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In memoriam of my father Naum Aizenberg, 

founder of complex-valued neural networks 
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Preface

The use of complex numbers in neural networks is as natural as their use in other 

engineering areas and in mathematics.  

The history of complex numbers shows that although it took a long time for 

them to be accepted (almost 300 years from the first reference to "imaginary num-

bers" by Girolamo Cardano in 1545
1
 to Leonard Euler's

2
 and Carl Friedrich Gauss'

3

works published in 1748 and 1831, respectively), they have become an integral part 

of mathematics and engineering. It is difficult to imagine today how signal process-

ing, aerodynamics, hydrodynamics, energy science, quantum mechanics, circuit 

analysis, and many other areas of engineering and science could develop without 

complex numbers. It is a fundamental mathematical fact that complex numbers are 

a necessary and absolutely natural part of numerical world. Their necessity clearly 

follows from the Fundamental Theorem of Algebra, which states that every non-

constant single-variable polynomial of degree n with complex coefficients has ex-

actly n complex roots, if each root is counted up to its multiplicity. 

Answering a question frequently asked by some “conservative” researches, 

what one can get using complex-valued neural networks (typical objections are: 

they have "twice more" parameters, require more computations, etc.), we may say 

that one may get the same as using the Fourier transform, but not just the Walsh 

transform in signal processing. There are many engineering problems in the mod-

ern world where complex-valued signals and functions of complex variables are 

involved and where they are unavoidable. Thus, to employ neural networks for 

their analysis, approximation, etc., the use of complex-valued neural networks is 

natural. However, even in the analysis of real-valued signals (for example, images 

or audio signals) one of the most frequently used approaches is frequency domain 

analysis, which immediately leads us to the complex domain. In fact, analyzing 

signal properties in the frequency domain, we see that each signal is characterized 

1 G. Cardano’s work “Arts Magna” (“Great Art or on Algebraic Rules” was published in 

1545. For the first time he introduced a notion of “imaginary numbers”, however he con-

sidered these numbers useless. 
2 L. Euler proved and published in 1744 the relationship between the trigonometric func-

tions and complex exponential function ( cos sini
e i

ϕ
ϕ ϕ= + ). He also suggested to 

use symbol i for an imaginary unity (the first letter of Latin word imaginarius). 
3 C.-F. Gauss gave to complex numbers their commonly used name “complex” and com-

prehensively described them in his "Memoir to the Royal Society of Göttingen" in 1831. 

Gauss has also obtained the first mathematically exact proof of algebraic closure of  

the field of complex numbers in 1799 (this fact was first hypothetically formulated by  

J. d’Alembert in 1747 and L. Euler in 1751). 
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by magnitude and phase that carry different information about the signal. To use 

this information properly, the most appropriate solution is movement to the com-

plex domain because there is no other way to treat properly the phase information. 

Hence, one of the most important characteristics of Complex-Valued Neural Net-

works is the proper treatment of the phase information. It is important to mention 

that this phenomenon is important not only in engineering, but also in simulation 

of biological neurons. In fact, biological neurons when firing generate sequences 

of spikes (spike trains). The information transmitted by biological neurons to each 

other is encoded by the frequency of the corresponding spikes while their magni-

tude is a constant. Since, it is well known that the frequency can be easily trans-

formed to the phase and vice versa, then it should be natural to simulate these 

processes using a complex-valued neuron. 

Complex-Valued Neural Networks (CVNN) is a rapidly growing area. There 

are different specific types of complex-valued neurons and complex-valued acti-

vation functions. But it is important to mention that all Complex-Valued Neurons 

and Complex-Valued Neural Networks have a couple of very important advan-

tages over their real-valued counterparts. The first one is that they have much 

higher functionality. The second one is their better plasticity and flexibility: they 

learn faster and generalize better. The higher functionality means first of all the 

ability of a single neuron to learn those input/output mappings that are non-

linearly separable in the real domain. This means the ability to learn them in the 

initial space without creating higher degree inputs and without moving to the 

higher dimensional space, respectively. As it will be shown below, such classical 

non-linearly separable problems as XOR and Parity n are about the simplest that 

can be learned by a single complex-valued neuron. 

It is important to mention that the first historically known complex-valued acti-

vation function was proposed in 1971 (!) by Naum Aizenberg and his co-authors
4
.

It was 40 years ago, before the invention of backpropagation by Paul Werbos 

(1974), before its re-invention and development of the feedforward neural network 

by David Rumelhart (1986), before the Hopfield neural network was proposed by 

John Hopfield in 1982. Unfortunately, published only in Russian (although in the 

most prestigious journal of the former Soviet Union), this seminal paper by Naum 

Aizenberg and his colleagues and a series of their subsequent publications were 

not available to the international research community for many years. A problem 

was that in the former Soviet Union it was strictly prohibited to submit scientific 

materials abroad and therefore there was no way for Soviet scientists to publish 

their results in international journals. May be, being wider known, those seminal 

ideas on complex-valued neurons could stimulate other colleagues to join research 

in this area much earlier than it really happened (only in 1990s and 2000s). May 

be, this could help, for example, to widely use neural networks for solving not on-

ly binary, but multi-class classification problems as far back as more than 30 years 

ago… However, the history is as it is, we cannot go to the past and change some-

thing there. Let us better concentrate on what we have today. 

4 N.N. Aizenberg, Yu. L. Ivaskiv, and D.A. Pospelov, "About one generalization of the 

threshold function" Doklady Akademii Nauk SSSR (The Reports of the Academy of 

Sciences of the USSR), vol. 196, No 6, 1971, pp. 1287-1290 (in Russian). 
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So what is this book about? First of all, it is not an overview of all known 

CVNNs. It is devoted to comprehensive observation of one representative of the 

complex-valued neurons family – the Multi-Valued Neuron (MVN) (and its varia-

tion – the Universal Binary Neuron (UBN) ) and MVN-based neural networks. 

The Multi-Valued Neuron operates with complex-valued weights. Its inputs and 

output are located on the unit circle and therefore its activation function is a func-

tion only of argument (phase) of the weighted sum. It does not depend on the 

weighted sum magnitude. MVN has important advantages over other neurons: its 

functionality is higher and its learning is simpler because it is derivative-free and 

it is based on the error-correction rule. A single MVN with a periodic activation 

function can easily learn those input/output mappings that are non-linearly separa-

ble in the real domain (of course, including the most popular examples of them, 

XOR and Parity n). These advantages of MVN become even more important when 

this neuron is used as a basic one in a feedforward neural network. The Multilayer 

Neural Network based on Multi-Valued Neurons (MLMVN) is an MVN-based 

feedforward neural network. Its original backpropagation learning algorithm sig-

nificantly differs from the one for a multilayer feedforward neural network 

(MLF)
5
. It is derivative-free and it is based on the error-correction rule as it is for 

a single MVN. MLMVN significantly outperforms many other techniques (includ-

ing MLF and many kernel-based and neuro-fuzzy techniques) in terms of learning 

speed, network complexity and generalization capability. 

However, when the reader starts reading this book or when the reader even 

consider whether to read it, it is also important to understand that this book is not 

the 2
nd

 edition of the first monograph devoted to multi-valued neurons
6
. Since that 

monograph was published 11 years ago, and many new results were obtained dur-

ing this time by the author of this book, his collaborators and other researchers, 

this book, on the one hand, contains a comprehensive observation of the latest ac-

complishments and, on the other hand, it also deeply observes a theoretical back-

ground behind MVN. This observation is based on the today’s view on the MVN 

place and role in neural networks. It is important that today's understanding is 

much deeper and comprehensive than it was when the first book was published. 

Thus, the overlap of this book with the first one is minimal and it is reduced to 

some basic necessarily definitions, which is just about 5-6% of the content. The 

most significant part of the book is based on the results obtained by the author  

independently and in co-authorship with other colleagues and his students. How-

ever, contributions made by other research colleagues to MVN-based neural  

networks are also observed. 

5 Often this network based on sigmoidal neurons is also referred to as the multilayer percep-

tron (MLP) or a "standard backpropagation network". We will use a term MLF through-

out this book reserving a term "perceptron" for its initial assignment given by Frank 

Rosenblatt in his seminal paper F. Rosenblatt, “The Perceptron: A Probabilistic Model for 

Information Storage and Organization in the Brain, Cornell Aeronautical Laboratory”, 

Psychological Review, v65, No. 6, 1958 pp. 386-408. 
6 I. Aizenberg, N. Aizenberg, and J. Vandewalle, Multi-Valued and Universal Binary Neurons: 

Theory, Learning, Applications, Kluwer Academic Publishers, Boston/Dordrecht/London, 

2000. 
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This book is addressed to all people who work in the fascinating field of neural 

networks. The author believes that it can be especially interesting for those who 

use neural networks for solving challenging multi-class classification and predic-

tion problems and for those who develop new fundamental theoretical solutions in 

neural networks. It should be very suitable for Ph.D. and graduate students pursu-

ing their degrees in computational intelligence. It should also be very helpful for 

those readers who want to extend their view on the whole area of computational 

intelligence.  

The reader is not expected to have some special knowledge to read the book. 

All readers with basic knowledge of algebra and calculus, and just very basic 

knowledge of neural networks (or even without having special knowledge in neu-

ral networks area) including students can easily understand it. 

We avoid using here too deep mathematical considerations (may be except 

proofs of convergence of the learning algorithms and analysis of that specific se-

paration of an n-dimensional space, which is determined by the MVN activation 

function). However, those readers who do not want or do not need to go to those 

mathematical details may skip over the corresponding proofs. 

In this book, we cover the MVN and MVN-based neural networks theory and 

consider many of their applications. The most important topics related to multi-

valued neurons are covered. Chapter 1 should help the reader to understand why 

Complex-Valued Neural Networks were introduced. It presents a brief observation 

of neurons, neural networks, and learning techniques. Since the functionality of 

real-valued neurons and neural networks is limited, it is natural to consider the 

complex-valued ones whose functionality is much higher. We also observe in 

Chapter 1 CVNNs presenting the state of the art in this area. In Chapter 2, the 

multi-valued neuron is considered in detail along with the basic fundamentals of 

multiple-valued logic over the field of complex numbers, which is a main theo-

retical background behind MVN. In Chapter 3, MVN learning algorithms are  

presented. Chapter 4 is devoted to the multi-valued neural network based on 

multi-valued neurons, its original derivative-free backpropagation learning algo-

rithm and its applications. In Chapter 5, MVN with a periodic activation function 

and its binary version, the universal binary neuron, are presented, and it is shown  

how it is possible to solve non-linearly separable problems using a single neuron 

without the extension of the feature space. In Chapter 6, some other applications 

of MVN are considered (solving classification and prediction problems, associa-

tive memories). The book is illustrated by many examples of applications. 

The author sincerely hopes that this book will provide its readers with new in-

teresting knowledge and will encourage many of them to use MVN and MVN-

based neural networks for solving new challenging applied problems. The author 

will be glad and consider his work successful if more researches will be involved 

through this book in the really magic world of neural networks and particularly its 

complex-valued part. 

The author also hopes that by this book he can pay a tribute to the founder of 

Complex-Valued Neural Networks, his teacher, colleague, father and a great per-

sonality Naum Aizenberg. 
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Chapter 1  

Why We Need Complex-Valued Neural 
Networks? 

“Why is my verse so barren of new pride,  

So far from variation or quick change? 

Why with the time do I not glance aside 

To new-found methods and to compounds strange?” 

William Shakespeare, Sonnet 76 

This chapter is introductory. A brief observation of neurons and neural networks is 

given in Section 1.1. We explain what is a neuron, what is a neural network, what 

are linearly separable and non-linearly separable input/output mappings. How a 

neuron learns is considered in Section 1.2, where Hebbian learning, the percep-

tron, and the error-correction learning rule are presented. In Section 1.3, we con-

sider a multilayer feedforward neural network and essentials of backpropagation 

learning. The Hopfield and cellular neural networks are also presented. Complex-

valued neural networks, their naturalness and necessity are observed in Section 

1.4. It is shown that a single complex-valued neuron can learn non-linearly sepa-

rable input/output mappings and is much more functional than a single real-valued 

neuron. Historical observation of complex-valued neural networks and the state of  

the art in this area are also presented. Some concluding remarks will be given in 

Section 1.5.  

1.1   Neurons and Neural Networks: Basic Foundations and 

Historical View 

1.1.1   What Is a Neural Network? 

As we have clearly mentioned, this book is devoted to complex-valued neural 

networks, even only to those of them that are based on multi-valued neurons. 

However, it should not be correct, if we will start immediately from complex-

valued neurons and neural networks. To understand, why complex-valued neurons 

were introduced and to understand that motivation, which was behind their intro-

duction, it is important to observe what a neural network is. It is also important to 

have a good imagination about those solutions that existed in neural networks that 

time when the first complex-valued neuron was proposed and about state of the art 
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in neural networks, to understand why complex-valued neurons are even more im-

portant today. It is also important to understand those limitations that are specific 

for real-valued neurons and neural networks. This will lead us to much clearer un-

derstanding of the importance of complex-valued neurons and the necessity of 

their appearance for overcoming limitations and disadvantages of their real-valued 

counterparts. 

So let us start from the brief historical overview. 

 

What an artificial neural network is? Among different definitions, which the 

reader can find in many different books, we suggest to use the following given in 

[1] by Igor Aleksander and Helen Morton, and in [2] by Simon Haykin. 
 

Definition 1.1. A neural network is a massively parallel distributed processor that 

has a natural propensity for storing experimental knowledge and making it 

available for use. It means that: 1) Knowledge is acquired by the network through 

a learning process; 2) The strength of the interconnections between neurons is 

implemented by means of the synaptic weights used to store the knowledge. 

Let us consider in more detail what stands behind this definition. It is essential 

that an artificial neural network is a massively parallel distributed processor whose 

basic processing elements are artificial neurons. The most important property of 

any artificial neural network and of its basic element, an artificial neuron, is their 

ability to learn from their environment. Learning is defined in [2] as a process by 

which the free parameters of a neural network (or of a single neuron) are adapted 

through a continuing process of simulation by the environment in which the net-

work (the neuron) is embedded. This means that both a single artificial neuron and 

an artificial
1
 neural network are intelligent systems. They do not perform computa-

tions according to the pre-defined externally loaded program, but they learn from 

their environment formed by learning samples that are united in a learning set. 

Once the learning process is completed, they are able to generalize relying on that 

knowledge, which was obtained during the learning process. The quality of this 

generalization is completely based on that knowledge, which was obtained during 

the learning process. 

Compared to biological neural networks, artificial neural networks are “neu-

ral” in the sense that they have been inspired by neuroscience, but they are not true 

models of biological or cognitive phenomena. The important conclusion about ar-

tificial neural networks, which is done by Jacek Zurada in [3], states that typical 

neural network architectures are more related to mathematical and/or statistical 

techniques, such as non-parametric pattern classifiers, clustering algorithms, 

nonlinear filters, and statistical regression models.  

In contrast to algorithmic approaches usually tailored to tasks at hand, neural 

networks offer a wide palette of versatile modeling techniques applicable to a 

large class of problems. Here, learning in data-rich environments leads to mod-

els of specific tasks. Through learning from specific data with rather general 

                                                           
1 We will omit further the word “artificial” keeping in mind that across this book we have 

deal with artificial neurons and artificial neural networks. Wherever it will be needed, 

when a biological neuron will be considered, we will add the word “biological”. 
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neural network architectures, neurocomputing techniques can produce problem-

specific solutions [3]. 

1.1.2   The Neuron 

We just told that there are many equivalent definitions of a neural network. How-

ever, it is quite difficult to find a strict definition of a neuron. We may say that an 

artificial neuron is on the one hand, an abstract model of a biological neuron, but 

on the other hand, it is an intelligent information processing element, which can 

learn and can produce the output in response to its inputs. As a result of learning 

process, the neuron forms a set of weights corresponding to its inputs. Then by 

weighting summation of the inputs and transformation of the weighted sum of in-

put signals using an activation (transfer) function it produces the output. 

This is really quite similar to 

what a biological neuron is do-

ing. Let us consider its sche-

matic model (see Fig. 1.1). In-

deed, a biological neuron 

receives input signals thorough 

its dendrites that are connected 

to axons (which transmit output 

signals) of other neurons via 

synapses where the input signals 

are being weighted by the syn-

aptic weights. Then the biologi-

cal neuron performs a weighting 

summation of inputs in soma 

where it also produces the output, which it transmits to the dendrites of other neu-

rons through the synaptic connections. 

The first artificial neuron model was proposed by W. McCulloch and W. Pitts in 

1943 [4]. They tried to create a mathematical model of neural information process-

ing as it was considered that time. A common view was that a neuron receives some 

input signals 1,..., nx x  that can be excitatory (“1”) or inhibitory (“-1”), calculates 

the weighted sum of inputs 1 1 ... n nz w x w x= + +  and then produces the excitatory 

output (“1”) if the weighted sum of inputs exceeds some predetermined threshold 

value and the inhibitory output (“-1”) if it does not. For many years, it is a com-

monly known fact that a biological neuron is much more sophisticated from the sig-

nal processing view point. It is not a discrete binary processing element, its inputs 

and outputs are continuous, etc. Thus, the McCulloch-Pitts model as a model of a 

biological neuron is very schematic and it just approaches a basic idea of neural in-

formation processing. Nevertheless it is difficult to overestimate the importance of 

this model. First of all, it is historically the first model of a neuron. Secondly, this 

model was important for understanding of learning mechanisms that we will con-

sider below. Thirdly, all later neural models are based on the same approach that 

 

Fig. 1.1 A schematic model of a biological neuron 
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was in the McCulloch-Pitts model: weighted summation of inputs followed by the 

transfer function applied to the weighted sum to produce the output. 

Let us take a closer look at the McCulloch-Pitts model. As we have mentioned, 

in this model the neuron is a binary processing element. It receives binary inputs 

1,..., nx x  taken their values from the set {-1, 1} and produces the binary output 

belonging to the same set. The weights 1,..., nw w  can be arbitrary real numbers 

and therefore the weighted sum 1 1 ... n nz w x w x= + +  can also be an arbitrary 

real number. The neuron output ( )1,..., nf x x is determined as follows: 

( )1

 1, if 
,...,

1, if ,
n

z
f x x

z

≥ Θ⎧
= ⎨

− < Θ⎩  

where Θ is the pre-determined threshold. The last equation can be transformed if 

the threshold will be included to the weighted sum as a “free weight” 0w = −Θ , 

which is often also called a bias and the weighted sum will be transformed accord-

ingly ( 0 1 1 ...
n n

z w w x w x= + + + ): 

( )1

1,if 0
,...,

1, if 0.
n

z
f x x

z

≥⎧
= ⎨

− <⎩  

This is the same as 

( ) ( )1,..., sgn
n

f x x z= , (1.1) 

where sgn is a standard sign function, which is equal to 1 when its argument is 

non-negative and to -1 otherwise (see Fig. 1.2). Thus, function sgn in (1.1) is an 

activation function. It is usually referred 

to as the threshold activation function. 

The McCulloch-Pitts neuron is also often 

called the threshold element or the 

threshold neuron. [5]. These names were 

especially popular in 1960s – 1970s. 

It is important to mention that func-

tion sign is nonlinear. Hence, the first 

neuron was a nonlinear processing ele-

ment. This property is very important. 

All popular activation functions that are 

used in neurons are nonlinear. It will  

not be the overestimation, if we will say that the functionality of a neuron is 

mainly (if not completely) determined by its activation function. 

Let us consider now the most general model of a neuron, which is commonly 

used today (see Fig. 1.3). A neuron has n inputs 1,..., n
x x  and weights 1,..., n

w w  

 
Fig. 1.2 Threshold Activation Function 
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corresponding to these inputs. It also has a “free weight” (bias) 0w , which does 

not correspond to any input. All together weights form an (n+1)-dimensional 

weighting vector ( )0 1, ,...,
n

w w w . There is a pre-determined activation function 

( )zϕ  associated with a neuron. It generates the neuron output limiting it to some 

reasonable (permissible) range. The neural processing consists of two steps. The 

first step is the calculation of the weighted sum of neuron inputs  

0 1 1 ...
n n

z w w x w x= + + + . 

The second step is the calcu-

lation of the value of the  

activation function ( )zϕ  

for the value z of the 

weighted sum. This value of 

the activation function forms 

the output of the neuron. If 

input/output mapping is de-

scribed by some function 

( )1,..., n
f x x , then 

 

( ) ( )1 0 1 1,..., ( ) ...
n n n

f x x z w w x w xϕ ϕ= = + + + . (1.2) 

 

Initially only binary neuron inputs and output were considered. Typically, they 

were taken from the set { }2 1, 1E = −  or (rarely) from the set { }2 0,1K = 2
. It is 

important to mention that it is very easy to move from one of these alphabets to 

another one. For example, if 2y K∈  then 21 2x y E= − ∈ , and if 2x E∈  then 

( ) 21 / 2y x K= − − ∈ , respectively. Hence, 0 1,  1 1↔ ↔ − . As for the 

weights, they were taken from the set R  of real numbers. Therefore, the weighted 

sum in this case is also real and an activation function is a function of a real vari-

able. We may say that mathematically the threshold neuron implements a mapping 

( )1 2 2,..., :
n

n
f x x E E→ . 

                                                           

2 In [4], in the original McCulloch-Pitts model, a classical Boolean alphabet { }2 0,1K =  

was used. However, especially for the learning purpose, the bipolar alphabet 

{ }2 1, 1E = −  is much more suitable. We will consider a bit later, why it is better to use 

the bipolar alphabet for learning. 

 

Fig. 1.3 A general model of a neuron 
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1.1.3   Linear Separability and Non-linear Separability:  

XOR Problem 

If the neuron performs a mapping ( )1 2 2,..., :
n

n
f x x E E→ , this means that 

( )1,..., n
f x x  is a Boolean function. If the function sgn is used as the activation 

function of a neuron (thus, if it is the threshold neuron), then this Boolean function 

is called and commonly referred to as a threshold (linearly separable) Boolean 

function. Linear separability means that there exists an n-dimensional hyperplane 

determined by the corresponding weights (it is evident that the equation 

0 1 1 ...
n n

z w w x w x= + + +  determines a hyperplane in an n-dimensional space) 

and separating 1s of this function from its -1s (or 0s from 1s if the classical Boo-

lean alphabet { }2 0,1K =  is used). It is very easy to show this geometrically for 

n=2. Let us consider the function ( )1 2 1 2,  or f x x x x= , the disjunction of the 

two Boolean variables. A table of values of this function is shown in Table 1.1. 

Fig. 1.4a demonstrates a geometrical interpretation of this function. It also shows 

what a linear separability is. There is a line, which separates a single “1” value of this 

function from three “-1” values. It is also clear that there exist infinite amount of such 

lines. In 1960s study of threshold Boolean functions was very popular. 

Table 1.1 Values of function ( )1 2 1 2,  or f x x x x=  

1x  
2x  ( )1 2 1 2,  or f x x x x=  

1 1 1 

1 -1 -1 

-1 1 -1 

-1 -1 -1 

 
We can mention at least two comprehensive monographs devoted to this sub-

ject [6, 7]. However, the number of threshold or linearly separable Boolean func-

tions is very small. While for n=2 there are 14 threshold functions out of 16 and 

for n=3 there are 104 threshold functions out of 256, for n=4 there are just about 

2000 threshold functions out of 65536. For 4n > , the ratio of the number of 

threshold Boolean functions of n variables to 
22

n

 (the number of all Boolean 

functions of n variables) approaches 0.  

While threshold Boolean functions can be implemented using a single 

threshold neuron, other functions that are not threshold cannot. May be the most 

typical and the most popular example of such a function is XOR problem  
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(the Exclusive OR) ( )1 2 1 2,  xor f x x x x= , mod 2 sum of the two Boolean 

variables. This function is non-linearly separable. Let us take a look at the  

table of values of this function (see Table 1.2) and its graphical representation 

(see Fig. 1.4b). Geometrically, this problem belongs to the classification of the 

points in the hypercube, as any problem described by the Boolean function (see 

Fig. 1.4). Each point in the hypercube is either in class "1" or class "-1". In the 

case of XOR problem the input patterns (1, 1) and (-1, -1) that are in class "1" 

are at the opposite corners of the square (2D hypercube). On the other hand, the 

input patterns (1, -1) and (-1, 1) are also at the opposite corners of the same 

square, but they are in class "-1". It is clear from this that the function XOR is 

non-linearly separable, because there is no way to draw a line, which can sepa-

rate two “1” values of this function from its two “-1” values, which is clearly 

seen from Fig. 1.4b. Since such a line does not exist, there are no weights using 

which XOR function can be implemented using a single threshold neuron. 

Table 1.2 Values of function ( )1 2 1 2,  xor f x x x x=  

1x  
2x  ( )1 2 1 2,  xor f x x x x=  

1 1 1 

1 -1 -1 

-1 1 -1 

-1 -1 1 

 
The existence of non-linearly separable problems was a starting point for  

neural networks design and likely the XOR problem stimulated creation of  

the first multilayer neural network. We will consider this network in Section 1.3. 

However, the most important for us will be the fact that XOR problem can be  

easily solved using a single complex-valued neuron. We will show this solution  

in Section 1.4. 

  

(a) ( )1 2 1 2,  or f x x x x= is a linearly sepa-

rable function. There exists a line, which sepa-

rates 1 value of this function (a transparent 

circle) from its -1s (filled circles) 

(b) ( )1 2 1 2,  xor f x x x x= is a non-linearly 

separable function. There is no way to find a 

line, which separates 1s value of this function 

(transparent circles) from its -1s (filled circles) 

Fig. 1.4 



8 1   Why We Need Complex-Valued Neural Networks?

 

1.2   Learning: Basic Fundamentals 

1.2.1   Hebbian Learning 

We told from the beginning that the main property of both a single neuron and any 

neural network is their ability to learn from their environment. How a neuron 

learns? The first model of the learning process was developed by Donald Hebb in 

1949 [8]. He considered how biological neurons learn. As we have already men-

tioned, biological neurons are connected to each other through synaptic connec-

tions: axon of one neuron is connected to dendrites of other ones through synapses 

(Fig. 1.1). To represent the Hebbian model of learning, which is commonly re-

ferred to as Hebbian learning, let us cite D. Hebb’s fundamental book [8] directly. 

The idea of the Hebbian learning is as follows ([8], p. 70). 

"The general idea is … that any two cells or systems of cells that are repeat-

edly active at the same time will tend to become 'associated', so that activity in one 

facilitates activity in the other."  

The mechanism of Hebbian learning is the following ([8], p. 63). 

"When one cell repeatedly assists in firing another, the axon of the first cell 

develops synaptic knobs (or enlarges them if they already exist) in contact with 

the soma of the second cell." 

Let us “translate” this idea and mechanism into the language of the threshold 

neuron. In this language, “1” that is a “positive” signal, means excitation, and “-1” 

that is a “negative” signal, means inhibition. When the neuron “fires” and pro-

duces “1” in its output, this means that weights have to help this neuron to “fire”. 

For example, if the neuron receives a “positive” signal (“1”) from some input, 

then the corresponding weight passing this signal can be obtained by multiplica-

tion of the desired output “1” by the input “1” (see Fig. 1.5a). Thus, the weight is 

equal to 1 and the “positive” input signal will contribute to the positive output of 

the neuron. Indeed, to produce a “positive” output, according to (1) the weighted 

sum must be positive. On the contrary, if the neuron “fires”, but from some input 

it receives a “negative” (inhibitory) signal, the corresponding weight has to invert 

this signal, to make its contribution to the weighted sum and the neuron output 

positive. Again, the simplest way to achieve this, is to multiply the desired output 

“1” by the input “-1” (see Fig. 1.5b). The corresponding weight will be equal to -1 

and when multiplied by the input, will produce a positive contribution 

( 1) ( 1) 1− ⋅ − =  to the weighted sum and output. Respectively, if the neuron does 

not “fire” and has to produce a “negative” inhibitory output (”-1”), the weights 

have to help to inhibit the neuron and to produce a negative weighted sum. The 

weights should be found in the same way: by multiplication of the desired output 

“-1” by the corresponding input value. If the input is " 1"−  (inhibitory), then  

the weight ( 1) ( 1) 1− ⋅ − =  just passes it (see Fig. 1.5c). If the input is “1” (excita-

tory), the weight ( 1) 1 1− ⋅ = −  inverts it (see Fig. 1.5d). 
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To obtain a bias 0w , we just need to multiply the desired output by 1, which 

can be considered as a “virtual constant input” corresponding to this weight. 

It is clear that if the threshold neuron has to learn only a single learning sam-

ple, then this Hebb rule always produces the weighting vector implementing the 

corresponding input/output mapping. However, learning from a single learning 

sample is not interesting, because it is trivial. What about multiple learning sam-

ples? In this case, the weights can be found by generalization of the rule for a sin-

gle learning sample, which we have just described. This generalization leads us to 

the following representation of the Hebbian learning rule for a single threshold 

neuron. Let us have N n-dimensional learning samples (this means that our neuron 

has n inputs 1,..., n
x x ). Let f  be an N-dimensional vector-column

3
 of output  

                                                           

3 Here and hereafter we will use a notation ( )1
f ,...,

T

n
f f=  for a vector-column, while 

a notation ( )1,..., nF f f=  will be used for a vector-row. 

  
(a) the neuron “fires” and a “firing” input is 

passed to the output by the positive weight 

(b) the neuron “fires” and an “inhibitory” 

input is inverted by the negative weight 

  
(c) the neuron “inhibits” and an “inhibi-

tory” input is passed to the output by the 

positive weight 

(d) the neuron “inhibits” and a “firing”  

input is inverted by the negative weight 

Fig. 1.5 Calculation of the weight using the Hebb rule for one of the neuron’s inputs and 

for a single learning sample: the weight is equal to the product of the desired output and  

input value  
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values. Let 1,..., n
x x  be N-dimensional vectors of all possible values of inputs 

1 ,..., , 1,...,j j

n
x x j N= . 

Then according to the Hebbian learning rule the weights 1,..., n
w w  should be 

calculated as dot products of vector f  and vectors 1,..., n
x x , respectively.  

The weight 0w  should be calculated as a dot product of vector f  and an  

N-dimensional vector-constant ( )0 1,1,...,1
T

=x : 

( ), , 0,...,
i i

w i n= =f x , (1.3) 

where ( ) 1 1, ...
n n

a b a b= + +a b  is the dot product of vector-columns 

( )1
,...,

T

n
a a=a  and ( )1

,...,
T

n
b b=b  in the unitary space (“bar” is a symbol of 

complex conjugation, in the real space it should simply be ignored). 

It can also be suggested to normalize the weights obtained by (1.3): 

( )
1

, , 0,...,i iw i n
N

= =f x . (1.4) 

Let us check how rule (1.4) works.  

Example 1.1 Let us learn using this rule the OR problem ( )1 2 1 2,  or f x x x x= , 

which is linearly separable and which we have already considered  

for illustration of the linear separability (Table 1.1, Fig. 1.4a). Let us use  

rule (1.4) to obtain the weights. From Table 1.1, we have 

( ) ( ) ( ) ( )0 1 2
1, 1, 1, 1 ; 1,1,1,1 ; 1,1, 1, 1 ; 1, 1,1, 1 .

T T T T
= − − − = = − − = − −f x x x

Then, applying Hebbian learning rule (1.4), we obtain the following weights 

( ) ( ) ( )0 0 1 1 2 2, 0.5; , 0.5; , 0.5w w w= = − = = = =f x f x f x . Let us now 

check the results of this learning and apply the weighting vector 

( 0.5,0.5,0.5)W = −  to all four possible binary inputs of the threshold neuron. 

The results are summarized in Table 1.3. We see that the weighting vector, which 

we obtained learning the OR function using the Hebbian learning rule really im-

plements the OR function using the threshold neuron.  

The reader for whom neural networks is a new subject may say “Hurrah! It so 

simple and beautiful!” It is really simple and beautiful, but unfortunately just a 

minority of all threshold Boolean functions of more than two variables can be 

learned in this way. 
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It is also clear that neither of non-threshold Boolean functions can be learned 

by the threshold neuron using rule (1.4) (non-threshold functions cannot be 

learned by the threshold neuron at all). By the way, different non-threshold  

Boolean functions may have the same weighting vectors obtained by rule (1.4).  

If we apply rule (1.4) to such a non-threshold Boolean function, like XOR (see 

Table 1.2 and Fig. 1.4b), which is symmetric (self-dual (or odd, in other words) or 

even), we get the zero weighting vector (0, …, 0). 

 

Table 1.3 Threshold neuron implements ( )1 2 1 2,  or f x x x x=  function with the weighting 

vector (-0.5, 0.5, 0.5) obtained by Hebbian learning rule (1.4) 

1x  
2x  

0 1 1 2 2z w w x w x= + +
 

sgn( )z
 

( )1 2 1 2,  or f x x x x=  

1 1 0.5 1 1 

1 -1 -0.5 -1 -1 

-1 1 -0.5 -1 -1 

-1 -1 -1.5 -1 -1 

 

The following natural questions can now be asked by the reader. How those 

threshold Boolean functions that cannot be learned using the Hebb rule, can be 

learned? What about multiple-valued and continuous input/output mappings, is it 

possible to learn them? If the Hebb rule has a limited capability, is it useful? The 

answer to the first question will be given right in the next Section. Several answers 

to the second question will be given throughout this book. The third question can 

be answered right now. The importance of Hebbian learning is very high, and not 

only because D. Hebb for the first time explained mechanisms of associations de-

veloping during the learning process. A vector obtained using the Hebb rule, even 

if it does not implement the corresponding input/output mapping, can often be a 

very good first approximation of the weighting vector because it often can “draft” a 

border between classes when solving pattern recognition and classification prob-

lems. In [6] it was suggested to call a vector obtained by (1.4) for a Boolean func-

tion the characteristic vector of that function. Later the same notion was considered 

for multiple-valued functions and the Hebb rule was used to learn them using the 

multi-valued neuron. We will consider this aspect of Hebbian learning later when 

we will consider multi-valued neurons and their applications (Chapters 2-6). 

Using the Hebbian learning it is possible to develop associations between the 

desired outputs and those inputs that stimulate these outputs. However, the Heb-

bian learning cannot correct the errors if those weights obtained by the Hibbian 

rule still do not implement the corresponding input/output mapping. To be able to 

correct the errors (to adjust the weights in such a way that the error will be mini-

mized or eliminated), it is necessary to use the error-correction learning rule. 

1.2.2   Perceptron and Error-Correction Learning 

The perceptron is historically the first artificial neural network. The perceptron 

was suggested in 1958 by Frank Rosenblatt in [9] as “a hypothetical nervous  
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system”, and as the illustration of “some of the fundamental properties of intelli-

gent systems in general”. 

Today we may say that the Rosenblatt’s perceptron as it was defined in the 

seminal paper [9] is the simplest feedforward neural network (it will be considered 

in Section 1.3), but in 1958 when F. Rosenblatt published his paper, this today’s 

most popular kind of a neural network was not invented yet. The perceptron was 

suggested as a network consisted of three types of elements that can simulate rec-

ognition of visual patterns (F. Rosenblatt demonstrated the perceptron’s ability to 

recognize English typed letters). The perceptron in its original concept contained 

three types of units (Fig. 1.6): S-units (sensory) for collecting the input informa-

tion and recoding it into the form appropriate for A-units (associate units), and R-

units (responses). While S-units are just sensors (like eye retina) and R-units are 

just responsible for reproduction of the information in terms suitable for its under-

standing, A-units are the neurons, for example the ones with the threshold activa-

tion function (later a sigmoid activation was suggested, we will also consider it  

below). Thus, A-units form a single layer feedforward neural network. All connec-

tions among units were usually built at random. 

The main idea behind the perceptron was to simulate a process of pattern rec-

ognition. At that time when the perceptron concept was suggested, classification 

was considered only as a binary problem (a two-class classification problem), and 

the perceptron was primarily used as a binary classifier. Thus, each neuron (each 

A-unit) performed only input/output mappings ( )1 2 2,..., :
n

n
f x x E E→  (or 

( )1 2 2,..., :
n

n
f x x K K→  depending on which Boolean alphabet was used). 

Later it was suggested to 

consider a more general 

case when neuron (percep-

tron) inputs are real num-

bers from some bounded set 

T ⊂ R  (often the case of 

[ ]0,1T =  is considered). 

Thus, if , 1,...,
i

x T i n∈ =  

a mapping performed by the 

neuron becomes 

( )1 2,..., :
n

n
f x x T E→ . 

One of the main achieve-

ments of the perceptron era 

was the error-correction 

learning concept first sug-

gested by F. Rosenblatt in 

[10] and then developed 

and deeply presented in his monograph [11]. Since in the perceptron all its A-units 

learn separately and independently, we may consider the error-correction learning 

rule with regard to a single neuron. We will derive the error-correction learning 

 

Fig. 1.6 The Perceptron 
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rule in the same way as it was done by its inventor. We have to mention that this 

learning rule will be very important for us when we will consider its generaliza-

tion for complex-valued neurons and neural networks. 

Let us consider the threshold neuron with activation function (1.1). Suppose a 

neuron has to learn some input/output mapping ( )1 2 2,..., :
n

n
f x x E E→ . This 

input/output mapping could represent, for example, some binary classification 

problem. Thus, there are two classes of objects described by n-dimensional real-

valued vectors. The purpose of the learning process in this case is to train a neuron 

to classify patterns labeling them as belonging to the first or the second class. Let 

2i
d E∈  be the desired output for the ith learning sample. This means that the in-

put/output mapping has to map a vector ( )1,..., n
x x  to some desired output d. 

Suppose we have N learning samples that form a learning set 

( )1 ,..., , 1,...,
i i

n ix x d i N→ = . Let us have some weighting vector 

( )0 1, ,...,
n

W w w w=  (the weights can be generated, for example, by a random 

number generator). Let y be the actual output of the neuron 

( )0 1 1sgn ...
n n

y w w x w x= + + +  and it does not coincide with the desired  

output d. This forms the error 

d yδ = − . (1.5) 

Evidently, the goal of the learning process should be the elimination or minimiza-

tion of this error through the adjustment of the weights by adding to them the  

adjustment term w∆  

, 0,1,...,
i i i

w w w i n= + ∆ =# . (1.6) 

We expect that once the weights will be adjusted, our neuron should produce the 

desired output 

( )0 1 1sgn ...
n n

d w w x w x= + + +# # # . (1.7) 

Taking into account (1.5) and (1.6), (1.7) can be transformed as follows 

( ) ( ) ( )( )0 0 1 1 1sgn ... .n n n

d y

w w w w x w w x

δ= + =

+ ∆ + + ∆ + + + ∆
 (1.8) 

Then we obtain from (1.8) the following 

( ) ( )( )0 1 1 0 1 1sgn ... ... .n n n n

y

w w x w x w w x w x

δ + =

+ + + + ∆ + ∆ + + ∆
 (1.9) 

Since the neuron’s output is binary and it can be equal only to 1 or -1, according to 

(1.5) we have the following two cases for the error  
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2,if 1, 1

2,if  1, 1.

d y

d y
δ

= = −⎧
= ⎨

− = − =⎩  (1.10) 

Let us consider the first case from (1.10), 1, 1, 2d y δ= = − = . Substituting 

these values to (1.9), we obtain the following 

( ) ( )( )0 1 1 0 1 1

2 1 1

sgn ... ... .n n n n

y

w w x w x w w x w x

δ + = − = =

+ + + + ∆ + ∆ + + ∆
 (1.11) 

It follows from the last equation that 

( ) ( )0 1 1 0 1 10 ... ...n n n nw w x w x w w x w x≤ + + + + ∆ + ∆ + + ∆ ,  

and (since 0 1 1 0n nw w x w x+ + <  because 1y = − ) 

( )0 1 1

0 1 1 0 1 1

0 ... ,

... ...

n n

n n n n

w w x w x

w w x w x w w x w x

< ∆ + ∆ + + ∆

+ + + ≤ ∆ + ∆ + + ∆
. (1.12) 

Let us set  

0 ; , 1,...,i iw w x i nαδ αδ∆ = ∆ = = , (1.13) 

where 0α >  is some constant, which is called a learning rate. Then  

0 1 1

1 1

...

... ( 1).

n n

n n

w w x w x

x x x x nαδ αδ αδ αδ

∆ + ∆ + + ∆ =

+ + + = +
 (1.14) 

It is important to mention that 
2 1; 1,...,

i i i
x x x i n= = =  in (14) because since we 

consider the threshold neuron with binary inputs, { }2 1, 1ix E∈ = − . We will see 

later that it is more difficult to use (1.13) if the neuron inputs are not binary. We 

also will see later that this difficulty does not exist for the error-correction learning 

rule for the multi-valued neuron, which will be considered in Section 3.3. 

Since 0, 2 0α δ> = > , then ( 1) 0nαδ + >  and the 1
st
 inequality from 

(1.12) holds. However, it is always possible to find a learning rate 0α >  such 

that the 2
nd

 inequality from (1.12) also holds. This means that for the first case in 

(1.10) the learning rule based on (1.6) and (1.13) guarantees that (1.11) is true and 

the neuron produces the correct result after the weights are adjusted. 

Let us consider the second case in (1.10). 1, 1, 2d y δ= − = = − . Substituting 

these values to (1.9), we obtain the following 

( ) ( )( )0 1 1 0 1 1

2 1 1

sgn ... ... .
n n n n

y

w w x w x w w x w x

δ + = − + = − =

+ + + + ∆ + ∆ + + ∆
 (1.15) 
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It follows from the last equation that 

( ) ( )0 1 1 0 1 1... ... 0n n n nw w x w x w w x w x+ + + + ∆ + ∆ + + ∆ < ,  

and (since 0 1 1 0n nw w x w x+ + ≥  because 1y = ) 

( )0 1 1

0 1 1 0 1 1

... 0,

... ... .

n n

n n n n

w w x w x

w w x w x w w x w x

∆ + ∆ + + ∆ <

+ + + ≤ ∆ + ∆ + + ∆
 (1.16) 

Let us again use (1.6) and (1.13) to adjust the weights. We again obtain (1.14). 

Since 0, 2 0α δ> = − < , then ( 1) 0nαδ + <  and the 1
st
 inequality from 

(1.16) holds. However, it is always possible to find such learning rate 0α >  that 

the 2
nd

 inequality from (1.16) also holds. This means that for the second case in 

(1.10) the learning rule based on (1.6) and (1.13) guarantees that (1.15) is true and 

the neuron produces the correct result after the weights are adjusted. Since for 

both cases in (1.10) the learning rule based on (1.6) and (1.13) works, then this 

rule always leads to the desired neuron output after the weights are corrected. We 

can merge (1.6) and (1.13) into 

0 0 ;

, 1,..., ,i i i

w w

w w x i n

αδ

αδ

= +

= + =

#
#

 (1.17) 

where δ  is the error calculated according to (1.5) and 0α >  is a learning rate. 

Equations (1.17) present the error-correction learning rule. After the weights are 

corrected according to (1.17), we obtain for the updated weighted sum the follow-

ing expression 

0 1 1

0 1 1 1 1

0 1 1

...

( ) ( ) ... ( )

... ( 1) ( 1).

n n

n n

n n

z

z w w x w x

w w x x w x x

w w x w x n z n

αδ αδ αδ

αδ αδ

= + + + =

+ + + + + + =

+ + + + + = + +

# # ##

'***(***)

 
(1.18) 

Since as we saw, δ  in (1.18) has a sign, which is always opposite to the one of 

z , then it is always possible to choose 0α >  such that sgn( ) sgn( )z z= −# . If 

, 1,...,
i

x T i n∈ = , where T ⊂ R  and ( )1 2,..., :
n

n
f x x T E→ , then instead 

of (1.18) we obtain 

( )

( )

0 1 1

0 1 1 1 1

2 2

0 1 1 1

2 2

1

...

( ) ( ) ... ( )

... 1 ...

1 ... .

n n

n n

n n n

z

n

z w w x w x

w w x x w x x

w w x w x x x

z x x

αδ αδ αδ

αδ

αδ

= + + + =

+ + + + + + =

+ + + + + + + =

+ + + +

# # ##

'***(***)
 (1.19) 
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Like in (1.18), δ  in (1.19) has a sign, which is always opposite to the one of .z  

Since 0α >  and 
2 2

11 ... 0
n

x x+ + + > , it is again possible to choose α  such 

that (1.19) holds. However, it is necessary to be more careful choosing α  here 

than for the binary input case. While in (1.18) α does not depend on the inputs, in 

(1.19) it does. We will consider later, In Section 3.3, the error-correction learning 

rule for the multi-valued neuron and we will see that this problem exists there nei-

ther for the discrete multiple-valued inputs/output nor for the continuous ones.  

1.2.3   Learning Algorithm 

Definition 1.2. A learning algorithm is the iterative process of the adjustments of 

the weights using a learning rule. Suppose we need to learn some learning set con-

taining N learning samples ( )1 ,..., , 1,...,
i i

n ix x d i N→ = . One iteration of the 

learning process consists of the consecutive checking for all learning samples 

whether (1.2) holds for the current learning sample. If so, the next learning sample 

should be checked. If not, the weights should be adjusted according to a learning 

rule. The initial weights can be chosen randomly. This process should continue ei-

ther until (1.2) holds for all the learning samples or until some additional criterion 

is satisfied.  

When the learning process is successfully finished, we say that it has converged 

or converged to a weighting vector. Thus, convergence of the learning process 

means its successful completion. No-convergence means that the corresponding 

input/output mapping cannot be learned. 

A learning iteration (learning epoch) is a pass over all the learning samples 

( )1 ,..., , 1,...,
i i

n ix x d i N→ = . 

If the learning process continues until (1.2) holds for all the learning samples, 

we say that the learning process converges with the zero error. If errors for some 

learning samples are acceptable, as it was mentioned, some additional criterion for 

stopping the learning process should be used. The most popular additional crite-

rion is the mean square error/root mean square error criterion. In this case, the 

learning process continues until either of this errors drops below some pre-

determined acceptable threshold value. This works as follows. Let , 1,...,
i

i Nδ =  

be the error for the ith learning sample. Then the mean square error (MSE) over all 

learning samples is  

2

1

1 N

i

i

MSE
N

δ
=

= ∑ , (1.20) 

and the root mean square error (RMSE) is 

2

1

1 N

i

i

RMSE MSE
N

δ
=

= = ∑ . (1.21) 
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If either of (1.20) or (1.21) is used, then a learning iteration starts from computa-

tion of MSE (RMSE). The learning process should continue until MSE (RMSE) 

drops below some pre-determined reasonable threshold value.  

Another approach to the learning is the error minimization. In this case, the 

learning algorithm is considered as an optimization problem and it is reduced to  

the minimization of the error functional. The error is considered as the function of 

the weights. But in fact, the error is a composite function  

( ) ( )( ) ( ) ( )0 1 1 ...
n n

W z d z d w w x w xδ δ ϕ ϕ= = − = − + + + ,  

where ( )zϕ  is the activation function. Actually, this approach is the most popu-

lar, but since minimization of the error functional using optimization methods  

requires differentiability of an activation function, it cannot be applied to the 

threshold neuron whose activation function ( )sgn z  is not differentiable. It is 

widely used for sigmoidal neurons and neural networks based on them. We will 

observe them in Section 1.3. 

Now we have to discuss the convergence of the learning algorithm for a single 

threshold neuron based on the error-correction rule (1.17). The first proof of the 

perceptron convergence theorem was given by F. Rosenblatt in [10]. It is impor-

tant to mention that F. Rosenblatt considered only binary inputs. In its most com-

prehensive form, this convergence theorem states that if the given input/output 

mapping can be learned and learning samples appear in an arbitrary order, but 

with a condition that each of them is repeated in the learning sequence within 

some finite time interval, then the learning process converges starting from an  

arbitrary weighting vector after a finite number of iterations.  

This theorem, however, did not clarify the question which input/output map-

pings can be learned using the perceptron and which cannot. 

A more general case of this theorem was considered by A. Novikoff in [12]. He 

introduced a notion of a linearly separable set. The learning set 

( )1 ,..., , 1,..., ; , 1,..., ; 1,...,i i i

n i jx x d i N x T j n i N→ = ∈ ⊂ = =R  is called 

linearly separable if there exist a positive constant s and a weighting vector W 

such that the following condition holds 

( )0 1 1 ... , 1,...,
i n n

d w w x w x s i N+ + + > = .  

This means that the weighted sum multiplied by the desired output must be greater 

than some positive constant for all the learning samples. Novikoff’s convergence 

theorem states that the learning algorithm converges after a finite number of it-

erations if the learning set is linearly separable. The idea behind the Novikoff’s 

proof is to show that the assumption that the learning process does not converge 

after a finite number of iterations contradicts to the linear separability of the learn-

ing set. Novikoff showed that the amount of changes to the initial weighting vec-

tor is bounded by ( )
2

2 /M s , where M is the maximum norm of an input vector. 
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Since the norm is always a finite non-negative real number, the number of itera-

tions in the learning algorithm is also finite.  

We will see later that this approach used by Novikoff to prove the convergence of 

the error-correction learning algorithm for the threshold neuron also works to prove 

the convergence of the learning algorithm for the multi-valued neuron (Section 3.3) 

and a multilayer neural network based on multi-valued neurons (Chapter 4). 

1.2.4   Examples of Application of the Learning Algorithm Based 

on the Error-Correction Rule 

Let us consider how learning rule (1.17) can be used to train the threshold neuron 

using the learning algorithm, which was just defined. 
 

Example 1.2. Let us consider again the OR problem ( )1 2 1 2,  or f x x x x=   

(Table 1.1, Fig. 1.4a), which we have already considered above. Our learning set 

contains four learning samples (see Table 1.1). Let us start the learning process 

from the weighting vector (1,1,1)W = . 

 

Iteration 1. 

1) Inputs (1, 1). The weighted sum is equal to 311111 =⋅+⋅+=z ; 

( ) sgn( ) sgn(3) 1z zϕ = = = . Since (1,1) 1f = , no further correction of the 

weights is needed. 

2) Inputs (1, -1). The weighted sum is equal to 1)1(1111 =−⋅+⋅+=z ; 

( ) sgn( ) sgn(1) 1z zϕ = = = . Since (1, 1) 1f − = − , we have to correct the 

weights. According to (1.5) 211 −=−−=δ . Let 1=α  in (1.17). Then we 

have to correct the weights according to (1.17): 

0 1 21 2 1;  1 ( 2) 1 1;  1 ( 2) ( 1) 3w w w= − = − = + − ⋅ = − = + − ⋅ − =# # # . 

