Þ

It is also possible, because of the symmetry, to determine that:

P14 ¼ ð5;�10; 10Þ
P6 ¼ ð7:5;�10; 7:5Þ

In order to determine P40 it is necessary to perform a line-plane intersection of a

line through P4, perpendicular to the curve and the plane through P0 with the given

plane normal. This is illustrated in Fig. 5.29.

Fig. 5.27 Rounding off the
corner of a cube

300 5 Geometry



P40 ¼ P4 þ ldir � ðd=ðpnrmÞÞd ¼ ðppnt � P4Þ � pnrm ldir ¼ 1
ffiffiffi

2
p ;

�1
ffiffiffi

2
p ; 0

� �

;

pnrm ¼ 1
ffiffiffi

3
p ;

�1
ffiffiffi

3
p ;

1
ffiffiffi

3
p

� �

ppnt ¼ ð9;�9; 9Þ

This gives P40 ¼ ð8:5;�8:5; 10Þ as the value of the intersection point. By

symmetry it is possible to say that P60 ¼ ð8:5;�10; 8:5Þ.
This leaves only the central point, P1460 to be determined. Here, this point must

lie in the two side planes, Z ¼ 10 and Y ¼ �10 to preserve the tangent conditions

with these surfaces, and it must lie in the plane through P0 with normal ð1; 1; 1Þ.
Solving these constraints gives you the position: ð7;�10; 10Þ. The control points

of the grid are shown in Fig. 5.30.

Note the values of P14 and P16 are the same. What does this imply for the

surface normal at P1? (Fig. 5.30).

The final geometric entities are shown in Fig. 5.31.

5.9 Some Formulae

5.9.1 Tangent

The tangent to a curve can be found by differentiating the equation to find f 0ðtÞ and
evaluating this for the value of t required. You can use the matrix form, which is

useful if you have a lot of calculation. If you use the de Casteljau method to find a

P6 P60 P0

P16 P40

P1 P14 P4

P1460

Fig. 5.28 Surface patch
control point grid

d

P40

ldir

P4

ppnt

pnrm

Fig. 5.29 Intersecting a line
and a plane
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point, the last line gives the tangent direction and the size of a degree n curve

tangent is n times the length of the line.

5.9.2 Curvature

jðtÞ ¼ jf 0ðtÞ � f 00ðtÞj
jf 0ðtÞj3

5.9.3 Surface Normal

For analytic surfaces

dSðu; vÞ
du

� dSðu; vÞ
dv

(7.5,-10,7.5) (8.5,-10,8.5) (9,-9,9)

)01,5.8-,5.8()01,01-,5(

(0,-10,10) (5,-10,10) (7.5,-7.5,10)

(7,-10,10)

Fig. 5.30 Surface patch
control point grid

Fig. 5.31 Boundary curves, internal curves and surfaces for rounded corner
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5.9.4 Principal Curvatures

E ¼ Xu � Xu F ¼ Xu � Xv G ¼ Xv � Xv L ¼ Xuu � norm M ¼ Xuv � norm L ¼ Xvv � norm

K ¼ LN �M2

EG� F2
2H ¼ EN � 2FM þGL

EG� F2

5.10 Chapter Summary

This chapter is a very thin overview of the complex subject of geometry. It is not

meant to give a full treatment, but to teach a little of the functions and how they

are used for complex operations. The chapter describes important functions, such

as curve and surface interpolation, curve extrusion, surface analysis. The chapter

also describes the integration of geometry into the solid modelling environment.

5.11 Geometry Exercises

5.11.1 Interpolation Exercise

The first task is to define a cubic Bézier curve which passes through the points:

ð0; 0Þð4; 3Þð14; 3Þð10; 6Þ

You should define the control points for the curve, although the first and last are

identical to the first and last points above, so in effect the points of control are:

ð0; 0Þða; bÞðc; dÞð10; 6Þ

Where it is necessary to find a, b, c et d so that the curve passes through the two

points (4, 3) and (14, 3).

The formula to calculate a point P(t) on a cubic Bézier curve is:

PðtÞ ¼ ð1� tÞ3P0 þ 3tð1� tÞ2P1 þ 3t2ð1� tÞP2 þ t3P3

Where P0;P1;P2 and P3 are the points of control. For the curve above you have

the two equations:

ð4; 3Þ ¼ ð1� t1Þ3ð0; 0Þ þ 3t1ð1� t1Þ2ða; bÞ þ 3t21ð1� t1Þðc; dÞ þ t31ð10; 6Þ

and

ð14; 3Þ ¼ ð1� t2Þ3ð0; 0Þ þ 3t2ð1� t2Þ2ða; bÞ þ 3t22ð1� t2Þðc; dÞ þ t32ð10; 6Þ
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In order to be able to resolve these it is necessary to estimate the values of t1
and t2, first calculate the values of a,b, c and d with t1 and t2 calculated from the

arc length (the proportion of the distance between the points).

Now create the points and the curve using your CAD system. Try and find a

function for displaying the curve control points. These are usually editing func-

tions for manipulating the shape. Do the control points lie at the place you cal-

culated for them?

In the CAD system create a sketch on the XY plane such as that shown in

Fig. 5.32.

The part should be symmetric about the horizontal axis. Cover the shape so as

to make a portion of surface. Extrude the same sketch a distance of 57.5 mm. Now

join the part from the first operation (when you covered the surface) with the

extrusion. This now forms an open structure, now give the part a thickness, say 1

on the interior and 2 on the exterior.

This method of working is useful for, say, creating thin aesthetic shapes such as

car bodies, ship hulls, vacuum cleaner covers or other aesthetic shapes. You create

one surface and then the system can create the solid for further working directly.

You can also create objects as solids and then convert them to thin, hollow shapes

using the command to create a shell (Fig. 5.32).

5.11.2 Unequal Surface Transformation

Not all CAD systems allow uneven scaling so you may not be able to do this in

your CAD system.

Make an object by circular extrusion and then use unequal scaling to change the

form of the surface.

Sketch a simple square on a plane and rotate this about one of the edges of the

square. After creating the initial object, save the object in STEP format, which is

the easiest format to look at. Open this original object with a text editor. Now scale

the object with uneven scaling, if your CAD system allows it, and save it to a

Fig. 5.32 Simple extrusion
shape
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second file using STEP format. Open this new file and compare the geometry. Now

scale the object back using uneven scaling and save the object to a third file.

In the first file you should find planes and a cylindrical surface. In the second

file, you should find that much of the simple geometry has been converted to

B-spline geometry in order to be able to perform the uneven scaling. In the third

file it is likely that you still find B-spline geometry, even though the shape is

cylindrical. This is because it is much harder to convert complex geometry back to

simple forms.

5.11.3 Linear Exercises

Use a cubic Bézier to interpolate the points:

ð0; 0Þ; ð5; 0Þ; ð7:5; 0Þ; ð10; 0Þ

What happens?

Write out the cubic Bézier form in full and collect the terms of t3; t2; t and
constants together in terms of the control points: b0; b1; b2 and b3. Calculate the

terms for t3 and t2 when you have the control points:

ð0; 0Þ; ð5; 0Þ; ð10; 0Þ; ð15; 0Þ

and also for the control points:

ð0; 0Þ; ð10; 0Þ; ð15; 0Þ; ð20; 0Þ

5.11.4 Using a Solid to Guide Geometry

Make the object in Fig. 5.33 as one object in an assembly. Making the object in an

assembly means that the cover, or shell, surrounding this object is created as a

separate object.

The object represents a volumetric representation of half the space occupied by

an internal mechanism around which a cover is to be created. Figure 5.34 shows

the faces and the base points used for a set of offset points for curve creation.

Create a new object and in this create the points shown in the figure.

The offsets from the nearby vertices are:

Now create splines for each point set. The first spline should pass through the

points P1, P2 and P3. Add a tangent at the start and end of the spline so that the

curve has a vertical direction at P1 and a horizontal direction at P3. The horizontal

direction at P3 means that the curve and its mirrored image will have the same

tangent direction after the symmetry operation in the last step.
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Repeat the process making splines through:

P4, P5, P6 and P7 (set the tangent directions for P4 and P7).

P8, P9, P10 and P11 (set the tangent directions for P8 and P11).

P12, P13, P14 (set the tangent directions for P12 and P14).

After the process you should have a set of curves like those shown in Fig. 5.35.

Interpolating a surface through these gives the shape in Fig. 5.36.

Fig. 5.33 Solid for surface creation

Fig. 5.34 Faces and offset points for creating surfaces
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Fig. 5.35 Splines for surface
interpolation

Fig. 5.36 Surface
interpolated through splines

Fig. 5.37 Solid created by
giving surface thickness

Fig. 5.38 Shell finished by
reflection
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Thicken this surface to give the half shell shown in Fig. 5.37.

Finally, complete the cover by reflecting the thickened shape in the appropriate

plane, Fig. 5.38.

Depending on how the system works, the points used to create the splines, and

hence the whole object may or may not be linked to the original solid. If they are

linked, then changing the original solid will create a new shell automatically.

Fig. 5.39 Solid for surface
creation

Fig. 5.40 Closed splines
created around a solid
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5.11.5 Creating a Solid Guided by a Solid

Now make the object in Fig. 5.39.

Use the vertices to create a series of sections in the form of spline curves and

the tool for creating a lofted surface to create the cover shape. It doesn’t matter

exactly how you create the splines, the shape is arbitrary to demonstrate the

principle. However, each section should be closed. Figure 5.40 shows the splines

used in this example, but they are arbitrary.

The shape is made as a solid lofted part over these sections. If your CAD system

doesn’t allow you to make a solid then you can fill in the first and last sections to

Point Vertical Horizontal

P1 10 0

P2 5 5

P3 0 10

P4 10 0

P5 5 0

P6 0 5

P7 0 10

P8 10 0

P9 5 0

P10 0 5

P11 0 10

P12 10 0

P13 5 5

P14 0 10

Fig. 5.41 Solid created from
splines
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close the surface model, however, making a solid is probably available.

Figure 5.41 shows the lofted solid.

What the lofted solid does is to gobble up the internal solid around which it was

built. The original model is no longer part of the model, but it is still there and can

Fig. 5.42 First variant

Fig. 5.43 Second variant

Fig. 5.44 Third variant
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be modified. Since the splines defining the lofted shape are defined using points

created with reference to the original model then changing the original model

should change the splines and hence the lofted shape. This means that paramet-

rising the original simple shape The final lofted shape can be turned into a shell to

define a closed shape, like a type of bottle.

Figure 5.42 shows a variant where the middle part has been enlarged giving a

fatter shape.

Figure 5.43 shows a variant where the bottom part has been lengthened.

Figure 5.44 shows a variant where the top part has been lengthened.

5.11.6 A Silly Parametric Aeroplane

The final exercise in the parametric shape vein is a silly aircraft model. The shape

is not very aerodynamic, but was produced quite quickly as an illustration. The

first step is to define the internal shapes which are used to guide the final complex

shape. Since the aircraft is symmetrical, only half shapes were created and the final

shape created by reflection, in this case about the XZ plane.

The guide shape is shown in Fig. 5.45. It consists of a cabin box, in front of this

a nose shape and to the rear a tail shape.

The final shape and the half splines used to create the aircraft geometry are

shown in Fig. 5.46. Note that there are two sets of spline sections, one set for the

length of the fuselage and one for the front wing. These are controlled separately

and the resulting volume objects added together. The rear wing is not controlled

and so has fixed size.

Fig. 5.45 Basic aeroplane
interior

Fig. 5.46 Aeroplane with
spline sections
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Fig. 5.47 Half aeroplane

Fig. 5.48 Aeroplane
variant 1

Fig. 5.49 Aeroplane
variant 2—heightened
cabin

Fig. 5.50 Aeroplane
variant 3—lengthened
nose

Fig. 5.51 Aeroplane
variant 4—lengthened nose
and tail section
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Figure 5.47 shows the half shape created from the spline sections. Note that

there is, for each section, a straight part lying in the XZ plane. This is to create a

planar surface of symmetry.

The initial aeroplane shape is shown in Fig. 5.48.

For the first variant, the cabin has been heightened, as in Fig. 5.49.

For the second variant the nose section has been lengthened (Fig. 5.50).

The fourth variant has a lengthened tail section in addition to the lengthened

nose section Fig. 5.51.

The final variant has extended wings. Figure 5.52.

This is just a simple example which you can try with your own system. There

are alternative construction methods, such as defining style lines along the length

of the object, using the interior solid as a guide, and creating section points by

intersecting the style lines with transversal planes.
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Chapter 6

Non-Manifold Models

The normal objects that you meet in everyday life are called ‘‘manifold’’ objects.

Which means, putting it glibly, that at every point on the surface the neighbour-

hood around the point is homeomorphic to a disc. You may, or may not want to

know that. Figure 6.1, shows an alternative way of understanding this, from Braid,

that, at every point on the outside of the object, a small enough sphere will be cut

into two pieces, one inside the object and one outside.

The following potted history is what I believe to be true, but if someone ever

writes a definitive history of CAD then there may be other factors of which I am

not aware.

In the original Boundary Representation modelling systems only valid solids

were considered. In the BUILD research system, as an intermediate step, it was

possible to represent flat objects, but these were usually only shapes which were to

be swept. Towards the end of the 1970s an internordic project, GPM, was set up to

develop methods for ‘‘Geometric Product Modelling’’ was set up incorporating a

number of modelling methods. In Denmark the user system was developed. In

Norway an ‘‘Assembled Plate Construction’’ (APC) module (SINTEF) and a

surface module were developed (SI). In Sweden and Finland the volumetric

modelling module was developed. The APC module was a specialised, advanced

module for modelling constructions made from thin plates. As part of the volume

module it was intended to be able to interface with both this module and the

surface module, so thin plate models were introduced as part of the volumetric

modelling system [1].

One of the Swedish ideas was that, bymixing different representations in the same

modelling framework, you could represent different stages and levels of models. In

the beginning you might have a simple sketch. This might then be fleshed out into

partial models, idealisations of the volumetric shape. For production needs these

might need to be expanded into full volumetric models. As the lifetime of a product

develops it may prove useful to go back to idealisations and maybe even sketches.

This is described by Kjellberg [2], who, as far as I know, pioneered this method, but

his dissertation is in Swedish so is not so accessible. One of the examples he used is

illustrated in Fig. 6.2, a simplified model of an excavator.

I. Stroud and H. Nagy, Solid Modelling and CAD Systems,
DOI: 10.1007/978-0-85729-259-9_6, � Springer-Verlag London Limited 2011
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The whole excavator is an assembly of models with different characteristics.

The body of the excavator and the tracks are solid models, the arm is a wireframe

model and the scoop is a compound sheet model.

So, for non-manifold models in CAD, it is necessary to distinguish between

three types of special and non-manifold model:

1. Wireframe models.

2. Sheet models.

3. Non-manifold solid models.

These can be integrated into the same datastructure for easy transition between

applications. For wireframe models the loop and face information is ‘‘ignored’’,

that is, set to NULL. Sheet models are like degenerate solid models, with the limit

edges corresponding to thin faces. Non-manifold solids have coinciding portions.

Some systems keep solids apart from sheet models and wireframe models,

others integrate them. This is a strategic question which, of course, affects the user

Fig. 6.2 Kjellberg’s
‘‘Grävskopa’’, or exacavator
(from Kjellberg [2])

Fig. 6.1 Manifold object definition
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but is up to the CAD developer. Neither strategy is particularly bad, they both have

advantages and disadvantages. Integrating them means that the user has a fluent

design environment and that common functionality is shared. Keeping them apart

means that there is less chance of error, in creating sheet models instead of solids.

One thing that should never be done, though, is to have solids with sheet and/or

wireframe elements integrated into the same model, such as the one shown in

Fig. 6.3. This is possible, but sheet and wireframe models are idealisations of

something, where a solid model is a full solid. Integrating them would mean that

you have a model which has to be interpreted differently in different places, which

is not particularly a good idea. Nobody does this, as far as I know, so it should not

be a problem.

6.1 Datastructure Needs

A common method for implementing non-manifold modelling is to use the so-

called ‘‘STAR’’ representation. The development that allowed this was to intro-

duce the loop-edge links so that edges could refer to more than two loops (loops

are face boundaries). In the original Boundary Representation (Brep) datastructure,

in BUILD, there was a fixed restriction that there were two loops at every edge.

They could be the same loop, but there were never more, because such objects

were unrealisable. The addition of loop-edge links to the datastructure, which

appeared in the GPM Volume Module, allowed rings of links around the edge and,

hence, any number. Figure 6.4 shows this.

A requirement for this method of representation is that the links are ordered

around the edge. Figure 6.5 illustrates this. On the left of the figure you see a

normal case. The large black dot represents the edge, seen in cross-section. The

lines represent faces and the small dots are just to indicate where there is material.

Turning around the edge counter-clockwise, as indicated by the arrow, the links

between the edge and the faces are classified as ‘‘enters’’ or ‘‘leaves’’ depending on

Fig. 6.3 Chimæra model
with volumetric-, sheet- and
wireframe parts
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whether you enter the material or leave it. There is a sequence of alternating pairs

in a correct figure. On the right of Fig. 6.5 is an incorrect case. The sequence is

‘‘enters–leaves–enters–leaves–enters–enters–leaves–leaves’’. The double ‘‘enters’’

and ‘‘leaves’’ indicate that there is material within material, i.e. that there is a self-

intersecting object. Note that this ordering procedure can be done for volume

objects, but for sheet objects the enters–leaves classifications with coincide, and

ordering is difficult.

The star representation is not necessary to implement non-manifold models,

the non-manifold condition is a geometric condition, not a topological one. In the

GPM project edges were allowed to refer to only two faces, even though loop-

edge links were part of the datastructure. It was felt that it was more natural to

duplicate edges. Edge duplication also has an advantage in that the meaning of the

Fig. 6.4 Edge links in a non-
manifold model (from Stroud
[3])

enters

leaves enters

leaves

entersleaves

enters

leaves enters

leaves

enters

entersleaves

leaves

Fig. 6.5 Ordering edge links around the edge
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datastructure entity connections is unambiguous. With the star representation it is

not clear whether the object parts are just connected at the non-manifold edge, or

whether they just miss each other. It is important to know this because performing

an operation on a non-manifold edge should entail a conversion before the oper-

ation. This conversion involves pairing up the loop-edge links and duplicating

edges. A visual comparison is shown in Fig. 6.6. For a non-manifold edge, as

shown at the top of the figure, the star version is shown at the bottom left and the

degenerate version on the bottom right. For the star version an advantage is that the

links are associated, it is clear that the edge is a special case. Unless there is a link

between the duplicated elements this connection is not explicit.

The ambiguity problem is illustrated graphically in Fig. 6.7. The star

arrangement is shown at the top of the figure. If you group edge link 1 with edge

link 2 and links 3 and 4 then you get the double edge joined case at the bottom left.

If you group link 2 with link 3 and 4 with 1 then you get the arrangement on

the bottom right, where the objects are separate, only being joined at the vertices of

the edges.

The problem is that there is no way for the CAD system to know which one you

mean. This means that operations, such as chamfering, could have two interpre-

tations, as illustrated in Fig. 6.8, as already mentioned in Sect. 4.7. Of course,

what you would like is the CAD system to ask you which you mean, but at the

moment the trend is to ignore these edges.

Fig. 6.6 Star and degenerate model comparison
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The point of explaining this is two-fold. The first is to explain why, sometimes,

you get discrimination between model elements to which you would like to apply

an operation. Secondly, to explain the notion of edge duplication and edge-link

pairing, which is how to interpret the multi-link edges.

6.2 Wireframe Models

Wireframe models are another example of partial models which can be useful for

special purposes, such as sketching the centre-lines of pipework. At one time CAD

systems used wireframe models exclusively.

Fig. 6.7 Star ambiguity illustration

Fig. 6.8 Ambiguous chamfer operation
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6.2.1 Wireframe Datastructure

The datastructure of wireframe models is very simple, consisting of ‘‘nodes’’ and

‘‘links’’, as shown in Fig. 6.9. The nodes are represented by vertices and the links

by edges to use the same elements as for sheet objects and solids.

While these are enough for simple shapes, the lack of surface information is a

handicap for many functions, from drawing to manufacturing. A wireframe

graphics view of an object is shown in Fig. 6.10 to emphasis this.

Fig. 6.9 Wireframe model elements

Fig. 6.10 Complex
wireframe image
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6.2.2 Impossible Wireframes

It is also possible to make objects which are not realisable, as in Fig. 6.11. Sheet

objects and volume objects are Eulerian objects, which means that they follow the

formula described in Sect. 2.7.3. This means that there are restrictions on how you

build models, which precludes models such as that in the figure. Other models,

such as Möbius strips, or Klein bottles can also be created using wireframe

techniques, but are excluded using volumetric techniques. More usual than these

recreational objects, though, is that it is possible to create erroneous objects.

6.2.3 Wireframes and Modelling

An old research topic was the automatic conversion of wireframe models to solids.

It is not possible to guarantee a conversion and some counter-examples exist of

objects which cannot be converted. A feasible use for wireframe models is as a

support for sketching or they can be used as idealisations and then converted, as

with the operation described in Sect. 4.13.

One current use for wireframes is for defining two-dimensional shapes to be set

into surfaces, as has already been described in Sect. 3.7. They can also be used for

modelling curves in a geometric package and, for example, swept to create sur-

faces, as will be described in Sect. 6.3.1.

6.2.4 Wireframe Experiments

6.2.4.1 Creating Pipework

Make a shape like that on the left of Fig. 6.12. Extrude a circle along this path to

create a simple pipe. You can finish the pipe using the shelling operation to create

the interior.

If you have a shape like that on the right of the figure you cannot create it in one

piece with the extrusion along path operation. You can create the basic shape as

Fig. 6.11 Illusory figure
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with the figure on left and then add the additional shape with a second extrusion

along a path.

The questions concern how to perform the various parts of the operation. If,

after the first extrusion, the basic shape is turned into a extruded shape then the

second operation will create interior elements rather than the desired shape.

The second shape should be added before the shelling operation to create the

interior. However, this creates the final object in one piece, but it would

normally be created in several shaped pieces which would be welded together.

This can be done by creating the outer shape as a solid model, separating it

into elementary parts, and then creating the individual shelled pieces to be

made.

The purpose of this long explanation is to say that, while the facilities may exist

to create simple models, real applications need to be based around correct inter-

pretations rather than using standard tools.

6.3 Sheet Models

Sheet models are a useful tool for representing idealisations of thin-plate models or

for representing surfaces, as described in Sect. 5.8.1. Sheet models are non-

manifold because they are infinitely thin, but in some applications it is quite

natural to use them rather than volumetric models. The GPM APC module was

mentioned at the beginning of this chapter, and there was a successful oil rig

platform design application based on it. Other applications, such as layouts, for

modelling shapes to be cut from cloth or shapes to be cut from thin metal sheets,

do not need volumetric models. It is more efficient and more natural to use sheet

models.

An important part of the use of sheet models is their interpretation as ideali-

sations of thin-plate models. In this respect, the duplication of edges is more

natural than using a star representation for coincident edges. The duplicated edges

lie on different sides of the sheet objects and would be slightly apart if the sheet

object were expanded to produce a volumetric model. This was one of the reasons

that this method was used in the GPM volume module.

Fig. 6.12 Pipework centre-
lines
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6.3.1 Extruding Wireframe Models

A common operation is to extrude curves to produce surface models. This

means that edges go from being non-Eulerian to being Eulerian as part of the

extrusion process. The edges go from being linked through vertices to being

linked into chains as borders of faces. This was also discussed briefly in

Sect. 4.2. It is important to know how wire extrusion is integrated into the

CAD system, whether sheet models are separate from volumetric models or

coexist.

Branching wire objects have already been mentioned in Sect. 4.11. These are

usually excluded from extrusion operations by CAD systems, so will not be dealt

with further here.

Figure 6.13 shows an object that was used for comparison of solid modelling

systems for a seminar organised by the CAM-I organisation in 1983. It is an object,

reportedly of a gun-platform, which is composed of thin-walled parts.

As part of the GPM Volume module demonstration, this part was shown both as

a sheet model and as a set of flattened shapes to be cut from plate material, shown

in Fig. 6.14. The method for doing this is described in Stroud [3]. The operation

has not appeared in commercial CAD systems, as far as I know, but it shows what

could be done as part of a special application.

Fig. 6.13 The Contraves example
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6.3.2 Joining Sheet Objects

Joining sheet objects representing surface portions has already been described in

Sect. 5.8.1. The procedure is shown in Fig. 6.15. Each edge has two loop-edge

links, linked in a chain. The edge-link pairs are regrouped to form two chains, in

the figure, or one if the edges are merged.

Fig. 6.14 The Contraves object extruded as flat shapes

Fig. 6.15 Joining sheet
objects
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Figure 6.16 shows how the loop-edge links are rearranged. The case where the

edges are in the same direction is shown in the left hand column of the figure. The

case where the edges are in the opposite direction is shown in the right-hand

column. The original arrangement is shown at the top. Edge e1 has left link L1 and

right link R1. The edge to which it is to be joined is e2, with left link L2 and right

link R2.

If the edges are in the same direction and both are kept, middle left, then link L1
is paired with link R2 and link L2 is paired with link R1. If the edges are merged,

bottom left, then the links are arranged in the circular sequence L1;R2; L2;R1.

If the edges are in opposite directions, and both are kept, middle right, then L1 is

paired with L2, which becomes a right link, and link R1 is paired with R2, which

becomes a left link. If the edges are merged, bottom right, then the links are

merged into the sequence: L1, L2 (which becomes a right link), R2 (which becomes

a left link), R1.

6.3.3 Volume Models to Sheet Models

Section 4.9 describes the simple way of converting volume models to sheet models

as one step in the shelling process.

Fig. 6.16 Relinking edge links when joining sheet objects
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An operation that you find in CAD systems is to unfold, or flatten, volume

models. This was described in Sect. 4.10.

These methods allow a designer to create a part as a solid and then convert it to

a sheet model to be made from thin material. Converting a volume model to a

sheet models is a first step in at least one flattening algorithm. This conversion

allows the concave edges along which the object is to be bent to be marked as

grooved for finishing operations after cutting.

6.3.4 Sheet Model Experiments

6.3.4.1 Extruding Wires

First of all, create an open shape as a sketch in the volume modelling part and

extrude it in a straight line or circular arc, as in Fig. 6.17. This is the same

experiment as for extrusion and is intended to show whether or not sheet models

and volume models are integrated or separate. The question is not whether the

CAD system can do it or not, these are simple shapes, but whether they are

allowed to coexist or not.

Another extrusion experiment to try on simple shapes involves wires with one

edge in the extrusion direction, as shown in Fig. 6.18. The shape on the top left of

the figure should probably cause an error, as the extruded shape, bottom left,

Fig. 6.17 Open sheet objects from extruded wires
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would have a dangling edge, which is not a good idea. The shape shown top

middle, though, is more debatable. The result of an extrusion would be a valid

shape, bottom middle, though the internal edges, shown dotted, would have to be

handled properly. The third shape, top right, would cause problems, because the

extrusion would leave a single wire edge in the middle, or the shape would have

degenerate parts.

Test these three shapes to see if the CAD system allows them or not. For the

shape on the right, make sure that the middle edge is longer than the extrusion

distance.

6.3.4.2 Extruding Branching Wires

This is another experiment that has been suggested before, in the section on

extrusion. Extruding branching edges should not be a problem, except for critical

cases where one or more edges are in the extrusion direction or there are coin-

cident edges. The reason for not implementing this is a strategic decision by CAD

implementers about the complexity allowed. The problem is to work out the

connections at the complex branch-points. If there are at most two edges at every

vertex then there is no problem. If there are more then a geometric test is needed to

sort out pairings.

One of the edges is taken as a base edge, the zero degree edge and the other

edges are ordered using their tangent vectors, projected onto the plane defined by

the common vertex and the extrusion direction (Fig. 6.19). This method was

developed by Müller [4]. Note that edges 3 and 4 have the same tangent direction,

Fig. 6.18 Wire objects with critical edges

328 6 Non-Manifold Models



but this is sorted out in Müller’s method by using the curvature. The method will

not work, though, if there are coincident edges or edges parallel to the extrusion

direction.

An alternative is to slice the edges to create a degenerate face, which is then

extruded. See Fig. 6.20. This can then be extruded using a normal face extrusion

and then the edges collapsed back as a finishing process.

The actual details of how this is done in a particular CAD system are not really

important, the question is whether or not the system allows you to extrude

branching wires.

6.3.4.3 Joining Three or More Sheet Objects

Dedicated CAD systems for thin plate modelling should be able to handle this

case, though as part of a general CAD system this may not be allowed. A simple

test is shown in Fig. 6.21. Create a line on the Z = 0 plane, say from ð�50; 0Þ to
ð0; 0Þ and extrude it 60. Create a second line, from ð30;�50Þ to ð0; 0Þ and extrude

this 60, as well. Finally, create a third line, from ð30; 50Þ to ð0; 0Þ and extrude this

60, the same distance for all three sheet objects. Now try joining them. In the same

way that branching wires can be handled, sheet merging can be handled if the

CAD system developer is prepared to invest the effort.

Fig. 6.19 Ordering wire branches

Fig. 6.20 Slicing wire branches
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6.3.4.4 Joining Sheet Models Without Matching Edges

This experiment is to test how much effort has been put into sheet modelling in the

CAD system. This is equivalent to a Boolean operation on sheet models and is not

impossible, technically, just requires some effort from theCAD system implementer.

On the Z = 0 plane, draw a semicircle, or, if you wish, a full circle, radius 25,

say. Extrude this 50 to create the first sheet. Now make a line just touching the

middle of the semicircle, from (25,0) to (50,0), say, as illustrated in Fig. 6.22. Try

to join them and check whether or not the system allows this.

6.4 Partial Models

Partial models are a special type of sheet model which are useful as mechanisms

for applications. They have faces and surfaces on one side but nothing, or maybe

one unsurfaced face, on the other side, as was done in the BUILD system. If there

is nothing on the back of the partial model, as is normal, then the boundary edges

are only partially defined, with only one loop-edge link.

Fig. 6.21 Slicing wire
branches

Fig. 6.22 Joining non-
matching sheet models
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You would not expect to see these as part of the CAD system, they are tools for

applications or intermediate results, perhaps. Partial models act as though they

have unlimited material behind them. Provided any operation does not go beyond

the boundaries of the partial model they act as normal volumes. An application

using partial models will be described in Sect. 10.3.2.

A simple illustration of the differences between sheet objects and partial objects

is shown in Fig. 6.23. If you were to add a cylinder to a square shape, shown in

Fig. 6.23a you would get the result in Fig. 6.23b if the square shape were a sheet

object and the result in Fig. 6.23c if the square shape were a partial object. The

reason is that the sheet object would have two intersections and both top and

bottom of the cylinder would be classified as outside the sheet. On the other hand,

with a partial object, there would be only one intersection, with the defined face,

and only the top of the cylinder would be classified as outside the object. In

addition, the addition of the cylinder to the sheet object should really be classified

as invalid, since this would create a mixed object with volumetric and sheet parts.

6.5 Non-Manifold Volume Models

Beware of non-manifold portions in volumetric models.

Although creating such model parts is technically correct, integration in all

operations seems patchy, at least at the time of writing. The problem of handling

Fig. 6.23 Joining non-matching sheet models
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star representations and pairing loop-edge links has already been mentioned. As

with sheet models, this comes back to having a clear method of interpretation of

what the non-manifold edge means: is it where there is material or is it where

objects touch without being joined? Similar considerations exist for objects just

touching at vertices.

Note, also, that there are two kinds of non-manifoldness that you might create.

The first kind is where there are edges with more than two faces or vertices with

multiple edge sets, the second is where two elements touch without having

common topological elements. An example of the second type is shown in

Fig. 6.24. The object was created using an extrusion along a path, described in

Sect. 4.2.8.

The sort of object shown in the figure is hard for a modelling system to resolve

because the normal point-set considerations cannot be used to sort out the object.

Points have neighbourhoods which are not homeomorphic to discs, if you prefer to

have it that way. An attempt to subtract the object in Fig. 6.24 from a block failed

because, the system said, it could not sort out the tangential relationships.

Sorting out this type of non-manifold object would require a special type of

Boolean operation, for evaluating self-intersecting objects, which, instead of

taking two objects and comparing their faces, compares the faces of a single object

with each other. It is not impossible to implement, but I have not yet seen such an

operation in a CAD system. Such an operation is linked with another topic, called

‘‘model checking’’ or ‘‘model healing’’, which will be described briefly in

Sect. 14.3.

Fig. 6.24 Non-manifold solid with touching elements
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6.5.1 Datastructure Improvements

The inherent ambiguity of the star representation as commonly implemented is a

drawback, but there are ways of improving it. The best work I know in this area

was by Luo and Lukacs [5, 6]. They introduced elements called ‘‘bundles’’ for

handling non-manifold vertices and ‘‘wedges’’ for non-manifold edges. Bundles

and wedges can be thought of as being equivalent to loops for faces in that they

allow multiple associations between datastructure elements. A full treatment of

this, though, lies outside the scope of this chapter, which is intended to deal with

practical aspects of the use of non-manifold solids.

The reason for mentioning this is that the current structure might change to

avoid this ambiguity. If it does, in the future, you may be prompted to tell the

system whether you mean objects to ‘‘touch-and-join’’ or ‘‘touch-but-miss’’. If you

are asked, then it means that the system can distinguish between the cases and

operations such as chamfer or blend on non-manifold edges and vertices may

work. If you get this kind of message, check what happens by blending the non-

manifold model part.

6.5.2 Non-Manifold Volume Applications

To some extent, non-manifold modelling is a solution in search of a problem.

The use of sheet- and wireframe-models as idealisations is a clear and useful

facility that has proved its usefulness. The uses for non-manifold solid models

is less clear. One suggestion has been to use them for finite-element mod-

elling. However, finite element models tend to have a large number of ele-

ments and the overheads associated with a volume would make these difficult

to handle.

One more appropriate application area is that described by Luo and Lukacs and

involves the use of non-manifold volume models for process planning. This is a

development building on an idea proposed by Malcolm Sabin, one of the most

influential figures in CAD/CAM. At a conference in 1983 Sabin suggested

building back a CAD model to its stock as a way of manufacturing planning.

Lukacs and Luo’s idea was to keep the built-back volumes separate and to link

them with the CAD model to create a compound, non-manifold model. The sep-

arate parts could then be easily identified for manufacturing planning, I know of no

CAD systems using such methods, though.

6.5.3 Volumetric Experiments

The first three of these come from previous exercises. They are simple ways of

creating non-manifold solids.
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6.5.3.1 Touching Edges by Extrusion

This exercise was described in Sect. 4.2. Make a square shape 100� 100. Extrude it

100 units. On the top face, create a new square, 100� 100, which touches one of the

edges of the top face and extrude this 100 units to create the object. See Fig. 6.25.

6.5.3.2 Touching Vertices by Extrusion

Another exercise from Sect. 4.2. This is a similar exercise to the previous one,

except that the shapes touch only at a vertex. Make a square shape 100� 100.

Extrude it 100 units. On the top face, create a new square, 100� 100, which

touches one of the edges of the top face and extrude this 100 units to create the

object. See Fig. 6.26.

6.5.3.3 Extruding Touching Shapes

Yet another exercise from Sect. 4.2. Make a pair of triangles touching at a vertex,

as shown in Fig. 6.27. The order of definition shown be p1-p2-p3-p1 and p4-p5-

p2-p5. You should not try making this as p1-p5-p4-p3-p1, which will not create the

important vertex in the middle.

The actual size of the triangles is not important, just that they touch at one vertex.

Extrude the touching triangles about the length of the side to give a reasonable

thickness. The question iswhat happenswith the commonvertex, is it one edge or two?

6.5.3.4 Touching Faces

This creates the shape shown in Fig. 6.24. In the YZ plane, Y = 0, create the

shape shown in Fig. 6.28. On the XY plane, Z = 0, create a 25� 25 square shape

Fig. 6.25 Creating a non-manifold edge
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centred about one of the end vertices of the shape shown, marked A and B in the

figure, and extrude it along the path to create the shape.

This method of creating touching faces may not work in some systems which

use Boolean operations to join sub-extrusion elements.

Fig. 6.26 Creating a non-manifold vertex

Fig. 6.27 Creating touching triangles
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6.5.3.5 Chamfering to Create Touching Elements

Create a thin shape such as that shown in Fig. 6.29a. The arms might be 75 units

long and 10 units wide. Extrude the shape 75 to give a volumetric model like that

shown in Fig. 6.29c. Now chamfer the convex edge as shown in two dimensions in

Fig6.29b, and in three dimensions in Fig. 6.29d.

If the depth of the chamfer is correct, armthickness�
ffiffiffi

2
p

, then you get a non-

manifold edge, shown dotted in Fig. 6.29d. If Boolean operations are used to

create the chamfer then the edge might be a star non-manifold edge. If a simple

local operation is used then the edge may touch the face, but not be associated with

it. You can test this by attempting to blend the edge.

6.6 Chapter Summary

This chapter deals with the subject of non-manifold and idealised models. While

idealised models have a clear use as design sketches, non-manifold volume models

have a less clear role in modelling. Being able to work with idealisations as part of

the design process adds fluency to CAD use and may also help by providing

clearer design intent.

Fig. 6.28 Path shape for touching faces
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6.7 Non-Manifold Exercises

6.7.1 Idealisation Matching

To practice identifying cases where idealisations are useful, identify whether

idealisations might be useful for the following design tasks and, if so, which type,

or types, of idealisation you would use. Write short notes to justify your answer.

1. A drilling platform structure.

2. Factory piping layout.

3. A building design.

4. A ship design.

5. Car body design.

6. The Gehause Rohteil, shown in Fig. 1.73.

7. The Eiffel Tower.

6.7.2 Building the Excavator

Create an assembly model of the excavator shown in Fig. 6.2 use your own

judgement as to which elements to create unified and which to keep separate.

Fig. 6.29 Chamfering to create touching elements
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Write down a list of the different models in your assembly, together with the type

of model they are. How would you convert the idealisations into volumetric

objects? Which operations would you use?
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Chapter 7

The CAD Interface and Graphical Output

This chapter deals with graphics, which is how you know what’s been done,

Fig. 7.1. As stated earlier, graphics can be divided into two categories: dynamic

graphics and static graphics, corresponding to the CAD image and engineering

drawings. They differ in their roles, but many of the principles are the same.

Note, also, that there are some good books on graphics that give an in-depth

coverage of the topic. It is not the intention to cover all the topics in graphics, but

to explain their interaction with CAD. Good books for graphics are Newman and

Sproull [1], Foley et al. [2] and Szirmay-Kalos et al. [3], for example. The whole

topic, though, is very extensive. The increasing use of computer graphics in

simulators, films and general image processing in films and so on has ensured the

vitality of the subject. Some of the advances are more widely useful and have

come through to CAD.

7.1 Graphics Transformations

The same transformation mechanism as has been described in Sect. 5.2.2 are also

used heavily in graphics.

CAD models are three dimensional and graphics is two dimensional, at least for

the moment. This means that there is a projection onto the graphics plane. This can

be understood relatively easily by considering the graphics coordinate system, as

shown in Fig. 7.2.

It is necessary to have an viewing position, a centre point for the projection,

called the view origin and a vector defining the up direction of the image to define

a system of coordinates. The vector from the viewing position to the view origin

defines the ‘‘into-display’’ vector. The vector product of the up direction and the

into-display vector gives the ‘‘display right’’ vector. The vector product of the

display-right vector with the into-display vector gives the ‘‘display-up’’ vector.

Note that this is a left-hand coordinate system.
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Any point, v, in normal three-dimensional space can be converted to the two-

dimensional graphics space coordinates by subtracting the graphics origin and

calculating the scalar products of the display-right and display-up vectors to

produce the graphics X-, and Y-coordinates. Thus:

vG ¼ v� view origin

vX ¼ vG � display right

vY ¼ vG � display up

This can be replaced by matrix multiplications. The first operation can be

replaced by the matrix:

1 0 0 �Ox

0 1 0 �Oy

0 0 1 �Oz

0 0 0 1

2

6

6

4

3

7

7

5

The operations to produce the two-dimensional coordinates give the matrix:

DRx DRy DRz 0

DUx DUy DUz 0

0 0 0 0

0 0 0 1

2

6

6

4

3

7

7

5

where DR stands for Display_Right and DU for Display_Up.

Fig. 7.2 Graphics coordinate
system (from [4])

Fig. 7.1 Finding out what’s
been done
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These two matrices can, of course, be combined as:

DRx DRy DRz 0

DUx DUy DUz 0

0 0 0 0

0 0 0 1

2

6

6

6

4

3

7

7

7

5

1 0 0 �Ox

0 1 0 �Oy

0 0 1 �Oz

0 0 0 1

2

6

6

6

4

3

7

7

7

5

¼

DRx DRy DRz Tx

DUx DUy DUz Ty

0 0 0 0

0 0 0 1

2

6

6

6

4

3

7

7

7

5

where Tx ¼ �OxDRx � OyDRy � OzDRz and Ty ¼ �OxDUx � OyDUy � OzDUz.

Note, though, the third row of the second matrix, which is:

0 0 0 0½ �

This means that the graphics transformation is non-invertible. It is preferable to

retain the Z-coordinate as well, even though it is not used as a screen position. In

fact, the Z-coordinate can be used for various purposes. The modified projection

matrix would be, then:

DRx DRy DRz 0

DUx DUy DUz 0

IDx IDy IDz 0

0 0 0 1

2

6

6

4

3

7

7

5

where ID stands for Into_Display.

Transformation matrices in graphics have been used for a long time, now. Their

importance has increased, though, as special graphics devices, including graphics

cards, have come onto the market. A classical architecture for such a graphics

device is shown in Fig. 7.3. There was an old system for vector graphics, from the

Evans and Sutherland company, in which the information in the graphics memory

was line segments and which worked this way. Later systems used triangles and

could produce shaded images, but worked in the same way.

Another revolutionary system was developed by Silicon Graphics, and con-

tained what was called a ‘‘pipeline’’ of transformations to perform various tasks.

At the start were transformations which performed rotation, translation and scal-

ing, at the end were perspective and clipping. Clipping is the removal of what lies

outside graphics space. The graphics space is in the form of a rectangular, as

shown on the left of Fig. 7.4. If the image is being drawn in perspective space then

the graphics space is like a slightly truncated pyramid, on the right of Fig. 7.4.

Fig. 7.3 Graphics hardware
architecture - simplified
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The side faces around the block correspond to the sides of the display region.

Anything that lies outside these, lies outside the displayed region and so is

removed. The front and back have different functions. Anything lying in front of

the front clipping plane can be thought of as lying behind the eye position, so is

invisible. Anything lying behind the back clipping plane can be thought of as too

far away to be seen. The clipping due to the front and back plane can seem strange,

at times. These can also be used to enhance the image, as will be explained later.

The advantage of the use of matrices is that the graphics model being shown

does not change, only the matrices. Every time you rotate, translate or scale the

picture on the screen, you are changing only a transformation matrix. This matrix

is then placed into the architecture and, at the next update, a new picture is

generated. The application of transformations is done by special hardware so that

you do not overload the CAD system. The graphics information has to be kept

simple, though, to let it be transformed in this way.

7.2 Displaying Objects

The first thing to note is that models are usually now exact whereas graphics is

approximative. When you look at a curve on the screen it is represented by a lot of

short straight line segments, but the real curve, in model space is usually a smooth

curve. The picture you get is a ‘‘reasonable approximation’’ to the model, don’t be

perturbed by the approximative nature of the image.

Objects can be displayed in various ways, wireframe, shaded, hidden-line etc.

These are used in different ways. Figure 7.5 illustrates three principle ones, with

images generated by the ACIS viewer. In Fig. 7.5a the image is a wireframe

image, showing only the edges of the object. Figure 7.5b shows a hidden-line

image, an image where the edges behind the faces are not shown at all. Finally, in

Fig. 7.5c there is a shaded image of the object.

This can all be done with the same graphical model made up of suitable

approximating elements. For high quality images this would be done using exact

methods, and high quality methods such as ray tracing will not be dealt with here.

The classical method uses graphical models made of triangles, which are general

stable forms for handling by hardware.

Fig. 7.4 Graphics space,
after Foley et al. [2]
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7.2.1 Approximating Objects

The first step in producing the graphics model which is used for display is to

approximate the curved edges with polygonal edges. For regular curved edges,

such as circles, it may be enough to calculate a regular series of points because the

edge has uniform curvature. Approximating general edges is shown in Fig. 7.6.

To approximate a curved edge, a number of points are calculated along the

edge, Fig. 7.6 middle. These points are then connected by line segments, Fig. 7.6

right. It is usual to use adaptive subdivision with a tolerance, as illustrated in

Fig. 7.7.

The middle point of each line segment is checked to see how far it lies from the

curve. If the distance is more than some predefined limit then a new intermediate

point is calculated, Fig. 7.7 middle. This step is repeated as often as necessary. The

old and new points are then connected to produce the edge image, Fig. 7.7 right.

Once the edges have been subdivided, the faces can be divided into triangles.

This is shown in Fig. 7.8. The original face is shown in Fig. 7.8a. The face is

L-shaped with a square hole. The first step in triangulation is to join all the

concave vertices to neighbouring vertices. A concave vertex is one around which

Fig. 7.5 Wireframe-, hidden line- and shaded-images

Fig. 7.6 Approximating a
curved edge
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the face makes an angle of 180 degrees or more. There are five in this example,

one vertex in the external boundary of the face where the two arms of the L-shape

meet and the four surrounding the hole.

In Fig. 7.8b one of the hole vertices is joined to the concave vertex of the

external boundary, which happens to be the closest pair to join. Note that this

Fig. 7.7 Refining an
approximation

Fig. 7.8 Triangulating a face
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leaves both vertices still concave and they will again have to be joined in later

steps, in Fig. 7.8f, g. In the next join, in Fig 7.8c, the next closest pair are joined.

Previously added new edges are shown dotted in the figures to make it easier to see

which is the new edge. The joins continue until all vertices are convex and the face

has been divided into a set of convex regions, as shown in Fig. 7.8h. The final step

is to divide these convex subfaces so that all subfaces are triangular, as shown in

Fig. 7.8i.

One reason for explaining this method is that triangulation is used for other

purposes, notably calculation of volume, area and so on and also for exporting

models in STL format. Look carefully at the final set of triangles. For graphics and

for other purposes the shape of the triangles does not seem to be taken much into

consideration. The control of the facetting is often done using a single parameter,

the chord height tolerance. There are two other ones which are used, the minimal

internal angle and the maximum edge length. These are illustrated in Fig. 7.9.

The chord height is the measure from the straight line to the exact edge portion

which is approximated by the line. If this value is greater than the maximum allow

chord height difference then the line is split and edge approximated by two pieces

of the range. This is recursively applied until the lines approximating the edge are

sufficiently close. The chord height is also used to check the discrepancy between a

surface and its approximating triangles. If the centre of the triangle is further from

the surface than the chord height tolerance then the triangle, and possible its

neighbours, is subdivided and the subdivided triangles moved closer to the surface.

Figure 7.10 shows two subdivision schemes. The original facet is shown in

Fig. 7.10a. If a new vertex is inserted in the middle of the facet then you get the

subdivision in Fig. 7.10b. This doesn’t affect neighbouring facets but the new sub-

facets are more elongated than the original. In Fig. 7.10c each of the facet edges is

subdivided, creating more regular sub-facet shapes, but the neighbouring facets

also have to be split.

The minimal internal angle is a value used for regularising triangles. If any of

the angles, a; b or c is less than the minimum angle, the triangle is redefined to

increase the proportions of the sides.

The edge length parameter is just to break long edges into multiple pieces,

which can also serve to make the triangles more regular.

Note, finally, that if the same facetted graphics model is to be used for drawing

wireframe-, hidden line- and shaded images then it is necessary to be able to dis-

tinguish between the external facet edges and internal facet edges. The external facet

edges are the ones corresponding to the boundary of the face. These correspond also

Fig. 7.9 Triangulation
tolerance types
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to the edges bounding the face. If the external facet edges cannot be distinguished

then it is necessary to have at least two models in the graphic memory.

7.2.2 Wireframe Drawing

Wireframe drawing is the simplest type of display. If done by software it can be

described simply as the following procedural method.

for_every_edge_in_body(b, draw_edge)

where the ‘‘draw_edge’’ function steps along the edge drawing straight line

segments to approximate the edge, as described in the previous section.

However, using the graphics model, this would involve looking at all facets

generated to approximate an object, and draw those facet edges which correspond

to the edges of the face.

If the graphics model is to be used for hit-testing directly then it would be

necessary to label all the straight line sections corresponding to an edge with some

sort of internal label. More, though, about this topic in Sect. 7.4.

7.2.3 Silhouette Lines

One feature of curved images is drawing what are termed the ‘‘silhouette lines’’.

These are illustrated on the simple example of a cylinder in Fig. 7.11, from [4].

A cylinder may be represented with one or more side edges, as in Fig. 7.11a. If

all these edges are drawn then you get the image in Fig. 7.11a. However, the side

Fig. 7.10 Facet subdivision
strategies
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edges, also known as ‘‘fake’’ edges, are not really part of a minimal representation

because the faces to the left and right of each edge lie in the same surface. Simply

ignoring these when drawing gives you an image such as that in Fig. 7.11b. This

lacks cohesion between the top and bottom circles, so drawing the silhouette

curves, where the normal vector to the surface is perpendicular to the view

direction, gives a slightly more realistic edges, Fig. 7.11c. Where the silhouette

lines meet the boundary curves of the face the edge is divided into a visible and

invisible portion. The top circle, however, is visible because it bounds the top face,

a face whose surface normal is pointing at least slightly towards the viewing point,

so is drawn whole. Only half of the bottom circle is drawn, giving the pseudo-

hidden line image in Fig. 7.11d. This is only possible, though, with convex objects

and normally a realistic image is more complex to produce.

7.2.4 Shaded Images

The best quality shaded images are produced by computationally expensive

techniques such as ray tracing. These can be quite realistic and can produce

advertising pictures. However these techniques take too long for interactive dis-

play so working images are produced using triangular approximations. Note that

some graphics packages allow general planar shapes to be transferred, but the

triangle is the simplest form, and general, so that is used here. Bodies are trian-

gulated by preprocessing the edges to subdivide curved edges and long edges and

then the faces are divided into triangles. The faces are first subdivided to remove

‘‘concave vertices’’ to leave convex sub-faces and then the sub-faces are divided

up to produce triangles. The subdivision is illustrated in Fig. 7.8.

Each facet was, originally, defined by three points and a normal vector. A more

modern version is to have a normal vector for each vertex point, as shown in

Fig. 7.12. This allows a better shaded image than with one normal vector, where the

triangle would have the same basic colour, resulting in visual discontinuities.

The colour of a point in an image depends on the surface normal, the position of

the point relative to the light source and the position of the eye, as shown in

Fig. 7.13.

In Fig. 7.13a the vector from the light source to the point gives the incident

vector. The reflected ray is symmetric about the surface normal at that point. The

size of the reflected ray depends on the reflectivity index of the object, which

Fig. 7.11 Fake edges and
silhouette edges in the model
(from [4])
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depends on the material so for general graphics without material properties some

sort of default has to be used. The angle between the vector from the surface point

to the eye and the reflected ray (Fig. 7.13b) determines the amount of light arriving

at the eye, and hence the final colour intensity of the point. The actual colour is an

assigned property, defined by the CAD system either as a default or for some

purpose. In I-DEAS, for example, object parts were coloured according to the

operation which made them.

For a facet, the colour intensity of the corner points can be calculated and then

any point within the triangle can be coloured according to its position relative to

these corner points. This topic, though, is a graphics topic and so will not be

pursued here. Interested readers should look at any good graphics book, such as

Newman and Sproull [1], Foley et al. [2] or Szirmay-Kalos et al. [3], although this

is by no means an exclusive list.

There are, therefore, several options for displaying a facetted object:

• smooth shaded

• flat shaded

• unshaded hidden line (providing that the facets belonging to different faces can

be identified).

The graphics options in a CAD system should be examined and identified.

These are ‘‘convenience’’ tools, not critical for object creation but useful at dif-

ferent times and different ways.

Fig. 7.12 Triangle and
normals

Fig. 7.13 Triangle and
normals
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7.2.5 Exact Hidden-Line Images

Exact hidden line images are produced from the exact geometry of the model

without using the facetting approximation step. Exact hidden line images produced

static images, that is, from a fixed viewpoint.

Suppose you have the object shown in Fig. 7.14. Drawing just the edges and

silhouette lines would give you the view on the left. What you would like is to

remove the edges that would normally be hidden by the material to produce a line

drawing or shaded image such as that on the right of the figure.

One way of doing this is to treat each face as a separate polygon, project these

polygons onto the view plane and then intersect the resulting patchwork, removing

those parts that are hidden. If the face is planar then it is easy to test if the face

might be visible by checking the face normal with the view direction. If the scalar

product of the face normal and the ‘‘into_display’’ vector is negative then the face

is potentially visible. For curved faces it is a little more complicated.

Curved faces fall into three categories:

1. Wholly visible.

2. Wholly invisible.

3. Partially visible and partially hidden.

The silhouette lines, mentioned earlier, are used to divide faces into visible and

hidden portions. Hidden portions are ignored, visible portions are projected onto

the view plane.

When all the polygons have been projected they are intersected, as shown in

Fig. 7.15. For each intersection, one polygon portion lies behind the other and that

portion is removed, trimming the hidden polygon or removing it altogether. When

all polygon pairs have been intersected the remaining polygons are drawn,

optionally shaded. Another option is to keep the hidden polygon elements and

draw them with dotted boundaries.

Fig. 7.14 Object to be drawn with hidden lines removed
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7.2.6 Patterned Objects

Patterning objects is related to shading, but imposes a defined pattern on the object

rather than a single colour. This can be done by treating the pattern as an infinite

sheet and then fitting it onto individual facets. The territory of the facet has,

therefore, different basic colours. Instead of having a single basic colour for each

facet the colour has to be determined from the pattern. The intensity, though, is

calculated in the same way as for normal shading.

7.2.7 3D ‘Tricks’

Note that there are a few ‘‘tricks’’ which have been employed to enhance the

impression of three dimensionality. Hillyard in the Cambridge BUILD group

developed an option to plot a pair of superimposed images of an object, one red

and one green, which could be viewed using special glasses. Another trick is to

make objects fainter the further away they are. This is termed depth cueing and I

first saw this in a graphics machine developed by Evans and Sutherland in the

early 1980s. Another line of work from the early 1980s was to develop rapid

prototyping as a technique to produce physical models of parts. Use of glasses,

polarising or with synchronised shutters is quite common. Virtual reality, with

spectacles and an immersive environment is another area which has become

popular in research. Work is still going on to develop real three-dimensional

displays where an object can be viewed without special glasses. However, while

this would be useful for understanding object shape this can be considered as a

bonus and so will not be dealt with further here.

Fig. 7.15 Polygon
projection
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7.3 Engineering Drawings

Engineering drawings are static, two dimensional images of three dimensional

objects. The use of these is part of the history of engineering and CAD.

Engineering drawings were, of course, part of the production process as a means of

communicating shape. They were produced by skilled designers using pen and

paper. Some early commercial systems were electronic drawing boards for cre-

ating and copying drawings with no 3D model behind it. Since copying and

correcting were important tasks these helped improve efficiency, but they were still

prone to human errors. Nowadays better communication methods are possible, but

engineering drawings are still not dead and communication is still far from perfect.

Engineering drawings, therefore, are still part and parcel of CAD systems.

Engineering drawings are a formalised method of communicating shape from

one person to another, say from a designer to a manufacturer. The formalisa-

tion includes elements such as tolerances to achieve functionality, surface

finishes and fillets aimed at communicating functionality. This section is not

about the formalisation but about the methods to create and manipulate the

drawings.

7.3.1 Model-Derived Drawings

An example of an engineering drawing is shown in Fig. 7.16.

The different views are all produced in the same way, by drawing the object

with hidden lines removed or dotted from different viewpoints. The central image

is drawn into-display vector (0, 0, -1) and up vector (0, 1, 0). The top-middle view

is drawn with into-display vector (0, -1, 0) and up vector (0, 0, 1). The left-hand

view is drawn with into-display vector (-1, 0, 0) and up vector (0, 1, 0). The top

right view is from an oblique view point with a non-aligned into-display vector.

The view at the bottom is a sectioned view created by sectioning the original

object and drawing the section with into-display vector (0, 1, 0) and up vector (0,

0, -1). The view origin should, in all cases, be the centre of the box surrounding

the part. Each sub-image is, in fact, a rectangular graphics window, the size of

which should just include the whole object.

The choice of views is under user control and varies according to the com-

plexity of the object. This is not described here because, as mentioned before, this

is connected with design presentation whereas this section is about the application

of modelling techniques to CAD. The drawing can be of a single object or also an

assembly, the basic techniques applied are the same. The views may be produced

from a facetted model or as an exact hidden-line image of the solid model(s). An

exact hidden-line model gives a better quality image and the static image

requirement is fulfilled in engineering drawings. Producing such an image, though,

is more complex than using facetted models.
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Two options that should be noted are: dotted or invisible hidden edges and the

number of segments used to produce curved edges. Invisible hidden edges give a

realistic image but sometimes it is desirable to show them dotted for better

understanding. The number of segments used for curved edges controls the image

quality. If too low the curved edge will appear to be polygonal. This may or may

not be available as a parameter, so check.

The section view is not a standard view and is produced by a designer to

illustrate detail. The user defines a line or set of lines in two dimensions over an

image window. These must cut the object completely, otherwise the section would

only be partial, so the lines may be extended to cut the object bounding box.

Figure 7.17 shows the section example from Fig. 7.16.

The dotted lines round the image mark the window boundaries, which are

slightly larger than the object. The central dotted line, marked A–A, is the section

line, extending to the window boundaries. This section line, together with the

object bounding box on one side creates a cube figure, shown shaded in Fig. 7.17b.

The extension of this shape upwards and downwards to the bounding box gives a

solid block which is subtracted from a copy of the original object and drawn. New

faces created by the Boolean operation are drawn hatched, as shown in Fig. 7.16.

Fig. 7.16 Example of an
undimensioned engineering
drawing
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7.3.2 Adding Dimensions and Symbols

The first stage produces a two-dimensional layout which is then used to add

dimensions and other information. The dimensions added to the drawing have to be

separated from the object shape so that the dimension lines are not confused with

the lines drawn from the model. You do not want to be able to set dimensions

between dimension lines, for example. One technique that was once used was to put

graphical elements in an image in terms of ‘‘layers’’. It was certainly present in a

system called CAMAX in the early 1980s. The notion is analogous to having a basic

drawing and then adding details on transparent sheets to overlay that drawing.

7.3.2.1 Linear Dimensions

Some examples of dimension types are shown in Fig. 7.18. If two lines are parallel

(Fig. 7.18a) then a simple dimension is added perpendicular to these (Fig. 7.18d)

with the distance. If two lines are not parallel (Fig. 7.18b), then an angular

dimension is added because there is no unique distance between the two,

Fig. 7.18e. The dimension value is the angle. If the two lines do not overlap, as in

Fig. 7.18c then an extension line is normally added, Fig. 7.18f. Note that all lines

are treated as infinite and that the placement of any dimension may cause exten-

sion lines if the dimension is placed outside the range of an image line.

The engineering drawing in Fig. 7.16 with dimensions is shown in Fig. 7.19.

Tolerances can be added as extra elements in the dimension. They can be

implemented simply as two extra number fields, the values being added by the

user. A small experiment you can try is to set stupid tolerance values. This is not a

serious error, but you can get an idea of whether or not the system is sensitive to

the application or more-or-less a visual editor. Make a figure like that shown in

Fig. 7.20, extrude it, say 20 units and create from it an engineering drawing.

Now play with adding tolerances to the dimensions marked A, B and C. Try

adding a normal tolerance, such as �0:02 to dimension A. Can you set tolerances

of +50 (lower tolerance) and +40 (upper tolerance) to dimension B? The lower

limit should always be less than the upper limit. Now try adding tolerances of �50

to dimension C. This would mean that the whole dimension could have a value of

-20, which is also ridiculous, the dimension plus the lower tolerance should be

greater than zero.

Fig. 7.17 Producing a
section
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It is not easy to have an automatic filter for strange or unrealistic values for

dimensions and tolerances. However, if the system does not at least warn for some

simple cases then it means that the onus is on you, the user, to get the values right.

It also means that you should check that what is displayed is actually what you

want, and not a typing error.

7.3.2.2 Circles, Circular Arcs and Threads

Circles and circular arcs are dimensioned with a radius or diameter, depending on

the option. It is less clear how to dimension other entities, though. Figure 7.21

shows some examples of circles with dimensions. The two complete circles are

dimensioned with diameter dimensions, the two quarter circles with radial

dimensions. A CAD system can produce either for a circle because the geometry is

well-defined. A radial dimension runs to, or in the direction of the centre of the

circle, although it could be positioned outside the circle. The diameter dimension

runs through the centre of the circle, but could also run between tangent vectors on

opposite sides of the circle. These are relatively easy to produce and it is necessary

to check each CAD system to see which it provides.

Note the two complete circles corresponding to the through holes. Both of these

holes are threaded, one implicitly and one explicitly. There is an important dif-

ference in that the implicit thread is easily identifiable and produces a stylised

notation whereas the explicit threaded shape produces a realistic image.

Fig. 7.18 Adding dimensions
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Fig. 7.19 Dimensioned
simple block

Fig. 7.20 Figure for adding
tolerances to dimensions
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Although it is easy for you to identify the realistic image as a thread, it is very

difficult to do this in a computer. This means that downstream applications would

need complex software to recognise the form as a threaded hole or human inter-

vention. This is a topic which will be covered in more detail in Chap. 10. Creating

complex shapes with implicit geometry using information tags is covered in

Chap. 8. Note, also, that the hole itself is strangely placed to have a thread,

because of the cutaway. This does not deter the drawing creation, though, because

the drawing rules are applied without considering the application. It is up to the

user to make sure that the geometry makes sense.

Regarding the thread stylisation more closely, there are two indicators of the

thread, a three-quarter circle in the top view, indicating the limit of the thread, and

the vertical lines indicating the thread profile in the side view. Stylised threads are

shown in more detail in Fig. 7.22.

Fig. 7.21 Dimensions on circles and arcs
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7.3.2.3 Dimensioning Chamfers and Blends

Threads are an old example of the use of information in modelling, where a

complex shape need not be modelled exactly because it can be produced

directly. There is no need to have the exact geometry for manufacturing plan-

ning. Similar potentially useful examples of implicit shapes are implicit blends

(or fillets) and implicit chamfers. These are usually produced explicitly, losing

their identity. If they were implicit then this would allow automatic addition of

chamfer symbols and blend radii in drawings. An alternative is to label the

model elements resulting from the chamfer or blend with the origin so that these

can be identified easily.

Examples of dimensioned chamfers are shown in Fig. 7.23. Of the dimensioned

chamfers, only that noted ‘‘5� 45�’’ was produced as a chamfer. That marked

‘‘10� 45�’’ and that marked ‘‘28:22� 45�’’ were both part of the original extru-

ded shape. The drawing was produced using CATIA v5 and the chamfer data

marked seems to be calculated from the 2D-image. It appears that if an edge is

indicated as a chamfer then the angles with the neighbouring edges are calculated.

These should add up to less than 180 degrees. The fact that the long edge, marked

‘‘28:22� 45�’’, is probably too long to be considered as a chamfer is ignored. Note

also that this edge and a neighbouring edge are both marked as being chamfers at a

45� angle, which does not make sense. However, it is too much to expect auto-

matic error checking to help this problem, so the onus is on the user to use such

labelling correctly.

Note that there is one blended edge marked with a radius in the figure. This, too,

could be produced automatically if the model preserves the information that the

shape was produced by blending. There is a nuance, though, that some blended

objects have a default blend for the whole body, which would be marked as

information on a drawing, and only certain different blends marked explicitly. This

would require a ‘‘blend object’’ command, or some such, for all edges or as a note

on the body. At any rate, it is better to use the chamfer command for chamfered

edges and the blend command for blended edges and not introduce them as parts of

a two-dimensional shape.

Note that the edge marked as ‘‘chamfer?’’ was actually produced by the

chamfer command, but perhaps because a neighbouring edge is curved this cannot

be noted as a chamfer automatically by the CAD system.

Fig. 7.22 Stylised thread
drawing

7.3 Engineering Drawings 357



7.3.2.4 Dimensioning Symbols

It seems likely from other developments that more information will be placed in

models in order to make them usable directly in downstream applications.

Examples are dimensions, tolerances and surface finish information. If this is so,

then more of the drawing information could be added automatically. The symbols

used are part of design practice, so are not discussed in detail here. In a CAD

system they take the form of two-dimensional compound shapes which are edited

into the drawing in the same way as for dimensions.

7.3.2.5 Automatic Dimensioning

Another possible automation is to dimension parts automatically. This seems to be

based on the way that two dimensional shapes were dimensioned and the opera-

tions used to make the part. Such facilities need to be used with care because the

dimensioning used to control a two-dimensional shape and the dimensioning

shown in a drawing have different purposes. The dimensioning for a two dimen-

sional shape is normally just to control shape and the shape is exact. Dimensioning

Fig. 7.23 Dimensioned
chamfers and blend
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in a drawing is used to indicate not just distances but critical distances. The choice

of dimensions is to do with functionality requirements, not just the way that a

shape has been made. Hence, care should be taken about accepting automatic

dimensioning schemes based on the way a part has been made.

7.4 Interacting with Models

The method of referring to model parts in command files will be described in more

detail in Sect. 12.2. This section is mainly about interactive graphics picking, but

the other methods are mentioned here for completeness.

Identifying elements in models has a long history. The current method, picking

elements interactively using a mouse is convenient but not sufficient. It is neces-

sary to identify elements also as part of history trees. Before describing the

methods, though, a little bit of history. An old, but quite good description of the

methods is given by Várady et al. in [5].

In early Boundary Representation solid modelling research commands were

given by typing or by creating command scripts. Each element used as input to a

command had a number so that a chamfer command might be:

chamfer edge 15 by 4

All edges in the target body would then be scanned looking for one with the

identity number 15. A pointer to that edge would then be passed to the chamfer

operation procedure to be modified, as shown in Fig. 7.24.

Each element in the model received a number automatically when it was cre-

ated and so had its own identity. While this made it possible to identify elements

uniquely, the numbers were not stable. If an extra operation was applied before

edge 15 was created then a different edge would be assigned the number 15. For

this reason a young gentleman by the name of Chris Cary developed a topological

navigation method to define edges, vertices using a relational sequence. The

relations were:

LEFT RIGHT BACK FRONT TOP BOTTOM

In Fig. 7.24, the command to chamfer edge 15 would become:

chamfer top edge of front face of left face by 4

Fig. 7.24 Chamfering
edge 15
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Figure 7.25 shows the sequence for identifying the edge. Note that the edge is

not the ‘‘front edge of top face’’, because there are two edges which could be

found. Similarly the edge is not the ‘‘top edge of front face’’ because there are two

faces which could be identified as the front face. The edge could also be ‘‘right

edge of front vertex of left edge of top face’’.

This method assumes a particular orientation of the object so as to be able to

identify front, back, top, bottom, left and right. However, when the method was

developed it was intended for solid modelling research with models in static

positions, so this was not a problem.

For modern CAD, though, textual commands such as the ones above are not

used. Current methods for identifying model elements use hit-testing, where the

user moves the cursor over the image of the element to be selected and then issues

a mouse click to activate identification.

If the graphical model is a true communications model then the graphics device

may return some sort of key associated with a graphics element to identify ele-

ments ‘‘hit’’ by a ray test. This is how Carleberg [6] implemented an early com-

munications model for the GPM Volume Module. Carleberg’s method was based

Fig. 7.25 Chamfering top
edge of front face of left face
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on an Evans and Sutherland vector drawing device. This device had a memory

containing vectors which were drawn in a continuous loop. When a mouse click

was detected any line drawn within a certain distance from the mouse position was

flagged as a ‘‘hit’’ and the segment name returned. Each vector, or line segment,

was named with a pointer to the model address, so that the model edges corre-

sponding to the flagged vectors could be identified. A natural extension is that any

triangular facet containing the mouse position would communicate the address of

the face from which the facet was generated. This is a ‘‘graphical-space’’ hit-

testing method because the identification is done by the graphics device.

An alternative is the ‘‘model-space’’ method. In this method, a mouse click

identifies a screen position and the view orientation, defined by a transformation

matrix, defines a view direction. The position and the direction together define a

line which can be intersected back with the model to identify an element. Any

vertex lying within a certain distance of the line is ‘‘hit’’. For an edge, the closest

point between the line and the curve of the edge is checked. If the point is less than

the certain distance and it lies on the curve portion defined by the edge then the

edge is ‘‘hit’’. For a face, the line is intersected with the surface of the face. If the

line is coincident with the surface, or intersects the surface at a point lying within

the face then the face is ‘‘hit’’. A list of all vertices, edges and faces hit is returned

to determine which is the desired parameter. Figures 7.26 and 7.27 illustrate these.

The original object is shown in Fig. 7.26.

Consider the object oriented as in Fig. 7.27a. The user clicks on the screen near

vertex v7, creating a ray. In the graphics space version the screen point coordinates

are enough and the projected triangular facets colouring that screen point are

‘‘hit’’. In Fig. 7.27b the top and front facet triangles are shown. The point lies

inside the triangular facet (v7, v8, v9), corresponding to face 1. None of the other

triangles are hit. Although two facets of face F5 are visible, as shown in Fig. 7.27c,

the screen point lies outside these. Finally, the ray cuts through one of the facets of

the bottom face. However, the normal of these facets points away from the view

direction and hence these may be ignored in some implementations. Note that if

Fig. 7.26 Hit-test object
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you have a wire frame image then the image is ambiguous and you may need to

turn on shading to understand which faces are towards the eye point.

In order to find edges and vertices it is necessary to have a second and may be a

third communications model for these. Line segments colouring screen points

within the vicinity of the screen coordinates of the hit denote an edge hit. Vertex

points projected into the vicinity of the screen hit point should also be noted as hits.

The model space version works in a similar way to a Boolean operation. The hit

point and view direction are used to create a straight line. This line is intersected

with the surface of every face in the body. If this results in a point or set of points

then these are tested to see if they lie in the face, or, using a tolerance, within a

small distance of the face boundary. If they do, then the face is hit. In this way,

face 1 is a direct hit while faces 2 and 3 in Fig. 7.26 would be hit because their

Fig. 7.27 Hit-testing
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intersection points lie within tolerance of the boundary. The surface of face 5 gives

an intersection point which lies outside the face. There is an intersection point with

face 0, not shown marked in Fig. 7.26 which may be considered to be ‘‘invisible’’.

The curve is also checked against every edge. If the closest distance between the

line and the edge is less than the tolerance then the edge is hit. Similarly, if the

distance between a vertex and the line is less than tolerance then the vertex is hit.

Which of these two methods is used should be transparent to the user.

What happens, though, when you record an interactive sequence or want to

store the selection as part of a history tree for later replay?

In this case it is not so obvious how to proceed. One method which is used is to

store the screen point and model orientation and redo the hit test. Here the model-

space method is easier to use because there is no need to regenerate an image or

store the graphics model. Another method is to store an identifier of the element

selected and to re-identify it from the model. The identifier needs, therefore, to be

relatively stable, unlike the simple numbers mentioned earlier. The identification

technique is known, currently, as ‘‘persistent naming’’.

With persistent naming, model elements receive an initial identifier. As mod-

elling proceeds, new model elements derived from the basic elements receive a

subsidiary name defining their origin. This has already been mentioned, in

Sect. 4.19 and is illustrated in Fig. 7.28.

In the original model, shown in Fig. 7.28a an edge might get the identity ‘‘e1’’.

If this edge is now split, as in Fig. 7.28b the partial edges might be renamed

‘‘e1.1’’ and ‘‘e1.2’’, denoting that they both derive from the original edge, ‘‘e1’’. If

one of them is split again, as in Fig. 7.28c, then you have three derivative edges:

‘‘e1.1’’, ‘‘e1.2.1’’ and ‘‘e1.2.2’’. Completing the operation, to cut out a slot, as

shown in Fig. 7.28d, ‘‘e1.2.1’’ is now deleted. If edge ‘‘e1’’ had been filleted, say,

after the original object was made, and then the slot operation inserted prior to this,

by editing the history tree, the model has lost edge ‘‘e1’’. However, with persistent

naming edges ‘‘e1.1’’ and ‘‘e1.2.2’’ would be identified as derivatives and so the

filleting operation would be applied to them.

This is, of course, a very simplified version of what happens. However, the aim

here is not to write a treatise on persistent naming but to explain briefly the

purpose and how it works.

7.5 Chapter Summary

This chapter covers the graphics output and input aspects of a CAD system.

Graphical rendering methods were described as well as hidden line methods.

Hidden line methods fall into two categories: static and dynamic. The dynamic

method is commonly done using facetted graphical models. The static methods are

useful for engineering drawings when a fixed viewpoint is used.

Engineering drawings are really a communications medium, and the formal use

is part of engineering practice and not the subject of this chapter. This chapter
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deals with how they are made and some of the graphic editing tools used to

manipulate them.

Finally, this chapter deals with interaction between the user and the solid

model. This can be done directly by pointing at elements, or indirectly using

naming techniques.

7.6 Drawing Exercises

7.6.1 Matrix Identification

What does the following matrix do?

Fig. 7.28 Persistent naming example
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1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

2

6

6

4

3

7

7

5

What does this matrix do?

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0:01 1

2

6

6

4

3

7

7

5

In order to understand this you should remember the description of homoge-

neous coordinates, from Chap. 5. A set of homogeneous coordinates is:

ðx; y; z;wÞ

This corresponds to the set of coordinates:

ðx=w; y=w; z=w; 1Þ
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Chapter 8

Information and Properties

At the end of the 1970s major effort was devoted to being able to create solid shape

models. However, the shape is only part of the product and so information needs to

be added to complete what is termed a ‘‘Product model’’. Examples of such

information are: surface finish, material, tolerances. Although the BUILD system,

the original B-rep modelling research system, had NOTES, the main thrust in this

direction was, as far as I know, started in Sweden by Kjellberg et al. in the GPM

project. In the GPM volume module different categories of information were

identified: INFORMATION, MODIFICATIONS and CONSTRAINTS, as well as

other extra design supports like HELP GEOMETRY. However, information

handling is not easy. There is no convenient information mathematics as there is

for shape so handling it tends to be a little ad hoc. A basic information set, though,

should be treatable in a more-or-less consistent manner.

This chapter explains how the information is implemented, information types as

well as strategies for using information. Some of the information types mentioned

below are speculative in that they do not seem to be part of any CAD system.

However this is done to illustrate information types and also because the use of

information in CAD is expected to increase in the future, maybe to include some of

these types.

8.1 Methods

The first question concerns how to add the information. It could be added as a

separate ‘‘layer’’, after the shape has been made, there was at least one system

which did this. The preferred method now, though, is to add it directly to the

model.

The advantage of adding the information as a separate layer is that the infor-

mation is kept separate and there is less risk of corrupting it. A disadvantage,

though, is that the information is not associated with the model and hence may lose

relevance.

I. Stroud and H. Nagy, Solid Modelling and CAD Systems,
DOI: 10.1007/978-0-85729-259-9_8, � Springer-Verlag London Limited 2011
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Associating the information with the model puts it in the relevant place and lets

the user add it at any time but risks corruption as modelling goes on. Nevertheless,

this seems to be better than keeping the information separate. This section

describes the techniques used to add information.

Theoretically information could be added to any model element, but the main

elements for information are:

• Assembly

• Instance

• Single object

• Face

• Edge

• Vertex

Secondary items are:

• Surface

• Curve

• Point

It is a good idea to allow information to be attached anywhere in case somebody

thinks of a new use, but these are the elements that you see and can easily identify.

The simple method is to declare all information types as members of a general

superclass, ‘‘INFORMATION’’, and to have an extra pointer field in all entities of

this type. The individual information types are then declared as examples of this

superclass but with their own characteristics. Typing information is important

because methods for handling it currently work on a case-by-case basis.

8.2 Identifiers and Names

These are special information elements for identifying elements in the model.

Identifiers may be simple numbers assigned to elements as they are created and are

used for debugging, etc. Names are for identifying elements of the model for

operations. This is the usage of the two terms here.

One disadvantage of identifiers is that they are dependent on the object creation

method, as has already been mentioned in Sect. 7.4. Suppose you start with a

block, as in Fig. 8.1a. Now subtract a rectangular shape to create a cutout

(Fig. 8.1b), one edge of which is identified as edge 12. Edge 12 is now chamfered

to create the object in Fig. 8.1c. Now suppose the original base shape is modified

to add a circular hole in the original shape. When extruded to create the basic

shape in Fig. 8.1d, the hole edge is now edge 4, what was edge 4 in Fig. 8.1a

becomes edge 5, edge 5 becomes edge 6, and so on, until what was edge 11

becomes edge 12 and there is a new edge 13 as the extruded hole edge in the top

face. When the cutout is added in Fig. 8.1e, what was edge 12 in Fig. 8.1b
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becomes edge 14 in Fig. 8.1e. If you now chamfer edge 12 then the back edge of

the top face is chamfer, Fig. 8.1f.

What this is supposed to show is that identity numbers are volatile and so

cannot be relied on. If you write the data structure to disc and read it back then the

edge ordering may change if the edges are accessed via faces, say, as in the ACIS

kernel, and not in the order that they were created. The entity identification

numbers are useful for debugging but are not stable enough to be used as part of a

history tree.

The other type of entity access mechanism is via names. Two basic types of

name can be distinguished: user-defined names and system defined names.

User defined names are most useful after the model has been created. If named

entities are modified then it is uncertain how the changed model is named. This is

shown in Fig. 8.2. The top face is named ‘‘tface’’, as shown in Fig. 8.2a. If this

face is now split with a new edge, as shown in Fig. 8.2b, there are four variants as

to how the changed model is named. The first variant, not shown, is that the name

disappears altogether. The other three variants are shown in Fig. 8.2c–e.

In an early modelling system, the GPM Volume Module, names were not

allowed for entities involved in variations because of this. User assigned names are

for allowing high-level reference to models in applications.

The other use of names, mentioned above, is to have names generated and

supported by the system. This is now common and is called ‘‘persistent naming’’.

e0

e1

e2

e3

e4

e5

e6

e7

e8

e9

e10e11

e12

e4

e13

e12

e14

(a)

(d) (e) (f)

(b) (c)

Fig. 8.1 Changing edge identifiers. a Simple block shape. b Cutout added. c Edge e12
chamfered. d Block with hole. e Cutout added. f Edge e12 chamfered
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The trick for using this is to assign names and modify the names so the names

evolve to reflect how the model was created. This gives an element of traceability

which can be used to provide more stability when referring to elements in mod-

elling command parameter lists. This topic will be dealt with in more detail in

Chap. 12.

8.3 Engineering Information

Generally speaking, the extra engineering information can be divided into four

classes. This is a subset of the categories identified in [1] which are relevant for

CAD. The others are mentioned elsewhere.

• Pure information—e.g. colour information which is to be interpreted by a

human.

• Shape modifiers—e.g. screw threads or implicit blends which may be complex

to model and which are better noted as information.

• Shape constraints—e.g. surface finish.

• Feature information—e.g. holes, slots, etc.

Which information elements are present in the CAD system is an implemen-

tation matter, there is no standard, easily identifiable set. As with the choice of

operations, CAD system developers may have come to have a common set, but

individual sector and application needs will throw up new examples. This is not an

tface

tface tface tface

(a)

(c)

(b)

(d) (e)

Fig. 8.2 Modifying a named face. a Named face. b Face split. c Variant A. d Variant B.
e Variant C
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easy problem to solve. The CAD code needs to be stable, it cannot stop working if

some new information element is added by a user. There is no convenient infor-

mation mathematics to allow standard algorithms to be developed to handle

information classes. For me, the best solution I have seen is that in the ACIS

modelling kernel. Maybe there is something similar in Parasolid, but I have not

looked at that in detail. In ACIS, an implementor can define his or her own

information ‘‘attributes’’ with certain default routines which can be called to

handle the attributes in specific ways. The implementor should develop special

routines for when entities are joined, split, deleted and so on. Whether or not CAD

implementations based on ACIS make use of this to create a wider set of infor-

mation in a model is another question, but at least the mechanism exists.

8.3.1 Pure Information

Pure information is used for appending information with no geometric influence to

elements of the model. This can be carried over to drawings or, if these are

replaced, to electronic communication.

Examples of pure information are:

• Colour—For rendering of images or perhaps painting in downstream applica-

tions. I-DEAS used colour to indicate model elements created by different

operations. This can be implemented by attaching a colour note to elements

which have been added and then rendering the items in that colour when

drawing the object. Colouring objects is necessary to produce shaded images.

This information could be recorded centrally or added as notes, which is a more

flexible solution.

• Price—For calculation of product component costs. This would allow a bill-of-

materials to added costs for components.

• Residual value—For calculation of end-of-life value. This can also be relevant

for planning layouts so that valuable, reusable components are protected.

• Material—For rendering or for downstream applications such as process plan-

ning and machining. Material notes on objects are commonplace and you should

be able to find them in your CAD system.

8.3.2 Shape Modifiers

A shape modifier is a note attached to an element to indicate a complex or routine

shape that can be made easily. A classic example has been the screw thread. This is

a geometrically complex shape which is awkward to model but relatively easy to

make. It is more efficient to record it with a note attached to faces or features. This

makes it easy to find in the model, rather than having to try to identify certain
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surfaces as screw thread surfaces. See the example in Sect. 7.3.2.2, illustrated in

Figs. 7.21 and 7.22. It also means that the information about the thread can be

recorded directly rather than trying to retrieve it from geometric characteristics.

The screw thread information can be seen in drawings using formal drawing

techniques and Autocad can render the model to make the thread appear as though

it has been made.

Examples of shape modifier information are:

• Screw thread—The classic example, noted above. The screw thread may be on a

hole or on an extrusion, such as the shaft of a bolt.

• Implicit blend – This was implemented in BUILD by Ian Braid and later

implemented in Romulus, a geometric kernel developed by Shape Data. In the

Romulus implementation there was a ‘‘thumb-weight’’ parameter because, as

was explained, a mould maker would blend edges by running a thumb around

them. Nowadays most systems seem to have explicit blending, whereby new

topology and geometry is introduced. It is useful, however, to be able to

identify blended elements as being due to blending so information notes may

be present to note these. Note, though, that normally blending is done by

recording the elements to be blended in a history tree and changing the com-

mand to add or subtract elements if needed. The elements do not seem to be

marked specially.

• Bolt cutting—I do not know that this has ever been implemented, but this is a

valid example. Someone once told me of an assembly in which there were a

number of standard bolts, but one needed to be shorter than the others, for

assembly reasons. In practice this was done by cutting the standard bolt. If the

standard bolts are imported and one is changed then it has to be made into a new

model. A bill of materials would list it as a separate object. Having a shape-

changing note, which would be attached to an instance of the bolt, would mean

that all bolts would remain standard and make it easy to identify the extra

operation for assembly instructions. This is a particular case, but modifying any

standard part, by drilling an extra hole or cutting off some part, for example,

could be handled in this way.

• Gear wheels—Gear wheels are examples of mechanical parts which are often

standard. Although the geometry of a gear wheel may appear to be simpler than

screw threads, they can, in fact, be quite complex. If these can be imported as

finished shapes from a standard catalogue then this seems the ideal solution. If

not, however, it is reasonable to approximate them with cylinders, cones, or

other simple geometry, with information attached.

8.3.3 Shape Constraints

A shape constraint is something which imposes conditions on parts of a model. It

might be imposed on one element or on two.
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Examples of shape constraint information are:

• Surface finish—This allows the designer to identify functionally important

elements for manufacturing. It is currently more common to add this infor-

mation when producing engineering drawings, but the increasing use of 3D

models as a communications medium requires this information to be added to a

model.

• 3D dimensions and tolerances—Dimensioning and tolerancing is usually done

in engineering drawings. In models dimensioning is done in two dimensions, for

sketches for extrusion, and the three dimensional dimensions are given as

parameters for operations. Dimensions and tolerances are critical for down-

stream applications and so should be incorporated as part of a model. How this

can be done is not obvious, but 3D dimensions and tolerances are also candi-

dates for new shape constraint tags.

8.3.4 Feature Information

Features are another growth area in CAD and will be dealt with further in Chap. 10.

Features are isolated shape sub-elements in a model. Features can be created

explicitly by using feature-making operations or by sewing feature models into a

model, or implicitly as side effects of operations. Marking these, or recording them

in some way, means that they are available as input to applications such as man-

ufacturing. This is a complex subject, though, which is why there’s a separate

chapter on it. Here, only the information elements are introduced.

A few examples of feature information are:

• Pocket—Position of pocket, profile of pocket, depth, bottom conditions,

side-wall conditions, for example.

• Hole—Position of hole, orientation of hole, radius of hole, thread information

• Slot—Position of slot, path of slot, depth of slot, width of slot.

• Profile—position of profile, path of profile, depth of profile.

• Chamfer—The face or faces resulting from a chamfer operation.

There are a lot of variants on these, and there are many more possibilities.

Arguably, a planar face with a surface finish condition could be considered to be a

feature, in manufacturing terms, but more later. There are many application areas

which need different feature definitions and different information sets. The feature

information above is what might be expected to come from CAD operations, but it

should be possible to add feature information for other application areas as well. In

Chap. 10 examples of different features will be given with the information asso-

ciated with them. Note that feature recognition in Chap. 10 is a sort of dynamic

calculation of features.
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8.4 Functional Elements

There is also a class of element which can be represented more practically with

information than by shape. Examples are:

• Screw threads (again)

• Gear wheels (again)

• Springs

• Cams and followers

These are generally used for kinematic simulations and so will be dealt with in

Sect. 13.5.

8.5 Mechatronics

Mechatronics, in a broad sense, involves the use of electronic components in

mechanical systems. This has become increasingly common because the elec-

tronics components can perform work previously done by mechanical linkages,

provide more flexibility and greater reliability. It is easy to find examples, most

modern cars include electronics components, so do washing machines, for

example. Any product which includes both mechanical parts and electronics

components should be able to represent the functionality of the electronics com-

ponents in a single unified model with the traditional CAD shapes.

So, the use of mechatronics also entails extension of CAD. The shape of

electronics components, the casings in which they are housed, is important for the

overall design. However, the functional characteristics of the component and the

connections are also relevant. With these, the geometry is not necessarily the main

point of interest. The designer probably does not want to design the actual elec-

tronics but may well want to have a representation of what the component does.

For a full simulation this is also necessary. Additionally, as with other compo-

nents, the electronics components can have a residual value which makes them

interesting at the end-of-life of a product. As well as protecting them it may also be

necessary to consider access and disassembly options around them in a complete

CAD model.

8.6 Modelling and Information

In general, CAD systems handle shape well but are less consistent with the use of

information. A demonstration of this is given in one of the exercises, in

Sect. 8.10.1. An example of how information might have to be handled by
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modelling operations concerns dimensions, if you want to have 3D dimensions in a

model

Nobody, as far as I know, handles dimensions in the way that is described here.

I am using it, therefore, because it shouldn’t reveal a mechanism in an existing

system. Most systems I know avoid having 3D dimensions because they are dif-

ficult to handle and use operation parameters instead as a way of changing shapes.

This is described later, in Chap. 12.

Take the example shown in Fig. 8.3. On the left of the figure is a square, with

dimensions between the opposite sides, a constraint of perpendicularity between

one pair of neighbouring edges and the square has one corner at the origin. If the

shape is extruded, and the system developer wants to handle the dimensions, then

it is necessary to have a ‘‘data migration’’ to reattach and reconfigure the infor-

mation entities attached to the square. When the 2D shape is extruded, the edges

generate faces while the vertices generate edges. This means that the dimensions

between the edges should be transferred to the faces, together with the implicit

constraint of parallelism. The constraint of perpendicularity stays the same, while

new perpendicularity constraints appear between the base edges and the new side

edges because the extrusion is normal to the 2D shape definition plane.

If you think about the above description you should get an idea of the com-

plications involved in handling information. You have to examine the information

and the operation to know how to modify it and this can be very time consuming.

As new information entities are added it is necessary to work out new methods and

update algorithms. Information is difficult to generalise. It is a key element in new

developments but is still a research topic.

100

100

100

100

100

(a) (b)

Fig. 8.3 Dimension transitions for extrusion
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One of the first methods for handling information comes from the BUILD

system. Implicit blend information was attached to edges and, when those edges

were split, the edge blends were shared between the original and the new edge so

that they both had an implicit blend. This may sound simple but it established a

basic principle about splitting elements with shape modifiers.

Other suggestions for being more rigorous about information handling are

contained in [1]. These suggestions are based on division of information into

different categories, already mentioned, and classification of operations. One rule

of thumb, though, is that there should not be two or more information elements of

the same type attached to an entity in the system.

8.7 Using Information in CAD

Up until now this chapter has dealt with the how and what of modelling infor-

mation. In this section some practical considerations are given.

As well as the earlier classification, product information can be classified as

belonging to one of two classes:

1. System defined information—Information defined by the CAD system during

model building.

2. User defined information—Information defined by the user to annotate a model.

An example of the first type of information might be feature information. If the

system builds up a description of a model dynamically as part of the model, then

this has to be handled by the system software. Permanent names are another

example of this category.

For user defined information, such as material properties, these should be added

as late as possible, preferably after all shape modelling has been completed. There

is also information which might be associated with some operations, such as

threaded holes. The same strategy applies, that is, to add these features as late as

possible, also to avoid interactions with other elements in the model.

Generally, you will be able to find a way of putting stupid or conflicting

information into models. Some exercises to do this are given at the end of this

chapter. What is more awkward is when you do this but don’t mean it. As stated in

the previous section, you shouldn’t really have two pieces of information of the

same type attached to any entity. Even if the information is the same when the

information entities are attached there is still the possibility of changing one piece

of information later.

However conflicts can arise unexpectedly. Figure 8.4 shows some examples of

information conflicts with threads, shown in stylised drawing form.

In Fig. 8.4a there is a simple mismatch between the thread sizes in objects at a

matching hole and insertion. You should spot this type of error fairly easily, but

it illustrates the point that matching elements are often designed separately and

the information added separately, possibly by different people at different times.
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This is an example of features which span objects, to be dealt with in Chaps. 10

and 11. You should really be able to define the information once and have it

established automatically in both parts.

The second example, in Fig. 8.4b, is more subtle. The threads match but the

objects make no sense. Neither object is necessarily wrong in itself, but because

the objects have two different thread sizes, and both are rigid objects, then there is

a conflict. This is sort-of analogous to a constraint loop in an assembly, to be

described in Chap. 13.

It is not reasonable to expect a CAD system to detect all such errors auto-

matically. You should be aware that there are potential problems with information

and that checking is difficult because the semantic content is hard to interpret

automatically. If you use information in any form, then you should check yourself

that it makes sense. Note again, though, that it is easier to detect matches with

implicit threads than if the geometric form is evaluated. It is harder to perform a

geometric mismatch check.

8.8 Volume and Area Calculation

Mass properties are information elements which are not recorded explicitly but

calculated dynamically. However, these are important for engineering and so the

calculation methods are described briefly here.

Fig. 8.4 Simple information conflicts

8.7 Using Information in CAD 377

http://dx.doi.org/10.1007/978-0-85729-259-9_10
http://dx.doi.org/10.1007/978-0-85729-259-9_10
http://dx.doi.org/10.1007/978-0-85729-259-9_11
http://dx.doi.org/10.1007/978-0-85729-259-9_13
http://dx.doi.org/10.1007/978-0-85729-259-9_13


There is a simple method for calculating the volume and surface area of a

product based on triangular facets. As far as I know this method is due to Ian Braid

or his colleagues at Cambridge University, UK.

The method subdivides each face in a model into triangular facets, in the same

way as is done for producing shaded images. Each facet is then taken as the top of

a triangular column, from some base plane below the object whose volume is

being calculated. If the facet normal is directed away from the base plane then the

column volume is added to the sum. If the facet normal is directed toward the

plane then the column volume is subtracted from the sum. This is illustrated for

two dimensions in Fig. 8.5.

Figure 8.5a shows the original shape. This is approximated with straight lines in

Fig. 8.5b, although these would be planar facets in three dimensions. The top three

lines lead to positive areas, Fig. 8.5c, while the two bottom lines give rise to

negative areas. The area of the complete figure is the sum of the positive and

negative areas. There is an exercise to calculate the area of this shape, with given

coordinates.

For a volume, surface area is calculated by summing the area of all the trian-

gular facets which approximate an object. The equivalent in the two dimensional

Fig. 8.5 would be to sum the length of the lines approximating the shape to

estimate the boundary length.

The method for volume calculation can be applied to partial objects, although

the result may not be entirely accurate. For this reason, CAD systems may not

allow you to calculate the volume of sheet models, only of closed volumetric

models.

Fig. 8.5 Calculating volumes. a Original shape. b Approximated shape. c Positive areas.
d Negative areas
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8.9 Chapter Summary

This chapter describes the information elements which add an extra dimension to

the CAD system. The chapter describes different types of static information ele-

ment found in a CAD system. The chapter also describes dynamic information, in

terms of volume and surface area, calculated from the model when required.

8.10 Information Exercises

8.10.1 Conflicting Material Properties

Create a cube, 100� 100� 100, and a cylinder, radius 25 and height 500, so that

the cylinder and cube overlap. Label the cube as being of some sort of wood and

the cylinder as being of steel. Add the two objects and see what the system says.

These have to be separate objects so it is not necessarily obvious how to create

them. Some systems allow you to create different objects easily, but there is a

tendency, unfortunate in my view, to constrain the user to have one object per file.

This means that it may be necessary to create the objects as parts of an assembly

and then add them. CATIA v5, though, which has the one-object-per-file philos-

ophy, allows you to insert a new object into an object being made and then apply a

Boolean operation.

In my view, the wrong result is just to add the objects and say nothing. If this

happens then check to see which material information tag remains or whether both

have been kept. If both are there then the error is obvious. If just one remains it is

likely to be the material tag associated with the first object.

A more correct approach is to warn the user that there is a conflict. The two

objects have non-accumulative information tags of the same type but with different

information. This should be enough to provoke a warning to alert the user of the

conflict. The system could then either ask the user which one to choose or adopt a

default strategy (take the material tag from the first object) and let the user sort it

out manually if necessary.

A variant on this is to subtract one object from the other. In this case there

should be no problem, even though body parts from one object appear in the other.

8.10.2 Modifying Threaded Holes

Make a cube 100� 100� 50, that is, 100 in X, 100 in Y and 50 in Z. In the top

face, which is 100� 100 make a threaded hole, radius 20.

The following sub-exercises are intended to show how the CAD system reacts

to modifications of this threaded-hole element. If the system performs the
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operation without comment then this is an example of information corruption,

when the information element is in conflict with the geometric information. If this

happens, then it is even more important to add information elements as late as

possible, when the main shape changes have been finished.

8.10.2.1 Drafting the Threaded Hole

Apply a draft angle to the threaded hole. Use, say, 5 degrees as a draft angle to

show a change. A drafted threaded hole makes little engineering sense, since

adding a draft angle is for mould making, and threaded holes are not generally

made by moulding.

8.10.2.2 Scaling the Threaded Hole

If your CAD system permits, apply an uneven scaling to the cube, scaling it by 2 in

the X-direction. In one system I have used it is possible to create an elliptic

threaded hole. In the drafting package it is possible to see that the hole is threaded,

even after the change in scale. An elliptic threaded hole is also something which is

difficult to produce.

8.10.2.3 Corrupting the Threaded Hole

Create a bar down the middle of the hole. This destroys the reason for having a

thread down the hole.

8.10.2.4 Splitting the Threaded Hole

Cut away half of the cube, through the centre of the hole. This, too, destroys the

reason for having the threaded hole.

8.10.3 Area Calculation 1

Calculate the area of the shape in Fig. 8.6, given the coordinates shown in the

figure.

8.10.4 Area Calculation 2

Now try calculating the volume of a quarter-circle, radius 50, at different degrees

of approximation.
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The area of the quarter circle is: p502

4
ffi 1963:4954. Calculate the area

approximations in Fig. 8.7b–d.

Reference

1. Stroud, I.A.: Boundary Representation Modelling Techniques. Springer, Heidelberg (2006)

Fig. 8.7 Calculating area of
a quarter-circle

(60,80)

(100,60)

(140,30)

(70,20)

(0,40)

Base plane Y=0

Fig. 8.6 Calculating
volumes
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Chapter 9

Databases and Data Exchange

This chapter describes some of the main aspects of communication between

modelling systems. First of all, local disc formats are described, since this is a

basis for other data exchange. Data exchange can be divided into roughly two

categories: standardised data exchange; and non-standardised data exchange.

Standardised data exchange is formal, done once, but sometimes bulky. Non-

standardised data exchange often means that code has to be specially written or

adapted.

9.1 Local Disc Formats

In simple terms, the disc format used for model storage is simply a ‘‘file image’’ of

the internal data structure. In these terms the file contains a representation of all the

fields of all the entities associated with the object. To illustrate this, let us examine

a disc file which might result from the data structure used for the course. The

logical diagram is as in Fig. 9.1.

The data structure definitions are as follows:

class body

int number;

shell *pshell;

edge *pedge;

vertex *pvert;

body *next;

class shell

int number;

face *pface;

shell *next;

body *pbody;

I. Stroud and H. Nagy, Solid Modelling and CAD Systems,
DOI: 10.1007/978-0-85729-259-9_9, � Springer-Verlag London Limited 2011
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class face

int number;

shell *pshell;

loop *ploop;

surface *surf;

face *next;

class loop

int number;

elink *eref;

loop *next;

face *pface

class elink

int number;

elink *cclink;

elink *cwlink;

loop *ploop;

edge *pedge;

class edge

int number;

elink *rlink;

elink *llink;

curve *pcurve;

Fig. 9.1 Simple boundary representation data structure
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vertex *svert;

vertex *evert;

edge *next;

class vertex

int number;

union(loop,edge) *pref;

point *pos;

vertex *next

The geometry formats are as follows:

plane: point, normal

cylinder: 2 axis points, point on surface

cone: apex, point on axis, point on surface

sphere: centre, point on surface

general quadric: 4 9 4 matrix

torus: centre, point on axis, point on major axis, point on surface

free-form surface: point matrix, weights, knots.

straight: Two points

circle: centre, normal, point on circle

ellipse: points on major and minor axes

free-form curve: vectors of points, weights, knots

9.1.1 Reading and Writing Disc-Files

This method is based on the first such disc format from the BUILD research

system. There are two main reasons for describing this method. The first is that

commercial system output may be considered to be the property of a company and,

therefore, companies may not be happy if they are published. In any case, most

system disc-files are written in binary format and you cannot read them anyway.

The second main reason for using the BUILD method as a basis is that the use of

logical pointers instead of memory locations is a method that is stable and is used

in other systems. Therefore, if you understand the method then you should be able

to understand other disc-files if you have to read one. In addition, the main modern

data exchange standard, STEP, which will be described in Sect. 9.2.1.3, uses a

similar method with line numbers doubling as pointers.

The first thing written is a header. This will contain various information, such as

the version number of the writing system, system parameters such as tolerances

and so on. In this method, the first line of model information consists of a line

containing the number of entities in the file. This information is used to set up the

arrays for reading. Note that the array indices start from 0, so the first element in

the array is at array½0�:
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The method of reading and writing is similar to the method of copying objects,

using entity numbers as array pointers. First of all, all entities are numbered

consecutively from 0 to n so that the numbers can be used as logical pointers for

the file. Real memory pointers are volatile and change when using the system

which is why these are replaced by simple entity numbers which become logical

pointers. The method is summarised for a face in Fig. 9.2. The values ‘‘1234567’’,

‘‘8834586’’ and ‘‘554396’’ represent real memory addresses in the example to

distinguish these from the numbers written in the file.

The first thing written is the keyword ‘‘face’’ so that the reader can tell which

type of entity is to be read. The first number written is the face identity, in this case

5. The face’s original number, 27 in the figure, is replaced temporarily by the

address of the face in the list of all faces in the object. The second number is

the identity of the shell containing the face. The third number is the number of the

loop of the face. The fourth number is the number of the surface of the face. The

fifth and final value is the number of the next face. Here, though, the next face is a

NULL pointer. In this case, the value ‘‘-1’’ is used as a number, since valid

entities always have positive values. The final line, written to the file would be:

face 5 0 5 5�1

The reverse process, the reading procedure, is illustrated in Fig. 9.3.

When reading the file, the first line of the file specifies the number of each type

of entity to be read. Using this, a set of arrays are created containing empty entities

of each type. When reading, the entities are filled up, using the memory addresses

Fig. 9.2 Writing a face to disk
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of the entities in the list instead of the logical pointers. For the face example, the

reader reads the word ‘‘face’’ and the value, 5, and starts to fill element 5 in the list

of faces. The actual number of the face, in this case 73, is not changed in the

reading process because the numbers corresponding to pointers are interpreted as

list addresses. Using the datastructure definition, the next value read, 0, is inter-

preted as a reference to a shell. The pointer in element 0 of the shell list is inserted

into field 2 of the face record. The next value, 5, is used to find the loop in element

5 of the loop list and the pointer is written into field 3 of the face record. Then a

pointer to surface 5 in the surface list is written into field 4 of the face record.

Finally, the -1 is read. This should be a face record but is a NULL definition, so

field 5 of the face record is set to 0, the NULL pointer.

For a cube, this works as follows. The first line of the file is:

0 0 1 1 6 6 24 12 8 6 12 8

This specifies the number of elements contained in the file. This is illustrated in

Fig. 9.4.

0 assemblies

0 instances

1 body

1 shell

Fig. 9.3 Reading a face from disk
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6 faces

6 loops

24 elinks

12 edges

8 vertices

6 surfaces

12 curves

8 points

This information is used to set up a number of arrays containing the elements to

link, as shown in Figs. 9.5 and 9.6.

As described above, the values corresponding to pointers are interpreted

according to the type of the field. The second line in the file is: ‘‘body 0 0 0 0 -1’’

(Fig. 9.7). The first value, 0, is interpreted as an integer, the number of the body.

The second integer, 0, corresponds to a shell type field, and so is interpreted as the

number of the shell from the shell entity array. Similarly the third integer, 0, is

interpreted as a pointer to edge 0 in the edge array and the fourth integer in

interpreted as a pointer to vertex 0 in the vertex array. The final integer, -1,

corresponds to the next field of the body and indicates that the next pointer is

NULL. By convention, here, a negative integer is interpreted as a NULL pointer.

For an edge, with the line ‘‘edge 3 6 7 3 2 3 4’’, you have the interpretation

shown in Fig. 9.8. The ‘‘3’’ is the number of the edge to be defined. The ‘‘6’’ and

‘‘7’’ and the numbers of the edge-links. The next ‘‘3’’ is the curve number. The ‘‘2’’

and ‘‘3’’ are the array addresses of the start and end vertex and the final ‘‘4’’ is the

address of the next edge. The connections are made locally, so the pointers are set

Fig. 9.4 The element number line
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Fig. 9.5 Data-structure tables (1)

Fig. 9.6 Data-structure tables (2)
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Fig. 9.7 The element number line

Fig. 9.8 The element number line
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to point from the edge to different entities, but the back pointers are only set when

the records for those entities are read.

The whole file might look like:

SIMPLE version 1.0 0 0 1 1 6 6 24 12 8 6 12 8

BODY 0 0 0 0 -1

SHELL 0 0 0 0 0

FACE 0 0 0 0 1

LOOP 0 0 -1 0

LELINK 0 1 3 0 3

LELINK 1 2 0 0 2

LELINK 2 3 1 0 1

LELINK 3 0 2 0 0

FACE 1 0 1 1 2

LOOP 1 4 -1 1

LELINK 4 0 11 1 5 7 -1

LELINK 5 0 6 1 6 4 -1

LELINK 6 0 8 1 7 5 -1

LELINK 7 0 10 1 4 6 -1

FACE 2 0 2 2 3

LOOP 2 8 -1 2

LELINK 8 0 6 2 9 11 -1

LELINK 9 0 4 2 10 8 -1

LELINK 10 0 0 2 11 9 -1

LELINK 11 0 5 2 8 10 -1

FACE 3 0 3 3 4

LOOP 3 12 -1 3

LELINK 12 0 8 3 13 15 -1

LELINK 13 0 5 3 14 12 -1

LELINK 14 0 1 3 15 13 -1

LELINK 15 0 7 3 12 14 -1

FACE 4 0 4 4 5

LOOP 4 16 -1 4

LELINK 16 0 10 4 17 19 -1

LELINK 17 0 7 4 18 16 -1

LELINK 18 0 2 4 19 17 -1

LELINK 19 0 9 4 16 18 -1

FACE 5 0 5 5 -1

LOOP 5 20 -1 5

LELINK 20 0 11 5 21 23 -1

LELINK 21 0 9 5 22 20 -1

LELINK 22 0 3 5 23 21 -1

LELINK 23 0 4 5 20 22 -1

EDGE 0 0 1 10 3 1 11 -1 0

EDGE 1 1 2 14 2 2 0 -1 1
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EDGE 2 2 3 18 1 3 1 -1 2

EDGE 3 3 0 22 0 4 2 -1 3

EDGE 4 0 4 23 9 5 3 -1 4

EDGE 5 1 5 11 13 6 4 -1 5

EDGE 6 4 5 5 8 7 5 -1 6

EDGE 7 2 6 15 17 8 6 -1 7

EDGE 8 5 6 6 12 9 7 -1 8

EDGE 9 3 7 19 21 10 8 -1 9

EDGE 10 6 7 7 16 11 9 -1 10

EDGE 11 7 4 4 20 0 10 -1 11

VERTEX 0 EDGE 0 0 1

VERTEX 1 EDGE 0 1 2

VERTEX 2 EDGE 1 2 3

VERTEX 3 EDGE 2 3 4

VERTEX 4 EDGE 4 4 5

VERTEX 5 EDGE 5 5 6

VERTEX 6 EDGE 7 6 7

VERTEX 7 EDGE 9 7 0

SURFACE 0 0 1 PLANE 0.0000 0.0000 -1.0000 5.0000

SURFACE 1 0 1 PLANE 0.0000 0.0000 1.0000 5.0000

SURFACE 2 0 1 PLANE 0.0000 -1.0000 0.0000 5.0000

SURFACE 3 0 1 PLANE 1.0000 0.0000 0.0000 5.0000

SURFACE 4 0 1 PLANE 0.0000 1.0000 0.0000 5.0000

SURFACE 5 0 1 PLANE -1.0000 0.0000 0.0000 5.0000

CURVE 0 0 1 STRAIGHT -5.0000 -5.0000 -5.0000 5.0000 -5.0000 -5.0000

CURVE 1 0 1 STRAIGHT 5.0000 -5.0000 -5.0000 5.0000 5.0000 -5.0000

CURVE 2 0 1 STRAIGHT 5.0000 5.0000 -5.0000 -5.0000 5.0000 -5.0000

CURVE 3 0 1 STRAIGHT -5.0000 5.0000 -5.0000 -5.0000 -5.0000 -5.0000

CURVE 4 0 1 STRAIGHT -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 5.0000

CURVE 5 0 1 STRAIGHT 5.0000 -5.0000 -5.0000 5.0000 -5.0000 5.0000

CURVE 6 0 1 STRAIGHT -5.0000 -5.0000 5.0000 5.0000 -5.0000 5.0000

CURVE 7 0 1 STRAIGHT 5.0000 5.0000 -5.0000 5.0000 5.0000 5.0000

CURVE 8 0 1 STRAIGHT 5.0000 -5.0000 5.0000 5.0000 5.0000 5.0000

CURVE 9 0 1 STRAIGHT -5.0000 5.0000 -5.0000 -5.0000 5.0000 5.0000

CURVE 10 0 1 STRAIGHT 5.0000 5.0000 5.0000 -5.0000 5.0000 5.0000

CURVE 11 0 1 STRAIGHT -5.0000 5.0000 5.0000 -5.0000 -5.0000 5.0000

POINT 0 -5.0000 -5.0000 -5.0000

POINT 1 5.0000 -5.0000 -5.0000

POINT 2 5.0000 5.0000 -5.0000

POINT 3 -5.0000 5.0000 -5.0000

POINT 4 -5.0000 -5.0000 5.0000

POINT 5 5.0000 -5.0000 5.0000

POINT 6 5.0000 5.0000 5.0000

POINT 7 -5.0000 5.0000 5.0000
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9.1.2 Versions and Old Disc-Files

Unlike standardised data exchange (see Sect. 9.2), disc-file formats in modelling

systems change relatively frequently, especially at the beginning of system

development as new facilities are added. It is, therefore, necessary to be able to

recover old disc-files in new versions of the CAD system.

What the CAD system has to do is to adopt a strategy for introducing the new

information. Suppose, for example, that the system implementers decide to

introduce shells, to group faces, as in Fig. 9.9.

Supposing the original object is a rectangular block with a rectangular cavity,

that is, an empty area totally enclosed in the block, as shown in Fig. 9.9a. The

original save would have created a simple list of all faces in the object, as shown in

Fig. 9.9b. The way that the CAD system could read the old file is to put all the

faces into a simple list in a new shell, as in Fig. 9.9c. A subsequent step would

then use face adjacency to separate the face list into separate shells, to create the

final structure shown in Fig. 9.9d.

This is a simple change to manage. A more complicated change would be to

change the edge connectivity from direct pointers to loop-edge links. For this kind

of change it is necessary to introduce new topological elements, as shown in

Fig. 9.10.