Thus, )3,1,1(
~

−−=W . 

The weighted sum after the correction is equal to 

5)1(31)1(1 −=−⋅+⋅−+−=z ; ( ) sgn( ) sgn( 5) 1z zϕ = = − = − . Since 

(1, 1) 1f − = − , no further correction of the weights is needed. 

3) Inputs (-1, 1). The weighted sum is equal to 

313)1()1(1 =⋅+−⋅−+−=z ; ( ) sgn( ) sgn(3) 1z zϕ = = = . Since 

( 1,1) 1f − = − , we have to correct the weights. According to (17) 

211 −=−−=δ . Let 1=α  in (1.17). Then we have to correct the weights ac-

cording to (1.17): 
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0 1 21 2 3;  1 ( 2) ( 1) 1;  3 ( 2) 1 1w w w= − − = − = − + − ⋅ − = = + − ⋅ =# # # .  

Thus, )1,1,3(
~

−=W .  

The weighted sum after the correction is equal to 

311)1(13 −=⋅+−⋅+−=z ; ( ) sgn( ) sgn( 3) 1z zϕ = = − = − . Since 

( 1,1) 1f − = − , no further correction of the weights is needed. 

4) Inputs (-1, -1). The weighted sum is equal to 

5)1(1)1(13 −=−⋅+−⋅+−=z ; ( ) sgn( ) sgn( 5) 1z zϕ = = − = − . Since 

( 1, 1) 1f − − = − , no further correction of the weights is needed. 

 

Iteration 2. 

1) Inputs (1, 1). The weighted sum is equal to 111113 −=⋅+⋅+−=z ; 

( ) sgn( ) sgn( 1) 1z zϕ = = − = − . Since (1,1) 1f = , we have to correct the 

weights. According to (1.17) 2)1(1 =−−=δ . Let 1=α  in (1.17). Then we 

have to correct the weights according to (1.17): 

0 1 23 2 1;  1 2 1 3;  1 2 1 3w w w= − + = − = + ⋅ = = + ⋅ =# # # .  

Thus, )3,3,1(
~

−=W . 

The weighted sum after the correction is equal to 513131 =⋅+⋅+−=z ; 

( ) sgn( ) sgn(5) 1z zϕ = = = . Since (1,1) 1f = , no further correction of the 

weights is needed. 

2) Inputs (1, -1). The weighted sum is equal to 

1)1(3131 −=−⋅+⋅+−=z ; ( ) sgn( ) sgn( 1) 1z zϕ = = − = − . Since 

(1, 1) 1f − = − , no further correction of the weights is needed. 

3) Inputs (-1, 1). The weighted sum is equal to 

113)1(31 −=⋅+−⋅+−=z ; ( ) sgn( ) sgn( 1) 1z zϕ = = − = − . Since 

( 1,1) 1f − = − , no further correction of the weights is needed. 

4) Inputs (-1, -1). The weighted sum is equal to 

7)1(3)1(31 −=−⋅+−⋅+−=z ; ( ) sgn( ) sgn( 7) 1z zϕ = = − = − . Since 

( 1, 1) 1f − − = − , no further correction of the weights is needed. 

This means that the iterative process converged after two iterations, there are 

no errors for all the samples from the learning set, and this learning set presented 

by the OR function ( )1 2 1 2,  or f x x x x=  of the two variables is learned. There-

fore, the OR function can be implemented with the threshold neuron using the 

weighting vector )3,3,1(
~

−=W  obtained as the result of the learning process. 
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Table 1.4 Learning process for the function 
1 2 1 2( , ) &f x x x x=  

 

Example 1.3. Let us learn the function 
1 2 1 2( , ) &f x x x x=  ( x  means the ne-

gation of the Boolean variable x, in the alphabet  

{1, -1} x x= − ) using the threshold neuron.  

Table 1.4 shows the function values and the entire 

learning set containing four input vectors and four 

values of the function, respectively. We start the 

learning process from the same weighting vector 

(1,1,1)W =  as in Example 1.2. We hope that so detailed explanations as were 

1x  2x  0 1 1 2 2z w w x w x= + +  sgn( )z  
1 2 1 2( , ) &f x x x x=  δ 

( )1,1,1W =  

Iteration 1 

1 1 311111 =⋅+⋅+=z  1 1 0 

1 -1 1)1(1111 =−⋅+⋅+=z  1 -1 -2 

0 1 21 2 1;  1 ( 2) 1 1;  1 ( 2) ( 1) 3w w w= − = − = + − ⋅ = − = + − ⋅ − =# # #
( )1, 1,3W = − −  

-1 1 313)1()1(1 =⋅+−⋅−+−=z 1 1 0 

-1 -1 3)1(3)1()1(1 −=−⋅+−⋅−+−=z -1 1 2 

0 1 21 2 1;  1 2 ( 1) 3;  1 2 ( 1) 3w w w= − + = = − + ⋅ − = − = − + ⋅ − = −# # #

)3,3,1(
~

−−=W  

Iteration 2 

1 1 51)3(1)3(1 −=⋅−+⋅−+=z -1 1 2 

0 1 21 2 3;  3 2 1 1;  3 2 1 1w w w= + = = − + ⋅ = − = − + ⋅ = −# # #
 

)1,1,3(
~

−−=W  

1 -1 3)1()1(1)1(3 =−⋅−+⋅−+=z 1 -1 -2 

0 1 23 2 1;  1 ( 2) 1 3;  1 ( 2) ( 1) 3w w w= − = = − + − ⋅ = − = − + − ⋅ − =# # #
)3,3,1(

~
−=W  

-1 1 713)1()3(1 =⋅+−⋅−+=z  1 1 0 

-1 -1 1)1(3)1()3(1 =−⋅+−⋅−+=z 1 1 0 

Iteration 3 

1 1 1131)3(1 =⋅+⋅−+=z  1 1 0 

1 -1 1 ( 3) 1 3 ( 1) 5z = + − ⋅ + ⋅ − = − -1 -1 0 

-1 1 713)1()3(1 =⋅+−⋅−+=z  1 1 0 

-1 -1 1)1(3)1()3(1 =−⋅+−⋅−+=z 1 1 0 

# 
1x  2x  21 & xx  

1) 1 1 1 

2) 1 -1 -1 

3) -1 1 1 

4) -1 -1 1 
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given in Example 1.2 will not be needed now. Thus, the iterative process has con-

verged after three iterations, there are no errors for all the elements from the learn-

ing set, and our input/output mapping described by the Boolean function 

1 2 1 2( , ) &f x x x x=  is implemented on the threshold neuron using the weight-

ing vector )3,3,1(
~

−=W  obtained as the result of the learning process. 

1.2.5   Limitation of the Perceptron. Minsky’s and Papert’s Work 

In 1969, M. Minsky and S. Papert published their famous book [13] in which they 

proved that the perceptron cannot learn non-linearly separable input/output map-

pings. Particularly, they showed that, for example the XOR problem is unsolvable 

using the perceptron. Probably from that time the XOR problem is a favorite prob-

lem, which is used to demonstrate why we need multilayer neural networks - to 

learn such problems as XOR. This resulted in a significant decline in interest to 

neurons and neural networks in 1970s.  

We will show later that this problem is the simplest possible problem, which 

can be solved by a single multi-valued neuron with a periodic activation function 

(Section 1.4 and Chapter 5). 

Thus, a principal limitation of the perceptron is its impossibility to learn non-

linearly separable input/output mappings. This limitation causes significant lack 

of the functionality and reduces a potential area of applications because the most 

of real-world pattern recognition and classification problems are non-linearly 

separable. 

The next significant limitation of the perceptron is its binary output. Thus, the 

perceptron can be used neither for solving multi-class classification problems 

(where the number of classes to be classified is greater than two) nor problems 

with a continuous output. 

In this book, starting from Section 1.4 and thereafter we will show how these 

limitations can easily be overcome with complex-valued neurons. Non-linearly 

separable binary problems and multiple-valued problems (including the nonline-

arly-separable ones) can be learned using a single multi-valued neuron. 

But first, to conclude our observation of neurons and neural networks, let us 

consider the most popular topologies of neural networks, which were proposed in 

1980s and which are now successfully used in complex-valued neural networks. 
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1.3   Neural Networks: Popular Topologies 

1.3.1   XOR Problem: Solution Using a Feedforward Neural  

Network 

As we have seen, the perceptron cannot learn non-linearly separable problems  

(input/output mappings). In the third part of his book [11], F. Rosenblatt proposed 

an idea of multilayer perceptron containing more than one layer of A-units (see 

Fig. 1.6). He projected that this neural network will be more functional and will be 

able to learn non-linearly separable problems. However, no learning algorithm for 

this network was proposed that time. In [13], M. Minsky and S. Papert presented 

their skeptical view on the “multilayer perceptron”. They did not hope that it will 

be more efficient than the classical single layer perceptron, probably because there 

was still no learning algorithm for a multilayer neural network. 

However, the existence of non-linearly separable problems was a great stimulus 

to develop new solutions. We will see starting from Section 1.4 how easily many 

of them can be solved using the multi-valued neuron. But first let us again take a 

historical view. A two-layer neural network containing three neurons in total, 

which can solve the XOR problem, is described, for example, in [2], where the 

paper [14] is cited as a source of this solution. We are not sure that this solution 

was presented for the first time definitely in [14]; most probably it was known ear-

lier. It is quite difficult to discover today who found this solution first. Neverthe-

less, let us consider it here. 

To solve the XOR problem within a "threshold basis" (using the threshold 

neuron), it is necessary to build a network from threshold neurons. Let us consider 

a network from three neurons (see Fig. 1.7a). This network contains the input 

layer, which distributes the input signals 1x  and 2x , one hidden layer containing 

Neurons 1 and 2 and one output layer containing a single Neuron 3. This is the 

simplest possible non-trivial multilayer feedforward neural network (MLF). It is 

the simplest possible network because it contains a minimum amount of layers and 

neurons to be non-trivial (two layers including one hidden layer and one output 

layer, two neurons in the hidden layer, and one neuron in the output layer). A net-

work is trivial if it contains just a single hidden neuron and a single output neuron. 

This network is called feedforward because there are no feedback connections 

there, all signals are transmitted through the network in a strictly feedforward 

manner. 

Let us remind that the function XOR may be presented in the full disjunctive 

normal form as follows: 

1 2 1 2 1 2 1 1 2 2 1 2( , ) ( , )x x x x x x f x x f x x⊕ = ∨ = ∨ , 

where 2 1 2 1 2
( , )f x x x x=  is that function whose learning and implementation us-

ing the threshold neuron was considered in Example 1.3. Let us also remind that 

learning and implementation of the OR function, which connects functions 
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),( 211 xxf  and ),( 212 xxf  was considered in Example 1.2. Notice that func-

tion 1 1 2 1 2
( , )f x x x x=  may be obtained by changing the order of variables in 

function 2 1 2 1 2( , )f x x x x= . It was shown in [6] that if some Boolean function is 

threshold, than any function obtained from the first one by the permutation of its 

variables is also threshold and its weighting vector can be obtained by the permu-

tation of the weights in the weighting vector of the first function corresponding to 

the permutation of the variables. 

 

  

(a) a two layer neural network with two in-

puts, with one hidden layer containing two 

neurons, and the output layer containing a 

single neuron 

(b) a two layer neural network with two inputs, 

with one hidden layer containing two neurons, 

and the output layer containing a single neuron. 

The weights that solve the XOR problem are 

assigned to the neurons 

Fig. 1.7 Simple neural networks 

 

The weight 0w  remains unchanged. Therefore a weighting vector 
1f

W  for 

1 1 2 1 2
( , )f x x x x=  may be obtained from the one for 2 1 2 1 2( , )f x x x x=  by reor-

dering the weights 1w  and 2w . Since, as we found in Example 1.3 for function 

2 1 2 1 2( , )f x x x x= , 
2

(1, 3,3)fW = − , the weighting vector 
1

(1,3, 3)fW = −  im-

plements function 2 1 2 1 2( , )f x x x x=  using a single threshold neuron. It is easy to 

check that this weighting vector gives a correct realization of the function. 

This means that if Neuron 1 implements function 1 1 2( , )f x x , Neuron 2 im-

plements function ),( 212 xxf , and Neuron 3 implements the OR function, then 

the network presented in Fig. 1.7b implements the XOR function. Let us consider 

how it works. Thus, Neuron 1 operates with the weighting vector (1,3, 3)W = −# , 

Neuron 2 operates with the weighting vector (1, 3,3)W = −# , and Neuron 3 oper-

ates with the weighting vector )3,3,1(
~

−=W  (see Fig. 1.7b). The network works 

in the following way. There are no neurons in the input layer. It just distributes the 
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input signals among the hidden layer neurons. The input signals 1x  and x 2  are 

accepted in parallel from the input layer by both neurons from the hidden layer 

(N1 and N2). Their outputs are coming to the corresponding inputs of the single 

neuron in output layer (N3). The output of this neuron is the output of the entire 

network. The results are summarized in Table 1.5 (z is the weighted sum of the 

inputs). For all three neurons their weighted sums and outputs are shown. To be 

convinced that the network implements definitely the XOR function, its actual 

values are shown in the last column of Table 1.5. 

 
Table 1.5 Implementation of the XOR function using a neural network presented in Fig. 1.7b 

Inputs 

Neuron 1 Neuron 2 Neuron 3

1 2 xor x x

 

(1,3, 3)W  �#
 

(1, 3,3)W  �#
 

)3,3,1(
~ � W

 

1x

 

x 2

 
Z 

sgn( )z  

output 
Z 

sgn( )z  

output 
Z 

sgn( )z  

output 

1 1 1 1 1 1 5 1 1 

1 -1 7 1 -5 -1 -1 -1 -1 

-1 1 -5 -1 7 1 -1 -1 -1 

-1 -1 1 1 1 1 5 1 1 
 

1.3.2   Popular Real-Valued Activation Functions 

As we see, a multilayer feedforward neural network (MLF) has a higher function-

ality compared to the perceptron. It can implement non-linearly separable in-

put/output mappings, while the perceptron cannot. Considering in the previous 

section how MLF may solve the XOR problem, we have not passed this problem 

through a learning algorithm; we just have synthesized the solution. However, the 

most wonderful property of MLF is its learning algorithm. MLF was first pro-

posed in [15] by D.E. Rumelhart, G.E. Hilton, and R.J. Williams. They also de-

scribed in the same paper the backpropagation learning algorithm. It is important 

to mention that a seminal idea behind the error backpropagation and its use to train 

a feedforward neural network belongs to Paul Werbos. He developed these ideas 

in his Harvard Ph. D. dissertation in 1974 and later he included it as a part in his 

book [16] (Chapters 1-6). 

It is also important to mention that starting from mid 1980s, especially from the 

moment when D. Rumelhart and his co-authors introduced MLF, threshold neu-

rons as basic neurons for building neural networks have moved to the background. 

It became much more interesting to learn and implement using  

neural networks continuous and multi-valued input/output mappings described by 

functions ( )1,..., : ,
n

n
f x x T T T→ ⊂ R , which was impossible using a hard-

limited threshold activation function sgn( )z .  
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Fig. 1.8 Logistic function Fig. 1.9 tanh function 

 

Typically, there have been considered [0,1]T =  or [ 1,1]T = − . Respec-

tively, new activation functions became very popular from mid 1980s. The most 

popular of them is a sigmoid activation function. It has two forms – the logistic 

function and the hyperbolic tangent function. Logistic function is as follows  

1
( )

1 z
z

e
α

ϕ
−

=
+

, 
(1.22) 

 

(see Fig. 1.8), where α is a slope parameter. The curve in Fig. 1.8 got its name 

“sigmoid” from Pierre François Verhulst (in 1844 or 1845) who studied the popu-

lation growth described by (1.22). Evidently, the range of function (1.22) is 

] [0,1 , the function approaches 0 when z → −∞  and approaches 1 when 

z → ∞  (actually, the logistic function approaches its bounds with significantly 

smaller values of its argument as it is seen from Fig. 1.8). To obtain a sigmoid 

curve with the range ] [1,1− , the hyperbolic tangent function 

 

sinh
tanh

cosh

z z

z z

z e e
z

z e e

α α

α α

α
α

α

−

−

−
= =

+
, (1.23) 

 

should be used. The shape of function (1.23) is identical to the one of function 

(1.22) (see Fig. 1.9) with only distinction that the tanh function cross not the line 

y=0.5, but the horizontal axis at the origin and it is bounded from the bottom by 

the line y= -1. α in (1.23) is again a slope parameter and its role is identical to the 

one in (1.22). It is clear that if α → ∞  in (1.23), then tanh zα  approaches 

sgn( )z
 
(compare Fig. 1.2 and Fig. 1.9). 
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Why definitely sigmoid activation functions (1.22) and (1.23) became so popu-

lar? There are at least two reasons. The first reason is that on the one hand, they 

easily limit the range of the neuron output, but on the other hand, they drastically 

increase the neuron’s functionality making it possible to learn continuous and 

multiple-valued discrete input/output mappings. Secondly, they are increasing (we 

will see a little bit later that this is important to develop a computational model for 

approximation, which follows from the Kolmogorov’s theorem [17]). Their spe-

cific nonlinearity can be used for approximation of other highly nonlinear func-

tions. Finally, they are differentiable (which is important for the learning  

purposes; as it is well known and as we will see, the differentiability is critical for 

that backpropagation learning technique developed in [15, 16]. We will also see 

later (Chapter 4) that it will not be needed for the backpropagation learning algo-

rithm for a feedforward network based on multi-valued neurons).  

Another popular type of an activation function, which is used in real-valued 

neurons and neural networks, is radial basis function (RBF) first introduced by 

M.J.D. Powell [18] in 1985. RBF is a real-valued function whose value depends 

only on the distance from the origin ( )( )z zϕ ϕ=  or on the distance from 

some pre-determined other point c, called a center, so that 

( ) ( ),z c z cϕ ϕ= − , where  is the norm in the corresponding space. There 

are different functions that satisfy this property. Perhaps, the most popular of 

them, which is used in neural networks and machine learning is the Gaussian RBF 
2

( )

r

r e αϕ
⎛ ⎞

−⎜ ⎟⎝ ⎠=  [2, 5], where r z c= −  (c is the corresponding center), 0α >  is 

a parameter.  

1.3.3   Multilayer Feedforward Neural Network (MLF) and Its 

Backpropagation Learning 

Let us consider in more detail a network with perhaps the most popular topology, 

namely a multilayer feedforward neural network (MLF), also widely referred to as 

a multilayer perceptron (MLP) [15, 2]. We will also consider the basic principles 

of the backpropagation learning algorithm for this network. 

Typically, an MLF consists of a set of sensory units (source nodes – analogues 

of S-units in the perceptron) that constitute the input layer (which distributes input 

signals among the first hidden layer neurons), one or more hidden layers of  

neurons, and an output layer of neurons. We have already considered a simple ex-

ample of such a network, which solves the XOR problem. The input signals  

progresses through the network in a forward direction, on a layer-by-layer basis. 

An important property of MLF is its full connection architecture: the outputs of all 

neurons in a specified layer are connected to the corresponding inputs of all neu-

rons of the following layer (for example, the output of a neuron ij (the ith neuron 

from the jth layer) is connected to the ith input of all neurons from the j+1
st
 layer).  
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Fig. 1.10 3-5-6-3 MLF – Multilayer Feedforward Neural Network. It has 3 inputs, the 1st 

hidden layer containing 5 neurons, the 2nd hidden layer containing 6 neurons and the output 

layer containing 3 neurons 

This means a full connection between consecutive layers (see Fig. 1.10). To spec-

ify a network topology, the notation 1 ... ...
i s o

n n n n n− − − − − −  is used. Here 

n is the number of network inputs, , 1,...,
i

n i s=  is the number of neurons in the 

ith hidden layer, s is the number of hidden layers, and o
n  is the number of neu-

rons in the output layer. 

This architecture is the result of a "universal approximator" computing model 

based on the famous Kolmogorov's Theorem [17]. This theorem states the follow-

ing. There exist fixed (universal) increasing continuous functions ( )ij
h x  on 

[ ]0,1I =  such that each continuous function of n variables ( )1,..., n
f x x  on 

nI  can be written in the form 

( ) ( )
2 1

1

1 1

,...,
n n

n j i i

j i

f x x g h x
+

= =

⎛ ⎞
= ⎜ ⎟⎝ ⎠∑ ∑ , (1.24) 

where , 1,...,jg j n=  are some properly chosen continuous functions of one 

variable. 

This result states that any multivariate continuous function can be represented 

by the superposition of a small number of univariate continuous functions. It is 

clear that in terms of feedforward neural networks equation (1.24) describes a 

three layer feedforward neural network whose first two layers contain n and 2n+1  
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neurons, respectively, and implement functions , 1,...,
i

h i n=  and 

, 1,..., 2 1jg j n= + , respectively. The output layer of this network contains a 

single neuron with the linear activation function (its output is equal to the 

weighted sum; according to (1.20) all weights of the output neuron are equal to 1 

except 0 0w = , there are no weighting coefficients in a front of 

, 1,..., 2 1jg j n= + ). It is well known that a multilayer feedforward neural net-

work is a universal approximator (for the first time this was clearly proven in [19] 

and [20]). 

However, the Kolmogorov’s Theorem, being very important, is a typical “exis-

tence theorem”. It justifies only the existence of the solution. It does not show a 

mechanism for finding functions , 1,...,
i

h i n=  and , 1,..., 2 1jg j n= + . To 

approach that solution, which exists according to the Kolmogorov’s Theorem, a 

feedforward neural network has to learn that function ( )1,..., n
f x x , which we 

want to approximate. To implement the learning process, the backpropagation 

learning algorithm was suggested. A problem, which is necessary to solve, imple-

menting the learning process for a feedforward neural network, is finding the hid-

den neurons errors. While the exact errors of output neurons can be easily calcu-

lated as the differences between the desired and actual outputs, for all the hidden 

neurons their desired outputs are unknown and therefore there is no straightfor-

ward way to calculate their errors. But without the errors it is not possible to adjust 

the weights. 

The basic idea behind a backpropagation learning algorithm is sequential 

propagation of the errors of the neurons from the output layer through all the lay-

ers from the "right hand" side to the "left hand" side up to the first hidden layer 

(see Fig. 1.10), in order to calculate the errors of all other neurons. The heuristic 

idea is to share the errors of output neurons, which can be calculated because their 

desired outputs are known (unlike the ones of the hidden neurons), with all the 

hidden neurons. 

Basically, the entire learning process consists of two passes through all the dif-

ferent layers of the network: a forward pass and a backward pass. In the forward 

pass, the inputs are propagated from the input layer of the network to the first hid-

den layer and then, layer by layer, output signals from the hidden neurons are 

propagated to the corresponding inputs of the following layer neurons. Finally, a 

set of outputs is produced as the actual response of the network. Evidently, during 

the forward pass the synaptic weights of the network are all fixed. During the 

backward pass first the errors of all the neurons are calculated and then the 

weights of all the neurons are all adjusted in accordance with the learning rule. 

One complete iteration (epoch) of the learning process consists of a forward pass 

and a backward pass. 

Although the error backpropagation algorithm for MLF is well known, we 

would like to include its derivation here. In our opinion, this is important for the 

following two reasons. The first reason is to simplify perception of this book for 
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those readers (first of all for students) who are not the experts in neural networks 

and just make their first steps in this area. The second and even more important 

reason is to compare this derivation and the backpropagation learning algorithm 

for MLF with the ones for a complex-valued multilayer feedforward neural net-

work based on multi-valued neurons, which will be considered in Chapter 4. This 

comparison will be very important for understanding of significant advantages of 

complex-valued neural networks. 

In the derivation of the MLF backpropagation learning algorithm we mostly 

will follow here [2] and [5]. 

It is important to mention that the backpropagation learning algorithm is based 

on the generalization of the error-correction learning rule for the case of MLF. 

Specifically, the actual response of the network is subtracted from a desired re-

sponse to produce an error signal. This error signal is then propagated backward 

through the network, against the direction of synaptic connections – hence the 

name "backpropagation". The weights are adjusted so as to make the actual output 

of the network move closer to the desired output. A common property of a major 

part of real-valued feedforward neural networks is the use of sigmoid activation 

functions for its neurons. Let us use namely logistic function (1.22).  

Let us consider a multilayer neural network with traditional feedforward archi-

tecture (see Fig. 1.10), when the outputs of neurons of the input and hidden layers 

are connected to the corresponding inputs of the neurons from the following layer. 

Let us suppose that the network contains one input layer, m-1 hidden layers and 

one output layer. We will use here the following notations. 

Let 

km
D  - be a desired output of the kth neuron from the output (mth ) layer  

kmY  - be the actual output of the kth neuron from the output (mth) layer. 

Then a global error of the network related to the kth neuron of the output (mth) 

layer can be calculated as follows: 

*

km km kmD Yδ = −  - error for the kth neuron from output (mth) layer. (1.25) 

*

km
δ  denotes here and further a global error of the network. We have to distin-

guish it from the local errors km
δ  of the particular output neurons because each 

output neuron contributes to the global error equally with the hidden neurons. 

The learning algorithm for the classical MLF is derived from the considera-

tion that the global error of the network in terms of the mean square error (MSE) 

must be minimized. The functional of the error may be defined as follows: 

1

1 N

s

s

Ε E
N =

= ∑ , (1.26) 

where E denotes MSE, N is the total number of samples (patterns) in the learning 

set and s
E  denotes the square error of the network for the sth pattern; 
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( ) ( )
22 * , 1,...,

s s s s
E D Y s Nδ= − = =  for a single output neuron and 

( ) ( )
2 2

*

1 1

1 1
; 1,...,

m m

s s s

N N

s k k k

k km m

E D Y s N
N N

δ
= =

= − = =∑ ∑  for m
N  output neu-

rons. For simplicity, but without loss of generality, we can consider minimization 

of a square error (SE) function instead of minimization the MSE function (1.26). 

The square error is defined as follows: 

* 2

1

1
( )

2

mN

km

k

E δ
=

= ∑ , (1.27) 

where mN  indicates the number of output neurons, 

* , 1,...,
s skm k kD Y s Nδ = − = , (1.28) 

m is the output layer index, and the factor 
2

1
 is used so as to simplify subsequent 

derivations resulting from the minimization of E . The error function (1.27) is a 

function of the weights. Indeed, it strictly depends on all the network weights. It is 

a principal assumption that the error depends not only on the weights of the neu-

rons at the output layer, but on all neurons of the network. 

Thus, a problem of learning can be reduced to finding a global minimum of 

(1.27) as a function of weights. In these terms, this is the optimization problem. 

The backpropagation is used to calculate the gradient of the error of the net-

work with respect to the network's modifiable weights. This gradient is then used 

in a gradient descent algorithm to find such weights that minimize the error. Thus, 

the minimization of the error function (1.27) (as well, as (1.26) ) is reduced to the 

search for those weights for all the neurons that ensure a minimal error. 

To ensure movement to the global minimum on each iteration, the correction of 

the weights of all the neurons has to be organized in such a way that each weight 

iw  has to be corrected by an amount iwΔ , which must be proportional to the  

partial derivative 

iw

E

∂

∂
 of the error function E(W) with respect to the weights [2].  

For the next analysis, the following notation will be used. Let 
kj

i
w denote the 

weight corresponding to the ith input of the kth neuron at the jth layer. Further-

more let 
kj

z , kjy  and ( )kj kj kj
Y y z=  represent the weighted sum (of the input 

signals), the activation function value, and the output value of the kth neuron at the 

jth layer, respectively. Let jN  be the number of neurons in the jth layer (notice 

that this means that neurons of the j+1
st
 layer have exactly jN  inputs.) Finally, 
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recall that 1,..., n
x x  denote the inputs to the network (and as such, also the inputs 

to the neurons of the first layer.) 

Then, taking into account that ( ) ( )( )( )E W E y z W=  and applying the 

chain rule for the differentiation, we obtain for the k
th

 neuron at the output (m
th

) 

layer 

  
1

( ) ( )
,    0,1,..., ,km km

mkm km

i km km i

y zE W E W
i N

w y z w
−

∂ ∂∂ ∂
= =

∂ ∂ ∂ ∂
 

where 

( )

2 2

2 *

1

( ) 1 1
( ) ( )

2 2

1 1
( ) ( ) ;

2 s s

km km

k kkm km km

N

km km km km km km km

skm km km

E W

y y y

D Y
y y y N

δ δ

δ δ δ δ δ

∗ ∗

∗ ∗ ∗ ∗

=

∂ ∂ ∂⎛ ⎞
= = =⎜ ⎟∂ ∂ ∂⎝ ⎠

∂ ∂ ∂
= = = − = −

∂ ∂ ∂

∑ ∑
∑  

( ),km
km km

km

y
y z

z

∂
′=

∂
 

and 

( )
1 10 1 1, 1 , 1 , 1

1

... ,

0,  1,  ...,  .

m m

km km kmkm
m N N m i mkm km

i i

m

z
w w Y w Y Y

w w

i N

− −− − −

−

∂ ∂
= + + + =

∂ ∂

=

 

Then we obtain the following: 

( ) , 1 1

( ) ( )
,    0,  1,  ...,  ;km km

km km km i m mkm km

i km km i

y zE W E W
y z Y i N

w y z w
δ ∗

− −

∂ ∂∂ ∂
′= = − =

∂ ∂ ∂ ∂
 

where 0, 1 1
m

Y − ≡ . Finally, we obtain now the following 

( )

( )
, 1 11,...,( )

0,

km km km i m mkm

i km

i km km km

y z Y i NE W
w

w y z i

βδ
β

βδ

∗
− −

∗

′⎧ =∂ ⎪
∆ = − = ⎨

∂ ′ =⎪⎩  (1.29) 

where 0β >  is a learning rate. 

The part of the rate of change of the square error E(W) with respect to the  

input weight of a neuron, which is independent of the value of the corresponding 

input signal to that neuron, is called the local error (or simply the error) of that 

neuron. Accordingly, the local error of the kth neuron of the output layer, denoted 

by kmδ , is given by 
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( ) ; 1,...,km km km km my z k Nδ δ ∗′= ⋅ = . (1.30) 

It is important that we differ local errors of output neurons presented by (1.30) from 

the global errors of the network presented by (1.28) and taken from the same neu-

rons. Respectively, taking into account (1.30), we can transform (1.29) as follows: 

, 1 11,...,( )

0,

km km i m m

i km

i km

Y i NE W
w

w i

βδ
β

βδ
− −

⎧ =∂
∆ = − = ⎨

∂ =⎩  (1.31) 

Let us now find the hidden neurons errors. To find them, we have to backpropa-

gate the output neurons errors (1.30) to the hidden layers. To propagate the output 

neurons errors to the neurons of all hidden layers, a sequential error backpropaga-

tion through the network from the mth layer to the m-1
st
 one, from the m-1

st
 one to 

the m-2
nd

 one, ..., from the 3
rd

 one to the 2
nd

 one, and from the 2
nd

 one to the 1
st
 

one has to be done. When the error is propagated from the layer j+1 to the layer j, 

the local error of each neuron of the j+1
st
 layer is multiplied by the weight of the 

path connecting the corresponding input of this neuron at the j+1
st
 layer with the 

corresponding output of the neuron at the jth layer. For example, the error , 1i jδ +  

of the i
th

 neuron at the j+1
st
 layer is propagated to the kth neuron at the jth layer, 

multiplying , 1i jδ +  with 
, 1i j

k
w

+
, namely the weight corresponding to the kth input 

of the ith neuron at the j+1
st
 layer. This analysis leads to the following expression 

for the error of the kth neuron from the jth layer: 

( )
1

, 1

, 1

1

; 1,...,
jN

i j

kj kj kj i j k j

k

y z w k Nδ δ
+

+
+

=

′= =∑ .  (1.32) 

It should be mentioned that equations (1.29)-(1.32) are obtained for the general 

case, without the connection with some specific activation function. Since we 

agreed above that we use a logistic function (1.22) in our MLF, a derivative of this 

function is the following (let us take for simplicity, but without loss of generality, 

1α =  in (1.22)): 

( )

( )

1 21
( ) ( ) (1 ) (1 ) ( )

1

( ) ( ) 1 ( )
(1 )(1 ) (1 )

z z z

z

z z

z z z

y z z e e e
e

e e
y z y z y z

e e e

ϕ − − − − −

−

− −

− − −

′
′⎛ ⎞

′ ′= = = + = − + ⋅ − =⎜ ⎟
+⎝ ⎠

= = = −
+ + +

 

because 

z

z

z

z

z
e

e

e

e

e
zy

−

−

−

−

− +
=

+

−+
=

+
−=−

11

11

1

1
1)(1 . 
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Thus ( )( ) ( ) ( ) 1 ( )y z z y z y zϕ′ ′= = −  and substituting this to (1.32) we obtain 

the equation for the error of the MLF hidden neurons (the kth neuron from the jth 

layer) with the logistic activation function: 

( ) ( )
1

, 1

, 1

1

1 ( ) ; 1,...,
jN

i j

kj kj kj kj kj i j k j

i

y z y z w k Nδ δ
+

+
+

=

= ⋅ − =∑ .  (1.33) 

Once all the errors are known, (1.30) determine the output neurons errors and 

(1.33) determine the hidden neurons errors, and all the weights can be easily ad-

justed by adding the adjusting term w∆  to the corresponding weight. For the out-

put neurons this term was already derived and it is shown in (1.31). For all the 

hidden neurons it can be derived in the same way and it is equal for the first hid-

den layer neurons to  

1 1

1

1

, 1,...,( )

0,

k k i

i k

i k

x i nE W
w

w i

βδ
β

βδ

⎧ =∂
∆ = − = ⎨

∂ =⎩  (1.34) 

where 1,..., nx x  are the network inputs, n is the number of them, and β is a learn-

ing rate. For the rest of hidden neurons 

, 1 1,   1,...,( )

, 0,

2,..., 1.

kj i j mkj

i kj
kji

Y i NE W
w

iw

j m

βδ
β

βδ
− −=⎧∂

∆ = − = ⎨
=∂ ⎩

= −

 (1.35) 

All the network weights can now be adjusted taking into account (1.31), (1.34) 

and (1.35) as follows (we consider 0N n=  - the number of “neurons” in the first 

layer is equal to the number of network inputs, there are m-1 hidden layers in the 

network and the mth layer is the output one). Thus, for the kth neuron in the jth 

layer we have 

1; 0,..., ; 1,..., ; 1,...,kj kj kj

i i i j jw w w i N k N j m−= + ∆ = = =# .  (1.36) 

Thus, the derivation and description of the MLF learning algorithm with the  

error backpropagation is completed. In practice, the learning process should  

continue either until MSE or RMSE drops below some reasonable pre-defined 

minimum or until some pre-determined number of learning iterations is exceeded. 

It is important to mention that this learning algorithm was really revolutionary. 

It opened absolutely new opportunities for using neural networks for solving clas-

sification and prediction problems that are described by non-linearly separable 

discrete and continuous functions. 

However, we have to point out some specific limitations and disadvantages of 

this algorithm.  
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1) The backpropagation learning algorithm for MLF is developed as a method 

of solving the optimization problem. Its target is to find a global minimum of the 

error function. As all other such optimization methods, it suffers from a “local 

minima” phenomenon (see Fig. 1.11). 

 

Fig. 1.11 A “local minima” phenomenon. The learning process may get stuck in a local 

minimum area. To reach a global minimum, it is necessary to jump over a local minimum 

using a proper learning rate. 

The error function may have many local minima points. A gradient descent 

method, which is used in the MLF backpropagation learning algorithm, may lead 

the learning process to the closest local minimum where the learning process may 

get stuck. This is a serious problem and it has no regular solution. The only 

method of how to jump over a local minimum is to “play” with the learning rate β 

in (1.31), (1.34), and (1.35) increasing a step of learning. There are many recom-

mendations on how to do that; however all of them are not universal and cannot 

guarantee that a global minimum of the error function will be reached.  

2) Since the MLF backpropagation learning is reduced to solving the optimiza-

tion problem, an activation function, which is used in MLF neurons, must be dif-

ferentiable. This is a limitation, because, for example, discrete-valued activation 

functions cannot be used with this learning algorithm at all, since they are not dif-

ferentiable. This complicates using MLF as a multi-class classifier and typically it 

is used just for two-class classification. In this case, the right “half” of the sigmoid 

activation function is truncated to “1” and the left half to “-1” or 0. For example, 

for functions (1.22) and (1.23) this means, respectively,  

1
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3) Sigmoid functions (1.22) and (1.23) are nonlinear, but their flexibility for 

approximation of highly nonlinear functions with multiple irregular jumps is lim-

ited. Hence, if we need to learn highly nonlinear functions, it is often necessary to 

extend a network by more hidden neurons. 

4) Extension of a network leads to complications during the learning process. 

The more hidden neurons are in the network, the more is level of heuristics in the 

backpropagation algorithm. Indeed, the hidden neurons desired outputs and the 

exact errors are never known. The hidden layer errors can be calculated only on 

the base of the backpropagation learning algorithm, which is based on the heuris-

tic assumption on the dependence of the error of each neuron on the errors of 

those neurons to which this neuron is connected. Increasing of the total number of 

weights in the network leads to complications in solving the optimization problem 

of the error functional minimization. 

These remarks are important for us. When we will consider a backpropagation 

learning algorithm for the complex-valued multilayer feedforward neural network 

based on multi-valued neurons (Chapter 4), we will see that this network and its 

learning algorithm do not suffer from the mentioned disadvantages and limitations. 

1.3.4   Hopfield Neural Network 

In 1982, John Hopfield proposed a fully connected recurrent neural network with 

feedback links [21]. The Hopfield Neural Network is a multiple-loop feedback 

neural network, which can be used first of all as an associative memory. All the 

neurons in this network are connected to all other neurons except to themselves 

that is there are no self-feedbacks in the network (see Fig. 1.12). Thus, the Hop-

field network is a fully connected neural network. Initially, J. Hopfield proposed 

to use the binary threshold neurons with activation function (1.1) as the basic ones 

in this network. 

The weight 
ij

w  corresponds to the synaptic connection of the ith neuron and 

the jth neuron. It is important that in the Hopfield network, for the ith and jth neu-

rons ij jiw w= . Since there is no self-connection, 0iiw = . The network works 

cyclically updating the states of the neurons. The output of the jth neuron at cycle 

1t +  is 

( ) ( )01 j

j ij i

i j

s t w w s tϕ
≠

⎛ ⎞
+ = +⎜ ⎟⎝ ⎠∑ . (1.37) 
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a) The Hopfield neural network with 8 neurons b) The Hopfield neural network with 4  

neurons
4
 

Fig. 1.12 Hopfield Neural Network 

 

A main idea behind the Hopfield net is to use it as the associative memory (con-
tent-addressable memory). Initially this idea was suggested by Teuvo Kohonen in 
[22], but D. Hopfield comprehensively developed it in his seminal work [21], 
which was a great stimulus for the further development of neural networks after a 
“skeptical period” in 1970s caused by the M. Minsky’s and S. Papert’s analysis of 
limited capabilities of the perceptron [13]. The associative memory may learn pat-

terns (for, example, if we want to store n x m images in the associative memory, 
we should take the n x m Hopfield network whose each neuron learns the intensity 
values in the corresponding pixels; in this case, there is a one-to-one correspon-
dence between a set of pixels and a set of neurons). The Hebbian learning rule 
(1.3) or (1.4) can be effectively used for learning. After the learning process is 
completed, the associative memory may retrieve those patterns, which were 

learned, even from their fragments or from distorted (noisy or corrupted) patterns. 
The retrieval process is iterative and recurrent as it is seen from (1.37) (t is the 
number of cycle-iteration). D. Hopfield showed in [21] that this retrieval process 
always converges. A set of states of all the neurons on the tth cycle is called a 
state of the network. The network state on tth cycle is the network input for the 
t+1

st
 cycle. The network is characterized by its energy corresponding to the cur-

rent state. The energy is determined [21] as 

( ) ( ) ( )0

1

2

i

t ij i j i

i j i

E w s t s t w s t= − +∑∑ ∑ . (1.38) 

Updating its states during the retrieval process, the network converges to the local 

minimum of the energy function (1.38), which is a stable state of the network. 

                                                           
4 This picture is taken from Wikipedia, the free encyclopedia, 

http://en.wikipedia.org/wiki/File:Hopfield-net.png  
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Once the network reaches its stable state, the retrieval process should be stopped. 

In practical implementation, the retrieval process should continue either until 

some pre-determined minimum of the energy function (1.38) is reached or until 

MSE or RMSE between the states on cycle t and t+1 drop below some pre-

determined minimum. 

In [23], D. Hopfield generalized all principles that he developed in [21] for  

a binary network with threshold neurons for a network with neurons with a  

continuous monotonic increasing and bounded activation function (for example, a 

sigmoid function) and with continuous states. 

It is important to mention that the Hopfield neural network not only is the first 

comprehensively developed recurrent neural network. It also stimulated active re-

search in areas of neural networks and dynamical systems in general. It is also 

worth to mention that the Hopfield network with continuous real-valued neurons 

suffers from disadvantages and limitations similar to the ones for MLF. For exam-

ple, it is difficult to use such a network to store gray-scale images with 256 or 

more gray levels because local minima of the energy function are all located  

close to the corners of a unitary hypercube. Thus, a stable state of the network 

tends to a binary state. In Chapter 6, we will observe complex-valued associative 

memories based on networks with multi-valued neurons that do not suffer from 

these disadvantages. 

1.3.5   Cellular Neural Network 

The Hopfield neural network as we have seen is a fully connected network. The 

MLF is a network with full feedforward connections among adjacent layers  

neurons. We have also seen that the Hopfield network is a recurrent network. It 

updates its states iteratively until a stable state is reached. In 1988, Leon Chua and 

Lin Yang proposed another recurrent network with local connections [24] where 

each neuron is connected just with neurons from its closest neighborhood. They 

called it the cellular neural network (CNN). One of the initial ideas behind this 

network topology was to use it for image processing purposes. Since the correla-

tion and respectively a mutual dependence between image pixels in any local  

n x m window is high, the idea was to create a recurrent neural network containing 

the same amount of neurons as the amount of pixels in an image to be processed. 

Local connections between the neurons could be used for implementation of vari-

ous spatial domain filters, edge detectors, etc.  

For example, CNN with 3x3 local connections is shown in Fig. 1.13. This net-

work contains N M×  neurons and it is very suitable for processing N M×  im-

ages. The output of each neuron is connected to the corresponding inputs of 8 neu-

rons closest to the given neuron (all neurons from a 3x3 neighborhood of a given 

neuron) and only to them, while outputs of these 8 adjacent neurons are connected 

to the corresponding inputs of a given neuron and there are only inputs of a given 

neuron. Unlike the Hopfield net, CNN allows a feedback connection, so each neu-

ron may have one input receiving a signal from its own output. CNN is a recurrent 

network. Like the Hopfield network, it updates its states iteratively until a stable  
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state is reached. CNN can be a 

binary network with the thresh-

old neurons, but it can be based 

also on neurons with other acti-

vation functions, which makes it 

possible to implement different 

linear (using a piecewise linear 

activation function) and nonlin-

ear (using nonlinear activation 

functions) filters. 

Unlike it is in the Hopfield 

network, weights in CNN are not 

symmetric. Each neuron is in-

dexed by two indexes-

coordinates. The weight corre-

sponding to the ith input of the 

kjth neuron is denoted 
kj

i
w . As we told, the network works cyclically updating the 

states of the neurons. The output of the kjth neuron at cycle 1t +  is 

( ) ( )01 ;

2 2, 2 2,

kj kj

kj i rp

i

s t w w s t

k d r k d j d p j d

ϕ
⎛ ⎞

+ = +⎜ ⎟⎝ ⎠
− + ≤ ≤ + − − + ≤ ≤ + −

∑
 (1.39) 

where φ is an activation function and d is the closest neighborhood size (for ex-

ample, for a 3x3 local window 3d = ). In the CNN community, a very popular 

topic is mutual influence of a given neuron and those neurons connected to it. This 

is important for investigation of the stability of the network. In the context of this 

book, it will be enough for us to consider just equation (1.39), which determines 

the output of each neuron. The most interesting for us will be CNN based on 

multi-valued neurons, which can be successfully used as an associative memory 

(see Chapter 6, Section 6.3), significantly increasing the CNN functionality. 

1.4   Introduction to Complex-Valued Neurons and Neural  

Networks 

1.4   Introductio n to Co mplex-Valued Ne urons and Neura l Networ ks 

1.4.1   Why We Need Them? 

We have already mentioned that complex numbers are absolutely natural, as 
well as real numbers. From this point of view, complex-valued neurons are  
natural too. 
 
 

 

Fig. 1.13 Cellular Neural Network with 3x3 local 

connections 



1.4   Introduction to Complex-Valued Neurons and Neural Networks 39 

 

But additionally there are at least three very significant reasons for using com-

plex-valued neurons and neural networks. These reasons are:  

1) Unlike a single real-valued neuron, a single complex-valued neuron may 

learn non-linearly separable problems (a great variety of them) in that initial n-

dimensional space where they are defined, without any nonlinear projection to a 

higher dimensional space (very popular kernel-based techniques, and the most 

popular and powerful of them – the support vector machines (SVM)
5
 proposed by 

Vladimir Vapnik [25, 26] are based on this approach). Thus, a complex-valued 

neuron is much more functional than a real-valued one. 

2) Many real-world problems, especially in signal processing, can be described 

properly only in the frequency domain where complex numbers are as natural as 

integer numbers in counting. In the frequency domain, it is essential to treat the 

amplitude and phase properly. But there is no way to have deal with the phase 

phenomenon without complex numbers. If we want to analyze any process, in 

which phase is involved, we should definitely use complex numbers and tools that 

are suitable for working with them. If we treate the phase as just real numbers be-

longing to the interval [ [0,2π  or [ [,π π− , then we make a great mistake, be-

cause in this way the physical nature of the phase is completely eliminated. 

3) Since the functionality of a single complex-valued neuron is higher than the 

one of a single real-valued neuron, the functionality of complex-valued neural 

networks is also higher than the functionality of their real-valued counterparts. A 

smaller complex-valued neural network can learn faster and generalize better than 

a real-valued neural network. This is true for feedforward complex-valued net-

works and for Hopfield-like complex-valued networks. More functional neurons 

connected into a network ensure that this network also is more functional than its 

real-valued counterpart. We will see below (Chapter 4) that, for example, a feed-

forward multilayer neural network with multi-valued neurons (MLMVN) com-

pletely outperforms MLF. Even smaller MLMVN learns faster and generalizes 

better than larger MLF. Moreover, there are many problems, which MLF is not 

able to solve successfully, while MLMVN can. We will also see that a Hopfield-

like neural network with multi-valued neurons can store much more patterns and 

has better retrieval rate as an associative memory, than a classical Hopfield net-

work (Chapter 6, Section 6.3). Moreover, we will also see that just partially con-

nected neural network with multi-valued neurons can also be used as a very pow-

erful associative memory.  

However, it is important for better understanding of the foregoing Chapters, to 

consider right now the first two of three mentioned reasons in more detail. 

                                                           
5 While we presented in detail the most important classical neural network techniques, we 

do not present here in detail the SVM essentials. We believe that the interested reader can 

easily find many sources where SVM are described in detail. This book is devoted to 

complex-valued neural networks, but at least so far no complex-valued SVM were con-

sidered. However, we will compare a number of CVNN techniques presented in this book 

with SVM in terms of number of parameters they employ and generalization capability. 
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1.4.2   Higher Functionality 

We have briefly observed what a neuron is, and what a neural network is. We have 

also observed not all, but the most important turning-points in real-valued  

artificial neurons and neural networks. We have mentioned several times that real-

valued neurons and real-valued neural networks have some specific limitations. 

May be the most important of these limitations is impossibility of a single real-

valued neuron to learn non-linearly separable input/output mappings in that initial 

linear n-dimensional space where the corresponding input/output mapping is  

defined. The classical example of such a problem, which cannot be learned by a 

single real-valued neuron due to its non-linear separability, is XOR as we have 

seen.  

 

Table 1.6 Threshold neuron implements ( )1 2 1 2,  xor f x x x x=  function with the weighting 

vector (0, 1, 1, 2) in 3-dimensional space 1 2 1 2( , , )x x x x  

1x  
2x  1 2x x

 0 1 1 2 2 3 1 2z w w x w x w x x= + + + sgn( )z ( )1 2 1 2,  xor f x x x x=  

1 1 1 4 1 1 

1 -1 -1 -2 -1 -1 

-1 1 -1 -2 -1 -1 

-1 -1 1 0 1 -1 

 
The reader may notice that the XOR problem can be learned using a single real-

valued threshold neuron if the initial 2-dimensional space 
2

2E  where it is defined, 

will be nonlinearly extended to the 3-dimensional space by adding to the two inputs 

1
x  and 2

x  a nonlinear (quadratic) third input 1 2
x x , which is determined by the 

product of the two initial inputs [27]. Indeed, let us consider the space 

( )1 2 1 2, ,x x x x , which is obtained from 
2

2E  by adding a quadratic term and, for ex-

ample, the weighting vector ( )0,1,1, 2W = 6
. This solution is shown in Table 1.6.  

Actually, this solution confirms the Cover's theorem [28] on the separability of 

patterns, which states that a pattern classification problem is more likely to be line-

arly separable in a high dimensional feature space when nonlinearly projected into 

a high dimensional space. In fact, all kernel-based machine learning techniques in-

cluding SVM are based on this approach. If some problem is non-linearly separable 

in that initial n-dimensional space where it is defined (for example, some classifica-

tion problem described by some n features), it can be projected nonlinearly into a 

higher dimensional space where it becomes linearly separable. We have to under-

stand that any feedforward neural network is also doing the same. It extends the  

                                                           

6 We could also use here the weighting vector ( )0,0,0,1W = . 
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initial space (if it contains more neurons in any hidden layer than network inputs) 

or at least transforms it nonlinearly into another space. When we considered in Sec-

tion 1.3 solution of the XOR problem using MLF (see Fig. 1.7 and Table 1.5) con-

taining three neurons and two layers, we nonlinearly projected initial space 

( )1 2,x x  into another (functional) space ( ) ( )( )1 1 2 2,f x f x  using the first layer 

neurons where the problem becames linearly separable using the third (output) neu-

ron. This transformation is in fact nonlinear because it is implemented through a 

nonlinear activation function of neurons. 

Nevertheless, is it possible to learn non-linearly separable problems using a 

single neuron without the extension or transformation of the initial space? The an-

swer is “Yes!” It is just necessary to move to the complex domain!  