In the original structure an edge has direct pointers to neighbouring edges while

in the new structure there are loop-edge links which have to be added. For e0 in the

figure, the input line might be:

What changes is that instead of having direct pointers to the neighbouring edges

and the loops, the edge will have pointers to two loop-edge links. One way that this

might be done is to create all the edges without loop-edge links and then to add

these progressively as the edges are read. So, when edge 0 is read, with the

structure shown above, two loop-edge links are created between the edge and loop

0, on the right, and loop 2 on the left. The four neighbouring edges are edges 2

(rcw), 1 (rcc), 5 (lcw) and 4 (lcc). Here, ‘‘rcw’’ stands for Right ClockWise edge,

‘‘rcc’’ for Right Counter-Clockwise, ‘‘lcw’’ for Left ClockWise and ‘‘lcc’’ for Left
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Counter-Clockwise. Edge 2 has no loop-edge links, so one is created, referring to

loop 0, the right loop of edge 0. The clockwise link pointer of loop-edge link 0 is

set to point at edge-link 2 and the counter-clockwise link pointer of loop-edge link

Fig. 9.9 Reading old disc files—adding shells
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2 set to point to loop-edge link 0. The process is repeated for the other three

relationships, rcc, lcw and lcc.

The next edge to be read, edge 1, has the input structure as follows:

The same process is repeated. However, edge 1 already has one loop-edge link,

loop-edge link 3 which refers to loop 0, the left loop of edge 1. In this case loop-

edge link 3 becomes a ‘‘left’’ loop-edge link. And so on, the new structure being

Fig. 9.10 Reading old disc files—adding loop-edge links
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created, ‘‘on-the-fly’’. When the model is next saved, the new elements will be

saved to make the new model file compatible with the new version.

A third type of change might be to change geometry. Suppose the model

developer decides to replace Bèzier geometry with NURBS geometry. Since Bèzier

geometry is a special case of NURBS geometry this simply means creating a

NURBS surface with the appropriate parameters to replace the original geometry.

Another type of geometric change might be to add or suppress a particular type.

Suppose an ELLIPSE type is added to the CAD system instead of using, say, a

NURBS representation. In this case, probably nothing would be done during

reading, the old numerical ellipses would remain numerical and ellipses would be

added only to new models. Going the other way, if the new CAD version has

suppressed ELLIPSE as a specific curve type, then whenever an ellipse-type curve

is read then the curve created is a numerical curve, say a NURBS curve, repre-

senting the same shape.

Any such changes should be completely invisible to the user, though. This section

is just to indicate how reading old geometry works. It can be a good idea, as general

practice, to migrate old CAD files to new versions by opening them with the new

system and then saving them with the new system elements. New versions of CAD

systems do not always introduce new datastructure elements, but just in case...

9.1.3 Reading Newer Disc-Files

If you are using, say, version 10 of a CAD system and you want to receive a file

from someone using version 11, then you should not expect to be able to use the

CAD system native form. Instead, it is necessary to use a standardised exchange

format, although you may lose CAD-system specific information. In any case,

whenever exchanging CAD files with someone who has the same CAD system,

check the version numbers.

9.1.4 Reading Other CAD System Models

This section describes importing other CAD systemmodels into your own. This may

be done partly because writing specific translators between systems is often simpler

than writing translators for standards because there are fewer cases to cope with.

Also, in the early days there were no standards for CAD solid model data exchange.

One point to note is that specific translators are most effective if the structures

are similar, if they are too different then it is difficult or impossible to write an

automatic translator. This is illustrated in Fig. 9.11. In the early days of solid

modelling there were several solid representation schemes that existed. Since then,

CAD systems generally use Boundary Representation, so this is less of a problem.

However, it is part of the history, which is why it is presented here. Enjoy.
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Another important consideration is the compatibility of different systems in

terms of their equivalence of information. Once information is lost by converting it

then it is difficult or impossible to recreate, so sometimes exchanging models to

and then from another system results in a different model. See Fig. 9.12.

Suppose system A creates a cylinder and then passes it to system B which has

only planar surfaces and straight lines. System B has to convert the cylinder into an

approximation, at the centre of Fig. 9.12. If system B then re-exports the cylinder

to system A, system A will only get the approximation, because the original

geometric information has been lost. Naturally this is a very simple example.

Systems are nowadays, in general, largely compatible in terms of structure and

geometry. Even now, though, there are some special surface representations which

require conversion. However, there are more variations in things like information

and history which may be lost in any such conversion.

One way of converting a model from another CAD system is illustrated in

Fig. 9.13. The datastructure of the foreign CAD system is reproduced inside the

importing system, the foreign CAD file is read in creating a separate CAD model

and then this model is interrogated to create the final model.

Fig. 9.12 Reading other CAD disc files—information loss

Fig. 9.11 Reading other CAD disc files—representation conversions
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This is a little similar to what happens when reading STEP files, see Sect. 9.2,

since STEP defines a datastructure for exchange.

For CAD system vendors it is advantageous to be able to read CAD files from

other systems so that a company can import its old files into a new system,

should the company change their CAD vendor. CAD systems have different

advantages and disadvantages and so it is not unreasonable to change systems or

use multiple systems, hence exchanging CAD files is not uncommon. However,

exchanges can be haphazard, depending on how much of the other CAD sys-

tem’s structure is imported. With data exchange using standards the data

available is well-defined. Another point to note is that CAD system file struc-

tures change more frequently than standard formats which need to stay stable.

Also, for archiving, it can be more useful to retain models in a standard form

than in the local CAD system form. Standard files tend to be bulkier than CAD

files, but have a longer life.

A final point to be made in this section concerns CAD system families.

Originally CAD system developers created their own software and there were

more differences between systems. One company, Shape Data Ltd. of Cam-

bridge, UK pioneered the use of Boundary Representation in the commercial

world. They developed a package, Romulus, which could be used as a kernel for

system developers. See Fig. 1.67 for how this kernel is placed. Since modelling

software development is time-consuming and costly, using a package has

become popular. This means that there are several systems which have a com-

mon interior and, hence, internal datastructure. Currently, the two main com-

mercial kernels are Parasolid, the descendent of Romulus from Shape Data, and

ACIS, developed by some of the original directors of Shape Data. There is also a

kernel system available for CSG, SvLis, which can be used for building a

different type of CAD system. Because of this common basis several systems

can read each other’s CAD model files simply because they use the same

interior.

Fig. 9.13 Reading other CAD disc files—information loss
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9.2 Shape Data Exchange

The purpose of data exchange is to be able to communicate shape information

between different systems. Traditionally this has concerned exchange between

CAD and CAD systems or between CAD and CAM systems. There are two ways

to perform data exchange between systems:

1. Specific system–system interchange

2. Interchange via a neutral file format

The role is illustrated in Fig. 9.14, a figure which I didn’t invent, but I do not

know the original source to quote.

It is clear that if communication is needed between a new system SYSTEM F

and the other systems then ten new translators need to be developed (five for

system F and one each for systems A–E). With communication via a neutral file

format only two translators need to be developed, one to read and one to write

the neutral format. Communication using a standard works something like a

telephone exchange (invented by the Hungarian Tivadar Puskas apparently).

Although it seems clear that using a neutral format is preferable there are,

almost inevitably, problems, and there has been mixed success in introducing and

gaining acceptance for a neutral exchange format.

Another problem concerns incompatibility between modelling systems.

Exchange between similar systems, say between B-rep systems, is much more

straightforward than communication between CSG systems and B-rep systems, as

already mentioned and illustrated in Fig. 9.11. These technical problems dogged

the CAD system market for many years. The current attempt at introducing a

globally acceptable exchange format is the STEP standard.

Some examples of CAD data exchange files are given in Appendix B. It should

be said that data exchange files are not really meant to be read by people, but the

examples are included so that you can see how they look. It can be helpful to

understand a little of the contents.

Fig. 9.14 A commonly used picture for illustrating communication methods
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9.2.1 Standards

The following are some common standards.

9.2.1.1 IGES

The following is what I think is true. IGES started off as a standard for exchanging

drawings. In about 1979, at a CAM-I conference on solid modelling abilities, there

was a discussion about exchanging solid models and IGES was proposed as a way

of doing this. Extensions were needed to IGES and the CAM-I group of experts

produced a proposal for solid exchange, called XBF. This was used to exchange

solids within the CAM-I group but was seen mainly as an input to the development

of IGES. When the new extended version of IGES appeared it largely ignored the

XBF suggestions and contained geometric descriptions. In later versions primitive

solids, as used in CSG representations, were included even though the main solid

modelling emphasis had moved away from CSG. One type of entity, the trimmed

surface patch, approaches a little the notion of Boundary Representation, but IGES

lacks the topological structure needed for proper exchange. Many systems can

exchange IGES data. However, joining the model, which is optional in some

systems, requires identifying matching elements to glue surface patches together.

One personal criticism of IGES is that it seems to contain lots of different rep-

resentation types instead of requiring that users conform. This seems to have meant

that implementers used only part of the IGES standard, which is very large, instead

of the whole. This has meant in the past that two applications using IGES were not

able to communicate because they had implemented different parts of IGES.

Another criticism of IGES is that it is verbose. If you look at the example of

IGES output in Appendix B you will see that it is 80 columns wide and consists of

fixed fields. I used to ask my students why should the lines be exactly 80 columns

wide. After a brief puzzled pause I would announce triumphantly that it was

because the original standard was intended to be stored on punched cards. I then

used to ask if any of the students had ever seen a punched card. One year a student

asked: ‘‘What’s a punched card?’’ I was forced into the realisation that I am older

than I think. For the record, a punched card is shown in Fig. 9.15, it is a piece of

thick paper, about 18:75mm� 8:25mm: The reason for asking about punched

cards is to show how standards tend to gather history because they have to be

stable. Punched cards are no longer used by computers but they still have an

implicit dinosaurial existence through IGES.

Another point to make is that one manufacturer, if memory serves me well,

Aerospatiale, developed the SET version of IGES to be more compact than IGES.

The SET format has free format fields and removes the white spaces. What this

shows is how some people adapt standards because they see improvements, which

means that there are standards variants. It is certain that the fixed format of IGES is

now well outdated and makes traditional IGES files very large, so there was a good
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reason to adapt the standard. However, what is shown in the Appendix is the

ASCII clear version. There is also a compressed version in binary form which

reduces the size of the files somewhat.

A further criticism of IGES is the use of code numbers instead of type key-

words. If you look at the IGES example in the Appendix, you will not find helpful

types, like ‘‘straight line’’, ‘‘plane’’, ‘‘point’’, etc. Instead there are code numbers

which are explained in the IGES documentation. The format is explained in more

detail below. For the full standard, though, and explanations, see the official

documentation [1], or later versions.

IGES has five sections:

• S section—the Start section, one line at the beginning of the file.

• G section—the Global section containing information about the sending system,

delimiter characters and so on.

• D section—the Directory entry section, a list of entities in the file with various

parameters and a reference to the geometric data in the parameter section.

• P section—the Parameter data section, which contains the geometric data which

is interpreted according to the entity.

• T section—the Terminate section.

The S-section consists of one line, so is not reproduced here. The G-section is

shown below.

In several places you can see a number followed by ‘‘H’’. This stands for a

sequence of characters, so ‘‘1H,’’ means ‘‘,’’, which indicates a separation char-

acter. As mentioned above, there is information about the system which produced

Fig. 9.15 A punched card
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the file and other source information as well. This is so that the file has some sort

of traceability. Note, also, that the last characters in the line are ‘‘G’’ followed by

some spaces and a number (1–4). The ‘‘G’’ indicates the section and the numbers

are line sequence numbers, used for sorting when information was contained on

punched cards rather than in sequential files.

The first four lines from the directory entry section are:

In fact, this corresponds to two entities, each having two lines specifying different

data aspects. The first number in the two rows is the entity type code, 108 for the first

entity and 110 for the second. In order to decode these it is necessary to look at the

standard documentation. 108 means a plane and 110 means a straight line. The

second number of the first line of each entity is a reference to a line in the parameter

data section which contains the geometric information associated with the entity.

Other element codes in the file are:

102—composite curve

142—curve on parametric surface

144—trimmed parametric surface

These are interesting because these are a way of passing topological informa-

tion using IGES. IGES does not have explicit topological information, this is a way

of providing the information indirectly. A trimmed parametric surface is

approximately equivalent to a face. The composite curve entity is used to create a

curve sequence. This is roughly equivalent to a loop, or contour, which is then

associated with a parametric surface and used to define the trimmed parametric

equivalent to a face. To be closer to B-rep topology it would be necessary to reuse

the same curves. Since the curves are repeated it would be necessary to use

geometric tests to associate the elements if a closed volume is to be created.

The two lines from the parameter data section corresponding to the lines above,

and the following lines showing some other entities are:

The first number in the line is the entity type code so that the rest of the data can

be interpreted directly using the standard description. Just before the line sequence

number is the line sequence number of the directory entry section.
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Included is one ‘‘cycle’’ of information, with the geometric information for the

eight entities corresponding to a face. The first is the geometric information for a

plane. After the code, 108, the next four numbers define the plane. They are in the

form: axþ byþ cz� d ¼ 0:Given are the four values: a, b, c, d and the points of the
plane (x, y, z) are any points satisfying the equation. This means that the plane has

normal vector ð�1; 0; 0Þ and is at distance 5 from the origin, so the definition of the

plane is x ¼ �5: After this definition is a zero pointer, because this is an unbounded
plane, three values specifying the position of a display symbol and a size parameter.

Following the plane definition are four lines defining the straight lines bounding

the face. Each straight line is defined by its start and end points.

Then comes the geometric data specifying the composite curve, type 102. This

consists of the number of curves and the directory entry references for the four

bounding curves, which are the four preceding curves.

The next line specifies a curve on a parametric surface, type 142. This specifies

the directory entry of the surface, 1 in this case, and the directory entry of the curve

on the surface, 11. There are some other organisational parameters as well.

Finally comes the specification of the trimmed parametric surface, type 144.

This specifies the directory entry of the surface being trimmed, 1, and then the

boundary or boundaries. The second 1 indicates that the boundary trims the sur-

face, the 0 means that there are no inner boundaries, and the 13, a reference to the

directory entry of the curve on parametric surface, defines the boundary.

Finally, the termination line is:

This contains information about the number of lines in each section, i.e.

S: 1

G: 4

D: 96

P: 48

This states that there was one start record, four lines in the global section, 96

lines in the directory entry section and 48 lines in the parameter data section.

9.2.1.2 VDA-FS

VDA-FS stands for Verband der Automobilindustrie – Flächen Schnittstelle. The

standard was developed for data exchange by the German car industry. This

description is based on documents kindly provided by Claudia Rainfurth and

Meinolf Gröpper of VDMA. For the full definition of VDA-FS, the reader should

refer to the original documents. However, some of the information is given here

because of the difficulty of obtaining the definition.

VDA-FS is a relatively simple standard, in terms of the number of elements

defined, yet is capable of communicating complex shapes. The geometric elements

in the standard are:
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• POINT

• PSET

• MDI (Master dimension)

• CIRCLE

• CURVE

• SURF

• CONS (Curve on surface)

• FACE

• TOP

In addition there are some non-geometric items:

• HEADER

• $$ (Comment)

• BEGINSET

• ENDSET

• GROUP

• TMAT (Transformation matrix)

• TLIST (Transformation list)

• END

Concentrating on the geometric items, the formats, from the VDA definition

document, are:

• POINT / x,y,z

The data is just the three coordinates of the point.

• PSET / n,(n)*[x,y,z]

The data is the number of points in the set followed by that number of coor-

dinate triples.

• MDI / n,(n)*[x,y,z,vx,vy,vz]

The data is the number of points followed by that number of sextuples of values,

three for the point and three for the vector. The vector does not need to be

normalised.

• CIRCLE / x,y,z,r,vx,vy,vz,wx,wy,wz,a;b
The first triple gives the coordinates of the centre point. This is followed by the

radius of the circle. The next two triples define two axes in the plane of the

circle, which can be thought of as the X- and Y-axes of the local coordinate

system. The triples are vectors relative to the centre and should be perpendicular

to each other. The final two values are the angles of the start and end of the

circle, in degrees.

• CURVE / n,(n+1)*[par], (n)*[ord,(ord)*[ax],(ord)*[ay],(ord)*[az]]

The curve is a piecewise curve consisting of n segments. After n has been given

there are nþ 1 parameter values defining the starts and ends of the segments.

There then follows the curve data. Each curve segment is defined by its order (the

number of control points) followed by that number of x-values, that number
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of y-values and that number of z-values. The parameter values defining the limits

of the curve segments are global parameters, each curve segment is parametrised

locally from 0 to 1 for point calculation. The values of ax, ay and az are coeffi-

cients of a polynomial in u, where u is the curve parameter. So, point calculation is

done in the same way, for x this would be: xðuÞ ¼
Piord�1

j¼0 axj � u
j:

• SURF / nps, npt, (nps+1)*[pars], (npt+1)*[part], (nps*npt)*[iordu, iordv,

(iordu* iordv)*[ax], (iordu*iordv)*[ay], (iordu*iordv)*[az]]

This is similar in style to the curve definition. This defines a set of joined surface

patches, nps in the u-direction and npt in the v-direction. The global parameters

are given, but each surface segment is parametrised locally from 0 to 1. Each

surface patch is of order iordu in the u-direction and iordv in the v-direction.

There then follows the list of polynomial coefficients, organised in rows in the u-

direction. Point calculation is done in a similar way to that for curves, for x this

would be: xðu; vÞ ¼
Piordv�1

k¼0

Piordu�1
j¼0 axj;k � u

j � vk:

• CONS / surfname, curvename, s1, s2, np, (np+1)*[parp], (np)*[iordp, (iord-

p)*[as], (iordp)*[at]]

CONS stands for ‘‘Curve on surface’’ and associates a curve with a surface. The

surface and curve are given by name. The s1 and s2 are the two parameter limits

of the curve. The last part of the data defines the 2D curve in the surface

parameter space corresponding to the named curve. np defines the number of

segments, this is followed by the set of npþ 1 parameter values defining the

curve limits and then the np sets of curve parameters. Each 2D curve segment is

given by the order and then that number of coefficients of the u polynomial

followed by the coefficients of the v polynomial. Note that there is duplicate

information in that a parameter value of the specified curve gives a point in 3D

space. The u, v coordinates also lead to a point in 3D space via the surface, so

these two should tally.

• FACE / surfname, m, (m)*[n, (n)*[consname, w1, w2]]

FACE is a record to associate groups of CONS elements into surface limits.

surfname is the name of the surface. m gives the number of boundary sets of the

face. This can be one, if the face has only an outer boundary, but can be more.

There then follow the m sets of boundaries. The first element, n specifies the

number of curves in the boundary and this is followed by that number of named

CONS together with the lower and upper parameter limits. This is a ‘‘trimmed

patch’’ definition.

• TOP / m, (m)*[(2)*[fsname, n, (n)*[consname, w1, w2]], icont]

The TOP item is for linking faces and/or surfaces into connected groups. The

first element, m gives the number of face–surface pairs to link and there then

follows that number of pair definitions. Each pair consists of a pair of records, a

face or surface name followed by the number n of CONS entities in the

boundary followed by that number of CONS names and the lower and upper

parameter values. Finally, the integer icont specifies the continuity between the
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surfaces, 0 for position, 1 for tangency and 2 for curvature continuity. Note that

this can join two FACE entities, two SURF entities or a FACE entity to a SURF

entity.

• TMAT / c11, c12, c13, c21, c22, c23, c31, c32, c33, c41, c42, c43 The main

elements of a 4 9 4 transformation matrix of the form:

c11 c12 c13 c41

c21 c22 c23 c42

c31 c32 c33 c43

0 0 0 1

2

6

6

4

3

7

7

5

There is also a condition that the matrix is invertible.

• TLIST / tmatname, n, (n)*ename The name of a transformation, the number of

elements in the list, n, followed by a list of n element names to be transformed

by the matrix.

The first part of the file in Appendix B is a heading identifying the origin of the

data. This is to provide data traceability.

As stated above, an interesting aspect of VDAFS is its relative simplicity. It was

developed to allow German car manufacturers to exchange complex shapes, so is

more suited to freeform shapes than to the simple cube example given. However,

since the aim here is to compare the same example with different exchange

methods, the simple example is used here, too.

In the cube example there are several curve definitions similar to the following:
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To interpret this you have the first integer which specifies that there is one curve

in the sequence. The next two values, 0 and 0.02, give the global curve parameters.

However, each curve is parametrised from 0 to 1 locally. The curve data is given

as the order, 2, indicating that the curve is linear, followed by the polynomial

coefficients. In fact, here, the first column of coefficients can be interpreted as a

point and the second column as a vector, so the line is defined geometrically as:

ð�5; 10; 15Þ þ t � ð0;�20; 0Þ: Since this is parametrised from 0 to 1, the end

points of the line are ð�5; 10; 15Þ and ð�5;�10; 15Þ:

This is a surface definition. The first two numbers, 1 and 1, indicate that this is a

single surface element, not a collection of patches. The next four values indicate the

global parameters in the u and v directions, in this case 0 and 1 for both. Since there is

only a single patch all the rest of the data concerns this surface element. The first two

numbers are the order for this patch. Interestingly enough, these are both 4, indi-

cating that the planar surface has been converted to a cubic surface. However, from

the data it can be seen that many of the polynomial coefficients are zero, indicating

that the higher order terms of the polynomial play no role. The numbers are arranged

in three groups of 16 values, the first for the X coefficients, the second for the

Y coefficients, the third for Z. This means that a0;0 ¼ ð�5;�10;�15Þ; a1;0 ¼
ð0; 20; 0Þ; a0;1 ¼ ð0; 0; 30Þ; a1;1 ¼ ð0; 0; 0Þ:All other a values are zero. The formula

for calculating a point on this surface is xðu; vÞ ¼
P3

k¼0

P3
j¼0 axj;k � u

j � vk; or from

the data, xðu; vÞ ¼ ð�5;�10;�15Þ þ ð0; 20; 0Þ � uþ ð0; 0; 30Þ � v: All other terms

are zero. By inspection it is possible to say that this surface lies in the plane X ¼ �5;
since there are no terms which varyX. The limits of the surface, from the parameters,

are ð�5;�10;�15Þ; ð�5; 10;�15Þ; ð�5;�10; 15Þ and ð�5; 10; 15Þ:
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An alternative formulation of the surface data might have been:

SR13 = SURF / 1, 1, 0.0, 1.0, 0.0, 1.0, 2, 2, -5.0, 0.0, 0.0, 0.0, -10.0, 20.0, 0.0,

0.0, -15.0, 0.0, 30.0, 0.0

Note, also, the way that the planar geometry has ‘‘migrated’’ to become a cubic.

Even if the values are zero there are a few minor numerical errors which could,

theoretically, destabilise the surface. However, as pointed out above, this data

exchange format is really meant for freeform geometry.

This is a ‘‘curve on surface’’ definition which identifies that curve CV1 lies on

surface SR13. Note that CV1 is involved in another CONS entity, CN41, lying on

surface SF16. This is because the curves correspond to edges which lie between

two faces.

The first two values, 0.02 and 0.0, are the global parameter limits of the curve.

The next value, 1, defines how many curve segments there are in the definition.

The next two values are the parameter values which limit the curve segments, in

this case -0.02 and 0.0. The value 2 defines the order of the curve segment, that is,

it is a linear segment, and the final four values are the coefficients of the

(u, v) space polynomial corresponding to the curve. These are (0, 1) and (1, 0),

which means that the curve runs from (0, 1) to (1, 1) in the surface parameter

space, or (-5, -10, 15) to (-5, 10, 15), if you use the surface data definition.

This is another interesting aspect of VDA-FS, the association of elements into

face-like elements. This defines that the face lies on surface SR16, it has 1

boundary consisting of four elements. The elements are CN41, CN42, CN40 and

CN39, together with their parameter values.

9.2.1.3 STEP: ISO 10303

STEP is the most modern of current data exchange standards and, my personal

view, is the best choice of standard exchange at the moment. It is the most

complete of the standards mentioned here because it contains experience from the
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others. It is also partly based on another modern standard, developed as part of a

European project, CAD*I, see Schlechtendahl et al. [2].

The STEP effort is a layered structure, something like that shown in Fig. 9.16.

For a considered explanation see Owen [3], for example. What follows is a

personal interpretation.

At the bottom of STEP you find a number of basic modules, perhaps the two most

important for CAD data exchange are Parts 21 and 28, which define the physical file

structure and the XML version. If you look at the STEP example in Appendix B you

see on the first line: ‘‘ISO-10303-21;’’ which means that this is a STEP file—ISO

10303 is the official ISO code for STEP—in Part 21 physical file format.

On the next layer up are a number of what are called ‘‘Integrated Resources’’

for different areas. For CAD data exchange, the geometrical and topological

definitions are in Part 42, for example. Other parts define information and other

common elements, such as the information about the origin of the file. The idea

behind the integrated resources is to have a limited number of conceptual elements

into which all high-level application concepts are decomposed. The intention is

that these form common building blocks so that if you can read or write these, then

you can read or write any STEP application.

At the top there are the application areas. These define the high-level elements

needed for different purposes. Some of these are shown in the figure but in reality

there are many more application areas and many more elements in STEP. STEP is

a huge effort aimed at providing a comprehensive interface for data exchange.

What is shown here is a subset because only a portion is relevant here. Some of the

application protocols (APs), those shown in Fig. 9.16, are:

• AP 203—configuration controlled 3D designs of mechanical parts and

assemblies

• AP 214—core data for automotive mechanical design processes

• AP 224—mechanical product definition for process planning using machining

features

Fig. 9.16 STEP structure
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• AP 238—computer numerical controllers

• AP 240—process plans for machined products

The Application Protocols define what is called an ARM, Application Refer-

ence Model, which is a definition of what is needed in the application. This is then

defined formally in terms of the Integrated Resources which are what are output.

The aim here is not to provide a complete and accurate overview of STEP but to

present a brief outline to help understand STEP file output. It is worth under-

standing STEP because it covers such a wide area. There are many gaps which are

being slowly filled. One of these is the history trees, which has recently been

defined in STEP but will take time to come into CAD file exchange. Assemblies

are passed across, but assembly constraints seem to be lost.

Looking at the file examples in Appendix B, you have at the start:

Example 1

Example 2

The reason for giving two examples is so that you can compare different styles of

outputting the same information. As you can see, the layout is different, although the

content is basically the same. In the CATIA file, the elements are bundled together

by type, whereas in the Solidworks file the elements are arranged in line-number

order. For the computer this should not make a difference, of course, but for a human

reader these two layouts have different advantages and disadvantages. In the CATIA

file it is easy to find related elements of the same type, whereas in the Solidworks file

it is easy to find given line numbers. The files are not, though, intended for humans to

read directly, but it helps to be able to identify some of the information.
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The elements in the file are like the elements of a general Boundary Repre-

sentation data structure. This means that the ‘‘trick’’ of reading and writing STEP

files is to match those elements with the elements in your data structure. This is

similar to what was suggested in Fig. 9.13. Examine the data structure from

Fig. 9.1, reproduced in Fig. 9.17.

Compare this with a similar diagram based on the STEP file data structure from

Part 42, as shown in Fig. 9.18. Of course, the STEP file structure shown in the

figure is a gross over-simplification, because there are many more entities not

shown, but there is a match between these main elements and the data structure

elements of a normal B-Rep structure.

The correspondences can be classified roughly as in Table 9.1

Looking at the file, you have the line:

which defines a body. Actually, there are other entities associated with the body at

a higher level, but these are ignored here. From the body line you see a reference to

line number 88, (#88), which is a ‘‘closed_shell’’ entity:

If you continue following the links, you find that the shell refers to a list of

faces. Note, though, that this list is dynamic. The usual practice when creating

discfiles is to keep the entities of fixed length. Another complication is that STEP,

as with some other files, contains forward references. This means that one entity

may refer to others which have not yet been created. In the shell example, above,

Fig. 9.17 Simple boundary representation data structure
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Fig. 9.18 Simple boundary representation data structure

Table 9.1 Comparison between STEP entities and B-rep structure

STEP entity B-rep
entity

Comments

manifold_solid_brep body There are more types of ‘‘body’’ discriminated in STEP. These
can all be mapped to body

closed_shell shell Again, several types of STEP shell can be mapped to shell

advanced_face face This is a more-or-less straightforward correspondence

face_outer_bound,
edge_loop

loop The loop information is spread over two entities in STEP. The
first defines that this is an outer bound, the second that it is an
edge sequence and gives the edges

oriented_edge elink The STEP entity gives the orientation within the edge_loop

edge_curve edge The ‘‘edge_curve’’ name indicates that the edge is a portion of a
curve

vertex_point vertex As with the edge, the name indicates that the vertex lies at a point
in space

? surface There is no direct surface entity but rather a ‘‘superclass’’ of
different elementary types

? curve Again, curves are divided into different types which have to be
read and interpreted
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the closed_shell on line 88 refers to line numbers 101, 106 and 93, which are face

references which have to be created as empty slots.

This presentation is very simplified, but space does not permit a very detailed

analysis of STEP. In reality, when building a STEP interface, it is necessary to

work through the detailed descriptions of all the integrated resources and match

them to elements in the CAD system structure. Where there is no correspondence,

new entities should be created to preserve the information. The STEP integrated

resource descriptions are good and comprehensive, giving a clear picture of the

entities in the files. They are not reproduced here because of copyright restrictions,

but are mainly because the principle relevance would be for producing applica-

tions, in which case it is worth buying the official documents. The intention here is

to produce a short overview to give an idea of the information and its meaning.

It is necessary, though, to comment on some shortcomings of the STEP stan-

dard. First, the history tree is not (yet) communicated. Actually, a STEP standard

for the ‘‘construction history’’ does exist, although it is very new, see Sect. 9.3.

However, it takes time for these to become part of CAD systems and it may turn

out that there have to be modifications to accommodate all the facilities in CAD

systems. Another shortcoming is the lack of constraint information in assemblies.

This, too, will probably appear at some point.

On the positive side it should be said that the STEP standard is the best data

exchange standard that exists at the moment. The optimum is to exchange data

between CAD systems of the same company and with the same version, but this is

not always possible. STEP offers a solution acceptable to many CAD systems and

allows transfer between systems of the same type but with different versions.

9.2.2 Common Non-Standards

These non-standard exchange methods are widely used and are what is termed ‘‘de

facto’’ standards. In general, beware of these because the standardisation process

involves comprehensive reviews and so standard exchange methods are more

stable. However, since these non-standards are used then it is necessary to explain

what they do and their properties.

9.2.2.1 STL

The STL information is summarised in Fig. 9.19. The representation is made up of a

number of triangular facets. Each facet has three corner points and the face normal.

The complete file starts with the declaration:

solid simple

and ends with the declaration:

endsolid simple
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In between there is a series of facet definitions which define the geometry. Each

facet has the form:

facet normal -1.000000 0.000000 0.000000

outer loop

vertex -30.000000 25.000000 40.000000

vertex -30.000000 25.000000 0.000000

vertex -30.000000 -25.000000 40.000000

endloop

endfacet

Strictly speaking the vertex coordinates are supposed to be all positive, but this

restriction, possibly originally for computing reasons, has been relaxed.

STL seems to be a graphics format that was used for communicating with

stand-alone graphics systems and has since been used for Rapid Prototyping and

communicating measured point data. Beware, as a communications format STL is

a disaster. To be fair, it was useful for a period when geometric processing power

and knowledge were limited. For rapid prototyping it is necessary to intersect a

model with a plane. Intersecting an STL model with a plane is trivial, computa-

tionally, and hence STL was useful for a while. However, times have changed and

it would be easy now to use an exact model instead of an STL model. Also, STL is

an approximative representation and so it is necessary to set the approximation

parameters correctly to get the desired precision. Because of the fragmentation of

curved surfaces, STL files get large because the format is verbose. Note, several

suggestions have been made to replace STL and there is also a modern standard in

preparation for STEP-NC (ISO 14649).

The triangulation method tends to be arbitrary. Because of the historical links

with graphics it is typical to use graphics triangulation for output in STL form.

Figure 7.8 shows a face triangulation. If you examine the figure you can see that

some of the triangles are long and thin and, in general, there is little control over

the shape of the triangles. Figure 7.9 shows the types of STL creation parameter.

The most common is the chord height tolerance, which determines the maximum

allowable discrepancy between the real geometry and the facetted approximation.

Another control parameter is the minimum angle parameter, which is for creating

more uniform triangles. This should, of course, be 60� or less, though 60� is an

Fig. 9.19 STL facet
information
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ideal. The edge length parameter determines the maximum edge length, and also

has an effect of making the triangles more uniform. However, you may not find all

these if you want to output STL. Note, also, the difficulty in knowing what the

parameter settings should be.

Another problem with the STL format is that the facets contain no information

about neighbouring facets; every facet is independent. This not only creates

redundant information, because the corner points are repeated, but means that is

more difficult to recreate a solid by joining facets. See Mäkelä and Dolenc [4] or

Stroud [5] if you really want to know how to recreate a solid. If your CAD system

can recreate a solid then you can check for holes. Incomplete STL files, or files

with other mismatch problems have caused a lot of problems for rapid prototyping.

Ideally, if you want to communicate using STL then you should write a file and

then read it back to check for problems before sending the STL file.

STL is sometimes used to communicate measured data. This is data generated

by measuring physical objects. This consists of a sequence of points, but can be

delivered as STL by associating neighbouring points as facets. However, note

again the multiplicity of the point data communicated using STL. If measured data

is communicated using STL it is necessary to join the facets in order to have

measured points once for surface fitting.

9.2.2.2 VRML

VRML is better than STL in the sense that it can communicate a unique set of

corner points. However, it is sometimes used to communicate separated facets, in

the same way that STL does.

There are several pieces of information concerning graphics properties such as

colour and transparency. The geometric information in the file looks something like:

coord Coordinate {

point [

-5 -10 15,

-5 -10 -15,

-5 10 -15,

-5 10 15,

]

}

coordIndex [

2,1,3,-1,

1,0,3,-1,

]

The first elements are the corner ‘‘point’’ data. Actually these would correspond

to vertices in a boundary representation model. Each line has a triple of x, y and

z coordinates. These are implicitly numbered as 0 to 3, in the case shown.
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The faces are given in the ‘‘coordIndex’’ part as a series of vertex references,

ending with ‘‘-1’’. In the example above there are two triangular faces, one with

the corner points at (-5, 10, -15) (-5, -10, -15) (-5, 10, 15) and the second

with corner points (-5, -10, -15) (-5, -10, 15) (-5, 10, 15). Edges are created

between neighbouring vertex points. When creating an object it is necessary to

check whether an edge has already been created between the vertices. If so, this

creates a link between two neighbouring faces.

9.2.2.3 Point Formats

Point data is, perhaps, the hardest type of data to handle because the elements

are not linked into units. Point data often comes from measured objects for so-

called ‘‘Reverse Engineering’’, for recreating CAD models from physical

objects. Sometimes this data is communicated using STL, which does give a

structure, but at other times the point data is communicated in raw form.

There are several types of point data format. The simplest type is as X, Y,

Z triples in ASCII form. Another type of data format, the RIS format, involves a

start and end point in (X, Y, Z) format and a series of Z values between these to

create profiles.

The problem with point data files is, as stated above, to associate the points

with each other. It is important in reverse engineering to separate these points

into groups corresponding to surface portions (called ‘‘segmentation’’) and then

to fit surfaces to these. It is not intended to describe this in detail here, see Besl

[6] or Martin and Marshall [7], for example, for basic references. This is far

from easy, so it can be worth examining the data to see if it has common

elements, such as constant X, Y or Z value. This indicates a scanning orien-

tation and means that points can be associated into rows. One trick that was

done for some students at the EPFL (Ecole Polytechnique Fédérale de Lausanne)

was to preprocess a points data file so that the points in a row created a spline.

This was done by creating fake macro files for the system used

(I-DEAS). These splines were then used to create surfaces manually using lof-

ting. This, though, does not get round the problem of segmentation but made it

easier to deal with the points.

9.2.3 Other Formats

There are a number of other formats for data exchange which are used, but

which are not covered above. These are formats which come from commercial

systems and hence can be considered proprietary. To avoid infringing any

copyright or intellectual property regulations there is no attempt to explain them

here. Remember that, while the formats are often good, they can change as

new elements are added to the data structure or as existing items are changed.
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This makes these formats more volatile than standard formats, as already

explained above.

9.2.3.1 DXF Files

DXF is a format that comes from Autocad. It is another format which is good for

communicating drawings but has some three dimensional information as well.

9.2.3.2 SAT Files

SAT files are disc files of the system ACIS. There is also a binary format file with

the extension ‘‘SAB’’. The first line of the file contains a version number which

can be checked to see if the file is readable. The entities of the object represented

by the file are written in a long list. Each line has a keyword, representing the type

of entity in the file, followed by a set of numbers representing the pointer and

numeric fields of each particular entity.

9.2.3.3 Parasolid Files

The extension for Parasolid files is ‘‘x_t’’ or ‘‘x_b’’ depending on whether they are

text or binary files. Parasolid, like ACIS, is a modelling kernel which is used by

several commercial companies as a basis for their software. This makes the

Parasolid files readable within a family of software system, but the files are again

sensitive to version control.

9.2.3.4 CGR Files

CGR stands for Computer GRaphics files which, while there may be three

dimensional data, are intended for computer graphics, not for geometric objects.

9.3 Functional Interfaces

Functional interfaces do not communicate the final shape but the way it is made.

9.3.1 DJINN

Another method of communication is to communicate operations directly. A way of

doing this is to use the DJINN standard, which is a standard for defining the func-

tional interface for modelling systems. What this means in effect is that
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implementors write interfaces which use modelling kernels in standard ways using

standard calls, then the calls themselves become a potential means of

communication.

DJINN was written by Cecil Armstrong, Adrian Bowyer, Stephen Cameron,

Jonathan Corney, Graham Jared, Ralph Martin, Alan Middleditch, Malcolm Sabin,

Jonathan Salmon, a sort-of All-Stars team of talent in British Geometric Model-

ling. Between these people there is a vast amount of experience of geometric and

solid modelling, of various types, which means that the work is relevant and of

high quality. Because of the breadth of knowledge, DJINN is an interface which is

not technology dependent but provides access to the functionality of a model. The

aim was to create a standard interface which could be used to share applications

between researchers. This would also mean that it might be possible to demon-

strate research applications in commercial environments, provided that software

suppliers adopt the DJINN way of working. It might also mean that application

software could be distributed directly to companies and mean closer collaboration

between researchers and industry, but these developments, as far as I know, have

not yet been realised.

DJINN consists of a proposed set of basic calls to a modelling system on top of

which an application can be built. It also has a standardised set of objects which

can be handled by the interface.

The calls can be used as a part creation history, but could equally well be used

as the basis of a macro-language or command interpreter interface. DJINN itself is

more comprehensive than a simple part creation history, containing many extra

facilities needed for programming standardisation.

There is, of course, a conflict between the aims of DJINN and commercial

considerations. For a commercial developer it is more advantageous if code is

tied closely to their system. Application code migration does occur, although

more rarely, but system independence is not really a main requirement for

commercial developers. DJINN is of much more interest to researchers in the

academic world. Having a DJINN interface in a CAD system would allow

researchers to add new functions to a CAD system, such as feature recognition,

analysis or manufacturing code. However, since DJINN has not (yet?) been

taken up by commercial companies it is only mentioned here rather than given

the fuller treatment it deserves.

9.3.2 The STEP Construction History

The STEP construction history standard is aimed at communicating the way that a

designer has created an object. This means that the functionality and the corre-

sponding parameters of CAD systems are standardised and recorded in a stand-

ardised way. You then communicate the lists of these used to create an object so

that another CAD system can use the list to create an object.
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The advantage of doing this is obvious. Just writing out a complex part

using STEP 203 or IGES and then reading it back shows you the problem. All

the convenient operation parameters that are accessible for modification in the

history tree of a particular CAD system are missing, with only the final shape

communicated. A problem, though, concerns what happens when new opera-

tions appear that are not covered by the standard. Another problem is when one

CAD system wants to have different parameters to those of another. This is a

little like what happened with earlier attempts to define shape data exchange

methods, where different modelling methods, different geometric methods and

different interests competed. Modern shape data exchange has become possible

because shape modelling matured. The question is whether construction history

is sufficiently mature to allow for successful construction history exchange. For

a number of basic operations, yes it is, but possibly not for newer application-

based operations. This is a topic to watch, not necessarily a solved topic.

9.4 Chapter Summary

This chapter describes ways for communicating model data via disc files. Local

disc files are usually more efficient in storage terms but are more volatile than

standards. Local discfiles are more-or-less simple copies of the memory data-

structure for a model, with logical pointers instead of real pointers.

The alternative to commercial system discfiles are standards, or neutral files.

Standards are good not only for communicating between different systems but also

between different versions of the same CAD system. Standards are also more

useful for archiving, a somewhat neglected subject, but important for products

which may still be active after 50 years.

Several ‘‘de facto’’ standards also exist. The term ‘‘de facto’’ meaning that,

though they are widely used, they are not standards. These should also be labelled

‘‘Beware’’, not because you shouldn’t use them but that you should be wary of

their shortcomings.

Finally, two approaches to functional standardisations were mentioned, DJINN

and the STEP construction history standard.

9.5 Data Exchange Exercises

9.5.1 Simple Save 1

Create a cylinder and save it. Identify the different possibilities offered. Note

the formats which are local to the CAD system and which alternatives are

offered. Note, also, whether the formats are offered in TEXT or BINARY

mode.
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9.5.2 Simple Save 2

Create and save in STEP format a cylinder, a sphere and a torus. Open the files

with a text editor and compare the different geometric entities.

9.5.3 STEP Export and Import

Create a 100 9 100 9 50 block centred about the origin and create a cylindrical

hole, radius 10, through it. Export it with STEP and then reimport it to your CAD

system. Note if the construction history is also imported or whether the object

appears simply as a final shape. This is just to check the stage of implementation of

the construction history files.

9.5.4 STL Save 1

Create a cylinder, radius 20, and height 80, say, and subtract from it a cylinder

with the same axis, radius 10 and height 100, say, to create a tube. Export this

using STL. Export this in STL format with chord height tolerance 0.1, 0.01, 0.001.

Note the differences in file sizes. Does your system allow you any other control

parameters? Read the STL file back into the CAD system, if you can. Note how the

facets approximating the outer side of the cylinder are all inside the real object

while the facets surrounding the hole are all outside the real object. This is to do

with the fact that only the corner point positions lie on the object.

9.5.5 STL Save 2

Repeat the previous exercise but using a sphere, radius 20, instead of a cylinder.

Note the way that the file sizes increase and explain the difference.

9.5.6 Chained Save

This is better if you can save using different CAD systems but is worth trying even

with one system.

Create an object with simple geometry, like that shown in Fig. 9.20. This object

has planar, cylindrical and spherical surfaces. Save the object in STEP format.

Reopen the STEP file and export it, or save it, in IGES format. Reopen the IGES
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file and save the object in a second STEP file. Now compare the first and second

STEP files with a file comparison utility and examine the differences.

The intention is not to criticise any particular implementation, just to illustrate

that you cannot expect the model to stay exactly the same through multiple data

exchange steps. This also means that techniques such as feature recognition, see

Chap. 10 are important to relate shapes.
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Fig. 9.20 Simple object
modelled for chained data
exchange
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Chapter 10

Features

Features are localised elements of a model which are interesting for some reason.

This is a personal definition, but there is no clear definition of features that

everyone can agree on. Features became interesting as a topic during the 1980s and

are still the subject of research. Features are important because they transcend the

representation method and have a high-level meaning which is useful for appli-

cations. Some examples of features are shown in Fig. 10.1.

An object is then made up of a basic shape with a lot of features, as in the

example in Fig. 10.2.

Note that there are two general categories of feature: intrusive features and

extrusive features. Intrusive features are where material is removed, extrusive

features are where material has been added. The features from Fig. 10.1 are

classified into groups in Table 10.1.

These are only a few feature examples, not an exhaustive list, just to illustrate

the categories.

HEALTH WARNING

If someone tells you that they understand

features and can tell you about them, the

first thing to do is go into sceptical mode:

I understand features and can tell you about them.

You should now be in sceptical mode. What follows in this chapter is an

opinion, more-or-less informed, about some aspects of features. However,

remember that many people talk glibly about features and not all of these people

know what they are talking about. Figure 10.3 illustrates one credibility criterion if

someone, especially a salesperson, informs you that their CAD system is a feature-

based system.

I. Stroud and H. Nagy, Solid Modelling and CAD Systems,
DOI: 10.1007/978-0-85729-259-9_10, � Springer-Verlag London Limited 2011
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In case you do not know the idiom, in English there is a way of expressing

disbelief by saying ‘‘And pigs might fly’’. So, if someone does tell you that a

system is feature-based, look around for flying pigs. It may help if the person

Fig. 10.2 Some examples of features in an object

Fig. 10.1 Some examples of features
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telling you is a flying pig. If not, check the system. This is not to say that feature-

based systems do not, or will not, exist, just that the term has been used too loosely

in the past to be confident as to what someone actually means.

My personal criteria for a system to be feature-based is that the operations

produce the feature corresponding to the operation name, and that the identity and

integrity of these features are preserved during modelling. The operation names

are preserved in a list and this list should describe the part, providing the system is,

by my definition, feature-based. Note, though, that this is difficult to do.

I can illustrate this using CATIA v5, although you can find similar things in

other systems. In CATIA there are three operations which are named: ‘‘Pocket’’,

‘‘Groove’’ and ‘‘Hole’’. ‘‘Pocket’’ is actually used to mean ‘‘linear extrusion and

subtraction’’.‘‘Groove’’ means ‘‘circular extrusion and subtraction’’. The most

appropriately named is the ‘‘Hole’’ operation, which, for example, might rotate a

profile about an axis and then subtract it from an object. To illustrate the problem

of disparity between the description of an object from the history tree and the

shape of the part, consider the following features:

In Fig. 10.4 the hole is made by sweeping a multiple contour, a square outer

shape with a round inner contour. The ‘‘history’’ says that there is only an

extrusion, but, as is clear, the object is a block with circular hole.

In Fig. 10.5 the hole is made by creating a rectangular block, sketching a

circular shape on the top face and then sweeping this downwards as a ‘‘pocket’’.

Although, in some sense, this may be considered as a pocket, it is more appropriate

to think of it as a circular hole.

Fig. 10.3 Credibility
criterion

Table 10.1 Intrusive and
extrusive feature categories

Intrusive features Extrusive features

Pocket Boss

Through slot Rail

Slot

Through hole

Bridge
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In Fig. 10.6 the hole is made by creating a long vertical rectangle which is then

rotated round one of its long sides and subtracted from the block. The ‘‘history’’

says that the feature is a groove, but it is still a hole.

In Fig. 10.7 the hole is made by creating a rectangular block and then a

hole through it with the hole operation. The description and the part shape

correspond.

Fig. 10.4 Hole made from
sweeping a multiple contour

Fig. 10.5 Hole made from
sweeping a circular contour
as a pocket

Fig. 10.6 Hole made as a
‘‘groove’’
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What these examples are supposed to show is that you can create shapes in

several different ways and that the history description does not necessarily cor-

respond to what you would like to know about the shape. Now consider the next

set of features.

In Fig. 10.8 the pocket really is a pocket. This is the classic shape, a cut out

totally enclosed within a face. This is called a ‘‘closed pocket’’. If the pocket shape

cuts through the boundary of the face the shape becomes an ‘‘open pocket’’, as

shown in Fig. 10.9.

Fig. 10.7 Hole made as a
hole

Fig. 10.8 Pocket which is a
closed pocket

Fig. 10.9 Pocket which is an
open pocket
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There is an important difference between the closed pocket and the open pocket

for manufacturing. This is not recorded in the description, but the way that the tool

enters the material is different.

In Fig. 10.10 the pocket is actually a slot. Again, a slot has different implica-

tions for manufacturing, in terms of how the tool enters the material as well as the

size of tool used to make the slot.

A step, Fig. 10.11, is yet another feature which differs from a pocket in terms of

manufacturing. It is also different from an open pocket because the feature is open

on three sides.

In Fig. 10.12 the feature is even further from being a pocket. You might, with

some systems, even be able to create a ‘‘pocket’’ which is totally enclosed in

material, which ought to be described as a cavity.

What these examples are intended to show is that there is no control by the

CAD system over the way that the operations are applied, nor the results. There are

other ways to show that the shape elements created, even if they really do cor-

respond to the feature description in the history tree, can be corrupted.

In Fig. 10.13 there is a pocket with an extrusion, which is as you might

expect.

Fig. 10.10 Pocket which is a
slot

Fig. 10.11 Pocket which is a
step
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With a different extrusion, when the shape being extruded crosses the pocket

boundary, the pocket turns into two pockets, Fig. 10.14. Ideally the CAD system

should notify you that the pocket, supposedly created as a feature, has been

corrupted.

Fig. 10.13 Pocket and an
extrusion—version 1

Fig. 10.14 Pocket and an
extrusion—version 2

Fig. 10.12 Pocket which is a
facing-off
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If the shape being extruded surrounds the whole pocket disappears. Figure 10.15.

People sometimes do this to eradicate a feature, but the net effect is a conflict of

information between the finished shape and the description.

Figure 10.16 shows a different example of the way in which the feature origin is

ignored. The top of the figure shows the original object, a block with a round,

threaded hole. Underneath the object has been scaled unevenly, an unusual

operation in CAD systems, and the threaded hole is now elliptical, presenting

interesting manufacturing and functional problems. The scaling operation could

Fig. 10.15 Pocket and an
extrusion—version 3

Fig. 10.16 Elliptical hole
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have simply scaled the position of the hole centre line and the depth, not the final

shape.

Finally, a different type of problem not related to erroneous shape. Figure 10.17

shows a slightly more subtle example of a problem hole created using the hole

operation. The hole is countersunk to allow a bolt to be inserted into the object

without protruding above the surface. The conical end option has been used to

allow for tool shape during manufacturing. It is also marked as being threaded to

allow a bolt to be screwed down directly. It might be considered to be a perfectly

reasonable example of the use of the hole making operation, except that there

seems no reason for the hole to be there. If the hole is countersunk then any bolt

screwed into it will not hold anything externally. In this case the bolt would just

disappear into the material with no functional effect, so why should it be there?

This is a more difficult question, and there are many reasons for having holes, but

Fig. 10.17 Pointless hole?

Fig. 10.18 Simple shape
with rounded corners
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many holes are there for connection reasons. It would be useful if such holes could

be made in two objects at the same time, so that the connection would be apparent.

This is supposed to show that, while the use of feature operations can be useful

for building up a part description, it is necessary to perform information mainte-

nance to avoid conflicts. Simply giving operations feature names is not enough to

make a feature-based modeller. For you, it is important to understand the limita-

tions of the techniques used in CAD systems and so make sure that the information

you create as accurate as possible. This is a problem for teaching CAD because

very often the final shape has to be given, so students may take shortcuts to get to

the final result rather than create the shape in stages using design logic. Take for

example, the simple shape shown in Fig. 10.18.

It may be convenient to define a rounded shape, as shown in Fig. 10.19a,

extrude it and then define another rounded shape, Fig. 10.19b, which is extruded

downwards to create the pocket.

However, depending on what the rounded corners are for, it may be more

logical to create a square shape, as shown in Fig. 10.20 and blend the edges. It is

difficult to teach students to use CAD systems logically to provide meaningful

information that is usable later if they are given the final shape to make.

What follows is about what I know of the state of the art of features and their

use. This is intended for you to use to assess how advanced is your CAD system.

Features are important for understanding shape at a high-level, so understanding

what they are is an advantage in communicating between applications.

(a) (b)

Fig. 10.19 Creating a
pocketed shape

Fig. 10.20 Basic pocketed
shape with square corners
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10.1 Overview

The first thing to say is that the subject of features and feature work is enormous and

has been the subject of books just about features [1]. What follows is a brief selection

trying to give an idea of feature work rather than be a comprehensive survey.

The first published work on features in geometric modelling is perhaps that by

Kyprianou [2], which is a classic piece of work on what is called ‘‘feature rec-

ognition’’. However, Kyprianou was not alone in working on features and several

variations appeared. Generally, the work fell into two categories:

1. Feature recognition.

2. Design by features.

Feature recognition assumes that the final shape is the only source of infor-

mation. Another technique, called ‘‘design-by-features’’ assumes that the feature

information is added to the model explicitly by the designer. There was some

disagreement over the use of these. This is summarised in Fig. 10.21. In fact, these

techniques are not mutually exclusive and it is beneficial to use them in

combination.

Feature recognition is an important technique, both for direct recognition and

for verification of feature information acquired elsewhere. Feature recognition is

also important for looking at shapes from the points of view of different appli-

cations. Features created for one reason, say ribs as strengtheners, may need to be

manufactured as pocket sides.

Design by features certainly had, and has, an important role in promoting feature-

based application development. This is a sort-of ‘‘what can I do if I have the feature

information?’’ question. Feature information can be introduced realistically for spe-

cific purposes, especially in finishing operations. Although there are improvements

that it would be desirable to make, the hole-making operation in CATIA is a good

Fig. 10.21 The feature war
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example of this. The operation seems really intended to add holes in a quick and easy

fashion to an almost-finished design. Note, though, that not all features introduced

explicitly are necessarily useful for another application. More will be said later, but

CATIA’s rib-operation is a good example of this. The rib is certainly a valid feature,

but would not necessarily be useful as a rib for manufacturing.

A final general observation before describing these techniques in more detail is

that, whereas most systems can more-or-less handle isolated features, interacting

features cause problems. This is true of both feature recognition as well as design-

by-features. Some methods and research that you see seem to work well but are

based on isolated features.

10.2 Feature Recognition

As stated above, in pure feature recognition the final object is taken as the sole

source of information.

10.2.1 Kyprianou’s Method

The first method published was that by Kyprianou [2], who worked on shape

classification for databases. The aim was to generate a classification code for a

shape so that it could be compared with shapes in a company parts database to

check for similarity. The idea is that if a similar part to that just designed exists

then it may be possible to adapt the existing part instead of generating a new part

and hence reduce the parts needed by a company.

Kyprianou’s method was based on classification of edges as concave or convex,

thence face classification and finally feature recognition of linked facesets using

shape grammars.

Edge classification as concave or convex can be done using a simple technique,

illustrated in Fig. 10.22. Each edge in a boundary representation model is oriented

and has a ‘‘right’’ face, a ‘‘left’’ face and a direction. The face directions are taken

as the normal directions to the faces at the point on the edge being tested. At some

point or points on the edge, the triple product (ldir 9 rdir) � edir is calculated,

where ‘‘ldir’’ is the direction of the left face, ‘‘rdir’’ is the direction of the right

Fig. 10.22 Concave edge
definition
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face and ‘‘edir’’ is the edge direction. This gives you a number which is negative if

the edge is concave or positive if the edge is convex at the point. The value can

also be zero if the left and right face directions are parallel, for example, which

happens with blended edges. Such edges are called ‘‘smooth’’ edges.