In all neurons and neural networks that we have considered so far weights and 

inputs are real and weighted sums are real, respectively. Let us consider now 

complex-valued weights. Thus, weights can be arbitrary complex numbers. Inputs 

and outputs will still be real. Moreover, lest us consider even a narrow case of bi-

nary inputs and outputs. So, our input/output mapping is described by the function 

( )1 2 2,..., :
n

n
f x x E E→ , which is a Boolean function. However, since our 

weights are complex ( , 0,1,...,
i

w i n∈ =C ) and inputs are real 

{ }2 1, 1
i

x E∈ = − , a weighted sum is definitely complex 

0 1 1
...

n n
w w x w x z+ + + = ∈C . This means, that an activation function must be 

a function from C  to 2
E . Let us define the following activation function 

( )
1,  if 0 arg / 2  or arg 3 / 2

1,  if / 2 arg  or 3 / 2 arg 2 ,

z z
z

z z

π π π
ϕ

π π π π

≤ < ≤ <⎧
= ⎨

− ≤ < ≤ <⎩  (1.40) 

where arg z  is the argument of the complex number z in the range [ [0,2π . Evi-

dently ( )zϕ  maps C  to 2
E , so ( ) 2:z Eϕ →C . Activation function (1.40)  

divides the complex plane into 4 sectors (see Fig. 1.14) that coincide with the 

quarters of the complex plane formed by its separation with real and imaginary 

axes. Depending on arg z , ( )zϕ  is equal to 

1 in the 0
th

 and the 2
nd

 sectors (the 1
st
 and  

the 3
rd

 quarters) and to -1 in the 1
st
 and the 3

rd
 

sectors (the 2
nd

 and the 4
th

 quarters).  

Let us return to the most popular classical 

example of non-linearly separable problem – 

XOR. Let us show that a single neuron  

with the activation function (1.40) can easily 

implement the non-linearly separable XOR 

function without any extension of the original  

 

 

Fig. 1.14 Activation function (1.40) 
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Table 1.7 A complex-valued neuron with the activation function (1.40) implements the 

( )1 2 1 2,  xor f x x x x=  function with the weighting vector (0, i, 1) in the original  

2-dimensional space 

1x  
2x  0 1 1 2 2z w w x w x= + +

 
arg( )z

 
( )zϕ

 
( )1 2 1 2,  xor f x x x x=  

1 1 1i +  / 4π  1 1 

1 -1 1i −  3 / 4π  -1 -1 

-1 1 1i− +  5 / 4π  -1 -1 

-1 -1 1i− −  7 / 4π  1 -1 

 

2-dimensional space. Let us take the weighting vector ( )0, ,1W i=  (i is an 

imaginary unity). The results are shown in Table 1.7. 
These results shows that the XOR problem, which was for many years, on the 

one hand, a stumbling block in neurons theory [13] and, on the other hand, was a 
main argument for necessity of neural networks due to a limited functionality of a 
single neuron, can in fact be easily solved using a single neuron! But what is the 
most important – this is a single neuron with the complex-valued weights! This 
solution was for the first time shown by the author of this book in 1985 [29] and 
then it was deeply theoretically justified by him in [30]. 

The ability of a single neuron with complex-valued weights to solve non-linearly 
separable problems like XOR clearly shows that a single complex-valued neuron 
has a higher functionality than a single real-valued neuron. This is a crucial point! 

We will show later (Chapter 5) why those problems that are non-linearly separa-

ble in the space 
nR  (or its subspace) can be linearly separable in the space 

nC  or 

its subspace. We will see there that problems like XOR and Parity n (n-input XOR 

or mod 2 sum of n variables) are likely the simplest non-linearly separable prob-

lems that can be learned by a single complex-valued neuron. We will also show 

that activation function (1.40) is a particular case of the 2-valued periodic activa-

tion function, which determines a universal binary neuron (UBN), which in turn is 

a particular case of the multi-valued neuron with a periodic activation function. 

1.4.3   Importance of Phase and Its Proper Treatment 

We have already mentioned that there are many engineering problems in the mod-

ern world where complex-valued signals and functions of complex variables are 

involved and where they are unavoidable. Thus, to employ neural networks for 

their analysis the use of complex-valued neural networks is natural.  

However, even in the analysis of real-valued signals (for example, images or 

audio signals) one of the most efficient approaches is the frequency domain analy-

sis, which immediately involves complex numbers. In fact, analyzing signal prop-

erties in the frequency domain, we see that each signal is characterized by magni-

tude and phase that carry different information about the signal. A fundamental 

result showing the crucial importance of phase and its proper treatment was  
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presented in 1981 by Alan Oppenheim and Jae Lim [31]. They have considered, 

particularly, the importance of phase in images. They have shown that the infor-

mation about all the edges, shapes, and, respectively, about all the objects located 

in an image, is completely contained in phase. Magnitude contains just the infor-

mation about the contrast, about contribution of certain frequencies in the forma-

tion of an image, about the noisy component in the image, but not about what is 

located there. Thus, phase is much more informative and important for image un-

derstanding and interpretation and for image recognition, respectively. 

 

 

These properties can be easily confirmed by the experiments that are illustrated in 

Fig. 1.15. Let us take two well known test images
7
 “Lena” (Fig. 1.15a) and  

                                                           
7 These test images have been downloaded from the University of Sothern California test 

image database “The USC-SIPI Image Database”, http://sipi.usc.edu/database/ 

  
(a) Original image “Lena” (b) Original image “Airplane” 

  
(c) Image obtained by taking the inverse Fourier 

transform from the synthesized spectrum (mag-

nitude of the “Airplane” original spectrum and 

phase of the “Lena” original spectrum)  

(d) Image obtained by taking the inverse Fou-

rier transform from the synthesized spectrum 

(magnitude of the “Lena” original spectrum 

and phase of the “Airplane” original spectrum) 

Fig. 1.15 The importance of phase 
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“Airplane” (Fig. 1.15b). Let us take their Fourier transform and then swap magni-

tudes and phases of their Fourier spectra. 

Thus, we synthesize one spectrum from magnitude of the “Airplane” spectrum 

and phase of the “Lena” spectrum and another one from phase of the “Airplane” 

spectrum and magnitude of “Lena” spectrum. Let us now take the inverse Fourier 

transform from both synthesized spectra. The results are shown in Fig. 1.15c and 

Fig. 1.15d, respectively. It is very clearly visible that definitely those images were 

restored whose phases were used in the corresponding synthesized spectra. In  

Fig. 1.15c we see just the “Lena” image, while in Fig. 1.15d we see just the “Air-

plane” image. There is no single trace of those images whose magnitudes were 

used in the synthesized Fourier spectra from which images in Fig. 1.15c and  

Fig. 1.15d have been obtained. 
Another interesting experiment is illustrated in Fig. 1.16. We took the Fourier 

spectra of the same original images “Lena” (Fig. 1.15a) and “Airplane” (Fig. 1.15b). 

Then magnitudes in both spectra were replaced by the constant 1, while phases were 

preserved. Thus, magnitudes became “unitary”. Then we took the inverse Fourier 

transform from these modified spectra with “unitary” magnitude. The results are 

shown in Fig. 1.16a (“Lena”) and Fig. 1.16b (“Airplane”). It is clearly seen that all 

edges, shapes, and even the smallest details from the original images are preserved. 

Since images in Fig. 1.16 were obtained just from phase (magnitude was eliminated 

by setting all its values to 1), this confirms that all information about the edges, 

shapes, objects and their orientation is contained only in phase. 

 

These wonderful properties of phase are determined by its physical nature. The 

Fourier transform express any signal in terms of the sum of its projections onto a 

set of basic functions that represent those electromagnetic waves, which form this 

  
a) Image obtained by taking the inverse 

Fourier transform from the synthesized spec-

trum (“unitary” magnitude (constant 1) and 

phase of the “Lena” original spectrum)  

b) Image obtained by taking the inverse  

Fourier transform from the synthesized spec-

trum (“unitary” magnitude (constant 1) and 

phase of the “Airplane” original spectrum) 

Fig. 1.16 The importance of phase  
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signal. Hence, the Fourier transform is the decomposition of a signal by these ba-

sic functions that are defined as  

( ) ( )2
cos 2 sin 2

i ut
e ut i ut

π π π= + , (1.41) 

or in the discrete case 

2 2 2
cos sin ; , 0,1,..., 1i uk

e uk i uk u k n
n n

π π π⎛ ⎞ ⎛ ⎞
= + = −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ , (1.42) 

where u is the corresponding frequency. The Fourier spectrum of the continuous 

signal ( )f t  is 

( ) ( ) ( ) ( )2 i ui ut
F u f t e F u e

ϕπ−= =∫ , (1.43) 

where ( )F u  is magnitude and ( )uϕ  is phase. For the discrete signal 

( ) , 0,1,..., 1f k k n= − , equation (1.43) is transformed as follows 

( ) ( ) ( ) ( )
1

2

0

; 0,1,..., 1
n

i ui uk

k

F u f k e F e u n
ϕπ ω

−
−

=

= = = −∑ , (1.44) 

where each ( ) ( )
, 0,1,..., 1

i u
F u e u n

ϕ
= −  is referred to as a spectral coefficient 

or a decomposition coefficient. ( )F u  is the absolute value (magnitude) of the 

uth spectral coefficient and ( ) ( )argu F uϕ =  is the argument (phase) of this 

spectral coefficient. To reconstruct a signal from (1.43), we have to perform the 

inverse Fourier transform  

( ) ( ) 21

2

i utf t F e πω
π

= ∫ . (1.45) 

To reconstruct a signal from (1.44) in the discrete case, we have to perform the in-

verse Fourier transform – to find a sum of basic functions (waves) (1.42) with the 

coefficients (1.44): 

( ) ( )
1

2

0

1
; 0,1,..., 1

n
i uk

u

f k F e k n
n

πω
−

=

= = −∑ . (1.46) 

In (1.41) and (1.42) that are the basic functions of the Fourier transform, the elec-

tromagnetic waves corresponding to all frequencies have a zero phase shift. Let us 

set 2 uπ ω=  in (1.41). Then the corresponding basic function of the Fourier 

transform is ( ) ( )cos sin
iut

e ut i ut= + . Respectively, (1.45) can be written as 

follows 
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( ) ( )
1

2

i tf t F e ωω
π

= ∫ . (1.47) 

 

Let us take a look at Fig. 1.17a. It shows a sinusoidal wave ( )sin 2 utπ  for 

1u = . According to (1.46) and (1.47), after this sinusoidal wave is multiplied with 

the Fourier spectral coefficient ( )F u , its absolute value (magnitude) is equal  

 

 

                                                           
8 To create these pictures, we used a wonderful tool located at 

http://www.ugrad.math.ubc.ca/coursedoc/math100/notes/trig/phase.html  

(this is a site of University of British Columbia, Canada) 

  

a) Electromagnetic wave ( )sin 1 t⋅ ;  

phase shift φ=0; magnitude A=1 

b) Electromagnetic wave ( )2sin 1 t⋅ ;  

phase shift φ=0; magnitude A=2 

  

c) Electromagnetic wave ( )( )sin 1 2t⋅ + ;  

phase shift φ=2; magnitude A=1 

d)  Electromagnetic wave ( )( )2sin 1 2t⋅ + ;  

phase shift φ=2; magnitude A=2 

Fig. 1.17 A role of phase and magnitude in the Fourier transform. Phase in a Fourier trans-

form coefficient shows the phase shift for the electromagnetic wave with the frequency  

corresponding to the given Fourier transform coefficient. The phase shift is a carrier of  

information about a signal concentrated in the wave with the corresponding frequency. 

Magnitude  in a Fourier transform coefficient just shows the intensity (the “weight”) of the 

wave corresponding  to the given frequency in the formation of a signal8 



1.4   Introduction to Complex-Valued Neurons and Neural Networks 47 

 

to ( ) ( )cos sini t
A e A t i t

ω ω ω= +  where ( )A F u= . Fig. 1.17b shows a 

sinusoidal wave ( )sin 2A utπ  for 1u =  and ( ) 2A F u= = . The phase shift 

of these both electromagnetic waves is equal to 0. Thus, if a sinusoidal wave has a 

basic form ( )sinA tω ϕ+ , then waves in Fig. 1.17a and Fig. 1.17b have 0ϕ = . 

It follows from (1.47) that ( ) ( ) ( )( )( )arg2 i t F ui ut
F u e F u e

ωπ +
=  because the ar-

gument of the product of two complex numbers is equal to the sum of multipliers’ 

arguments, while the magnitude of the product is equal to the product of magni-

tudes (take into account that 
2 1i ut

e
π = ). Fig. 1.17c and Fig. 1.17d show sinusoi-

dal waves ( )sinA tω ϕ+  with the phase shift 2ϕ = . These waves could be ob-

tained by multiplication of the “standard” wave ( )sin tω  by such ( )F u  that 

( )arg 2F u = . For the sinusoidal wave in Fig. 1.17c, ( ) 1A F u= = , while 

for the one in Fig. 1.17d, ( ) 2A F u= = . Hence, the sinusoidal waves in  

Fig. 1.17a, b have the same phase shifts and different magnitudes, and the sinusoi-

dal waves in Fig. 1.17c, d have the same phase shifts and different magnitudes. 

As we see, the phase shift is nothing else than phase of the Fourier transform 

coefficient corresponding to a wave with the certain frequency. This shift deter-

mines the contribution of this wave to the shape of a signal after its reconstruction 

from the Fourier 

transform while 

magnitude plays only 

subsidiary role. 

Hopefully, it is 

clear now why all 

shapes and even all 

details of images in 

Fig. 1.16 were suc-

cessfully recon-

structed from the Fou-

rier transform whose 

magnitude was com-

pletely eliminated and 

replaced by the con-

stant 1. It is also clear 

now how images in 

Fig. 1.15 were recon-

structed just from the original phases of their Fourier spectra, while their magnitudes 

were swapped.  

 

Fig. 1.18 Importance of proper treatment of phase as an angle 
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This means that phase is a very important carrier of information about those ob-

jects that are presented by a signal. This information can be used, for example, for 

solving image recognition problems (we will consider this later, in Chapter 6). 

However, first of all it is absolutely important to treat properly phase and that in-

formation, which is concentrated in phase. We have to treat the phase φ only as an 

angular value determining the complex number 
i

e
ϕ

 located on the unit circle. Any 

attempt to work with phases as with formal real numbers  

located either in interval [ [0,2π  or [ [,π π−  without taking into account that 

they are angles that are in turn arguments of complex numbers, completely elimi-

nates a physical nature of phase. If we do not treat phases properly (as arguments of 

complex numbers), then the information, which is contained in phase, is completely 

distorted.  

For example, if we do not care of the nature of phase, we may treat numbers 

0.001ϕ = and 2 0.001 6.282ψ π= − =  as such located in the opposite ends 

of the interval [ [0,2π . In this case, their formal difference is 6.282-0.001=6.281. 

But in fact, these numbers determine angles that are very close to each other, and 

the difference between them is just 0.002 radian. Respectively, these two phases 

determine two points on the unit circle 
i

e
ϕ

 and 
i

e
ψ

 that are located very close to 

each other (see Fig. 1.18).  

Thus, to treat phases properly, they have to be considered only as arguments of 
complex numbers. To work only with that information concentrated in phase, it is 
enough to consider phases as arguments determining complex numbers located on 
the unit circle. In this case, we do not care of magnitude (like in the example pre-
sented in Fig. 1.16). We will see below (Chapter 2) that this is definitely the case of 
a multi-valued neuron whose inputs and output are always located on the unit circle. 

Hence, to analyze phase and the information contained in phase, using neural 

networks, it is absolutely important to use complex-valued neurons. 

1.4.4   Complex-Valued Neural Networks: Brief Historical  

Observation and State of the Art 

Before we will move to the detailed consideration of multi-valued neurons, neural 

networks based on them, their learning algorithms and their applications, let us 

present a brief historical overview of complex-valued neural networks and state of 

the art in this area. 

The first historically known complex-valued activation function was suggested 
in 1971 by Naum Aizenberg and his co-authors Yuriy Ivaskiv and Dmitriy 
Pospelov in [32]. Thus, complex-valued neural networks start their history form 
this seminal paper. A main idea behind this paper was to develop a model of mul-
tiple-valued threshold logic, to be able to learn and implement multiple-valued 
functions using a neural element similarly to learning and implementation of Boo-
lean threshold functions using a neuron with the threshold activation function. 
Moreover, according to this new model, Boolean threshold logic should be just a 
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particular case of multiple-valued threshold logic. We will consider this model in 
detail in Chapter 2. Now we just want to outline a basic approach.  

As we have already seen, in neural networks the two-valued alphabet 

{ }2 1, 1E = −  is usually used instead of the traditional Boolean alphabet 

{ }2 0,1K = . This can easily be explained by two factors. First of all, unlike in 2
K , 

in 2
E  values of two-valued logic are normalized, their absolute value is equal to 1. 

Secondly, we have seen that, for example, in the error-correction learning rule 

(1.17), 2i
x E∈  is a very important multiplicative term participating in the adjust-

ment of the weight , 1,...,
i

w i n= . If it was possible that 0
i

x = , then the error-

correction learning rule (1.17) could not be derived in that form, in which it exists. 
In the classical multiple-valued (k-valued) logic, the truth values are tradition-

ally encoded by integers from the alphabet { }0,1,..., 1K k= − . They are not 

normalized. If we want to have them normalized, evidently, this problem can be 
solved neither within the set of integer numbers nor the set of real numbers for 

2k > . However, Naum Aizenberg suggested a wonderful idea to jump to the 
field of complex numbers and to encode the values of k-valued logic by the kth 
roots of unity (see Fig. 1.19). Since there are exactly k kth roots of unity, it is  
always possible and very easy to build a one-to-one correspondence between  

the set { }0,1,..., 1K k= −  and the set { }2 11, , ,..., k

k k k kE ε ε ε −= , where 

2 /i k

k e
πε =  is the primitive k

th
 

root of unity (i is an imaginary 
unity). We will consider later in de-
tail, (Chapter 2, Section 2.1) a 
mathematical background behind 
this idea. Unlike in the set K, in the 

set k
E  the values of k-valued logic 

are normalized – their absolute val-
ues are equal to 1. Particularly, for 

two-valued logic, { }2 1, 1E = − , 

which corresponds to { }2 0,1K = , 

and we obtain a well known model 
of Boolean logic in the alphabet 

{ }2 1, 1E = − . 

Thus, in multiple-valued logic 
over the field of complex numbers, 
a multiple-valued (k-valued) func-

tion of n variables becomes ( )1,..., :
n

n k kf x x E E→ . Naum Aizenberg and his 

co-authors suggested in [32] the following activation function, which they called 

 

Fig. 1.19 Model of k-valued logic over the 

field of complex numbers. Values of k-valued 

logic are encoded by the kth roots of unity 
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Naum Nisonovich Aizenberg (1928-2002) 

Seminal ideas in the area of complex-valued neural networks and in multi-valued neu-

rons were proposed and developed by Professor Naum N. Aizenberg. He was born in 

Kiev (Ukraine, that time USSR). From 1953 to 1998 he was with Uzhgorod National 

University (USSR until 1991 and then Ukraine) where he has started as a part time 

teaching assistant and then became a Professor. For a number of years he was a Chair 

of the Department of Cybernetics. His first love in research was Algebra, which 

formed a solid background for his further work in Computer Science and Engineering. 

His main result in Algebra is solution of the problem of computation of the wreath 

products of the finite groups. In early 1970s he developed a theory of multiple-valued 

threshold logic over the field of complex numbers, which became a background for 

complex-valued neural networks. He also developed an algebraic theory of signal 

processing in an arbitrary basis. His important accomplishment is also a theory of 

prime tests, which found many applications in Pattern Recognition. His 11 Ph.D. stu-

dents got their Ph.D. degrees under his supervision. He retired in 1998 after he got a 

damaging heart attack. The same year he moved from Ukraine to Israel. Even being 

seriously ill, he continued his research as far as possible, collaborating with other col-

leagues. His last paper has been published right after he passed in 2002…  

 

CSIGN
9
 (keeping in mind that this is a specific generalization of the sgn function 

for the multiple-valued case) 
 

( ) ( )CSIGN , 2 / arg 2 1 /
j

kz j k z j kε π π= ≤ < +  (1.48) 
 

Function (1.48) divides complex plane into k equal sectors (see Fig. 1.19). We will 

consider it and its properties in detail in Chapter 2. Now we can say that it follows 

form (1.48) that if the complex number z is located in the sector j, then 

                                                           
9 In the later work, where the multi-valued neuron was introduced, N. Aizenberg himself sug-

gested to use another notation for the function CSIGN. Since in terms of logic this function 

is multiple-valued predicate, he suggested to use just a letter P (“Predicate”) for its notation 

considering that the initial CSIGN was not successful, because in fact a complex number 

does not have a sign. We will use the notation P throughout the book except this section. 
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( )CSIGN
j

kz ε= . Then a notion of multiple-valued threshold function was  

introduced in [32]. A function ( )1,..., :
n

n k kf x x E E→  is called a multiple-

valued threshold function if there exist such n+1 complex numbers (weights) 

0 1
, ,...,

n
w w w  that for all ( )1,..., nx x  from the domain of the function f  

 

( ) ( )0 1 1 1CSIGN ... ,...,n n nw w x w x f x x+ + + = . (1.49) 

Paper [32] was then followed by two papers [33, 34] by N. Aizenberg and co-

authors where a multi-valued threshold element was introduced as a processing 

element implementing (1.49) and, respectively, implementing a multiple-valued 

threshold function. A learning algorithm for this element was also introduced in 

[34]. By the way, papers [33, 34] originally published only in Russian (as well as 

[32]) are available now in English [35, 36] (the English version of the journal Cy-

bernetics and Systems Analysis (previously Cybernetics) is published by Springer 

from late 1990s, and all the earlier journal issues are translated into English too 

and they are available online from the Springer website
10

). Papers [32-35] were 

followed in 1977 by the monograph [37] (also published only in Russian) by  

N. Aizenberg and Yu. Ivaskiv. In [37], all theoretical aspects of multiple-valued 

threshold logic over the field of complex numbers, multi-valued threshold ele-

ments, and their learning were comprehensively observed. It is important to men-

tion that a word “neuron” was not used in those publications, but it is absolutely 

clear that a multi-valued threshold element is nothing else than the discrete multi-

valued neuron formally named a neuron in 1992 [38] by N. Aizenberg and the  

author of this book. 

It is difficult to overestimate the importance of the seminal publications [32-34, 

37]. For the first time, a neural element introduced there, could learn multiple-

valued input/output mappings 
n

k k
E E→  and 

n

k
O E→  (O is a set of points on 

the unit circle). This means that it was possible to use it for solving, for example, 

multi-class classification problems where the number of classes is greater than 2. 

Unfortunately, published only in Russian, these important results were unavailable 

to the international research community for many years. In 1988 (17 years later (!) 

after paper [32] was published) A. Noest even “re-invented” activation function 

(1.48) calling a neuron with this activation function a “phasor neuron” [39]. But in 

fact, this activation function was proposed in 1971 and we believe that A. Noest 

simply was not familiar with [32].  

Since Chapters 2-6 of this book are completely devoted to multi-valued neurons 
and neural networks based on them, we will observe all publications devoted to 
MVN and MVN-based neural networks later as the corresponding topics will be 
deeply considered. However, we would like to observe briefly now other impor-
tant works on complex-valued neural networks, not related to MVN. 

                                                           
10 http://www.springer.com/mathematics/applications/journal/10559 
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Starting from early 1990s complex-valued neural networks became a very  
rapidly developing area. In 1991 and 1992, independently on each other, H. Leung 
and S. Haykin [40], and G. Georgiou and C. Koutsougeras [41], respectively, gen-
eralized the MLF backpropagation learning algorithms for the complex-valued 

case. They considered complex weights and complex-valued generalization of the 
sigmoid activation function and showed that complex backpropagation algorithm 
converges better than the real one. 

Important contributions to CVNN are done by Akira Hirose He is the author of 

the fundamental monograph [42] with a detailed observation of the state of the art 

in the field, and the editor of the book [43] with a great collection of papers de-

voted to different aspects of complex-valued neural networks. He also was one of 

the first authors who considered a concept of fully-complex neural networks [44] 

and continuous complex-valued backpropagation [45]. 

Other interesting contributions to CVNN are done by Tohru Nitta. He has ed-

ited a recently published book on CVNN [46]. He also developed the original  

approach to complex backpropagation [47], and he is probably the first author 

who considered a quaternion neuron [48]. 

Very interesting results on application of complex-valued neural networks in 

nonlinear filtering are obtained by Danilo Mandic and under his supervision. Just 

a few of his and his co-authors important contributions are recently published fun-

damental monograph [49] and papers on different aspects of filtering [50] and 

prediction [51]. 

Important contributions to learning algorithms for complex-valued neural net-

works are done by Simone Fiori. We should mention here among others his gener-

alization of Hebbian Learning for complex-valued neurons [52, 53] and original 

optimization method, which could be used for learning in complex-valued neural 

networks [54]. 

We should also mention recently published works by Md. F. Amin and his co-

authors [55, 56] on solving classification problems using complex-valued neural 

networks. 

It is also important to mention here interesting works by Sven Buchholz and his 

co-authors on neural computations in Clifford algebras where complex-valued and 

quaternion neurons are involved [57]. They also recently developed a concept of 

quaternionic feedforward neural networks [57, 58]. 

1.5   Concluding Remarks to Chapter 1 

In this introductory Chapter, we have briefly considered a history of artificial neu-

rons and neural networks. We have observed such turning-point classical solutions 

and concepts as the McCulloch-Pitts neuron, Hebbian learning, the Rosenblatt’s 

perceptron, error-correction learning, a multilayer feedforward neural network, 

backpropagation learning, and linear separability/non-linear separability. We have 

paid a special attention to those specific limitations that characterize real-valued 

neural networks. This is first of all impossibility of a single real-valued neuron to 

learn non-linearly separable problems. This is also strict dependence of the back-

propagation learning algorithm on the differentiability of an activation function. 
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This is also absence of some regular approach to representation of multiple-valued 

discrete input/output mappings. 

We have shown that moving to the complex domain it is possible to overcome 

at least some of these disadvantages. For example, we have shown how a classical 

non-linearly separable problem XOR can be easily solved using a single complex-

valued neuron without the extension of that 2-dimensional space where it is  

defined. We have also shown that complex-valued neurons can be extremely  

important for a proper treatment of phase, which in fact contains much more sig-

nificant information about the objects presented by the corresponding signals.  

We briefly presented the first historically known complex-valued activation 

function, which makes it possible to represent multiple-valued discrete  

input/output mappings. 

We have also observed recent contributions in complex-valued neural networks. 

We have mentioned here just recent and perhaps the most cited works. Neverthe-

less, it follows from this observation that complex-valued neural networks have  

become increasingly popular. The reader may find many other papers devoted to 

different aspects of CVNN. Just, for example, take a look at [43, 46] where very 

good collections of papers are presented. There were also many interesting presen-

tations in a number of special sessions on complex-valued neural networks organ-

ized just during last several years (IJCNN-2006, ICANN-2007, IJCNN-2008, 

IJCNN-2009, and IJCNN-2010). As the reader may see, there are different specific 

types of complex-valued neurons and complex-valued activation functions. Their 

common great advantage is that using complex-valued inputs/outputs, weights and 

activation functions, it is possible to improve the functionality of a single neuron 

and of a neural network, to improve their performance, and to reduce the training 

time (we will see later, for example, how simpler and more efficient is learning of 

MVN and MVN-based neural networks). 

We hope that the reader is well prepared now to move to the main part of this 

book where we will present in detail the multi-valued neuron, its learning, and 

neural networks based on multi-valued neurons. We will also consider a number 

of examples and applications that will show great advantages of the multi-valued 

neuron with complex-valued weights and complex-valued activation function over 

its real-valued counterparts. 
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Chapter 2  

The Multi-Valued Neuron 

“The greatest challenge to any thinker is 

stating the problem in a way that will allow a solution.” 

Bertrand Russell 

 

 

In this chapter, we introduce the multi-valued neuron. First of all, in Section 2.1 we 

consider the essentials of the theory of multiple-valued logic over the field of com-

plex numbers. Then we define a threshold function of multiple-valued logic. In 

Section 2.2, we define the discrete-valued multi-valued neuron whose input/output 

mapping is always described by some threshold function of multiple-valued logic. 

Then we consider the continuous multi-valued neuron. In Section 2.3, we consider 

the edged separation of an n-dimensional space, which is determined by the activa-

tion function of the discrete multi-valued neuron, and which makes it possible to 

solve multi-class classification problems. In Section 2.4, we consider how  

the multi-valued neuron can be used for simulation of a biological neuron. Some 

concluding remarks are given in Section 2.5. 

2.1   Multiple-Valued Threshold Logic over the Field of Complex 

Numbers 

As we have seen in Section 1.1, the McCulloch-Pitts neuron, which is the first his-

torically known artificial neuron, implements input/output mappings described by 

threshold Boolean functions. Hence, from the very beginning development of arti-

ficial neurons was closely connected with Boolean logic. In fact, the first neurons 

including the perceptron operated with Boolean input/output mappings. Later, 

when continuous inputs were introduced, a neuron still produced a binary output. 

A continuous output was introduced along with a sigmoid activation in 1980s. 

However, what about multiple-valued discrete input/output mappings? If two-

valued input/output mappings can be presented in terms of Boolean logic, can we 

do the same with multiple-valued input/output mappings in terms of multiple-

valued logic? Is so, can this representation be generalized for the continuous  

input/output mappings? If multi-valued input/output mappings can be represented 

in the way similar to Boolean input/output mappings, can such a representation be 

used for creation of a multi-valued neuron? Let us answer these questions. 
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2.1.1   Multiple-Valued Logic over the Field of Complex Numbers 

From the time when a concept of multiple-valued logic was suggested by Jan Łu-

kasiewicz in 1920 [59], the values of multiple-valued logic are traditionally  

encoded by integers. While in Boolean logic there are two truth values (“False” 

and “True” or 0 and 1), in multiple-value logic there are k truth values. Thus, in 

Boolean logic, truth values are elements of the set { }2 0,1K = . In k-valued logic, 

it was suggested to encode the truth values by elements of the set 

{ }0,1,..., 1K k= − . Particularly, it is important that for 22,k K K= = . Thus, 

in classical multiple-valued (k-valued) logic, a function of k-valued logic is 

( )1,..., : n

nf x x K K→ . 

We have also seen that in many engineering applications and particularly in 

neural networks, it is very convenient to consider the Boolean alphabet 

{ }2 1, 1E = −  instead of { }2 0,1K = . For example, this is important for the abil-

ity to use both Hebbian learning rule (1.3) and error-correction learning rule 

(1.17), where a value of input is the essential multiplicative term participating in 

the weight adjustment. Since in 2E  values of two-valued logic are normalized 

(their absolute value is 1), it is possible to use them as multiplicative terms in the 

learning rule. In 2K , values of two-valued logic are not normalized. The alphabet 

{ }2 1, 1E = −  is also more appropriate for the use if the sign function as an activa-

tion function of the threshold neuron. We have also seen (Section 1.1) that there is 

a simple linear connection between alphabets 2K  and 2E . (Just to recall: if 

2y K∈  then 21 2x y E= − ∈ , and if 2x E∈  then ( ) 21 / 2y x K= − − ∈ , re-

spectively. Hence, 0 1,  1 1↔ ↔ − ).  

However, it should be very interesting to understand, does any deeper and more 

logical mathematical background behind the connectivity of alphabets 2K  and 

2E  exist? If so, can the same mathematical background be used to create a nor-

malized k-valued alphabet from { }0,1,..., 1K k= − , which is not normalized? 

A positive answer to this question could make it possible to generalize principles 

of Boolean logic and Boolean threshold logic for the multiple-valued case. This, in 

turn, could make it possible to consider a neuron whose input/output mapping is 

described by a function not of Boolean, but of multiple-valued logic, which could 

be very important, for example, for solving multi-class classification problems. 

A very beautiful idea leaded to answers to these questions was suggested by 

Naum Aizenberg in early 1970s. It was presented in [32-37] and then summarized 

in [60]. 
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Let M be an arbitrary additive group
1
 and its cardinality is not lower than k. 

Let { }0 1 1, ,..., ,k k kA a a a A M−= ⊆  be a structural alphabet.  

 

Definition 2.3 [37, 60]. Let us call a function ( )1,..., | : n

n k kf x x f A A→  of n 

variables (where 
n

k
A  is the nth Cartesian power of kA ) a function of k-valued logic 

over group M. 
 

It is very easy to check, that a 

classical definition of a function of 

k-valued logic follows from 

Definition 2.3. Indeed, the set 

{ }0,1,..., 1K k= −  is an additive 

group with respect to mod k 

addition. If K is taken as a group M 

and if the structural alphabet 

kA K= , then any function 

( )1,..., : n

nf x x K K→  is a 

function of k-valued logic over the 

group K according to Definition 2.3. 

Let us now take the additive 

group of the field of complex num-

bers C  as a group M. Evidently 

this group with respect to addition 

of complex numbers is infinite, and 

it contains all elements from C  co-

inciding with it. As it is well known 

from algebra, there are exactly k kth roots of unity. The root 
2 /i k

k
e

πε =  (i is an 

imaginary unity) is called a primitive kth root of unity. The rest k-1 roots can be 

obtained from kε  by taking its 0
th

, 2
nd

, 3
rd

, …, k-1
st
 powers. Thus, we obtain the 

                                                           
1 Let us recall just for those readers who are less familiar with abstract algebra that the set A 

is called a group with respect to the operation D , if the following conditions hold: 1) this 

set is closed with respect to this operation; 2) this operation is associative 

( , , : ( ) ( )x y z A x y z x y z∀ ∈ =D D D D ); 3) there exist a neutral element e A∈  

with respect to the operation D , which means that , :e A x A x e x∃ ∈ ∀ ∈ =D ; 4) 

each element from A has an inverse element with respect to the operation 

D ( , :x A x A x x e∀ ∈ ∃ ∈ =� �D ). If additionally, , :x y A x y y x∀ ∈ =D D , A is 

called a commutative (or Abelian) group. A group is called additive when it is a group 

with respect to addition, and it is called multiplicative when it is a group with respect to 

multiplication. 

 

Fig. 2.20 kth roots of unity 
01 ,
k

ε= 2 1, ,..., k

k k k
ε ε ε −

 are located on the 

unit circle. They form a structural alphabet of 

multiple-valued logic over the field of complex 

numbers 
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set { }0 2 11 , , ,..., k

k k k k k
E ε ε ε ε −= = , of all kth roots of unity. Since the jth of kth 

roots of unity ( )2 / 2 / ; 0,1,..., 1
j

j i k i j k

k
e e j kπ πε = = = − , then 

; 2 / ; 0,1,..., 1jij

k je j k j k
ϕ

ε ϕ π= = = −  and therefore all kth roots of unity 

are located on the unit circle (see Fig. 2.20, which is the same as Fig. 1.19, we just 

put it here again for the reader’s convenience).  

Since the set kE  contains exactly k elements, we may use this set as a struc-

tural alphabet in terms of Definition 2.3. Thus, any function 

( )1,..., : n

n k kf x x E E→  is a function of k-valued logic over the additive group 

of the field of complex numbers C  according to Definition 2.3. For simplicity, 

we will call any function ( )1,..., : n

n k kf x x E E→  a function of k-valued logic 

over the field of complex numbers C . 

If k=2, then { }2 1, 1E = − . Indeed, -1 is the primitive 2
nd

 root of unity, and 

01 1= −  is the second of two 2
nd

 roots of unity. As well as in 2E  values of two-

valued logic are normalized, in kE  values of k-valued logic are also normalized 

for any k. Thus, Definition 2.3 generalizes consideration of Boolean functions in 

both alphabets { }2 0,1K =  and { }2 1, 1E = − . It also generalizes consideration 

of multiple-valued functions in both alphabets { }0,1,..., 1K k= −  and 

{ }0 2 1, , ,..., k

k k k k k
E ε ε ε ε −= . Evidently, there is a one-to-one correspondence be-

tween sets K and kE , and any function 
n

K K→  can be represented as a func-

tion 
n

k k
E E→  and vice versa. 

As we have seen in Chapter 1, the use of the alphabet 2E  in the threshold  

neuron is very important for definition of its activation function and for derivation 

of its learning algorithms. We will show now how important is that approach, 

which we have just presented, for multiple-valued threshold logic and multi-

valued neurons. 

2.1.2   Multiple-Valued Threshold Functions over the Field of 

Complex Numbers 

The threshold activation function is a function of the sign of its argument, the 

function sgn. Depending on the sign of a weighted sum, the threshold activation 

function equals 1 if the weighted sum is non-negative or to -1 if it is negative. As 

we have already seen, a threshold function is also defined using the function sgn. 

Let 2:f T E→  (where 2

nT E=  or 
n

T ⊆ R ).  
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Definition 2.4. If there exist such real-valued weights 0 1, ,..., nw w w  that for any 

( )1,..., nx x T∈  ( ) ( )0 1 1 1sgn ... ,...,n n nw w x w x f x x+ + + = , then the 

function ( )1,..., nf x x  is called a threshold function.  

For a multiple-valued function ( )1,..., : n

n k kf x x E E→ , Definition 2.4 is not 

applicable. The function sgn is two-valued, while we consider now a k-valued 

function. Our function ( )1,..., : n

n k kf x x E E→  is complex-valued. A complex 

number does not have a sign. However, a complex number has its argument. A 

codomain of our function is { }0 2 1, , ,..., k

k k k k k
E ε ε ε ε −=  where 

2 /i k

k
e

πε =  and 

; 2 / ; 0,1,..., 1jij

k je j k j k
ϕ

ε ϕ π= = = − . All the ; 0,1,..., 1j

k
j kε = −  being 

the kth roots of unity are located on the unit circle (see Fig. 2.20) and 

1; 0,1,..., 1j

k
j kε = = − . Thus, all ; 0,1,..., 1j

k
j kε = −  have a unitary abso-

lute value. However, they all have 

different arguments, which deter-

mine their uniqueness! Indeed, 

; 0,1,..., 1jij

k e j k
ϕ

ε = = −  has 

the argument 2 /j j kϕ π= . Thus, 

while a value of a function of two-

valued logic is determined by its 

sign, a value of a function of multi-

ple-valued logic over the field of 

complex numbers is determined by 

its argument. This consideration 

leaded Naum Aizenberg and his co-

authors [32] for the following defi-

nition of the ”k-valued sign” (or as 

they initially called it “complex 

sign”) function. If z ∈C , then 

 

( ) ( )( ) CSIGN ,2 / arg 2 1 /j

kP z z j k z j kε π π= = ≤ < + . (2.50) 

 

Function (2.50) is illustrated in Fig. 2.21. The complex plane is divided into k 

equal sectors by the lines passing through the origin and points on the unit circle 

corresponding to the kth roots of unity. Sectors are enumerated in the natural way: 

0
th

, 1
st
, 2

nd
, …, k-1

st
. The jth sector is limited by the boarders originating in the 

origin and crossing the unit circle at the points corresponding to the kth roots of 

 

Fig. 2.21 Definition of multiple-valued activa-

tion function (50). 
2 /( ) i j k

P z e
π=  
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unity 
j

k
ε  and 

1j

k
ε +

. If a complex number z is located in the jth sector, which 

means that ( )2 / arg 2 1 /j k z j kπ π≤ < + , then 
2 /( ) i j k

P z e
π= .  

In fact, function (2.50) is not a sign or “complex sign” function because a com-

plex number does not have any sign. Considering that the “complex sign” name 

and, respectively, the CSIGN notation were not the most successful for this func-

tion, its inventor N. Aizenberg later suggested to call it a k-valued predicate and to 

use the notation ( )P z  (P – predicate). This notation is used for function (2.50) 

from mid 1990s. Particularly, the function sgn is a two-valued predicate in terms 

of logic. 

Let us consider a function ( )1,..., : ; n

n k kf x x T E T E→ ⊆  of k-valued 

logic. Thus, generally speaking ( )1,..., nf x x  can be fully defined (if 
n

k
T E= ) 

or partially defined (if 
n

k
T E⊂ ) function of n variables in k-valued logic. A fully 

defined function is defined on the whole nth Cartesian power of the set kE , while 

a partially defined function is defined only on a subset of it. Let us define now a 

multiple-valued threshold function. 
 

Definition 2.5 [32-37, 60]. The function ( )1,..., : ; n

n k kf x x T E T E→ ⊆  of k-

valued logic is called a threshold function of k-valued logic (or multiple-valued (k-

valued) threshold function) if there exist n+1 complex numbers 0 1, ,..., nw w w  such 

that for any ( )1,..., nx x T∈  

( ) ( )1 0 1 1,..., ...n n nf x x P w w x w x= + + + , (2.51) 

where ( )P z  is function (2.50). 

The vector ( )0 1, ,..., nW w w w=  is called a weighting vector of the function 

f . We also say that the weighting vector W  implements the function f . 

It is important that on the one hand, Definition 2.5 “covers” Definition 2.4, but 

on the other hand, it drastically extends a set of functions that can be represented  

using n+1 weights by adding multiple-valued threshold functions to Boolean 

threshold functions. A Boolean threshold function is a particular case of multiple-

valued threshold function.  

Indeed, if 2k =  in (2.50), then this activation function is transformed to 

1;0 arg
( )

1; arg 2 .

z
P z

z

π

π π

≤ <⎧
= ⎨

− ≤ <⎩  (2.52) 
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It divides the complex plane into two sectors – the top half-plane (“1”) and the 

bottom half-plane (“-1”). A Boolean function ( )1 2 2,..., : n

nf x x E E→ , which 

allows representation (2.51)-(2.52) was called [33, 35, 37, 60] a Boolean complex-

threshold function. It was proven in [33, 35, 37, 60] that the set of Boolean com-

plex-threshold functions coincides with the set of Boolean threshold functions (in 

terms of Definition 2.4). This means that for 2k = , any k-valued threshold func-

tion is a Boolean threshold function and vice versa. 

However, when 2k > , Definition 2.5 and, respectively, representation (2.51)-

(2.50) make it possible to represent multiply-valued functions using n+1 complex-

valued weights in the same manner as Boolean threshold functions. 

Let us consider the following example. The set { }0,1,..., 1K k= −  is a linearly 

ordered set with respect to the “<” relation. In fact, 0 1 2 ... 1k< < < < − . Let us 

transfer this linear order onto the set kE  in the following natural way: 

0 1 ... k

k

k kε ε ε −≺ ≺ ≺ . Evidently, this is a linear order with respect to the “<” rela-

tion applied to the arguments of the corresponding kth roots of unity 
0 1arg arg < ... <arg k

k

k kε ε ε −< . Let us consider well known Post functions 

( )1 2max , ; ; 1,2iy y y K i∈ =  and ( )1 2min , ; ; 1,2iy y y K i∈ = . These func-

tions become, respectively the following functions of k-valued logic over the field of 

complex numbers max 1 2 1 2( , ) max( , ); ; 1,2i kf x x x x x E i= ∈ =  and 

min 1 2 1 2( , ) min( , ); ; 1,2i kf x x x x x E i= ∈ = . Let 3k = . It is easy to check that 

the weighting vector 3 3 3( 2 4 4 5 4 5 )W ε , + ε , + ε= − −  implements the function 

max 1 2( , )f x x  (see Table 2.8 and Fig. 2.22a), and the weighting vector 

3 3 3(2 4 5 4 5 4 )W + ε , + ε , + ε=  implements the function min 1 2( , )f x x  (see Ta-

ble 2.9 and Fig. 2.22b), and therefore they are threshold functions of 3-valued logic.  

These simple examples show that the extension of the set of threshold func-

tions by multiple-valued functions opened absolutely new perspectives in thresh-

old logic, in neural networks and in solving multi-class classification problems. 

This extension became possible after multiple-valued logic over the field of  

complex numbers was introduced. This bold jump to the complex domain was 

really historical. As we will see from the rest of this book it really resulted in 

many new efficient solutions and first of all in the creation of the multi-valued 

neuron, which will be considered in Section 2.2. In Section 2.3, we will consider 

in detail a linear separability of an n-dimensional space, which is determined by 

function (2.50) and a weighting vector implementing a corresponding multiple-

valued threshold function. 
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Table 2.8 Post function 
max 1 2( , )f x x  is a 3-valued threshold function (a threshold function of 

3-valued logic) with the weighting vector 
3 3 3( 2 4 4 5 4 5 )W ε , + ε , + ε= − −  

# 
1x  

2x  0 1 1 2 2z w w x w x= + +
 

arg( )z
 

( )P z
 

( )max 1 2,f x x  

1 
0

3ε  
0

3ε  36 6ε+  1.0471 
0

3ε  
0

3ε  

2 
0

3ε  
1

3ε  
2

3 32 5 5ε ε+ +  π 
1

3ε  
1

3ε  

3 
0

3ε  
2

3ε  
2

3 37 4ε ε+ +  5.7596 
2

3ε  
2

3ε  

4 
1

3ε  
0

3ε  
2

3 32 5 5ε ε+ +  π 
1

3ε  
1

3ε  

5 
1

3ε  
1

3ε  
2

3 32 4 10ε ε+ +  3.6652 
1

3ε  
1

3ε  

6 
1

3ε  
2

3ε  
2

32 9ε− +  4.5223 
2

3ε  
2

3ε  

7 
2

3ε  
0

3ε  
2

3 37 4ε ε+ +  5.7596 
2

3ε  
2

3ε  

8 
2

3ε  
1

3ε  
2

33 9ε+  4.5223 
2

3ε  
2

3ε  

9 
2

3ε  
2

3ε  
2

3 38 4 8ε ε− +  5.2359 
2

3ε  
2

3ε  

 

  

(a) Implementation of ( )max 1 2,f x x   (b) Implementation of ( )min 1 2,f x x   

Fig. 2.22 Implementation of the Post functions 
1 2

max( , )y y  and 
1 2

min( , )y y  as 3-valued 

threshold functions ( )max 1 2,f x x and ( )min 1 2,f x x . Locations of the weighted sums in  

the complex plane are shown by *. Numbers nearby these locations are the numbers of the 

corresponding input samples (see Table 2.8 and Table 2.9). 
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Before we will move to the multi-valued neuron, it is important to mention that 

Definition 2.5 determines a discrete-valued threshold function of multiple-valued 

logic. Indeed, it is a function from T  to kE , where 
n

k
T E⊆ .  

 
Table 2.9 Post function 

min 1 2( , )f x x  is a 3-valued threshold function (a threshold function 

of 3-valued logic) with the weighting vector 
3 3 3(2 4 4 5 4 5 )W ε , + ε , + ε= +  

# 
1x  

2x  0 1 1 2 2z w w x w x= + +
 

arg( )z
 

( )P z
 

( )min 1 2,f x x  

1 
0

3ε  
0

3ε  10 14ε+  1.3282 
0

3ε  
0

3ε  

2 
0

3ε  
1

3ε  26 13 5ε ε+ +  1.9794 
0

3ε  
0

3ε  

3 
0

3ε  
2

3ε  211 9 4ε ε+ +  0.7662 
0

3ε  
0

3ε  

4 
1

3ε  
0

3ε  26 13 5ε ε+ +  1.9794 
0

3ε  
0

3ε  

5 
1

3ε  
1

3ε  22 12 10ε ε+ +  2.9514 
1

3ε  
1

3ε  

6 
1

3ε  
2

3ε  27 8 9ε ε+ +  3.6652 
1

3ε  
1

3ε  

7 
2

3ε  
0

3ε  211 9 4ε ε+ +  0.7662 
0

3ε  
0

3ε  

8 
2

3ε  
1

3ε  27 8 9ε ε+ +  3.6652 
1

3ε  
1

3ε  

9 
2

3ε  
2

3ε  212 4 8ε ε+ +  5.7596 
2

3ε  
2

3ε  

 

Since kE  is a set of kth roots of unity, both domain and co-domain of a multi-

ple-valued threshold function in terms of Definition 2.5 are discrete. However, in 

many classification problems features are continuous. In many prediction prob-

lems we need to have deal with time series of continuous data. Let us modify 

Definition 2.3 of a multiple-valued function over the field of complex numbers 

and Definition 2.5 of a multiple-valued threshold function, to be able to consider 

functions with a continuous domain and a continuous co-domain.  

We have already seen that any function ( )1,..., : n

nf x x K K→  of tradi-

tional multiple-valued logic can be easily represented as a function 

( )1,..., : n

n k kf x x E E→  of multiple-valued logic over the field of complex 

numbers, and there exist a one-to-one correspondence between functions of tradi-

tional multiple-valued logic and functions of multiple-valued logic over the field 

of complex numbers. A great advantage of the latter class of functions is that there 

are threshold functions among them. 

Let O be the continuous set of the points located on the unit circle. Let either 

k
T E⊆  or T O⊆ . 
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Definition 2.6 [61]. A function 1(   ) : n

n k
f x , ..., x T E→

 
is called a function of k-

valued logic over the field of complex numbers (or simply a k-valued function). 

The co-domain of f is discrete, while its domain can be either discrete or con-

tinuous. In general, its domain may be even hybrid. It should be mentioned that if 

some function 1(   )nf y , ..., y  is defined on the bounded subdomain 

,n
D D ⊂R , which means that this function is 

1(   ) : ; , , , , 1,...,n

n j j j j j
f y , ..., y D K y a b a b j n⎡ ⎤→ ∈ ∈ =⎣ ⎦ R , then it can 

be easily transformed to :
n

f O K→  by a linear transformation applied to each 

variable 

[ [, 0, 2 ,

1,..., ;0 2 ,

j j

j j j j

j j

y a
y a b

b a

j n

ϕ α π

α π

−⎡ ⎤∈ ⇒ = ∈⎣ ⎦ −

= < <

 (2.53) 

and then , 1,2,...,ji

jx e O j n
ϕ

= ∈ =  is the complex number located on the unit 

circle
2
. Since, there exists a one-to-one correspondence between K and k

E  , then 

we obtain a function 1(   ): n

n k
f x , ..., x O E→ . Now we can modify Definition 2.5 

as follows. 
 

Definition 2.7. A function 1(   ): n

n k
f x , ..., x T E→  is called a k-valued thresh-

old function if there exists a complex-valued vector ( )0 1 n
w ,w , ...,w  such that 

for all ( )1 n
x , ...,x  from the domain of the function 1(   )nf x , ..., x  equation 

(2.51) holds, so ( ) ( )1 0 1 1,..., ...n n nf x x P w w x w x= + + + , where ( )P z  is 

function (2.50). 

In the next section, right after we will define the continuous multi-valued  

neuron, we will consider implementation of functions whose both domain and  

co-domain are continuous. 

 

                                                           

2 The interval [ [0,2π  in (2.53) is open from the right side. This is important to avoid a 

collision, which follows from the fact that arguments 0 and 2π determine the same point 

on the unit circle. Since 0 2α π< < in (2.53), this guarantees that 

0 2 , 1,...,
j

j nϕ π≤ < = , and a point on the unit circle corresponding to the maximal 

value of , 1,...,jy j n=  does not coincide with a point corresponding to its minimal 

value. 
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2.2   Multi-Valued Neuron (MVN) 

2.2.1   Discrete MVN 

The discrete multi-valued neuron was introduced in 1992 [38] by N. Aizenberg 

and the author of this book. To be more specific, we have to mention that the term 

“multi-valued neuron” was used in [38] for the first time. However, it was in fact 

introduced by N. Aizenberg and his co-authors 20 years earlier, in 1971 [33, 35], 

as an “element of multiple-valued threshold logic” or “multi-valued threshold 

element”. Initially, the multi-valued neuron was considered as a neural element 

implementing only pure discrete input/output mapping 
n

k k
E E→ . In 2007, the 

author of this book and Claudio Moraga introduced the continuous multi-valued 

neuron [62]. Taking into account considerations given in [60] and just extended in 

the previous section, the author of this book suggested in [61] the following ad-

justed definition of the discrete multi-valued neuron. 

Let us consider a neuron (Fig. 1.3) with complex-valued inputs and output and 

with complex-valued weights. Inputs and output of this neuron are located on the 

unit circle. Moreover, its output is k-valued and it is one of the kth roots of unity 
2j i  j / k

e
πε = , {0 1,..., 1}j , k -∈ , i is an imaginary unity, while its inputs can be 

arbitrary complex numbers located on the unit circle. Weights can be arbitrary 

complex numbers. 

 

Definition 2.8. The discrete multi-valued neuron (MVN) is a neuron with the ac-

tivation function (2.50). It implements input/output mapping between n inputs and 

a single output according to (2.51). 

Hence, if 1,...., nx x  are the MVN inputs, then the MVN output is 

( ) ( )1 0 1 1,..., ...n n nf x x P w w x w x= + + + , where ( )P z  is function (2.50) that 

is 

( )( ) , 2 / arg 2 1 /j

kP z j k z j kε π π= ≤ < + . 

It follows from Definition 2.7 that an input/output mapping of the discrete MVN is 

always described by some k-valued threshold function of n variables )( 1 nx ..., ,xf . 

Thus, if nnxw...xwwz +++= 110  is the weighted sum of the MVN inputs, 

( )P z  is the MVN output. This means that any k-valued threshold function can be 

implemented by a single discrete MVN. Moreover, it follows from Definition 2.7 

and Definition 2.8 that the discrete MVN cannot implement input/output mappings 

that are not described by some k-valued threshold function. 

The functionality of the discrete MVN is higher than the functionality of other 

neurons. As we have seen, for 2k =  it coincides with the functionality of the 

threshold neuron. But for 2k >  it is always higher because the discrete MVN can 
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implement multiple-valued threshold functions, while a neuron with the threshold 

activation function cannot. Returning to the example with Post functions max and 

min considered in Section 2.1, we see that the discrete MVN really can easily im-

plement multiple-valued input/output mappings. The MVN functionality is also 

higher than the one of a neuron with the sigmoid activation function. Additionally 

to the 2-D illustration of the activation function (2.50), let us consider its 3-D  

interpretation (see Fig. 2.23). There is an example of 3-D interpretation of the ac-

tivation function (2.50) for 16k = . In Fig. 2.23, while the horizontal plane is the 

complex plane Re( ) Im( )z z , the vertical axis is arg z , the argument of the 

complex number z. The 3-D graph in Fig. 2.23 looks like infinite spiral stairs.  

Each stair corresponds to one of 

the sectors in which the com-

plex plane is divided by (2.50) 

(see also Fig. 2.21). Since, we 

consider k=16, there are exactly 

16 stairs in Fig. 2.23. Each stair 

is limited by its corner and bor-

ders from two sides (the angle 

between these borders is 2π/16 

in the particular case of k=16 

and 2π/k in general). However, 

each stair does not have any 

border from the third side, and it 

is infinite in the corresponding 

direction. This makes the  

multi-valued neuron much more 

flexible than other neurons be-

cause for each desired output 
j

k
ε , 0,1,..., 1j k= − , we 

have infinitely many opportuni-

ties to allocate a weighted sum in the jth stair (or sector in Fig. 2.21). This is a 

very important advantage of the multi-valued neuron over real-valued neurons.  

For many years, there were no commonly used approaches to represent multi-

ple-valued input/output mappings. For example, both sigmoid activation functions 

(logistic - (1.22) and hyperbolic tangent - (1.23) ) are continuous, but they are not 

suitable for representation of multiple-valued input/output mappings. If we need to 

have some certain desired output d, this means that there will be just a single ac-

ceptable value of the weighted sum, for which either function (1.22) or (1.23) 

takes the desired value d. Actually, this means that implementation of discrete in-

put/output mappings that differ from either logistic or tanh function using a single 

neuron can be possible just occasionally, moreover very rarely. In 1995, J. Si and 

A. Michel proposed [63] to divide that part of a sigmoid curve, corresponding to 

the argument interval [0, 1] for the logistic function or, respectively, [-1, 1] for the  

 

 

Fig. 2.23 3-D model of the discrete MVN activa-

tion function (50), k=16 
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tanh function, into k subintervals, to be able to implement k-valued discrete in-

put/output mappings. In this case, there is some limited level of flexibility, be-

cause to ensure that a neuron produces a desired output value, it is possible to fit a 

weighted sum into some small interval (of the length 1/k for the logistic function 

or (1-(-1))/k = 2/k for the tanh function). However, these intervals are in fact very 

small and therefore the flexibility of a single neuron to adapt to some highly 

nonlinear input/output mapping is very limited. This means that to learn those  

input/output mappings that are different from a sigmoid activation function, a 

network will be needed because the functionality and the flexibility of a single 

neuron are limited. 

The multi-valued neuron is incompatibly more flexible because for any desired 

output we have infinite amount of opportunities to fit a weighted sum in an infinite 

sector corresponding to the desired output. This is possible due to the fact that the 

MVN operates in the complex domain. This advantage of the discrete MVN is  

illustrated in Fig. 2.24. 

 

 

Fig. 2.24 Multi-valued activation function vs. sigmoid activation function. The multi-

valued neuron is much more flexible than a sigmoidal neuron. 

2.2.2   Continuous MVN 

The ability to implement input/output mappings that take continuous values is 

very important for solving prediction problems because, for example, time series 

that we may need to predict are typically continuous-valued. 

The continuous MVN was introduced in 2007 by the author of this book and 

Claudio Moraga in [62]. The discrete MVN implements an input/output mapping 

described by a threshold function of k-valued logic. If k → ∞ , then k-valued  

 



68 2   The Multi-Valued Neuron

 

logic becomes continuous-valued. Since we consider multiple-valued logic over 

the field of complex numbers, let us encode values of continuous-valued  logic  by  

numbers located on 

the unit circle like we 

do this for finite-

valued logic. If in the 

latter case, we use kth 

roots of unity to  

encode values of  

k-valued logic, in  

the continuous-

valued logic over the 

field of complex 

numbers its values 

can be arbitrary com-

plex numbers located 

on the unit circle. Let 

O be the set of num-

bers located on the 

unit circle. Let 
n

T O⊂ . Then any 

function ( )1,..., :nf x x T O→ , which maps the subspace T  of 
n

O  into the 

unit circle is a function of continuous-valued logic. 

As we have just mentioned, if we want to consider k-valued logic as continu-

ous-valued logic, we have to consider the case k → ∞ . Let us consider the acti-

vation function (2.50) of the discrete multi-valued neuron. It divides the complex 

plane into k equal sectors whose angular size is 2π/k. If k → ∞ , then 

2 / 0kπ → . So the angular size of a sector approaches 0. However, this means 

that according to (2.50) ( )2 / 2 1 /
k

j k j kπ π
→∞
→ + , and the MVN output be-

comes a projection of the weighted sum onto the unit circle. This leads us to the 

following definition of the continuous MVN activation function 
 

 ( ) /iArg z
P z e z z= = , (2.54) 

 

where Arg z is the main value of the argument of the complex number z (the main 

value of the argument is located in the interval [0,2 [π ) and z  is its absolute 

value. The activation function (2.54) is illustrated in Fig. 2.25. This activation  

function determines the continuous-valued MVN, which is a neuron with complex-

valued weights (that can be arbitrary complex numbers) and inputs and output that 

are complex numbers located on the unit circle. 

Suppose D ⊂ \  and 
nD  is the domain of some real-valued function 

1(   )nf y , ..., y  bounded on its whole domain. This means that the function’s  

 

Fig. 2.25 MVN continuous activation function (2.54) 
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co-domain is [ ], ; ,Y a b a b= ∈\ . Let the function’s domain is also bounded, 

that is each variable is located within some bounded interval. Hence 

1(   ) : ; , , , , 1,...,n

n j j j j j
f y , ..., y D Y y a b a b j n⎡ ⎤→ ∈ ∈ =⎣ ⎦ R . To imple-

ment this function using the continuous MVN, we need to transform it to a function 

: n
f O O→ . This can be easily done by a linear transformation (2.53) applied to 

each variable and by the similar transformation applied to the function values: 

[ [

[ ] [ [1
1

, 0,2 ;

1,..., ;0 2 ;

(   )
(   ) , 0,2 ;

0 2 ,

j j

j j j j

j j

n
n

y a
y a b

b a

j n

f y , ..., y a
f y , ..., y a b

b a

ϕ α π

α π

ϕ β π

β π

−⎡ ⎤∈ ⇒ = ∈⎣ ⎦ −

= < <

−
∈ ⇒ = ∈

−

< <

 (2.55) 

and then , 1,2,...,ji

jx e O j n
ϕ

= ∈ =  and 
i

e O
ϕ ∈  are the complex numbers 

located on the unit circle. It is important to mention that the interval [ [0,2π  in 

(2.55) is open from the right side as it was in (2.53). This is important to avoid a 

collision, which follows from the fact that arguments 0 and 2π determine the same 

point on the unit circle. 

It follows from the last considerations that any bounded real-valued function of 

real variables defined on the bounded domain can be transformed into the com-

plex-valued function : n
f O O→ . Then we can speak about the implementation 

of such a function either using the continuous MVN or MVN-based neural net-

work. It is important that it is always possible to invert the linear transformation 

(2.55) and to return back from the complex-valued function : n
f O O→  to the 

real-valued function : n
f D Y→  if all , , 1,...,j ja b j n=  and , , ,a b α β  are 

known. For example, if ( )1,...,
i

nf x x e O
ϕ= ∈  then 

( )
[ ],

b a
y a Y a b

ϕ

β

−
= + ∈ =  (2.56) 

is the value of the initial real-valued function. Transformation (2.56) is very  

useful, for example, when we need to transform predicted data to their initial real-

valued scale. We will use this transformation in Chapters 5-6.  

A 3-D model of the continuous MVN activation function (2.54) is shown in 

Fig. 2.26. Comparing it to the model of the discrete MVN activation function  

(Fig. 2.23), we see that there are no more spiral stairs (since there are no more  
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sectors on the complex plane), and there is a continuous and infinite helical sur-

face. Likewise in Fig. 2.23, the horizontal plane in Fig. 2.26 is the complex plane 

Re( ) Im( )z z , and the vertical axis is arg z   

The functionality of a 

single continuous MVN is 

higher than the one of a sin-

gle sigmoidal neuron. The 

continuous MVN is also 

more flexible than the sig-

moidal neuron. Suppose we 

need to implement some 

continuous-valued function 

using a single sigmoidal 

neuron. To ensure that the 

neuron produces the desired 

output d, we have to ensure 

that the weighted sum equals 

to a single acceptable value, 

which is determined by the 

inverse function of either 

(1.22) (
1ϕ −
) or (1.23) (ar-

tanh) depending on which 

one of them is used. It fol-

lows from this consideration that it is quite difficult to implement using a single 

sigmoidal neuron any continuous-valued function except its own activation func-

tion. If we need to solve the same task using the continuous MVN, we have the 

unlimited choice of potential acceptable values of weighted sums. If our desired 

output is 
i

e O
ϕ ∈ , then the ray Lϕ  generating the angle φ (counting in the coun-

terclockwise direction) between the real axis and itself, is the set of acceptable 

weighted sums. Indeed, z Lϕ∀ ∈  arg z ϕ= , and according to (2.54) the output 

of the continuous MVN is 
i

e
ϕ

. For example, in Fig. 2.25, the weighted sums 1z  

and 2z  produce the same output 
i

e
ϕ

, where 1 2arg argz zϕ = = . 

It is important to mention that the implementation of some input/output map-

ping using a neuron means that this mapping should be learned by the neuron. In 

Chapter 3, we will consider learning algorithms for MVN. 

But first we would like to consider the separation of an n-dimensional space, 

which is established by the MVN and its discrete and continuous activation  

functions. 

 

Fig. 2.26 3-D model of the continuous MVN activation 

function (2.54) 
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2.3   Edged Separation of n-Dimensional Space 

We have introduced the discrete multi-valued neuron as a neural element whose 

input/output mapping is described by a multiple-valued threshold function. We 

told that MVN implements a multiple-valued threshold function. What does it 

mean from the geometrical point of view? How the discrete MVN separates an  

n-dimensional space where a multiple-valued threshold function representing its 

input/output mapping is defined? How the continuous MVN separates an n-

dimensional space where its input/output mapping is defined? Answers to these 

questions are very important for understanding of how MVN works and for solv-

ing classification problems using MVN and MVN-based neural networks. 

We have to mention that this section naturally contains necessarily mathemati-

cal considerations that are deeper than the ones in other sections of this book. 

Those readers who do not want to go to the mathematical details may skip over 

detailed proofs. Those who interested just in application of MVN and MVN-based 

neural networks may even skip over this whole section. However, that mathemat-

ics, which we use here, does not go beyond linear algebra and basic analytical ge-

ometry and we believe that its reading and understanding should not be difficult. 

But its understanding should be very important for understanding of those specific 

advantages that characterize MVN and MVN-based neural networks. 

Let us first recall that when a neuron with the threshold activation function im-

plements some mapping from n inputs to a single output, from the geometrical 

point of view this means (see Section 1.1, Fig. 1.4a) that there exists a hyperplane, 

which separates the “1” outputs from the “-1” outputs. The neuron’s n+1 weights 

determine the coefficients of the hyperplane equation. This hyperplane separates 

the n-dimensional space 
n\  over the field of real numbers into the two  

subspaces. One of them contains all the points 
(1) (1) (1)

1 2, ,...,
n

x x x  marked by 1s 

(corresponding to the neuron output 1), while another one contains all the points 
( 1) ( 1) ( 1)

1 2, ,...,
n

x x x− − −
 marked by -1s (corresponding to the neuron output -1). If 

our threshold neuron solves some two-class classification problem, this means that 

a hyperplane determined by the neuron’s weights separates two classes. Objects 

belonging to the first class are located on the one side from the hyperplane, while 

objects belonging to the second class are located on the opposite side from the hy-

perplane. Another popular machine learning tool, the support vector machine, 

works similarly. What about MVN? 

2.3.1   Important Background 

Let us return first to the definition of the activation function P(z) (see (2.50) ). It is 

not defined in the z=(0,0). Let us agree that we always can define P(0) assigning it  
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equal to { }0 1, ,...,t k

k k k k k
Eε ε ε ε −∈ = . In this case, if (0,…,0) is a weighting vec-

tor of some function 1( ,..., )nf x x , then there exists 0 0, 0w w∈ ≠^  such that 

( )0 ,0,...,0w  is also a weighting vector of the same function 1( ,..., )nf x x . In-

deed, if (0) t

k
P ε= , then it is always possible to find 0 0, 0w w∈ ≠^  such that 

0( ) t

k
P w ε= . 

We need to consider one important extension of the definition of a k-valued 

threshold function. Let us extend the Definition 2.7 in the following way. 
 

Definition 2.9. We will call any complex-valued function 

1( ,..., ) : ; n

n
f x x T T→ ⊂^ ^ , a complex-valued threshold function, if it is 

possible to find a complex-valued weighting vector W w w wn= ( , ,..., )0 1 , and to 

define P(0) in such a way that the equation 

( )1 0 1 1( ,... ) ( ... )n n nP f x x P w w x w x= + + +  (2.57) 

 

(where P is the function (2.50)) is true for all 1( ,..., )nx x T∈  (for all 

1( ,..., )nx x  from the domain of the function f ). 

Evidently, a k-valued threshold function (a threshold function of k-valued logic, 

see Definition 2.7) is a particular case of complex-valued threshold function. It is 

also evident that the set of all k-valued threshold functions is a subset of the set of 

all complex-valued threshold functions for any fixed value of k. 

It is clear that if (0, 0, ..., 0) is a weighting vector of a function f, then such a 

w0 0≠  exists that ( , , ..., )w0 0 0    is also a weighting vector of the function f. 

Really, if P
t(0) = ε , then w0 0≠  should be chosen in such a way that 

P w
t( )0 = ε . Moreover, the following statement is true. 

 

Theorem 2.1. If ( )0 ,  0,  ...,  0w  is a weighting vector of function 

1( ,..., )nf x x , which is a complex-valued threshold function, and if the domain 

of 1( ,..., )nf x x  is bounded, then a complex number ′w0  and a real number 

δ > 0  exist such that for all the ,   1,2,...,jw j n= , for which | |
j

w δ< , the 

vector ( , , ..., )′w n0 1 w   w  also is a weighting vector of the function f. 

 

Proof. Let 0
( ) tP w ε=  and let without loss of generality 0

tw ε=  (see Fig. 2.27). 

Then 1( ,..., )nX x x T∀ = ∈ : 
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( ) 0 1( ) ( 0 ... 0 ) t

nP f X P w x x ε= + ⋅ + + ⋅ = , therefore ( )P f X const( ) .=  

Let 

1

2
0

t

w ε
+

′ = , which corresponds to the rotation of w0  by the angle 
k

π
  

(see Fig. 2.27). Since the domain of the function 1( ,..., )
n

f x x  is bounded, N > 0 

exists such that | | , , ,,...,x N nj < = j 12 . Let 
sin( / )k

Nn

π
δ = , and taking all the 

w nj , , ,..., j = 1 2  in such a way that | |w j < δ , we obtain the following:  

( )

( )
1 1 1 1 1... | || | ... | || | | | ... | |

sin / ,

n n n n n
w x w x w x w x N w w Nn

k

δ

π

+ + ≤ + + < + + < =

=

where ( )sin / kπ  is the dis-

tance from the point ′w0  to the 

bound of a sector which it be-

longs to (see Fig. 2.27). 

Therefore the sum of vectors 

(on the complex plane) corre-

sponding to the complex 

numbers ′w0  and 

w x w xn n1 1+ +...  for any 

( )1,..., nx x T∈  is always lo-

cated within the same semi-

open sector that the vector 

corresponding to ′w0 . This 

means that the following cor-

respondence also holds for the 

complex numbers 0w′  and 0 1 1 ...
n n

w w x w x+ + + : 

P w P w w x w xn n( ) ( ... )′ = + + +0 0 1 1 . Taking now into account that 

P w P w( ) ( )′ =0 0 , it is easy to conclude that if ( , , ..., )w0 0 0    is a weighting 

vector then the vector ( , , ..., )′w n0 1 w   w  also is a weighting vector of the func-

tion f. Theorem is proven. 

According to Theorem 2.1, it is possible to find such a weighting vector 

( )0 1,  ,  ...,  
n

w w w  for a threshold function with a bounded domain that at least 

one of the components  w   w1 , ..., n  is not equal to zero. It is also evident that it 

is possible to find a weighting vector with the same property not only for a k-

valued threshold function with a bounded domain, but for a function with an arbi-

trary domain upon a condition that P f x x constn( ( ,... ))1 ≠ . Really, the last 

 

Fig. 2.27 Illustration to Theorem 2.1 
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condition involves the following: it is possible to find such vectors 

1 1, ,   ( ,..., ) ( ,..., )
n n

Tα β α α α β β β∈ = ≠ =  that  

 

( ( )) ( ( )) ( ( )) ( ( ))P f P W P W P fα α β β= ≠ = . 

From the last expression it is evident that ( ) ( )W Wα β≠ , 

and 1 1 1( ) ( ) ( ) ... ( )
n n n

W W w wα β α β α β− = − + + − . Taking into account 

that at least one of the differences 0; 1,...,j j j nα β− ≠ = , we have to conclude 

that at least one complex number from  w   w1 , ..., n  is not equal to zero. The  

following theorem has been proven by the latest considerations. 

 

Theorem 2.2. If at least one of the following conditions is true for the complex-

valued threshold function f x xn( ,..., )1  defined on the set 
nT ⊂ ^ : T is bounded 

or 1( ( ,... ))
n

P f x x const≠ , then it is possible to find a weighting vector 

W w w wn= ( , ,..., )0 1  for this function such that at least one of its the components 

 w   w1 , ..., n  is not equal to zero. 

Now, using Theorem 2.1 and Theorem 2.2 we can investigate that separation of 

an n-dimensional space, which is determined by the discrete MVN activation 

function (2.50) in conjunction with the weights determining a particular in-

put/output mapping. 

2.3.2    Separation of an n-Dimensional Space 

So let one of the numbers  w   w1 , ..., n  be nonzero. Let us consider a linear func-

tion W X w w x w xn n( ) ...= + + +0 1 1 , which is defined on 
n^ without connec-

tion with some k-valued threshold function. Let us investigate where those points 

( )1,...,
n

n
x x ∈^  are located, for which ( )( ) i

P W X e
ϕ= . Thus, our goal is to 

clarify a geometrical interpretation of the set 
 

{ | ( ( )) }n i
C P W e

ϕ
ϕ α αΠ = ∈ =  (2.58) 

 

where [ [1 0 1 1( ,..., ) ,   ( ) ,..., ,   0,2n

n n n
W w w wα α α α α α ϕ π= ∈ = + ∈^ , 

and 0
j

w ≠ at least for one of j=1, 2, ..., n. Since ( ( )) i
P W e

ϕα = , then for the 

continuous MVN this means that arg( ( ))W X ϕ= , and for the discrete MVN 

this means that arg( ( )) 2 /W X kϕ ϕ π≤ < + . Let us consider for simplicity, 
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but without loss of generality the case arg( ( ))W X ϕ= . This equality can be 

expressed as the equivalent system of equalities 
 

Re( ( )) cos

Im( ( )) sin

W X t

W X t

ϕ

ϕ

=

=
 (2.59) 

where t ∈\ . 

Let x a ib nj j j= + =, , ,..., j 1 2  and w u iv nj j j= + =, , ,..., j 0 1 , where i 

is an imaginary unity. Then system (2.59) may be transformed to 
 

0 1 1 1 1

0 1 1 1 1

... ... cos( )

... ... sin( ).

n n n n

n n n n

u u a u a v b v b t

v v a v a u b u b t

ϕ

ϕ

+ + + − − − =

+ + + + + + =
  

 

After an elimination of the parameter t from the last system of equations, we  

obtain the following linear equation: 
 

1 1 1

1 1 1

0 0

( sin cos ) ... ( sin cos )

( cos sin ) ...

( cos sin ) sin cos 0.

n n n

n n n

u v a u v a

u v b

u v a u v

ϕ ϕ ϕ ϕ

ϕ ϕ

ϕ ϕ ϕ ϕ

− + + − −

− + − −

− + + − =

 (2.60) 

 

Taking into account that wj ≠ 0  for at least one of j=1, 2, ..., n, we can conclude 

that at least one of the coefficients under the variables a a b bn n1 1,..., , ,...,  is not 

equal to zero as well. It means that the rank of (2.60) as of a system of linear alge-

braic equations is equal to 1.  

Really, let us suppose that the opposite is true, so that all the coefficients under 

the variables a a b bn n1 1,..., , ,...,  are equal to zero. Then we obtain a system of 2n 

homogenous equations with 2n unknowns u u v vn n1 1,..., , ,...,  which can be bro-

ken up into n pairs of the equations as follows: 

sin cos 0,

cos sin 0,   1, 2,..., .

j j

j j

u v

u v j n

ϕ ϕ

ϕ ϕ

− =

+ = =
 

The determinant of the last system is equal to 
2 2sin ( ) cos ( ) 1ϕ ϕ+ = .  

Therefore 0,  0; 1,2,...,j ju v j n= = = . But this means that 

1 2 ... 0,
n

w w w= = = =  which contradicts to choice of the wj  in (2.58). 

Thus, we just proved that equation (2.60) defines the hyperplane Tϕ  within the 

space 
2n\ . But system (2.59) is not equivalent to equation (2.60) for t > 0, and 

ϕΠ  does not coincide with the hyperplane Tϕ . 
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Theorem 2.3. There is the plane { }0 | ( ) 0nT X C W X= ∈ =  of a dimension 

2n-2 in 
2n\ , which separates the hyperplane Tϕ  into two half-hyperplanes. One 

of them is that “half” 
0t

Tϕ
>

 of the hyperplane Tϕ , for which 0t >  in (2.59) and 

another one is that “half” 
0t

Tϕ
<

 of Tϕ , where 0t <  in (2.59). The plane 0T  is de-

fined by the equations 

Re( ( )) 0,

Im( ( )) 0,

W X

W X

=

=
 (2.61) 

or (which is equivalent): 

0 1 1 1 1

0 1 1 1 1

... ... 0,

... ... 0.

n n n n

n n n n

u u a u a v b v b

v v a v a u b u b

+ + + − − − =

+ + + + + + =
 (2.62) 

Proof. First of all we have to show that 0T  is a plane within 
2n\ . This follows 

from the fact that the rank of the system of equations (2.62) is equal to 2. Really, 

since at least for some 1,...,j n= , 0jw ≠ , then the determinant 

2 2 2| | 0
j j

j j j

j j

u v
u v w

v u

−
= + = >  

for at least some value of 1,...,j n= . It is also evident that 0T  does not depend 

on a value of ϕ (see (2.62)) and additionally [ [ 00,2  T Tϕϕ π∀ ∈ ≠ ∅∩ . This 

means that 
0

0 2

T Tϕ
ϕ π≤ <

= ∩ . Theorem is proven. 

It should be noted that 0T  is an analytical plane [64] of a dimension n-1 within 

the space 
n^  because 0T  is defined by the linear equation W X( ) = 0  in 

n^ , in 

other words its equation depends on the variables 1,..., n
x x , and does not depend 

on the conjugate variables 1,..., n
x x . 

Let 
1

0
T  be a linear subspace of a dimension 2n-2 of the space 

2n\  corre-

sponding to the plane 0T . Therefore, 
1

0
T  is the space of solutions of the system, 

which consists of the following two homogenous equations 

1 1 1 1

1 1 1 1

... ... 0,

... ... 0.

n n n n

n n n n

u a u a v b v b

v a v a u b u b

+ + − − − =

+ + + + + =
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Let also 
0

Sϕ  be the orthogonal complement
3
 [65] of some subspace of the space 

1

0
T . Then 

0 0

0 2

S Sϕ
ϕ π≤ <

= ∪  is the orthogonal complement to the whole space 
1

0
T . 

Each of 
0

Sϕ  is defined by the following system of 2n-2 algebraic equations 

1 1 1

2 2 1 1

( ,..., ,  ,..., ) 0,

........................................

( ,..., ,  ,..., ) 0.

n n

n n n

s a a b b

s a a b b

ϕ

ϕ
−

=

=

 (2.63) 

Evidently, all of 
0

Sϕ  are two-dimensional subspaces of 
2n\ , and therefore they 

are two-dimensional planes in 
2n\ . 

 

Theorem 2.4. The planes 
0 ,0 2Sϕ ϕ π≤ <  and 0T  have a single common point 

0M  (see Fig. 2.28). 
 

Proof. Intersection of the planes 
0 ,0 2Sϕ ϕ π≤ <  and 0T  is defined by the  

following system of linear equations: 

which is a result of the union of the systems of linear algebraic equations (2.62) 

and (2.63), which define 0T  and all the 
0 ,0 2Sϕ ϕ π≤ < , respectively. 

                                                           
3 The orthogonal complement V ′  of the subspace V  of the space W  is the set of all vec-

tors in W  that are orthogonal to every vector in V  [65]. 

1

1

0 1 1 1 1

0 1 1 1 1

1 1 1

2 2 1 1

... ... 0,

... ... 0,

( ,..., ,  ,..., ) 0,

............................................

( ,..., ,  ,..., ) 0,

.............................

n n n n

n n n n

n n

n n n

u u a u a v b v b

v v a v a u b u b

s a a b b

s a a b b

ϕ

ϕ
−

+ + + − − − =

+ + + + + + =

=

=

1 1 1

2 2 1 1

...............

( ,..., ,  ,..., ) 0,

............................................

( ,..., ,  ,..., ) 0,

............................................

j

j

n n

n n n

s a a b b

s a a b b

ϕ

ϕ

−

=

=

 (2.64) 
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On the one hand, it is evident that the rank of the matrix of the system (2.64) 

does not depend on the number of hyperplanes 
0

Sϕ , and it is equal to 2n (the sum of  

dimensions of the subspace 
1

0
T  and 

its orthogonal supplements 
0

Sϕ ). On 

the other hand, this is a system with 

respect to exactly 2n unknowns 
0 0 0 0

1 1
,..., ,  ,...,

n n
a a b b . This 

means that it has a single solution 

( )0 0 0 0 0

1 1,..., ,  ,...,
n n

M a a b b=  

that is the point of intersection of all 

the orthogonal complements 
0 ,0 2Sϕ ϕ π≤ <  and the plane 0T . 

Theorem is proven. 

Theorem 2.4 is illustrated in  

Fig. 2.28. The planes 0T , 
0

/2
Sπ , and 

0Sπ  have a single common point 

0M  where they intersect. Evi-

dently, all the planes 
0 ,0 2Sϕ ϕ π≤ <  have the same common point 

0M , which 

is also the point of their intersection with the plane 0T . 

 

Theorem 2.5. The plane 
0

Sϕ  of a dimension 2 intersects with the half-hyperplane 

0t
Tϕ

>
 of the hyperplane Tϕ  by the ray Lϕ  originating at the point 

0M  (see  

Fig. 2.29).  

Proof. Intersection of the plane 
0

Sϕ  with the hyperplane Tϕ  is a plane within 

2n\ , which is defined by the following system of linear algebraic equations: 

 

Fig. 2.28 Illustration to Theorem 2.4.  

Planes 0T , 
0

/2
Sπ , and 

0Sπ  have a single  

common point 
0M . 

1 1 1

2 2 1 1

1 1 1

1 1 1

0 0

( ,..., ,  ,..., ) 0,

............................................

( ,..., ,  ,..., ) 0,

( sin cos ) ... ( sin cos )

( cos sin ) ... ( cos sin )

sin cos 0

n n

n n n

n n n

n n n

s a a b b

s a a b b

u v a u v a

u v b u v a

u v

ϕ

ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ

−

=

=

− + + − −

− + − − + +

+ − =

 (2.65) 
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that is the result of the union of the systems of linear algebraic equations (2.63) 

and (2.60), which define the plane 
0

Sϕ  and the hyperplane Tϕ , respectively. The 

rank of the system (2.65) is equal to 2n-1 for any [ [0,2ϕ π∈ . This means that 

all the equations of this system are linearly independent. Really, suppose that the 

opposite is true. Let the equations in (2.65) are linearly dependent. Since the equa-

tion (2.60) is a linear combination of the equations (2.62), the linear dependence 

of the equations of (2.65) follows to the conclusion that the equations of the sys-

tem (2.64) also are linearly dependent. The last conclusion contradicts to the fact, 

which has been shown in the proof of Theorem 2.4. This means that the rank of 

the system (2.65) is equal to 2n-1, and therefore this system defines a plane of a 

dimension 1, that is a line. Finally, 
0t

Tϕ
>

 is separated from the rest part of the hy-

perplane Tϕ  by the plane T 0
, which intersects with the plane 

0
Sϕ  in the single 

point 
0M  (see Fig. 2.29). Therefore, a part of the line defined by (65) forms the 

ray 
0 0

L S T Sϕ ϕ ϕ ϕ ϕ= = Π∩ ∩  

originating at the point 
0M .  

Theorem is proven. 

Let us choose a polar coordinate 

system with the center 
0M  and the 

polar axis 0   ( 0)L ϕ = , which is 

the intersection of the planes 
0

Sϕ  

and T 0
. 

We will consider the smaller an-

gle from the two angles between the 

rays Lϕ  and Lψ  as angle between 

these rays. Since k ≥ 2, a value of 

the angle between Lϕ  and Lψ  is 

always less than or equal to π. 

Theorem 2.6. A value of the angle between the polar axis 0L  and the ray Lϕ  is 

equal to ϕ (see Fig. 2.29). 

Remark. Evidently, the angle between the half-hyperplanes 
0t

Tϕ
>

 and 
0t

Tψ
>

 is 

measured by the linear angle between Lϕ  and Lψ . So, this theorem is equivalent 

to the following one: the angle between the half-hyperplanes 0TϕΠ ∩  and 
0t

Tϕ
>

 

is equal to ϕ (see Fig. 2.29). 

 

Fig. 2.29 Illustration to Theorem 2.5 
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Proof. The space 
2n\  should be considered as 2n-dimensional Euclidian space 

with the obvious dot product 

2

1

( , )
n

j j

j

a b a b
=

=∑ , where ),...,( 21 naaa = , 

),...,( 21 nbbb = . Therefore, cosine of the angle γ between the vectors a b R n, ∈ 2
 

may be evaluated as follows: 
 

( , )
cos

| || |

a b

a b
γ =  (2.66) 

 

where ),(|| aaa =  is the Euclidian norm of the vector a. The angle between 

the half-hyperplanes 
0

TϕΠ ∩  and 
0t

Tϕ
>

 is equal to the angle between the normal 

vectors 
G
n0  and nϕ

G
. 

Let 
G
n a a n0 1 2= ( ,..., )  and 1 2( ,..., )nn b bϕ =

G
. It follows from (2.60) that 

1 1 1 1

1 1 1 1

2

sin 0 cos0 ,

.................................

sin 0 cos 0 ,

cos0 sin 0 ,

.................................

cos0 sin 0

n n n n

n

n n n n

a u v v

a u v v

a u v u

a u v u

+

= − = −

= − = −

= − − = −

= − − = −

 (2.67) 

and 

1 1 1 1

1 1 1 1

2

sin cos ,

.................................

sin cos ,

cos sin ,

.................................

cos sin .

n n n n

n

n n n n

b u v v

b u v v

b u v u

b u v u

φ φ

φ φ

φ φ

φ φ

+

= − = −

= − = −

= − − = −

= − − = −

 (2.68) 

 

Then taking into account (2.66), we obtain 
0

0

( , )
cos

| || |

n n

n n

ϕ

ϕ

γ =

G G
G G . Let us substitute 

the coordinates of the vectors 
G
n0  and nϕ

G
 from the equations (2.67)-(2.68) in the 

last equation. Then we obtain the following: 
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1

2 2 2 2

1

( )( sin cos ) ( )( cos sin )

cos ,

( ) ( sin cos ) ( cos sin )

n

j j j j j j

j

n

j j j j j j

j

v u v u u v

v u u v u v

ϕ ϕ ϕ ϕ

γ

ϕ ϕ ϕ ϕ

=

=

⎡ ⎤− − + − − −⎣ ⎦
=

⎡ ⎤+ − + − −⎣ ⎦

∑
∑  

and after simplification: 

2 2

1

2 2 2 2 2 2 2 2

1 1

cos ( )

cos

( ) (sin cos ) (cos sin

cos

n

j j

j

n n

j j j j

j j

v u

v u u v

ϕ

γ

ϕ ϕ ϕ ϕ

ϕ

=

= =

+

= =

⎡ ⎤+ + + +⎣ ⎦
=

∑
∑ ∑

This means that the angle between 
0

TϕΠ ∩  and 
0t

Tϕ
>

 is equal to ϕ, and the proof 

is completed. 

The following statement, which generalizes Theorem 2.6, is important. 
 

Theorem 2.7. The angle between the half-hyperplanes 
0t

Tϕ
>

 and 
0t

Tψ
>

 is equal  

to ψ - ϕ. 

A proof of this theorem is similar to the proof of the previous one. It is just 

necessary to apply (2.66) to the vectors nϕ

G
 and nψ

G
. It also clearly follows from 

Theorem 2.3 - Theorem 2.7 that all hyperplanes 2 ; 0,1,..., / 2
j

k

T j kπ = ⎡ ⎤⎢ ⎥  

(where a⎡ ⎤⎢ ⎥  is the ceiling function returning the smallest integer, which is larger 

than a) have a single common point 
0M  where they intersect. 

Let now 

1
2

,    =0,1,..., 1.j
k

j j

Q j kϕ
ϕ

π
≤ < +

= Π −∪  
(2.69) 

Taking into account that 
0

Sϕ  is a two-dimensional plane, we can conclude that 

0 ,   0,1,..., 1
j

S Q j kϕ = −∩  is a semi-open sector with the center M 0
, and 

bounded by the rays 2
j

k

L π  and 2
( 1)j

k

L π
+

 within the plane 
0

Sϕ . The first of these 

rays belongs to the mentioned sector (without the point M 0
), and the second one 

does not belong to this sector. According to Theorem 2.7, the angle between these 

sectors is equal to 2 / kπ . 
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2.3.3   k-Edge 

Thus, we have realized that for any fixed k, an n-dimensional space is separated  

by the hyperplanes 2 ; 0,1,..., / 2
j

k

T j kπ = ⎡ ⎤⎢ ⎥  into the subspaces 

,   0,1,..., 1jQ j k= − , which are determined by (2.69). 

 

Definition 2.10. An ordered collection of the sets { }0 1 1,  ,  ...,  
k

Q Q Q Q −=  is 

called a k-edge corresponding to the given linear function 

W X w w x w xn n( ) ...= + + +0 1 1 . The set Q j  is the jth edge of the k-edge Q. The 

set 0T  (a plane of a dimension 2n-2) is called a sharp point of the k-edge Q. 

Let us for simplicity use the notation 
0

S  for the plane 
0

2 /k
S π . It should be 

noted that the edges 110  ..., , , −kQQQ  of the k-edge Q are enumerated by such a 

way that their intersections 
0 ,   0,1,..., 1jQ S j k= −∩  with the plane 

0
S  in-

duce a sequence  

0 0 0

0 1 1
( ,  ,  ...,  )

k
Q S Q S Q S−∩ ∩ ∩  (2.70) 

 

of the sectors of the same angular 

size 2 / kπ  within the two-

dimensional plane 
0

S , and follow-

ing one by one in a positive  

direction. We assume that the posi-

tive direction is the direction of the 

rotation around the center M 0
 

within the plane S 0
 from the ray L0  

to the ray 2 /kL π  (counterclock-

wise). Thus, our considerations 

(Theorem 2.1-Theorem 2.7) finally 

lead us to Definition 2.10 of the k-

edge. We can conclude now that if 

the discrete MVN implements some 

input/output mapping, its weights 

along with its activation function determine the separation of that n-dimensional 

space where this mapping is defined by the k-edge Q. This k-edge is formed by 

the family of separating hyperplanes 2 ; 0,1,..., / 2
j

k

T j kπ = ⎡ ⎤⎢ ⎥  that have a single 

common point 
0M . Thus, the k-edge separates the n-dimensional space into k 

 

Fig. 2.30 k-edge for k=6, n=2 
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subspaces 2 ; 0,1,..., 1
j

k

j kπΠ = −  corresponding to the edges 110  ..., , , −kQQQ  

of the k-edge. In Fig. 2.30, we see the example of the k-edge for k=6, n=2. The 

space 
n^  is divided by the hyperplanes 0 2

6

,T T π  and 2
2

6

T π
⋅

 into six subspaces 

2 ; 0,1,...,5
j

k

jπΠ =  corresponding to the edges 0 1 5, ,...,Q Q Q  of the 6-edge 

created by the hyperplanes 2 ; 0,1,2
j

k

T jπ = . In Fig. 2.31, the same 6-edge is  

shown together with the plane 
0

Sϕ , which passes through the k-edge creating the 

rays 

 

2 ; 0,1,..., 1
j

k

L j kπ = −  as a result 

of its intersection with the edges 

0 1 5, ,...,Q Q Q  of the 6-edge. The 

corresponding six rays 

0 2 2
5

, ,...,
k k

L L Lπ π
⋅

 are also shown 

in Fig. 2.31. As we have shown ear-

lier (Theorem 2.6 and Theorem 2.7)  

the smaller angle between the hy-

perplanes 2
j

k

T π  and 2
( 1)j

k

T π
+

 , as 

well as the angle between all adja-

cent rays 2
j

k

L π  and 2
( 1)j

k

L π
+

 is 

equal to φ. 
 

Particularly, in Fig. 2.31, for k=3, 2 / 6ϕ π= . The rays 

2 ; 0,1,..., 1
j

k

L j kπ = −  belong to the plane 
0

Sϕ . This means that the k-edge  

corresponding to the given linear function 0 1 1( ) ... n nW X w w x w x= + + +  

“projects” all points ( )1,..., nx x  from the corresponding n-dimensional space on 

the plane 
0

Sϕ . Since ( )W X ∈^ , we may associate the plane 
0

Sϕ  with the com-

plex plane. The point 
0M  corresponds to the complex number (0, 0) (the origin). 

The ray 0L  in this case can be treated as the positive direction of the real axis. As 

a result, the rays 2 ; 0,1,..., 1
j

k

L j kπ = −  divide the plane 
0

Sϕ  (and the complex 

 

Fig. 2.31 k-edge for k=6 and its projection into 

the plane 
0

Sϕ . This projection “generates” the  

activation function P(z) 
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plane, respectively) into k equal sectors. This absolutely corresponds to the  

discrete MVN activation function (2.50), which divides the complex plane into k 

equal sectors. 

Thus, answering the question about a geometrical interpretation of the set ϕΠ  

determined by (2.58), we can say that for the discrete MVN and discrete-valued 

activation function (2.50) this is a bounded subspace of the space 
n^  such that 

for any ( )1,..., nx x ϕ∈Π   

( )0 1 1arg ( ... ) 2 /n nW w w x w x kϕ ϕ π≤ + + + < + . 

For the continuous MVN and the continuous activation function (2.54), k → ∞  

and 0ϕ → . Therefore, the k-edge consists of the infinite amount of hyperplanes 

still intersecting in a single common point 
0M . In this case, ϕΠ , which is deter-

mined by (2.58), is a bounded subspace of the space 
n^  such that for any 

( )1,..., nx x ϕ∈Π  ( )0 1 1arg ( ... )n nW w w x w x ϕ+ + + = . 

Let us consider now some important properties of the k-edge and how these 

properties can be employed for solving multi-class classification problems using 

the discrete MVN and approximation of continuous-valued functions using the 

continuous MVN. 

2.3.4   Properties of the k-Edge 

Definition 2.11. An ordered decomposition of the non-empty set M is a sequence 

1,..., sM M  of non-empty subsets of the set M, which are mutually disjoint, and 

union of which is equal to the set M. 

Let us denote an ordered decomposition via [ ]1,..., sM M  and the fact that it 

is an exact decomposition of the set M should be written as 

[ ]1,..., sM M M= . ( ) 0W α = for α ∈T0 according to the equations (2.61). As 

it was mentioned above, we have to set some value from the set kE  as a value of 

the function P on the zero (P(0) ). It will be natural to connect the sharp point 0T  

of the k-edge with the fixed edge tQ . We can use the following notation in such a 

case 
0

t t
Q S Q=∩ . An ordered collection of the sets 

{ }0 1 1,  ,  ..., , ...,  t kQ Q Q Q −  may be denoted as t
Q , or Q , if a number t is  

unknown, or, if its exact value is not important. In such a case Q  and Q form the 

same k-edge corresponding to a linear function ( )W X . The notations 
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{ }0 1 1,  ,  ..., , ...,  t kQ Q Q Q Q −=  and { }0 1 1,  ,  ..., , ...,  
t k

Q Q Q Q Q −=  are 

equivalent in such a case. In other words, we will denote sometimes the compo-

nent Q Tt ∩ 0  of the k-edge Qt  as Qt . Therefore one of the k-edges Q or Q  

shows, is Qt  connected with one of them. We can conclude now that Q  forms an 

ordered decomposition of the space 
n^   

0 1 1,  ,  ..., , ...,  n

t k
Q Q Q Q −
⎡ ⎤= ⎣ ⎦^ . 

Theorem 2.8. If the vector 1( ,..., )naα α=  from the space 
n^  belongs to the 

jth edge of the k-edge Q , then ( ( )) j
P W α ε= . 

 

Proof. ( ) ( ) i
P W e

ϕ
ϕα α∀ ∈Π =  according to (2.58). It follows from (2.69) 

that 2 / 2 ( 1) /j k j kπ ϕ π≤ < +  for jQϕΠ ∈ . 

Therefore we obtain 2 / arg( ( )) 2 ( 1) /j k W j kπ α π≤ < +  for jQ∈α . If 

0Tα ∈  (it also means that t
Qα ∈ ) then ( ) 0W α = , and therefore 

( ( )) t
P W α ε= , which completes the proof. 

 

Theorem 2.9. If the condition ( ( )) j
P W α ε=  is true for some 

1
( ,..., ) n

n
aα α= ∈^ , then jQα ∈ . 

 

Proof. Let ( ) 0W α ≠ , and ( ( )) j
P W α ε= . Then 

2 / arg( ( )) 2 ( 1) /j k W j kπ α π≤ < + . The edges 0 1 1,  ,  ...,  kQ Q Q −  form an 

ordered decomposition of the space 
n^ , and therefore α belongs to one of the 

edges, and to one of the half-hyperplanes ϕΠ  , exactly to such that 

2 / 2 ( 1) /j k j kπ ϕ π≤ < + . It means that jQ∈α  according to (2.58) and 

(2.69). Let now ( ( )) t
P W α ε= , and ( ) 0W α = . Then 0T∈α  according to 

(2.61), and therefore also t
Qα ∈ . 

We are ready now to consider a very important correspondence between a 

complex-valued threshold function (or a k-valued threshold function) and the  

k-edge corresponding to this function. This relationship is important for under-

standing how multi-class classification problems can be solved using MVN or 

MVN-based neural networks. 

Theorem 2.10. Let ( )1,..., nf x x  be a complex-valued threshold function, which 

is defined on the set 
nT ⊂ ^ , and at least one of the following conditions holds:  
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1) The set T is bounded; 2) ( )( )1,..., nP f x x const≠ . Then such a k-edge 

{ }Q Q k= −0 1 1, , ..., Q   Q exists that  

( )1 ( ,..., )   ( ) j

n jT Q P fα α α α ε∀ = ∈ =∩ . 

Proof. Let 0 1 ( ,  ,  ...,  )nW w w w=  be such a weighting vector of the given 

function f that at least one of its components  w   w1 , ..., n  is not equal to zero. 

According to the conditions of the theorem and to the above considerations it is 

always possible to find such a weighting vector for the function f. 

Let us consider a linear function 0 1 1( ) ... n nW X w w x w x= + + + . Let 

{ }0 1 1,  ,  ...,  kQ Q Q Q −=  be a k-edge corresponding to this linear function. 

Since f is a threshold function, then ( ) ( )( ) ( )P f X P W X= . Therefore, if 

( )1,..., n jX x x T Q= ∈ ∩ , then according to Theorem 2.8 ( ) ( ) j
P f α ε= . 

Theorem is proven. 

The inverse theorem is also true. Moreover, it is not necessary to put the re-

strictions on the domain of a function f. 
 

Theorem 2.11. Let ( )1,..., nf x x  be a complex-valued function, which is de-

fined on the set 
nT ⊂ ^ , and assume that a k-edge { }0 1 1,  ,  ...,  kQ Q Q Q −=  

exists such that ( )1 ( ,..., )   ( ) j

n jT Q P fα α α α ε∀ = ∈ =∩ . Then 

( )1,..., nf x x  is a complex-valued threshold function. 

 

Proof. Let 0 1 1( ) ... n nW X w w x w x= + + +  be a linear function, to which  

k-edge Q  corresponds. If Tα ∈ , and ( ) ( ) j
P f α ε= , then according to 

Theorem 2.9 jQα ∈ . Therefore, Tα∀ ∈ ( ) ( )( ) ( )P f P Wα α= , and this 

means that the function ( )1,..., nf x x  is a threshold function. 

 

Definition 2.12. A k-edge Q , which satisfies the conditions of Theorem 2.11, is 

called a k-edge of the function ( )1,..., nf x x . 

Let ( )1,..., nf x x  is an arbitrary complex-valued function of the complex-valued 

variables which is defined on the set 
nT ⊂ ^ . Let us introduce the following sets 

of n-dimensional vectors (or a set of points in an n-dimensional space) 
 

( ) ( ){ }1,..., | ( ) ;   0,  1,  ...,  -1.j

j n
A T P f j kα α α α ε= = ∈ = =  (2.71) 
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In general, some of the sets , 1,..., 1jA j k= −  can be empty. 

 

Definition 2.13. An ordered collection of the sets 0 1 1,  ,  ...,  kA A A −  (see (2.71) ) 

is called an edged decomposition of the domain T of the function ( )1,..., nf x x . 

We will use the notation [ ]0 1 1,  ,  ...,  kA A A − for the edged decomposition. 

Similarly to the case of the ordered decomposition of the arbitrary set M (see the 

Definition 2.11 above) we will write that [ ]0 1 1,  ,  ...,  kT A A A −= . Evidently,  

the elements 0 1 1,  ,  ...,  kA A A −  of the edged decomposition are the complete pro-

totypes of the values of the function ( )( )P f X , which is defined on the set T. 

The following theorem is very important for understanding the geometrical 

meaning of a complex-valued threshold function and of a k-valued threshold func-

tion, in particular. 
 

Theorem 2.12. The complex-valued function ( )1,..., nf x x , which is defined on 

the set 
nT ⊂ ^ , is a complex-valued threshold function if and only if a k-edge 

{ }0 1 1,  ,  ...,  kQ Q Q Q −=  exists such that its elements (edges) are related to the 

sets 0 1 1,  ,  ...,  kA A A −  of the edged decomposition [ ]0 1 1,  ,  ...,  kT A A A −=  as 

follows ;  0,1,..., 1j jA Q j k⊆ = − . 