Note, though, that edges may not have the same classification along their whole

length, as pointed out by Alan Smith in work on the Cambridge University BUILD

system in which Kyprianou’s work was embedded. For this reason the concavity

test is usually applied at several points along the edge, the start and end as well as

the middle, for example.

After the edges have been classified, all the faces in the object are classified as

either ‘‘primary’’ or ‘‘secondary’’. A primary face is one which has one or more

hole-loops and/or is bounded by a mixture of concave and convex edges. A sec-

ondary face is anything else, i.e. is a face with only one boundary which is made

up only of convex or only of concave edges. The primary faces lie on the boundary

of the feature and the arrangements of these faces give the features.

A simple example is given in Fig. 10.23. The four edges which make up the

base of the boss are all concave. In addition, note that the face marked ‘‘f2’’ has a

double boundary, hence contains a ‘‘hole loop’’.

The analysis for all the faces is given in Table 10.2.

The term ‘‘hl’’ denotes a hole-loop. The term ‘‘cx’’ denotes a convex edge and

‘‘cv’’ denotes a concave edge. Face 2 is classified as a primary face because it has a

hole loop as well as four concave and four convex edges in its boundaries. Faces

f8, f9, f10 and f11 all have a boundary with three convex edges and one concave

edge, hence are all primary faces. All other faces are secondary faces.

Face f2 is considered to be the most important because it has a hole loop and more

concave edges in its boundary. Because of the hole loop it is a separator face,

separating the ‘‘root’’ (faces: f1, f3, f4, f5 and f6) from the ‘‘boss’’ (faces: f7, f8, f9,

f10, f11). From this you might infer a simple definition of a boss might be a secondary

face surrounded by convex edges with all adjacent faces as primary faces.

f1

f2

f3 f4

f5

f6 f7f8f9 f10 f11
Fig. 10.23 Block with boss
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A second example is shown in Fig. 10.24 which shows a block with a closed

pocket.

As with the block with the boss, the object faces can be classified as primary or

secondary. The analysis for all the faces is given in Table 10.3.

Note that there is a strong similarity between these two feature analyses. The

boss is an ‘‘extrusive’’ feature while the pocket is an ‘‘intrusive’’ one. A final

simple definition for the pocket might be a secondary face surrounded by concave

edges and all adjacent faces being primary faces.

10.2.2 Surface-Based Features

Although Kyprianou’s work was ground-breaking, it had several limitations.

Features do not always stem from convenient hole-loops and sometimes faces are

Table 10.2 Figure 10.23
face classification

Face Primary or secondary Holes/edges

f1 Secondary 4cx

f2 Primary 1hl, 4cx, 4cv

f3 Secondary 4cx

f4 Secondary 4cx

f5 Secondary 4cx

f6 Secondary 4cx

f7 Secondary 4cx

f8 Primary 3cx, 1cv

f9 Primary 3cx, 1cv

f10 Primary 3cx, 1cv

f11 Primary 3cx, 1cv

f1

f2

f3 f4

f5

f6 f7f8f9 f10 f11
Fig. 10.24 Block with
pocket
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shared between elements. Many improvements were made by after Kyprianou by

Jared and his team, Smith, Anderson and Parkinson. Their interest was initially in

producing manufacturing information automatically based on manufacturing fea-

tures. This is a complex topic, though, and more will be said on this later.

In later work, with Tate and Swift [3], work was done on establishing methods

to determine whether or not an object was symmetric. This is important for

manufacturing, say, but it is not necessarily obvious from the construction method.

It is not always natural for a designer to design half- or quarter of a part and then

use a symmetry operation. The designer may prefer to design the complete part or

may modify a design to create a symmetric part to make it easier to assemble.

Symmetry is a special type of ‘‘Geometric Reasoning’’ and is an important con-

sideration in assembly, for example.

A, somewhat, classic survey was done by Shah et al. [1]. There is a later survey

by Parry-Barwick and Bowyer [4]. A lot of feature work exists and will not be

mentioned here. The general notion of surface-based features is that the boundary

representation of an object models its skin and this skin can be subdivided into

regions, called features. What Kyprianou’s method illustrates is a kind of short-

hand notion, that the concave edges mark a limit for intrusion or the root of an

extrusion. The next subsections are intended to give an idea of some of the other

ways of looking at features and disentangling them from objects.

10.2.3 Feature Recognition in Dual Mode

An interesting alternative to Kyprianou’s method was worked out by Falcidieno

et al. In their method, the dual of the object was used as the basis for feature

recognition. An example of an object and its dual is shown in Fig. 10.25.

The larger node at the centre of the dual corresponds to the face with a hole

loop, and is, in fact, a multiple edge-set vertex. The dual figure is drawn as two

octahedra, one on top of the other, but this is for convenience, the geometry is not

Table 10.3 Figure 10.24
face classification

Face Primary or secondary Holes/edges

f1 Secondary 4cx

f2 Primary 1hl, 8cx

f3 Secondary 4cx

f4 Secondary 4cx

f5 Secondary 4cx

f6 Secondary 4cx

f7 Secondary 4cv

f8 Primary 3cv, 1cx

f9 Primary 3cv, 1cx

f10 Primary 3cv, 1cx

f11 Primary 3cv, 1cx
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defined. In the feature representation method of Falcidieno et al. the dual parts are

kept separate.

There is a complication when the features collide. In the object shown on the

left of Fig. 10.26, one face is common to the base and to the boss. The dual of the

object is shown on the right and it is clear that there is no clean separation point as

with the object shown in Fig. 10.25.

Fig. 10.25 Block with pocket and dual

Fig. 10.26 Block with shared-face boss and dual
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Collisions between features, or collisions between features and the base have

been a continual source of problems for feature recognition and representation.

There are no easy answers to this problem.

10.2.4 Volumetric Feature Decomposition

A feature recognition variant, involving volumetric decomposition, was proposed

by Waco and Kim. The idea of combining volumes to describe a shape is what lies

behind CSG, or Constructive Solid Geometry, mentioned in Sect. 2.6. Some

people found CSG representations a convenient support for feature recognition

because they felt that the primitive objects in CSG corresponded to features. This

is, of course, an over-simplification and recognising features from CSG also has its

problems.

The alternating sums approach developed by Kim et al. is illustrated, for a

simple two-dimensional case, in Fig. 10.27.

The original object is shown in Fig. 10.27a. The convex hull of this object is

shown in Fig. 10.27b, c. The set difference between the convex hull and the

original object is shown in Fig. 10.27d. This, if you like, is the amount by which

the convex hull is too big. Taking the convex hull of this object, shown in

Fig. 10.27e, f, this is then subtracted from the first convex hull. This creates an

object which is slightly too small, by the two convex parts shown in Fig. 10.27g.

The object would then be represented as Fig. 10.27c minus Fig. 10.27f plus

Fig. 10.27g. The objects can be redescribed in terms of the primitive objects to

give a CSG tree.

Fig. 10.27 Alternating volumes approach [5]
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This is a very simplified illustration of the method to give an idea of the use of

volumetric decomposition as a feature recognition method.

10.2.5 Features from the Medial Axis Transform

Yet another volumetric approach, from the medial axis transform, or MAT, was

suggested by Renner and Stroud. The medial axis is a kind of skeleton of an object.

It can be used to subdivide an object into convex pieces. The method, though, is a

little weird because it works in so-called‘‘dual space’’ like Falcidieno et al.’s work.

Figure 10.28 shows a simple object, shown in Fig. 10.28a, its medial axis, see

Fig. 10.28b, the dual space nodes corresponding to the medial axis, shown in

Fig. 10.28c and the grouping according to the convex element decomposition

(Fig. 10.28d). This is a ‘‘positive’’ decomposition of the object itself, giving

extrusive features. It is also possible to perform the same method on the negative

object, giving, in effect, the medial axis of the space around the object. Decom-

position of this would find the central hole.

One problem with the medial axis method is that it is complicated to calculate.

The decomposition method developed by Renner and Stroud is interesting but

needs more effort to make it stable. It has been demonstrated on simple examples,

but complex objects cause problems, especially with negative objects. The medial

axis provides information lacking in Boundary Representation, that is, the notion

of spatial occupancy. For this reason it has a large potential in various applications.

However, it is not yet a common feature of CAD systems.

10.2.6 Advantages, Disadvantages and Problems

A few of the advantages of feature recognition are:

1. Independent of object creation method.

2. Tailorable—recognition methods can be changed to get application-specific

information.

3. Provides valid feature information when applied.

A few disadvantages are:

1. Difficult to do properly.

2. Interacting features.

3. Volumetric features such as thin walls are not detectable in a surface-based

approach.

Although there have been several more-or-less successful pieces of software for

recognising isolated features in objects, the problem of overlapping features rests

as a stumbling block.

440 10 Features



Fig. 10.28 Object, medial axis and nodes (from Stroud et al. [6])
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There are some features which are not surface features, which can only be

found from the volumetric notion of a part. Thin walls are an example of this.

10.3 Design by Features

‘‘Design by features’’ means building in feature information directly into a model

rather than having to rediscover it. There are twoways that I knowabout for doing this:

1. Feature operations—operations which insert shape elements into a model.

2. Editing in features—adding partial feature shapes into a model directly.

10.3.1 Feature Operations

Using feature operations means that the feature description of an object is contained

in the ‘‘history tree’’. The history tree is a record of the operations performed to

create a part, a recipe for making that object. This is useful as supplementary

information but it is not usually the same as a feature description, unless you are

very lucky, which is unlikely. See Chap. 12 for more details on history trees.

A feature operation should check how it is applied, add feature information to

the model and maintain this information during modelling. It should also be

capable of verifying that the shape produced is as described. To the best of my

knowledge there are few, if any, implementations that do this. It is not easy to do

this consistently because modelling code deals with geometric shape information,

not symbolic information, so symbolic information tends to get left behind.

In order to demonstrate what could happen, consider the following example:

1. The user defines a basic shape, a rectangular block (Fig. 10.29a).

2. The user defines a pocket, Fig. 10.29b by defining a contour and extruding it

downwards. The system controls that the defining contour lies entirely within

the face. The result should be checked to see that the contour does not break

through the bottom of the object. In this case, though, the bottom is well-

defined. The bottom and sides are labelled as belonging to a closed pocket. The

top face of the object is labelled as a ‘‘parent’’ to the pocket.

3. The user adds an open pocket, Fig. 10.29c. This is done by creating a contour

which touches or crosses one of the edges of the top face and then extruding

this downwards. The top face is labelled as the parent face, the base and the

three side faces are labelled as before. The edge where the pocket opens out to

the second face is labelled as an open boundary. I have not said that the second

face is also a parent. This is an option but here I am using the logic that the face

on which the contour was sketched is the parent face.

4. The user adds a boss, Fig. 10.29d. The boss contour is checked to see that

it does not touch or overlap the boundaries of the top face, which it does not.
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The top and sides of the boss are labelled as belonging to a boss and the top

face is labelled as the parent of the boss.

5. The user modifies the original pocket by creating an overlapping, rectangular

shape and extruding this downwards. The system notes that faces labelled as

being pocket sides have been modified. It might note that the new intersection

edge is concave, which indicates that the pocket size has been reduced.

Fig. 10.29 Feature operations with pockets and bosses. a Original object. b Object with closed
pocket. c Open pocket added. d Boss added. e Closed pocket modified
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There are a number of problems with trying to implement this in practice.

Remember that CAD system developers cannot release experimental code, a

system has to be reasonably stable in order to get it to users. The example

above would need modifications of the basic code right across the system in

order to be able to work with labelled shape entities. The modelling kernel

ACIS has gone a little way towards this with their attribute handling mecha-

nism, but this is not a complete solution in itself. As described in Chap. 4,

many operations create an extra solid model as a partial result and then use

Boolean operations to add this to or subtract it from the base model. It is to be

expected that all the operations above would be done in this way. This gets

round many problems and awkward cases, such as when a pocket is extruded

through an object, or when the boss interferes with another part of the object.

However, Boolean operations are general operations with no implicit knowl-

edge of the shape they are producing. Specialised operations could be used,

with a kind of special Boolean check to handle interactions. Using specialised

operations would mean that you have information about what is expected in

order to handle special cases. On the other hand, though, you would need to do

a lot more implementation work in order to create them as they would be there

only to create a particular shape. This is obviously less attractive to commercial

system developers.

An alternative to having specialised operations is to have feature ‘‘verifica-

tion’’ (see Sect. 10.4) to check the result. This is a sort of localised feature

recognition task and would require having feature descriptions of the various

feature and checking the description if any of the elements involved are modi-

fied. I don’t know of any system that does this, though, it remains a technical

possibility.

Note also that it is necessary to establish the rules for when a pocket becomes

an open pocket. If there are at least three adjacent side faces then the pocket may

be still an open pocket, but there are fewer then maybe the feature is a slot or step.

However, if there are only two side walls, as for a slot, the feature may still be

considered as a doubly open pocket if its size is too large to make by moving a tool

through in one or two passes. It is a complex task to establish these rules, but this is

necessary in order to be able to check the feature produced, or when modified, to

maintain a relevant feature description.

Another type of problem comes when there is no convenient operation for

producing a shape element. In this case general operations like extrusion or

Boolean operations may be applied. The elements involved could be labelled as

‘‘To be recognised’’ and local recognition methods applied to just these.

A further type of problem is when ‘‘inadvertent’’ features are created, that is,

features which appear as a bi-product of the operation applied. Consider

Fig. 10.30. The original shape is shown in Fig. 10.30a. A boss is added in

Fig. 10.30b, but since this touches three side faces a step has been created. Sim-

ilarly, in Fig. 10.30c another boss has been added but, for manufacturing, a slot

has been created.
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10.3.2 Editing in Features

An elegant alternative to feature operations, proposed by Ranta et al. [7], is to have

a library of parametrised shape elements, features, which can be edited into a

model to produce features. An example of an object, a partial slot feature and an

edited object is shown in Fig. 10.31.

The original object is shown at the bottom left. The feature, a slot, as a partial

object at the top, and the final object on the bottom right. One way that this can be

done is to stretch the geometry of the partial slot object so that it is as large or

larger than the object being altered, and then to perform a Boolean operation to

add it in, as illustrated in Fig. 10.32.

Having a library of features makes it easy for the user to have an overview of

the shapes that can be pasted into a model. Editing features into an object requires

Boolean operation techniques, suitably adapted. It is possible to avoid the need for

special operations because the feature identity is present in the library. This helps

the developer by having more information for resolving special cases.

Technically, the Boolean operation for partial objects is not very different from

the standard Boolean operation. A necessary condition for the application is that

the Boolean interaction boundary does not cut the boundary of the partial feature.

(a)

(b) (c)

Fig. 10.30 Inadvertent feature creation. a Original object. b Boss added, step made. c Boss
added, slot made
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The object and partial feature are separated along the Boolean interaction

boundary, as in Fig. 4.3 and then the portion of the base object ‘‘outside’’ the

interaction boundary is combined with the portion of the partial feature ‘‘inside’’

the interaction boundary (Fig. 10.32).

Fig. 10.31 Feature as partial model

Fig. 10.32 Boolean boundaries between partial object and object
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10.3.3 Feature Transitions

One early criticism of the design-by-features approach was that the feature

description produced was static and not necessarily what was needed for an

application. The notion of feature transitions came about to get round this.

Take, for example, a block with a boss on top, as shown in Fig. 10.33a. For the

designer it is quite natural to create this as a block and then to extrude the boss on

the upper face (Fig. 10.33b). However, if a manufacturing engineer wants to make

this then she or he might ‘‘see’’ the object as a larger block from which material is

to be removed, Fig. 10.33c.

The idea of feature transition is to reconfigure the boss feature information into

the complex slot information set for manufacturing. Manufacturing is (usually)

concerned with material removal, not with material addition. Normally you would

not expect to make the object by creating a base block and then gluing or welding

a smaller block on top, which is what is implied by the block plus boss variant.

(a)

(b) (c)

Fig. 10.33 Cube with boss. a Block with boss. b Block plus boss. c Block minus complex step
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Feature transitions for manufacturing, assuming metal removal processes,

would take an extrusive feature and turn it into an intrusive one. Extrusive and

intrusive features were described in Table 10.1.

10.3.4 Advantages, Disadvantages and Problems

A few of the advantages of design by features are:

1. Explicit feature information

A few disadvantages are:

1. Interacting features.

2. Inadvertent features are not recorded.

One researcher, François Sprumont, then of EPFL, suggested using only feature

operations corresponding to manufacturing operations in order to build up a

manufacturing related feature description. This is one approach to creating features

in design for use downstream in manufacturing. However, the disadvantage is that

the designer is forced to think in manufacturing terms, which may be a limitation

on the fluidity of the design process. The idea remains interesting, though, because

it is a way of forcing designers to think about a different application area. It would

be interesting to see such an idea implemented and used in order to evaluate it.

10.4 Feature Verification

Feature verification involves checking a feature description introduced into an

object to check whether it is still valid. This can be thought of as a localised feature

recognition method where the feature elements are present but need to be checked

to see if they still have the created properties.

In order to do this it is necessary to retain the feature information in terms of

data structures recording the roles of parts of the feature and having a verification

algorithm. For example, take the object with the pocket in Fig. 10.34a.

In the original object, the pocket base face, face A, is connected via

concave edges to faces B, C, D and E. If the pocket is split, as in Fig. 10.34c,

then base face A becomes two faces, A1 and A2, say. Face C is split into C1

an C2, say, and face E is split into face E1 and E2. Face A1 is then connected

via concave edges to faces E1, B, C1 and a new face, F, say (not marked in

the figure). Similarly, face A2 is connected via concave edges to faces C2, D,

E2 and a new face G (also not labelled in the figure). So, the system should

note that the original pocket cannot be considered as an entity in the changed

figure and should be re-recognised as two new pockets. If the pocket had been
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split by cutting out a slot, say, then the pocket might still be considered to be

a pocket.

For the other shape, in Fig. 10.34b, the slot base face, face A, is connected to

two side faces, B and C, via concave edges. If the geometry of the object is

changed, as in Fig. 10.34d, then the original base face, A, is now connected via

convex edges to faces B and C. The slot has been eradicated and the object needs

to be re-recognised to find out what the result is.

Feature verification is related to feature transitions in that local re-recognition can

be used both to check the features as well as to determine what features are there.

10.5 Feature Summary

Features are an important element of shape research because they transcend the

level of the representation method and make shape elements directly referrable.

However, feature research is difficult.

Many techniques have been developed and tried, but no simple solutions have

yet been found. Basically, the two areas of research are: ‘‘feature recognition’’,

(a)

E B A C D

(b)

B A C

(c) (d)

Fig. 10.34 Features and modifications. a Object with pocket. b Object with slot. c Object with
modified pocket. d Object with modified slot
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in which the final shape is traversed to discover feature information; and ‘‘design-

by-features’’, in which the feature information is introduced explicitly. Neither of

these is perfect on its own and probably the best solution would be provided by a

mixture of the methods.

Feature recognition is good in the sense that the final shape is taken without

knowledge of how it was created. The feature information extracted can be tailored to

different application areas, in a similar way to that used by domain experts to view the

same shape from different points of view. However, feature recognition is difficult.

Design-by-features is good in the sense that some, to what degree depends on

different factors, feature information can be introduced explicitly. However, not all

that feature information may be relevant to an application and there is a risk that

the feature information is corrupted during object creation. The history tree of a

CAD system is not the same as a design-by-features feature description. The

history tree is simply a record of the operations used to create the shape, not all of

which may correspond to features.

Feature transition and verification techniques can be a useful support tool to

design-by-features, but these techniques do not seem to be in common use.

10.6 Using Features

This section describes briefly two aspects of feature use.

10.6.1 Design Features

Design features can be thought of as the principle shape elements which govern the

design solution. For design there are requirements and often some known elements

which need to be taken into account.

10.6.1.1 Structuring Features

It is not really reflected in current practice that there is a hierarchy of features in a

model, Fig. 10.35. It is arguable about how many levels there are and what they

are, this is a personal view.

There are elements of the design which are there for the fundamental

requirements of the design. In addition, there are elements which are present for

functional reasons, such as to fix one piece relative to another, with or without

degrees of freedom. Then, on the third level in the figure, there are practical

elements to guarantee physical properties such as rigidity, for example, or cuts to

reduce weight. Finally, there are the elements which are introduced as compro-

mises for manufacturing or assembly, for example.
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It may not be evident simply from the shape of a design which elements are

there for what reason. Ideally the design ‘‘intent’’ would be recorded explicitly so

that anyone in the production chain would have access to the knowledge. The

purpose of thinking about feature structures is to improve the level of communi-

cation of the design.

10.6.1.2 Features as Independent Elements in Design

I once asked a student about the elements which he thought were important for a

design to which he replied that a particular hole and the size of a supporting plate

were important. He added that you couldn’t have a hole, though, without an object.

Actually, apart from current practice, there is no reason why a hole cannot exist

without material around it. From a modelling point of view a hole could be

represented as an open cylinder, such as those shown in Fig. 10.36.

Fig. 10.36 Design features
as partial objects

Principle elements level 1

Functional elements level 2

Practical elements level 3

Compromise elements level 4

Fig. 10.35 Feature hierarchy
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Pulling geometry off existing parts to share them with matching elements in

assembly design was proposed by Kjellberg et al. in Sweden at the end of the

1970s and the beginning of the 1980s, so it is not a new topic. However, while this

is an interesting subject, and technically feasible, it is not easy to create the closing

elements of a model, so the tendency has been to remain with design an object first

and adding matching feature elements later. This has weaknesses, though, because

there is no link between the objects to help maintain consistency.

The way of doing this is to use non-manifold models to build up the object face-

by-face, or with open facesets. CAD tools to do this can usually be found in

connection with surface modelling, where individual surface elements are treated

like faces, or rather pairs of back-to-back faces. When an object is complete there

are two matching closed facesets, one on the exterior and one on the interior, so to

create a solid the interior can simply be removed. See Sect. 4.12.

What is lacking, though, are tools to create the surface elements easily. Surface

elements can be created, trimmed and joined, but the mechanics of doing this

detract from the fluidity of design that is, or should be, the goal of a CAD system.

Until the subject is investigated and new tools developed it is unlikely that this will

be a convenient user method.

In the meantime, it is important to be clear about the key elements of the design,

what are the design elements that influence the shape creation process. If these are,

at least, documented as notes, or, better still, the information is recorded as

informative notes attached to the design, then the design process becomes more

logical. This is part of the process of structuring the feature information for other

people in the production chain. If the key design elements match other elements in

an assembly then obviously this will help generate tolerance information for use

and assembly, and hence the manufacturing tolerances for design. Functional

descriptions for communicating functionality and creation and annotation of

design information in the model are the subject of research. One idea is to attach

voice recordings to the model. This is also technically feasible, but would increase

the storage requirements dramatically.

10.6.2 Manufacturing Features

A common misconception is that you can recognise features in a design auto-

matically and then issue commands to mill these as a manufacturing plan.

Although Jared and his team, in a project from 1982 to 1985, realised that this is

not enough, people still propose this for automatic manufacturing. Jared and his

team determined that, for manufacturing, it is necessary to make many process-

planning decision which affect the manufacturing features. This affects the nature

of the raw part, or stock, from which the part is to be made. If a part is to be made

from a casting then some elements may not need to be machined, other elements,

such as flat matching faces, may need to be finished, even though they might have

no distinguishing shape elements in the original CAD model.
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Most recognise-and-make proponents assume implicitly that the part is to be

manufactured from a rectangular block and that any concave element is to be

machined in some way. Even with this approach, concave elements such as those

shown at the top of Fig. 10.37, are ambiguous. The shapes at the bottom, where the

solids show the material to be removed, illustrate two different decompositions. On

the left the decomposition implies that the large region would be milled as a pocket

and then a slot milled out from this. The decomposition on the right indicates the

elements are to be milled as two pockets, one above the other. The decision about

which to choose depends on many factors, such as the shape and size of the

elements and the material, not just on the topological arrangement of the elements.

For example, if the slot is wider than the widest milling tool then it would have to

be milled as a pocket, even though the parallel slides seem to indicate that it is a

slot. If the material is hard then it may be unwise or impossible to mill the whole

pocket depth in one step. If the size of the elements is reasonably small, though,

the most natural machining option might be to mill the pocket and then the slot. If

you allow for milling from castings, then the possibilities increase again. It may

be, say, that the pocket is simply for clearance while the tolerances on the slot are

high. This would imply that the pocket does not need to be milled at all while the

slot should be at least finished. Feature finding is an important aid, but automatic

generation of machining instructions is still a long way off because human skills

and decisions are needed, too.

Another counter example is shown in Fig. 10.38, from János Nyitrai’s collec-

tion of mechanical engineering objects (Nyitrai, J.: Collected mechanical objects.

Private communication, Nyitrai János, Budapest MúEgyetem, BME (1993)). The

classical feature recognition methods would miss that this is a bent object, because

this not what is usually checked for. It is clear that, even if there is no feature

recognition system to recognise this as a bent object now, then there are suffi-

ciently talented researchers in features to produce one. This is not the point. If you

recognise this as an object made by bending then you assume that the material is

flexible. If the material is brittle then it might be made by milling. You have to

have extra information above and beyond the shape in order to plan the

manufacturing.

Fig. 10.37 Pocket and slot
or two pockets?
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Another kind of problem comes with the object shown in Fig. 10.39. Here the

object is to be milled, from aluminium say. A classic feature recogniser should

have no difficulty in finding the pocket and the step as manufacturing features.

However, the pocket is not totally isolated from a functional point of view. It has

thin walls, which require special treatment. This has practical effects on the order

for machining and the cutting strategies and parameters. Thin walls, though, are

volumetric features which are not normally found during feature recognition.

The idea of these small examples is not to try and convince you that feature

recognition is impossible in connection with manufacturing, simply to point out

that you cannot apply simplistic solutions and assume that the results will always

be good. As Jared has pointed out, it is necessary to take several decisions during

process planning which affect the manufacturing features needed and are certainly

not trivial. This means that the geometric shape of a part is not the sole source of

information for manufacturing planning.

A variant on the classic ‘‘recognise and mill’’ methodology was proposed by

Malcolm Sabin in a keynote presentation at a CAM-I seminar in Cambridge in

1983. He proposed taking a final design and then building it back to the stock part.

The list of features ‘‘undone’’ during the process of building back then becomes a

Fig. 10.38 Object to be
manufactured
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simple process plan, to be ordered and optimised. This is an automated process

rather than an automatic one and so the feature recognition process becomes a

decision support tool for a human user rather than a replacement for a human

planner.

Consider the object shown in Fig. 10.40. The original object is shown at the

top. In the middle the drillable holes have been identified. These are round

holes with a maximum limit set, hence the counter sink is not recognised

because it would be milled rather than drilled. The holes are grouped according

to axis direction and accessibility, hence on the left are the holes accessible

from the Z-direction, while on the right there is a single hole for which the part

would have to be re-oriented. Now here there would need to be a decision by

the human. If the part is going to be made on a three-axis machine-tool, then it

would be necessary to develop a new fixturing method. However, if the part is

to be made on a five-axis machine then the two groups of holes could be

merged. Finally, at the bottom is the part that is left after removing the

drillable holes.

Another example is shown in Fig. 10.41. In this case the method indicates that

the object should be machined from two directions. Even though the axis direc-

tions are parallel there are counterbores on one side and blind holes on the other

side which mean that two directions should be considered.

Round holes are relatively easy to find and so these simple examples are

intended to illustrate how this information can guide a user to a full process plan.

The hole directions can be considered as indications of machining set-ups. The

next step in this simple method is to look at each set-up, take the direction and look

for profiles. The profiles indicate inside or outside profiles, pockets and even faces

which might need to be faced off.

Fig. 10.39 Another object to
be manufactured
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A set of features derived from the new numerical control standard, STEP-NC or

ISO 14649, are given in Appendix C as an illustration of an application feature set.

10.7 Chapter Summary

This chapter deals with the difficult and confusing subject of features. Features

have been regarded as an important topic since early on in modelling development.

Many methods have been developed and tried without any single solution

becoming predominant. Unfortunately, there is also a tendency to misuse features

or to present simplistic solutions which are not robust. There is some feature

recognition in CAD systems, but this does not seem to be well developed. Features

are sometimes confused with modelling operations in CAD systems, especially if

the operations have feature names, but generally the feature information seems to

Fig. 10.40 Removing holes and orienting the ANC 101 object for manufacturing
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be neither preserved nor verified. This is a complex topic and probably needs much

more time to become effectively integrated in CAD systems. However, features in

manufacturing have already arrived at the controller level with the new standard

ISO 14649. This, in turn, requires better feature development in both the design

and planning stages to support it.

10.8 Exercises

10.8.1 Identifying Concave Edges

Identify the concave edges in the objects in Fig. 10.42.

10.8.2 Identify Primary and Secondary Faces

Classify each of the faces of the object in Fig. 10.43 with the slot as ‘‘primary’’ or

‘‘secondary’’.

Fig. 10.41 Removing holes from the WZL STEP-NC test object
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Face Primary or secondary Holes/edges

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f1

f2

f3 f4

f5
f6 f7

f8

f9

f10

Fig. 10.43 Slot with
numbered faces

Fig. 10.42 Boss sharing common face and slot
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10.8.3 Face Adjacency Hypergraph

Draw the dual of the object with the slot and mark the edges corresponding to the

concave edges of the original object. As a hint for drawing the dual, ignore the

geometry and note that the front and back faces both have eight edges. In the dual,

these will correspond to vertices with eight edges.

10.8.4 Design Feature Exercise

The aim of this exercise is to create a small assembly and to identifier the features

in it. The assembly is shown in Fig. 10.44.

The axle has the shape shown in Fig. 10.45.

The basic shape shown on the right of the figure has roundings with radius 5,

although you may decide for yourself their size.

The box is a rectangular block, 200 9 200 9 300, with wall thickness 5, and

open at the back and front, as shown in Fig. 10.46. There are blends, radius 5, on

the edges of the block and some holes, two for the axle and two to fix the plate,

shown on the right of Fig. 10.47.

Fig. 10.44 Design
features—final assembly

Fig. 10.45 Design
features—axle
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The ‘‘pistons’’ are in two parts, one being the piston head (Fig. 10.47—middle)

and one which attaches the piston head to the axle (Fig. 10.47—left). Finally, there

is the back wall, which is a rectangular block with two holes in the side for fixing it

to the casing, and two guide holes for the pistons, shown on the right of Fig. 10.47.

For each element, identify the features and whether these are design features,

manufacturing features or assembly features—each may be in more than one

category. You may have noticed that it is impossible to assemble this product.

What changes would you make to allow the product to be realisable, and which

new features result?

Fig. 10.47 Design features—piston elements and back wall

Fig. 10.46 Design
features—product casing
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10.8.5 Feature Identification Exercise

Identify the feature is the object shown in Fig. 10.48 and say whether they are

design, manufacturing, assembly or multiple-role features. Also, consider which of

the features are compound features (features which depend on each other) and

which are simple features.
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Chapter 11

Early-Phase Design

Design is a complex process about which much has been written and which covers

a range of activities. It is not intended here to explain design as such, merely to

explain how some of the information aspects should be transferred into CAD. This

is not the same as having a PLM (Product Lifecycle Management) system, which

is a different way of trying to coordinate product information. Product information

integration means having different forms of computer support and making the

information from these and from outside available within the CAD system. This

chapter concerns what is termed here ‘‘early phase design’’, the initial steps to

design a part.

Before describing the early phase of design it is, perhaps, useful to give a brief

overview of the product lifecycle, as illustrated in Fig. 11.1, based on a classic

reference for the design process by Pahl and Beitz. It is impossible to be definitive of

all the elements in the lifecycle because of the huge diversity of products, hence only

generalisations are discussed here. However, some common elements are shown.

In this simplified scenario, the product lifecycle starts with a market survey to

establish that a product is needed. The product requirements phase sets out the role

and expectations of the product based on where the product is seen to fit. This

leads to a more formal definition of the requirements in terms of a product

specification, which is taken as the start of the formal design phase here. The

product specification leads to conceptual design, where a product solution is found

and given initial geometric form in the embodiment phase. After the embodiment

stage comes the detailed design stage, which is where traditional CAD is strong.

The computer models from the detailed design stage may be analysed in various

ways to check for strength. Once the models have been finalised the product enters

the production stage and then the assembly of the components before being

delivered to the user who uses it until it breaks, wears out or is no longer required,

when it is disposed of.

Note that nowadays there is a tendency to at the whole cycle of a product, in

that information and even physical parts come from the use and end-of-life phases

back to the initial phases. However, the quantity and type of information is still

being defined, hence the question marks. This will be dealt with later, in Chap. 14.

I. Stroud and H. Nagy, Solid Modelling and CAD Systems,
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That is the main flow in the product lifecycle. However, in reality, there are back

flows, indicating that redesign is necessary. Each feedback costs time and money.

The amount of money varies depending on where the problem is noted and how far

back the change has to be made. For example, if a manufacturing problem is noted

which can be fixed in the detailed design stage, for example adding edge roundings,

then the cost may be small. However, if a problem is noted at the assembly stage

which requires a change at the conceptual design stage, then the whole chain of

embodiment, detailed design, analysis and manufacture has to be redone, maybe

factory planning has to be redone, existing parts may need to be scrapped.

The general intention of early phase design research is to make design easier

and hence help the designer to get the product right first time, so avoiding the

feedbacks. Traditional design aids, like analysis, are classified as ‘‘reactive’’

because they take an existing shape and test it. In contrast, early phase tools need

to be ‘‘proactive’’, helping the designer to find a solution. CAD systems currently

tend towards the reactive methodology and deal with the detailed design phase and

analysis, while many important decisions are taken prior to this in the early phase

of design.

As stated above, traditional CAD concerns only the last part of the design

process. Recently some tools have been added, in the form of PDM (Product Data

Management) or PLM (Product Lifecycle Management) systems. While these may

be useful for keeping track of and managing design documents, more advanced

tools seem to exist only in research departments. Ideally, there should be design

tools for creating, maintaining and integrating the early phase with the CAD

system. This would mean that early phase decisions would be accessible by the

Fig. 11.1 Elements in the product lifecycle
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designer in the detailed design phase. Such integration can really only be done by

the commercial software developers, since it is necessary to modify the CAD

system code. If there were to be development of an open-source CAD system to

allow researchers to create their own CAD systems then this would set new goals

for commercial systems. Until then, though, radical innovations seem likely to

remain in the hands of the commercial developers. One suggestion, towards the

end of this chapter, is the halfway step of creating design environments. Such

environments could be imported manually or automatically into CAD systems to

create information and geometry frameworks for detailed design.

The description here is not intended to be a survey of all methods, but rather

illustrative of trends.

11.1 Tools and Techniques

The following are some of the tools and techniques used for design.

11.1.1 Expert Systems

Expert systems are a product of artificial intelligence research. The idea, put

simply, is to recreate the workings of an expert by representing the expert’s

knowledge as a set of ‘‘if–then’’ rules in a database. The technique had some

notable successes, the diagnosis of diseases in peanuts, for example, and diagnosis

of human illnesses. An important rule-of-thumb for successful application is that

the knowledge domain must be limited and reasonably small.

Expert systems can be applied in many domains in production, not only for

design. This means that it may be possible to provide artificial experts as supports

for the designer. For example, a manufacturing planning expert system may well

be useful for a designer to check the ‘‘cost’’ of a design. The cost of a design may

be measured in several ways, from simple manufacturing time to a complex

environmental costing, such as done by Avram et al. [1], it depends on the

complexity of the artificial assistant. This will be discussed further in Sect. 14.2.

An example of a manufacturing rule of the type in Jared’s object oriented expert

system is shown below:

if (hole.radius B 10 mm) then drill

else if (hole.radius B 20 mm) then { predrill; drill; }

else mill;

What this means is that if a hole radius is less than or equal to 10 mm then the hole

can be drilled in one operation, if it is between 10 and 20 mm then it can be drilled

with a smaller drill and then finished with a drill of the right size, otherwise it has to

be milled.

11 Early-Phase Design 465

http://dx.doi.org/10.1007/978-0-85729-259-9_14


The part is described for the expert system in terms of a set of manufacturing

features, such as those described in Chap. 10, which were treated as ‘‘objects’’ in

Jared’s system. The features have a set of attributes, such as the radius (or

diameter) of a hole, its depth, whether it is threaded or not, etc. Other features have

other attributes.

11.1.2 Genetic Algorithms

A genetic algorithm is another problem solving technique that has been widely

applied. The idea comes from biology, as the name suggests and, put very simply,

the idea is that the solution evolves from an initial population. The technique has

been used in many applications, not all of which are appropriate.

There is an initial population of possible solutions each of which is coded in

such a way that the elements can be recombined or mutated to produce new

solutions. There also needs to be some kind of evaluation function to allow new

members of the population to be evaluated to see if they are better than their

parents or fit to survive. In addition there has to be a culling strategy to weed out

dead ends or less fit members of the population. The process stops after a certain

number of generations have been generated.

Suppose that a preliminary solution to a problem is coded up as a set of strings,

as on the top line of Fig. 11.2. For the next generation there is a set of transitions,

such as ‘‘crossovers’’ or ‘‘mutations’’. Crossovers, as with people, is analogous to

children inheriting properties from both their parents. Mutations can be thought of

as random changes to strings to produce new elements. As the process proceeds

some good solutions appear, which are kept, and bad solutions are removed

(‘‘die’’). The process proceeds for a preset number of generations and the solutions

Fig. 11.2 Simple Genetic
Algorithm (GA) illustration
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remaining at the end evaluated to find the best one. Obviously this is a very

simplified account of genetic algorithms, but this is not intended as a thorough

treatment, only a brief overview.

So, then, what is the nature of the genetic algorithm method and when should it

be used?

In my opinion, genetic algorithms are performing a sort-of ‘‘hill-climbing’’

procedure. The crossover technique aims to find solutions on a local hill, while the

mutation technique looks to jump between hills to try to find a global optimum.

The evaluation function is necessary to determine whether or not a solution is good

or promising. This is also used to weed out solutions that are worse.

There is a large question about when to use a genetic algorithm, to which

problems it can be applied. This is difficult to specify exactly. The technique is an

interesting programming technique, but if a solution algorithm exists, or can be

found, then it seems preferable to use the direct algorithm. Genetic algorithms were,

at one time, fashionable. Fashion makes a graveyard of techniques, they become

loosely applied and people are disappointed if they don’t perform well. If the

techniques don’t perform well then it is the technique that is blamed, not its erro-

neous application. It is a pity if this happens because techniques can be better or

worse for different problem areas. Genetic algorithms are interesting and can be

applied profitably for certain problems. In the CAD domain they have been used for

curve fitting, by Renner andMarkus, for example. Curve fitting is a difficult problem

with no good algorithmic solution, because the order of the curve is not defined, nor

is the number of segments, positioning of knots or control points, etc. The validity of

application in any particular domain has to be judged on a case by case basis.

11.1.3 Fuzziness

One aspect of early phase design is that there is uncertainty about a number of

factors. This uncertainty is changed through decision making in different phases of

the design process. In fuzzy mathematics, variables have a range rather than a

single, or ‘‘crisp’’ value. This range also has distribution characteristics, as shown

in Fig. 11.3. On the left (Fig. 11.3a) there is an even distribution, the fuzzy

Fig. 11.3 Fuzzy
distributions
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variable could have any value between 2.0 and 6.0, with the value 4.0 as preferred,

or most likely. The distribution need not be uniform, as shown on the right

(Fig. 11.3b) where the preferred value is 5.0.

Mathematics with fuzzy numbers is, of course, more complicated than with

crisp values. If you add the two variables in Fig. 11.3, what would the distribution

of the result be? Don’t worry about the question, a lot has been written on fuzzy

techniques and fuzzy mathematics and this has been solved. The important point is

to present the idea that values need not necessarily be certain.

For design, it is also important to be able to define approximate values, like

‘‘large’’, ‘‘medium’’ or ‘‘small’’ instead of numerical values, while software for

model creation and visualisation needs numerical values. Fuzzy values define a

sort of envelope for the geometry. This is difficult to arrange for traditional CAD

systems with detailed geometry, but would be possible for the sort of layout

system with simple geometry as described in Sect. 11.2.4.

11.1.4 Multi-Criteria Decision Making

In many applications there are many different, often competing, factors that have

to be balanced. A simple example might be the weight of a part compared with its

strength. If weight is not a factor then it is possible to ‘‘over-engineer’’ a part so

that it is larger and thicker. However, this increases the weight, so when weight is

also a factor there is a trade-off which must be considered.

Plotting two- and three-variable cases, as shown in Fig. 11.4, are possible but it

is difficult to show in more dimensions. The lines may be curves, the scales may

not be linear, but you should be familiar with this kind of representation.

A common way of coping with multi-criteria decision is to weight the different

factors and assign them some score on this basis. The scores are added up and

different alternatives compared by comparing the score. Most people know about

Fig. 11.4 Optimisation in
two or three dimensions
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this form of multi-criteria decision making. This is what happens when you buy

some things like mobile telephones or cars. Different products have different

options and the options add to the price. You might order a Swiss Army mobile

phone with lots of tools or you might try and balance the different tool section to

your needs.

11.2 Example Tools

There are various tools for design, some which have been implemented as soft-

ware, others exist as techniques which could be implemented as software to

provide a computerised support environment. Product Data Management (PDM)

systems provide some help for keeping track of the textual information, but

integration with software tools, especially CAD, CAPP and CAM, is limited.

The design procedure I will use as a basis for this section is that which is taught

by Professor Horváth and Niels Moes from the department of Computer-Aided

Design Engineering of the Technical University of Delft, and which I know from

the E-GPR course. This may not be the only place where this methodology is

taught and is certainly not the only methodology. However, this is my source of

information and the method is clear and logical. Since this chapter is not really

about design, but about tools for design I do not want to spend a lot of space on

design techniques themselves. The reason for explaining the method here is so as

to be able to put the tools and needs into a context.

The E-GPR course is an interesting learning experience being a course taught

via video-conferencing techniques with six participating universities: Delft

Technical University in the Netherlands, the Ecole Polytechnique Fédérale

Lausanne in Switzerland, Ljubljana University in Slovenia, City University

London in the United Kingdom, the University of Zagreb in Croatia and Budapest

Technical University in Hungary. The students are divided into teams with

members from different universities, so they are forced to adapt to cultural dif-

ferences and learn to communicate with each other. The students are given a

design problem by a partner company and are expected to produce a working

prototype at the end of the course during a working week in which the students

meet each other ‘‘in the flesh’’ for the first time.

The most successful courses, in my opinion, have been those in which the

partner company outline the general problem and leave the students freedom to

create something in that area. The project is helped by imaginative and helpful

support from the responsible people in the partner company. The students are

expected to go through a research phase, in which they learn about the problem

and identify a particular sub-problem, a design phase in which they set up the

functional requirements, a detailing phase during which they set the full details and

a manufacturing phase during which they create a prototype.

The product idea is given by the company as a document which is made

available to the students via a shared document area.
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During the research phase the students use the internet as a means for research.

The students use Skype or Adobe Connect for communication. There are shared

whiteboard facilities for 2D sketching, but I have not yet seen 3D sketching

facilities.

Once the initial research phase is over the students should have a set of func-

tional requirements that guide further work. This set of functions is used for the

creation of what is termed a ‘‘morphological chart’’, a tool for focussing the

students’ ideas. In the morphological chart, the product functions are written down

vertically and the implementation methods for each function written horizontally,

as shown in Fig. 11.5. There does not have to be the same number of methods for

each function. The implementation methods, represented in the figure by little

mushroom symbols, are sketched in the boxes. At this stage the students are

expected to be creative and it is desirable if they include wild ideas in the methods.

There is a filtering stage later during which the really hopeless ideas are weeded

out, but if they do the filter too soon, during the morphological chart creation, they

may miss a good idea. Science is catching up on science fiction and one of the

team may know how to implement someone else’s wild dream. Niels Moes also

stresses that the ideas generated are ‘‘team property’’, that is, the students should

not keep their ideas to themselves but put them into a common pool.

Once the morphological chart has been completed it is necessary to determine

paths through this. Each path corresponds to a product variant. This is shown in

Fig. 11.6 where a series of hypothetical paths have been sketched in. It is not

obligatory to use different cells for every path, they can share cells, meaning that

one of the functions can be fulfilled in the same way for two or more variants.

In the E-GPR course, once the products have been finalised, the students have

to present their product variants and the partner company chooses one for each

team to go further. With this product the students are then asked to produced what

Niels Moes calls a ‘‘process tree’’. This is a way of producing a checklists of

Fig. 11.5 Morphological
chart
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aspects for a product design in a series of phases. The word ‘‘process’’ means, in

this context, a phase of the product life-cycle. Examples of these phases are the

manufacturing phase, the assembly phase, the use phase and the end-of-life phase.

The considerations for the phases should act as a way of checking the design to see

how it fits in with the aims expressed in the process tree.

After this process the students perform the detailed design phase to create

models of their designs.

It is clear that the following requirements need to be met for design tools:

1. Support ‘‘at a distance’’. E-GPR was set up as a course at a distance deliberately

to expose students to the problems of working and communicating in geo-

graphically distributed places. However, supporting collaborative work is

important even in the same company. There can be huge psychological, even if

not geographical, distances between floors in the same office building. Good

communication tools for synchronous activities are needed.

2. Document sharing facilities. By ‘‘document’’ I mean a variety of document

types including text documents, pictures and CAD files. For companies this

may involve security problems. A sort of library control system for taking out

common documents to work on and putting them back and common viewing

tools are needed.

3. Early phase design support. There are several possibilities, some explained

below, for tools to help the critical early phase. Tools for sharing information

and creating a common understanding within a design team are important to

unify effort.

4. Visualisation sharing. 3D sketching would be nice. Although sketches are

often 2D schematic diagrams, it is an unnecessary burden to sketch a 3D

project when a solid is to be drawn. Having the possibility to create and place

simple 3D shapes are needed as well as viewing tools to rotate the shapes, for

example. Sketching in 2D exists, but needs to be made available for CAD as

well.

Fig. 11.6 Morphological
chart with product paths
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11.2.1 Sketching Tools

There has been much work done on sketching tools for design. Back-of-envelope

sketches and beer-mat sketches are important tools for designers, but they are

limited, both in their audience and accessibility. Formal sketching tools to allow

symbols to be sketched, lines and annotations in 2D are needed.

In 3D, simple shapes and lines can also help. This was the idea behind the

development of generalised models by Professor Torsten Kjellberg and his team at

KTH at the end of the 1970s and described in Chap. 6. Kjellberg et al. also

pioneered the idea of a ‘‘product model’’, a model containing various types of

information aimed at collecting the information from the initial steps in design.

Three-dimensional sketching is not as fluent as two-dimensional sketching, and

is not the same as sketching a three dimensional object in two dimensions. Since

the sketch medium, usually now paper, is two dimensional then sketching in two

dimensions is natural. Even though three dimensional displays exist, and so three

dimensional sketching is feasible, the process is not as natural as 2D sketching.

This means that sketching in three dimensions requires an extra coordinate to be

input, which breaks up the free flow of design. In one CAD system, called

MEDUSA, at the end of the 1970s, three dimensional data was produced by

picking in orthogonal view windows. This enabled the user to, say, define the

X and Y-coordinates of a point in one window and then use a second window to

define the Z-coordinate. The whole was arranged something like an engineering

drawing.

Sketching in three dimensions, though, might involve something like the tools

for layouts, described below, that is, definition of lines, curves and simple volu-

metric objects, placement tools and connection tools.

11.2.2 Functional Elements

The role of morphological charts and the process tree were described above. Both

of these are easily amenable to distributed computer support. One of the important

parts of the design process is to identify the functional decomposition of the

problem. The functional elements are used for the morphological chart. The

functional elements are determined by the design requirements.

Identification of the functional requirements is part of the expertise of the

designer. It might possibly be helped by an expert system, or similar, if the product

being designed is sufficiently specialised. However, this is unlikely and it is to be

expected that the identification of functional elements is done by a human expert.

The role of a computer-based tool is to allow the designer to record the decom-

position and as many of the reasons behind the decomposition as possible. The

information should be maintained in a clear format so that it can be accessed and

used by other design support tools.
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11.2.3 Partial Solution Databases

A powerful idea, pioneered by François Sprumont, to the best of my knowledge, is

to build a database of partial solutions which can be consulted during design. This

idea was implemented in two projects, MicroCE and ABCD. The MicroCE project

is described below as an illustration of this technique. Further work was done by

Duck-Young Kim on constraint satisfaction [2].

The partial solution database, or ‘‘design catalogue’’ starts with a functional

element of the design and identifies possible solutions. The functional description,

mentioned above, is a starting point. Certain of these functional elements may

correspond to known solutions. The purpose of the tool is to find optimal known

solutions for these known solutions.

11.2.3.1 MicroCE

The MicroCE project between several EPFL laboratories and the company

Mecanex. Mecanex have a specialised product range of connectors for connecting

rotating sensors, such as radar dishes, and fixed elements which use the data.

Different applications need different sensors with different mechanisms. Custom-

ers came to Mecanex, filled in a data sheet with the characteristics of the sensor

needed. The data sheet was then analysed by Mecanex’s designers to produce a

design and cost estimates.

In the MicroCE project the aim was to produce a method, based on design

catalogues, see below, to reduce the time for the design from three days, the

normal time, to three hours.

11.2.3.2 Design Support Using Solution Catalogues

Design catalogues are a method of sharing company data between designers. They

are collections of solutions to design sub-problems specific to the company. The

design solutions from one designer are available for another designer, so that best

solutions are shared. This is illustrated in Fig. 11.7a. All the designers put their

partial solutions in the same common database. When a designer wants to select a

partial solution, he or she evaluates the partial solutions and chooses the one which

has the highest score, Fig. 11.7b.

There are several benefits about using design catalogues. One is that the

company has a ‘‘knowledge resource’’, its principle solutions contained in a

manner that is accessible to all. Another benefit is that designers can share their

ideas and the design catalogue becomes a set of best-practices for a particular set

of design problems. This also means that, if a designer is absent—on holiday, ill,

or retired for example—the design solutions from that designer are still avail-

able. This is important for companies, especially SMEs, where the absence of
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key personnel may be critical to success or failure. A design catalogue can also

create company product standards. As a final example of a benefit there is that

the identification of partial design solutions reduces the design work. This means

that the designer is freed from routine work to concentrate on more critical

problems.

There is a restriction to the use of design catalogues as there is to any support

tool. Too much automation is not a good idea because, as pointed out by

Nakazawa [3], this leads to standardised products and reduces a company’s value.

Nakazawa’s comment was, put simply, that the design ability of a company is part

of its value. If you share that throughout an industry by making it available via

software then all companies can produce comparable products and so any par-

ticular company will lose its market edge. This is true of any design aid, not just

design catalogues. It is important to plan properly in the application of all design

tools and see them as support, not a replacement for human abilities.

In the Mecanex example, the design catalogue concerned rotational mecha-

nisms for the sensors. François Sprumont also connected it to Csabai Attila’s

layout tool (see Sect. 11.2.4) and to special code to produce parametrised models

of the sensors to make a more complete system. In a real system the designer

would have completed the design with housing and other elements around the

sensor.

In terms of the outline design process used for the E-GPR course, this tool is

related to the morphological chart and would help in the selection of particular

functional variants. The common database for the functional solutions allows

sharing, even from geographically distributed sites.

11.2.3.3 Case Study

The company names are intended to be fictional. Any resemblance to an existing

company is regretted.

Fig. 11.7 Design catalogues
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Suppose that there is a company, called Okos Drive Motor Company, who

make custom made motors for different companies. The have several different

motors, electric, petrol, mechanical, steam, and so on. The size of these and the

components depend on the requirements of the customer.

One of the customers of Okos Drive Motors is a company called Bolondok

Incorporated who make a family of self-mobile shoes which can be customised

according to user characteristics. The self-mobile shoe is a device like a shoe,

worn on the feet, but which moves itself around without the user having to lift their

feet. The product may be stupid, but this is to avoid conflict with real products.

There are a number of solutions, such as:

Wheeled shoe Good for large buildings, such as hospitals or shopping precincts (malls)

Lizard-legs shoe A shoe which can be used outside on semi-rough terrain

Hover shoe A shoe which can be used on rough terrain

Mud shoe A shoe with a large surface area to be used over soft ground

A common component in these shoes is the motor, which is custom manu-

factured. The size and arrangement of the elements of the motor depend on the

power required and the motor type. The client company, in this case Bolondok

Incorporated, comes to Okos Motor Drives with the parameters of the required

motor and Okos Motor Drives proposes a solution. In order to reach that solution,

Okos Motor Drives evaluates its product range against the requirements, giving

each a score.

Okos Motor Drives has the following solutions:

• Horizontal petrol engine. This is a petrol engine which is mounted horizontally

with direct connection to the element being driven. The fuel tank is also part of

the motor assembly.

• Indirect petrol engine. This is a petrol engine which is mounted at a distance

from the driven element and connected via a flexible cable. As before, the fuel

tank must also be considered as part of the motor solution.

• Horizontal electric motor. An electric motor which is mounted horizontally and

connected directly to the element being driven. The battery pack placement has

also to be considered as part of the assembly.

• Vertical electric motor. Similar to the horizontal electric motor, but there is an

extra L-shaped drive element to connect the motor to the driven element. The

battery pack is also a part of this solution.

• Indirect electric motor. The electric motor is mounted away from the driven

elements and connected via a flexible cable. The battery pack is also part of this

solution.

• Horizontal steam motor. In Okos Motor Drives catalogue, the motor must be

mounted horizontally in connection with the driven element. The solution needs

a water tank and fuel tank.
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• Horizontal mechanical motor. This solution, too, is also only available as a

horizontally mounted element, but has no need for separate power elements.

For this example, the evaluation is done in tabular form, as shown in

Table 11.1. The final score is a weighted sum of the elements, with the weights

being determined from the design requirements, here they are: 5 for power, -2 for

weight and 2 for power source. The elements in the other columns are normalised

according to how well they fit the task.

In this very artificial example, the vertical and horizontal mounted electric

motors score the best with the horizontal petrol engine not far behind. Note that the

weighting function is a way of method for multi-criteria decision making (see

Sect. 11.1.4). The weights are used to combine a number of different elements into

a single score for comparison. An alternative is to keep the different criteria

separate and compare the criteria categories with each other. This is a complex

topic and, here, the weighting function is used for simplicity.

The result of this simple example is that the Okos Motor Drive company can

propose three solutions: the vertical and horizontal motor solutions and the petrol

engine. If the correct dimensions of the elements can also be supplied then

Bolondok incorporated can complete their design while Okos build and supply the

motor. In the same way as done for the Mecanex example by Sprumont, the

dimensions could be supplied in terms of gross dimensions and connection ele-

ments for a layout design, as described in Sect. 11.2.4.