 

Proof. Necessity. Let the function ( )1,..., nf x x  be threshold, and 

( )0 1, ,..., nw w w  is such a weighting vector of the function f that 0tw ≠  at least 

for some { }1,  2,  ...,  t n∈ . Let also { }0 1 1,  ,  ...,  kQ Q Q Q −=  be a k-edge  

corresponding to the linear function 0 1 1( ) ... n nW X w w x w x= + + + . Then ac-

cording to Theorem 2.9 and Definition 2.12 (see also (2.71) ) we obtain t tA Q⊂ . 

Sufficiency. Let t tA Q⊂  for all { }0,  1,  ...,  -1t k∈ , and 

0 1 1( ) ... n nW X w w x w x= + + +  be a linear function. Let 

{ }0 1 1,  ,  ...,  kQ Q Q Q −=  be a k-edge corresponding to this linear function. Then 

according to Theorem 2.8 the condition ( )( ) t
P W α ε=  is true for 

t tA Qα ∈ ⊂ . However, it also follows from (2.71) that ( )( ) t
P f α ε= . So 

( ) ( )  ( ) ( )Z P f P Wα α α∀ ∈ =  and this means that ( )1,..., nf x x  is a k-

valued threshold function with the weighting vector W. 



88 2   The Multi-Valued Neuron

 

Definition 2.14. The sets 0 1 1,  ,  ...,  kA A A −  establish an edge-like sequence, if 

such a k-edge { }0 1 1,  ,  ...,  kQ Q Q Q −=  exists, that j jA Q⊂  for all 

{ }0,  1,  ...,  -1j k∈ . In such a case the edged decomposition 

[ ]0 1 1,  ,  ...,  kA A A −  of some set 0 1 1
... n

k
A A A A −= ⊂∪ ∪ ∪ ^  is an edge-like 

decomposition.  

The following theorem follows directly from Theorem 2.12, Definition 2.13, 

and Definition 2.14. 
 

Theorem 2.13. A complex-valued function ( )1,..., nf x x , which is defined on 

the set 
nT ⊂ ^ , is a complex-valued threshold function if and only if the  

edged decomposition of the set T corresponding to the given k is an edge-like  

decomposition.  

Let us clarify a geometrical meaning of the k-edge corresponding to the linear 

function 0 1 1  ( 0)w w x w+ ≠  of a single complex variable. 

In such a case (n=1) the sequence ( )0 0 0

0 1 1,  ,  ...,  
k

Q S Q S Q S−∩ ∩ ∩  (see 

(2.70) ) coincides with the k-edge { }0 1 1,  ,  ...,  kQ Q Q Q −=  (see Definition 

2.10), and the set T0 , which is a sharp point of the k-edge, is a plane of the dimen-

sion 2 2 2 1 2 0n − = ⋅ − = . Therefore, T0  is a point, and it coincides with the 

point M 0
. Thus, the k-edge Q for n=1 is a sequence of the sectors on the obvious 

complex plane 
0

C S=  (see Fig. 2.20), which are created by k rays, of the same 

angular size 2π / k  and the same center M 0
. These rays follow each other in the 

positive direction (counterclockwise), and each sector contains only the first of 

two rays, which are its boundaries. 

After the connection of the sharp-point M 0
 with the fixed edge Qt  we obtain 

the k-edge { }0 1 1,  ,  ..., , ...,  t kQ Q Q Q Q −=  corresponding to the linear function 

0 1w w x+  on the plane 
0

C S= . According to (71) it is possible to say that the 

edges of the k-edge establish the ordered decomposition of all the points of the 

complex plane [ ]0 1 1,  ,  ..., , ...,  t kC Q Q Q Q −= . 

To complete the geometrical interpretation of k-valued threshold functions, 

complex-valued threshold functions and the edged separation of an n-dimensional 

space established by the multi-valued neuron, let us consider one more generaliza-

tion of a k-valued threshold function. 
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Definition 2.15. A complex-valued function ( )1,..., :nf x x T →^ , where 

n
T ⊆ ^ , is called a complex-valued threshold function, if it is possible to find 

such a complex-valued weighting vector ( )0 1, ,..., nW w w w= , and to define 

P(0) in such a way that (2.57) 

( )P f x x P w w x w xn n n( ,... ) ( ... )1 0 1 1= + + +  

(where P is the function (2.50) ) holds for all ( )1,..., nx x  from the domain of the 

function f. 

Definition 2.9 and Definition 2.15 of the complex-valued threshold function 

differ from each other in the following aspect. Definition 2.9 employs the function 

P, which is not defined in (0,0), while Definition 2.15 employs the function P 

which is additionally defined in (0,0). These both definitions are equivalent be-

cause determine the same class of complex-valued threshold functions. 
 

Theorem 2.14. Equivalence of Definition 9 and Definition 15 of the complex-

valued threshold function ( )1,..., nf x x , which is defined on the set 
n

T C⊂ , 

does not depend on the definition of the function P in (0,0) ( P(0) ) if and only if a 

weighting vector ( )0 1,  ,  ...,  nW w w w=  exists for the threshold function f  

(according to Definition 9) such that the set { }| ( ) 0nC Wα α∈ =  does not  

intersect with the domain T of the function f: 
 

{ }| ( ) 0nT Wα α∈ = = ∅∩ ^  (2.72) 

 

Proof. The sufficiency of the condition (2.72) is evident because according  

to Definition 9 ( ) ( )  ( ) ( )T P f P Wα α α∀ ∈ = , and therefore, taking into  

account (72), we obtain that   ( ) 0T Wα α∀ ∈ ≠ . 

Necessity. Let both definitions of the complex-valued threshold function are 

equivalent with no matter of the definition of P(0). Let us assume that a weighting 

vector ( )0 1,  ,  ...,  nW w w w=  exists for the threshold function f (according to 

Definition 15) such that { }| ( ) 0nT C W Aα α∈ = = ≠ ∅∩ . This means that 

( ), ( )A P Wα α∀ ∈  takes some specific value, such that ( )( ) (0)P W Pα = . 

However, this contradicts to arbitrariness of the definition of the value, which the 

function ( )P z  takes in (0,0). 

It follows from Theorem 14 that it is possible either to keep ( )P z  undefined 

in (0,0) or it is possible to define it arbitrarily if (2.72) holds. 
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2.3.5   Edged Separation and MVN: Summary 

Let us summarize briefly how the edged separation of an n-dimensional space is 

closely related to the implementation of some input/output mapping by MVN. 

1) If some input/output mapping, which we need to learn, is described by the  

k-valued function ( )1,..., : ; n n

n m kf x x T E T E T O→ ⊆ ∨ ⊆ , then this  

input/output mapping can be implemented using a single MVN if the function 

( )1,..., nf x x  is a k-valued threshold function. 

2) ( )1,..., nf x x  is a k-valued threshold function if its domain T allows the 

edged decomposition [ ]0 1 1,  ,  ...,  kT A A A −=  into disjoint subsets 

, 1,..., 1jA j k= −  such that (2.71) holds. In other 

words, ( ) ( ){ }1,..., | ( ) ;  0,1,..., -1j

j n
A T P f j kα α α α ε= = ∈ = = . The 

sets 0 1 1,  ,  ...,  kA A A −  that form the edged decomposition are the complete proto-

types of the values of the function ( )( )P f X . 

3) The existence of the edged decomposition [ ]0 1 1,  ,  ...,  kT A A A −= means 

the existence of the k-edge { }0 1 1,  ,  ...,  kQ Q Q Q −=  such that its edges include 

the sets 0 1 1,  ,  ..., kA A A − : ;  0,1,..., 1j jA Q j k⊆ = − . In this case, the k-edge 

Q , is a k-edge of the function ( )1,..., nf x x  and the sets 0 1 1,  ,  ...,  kA A A −  es-

tablish an edge-like sequence. 
 

Thus, a problem of the implementation of the input/output mapping described by 

the k-valued function ( )1,..., nf x x  is a problem of finding the k-edge Q  such 

that its edges include the sets 0 1 1,  ,  ..., kA A A −  that in turn establish an edge-like 

sequence. According to Definition 2.10 of the k-edge, to find the k-edge Q , we 

have to find coefficients of the linear function 0 1 1( ) ... n nW X w w x w x= + + +  

that is the weights 0 1, ,..., nw w w . To find them, we should use a learning algo-

rithm. In Chapter 3, we will consider a learning algorithm for MVN and three 

learning rules. 

It is also important to mention that the same considerations work for the case 

of k → ∞ . Thus for continuous MVN and its input/output mapping, which is de-

scribed by the function ( )1,..., : ; n n

n kf x x T O T E T O→ ⊆ ∨ ⊆ . 

As it follows from Definition 2.9-Definition 2.15 and Theorem 2.1-Theorem 2.14, 

all these conclusions are applicable to input/output mappings described not only by  
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k-valued functions ( )1,..., : ; n n

n m kf x x T E T E T O→ ⊆ ∨ ⊆ , but by arbi-

trary complex-valued functions ( )1,..., : ; n

nf x x T T→ ⊆^ ^ . However, 

learning algorithms for the latter case have not been developed yet. 

It is very important to mention that if the domain of some function 

( )1,..., : ; n n

n m kf x x T E T E T O→ ⊆ ∨ ⊆  does not allow the edged decom-

position [ ]0 1 1,  ,  ...,  kT A A A −= , it is possible that for some m k> , the edged 

decomposition 0 1 1 1 1,  ,  ...,  , , ,...,k k k mT A A A A A A− + −
⎡ ⎤= ⎣ ⎦� � � � � ��  exists such that 

1

, 0,..., 1;1 ; ,
jt

j j j

j i j t s

i

A A j k t m A A t s
=

= = − ≤ < = ∅ ≠� � �∩∪  

for the function ( )1,..., : ;
n n

n m kf x x T E T E T O→ ⊆ ∨ ⊆�  whose domain co-

incides with the domain of the initial k-valued function f. In this case 

( )1,..., nf x x�  is a partially defined m-valued threshold function (partially de-

fined in terms of m-valued logic). We will consider this case in detail in Chapter 5 

where MVN with a periodic activation function will be presented. 

Finally, we should outline one generalization of MVN and its activation func-

tion, which also follows from the edged separation. It should be mentioned that we 

can also consider the following generalization of the k-valued threshold function. 

Let [ ]0 1 1\{0} ,  ,...,  ks s s −=^  be an ordered decomposition of the set of points 

of the complex plane excluding the origin  

(0, 0). This is the decomposition of the set \{0}^  into a set of mutually disjoint 

sectors 0 1 1,  ,...,  ks s s − , which are bounded by the rays 0 1 1,  ,...,  kl l l −  originating 

at the origin. Only the first of those two rays, which form a sector, is included to 

this sector. The direction of the ray 0l  coincides with the direction of the positive 

real semi-axis. The angular sizes 0 1 1,  ,  ...,  kϕ ϕ ϕ −  of the sectors 

0 1 1,  ,...,  ks s s −  are arbitrary and should only satisfy the condition 

0 1 1... 2kϕ ϕ ϕ π−+ + + = . Let us define the following function 

( ) j
P z ε=�  if ;  0,  1,...,  1,  2 /jz s j k i kε π∈ = − = . 

We may use this function ( )P z�  as the MVN activation function instead of the func-

tion ( )P z  defined by (2.50). These two functions differ from each other by the an-

gular size of the sectors, to which they divide the complex plane. The function ( )P z  

separates the complex plane into k equal sectors of the angular size 2 / kπ , while 
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the function ( )P z�  separates the complex plane into k sectors, which may have dif-

ferent angular sizes. MVN with the activation function ( )P z�  was not considered so 

far, but it should be attractive to consider it in the further work. 

2.4   MVN and a Biological Neuron 

We have already introduced MVN and explained why this neuron and complex-

valued neurons in general are important. MVN is more functional and more flexible 

than its real-valued counterparts. MVN makes it possible to implement multiple-

valued input/output mappings. It can also implement continuous input/output map-

pings. It can treat properly phase and the information contained in phase. 

Before we will move to the MVN learning algorithm and learning rules and be-

fore we will consider MVN-based neural networks and their applications, we 

would like to outline another important feature of MVN. Let us consider how the 

MVN phenomenon can be used for simulation of a biological neuron. 
 

For many years, artificial 

neurons and artificial neural  

networks have been developing 

separately from the study of their 

biological counterparts. However, 

it was always very attractive to 

simulate a biological neuron and 

its behavior, as well as to under-

stand how the most sophisticated 

neural network (the brain) works. 

A biological neuron is not the 

threshold neuron. The signal 

transmission in the nervous sys-

tem does not have a digital nature 

in which a neuron is assumed to 

be either fully active or inactive 

[66]. Thus, a popular assumption 

that a biological neuron can "fire" 

only when its excitation exceeds 

some threshold is nothing more 

than simplification. The level of 

the biological neuron “excitation” 

and, respectively, the information, 

which the neuron transmits to 

other neurons, is coded in the frequency of pulses (spikes) [67], which form the 

output signal of the neuron (also referred to as a spike train). Hence, a better con-

clusion would be to interpret the biological neural systems as using a form of 

pulse frequency modulation to transmit the information. The nerve pulses passing 

along the axon of a particular neuron are of approximately constant magnitude 

 

Fig. 2.32 A biological neuron generates a se-

quence of spikes (a spike train). Spikes’ magnitude 

is a constant, while their frequency can be high 

(“excitation”, top graph), moderate (middle graph) 

and zero (“inhibition”, no spikes, bottom graph)  
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(see Fig. 2.32), but the number of generated pulses (spikes) and their time spacing 

(that is the frequency of generated pulses) contains that information, which is 

transmitted to other neurons [66-69]. This is illustrated in Fig. 2.32.  

The understanding of these facts initiated a number of works, e.g., [70-73], 

where a problem of simulation of a biological neuron is studied. 

The most popular model, which is used now, is a spiking neuron model [70-

73]. Spiking neural model incorporates the concept of time in order to simulate a 

real behavior of a biological neuron. However, in our view this approach is rather 

biological than mathematical. It simulates those electro-chemical processes that 

take place in a biological neuron. Of course, this is very important for understand-

ing of these processes. But it could be very attractive and important to be able to 

simulate also the informational processes in biological neurons. This simulation is 

perhaps the most interesting for understanding the mechanisms of thinking and 

functioning of the human brain. 

As it was mentioned above, the information transmitted by a biological neuron 

to other neurons is contained only in the frequency of generated impulses, while 

their magnitude is a constant. To adapt this model for simulation of the different 

cortical cells whose typical firing frequency is different, the different versions of a 

spiking neuron are suggested to be used [73], because there is no universal model. 

The most significant drawback of a spiking neuron model in terms of information 

processing is that the frequency of spikes is rather treated there as some "abstract 

number" than a specific physical feature. In fact, since definitely frequency is 

meaningful in the neural information processing, it is necessary to consider such a 

model of a biological neuron, which operates with frequency not as with an ab-

stract real or integer number, but takes into account its physical nature. 

Let us consider how the continuous MVN can be employed to simulate a bio-

logical neuron. As we already know, the continuous MVN inputs and output are 

located on the unit circle. Their unitary magnitude is a constant (as well as the 

magnitude of the spikes generated by a biological neuron), and they are deter-

mined by their arguments (phases). Thus, they are the numbers ,0 2i
e

ϕ ϕ π≤ < . 

Let us return to a biological neuron. As we have mentioned, the information 

transmitted by a biological neuron to other neurons and accepted by the latter ones 

is completely contained in the frequency of the generated spikes, while their mag-

nitude is a constant. Let f be the frequency. As it is commonly known from the  

oscillations theory, if t is the time, and φ is the phase, then 

( )∫ +=+= tfdt θθπθϕ 00 2 . 

If the frequency f is fixed for some time interval t∆ , then the last equation may 

be transformed as follows 

0 2 f tϕ θ π= + ∆  

Thus, if the frequency f of spikes generated by a biological neuron is known, it is 

very easy to transform it to the phase φ. But then the phase φ can be easily trans-

formed to the complex number 
i

e
ϕ

located on the unit circle! 
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As we already know, exactly such numbers ,0 2i
e

ϕ ϕ π≤ < , which are lo-

cated on the unit circle, are the continuous MVN inputs. The opposite is also true: 

having any complex number located on the unit circle, which is the MVN output, 

it is possible to transform it to the frequency. This means that all signals generated 

by the biological neurons may be unambiguously transformed into the form ac-

ceptable by the MVN, and vice versa, preserving a physical nature of the signals. 

Thus, the continuous MVN can be used to simulate a biological neuron. This 

will be not biologically, but mathematically inspired simulation, which might be 

very useful for understanding of informational processes in a biological neuron. 

Respectively, an MVN-based network can be used for simulation of informational 

processes in a biological neural network. This interesting idea has not been devel-

oped yet, but it looks very attractive and natural. Its development will be a good 

subject for the further work. 

2.5   Concluding Remarks to Chapter 2 

In this Chapter, we have first observed a theoretical background behind MVN – 

multiple-valued threshold logic over the field of complex numbers. In this model 

of k-valued logic, its values are encoded by the kth roots of unity. We introduced a 

k-valued threshold function as a function, which can be represented using the spe-

cific complex-valued weighting parameters and the universal k-valued predicate P. 

Then we have introduced the discrete MVN as a neuron whose input/output 

mapping is presented by some k-valued threshold function. The k-valued predicate 

P is the discrete MVN activation function. We have also introduced the continu-

ous MVN. The MVN inputs and output are located on the unit circle. The MVN 

activation function depends only on the argument of the weighted sum and does 

not depend on its magnitude. 

We have deeply considered the edged separation of an n-dimensional space, 

which is implemented by MVN. We showed that the MVN weights determine the 

k-edge, which is resulted from the division of an n-dimensional space by a set of 

hyperplanes into k subspaces. 

We have also outlined how the continuous MVN can be used for simulation of 

a biological neuron. 

So we are ready now to consider how MVN learns. 
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Chapter 3  

MVN Learning 

“Since we cannot know all that there is to be known about anything, 

 we ought to know a little about everything.” 

Blaise Pascal 

 

 

In this Chapter, we consider all aspects of the MVN learning. We start in Section 

3.1 from the specific theoretical aspects of MVN learning and from the representa-

tion of the MVN learning algorithm. Then we describe the MVN learning rules. In 

Section 3.2, we consider the first learning rule, which is based on the adjustment 

of the weights depending on the difference (in terms of the angular distance) be-

tween the arguments of the current weighted sum and the desired output. In Sec-

tion 3.3, we present the error-correction learning rule for MVN. For both learning 

rules presented in Sections 3.2 and 3.3, we prove theorems about the convergence 

of the learning algorithm based on these rules. In Section 3.4, we discuss the Heb-

bian learning rule for MVN. Section 3.5 contains some concluding remarks.  

3.1   MVN Learning Algorithm 

In Chapter 2, we have introduced discrete and continuous MVN. We also have 

considered the edged separation of an n-dimensional space, which is implemented 

by MVN using the k-edge generated by the weights that implement a correspond-

ing input/output mapping.  

As any other neuron, MVN creates the weights implementing its input/output 

mapping during the learning process. The ability to learn from its environment is a 

fundamental property of a neuron. We have already observed fundamentals of 

learning in Section 1.2. According to Definition 1.2, the MVN learning as well as 

any other neuron learning is the iterative process of the adjustments of the weights 

using a learning rule. In other words, it is reduced to the adaptation of the neuron 

to its input/output mapping thorough the adjustment of the weights using a learn-

ing rule every time, when for some learning sample the neuron’s actual output 

does not coincide with the desired output. 

In this Chapter, we present the MVN learning algorithm, which can be based on 

the two learning rules. One of the rules is based on the estimation of the closeness 

of the actual output to the desired one in terms of angular distance. Another one  

is the error-correction learning rule. We will also consider the Hebbian learning 

for MVN. 
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3.1.1   Mechanism of MVN Learning 

Let us now consider what MVN has to do when it learns, what is behind the learn-

ing process. It is also important to mention that those fundamentals of MVN learn-

ing, which we consider here are important not only for a single MVN, but for 

MLMVN (multilayer neural network based on multi-valued neurons), whose 

learning algorithm with the error backpropagation we will consider in Chapter 4. 

Let A be a learning set with the cardinality A N= , thus the learning set con-

tains N learning samples. They are such samples ( )1
,..., , 1,...,i i

n i
x x d i N→ =  

for which the exact desired output ( )1
,..., , 1,...,i i

n i
f x x d i N= =  is known. 

If we return to the threshold neuron, its learning process can be presented in the 

following way. Its learning set can always be presented as 1 1A A A−= ∪ , where 

1A  is a subset of the learning samples where the neuron’s output has to be equal 

to 1, and 1A−  is a subset of the learning samples where the neuron’s output has to 

be equal to -1. As we have seen, learning in this case is reduced to the search for a 

hyperplane, which separates the subsets 1A  and 1A−  of the learning set in that n-

dimensional space where a problem to be learned is defined. The coefficients of a 

hyperplane equation are the weights implementing a corresponding input/output 

mapping. 

Let us consider now how the discrete MVN learns. Taking into account that the 

discrete MVN implements a k-valued input/output mapping, it is easy to conclude 

that a learning set should consist of k classes. Let 2k >  be some integer.  

Let us consider (n+1) - dimensional vectors ( )11, ,..., nX x x= , 

( )1,...,
n

nx x T O∈ ⊆ , where O is the set of points located on the unit circle. 

The 0
th

 coordinate (constant 1) can be considered as a pseudo input corresponding 

to the weight 0w . We introduce it just to be able to consider a weighted sum 

0 1 1 ... n nw w x w x+ + +  as a dot product of two (n+1) - dimensional vectors 

( )11, ,..., nX x x=  and ( )0 1, ,..., nW w w w= . 

Let jA  be a learning subset { }( ) ( )

1 ,...,
j

j j

NX X  of the input neuron states  

corresponding to the desired output , 0,..., 1j
j kε = − . In such a case we can 

present the entire learning set A as a union of the learning subsets 

, 0,1,..., 1jA j k= −  as follows 

0 1

j

j k

A A
≤ ≤ −

= ∪ . In general, some of the sets 

, 0,1,..., 1jA j k= −  may be empty if for some 0,..., 1j k= −  there is no 
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learning sample whose desired output is 
jε . It is also clear that A Ai j∩ = ∅  for 

any i ≠ j. A practical content behind this mathematical representation is, for ex-

ample, a k-class classification problem, which is presented by the learning set A 

containing learning subsets , 0,1,..., 1jA j k= −  such that each of them contains 

learning samples belonging only to one of k classes labeled by the corresponding 

class membership label , 0,..., 1j
j kε = − . 

 

Definition 3.16. The sets A A Ak0 1 1, ,..., −  are called k-separable, if it is possible 

to find a permutation ( )0 1 1, ,..., kR α α α −=  of the elements of the set 

{ }0,  1,  ...,  1K k= − , and a weighting vector ( )0 1, ,..., nW w w w=  such that 

( ), jP X W
α

ε=  (3.73) 

 

for each , 0,1,..., 1jA j k= − . Here W is a vector with the components com-

plex-conjugated to the ones of the vector W, ( ),X W is a dot product of the 

(n+1)-dimensional vectors within the (n+1)-dimensional unitary space, P is the 

MVN activation function (2.50). Without loss of generality we may always supply 

(2.50) by ( ) 00,0 1P ε= = . This means that the function P is now determined 

on the entire set ^  of complex numbers. 

Let A be a learning set and 

0 1

j

j k

A A
≤ ≤ −

= ∪  is a union of the k-separable disjoint 

subsets 0 1 1, ,..., kA A A − . On the one hand, this means that (3.73) holds for any 

X A∈ . On the other hand, the MVN input/output mapping presented by such a 

learning set is described by the k-valued function ( )1   :n kf x , ..., x A E→ . It fol-

lows from the fact that the learning subsets 0 1 1, ,..., kA A A −  are k-separable and 

(3.73) holds for any X A∈  that (2.51) also holds for the function ( )1   nf x , ..., x  

on the its entire domain A, which means that according to Definition 2.7 this func-

tion is a k-valued threshold function. Hence, we proved the following theorem. 

 

Theorem 15. If the domain of a k-valued function ( )1   :n kf x , ..., x A E→  can 

be represented as a union of k-separable disjoint subsets 0 1 1, ,..., kA A A −  (some of 

them can be empty in general), then the function ( )1  nf x , ..., x  is a k-valued 

threshold function. 
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It directly follows from Definition 3.16 and (3.73) that the problem of MVN 

learning should be reduced to the problem of the k-separation of learning subsets. 

In other words, the learning problem for the given learning subsets 

0 1 1, ,..., kA A A −  can be formulated as a problem, how to find a permutation 

( )0 1,  ,  ...,  kα α α  and a weighting vector ( )0 1, ,..., nW w w w=  such that 

(3.73) holds for the entire learning set A. 

On the other hand, we see that the notion of k-separation of the learning subsets 

is closely related to the notion of edge-like sequence (see Definition 2.14). Evi-

dently, if the sets 0 1 1, ,..., kA A A −  are k-separable, and the permutation 

( )0 1 1, ,..., kR α α α −=  is applied to them, then the edge-like sequence results 

from such a permutation. From the geometrical point of view, the k-separation 

means that elements from only one learning subset (one class) 

{ }| ( ) j

j
A X f X ε= =  belong to each edge of the k-edge. Moreover, the ele-

ments belonging to the same class cannot belong to the different edges. 

We will say that any infinite sequence Su  of objects 0 1 1, ,..., ku u u −  such that 

,    j u j ju S u A u A u u∈ ⇒ ∈ ∈ ⇒ =  for some j taking its values from the in-

finite set, forms a learning sequence from the set A. 

The MVN learning process should be defined as a process of finding such a 

permutation ( )0 1 1, ,..., kR α α α −=  of the elements of the set 

{ }0,  1,  ...,  1K k= −  and such a weighting vector ( )0 1, ,..., nW w w w=  that 

(3.73) holds for the entire learning set A.  

Let us suppose that the permutation ( )0 1 1, ,..., kR α α α −=  is already known. 

Then the learning process is reduced to obtaining the sequence Sw  of the weight-

ing vectors 0 1, ,...W W  such that starting from the some 0m  

0 0 01 2 ...m m mW W W+ += = =  and (3.73) holds. Each weighting vector in the  

sequence Sw  corresponds to the next learning sample. The process of finding the 

sequence Sw  of the weighting vectors is iterative. One iteration of the learning 

process consists of the consecutive checking for all the learning samples whether 

(3.73) holds for the current learning sample. If so, the next learning sample should 

be checked. If not, the weights should be adjusted according to a learning rule (we 

did not consider learning rules yet). One learning iteration (learning epoch) is a 

complete pass over all the learning samples ( )1
,..., , 1,...,i i

n i
x x d i N→ = . 
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Stabilization of the sequence wS  in conjunction with the fact that (3.73) holds 

means that the learning process converges with the zero error. 

As well as for any other neuron, there can be situations when MVN learning 

with the zero error is not reasonable. It depends on the particular problem, which 

is necessary to learn. If errors for some learning samples are acceptable (which 

means that (3.73) may not hold for some learning samples), the mean square error 

(MSE) (1.20) or the root mean square error (RMSE) (1.21) criteria should be used 

to stop the learning process. It is important to understand that for the discrete 

MVN both MSE and RMSE should be applied to the errors in terms of numbers of 

sectors (see Fig. 2.21), thus not to the elements of the set 

{ }0 1, ,..., k

k k k k
E ε ε ε −= , but to the elements of the set { }0,1,..., 1K k= −  or to 

their arguments { }0 1arg ,arg ,..., arg k

k k k
ε ε ε −

. Hence, in this case the error for 

the sth learning sample , 1,...,s s Nγ =  is either of 

 

( ) mod ; 1,...,
ss j s k s Nγ α α= − = , (3.74) 

( )arg arg mod 2 ; 1,...,js s

s s N
α αγ ε ε π= − = , (3.75) 

 

where 
js

α
ε  is the desired neuron’s output for the sth learning sample, and sαε  is 

the actual MVN output.  

The learning process continues until either of MSE or RMSE drops below some 

pre-determined acceptable minimal value λ . For the reader’s convenience, let us 

adapt here the expressions (1.20) and (1.21) for MSE and RMSE over all N learn-

ing samples for the local errors (3.74) and (3.75). Equations (1.20) and (1.21) are 

transformed to, respectively 
 

2

1

1 N

s

s

MSE
N

γ λ
=

= <∑ , (3.76) 

2

1

1 N

s

s

RMSE MSE
N

γ λ
=

= = <∑ . (3.77) 

 

If either of MSE (3.76) or RMSE (3.77) criteria is used to stop the learning proc-

ess, we have to take into account that the sequence of weighting vectors wS  may 

have left not stabilized when 0λ > . 
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The learning process for the continuous MVN does not differ from the one for 

the discrete MVN. Anyway, the learning set A even for the continuous-valued in-

put/output mapping ( )1,..., : , n

nf x x T O T O→ ⊆  is finite, which means that 

it can be represented as a union 

0 1

j

j k

A A
≤ ≤ −

= ∪  of the learning subsets 

, 0,1,..., 1jA j k= − , where k is the number of different values of the function 

( )1,..., nf x x  corresponding to the elements of the learning set. In other words, k 

is the cardinality of the range of the function ( )1,..., nf x x  with respect to the 

learning set A. If the continuous MVN should learn not with the zero error, then 

either of MSE (3.76) or RMSE (3.77) criteria with respect to the local errors 

(3.75) should be applied. 

3.1.2   Learning Strategy 

Let us have the learning set containing N learning samples 

( )1 ,..., , 1,...,i i

n i
x x d i N→ = . As we told, one iteration of the learning process 

consists of the consecutive checking for all the learning samples whether (3.73) 

holds for the current learning sample. If it does not hold, the weights should be ad-

justed using a learning rule. This process continues either until the zero error is 

reached or one of (3.76) or (3.77) holds. It should be mentioned that in the latter 

case criterion (3.73) can be replaced by either of 

( )mod ; 1,...,
ii j k i Nγ α α β= − < = , (3.78) 

( )arg arg mod 2 ; 1,...,ji

i i N
α αγ ε ε π β= − < = , (3.79) 

where β is some acceptable error level for a single learning sample in terms of sec-

tors numbers (3.78) or angular distance (3.79). 

If (3.73) does not hold or one of (3.78) or (3.79) does not hold (depending on 

which error criterion is used), then the MVN weights must be adjusted using a 

learning rule. Two learning rules will be considered below (Sections 3.2 and 3.3). 

Geometrically, adjustment of the weights means movement of the weighted sum 

from the incorrect sector s (discrete MVN, see Fig. 3.33a) to the correct sector q or 

from the incorrect ray OY (continuous MVN, see Fig. 3.33b) to the correct ray OD. 

Thus, the following learning algorithm should be used for MVN learning. 
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Let 
s

jX  be the sth element of the learning set A belonging to the learning sub-

set Aj . Let N be the cardinality of the set A, A N= . 

Let Learning be a flag, which is ‘True’ if the weights adjustment is required 

and “False”, if it not required, and r be the number of the weighting vector in the 

sequence wS . 

 

Step 1. The starting weighting vector W0  is chosen arbitrarily (e.g., real and 

imaginary parts of its components can be random numbers); r=0; t=1; Learning = 

‘False’; 

Step 2. Check (3.73) or one of (3.78) or (3.79) (depending on the error  

criterion, which is used) for 
s

jX :  

if (3.73) or one of (3.78) or (3.79) holds  

then go to the step 4  

else begin Learning = ‘True’; go to Step 3 end; 

Step 3. Obtain the vector 1rW + from the vector rW by the learning rule (to be 

considered);  

Step 4. t = t+1;  if t≤N  

then go to Step 2  

else if Learning = ‘False’ 

  then the learning process is finished successfully 

  else begin t=1; Learning = ‘False’; go to Step 2; end. 

 

  

(a) Discrete MVN. 
qε  is the desired output, 

sε  is the actual output 

(b) Continuous MVN. D is the desired out-

put, Y is the actual output. 

Fig. 3.33 Geometrical interpretation of the weights adjustment. The weighted sum has to be 

moved from the incorrect domain to the correct one. 
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A learning rule, which should be applied on Step 3, is a key point of the learn-

ing algorithm. It determines the correction of the weights. It should ensure that  

after the weights adjustment a weighting vector resulted from this adjustment  

approaches us closer to the stabilization of the sequence wS  of the weighting vec-

tors. In other words, a learning rule should approach the convergence of the learn-

ing algorithm and ensure decreasing of the error after each learning step.  

We will consider here two learning rules. Their wonderful property is that they 

are derivative-free. The MVN learning based on this rules should not be consid-

ered as the optimization problem. Yes, we have to minimize the neuron error or 

even to reduce it to zero. But we will see that both learning rules, which we will 

consider here, generalize the Novikoff’s approach to the threshold neuron error-

correction learning [12] where the distance from the current weighting vector to 

the desired weighting vector is decreasing during the learning process without in-

volvement of any optimization technique. 

Let us consider the MVN learning rules in detail. 

3.2   MVN Learning Rule Based on the Closeness to the Desired 

Output in Terms of Angular Distance 
3.2   MVN Learning Rule Based on the Closeness to t he Desired Output  

3.2.1   Basic Fundamentals 

Both learning rules (that we consider in this section and in the following section) 

are based on the compensation of the MVN error by adding the adjusting term to 

each component of the current weighting vector. 

While the second learning rule, which we will consider below in Section 3.3, 

can be considered as a direct generalization of the Rosenblatt error-correction 

leaning rule for the threshold neuron, the first learning rule, which we are going to 

consider now, is based on the compensation of the error between the desired and 

actual neuron outputs in terms of angular distance between their arguments. This 

learning rule was initially proposed by N. Aizenberg and his co-authors in [34, 

36], then the convergence of the learning algorithm based on this rule was proven 

in [37], some more adjustments were made in [38] and [60]. Here we will present 

the most comprehensive description of this algorithm with its deeper analysis 

(compared to earlier publications). 

Let the discrete MVN has to learn some input/output mapping 

( )1,..., : ; n

n kf x x T E T O→ ⊆ . We have already mentioned that in the case 

of the continuous MVN and continuous-valued input/output mapping 

( )1,..., : ; n

nf x x T O T O→ ⊆ , all considerations can be reduced to the dis-

crete case because since a learning set with the cardinality N contains exactly N 

learning samples and the neuron may have at most k N≤  different outputs. So 

we may consider the learning algorithm just for the discrete MVN. 
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Let us define the following partial order relation on the set 

{ }0 1, ,..., k

k k k k
E ε ε ε −= . Let us for simplicity use the following notation kε ε= . 

We will say that 
αε  precedes to 

βε  (
α βε ε≺ ) if and only if the following con-

dition holds 

( ) ( )mod mod 0 arg argk k
β αα β ε ε π≤ ∧ ≤ − <  or 

( ) ( )mod mod arg arg 0k k
β αα β π ε ε≥ ∧ − ≤ − < , 

where { }, 0,1,..., 1K kα β ∈ = − . In other words 
α βε ε≺  if and only if 

αε  

is located “lower” than 
βε  in the clockwise direction from 

βε  in the “right” half-

plane from the line crossing the origin and the point corresponding to 
αε  on the 

unit circle.  

Let 
qε  be the desired MVN output and 

sε  be the actual MVN output (see  

Fig. 3.33a). Let us discover how far they can be located from each other in terms of 

 

(a) (b) 

 
(c) 

Fig. 3.34 Thee cases of mutual location of the desired (
qε ) and actual (

sε ) MVN outputs 
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the angular distance accurate within the angle / 2π . Let us consider the case 

4k ≥  (see Fig. 3.34). There are three possible situations. 

1) 
sε  is located to the “left” (in the counterclockwise direction) from 

qε  such 

that ( )arg arg mod 2 / 2s qε ε π π− ≤  and 
( ) ( )1 mod [ /4] modq k q k ksε ε ε+ +≺ ≺  

(see Fig. 3.34a, [k/4] is an integer part of k/4). 

2) 
sε  is located approximately across the unit circle with respect to 

qε , which 

means that ( )/ 2 arg arg mod 2 3 / 2s qπ ε ε π π< − <  and 

( ) ( )[ /4] 1 mod 3[ /4] 1 modq k k q k ksε ε ε+ + + −≺ ≺  (see Fig. 3.34b). 

3) 
sε  is located to the “right” (in the clockwise direction) from 

qε  such that 

( )arg arg mod 2 / 2s qε ε π π− ≤  and 
( ) ( )3[ /4] mod 1 modq k k q k ksε ε ε+ + −≺ ≺  

(see Fig. 3.34c). 

The goal of a learning rule is to correct the error, which is approximately equal 

in terms of angular distance for the three just considered cases / 2,  π π− , and 

/ 2π , respectively. Thus, to correct the error, we need to “rotate” the weighted 

sum, compensating this error. This “rotation” must be done by the adjustment of 

the weights in such a way, that the adjusted weighting vector moves the weighted 

sum either exactly where we need or at least closer to the desired sector. 

This means that our learning rule has to contain some “rotating” term, which 

should vary depending on which of the considered above error cases takes place. 

The following learning rule was proposed in [34, 36, 37] to correct the weight-

ing vector ( )0 1, ,..., nW w w w=  

 

1
; 0,1,...,

1

q

i i r r i
w w C x i n

n
ω ε= + =

+
� , (3.80) 

 

where n is the number of the neuron inputs, i
w  is the ith component of the 

weighting vector before correction, i
w�  is the same component after correction,

 

i
x  is the ith neuron input complex-conjugated ( 0 1x ≡  as we agreed above is a 

pseudo-input corresponding to the bias 0w ), r
C  is the learning rate, 

qε  is the  

desired output, and r
ω  is a rotating coefficient, which has to compensate the an-

gular error, which we have just considered. To choose r
ω , we have to consider 

the following cases corresponding to the error cases considered above. Let i be an 

imaginary unity, and 
2 /i k

k
e

πε ε= = . 
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Case 1. 
m iω ε= − , if 

1s qε ε += for k=2 and k=3, or 

( ) ( )1 mod [ /4] modq k q k ksε ε ε+ +≺ ≺  for k≥4.  

Case 2. 1mω = , if 
( ) ( )[ /4] 1 mod 3[ /4] 1 modq k k q k ksε ε ε+ + + −≺ ≺  for k≥4 (for k<4 

such a case is impossible). 

Case 3. 
m iω = , if 

2s qε ε +≺ for k=3, or 

( ) ( )3[ /4] mod 1 modq k k q k ksε ε ε+ + −≺ ≺  for k≥4 (for k=2 such a case is impossible). 

Thus, adjusting the weights according to (3.80), we obtain the following equation 

for the r+1
st
 weighting vector belonging to the sequence w

S  from the rth weight-

ing vector belonging to the same sequence 
 

1

1

1

q

r r r r
W W C X

n
ω ε+ = +

+
, (3.81) 

 

where r is the number of the current weighting vector in the sequence w
S , addi-

tion is component-wise, and ( )11, ,...,
n

X x x=  is the vector of neuron inputs 

with the complex-conjugated components. 

Before justification of the choice of r
ω  let us first clarify a very important 

role of the multiplier 
1

1n +
 in the learning rule (3.80) and let us see how the 

weighted sum changes after the weights are corrected. Let us find the updated 

weighted sum after the weights are corrected according to (3.80). The current 

weighted sum is 0 1 1 ...
n n

z w w x w x= + + + . Suppose for simplicity, but without 

loss of generality that 1
m

C = . For the updated weighted sum, taking into account 

that 1; 0,1,...,
i i

x x i n= = (since all i
x are located on the unit circle) we obtain 

0 1 1 0 1 1 1

0 1 1

1 times

1 1
...

1 1

1
...

1

1 1
... ... .

1 1

q q

n n r r

q

n r n n

q q q

n n r r r

z
n

z w w x w x w w x x
n n

w x x
n

w w x w x z
n n

ω ε ω ε

ω ε

ω ε ω ε ω ε

+

⎛ ⎞ ⎛ ⎞
= + + + = + + + +⎜ ⎟ ⎜ ⎟

+ +⎝ ⎠ ⎝ ⎠
⎛ ⎞

+ + + =⎜ ⎟
+⎝ ⎠

= + + + + + + = +
+ +

� � ��

����	���
 �����	����
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This means that after the weights are corrected, the weighted sum is changed by 

q

r
ω ε . The multiplier 

1

1n +
, which can be considered as a constant learning rate 

is important to avoid change of the weighted sum by ( )1 q

r
n ω ε+ , which may 

lead to the jump over a desired output. Thus, using the multiplier 
1

1n +
, we share 

the adjusting term among all the weights. In fact, we do not know which of the 

weights contributes more to the error. Hence, if we assume that each of them con-

tributes uniformly, this assumption is natural. 

We can clarify now the choice of r
ω  in (3.80) (see Fig. 3.35).  

In the Case 1 (see Fig. 3.35a), the current weighted sum should be rotated 

clockwise, that is to the right side from its current location, because the actual out-

put 
sε  is located to the left from the desired output

qε  and the difference between 

  

(a) Case 1 (b) Case 2 

 

(c) Case 3 

Fig. 3.35 Movement of the weighted sum z after the correction of the weights according  

to (3.80)  
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the arguments of the actual and desired outputs does not exceed / 2π . Choosing 

r
iω ε= − , we ensure that after the correction of the weights the updated 

weighted sum 
1q q q

r
z z i z iω ε εε ε ++ = − = −  moves closer or exactly to the 

desired sector q and the MVN output moves closer or exactly becomes equal to 
qε , respectively. 

In the Case 3 (see Fig. 3.35c), situation is similar, the difference between the 

arguments of the actual and desired outputs does not exceed / 2π , but we need to 

rotate the current weighted sum counterclockwise, that is to the left side from its 

current location, because the actual output 
sε  is located to the right from the de-

sired output
qε . Choosing r

iω = , we ensure that after the correction of the 

weights the updated weighted sum 
q q

r
z z iω ε ε+ = +  moves closer or exactly 

to the desired sector q and the MVN output moves closer or exactly becomes 

equal to 
qε , respectively. 

In the Case 2 (see Fig. 3.35b), the current weighted sum should be flipped be-

cause the actual output 
sε  is about the opposite to the desired output

qε  and the 

difference between the arguments of the actual and desired outputs exceeds 

/ 2.π  Since in this case we cannot have any preference where to rotate the 

weighted sum (clockwise or counterclockwise), we should simply rotate it such 

that it will be moved to the desired output. Choosing 1
r

ω = , we ensure that after 

the correction of the weights the updated weighted sum 
q q

r
z zω ε ε+ = +  

moves closer or even exactly to the desired sector q and the MVN output moves 

closer or may exactly becomes equal to 
qε , respectively. 

3.2.2   Convergence Theorem 

Now we are ready to formulate and prove the theorem about the convergence of 

the MVN learning algorithm with the learning rule (3.80). We will provide the 

reader with a new proof of this theorem compared to [37] and [60]. This new 

proof is shorter and more elegant.  

Suppose that the permutation ( )0 1 1, ,...,
k

R α α α −=  such that (3.73) holds for 

the entire learning set A is known. 

 

Theorem 16 (About the convergence of the learning algorithm with the learning 

rule (3.80)). If the learning subsets 0 1 1, ,  ...,
k

A A A −  of the learning set A  

(

0 1

j

j k

A A
≤ ≤ −

= ∪ ) are k-separable for the given value of k according to Definition 

3.16 (which means that the corresponding MVN input/output mapping is a k-valued 



108 3   MVN Learning

 

threshold function), then the MVN learning algorithm with the rule (3.80) con-

verges after a finite number of steps. 

Proof. Suppose that the conclusion of the theorem is false. This means that the se-

quence w
S  of the weighting vectors is infinite. Therefore the weights correction 

using the rule (3.80) gives the infinite amount of the new weighting vectors, which 

do not satisfy condition (3.73) at least for one element from some learning subset. 

According to our assumption the learning subsets 0 1 1, ,  ...,
k

A A A −  are k-

separable. Therefore the weighting vector W exist such that (3.73) holds for the 

entire learning set A.  

For simplicity and without loss of generality, let us start the learning process 

from the zero vector ( )1 (0,0), (0,0),..., (0,0)W = , where ( ),a b  is a complex 

number a bi+ , (i is an imaginary unity). Let ( )1 2, ,...,
X N

S X X X=  be a 

learning sequence of input vectors ( )11, ,..., , 1,...,j j

j n
X x x j N= = , and 

( )1 2, ,..., ,...
W r

S W W W=  be a sequence of weighting vectors, which appear dur-

ing the learning process. We have to prove that this sequence cannot be infinite. 

Let us remove from the learning sequence those vectors for which 1r r
W W+ = , in 

other words, those input vectors, for which (3.73) hold without any learning. Let 

W
S �  be the reduced sequence of the weighting vectors. The Theorem will be prov-

en if we will show that the sequence 
W

S �  is finite. Let us suppose that the opposite 

is true: the sequence 
W

S �  is infinite. So from the assumption that 
W

S �  is infinite, 

we have to get the contradiction with the conditions of the theorem.  

Without loss of generality we can take 1
r

C =  in (3.80). This leads to the fol-

lowing transformation of (3.81): 

1

1

1

q

r r r r
W W X

n
ω ε+ = +

+
� �

, (3.82) 

Thus, our sequence of the weighting vectors 
W

S �  is obtained according to (3.82). 

The theorem will be proven, if we can prove that the sequence 
W

S �  is finite. 

Suppose the desired MVN output for the first learning sample does not coin-

cide with the actual MVN output. Thus, we have to adjust the weights according 

to (3.82): 

12 1

1

1
m

W X
n

ω=
+

� � , and then for the next correction we obtain 
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2 1 23 2 2 1 2

1 1
,....

1 1
m m mW W X X X

n n
ω ω ω⎡ ⎤= + = +⎣ ⎦+ +

� � � � �

 Applying (3.82) to obtain the r+1
st
 vector from the learning sequence, we have the 

following

 
11 1

1
... .

1 rr m m rW X X
n

ω ω+
⎡ ⎤= + +⎣ ⎦+

� � �  (3.83) 

 

where { }1,2,3 ; 1,...,
j

m j r∈ = , and every time 
j

m  is chosen depending on 

which of three cases (see above) for the angular error takes place. 

Let us find a dot product of both parts of (3.83) with the weighting vector W, 

which exists according to the condition of the theorem (subsets 0 1 1, ,  ...,
k

A A A −  

are k-separable): 

( ) ( ) ( )11 1

1
, , ... , .

1 rr m m rW W X W X W
n

ω ω+
⎡ ⎤= + +⎢ ⎥⎣ ⎦+

� � �  (3.84) 

Let us now estimate the absolute value ( )1,rW W+
�  of the dot product 

( )1
,

r
W W+
� : 

( ) ( ) ( )11 1

1
, , ... , .

1 rr m m rW W X W X W
n

ω ω+
⎡ ⎤= + +⎢ ⎥⎣ ⎦+

� � �  (3.85) 

Since for any complex number β Reβ β≥  and Imβ β≥ , then the abso-

lute value of the sum in the right-hand side of (3.85) is always greater than or 

equal to the absolute values of the real and imaginary parts of this sum. Let 

( )
1,...,

min Re ,
jm j

j r
a X Wω

=
= � . Then it follows from (3.85) that 

( )1, .
1

r

ra
W W

n
+ ≥

+
�  (3.86) 

 

According to the fundamental Schwarz inequality [74] the squared dot product of 

the two vectors does not exceed the product of the squared norms of these vectors 

or in other words, the norm of the dot product of the two vectors does not exceed 

the product of the norms of these vectors ( )1 2 1 2
,V V V V≤ ⋅ . Thus, according 

to the Schwartz inequality 

( )1 1, .r rW W W W+ +≤ ⋅� �  (3.87) 
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Taking into account (3.86), we obtain from (3.87) the following 

( )1 1,
1

r r

ra
W W W W

n
+ +≤ ≤ ⋅

+
� � . 

Then it follows from the last inequality that  

( )1 .
1

r

ra
W

W n
+ ≥

+
�  (3.88) 

Let for simplicity 
1

a
a

n
=

+
� . Then (3.88) is transformed as follows: 

1 .r

ra
W

W
+ ≥

��  (3.89) 

As we told, W is a weighting vector, which exist according to the condition of the 

Theorem. According to our assumption, the sequence 
W

S �  of the weighting vec-

tors is infinite. Since r is the number of the weighting vector in the sequence 
W

S � , 

let us consider (3.89) when r → ∞ . 
1r

W +
�  is a norm of the vector and therefore 

it is a non-negative finite real number, W  is a norm of the vector and it is a  

finite positive real number ( 0W ≠  because vector W is a weighting vector sat-

isfying (3.73) and therefore at least one of its components is not equal to 0), and 

a�  is a finite positive real number. It follows from this analysis that 
r

ra

W →∞
→ ∞

�
. 

However, this means that from (3.89) we obtain 

1 .r

ra
W

W
+ ≥ → ∞

��  (3.90) 

Inequality (3.90) is contradictory. Indeed, the norm of a vector, which is in the 

left-hand side, is a finite non-negative real number. However, it has to be greater 

than or equal to the infinity in the right-hand side of (3.90), which is impossible. 

This means that (3.90) is contradictory. This means in turn that either it is impos-

sible that r → ∞  or the vector W does not exist. The latter contradicts to the con-

dition of the Theorem. Hence, r →∞  and it is always a finite integer number. 

Thus, our assumption that the sequence 
W

S �  of the weighting vectors is infinite, is 

false, which means that it is always finite. Theorem is proven. 
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So the MVN learning algorithm with the learning rule (3.80) converges after a 

finite number of learning iterations. As we see, this learning algorithm is deriva-

tive-free. It is not considered as the optimization problem of the minimization of 

the error functional. It is important that a famous local minima problem, which is 

typical for those learning rules that are based on the optimization technique and 

which we have considered in Section 1.3 (see Fig. 11), does not exist for the MVN 

learning algorithm based on the learning rule (3.80). The error in this MVN learn-

ing algorithm decreases because each following weighting vector in the sequence 

W
S �  should be closer to the “ideal” weighting vector W, which exists if the MVN 

input/output mapping is described by some k-valued threshold function. Accord-

ing to (3.86) the absolute value of the dot product of the vector W and the weight-

ing vector 1r
W +  in the sequence 

W
S �  must be greater than or equal to the finite 

number proportional to r, which is the number of the correction. On the one hand, 

since r increases, this means that ( )1,rW W+
�  at least does not decrease. On the 

other hand, as we have proven, ( )1,rW W+
�  cannot increase to infinity. This 

means that the learning algorithm converges when ( )1,rW W+
�  reaches its maxi-

mum. This means that vectors 1r
W +  and W  are as close to each other as it is  

possible. Ideally, they are collinear or close to collinearity. It follows from (3.85) 

and (3.86) that ( )1,rW W+
�  cannot decrease during the learning process. It may 

only increase or remain the same. If it increases, this means that the error de-

creases. This means that geometrically, the MVN learning algorithm based on the 

learning rule (3.80) “rotates” the initial weighting vector such that ( )1,rW W+
�  

should be maximized. It follows from this that the worst starting condition for the 

learning process is when the vectors 1W  (the starting weighting vector) and W  

are orthogonal to each other and ( )1,rW W+
� =0, while the best starting condition 

is when the same vectors are about collinear. The closer they are to the collinear-

ity, the smaller is the error and the shorter way is required for the convergence of  

the learning process. This kind of “non-optimization” learning is based on the 

same idea, which was developed in [12] by A. Novikoff for the threshold neuron 

and its error-correction learning. 

Let us make one more remark. If the permutation ( )0 1 1, ,...,
k

R α α α −=  such 

that (3.73) holds for the entire learning set A is not known, it is possible to find 

such a permutation by k! means. This follows from the fact that there are  

exactly k! different permutations from the elements of the set A. 
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3.3   MVN Error-Correction Learning Rule 

3.3.1   Basic Fundamentals 

We have considered in Section 1.2 the error-correction learning rule (1.17) for the 

threshold neuron. For the reader’s convenience we repeat it here 

0 0 ;

, 1,..., ,i i i

w w

w w x i n

αδ

αδ

= +

= + =

�
�

  

where d yδ = −  is the error, which is according to (1.5) the difference between 

the desired neuron output and its actual output, and α is the learning rate. Is it pos-

sible to apply the same idea for MVN? Yes, the MVN error-correction learning 

rule was justified in [60] where the convergence of the MVN learning algorithm 

with the error-correction learning rule was also proven. 

The MVN error-correction learning rule was proposed in 1995 by the author of 

this book, Naum Aizenberg, and Georgy Krivosheev in [110] (then the conver-

gence of the learning algorithm based on it was proven by the author of this book, 

N. Aizenberg, and J. Vandewalle in [60]), as follows  

where n is the number of the neuron inputs, i
w  is the ith component of the weight-

ing vector before correction, i
w�  is the same component after correction,

 i
x  is the 

ith neuron input complex-conjugated ( 0 1x ≡  as we agreed above is a pseudo-

input corresponding to the bias 0w ), r
C  is the learning rate, 

qε  is the desired 

output, 
sε  is the actual output. 

q sδ ε ε= −  is the error. It should be mentioned 

that throughout this Section we still use the notation k
ε ε=  for simplicity. As 

well, as the MVN learning algorithm based on the angular error compensation 

learning rule, the MVN learning algorithm based on the error-correction learning 

rule is also reduced to the straightening of the sequence w
S  of the weighting vec-

tors. Thus, adjusting the weights according to (3.91), we obtain the following equ-

ation for the r+1
st
 weighting vector belonging to the sequence w

S  from the rth 

weighting vector belonging to the same sequence 

 

 

( )
( ) ; 0,1,...,

1

q sr
i i i

C
w w x i n

n
ε ε= + − =

+
� , (3.91) 

( )
( )1

1

q sr
r r

C
W W X

n
ε ε+ = + −

+
, (3.92) 
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where r is the number of the current weighting vector in the sequence w
S , addi-

tion is component-wise, and ( )11, ,...,
n

X x x=  is the vector of inputs with the 

complex-conjugated components. As we have done this earlier, we introduce the 

pseudo-input 0 1x ≡  corresponding to the weight 0w . 

 

Let us find the updated 

weighted sum after the weights are 

corrected according to (3.91). The 

current weighted sum is 

0 1 1 ...
n n

z w w x w x= + + + . Sup-

pose for simplicity, but without loss 

of generality that 1
r

C = .  

If 
q sδ ε ε= −  is the error, 

then for the updated weighted sum, 

taking into account that 

1; 0,1,...,
i i

x x i n= = (since all 

i
x are located on the unit circle) we 

obtain 
 

 

 

This means that after the weights are corrected, the weighted sum is changed ex-

actly by δ  that is by the error. This is illustrated in Fig. 3.36. The current 

weighted sum located in the sector s has to be moved to the sector q. The direction 

of this movement is determined by the error 
q sδ ε ε= − , which is equal to the 

difference between the desired output 
qε  and actual output 

sε . Correcting the 

weights according to (3.91) (or (3.92), which is the same), we ensure that after the 

correction of the weights the updated weighted sum z δ+  moves closer or ex-

actly to the desired sector q and the MVN output moves closer or exactly becomes 

equal to 
qε , respectively. 

 

Fig. 3.36 Movement of the weighted sum z after 

the correction of the weights according to (3.91) 

0 1 1

0 1 1 1

0 1 1

1 times

...

1 1 1
...

1 1 1

1 1 1
... ...

1 1 1

.

n n

n n n

n n

z
n

z w w x w x

w w x x w x x
n n n

n
w w x w x z

n n n

z

δ δ δ

δ δ δ

δ
+

= + + + =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ + + + + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

+ + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠
+

= + + + + + + = + =
+ + +

= +

� � ��

����	���
 ����	���


(3.93) 
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In [62], it was suggested to modify the learning rule (3.92). A variable learning 

rate, which is equal to 1/
r

z , the inverse absolute value of the current weighted 

sum, was introduce there. This modification should be reasonable for those in-

put/output mappings that are described by highly nonlinear functions with many 

irregular jumps. With this modification, the learning rule (3.92) becomes 
 

The use of the variable learning rate 1/
r

z  makes movements of the weighted 

sum “softer”. This is illustrated in Fig. 3.37. If the absolute value of the current  

 

( )
( )1

1

q sr
r r

r

C
W W X

n z
ε ε+ = + −

+
. (3.94) 

 
 

(a) |z|>1 (b) |z|>1 

 

(c) |z|<1 

Fig. 3.37 Movement of the weighted sum z after the correction of the weights according  

to (3.94) 
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weighted sum z is greater than 1 (it is located outside of the unit circle, see  

Fig. 3.37a), then 
1

1
z

< , and the weighted sum moves shorter than by 
q sε ε− . 

It cannot reach in this way its target, the sector q, but it also could not reach it 

moving by 
q sε ε− . However, it moved closer to the sector q, and on the next 

learning step it moves exactly there (see Fig. 3.37b). Moving by 
q sε ε− , the ad-

justed weighted sum would need even one more step to move to the desired sector, 

while moving by ( )1

| |

q s

z
ε ε− , it does not need it. In Fig. 3.37c, the absolute 

value of the current weighted sum z is less than 1 (it is located inside the unit  

circle). Therefore 
1

1
z

>  and the weighted sum moves further than by 
q sε ε− . 

It not only reaches its target – the desired sector q, but z�  is located even more 

distant from the sector borders than z . The use of the learning rule (3.94) is espe-

cially reasonable for highly nonlinear input/output mappings, which may have 

multiple jumps, peaks, etc. Correcting the weights carefully, this learning rule 

makes the learning process more adaptive, which may lead to faster convergence 

of the learning algorithm. However, we will see below that the convergence of the 

learning algorithm with the error-correction learning rule does not depend on the 

particular form of this rule - (3.92) or (3.94). Moreover, in [61] another modifica-

tion of the learning rules (3.92) or (3.94) was proposed by the author of this book.  

To learn highly nonlinear input/output mappings, it might be reasonable to cal-

culate the error not as a difference between the desired and actual outputs, but as a 

difference between the desired output and the projection of the current weighted 

sum on the unit circle 
| |

q z

z
δ ε= − . 

This leads to the following modification of the learning rules (3.92) and (3.94),  

respectively: 

( )1
1

qr r
r r

r

C z
W W X

n z
ε+

⎛ ⎞
= + −⎜ ⎟⎜ ⎟+ ⎝ ⎠ , (3.95) 

( )1
1

qr r
r r

r r

C z
W W X

n z z
ε+

⎛ ⎞
= + −⎜ ⎟⎜ ⎟+ ⎝ ⎠ . (3.96) 

For the continuous MVN, the error-correction learning rule is derived from the 

same considerations. Just the error į is not a difference of the kth roots of unity, but 

it is a difference of the desired output D and actual output Y, which can be arbitrary 

numbers located on the unit circle. Taking into account the D Yδ = −  and that 
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| |

r

r

z
Y

z
= , we obtain from (3.95) and (3.96) the following error-correction learn-

ing rules for the continuous MVN, respectively 

( )
( )

( )1
1 1

r r r
r r r

r

C C z
W W D Y X W D X

n n z
+

⎛ ⎞
= + − = + −⎜ ⎟⎜ ⎟+ + ⎝ ⎠ , (3.97) 

( )
( )

( )1
.

1 1

r r r
r r r

r r r

C C z
W W D Y X W D X

n z n z z
+

⎛ ⎞
= + − = + −⎜ ⎟⎜ ⎟+ + ⎝ ⎠  (3.98) 

3.3.2   Convergence Theorem 

Now we can formulate and prove the theorem about the convergence of the learn-

ing algorithm for the discrete MVN with the learning rules (3.92), and  

(3.94)-(3.98). For the discrete MVN learning rules (3.92), and (3.94)-(3.96), the 

proof, which will be given here, was done by the author of this book in [61]. For 

the continuous MVN learning rules (3.97) and (3.98), the proof is based on the 

same approach and it is very similar. It will be given here for the first time. It is 

important to mention that for the discrete MVN learning algorithm with the learn-

ing rule (3.92) the convergence theorem was proven in [60]. The proof, which was 

done in [61] and will be presented here, is shorter and more elegant.  

So let us have the learning set A. Suppose that the permutation 

( )0 1 1, ,...,
k

R α α α −=  such that (3.73) holds for the entire learning set A is 

known. We use the learning algorithm presented in Section 3.1. Let us just make 

one important remark about the continuous MVN case. We have already men-

tioned in Section 3.1 that any learning set A for the continuous-valued input/output 

mapping ( )1,..., : , n

n
f x x T O T O→ ⊆  is finite, which means that it can be 

represented as a union 

0 1

j

j k

A A
≤ ≤ −

= ∪  of the learning subsets 

, 0,1,..., 1jA j k= − , where k is the number of different values of the function 

( )1,..., n
f x x  representing a continuous input/output mapping.  

 

Theorem 3.17 (About the convergence of the learning algorithm with the error-

correction learning rules (3.92), (3.94)-(3.98)). If the learning subsets 

0 1 1, ,  ...,
k

A A A −  of the learning set A (

0 1

j

j k

A A
≤ ≤ −

= ∪ ) are k-separable for the 

given value of k according to Definition 3.16 (which means that the corresponding 

MVN input/output mapping is a k-valued threshold function), then the MVN learning 
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algorithm with either of the learning rules (3.92), (3.94)-(3.98) converges after a 

finite number of steps. 

Proof. This proof is based on the same idea as the one of Theorem 3.16 and it is in 

major similar. Let us first proof the Theorem for the rule (3.92). Then we will 

prove it for the learning rules (3.94)-(3.98). 

Since we are given a condition that our learning subsets 0 1 1, ,  ...,
k

A A A −  are k-

separable, this means that there exists a weighting vector ( )0 1, ,...,
n

W w w w=  

such that (3.73) holds for any ( )1,..., n
X x x=  from the domain of f and at least 

one of the weights is non-zero.  

Let us now look for a weighting vector applying the learning rule (3.92) accord-

ing to our learning algorithm. We may set 1
r

C =  in (3.92) for any r. For simplic-

ity and without loss of generality, let us start learning process from the zero vector 

( )1 (0,0), (0,0),..., (0,0)W = , where ( ),a b  is a complex number a bi+ , 

where i is an imaginary unity. Let ( )1 2, ,...,
X N

S X X X=  be a learning  

sequence of input vectors ( )1 , ..., , 1,...,j j

j n
X x x j N= = , and 

( )1 2, ,..., ,...
W r

S W W W=  be a sequence of weighting vectors, which appear dur-

ing the learning process. We have to prove that this sequence cannot be infinite. 

Let us remove from the learning sequence those vectors for which 1r r
W W+ = , in 

other words, those input vectors, for which (3.73) hold without any learning. Let 

W
S �  be the reduced sequence of the weighting vectors. The Theorem will be prov-

en if we will show that the sequence 
W

S �  is finite. Let us suppose that the opposite 

is true: the sequence 
W

S �  is infinite. Let 1sε  be the actual output for the input  

vector 1X  and the weighting vector 1W  and 1qε  be the desired MVN output for 

the same input vector 1X . Since the desired and actual outputs do not coincide 

with each other, we have to apply the learning rule (3.92) to adjust the weights.  

According to (3.92) we obtain ( )1 1

2 1

1

1

q s
W X

n
ε ε= −

+
� � , 

 

( )

( ) ( )

2 2

1 1 2 2

3 2 2

1 2

1

1

1
,....

1

q s

q s q s

W W X
n

X X
n

ε ε

ε ε ε ε

= + − =
+

⎡ ⎤− + −⎣ ⎦+

� � �

� �
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( ) ( )1 1

1 1

1
... .

1
r rq s q s

r rW X X
n

ε ε ε ε+
⎡ ⎤= − + + −⎣ ⎦+

� � �  (3.99) 

Let us find a dot product of both parts of (3.99) with W: 

( ) ( )( ) ( )( )1 1

1 1

1
, , ... , .

1
r rq s q s

r r
W W X W X W

n
ε ε ε ε+

⎡ ⎤= − + + −⎢ ⎥⎣ ⎦+
� � �  

Let , 1,...,j jq s

j j rε ε ω− = = .  

Then the last equation may be rewritten as follows: 
 

( ) ( ) ( )1 1 1

1
, , ... , .

1
r r rW W X W X W

n
ω ω+

⎡ ⎤= + +⎢ ⎥⎣ ⎦+
� � �  (3.100) 

 

Let us estimate the absolute value ( )1,rW W+
� : 

( ) ( ) ( )1 1 1

1
, , ... , .

1
r r rW W X W X W

n
ω ω+

⎡ ⎤= + +⎢ ⎥⎣ ⎦+
� � �  (3.101) 

 

Since for any complex number β Reβ β≥  and Imβ β≥ , then the abso-

lute value of the sum in the right-hand side of (3.101) is always greater than or 

equal to the absolute values of the real and imaginary parts of this sum. Let 

( )
1,...,

min Re ,
j j

j r
a X Wω

=
= � . Then it follows from (3.101) that 

( )1, .
1

r

ra
W W

n
+ ≥

+
�  (3.102) 

 

According to the fundamental Schwarz inequality [74] the squared dot product of 

the two vectors does not exceed the product of the squared norms of these vectors 

or in other words, the norm of the dot product of the two vectors does not exceed 

the product of the norms of these vectors ( )1 2 1 2,V V V V≤ ⋅ . Thus, according 

to the Schwartz inequality 

( )1 1, .r rW W W W+ +≤ ⋅� �  (3.103) 

 

Taking into account (3.102), we obtain from (3.103) the following 

( )1 1,
1

r r

ra
W W W W

n
+ +≤ ≤ ⋅

+
� � . 

Then it follows from the last inequality that  
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( )1 .
1

r

ra
W

W n
+ ≥

+
�  (3.104) 

Let for simplicity 
1

a
a

n
=

+
� . Then (3.104) is transformed as follows: 

1 / .
r

W ra W+ ≥� �  (3.105) 

 

As we told, W is some weighting vector, which exists for our input/output map-

ping. This vector exists according to the condition of the Theorem because the 

learning subsets 0 1 1, ,  ...,
k

A A A −  are k-separable. According to our assumption, 

the sequence 
W

S �  of the weighting vectors is infinite. Since r is the number of the 

learning step, let us consider (3.105) when r → ∞ . 
1r

W +
�  is a non-negative  

finite real number, W  is a finite positive real number ( 0W ≠  because vector 

W is a weighting vector for our input/output mapping, and this means that at least 

one of the weights is not equal to 0), and a�  is a finite positive real number. It fol-

lows from this analysis that  

r

ra

W →∞
→ ∞

�
. 

However, this means that from (3.105) we obtain 

1 .r

ra
W

W
+ ≥ → ∞

��  (3.106) 

Inequality (3.106) is contradictory. Indeed, the norm of a vector, which is in the 

left-hand side, is a finite non-negative real number. However, it has to be greater 

than or equal to the infinity in the right-hand side of (3.106), which is impossible. 

This means that (3.106) is contradictory. This means in turn that either it is impos-

sible that r → ∞  or the vector W does not exist. The latter means that the  

learning subsets 0 1 1, ,  ...,
k

A A A −  are not k-separable. However, this contradicts 

to the condition of the Theorem. Hence, r →∞  and it is always a finite integer 

number. Thus, our assumption that the sequence 
W

S �  of the weighting vectors is 

infinite, is false, which means that it is always finite. Hence, the learning algo-

rithm with the learning rule (3.92) converges after a finite number of steps. 

Let us now prove that the learning algorithm also converges when either of the 

learning rules (3.94)-(3.98) is used. For these three learning rules the proof of the 
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convergence of the learning algorithm is almost identical to the proof we have just 

presented, accurate within specifics of some equations. Let us demonstrate this. 

If we apply the learning rule (3.94), we obtain the following equation instead  

of (3.99) 

( ) ( )1 1

1 1

1

1 1 1
... .

1
r rq s q s

r r

r

W X X
n z z

ε ε ε ε+

⎡ ⎤
= − + + −⎢ ⎥

+ ⎣ ⎦
� � �  

Then putting ( )1
, 1,...,j jq s

j

j

j r
z

ε ε ω− = = , we obtain (3.100) and from that 

moment the proof continues with no changes.  

If we apply the learning rule (3.95), then (3.99) is substituted by the following 

expression 

1 1
1 1

1

1
... .

1
rq q r

r r

r

z z
W X X

n z z
ε ε+

⎡ ⎤⎛ ⎞ ⎛ ⎞
= − + + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

� � �  

Then putting , 1,...,jq j

j

j

z
j r

z
ε ω− = = , we obtain (3.100) and from that mo-

ment the proof continues again with no changes.  

If we apply the learning rule (3.96), then we again have to substitute (3.99), 

this time as follows 

1 1
1 1

1 1

1 1 1
... .

1
rq q r

r r

r r

z z
W X X

n z z z z
ε ε+

⎡ ⎤⎛ ⎞ ⎛ ⎞
= − + + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

� � �  

Then putting 
1

 , 1,...,jq j

j

j j

z
j r

z z
ε ω
⎛ ⎞⎜ ⎟− = =⎜ ⎟⎝ ⎠

, we obtain (3.100) and from 

that moment the proof continues again with no changes. 

If we apply the learning rule (3.97), then we again have to substitute (3.99), 

this time as follows 

1
1 1

1

1
... .

1

r
r r

r

z z
W D X D X

n z z
+

⎡ ⎤⎛ ⎞ ⎛ ⎞
= − + + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

� � �  

Then putting  , 1,...,
j

j

j

z
D j r

z
ω

⎛ ⎞⎜ ⎟− = =⎜ ⎟⎝ ⎠
, we obtain (3.100) and from that 

moment the proof continues again with no changes. 



3.3   MVN Error-Correction Learning Rule 121

 

If we apply the learning rule (3.98), then (3.99) should be substituted as follows 

1
1 1

1 1

1 1 1
... .

1

r
r r

r r

z z
W D X D X

n z z z z
+

⎡ ⎤⎛ ⎞ ⎛ ⎞
= − + + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

� � �  

Then putting 
1

 , 1,...,
j

j

j j

z
D j r

z z
ω

⎛ ⎞⎜ ⎟− = =⎜ ⎟⎝ ⎠
, we obtain (3.100) and from 

that moment the proof continues again with no changes. 

Theorem is proven. This means that the MVN learning algorithm with either of 

the learning rules (3.92), (3.94)-(3.98) converges after a finite number of learning 

iterations. As well as the learning algorithm based on the rule (3.80), the learning 

algorithm based on the rules (3.92), (3.94)-(3.98) is derivative-free. As well as the 

algorithm based on the rule (3.80), it is not considered as the optimization problem 

of the minimization of the error functional. Therefore, a local minima problem 

(see Section 1.3, Fig. 1.11), which is typical for those learning rules that are based 

on the optimization technique, does not exist for the MVN learning algorithm 

based on the learning rules (3.92), (3.94)-(3.98), as well as for the learning algo-

rithm based on the rule (3.80). 

The error in the MVN learning algorithm based on the learning rules (3.92), 

(3.94)-(3.98) naturally decreases because of the same reasons that for the learning 

algorithm based on the learning rule (3.80). Each following weighting vector in 

the sequence 
W

S �  should be closer to the “ideal” weighting vector W, which exists 

if the MVN input/output mapping is described by some k-valued threshold func-

tion and the learning subsets 0 1 1, ,  ...,
k

A A A −  are k-separable. According to 

(3.99), for the learning rule (3.92), and according to corresponding equations for 

the learning rules (3.94)-(3.98), the absolute value of the dot product of the vector 

W and the weighting vector 1r
W +  in the sequence 

W
S �  should not decrease and 

moreover, as it follows from (3.103) and (3.104), it must be greater than or equal 

to the finite number proportional to r, which is the number of the correction. On 

the one hand, since r increases, this means that ( )1,rW W+
�  should not decrease. 

On the other hand, as we have proven, ( )1,rW W+
�  cannot increase to infinity. 

This means that the learning algorithm converges when ( )1,rW W+
�  reaches its 

maximum. This means that vectors 1r
W +  and W  are as close to each other as it is 

possible. Ideally, they are collinear or close to collinearity. It follows from (3.99) 

and (3.100) that ( )1,rW W+
�  cannot decrease during the learning process. It may 

only increase or remain the same. If it increases, this means that the error  

decreases. This means that geometrically, the MVN learning algorithm based on 
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either of the learning rules (3.92), (3.94)-(3.98) “rotates” the initial weighting vec-

tor and the intermediate weighting vectors r
W  such that ( )1,rW W+

�  should be 

maximized. It follows from this that the worst starting condition for the learning 

process is when the vectors 1W  (the starting weighting vector) and W  are or-

thogonal to each other and ( )1,rW W+
� =0, while the best starting condition is 

when the same vectors are about collinear. The closer they are to the collinearity, 

the smaller is the error and the shorter way is required for the convergence of the 

learning process.  

Hence, the MVN learning algorithm based on the error-correction learning rule 
is another example of the “non-optimization” learning, which is based on the same 

idea that was developed in [12] by A. Novikoff for the threshold neuron and its er-
ror-correction learning. 

It is important that a beautiful approach to the learning through the direct error-
correction, which was proposed by F. Rosenblatt and developed by A. Novikoff 
for the threshold neuron about 50 years ago, was generalized for MVN. Unlike the 
threshold neuron, MVN employs this learning rule for multiple-valued and even 

continuous-valued input/output mappings. 

We should recall that if the permutation ( )0 1 1, ,...,
k

R α α α −=  such that 

(3.73) holds for the entire learning set A is not known, it is possible to find such a 

permutation by k! means. 

It is worth to mention that the MVN learning algorithm does not depend on the 

learning rate, unlike any learning algorithm for a real-valued neuron. As we saw, 

the learning rate r
C  in the learning rules (3.80), and (3.92), (3.94)-(3.98) can al-

ways be equal to 1. Evidently, that a variable learning rate 
1

| |
r

z
 in (3.94), (3.96), 

and (3.98) is self-adaptive. 

3.3.3   Example of Error-Correction Learning 

Let us consider how MVN learns. We will use the learning algorithm with the er-

ror-correction rule (3.92). We have already considered above (see Table 2.8 and 

Fig. 2.22a) how the discrete MVN implements in 3-valued logic the Post function 

( )1 2max , ; ; 1,2
i

y y y K i∈ = , which becomes in k-valued logic over the field 

of complex numbers ( ) ( )max 1 2 1 2, max , ; ; 1,2
i k

f x x x x x E i= ∈ =  Let us 

consider it again for 3k = . We will obtain the weighting vector for this function 

using the learning algorithm with the error-correction learning rule (3.92). 

The results are summarized in Table 3.10 and Fig. 3.38. The learning  

process starts from the random weighting vector 

( )0 0.96 0.32 ,0.79 0.73 ,0.59 0.5  W i i i= + + + (all real and imaginary parts of 
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the weights are random numbers in the interval [0, 1]). With the initial weighting 

vector, the actual outputs for the learning samples 1, 5, 6, 7, 8, 9 coincide with the 

desired outputs, while for the learning samples 2, 3, 4 the desired outputs are in-

correct (see Fig. 3.38a and the column “Initial W” in Table 3.10). We have already 

shown in Section 2.1 that ( )max 1 2,f x x  is a threshold function, which can be im-

plemented using MVN with the weighting vector 

( )3 3 32 4 4 5 4 5W İ , + İ , + İ= − − .  

 

 

(a) with the initial random vector 

  

(b) after the 1
st
 iteration (c) after the 2

nd
 iteration 

Fig. 3.38 Learning of the ( ) ( )max 1 2 1 2
, max ,f x x x x=  for k=3, using the MVN learning al-

gorithm with the rule (3.92).  

Locations of the weighted sums corresponding to the learning samples 1-9 are shown 
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Thus, we may consider this weighting vector as the “ideal” one. According to 

Theorem 3.16 and Theorem 3.17, if the learning process starts from some arbitrary 

weighting vector whose components are chosen randomly, then this process 

should lead to the weighting vector, whose absolute dot product with the “ideal” 

weighting vector reaches its maximum. Moreover, the absolute value of this dot 

product should not decrease during the learning process. 

For the starting weighting vector 0W  we obtain ( )0 , 6.34W W = . After the 

first learning iteration the actual outputs for the learning samples 1, 3, 5, 6, 7, 9 

coincide with the desired outputs, while for the learning samples 2, 4, 8 the de-

sired outputs are incorrect (see Fig. 3.38b and the column “Iteration 1” in Table 

3.10). 

 
Table 3.10 MVN learns the Post function 

max 1 2( , )f x x  in 3-valued logic using the learning  

algorithm with the error-correction learning rule (3.92) 

 

 

 

 

 

 

 

 

 

 

 

 

 
It should be mentioned that the weighted sums for the learning samples 2 and 4 

have moved much closer to the desired sector 1 compared to the initial state,  

while the weighted sum for the learning sample 8 has moved a little bit in  

the incorrect direction from the correct sector 2 to the incorrect sector 1.  

After the first learning iteration, the updated weighting vector is 

( )1 -1.04 - 0.84 ,0.79 1.31 ,0.59 1.08  W i i i= + + , and ( )1, 16.46W W = . 

After the second learning iteration, all actual outputs coincide with the  

desired outputs (see Fig. 3.38c and the column “Iteration 2” in Table 3.10) and  

therefore, the learning algorithm converges. The resulting weighting vector is 
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( )2 -1.04 -1.99 ,0.79 1.89 ,0.59 1.65  W i i i= + + , and ( )2 , 24.66W W = . We 

see that vectors W  and 2W  are not collinear, but they are close to collinearity (at 

least, all the real and imaginary parts of their components have the same sign) and 

this closeness is enough to ensure that both these vectors implement the same in-

put/output mapping. 

In Chapter 4, we will use the error-correction learning in the backpropagation 

learning algorithm for a feedforward neural network based on multi-valued  

neurons. 

A level of growing of ( ),
r

W W  where r is the number of the learning itera-

tion should be used as a measure of the learning energy, which the learning algo-

rithm spends correcting the weights. We will see in Section 3.4 that the best 

choice for the starting weighting vector in the learning algorithm is the Hebbian 

weighting vector that is the vector obtained using the Hebb rule. The learning 

process, which starts from the Hebbian vector leads to fewer corrections of the 

weights than the learning process starting from the random vector. 

3.4   Hebbian Learning and MVN 

We have started consideration of different neural learning techniques from the 

Hebbian learning (see Section 1.2). Let us consider how this important learning 

technique works for MVN. 

The mechanism of the Hebbian learning for MVN is the same as the one for the 

threshold neuron and as it was described by D. Hebb in his seminal book [8]. This 

is the mechanism of the association. The weight should pass the input signal or to 

enhance it or to weaken it depending on the correlation between the corresponding 

input and the output. As well as for the binary threshold neuron, the associations 

between the desired outputs and the given inputs should be developed through the 

dot product of the vector of all the desired outputs with the corresponding vectors 

of all the given inputs. 

The Hebbian learning rule does not change for MVN, and equations (1.3) and 

(1.4) that describe this rule for the threshold neuron also work for MVN. 

Just for the reader’s convenience we will repeat these equations here. 

Let us have N n-dimensional learning samples ( )1 ,..., , 1,...,j j

n
x x j N= . Let 

( )1f ,...,
T

N
f f=  be an N-dimensional vector-column of the desired outputs. Let 

1,..., n
x x  be N-dimensional vectors of all the inputs 

( ( )1 2

1 1 1 1, ,...,
T

Nx x x=x , ( )1 2

2 2 2 2, ,...,
T

Nx x x=x , …, ( )1 2, ,...,
T

N

n n n n
x x x=x ). 

Then according to the Hebbian learning rule (see (1.3)) the weights 1,..., n
w w  

are calculated as dot products of vector f  and vectors 1,..., n
x x , respectively. 
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Weight 0w  is calculated as a dot product of vector f  and the N-dimensional vec-

tor-constant ( )0 1,1,...,1
T

=x : 

( ), , 0,...,
i i

w i n= =f x ,  

where ( ) 1 1, ...
n n

a b a b= + +a b  is the dot product of vector-columns 

( )1,...,
T

n
a a=a  and ( )1,...,

T

n
b b=b  in the unitary space (“bar” is a symbol of 

complex conjugation), thus 

 

( ) 1 2

1 2, ... , 0,1,...,N

i i i i N iw f x f x f x i n= = + + + =f x . (3.107) 

 

Equation (1.4) determines the normalized version of the Hebbian learning rule 

( )
1

, , 0,...,
i i

w i n
N

= =f x . 

Let us now consider the following examples. Let k=4 in the MVN activation func-

tion (2.50). Thus, our MVN works in 4-valued logic whose values are encoded by 

the elements of the set { }4 1, , 1,E i i= − −  (
2 /4

4

i
i e

πε= = is an imaginary unity 

and a primitive 4
th

 root of a unity). 

Let us first consider four examples illustrated in Fig. 3.39. In all these examples 

we calculate a weight for one of the MVN inputs and for a single learning sample. 

In Fig. 3.39a, the desired MVN output is i and the corresponding input is also i. 

According to (3.107) 0 1 1 1, ( ) 1w i w f x i i= = = ⋅ − = , the weighted sum is 

1 2i i i+ ⋅ = , and according to (2.50) the neuron output is (2 )P i i= . Thus, if  

the desired output coincides with the input, the weight just “passes” the input to 

the output.  

In Fig. 3.39b, the desired MVN output is -i and the corresponding input is i. 

According to (3.107) 0 1 1 1, ( ) 1w i w f x i i= − = = − ⋅ − = − , the weighted sum is 

( 1) 2i i i− + − ⋅ = − , and according to (3.50) the neuron output is ( 2 )P i i− = − . 

Thus, if the desired output is opposite to the input, the weight inverts the input 

passing it to the output.  

The same situation is illustrated in Fig. 3.39c. Just the desired MVN output 

here is i, while the corresponding input is -i. According to (3.107) 

0 1 1 1, 1w i w f x i i= = = ⋅ = − , the weighted sum is ( 1) ( ) 2i i i+ − ⋅ − = , and 

according to (3.50) (2 )P i i= .  

In Fig. 3.39d, the desired output and the input are neither the same nor opposite 

to each other. The desired MVN output is -1 and the corresponding input is i.  
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According to (3.107) 0 1 1 11, 1 ( )w w f x i i= − = = − ⋅ − = , the weighted sum is 

1 1 1 2i i− + ⋅ = − − = − , and according to (2.50) the neuron output is 

( 2) 1P − = − . Thus, the weight “rotates” the input such that this input contributes 

to the desired output. 

 

 

Let us now consider calculation of the weights for the two MVN inputs using 

the Hebbian learning rule.  

In Fig. 3.40a, the desired MVN output is i, while its two inputs are i and -1,  

respectively. According to (3.107) 0 1 1 1, ( ) 1w i w f x i i= = = ⋅ − = , and 

2 1 2 ( 1)w f x i i= = ⋅ − = − , the weighted sum is 1 ( 1) ( ) 3i i i i+ ⋅ + − ⋅ − =  and 

according to (2.50) the neuron output is (3 )P i i= . Thus, the weight 1w  passes 

the input 1x  to the output, while the weight 2w  “rotates” the input 2x  passing it 

to the output. 

  
(a) the output coincides with the input, and 

the weight just pass the input to the output 

(b) the output is opposite to the input, and the 

weight inverts the input passing it to the output 

  
(c)  the output is opposite to the input, and  

the weight inverts the input passing it to the 

output 

(d) the weight “rotates” the input such that this 

input contributes to the desired output 

Fig. 3.39 Calculation of the MVN weight using the Hebb rule for one of the neuron inputs 

and for a single learning sample: the weight is equal to the product of the desired output 

and the complex-conjugated input  
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In Fig. 3.40b, the desired MVN output is -i, while its two inputs are i and 1, re-

spectively. According to (3.107) 0 1 1 1, ( ) 1w i w f x i i= − = = − ⋅ − = −  and 

2 1 2 1w f x i i= = − ⋅ = − , the weighted sum is ( 1) ( ) 1 3i i i i− + − ⋅ + − ⋅ = − , and 

according to (2.50) the neuron output is ( 3 )P i i− = − . Thus, the weight 1w  in-

verts the input 1x  passing it to the output, while the weight 2w  “rotates” the input 

2x  passing it to the output. 

 

 

In Fig. 3.40c, the desired MVN output is 1, while its two inputs are i and -i,  

respectively. According to (3.107) 0 1 1 11, 1 ( )w w f x i i= = = ⋅ − = − , and 

2 1 2 1w f x i i= = ⋅ = , the weighted sum is 1 ( ) ( ) ( ) 3i i i i+ − ⋅ + ⋅ − = , and ac-

cording to (2.50) the neuron output is (3) 1P = . Thus, both weights 1w  and 2w  

“rotate” the inputs 1x  and 2x  passing them to the output. 

In Fig. 3.40d, the desired MVN output is -i, while its two inputs are i and -i, re-

spectively. According to (3.107) 0 1 1 1, ( ) 1w i w f x i i= − = = − ⋅ − = −  and 

2 1 2 1w f x i i= = − ⋅ = , the weighted sum is ( 1) 1 ( ) 3i i i i− + − ⋅ + ⋅ − = − , and 

  

(a)  (b)  

  

(c)  (d)  

Fig. 3.40 Calculation of the MVN weights using the Hebb rule for the two neuron inputs 

and for a single learning sample: the weight is equal to the product of the desired output 

and the complex-conjugated input  
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according to (2.50) the neuron output is ( 3 )P i i− = − . Thus, the weight 1w  in-

verts the input 1x  passing it to the output, while the weight 2w  passes the input 

2x  to the output.  

Evidently, the Hebbian learning can also be considered for the continuous 

MVN. In this case, nothing changes, and the Hebb rule still is still described by 

(1.3), (1.4), and (3.107). 

It is important that the MVN Hebbian learning can be used for simulation of the 

associations that take place in biological neurons when they learn. We have al-

ready discussed above (Section 2.4) that the information transmitted by biological 

neurons to each other is completely contained in the frequency of the generated 

spikes. The phase, which determines the MVN state, is proportional to the  

frequency. Thus, the larger is phase, the higher is frequency. The reader may  

consider examples shown in Fig. 3.39 and Fig. 3.40 from the point of view of si-

mulation of the biological neuron learning. In this case, the neuron states should 

be interpreted as follows: 1 – “inhibition” (phase 0), i – slight excitation (phase 

π/2), -1 – moderate excitation (phase π), and -i – maximal excitation (phase 3π/2). 

In all examples of the Hebbian learning, which we have considered above, the 

learning set has contained a single learning sample. When there are more learning 

samples in the learning set, the Hebbian learning rule usually does not lead to a 

weighting vector, which implements the corresponding input/output mapping. 

However, there is a wonderful property of the weighting vector obtained using the 

Hebbian learning rule. Although this vector usually does not implement the corre-

sponding input/output mapping, the MVN learning algorithm based on the learn-

ing rules (3.80) and (3.92), (3.94)-(3.98) converges much faster when the learning 

process starts from this (Hebbian) vector than from a random vector.  

We can illustrate this property using the example of learning the input/output 

mapping presented by the function ( ) ( )max 1 2 1 2, max ,f x x x x=  for k=3, which 

we have already used several times. As it was shown in Section 2.1, this is a 3-

valued threshold function, which can be implemented using MVN with the 

weighting vector ( )3 3 32 4 ,4 5 ,4 5W ε ε ε= − − + + . Thus, we may consider this 

weighting vector as the “ideal” one. According to Theorem 3.16 and Theorem 

3.17, if the learning process starts from some arbitrary weighting vector whose 

components are chosen randomly, then this process should lead us to the weight-

ing vector, whose absolute dot product with the “ideal” weighting vector reaches 

its maximum. 

Let us find the Hebbian weights for ( )max 1 2,f x x . According to (1.4) and tak-

ing into account (3.107), we obtain the following Hebbian weighting vector 

( )0.33 0.19 ,0.5 0.096 ,0.5 0.096
H

W i i i= − + − − . This weighting vector 

does not implement the function ( )max 1 2,f x x . Distribution of the weighted sums 

with the weighting vector H
W  is shown in Fig. 3.41a. The outputs for five  
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learning samples out of nine (samples 2, 4, 6, 8, 9) are incorrect (see the column 

“Hebbian Weights ” in Table 3.11). However, they can easily be corrected using 

the learning algorithm, for example, with the error-correction rule (3.92). More-

over, the number of corrections of the weights is fewer than for the same learning 

algorithm when it starts from the random weighting vector. 

 

 

After a single learning iteration the actual outputs for all the learning samples 

coincide with the desired outputs (see Fig. 3.41b and the column “Iteration 1” in 

Table 3.11). 

Let us evaluate the energy, which we have to spend for the learning, which 

starts from the Hebbian weights in terms of growing of the absolute value of the 

dot product ( ),
r

W W  of the current weighting vector r
W  and the “ideal” 

weighting vector W . 

For the Hebbian weighting vector H
W  we obtain ( ), 5.77

H
W W = . After a 

single learning iteration, for the weighting vector 

( )1 0.33 1.35 ,0.5 0.67 ,0.5 0.67W i i i= − − + +  resulted from this iteration we  

obtain ( )1, 12.47W W = . Comparing this result to the one considered in  

Section 3.3 for the learning process started for the same input/output mapping 

from the random weighting vector, we see that not only a single iteration was 

enough for the convergence of the learning algorithm, but significantly smaller 

amount of the corrections of the weights is required for the learning process, 

which starts from the Hebbian weights. In fact, in the example with the learning 

  
(a) Distribution of the weighted sums with the 

Hebbian weighting vector  
(b) Iteration 1 

Fig. 3.41 Movement of the weighted sum z after the correction of the weights according to (3.92) 

starting from the Hebbian weighting vector for the function  

( ) ( )max 1 2 1 2, max , ; 3f x x x x k= =  
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algorithm started from the random weights (see Section 3.3) the absolute value of 

the dot product ( ),
r

W W  was 6.34 for the initial weights, 16.46 after the first it-

eration, and 24.66 after the second iteration. Hebbian weights ensure that correct-

ing the weights for some learning sample, we do not corrupt the weights for other 

learning samples. Moreover, we may simultaneously improve the result for some 

other learning samples, which require correction of the weights. 

 

Table 3.11 MVN learns the Post function ( )max 1 2,f x x  in 3-valued logic using the learning  

algorithm with the error-correction learning rule (3.92) and starting from the Hebbian weighting 

vector 
HW  

Hebbian Weights Iteration 1
 

# 1x  
2x  

arg( )z
 

( )P z
 

arg( )z
 

( )P z
 

( )max 1 2,f x x  

1 
0

3ε 0

3ε  0.0 
0

3ε  0.0 
0

3ε  
0

3ε  

2 
0

3ε 1

3ε  1.571 
0

3ε  2.095 
1

3ε  
1

3ε  

3 
0

3ε 2

3ε  4.188 
2

3ε  4.712 
2

3ε  
2

3ε  

4 
1

3ε  
0

3ε  1.571 
0

3ε  2.095 
1

3ε  
1

3ε  

5 
1

3ε  
1

3ε  2.094 
1

3ε  2.618 
1

3ε  
1

3ε  

6 
1

3ε  
2

3ε  2.808 
1

3ε  4.321 
2

3ε  
2

3ε  

7 
2

3ε 0

3ε  4.188 
2

3ε  5.759 
2

3ε  
2

3ε  

8 
2

3ε 1

3ε  2.808 
1

3ε  4.321 
2

3ε  
2

3ε  

9 
2

3ε 2

3ε  3.665 
1

3ε  4.827 
2

3ε  
2

3ε  

 

As we see comparing the vectors H
W  and 1W , only imaginary parts of the 

weights required correction. 

Comparing the vectors W  and 1W , we see that they are not collinear, but close 

to collinearity. At least, the real and imaginary parts of their components have the 

same sign. 

3.5   Concluding Remarks to Chapter 3 

In this Chapter, we have considered fundamentals of MVN learning. If the in-

put/output mapping is a k-valued threshold function, it can be learned by MVN. It 
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was shown that in this case, a learning set consists of k learning subsets, which are 

k-separable. The MVN learning algorithm is based on the sequential iterative ex-

amination of the learning samples and correction of the weights using a learning 

rule wherever it is necessary. 

The learning process may continue until the zero error is reached or until the 

mean square error (or the root mean square error) drops below some reasonable 

predetermined value. 

We have considered two learning rules. The first rule is based on the closeness 

of the actual output to the desired one in terms of angular distance. The second 

learning rule is the error-correction learning rule. The convergence theorems for 

the MVN learning algorithm based on both learning rules were proven. If the 

MVN input/output mapping is described by some k-valued threshold function, 

which means that a learning set corresponding to this mapping consists of k dis-

joint k-separable subsets, then the MVN learning algorithm based on either of the 

considered learning rules converges. 

It is fundamental that the MVN learning is based on the same principles as the 

perceptron learning in A. Novikoff’s interpretation. It is not considered as the op-

timization problem of the error functional minimization. It is shown that each step 

of the learning process decreases the distance between the current weighting vec-

tor and the “ideal” weighting vector, which exists because the input/output map-

ping is a k-valued threshold function. The more this distance decreases, the more 

the error decreases too, and the iterative learning process always converges after a 

finite number of iterations. 

We have also considered the Hebbian learning for MVN. It was shown that the 

Hebbian learning rule works for MVN in the same manner as for the threshold 

neuron. It builds associations between the inputs and desired outputs. We have al-

so shown that Hebbian weights, even when they cannot implement the in-

put/output mapping, should be optimal starting weights for the MVN learning al-

gorithm, leading to fewer corrections of the weights rather than starting from the 

arbitrary random vector. 

So we have considered all the MVN fundamentals, its mathematical back-

ground, its organization, and its learning rules.  

Now we are ready to consider how MVN works in networks and first of all in 

the feedforward neural network. 
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Chapter 4  

Multilayer Feedforward Neural Network Based 
on Multi-Valued Neurons (MLMVN) 
Multila yer Feedforward Neural Networ k Based on (M LMVN) 

“All truth passes through three stages. First, it is ridiculed. Second, it is violently 

opposed. Third, it is accepted as being self-evident.” 

Arthur Schopenhauer 

 
 

In this Chapter, we consider one of the most interesting applications of MVN – its 

use as a basic neuron in a multilayer neural network based on multi-valued neu-

rons (MLMVN). In Section 4.1, we consider basic ideas of the derivative-free 

backpropagation learning algorithm for MLMVN. In Section 4.2, we derive the er-

ror backpropagation rule for MLMVN with a single hidden layer and a single out-

put neuron and then for the most general case of arbitrary number of layers and 

neurons in the layers. In Section 4.3, the Convergence Theorem for the MLMVN 

learning algorithm is proven. In Section 4.4, we consider in detail how MLMVN 

learns when solving a classification problem. We also consider in the same section 

how MLMVN solves a problem of the Mackey-Glass time series prediction. Con-

cluding remarks are given in Section 4.5. 

4.1   Introduction to Derivative-Free Backpropagation Learning 

As it was shown in Chapters 2-3, MVN has a number of advantages over other 

neurons. MVN may learn multiple-valued discrete and continuous input/output 

mappings. Its learning algorithm is based on the same error-correction learning 

rule as the one of the threshold neuron. The MVN functionality is high. Neverthe-

less, it is limited. Of course, there are many multiple-valued functions that are not 

threshold, and therefore they cannot be implemented using a single MVN. There 

are also many real-world classification and prediction problems, which are de-

scribed by multiple-valued and continuous functions that are not threshold. There-

fore, they also cannot be solved with a single MVN. Hence, MVN-based neural 

networks should be used for solving such problems.  

Perhaps, a multilayer feedforward neural network is the most popular type of 

neural networks. In Section 1.3, we have considered in detail MLF – a multilayer 

feedforward neural network based on sigmoidal neurons. As we have seen there, 

the MLF learning is based on the error backpropagation and on the minimization 

of the mean square error functional. The error is a composite function that is the 
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function of the activation function, which in turn is the function of the weights. 

According to the optimization principles, to minimize the error, we have to follow 

the direction shown by the derivative of the error function with respect to the 

weights. The error function decreases if its derivative is negative. However, since 

the error function is composite, its derivative with respect to the weights is the 

product of the its derivative with respect to the activation function and the deriva-

tive of the activation function with respect to the weights.  

What happens if we want to design a feedforward neural network from  

multi-valued neurons? MVN activation functions, the discrete function (2.50) and 

the continuous function (2.54), are not differentiable as functions of a complex 

variable because the Cauchy–Riemann conditions [75] for the differentiability of a 

function of the complex variable
1
 do not hold for them. Does it mean that it is not 

possible to design a backpropagation learning algorithm for a feedforward net-

work based on multi-valued neurons? No, it does not! This only means that such 

an algorithm should be based on the different background, namely on the same er-

ror-correction rule that the learning algorithm for a single MVN is based. Just this 

rule should be generalized for the MLMVN case. This generalization was sug-

gested by the author of this book 

together with C. Moraga and D. 

Paliy in [76]. 

Let us consider the simplest pos-

sible multilayer feedforward neural 

network 1-1-1 containing only two 

neurons in two layers (one hidden 

neuron and one output neuron) with 

a single input (see Fig. 4.42). Let us 

use two indexes to number the neu-

rons in the network. The 1
st
 index 

stands for the number of neuron in 

the layer, and the second index stands for the number of layer. Thus, our network 

contains the neuron 11 in a single hidden layer and the output neuron 12. The net-

work has a single input 1x , which is simultaneously a single input of the neuron 

11. Let 11Y  and 12Y  be the actual outputs of the neurons 11 and 12, respectively. 

Let 12D  be the desired output of the neuron 12 and the entire network, respec-

tively. Let us derive the error backpropagation rule for this network. 

                                                           
1 The Cauchy–Riemann conditions state that the function ( )v f z=  of the complex vari-

able is differentiable at 0 0 0z x iy= +  if and only if its real and imaginary parts u and v 

are differentiable as functions of real variables x and y at ( )0 0,x y and moreover, 

u v

x y

∂ ∂
=

∂ ∂
 and 

u v

y x

∂ ∂
= −

∂ ∂
, or in other words 0

f f
i

x y

∂ ∂
+ =

∂ ∂
. 

 

 

Fig. 4.42 The simplest multilayer feedforward 

neural network 1-1-1 containing two MVNs 
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Suppose that the actual output of the network does not coincide with its desired 

output. Hence, the error of the network is equal to 
*

12 12D Yδ = − . 

Although, this error is evaluated for the output of the neuron 12, this is the error 

of the entire network. Since the network contains two neurons, both of them con-

tribute to this global error. We need to understand, how we can obtain the local er-

rors for each particular neuron, backpropagating the error 
*δ  form the right-hand 

side to the left-hand side.  

Let us suppose that the errors for the neurons 11 and 12 are already known. Let 

us use the learning rule (3.92) for the correction of the weights. Let us suppose 

that the neuron 11 from the 1
st
 layer is already trained. Let us now correct the 

weights for the neuron 12 (the output neuron) and estimate its updated weighted 

sum 12z� . Let ( )12 12

0 1
,w w be the current weighting vector of the neuron 12, which 

we have to correct, 12z  be the weighted sum of the neuron 12 before the correc-

tion, 11δ  be the error of the neuron 11, and 12δ  be the error of the neuron 12. 

Then we obtain the following  

 

( ) ( )

12

12 12

12 0 12 1 12 11 11 11 11

12 12 12

0 12 1 11 1 11 12

12 12 12

0 1 11 12 12 1 11

12 12

12 12 12 1 11 12 12 1 11

1 1

2 2

1 1

2 2

1 1

2 2

1 1
.

2 2

z

z w w Y Y

w w Y w

w w Y w

z w z w

δ δ δ δ

δ δ δ

δ δ δ

δ δ δ δ δ

⎛ ⎞ ⎛ ⎞
= + + + + + =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

= + + + + =

= + + + + =

= + + + + = + +

�

��	�


 (4.108) 

 

To ensure that after the correction procedure the weighted sum of the neuron 12 

will be exactly equal to 
*

12z δ+ , it is clear from (4.108) that we need to satisfy 

the following:  

12 *

12 1 11wδ δ δ+ = . (4.109) 

 

Of course, if (4.109) is considered as a formal equation with respect to 11δ  and 

12δ , we will not get something useful. This equation has an infinite number of so-

lutions, while we have to find among them a single solution, which correctly 

represents the local errors of each neuron through the global error of the network.  
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Let us come back to the learning rule (3.92) for a single MVN. According to 

this rule, if D be the desired neuron output and Y be the actual neuron output, then 

( )
( 1)

r
C

W D Y X
n

Δ = −
+

. A factor 
1

( 1)n +
, as we have mentioned in Sections 

3.2 and 3.3, is very important. Since we do not know, which of the weights con-

tributes more to the error, this factor is used to share the error uniformly among all 

the inputs. Therefore the same factor is used to distribute WΔ  uniformly among 

all the n+1 weights 0 1, ,..., nw w w . It is easy to see that if we would omit this fac-

tor then the weighted sum corrected according to the learning rule (3.92) would 

not be equal to z δ+  (see (3.93) ), but to ( 1)z n δ+ + . However, all the inputs 

are equitable, and it is more natural that during the correction procedure WΔ  

should be shared among the weights. Thus WΔ  is distributed among the weights 

uniformly by using the factor 
1

( 1)n +
. This makes clear the important role of this 

factor in the learning rule (3.92). 