This small artificial example is intended only to outline the basic principles of

the use of design catalogues. A real application example and evaluation would be

more complicated and also contain part of the company knowledge.

11.2.4 Layout Design

An interesting system for layout design was developed by Attila Csabai at the

EPFL [4]. Csabai developed a system for producing a product structure with

kinematic connections that could be used for problem decomposition and plan-

ning, simulation as well as providing an important support for design.

Table 11.1 Motor
evaluation table

Motor Power Weight Power source Score

Horizontal petrol 1.0 0.7 0.5 4.6

Indirect petrol 0.95 0.8 0.5 4.15

Horizontal electric 1.0 0.8 0.65 4.7

Vertical electric 1.0 0.8 0.65 4.7

Indirect electric 0.8 0.9 0.6 3.4

Horizontal steam 0.2 0.2 0.1 0.8

Horizontal mechanical 0.1 0.3 0.8 1.5
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In Csabai’s system, the functional elements of the product, identified by the

designer, are represented as a connected set of design spaces. Each design space has

its own coordinate system, with reference to which the elements are put, and a

primitive shape. The design spaces were linked together using kinematic connec-

tions which allowed movement simulation. The primitive shapes in Csabai’s system

were rectangular blocks, cylinders and simple extruded shapes. However, the

primitive shapes were not intended to be the same as the final object, merely

geometric placeholders, so the simple extruded shape was not much used because of

possible confusion with the final shape. Csabai also allowed the primitive design

spaces to include the real objects, once these had been designed, so that the layout

could also be used to visualise the assembled product.

To illustrate the concept, consider Fig. 11.8. The picture and others have been

faked using CATIA as it is not currently possible to get pictures from Csabai’s

original system.

The layout consists of three elements, a base, an axle and a rotational part. The

layout elements are not intended have the final shapes. This allows simple simu-

lations with elements that can be changed easily. The kinematic simulation allows

product demonstration both for a client as well as for members of a design team to

create a common understanding of a product.

In Fig. 11.9 one element, the base element has been defined. In this example, the

top two prongs extend just outside the primitive geometry of the base design space. If

this happens in a real layout then the need for extra space is the subject of

Fig. 11.8 Simple layout
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negotiation. Here, the extension does not interfere with any other design space so it

might be allowed. Alternatively, as on the right of the figure, the connections may be

modified so that the real part can bemodified to lie within the design space. If there is

a conflict, though, then the designers responsible for the two interfering design

spaces need to negotiate as to how to resolve the common space. In Csabai’s terms,

collisions between primitive shapes did not indicate an error, merely a volume of

space which needed to be negotiated. The primitive shapes were regarded as ‘‘soft

solids’’ rather than ‘‘hard solids’’ where a collision implies an error.

The layout tool created by Csabai is also a support for problem solving. The first

level of design spaces correspond to the functional elements identified by the chief

designer. This is illustrated in Fig. 11.10. At the top is a single node corresponding to

the whole product. On the second level are the functional elements, as shown in

Fig. 11.10a. In Csabai’s philosophy, each of the functional elements can be further

subdivided, if necessary, into simpler sub-elements, as shown in Fig. 11.10b, which

can be solved by a designer or broken down even further. This method allows

successive reasoning steps about the product element for creation of a well struc-

tured design. This could be done by a single chief designer or allocated to a design

team for elaboration. This method also leads to a coordinated design methodology

which can be valuable for distributing work both locally and in a geographically

distributed environment. In the end, the structure of the layout corresponds to the

product structure and could, in theory, be exported directly to a CAD system.

Another aspect of Csabai’s work was to create a collaborative design envi-

ronment. In Fig. 11.11, also simulated, the base is shown solid in green with a

connecting part shown transparently in red. A user is able to see both their own

element in an assembly as well as a connecting part. A second designer might see

the view in Fig. 11.12, with views of designer 1’s part and designer 3’s part as

Fig. 11.9 Simple layouts with component

478 11 Early-Phase Design



well. This makes it easier for the users to understand how their component fits

together with other parts.

For the designer responsible for the rotating part there would be different

connecting elements and the base and the other element would be shown as

transparent, with the rotator solid.

Another aspect of Csabai’s work was the notion of common features. This is

illustrated, again with faked images using CATIA, in Figs. 11.13 and 11.14.

The base and rotator share a common rotational joint. By establishing common

joints in the layout, Csabai was able to introduce them as feature pairs in the

detailed design.

11.2.4.1 Layout Aspects

Some of the interesting aspects, in no particular order, of Csabai’s work are:

1. Design spaces and placeholders for geometry.

Fig. 11.10 Layout
subdivision

Fig. 11.11 Shared assembly
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2. Rough kinematic simulation.

3. Problem solving through decomposition.

4. Design distribution.

5. Collaborative design environment.

6. Soft solids.

7. Multi-body features.

Design spaces and placeholders for geometry. A design space is, basically, a

local coordinate system. Assigned to each design space in Csabai’s work was a

simple geometric shape, rectangular block or cylinder, though he also considered

simple swept shapes. The geometric shape is not intended to be the same as the

final geometric element in the model, merely to be a simple placeholder for

visualisation. At the same time, the simple shape gives boundary limits for the

final design to act as a framework for the detailed design.

Rough kinematic simulation. In Csabai’s system kinematic connections were

defined between elements, allowing simple kinematic simulation of the final

product. Such a simulation provides all participating designers with an

Fig. 11.12 Shared assembly

Fig. 11.13 Base with shared
feature
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understanding of how the product is intended to work and hence the functionality

of the subparts or submodules.

Problem solving through decomposition. Csabai’s work involved the same sort

of problem solving style as found in Jackson’s Structured Programming method,

but with a geometric element. Many people do this almost automatically and the

initial problem decomposition will probably exist as the functional decomposition

of the product. However, Csabai’s method allows the refinement of this first

decomposition to identify sub-modules and product elements. The resulting

structure also corresponds to a final product assembly structure.

Design distribution. A consequence of the decomposition method is that design

spaces could be assigned to designers or design teams. This was the intention of

Csabai and is a useful problem management tool. The connections between the

modules acted as common points for communication to ensure consistency.

Collaborative design environment. Csabai conceived his system as a web-based

system, allowing designers to collaborate in a distributed environment. The way

that Csabai imagined the system to work is that the chief designer creates an initial

layout with a set of design spaces, based on a functional decomposition and then

assigns these to members of the design team. The system maintained a database,

noting the person responsible, links to solid models, security and so on.

Soft solids. Because the geometric shapes in Csabai’s system were placeholders

for the final geometry, they were not considered to be rigid, final solids. This

means that collisions between the geometric shapes during kinematic simulations

are not errors, merely warnings that there is shared space. The collision volumes

then become areas for negotiation between different designers to make sure that

the final detailed geometry does not collide.

Fig. 11.14 Rotator with
shared feature
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Multi-body features. Csabai allowed geometric features to be attached to con-

nections between design spaces. This, in my view, is an important advance over

the traditional perception of features, that is, that they are isolated elements in

single objects. In Csabai’s system, changing the feature meant that the change was

propagated to both design spaces sharing the connection, maintaining consistency.

Csabai also recognised that a particular kinematic mechanism could be imple-

mented in different ways, which could be negotiated. For example, a rotational

joint might be implemented as a pin-and-hole joint. However, in which part is the

pin and in which the hole is not defined and open to negotiation between designers.

11.2.4.2 Example

An example of the use of Csabai’s system, from Csabai et al. [5], concerns a

hypothetical robot design sequence. Figure 11.15 shows a traditional, hypothetical,

design sequence. Figure 11.16 shows another hypothetical design sequence using

design spaces.

The designer, or design team starts by producing a detailed model of the

geometry. The model is then animated to produce a kinematic simulation of

the final product. Based on this, design modifications are made by changing the

detailed geometry. The product is analysed to check its physical characteristics.

The design is then modified, to reduce the weight of the arm, for example, while

maintaining its stiffness. A new simulation reveals that the robot cannot reach

certain areas so the upper arm is lengthened. A collision is also found and the arm

Fig. 11.15 Traditional robot design with exact models (from [5])
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shape modified to remove the collision. New strength and weight analyses are

performed and eventually the final design is reached.

This is a hypothetical example of how a design might develop. With extended

design teams and complicated products there is an increased risk of design dis-

parity. Decisions about details of the design may be taken arbitrarily. A layout tool

is not a magic solution but it does provide a simple visualisation means which can

help to provide a common understanding of a product.

The designer begins by defining the main elements of the robot as rectangular

blocks of the desired size and defines the kinematic connections between them.

The initial primitives are animated and tested as to whether the robot can reach a

particular height. The layout is modified by changing the lower arm design space

primitive. This is a simple parametric change since the primitive shape is a rect-

angular block. A new test on reachability reveals that the robot cannot reach down

low enough, so the upper arm primitive is changed, again a simple parameter

modification. The collision volumetric parts between different design spaces are

noted as area where care must be taken. When the layout modifications are

complete the final design is produced. Simple analyses on the primitive elements

can also lead to constraints such as for weight and stiffness which can then be

communicated to a CAD system for detailed design.

As stated above, layout modelling is not a magical solution, it is a method for

organising work and building knowledge. The possibility of animating rough

shapes is a tool for augmenting comprehension about the intention of the whole

product (Fig. 11.16).

Fig. 11.16 Initial phase robot design with layout models (from [5])
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11.3 Design Environments

The design environment is another idea waiting in the wings for an entrance into

the CAD world. The design environment is a mechanism for communication of

early-phase design to current CAD systems in the detailed design phase. The idea

is to use the macro-language programmable facilities in a CAD system to import

geometric elements from a file as help-, or construction-, geometry. This is a

simple compromise which, while far from ideal, does extend the support by CAD

systems.

An example of an environment file, for the layout in Fig. 11.8, might be:

webdes_rotator_group.htm\assembly[ 3 6

\block[ 1 webdes_rotator_base.htm 140 80 40 fix

\connection[ 1 rotation 2 0 360 (-35,0,5) (1,0,0) (0,0,-1)

3 rotation 4 0 360 (35,0,5) (1,0,0) (0,0,-1)\/connection[

\/block[

\cylinder[ 2 webdes_rotator_axle.htm 6.25 100 free

\connection[ 2 rotation 1 0 360 (0,0,-35) (0,0,1) (1,0,0)

4 rotation 3 0 360 (0,0,35) (0,0,1) (1,0,0)

5 static 6 0 0 (0,0,0) (-1,0,0) (0,0,1)\/connection[

\/cylinder[

\block[ 3 webdes_rotator_top.htm 60 40 145 free

\connection[ 6 static 5 (0,0,-70) (0,0,1) (1,0,0)\/connection[

\/block[

\/assembly[

Fig. 11.17 Layout input
from a design environment
file
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When read in and the design spaces aligned, this gives a layout such as that

shown in Fig. 11.17.

The purpose of the filename is to be able to link external documents, e.g.

HTML or any of the familyML documents, with models. An example is shown in

Fig. 11.18.

In the design environment, above, HTML filenames are given as part of the

design space descriptions. The idea behind this is that external software could

create an information environment, in a well-known and accessible format, which

could then be accessed from inside a CAD system to provide more information for

a designer. In addition, the designer would be able to traverse a structured

information environment, possibly adding extra information or changing param-

eters. Although relatively simple and cheap to implement, the creation and use of

design environments is lacking in modern CAD.

11.4 Proactive Tools

A lot of interesting work has been done on proactive methods by Jared, Swift and

others at the universities of Cranfield and Hull. This is interesting not only because

of the ideas but also because of the quality and high level of knowledge of the

people behind them.

In the same way as the other early phase design techniques already mentioned,

the aim is to get the design right first time and avoid expensive redesign steps.

Some examples of papers on this topic are [6–11]. An important part of this work

is the proactive nature to find a good solution in the initial phase of design and

Fig. 11.18 Associating an HTML document with a geometric model
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during the design process. The idea is not to complete the design and then analyse

it, but to help the designer find good solutions.

The series of articles above are about an experimental design environment

called the ‘‘Sandpit’’. The background to the work, described in [9], is that about

three quarters of the product cost is determined by decisions during the design

stage and that a large proportion of this results from assembly. The system anal-

yses products at three levels: product group, product structure and component

design. The system aims to help the designer right throughout the design process.

With this methodology the user is both aware of assembly and guided while

designing. This is the nature of proactive tools, to help and support the design

process to arrive at a correct, or near correct solution rather than forcing expensive

redesign when errors are found late.

11.5 Chapter Summary

This chapter deals with the important area of design in the early phase. The aim is

to put the CAD tools into a context, to show obvious holes in current computer

support for the design process. An example design process is described, based on

that followed by Professor Horvath’s group at the Technical University of Delft.

This is used as background for the descriptions of tools for the early phase of

design. The chapter ends with a short description of an interesting proactive

system, the Sandpit by Jared, Swift and others, for supporting assembly.

11.6 Early Phase Design Exercises

11.6.1 Functional Requirements

What would be the functional requirements for a coffee machine? What are the

functional elements of the coffee machine?

11.6.2 Coffee Machine Design

Design a coffee machine.

Suppose that the principle elements of a filter coffee machine with their

approximate sizes are:

• Water reservoir (100 9 200 9 200).

• Stand (300 9 200 9 200).

• Hot plate (250 9 120 9 50).
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• Jug (80 9 80 9 100).

• Filter holder (80 9 80 9 80).

Create a new assembly in your CAD system and represent the elements using

rectangular blocks. Identify the inputs/outputs of these elements and their relative

positions with respect to each other. Model the connections between the elements.

Now design the coffee machine using the rectangular blocks as guides and use

the models of the connection elements to create the interfaces between the objects.

11.6.3 Morphological Chart for a Coffee Machine

The morphological chart is a tool for identifying interesting design variants.

Produce a morphological chart for a coffee machine with the following elements:

Power: Mains supply; Battery; Human powered dynamo; Solar cell

Water source: Built-in reservoir; Bottled water; Mains supply

Coffee holder: Filter unit; Preloaded capsules;

Coffee receptor: Jug; Individual Cup; Multiple disposable cup unit

Sales gadget: Radio; Timer; Alarm signal when ready; MP3 player; Game player;

None

How do you produce product variants from a morphological chart?

What would be your favourite combination?

What would be a successful product?

What would be a combination for an environmentally conscious household?

11.6.4 Functional Decomposition

Identify the functional units for a product such as a vacuum cleaner.
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Chapter 12

History, Parametric Parts

and Programming

The notion of maintaining knowledge about the object being built flourished at the

end of the 1970s and the beginning of the 1980s. A Swedish idea, from Kjellberg,

Eriksson et al. was what was termed ‘‘Uppkomstbeskrivning’’, a description of the

definition of the origin of object parts. This has, to some extent been replaced by

the history tree.

12.1 History Structures

It is common practice to maintain a list of operations used to make an object and

allow this to be edited or rerun, called sometimes the ‘‘Construction History’’. This

provides a way of remaking an object so that the user can edit input parameters and

make new versions of the object. This idea may have evolved out of earlier

practices of model creation, at any rate it is a useful facility in modern CAD

systems. The idea has been extended to allow parametrisation of objects as well as

direct manipulation of the history structure.

To put this into perspective, I give here examples of earlier methods. In early

research it was common to write small command files to make objects and to run

these through a command interpreter for object creation. That was before inter-

active graphics and other developments made it possible to create objects inter-

actively. When interaction became easier another idea which became standard was

to create a log file, a list of the operations used by a designer to create a shape.

I think that the notion of parametrisation grew out of these, but since I do not

know the exact history about how parametrisation and history trees came about I

cannot attribute the credit and will follow this viewpoint.

I. Stroud and H. Nagy, Solid Modelling and CAD Systems,
DOI: 10.1007/978-0-85729-259-9_12, � Springer-Verlag London Limited 2011
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12.1.1 Command Files

An example of a command file, from 1979 for the BUILD research system [1], is

given below. The original code is on the left, with comments in italics on the right.

comment Gehäuse (Rohteil) 23446 02 using construction lines

prompt

echo

2.5d Planar shape creation on the XY plane with

global origin, package developed by

Graham Jared

point 1 (0,6.4,0) Create point 1

point 2 (0,-6.4,0) Create point 2

line 1 start p 1 dir vi Create line 1 through point 1 in the

direction (1,0,0)

line 2 start p 2 dir vi Create line 2 through point 2 in the

direction (0,1,0)

circle 1 centre (0,0,0) radius 6.4 Create a circle centre at the origin with

radius 6.4

point 3 (28.9,6.4,0) Create point 3

point 4 (22.5,3.4,0) Create point 4

point 5 (19.5,2.4,0) Create point 5

line 3 start (0,0,0) dir vi Create line 3 through the origin in the

direction (1,0,0)

line 4 start p 3 dir vj Create line 4 through point 3 in the

direction (0,1,0)

line 5 start p 4 dir vj Create line 5 through point 4 in the

direction (0,1,0)

line 6 start p 5 dir vj Create line 6 through point 5 in the

direction (0,1,0)

line 7 start p 4 dir vi Create line 7 through point 4 in the

direction (1,0,0)

line 8 start p 5 dir vi Create line 8 through point 5 in the

direction (1,0,0)

drawstyle dotted,label,-labf Set drawing options for dotted, labelled

construction geometry and

no labelled faces

line 9 start (13.5,0,0) dir vj Create line 9 through a given position in the

direction (0,1,0)

line 10 start (0,-2.9,0) dir vi Create line 10 through a given position in

the direction (1,0,0)

line 11 start (7.5,0,0) dir vj Create line 11 through a given position in

the direction (0,1,0)

line 12 start (-5.7,0,0) dir vj Create line 12 through a given position in

the direction (0,1,0)
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point 6 lxl l 3 l 9 Create point 6 at the intersection of line 3

and line 9

point 7 (10.6,-2.9,0) Create point 7 at a given position

point 8 lxc - l 12 c 1 Create point 8 at the intersection of line 12

and c1. The - sign is used to change the

direction of line 12 for the intersection to

give one of the points

circle 2 centre (10.6,0) radius 2.9 Create a circle at a given centre with radius

2.9

draw Produces the image in Fig. 12.1

The 2D shape definition tool, created by Graham Jared, was an important

advance in the BUILD system because it made it easy to define complex shapes.

The first step in shape definition is to set up a set of ‘‘construction lines’’ which

guide the shape creation. These construction lines can be points, lines or circles.

The analogy is that these were like the pencil lines drawn by a designer before

inking-in the final shape and erasing the pencil lines. The lines and circles have a

direction which can be used to distinguish between intersection results. For

example, in the line: ‘‘point 8 lxc - l 12 c 1’’ there are two lxc (line intersect

circle) results between line 12 and circle 1. Normally the one with the lower

parameter value on the line would be chosen. The minus sign changes this so that

the point with the higher parameter value is given as the result.

start p 8 Starts the ‘‘inking-in’’ procedure

putting in edges and vertices. The

start vertex is at the position

defined by point 8, approximately

at (-5.7,2.9)

extend to lxc l12 c1 Create a new edge in a straight

line to the intersection of line 12

Fig. 12.1 Construction lines
for MBB Gehäuse Rohteil
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and circle 1 (approximately at

(-5.7,-2.9))

extend round c 1 to lxc l2 c1 Create a new edge round circle 1,

in counter-clockwise direction, to

the intersection of line 2 and circle

1, to (0,-6.4)

extend to lxl l11 l2 Create a new edge in a straight

line to the intersection of line 11

and line 2, at (7.5,-6.4)

extend to lxl l10 l11 Create a new straight edge to the

intersection of line 10 and line 11,

at (7.5,-2.9)

extend to lxc l10 c2 Create a new straight edge to the

intersection of line 10 and circle 2,

at (10.6,-2.9)

extend round c2 to lxc l9 c2 Create a new circular edge round

c2 in counter-clockwise direction

to the intersection between line 9

and circle 2, to (13.5,0)

extend to lxl l8 l9 Create a new straight edge to the

intersection between line 8 and

line 9, at (13.5,2.4)

extend to p5 Create a new straight edge to

point 5, which could also have

been defined dynamically as lxl l6

l8, at (19.5,2.4)

extend to lxl l6 l7 Create a new straight edge to the

intersection between line 6 and

line 7, at (19.5,3.4)

extend to p4 Create a new straight edge to

point 4 at (22.5,3.4)

extend to lxl l2 l5 Create a new straight edge

to the intersection

between line 2 and line 5,

at (22.5,-6.4)

extend to lxl l2 l4 Create a new straight

edge to the intersection

between line 2 and line 4, at

(28.9,-6.4)

extend to p3 Create a new straight edge to

point 3 at (28.9,6.4)

extend to lxc l1 c1 Create a new straight edge to the

intersection between line 1 and

circle 1, at (0,6.4)
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extend round c1 to p8 Create a new circular edge

around circle 1 in counter-clock-

wise direction to p8

end Creates a closed shape by joining

the first and last vertices

drawstyle -circles, -lines, -points, -autoscale Set the drawing styles

draw Produces the image in Fig. 12.2

quit Leaves the sketching package

The inking-in procedure creates the first geometric model which will be added to

in the next steps. It is a planar model with the exterior profile of the shape to bemade.

It is possible, at this point, to extrude the shape and create a first solid model, but in

BUILD it was also possible to define a planar model with all the interior faces

defined and then to extrude these. This is closer to drafting practice in design.

set view vk Set the eye point to be above the object

drawstyle man Set the drawing style to manual

set scale 0.2 Set the drawing scale

setcentre Set the centre of drawing to the centre of the

object

draw Not shown as figure

2.5d face 1 originv 14 Define a shape on face 1 (the top face) using

vertex 14 as origin. All positions are defined

relative to this vertex, which is marked with axis

directions in Fig. 12.2

drawstyle dotted, label, -labf Set the drawing styles

line 1 start (-6.4,0.0) dir vj Define line 1 with direction (0,1,0) through a point

relative to vertex 14—in global coordinates at

(22.5,6.4,0)

Fig. 12.2 Inked-in basic
shape
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line 2 start (0,-2.2) dir vi Define line 2 with direction (1,0,0) through a point

with position relative to vertex 14—in global

coordinates (28.9,4.2,0)

line 3 start (0,-10.6) dir vi Define line 3 with direction (1,0,0) through a point

with position relative to vertex 14—in global

coordinates (28.9,-4.2,0)

start lxl l2 e13 Start the first prong shape at the intersection of

line l2 and edge 13, breaking edge 13 at the same

time, at (22.5,0,0)

extend to lxl l1 l2 Create a new straight edge to the intersection of

line 1 and line 2, at (22.5,4.2,0)

extend to lxl l1 e14 Create a new straight edge to the intersection of

line 1 and edge 14, at (28.9,4.2,0)

end Close the shape by breaking edge 14 and closing

the vertices

start lxl l3 e11 Start a new shape at the intersection of line 3 and

edge 11, at position (22.5,-4.2,0)

extend to lxl l3 e16 Create a new straight edge to the intersection of

line 3 and edge 16, at (28.9,-4.2,0)

end Close the shape by breaking edge 16 and joining

the vertices

draw Produces the image in Fig. 12.3

quit Leave the shape sketching package

Note the use of simple numbers to identify faces, edges and vertices. This has a

big disadvantage because the numbers can change during modelling. This can be

seen in the above sequence when one shape has the command: ‘‘extend to lxl l1

e14’’ and three lines later there is a command: ‘‘extend to lxl l3 e16’’, which is to a

new edge created when edge 14 was broken by the first command. One of the

Fig. 12.3 Construction lines
and initial shapes for face
detailing
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drawing styles used in BUILD was to draw objects with edge and vertex numbers

to make it easier to identify elements. This solution, though, was imposed because

there was no interactive graphics at that time and this sort of off-line programming

with entity references was necessary.

setcentre draw Not shown in a figure

2.5d face 1 originv 20 Do the detailing of the front prongs of top face with

the vertex marked in Fig. 12.4 as origin

drawstyle dotted,label,-labf Set the drawing styles

line 1 start (-15,0) dir vj Create a line in direction (0,1,0) through the point

relative to the origin vertex 20—in global coordi-

nates at (7.5,6.4,0)

line 2 start (0,-2) dir vi Create a line in direction (1,0,0) through the given

point—in global coordinates at (22.5,4.4,0)

line 3 start (-19,0) dir vj Create a line in direction (0,1,0) through the given

point—in global coordinates at (3.5,6.4,0)

line 4 start (0,-10.8) dir vi Create a line in direction (1,0,0) through the given

point—in global coordinates at (22.5,-4.4,0)

start lxl l1 e14 Start at the intersection between line 1 and edge 14,

at (7.5,6.4,0)

extend to lxl l1 l2 Create a straight edge to the intersection between

line 1 and line 2, at (7.5,4.4,0)

extend to lxl l2 l3 Create a straight edge to the intersection between

line 2 and line 3, at (3.5,4.4,0)

extend to lxl l3 e14 Create a straight edge to the intersection between

line 3 and edge 14, at (3.5,6.4,0)

end Close the shape

start lxl l3 e3 Start a new shape at (3.5,-6.4,0)

extend to lxl l4 l3 Create a straight edge to the intersection between

line 4 and line 3, at (3.5,-4.4,0)

extend to lxl l4 e4 Create a straight edge to the intersection between

line 4 and edge 4, at (7.5,-4.4,0)

end Close the shape

line 5 start (-16,0) dir vj Create a new line in direction (0,1,0) through the

point relative to the origin vertex—which is at

global coordinates (-6.5,0,0)

start lxl l5 e25 Start a new edge at the intersection between line 5

and edge 25, at (6.5,4.4,0)

extend to lxl l5 e30 Create a straight edge to the intersection between

line 5 and edge 30, at (6.5,-4.4,0)

end Close the shape

draw Produces the image in Fig. 12.4

quit Leaves the sketching package
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This step is similar to that of the previous part when detailing the back part of

the object. Similar to that, it would have been possible to do the internal sketching

and extrusion at the same time. However, since explicit edge and vertex numbers

are used as references the 2D object is simpler and hence easier to identify the

elements.

draw Not shown in the figures

findface 10 18 Find a face common to two edges. This

is for information only and is used for

verification

2.5d face 1 originv 20 Start detailing the back face between the

rear prongs of the object

drawstyle dotted,label,-labf Set the drawing styles

line 1 start (-0.7,0) dir vj Create a line through the point relative

to origin vertex, at (23.2,0,0)

start lxl l1 e21 Start a new edge at (23.2,-4.2,0)

extend to lxl l1 e17 Extend it to (23.2,4.2,0)

end Close the shape

quit Leave the 2D shape definition

package

findface 10 18 Find the face common to two edges

2.5d face 1 originv 5 Start defining the oval face

of the object

drawstyle dotted,label,-labf Set the usual drawing styles

circle 1 centre (3.1,2.9) radius 2.9 Create circle 1 relative to the origin

vertex—global coordinates of the centre

(10.6,0,0)

circle 2 centre (1.9,2.9) radius 2.9 Create circle 2 relative to the origin

vertex—global coordinates of the centre

(9.4,0,0)

Fig. 12.4 Construction lines
for MBB Gehäuse Rohteil
front prongs
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line 1 start (0,5.8) dir vi Create line 1 with direction (1,0,0)

through the point relative

to the origin vertex—global

coordinates (7.5,2.9,0)

start v7 Start a new edge at vertex 7, at

(13.5,0,0)

extend round c1 to lxc l1 c1 Create a new circular edge, extending

counter-clockwise round circle 1 to

(10.6,2.9,0)

extend to lxc l1 c2 Create a new straight edge to (9.4,2.9,0)

extend round c2 to lxc e33 c2 Create a new circular edge, extending

counter-clockwise round circle 2 to

(7.5,0,0)

end Close the new shape to form the base for

the oval extrusion

start lxc e33 c2 Start a new part of the shape at (9.4,0,0)

extend round c2 to lxc e5 c2 Create a new circular edge counter-

clockwise round circle 2 from (7.5,0,0)

to (9.4,-2.9,0)

end Close the shape

quit Leave the 2D shape definition

2.5d face 7 originv 3 Create the shape for the hole at the front

of the object

drawstyle dotted,label,-labf Set the drawing styles

circle 1 centre (0,6.4) radius 4.5 Create a circle radius 4.5 with centre at

the global coordinates (0,0,0)

start (0,1.9) Start a new edge at (0,-4.5,0)

extend round c1 to (0,10.9) Create a new semicircular

edge in counter-clockwise

direction to (0,4.5,0)

extend round c1 to (0,1.9) Create a new semicircular edge round

circle 1 in counter-clockwise direction

to (0,-4.5,0)

end Close the shape

punch Punch the shape through to the under-

side of the 2D shape

quit Leave the shape definition package

draw Not shown in any figure

2.5d face 1 originv 6 Create the oval hole through the object

drawstyle dotted,label,-labf Set the drawing styles

circle 1 centre (-0.35,2.9) radius 2.25 Create a circle radius 2.25 with centre

at global position (10.25,0,0)

circle 2 centre (-0.85,2.9) radius 2.25 Create a circle radius 2.25 with centre

at global position (9.75,0,0)
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line 1 start (0,5.15) dir vi Create a line, direction (1,0,0) through

the global position (10.6,2.25,0), which

is also tangent to the two circles

line 2 start (0,0.65) dir vi Create a line through the global

position (10.6,-2.25,0), direction

(1,0,0), which is also tangent to the

two circles

start lxc l2 c1 Start a new edge at (10.25,-2.25,0)

extend round c1 to lxc l1 c1 Create a new semicircular edge coun-

ter-clockwise round circle 1 to

(10.25,2.25,0)

extend to lxc l1 c2 Create a new straight edge to

(9.75,2.25,0)

extend round c2 to lxc l2 c2 Create a new semicircular edge coun-

ter-clockwise round circle 2 to

(10.25,2.25,0)

extend to lxc l2 c1 Create a new straight edge to

(10.25,2.25,0)

end Close the shape

punch Punch the new shape through to the

underside of the object so that it

becomes a hole through the object

quit Leave the shape definition package

draw Not shown in the figures

2.5d face 8 originv 36 Start a new shape to define the hole at

the rear of the object

drawstyle dotted,label,-labf Set the drawing styles

circle 1 centre (3.25,4.2) radius 1.25 Create a circle radius 1.25 centred at

global coordinates (26.75,0,0)

circle 2 centre (2.55,4.2) radius 1.25 Create a circle radius 1.25 centred at

global coordinates (26.05,0,0)

line 1 start (0,2.95) dir vi Create a line through the global

position (22.5,-1.25,0), direction

(1,0,0), which is also tangent to the

two circles

line 2 start (0,5.45) dir vi Create a line, direction (1,0,0) through

the global position (22.5,1.25,0), which

is also tangent to the two circles

start lxc l1 c1 Start a new edge at (26.75,-1.25,0)

extend round c1 to lxc l2 c1 Create a new semicircular edge coun-

ter-clockwise round circle 1 to

(26.75,1.25,0)

extend to lxc l2 c2 Create a new straight edge to

(26.05,1.25,0)
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extend round c2 to lxc l1 c2 Create a new semicircular edge coun-

ter-clockwise round circle 2 to (26.05,

-1.25,0)

extend to lxc l1 c1 Create a new straight edge to (26.75,

-1.25,0)

end Close the shape

punch Punch the shape through to the under-

side to create a hole

quit Leave the shape definition package

draw Produces the image in Fig. 12.5

Unlike modern systems, BUILD created complex two dimensional shapes

which could be extruded to create solids. Modern systems like singly connected

profiles for extrusion, which makes for easier algorithms. The ‘‘punch’’ command

was needed to distinguish between holes which traversed a planar shape and

surface details.

set view (-2,10,10) Sets a static view position for graphics

draw Produces the image in Fig. 12.6

The graphics facilities were primitive at the time when this command file was

defined and hence only static images could be generated. Setting the view position

was the method for viewing an object from different directions.

Fig. 12.5 Final 2D shape for MBB Gehäuse Rohteil creation, viewed from above
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sweep body by (0,0,-5) Extrude the object downwards, which meant searching

for the bottom face, which consisted of a simple outer

contour with three inner circular contours

drawstyle lhl, -label Set the drawing styles

draw Produces the image in Fig. 12.7

The drawing style ‘‘lhl’’, which means ‘‘local hidden lines’’, was a simple

method for testing whether edges were definitely invisible and created slightly

more realistic images. The resulting image also shows a number of extra edges in

the extrusion direction between coplanar faces which result from the edge sub-

divisions due to the internal detailing on the top face.

sweep face 3 by (0,0,5) Sweep, or extrude, the first rear prong

sweep face 4 by (0,0,5) Sweep the second rear prong

draw Produces the image in Fig. 12.8

Again, note the use of face numbers as simple identifiers. This identification

method is fragile and needs constant modification if preceding steps are modified

to create extra elements.

sweep face 5 by (0,0,5) Sweep the first forward prong

sweep face 6 by (0,0,5) Sweep the second forward prong

sweep face 1 by (0,0,4.7) Sweep the oval shape

draw Not shown in any figure

Fig. 12.6 Final 2D shape for MBB Gehäuse Rohteil creation
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Fig. 12.7 MBB Gehäuse Rohteil with first extrusion

Fig. 12.8 First two prongs extruded
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sweep face 8 by vk Sweep the rear step upwards by one unit

sweep face 7 by (0,0,-1.4) Sweep the front of the object downwards by 1.4

units

draw Produces the image in Fig. 12.9

todisc camia Save the initial shape

quit Leave the system to prepare for the second set of

modifications

Although it is possible to create the object in one session, the command file was

broken into units. At the end of the first session, the object had all the basic shape

elements defined and extruded, or swept. Some of the faces need to be tilted in the

second step and extra elements added to create the final basic shape.

fromdisc camia Retrieve the basic shape saved at the end of the previous

session

drawstyle third,lhl Set the drawing styles

setcentre Set the graphical centre to be the centre of the object to be

drawn

draw Produces the image in Fig. 12.10

The object is drawn in ‘‘third angle view’’, which means that it has a similar layout

to an engineering drawing. This kind of viewing is also useful for examining the

relative positions of two objects prior to a Boolean operation, as will be seen in the

next sequence.

Fig. 12.9 MBB Gehäuse Rohteil with all faces extruded
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cube Create a standard cube, that is, a

cube with one corner at global

position (-1,-1,-1) and the other

extreme corner at (1,1,1)

modify by sx 3 sy 2.7 sz 3 mx 26.7 mz -4 Modify the shape and position of

the cube, scaling it by 3 in the

X-direction, 2.7 in the Y-direction

and 3 in the Z-direction. The cube

is then moved 26.7 in the

X-direction and -4 in the

Z-direction

draw 2 Produces the image in Fig. 12.11

Unlike many, but not all, modern systems, BUILD allowed uneven scaling.

Instead of creating a block of the correct dimensions, a standard shape was created

and then scaled to produce the correct shape. The cube is centred around the origin

so the scaling is done first and then the translation, in the order that the trans-

formation elements are written.

subtract Subtract the rescaled and repositioned block from the

MBB basic object to create the cutout at the back

drawstyle single, man Set the drawing styles

set scale 0.2 Set the graphics scale to 0.2

Fig. 12.10 Third angle view of MBB Gehäuse Rohteil with all faces extruded
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set view (-2,10,10) Set the viewing position

setcentre Recalculate the centre of the object for drawing

draw Produces the image in Fig. 12.12

The drawing styles above reset graphics to a single view and set the style to

‘‘manual’’ to allow graphical rescaling.

modify by mx -3.5 mz -5 Move the object in order to rotate the prong face

detransform Fix the transformation

tweak face 5 by ry 5 Rotate the face and recalculate the geometry

setcentre Set the graphics centre

draw Produces the image in Fig. 12.13

The face rotation, done by tweaking, modifies the face surface equations and

recalculates the surrounding geometry to be consistent. The tweak definition

specifies that the face is to be rotated about the Y-axis by 5�. This means that object

has to be moved so that the correct object part is coincident with the Y-axis. The

object is moved down 5 units and back 3.5 units, which means that the top edge of

the front prongs is aligned with the Y-axis. The ‘‘detransform’’ command means

that the translation is multiplied into the geometrical entities in the model so that

the model is really positioned at the right place. Normally, a transformation was

simply associated with the object and only used to change the object when the

Fig. 12.11 Third angle view of MBB Gehäuse Rohteil and cube to be subtracted
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Fig. 12.12 Single view of MBB Gehäuse Rohteil with extrusions and cutaway rear

Fig. 12.13 MBB gehäuse Rohteil with one tweaked face
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absolute position was needed, for example for Boolean operations. This command

enforces the multiplication under user control.

tweak face 8 by ry 5 Tweak the other prong face

modify by mx -19 mz 5 Move the object so as to be able to tweak the rear

prong face

detransform Multiply the transformation into the object

tweak face 30 by ry 15 Tweak one of the prong faces by 15�, the other has to

be changed using a Boolean operation

setcentre Set the graphics centre

draw Produces the image in Fig. 12.14

This step performs the other face rotations which can be done by tweaking. The

last face cannot be done in the same way because there is a topological change

which has to be made.

cube Create a standard cube

modify by mx -1 my -1 sy 5 sz 6 ry 15 Move the block so that its top corner

is at (0,0,0) and change the size of

the object by 5 in the Y-direction and

6 in the Z-direction. Finally rotate

the cube about the Y-axis by 15�

draw 2 Produces the image in Fig. 12.15

Fig. 12.14 MBB Gehäuse Rohteil with three tweaked faces

506 12 History, Parametric Parts and Programming



This step is similar to that before to create a tool block with which to modify the

basic object.

subtract Subtract the tool body from the base object

to create the final tilted face

setcentre Set the graphics centre

draw Not shown in figures

modify by mx -0.7 Move the body back 0.7 units

detransform Multiply the transformation into the body

tweak face 11 by ry 15 Tweak the small face of the step by 15�

modify by mx -5.7 my -6.4 mz 5 Move the body to its final position

detransform Multiply the transformation into the body

setcentre Set the graphics centre

draw Produces the image in Fig. 12.16

todisc camib Save the base body to disc ready for the

next stage

The commands shown above are part of the sequence for creating the MBB

Gehäuse Rohteil used in the CAM-I test of 1979. The sequences ran the BUILD

solid modelling system developed by the Cambridge University Computer Lab-

oratory research group led by Ian Braid. The sequences use principally the work on

shape definition and tweaking developed by Graham Jared, the Boolean operations

developed by Alan Smith and Bernard Solomon and some local operations

developed by Ian Stroud.

Fig. 12.15 Using subtract to create a sloping face

12.1 History Structures 507



Although old, this command sequence illustrates several important points. The

first is the use of construction geometry, the second is the references to the object

parts that are used, the third is the stack-based operation, finally, there are the types

of operations used. The use of construction geometry has become a standard part

of CAD. Referring to object parts is important and is discussed below. The BUILD

command interpreter also used a stack for object handling which allowed, for

example, multiple objects to be used in a fluent manner. Several of the operations

used in CAD systems today were already defined by the BUILD research group at

the end of the 1970s. Although these have been improved in terms of speed and

reliability, modern CAD developers have not introduced as many new operation

types as could be expected from contacts with their clients.

The next sections deal with developments of the use of command files.

12.1.2 Log Files

Log files are, I believe, older than commercial solid modelling, but it doesn’t really

matter for what is said here.

A log file is intended to record what a system user does interactively in a file. In

this respect the CAD system can be thought of as a graphical editor, creating a

command file while building up a model interactively. This was important in early

developments when systems weren’t as reliable as they are now so that designers

could redo their work and also pass problem files to developers for bug fixing.

Fig. 12.16 MBB Gehäuse Rohteil after first phase of creation
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To illustrate how this works, consider Fig. 12.17. The user moves the cursor to

the origin and clicks to indicate a start point, Fig. 12.17a. At the same time the

system writes a line to the log file, such as ‘‘start (0,0,0)’’. The user then moves

the cursor to a new position, say (35,0,0) and clicks the mouse button again.

The system draws a line from the start point to this position and writes a new line

to the log file, ‘‘goto (35,0,0)’’, Fig. 12.17b. The user again moves the cursor to

(35,30,0) and clicks the mouse button, causing the system to create a new line from

(35,0,0) to (35,30,0) and to write the line ‘‘goto (35,30,0)’’ to the log file,

Fig. 12.17c. The procedure continues to (15,30,0) Fig. 12.17d, (0,15,0)

Fig. 12.17e and finally to close up the figure, Fig. 12.7f.

For simplicity, construction geometry is not used in this example, although it is

a common facility. As the model development proceeds so the logfile is extended.

In Fig. 12.18 the first operation in the continuation might be a hidden operation, to

set the shape into a surface, and the second an extrusion.

This would give a logfile such as:

start (0,0,0)

goto (35,0,0)

goto (35,30,0)

goto (15,30,0)

goto (0,15,0)

goto (0,0,0)

embed plane (0,0,0) (0,0,1)

extrude (0,0,25)

And so on. The idea should be fairly clear that, instead of building a command

file using a text editor and imagining where everything is placed, a command file is

built while the user interacts. In order to replay the files, though, it is still necessary

to have a command interpreter.

Fig. 12.17 Creating a figure and log file
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None of the operations above, though, need to refer to model parts. The same

questions arise about handling model interactions as those raised above in the

command file sequence. Suppose that the user chamfers an edge in the model, as

shown in Fig. 12.19.

The simple solution to this is to record the command with the edge number,

picked interactively, say, such as:

chamfer edge 9 by 8

This is certainly enough for replaying the sequence, but it has the same prob-

lems if the object is modified prior to the chamfer command. Edge 9 may not be

the same as that originally intended. This becomes more of a problem for history

files.

12.1.3 Internal History Records

Finally, back to history files. If you can write a log file to a physical file, why not

just store it in memory?

This is the basis for history records. Retaining the log file in memory allows the

system to offer users the possibility of modifying command parameters and

rerunning code. This may be the basis for parametric modellers, which were

around in the late 1980s. One famous example of a parametric system is

Pro-Engineer, although I do not know how it works. This system was innovative

when it first appeared and these innovations were appreciated. Other systems

Fig. 12.18 Extrusion and log file

Fig. 12.19 Chamfering and
log file
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followed by producing the kind of history records mentioned above, at least, I

assume that they work in the way mentioned above. It is not the purpose to analyse

the systems to reveal commercial secrets but merely to show how they might work

and show the links to the initial command files.

One question about internal history records, though, is what you show to the

user. It is not optimal if the user sees all the commands that the system uses to

create the object. Sketch geometry is not necessarily shown in complete form.

For example, to create a simple cube, as shown in Fig. 12.20, you might have the

following operations:

2.5d Start a sketch

line 1 start (0,0,0) dir vi Create a first line

line 2 start (80,0,0) dir vj Create a second line

line 3 start (80,70,0) dir -vi Create a third line

line 4 start (0,70,0) dir -vj Create a fourth line

perpendicular l1 l2 Set a constraint. These are often done automati-

cally by the system if two lines are almost

perpendicular

parallel l1 l3 Another constraint which may be added

automatically

parallel l2 l4 Another constraint

distance l1 l3 100 Set the distance between two lines to be 100,

changing the geometry. This is equivalent to adding

a dimension and changing the value to 100.

A distance dimension also requires a parallelism

constraint

distance l2 l4 100 Change the geometry so that the distance between

the lines is 100

start lxl l1 l4 Start inking in at a particular point. The geomet-

rical elements are infinite, even though the system

may only draw the inked-in portions of that

geometry

extend to lxl l1 l2 Make an edge to the second corner

Fig. 12.20 Creating history
files

12.1 History Structures 511



extend to lxl l2 l3 Make an edge to the third corner

extend to lxl l3 l4 Make an edge to the fourth corner

joinup Make the last edge

quit Exit from the sketch module

embed plane vo vk Set the inked-in sketch, a wireframe model, into a

surface to make it complete

sweep body by (0,0,100) Extrude the body to create the solid

Of this, the user might see:

Sketch Sketching information shown graphically

sweep body by (0,0,100) Create the final solid. The embedding operation is a

preprocessing step to the extrusion operation

As a further illustration, consider again the sequence to create the basic MBB

Gehäuse Rohteil.

Sketch1 Sketching information shown graphically in

Fig. 12.21. Only two dimensions are shown

for simplicity, but normally the shape would

need many more

sweep sketch1 by (0,0,5) Create the final solid. The embedding

operation is a preprocessing step to the

extrusion operation. The sketch is added on

a plane or planar face and the wireframe

sketch is embedded into that plane

Sketch2 Sketching information shown graphically in

Fig. 12.22. The sketch would be done on the

top face of the object created in the first step

sweep sketch2 by (0,0,5) Extrude the prongs, they can be done in one

step because they are all the same height.

Fig. 12.21 MBB Gehäuse
Rohteil—initial sketch

Fig. 12.22 MBB Gehäuse
Rohteil—prongs extruded
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It doesn’t matter that the sketch parts are

not linked. In modern systems the swept, or

extruded, shapes become separate objects

which are then added to the original object

using Boolean operations, as described in

Chap. 4

Sketch3 Sketching information shown graphically in

Fig. 12.23. The sketch could be done using

the object’s own boundaries or as a larger

object if a Boolean subtraction is used

sweepcut sketch3 by (0,0,-1.4) Extrude the front part downwards. In

modern systems this may be done as a

linear sweep of (0,0,1.4) and a subtraction

Boolean operation

Sketch4 Sketching information shown graphically in

Fig. 12.24

sweep sketch4 by (0,0,4.7) Extrude the oval shape. As before, this is

now usually done by creating a separate

object which is then added to the original

Sketch5 Sketching information shown graphically in

Fig. 12.25

Fig. 12.23 MBB Gehäuse
Rohteil—front swept
downwards

Fig. 12.24 MBB Gehäuse
Rohteil—oval part extruded
upwards

Fig. 12.25 MBB Gehäuse
Rohteil—back step extruded
upwards
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sweep sketch5 by (0,0,1) Extrude the back step

Sketch6 Sketching information shown graphically in

Fig. 12.26. The sketch can be done on the

top surface of the prongs or on the surface

of the oval part. The extent here is given as

10, but the extent could be to the bottom

surface

sweepcut sketch6 by (0,0,-10) Extrude the hole shapes downwards. Linear

extrusion and subtraction operation again

to give that the holes go right through the

object. If Boolean operations were not used

it would be necessary to sketch each hole

separately on the correct face and extruded

it through to the underside face to ensure

that it breaks through

tweak face x by -5 about edge xx Rotate the front prong faces by 5� about the

bottom edge. The result is shown in

Fig. 12.27

tweak face y by -5 about edge xx

Selecting the face and edge is a topic which will be dealt with later. In modern

systems this is done by interactive picking, but the topic is not evident.

Fig. 12.26 MBB Gehäuse
Rohteil—holes made

Fig. 12.27 MBB Gehäuse
Rohteil—front prongs
modified
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Sketch7 Sketching information shown graphically

in Fig. 12.28

sweepcut Sketch7 by (0,12.8,0) Extrude the wedge shape and subtract

from the body. Fig. 12.29. This is an

alternative to a tweak operation

Tweak face z about edge zz by -15 Rotate the small step face by 15�

Sketch8 Sketching information shown graphically

in Fig. 12.30

sweepcut sketch8 by (0,0,4) Extrude the square shape (linear extru-

sion and subtraction Boolean operation)

The reason for showing this sequence is to demonstrate the way in which

sketches are used to group shape definitions into visual groups. It is not necessary

to maintain the individual curve information. The resulting history information

shown to the user might be:

Fig. 12.28 MBB Gehäuse
Rohteil—back prongs
modified

Fig. 12.29 MBB Gehäuse
Rohteil—back step modified

Fig. 12.30 MBB Gehäuse
Rohteil—rear cutout made
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Sketch1 Figure 12.21

sweep sketch1 by (0,0,5)

Sketch2 Figure 12.22

sweep sketch2 by (0,0,5)

Sketch3 Figure 12.23

sweepcut sketch3 by (0,0,-1.4)

Sketch4 Figure 12.24

sweep sketch4 by (0,0,4.7)

Sketch5 Figure 12.25

sweep sketch5 by (0,0,1)

Sketch6 Figure 12.26

sweepcut sketch6 by (0,0,-10)

tweak face x by -5 about edge xx

tweak face y by -5 about edge xx

Sketch7 Figure 12.28

sweepcut Sketch7 by (0,12.8,0)

Tweak face z about edge zz by -15

Sketch8 Figure 12.30

sweepcut sketch8 by (0,0,4)

This is much more efficient than showing all the commands to create curves and

the 2D profiles. Two things to note, though, are the way that you refer to object

parts, to be discussed in Sect. 12.2 and the way that operation parameters are used

to create parametric files, to be discussed in Sect. 12.3.

12.2 Referring to Model Parts

One of the key needs with command files and history trees is to be able to refer to

parts of the model. This topic has already been mentioned in Sect. 7.4, but is

mentioned here in more detail. A good reference for this topic is Várady et al. [2]

which gives a good perspective for these techniques. Due to the different devel-

opment and availability of graphics it was not always possible to use interactive

techniques and hence several methods were tried. Although interactive graphics is

widely available, it is not always appropriate and re-evaluation of a part is one of

those areas where other techniques are needed.

12.2.1 Entity Numbers

Entity numbers are a basic element of modelling datastructures, though not in all

systems. An entity number is useful for writing model data to a disk-file as well as

516 12 History, Parametric Parts and Programming

http://dx.doi.org/10.1007/978-0-85729-259-9_7


for debugging. In the BUILD research solid modeller these were also used to

identify elements for commands, as can be seen in the command sequence shown

in Sect. 12.1.1.

What happened in BUILD was that, when an entity was created or revived after

being deleted, it received automatically a unique number. This meant that the

number of the entity depended on the order of creation of the entities of that type.

Take the example of a cube, made here by creating a square on the Z = 0 plane

with one corner at (0,0,0) and then extruding the result in the Z-direction

(Fig. 12.31).

Suppose, now that I want to chamfer edge 9 by five units. The result object may

be as shown in Fig. 12.32.

Fig. 12.31 Entity numbering when making a rectangular block
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The command file to create the object might be:

2.5D

start (0,0)

extend to (50,0)

extend to (50,50)

extend to (0,50)

extend to (0,0)

end

sweep face 1 by (0,0,50)

chamfer edge 9 by 8

If the shape creation part is changed to create a five-sided shape, with the

following command sequence:

2.5D

start (0,0)

extend to (50,0)

extend to (50,20)

extend to (30,50)

extend to (0,50)

extend to (0,0)

end

sweep face 1 by (0,0,50)

chamfer edge 9 by 8

Then, the sequence for creating the five-sided block would be as shown in

Fig. 12.33.

Chamfering edge 9 would then cause one of the vertical edges to be chamfered,

as shown in Fig. 12.34.

As already mentioned, the use of entity numbers in command sequences is

volatile and changing the commands in the sequence may cause odd results. This

means that simple entity numbers are not really stable enough to support user

interactions.

Fig. 12.32 Chamfered edge
in block
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12.2.2 Topological Navigation

Topological navigation was a method invented by Chris Cary for the BUILD

system to allow model entity identification as a series of qualified entities. What

Fig. 12.33 Entity numbering when making a five-sided block
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Cary did was to use relative positions of elements to move around the object. Cary

used six position qualifiers: TOP, BOTTOM, LEFT, RIGHT, FRONT, BACK with

the three topological elements: FACE, EDGE, VERTEX. The method was a major

advance over the use of entity numbers because entities were found dynamically

based on position rather than on a predefined number which did not depend on

shape. However, it was necessary to be able to visualise the target object and be

able to identify unique sequences to find the element. Sometimes, too, it is difficult

to find a valid sequence, but the method worked very well for the test objects used

in the software development before interactive techniques were developed.

Take the case in Fig. 12.32 again. The command sequence for this, using

Cary’s navigation method, would be:

2.5D

start (0,0)

extend to (50,0)

extend to (50,50)

extend to (0,50)

extend to (0,0)

end

sweep face 1 by (0,0,50)

chamfer top edge of front face by 8

Note that edge 9 in Fig. 12.31 is not the top edge of the body, as edges 7, 9, 11

and 12 are all equally high. Nor is it the front edge of the body, since edges 2, 6, 8

and 9 are all equally forward. However, the front face is unique, that is face 4, and

the highest edge on that is edge 9. Although edges 6 and 8 have one end vertex as

high as edge 9, they extend lower than edge 9, so the definition of top is highest

maximum and highest minimum. If several elements have equal extents then a

warning should be given.

In order to chamfer the corresponding edge of the five sided block, shown on

the top-left of Fig. 12.35, the sequence:

chamfer top edge of front face by 8

Fig. 12.34 Chamfering edge
9 in the five-sided block
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is also valid, producing the result shown at the top right of Fig. 12.35. In order to

chamfer the adjacent top edge, as shown on the bottom left of Fig. 12.35, you

might have the sequence:

chamfer top edge of right face of right edge of front face by 8

or chamfer top edge of front face of front edge of right face by 8

or chamfer right edge of front edge of top face by 8

Finally, to chamfer edge 9, bottom right of Fig. 12.35, you might have the

sequence:

chamfer right edge of front face by 8

As an example of a more complex sequence, consider the selection of the edge

around which to tweak the face of the MBB object, shown in Fig. 12.27. The

sequence given was:

tweak face x by -5 about edge xx

Replacing ‘‘edge xx’’ by a navigation sequence might give:

tweak face x by -5 about right edge of back vertex of back edge of top vertex of

front edge of left face

The use of this navigation comes from the era when command files were used

rather than interactive techniques. The technique is based on human ability to

Fig. 12.35 Chamfering
different edges in the five-
sided block
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visualise an object being made and it is hard to see how sequences could be

generated automatically for history sequences.

12.2.3 Hit-Testing

Hit-testing is a graphical means of identifying elements by picking them in a

graphics model on a screen and is now the dominant entity selection technique.

This has already been described, in Sect. 7.4, but is here mentioned again in terms

of command files and history.

Hit-testing is a method where a two dimensional point on the screen is converted

into a model entity. There are two methods, one is the model-space method and the

other the graphics-space method. In the model-space method, the place at which a

user clicks on the image, is converted into a three dimensional point, and the view

direction is used to create a line in space. This line is then intersected with the object

in model space to recover a set of elements at proximity to which the line passes. In

the graphics-space method a graphics entity is identified during drawing and then

this entity linked back to the model in model-space. You don’t really have to know

which of these is used, merely that the act of picking returns a model element.

In command files the interactive pick can be replaced by a three dimensional

point and a vector direction. This is done in command files in the ACIS modelling

kernel, for example. In history files the interactive pick from the user can be

recorded, together with the current visual transformation, and then the interactive

pick can be reconstructed if the command sequence is replayed.

To understand the role of transformations in graphics, see Sects. 5.2.2 and 7.1.

Take the example of Fig. 12.32 as an example. Suppose the user turns the cube so

that it looks something like the figure on the left of Fig. 12.36. Suppose, also, that

the user selects the middle of the edge for chamfering. The picking data for the hit

test might be a line through the middle of the object, say (0,0,0) with a direction

(-0.7071,0,-0.7071).