If we have not a single neuron, but a feedforward neural network, we have to 

take into account the same property. It has to be used, to generalize the error-

correction learning rule, which we have derived for a single multi-valued neuron 

in Section 3.3, for a feedforward neural network based on multi-valued neurons. 

As we have seen, the error-correction learning algorithm for MVN is derivative-

free. Let us generalize it for the feedforward MVN-based network.  

Let us return to our simplest network (Fig. 4.42). The error 
*δ  of the entire 

network has to be shared among the neurons 12 and 11. We can assume that each 

neuron uniformly contributes to the global error 
*δ .  

This important assumption, which is heuristic, but absolutely not contradictory, 

leads us to the following expression for the error 12δ  of the output neuron  

*

12

1

2
δ δ= . (4.110) 

Thus, 12δ  is the contribution of the neuron 12 to the global error 
*δ  of the entire 

network. 

To find the error 11δ  of the neuron 11, let us backpropagate the error 12δ  of 

the output neuron, which we have just found, to the first hidden layer (to the  

neuron 11). From (4.109), and taking into account that for any non-zero complex 

number 
1

2
,

| |

w
w w

w

−∈ =^ , we obtain 
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( )( )
( )* 12*

1 12 1* 1212
11 12 1 212 12

1 1

w
w

w w

δ δδ δ
δ δ δ

− −−
= = − = . (4.111) 

But from (4.110) 
*

122δ δ=  and therefore from (4.111) we finally obtain the  

following expression for 11δ :  

( ) ( ) ( )
* 12 12 12

112 1 12 12 1 1212 1
11 12 12 2 2

12 12 12

1 1 1

2w w w
w

w w w

δ δ δ δ δ
δ δ

−− −
= = = = . (4.112) 

Equation (4.112) is not only a formal expression for 11δ . It leads us to the follow-

ing important conclusion: during a backpropagation procedure the backpropa-

gated error must be multiplied by the reciprocal values of the corresponding 

weights. This is important distinction of the error backpropagation for a feedfor-

ward neural network based on multi-valued neurons from the error backpropaga-

tion for MLF. 

Since now the errors of both neurons in the network are known, we can apply 

the error-correction learning rule (3.92) to adjust the weights. Equation (4.108) 

represents the updated weighted sum 12z�  of the neuron 12 after the weights are 

corrected. Let us substitute there the errors 11δ  and 12δ , which we found in 

(4.110) and (4.112), respectively. Hence we obtain the following 

( )
1

12 *

112 12

12 12 12 1 11 12 1

* *
*

12 12

1

2 2

2 2

w
z z w z w

z z

δ
δ δ

δ δ
δ

−⎛ ⎞⎜ ⎟= + + + + =⎜ ⎟⎝ ⎠
= + + = +

�
 (4.113) 

where 12z  is the weighted sum of the neuron 12 before the correction of the 

weights. Thus, we obtain exactly the result, which is our target 
*

12 12z z δ= +� . 

This means that the updated weighted sum of the output neuron is equal to the 

previous value of the weighted sum plus the error of the network. Comparing 

(4.113) with the analogous expression (3.93) for the weighted sum of a single 

MVN, which was updated using the error-correction learning rule (3.92), we see 

that we obtained the same result, just this time not for a single neuron, but for the 

feedforward network. 

This leads us to the following important conclusion. The error backpropagation 

for the MVN-based feedforward neural network has to be organized in such a way 

that the error, which has to be backpropagated from the current layer to  
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the preceding layer, is shared among all the neurons contributed to this error. Then 

the weights of all the neurons should be adjusted using the error-correction learn-

ing rule. This ensures that the error of the entire network decreases after  

the correction of the weights in the same manner as for a single MVN. Therefore, 

the learning algorithm for the network can be based on the generalized error-

correction learning rule.  

Let us now consider the MVN-based feedforward neural network and its back-

propagation learning in detail. 

4.2   MVN-Based Multilayer Neural Network and Error 

Backpropagation 

The multilayer neural network based on multi-valued neurons (MLMVN) was 

suggested by the author of this book, Claudio Moraga and Dmitriy Paliy in 2005, 

in the paper [76]. In that paper the network with one hidden layer and the output 

layer containing a single neuron was considered. Two years later, in 2007, the  

author of this book and C. Moraga presented MLMVN in detail and without  

restrictions on the number of layers and neurons in [62]. A number of MLMVN 

applications were also considered in the same paper. In 2008, the author of this 

book in co-authorship with Dmitriy Paliy, Jacek Zurada, and Jaakko Astola pub-

lished the paper [77] where the MLMVN backpropagation learning algorithm was 

justified for the most general case. 

Let us consider this algorithm in detail. 

4.2.1   Simple MLMVN: A Single Hidden Layer and a Single 

Output Neuron 

To make understanding of the MLMVN fundamentals easier, let us go step by 

step. In Section 4.1, we have already considered the simplest network (Fig. 4.42) 

with a single hidden neuron and a single output neuron. We have derived the error 

backpropagation rule for that network.  

Let us now extend this rule to the network containing a single hidden layer with 

an arbitrary amount of neurons and a single output neuron. 

Deriving the error backpropagation algorithm for MLMVN, let us use the same 

notations that we have used in Section 1.3 (see pp. 28-29) deriving the error back-

propagation learning algorithm for MLF. Let our network has the topology n-N-1, 

which means that it has n inputs 1,..., nx x , contains N neurons in a single hidden 

layer (neurons 11, ..., N1) and a single output neuron 12 (see Fig. 4.43). Let 12D  

be the desired output of the output neuron 12 and of the network. Let 12Y  be the 

actual output of the output neuron 12 and of the network and, 11 1,..., NY Y  be the 

actual outputs of the hidden neurons. Suppose the desired network output does not 
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coincide with the actual output. According to (1.25) (see p. 29) the error of the 

network is 
*

21 21D Yδ = − . 

 

To generalize the error-

correction learning rule for 

the network, we have to en-

sure that after the weights of 

all the neurons are corrected, 

the updated weighted sum 

12z� of the output neuron  

is equal to the previous its 

value plus the error 
*

12 12z z δ= +� , like it was 

for a single MVN (see (3.93), 

p. 113) and for the simplest 

MLMVN (see (4.113) ). 

 

Let ( )12 12 12

0 1, ,...,
N

w w w  be an initial weighting vector of the output neuron 12. 

Since the inputs of this neuron are connected to the outputs of the corresponding 

neurons from the preceding layer and since there are exactly N neurons in the 

layer 1, then the neuron 12 has exactly N inputs. Let also 1; 1,...,i i Nδ =  be the 

error of the neuron i1 from the hidden layer, and 12δ  be the error of the neuron 

12. Let us suppose that all neurons from the hidden layer are already trained and 

therefore their actual outputs 11 1,..., NY Y  are updated and equal to 

11 11 1 1,..., N NY Yδ δ+ + , respectively. So they are the inputs of the output neuron 

12. Let us now correct the weights for the neuron 12 (the output neuron) using the 

error-correction rule (3.92) and estimate its updated weighted sum 12z� . Taking 

into account our notations, according to (3.92) we obtain the following 

 

( )

12 12

0 0 12

12 12

12 1 1

1
,

( 1)

1
; 1,...,

( 1)
i i i i

w w
N

w w Y i N
N

δ

δ δ

= +
+

= + + =
+

�

�
 

where the bar sign under 1 1i iY δ+  means complex conjugation. Now we obtain 

the following equation for the updated weighted sum 12z�  

 

 

 

Fig. 4.43 The n-N-1 MLMVN 
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Taking into account that 1 11,...,   ( )i ii N Y δ∀ = +  is an output of the neuron, 

this complex number is always located on the unit circle and therefore its absolute 

value is always equal to 1. This means that 

1 1 1 11,...,   ( )( ) 1.i i i ii N Y Yδ δ∀ = + + =  Taking this into account, we obtain the 

following: 
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12 12
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Thus finally 

12

12 12 12 1

1

N

i i

i

z z wδ δ
=

= + +∑�  (4.114) 
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Evidently, (4.114) generalizes the analogous equation (4.108) for the updated 

weighted sum of the output neuron of the simplest network 1-1-1. To ensure that 

after the correction procedure the output of the network is equal exactly to 
*

12 ,z δ+  it is clear from (4.114) that we need to satisfy the following condition 

for the network error 
*δ  

12 *

12 1

1

N

i i

i

wδ δ δ
=

+ =∑ . (4.115) 

 

One may see that (4.115) generalizes the analogous equation (4.109) for the sim-

plest network. As well as (4.109), (4.115) should not be considered as a formal 

equation with respect to 12δ  and 1; 1,...,
i

i Nδ = . It has infinite amount of solu-

tions, however we need to find a solution, which correctly represents the error 12δ  

and the errors 1; 1,...,
i

i Nδ =  through the global error of the network 
*δ . Let us 

follow the same heuristic approach, which we used for the error-correction rule 

(3.92) for a single MVN and for the error-correction rule for the simplest 

MLMVN 1-1-1 in Section 4.1.  

This approach is utilized in the error sharing principle.  

The Error Sharing Principle. 1) The error of a single MVN must be shared 

among all the weights of the neuron. 2) The network error and the errors of each 

particular neuron in MLMVN must be shared among those neurons from the net-

work that contribute to this error.  

Particularly, for the network with a single hidden layer containing N neurons 

and a single output neuron this means that the network error 
*δ  has to be distrib-

uted among the output neuron 12 and hidden neurons 11, …, N1, and the error 

12δ  of the output neuron must be shared with the hidden neurons 11, …, N1. We 

assume that this sharing is uniform: the contribution of each neuron to the global 

error is uniform accurate to the corresponding weight, which weights the error, 

passing it to the next layer neuron. 

Taking these considerations into account, we obtain  

 

because the network error 
*δ  includes the error 12δ  of the output neuron and the 

errors 11 1,...,
N

δ δ  of N hidden neurons. Taking into account the latter considera-

tions, (4.115) and (4.116), we obtain the following 

 

*

12

1

( 1)N
δ δ=

+
, (4.116) 
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12 *

1

1
;  1,...,

( 1)
i iw i N

N
δ δ= =

+
. (4.117) 

 

But from (4.116) 
*

12( 1)Nδ δ= + , and substituting this expression to (4.117), we 

obtain 

12

1 12;  1,...,
i i

w i Nδ δ= = . 

 

Hence for the errors 1; 1,...,
i

i Nδ =  of the neurons 11, …, N1 we obtain the fol-

lowing error backpropagation rule 

 

( )
1

12

1 12
;  1,...,

i i
w i Nδ δ

−
= = . (4.118) 

 

This states that the errors of the hidden layer neurons equal to the output neuron 

error multiplied by the corresponding reciprocal weight of the output neuron. 

Let us now substitute 1; 1,...,
i

i Nδ =  and 12δ  from (4.118) and (4.116),  

respectively, into (4.114):  
 

( )
1

12 12 12

12 12 12 1 12 12 12

1 1

*

12 12 12 12 12 12( 1)

N N

i j i i

i i

z z w z w w

z N z N z

δ δ δ δ

δ δ δ δ

−

= =

= + + = + + =

= + + = + + = +

∑ ∑�
 (4.119) 

 

So, we obtain exactly the result, which is our target 
*

12 12z z δ= +�  - the 

weighted sum of the output neuron, which was updated after the weights of all the 

neurons were corrected according to the error-correction learning rule, is equal to 

the previous weighted sum plus the network error. We see that (4.119) exactly 

corresponds with (3.93), which demonstrates the same property for the updated 

weighted sum of a single MVN.  

To summarize, we can formulate the learning algorithm for the two-layer 

MLMVN as follows.  

1) The network error 
*δ  is backpropagated first to the output neuron according 

to (4.116).  

2) The output neuron error 12δ  is backpropagated to the hidden neurons  

according to (4.118).  

3) After all the local errors 1; 1,...,
i

i Nδ =  and 12δ  are obtained, the weights 

of all the neurons should be adjusted according to the error-correction learning 

rule (3.92). 
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This ensures that the weighted sum of the output neuron is updated according to 

(4.119), which exactly corresponds to the weighted sum of a single MVN (3.93), 

which in turn is updated according to the error-correction learning rule (3.92) (see  

p. 112). 

This leads us to the very important conclusion that the mechanism of the 

MLMVN learning is exactly the same as the mechanism of the MVN learning 

based on the error-correction learning rule. The updated weighted sum should 

move exactly to the desired sector (for the discrete output neuron) or to the desired 

ray (for the continuous output neuron) or closer to them. 

It is also important to mention that the learning algorithm and the error back-

propagation rule, which we have just described, do not depend on the type of 

MVNs in the network. They all may have discrete activation function (2.50) or 

continuous activation function (2.54). Some of them may have the discrete activa-

tion function, while other may have the continuous activation function. 

4.2.2   MLMVN and Backpropagation Learning:The General Case 

Let us now consider MLMVN and its backpropagation learning algorithm for the 

most general case, where the network may have an arbitrary amount of hidden 

layers and neurons in these layers, and an arbitrary amount of output neurons. 
 

 

Let us consider the m-layer MLMVN 1 1...
m m

n N N N−− − − − , which con-

tains the input layer with n inputs, m-1 hidden layers whose numbers are 1, m-1, 

and one output layer whose number is m. (see Fig. 4.44). Let us remind that ac-

cording to our notations that we use for multilayer feedforward neural networks 

j
N is the number of neurons in the layer j. Each layer including the output one 

contains an arbitrary amount of neurons. 

 

Fig. 4.44 MLMVN 
1 1... m mn N N N−− − − −  (the most general case) 
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Let us now generalize the learning algorithm and the error backpropagation 

rule, which we already derived for the networks 1-1-1 and n-N-1, for the most 

general case of MLMVN. 

It follows from (1.116) and the Error Sharing Principle that if the error of a  

neuron in the layer j is equal to δ , this δ  must contain a factor 
1

j
s

, where 

1
1

j j
s N −= +  is the number of neurons whose outputs are connected to the in-

puts of the considered neuron incremented by 1 (the considered neuron itself). Let 

us remind that the inputs of a neuron in the layer j are connected to the outputs of 

all the corresponding neurons from the layer j-1.  

The factor 
1

j
s

 ensures sharing of the error of a particular neuron with all the 

neurons on whose errors the error of this neuron depends. In other words, the er-

ror of each neuron is distributed among the neurons connected to it and itself. It 

should be mentioned that for the 1
st
 hidden layer 1 1s =  because no hidden layer 

precedes to the first one and there are no neurons, which may share the error, re-

spectively. 

The next important rule of the MLMVN error backpropagation follows from 

(4.118). This rule states that during a backpropagation procedure the backpropa-

gated error must be multiplied by the reciprocal values of the corresponding 

weights.
2
 This is important distinction from the classical error backpropagation 

rule (1.33) (see p. 33) for MLF where during a backpropagation procedure the 

backpropagated error must be multiplied by the weights. 

Now we are ready to formulate and to justify the learning algorithm and the er-

ror backpropagation rule for the most general case. We keep all those notations 

that were previously used for MLMVN. All additional notations will be intro-

duced as necessary.  

It is also important to mention that our considerations do not depend on the 

type of neuron activation function. It can be the discrete activation function (2.50) 

or the continuous activation function (2.54). Some of neurons may have the dis-

crete activation function, while other may have the continuous activation function. 

Let km
D  be a desired output of the kth neuron from the mth (output) layer; km

Y  

be an actual output of the kth neuron from the mth (output) layer. Then the global 

error of the network taken from the kth neuron of the mth (output) layer is calcu-

lated as follows: 
 

*

km km km
D Yδ = − . (4.120) 

                                                           
2 Do not forget that our weights are complex numbers and therefore for any weight 

1

2| |

w
w

w

− = , where the bar sign stands for the complex conjugation. 
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To find the errors of the hidden neurons, we have to sequentially backpropagate 

these errors to the hidden layers m-1, m-2, …, 2, 1. We have to distinguish again 

the global errors of the network 
*

km
δ  from the local errors km

δ  of the particular 

output layer neurons. The global errors are obtained according to (4.120), while 

the local errors are obtained from the global ones through the backpropagation 

procedure. According to the Error Sharing Principle (see p. 141), it is essential 

that the global errors of the network consist not only from the output neurons er-

rors, but from the local errors of all the output and hidden neurons. This means 

that in order to obtain the local errors for all neurons, the global errors must be 

distributed among these neurons through the error backpropagation. Hence, the lo-

cal errors are represented in the following way. The errors of the mth (output) 

layer neurons: 
 

*1
km km

m
s

δ δ=  (4.121) 

 

where km specifies the kth neuron of the mth layer; 1 1
m m

s N −+ + , i.e. the num-

ber of all neurons on the preceding layer incremented by 1. 

Let 
kj

i
w  be the weight corresponding to the ith input of the kjth neuron (kth 

neuron of the jth layer). Generalizing the backpropagation rule (4.118), which we 

obtained for the network n-N-1, let us backpropagate the errors of the output neu-

rons ; 1,...,
im m

i Nδ =  to the neurons of the m-1
st
 layer. The error 

kj
δ of the kth 

neuron in the m-1
st
 layer is formed by the sum of the errors 

1 ,
,...,

mm N m
δ δ  of all  

the output neurons weighted by the reciprocal weights ( )
1

; 1,...,im

k m
w i N

−
=  

corresponding to the kth inputs of the output neurons. According to the Error 

Sharing Principle this sum must be multiplied by 

1

1

m
s −

because this error must be 

shared with the neuron (k, m-1) and all the neurons from the m-2
nd

 layer connected 

to the neuron (k, m-1). This is resulted in the following equation 

( )
1

, 1

1

1 mN

im

k m im k

ij

w
s

δ δ
−

−
=

= ∑  

Now the errors 
, 1 1

; 1,...,
k m m

k Nδ − −=  should be backpropagated in the same 

manner to the layer m-2, then the errors 
, 2 2

; 1,...,
k m m

k Nδ − −=  should be back-

propagated in the same manner to the layer m-3, etc., up to the backpropagation to 

the first hidden layer. 
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Taking all these considerations into account, we obtain the following error 

backpropagation rule according to which the errors of all the hidden neurons are 

computed. The error 
kj

δ  of the kth neuron in the jth layer is equal to 

 

( )
1

1
, 1

, 1

1

1 jN

i j

kj i j k

ij

w
s

δ δ
+

−+
+

=

= ∑ , (4.122) 

 

where kj specifies the kth neuron of the jth layer (j=1,…,m-1); 

1 1; 2,..., 1
j j

s N j m−= + = −  is the number of all neurons in the layer j-1 (the 

preceding layer j where the error is backpropagated to) incremented by 1. Note 

again that 1 1s =  because there is no preceding layer for the 1
st
 hidden layer, that 

is 1 1 0 0.N N− = =  

Hence, the MLMVN error backpropagation rule is determined by (4.121) for 

the output neurons errors and by (4.122) for the hidden layer neurons. 

The main distinction of the MLMVN error backpropagation rule from the MLF 

backpropagation rule (1.30)-(1.32) (see p. 32) is that it is derivative-free. It is 

based on the generalization of the error-correction learning rule for MVN. 

The MLMVN error backpropagation rule (4.121)-(4.122) can be justified if we 

will show that the weighted sums ; 1,...,
km m

z k N=�  of the output neurons updated 

after the weights of all the neurons in the network were corrected according to the 

MVN error-correction rule (3.92) or (3.94) will be equal to 
*

km km
z δ+  (to the pre-

vious weighted sum plus the network error taken from the kmth neuron), like it is 

for a single MVN (see (3.93) ), for the simplest network 1-1-1 (see (4.113)), and for 

the network n-N-1 (see (4.119) ). Let us prove that this is definitely the case. 
 

Theorem 18 (about the MLMVN Error Backpropagation Rule). The updated 

weighted sums ; 1,...,
km m

z k N=�  of the MLMVN output neurons are equal to 

*

km km
z δ+  (where 

*
; 1,...,

km m
k Nδ =  are the network errors taken from all the 

output neurons) if the error backpropagation is determined by (4.121) for  

the output neurons errors and by (4.122) for the hidden layer neurons, and the 

weights of all the neurons are corrected according to the error-correction learning 

rule (3.92). 

 

Proof. According to (4.120) the errors of the network that are taken from the m
N  

output neurons are equal to 
*

; 1,...,
km km km m

D Y k Nδ = − = , where m
N  is the 

number of neurons in the output layer (the mth one). Let ( )
10 1, ,...,

m

km km km

Nw w w
−

 

be an initial weighting vector of the kmth output neuron, , 1i m
Y −  be an initial output 
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of the neuron i,m-1 from the last hidden layer (i=1, …, 1m
N − ), km

z  be the 

weighted sum on the kmth output neuron before the correction of the weights, 

, 1i m
δ − be the error of the neuron i,m-1 from the m-1

st
 hidden layer (i=1, 

…, 1m
N − ), and km

δ  be the error of the kmth output neuron. Without loss of gener-

ality, let us suppose that all hidden neurons are already trained. Thus, the outputs 

for all the neurons from the 1
st
 hidden layer till the m-1

st
 layer are already updated, 

and we have to train the neurons from the output layer. The MVN error-correction 

learning rule (3.92) is used for the correction of the weights. Let us suppose that 

the errors for all the neurons of the network are already known. Then, the weights 

for the kmth output neuron are corrected according to (3.92). Let us take the learn-

ing rate 1.C = This means that the weights are updated as follows: 

0 0

1

, 1 1

1

1
;

( 1)

1
; 1,...,

( 1)

km km
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m
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i i km i m m
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δ

δ
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− −

−

= +
+

= + =
+

�

��
 

where , 1i m
Y −
�  is the updated output of the ith neuron from the m-1

st
 layer, that  

is the ith input of the kmth output neuron, and the bar sign stands for complex  

conjugation. 

Then the updated weighted sum for the kmth output neuron is obtained as 
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(4.123) 
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where Y  is the complex number complex conjugated to Y. It is important that 

( )1 , 1 , 11,..., 1m i m i mi N Y δ− − −∀ = + =  because since a complex number 

( ), 1 , 1i m i m
Y δ− −+  is an output of MVN, it is always located on the unit circle, and 

therefore its absolute value is equal to 1. This means that 

( ) ( )1 , 1 , 1 , 1 , 11,..., 1
m i m i m i m i m

i N Y Yδ δ− − − − −∀ = + + = . Taking this into account, 

let us now simplify (4.123) as follows 
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Thus, finally, for the updated weighted sum km
z�  of the kmth output neuron we  

obtain 

1

, 1

1

mN

km

km km km i i m

i

z z wδ δ
−

−
=

= + +∑� . (4.124)

To ensure that the weighted sum of the kmth output neuron is exactly equal to 
*

km km
z δ+  after the correction procedure, it follows from (124) that we need to 

satisfy the following: 

1

*

, 1

1

mN

km

km i i m km

i

wδ δ δ
−

−
=

+ =∑ . (4.125)

If (4.125) is considered as a formal equation with respect to km
δ  and 

, 1 1; 1,...,i m mi Nδ − −= , it has an infinite number of solutions. Let us apply the Er-

ror Sharing Principle, which requires that the network error 
*

km
δ  taken from the 
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kmth output neuron must be shared among this neuron and all the neurons from 

the preceding layer connected to this neuron (thus, the neurons i,m-1; 

i=1,…, 1m
N − ). According to the Error Sharing Principle  

 

*

1

1

( 1)
km km

m
N

δ δ
−

=
+

, (4.126)

 

and according to the same principle and from (4.125)  

*

, 1 1

1

1
; 1,...,

( 1)

km

i i m km m

m

w i N
N

δ δ− −

−

= =
+

. (4.127)

 

But from (4.126) ( )*

1 1
km m km

Nδ δ−= + , and substituting this expression into 

(4.127) we obtain the following  
 

, 1 1; 1,...,km

i i m km m
w i Nδ δ− −= = . (4.128)

 

Hence, for the error , 1i m
δ −  of the neuron (i,m-1) we obtain the following  

( )
1

, 1 1; 1,...,km

i m i km m
w i Nδ δ

−

− −= = . (4.129)

 

Let us now substitute , 1 1; 1,...,
i m m

i Nδ − −=  from (4.129) and km
δ  from (4.126),  

respectively, into (4.124):  
 

( )

( )

1

1

, 1

1

1

1

*

1 1 1

m

m

N
km

km km km i i m

i

N
km km

km km i i km

i

km km m km km m km km km
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z w w

z N z N z

δ δ

δ δ
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−

−

−
=

−

=

− −

= + + =
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∑
∑

�

 
(4.130) 

 

So, we obtain exactly the result, which we were looking for: 
*

km km km
z z δ= +� .  

To finalize the proof of the theorem we have to show that for the updated 

weighted sum 
kj

z�  of any hidden neuron 1, 1,..., ; 1,...,
j m

kj k N j N −= =  the 

property analogous to (4.130) holds too. The errors of the hidden layer neurons are 

obtained according to (4.122). The correction of the weights according to the  

error-correction rule (3.92) is organized in the following way. For the 1
st
 hidden 

layer neurons (kth neuron of the 1
st
 layer, 11,...,k N= ) 
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1 1

0 0 1

1 1

1

1
;

( 1)

1
; 1,..., ,

( 1)

k k

k

k k

i i k i

w w
n

w w x i n
n

δ

δ

= +
+

= + =
+

�

�
 

where 1,..., n
x x  are the network inputs. For the rest of hidden neurons (kth neu-

ron of the jth layer, 1,..., ; 2,..., 1
j

k N j m= = − ) 

0 0

1

, 1 1

1

1
;

( 1)

1
; 1,..., ,

( 1)

kj kj

kj

j

kj kj

i i kj i j j

j

w w
N

w w Y i N
N

δ

δ

−

− −

−

= +
+

= + =
+

�

��
 

where , 1i j
Y −
�  is the updated output of the ith neuron from the j-1

st
 layer, that is the 

ith input of the kjth neuron, and the bar sign stands for the complex conjugation. 

Then the expressions for the updated weighted sums for the kjth hidden neuron 

( 1,..., ; 2,..., 1)jk N j m= = −  and for the k1st hidden neuron ( )11,...,k N=  

are derived in the same way as (4.123): 
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(4.131) 

Then, after simplifications we finally obtain for these updated weighted sums the 

following expressions 
 

1

, 1

11

1 1 1

1
;

( 1)

.

jN

kj

kj kj kj i i j

ij

k k k

z z w
N

z z

δ δ

δ

−

−
=−

= + +
+

= +

∑�

�
 (4.132)

 

It follows from the second equation of (4.132) that for all the neurons from the 

first hidden layer the updated weighted sums equal exactly to their previous values 

plus the corresponding errors, that is exactly to what is required. 
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Let us now prove that for all other hidden layers this is also true. The first equa-

tion from (4.132), which represents the updated weighted sum for the kjth hidden 

neuron ( 1,..., ; 2,..., 1)
j

k N j m= = −  is completely the same as the analogous 

equation (4.124) for the updated weighted sum of the kmth output neuron 

( )1,...,
m

k N= . According to the Error Sharing Principle and in analogy with 

(4.125) we obtain for the output neurons errors 
 

1

, 1

1

jN

kj

kj i i j j kj

i

w sδ δ δ
−

−
=

+ =∑ , (4.133)

where 1 1
j j

s N −= +  is the number of neurons in the j-1
st
 layer incremented by 1 

(the number of neurons, which are directly involved in the formation of the error 

kj
δ , and which have to share this error). From (4.133) we easily obtain 

( )
1

, 1 1

1

1
jN

kj

i i j j kj j kj

i

w s Nδ δ δ
−

− −
=

= − =∑  

Substituting the last expression into the first equation of (4.132), we obtain 

1

, 1
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1

1

( 1)

1

( 1)
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kj kj kj i i j

ij
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δ δ δ
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So, we obtain for all the neurons from our MLMVN that the updated weighted 

sum is equal to ; 1,..., ; 1,...,
kj kj kj j

z z k N j mδ= + = =� .  

Theorem is proven. 

It is very important that (4.130) as an expression for an updated weighted sum 

of an MLMVN output neuron exactly correspond to the analogous expressions for 

a single MVN (see (3.93) ), for the simplest network 1-1-1 (see (4.113) ), and for 

the network n-N-1 (see (4.119) ). This means that the MLMVN learning is com-

pletely based on the generalized error-correction learning rule. 

Unlike the MLF error backpropagation rule (see (1.30) and (1.32) on p. 32), the 

MLMVN error backpropagation rule (see (4.121) and (4.122) on pp. 145-146) is 

derivative-free. While equations (1.30) and (1.32) contain the derivative of the ac-

tivation function, equations (4.121) and (4.122) do not contain it. 

This is not only a formal computational advantage of MLMVN. It is important 

to distinguish again that the MLMVN learning process is not considered as an op-

timization problem. It is based on the error-correction learning rule, as well as the 

learning process for a single MVN. 
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It is also worth to mention that the MLMVN error backpropagation rule does 

not depend on the number of layers and neurons in the network. It is equally effi-

cient for the simplest network containing just two neurons and for a network con-

taining tens of thousands neurons. This is another important advantage of 

MLMVN over MLF. 

What is especially important: the MLMVN learning algorithm does not suffer 

from the local minima phenomenon as the MLF learning algorithm. If some in-

put/output mapping, which we want to learn with MLMVN, can be implemented 

using this network, the MLMVN learning algorithm converges due to the same 

reasons as the MVN error-correction learning algorithm. Let us consider this in 

detail. 

4.3   MLMVN Learning Algorithm and the Convergence 

Theorem 

4.3.1   Basic Fundamentals 

The MLMVN learning algorithm, as well as the MLF learning algorithm is a two-

pass algorithm. First, the errors of all the neurons must be calculated. To obtain 

these errors, the actual responses of the output neurons are subtracted from their 

desired responses to produce an error signal. This error signal is then propagated 

backward through the network, against the direction of synaptic connections and 

according to the error backpropagation rule (4.121)-(4.122). Then the weights 

should be adjusted so as to make the actual output of the network move closer to 

the desired output. 

Let us formally describe the MLMVN learning algorithm. Let us consider 

MLMVN 1 1...
m m

n N N N−− − − −  containing the input layer with n inputs, m-1 

hidden layers whose numbers are 1, …, m-1, and one output layer whose number 

is m. (see Fig. 4.44, p. 143). It is important and interesting that this algorithm is 

very similar to the one for a single MVN (see Section 3.1). 

It is worth to mention that the MLMVN learning algorithm does not depend on 

the type of MVN which from the network is consisted of (discrete or continuous). It 

should be empirically expected that if all the hidden neurons have the continuous 

activation function (2.54) (see p.68), the network may learn faster because of more 

flexibility. However, the type of the output neurons is no matter. They all may have 

the discrete activation function (2.50) (see p. 59) or the continuous activation func-

tion (2.54) (see p. 68), or some of them may have the discrete activation function 

(2.50), while some other may have the continuous activation function (2.54). 

It is also important to mention that the type of network inputs is also no matter. 

Some of them can be discrete, while some other continuous or they all may be of 

the same type. 

These advantages follow from the fact that regardless of their nature, MVN and 

MLMVN inputs and outputs are located on the unit circle. 
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Let us keep the same notations that we used in Sections 4.1 and 4.2. Let km
D  

be a desired output of the kth neuron from the mth (output) layer; km
Y  be an actual 

output of the kth neuron from the mth (output) layer. The global error of the net-

work taken from the kth neuron of the mth (output) layer is calculated according to 

(4.120) (see p. 144, we repeat here that equation for the reader’s convenience): 
 

* ; 1,...,
km km km m

D Y k Nδ = − = . 

 

The error backpropagation is organized as follows. The local errors of the output 

neurons are calculated according to (4.121) (see p. 145, we repeat here that equa-

tion for the reader’s convenience): 

 

*1
; 1,...,

km km m

m

k N
s

δ δ= = . 

 

Here and in what follows (as it was in the previous two sections) 1 1
j j

s N −= +  is 

the number of neurons in the j-1
st
 layer (the layer, which precedes to the layer j) 

incremented by one.  

The errors of all the hidden neurons are calculated according to (4.122) (see  

p. 146, we repeat here that equation for the reader’s convenience) 
 

( )
1

1
, 1

, 1

1

1
; 1,..., ; 1,..., 1

jN

i j

kj i j k j

ij

w k N j m
s

δ δ
+

−+
+

=

= = = −∑ , 

 

where kj specifies the kth neuron of the jth layer. 

As soon as all the errors are calculated, the weights of all the neurons can be 

adjusted according to the error-correction learning rule. First, the weights of the 1
st
 

hidden layer neurons must be adjusted. Then, when the updated outputs of the 1
st
 

hidden layer neurons are known, the weights of the second hidden layer neurons 

can be adjusted, etc. 

Since the errors of the output layer neurons can be exactly calculated, the error-

correction learning rule (3.92) (see p. 112) can be used to correct their weights. To 

correct the hidden neurons’ weights, it should be better to use the error-correction 

learning rule (3.94) (see p. 114). This rule ensures more careful adjustment of the 

weights, and its use for the hidden neurons is reasonable because their errors are 

calculated according to the heuristic error backpropagation rule, and their exact  

errors unlike the exact errors of the output neurons are not known. As we saw 

(Theorem 3.17, p. 116) the MVN learning algorithm with the error-correction  
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learning rule converges independently on which particular version of the learning 

rule is used. Thus, the correction of the MLMVN neurons’ weights is determined 

by the following equations. 

For the output layer neurons: 
 

0 0

1

, 1 1

1

;
( 1)

; 1,..., .
( 1)

km km km

km

m

km km km

i i km i m m

m

C
w w
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C
w w Y i N

N

δ

δ
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− −

−

= +
+

= + =
+

�

��
 (4.134)

 

For the neurons from the hidden layers 2,…,m-1:  
 

0 0

1

, 1

1

1

;
( 1)

;
( 1) | |

1,..., ; 2,..., 1.

kjkj kj

kj

j
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(4.135)

 

For the 1
st
 hidden layer neurons: 

 

1 1 1
0 0 1

1

1 1 1
1

1

;
( 1) | |

; 1,..., ,
( 1) | |

k k k
k

k

k k k
i i k i
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w w

n z
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w w x i n

n z

δ

δ
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+
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(4.136)

where , 1i j
Y −
�  is the updated output of the ith neuron from the j-1

st
 layer (j=1, …, 

m-1), that is the ith input of the kjth neuron, the bar sign stands for the complex 

conjugation, 
kj

z  is the current value of the weighted sum of the kjth neuron  

(the kth neuron in the jth layer), 1,..., n
x x  are the network inputs, and 

kj
C  is a 

learning rate of the kjth neuron (kth neuron in the jth layer). We have already men-

tioned above that a learning rate can always be equal to 1 in the MVN error-

correction rule. Let us also set 1, 1,..., ; 1,...,
kj j

C k N j m= = = . Thus, for  

all the neurons in the MLMVN we set the learning rate equal to 1. At least in all 

applications considered in this book, we use a unitary learning rate. 
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4.3.2   MLMVN Learning Algorithm 

Let now A be a learning set, and 

, 0,1,..., 1; ,
j s t

A A j K A A s t⊂ = − = ∅ ≠∩  be K disjoint learning subsets 

such that 

1

0

K

i

i

A A
−

=

=∪ . 

Let ( )1 ,...,s s

s n
X x x=  be the sth element of the learning set A. Let N be the 

cardinality of the set A, A N= , that is the total amount of the learning patterns. 

The MLMVN learning may continue either until the zero-error is reached 

(which often is not possible) or either of the mean square error (MSE) (1.20) or 

the root mean square error (RMSE) (1.21) criteria is satisfied. We have already 

considered these stopping criteria for the learning algorithm for a single MVN (see 

Section 3.1, p. 99). For some applied problems the MLMVN learning with the 

zero error is not reasonable. It depends on the particular problem, which is neces-

sary to learn. If all the output neurons in MLMVN are discrete, then both MSE  

and RMSE should be applied to the errors in terms of numbers of sectors (see  

Fig. 2.21, p. 59), thus not to the elements of the set { }0 1, ,..., K

K K K K
E ε ε ε −= , but 

to the elements of the set { }0,1,..., 1K K= −  or to their arguments 

{ }0 1arg ,arg ,..., arg k

k k k
ε ε ε −

 The local errors for the sth learning sample in 

these terms are calculated, respectively as 

 

( ) { }mod ; , 0,1,..., 1
s ss j s j sK Kγ α α α α= − ∈ − , (4.137) 

 

( )arg arg mod 2 ; ,j js s s s

s K
E

α αα αγ ε ε π ε ε= − ∈ , (4.138) 

 

where 
js

α
ε  is the desired output and sαε  is the actual output. 

The functional of the MLMVN error is defined according to (1.26) (see p. 29) 

in the same way as it was defined for MLF: 

1

1 N

s

s

Ε E
N =

= ∑  

where E denotes MSE, and s
E  denotes the square error of the network for the sth 

pattern. It is  

 
2 , 1,...,

s s
E s Nγ= = , (4.139) 
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( s
γ  is the local error taken from (4.137) or (4.138)) for a single output neuron and 

 

2

1

1
; 1,...,

m

s

N

s k

km

E s N
N

γ
=

= =∑  (4.140) 

 

for m
N  output neurons, where m is the output layer index. 

The MLMVN learning process, as well as the MLF learning process (see p. 29) 

and the MVN learning process (see p. 99) continues until either of MSE or RMSE 

drops below some pre-determined acceptable minimal value λ . These MSE and 

RMSE stopping criteria are presented for the MVN learning by equations (3.76) 

and (3.77), respectively (see p. 99). These criteria are practically identical for 

MLMVN, accurate to the interpretation of a local error for multiple output neu-

rons. They are  

2

1

1 N
s

s

s

E
MSE

N N
γ λ

=

= = <∑ , (4.141) 

2

1

1 N
s

s

s

E
RMSE MSE

N N
γ λ

=

= = = <∑ . (4.142) 

It is also important to mention that to avoid overfitting, (it is known in machine 

learning as a phenomenon, which occurs when some learning set is “overlearned”, 

and the results of this learning cannot be used for prediction because they produce 

mostly noise than something useful), an additional threshold, which determines 

the tolerance to a local error, can be specified. This means that we should check 

for ; 1,...,
s

E s N=  obtained in (4.139) or (4.140) whether 

 

; 1,...,
s

E s Nµ≤ = , (4.143) 

 

where µ  is the mentioned additional threshold
3
. It is natural that it should be cho-

sen such that µ λ≤  if λ  is the acceptable MSE from (4.141) or 
2µ λ≤  if λ  

is the acceptable RMSE from (4.142). If (4.143) holds, then the correction of the 

weights for the sth learning sample is not required. 

 

Hence the learning algorithm consists of the following steps. 

                                                           
3 In practical implementation, for MLMVN with a single output neurons it is more conven-

ient to check whether s sE γ µ′= ≤ , where s
γ  is obtained according either to 

(4.137) or (4.138). 
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Let Learning be a flag, which is “True” if the weights adjustment is required 

and “False”, if it is not required, and r be the number of the weighting vector in 

the sequence 
kj

w
S , where kj are the indexes of the kth neuron in the jth layer. 

 

Step 1. The starting weighting vectors 0 ; 1,..., ; 1,...,kj

j
W k N j m= =  are 

chosen arbitrarily (e.g., real and imaginary parts of their components 

can be the random numbers); r=0; s=1; Learning = ‘False’; 

Step 2. Calculate the local error s
γ  according either to (4.137) if the network 

outputs are discrete or (4.138) if the network outputs are continuous 

or hybrid for the element 
s

j
X  from the learning set and, then calcu-

late the square error s
E  according to (4.139) for a single output  

neuron or (4.140) for a network with more than one output neuron. 

if (4.143) holds  

then go to the Step 5  

else begin Learning = ‘True’; go to Step 3 end; 

Step 3. To obtain the errors of all the network neurons, calculate the network 

errors according to (4.120), and backpropagate these errors to the  

output layer according to (4.121) and then backpropagate the obtained 

errors to the hidden layers according to (4.122).  

Step 4. Sequentially, layer by layer, obtain the weighting vectors 1

kj

r
W +   

from the ones 
kj

r
W  for all the neurons in the network 

( 1,..., ; 1,..., )
j

j m k N= =  using the error-correction learning rule 

utilized in (4.136) for the 1
st
 hidden layer neurons, in (4.135) for all 

other hidden neurons, and in (4.134) for the output layer neurons; 

Step 5. s = s+1;  if s≤N  

then go to Step 2  

else  

Calculate MSE according to (4.141) or RMSE accord-

ing to (4.142) depending on which stopping criterion 

is used and check whether the error dropped below 

the pre-determined acceptable value λ . If so, then 

Learning = ‘False’ 

  if Learning = ‘False’ 

  then the learning process is finished successfully 

  else begin s=1; Learning = ‘False’; go to Step 2; end. 

4.3.3   Convergence Theorem 

Let us now prove that this learning algorithm converges. This proof is based on 

the same idea as the one of the convergence of the MVN learning algorithm with 
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the error-correction learning rule (Theorem 3.17, p. 116). It is important to men-

tion that this proof is published for the first time. 

 

Theorem 4.19 (About the convergence of the MLMVN learning algorithm with 

the error-correction learning rules (4.134)-(4.136) ). If there exist such a set of the 

non-zero weighting vectors { }; 1,..., ; 1,...,kj

m
W j m k NΩ = = = , which guar-

antees that for the given MLMVN input/output mapping either of conditions 

(4.141) or (142) hold, then the MLMVN learning algorithm with the learning rules 

(4.134)-(4.136) converges to { }; 1,..., ; 1,...,kj

m
W j m k NΩ = = =  or another 

set of the weighting vectors { }; 1,..., ; 1,...,kj

m
W j m k NΩ = = =� �  for which ei-

ther of conditions (4.141) or (4.142) also hold, after a finite number of steps. 

 

Proof. We are given a condition that there exist such a set of the non-zero weight-

ing vectors { }; 1,..., ; 1,...,kj

m
W j m k NΩ = = = , which guarantees that for the 

given MLMVN input/output mapping either of conditions (4.141) or (4.142) hold. 

Let us now train MLMVN applying the learning rules (4.134)-(4.136) according 

to our learning algorithm. For simplicity and without loss of generality, let us  

start learning process from the zero vectors 

( )1 (0,0), (0,0),..., (0,0) ; 1,..., ; 1,...,kj

m
W k N j m= = =  for all the neurons 

of the network. Let ( )1 2, ,...,
X N

S X X X=  be a learning sequence of input vec-

tors ( )11, ,..., , 1,...,s s

s n
X x x s N= = 4

 that represent learning samples, and 

( )1 2 ,,1 ,211 12 1,..., , ,..., ,...,..., ,..., ; 1,2,...mN mN Nkj m

W r r r r r r
S W W W W W W r= =  be a 

sequence of the weighting vectors of all the neurons, which appear during the 

learning process. We have to prove that this sequence cannot be infinite. Let us 

remove from the learning sequence those vectors for which 

11,..., ; 1,...,   kj kj

j r r
k N j m W W+∀ = = = , in other words, those input vectors, 

for which (4.143) hold without learning. Let 
W

S �  be the reduced sequence of the 

weighting vectors. The Theorem will be proven if we will show that the sequence 

W
S �  is finite. Let us suppose that the opposite is true: the sequence 

W
S �  is infinite. 

Let ; 1,...,
km m

D k N=  be the desired outputs for the input vector 1X  and the 

weighting vectors 1

kjW  and ; 1,...,
km m

Y k N=  be the actual MLMVN outputs. If 

(4.143) does not hold, we first have to find the errors for all the neurons. We have to 

                                                           
4 For simplicity, we will add the 0th component equal to the constant 1 to the input vector, 

like we have done for a single neuron. This component corresponds to the weight 0w . 
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find the network errors according to (4.120), and then to backpropagate them ac-

cording to (4.121)-(4.122). After all the errors are known, we have to apply  

the learning rules (4.134)-(4.136) to adjust the weights. According to (4.136) we 

obtain for 1
st
 hidden layer neurons their updated weighted vectors  

( ) ( )
11

1

11
,1,111 11

2 1 2 11 1

11 ,1

,...,
1 | | 1 | |

NN

N

W X W X
n z n z

δδ
= =

+ +
� � � � , 

where 
1

kj
z  is the current weighted sum of the kjth neuron (the kth neuron from the 

jth layer) corresponding to the input vector 1X . 

Then for the hidden layers’ neurons we obtain according to (4.135) 

( ) ( )
1

11
,1 ,11 1 1

2 1 2 11 1

1 1 1 ,1

,...,
1 | | 1 | |

j

j

N jj Nj

j j

j j j N

W V W V
N z N z

δδ
− −

− −

= =
+ +

� � � � , 

where ( )11 1, 1 2, 1 , 1, ,...,
jj j j N j

V Y Y Y
−− − − −=� � � �  is the vector of the updated outputs of 

the neurons from j-1
st
 layer (the one preceding to the layer j) taken complex-

conjugated, and 
1

kj
δ  is the error of the kjth neuron (the kth neuron from the jth 

layer) corresponding to the input vector 1X . 

Then taking into account the last notation, we obtain according to (4.134) for 

the output layer neurons 

( ) ( )

11
,1,1 1 11

2 1 2 1

1 1

,...,
1 1

mm
NN mm m

m m

m m

W V W V
N N

δδ
− −

− −

= =
+ +

� � � � . 

Suppose that (4.143) does not hold for the input vector 2X , and the weights of all 

the neurons have to be corrected again. Calculating the errors according to 

(4.120), then backpropagating them according to (4.121)-(4.122), and applying the 

learning rules (4.134)-(4.136), we obtain the following. 

For the neurons of the 1
st
 hidden layer 

( ) ( )

2
1 1 1 21

3 2 2 1 1 1 2

1

1

1 1

1,..., .

k k k
k kW W X X X

n n

k N

δ
δ δ⎡ ⎤= + = +⎣ ⎦+ +

=

� � � � �
 

For the neurons of other hidden layers and the output neurons 
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( ) ( )

2 1 2

2 1 2

3 2 1 1 11 22

1 1

1

| | | |1 | | 1

2,..., ; 1,..., .

kj kj kjkj kj

j j j

kj kjj kj j

j

W W V Z V
z zN z N

j m k N

δ δ δ
− − −

− −

⎡ ⎤
= + = +⎢ ⎥

+ + ⎢ ⎥⎣ ⎦
= =

� � � � �
 

Let us suppose without loss of generality that the rth correction of the weights is 

made for the rth learning sample that is for the input vector r
X . Calculating again 

the errors according to (4.120), then backpropagating them according to (4.121)-

(4.122), and applying the learning rules (4.134)-(4.136), we obtain the following. 

For the neurons of the 1
st
 hidden layer 

( ) ( )
1 1 11
1 1 1 1

1

1
...

1 1

1,..., .

r
k k rk

r r r k k rW W X X X
n n

k N

δ
δ δ+
⎡ ⎤= + = + +⎣ ⎦+ +

=

� � � � �
 (4.144) 

For the neurons of other hidden layers and the output neurons 

( )

( )

1 1

1

1

1

1 11

1

1 | |

1
... ; 2,..., ; 1,..., .

| | | |1

r

kjkj kj r

r r jr

j kj

r

kj kj r

j j jr

kj kjj

W W V
N z

V V j m k N
z zN

δ

δ δ

+ −

−

− −

−

= + =
+

⎡ ⎤
= + + = =⎢ ⎥

+ ⎢ ⎥⎣ ⎦

� � �

� �
 (4.145) 

Let us set 
| |

t

kj t

kjt

kj
z

δ
ω=  in (4.145). We are given a condition that weighting vec-

tors { }; 1,..., ; 1,...,kj

m
W j m k NΩ = = =  exist such that for the given 

MLMVN input/output mapping either of conditions (4.141) or (4.142) hold. Let us 

find the dot products of both parts of (4.144) for each 11,...,k N=  with the corre-

sponding weighting vector 
1

1; 1,...,k
W k N= , and the dot products of both parts 

of (4.145) for each 2,..., ; 1,...,
j

j m k N= =  with the corresponding weighting 

vector ; 2,..., ; 1,...,kj

j
W j m k N= = . We obtain the following, respectively: 

 

( ) ( ) ( )1 1 1 1 1

1 1 1 1

1

1
, , ... ,

1

1,...,

k k k r k

r k k rW W X W X W
n

k N

δ δ+
⎡ ⎤= + +⎢ ⎥⎣ ⎦+

=

� � �
 (4.146)  
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( )
( ) ( ) ( )1 1

1 1 1

1

1
, , ... ,

1

1,..., ; 2,..., .

kj kj kj r r kj

r kj j kj j

j

j

W W V W V W
N

k N j m

ω ω+ − −

−

⎡ ⎤= + +⎢ ⎥⎣ ⎦+

= =

� � �
 (4.147) 

 

Let us estimate the absolute values of these dot products 

( )1, ; 1,..., ; 1,...,kj kj

r jW W k N j m+ = =� : 

( ) ( ) ( )1 1 1 1 1

1 1 1 1

1

1
, , ... ,

1

1,..., ;

k k k r k

r k k r
W W X W X W

n

k N

δ δ+
⎡ ⎤= + +⎢ ⎥⎣ ⎦+

=

� � �

 

( )
( ) ( ) ( )1 1

1 1 1

1

1
, , ... ,

1

1,..., ; 2,..., .

kj kj kj r r kj

r kj j kj j

j

j

W W V W V W
N

k N j m

ω ω+ − −

−

⎡ ⎤= + +⎢ ⎥⎣ ⎦+

= =

� � �
 

(4.148) 

Since for any complex number β Reβ β≥  and Imβ β≥ , then the  

absolute value of the sum in the right-hand side of all the equalities in (4.148) is  

always greater than or equal to the absolute values of the real and imaginary  

parts of this sum. Let us set ( )1

1 1
1,...,

min Re ,t k

k k t
t r

a X Wδ
=

= �  and also 

( )1
1,...,

min Re , ; 1,...,t t kj

kj kj j
t r

a Z W j mω −
=

= =� . Then it follows from (4.148) that 

( )1, ; 1,..., ; 1,...,
kjkj kj

r j

ra
W W k N j m

M
+ ≥ = =� , (4.149) 

 

where { }1max 1, 1,..., 1
m

M n N N= + + + . 