If the same sequence is applied with the new object, then the picking misses an

edge, as shown on the right hand side of Fig. 12.36. Even though record the picking

seems a good idea there are limitations. For the second, the CAD system should

Fig. 12.36 Hitting the edge
to be chamfered in the cube
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probably flag an error and disallow the command. Recording picking data is cer-

tainly a method that has been used at one time for history recording. The other main

method used currently is the ‘‘persistent naming’’ method, described next.

12.2.4 Persistent Naming

‘‘Persistent naming’’ is a technique in which the identity of model parts operated

upon retain their identity. In command files, it was difficult to refer to model parts,

as explained above. Persistent naming is a little like the use of entity numbers in

the first command files. However, unlike entity numbers, persistent names are

transmitted and transformed to give a historical record. The following is how

persistent naming might work because there are several possibilities. One method

is described by Mun and Han [3]. The following is a simplified method intended to

illustrate the principle without being close to any existing commercial method.

Take again the example from before with the extruded square shape.

Figure 12.37 shows the basic shape with some simple names.

Fig. 12.37 Square with
persistent names

Fig. 12.38 Cube with
persistent names
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When the object is extruded the new elements receive names based on the old

names, as shown in Fig. 12.38.

Pick the same edge, that is, the one marked ‘‘b1_e2_ext_e9’’ in Fig. 12.38, and

chamfer it, as in the earlier examples. Now, modify the original sketch, shown in

Fig. 12.37, by cutting off a corner, as shown in Fig. 12.39.

When this new figure is extruded, the chamfered edge now has a slightly

different name: ‘‘b1_e2(1)_ext_e9’’. The ‘‘(1)’’ denotes a modification so it is

relatively easy to match the old name part ‘‘b1_e2_ext’’ with ‘‘b1_e2(1)_ext’’

simply by ignoring the name modifier. The last part, the ‘‘e9’’ is not used for

matching. Note, though, that if edge ‘‘b1_e2’’ had been totally replaced then the

method would not have worked.

Not being an expert on persistent naming, I have tried to explain what I

understand to be the mechanism behind persistent naming. In summary, it is a

method for keeping a trail through the development of the model in order to

minimise reworking. However, it is not an infallible method.

12.2.5 Do What I Mean

Do not expect magic solutions from any system. There is no DWIM CAD func-

tion, the illusive ‘‘Do What I Mean’’ function, and it is unrealistic to expect CAD

systems to know always what you want. Really, it’s up to the user to avoid

complicated sequences and extensive editing of the history tree. It may even be

worthwhile redoing the design at the end if you want to have a logical command

description of an object.

Fig. 12.39 Modified square
with persistent names
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The methods described around part identification try and help the user to create

a consistent model creation description which can be used as a part history and can

be modified. These methods may help but they may also hinder by creating

unexpected side-effects of changes. This may be helped by improving the com-

puter-aided design support chain but in any case remember that it is necessary to

check the model produced. Only the user can do this properly.

12.3 Parametrisation

True 3D dimensioning is rare. Hillyard [4] wrote his dissertation on the subject of

dimensioning and tolerancing in 2D and 3D. The methods proposed by Hillyard

for three dimensional dimensioning are complex to use because they used a matrix

for modifying vertex positions and the surface and other geometry had to be

modified indirectly. There are also three dimensional constraints to be take into

consideration, which Hillyard describes. However, it is a pity that this method is

not used as it is a direct way of manipulating objects.

What is currently used in CAD systems is a mixture of 2D dimensioning and

operation parameter manipulation. In this sense, parametrisation means naming the

operation parameters as well as 2D dimensions and allowing the user to change

these, directly or indirectly. An interesting possibility which is found in many

systems is to allow dimensions to have vales computed from other dimensions.

This is important for creating product families. An early example, from Braid and

Hillyard involved the analysis of simple spanners. These are not simply scaled

versions of each other. The shape of each spanner depends on the size of the nut

which it is to fit. As with other families, there is a principle, or driving, dimension

and other dimensions defined in terms of these.

Taking a simplistic example, of the spanner shown in Fig. 12.40, you might

have the following relationships between the driving dimension, w, and the other

dimensions shown, R hw and l:

if w\4 then R ¼ wþ 2 else if w\10 then R ¼ w � 1:4 else R ¼ w � 1:2
if w\4 then hw ¼ w else if w\18 then hw ¼ w � 0:667 else hw ¼ 12

l ¼ R � 4:4

Fig. 12.40 Simple spanner
model
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This is not intended to be an ‘‘industrial strength’’ example, merely an illus-

tration of how dimensions can be related. If the operation parameters are also

available for functional descriptions then it may also be possible to add:

if w\4 then extrusion distance ¼ 2 else extrusion distance ¼ w � 0:125þ 2

This gives a way of defining part families, although a real example may be quite

complicated.

A complication to this is when the model topology changes for certain values of

the driving parameter or parameters. This may mean that certain operations fail

because the elements to which they refer disappear.

At the top of Fig. 12.41 is the product when the circular part is relatively large

while that on the bottom is when the circular parts are smaller. When there is the

gap between the vertical part and the circular part the top front edge of that is

chamfered. Suppose that this is made in two steps from a basic shapes, such as

those shown in Fig. 12.42. The first shape is defined and extruded, say 60 units. In

the next step the long horizontal part is added and extruded 20 units. In the final

step the final thick part is added and extruded 40 units. A chamfer is added to the

front edge of the thick part.

If the following rules are applied:

if R1\60 then R2 ¼ R1 þ 10 else R2 ¼ R1 � 1:2
l1 ¼ 100; l2 ¼ ðR1 þ R2Þ � 0:5
if R1\60 then l3 ¼ l1 else l3 ¼ l1 � ðR2 � R1Þ � 1:5

Fig. 12.41 Simple product
with variable topology
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Then it is clear that when R1 is less than 60 the shape at the bottom of

Fig. 12.41 will result and there will be no edge to chamfer. One solution to this is

to produce two sequences. Another solution may be allow operations to be con-

ditional, either checking parameter values or checking for the existence of topo-

logical elements. I have not seen the second solution in practice, though.

12.4 Undoing and Redoing

The method for handling changes described previously concerns having a list of

operations invoked by the user and rerunning them. There is another method of

undoing and redoing operations which can be used to undo work, especially if an

operation fails. This is the so-called ‘‘blackboard’’ method.

In the blackboard method, the system maintains a list of changes to the state of

computer memory. Each change may be the creation of an element, its modifi-

cation or its deletion. In the case of modification, the old values of the element are

recorded so that they can be reinserted. In the case of deletion, the old record is

simply preserved.

If an undo is forced then the system simply runs back down the list until the

previous check point, deleting new entities, changing back the values of modified

elements and recreating deleted entities. This undo, though, is also recorded so that

the user can ‘‘redo’’ a change which has previously been undone.

Fig. 12.42 Variable
topology product basic
shapes
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Note that this method also has an overhead in terms of memory use. For this

reason, if a change is undone and then the model modified, it may no longer be

possible to redo that change because the redo records have been deleted to save space.

A variant on this method, employed in I-DEAS for a while, was to copy

complete models as part of the construction history. This also meant that the

I-DEAS disc files could get quite large for complicated models.

12.5 Macro Languages and CAD System Programming

Macro languages and programming interfaces provide a way of extending a CAD

system by adding user defined functionality. They both require more knowledge

about how modelling operations work in order to use.

Macro languages and system programming use what is called the ‘‘Application

Programming Interface’’, also known as an API, to access the main functionality of

the CAD system. The main difference is that with system programming you use

the computer language of the CAD system and have access to data structures and

more functionality, while with macro-languages you use an interpreted interface.

Macro languages come in two forms: CAD system private form or interpreted

computer language forms. The CAD system private form is like the command

interpreter formats described at the beginning of this chapter in Sect. 12.1.1. The

computer language forms are interpreted forms which are linked to the CAD

system code. An advantage with computer language forms is that the syntax and

several utilities already exist. Examples of the use of computer languages with

CAD and modelling are the use of LISP by Kjellberg et al. of KTH during the

early 1980s (also used later as an interface to the ACIS modelling kernel) and the

use of Visual Basic in CATIA.

An Application Programming Interface might have the following components:

• Main modelling functions

• Element traversal and collection

• Euler operations

• Geometric utilities

The main modelling functions may include:

• Boolean operations

• Extrusion

• Wire model extrusion

• Reflection/symmetry

• Chamfering

• Blending

• Shelling

• Thickening

• Draft angle
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An example of an API function, in some arbitrary form, might be:

API BOOLEAN ADDðRESULT ��result code;BODY �b1;BODY �b2Þ

where ‘‘b1’’ and ‘‘b2’’ are pointers to two bodies. If there are multiple body results,

because b1 and b2 do not overlap, then these are chained together. The result code

is to communicate warnings or errors as a list of results.

There are two levels to work at. On one level you can use high level functions.

As an example of this, take a function to create a strange insert, shown sectioned in

Fig. 12.43. The shape of the cut out is a truncated pyramid topped by a double

cone as a sort of push fit connector. This is not intended to be like any existing

connector and I apologise if it resembles any commercial product.

Suppose that there is a function called ‘‘MAKE_INSERT’’. It is necessary

(advisable) to define the function and its parameters in a formal way, something

like this:

FUNCTION MAKE_INSERT(RESULT **result_code, point connect_pos,

vector connect_dir, real connect_rad, BODY *target);

INPUT PARAMETERS

result_code The error code

connect_pos The connection position

connect_dir The connection direction

connect_rad The connection radius

target The target object

OUTPUT PARAMETERS

none

ERRORS

Given radius is zero or negative

Given direction vector is zero length

Target object is NULL

COMMENTS

The function creates a connector insert shape at the given position and in the

given direction,with a given radius. The connector shape is created in the given body.

The code might be something like the following:

Fig. 12.43 Strange insert
(section)
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Lines 4–9 are some simple checks on the parameters. Lines 18–19 set up a local

coordinate system based on the connect_dir parameter. The connector shape base

is created as a primitive on lines 23, 24. The two cone shapes are created as

primitives and added to the base using Boolean operations (lines 25–32) before

subtract the shape from the original body (line 33).

As a lower level programming example, take a function to create a pyramid or

truncated pyramid. This can be created fairly easily using Euler operators, as it is a

variant of the extrusion or sweep command.

The formal definition would be something like this:
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FUNCTION make_pyramid(RESULT **result_code, point base_centre,

vector zdir, real base_radius, real top_radius,

double height, int side_num, BODY **pyrb)

INPUT PARAMETERS

result_code The error code

base_centre The centre of the pyramid base

zdir The direction of the pyramid axis

base_radius The radius of the pyramid base

top_radius The radius of the pyramid top

height The height of the pyramid

side_num The number of sides of the pyramid

OUTPUT PARAMETERS

pyrb A pointer to the pyramid made

ERRORS

Given radii are both zero

One or both radii are negative

Given zdir vector is zero length

Given height less than or equal to zero

Number of sides less than three

COMMENTS

The function builds a pyramid with base centre at the given point and axis in the

given direction. If the top radius is larger than the bottom radius then the pyramid

will be inverted. If the two radii are equal then the result will be a prism, but one or

both radii must be greater than zero.

The actual code for such a function is relatively easy to write using tools

such as the Euler operators. For example, in a sort-of pseudo code you might

have:

This is more complicated than the first example because it uses lower level

operations to build up the object. As before, the function starts by testing the

parameters in lines 5–11. Then, the necessary variables are declared in lines 13–20

and a local coordinate system set up in lines 22–25. The function first creates a

base with side num sides, in lines 26–58. The polyareavec function (line 60)

computes the normal to a face based on the vertex positions so that the base

surfaces can be computed (lines 61–66). The function then finishes the pyramid by

stepping round the base creating the side faces (lines 86–125).

These two examples are intended to show you the style of different program-

ming levels, the first using high-level functions and the second lower level

manipulation functions. Which is appropriate depends on the nature of the prob-

lem, but obviously the second style requires a much more thorough knowledge of

the CAD system functions.
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As a final comment, an interesting possibility which, as far as I know, has not

yet been exploited is the use of the DJINN format, described in Sect. 9.3.1, as an

interface. The advantage of DJINN is that, if it is provided as an interface, new

functionality can be implemented directly (or even indirectly using DJINN itself)

and provided in macro form for other CAD systems. This would be an important

step in generalising construction history standardisation.

12.6 Chapter Summary

This chapter deals with the use of command files in modelling and CAD, with

part identification, with parametric parts and with programming. The aim of the

chapter is to explain how command files were once used as input and then seem

to have become a way of creating a construction history. The chapter also deals

with the problem of model element identification. Part parametrisation is

described as well as brief summaries of undoing and redoing and programming

interfaces.

12.7 History, Parametric Parts and Programming Exercises

12.7.1 Topological Navigation

In the object in Fig. 12.44, determine the topological sequences for different

elements.

Try to find expressions for the marked elements, faces 1, 2, 3, edge 1 and vertex

1 in the figure. Assume that FRONT is in the +X direction, BACK in the

-X direction, RIGHT in the +Y direction, LEFT in the -Y direction, TOP in the

+Z direction and BOTTOM in the -Z direction.

12.7.2 Permanent Naming Exercise with Chamfer

Make a square 100� 100 and extrude it upwards 100 units. Chamfer the top edge,

by 10 for example, as shown in Fig. 12.45.

Now edit the sketch so it looks like that in Fig. 12.46 and allow the CAD

system to redo the sequence.

Two variants of what might happen are shown in Fig. 12.47. Either one of the

top front edges is chamfered or both are. If only one is chamfered then the CAD

system does not apply persistent naming at the 2D level.

A variant on this is to create the 100� 100� 100 cube with a chamfered edge

as before and then to go back and, after the cube has been made but before the

chamfer, insert a cutout from the base face upwards through the chamfer.
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12.7.3 Writing a Command Sequence

Write a command sequence to create the object in Fig. 12.48.

Create the object by making a square, 100� 100 and extruding this 40 units.

On the top face, a rectangular shape 50� 25 should be created and extruded 60

units. On the front face a 50� 20 rectangle is created and extruded 45 units.

Finally, the edge marked with an error on the bottom right of the figure should be

chamfered. The exercise is about writing the command sequence, not about

making the object in a CAD system.

Fig. 12.44 Basic figure for
topological navigation

Fig. 12.45 Cube with
chamfered edge

Fig. 12.46 Modified basic
shape for chamfer test
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12.7.4 Parametric Object Exercise

Use your CAD system to produce a parametric model. The shape to be para-

metrised is shown in Fig. 12.49.

A is the driving dimension.

B ¼ A � 1:5
if A\50 then C ¼ 5 else C ¼ A � 0:2
if A\50 then D ¼ A � 0:65 else if A\100 then D ¼ A � 0:55 else D ¼ A � 0:5
E = D

F ¼ D � 0:25
if A\50 then G ¼ A=6 else G ¼ A=7
H ¼ A � 0:25
if A\60 then I ¼ A=2 else I ¼ A � 0:6
J ¼ H � 0:5

Can you set a condition on A? Try setting the condition:

if A\50 then A ¼ 50

Fig. 12.47 Modified shape
with chamfered edge
(variants)

Fig. 12.48 Object to be
created with a command
sequence
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Chapter 13

Assemblies

Most products consist of a set of linked objects organised in a structure called, at

least sometimes, an ‘‘assembly’’. The classical assembly structure defined in the

BUILD system, perhaps even earlier, has a structure consisting of an assembly,

containing a list of instances each referring to a single object or an assembly. The

use of instances and transformations also appears in computer graphics, see

Newman and Sproull [1], for example.

The structure mentioned in Sect. 2.10 is shown in Fig. 13.1. The modern

structure also includes constraints, which define relations between elements of the

assembly.

With the exception of the CONSTRAINT entity this is the classic form of

assembly description. This is not only a practical and realistic way of representing

assemblies but has the important advantage of reducing the memory and disc usage

for complex assemblies. It is practical because every part is represented fully only

once, which makes it easy to identify the basic components needed in a product.

Another practical result is that it is possible to animate the assembly, simulating

motion for example, just by changing a transformation matrix and not the whole

geometry associated with an object.

Constraints set up relationships between assembly elements that need to be

respected when changing assembly element positions. Examples of constraints are

planar face contacts or cylinder in cylindrical hole. The constraints link instances

not objects because it is the instances which are unique in the assembly.

Some examples of assembly structures (from Stroud [2]) are shown in

Figs. 13.2, 13.4, 13.6 and 13.8.

Figure 13.2 shows a simply assembly where all parts in the assembly are

unique. There are no repeated sub-structures in the assembly and, because there are

only a few elements, it may be conveniently represented as a flat assembly. The

structure is shown in Fig. 13.3. (To be pedantic, the instances are actually chained

together in a list, but they are shown here as though the Group of Objects refer-

ences each one separately because it seems clearer.) In the figure, circles are used

to represent objects or object groups, while triangles are used to represent

instances.

I. Stroud and H. Nagy, Solid Modelling and CAD Systems,
DOI: 10.1007/978-0-85729-259-9_13, � Springer-Verlag London Limited 2011
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At the top level there is one group of objects, OG1. This has a list of seven

instances, I1. . .I7: Each instance has a transformation and refers to one single

object, in this assembly. The constraints are not shown, but instance I4; which
references the frame object, would probably be fixed in position so that the other

instances move to it. This is a bit like physical assembly where the frame would be

put in the assembly area and the other subparts moved to it. Constraints will be

dealt with later, in Sect. 13.4, so will not be dealt with further here. The constraints

serve to determine the transformation matrices which change the apparent position

of objects in the assembly.

The next assembly example, Fig. 13.4, shows the sort of structure that might

result with common standard elements like nuts and bolts. Here, there should be only

one full model for each standard element and multiple references. This is important

both for saving space and for the standard Bill of Materials (BOM) determination

(Sect. 13.7). In the assembly there are only four ‘‘real’’ objects while there are ten

instances. Each instance appears to be a separate object. In the original assembly

Fig. 13.2 Simply assembly

Fig. 13.3 Assembly
datastructure for the simple
assembly

GROUP OF OBJECTS

INSTANCE

OBJECT or GROUP OF OBJECTS

TRANSFORMATIONCONSTRAINT

Fig. 13.1 General assembly
datastructure
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datastructures and possibly also now, each real object model maintained a count of

the number of times that it was used, meaning that the bolt model would have a count

of four, as would the nut model. For creating the Bill of Materials it is simply

necessary to print out the model name together with this count to give the required

information. This is one reason why it is important to use the instancing mechanism

instead of just copying models. It is harder, and time consuming, for a CAD system

to compare the geometry and topology of two models to see if they are the same or

different than to compare two model references to see that they refer to the same

object.

The structure resulting from such an assembly is shown in Fig. 13.5. For the

repeated elements, the transformations associated with each instance are used to

place the graphics image of the part in different places, giving the effect of mul-

tiple objects. Graphics systems use transformation matrices for several purposes

and it is easy to pass over the instance transformation matrix to the graphics

system to view the different instances.

Another type of structure is shown in Fig. 13.6. Here, there is a repeated sub-

assembly as an illustration of the way in which assembly structures can be hierar-

chic. Logical structuring of the assembly is important, both for efficiency and also

Fig. 13.4 Assembly with
repeated standard elements

Fig. 13.5 Assembly
datastructure for the standard
elements assembly
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for communicating design intention.With very complex assemblies the space saving

aspects of using instances of subassemblies is still important. One aspect of this is

that the subassemblies should be treated as rigid. This is because the whole assembly

is repeated and it is unreasonable to expect the system to have an assembly with one

set of transformations in one place and another set of transformations in another

place. So, if a subassembly is changed, then all instances of that subassembly are

expected to change. In order for a CAD system to have different positions for

subassemblies then it would be necessary to maintain a hierarchy of transformation

matrices or, easier, to copy the subassembly structure.

Note that there are only six unique models in this structure, although it appears

that there are sixteen pieces, as illustrated in Fig. 13.7. Although this is a simple

assembly, there is a significant saving of memory. As products become more

complex so the saving increases. However, it is not always possible to create

multi-used subassemblies for space saving purposes, but structuring an assembly

may be important anyway. The reason, mentioned above, of communicating

design intention is important. For production, a subassembly may represent a

complex component which can be physically assembled in parallel with the main

assembly, hence saving time.

The final example of an assembly structure is that developed by Lars Wingård of

the Royal Institute of Technology (KTH) in Stockholm. The structure is shown in

Fig. 13.8 and is a model of an ASEA (as it was then) industrial robot byWingård and

Palm. The model was used both as a demonstration of animation and, later,

Fig. 13.6 Assembly with
sub-assemblies
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Fig. 13.7 Assembly
datastructure for the repeated
sub-assembly structure

Fig. 13.8 Complex
kinematic assembly (by
Wingård)
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for simulation of welding. Wingård arranged the structure so that a transformation

corresponded to each driven joint of the robot. Thus, bymodifying the transformation

matrices, the robot model wasmade tomove. Each subgroup of objects was treated as

a rigid subassembly which could be moved as a whole according to the programmed

joint movements. The corresponding datastructure is shown in Fig. 13.9.

This is, perhaps, an extreme structure and has, to a certain extent, been replaced

by the use of constraints. However, this is an efficient method, since it does not

need a constraint solving process to calculate the transformation matrices. Note

that there are only six unique objects in the assembly, each used once, while there

are ten instances.

These examples are intended to show that there are many ways to determine an

assembly structure and, as usual, it is up to the user to be aware of what he or she is

doing to use assemblies effectively.

One thing to remember is that it is important to use the instancing mechanism

rather than simply copying models. Although copying models may seem to pro-

duce the same result this represents a waste of space. Also important is to reflect on

the structure of the design and, if possible, to group elements into logical groups.

As with creation of single model designs, though, the user’s reasoning for an

assembly structure may not be clear to other people accessing the data. The lack of

easy mechanisms for annotating models is still a problem in CAD and this

information may have to be put in separate documents, even on paper.

13.1 Instances

An instance is a reference to an object or sub-assembly together with a transfor-

mation to define how that object or subassembly is positioned and oriented with

respect to the global coordinate system. You should understand that an instance

entity is very simple and so is much smaller, in terms of memory use, than the object

or object group which it references. Another thing to note is that an instance is not

allowed to reference any assembly or group-of-objects which contains it directly or

indirectly. An example of a self-referencing assembly is shown in Fig. 13.10.

Obviously, if such an assembly structure were allowed then it would be tra-

versed endlessly. In order to avoid this, when you ask to add an assembly to an

assembly, then the assembly being added is traversed to see that it does not contain

the assembly to which it is being added. This is done automatically by the system,

but you can try creating a self-referencing assembly to see what the system does.

13.2 Transformations

Transformations have been described in Sect. 5.2.2. Transformations work

assuming the homogenous coordinate systems described in Sect. 5.2. As described

in Sect. 5.2.2, a transformation has the following form:
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Fig. 13.9 Wingård’s
assembly datastructure for the
kinematic assembly
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describes scaling and rotation. The part:

d

h

l

2

4

3

5

defines the translation. The elements m, n, o can all be zero, though not neces-

sarily, but this makes the matrix easier to define. The element p should, nowadays,

usually be 1. Nowadays, the transformation information is created through the use

of constraints rather than explicitly, but more of this later.

Transformations need not be represented as 4� 4 matrices, but this is a con-

venient common form. Transformations could, for example, be held with rotation,

translation and scaling information held separately. Holding scaling separately is,

perhaps, used to avoid having uneven geometric scaling. However, scaling should

not be used as part of a transformation matrix in an assembly.

Figure 13.11 illustrates the use of transforms to change positions and orienta-

tions. The group of objects consists of four instances, each referring to a 20� 20

square, centred at the origin. Instance I1 has a transformation matrix which moves

the square (-30, -20, 0). Instance I2 has a transformation matrix which is the

identity transformation and so makes no change. Instance I3 rotates the square and

moves it 30 units in the X direction while instance I4 is another simple translation,

by the vector (60, 10, 0).

In practice, not all transformations which can be represented are useful.

Section 5.2.2.2 mentions some of the ‘‘blacklisted’’ transformations which are

Fig. 13.10 Assembly with
self-reference
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usually disallowed because they cause problems. For assemblies it is possible to be

more rigorous and there is an informal proposition, here, that only rotations and

translations should be allowed in assemblies. The reason for this is that, when

physically assembling products, it is only possible to translate and rotate parts, not

to transform them physically, except in the restricted case of parts with elastic

material properties which are ignored here. CATIA allows symmetry transfor-

mations in assemblies. The reason for this may be the use of CATIA in the aircraft

industry. Aircraft CAD assemblies are so big that they stretch the limits of the

technology. Allowing, for example, symmetry transformations for wing assem-

blies would, of course, reduce the size of the assembly. However, it can lead to

unnecessary duplication and other problems.

There is an exercise on symmetry assemblies which is intended to indicate that

the presence of an easy way of doing something may not be desirable because it

makes it easy to do the wrong thing. In general, my opinion is that symmetric parts

should be considered and created, if needed, at the part level and that assemblies

should have only rotations and translation transformations.

13.3 Exploding Assemblies

This topic does not really belong here, but it is difficult to see where to put it. It is

sort-of ‘‘anti-constraint’’, so has been put here. It is useful as a precursor for

constraining assemblies.

Fig. 13.11 Transforming an
object
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An ‘‘explosion’’, here, means that the elements in an assembly are moved apart

temporarily, disregarding any constraints. The reason for doing this is so as to be

able to ‘‘see’’ the subcomponents and, hence, to be able to select elements to create

constraints.

There are two types of explosion, manual and automatic. With the manual

method the user moves the objects, for example by dragging them out of the way.

With the automatic method the system calculates new positions for the objects and

moves them. Since the manual method is up to the user, only the automatic method

will be described here.

There are different algorithms for automatic explosion, two are described here.

Both of these use the centre of the assembly as a start point and move the instances

outward from this. The centre of the assembly can be calculated conveniently

using the boxes surrounding the objects in the assembly. It is usual in modelling to

have a box, or some other simple shape, surrounding elements in a model and the

model itself. Each instance takes this box, copies it and transforms the copy to

produce the instance box. The instance boxes are then ‘‘summed’’ to find the box

surrounding the objects in their current positions. The centre of this summed box is

the centre of the assembly.

In the first algorithm, the CAD system uses the positions of the instance box

centre relative to the assembly centre to define a vector direction along which to

move the instance. The size of the vector offset may be given by the user, arbitrary

or calculated. In the second algorithm the positions of the instances are put on a

circle with some radius on an arbitrary plane through the centre of the assembly.

The radius of the assembly can be calculated from the instance boxes, for

example. The sum of the diagonals of all boxes can be thought of as the length of

the perimeter of the assembly circle. The radius is easily calculated from the sum

by dividing by 2p:
An important thing to note with assembly explosions is what happens to the

fixed instances in the assembly and existing constraints. There is an exercise about

this at the end of the chapter. What is interesting, first of all, is whether or not an

instance which has been marked as fixed is moved. If it is moved, then the question

is whether it will be moved back to its original position if the constraints are

applied. It is worth checking with a simple test assembly before you have to use

the tool for serious work.

13.4 Constraints

Constraints are relations between simple geometric elements, that is, planes, lines

and points, which determine positions and orientations of the bodies to which

those elements belong. The constraints form a connection graph over and above

the normal assembly structure described above. As objects are modified, the

constraint graph is verified and new solutions calculated. Aligning two entities
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involves calculating a transformation matrix, which is then applied to an instance

to change the apparent position of the object or sub-assembly to which it refers.

The constraints fix various degrees of freedom for the objects. An object has six

degrees of freedom, three translational and three rotational. Removing degrees of

freedom means that relations are established between different objects and the

relations, or constraints are used to define object positions. In order to find the

positions of the objects based on the constraint set you have defined, the CAD

system uses what is called a ‘‘constraint solver’’. This works through the constraint

set finding possible positions for each object, if it can. If the system of constraints

has been correctly established then all the objects will be in the expected places. If

too few constraints have been established then one or more objects may have

strange positions. Note, though, that sometimes it is necessary to leave one or more

degrees of freedom because the assembly is not rigid, but has mechanisms. A

simple mechanism is a cylindrical axle in a cylindrical hole, which allows the axle

to turn around the hole axis. More about mechanisms later.

Constraints are set between instances, not directly between model elements. To

understand this, consider Fig. 13.12. Suppose that there is a constraint of coinci-

dence between the top face of one block and the bottom face of the other block, as

shown on the left of the figure. If the constraint were between the faces of the

object referenced then this would mean that the block would be flat. The con-

straints should refer to the instances and, through these, to the faces to be con-

strained. What this means in practice is that either the point and normal of the

Fig. 13.12 Constraint references
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surface are copied and transformed or that the constraint contains a face reference

and the point and normal information are copied whenever the constraint is

evaluated.

Constraints appear in various ways. The common ones are summarised in

Table 13.1.

It is currently usual that the faces are planar faces, except for the special

cylinder case, and that the edges are straight. This could be relaxed slightly and

some extra special cases allowed, but the constraints generally work with points,

lines and planes so it is more logical to restrict the constraints to planar elements.

The topological constraints define transformations which are multiplied into the

transformation of the constrained instance. The geometry of each constrained

topological element is used to define a simple element, point, line or plane, which

is then, in turn, used to calculate a transformation with the geometric constraints,

defined below.

Table 13.1 Constraints

Constraint Form Comments

Fixed This is to fix an object in its current position

Parallel Dir–dir Parallelism between two elements

Perpendicular Dir–dir Perpendicularity between two elements

Concentric Point–point Concentricity between two elements

Vertex–vertex Point–point Simple move from one vertex to another

Vertex–edge Point–point The edge alignment point is calculated to be the closest
point on the edge

Vertex–face Point–point The point to which to move is calculated from the face
surface

Edge–edge
aligned

Point–point dir–
dir

One point on the movable line is moved onto the fixed line
and then the line rotated so that the directions are
parallel and in the same direction

Edge–edge
opposite

Point–point dir–
dir

Same procedure except that the movable line is rotated to
be in the opposite direction

Edge–face Point–point dir–
norm

A point on the line is moved to the face and the edge
direction rotated to be perpendicular to the plane
normal

Face–face
aligned

Point–point
norm–norm

This is where the faces are in the same direction. The point
of the movable face is moved onto the other face. The
movable face is rotated so that the normal is in the same
direction as the fixed face

Face–face
opposite

Point–point
norm–norm
(anti)

This is where the planes are in the opposite direction. The
same procedure as before, but the movable face is
rotated so that the normal is in the opposite direction to
the fixed direction

Cylindrical
face–edge

Point–point dir–
dir

The cylinder axis is taken as a line and the edge and line are
aligned

Cylindrical
face–cyl.
face

Point–point dir–
dir

As before, the cylinder axes are used for a line–line
constraint
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It is also possible that, instead of making the elements exactly coincident, the

CAD system allows you to define an offset value. If the CAD system does not allow

this it may be possible to create supplementary geometric elements, planes, lines and

points, and to align these to get the desired effect. Note, though, that if you define two

points to be at a certain distance then you are implicitly defining that one point lies on

a sphere with the other point at the centre. You are not defining an exact position for

the point. Similarly, a point at a distance from a line defines that the point lies on a

cylindrical surface with the line as an axis. Similarly, the line will be tangent to a

sphere with radius as the given distance. A point at a distance from a plane means

that the point lies on a plane offset from the original plane.

13.4.1 Fixing an Instance

This is mentioned here, but is not quite the same as the other constraints. This is

important because one of the instances in the assembly should be ‘‘grounded’’ or

fixed and the others moved to it. For the user this is important because sometimes

the user expects one part to move whereas, when a constraint is defined, the other

part moves, depending on some internal decision. Fixing one instance, then

moving its constrained partners, then the partners of the constrained partners, and

so on, is a clearer process. Fixing an instance removes all its degrees of freedom.

13.4.2 Parallelism

Parallelism can be used to establish a relationship between edges or surfaces. This is,

again, easiest to do with straight edges and planar faces. A constraint of parallelism

removes two of the rotation degrees of freedom, but rotation about the edge or

surface normal is still possible and three translation degrees of freedom remain.

Figure 13.13 illustrates the geometric elements used for calculation. A con-

straint for parallelism involves a rotation. The rotation axis is defined from the two

line directions or the surface normal directions. If the directions are already par-

allel and aligned then there is nothing to do. If the directions are parallel but not

aligned (same direction) then there is an option to rotate the lines, this can be done

about any axis perpendicular to the line. If the two directions are not aligned then

the cross product of the line directions defines the rotation axis, the line direction

defines the X-axis, say, and hence the rotation angle can be determined.

P1

P2

d1

d2Fig. 13.13 Making two lines
parallel
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13.4.3 Perpendicularity

Perpendicularity is similar to the parallelism constraint, it removes one rotation

degree of freedom. If the two directions—line directions or surface normals—are

parallel then the rotation axis can be any axis perpendicular to this direction.

13.4.4 Concentricity

Concentricity is a constraint between a point and a circular curve or between

circular curves. It removes two rotational degrees of freedom and two translational

degrees of freedom. If two circles are involved the normals to the circles are

aligned to be parallel and then the centre of one circle moved to be on a line

through the centre of the other circle with direction of the circle normal. If a point

and a circle are involved then the point is moved to be on a line through the centre

of the circle with direction of the circle normal. Alternatively, the circle centre is

moved so that it is on a line through the point with direction of the circle normal.

13.4.5 Aligning Two Points

Figure 13.14 shows what the alignment means.

To align two points with the coordinates: p1 ¼ ðx1; y1; z1Þ and p2 ¼ ðx2; y2; z2Þ
you get the transformation matrix:

1 0 0 x1 � x2
0 1 0 y1 � y2
0 0 1 z1 � z2
0 0 0 1
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7

5

13.4.6 Aligning a Point and a Line

The basic procedure is illustrated in Fig. 13.15. The point on the line closest to the

given point is calculated and then the given point is aligned with this calculated

point.

(x1, y1, z1)

(x2, y2, z2)

Fig. 13.14 Aligning two
points

552 13 Assemblies



The given data are the line start point, p1 ¼ ðx1; y1; z1Þ; the line direction, a

normalised vector, d ¼ ðdx; dy; dzÞ and the point to be aligned, p2 ¼ ðx2; y2; z2Þ:
The formula for calculating the closest point is:

p3 ¼ p1 þ ððp2 � p1Þ � dÞ � d:

The transformation matrix is then:

1 0 0 x3 � x2
0 1 0 y3 � y2
0 0 1 z3 � z2
0 0 0 1
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7

5

where ðx3; y3; z3Þ are the coordinates of p3:

13.4.7 Aligning a Point and a Plane

The alignment is to move the given point to a point on the plane closest to the

given point, as illustrated in Fig. 13.16.

The given data are a point on the plane, p1 ¼ ðx1; y1; z1Þ; the plane normal, a

normalised vector, n ¼ ðnx; ny; nzÞ and the point to be aligned, p2 ¼ ðx2; y2; z2Þ:
The formula for calculating the closest point is:

p3 ¼ p2 � ððp2 � p1Þ � nÞ � n:

The transformation matrix is then:

1 0 0 x3 � x2
0 1 0 y3 � y2
0 0 1 z3 � z2
0 0 0 1
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(x1, y1, z1)

(dx, dy, dz)

(x2, y2, z2)

p3

Fig. 13.15 Aligning a point
and a line

(x1, y1, z1)

(nx, ny, nz)
(x2, y2, z2)Fig. 13.16 Aligning a point

and a plane
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13.4.8 Aligning Two Lines

This is more complicated than the point transformations because the line has to be

rotated as well as translated. There is also a slight complication because the lines

have a direction as well, and the alignment could be so that they have the same

direction or have opposite directions.

Assume that the lines are defined by a point and a direction. Anyway, if they are

defined by two end points then it is easy to calculate the direction, provided the

end points are not coincident, in which case there is an error condition. The first

step is to move the point of one line onto the other line (Fig. 13.17). The closest

point on a line to a given point is easily calculated as:

Px ¼ P1 þ ððP2 � P1Þ � d1Þd1

where P1 and P2 are the line points and d1 is the normalised direction of the first

line.

The first step in aligning the lines is, therefore, a translation of Px � P2:
Assuming that the point Px has the coordinates: Px ¼ ðPxx;Pxy;PxzÞ and P2 ¼

ðx2; y2; z2Þ you get the transformation matrix:

1 0 0 Pxx � x2
0 1 0 Pxy � y2
0 0 1 Pxz � z2
0 0 0 1
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The cross product of the two line directions gives the sine of the angle between

them, the scale product defines the cosine, from these two values it is possible to

determine the angle, h; between the two lines. The point Px and the cross product

of the two line directions defines the rotation axis. If the magnitude of this is zero

then the lines are aligned, in the same or opposite directions.

The line direction of the fixed line, the normal to the two lines and the mutual

orthogonal direction define a local system of coordinates for the transformation,

Fig. 13.18. The Z 0-axis is the rotation axis. The transformation matrix for the

rotation can be calculated by rewriting the line vector in terms of the local

coordinate system, rotating it by the required angle around the local coordinate

system Z 0 axis and then retranslating the result back into the global system. The

required angle is defined using the x- and y-coordinates in the local coordinate

system. This transformation matrix is then combined with the translation matrix,

calculated earlier, to give the final matrix.

Fig. 13.17 Aligning two
lines—point to line alignment
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13.4.9 Aligning a Line and a Plane

This is illustrated in Fig. 13.19. The first step is to move the point of the line to the

plane and the second to rotate the line into the surface so that its direction is

perpendicular to the plane normal. The transformation of the line point onto the

plane is the same as for the case of aligning a point and a plane.

The rotation axis is defined by the cross product of the line direction and the

plane normal. If these two are parallel then any vector normal to the plane normal

can be used as a rotation axis. As with aligning two lines, the plane normal, the

rotation axis and the mutually orthogonal vector form a local coordinate system.

The line is rotated around the rotation axis by the required amount to give the

rotation transformation matrix.

If the plane is to be moved to the line, then the point of the plane is moved to

the line using the point–line constraint calculation, and then the surface normal

rotated so as to be perpendicular to the line direction.

13.4.10 Aligning Two Planes

This is basically a point–plane constraint together with a rotation of one normal to

be parallel and aligned, or parallel and opposed. A transformation is calculated to

move the point of the plane to be moved into the fixed plane. Then, a rotation

transformation is calculated to rotate the movable plane so that its normal is

parallel to the fixed plane normal (aligned or opposite direction). Figure 13.20

Fig. 13.18 Aligning two
lines—direction alignment

Fig. 13.19 Aligning a point
and a plane
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shows the geometric elements for the calculation. The rotation axis is defined by

the cross product of the two plane normals.

All the details of this should now be familiar so will not be repeated.

13.5 Kinematic Mechanisms

In the sense used here, kinematic mechanisms differ from simple constraints

because they are groups of constraints with a logical purpose. Building up an

assembly with simple constraints may produce the same constraint set as that

created by a kinematic mechanism package but this is not certain. A kinematic

mechanism package provides a set of mechanisms, each with a framework of

constraints with empty slots which are filled by the user. So, for example, a

rotational mechanism might require the user to identify the axis, the stop face and

limits. The user is, therefore, guided into producing a constraint set which is

logical. In addition, kinematic packages should contain extra facilities not found in

the assembly package. Kinematic packages exist in different forms, from the

dedicated software to simpler ones included in CAD systems. This section is

intended to give a brief overview of a few types rather than an exhaustive survey.

Kinematic mechanisms are intended to animate assemblies so that a designer

can get an impression of how things function. As well as watching the outside of

the mechanism it is possible to set some parts as transparent so as to see the

interior of the mechanism. Note, though, that in general it is too costly to calculate

positions from the models themselves. For example, a gear mechanism would not

calculate the position of one gear from the model of the other, but the mechanism

would involve setting a movement ratio between the two gears, such as 2:1. This

would mean that turning one gear instance through an angle a would produce an

automatic rotation of a=2 of the other gear instance. This is calculated directly

from the rotation ratio.

Fig. 13.20 Aligning two
planes
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Generally, kinematic simulations are produced by posing the assembly in a series

of static positions which are replayed sufficiently quickly so that the mechanism

appears to be in constant movement. In a previous version of I-DEAS this was done

by recording a set of transformation definitions which were plugged back into the

assembly.

For each pose, some kinematic packages perform analyses, with Boolean oper-

ations, to see if components collide during operations. As Csabai [3] pointed out,

since the analysis is done only on static poses then there is a risk that some collisions

may be missed if the movement is simulated with large steps between poses.

Alternatively, if the steps are too small then the simulation takes a lot of time. Nor is

this problem solved by using a swept volume technique, which generates the volume

of space through which an object moves. A simple Boolean operation would give the

common volume, but the time element, when each object is there, is not given.

However, the visual aspects of simulation can be an important aid for the user.

Kinematic connections between elements provides a similar framework to that

imposed by constraints, but is different because the connections are functional.

Some of these were mentioned briefly in Sect. 8.4. Examples are:

• Rigid connections

• Rotational connections

• Sliding connections

• Universal connections

• Screw threads

• Gear wheels

• Springs

• Cams and followers

Generally, the mechanisms are set up and then one, perhaps more, entity is used

as a driving entity to animate the others. For example, in the assembly shown in

Fig. 1.49, there is a handle. In a simulation this might be defined as rotating at

constant speed while the positions of other instances in the assembly are calculated

from this. A few of the possible kinematic elements are shown in Fig. 13.21.

Fig. 13.21 Kinematic
connections for simple
winder assembly
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13.5.1 Rigid Connections

Rigid connections mean that one instance is moved with the other. The lid and the

box in the assembly in Fig. 13.4 would have a rigid connection. Rigid connections

can also be created between elements which move together. For example, if a shaft

is made of two parts that are bolted together then one shaft part would be con-

nected rigidly to the other (Fig. 13.22).

13.5.2 Rotational Connections

Rotational connections might contain an axis definition and a positioning contact

surface on each of the two objects being animated, for example. An example is

shown in Fig. 13.23.

The user would identify the components, that is, the axis of one rotation ele-

ment and the base face to provide one coordinate system. The matching elements

of the other components provide a second coordinate system for calculation. The

two X-axes allow calculation of angular limits, for example when the rotation is

blocked as in Fig. 13.24.

Fig. 13.22 Axle with two
rigidly connected
components

Fig. 13.23 Rotation
kinematic connection
elements
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13.5.3 Sliding Connections

Sliding connections need one or two contact surfaces. There are two cases shown

in Fig. 13.25, on the left where the two objects have one contact surface and on the

right where there are two contact surfaces.

Again, note that the idea of simple kinematic simulation is not necessarily to

check for collisions but to calculate positions quickly enough to make a reasonable

visual simulation. Dynamic collision detection algorithms do exist, though, so

check the CAD system to see if it offers this possibility.

Fig. 13.24 Rotation
connection with limits

Fig. 13.25 Sliding kinematic
connection elements
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13.5.4 Universal Connections

Universal connections are spherical connections with a common point aligning the

centres of positive and negative spherical surfaces.

As with the rotational joint, the aligned coordinate systems allow setting of

limits for such a joint. Figure 13.26 shows a simple example of such a joint.

13.5.5 Screw Threads

A screw thread has a functionality as well as a shape. The shape modifier describing

a screw thread is useful for manufacture and identification of a particular feature.

The functional characteristics are useful for simulation. As one threaded element

turns against another there is a lateral movement of the objects relative to each other.

Calculating this movement is much easier if the thread sizes are given explicitly than

if the information has to be recalculated from the geometry.

As shown in Fig. 13.27 the basic elements needed are the same as for a rota-

tional connection, but the angle measured by movement around the Z-axes needs

to be accumulated to calculate the translation along those axes.

Fig. 13.26 Universal
kinematic connection
elements

Fig. 13.27 Screw kinematic
connection elements
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13.5.6 Gear Wheels

As for threaded objects, a pair of gear wheels move with a certain specific rela-

tionship to each other. In a simple case, if one gear wheel has 24 teeth and another

has 48 teeth, then one turns twice as fast as the other. One of the gear wheels can

be considered as an input, or driving wheel, the other the output. If the smaller

wheel is the driving wheel then the output is half the rotational speed of the input.

If the larger wheel is the driving wheel then the output is twice the input. The user

has to establish the relationship that there are two interacting gear wheels and has

to specify the ratio, the simulation then calculates output movement from the input

movement regardless of the real geometry. This is quick and easy to provide a

realistic simulation. If the simulation were done by analysing contact surfaces and

forces then it would take too long to be useful for a designer.

Figure 13.28 shows some examples of different gears, but without the full

geometry. On the top left there are two gears in the same plane. On the top right

there are gears which are perpendicular to each other. At the bottom of the figure is

an example of a worm gear. All these have a functional connection so that rotating

one instance causes the connected instance to be rotated. For the examples on the

top line of the figure, the output rotation is in the opposite direction to the input

direction. At the bottom, only rotating the worm gear will cause movement, trying

to rotate the output gear should result in a blocked motion.

Note that using a functional transmission in this way means that the gears do

not have to be full models because the motion is not derived directly from the

model but from input parameters. This is easier and more practical for the

implementer but does not really detract from the functionality for the user. It also

means that the user can choose whether to represent a gear by an exact model or by

a simplified model with a note attached to say that the model represents a gear.

This was mentioned in Chap. 8. If a gear is a standard part that is to be ordered

then it may make little sense to model them exactly unless the user wants an

advanced simulation.

Fig. 13.28 Examples of gear
kinematic connection
elements
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13.5.7 Springs

A spring is a complicated geometric element which ismore important for its function

than for its precise shape. As stated before, one of the assumptions for CAD mod-

elling to work is that themodel is rigid. A spring is not a rigid shape, it is a functional,

elastic one. Therefore, springs do not fit in well with standard modelling techniques.

It may be satisfying to model the spring as an extrusion along a spiral, or a loft

between suitable profiles, but the model will stay in one position. It is technically

possible to have a dynamic model using, say, facetted models and a functional

warping so that, graphically, such a model appears to move. However, it is not

certain that the result is worth the effort required to do this. A spring is another

example of a functional connection between two instances in an assembly.

13.5.8 Cams and Followers

A cam provides a non-uniform profile which can be used to change the angle of a

‘‘follower’’. Figure 13.29 shows a very simple example of a cam and a simple bar

follower. The top shows the initial state, where the radius of the cam is small. As

the cam rotates, middle figure, so the larger distance starts to raise the bar.

Eventually, the cam reaches a point where the distance between the centre of

Fig. 13.29 Examples of cam
kinematic connection
elements
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rotation and the cam profile is a maximum and the bar achieves its maximum angle

to the horizontal. Attaching further elements to the follower means that various

levers can be pulled or pushed in varying amounts. This is a very simple example

but there are many other examples of cams with varying shape.

A cam and a follower can be simulated using two parametric profile curves.

Think of the profile as a single parametric curve in t where t = 0 represents a

rotation of 0� and t = 1 represents a rotation of 360�. Evaluating the curve at any

intermediate point and rotating the point through the appropriate number of

degrees gives the contact point between the cam and the follower.

This is another example of a simple technique that can give incorrect results. If

you consider the cam example in Fig. 13.30 then you should not expect the method

to work correctly. This may, or may not be checked for by the system. For quick

visual evaluation of a mechanism, though, the method described above is

reasonable.

13.6 Mechatronics Simulation

Mechatronics was mentioned in Sect. 8.5. Simulation of mechatronics is techni-

cally feasible but is unlikely to exist in the CAD system. Research is going on in

this area so it may come during the next few years. There are various elements that

could be included in the simulation, such as display panels, which could be

included fairly easily from a technical point of view. It should be possible to

simulate the display in the same way as materials colourings are imposed on an

image. However, to make a complete simulation work, it would be necessary to

find a standardised way of communicating functional behaviour and connecting

this with external elements. This is an area of interest for research but it is a little

early to come to any definite conclusions. Activation of different elements in the

simulation model, simulating switch activation, needs to be allowed.

One method which may be useful for simulation is the finite state machine

method developed by Turing. Apparently, Turing thought of it as a mechanism to

explain the functioning of DNA. What it means, briefly, is that there are a number

of inputs to a ‘‘machine’’ and, with each input, the machine changes state. In any

state the machine can perform an action and change state. Figure 13.31 shows a

simple example of a state transition diagram for a simple vending machine.

Fig. 13.30 Example of a bad
2D cam
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The vending machine can take tokens of five or ten units and is to deliver three

products, each of which costs ten units and which can be selected by push buttons.

The states are as follows:

1. Initial state: In the initial state, pushing any of the product selection buttons or

the cancel button has no effect. A display should be illuminated to show that

the machine is ready to accept coins. If a five unit token is inserted then the

state changes to state 2. If a ten unit token is inserted then the state changes to

state 3.

2. Part paid state: The display should show that five units have been entered.

Pushing any of the product select buttons will have no effect. Pushing the

cancel button changes the machine to state 4. Inserting five units will change

the machine to state 3. Inserting ten units will change the machine to state 5.

3. Full paid state: The coin input is blocked. The display should inform the

customer that product selection can take place. Pushing the cancel button

changes the machine to state 4. Pushing the product 1 button changes the

machine to state 6. Pushing the product 2 button changes the machine to state

7. Pushing the product 3 button changes the machine to state 8.

4. Cancel state: The machine should release all tokens accumulated so far and

change back to state 1.

5. Overpaid state: The only combination that can cause this is if a five unit token

and then a ten unit token have been inserted. The machine should release the

five unit token and change the machine to state 3.

6. Product 1 state: The machine is ready to deliver product 1. If there are no

products left then change to state 9, otherwise change to state 10.

7. Product 2 state: The machine is ready to deliver product 2. If there are no

products left then change to state 9, otherwise change to state 11.

8. Product 3 state: The machine is ready to deliver product 3. If there are no

products left then change to state 9, otherwise change to state 12.

Fig. 13.31 Example of a
state transition for a simple
vending machine

564 13 Assemblies



9. Product exhausted state: Display a message apologising for the inconvenience

and release the tokens paid before changing to state 1.

10. Product 1 delivery state: Release one unit of product 1. Release the tokens

paid to the token collection unit. Change the machine to state 1.

11. Product 2 delivery state: Release one unit of product 2. Release the tokens

paid to the token collection unit. Change the machine to state 1.

12. Product 3 delivery state: Release one unit of product 3. Release the tokens

paid to the token collection unit. Change the machine to state 1.

A simulation system would need to have a library of inputs, such as coins,

tokens, buttons, switches, keyboards, etc. The user would have to identify the

states and what happens. The system should try and identify missing states, such as

when possible inputs have been neglected. The user would have to identify display

messages and outputs. For simple cases this might work.

Another method would be to use macro-programming techniques to allow the

user to program behaviour. The macro programs would have to be associated with

components in the product as non-geometric information. This sort of technique

would require programming knowledge by the designer. Similar comments for the

inputs and outputs also apply. An example of a macro-code program for the same

problem might be:
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Although it is a little early to make definite statements it would be useful to

monitor this possibility for the future.

13.7 Bills of Materials

A Bill of Materials (BOM) is a list of the entities in a product together with the

number of times that they occur. This can be done by traversing the assembly

structure and printing the object name together with the number of times the object is

instanced in the assembly. If the assembly structure has been constructed correctly

then this is enough. If, however, the assembly structure has copied elements then the

BOM will contain multiple entries for parts which may have the same name.

The assembly structure at the top of Fig. 13.32 would give rise to a Bill Of

Materials such as:

Fig. 13.32 Assembly datastructure for the standard elements assembly
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Part Number

Box 1

Lid 1

Bolt b1 4

Nut n1 4

The structure at the bottom of Fig. 13.32 would give rise to a Bill Of Materials

with repeated elements such as:

Part Number

Box 1

Lid 1

Bolt b1 2

Bolt b1 1

Bolt b1 1

Nut n1 3

Nut n1 1

It should be stressed, again, that the mechanism for creating a correct bill of

materials relies on having a correct assembly structure. Try producing a bill of

materials for an assembly and check for multiple occurrences of the same item. If

you do have these, then it is likely that either your assembly structure is wrong or

that your naming is wrong. If the system has an internal numbering then it may be

possible for it to check that an item has been used several times. This is not a stable

possibility as not all systems do this. Also, imported assemblies will not have this,

with present importation techniques, so you cannot rely on the CAD system to

cover up your mistakes.

13.8 Chapter Summary

This chapter deals with models with multiple parts, so-called assemblies.

Assemblies are relatively simple, from a datastructuring point of view, but

getting the arrangement of entities right is more complex. The chapter describes

how static constraints work. The chapter then goes on to describe kinematic

constraints. A brief mention is made of the possibility of simulating mecha-

tronics components. Finally, the chapter describes how a Bill Of Materials

(BOM) is created.
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13.9 Assembly Exercises

13.9.1 Align a Cylindrical Peg in a Cylindrical Hole

The peg has an axis which passes through the point (5, 0, 10) and is in the direction

(0.577, 0.577, 0.577). The hole has an axis through the origin (0, 0, 0) in the

direction (0, 0, 1). Calculate the transformation matrix to align the peg with the

hole.

Say in what way the transformation matrix differs in the three following cases:

1. Peg diameter 10, hole diameter 10.

2. Peg diameter 5, hole diameter 10.

3. Peg diameter 10, hole diameter 5.

13.9.2 Align a Square Peg in a Cylindrical Hole

For those unfamiliar with the expression, the term ‘‘a square peg in a round hole’’ is

usually taken to mean a misfit, or someone or something which is unsuited to a

particular purpose. Apparently, though, in old wooden buildings, square pegs in

round holes were an old-fashioned type of push-fit where the square peg deformed

the hole, or had some material sheared off, to provide a tight, rigid joint. Here, this

type of fit is used to explain how supplementary geometry can be used for assembly.

Create two objects, one with a round hole and one with a square extrusion, as

shown in Fig. 13.33. Fix (or ground) the block with the hole in it. Now create a

free-standing line at the centre of the square extrusion. Align this with the centre

line of the cylindrical hole and align the planes, top face of the block and bottom

face of the peg to complete the constraint set.

Two things to notice. First, there is still one degree of freedom left for the peg.

It can rotate around the hole centreline even though, in reality, it wouldn’t. The

other thing to notice is that the peg is larger than the hole, but, as in the previous

exercise, the CAD system won’t normally tell you. For all push-fit parts in an

assembly, the real piece will deform and remain in place in the real assembly, but

the model is treated as rigid by the CAD system and so may overlap the model of

the target piece. if you want to have a model of the deformed piece then this will

have to be created separately.

13.9.3 Assembly Symmetry

As an illustration, it is possible to perform the following experiment if your CAD

system does allow symmetry transformations. The experiment involves creating a

simple assembly of an L-block and bolts as in Fig. 13.34.
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Make an L-shape with rounded ends (just to make it pretty), as shown in

Fig. 13.35. Extrude the shape 20 units. Make a pattern of three holes (radius 5),

with counterbore, radius 7.5, depth 5 in the vertical arm, one in the horizontal arm.

Thread the holes.

Make a hexagonal shape, radius 7.5. Extrude this five units. Create a circular

profile, radius 5, on the top face and extrude this a distance of 15 units. Thread the

circular extrusion.

This should give you two objects like those shown in Fig. 13.36.

Fig. 13.33 Parts for ‘‘square peg in round hole’’ test

Fig. 13.34 L-block
assembly for reflection
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Make an assembly with four instances of the bolt and the L-block to give the

result shown in Fig. 13.34. Now create an assembly and insert the first assembly.

Reflect the instance of the first assembly to give the result shown in Fig. 13.37.

Examine the result and determine which of the two structures shown in

Figs. 13.38 and 13.39 is the result. In Fig. 13.38 the transformation of is a

reflection transformation. In Fig. 13.39 the whole group of objects is copied and

transformed.

If the CAD system just creates a new reference then the object shapes are not

created explicitly and so there is no model for other applications. However, this is

the most efficient for modelling large assemblies.

If the CAD system copies the structures, as in Fig. 13.39, then new models are

created. One question, though, is how many models there should be. In reality, you

can see that the bolt model should not be copied but translated. The bolt model

stays the same shape after the symmetry operation. Also, what about the threaded

holes? Have they changed in sense so that a right-handed thread has become a left-

handed thread?

Yet another question concerns whether part shapes can be modified to avoid a

symmetry operation. For the L-shaped piece in the example, it may be possible to

give the L-shape a counterbore on both sides of the object so it can be turned over

and used. True, it would mean an extra manufacturing operation, which may not be

desirable, but would reduce the number of separate parts in a company.

Fig. 13.35 Objects for L-
block experiment

Fig. 13.36 L-block and bolt
for assembly
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13.9.4 Explosion Test

Create an assembly with one cube, 100� 100� 100; and four cylinders, radius 20,
height 80. Fix the cube and then explode the assembly. What does the CAD system

tell you about fixed part? Does it leave the cube in place and move the other parts?

Does it move the cube but move it back if you apply the constraints?

Fig. 13.37 Symmetric
assembly

Fig. 13.38 Data structure 1
for symmetrical assembly
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In CATIA there is an ‘‘update’’ icon to reestablish the constraints. Other CAD

systems have similar icons, find out which one your CAD system has.

Now establish a set of constraints between the cube and the cylinders. Align one

end of the cylinder with a face of the cube. Then, align the cylinder axis with an

edge of the cube, such as in Fig. 13.40. Re-explode the assembly and check that

the system can reestablish the constraints after the explosion.

Fig. 13.39 Data structure 2 for symmetrical assembly

Fig. 13.40 Cube with
constrained cylinders
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13.9.5 Over-Constraint Exercise

Create two pieces with holes at a known distance, such as those shown in

Fig. 13.41. The exact dimensions are not so important so long as the hole centres

line up. The holes can actually have different diameters just so long as the centre

lines match. In the example below, the rectangular block is 100� 50; extruded 25

units. The two holes have diameter 25 and are 50 units apart. In the other part, the

basic part is a 50� 50 square with two rounded ends and holes the same diameter

and distance apart.

Put the two pieces into an assembly and set constraints so that the top plane of

the rectangular block and the bottom plane of the rounded piece are coincident.

Now align one pair of holes, one in the rectangular block and one in the rounded

part. Then, try and align the other two holes. Does your CAD system let you do this?

I was quite pleased to see that I could align both pairs of holes in CATIA v5. This

is a natural constraint set to use, but the problem is that the constraint set is over

constrained. Another system, I-DEAS, used to refuse this type of constraint set

because over the over-constrained nature of the set. This is technically correct, but

was difficult for users. In the I-DEAS implementation the constraints could be set

up as an alignment of the first two holes and then a constraint of parallelism

between the vectors between the hole centres. A personal opinion is that the CATIA

implementation is more natural for the user, but what happens if you change the

distance between the hole centres? Go back and set the distance between the hole

centres in the rectangular block to be 30 units. What does your system do? If it

allowed the initial constraints to be set up then there is now a problem because both

constraints cannot be fulfilled. This is where the technical correctness of the old

I-DEAS implementation is better, because the objects are rigid and the change in

distance between the holes implies that one object should be stretched. It is another

example of where technical correctness and user-friendliness diverge.

Incidentally, this is another strength of Csabai’s idea about features spanning

two objects, described in Chap. 11. If features are to match, as in this case, it is far

better to set them up so that the features are controlled by one set of parameters,

distance, radius or whatever, and produced in both objects in one step.

Fig. 13.41 Parts for over-
constrained test
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Chapter 14

CAD in a Community

It is to be expected that design and manufacture take place in a community of

applications and experts. This is because of the complexity of the different areas of

production. It is difficult to be an expert in all of them and hence much design is

done as part of a team. Some aspects of this have been mentioned in Chap. 11 for

the design phase, but other application areas also need to be considered. In this

respect it should be noted that CAD is not just about creating a correct model but

also about communication. The communication aspects are very important. New

areas of information and new tools are changing the methods for communication

and it is important to understand these for efficient CAD use.

14.1 The Product Lifecycle

Traditionally, companies have manufactured products and then the buyer takes

over responsibility with little or no information back to the company. This has

changed with the modern view of recycling and is changing even more, with even

the possibility to monitor and store component data with the product itself.

The product lifecycle is generally divided up into sections: Beginning-Of-Life

(BOL), Middle-Of-Life (MOL) and End-Of-Life (EOL). The traditional notion of

product development has concerned a simple CAD-CAPP-CAM-CNC chain at the

beginning of life. This needs to be updated, though, to fit new theory and practice.

The Middle-Of-Life, or ‘‘Use phase’’ is where data about component behaviour

can be recorded and stored. At the End-Of-Life this data can be collected to see if a

component can be reused. Data about the product at the end of life is also

important to help designers make improvements.

14.1.1 The Old CAD-CAPP-CAM-CNC Chain

There is, at the time of writing, a sort of tradition of how information is passed

from design to manufacturing which seems to be the traditional, paper-based

I. Stroud and H. Nagy, Solid Modelling and CAD Systems,
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method, using an electronic medium. The CAD-CAPP-CAM-CNC chain has

evolved over the years without having been planned, and is shown in Fig. 14.1.

Although new tools are available the chain still bears the hallmarks of the old

paper-based technological sequence.

Each section on the chain received information decided on in a previous section

with limited feedback. For example, the production planner received 2D drawings

of a part with annotations about tolerances and so on. From this, the production

planner had to decide on the manufacturing method and details from which to

prepare the toolpaths to send to the shopfloor. The designer had to produce

drawings containing information in an indirect form using tolerances, for example.

The idea was that the designer knew how the part fitted in to a product and so

decided the tolerances necessary so that the part would fit in. Contact surfaces

needed a finer finish than surfaces which did not touch any other part, and so on.

Also, the main information communicated was shape based for manufacturing and

assembly.

CAD systems produce three-dimensional objects, from which two-dimensional

projections are computer, and these three-dimensional objects could be commu-

nicated and examined. This presents a problem in how to communicate the tol-

erance and other information. Certainly it is possible to annotate the 3D models,

but this has to be done so that the information is not conflicting or just plain wrong,

as explained in Chap. 8.

Another aspect is that modern data exchange methods, such as STEP, are

exposing weaknesses in the traditional information flow which need to be han-

dled by researchers and software developers. STEP has pulled together the tra-

ditional ‘‘islands’’ of CAD, CAPP, CAM and CNC, creating advanced

possibilities but also showing the holes in the information set. New information

types and sources have come into being, but there is other information not yet

covered. As explained above, parts and products can be monitored during their

functional lives, creating new types of information. There is also an increased

interest in recovering components after the product has been discarded and

reusing these. This reduces the environmental impact of production as well as

reducing the waste going to landfill. Reuse and recycling, though, need their own

types of information.

It is clear that there is more information available than can be communicated

simply by drawings and that the amount of information makes it inefficient to use

paper as a means of communication. In order to understand what information is

needed, though, it is necessary to understand how different areas should fit toge-

ther, not just how they have been fitted together.

Fig. 14.1 Traditional notion of the production sequence
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14.1.2 Modern Life-Cycle View

A more modern notion is to look at the whole lifecycle and Fig. 14.2 shows a more

complete cycle. Um et al. [1] give a fuller view of the cycle with information

needed to be fed back at the end of life.

The cycle is not a pure cycle in that there are several ‘‘short circuits’’ where

information may be fed back to the first parts of the lifecycle from any of the later

stages without having to complete the cycle. What this means for design, though, is

that you both create and receive information. The information you create is partly the

shape and partly a reasoning process. The information you receive is partly a set of

requirements and partly information about the performance of past products.

Data exchange standards have only gone so far in addressing the complete

chain. This is, of course, natural, because the whole production environment is

complex. The tendency has been to address the known parts and the information

which is known to be necessary for communication. However, there is also much

else that should be recorded and communicated. The lack of a full range of tools

hinders development. The lack of a complete research environment covering all

aspects of production hinders the development of tools. A method of creating

federated research groupings to put together many universities is a promising

avenue of development to overcome this. Without a method for researching the

complete production and use environment we will be stuck with engineering

inefficiency. Without this method, research will lead to local improvements, which

may be good in themselves, but we risk missing globally effective solutions. This

section is about some of the aspects of this that are evident now.

Fig. 14.2 More complete view of products and production
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It is possible to give a simplified analysis of some of the elements as an

illustration of how CAD may change during the next few years.

14.1.3 Early Phase of Design

In the early phase of design, when generating concepts, the principle information is

the product idea (Fig. 14.3). However, extra information can be supplied about

known solutions and their performances. This was done by Sprumont et al. with

the MicroCE project, as described in Chap. 11. Sprumont’s design catalogues with

their evaluation mechanism provide a convenient way of introducing such infor-

mation. The elements of the chosen concept need to be communicated for the

layout design. The product structure and product information are also generated.

Concept research involves finding product solutions. The concept solutions

involve functions and maybe partial solutions for functions.

14.1.4 Layout Design

In layout design, the product elements from the concept research are supplied to

identify the elements in the layout. Additional constraints may be identified as well

as known components which can be imported directly. The output is expected to

Fig. 14.3 Information for the early phase of design
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be a set of components, a set of design environments (described in Sect. 11.3),

connection features in a structured feature set and mechanisms Fig. 14.4.

Layout modelling gives the first geometric elements to a project. This provides

an important framework for the detailed design process. The simple geometric

elements provide design space limits within which detailed design can take place.

According to Csabai’s philosophy [2] some conflict areas may also have been

identified. The connections provide concrete geometric features with a reason for

their presence. This is one element in the establishment of a structured feature set

for manufacturing. It is also important for setting manufacturing tolerances. The

connection features provide a bridge between objects for establishing consistency

during the detailing. The kinematic simulation provides understanding about the

functionality of parts as well as early identification of mechanisms in the product.

The structure of the layout can be imported into the CAD system or left separately

as a product structure.

14.1.5 Detailed Design Phase

The detailed design phase is what is currently called CAD. Note that, here, this

includes the analysis phase for strength and weight calculations, for example. The

designer using the CAD system should have information support from the earlier

phases, not just in documentation form but as information in the CAD system

itself. The product structure can come from the layout module as well as design

environments from the different parts. The result of the design and analysis process

Fig. 14.4 Information for the layout phase of design
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should be an annotated and structured product model. Normally, a product model

is a flat structure of faces, edges and vertices. A structured product model is a

model in which the different elements are categorised in order to convey meaning

for manufacture and other purposes Fig. 14.5.

Current CAD is essentially a one person task with little support to find solu-

tions. Current CAD is also reactive not proactive. ‘‘Reactive’’ means you design

something then analyse it or examine it from different viewpoints whereas

‘‘Proactive’’ means the system helps you to find good solutions. At the moment the

onus is on the user to get it right but the extra information is intended to help the

user find good solutions and hence to move CAD towards being proactive. A

proactive tool for design for assembly was described in Sect. 11.4.

An aspect mentioned earlier, in Sect. 1.7.6, is collaboration and multi-user

systems. Collaboration in CAD is sometimes called ‘‘concurrent engineering’’ and

will be dealt with in Sect. 14.2. Typically, with current CAD systems, this is

somewhat asynchronous in nature because it is performed through databases and

data exchange. However, collaborative CAD should mean synchronous working

where you see other people’s work at the same time as they do it.

14.1.6 Manufacturing Phase

Manufacturing is a complex topic involving knowledge about many domains.

There are many different ways to make parts and the cost of manufacture can vary

greatly with these different methods. Improved information helps to rationalise

decision making in manufacturing (Fig. 14.6). One aspect is improved knowledge

about the shape to be made through structuring and annotation. With current

methods there is no apparent difference between the shape elements and the

process planner is forced to use his or her knowledge and experience to guess

about elements. However much information is present, though, the planner needs

Fig. 14.5 Information in the detailed design phase
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good knowledge about manufacturing methods and the manufacturing environ-

ment available.

It is possible to distinguish between elements in the model, for example with

the decomposition shown in Fig. 10.35 as:

• elements that are fundamental to the design,

• elements that are functional,

• elements for practical purposes, and

• elements which are compromises.

The fundamental elements are those parts of the shape which are there to fulfil

the design requirements.

The functional elements are those parts, like bolt holes for fixing to other parts

in an assembly, which are there to ensure the functional requirements of the part.

Note that these features typically span two objects, an idea which comes from

Csabai [2], as described in Sect. 11.2.4.

The practical elements are those elements which have been decided based on

physical properties, like chamfers to remove sharp edges or stiffeners to ensure rigidity.

Finally, the compromise elements are things like draft angles and blends, added

to make it possible to make a part by moulding, or blends added to allow pocket

milling, for example.

This is not meant to be definitive or exclusive. Different ideas exist, the aim is

just to illustrate the idea that there is a structure of design information that needs to

be created by CAD tools, which can then be standardised and finally communi-

cated. Improved knowledge about why different parts of the model are there helps

the planner to focus on key elements.

Fig. 14.6 Manufacturing phase

14.1 The Product Lifecycle 581

http://dx.doi.org/10.1007/978-0-85729-259-9_10#Fig35
http://dx.doi.org/10.1007/978-0-85729-259-9_11


Figure 14.7 shows a scenario presented often but which is too simplified to be

widely applicable. This is, in essence, the method originally conceived by Jared

and Smith for a project based on the BUILD system and the feature recogniser of

Kyprianou in the early 1980s. During the project, reported by Parkinson [3], the

team quickly realised that feature recognition on its own is inadequate. Process

planning decisions have to be made in order to determine relevant features and

orientations as well as manufacturing methods. Unfortunately, more than 20 years

later, this lesson still hasn’t been learned and this simplified scenario still

appears.

Another method, based on Sabin’s view of building back, is illustrated in

Fig. 14.8. Here, there are several phases of feature recognition as planning

progresses. If the design model is properly structured then some of these ele-

ments, such as the connection features, might be available directly from the

model without having to recognise them, hence the term ‘‘acquisition’’. The

connection entities require functional tolerances to make them work. These

functional tolerances may be supplied directly by the designer, or inferred from a

functional model, or both. In order to achieve the functional tolerances the

planner has to determine the corresponding manufacturing tolerances and

determine the manufacturing processes available to achieve these. Having

removed the finishing features, a further feature acquisition step is needed on the

intermediate part. It may not be necessary to manufacture all of the features

found, hence the need for planning decisions in association with the shape

recognition. Once this has been done the raw part has to be decided on and, if

necessary, extra steps taken if, for example, the raw part is to be produced by

casting.

This is a simplified model, but it is intended only to show why the simple

‘‘recognise-and-mill’’ philosophy is insufficient and why more information is

needed from the designer. Manufacturing and manufacturing planning is a com-

plex topic so this short description is not intended to do more than illustrate some

of the aspects that need to be rethought in a revised production chain.

Fig. 14.7 3D process
planning—current philosophy
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14.1.7 Use Phase: Middle of Life

The use phase can be thought of as where the product is field tested. The relevance

for design is in knowing about the performance of different elements. The advances

in computer technology, the increased use of mechatronics and chips means that

information can be stored with components for analysis. For example, the car

industry has already embraced advanced electronics in cars. Data about compo-

nents can be accessed when the car is serviced and the results stored in a company

database. Figure 14.9 illustrates the information elements for the use phase.

The existence of product performance data can be exploited in design by

feeding it back to the designer. This would allow designers to rationalise design in

new versions of products. The history data should be a valuable company resource

provided that it can be used like this.

14.1.8 End of Life Phase

The end-of-life phase is also an important source of information for design. At the

end of its life, a product has a greater or smaller value depending on how much of

Fig. 14.8 3D process
planning—different
philosophy
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it can be reused or recycled. Elements which have to be disposed of in landfill have

a negative value Fig. 14.10. Again, this is a complex topic. It is not intended to

cover this here in any detail, merely to explain some of the aspects as an illus-

tration of the effect on CAD.

A critical issue in recycle is material separation, the division of materials into

different types. Some plastics, for example, cannot be reused if mixed with other

types of plastic. Material separation affects how you connect entities together.

There is a lot of information about the choice of connections in products for

disassembly. If, for example, you glue parts together then it is much more dif-

ficult to separate them than if you bolt them together. Connections which need

tools are harder to disassembly than connections which can be disconnected

without tools. Some connections are designed to snap together and the connec-

tions broken for disassembly. There are a lot of variants. This is another illus-

tration of the benefit of maintaining explicit connection information from the

layout phase of design.

The information about the state of products at the end of their lives indicates

possible design changes. The choice of materials that can be recuperated may

change design decisions at the start of the project, hence the ability to reuse or

recycle product parts at the end-of-life. Similarly, the presence or absence of

recycled parts can affect design by, for example, increasing protection for critical

parts. Finally, parts disposed of in landfill should be minimised. Even inciner-

ation of elements is a way of recovering energy and hence affects material

choice.

The end-of-life phase also has an effect on production planning. The possibility

of reusing components means that fewer new components of that type need

be manufactured. This changes production priorities as well as introducing

new pseudo-manufacturing operations like cleaning. Remanufacturing of parts

is related to manufacturing from castings, which affects process planning.

Fig. 14.9 The use phase
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14.2 Concurrent Engineering

In the chain, described above, a critical part is communication between the dif-

ferent areas. This assumes that the activities occur ‘‘asynchronously’’, one after the

other. Another approach is to perform activities, at least in part, at the same time,

allowing communication between the experts in different areas. This is generally

termed ‘‘concurrent engineering’’.

The following explanation is divided up to illustrate different aspects of con-

current engineering. Firstly, it is necessary to consider who might participate in the

process. Then, it is also necessary to set up an infrastructure to allow this work to

proceed. Finally, it is necessary to consider the strategy needed to achieve the

goals of concurrent engineering.

Two other aspects are considered in this section. The first is how synchronous

CAD systemsmight be achieved, to allow real concurrent working. The second aspect

is the replacement of human experts by expert systems for certain well-defined areas.

14.2.1 Participants

Here the meaning of concurrent engineering is when a team of experts in different

fields work together to produce a design (Fig. 14.11).

What concurrent engineering aims to do is to make expertise from different

viewpoints available to a designer during the design process. Note, this description

concerns the detailed design phase, but similar considerations apply for the early

phase of design. It is just that, with the lack of unified tools throughout the design

process, this is done differently at the moment.

In Fig. 14.11 the designer is supported by expertise from five directions:

• The chief designer, who might want to check the progress and the connections

with the other parts.

• The manufacturer, who might make comments about the manufacturability of a

part, adding blends and so forth.

Fig. 14.10 Information for the End-Of-Life phase
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• The assembler, who might want changes to make assembly easier.

• The user/sales personnel, who might want to check the expected use of a product.

• The recycler, who might make comments about the reuse value of the part, the

material, the attachment methods and so on.

What concurrent engineering seeks to do is to put the different stakeholders together

in away that the aspects are considered at the same time, rather than sequentially, hence

the name. Another way of thinking about this is to consider a time-line. Figure 14.12

shows a hypothetical example where all tasks are carried out sequentially.

Ideally, concurrent engineeringwould be carried out in full synchronousmode, like

a teleconference,with a collaborativeCADsystem.At themoment, though, concurrent

engineering is often carried out by the designer saving the part to a database so that it is

available for uploading by experts or expert systems. These then examine, change and

return models. A time line for this might look like that shown in Fig. 14.13.

This is a simple example to give an idea of what might happen. By sharing data

early it is possible to work in parallel and shorten the development time.

14.2.2 The Infrastructure

Computer practice has changed since the early days of single central computers to

a network of powerful workstations. This means that it is necessary to plan

Fig. 14.11 Concurrent engineering
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concurrent engineering round a distributed computing environment. With the

internet, this distributed computing environment could be within one company or

it could be at geographically remote sites. Some researchers report that even

different floors in the same building represent a barrier to efficient communication

so it is likely that some infrastructure is needed even within comparatively close

locations. With large companies, planning production in several locations, there

may be several experts in the same competence area, possibly with different

requirements.

In order to share data it is necessary to have a common work space. This

common area will, presumably, be an area of disk space where models and other

data files can be placed and from which they can be retrieved. The type of model

data exchange is illustrated in Fig. 14.14.

Another aspect of the concurrent engineering infrastructure is direct commu-

nication between participants. This could be done in a number of traditional ways

using external means, such as memos, letters or telephone calls. There are more

direct, computer-based means, though, which allow communication. Email, chat

programs, whiteboards and so on have all become part of current computer

practice. There are also more complete video conferencing systems, either separate

or running on a normal PC. One advantage of these is that sessions can be recorded

and replayed at a later date.

There is, though, competition between computer-based communication with

video and sound and other software, which may disturb smooth communication.

Computationally expensive activities, such as Finite Element Analysis, FEM, may

cause disruption. An alternative is to have two machines, one for communication

and one for software applications.

Fig. 14.12 Hypothetical non-concurrent engineering time-line

Fig. 14.13 Hypothetical
concurrent engineering
time-line
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Security is a major concern for this type of working. Some companies do not

allow chat programs because of the danger of communicating sensitive data

immediately. This is, of course, potentially less of a problem if the communication

is done in one site on an intranet without access to the internet. Common data

areas, too, risk attack from outside the company. These problems, though, are not

specific to CAD use and concurrent engineering. However, it is necessary to be

aware of them and plan for them.

14.2.3 Strategy and Communication

A critical aspect is how to share the data. Working via a database gives you the

effect shown in Fig. 14.14. This requires adequate version control to ensure that

the model is not changed differently in two places at the same time. One method is

to allow only the designer to change the model while the experts explain the

changes they would like.

The question about how and when to share models, how to arrange changes and

so on, lies outside the realm of the system. The system can provide a platform, but

there are no hard-and-fast rules about how to use this. Note, though, that struc-

turing the CAD work, especially if it can be structured using early phase design

software, is beneficial. For example, the kinematic connections between layout

elements are of interest for assembly experts and recycling experts. Kinematic

connections can often be realised in different ways in the final design. For

example, a static connection may be realised by gluing, welding, bolting together

(with three or more bolts) or clipped together, for example. There are many more

options. The method could be commented on before the start of the detailed design

phase and hence the designer would have more information about the connections

when the detailed design is being developed.

Fig. 14.14 Data sharing for concurrent engineering
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Even if there are no computer-based early-phase design tools it is advisable to

structure the CAD development as far as possible. The model elements were

categorised in Sect. 14.1.6 as: Elements that are fundamental to the design, ele-

ments that are functional, elements for practical purposes, and elements which are

compromises. The fundamental elements can be shared as early as possible, for

understanding of the design, even if they are in draft form. The functional elements

indicate interactions with other application areas, hence should lead to feedback.

The feedback will give rise to practical purpose elements and also to compromise

elements.

One possibility for model modification is to let different experts make changes

to the model to improve it from their aspect of expertise. In this case it is necessary

to organise a library-like system so that two or more people cannot access the

model at the same time.

Another possibility, mentioned above, is to allow only the designer to change

the model based on comments from collaborating experts. If a single user makes

the changes, though, the graphical picking methods commonly used for defining

model elements may not be available for other experts. See below for more

comments. This means that it is necessary to work out other methods for com-

munication. These are related to the methods described in Sect. 12.2.

• Picking information—one possibility is to pass picking information, see

Sect. 7.4, in the form of a graphic transformation and screen coordinates.

I-DEAS used to show this information in its macro files. The information is

available somewhere in the CAD system, but may not be available to share as

data. Essentially, 2D graphics position is interpreted as a line into the screen and

the transformation defines the part orientation and placement. From these you

can get a 3D line definition which is intersected back with the model to find the

picked element(s).

• Naming—another possibility is to name model elements and communicate

these. This is not like the permanent names mentioned earlier, but user defined

names which have some logical sense to the CAD user and experts. Names are

volatile, though, because the element associated with the name may disappear or

be modified during modelling.

• Topological navigation—the method devised by Chris Cary. This, too, is ori-

entation dependent and so needs to communicate a graphics transformation. The

selection would be passed as a graphics transformation followed by a text string

identifying the element. Probably, though, this would be harder to use than

picking information.

• Feature references—feature references means using feature identifications as

sort-of shape-based names. One problem with feature names is if the same

elements are named in different ways. An example is shown in Fig. 14.15.

The different feature names come about from applying different feature rec-

ognition methods. If the features are identified centrally and the model

labelled with just one set of feature names then this would be a way to avoid

the problem.
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14.2.4 Synchronous Collaborative Systems

Yet another possibility for handling modification is to have only one model but

allow multiple access via a collaborative system. Synchronous collaborative sys-

tems are technically possible and have been for many years. At least one system

developer has announced a system with collaborative engineering, so it appears

that this is a trend. Since I do not know how these work I give here a personal

solution to show that it is possible. My method for synchronous collaboration is

shown in Fig. 14.16. Essentially, the functional elements of the CAD system,

shown at the top of the figure, are decoupled and organised as communicating

processes. Commands are passed as command strings, which were described in

Chap. 12. Having a standardised command shell, based on DJINN say, would

make it easier to have plug-and-play applications.

What this means is that commands are created locally and put on a stack in the

shared disk area. The CAD system picks the commands from the common area,

performs the commanded task and delivers graphical results and possibly exchanges

models. Commands need identifiers so that they can be undone or modified.

14.2.5 Experts and Expert Systems

The concurrent engineering systems mentioned above have an implication that the

experts in the system are human. This is not necessarily so. It is possible to have expert

systems for limited access, or apply software modules to analyse models. Model

checking, for verification that transmitted and receivedmodels are correct, is described

in Sect. 14.3. Application-based analysis software is described in Sect. 14.4.

Fig. 14.15 Naming model elements
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Human experts are generally superior to software for checking because of their

broad knowledge and ability to extrapolate. Software can compete well for boring

tasks and for certain well-defined application areas. There is also the advantage

that expert systems can be interrogated to find out why they reached a decision.

Checking software is useful but cannot provide the proactive support that a

human expert can. Some examples of these are described in the next section.

14.3 Model Checking and Healing

Model checking and healing techniques are there to indicate problems in the

model, and possibly to fix them. What they do is to go over a model and check that

various conditions are fulfilled. Quite what is done varies between systems.

Model checking involves quite a lot of checks, but not all of which may be

interesting for the casual user. Checking can be very useful for systems developers as

Fig. 14.16 Collaborative engineering by functional decoupling
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well, who need to check the correctness of operations before they are released to a

CAD system. The checking can involve extensive topological checking as well as

geometric checking. Probably it is the geometric operations that are more interesting

for the CAD user. One exception, though, is checking for non-manifold topology.

Healing is the term used for correcting the problems found by the checker.

Model healing can involve making the geometry consistent or performing more

complex operations like Boolean operations. Some possibilities for healing are

outlined below.

14.3.1 Non-Manifold Topology

Non-manifold topology, which was described in Chap. 6, is not an error, but

indicates an object which cannot be made in reality. Checking for these is easy,

because it is only to scan through the model looking at every edge and every vertex

to see if more than two faces are adjacent to an edge and more than one edge set

refers to a vertex. Figure 14.17 shows simple examples of a non-manifold edge

(left) and a non-manifold vertex (right).

In Fig. 14.17, the non-manifold edge, marked e in the figure at the top left,

is adjacent to four faces, called here f1; f2; f3 and f4; as shown in the figure,

Fig. 14.17 Non-manifold
edges and vertices
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left-middle. This is now usually arranged using four loop-edge links, marked lel1;
lel2; lel3 and lel4; as shown on the bottom left of the figure. For the non-manifold

vertex shown in the right-hand column of Fig. 14.17, the non-manifold vertex has

two sets of edges. In the middle of the right-hand column these are marked as e1;
e2 and e3 in one set and e4; e5 and e6 in the second set. The vertex maintains a

pointer to one edge in each separate edge-set, as shown at the bottom of the right-

hand column of Fig. 14.17.

In order to heal the object it is necessary to have user interaction to determine

whether the objects just touch or just miss. If they just touch then there is material

which needs to be thickened, if they just miss then a little material needs to be

removed. This is easier for edges than for vertices.

For edges, the chain of links has to be broken into pairs, each with an edge

running between the same two vertices as the original edge. How you choose the

pairs determines whether the objects touch or join. In the example in Fig. 14.17, if

the pairs are (lel1; lel2) and (lel3; lel4) then the objects touch. If the pairs are (lel2;
lel3) and (lel4; lel1) then the objects miss each other. If the objects miss then the

vertices have to be split and the edges could be filleted off with a small, user-

determined radius. If the objects just touch then they should also be rounded off, or

treated somehow to add a small thickness.

For vertices, if the vertices miss then the healing is easy, it just involves

creating a new vertex at the same position as the original vertex and moving one

edge reference from the original vertex to the new vertex. The vertices can then be

rounded off slightly, if needed. For a vertex where the objects just touch it is

necessary to replace the vertex with a ring of edges which can then be rounded off

slightly to produce a narrow neck around the object.

14.3.2 Geometry Calculation Errors

One use for model checking and healing is when you have imported a model

from a different system and want to know if there are any problems before

working on it. It is common that different systems use different tolerance values

for geometric calculations. For intersection curves calculated between surfaces it

is common that points are calculated iteratively, moving them closer to the

surfaces until they lie, within some tolerance, on both surfaces. This is illustrated

in Fig. 14.18.

The central solid line in the figure represents the real curve while the dots

represent points calculated on the two surfaces. The intersection curve either

passes through the points or is fitted to pass close to them. The outer dotted line

pair represents the tolerances of the geometry creation system, while the inner pair

represent the tolerances of the receiving system. If the system which generated the

points is system 1, with a looser tolerance than system 2, the receiving system,

then there is a risk that some of the calculated points may lie outside the tolerance

limits of the receiving system. Such points are shown as open circles in Fig. 14.18.
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Tolerances are necessary for the functioning of CAD systems because of the

way numbers are represented. Pfeifer [4] made a thorough analysis of different

types of tolerances, which have already been mentioned in Chap. 5, such as:

• Tolerance based on the precision of the computer system.

• Distance tolerance value.

• Angular tolerance value.

• Geometric tolerance.

• Relative tolerance.

• Polynomial tolerance value.

One or more of these may be available for the user to change in CAD systems,

hence the need to check tolerance-based geometry. The problem may even occur

when both the sending and receiving system are the same software, if the tolerance

is not stored as part of the model file, though this is less likely.

The healing process is helped for intersection curves if the representation for

the intersection curve includes the two surfaces that were originally used to create

the curve. If these are not available directly from the curve representation then it is

necessary to use the body structure to find the surfaces of the faces adjacent to the

edge referencing the intersection curve. When the surfaces have been retrieved

then they can be intersected back to calculate a new curve at the tighter tolerance.

14.3.3 Joining Errors

Another type of geometric error that can occur when trying to match free-standing

geometry. This can be necessary if, for example, models are exchanged using

IGES. IGES does not communicate the model topology directly, so this has to be

reconstructed. One solution is to create a set of surface patches as faces and then to

sew these faces together along coincident edges in order to create a connected

model. This is helped if the IGES file uses bounded geometry, for example, where

the elements correspond roughly to topology. Failing that, it is necessary to do

some geometric matching which, by virtue of the necessity for tolerances, men-

tioned above, it is harder to match items.

Fig. 14.18 Point positioning and tolerances
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One potential problem is illustrated in Fig. 14.19. Two curves are not matched

because of tolerance errors and hence not joined.

Joining errors are characterised by edges with only one adjacent face or by

edges which are ‘‘sharp’’, i.e. which have the same surface on both sides but with

opposite normal directions. Similar edges can also appear if, for example, a whole

face is missing because the solid is being recreated from an incomplete surface

model.

Mending a model with this kind of fault might be done by recalculating the

geometry, moving the geometry closer. It might also be done by recalculating an

intersection curve in the same way as described in Sect. 14.3.2. Yet another

possibility is that the surfaces are trimmed back, as is done for blending, and new

surfaces added which do meet, although this is a poorer solution because it

increases the model complexity.

Mending missing faces is more complicated unless the edges around are con-

tinuous. In Fig. 14.20 there is a missing face, marked ‘‘gap’’ surrounded by six

edges, e1–e6: These edges can be found by stepping round the hole, from face to

face, finding neighbouring edges with only one face or neighbouring sharp edges.

If edge e1 has been identified as a one-sided or sharp edge of face f1; you step

clockwise round v2 and find edge e2: Then find the opposite vertex to v2 along e2;
which is vertex v3: This is repeated, the edges round v3 are traversed clockwise

until the next partially defined edge, edge e3 is found, and so on. Eventually the

start vertex is found and the gap boundary defined. This process can be prob-

lematical if several holes, or gaps, touch at vertices, but this is also manageable

with a little care.

Fig. 14.19 Curve mismatching

Fig. 14.20 Missing face
example
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The next problem is to set in the new geometry. Figure 14.21 shows examples

of gaps which are continuous, on the left, and discontinuous, on the right. In each

case, the gap is surrounded by edges e1 to e8: The gap on the left, though, can be

filled reasonably with a single surface while that on the right seems to be three

gaps run together into one, and is less appropriate as a single surface piece. This is

not say that it is impossible to put in a single piece of surface. With NURBS, for

example, having coincident knots would allow you to have a single surface with

discontinuities, but there is a difference between what you can do and what you

should do. The ‘‘correct’’ solution would be to divide the gap into separate pieces,

bridge it with extra topological elements to create multiple faces and put each into

a separate, simple surface. However, this is not necessarily easy.

Remember, as with all these healing suggestions, it is much easier for you to see

what to do than it is for the computer. You have a global view and a global under-

standing of the problemwhile the computer has only a very localised view. A human

equivalent might be going for a walk on your hands and knees looking closely at the

ground you are crawling over and trying to understand the countryside from that. This

is inherent, so it is sometimes easier to have algorithms which demand user inter-

action rather than trying to make the healing totally automatic.

14.3.4 Geometric Singularities

Geometric singularities are related to the problem of self-intersecting geometry,

described next. Geometric singularities are not necessarily a problem unless they

lie within an edge or face. Take, for example, a simple cubic 2D Bézier defined by

the control points: ð�10; 0Þ; ð10; 10Þ; ð�10; 10Þ; ð10; 0Þ mentioned in Sect. 5.5.6.

This curve is shown in Fig. 14.22. If you analyse the curve, there is a well defined

position at t ¼ 0:5; but the tangent has zero length.

Using a part of this curve is possible, it is just the inclusion of the singular point

which can cause problems. Detection of this would involve checking the geometry

Fig. 14.21 Missing face example with continuous and non-continuous geometry
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to find the singular point or points and checking whether these lie on topological

elements in the model. If they are then the user should, at least, be warned about

these when checking the model.

It is difficult to do automatic healing for this kind of problem because the choice

of the geometry rests with the user.

14.3.5 Self-Intersections

There are two types of self-intersections which might occur: self-intersecting

geometry and self-intersecting models.

Geometric self-intersections are similar to geometry with singularities in that part

of the geometrymay be useful even though there can be problems with using it. Take,

for example, another simple cubic 2D Bézier, which was also mentioned in

Sect. 5.5.6, and is defined by the control points: ð�10; 0Þ; ð20; 10Þ; ð�20; 10Þ; ð10; 0Þ
(Fig. 14.23). If you evaluate this at t ¼ 0:17267316 and at t ¼ 0:82732684 (the roots

of the equation: 7t2 � 7t þ 1) you find the same intersection point: ð0; 4:285714; 0Þ
Similarly with surfaces, although the self-intersection may be a curve. At points

along the self-intersection curve there is an ambiguity, so that a point may lie at

different parametric positions with different normal vectors. However, unlike

degenerate geometry, self-intersecting geometry can be valid and useful. A good

example of this is the self-intersecting torus. Four types of torus can be readily

identified: 1. Normal, 2. Touching, 3. Apple torus, 4. Lemon torus. These are

illustrated in Fig. 14.24.

Although this may seem a little academic, these can appear naturally. For

example, if you create the shape in Fig. 14.25 you have all four types of toroidal

surface. The radius 12.5 circular arc gives you an apple toroidal surface, the radius

Fig. 14.22 Geometry with
degenerate point

Fig. 14.23 Self-intersecting
geometry
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7.5 arc gives you a normal toroidal surface, the radius 20 arc gives a lemon

toroidal surface and the radius 5 arc gives a touching toroidal surface.

It is clear that the model which results from rotating the profile about the axis is

a reasonable model. None of the critical points appears in the final model and

hence the model should not cause any problems. This is an illustration of the

earlier statement that the presence of self-intersecting geometrical elements does

not necessarily mean that the model is invalid.

Another type of self-intersection is where model parts cut into each other.

Sections 4.2.10.7 and 4.7 describe how self-intersecting objects may be made.

Another method is to sweep self-intersecting geometry or overlapping geometry

and thicken this, as described in the exercises at the end of this chapter.

Healing self-intersecting objects may be done with a variant of the Boolean

operations, although I have not seen this available in commercial systems.

14.3.6 Sharp Faces

Sharp faces are faces which taper off. Figure 14.26 shows an example of such a

face. This is not an error, but can cause confusion when calculating tool paths, for

example.

The horn-shaped face shown on the right may cause problems because, at the

extremes, the distance between intersection points across the face is less than

Fig. 14.24 Torus examples

Fig. 14.25 Torus examples in a simple model
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tolerancewhereas the distance from the vertex is greater than tolerance. Figure 14.27

illustrates this. e is the tolerance for the smallest distance between two points. d1 is the

distance between two intersection points cutting across the face, d2 is the distance

from the vertex v of the face. In effect, the sharp end portions of the face act like a

fuzzy line due to the problem of geometric tolerances. This is not an error, but it is

worth being aware of if your CAD system can detect it.

14.3.7 Multi-Piece Solids

The current tendency is that a model file contains only a single model. While this

is comprehensible it means that objects with multiple parts may appear to be a

single object and the differences hidden inside the datastructures. Multi-piece

solids can be created inadvertently during modelling when model parts do not

touch. These may be made by extrusion, for example, or by chamfering. They

might also appear as the result of changing parameters in a parametrised model to

inappropriate values.

There are two ways that a multi-piece object might be represented: using multiple

shells; usingmultiple volumetric elements. For shells, see Fig. 2.17. A shell is a set of

connected faces. TheACIS kernel, for example, allowsmultiple ‘‘chunks’’ ofmaterial

in its datastructure. You do not really need to know how multiple pieces are repre-

sented, just that they can be.What is more interesting is whether the pieces overlap or

not. Partial overlaps should have been detected when checking for self-intersections,

so the pieces either completely overlap or do not overlap at all. Figure 14.28 shows

two simple examples of overlapping and non-overlapping structures.

The case where the structures do not overlap is probably wrong. It would

certainly cause problems for the standard manufacturing techniques and, if

Fig. 14.26 Example of sharp
face

Fig. 14.27 Distances and
tolerance in a sharp face
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separate pieces are really required, then they should be in separate parts of an

assembly. The overlapping case is correct, from a modelling point of view, since

the material is continuous, but can cause problems for manufacturing, say. It might

be possible to manufacture some objects with some of the rapid prototyping

techniques. Otherwise the model would have to be split, manufactured and the

pieces joined. It is worth giving a warning for objects with cavities.

14.4 Design for ... Something

There are various analysis tools for analysing a design from particular points of

view. A well-known set of software modules for this were developed commer-

cially by Boothroyd and Dewhurst. The purpose here is not to describe these

modules but to put them into the context of CAD presented in this chapter. Note,

though, that there are conflicts between the results of these analyses and, as usual,

there may be a trade-off between optima rather than having one clear solution.

Design for assembly and design for manufacturing, for example, can fight each

other. For manufacturing it is better to have simpler parts which are easier to

Fig. 14.28 Simple, multi-piece models
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manufacture. For assembly, it is better to merge parts, where possible, to have

fewer parts to assemble.

The reason for this section is not to give an exhaustive description of the

techniques and their workings. The intention is simply to say that they exist, a little

of what they do and why they are used. It is the last that is important here. The

techniques themselves are described better by the people who sell them or

developed them.

14.4.1 Design for Manufacturing

This technique attempts to improve products from the point of view of manu-

facturing them. The method developed by Boothroyd and Dewhurst, pioneers in

this technique, is partly based on features. There are various other factors, such as

corner radii, which affect the size of the tool that can be used. The method analyses

a process plan for a part and indicates how it can be improved. The process plan

can be built up alongside the design of the part and tested several times to optimise

the design.

One question is about why optimise manufacturing. One factor is cost. Another

factor is social, if parts are to be manufactured in different places in the world.

Traditionally, parts were designed, manufactured and assembled by a company,

but there is a possibility, now, that some products are designed in one country and

manufactured and assembled somewhere else. This means that the company

cannot always control the manufacturing conditions and may want to consider

simplifying manufacture or simplifying assembly, depending on local workforce

skills. If the product is intended for a country with a lower level of manufacturing

facilities, or fewer natural resources, then it can also be important to rethink

manufacturing.

14.4.2 Design for Assembly

This technique attempts to improve products from the point of view of assembling

them. This is another technique pioneered by Boothroyd and Dewhurst. There are

also many interesting papers on proactive design for assembly by Jared, Swift and

others, already mentioned in Sect. 11.4. Jared and Swift’s work fits closer to the

idea of concurrent engineering than does the reactive analysis of Boothroyd and

Dewhurst.

Again, there are a variety of techniques for improving the ease of assembly of

products. One of these techniques is to merge parts. Merging parts, though, risks

complicating or changing the manufacturing techniques for the part. Figure 14.29

shows a version of one of the standard examples, although I don’t know to whom

to attribute it. At the top left of the figure is an assembly with ten pieces: one box,
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one lid, four bolts and four nuts. At the bottom left you can see the box one its

own. It has a flat rim with four holes through which the bolts are inserted. On the

right you have an alternative. At the top is an assembly with six pieces, one box,

one lid and four bolts. The reduction is made by integrating the bolts with the box,

adding the screw threads into extrusions from the box.

There are other techniques that help in improving the assemblability, such as

reducing the weight of components. This might be done by creating pockets or

holes in the design. This, too, complicates the manufacture, but note that the

manufacturing features introduced into the design have a different purpose to those

for connection. This means that, probably, they need different tolerances to those

for connections. The features for reducing weight also have a different purpose and

it is useful to be able to communicate this information with the model.

Symmetry is another important factor for assembly. This can be another

important consideration for the early phase of the design process so as to save

work by using the symmetry operation.

Fig. 14.29 Reducing elements in an assembly
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Csabai [2] also worked out assembly and disassembly paths for the layout

phase. His method was based on the space occupancy and is important because it

could be used to check the simple layout primitives before detailed design starts.

Usually, the earlier that methods can be applied the better, since it costs less to

make modifications.

Again, there can be social reasons for facilitating assembly. One of these rea-

sons might be if the product is to be assembled by a less skilled or less motivated

workforce. Automatic assembly also needs easier assembly methods.

14.4.3 Design for Disassembly

Design for disassembly is important for the end of life of manufacturing. Disas-

sembly is not necessarily the same as reversing assembly, because sometimes parts

can be broken because their material will be reused, not the parts themselves. For

material recycling it is important to have material separation and hence certain

connection methods are not good. Connections may be replaced by breakable

connections. Connections which need tools to disconnect them can be reduced.

Disassembly for repair is slightly different than disassembly at end-of-life as

product damage should be minimised. Easy access to parts which are likely to need

maintenance or replacement is a consideration at the layout stage.

Note, again, though the importance of having explicit connection information

from the beginning. If this can be introduced in the early phase of design then it

provides useful information for the detailed design.

14.4.4 Eco-Evaluation

There is a method, the ‘‘Eco-Indicators method’’, which seeks to cost the static

parts of production. The method is demonstrated for part of a machine tool in [5].

The work, carried out by CeSI (Centro Studi Industriali), the Centre for industrial

studies in Italy, was done for the analysis of part of a machine tool for the NEXT

project, a project on the next generation of machine tools.

In his presentation in [5], Luca Mozzanica describes how eco-evaluation works,

defining the relevant time span and geographical territory for the analysis. He points

out the difficulties involved in setting the analysis up and defining the results. As an

alternative he describes the Eco-Indicators method, or EI99, which calculates the

ecological loading using a common unit called themillipoint. This does not allow the

different contributions to be seen but does allow alternatives to be compared to

choose the best option. Mozzanica illustrates the method very well, using the

example of how a cast-iron ram and an aluminium ramcan be compared to choose the

material. Mozzanica shows how the different elements, such as transport, material,

manufacturing and recycling are used to build up the analysis.
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For any given part you might have the following elements:

1. Material. The millipoint score is a combination of elements concerning the

acquisition (mining, etc.) and the processing per unit of weight. The score is then

multiplied by the weight of the part to be made to give a total millipoint score.

2. Transport. The millipoint score is calculated as a cost per kilometre that a part

is transported. The score is a weighting of fuel use, pollution and other factors.

3. Manufacturing. The millipoint score is calculated as a cost per unit weight of

material removed. The energy costs, lubrication costs, tool and machine wear

and so on are included in this.

The Eco-Indicators method is useful for understanding the contributions but

does not always give a clear picture of how the scores should be broken down into

different elements. The different contributions from the various factors are hidden

in the millipoint score and it can be hard to see how the millipoint value was

calculated. The technique can be helpful in choosing between variants as well as in

making clear a number of factors to be considered.

14.4.5 Evaluation for Ecological Manufacturing

As part of the work for the NEXT project one task was on evaluating the use phase

of manufacturing. The work, led by Professor Paul Xirouchakis and carried out by

Vincent Capponi and Oliver Avram, was aimed at assessing how parts are made.

The eco-indicators method is not really accurate enough to take into account the

factors during the use phase. Capponi, in his presentation in [5], uses the example

of driving between Geneva and Annecy. The eco-indicators method would cal-

culate the cost in terms of the distance whereas the style of driving and the traffic

conditions will affect the actual ecological effects.

Figure 14.30 shows the organisation of the GREEM software. The shape

description is given as a set of manufacturing features. The machining options and

the evaluation criteria are given by the user. The evaluation of the part with the

specified options and evaluation criteria is performed with the help of a database of

experimental data contributed by project partners (ASCAMM, CeSI, CRF, Danobat,

EPFL, Fatronik, FIDIA, IFW, MAG, ONA, Tekniker). The result of the analysis is a

report indicating which machining options contribute to the total score. In a second

level of development, Avram analyses the moving masses of the machine based on a

machine tool model with data about some of the machines used for the experiments.

This kind of method can be used for evaluating process plans from different

points of view. If used during the design phase then it may be possible to modify

some of the shape features in a part to optimise the shape. Otherwise, it is probably

more useful for the process planner than for the designer. If the part is to be made

in large numbers then it is important to minimise the resources used. Also, the

moving masses of machine tools can be analysed to set the part orientation for

machining so as to reduce energy use, if possible.
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14.5 Engineering Case Studies

Case studies sometimes involve dramatic failures which catch the public attention,

at other times they involve smaller complications. I first heard about study of

engineering failures from researchers at the late Professor Kosuke Ishii’s labora-

tory at Stanford. Study of this topic is not to criticise people’s failures but is

intended to lead to improvements in both design and processes. There are a

number of these and it is important to understand why things have failed in order

to reduce risks. Studying both success and failure is a useful occupation to increase

understanding and breadth of vision.

What is given here is not intended to be a complete analysis of any of the topics,

merely a very small introduction and an indication of some lessons to be learned.

A proper treatment of the subject would take much more space than is available

here.

14.5.1 The Vasa

During the seventeenth century Sweden was a dominant nation in the Baltic and

the then King, Gustav Adolf, wanted to have an impressive flagship as part of his

Fig. 14.30 GREEM organisation
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fleet. The new flagship was designed and built. It set sail but capsized and sank in

Stockholm’s outer harbour. Analysis of the ship’s structure revealed that the ship

was top heavy and had not been loaded with enough ballast. However, had there

been enough ballast, reports say that the lower gunports would have been

underwater. A commission investigated the loss of the Vasa but reached no def-

inite conclusion. Another, later, report suggested that the King himself had ordered

an extra deck to be built, overruling the engineers and it was this extra addition

that was the cause of the problem.

If this latter report is true it is an example where a client has overruled the

engineers with the result that the product failed. It may seem easy to dismiss this as

an example over too much power in the hands of one person, but there are modern

examples of politicians overruling engineers. This is more than an academic

example because of the legal aspects associated with design failures. If a design

has been compromised by the wishes of a client then it is important to note this.

There are more complications, too, with the move towards letting individuals

design and manufacture their own products. If the product fails, then who is

responsible? Is it the client or the design software? This topic falls outside the

scope of this book, but the notion of engineering integrity needs to be maintained,

even against powerful opposition.

14.5.2 The Titanic

The fate of the Titanic is a well-known example of engineering failures. The

Titanic was billed as being unsinkable, but hit an iceberg during its maiden voyage

in 1912 and sank with the loss of over 1,500 lives among the 2,200 passengers and

crew. The titanic was supposed to be unsinkable because it was constructed with a

number of compartmental segments. The theory was that if the hull was breached

in one of these segments the damaged segment could be isolated and the ship

would remain afloat. In fact, the gash through the ship traversed several sections.

Another problem was that the list the ship developed while sinking hampered

launching of lifeboats. Both of these problems have been well analysed to increase

the safety of modern ships. Although the Titanic has been used as a romantic

image of disaster, it is important to regard it as an example for engineering

analysis.

It is impossible to think of everything, so it would have been difficult to have

thought of the combined problems of the Titanic in advance. An alternative design,

that of the Great Eastern by Isambard Kingdom Brunel, used a double hull which

proved more durable than the Titanic’s compartments. The Great Eastern hit an

underwater rock which tore a huge gap in the hull. However, only the outer hull

was breached and the ship was able to survive the accident. Advanced simulation

might have helped. Aircraft simulators enable both pilots and designers to check

critical cases of failure with risking the pilot.
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14.5.3 De Havilland Comet

After the end of the Second World War the De Havilland company had the vision

of using the newly developed jet engine technology in a civil airliner, the Comet.

The project came to fruition and the first aircraft entered into service. Unfortu-

nately the initial success was marred by accidents and the aircraft was grounded

during the analysis. The analysis revealed a design fault which was then corrected

and the aircraft continued in service.

The use of finite analysis software to check the strength of designs is now

commonplace. Also, analysis of fatigue and material failure has advanced a long

way, making understanding of component behaviour more complete. Software

techniques for physical simulation exist. This means that physical testing can be

preceded by virtual testing.

14.5.4 Symmetrical Components

This example comes fromStanford and concerns a productwhich had two symmetric

variants. I do not want to identify the actual product here. In the variants the basic

product was complete but needed some extra elements depending on its position.

Extra tubes had to be fitted down the left side in the left-hand products and the right-

hand side in right-hand products. The problem was that the left and right tubes were

similar in shape, so sometimes a left-tube was fitted to a right product, or vice versa,

requiring it to be bent slightly in the process. The bending processweakened the tube,

which could have caused product failure, but quality control identified the problem.

The point is that the left-hand and right-hand parts were too similar, and hence

the assembly personnel were not easily able to identify the correct part. In this case,

it would have been better to make parts which were obviously different, either by

shape or by colouring them in some way so that they could be identified quickly.

14.5.5 The Mercedes A-Class

This example has been analysed and presented by Professor Petra Badke-Schaub

of the Technical University of Delft. The product was, fortunately, not a disaster

but needed drastic redesign after the prototype stage. According to Professor

Badke-Schaub’s analysis the design team was young, highly motivated, well

supported by senior management, but the initial product was unstable. According

to the analysis the problem was that there was a lack of self-criticism within the

design team, everyone believed in the result.

This example illustrates the need for a sort-of ‘‘Devil’s Advocate’’ in design,

someone who can examine the product critically and criticise it. It is common in
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software development that users encounter difficulties with software because they

are using it in a manner other than that perceived by the software developer.

Having an independent evaluator is valuable because that person will look at the

product from a different point of view and hence provide information about public

perception. Having several evaluators is also better. There is a related topic, called

‘‘Augmented Reality’’, whereby a simple physical model is enhanced by virtual

reality methods to give a perception of a finished product. This provides yet

another method of testing before a real prototype need be produced.

14.5.6 The Challenger Space Shuttle

The space shuttle Challenger lifted off and broke up soon after take off in 1986.

The blame for the explosion was put on a connection in one of the booster rockets

called an ‘‘O-ring’’. There were other circumstances surrounding the events,

though, such as the low temperature at the time of launch, which were said to have

contributed. Apparently the design flaw had been noted but not remedied. Again, it

has been noted that engineers warned of the potential problem but had been

overruled, similarly to the case of the Vasa. There was a report that the boosters

could have been made differently to avoid having an O-ring, but there was a

political decision to let a different manufacturer make the booster.

14.5.7 NASA’s Mars Probe

I rely on a very interesting article by Oberg [6] for information about this example.

NASA engineering could be termed ‘‘Extreme Engineering’’ in popular terms

because they have to deal with extreme conditions as well as a lot of special cases.

The case in question is another special set of circumstances, but Oberg’s article

suggests some interesting elements.

In 1999 NASA’s Mars probe crashed into Mars rather than landing softly. At the

time there were reports that one design team had used inches while another had used

millimetres and that this had contributed to the problem. Oberg suggests in his article

that there were more complex reasons for the loss of the probe. First, he says, the

original design was for a probe with two solar panels but one of these was removed to

savemoney. The result was asymmetrical and the pressure of solar wind kept turning

the spacecraft so several corrective manoeuvres had to be carried out. Unfortunately,

the motors to turn the space craft were not centred about the centre of gravity of the

spacecraft so that each manoeuvre moved the probe slightly off course. Finally, the

distance of the probe from the Earth meant that the triangulation method used to

calculate the position of the probe was less precise than for closer targets.

There are several interesting points in Oberg’s article, but one important one

is the problem of redesign. After the removal of the solar panel all the
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subsequent design steps should have been redone to produce a new design. This

highlights a weakness in current CAD, that there is no modelling of the design

reasoning process and the decisions made. This is a complex topic which needs

more research. It emphasises the need to work logically and to record as much

information as possible to make the reasoning process clear for other

collaborators.

14.6 Chapter Summary

This chapter deals with the environment in which CAD is used. First of all, the

chapter explains that CAD is not an isolated activity but forms part of a cycle.

The chapter describes the major stages and the sort of information that is available.

The chapter describes briefly the notion of concurrent engineering and different

aspects of this. Next, there is a description of different analysis techniques to

support analysis of designs. Finally, the chapter presents a brief description of

some engineering examples that can provide useful information.

14.7 Assorted Exercises

Note, these checking exercises are not concerned about whether or not the objects can

bemade, they are aboutwhat can be detected by theCADsystemchecker, if one exists.

14.7.1 Non-Manifold Checking Exercise

Make the object shown in Fig. 14.31. You can do this by creating a 100� 100� 100

block and then cutting out square portions, 60� 60 in three orthogonal directions.

On the face marked with an arrow, create a 60� 60 square which just touches

the interior hole in the face. Extrude this upwards 60 units so that all edges of the

new part just touch an edge of the original figure. This means that the result object

should have 12 non-manifold edges. Check whether the analysis tool finds these

non-manifold edges.

14.7.2 Degenerate and Self-Intersection Exercise

Make a simple cubic 2D Bézier defined by the control points: ð�100; 0Þ;
ð100; 100Þ; ð�100; 100Þ; ð100; 0Þ: This gives you a curve similar to that shown in

Fig. 14.22. Add extra straight edges round this to create a closed figure, extruding

it upwards to create an object like that in Fig. 14.32. Check if the extrusion

operation warns you about the object while making it and whether it is detected by

any checking software. What happens if you cut through the degenerate part?
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Make a second cubic 2D Bézier defined by the control points:

ð�100; 0Þ; ð200; 100Þ; ð�200; 100Þ; ð100; 0Þ: This gives you a curve similar to

that shown in Fig. 14.23. Try extruding the shape to create a self-intersecting

shell (or sheet) object and then give this thickness to create the object in

Fig. 14.33. Does the system warn you at the extrusion stage that the curve is

self-intersecting?

If the system does complain about the self-intersecting curve then you can still

create a self-intersecting object by modifying the control points. Create a curve

with the control points: ð�100; 0; 0Þ; ð200; 100; 10Þ; ð�200; 100; 20Þ; ð100; 0; 30Þ:
This gives you a curve something like that shown from the side in Fig. 14.34.

Fig. 14.32 Object with
singularity

Fig. 14.31 Non-manifold example
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The curve is no longer self-intersecting, but if you extrude it 100 units, say, you

would get an object like that shown in Fig. 14.35.

Check whether this object is detected during the extrusion stage. Check, also,

whether it can be detected by analysis tools.

14.7.3 Sharp Face Test

Make an object like that shown in Fig. 14.36. The angles of the ‘‘teeth’’ are:

90�; 80�; 70�; 60�; 50�; 40�; 30�; 20�; 10�; 5�; 2�; 1�: The height of the teeth could

be 40 units, for example. Extrude the shape 20 units and check to see which teeth

are flagged as sharp.

Subtract the object from a larger block with double the height so as to make the

sharp faces as pockets and check whether the same teeth are flagged as sharp.

Fig. 14.33 Object with self-
intersecting geometry

Fig. 14.34 Object with self-
intersecting geometry
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14.7.4 Multi-Piece Objects

Sketch two 100� 100 squares and extrude them 100 units. Figure 14.37 It is not

an error to make objects like this as an intermediate step, but the CAD system

Fig. 14.35 Another object
with self-intersecting
geometry

Fig. 14.36 Object for checking sharpness

Fig. 14.37 Blocks for multi-piece checking
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should really signal that these are separate pieces. A model check should also

identify that the model is a multipiece body.

Create a square block 100� 100� 100 and subtract a 60� 60� 60 from the

middle. Alternatively you can create a half shape, like that shown in Fig. 14.38

and reflect it about the top face.

Although the object is correct and a single model, a CAD model checker should

indicate that the model has multiple shells indicating a cavity.
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Fig. 14.38 Half-shape for
cavity creation
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Chapter 15

Projects

15.1 Project 1

15.1.1 Step 1

The aim of the first part of the project, based on Sect. 2.7, is to practice identi-

fication of various elements in the model. Count the different elements in the

models shown in Fig. 15.1 and complete Table 15.1 with the number of faces,

edges, vertices and inner contours. Remember, these are all Eulerian objects, with

genus 0 and multiplicity 1. The two contours in object P6 should be considered

part of the same object, they have a common face.

To identify the inner contours, or hole-loops, look at the objects. Every face

which has two or more separate boundaries has one or more inner contours.

15.1.2 Step 2

The intention with the second step, based on Sect. 2.7.3, is for you to become

familiar with the Euler–Poincaré equation and Euler operators.

Use the objects shown in Figs. 15.2, 15.3, 15.4 and 15.5.

Complete Table 15.2:

In the last column put the result of the equation:

v� eþ f � hþ 2g� 2m

This should be zero for every object. In the last row, put the sum of the columns

(except the last). Is the equation for the totals also zero?

Use the matrix in Sect. 2.7.3.1 to determine the number of Euler operators of

each type needed to create the objects and fill in Table 15.3. Note that a negative

number of any operation implies the application of one of the inverse operations:

kev, kfe, kbfv, kemh or kgb.
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How many operations of each type are needed to convert object 1 into object 2?

15.1.3 Step 3

Propose a stepwise method and a Boolean operation based method for the

following operations:

1. Slot operation

2. Perimeter operation

3. Hole making operation

Fig. 15.1 Simple objects for counting
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Fig. 15.2 Object 1—Euler
wiggle

Table 15.1 Number of
elements for given objects

Object Vertices Edges Faces Inner contours

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12
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Determine the input parameters.

Determine the error conditions.

15.1.3.1 Slot Operation

The slot operation makes a slot in an object, simulating the shape formed by

passing a tool through the top of the part (Fig. 15.6).

What are the parameters of the operation for defining the slot shape? What are

the error conditions that might occur?

Count the elements in the two objects above and identify the Euler operators

needed to change one into the other.

Fig. 15.3 Object 2—Euler stepped block
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How would you define the operation to create a slot in a face using Boolean

operations? How would you cope with making a slot in odd shaped objects like

those in Fig. 15.7?

15.1.3.2 Perimeter Operation

This operation is to create a perimeter wall around a face as in the examples shown

in Fig. 15.8.

As above, determine the input parameters and the possible error conditions.

Calculate the number of Euler operators needed for the two examples.

How would the operation work on a curved face? Use as example a half-

cylindrical face.

Fig. 15.4 Object 3—Euler curved shape
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Fig. 15.5 Object 4—Euler hole block

Table 15.3 Number of
operations to make given
objects

Object mev mfe mbfv mgb mekh

1

2

3

4

Total

Table 15.2 Number of
elements for given objects

Object v e f h g m eqn

1

2

3

4

Total
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15.1.3.3 Hole Making Operation

In your opinion, what should the input parameters and error conditions be for the

operation? Sketch some examples and determine the Euler operators needed for

them. Suggest a sequence of operations for making a simple hole through a

rectangular block. How would the sequence change if you are able to use the Euler

operator: MHGKFð0;�0;�1; 1; 1; 0Þ?

15.2 Project 2

This exercise is about lofting which is a technique for creating extruded shapes and

using them. The basis for the exercise consists of four sections. The first is on the

plane defined by Y = -150, the second is on the plane Y = -100, the third is in a

plane centred at the origin but rotated 45� about the X-axis (Y = -Z). The final

section is in the plane Y = 100. See Fig. 15.9. The top and middle rows show the

sections, while the bottom image shows the sections from the side.

Fig. 15.7 Slot making on
odd shaped blocks

Fig. 15.6 Slot making on a
rectangular block
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The first section has a Bézier curve with control points:

(-42, -150, -10) (-32, -150, -10) (-10, -150, 0) (0, -150, 0)

The second section is on the plane Y = -100. The curved top section is a Bézier

curve passing through the point (0, -100, -2).

The third section is on a plane angled at 45 around the X-axis and passing through

the origin.

The final section is on the plane Y = 100.

15.2.1 Step 1

First, interpolate the top curve for section 2, that is, a quadratic Bézier curve

passing through the points.

(-42, -100, -10) (0, -100, -2) (42, -100, -10)

Next, write down the coordinates of the points in each section. In order to have

the same number of elements in each section you should split the appropriate

edges to have five points for each section.

This gives you a matrix of points, shown in Table 15.4.

Fig. 15.8 Making a
perimeter wall around a face
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Finally interpolate the five side curves for the sections using the matrix method,

described in Sect. 5.5.9. The first curve passes through points p11; p21; p31; p41; the
second passes through the points p12; p22; p32; p42; and so on. Use the parameters 0,

0.2, 0.6 and 1.0 for the estimated parameter values to simplify the calculations.

The basic matrix has the form:

1 0 0 0

a b c d

e f g h

0 0 0 1

2

6

6

4

3

7

7

5

Fig. 15.9 Sections for
interpolation

Table 15.4 Points for
interpolation

c1 c2 c3 c4 c5

Section 1 p11 p12 p13 p14 p15

Section 2 p21 p22 p23 p24 p25

Section 3 p31 p32 p33 p34 p35

Section 4 p41 p42 p43 p44 p45
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The inverse is of the form:

1 0 0 0

i j k l

m n o p

0 0 0 1

2

6

6

4

3

7

7

5

15.2.2 Step 2

Figure 15.10 illustrates how the control points of the section curves are used to

create the surface control points.

The points p0, p1, p2 are the control points of a curve in section 1, p3, p4, p5 for

section 2, and so on. Interpolating p0, p3, p6 and p9 gives the first row of the

surface control points. Interpolating p1, p4, p7 and p10 gives the second row of

control points of the surface and interpolating p2, p5, p8 and p11 gives the last

row.

Subdivide the top curve of section 2 at t = 0.5 using the de Casteljau method

described in Sect. 5.5.8. This gives two half curves instead of the original inter-

polated curve. This is important because one of these has to have its degree raised.

Raise the degree of the appropriate half of the curve, as described in Sect. 5.5.7.

One of the subdivided curves corresponds to the cubic Bézier of section 1. Since it

is necessary to have the same degree for all curve sections, all sections must be

cubic. The half curve is a quadratic and so it is necessary to raise the degree once

to have the control points of a cubic Bézier curve with the same shape. The linear

curves must have their degrees raised twice.

Determine the control points of the five surfaces which surround the sections.

You need the control points of the section curves in order to find the control

points of the surfaces. Three of the surfaces are linear–cubic, so the boundary

curves give the surface control points directly. The other two are a cubic–cubic and

a cubic–quadratic, with control point meshes as shown in Fig. 15.11.

Fig. 15.10 Curve control
points for creating a surface
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The arrangements for the control points of the two more complicated surfaces

are shown in Fig. 15.11.

The outside surface control points come from the section control points or the

interpolated curve control points. What is missing are the internal points which

you get from interpolating the internal control points of the section curves. These

points are not the same as the section control points themselves.

15.2.3 Step 3

Now do the same exercise using your CAD system to define the sections and the

lofting operation to create the surfaces. Create a solid by adding thickness to the

surface object.

1. What happens if the thickness given is 10?

2. Is the resulting object manifold or non-manifold?

3. Reflect the object about the plane Y = 100. Is the object tangent continuous? If

not, what has to be done to make it tangent continuous?

15.3 Project 3

15.3.1 Step 1

A cube has the corner coordinates:

(40.8494, -34.1506, 68.3013) (-9.1506, 52.4519, 68.3013)

(-84.1506, 9.1506, 18.3013) (-34.1506, -77.4519, 18.3013)

(34.1506, 77.4519, -18.3013) (84.1506, -9.1506, -18.3013)

(9.1506, -52.4519, -68.3013) (-40.8494, 34.1506, -68.3013)

Fig. 15.11 Control point
meshes for Bézier surfaces
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Create the points in the CAD system, then create the lines between them, finally

fill in the edges to create the surfaces. The cube can be created by joining the

surfaces and then filling in the cube. This is, at least in part, the opposite operation

to creating a shell object from a solid.

As a new part, create a rectangle 50 9 100 on the XY plane, as shown in

Fig. 15.12. Extrude it 20. On the top face create a rectangle 50 9 20 and extrude

this 100 units. You now have an L-shaped block. Determine the transformation

matrix needed to move this onto the top of the tilted block.

Calculate the normal vector from two adjacent edges of the cube. This and the

two vectors above form a set of coordinates to which the L-block is to be aligned.

To align the block with this set of coordinates, it is necessary to rotate the

L-block and then translate it to the corner point. Use the vector ð0; 0; 1Þ as the

vector to align with calculated normal vector. Calculate the rotation first and then

add the translation. The translation vector is the vector to one of the points on the

top surface of the cube.

In an assembly assemble the two objects. First fix the cube as the grounded object

and then create constraints to fix the L-shaped rigidly to the top of the block

(Fig. 15.13).

Which transformations are needed? Give the answer in terms of the constraints,

plane–plane, etc. It is not necessary to give the exact transformation matrices apart

from that asked for above.

(0,0,0) (100,0,0)

(0,100,0) (50,100,0)Fig. 15.12 Position of
L-shape base rectangle
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15.3.2 Step 2

Now subdivide the L-block into facets. The faces are shown in Fig. 15.14.

Determine the transformation matrix to transform these facets onto the plane

Y = 500. How do you decide which facets are potentially visible from the point

(0, 1,000, 0)?

Fig. 15.13 Aligned L-block
and cube

Fig. 15.14 L-block for
facetting
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15.3.3 Step 3

Output the product in the STEP format. Identify the transformation specifications

for the assembly. What transformations can be represented in this way?

15.4 Project 4

This project concerns the design and manufacture of a hypothetical part. The

exercise should be done with a CAD system and you should note the decisions you

have made and copy sketches, if you made any, for the project report.

The part to be designed has to take fluids from two places to which it is clamped

with flanges and output the liquid at a third point, to which it is also attached with a

flange. There should be one support bracket around the centre of gravity of the

part. The exact position is not critical because the attachment method will be

designed afterwards. There should also be a triangular reinforcement plate with

corner points at around: (300, 950, 0) (-300, 950, 0) and (0, 440, 0).

15.4.1 Step 1

Design the holes. One input is positioned at ð�500; 1; 000; 0Þ and has circular

cross-section, radius 25, normal direction ð1; 0; 0Þ: The second input is symmet-

rically placed at ð500; 1; 000; 0Þ; but has radius 20 and normal direction ð�1; 0; 0Þ:
The output is positioned at ð0;�250; 0Þ and has radius 35, normal direction

ð0;�1; 0Þ: There should be an outlet for a safety valve somewhere around the

plane y = 400. This should be horizontal, that is, in the plane z = 0.

Create a new product. Insert a new part and build the hole in the new part. You

can later use a Boolean operation to subtract the hole from the body.

Once the hole has been designed, design a second new part around that so that it

will enclose the hole. This casing should have at least radius 55 at the outlet,

radius 40 around the inlet with radius 25 and at least radius 35 around the inlet

radius 20. Where the tubes meet there should be at least a thickness of 50 outside

the hole cavity. Add the reinforcement plate and the bracket. Also add flanges,

thickness 20, around the inlets and outlets, radius 80 with a pattern of eight holes,

diameter 12, with a pattern radius of 65. Finally, subtract the hole to make the part.

What are the design features of the part?

15.4.2 Step 2

Now adapt the part for manufacture. How would you make the part for production

runs of one part, five parts and one thousand parts. For each of these you should
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note the production method and the manufacturing features for the production

methods. Do you need to change the shape of the part or modify the shape of any

of the subparts?

What tolerances do you need to set on which parts of the object?

15.4.3 Step 3

Finally, analyse your work with respect to the CAD system. What couldn’t you do

in the CAD system? Did you need to use pencil and paper sketches? Look at the

history tree of the part. For each operation, write down whether it corresponds

exactly to a design feature, exactly to a manufacturing feature or to neither of

these.

15.5 Project 5

This project is about features and their role in design and manufacturing. The CAD

part is to provide a focus.

Make an assembly like the one shown in Fig.15.15. The project is not about

copying a real object but about the elements for the design and manufacture.

The object shown is a frame with three axles linked by gears. The frame is

approximately 160 mm long, 110 mm wide and 120 mm high. For the project I

would like you to make a model of the frame, the three axes and their gears, and

the flywheel. It is not necessary to make an accurate model of the object shown,

Fig. 15.15 Example object
for project
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understand the mechanism and make a model of something similar. The project is

about your understanding of features and their role in design and manufacture. The

gears are shown in more detail in Fig. 15.16.

It is not necessary to make angled gears, for the purposes of the exercise a

model of straight gears is enough. There is a question, though, about what the

model of a gearwheel should be. What do you think is a valid model of a

gearwheel?

Tasks:

1. Create the assembly. Note any extra sketches or support material you used.

2. What are the ‘‘design features’’ in your design? These are the elements around

which the design is built. Use the feature list in Appendix C, but ignore the

parameters.

3. What are the ‘‘manufacturing features’’ in your design? Again, use Appendix C

as a guide for feature types. These are the elements that are machined and

depend on the manufacturing method. Indicate how you would manufacture the

elements of the assembly if you manufacture one piece or five thousand. Are

the methods the same?

4. Finally, look at the CAD system history tree and say which modelling opera-

tions correspond to manufacturing features.

15.6 Project 6

The aim of this project is to examine design problems and to compare them

with the available design tools. There is little guidance, because it is for you to

consider the whole design chain. This cannot be done if a solution is provided.

However, it is important to look at the design activity in terms of the tools

available, hence this project.

Fig. 15.16 Gears in example
object
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The project is based on Chap. 11 as a basis for detailed design. It is not

absolutely necessary to produce a detailed design but, in the past, students have

found this a fun-part. Students should perform a web-search for examples of

similar products and note the characteristics of these, or describe existing products

they might know of, to show how their design is different. It is expected that

students identify the main elements of the product with their estimated dimensions,

down to the level of detail necessary, and the connections between them, in terms

of physical connections, type of exchange (e.g. gas, fluid, electricity, and so on).

The project should produce a product specification, a high-level product solution

and an embodiment model. If elements of the project are to be purchased or

subcontracted, please explain why. If there are such elements, please explain to

what level of detail you would model these in the design.

The following are some examples for consideration, other ideas may be

acceptable. Note, also, the information that you are passing between the activities

in the design process and analyse which information is needed for different stages.

15.6.1 Transport Vehicle

The transport vehicle is a small vehicle for transporting goods round large sites and

manufacturing facilities. An example of a product needs specification might be:

Maximum load: 750 kg.

Product variations/options:

With or without handling crane for loading and unloading.

Two size variants: 3 or 4 m.

Possibility to attach a trailer.

Electric motor.

Sales price: 15,000 CHF or equivalent (please suggest a sum).

This is an example of an initial vague specification, which should be converted

to a more formal list of requirements, such as that shown in Table 15.5.

These are just simple examples of what you might produce, you are expected to

use your engineering knowledge to provide a more realistic version.

Table 15.5 Transport vehicle elements

Cart 3 m Cart 4 m Trailer

Price

Variants With crane With crane

Without crane Without crane

Weight (kg) 750 1,000 500

Motor Size? Size? Size?

Accumulators 6 8 6

Power ? ? ?
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The next step is to identify product components in the solution. Produce these

as a list together with a note about which ones you develop and which ones are to

be bought or outsourced. Then perform the embodiment task, noting the linkages

and constraints between the elements.

If more time is given for the exercise then the detailed design would follow.

The exercise should be treated as a game, students should use their imagination.

15.6.2 Breakfast Machine

When I started using the breakfast machine as an example, in 1998, I had not seen

such a product but since then I have found that these things exist. The aim, here, is

not to copy the commercial product but to solve a design problem with an idea and

some simple constraints.

This machine is to make breakfast for people with little time. The aim is to

have a machine which can make coffee, boil eggs, squeeze fruit and make toast.

The size of the base of the machine should be about 400 mm � 600 mm;
maximum, but the height is not fixed. The aim would be to set up the machine in

the evening, before going to bed, so that it would switch itself on automatically

in the morning.

15.6.3 Vending Machine

A manufacturer would like to make machines to sell a variety of different

products. The machine should be able to provide drinks in cans, drinks in

cartons, sandwiches, small packets of biscuits, chocolate, chewing-gum and

bags of crisps, for example. The manufacturer would like to be able to have

enough products to sell during a 12-h period. You might like to consider what

difference there might be for a machine selling higher value products, DVDs,

for example.

15.6.4 Snowmobile

Design of a snowmobile, jet-ski or motorised scooter for one or two people.

15.6.5 Vacuum Cleaner

Design of a well-known, common product.
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15.6.6 Washing Machine

Design a washing machine which can handle a maximum of 5 k of clothes.

15.6.7 Pinball Machine

Design of a pinball machine or other games machine. This should be based on a

theme, for example Star Wars, Indiana Jones, or a university game with professors

as hazards or to shoot at.

15.6.8 Motorized Wheelchair

Design of a motorised wheelchair for people with limited mobility. The maximum

weight of the person should be 150 kg. Plan for a capacity of 6 h of auton-

omy without recharging. Consider the problems of different terrains and access

problems, and note formally your conclusions.
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Appendix A

Euler Operators

This appendix contains two lists of Euler operators for reference. The first list

contains all possible Euler operators, 99 in all. The second list contains those

which are not combinations of others, and was, I believe, first presented by Sue

Pavey. The names are indicative only.

A.1 Euler Operators: Full List

1 (-1, -1, -1, -1, -1, -1) kvefhgb

2 (0, 0, -1, -1, -1, -1) kfhgb

3 (+1, +1, -1, -1, -1, -1) mvekfhgb

4 (-1, 0, 0, -1, -1, -1) kvhgb

5 (0, +1, 0, -1, -1, -1) mekhgb

6 (-1, +1, +1, -1, -1, -1) mefkvhgb

7 (0, -1, -1, 0, -1, -1) kefgb

8 (+1, 0, -1, 0, -1, -1) mvkfgb

9 (-1, -1, 0, 0, -1, -1) kvegb

10 (0, 0, 0, 0, -1, -1) kgb

11 (+1, +1, 0, 0, -1, -1) mvekgb

12 (-1, 0, +1, 0, -1, -1) mfkvgb

13 (0, +1, +1, 0, -1, -1) mefkgb

14 (+1, -1, -1, +1, -1, -1) mvhkefgb

15 (0, -1, 0, +1, -1, -1) mhkegb

16 (+1, 0, 0, +1, -1, -1) mvhkgb

17 (-1, -1, +1, +1, -1, -1) mfhkvegb

18 (0, 0, +1, +1, -1, -1) mfhkgb

19 (+1, +1, +1, +1, -1, -1) mvefhkgb

20 (-1, +1, -1, -1, 0, -1) mekvfhb

21 (-1, +1, +1, -1, -1, -1) mefkvhgb

22 (0, +1, -1, 0, 0, -1) mekfb

23 (-1, +1, 0, 0, 0, -1) mekvb

24 (-1, -1, -1, +1, 0, -1) mhkvefb

25 (0, 0, -1, +1, 0, -1) mhkfb

26 (+1, +1, -1, +1, 0, -1) mvehkfb

27 (-1, 0, 0, +1, 0, -1) mhkvb

28 (0, +1, 0, +1, 0, -1) mehkb

29 (-1, +1, +1, +1, 0, -1) mefhkvb

30 (-1, +1, -1, +1, +1, -1) mehgkvfb

31 (+1, -1, -1, -1, -1, 0) mvkefhg

32 (0, -1, 0, -1, -1, 0) kehg

33 (+1, 0, 0, -1, -1, 0) mvkhg

34 (-1, -1, +1, -1, -1, 0) mfkvehg

35 (0, 0, +1, -1, -1, 0) mfkhg

36 (+1, +1, +1, -1, -1, 0) mvefkhg

37 (+1, -1, 0, 0, -1, 0) mvkeg

38 (0, -1, +1, 0, -1, 0) mfkeg

39 (+1, 0, +1, 0, -1, 0) mvfkg

40 (+1, -1, +1, +1, -1, 0) mvfhkeg
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A.2 Euler Operators: Shortened List

41 (-1, -1, -1, -1, 0, 0) kvefh

42 (0, 0, -1, -1, 0, 0) kfh

43 (+1, +1, -1, -1, 0, 0) mvekfh

44 (-1, 0, 0, -1, 0, 0) kvh

45 (0, +1, 0, -1, 0, 0) mekh

46 (-1, +1, +1, -1, 0, 0) mefkvh

47 (0, -1, -1, 0, 0, 0) kfe

48 (+1, 0, -1, 0, 0, 0) mvkf

49 (-1, -1, 0, 0, 0, 0) kev

50 (0, 0, 0, 0, 0, 0) Null operator

51 (+1, +1, 0, 0, 0, 0) mev

52 (-1, 0, +1, 0, 0, 0) mfkv

53 (0, +1, +1, 0, 0, 0) mfe

54 (+1, -1, -1, +1, 0, 0) mvhkef

55 (0, -1, 0, +1, 0, 0) mhke

56 (+1, 0, 0, +1, 0, 0) mvh

57 (-1, -1, +1, +1, 0, 0) mfhkve

58 (0, 0, +1, +1, 0, 0) mfh

59 (+1, +1, +1, +1, 0, 0) mvefh

60 (-1, +1, -1, -1, +1, 0) megkvfh

61 (-1, 0, -1, 0, +1, 0) mgkvf

62 (0, +1, -1, 0, +1, 0) megkf

63 (-1, +1, 0, 0, +1, 0) megkv

64 (-1, -1, -1, +1, +1, 0) mhgkvef

65 (0, 0, -1, +1, +1, 0) mhgkf

66 (+1, +1, -1, +1, +1, 0) mvehgkf

67 (-1, 0, 0, +1, +1, 0) mhgkv

68 (0, +1, 0, +1, +1, 0) mehg

69 (-1, +1, +1, +1, +1, 0) mefhgkv

70 (+1, -1, +1, -1, -1,+1) mvfbkehg

71 (+1, -1, -1, -1, 0, +1) mvbkefh

72 (0, -1, 0, -1, 0, +1) mbkeh

73 (+1, 0, 0, -1, 0, +1) mvbkh

74 (-1, -1, +1, -1, 0, +1) mfbkveh

75 (0, 0, +1, -1, 0, +1) mfbkh

76 (+1, +1, +1, -1, 0, +1) mvefbkh

77 (+1, -1, 0, 0, 0, +1) mvbke

78 (0, -1, +1, 0, 0, +1) mfbke

79 (+1, 0, +1, 0, 0, +1) mbfv

80 (+1, -1, +1, +1, 0, +1) mvfhbke

81 (-1, -1, -1, -1, +1, +1) mgbkvefh

82 (0, 0, -1, -1, +1, +1) mgbkfh

83 (+1, +1, -1, -1, +1, +1) mvegbkfh

84 (-1, 0, 0, -1, +1, +1) mgbkvh

85 (0, +1, 0, -1, +1, +1) megbkh

86 (-1, +1, +1, -1, +1, +1) mefgbkvh

87 (0, -1, -1, 0, +1, +1) mgbkef

88 (+1, 0, -1, 0, +1, +1) mvgbkf

89 (-1, -1, 0, 0, +1, +1) mgbkve

90 (0, 0, 0, 0, +1, +1) mgb

91 (+1, +1, 0, 0, +1, +1) mvegb

92 (-1, 0, +1, 0, +1, +1) mfgbkv

93 (0, +1, +1, 0, +1, +1) mefgb

94 (+1, -1, -1, +1, +1, +1) mvhgbkef

95 (0, -1, 0, +1, +1, +1) mhgbke

96 (+1, 0, 0, +1, +1, +1) mvhgb

97 (-1, -1, +1, +1, +1, +1) mfhgbkve

98 (0, 0, +1, +1, +1, +1) mfhgb

99 (+1, +1, +1, +1, +1, +1) mvefhgb

1 (0, 0, 0, 0, -1, -1) kgb

2 (-1, 0, -1, 0, 0, -1) kvfb

3 (0, +1, -1, 0, 0, -1) mekfb

4 (-1, +1, 0, 0, 0, -1) mekvb

5 (0, 0, -1, +1, 0, -1) mhkfb

6 (-1, 0, 0, +1, 0, -1) mhkvb

7 (0, +1, 0, +1, 0, -1) mehkb

8 (0, -1, 0, -1, -1, 0) kehg

9 (+1, 0, 0, -1, -1, 0) mvkhg

10 (0, 0, +1, -1, -1, 0) mfkhg

11 (+1, -1, 0, 0, -1, 0) mvkeg

12 (0, -1, +1, 0, -1, 0) mfkeg

13 (+1, 0, +1, 0, -1, 0) mvfkg

14 (0, 0, -1, -1, 0, 0) kfh

15 (-1, 0, 0, -1, 0, 0) kvh

16 (0, +1, 0, -1, 0, 0) mekh

17 (0, -1, -1, 0, 0, 0) kfe

18 (+1, 0, -1, 0, 0, 0) mvkf
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19 (-1, -1, 0, 0, 0, 0) kev

20 (0, 0, 0, 0, 0, 0) Null operator

21 (+1, +1, 0, 0, 0, 0) mev

22 (-1, 0, +1, 0, 0, 0) mfkv

23 (0, +1, +1, 0, 0, 0) mfe

24 (0, -1, 0, +1, 0, 0) mhke

25 (+1, 0, 0, +1, 0, 0) mvh

26 (0, 0, +1, +1, 0, 0) mfh

27 (-1, 0, -1, 0, +1, 0) mgkvf

28 (0, +1, -1, 0, +1, 0) megkf

29 (-1, +1, 0, 0, +1, 0) megkv

30 (0, 0, -1, +1, +1, 0) mhgkf

31 (-1, 0, 0, +1, +1, 0) mhgkv

32 (0, +1, 0, +1, +1, 0) mehg

33 (0, -1, 0, -1, 0, +1) mbkeh

34 (+1, 0, 0, -1, 0, +1) mvbkh

35 (0, 0, +1, -1, 0, +1) mfbkh

36 (+1, -1, 0, 0, 0, +1) mvbke

37 (0, -1, +1, 0, 0, +1) mfbke

38 (+1, 0, +1, 0, 0, +1) mbfv

39 (0, 0, 0, 0, +1, +1) mgb

Appendix A: Euler Operators 637



Appendix B

Data Exchange Format Examples

This appendix contains a few examples of data exchange files for a simple

rectangular block 10� 20� 30; centred about the origin. The first output is in

IGES format, from CATIA. The second and third files are STEP files from CATIA

and Solidworks respectively. The reason for having two files is because there is a

slight difference in philosophy. In CATIA the entities are grouped together, hence

the line numbers are not sequential. In the Solidworks variant the line numbers are

sequential and so the entities are output as they come. The final two formats are

STL and VRML to show common graphical approximative formats. The two

formats are simple to understand and use only planar geometry, hence they can be

handled simply, as in Rapid Prototyping systems. In STL the facets are output

separately, with multiple common vertices. In the VRML version shown there is a

vertex list to which the face definitions refer. In this case it is easier to identify and

recreate closed structures. VRML, though, can output separate facets just as easily.
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B.1 IGES

The following shows the IGES format.
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B.2 VDA-FS

This is a data exchange method developed by the German automobile industry for

exchanging complex geometry.
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B.3 STEP: CATIA

In this STEP variant, output from CATIA, the elements are grouped together.
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B.4 STEP: Solidworks

In the Solidworks output file the line numbers are sequential and the entities output

as they come.
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B.5 STL

STL is a commonly used format which has many drawbacks.
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B.6 VRML

VRML is another format which has drawbacks in being approximative.
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Appendix C

Machining Feature Summary

The following is a summary of machining features present in STEP-NC (ISO

14649). It was written in order to try and find simple parameters in order to

extrapolate the machining experiments for eco-evaluation in the NEXT project.

The reason for including it in this book is to provide a summary of machining

features for some proposed projects.

STEP-NC is an interesting topic in its own right. It started as work to update the

current control standard, with G and M codes, to remove the need for post-

processors and to pass CAD data directly to the machine tool. The CAD data is

represented as a set of features that are for manufacturing. It is expected that this

data is supplied by a process planner who has decided on the manufacturing

method and supplies high-level information about the elements to be

manufactured. This is the sort of input currently supplied to a CAM system for

generating toolpaths. With STEP-NC the intention is to let the machine tool

control unit calculate its own toolpaths, based on knowledge about the needs of the

machine tool it controls. The features here are given as an example of

manufacturing features as an illustration of an application area. For a full

definition of the features it is necessary to look at the ISO standard document, the

presentation here differs slightly from that in the standards document.

In Table C.1 there is a summary of the features with some general parameters.

This information was used as input for calculating ecological effects as part of the

NEXT (next generation of machine tools) project, so exact geometric information

was not needed.
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C.1 Region Projection

This is a general description of an area which can be used to represent an arbitrary

machining surface which does not fit easily into another category. It is also a

component of the region surface list. This is not illustrated here.

C.2 Region Surface List

This can be used to represented a general machining area where the surface

information is used directly for calculating tool movements. It consists of a

connected set of surfaces (Fig. C.1).

Table C.1 Manufacturing feature summary with eco-evaluation parameters

Region projection Position, area

Region surface list Position, combined area

Planar_face Position, area

Closed pocket Position, plunge strategy, pocketing strategy,
pocket area, bottom conditions?

Open pocket Position, pocket area, bottom conditions

Through closed pocket Position, pocket area

Open slot Position, depth, width

Half-open slot (round end) Position, depth, width

Half-open slot (sq. end) Position, depth, width, end blend radius

Half-open slot (Woodruff) Position, depth, width, radius

Closed slot (round end) Position, depth, width

Closed slot (square end) Position, depth, width, end blend radius

Closed slot (Woodruff) Position, depth, width, radius

Loop slot Position, depth, width, radius

Step Position, depth, width

Round_hole Position, radius, depth

Rounded, tapered hole Position, radius, depth, angle

Outer profile Position, length, maximum height

Shape profile Position, Length, maximum height, bottom conditions

Boss Position, surrounding face area

Spherical_cap Position, radius

Rounded_end Position, radius, height

Thread Position, radius, thread size

Counterbore hole Position, radius 1, radius 2, depth 1, depth 2

Countersunk hole Radius 1, radius 2, depth 1, depth 2

Circular pattern Position, characteristics of repeated element,
pattern radius, number of elements in pattern

Rectangular pattern Position, characteristics of repeated element,
pattern width and height, number of elements in pattern

Chamfer Position, length and depth

Fillet Position, length and radius
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C.3 Planar_Face

This is an example of a feature which is seldom recognised as a shape feature but is

valid because it corresponds to a manufacturing operation. It is used to define a facing-

off of a particular element, for example to create a contact surface within some

tolerance. It might also be used to remove a layer of material if machining from a

standard-sized rectangular block to get the block down to the correct height (Fig. C.2).

C.4 Closed Pocket

In a closed pocket the tool usually has to enter from the top rather than the side,

although an exception is when machining is done from a casting. The material is

removed downwards in layers. The pocket boundary has an arbitrary shape

(Fig. C.3).

C.5 Open Pocket

Unlike the closed pocket, the open pocket has at least one open side, so the tool

can enter, milling with the side of the tool (Fig. C.4).

Fig. C.1 Region surface example

Fig. C.2 Planar face example
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C.6 Through Closed Pocket

A through pocket means that the shape goes right through the object so there is no

pocket bottom (Fig. C.5).

Fig. C.3 Closed pocket example

Fig. C.4 Open pocket example

Fig. C.5 Through pocket example
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C.7 Open Slot

An open slot differs from a pocket because it is generally the intention to make this

with one tool pass, instead of clearing the slot area. With an open slot, the tool

passes straight through the object (Fig. C.6).

C.8 Half Open Slot (Round End)

A half open slot is one in which the tool enters the material but does not pass straight

through. With a round end slot the diameter of the rounded end is expected to be the

same as the slot width so it can be made by a cylindrical milling tool (Fig. C.7).

Fig. C.6 Open slot example

Fig. C.7 Half-open slot with round end example
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C.9 Half Open Slot (Square End)

In a half-open square ended slot the end face is planar with rounded corners

(Fig. C.8).

C.10 Half Open Slot (Woodruff)

As before, the half-open slot has one open end and a differently shaped closed end

(Fig. C.9).

Fig. C.8 Half-open slot with square end example

Fig. C.9 Half-open slot with Woodruff end example
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C.11 Closed Slot (Round End)

In the closed slot, there is no open end through which the tool can pass, so it is

similar to a pocket (Fig. C.10).

C.12 Closed Slot (Square End)

As with the rounded end closed slot, just with different shape at one or both ends.

The end types can also be mixed with, say, a round end and a square end, or a

square end and a Woodruff end, for example (Fig. C.11).

C.13 Closed Slot (Woodruff)

As above, again the Woodruff end provides a different shape possibility

(Fig. C.12).

Fig. C.10 Closed slot, round end example

Fig. C.11 Closed slot, square end example

Appendix C: Machining Feature Summary 669



C.14 Loop Slot

A loop slot can be thought of as special case where the tool moves round in a

closed path (Fig. C.13).

C.15 Step

A step is a double level part of an object, as the name suggests (Fig. C.14).

C.16 Round Hole

Round holes are a special case because they can be made by drilling, say. The

round holes may be blind or pass through the object (Fig. C.15).

Fig. C.12 Closed slot, Woodruff end example

Fig. C.13 Loop slot example
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C.17 Rounded, Tapered Hole

As above, but the sides of the hole are not straight, suggesting that a conical tool

has to be used to produce them (Fig. C.16).

Fig. C.14 Step example

Fig. C.15 Round hole example

Fig. C.16 Round, tapered hole example
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C.18 Outer Profile

An outer profile is the outer shape of an object (Fig. C.17).

C.19 Shape Profile

A shape profile is a kind of side-on profile where the shape is made by moving a

tool up and down while cutting along a path (Fig. C.18).

C.20 Boss

A boss is not a shape to be cut but a shape to be left after cutting, a sort of blind

area. It can occur in many other features, like pockets or on planar faces

(Fig. C.19).

C.21 Spherical Cap

A spherical cap is a shape left on the end of a protrusion after shaping (Fig. C.20).

Fig. C.17 Outer profile example

Fig. C.18 Shape profile example
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C.22 Rounded End

Another example of a shaped end after cutting (Fig. C.21).

Fig. C.19 Boss example

Fig. C.20 Spherical cap example

Fig. C.21 Rounded end example
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C.23 Thread

A threaded, or tapped hole is usually made in two operations, one to cut the hole

and the second to cut the thread. A similar operation is available for an outside

thread (Fig. C.22).

C.24 Counterbore Hole

This is one example of a complex feature, where there are two concentric

cylindrical holes (Fig. C.23).

Fig. C.22 Thread example

Fig. C.23 Counterbore example

C.25 Countersunk Hole

The other common example of a compound feature, where the cut in is conical

rather than cylindrical (Fig. C.24).
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C.26 Circular Pattern

Circular patterns are repetitions of a simple feature around a circular path. They

can be considered as a feature because the repeated single element forms a group

of operations to be performed at the same time (Fig. C.25).

C.27 Rectangular Pattern

As for the circular pattern, but with a different layout shape of repeated element.

This is again a group of operations to be performed at the same time (Fig. C.26).

Fig. C.24 Countersink example

Fig. C.25 Circular pattern example
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C.28 Chamfer

This is usually a single manufacturing operation, to remove a sharp edge and

replace it with an angled face. It is made by running a tool along a path of convex

edges (Fig. C.27).

C.29 Fillet

This can be a shape left by using a tool with a rounded end or a specific shape to be

made, although cutting a long fillet is time consuming (Fig. C.28).

Fig. C.26 Rectangular pattern example

Fig. C.27 Chamfer example
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Fig. C.28 Fillet example
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Appendix D

Glossary

This appendix is intended to be a summary of some of the common terms that are

used in CAD and are used in this book.

2.5D This is used to describe parts which are made with a set of profiles extruded

to give the object.

Application programming interface This is an interface which can be used for

programming new functions. generally it consists of a set of high-level func-

tions which perform complex operations and low-level functions which can be

used for interrogation, for example.

Assembly A collection of associated objects. This might be a complete product or

a mechanism, for example. Generally they are represented as a top-level

assembly with a set of ‘instances’ of objects or sub-assemblies.

Boolean operations These are also known as ‘‘set operations’’ or ‘‘Boolean set

operations’’. With the classical meaning, these combine two objects using an

ADD, SUBTRACT or INTERSECT operation.

CHI See Computer and Human Interaction

Computer and human interaction This is a subject used for improving the user-

friendliness of computer systems. This is a separate subject which is quite large.

You see this as menus, but there is an implicit user model behind the CHI,

which is how the system developer expects you to behave. Lack of under-

standing of the user and application area is a problem in CAD and leads to

problems of misunderstandings in how a system should be used.

Concurrent engineering A process whereby several engineering activities are

carried out at the same time, or approximately the same time. This technique is

intended to save time by advising the designer about potential problems or

improvements while the design is being created.
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Constraints Connections, particular between elements in assemblies, denoting a

relationship. A constraint might be that two planes should be coincident, or two

lines should be coincident, for example. These are then taken into account to

make automatic modifications to positions of elements.

Curve A geometric entity which defines the shape of an ‘edge’ in a model.

Cylinder representations Although cylinders may seem like trivial objects there

have been several ways to model them. Figure D.1 shows some examples. All

combinations from 0 to 3 side edges have been used for cylinders. Because

these edges lie between faces in the same surface.

In the original BUILD system [1] three edges were used. This was because

faces were not allowed to extend through more than 120 � because an angle

counting method was used as a point-in-face test. Other methods for point-in-

face can be used to get round the problem.

CATIA v5, for example, uses two edge cylinders. This means that there are

no special case edges (wire-edges) and that cylinders have two faces.ROMU-

LUS, an ancestor of Parasolid from Shape Data, used a cylindrical represen-

tation with a single edge. The single edge allowed a ray-test point-in-face to

work because the ray always cut through at least one edge.

ACIS, for example, which is a modelling kernel developed by ThreeSpace

Ltd. for Spatial Technologies Inc., now part of Dassault Systems, has a mini-

mum cylinder representation with no fake edges.

Data exchange Exchange of model information between applications and sys-

tems. Currently the most complete format is the STEP format, but others exist,

such as IGES. There are also some exchange formats which are not standard.

Design for X A set of analysis methods for checking a design with respect to

some application area. Some examples are design for manufacturing, design for

assembly, design for disassembly, design for lifecycle.

DFX See ‘‘Design for X’’

Fig. D.1 Different cylinder representation options
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Early phase design The part of design preceding what is currently termed ‘‘CAD’’

or Computer-Aided Design. This is where the basic design concept is determined

as well as many important decisions affecting the subsequent design steps.

Edge A topological entity lying between two faces. The shape of the edge is given

by a curve which should lie on the faces adjacent to the edge.

Euler operators Euler operators are basic operations for manipulating the topo-

logical elements of a boundary representation data structure.

Euler operations See Euler operators

Face A face is a topological entity which defines a bounded portion of a surface.

The surface is part of the boundary of an object, lying between material and

non-material.

Facetting This is the term used for the subvision of faces into planar sub-faces,

often, but not necessarily, triangular. This is done for graphics and also for

output as STL.

Fake edges Fake edges are edges between two identical surfaces which are

included for algorithmic reasons. See the explanation of cylinders, above.

Graphics user interface The graphics user interface is what application software

shows you.

Graphics picking See hit-testing.

GUI See Graphics user interface.

HCI Human and computer interaction. See Computer and human interaction.

History tree A list of the operations that a CAD user has employed to build a

model. This is not necessarily, and usually is not, a description of the part, but is

really a sort-of recipe for building a model.

Hit testing A method of interactive element selection using a mouse to indicate

model elements on the computer screen.

Hole loop An extra face boundary. A face is bounded by sequences of edges. Each

sequence is termed a ‘loop’. Often one of these is the exterior boundary of the face

and the others are internal boundaries. However, in cylinder models with no side

edges, one of the two loops bounding the curved face is also a ‘hole-loop’.

Layout A set of simple shapes defining the rough position of the main design

elements.

Local operation An operation which originally made changes based on local

elements, such as edges, faces or vertices. This is opposed to an operation like a

Boolean operation which operates on whole objects.

Loop A sequence of edges, closed in a complete model, which forms a boundary

of a face.
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Non-geometric information This is information such as material, surface finish

constraints, etc. which is attached to parts of models.

Non-manifold models Non-manifold models are models which have a material

thickness of zero at some point.

Parametrisation Boundary representation algorithms often use parametric char-

acteristics of curves and surfaces.

Persistent naming An idea to identify elements in a model with a name which is

adapted during model to provide a permanent identification for model command

sequences.

Point in body An interrogation method for solids. This checks whether a given

point lies inside an model.

Point in face An interrogation method for solids. This check whether or not a

given point lies in the interior of a face.

Product model A complete model of a product comprising the geometric shape

and also a variety of information, such as material, colour or surface finish, for

example.

Set operations See Boolean operations

Sheet models Idealised models, usually of thin-plate objects, which can be

changed to full volumetric models by giving them thickness.

Shell A set of connected faces, closed in a complete model. If closed then the

shell bounds a portion of material of an object.

Solution catalogue A solution catalogue is a method developed by Sprumont to

create a sort of database of solutions to particular design problems which can

provide a basis for a complete solution.

Surface An unbounded geometric two-dimensional shape in space.

Transformation An entity defining how an object geometry should be changed

(often rotated, scaled or translated).

Vertex A topological entity lying at a position in space. Vertices define the end

points of edges.

Wire edge An edge with the same face on both sides. These can occur tempo-

rarily during operations but are not usually part of the finished model. An

exception is if cylinders are represented with a single edge on the curved face.

Reference

1. Braid, I.C.: Notes on a Geometric Modeller. CAD Group Document 101. Cambridge
University Computer Laboratory (1979)
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Index

‘‘Enters’’, 317–318
‘‘Leaves’’, 317–318
2.5D, 107
2D—constraint systems, 118
2D—constraints, 109
2D—conversion, 127
2D—curves, 109
2D—dimensions, 109
2D—grid, 118
2D—lines, 109
2D—node rounding, 115
2D—patterns, 117
2D—shape modifications, 115
2D exercises, 137
2D shape definition, 107

A

ACIS, 53, 197, 398, 528
Align—line to line, 554
Align—line to plane, 555
Align—parallel, 551
Align—plane to plane, 555
Align—point to line, 552
Align—point to plane, 553
Align—point to point, 552
Aligning vectors, 175
Along curve extrusion

operation, 162
Along path extrusion

operation, 163
ANC101 object, 63
Anderson, 437
Andersson, 115
API, 528
Application programming

interface, 528

Area calculation, 377
ASEA robot, 542
Assemblies, 539–554, 573, 602

exploding, 547
symmetric, 547

Assembly, 539–573
Assembly exercises, 568
Assorted exercises, 609
Avram, 465, 604

B

Badke-Schaub, 607
Bain, 246
Baumgart, 86
Bending operation, 245–246
Besl, 291–292
Betti numbers, 86
Bézier, 264
Bézier degree raising, 274, 278
Bézier subdivision, 279
Bill-of-materials, 540, 566
Björke, 112
Blend operation, 209–215
Blending, 209
Body, 78
Bolt-on-battleship, 258
BOM, 540, 566
Boolean operations, 141–151
Boolean operations—special

cases, 144
Boothroyd, 601
Boss, 673
Braid, 86, 315, 507
Branching wires, 324, 328
BSpline, 264
BUILD, 82, 107–108, 183, 298
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C

Cad in a community, 575–613
CAD interface, 339
CAD system programming, 528
CAD–CAPP–CAM–CNC chain, 575
CAM-I, 63, 324
CAMAX, 353
Capponi, 604
Cary, 519–520
Case studies, 1
Celtic cross, 247
Celtic pattern operation, 246–248
CeSI, 603
CGR, 417
Challenger, 608
Chamfer operation, 142, 201–209
CHI, 55
Chimaera, 317
Chiyokura, 299
Chord height tolerance, 345
Circular extrusion, 142
Circular extrusion operation, 157–161
Command files, 490–508
Complex utilities, 97
Complexity testing, 225
Computer and Human Interaction, 55
Concurrent engineering, 57, 585–591
Connected entity sets, 84
Constraints, 3, 539, 548–556

concentricity, 552
fixing, 551
line-to-line, 554–555
line-to-plane, 555
parallelism, 551
perpendicular, 552
plane-to-plane, 555
point-point, 552
point-to-line, 552
point-to-plane, 553
point-to-point, 552

Constraints history, 418, 489
Continuity, 274
Contraves, 324
Converting sheet models, 226
Converting wire models, 232–233
Creating new operations, 248, 251
Csabai, 51–52, 58, 474, 476, 478, 481–483,

573, 579, 581
Curve approximation, 343
Curve-experiments, 282
Curve frame filling, 289
Curves, 267
Curves—closed, 274
Curves—constraints, 275

Curves—multi-piece, 274
Curves—nasty, 275
Curves—rational, 271
Cylinder test, 101

D

Data exchange, 383, 399, 416–421
Data exchange exercises, 419
Data exchange—format examples, 639–661
Data exchange—points, 416
Databases, 383
De Havilland Comet, 607
Degenerate models, 298
Design catalogues, 474, 476
Design environment, 484
Design for assembly, 44, 601–602
Design for disassembly, 603
Design for manufacturing, 601
Design tools and techniques, 466
Design

early phase, 578
Design-for-x, 600
Detailed design, 579
Dewhurst, 601
DFA, 44, 601
DFX, 600
Dimensions, 3, 112
Displaying objects, 342
DJINN, 417, 535, 590
Do what I mean, 524
Draft, 193
Draft angle operation, 142, 193–201
Drawing exercises, 364
Drawing sheets, 353
Dual space, 99
DWIM, 524
DXF, 417

E

E-GPR, 469–470
Early phase design, 463–487
Early phase design exercises, 486
Early phase of design, 578
Eastman, 86
eccel, 83
eccev, 83
ecclv, 84
eclev, 84
Eco-evaluation, 603
Eco-indicators, 604
ecwel, 83
ecwev, 83
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ecwlv, 84
edge, 80
Edge length tolerance, 345
Edge links, 318
Edge links—ordering, 318
Elink, 80
End-of-life phase, 583–585
Engineering case studies, 605
Engineering drawing chamfers, 357
Engineering drawing

dimensioning, 353–354
Engineering drawing

dimensions, 353, 356
Engineering drawing sectioning, 353
Engineering drawings, 351
Engineering information, 370
Entity numbering, 516–522
Eriksson, 489
Euler operators, 85–87, 635–637
Euler operators—spanning set, 87
Euler—Poincaré formula, 86
Euler rules, 86
Evaluation for ecological

manufacturing, 604
Excavator, 315
Exercises—2D, 137
Exercises—assemblies, 568
Exercises—assorted, 609
Exercises—data exchange, 419
Exercises—drawing, 364
Exercises—early phase design, 486
Exercises—features, 457
Exercises—geometry, 303
Exercises—history, 535
Exercises—information, 379
Exercises—non-manifold, 337
Exercises—operations, 251
Exercises—parametric parts, 535
Exercises—representation, 104
Exercises—user, 61
Expert systems, 465
Exploding assemblies, 547
Extruding branching wires, 327
Extrusion—along curve, 170
Extrusion—along path, 168
Extrusion—apex-to-apex

triangles, 167
Extrusion—limits, 166
Extrusion—missing objects, 165
Extrusion—multiple components, 166
Extrusion—touching objects, 165
Extrusion—vertex on axis, 168
Extrusion limits, 156
Extrusion operations, 150–172

F

Face, 80
Facets, 348
Facetting, 345
Facetting tolerances, 345–346
Farin, 257
Faux, 257
Feature exercises, 457
Feature information, 373
Features, 3, 142, 663–677
Features—information, 370
Fillet, 209, 676
Flat extrusion, 235
Fuzzy methods, 467–469

G

Generalised models, 472
Genetic algorithms, 466–467
Geometric intersection

package, 265
Geometric kernels, 53
Geometric migration, 261, 264
Geometric singularities, 596
Geometry, 183–185
Geometry—analytical, 263
Geometry—free-form, 263
Geometry—numerical, 263
Geometry calculation errors, 593
Geometry exercises, 303
Giblin, 86
Gossard, 112
GPM, 315
GPM-APC, 315, 323
Grävskopa, 316
Graphic preprocessing, 347
Graphics, 339
Graphics-picking, 359
Graphics user interface, 55
GREEM, 605
Grids, 114–115
Group-of-objects, 539
GUI, 55

H

Half-open slot-round end, 667
Half-open slot-square

end, 668
Half-open slot-Wooddruff

end, 668
Helldén, 115
Hillyard, 86
History, 489
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H (cont.)
History exercises, 535
History files, 510–516
History structures, 489
History tree, 489
Hit testing, 360–362, 522–523
Homogenous coordinates, 259
Horváth, 469
Hoschek, 257

I

IGES, 400, 640–642
Implicit blending, 142
Importing foreign CAD, 397–398
Information, 367, 370–373, 375–381
Information excercises, 411
Information—using, 407
Information—feature

information, 370, 373
Information—methods, 367
Information—pure

information, 370–371
Information—shape constraints, 370, 372
Information—shape modifiers, 370–371
Information—using, 407
Inscribing on faces, 132–136
Instance, 544
Instance management, 103
Interpolation, 280

J

Jared, 107–108, 183, 192, 298, 437, 465, 466,
485, 490–491, 507, 601

Johnson, 112
Joining errors, 594
Joining sheet objects, 325–327

K

Kim, 473
Kimura, 299
Kinematic mechanisms, 556–564

cams, 562
gear wheels, 561
rigid, 550
rotational, 558
screw threads, 560
sliding, 559
springs, 562
universal, 560

Kjellberg, 315, 472, 489, 528
KTH, 115, 528

L

Lasser, 256
Laws, 197
Layout design, 471, 573
Layout modelling, 476
Lccev, 82
Lcwev, 82
Lifecycle management, 104
Lifecycle

product, 575, 577–578
Lin, 112
Linear extrusion, 142
Linear extrusion operation, 151–157
Linear extrusion piece, 1
Local disc formats, 383
Local operations, 141
Lofting, 234, 285
Lofting operation, 234–242
Log files, 508–510
Loop, 80
Loop slot, 670
Lopel, 83
Luo, 86

M

Macro languages, 528
Mäntylä, 86
Manufacturing phase, 580–582
Mars probe, 608
Marshall, 291
Martin, 291
MBB gehäuse rohteil, 161, 108, 110, 491,

493–494, 496, 499–501, 503–506,
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Non-manifold models, 315–337
Non-manifold topology, 592
Non-manifold volumes, 331
NURBS, 264, 273

O

Open pocket, 665
Open slot, 667
Oberg, 608
Oldfromdisc, 394–395
Operation exercises, 250
Operations—along curve

extrusion, 162
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Planar face, 665
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Properties, 367
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Rotational piece, 17
Round, 209
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Tweak, 187
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