According to the fundamental Schwarz inequality [74] the squared dot product 

of the two vectors does not exceed the product of the squared norms of these vec-

tors or in other words, the norm of the dot product of the two vectors does not  

exceed the product of the norms of these vectors ( )1 2 1 2,V V V V≤ ⋅ . Thus, 

according to the Schwartz inequality 

 

( )1 1, ; 1,..., ; 1,..., .kj kj kj kj

r r jW W W W k N j m+ +≤ ⋅ = =� �  (4.150) 

 

Taking into account (4.149), we obtain from (4.150) the following 
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( )1 1
, ; 1,..., ; 1,..., .

kj kj kj kj kj

r r j

ra
W W W W k N j m

M
+ +≤ ≤ ⋅ = =� � . 

Then it follows from the last inequality that  

1
; 1,..., ; 1,..., .

kjkj

r jkj

ra
W k N j m

M W
+ ≥ = =�  (4.151) 

Let for simplicity ; 1,..., ; 1,...,
kj

kj j

a
a k N j m

M
= = =� . Then (4.151) is trans-

formed as follows: 

1
; 1,..., ; 1,...,

kjkj

r jkj

ra
W k N j m

W
+ ≥ = =

�� . (4.152) 

The weighting vectors ; 1,..., ; 1,...,kj

j
W k N j m= =  exist according to the 

condition of the Theorem. According to our assumption, the sequence 
W

S �  of the 

weighting vectors is infinite. Since r is the number of the learning step, let us con-

sider (4.152) when r → ∞ . 
1

kj

r
W +
�  is a non-negative finite real number, 

kjW  

is a finite positive real number ( 0kjW >  because according to the condition of 

the Theorem vectors 
kj

W  are non-zero) kja�  is a finite positive real number. It  

follows from this analysis that  

; 1,..., ; 1,...,
kj

jkj r

ra
k N j m

W →∞
→ ∞ = =

�
. 

However, this means that from (4.152) we obtain 

1
; 1,..., ; 1,...,

kjkj

r jkj

ra
W k N j m

W
+ ≥ → ∞ = =

�� . (4.153) 

All the inequalities (4.153) are contradictory. Indeed, the norm of a vector, which 

is in the left-hand side, is a finite non-negative real number. However, it has to be 

greater than or equal to the infinity in the right-hand side of (4.153), which is im-

possible. This means that (4.153) is contradictory. This means in turn that either it 

is impossible that r → ∞  or the vectors ; 1,..., ; 1,...,kj

j
W k N j m= =  do not 

exist. The latter contradicts to the condition of the Theorem. Hence, r →∞  and 
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it is always a finite integer number. Thus, our assumption that the sequence 
W

S �  

of the weighting vectors is infinite, is false, which means that it is always finite. 

Hence, the learning algorithm converges after a finite number of steps. 

Theorem is proven. 

4.3.4   Important Advantages of the MLMVN Learning Algorithm 

Thus, the MLMVN learning algorithm, which is based on the error backpropaga-

tion rule (4.121)-(4.122) and on the generalized error-correction learning rule 

(4.134)-(4.136), converges after a finite number of learning epochs. It is important 

that the MLMVN error-correction learning algorithm is based on the same princi-

ples as the error-correction learning algorithm for a single MVN (see Sections 3.1 

and 3.3). The mechanism of the MLMVN error-correction learning is the same as 

the one for the MVN learning. The MLMVN learning process consists of the itera-

tive approaching the “ideal” weights of all the neurons. Since it is based on the er-

ror-correction learning rule, the network error decreases due to the same reasons 

as for a single MVN.  

This algorithm has a number of important advantages over the MLF learning 

algorithm. Let us distinguish how they compensate those disadvantages that we 

have found considering the MLF learning algorithm (see Section 1.3, p. 34). 

1) The MLMVN learning algorithm is based on the same error-correction learn-

ing rule as the MVN learning algorithm. Since it is not reduced to solving an  

optimization problem, it does not suffer from the local minima phenomenon. If 

some input/output mapping is learnable accurate a specified mean-square error or 

a root mean-square error, then according to Theorem 4.19 the learning algorithm 

converges after a finite number of steps (epochs). 

2) The MLMVN learning algorithm is derivative-free. It works equally well for 

a network based on the discrete MVNs, and for a network based on the continuous 

MVNs. It also perfectly works for a network containing MVNs with both discrete 

and continuous activation functions. There is no matter of the type of the network 

inputs and outputs (discrete or continuous, or hybrid). Thus, this learning algo-

rithm can be used to train, for example, a network whose input/output mapping 

simulates some hybrid dynamical system and therefore it is hybrid. 

3) Since a single MVN has a higher functionality than a sigmoidal neuron, 

MLMVN has also significantly higher functionality than MLF. Typically, smaller 

MLMVN solves any problem much better than larger MLF. 

4) The MLMVN learning algorithm does not depend on the number of hidden 

layers in the network and on the number of neurons in a layer. It works equally 

well for the simplest network containing just two neurons (Fig. 4.42) and for the 

MLMVN containing tens of thousands hidden neurons. 

Let us now consider how this learning algorithm can be used for solving some 

benchmark problems. We will also consider in Chapter 6 how it can be success-

fully used for solving real-world problems. 
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4.4   Examples of MLMVN Applications
5
 

We will start from a simple example, which will be considered in detail, and then 

we will consider how MLMVN solves a problem of Mackey-Glass time series 

prediction. 

4.4.1   Simple Example: 3-Class Classification Problem 

Let us consider the following simple classification problem. We take this solution 

from [77], where it was considered by the author of this book together with 

Dmitriy Paliy, Jacek Zurada, and Jaakko Astola. 

Suppose we wish to classify three training vectors 1 2 3, ,X X X  of the length 2 

to be members of three different classes 1 2 3
, ,T T T� � � . Our vectors are as follows 

( )
( )
( )

4.23 2.10

1 1

5.34 1.24

2 2

2.10 0

3 3

, ,

, ,

, ,

i i

i i

i i

X e e T

X e e T

X e e T

= →

= →

= →

�

�

�
 

where i is an imaginary unity. Classes 1 2 3, ,T T T� � �  are determined in such a way that 

the argument of the desired output of the network must belong to the interval 

 

[arg 0.05,arg 0.05], 1, 2,3,
j j

T T j− + = . (4.154) 

 

where 
0.76 2.56 5.35

1 2 3,  ,  i i i
T e T e T e= = = . 

This means that the desired outputs of the network should be equal to 1T  for the 

input vector 1X , to 2T  for the input vector 2X , and to 3T  for the input vector 

3X . Hence, our desired outputs are continuous. Taking into account (4.154), we 

may easily conclude that the learning can be stopped according either to the MSE 

criterion (4.141) or the RMSE criterion (4.142). In (141), ( )
2

0.05 0.0025λ = =  

should be taken, while in (4.142) 0.05λ =  should be taken, respectively.  

Let the MLMVN has a topology 2-2-1 (two inputs, two hidden neurons in a 

single hidden layer, and the output layer with a single output neuron). All the  

neurons have continuous inputs and outputs, and the activation function (2.54).  

 

                                                           
5 MLMVN software simulator (executable code) is available at 

http://www.freewebs.com/igora/Downloads.htm 
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The initial weights (both real and imaginary parts) of all the MLMVN neurons are 

taken as random numbers from the interval [0,1]: 

 

Neuron 11 Neuron 21 Neuron 12 

0

1

2

0.23 0.38

0.19 0.46

0.36 0.33

w i

w i

w i

= −

= −

= −

 

0

1

2

0.23 0.38

0.19 0.46

0.36 0.33

w i

w i

w i

= −

= −

= −

 

0

1

2

0.23 0.38

0.19 0.46

0.36 0.33

w i

w i

w i

= −

= −

= −

 

 

Let t be the index of training epoch and j be the index of a training vector. So, 

initially t=1, j=1. The MLMVN training is performed as follows. 

 

Iteration 1: 

1) Compute the weighting sum: 
1 1 1

1 0 1 1 2 2; 1,2k k k

k
z w w x w x k= + + =  for each 

neuron from the hidden layer for the first ( 1)j =  pattern vector 
1 2( , )

j
X x x= , 

where 
1

exp(4.23 ) 0.46 0.88x i i= = − −  and 
2

exp(2.10 ) 0.51 0.85x i i= = − + : 

 

11
(0.23 0.38 ) (0.19 0.46 )( 0.46 0.88 )

(0.36 0.33 )( 0.51 0.85 ) 0.16 0.13 .

z i i i

i i i

= − + − − − +

+ − − + = − +
 

 

It is easy to see that 
21 11

0.16 0.13z z i= = − +  in this particular case. 

2) Compute the outputs for the hidden layer neurons: According to (2.51)  

and (2.54) the actual outputs are 
11 11 11

/ | | 0.78 0.62Y z z i= = − +  and 

21 21 21
/ | | 0.78 0.62Y z z i= = − + . They are used as inputs to the output neuron (21). 

Then, the output 
12

Y  for the neuron (12) is computed according to (2.54) as  

follows: 
 

12
(0.23 0.38 ) (0.19 0.46 )( 0.78 0.62 )

(0.36 0.33 )( 0.78 0.62 ) 0.29 0.57 ,

z i i i

i i i

= − + − − + +

+ − − + = +
 

 

and finally 
12 12 12

/ | | 0.45 0.89Y z z i= = + . 

3) Find the error (4.138) and check condition (4.142) for MSE or (4.143) for 

RMSE. The angular error is the difference between the argument of the output 
12

Y  

and the argument of the desired output 12 j
T T= . This difference must be com-

pared with the maximal acceptable error 0.05µ = , which is determined in 

(4.154) by the angular size of the class 

12 12
arg( ) arg( ) 1.10-0.76 0.34>0.05Y T− = = . 

 

The condition (4.143) does not hold and the weights must be corrected. 
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Fig. 4.45 Illustration to the simple example of MLMVN 2-2-1 training 

(see also Table 4.12). The network outputs and the corresponding num-

ber of epochs from 1 to 7 are shown 

  - Class 1;  - Class 2; x – Class3. Shaded sectors correspond to the 

classes 

 

4) Weights update: The network error calculated at the output neuron according to 

(4.120) is 
*

12 0.27 - 0.21iδ = . After this error is backpropagated, we get the error 

12
0.09 - 0.07iδ =  for the output neuron according to (4.121), and the errors 

11
0.88 0.53iδ = +  and 

21
1.04 0.11iδ = +  for the hidden layer neurons according to 

(4.122).  

Weights corrections are performed using (4.136) for the hidden layer neurons 

and using (4.134) for the output layer neuron and result in the following updated 

weights: 

 

(0.52 0.21 , 0.10 0.28 ,0.36 0.67 ) for (11),

(0.58 0.35 ,0.00 0.17 ,0.21 0.65 ) for (21),

(0.26 0.41 ,0.20 0.50 ,0.38 0.36 ) for (12).

W i i i

W i i i

W i i i

= − − − −

= − − −

= − − −

 

 

5) Completion of the training epoch: Repeat steps 1-4 for all the pattern vectors 

(till j=3). 
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Table 4.12 The example of the 2-2-1 MLMVN training 

Epoch  

Pattern 

vector 

j 

Weights 
12 12 12 12

0 1 2( , , )W w w w=  for 

the output neuron (21) 

Actual Out-

put 
12

Y  

Error 

(4.138) 

≤ 0.05 

MSE 

(4.142) 

≤ 0.0025 

1 w=(0.23-0.38i, 0.19-0.46i, 0.36-0.33i)
 

0.45+0.89i 0.342 

2 w=(0.26-0.41i,0.2-0.5i,0.38-0.36i)
 

0.39-0.92i 2.553 1 

3 w=(0.12-0.24i, 0.07-0.67i, 0.18-0.43i)
 

-0.19-0.98i 0.829 

2.4213 

1 w=(0.21-0.22i, 0.16-0.63i, 0.27-0.4i)
 

0.83+0.55i 0.174 

2 w=(0.2-0.21i, 0.18-0.64i, 0.29-0.41i)
 

-1.0+0.0i 0.581 2 

3 w=(0.21-0.15i, 0.13-0.68i, 0.3-0.47i)
 

0.57-0.82i 0.030 

0.1208 

1 w=(0.21-0.15i, 0.13-0.68i, 0.3-0.47i)
 

0.57+0.83i 0.209 

2 w=(0.23-0.16i, 0.11-0.69i, 0.28-0.47i)
 

-0.1+0.99i 0.888 3 

3 w=(0.15-0.21i, 0.19-0.73i, 0.36-0.41i)
 

0.46-0.89i 0.160 

0.2872 

1 w=(0.16-0.2i, 0.21-0.72i, 0.38-0.41i)
 

0.19+0.98i 0.619 

2 w=(0.22-0.24i, 0.16-0.77i, 0.32-0.44i)
 

-0.85+0.53i 0.024 4 

3 w=(0.22-0.24i, 0.16-0.77i, 0.32-0.44i)
 

0.37-0.93i 0.259 

0.1486 

1 w=(0.25-0.22i, 0.18-0.75i, 0.35-0.44i)
 

0.78+0.63i 0.080 

2 w=(0.24-0.21i, 0.19-0.75i, 0.35-0.44i)
 

-0.82+0.57i 0.025 5 

3 w=(0.24-0.21i, 0.19-0.75i, 0.35-0.44i)
 

0.53-0.85i 0.080 

0.0049 

1 w=(0.25-0.21i, 0.2-0.74i, 0.36-0.43i)
 

0.68+0.73i 0.060 

2 w=(0.15-0.21i, 0.19-0.75i, 0.36-0.44i)
 

-0.82+0.58i 0.034 6 

3 w=(0.25-0.21i, 0.19-0.75i, 0.36-0.44i)
 

0.55-0.83i 0.052 

0.0026 

1 w=(0.26-0.21i, 0.19-0.74i, 0.36-0.43i)
 

0.71+0.71i 0.025 

2 w=(0.26-0.21i, 0.19-0.74i, 0.36-0.43i)
 

-0.81+0.58i 0.039 7 

3 w=(0.26-0.21i, 0.19-0.74i, 0.36-0.43i)
 

0.58-0.82i 0.022 

0.0009 

 
6) Termination of training: Compute MSE according to (4.142) and check the 

condition determined by the same equation (4.142). If it holds, the learning proc-

ess has converged. If it does not hold then increment t and perform steps 1-5 

again. This process should continue until the condition (4.142) is satisfied.  

The process is illustrated in detail in Table 4.12 and in Fig. 4.45. The table rows 

highlighted by the bold font indicate that the MLMVN has reached the desired 

output for the particular training vector j
X . Fig. 4.45 shows how the outputs of 

the network are distributed for all 7 iterations. It is clearly visible that the training 

error is decreasing very quickly and the actual outputs approach the desired ones 

with the quickly increasing precision starting from the 4
th

 training epoch. The 

learning process converges after the 7
th

 epoch, as soon as MSE drops 

below 0.0025. 
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4.4.2   Mackey-Glass Time Series Prediction 

In [62], where MLMVN was explicitly presented by the author of this book and C. 

Moraga, it was demonstrated that this network outperforms MLF, different kernel-

based and neuro-fuzzy techniques in terms of learning speed, a number of parame-

ters employed, and in terms of generalization capability, when solving a number 

of popular benchmark problems. One of the most convincible examples is a fa-

mous problem of Mackey-Glass time-series prediction. Thus, we would like to 

demonstrate this important example here. 

The Mackey-Glass time series is generated by the chaotic Mackey-Glass differ-

ential delay equation defined as follows [78]: 

 

10

( ) 0.2 ( )
0.1 ( ) ( ),

1 ( )

dx t x t
x t n t

dt x t

τ

τ

−
= − +

+ −
 (4.155) 

 

where n(t) is a uniform noise (it is possible that n(t)=0). )(tx  is quasi-periodic, 

and choosing 17τ =  it becomes chaotic [78, 79]. This means that only short term 

forecasts are feasible. Exactly 17τ =  was used in our experiment. To integrate 

(4.155) and to generate the data, we used an initial condition 2.1)0( =x  and a 

time step 1tΔ = . The Runge-Kutta method was used for the integration of 

(4.155). The data was sampled every 6 points, as it is usually recommended for 

the Mackey Glass time-series (see e.g., [80, 81]).  

Thus, we use the Mackey-Glass time series generated with the same parameters 

and in the same way as in the recently published papers [80-82]. The task of pre-

diction is to predict ( 6)x t +  from ( ),  ( 6),  ( 12),  ( 18)x t x t x t x t− − − . Thus, 

each member of the series was considered as a function from the four preceding 

members taken with the step 6 

( )( 6) ( ), ( 6), ( 12), ( 18)x t f x t x t x t x t+ = − − − . 

We generated 1000 points data set. The first 500 points were used for training (a 

fragment of the first 250 points is shown in Fig. 4.46a) and the next 500 points 

were used for testing (a fragment of the last 250 points is shown in Fig. 4.46b). 

The true values of )6( +tx  were used as the target values during training. 

Since the root mean square error (RMSE) is a usual estimator of the training 

control and the quality for the Mackey-Glass time series prediction [79-83], we 

also used it here. Thus, the RMSE criterion (4.142)  

2

1

1 N
s

s

s

E
RMSE MSE

N N
γ λ

=

= = = <∑  
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was used to determine the convergence of the learning process. λ  determines a 

maximum possible RMSE for the training data. The local error γ  was measured 

in terms of output’s argument (see (4.138) ). Wherever the actual MLMVN output 

did not coincide with the desired one, the weights were corrected (thus, we took 

0µ =  in (4.143)). 

 

 

(a) Mackey-Glass time series: a fragment of 

the first 250 points of the training data 

(b) Mackey-Glass time series: a fragment of 

the last 250 points of the testing data 

Fig. 4.46 Mackey-Glass Time series 

 

In all our experiments, we used MLMVN 4-n-1 (four inputs, one hidden layer 

containing n neurons, and a single output neuron). The four inputs were taken, 

since we have to predict a series member from its four predecessors taken with the 

step 6. To transform the generated data into the complex numbers located on the 

unit circle and to transform the predicted data back into a real-valued form, trans-

formations (2.55) and (2.56) (see p. 69) were used, respectively. We have chosen 

7 / 8α β π= = . 

The results of our experiments are summarized in Table 4.13. For each of the 

three series of experiments we made 30 independent runs of training and predic-

tion, like it was done in [81]. Our experiments show that choosing a smaller λ  in 

(4.142) it is possible to decrease the RMSE for the testing data significantly. The  

results of training and prediction are illustrated in Fig. 4.47a and Fig. 4.47b, re-

spectively. Since both the testing and prediction errors are very small and it is 

practically impossible to show the difference among the actual and predicted val-

ues at the same graph, Fig. 4.47a and Fig. 4.47b show not the actual and predicted 

data, but the error among them. Fig. 4.47a presents the error on the training set af-

ter the convergence of the training algorithm for the network containing 50 hidden 

neurons. 0.0035λ =  was used as a maximum acceptable RMSE in (4.142). 
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(a) training error (RMSE=0.0032) (b) testing error (RMSE=0.0063) 

Fig. 4.47 Mackey-Glass time series prediction 

 
An actual RMSE on the training set at the moment, when training was stopped, 

was equal to 0.0032. Fig. 4.47b presents the error on the testing set (RMSE=0.0063, 

which is a median value of the 30 independent experiments). To estimate a training 

time, one can base on the following data for the networks containing 50 and 40  

hidden neurons, respectively. 100,000 epochs require 25 minutes for the first  

network and 15 minutes for the second one on a PC with the Intel® Core™2 Duo 

2.4 GHz CPU. 

Comparing the results of the Mackey-Glass time series prediction using 

MLMVN to the results that were obtained using other techniques, we have to con-

clude that MLMVN outperforms all of them (see Table 4.14). The results com-

parative with the ones obtained using MLMVN are obtained only using GEFREX 

[84] and ANFIS [83]. However, it is not mentioned in [83] and [84] whether the 

reported RMSE is the result of averaging over the series of experiments or it is the 

best result of this series.  

In any case, MLMVN with the 50 hidden neurons steadily outperforms ANFIS 

and shows at least a comparative result with GEFREX. However, the implementa-

tion of MLMVN is incompatibly simpler than the one of GEFREX (for example, 

referring to the difficulty of the GEFREX implementation, the SuPFuNIS model 

was proposed in [80]).  

It is important to mention that classical MLF with its backpropagation learning 

[86] loses to MLMVN dramatically. It is interesting that the best results of our 

predecessors were obtained using different fuzzy techniques [80, 83, 84]. The only 

pure neural solution, which shows a comparative result (which is not as good as 

the one obtained using MLMVN), is the recently proposed cooperative neural 

networks ensemble (CNNE) [81]. 

This is an ensemble of several feedforward neural networks. Its average result 

obtained with a greater number of the hidden neurons (56 in average) is worse 

than the one obtained using MLMVN with the 50 hidden neurons. It should also 

be mentioned that a training procedure of the networks ensemble (CNNE) is more  
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Table 4.13 The results of Mackey-Glass time series prediction using MLMVN 

 

# of neurons on the  

hidden layer 
50 50 40 

λ  - a maximum  

possible RMSE in (142) 
0.0035 0.0056 0.0056 

Actual RMSE for the 

training set  

(min - max) 

0.0032 - 0.0035 0.0053 – 0.0056 0.0053 – 0.0056 

Min 0.0056 0.0083 0.0086 

Max 0.0083 0.0101 0.0125 

Median 0.0063 0.0089 0.0097 

Average 0.0066 0.0089 0.0098 

RMSE 

for the 

testing 

set 
SD 0.0009 0.0005 0.0011 

Min 95381 24754 34406 

Max 272660 116690 137860 

Median 145137 56295 62056 

Number 

of  

training 

epochs Average 162180 58903 70051 

 
Table 4.14 Comparison of Mackey-Glass time series prediction using MLMVN with other 

techniques 

 

MLMVN 

min 

MLMVN 

average 

GEFREX 

[84] 

EPNet 

[85] 

ANFIS 

[83] 

CNNE 

[81] 

SuPFuNIS 

[80] 

MLF 

(taken 

from 

[86]) 

0.0056 0.0066 0.0061 0.02 0.0074 0.009 0.014 0.02 
 

 

complicated than the one of MLMVN. The additional important advantage of 

MLMVN is an opportunity to control a level of the prediction error by choosing 

an appropriate value of the maximum training error λ  in (4.142). 

We hope that this example shows many advantages of MLMVN compared to 

many other machine learning techniques. It learns faster, generalizes better, and 

employs fewer parameters. 

In Chapter 6, we will consider applications of MLMVN in solving some real-

world problems. We will consider how MLMVN can be used for solving a prob-

lem of blur identification (for image deblurring) and for a long-term financial 

time-series prediction. 

4.5   Concluding Remarks to Chapter 4 

In this Chapter, we have considered a multilayer neural network with multi-valued 

neurons (MLMVN). This is a neural network with a standard feedforward topol-

ogy, but built from the multi-valued neurons. 
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The MLMVN has a number of very important advantages over competitive 

techniques and first of all over MLF. 

The most important advantage is that the MLMVN learning algorithm is based 

on the generalization of the error-correction learning rule for a single MVN. It is 

not reduced to solving an optimization problem, and respectively, it does not suf-

fer from the local minima phenomenon. If some input/output mapping is learnable 

accurate a specified mean-square error or a root mean-square error, then according 

to Theorem 4.19 the learning algorithm converges after a finite number of steps 

(epochs). 

Both the MLMVN error beckpropagation rule and the MLMVN learning algo-

rithm, which we have derived in this Chapter, are derivative-free. It was shown 

that after the weights are corrected, the updated weighted sums of the network 

output neurons are equal to the previous weighted sums plus the corresponding 

network errors that were taken from the output neurons. This MLMVN property is 

the same as the one of a single MVN. 

The MLMVN learning algorithm works equally well for a network based on 

the discrete MVNs, and for a network based on the continuous MVNs. It also per-

fectly works for a network containing both discrete and continuous MVNs. There 

is no matter of the type of the network inputs and outputs (discrete or continuous, 

or hybrid). Thus, this learning algorithm can be used to train, for example, a net-

work whose input/output mapping simulates some hybrid dynamical system and 

therefore it is hybrid. 

Since a single MVN has a higher functionality than a sigmoidal neuron, 

MLMVN has also significantly higher functionality than MLF. Typically, smaller 

MLMVN solves any problem much better than larger MLF. MLMVN also em-

ploys fewer parameters than many other machine learning techniques and shows 

better generalization capability (we will show even more such examples in Chap-

ter 6). 

The MLMVN learning algorithm does not depend on the number of hidden 

layers in the network and on the number of neurons in a layer. It works equally 

well for a small network, which contains just a few neurons and for a network, 

which contains tens of thousands hidden neurons. 

All these wonderful properties make MLMVN a very powerful and efficient 

machine learning tool for solving various problems of classification, pattern  

recognition, prediction, and simulation of complex hybrid dynamical systems  

depending on hundreds and thousands parameters.  
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Chapter 5  

Multi-Valued Neuron with a Periodic Activation 
Function 

“The opposite of a profound truth may well be another profound truth”  

 

Niels Bohr 

 

 

In this Chapter, we consider MVN with a periodic activation function. As we have 

already seen, MVN’s functionality is higher than the one of, for example, sigmoi-

dal neurons. In this Chapter, we will consider how a single MVN may learn non-

linearly separable input/output mappings in that initial n-dimensional space where 

they are defined. In Section 5.1, we consider a universal binary neuron (UBN), 

which in fact is the discrete MVN with a periodic activation function for k=2. We 

show how this neuron may learn non-linearly separable Boolean functions, for ex-

ample, XOR and Parity n, projecting them into larger valued logic. In Section 5.2, 

we generalize that approach, which is used in UBN, and introduce a periodic acti-

vation function for the discrete MVN. We also consider the learning algorithm for 

MVN with a periodic activation functions. In Section 5.3, we show how a number 

of non-linearly separable benchmark classification problems can be solved using a 

single MVN with a periodic activation function. Concluding remarks are given in 

Section 5.4. 

5.1   Universal Binary Neuron (UBN): Two-Valued MVN with a 
Periodic Activation Function 

5.1   Universal Binary Neuron (UBN): Two-Value d MVN  

Introducing complex-valued neurons in Section 1.4, we have shown (see p. 41) 

that a single complex-valued neuron can learn a classical non-linearly separable 

problem, the XOR problem. We have mentioned there that a neuron, which can 

learn the XOR problem, is called the universal binary neuron (UBN). 

Actually, UBN is nothing else than the two-valued MVN with a periodic acti-

vation function. This periodicity is a main idea behind UBN. 

5.1.1   A Periodic Activation Function for k=2 

We have considered earlier the k-valued activation function (2.50) of the discrete 

MVN for k=2 (see p. 60). It is transformed to the two-valued function (2.52) 
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1;0 arg
( )

1; arg 2 ,

z
P z

z

π

π π

≤ <⎧
= ⎨

− ≤ <⎩  

which divides the complex plane into two sectors, the top and the bottom half-planes 

(see Fig. 5.48a). However, it was shown in [33, 35, 37, 60] that the functionality of a 

neuron with this activation function exactly coincides with the functionality of the 

threshold neuron with the activation function (1.1). 

 

  

(a) MVN activation function (50) for k=2 (b) A periodic activation function 

 
Fig. 5.48 MVN activation function for k=2 and a periodic activation function for k=2 

This means that the discrete MVN with the activation function (2.50) with k=2 (or 

with the activation function (2.52), which is (2.50) with k=2) can learn only line-

arly separable input/output mappings. Thus, such binary non-linearly separable 

problems as XOR, Parity n and others cannot be learned using MVN with the ac-

tivation function (2.52). 

An idea to modify the activation function (2.52) in such a way that it should 

have ensured non-linearly separated Boolean functions to be learned by a single 

neuron was developed by the author of this book in his Ph.D. dissertation in 1986. 

This idea was as follows. We have to use complex weights with the binary inputs 

and outputs taken from the set { }2 1, 1E = − . Hence, our weighted sum is a com-

plex number. If, dividing the complex plane into two sectors, we cannot learn non-

linearly separable Boolean functions, will we be able to do so dividing the com-

plex plane into more than two sectors and determining a periodic activation func-

tion? In the paper [29], which was published in 1985, the author of this book sug-

gested the activation function (1.40), which divides the complex plane into four 

sectors, and ensures the implementation of the XOR function using a single neu-

ron with complex-valued weights (this example we have already considered in de-

tail in Section 1.4, see p. 41). The activation function (1.40) 
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divides the complex plane into four sectors (see Fig. 1.14, p. 41), and its value 

(which is the neuron output) is determined as the alternating sequence 1, -1, 1, -1. 

Let us number sectors in the natural order (0, 1, 2, 3). If a complex weighted sum 

is located in an even sector, then the activation function is equal to 1, while if the 

weighted sum is located in an odd sector, then the activation function is equal to  

-1. In fact, the activation function (1.40) is periodic. Its period is 2, and its two 

values 1 and -1 are repeated two times each. In his Ph.D. dissertation, the author 

of this book also suggested the following generalization of the activation function 

(1.40), which was explicitly presented in [30]. 

Let us have a neuron with n binary inputs taken from the set { }2 1, 1E = − . Let 

weights of this neuron are arbitrary complex numbers ; 0,1,...,iw i n∈ =^ . 

Thus, the weighted sum 0 1 1 ... n nz w w x w x= + + +  is also a complex number. 

Let us choose some even positive integer 2m l=  where l n≥ . Let us consider 

now the following l-multiple activation function, which was suggested in [30] 
 

( ) ( 1) if 2 arg( ) 2 ( 1) ;

2 ,

j

BP z = ,   j / m z j+ / m

m = l, l n

π π− ≤ <

≥
 

(5.156) 

where j is a non-negative integer 0 <j m≤ . 

The activation function (5.156) is illustrated in Fig. 5.48b. It divides the com-

plex plane into m=2l equal sectors. It determines the neuron output by the alter-

nating periodic sequence of 1, -1, 1, -1,…, depending on the parity of the sector’s 

number. The activation function (5.156) is equal to 1 for the complex numbers lo-

cated in the even sectors 0, 2, 4, ..., m-2 and to -1 for the complex numbers located 

in the odd sectors 1, 3, 5, ..., m-1. Similarly to the MVN activation function (2.50), 

function (5.156) also depends only on the argument of the weighted sum and does 

not depend on its magnitude. The activation function (5.156) is a periodic and l-

multiple continuation of the activation function (2.52) or, which is the same, of the 

discrete MVN activation function (2.50) for k=2. This is clearly illustrated in  

Fig. 5.48. This periodicity of the activation function (5.156) is its main property. It 

is also easy to check, that when 2, 4l m= =  in (5.156), we obtain (1.40). 

A neuron with the activation function (5.156) was called in [30] the universal 

logical element over the field of complex numbers. A bit later, it was suggested to 

call it the universal binary neuron (UBN) [87]. Its universality is determined by its 

ability to learn and implement non-linearly separable input/output mappings 

(along with the linearly separable ones). Let us illustrate this by the following  

example. 
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5.1.2   Implementation of the Parity n Function Using a Single 

Neuron 

We have already considered (see p. 41) how a single UBN with the activation 

function (1.40) (which is the same as (4.156) with 2, 4l m= = ) implements the 

XOR function. Let us consider now how a single UBN with the activation func-

tion (5.156) with 3, 6l m= =  (see Fig. 5.49) implements the Parity 3 function. 

 

 

Fig. 5.49 Activation function (156) with l=3, m=6 

 
Table 5.15 Solution of the Parity 3 problem using a single UBN with the activation func-

tion (5.156) with l=2, m=6 and with the weighting vector ( )60, ,1,1W ε=
 

1x

 

2x

 

3x

 

0 1 1

2 2 3 3

z w w x

w x w x

= + +

+ +

 

arg z  
Num-

ber of 

sector 

( )BP z

 

1 2 3

1 2 3

( , , )f x x x

x x x

=

= ⊕ ⊕

 

1 1 1 6
2ε +  0.335 0 1 1 

1 1 -1 6ε  / 3π  1 -1 -1 

1 -1 1 6ε  / 3π  1 -1 -1 

1 -1 -1 6
2ε −  

2.618=

5 / 6π  
2 1 1 

-1 1 1 6
2ε− +  11 / 6π  5 -1 -1 

-1 1 -1 
4

6 6ε ε− =  4 / 3π  4 1 1 

-1 -1 1 
4

6 6ε ε− =  4 / 3π  4 1 1 

-1 -1 -1 6
2ε− −  3.475 3 -1 -1 
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While the XOR function is a mod 2 addition of two Boolean variables, the 

Parity n function is a mod 2 addition of n Boolean variables. The Parity n function 

is a non-linearly separable Boolean function for any n. Let us consider a single 

UBN with the activation function (5.156) with 3, 6l m= = . It is easy to check 

that the weighting vector ( )6
0, ,1,1W ε=  (where 

2 /6

6

i
e

πε =  is the primitive 6
th
 

root of a unity) implements the Parity 3 function 1 2 3 1 2 3( , , )f x x x x x x= ⊕ ⊕ . 

This is illustrated in Table 5.15. 

In [88], it was experimentally shown by the author of this book that a single 

UBN easily solves the Parity n problem up to n=14. This will be considered in 

detail in Section 5.3.5. The ability of a single UBN, a neuron with complex-

valued weights, to implement non-linearly separable input/output mappings one 

more time shows that the functionality of a single neuron with complex-valued 

weights is higher than the functionality of real-valued neurons. 

5.1.3   Projection of a Two-Valued Non-linearly Separable 

Function into an m-Valued Threshold Function 

Let us now consider in detail that mechanism, which makes it possible implemen-

tation of non-linearly separable input/output mappings by a single UBN. The fol-

lowing theorem is very important. 
 

Theorem 5.20. If the input/output mapping ( )1 2 2,..., : n

nf x x E E→  can be im-

plemented using a single UBN with the activation function (5.156) and the 

weighting vector ( )0 1, ,..., nW w w w= , then there exist a partially defined m-

valued threshold function ( )1 2,..., : n

n mf x x E E→� , which can be implemented 

using a single discrete MVN with the activation function (2.50) (where k=m) and 

the same weighting vector ( )0 1, ,..., nW w w w=  as the function f. 

 

Proof. Since a single UBN implements the input/output mapping 

( )1 2 2,..., : n

nf x x E E→  with the weighting vector ( )0 1, ,..., nW w w w= , then 

( )1 2,..., nx x E∀ ∈  0 1 1 ... n nw w x w x z+ + + =  such that 

( ) ( )1,...,B nP z f x x= . This means that if ( )1,..., 1nf x x = , then z is located 

in one of the "even" sectors (0, 2, …, m-2) in which the activation function (5.156) 

divides the complex plane (see Fig. 5.48b and Fig. 5.49). If ( )1,..., 1nf x x = − , 

then z is located in one of the "odd" sectors (1, 3, …, m-1) in which the activation 

function (5.156) divides the complex plane (see again Fig. 5.48b and Fig. 5.49). 

This means that the number of a sector where the weighted sum z can be located, 

belongs to the set { }0,1,..., 1M m= − .  
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Let us apply the discrete MVN activation function (2.50) to z. Then we obtain 

( ) j

m
P z ε= , ( j M∈  is the number of the sector on the complex plane where z is 

located). Let us build a partially defined m-valued function 

( )1 2,..., : n

n mf x x E E→�  in the following way (it is partially defined because 

2

n n

m
E E⊂ , thus, it is defined only on the binary inputs). Let us set  

 

( ) ( ) ( )1 0 1 1,..., ... j

m n n m mf x x P z P w w x w x Eε= = + + + = ∈� ; 

{ }0,1,..., 1j m∈ −  

From the composition of the function f�  it is clear that it is an m-valued  

threshold function with the weighting vector ( )0 1, ,..., nW w w w=  according to 

Definition 2.5. Theorem is proven. 

On the one hand, the function ( )1 2,..., : n

n mf x x E E→�  is a partially defined 

m-valued function because 2

n n

m
E E⊂  (its domain is a subset of 

n

m
E ). On the 

other hand, Theorem 5.20 can easily be generalized for any function 

2:f T E→ , where 
n

T O⊂ , and O  is the set of points located on the unit cir-

cle. This generalization leads us to the following statement. 

If the input/output mapping ( )1 2,..., :nf x x T E→  (where 
n

T O⊂ ) can be 

implemented using a single UBN with the activation function (5.156) and the 

weighting vector ( )0 1, ,..., nW w w w= , then there exist a partially defined m-

valued threshold function ( )1,..., :n mf x x T E→� , which can be implemented 

using a single discrete MVN with the activation function (2.50) (where k=m) and 

the same weighting vector ( )0 1, ,..., nW w w w=  as the function f. 

Theorem 5.20 and its generalization establish the mechanism that projects a 

two-valued function ( )1,..., nf x x , which can be implemented using a single 

UBN, into an m-valued threshold function ( )1,..., nf x x� . The most important 

here is the following.  

If the two-valued function ( )1,..., nf x x  is a non-linearly separable function 

in the real domain and cannot be implemented using a single real-valued neuron, 

but can be implemented using a single UBN, then its projection ( )1,..., nf x x� , is 

an m-valued threshold function, which can be learned using a single MVN. 

For example, the Parity 3 function 1 2 3 1 2 3( , , )f x x x x x x= ⊕ ⊕  is non-

linearly separable in the real domain. It follows from Theorem 5.20 that there ex-
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ists its projection 
1 2 3( , , )f x x x� , which is built using the weighting vector 

( )60, ,1,1W ε= , as it is shown in Table 5.16.  

 
Table 5.16 Projection of the non-linearly separable Parity 3 function into 6-valued multi-

ple-valued threshold function using a single UBN with the activation function (5.156) with 

l=2, m=6 and with the weighting vector ( )60, ,1,1W ε=  

1x

 

2x

 

3x

 

0 1 1

2 2 3 3

z w w x

w x w x

= + +

+ +

 

arg z  ( )BP z

 

1 2 3

1 2 3

( , , )f x x x

x x x

=

= ⊕ ⊕

 

( )1 2 3
, ,f x x x�

 

1 1 1 6
2ε +  0.335 1 1 

0

6ε  

1 1 -1 6ε  / 3π  -1 -1 6ε  

1 -1 1 6ε  / 3π  -1 -1 6ε  

1 -1 -1 6
2ε −  

2.618=

5 / 6π  
1 1 

2

6ε  

-1 1 1 6
2ε− +  11 / 6π  -1 -1 

5

6ε  

-1 1 -1 
4

6 6ε ε− =  4 / 3π  1 1 
4

6ε  

-1 -1 1 
4

6 6ε ε− =  4 / 3π  1 1 
4

6ε  

-1 -1 -1 6
2ε− −  3.475 -1 -1 

3

6ε  

 

It follows from Table 5.16 that the function 
1 2 3( , , )f x x x�  is a partially defined 

6-valued threshold function with the weighting vector ( )60, ,1,1W ε= .  

According to Definition 2.9 (see p. 72) it is also a complex-valued threshold 

function (we can always set 
0

6(0) 1P ε= = , for example). Then according to 

Definition 2.10 (see p. 82) such a 6-edge { }0 1 5, ,...,Q Q Q Q=  exists that 

( )3

1 2 3 2 6( , , )  ( ) ; 0,1,...,5
j

jE Q P f jα α α α α ε∀ = ∈ = =�∩ . The last equa-

tion means that this 6-edge separates a 3-dimensional space where the function 

1 2 3( , , )f x x x�  is defined, into six edges (subspaces) 0 1 5, ,...,Q Q Q , where our 

function takes the values 
0 1 5

6 6 6
, ,...,ε ε ε , respectively. However, the same 6-edge 

also separates the 1s of the Parity 3 function from its -1s! This is illustrated 
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Fig. 5.50 6-edge separates a 3-dimensional space where the Parity 3 function and its 6-

valued projection are defined 

 
in Fig. 5.50. The planes, which create the edges of the 6-edge are shown in color. 

Since the Parity 3 function is defined on the set 
3

2
E , its 8 values are located in the 

vertices of the cube, which is also shown in Fig. 5.50. The values of the Parity 3 

function are shown in red, while the values of the function 
1 2 3( , , )f x x x�  located 

in the same cube vertices are shown in blue. The labels 0 1 5, ,...,Q Q Q  of the 

edges of the 6-edge are also shown in blue. As we see, the cube vertices (1, 1, 1) 

and (1, -1, -1) where the Parity 3 function takes the same value 1 are located in the 

different edges - 0Q  and 2Q , respectively (the function 
1 2 3( , , )f x x x�  takes 

there the values 
0

6
ε  and 

2

6
ε , respectively). The cube vertices (-1, 1, 1) and 

(-1, -1, -1) where the Parity 3 function takes the same value -1 are also located in 

the different edges - 5Q  and 3Q , respectively (the function 
1 2 3( , , )f x x x�  takes 

there the values 
5

6
ε  and 

3

6
ε , respectively). At the same time, the cube vertices  

(1, -1, 1) and (1, 1, -1) where the Parity 3 function takes the same value -1 are lo-

cated in the same edge 1Q  where the function 
1 2 3( , , )f x x x�  takes the value 

1

6
ε . 

The cube vertices (-1, -1, 1) and (-1, 1, -1) where the Parity 3 function takes the 

same value 1 are also located in the same edge 4Q  where the function 

1 2 3( , , )f x x x�  takes the value 
4

6
ε . 
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While in the real domain the Parity 3 function is not linearly separable and can-

not be implemented using a single real-valued neuron, it becomes linearly separa-

ble in the complex domain. This separation is utilized by the 6-edge. As we have 

seen, the Parity 3 function can be implemented using a single UBN. We have also 

seen that this implementation is equivalent to the implementation of the partially 

defined 6-valued threshold function 
1 2 3( , , )f x x x�  using a single MVN. 

5.1.4   UBN Learning 

According to Theorem 5.20, if a Boolean function 
2 2

n
E E→ can be implemented 

using a single UBN with the activation function (5.156), then there exist a par-

tially defined m-valued threshold function 
2

n

m
E E→ , which can be implemented 

using a single MVN with the activation function (2.50). Thus the UBN learning 

can be reduced to the MVN learning. This means that the same learning rules 

(3.81) or (3.92) or (3.94)-(3.98) that are used for the MVN learning can be used 

for the UBN learning. The only special moment is specification of the desired  

output for either of these learning rules. If we have to learn any multiple-valued 

function, the desired output for each element of the learning set is always unambi-

guous. However, if we have to learn a Boolean function or a mapping like 

2O E→ , the desired output in terms of multiple-valued logic is ambiguous. In-

deed, the activation function (5.156) divides the complex plane into m sectors (see 

Fig. 5.48b). In a half of them the UBN output is equal to 1, while in another half it  

is equal to -1. Where we have to direct the weighted sum during the learning  

process? How we can specify the desired output, to be able to use the MVN learn-

ing rules? 

It was suggested in [60] by the author of this book, Naum Aizenberg, and Joos 

Vandewalle to resolve this problem in the following way. The choice of the de-

sired sector q in either of (3.81) or (3.92) or (3.94)-(3.98) should be based on the 

closeness of the current weighted sum to the right or left adjacent sector. Indeed, if 

the current UBN output is incorrect, this means that it should become corrected if 

the weighted sum is moved to either left or right adjacent sector. This follows 

from the construction of the activation function (5.156) (see also Fig. 5.48b). The 

adjacent sector, which is closer to the current value of the weighted sum in terms 

of angular distance, is chosen as the “correct” one. The number q of this sector  

determines the desired output in either of the learning rules (3.81) or (3.92) or 

(3.94)-(3.98). 

Hence, the UBN learning algorithm can be described as follows. 

Let 
t

jX  be the tth element of the learning set A belonging to the learning sub-

set Aj . Let N be the cardinality of the set A, A N= . Let 2tY E∈  and 
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2tD E∈  be the actual and the desired UBN outputs, respectively, corresponding 

to the tth element of the learning set.  

Let Learning be a flag, which is “True” if the weights adjustment is required 

and “False”, if it not required, and r be the number of the weighting vector in the 

sequence wS  of weighting vectors obtained during the learning process. Let tz  

be the weighted sum corresponding to the tth element of the learning set. 

 

Step 1. The starting weighting vector W0  is chosen arbitrarily (e.g., real and 

imaginary parts of its components can be random numbers); m=0; 

t=1; Learning = ”False”; 

Step 2. Check for 
t

jX :  

if t tY D=  

then go to the step 5  

else begin Learning = “True”; go to Step 3 end; 

Step 3. Find ( )
s

t m
P z ε=  (where P is the MVN activation function (2.50)). 

Find { }1 0,1,..., 1q M m∈ = − , which determines the adjacent sector 

from the right (to the sth one), and find 2q M∈ , which determines 

the adjacent sector from the left (to the sth one) one, where the output 

is correct.  

If 

( )( ) ( )( )1 2( 1)2 / 2 /
arg arg mod 2 arg arg mod 2

i q m iq m

t tz e e z
π ππ π+− ≤ −

then 1q q=   

else 2q q= , where q  is the number of the desired sector. 

Step 4. Obtain the vector 1rW + from the vector rW by setting the desired out-

put to 
q

m
ε  and applying either of the learning rules (3.81) or (3.92) or 

(3.94)-(3.98);  

Step 5. t= t+1;  if t≤N  

then go to Step 2  

else if Learning = ”False” 

  then the learning process is finished successfully 

 else begin  t=1; Learning = ”False”; go to  Step 2; end. 

 
Since this UBN learning algorithm is reduced to the MVN learning algorithm, its 

convergence directly follows from the convergence of the MVN learning algo-

rithm (see Theorem 3.16 and Theorem 3.17). 
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5.2   k-Valued MVN with a Periodic Activation Function 

5.2.1   Some Important Fundamentals 

We have just considered UBN – the universal binary neuron. We have shown that 

UBN is nothing else than the discrete MVN with the activation function (2.50) 

with k=2 (or simply with the activation function (2.52), which is (2.50) for k=2), 

periodically extended. This periodic extension transforms (2.52) to the binary pe-

riodic activation function (5.156). While the activation function (2.52) divides the 

complex plane into two sectors (top and bottom half-planes), the periodic activa-

tion function (5.156) divides the complex plane into m=2l equal sectors. In this 

case, the neuron output is determined by the alternating periodic sequence of 1, -1, 

1, -1,…, depending on the parity of the ordinal sector’s number. 

As we have seen, this approach leads to one very important advantage. A single 

UBN may implement those input/output mappings that are non-linearly separable 

in the real domain. Perhaps, the most convincible examples, which illustrate this 

advantage of UBN, are XOR and Parity n that can easily be learned by a single 

UBN, without any network. Actually, this is achieved by the projection of  

2-valued logic, where the initial non-linearly separable problem is defined, to  

m-valued logic. While in 2-valued logic our input/output mapping is not linearly-

separable, in m-valued logic it becomes linearly separable. 

A natural question is whether it is possible to generalize this approach for mul-

tiple-valued input/output mappings that is for the activation function (2.50) with 

2k > ? In other words, if there is some k-valued input/output mapping kT E→  

(where 
n

k
T E=  or 

n
T O⊆ ), which is not a k-valued threshold function (and 

therefore it cannot be learned using a single MVN with the k-valued  

activation function (2.50)), can the same input/output mapping be a partially de-

fined m-valued threshold function mT E→  for m k> ?  

This question is very important because there is a great practical sense behind 

it. Suppose we have to solve some n-dimensional k-class classification problem 

and the corresponding classes are non-linearly separable. The commonly used 

approach for solving such a problem, as we already know from this book, is its 

consideration in the larger dimensional space. One of the ways to utilize this 

approach is a neural network, where hidden neurons form a new space, and a 

problem becomes linearly separable. Another popular machine learning approach 

to solving non-linearly separable problems projecting them into a higher 

dimensional space is the support vector machine (SVM) introduced in [25]. In 

SVM, a larger dimensional space is formed using the kernels and a problem 

becomes linearly separable in this new space. We would like to approach the same 

problem from a different angle, that is, to consider an n-dimensional k-class 

classification problem as an n-dimensional m-class classification problem (where 

m k>  and each of k initial classes is a union of some of t disjoint subclasses 

(clusters) of an initial class): 
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1

, 1,..., ;1 ; ,
jt

j j j

j i j t s

i

C C j k t m C C t s
=

= = ≤ < = ∅ ≠� � �∩∪ , 

where , 1,...,
j

C j k=  is an initial class and each , 1,...,j

iC i m=�  is a new 

subclass). Thus, we would like to modify the formation of a decision rule instead 

of increasing the dimensionality. In terms of neurons and neural networks this 

means increasing the functionality of a single neuron by modification of its 

activation function. 

Recently, this problem was comprehensively considered by the author of this 

book in his paper [61]. Let us present these considerations here adding more de-

tails. 

5.2.2   Periodic Activation Function for Discrete MVN 

Let us consider an MVN input/output mapping described by some k-valued  

function 

( )1 :n kf x ,...,x T E→  

where 
n

k
T E=  or 

n
T O⊆ ). 

It is important to mention that since there exists a one-to-one correspondence 

between the sets { }0,1,..., 1K k= −  and { }0 1, ,..., k

k k k k
E ε ε ε −=  (see p. 49), 

our function f can also be easily re-defined as :
K

f T K→ . These both defini-

tions are equivalent. 

Suppose that the function )( 1 nx ..., ,xf  is not a k-valued threshold function. 

This means that it cannot be learned by a single MVN with the activation function 

(2.50). 

Let us now project the k-valued function )( 1 nx ..., ,xf  into m-valued logic, 

where m kl= , and 2l ≥  similarly to what we have done in Section 5.1 for  

2-valued functions projecting them into m-valued logic where we used 2m l=  . 

To do this, let us define the following new discrete activation function for MVN 

( ) mod  if 2 arg  2 ( 1) ,

0,1,..., 1;  , 2.

l
P z = j k,   j / m z  j+ / m

j m m kl l

π π≤ <

= − = ≥
 (5.157) 

This definition is illustrated in Fig. 5.51. The activation function (5.157)  

divides the complex plane into m equal sectors and d K∀ ∈  there are exactly l 

sectors, in which the activation function (5.157) equals d. 
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This means that the activation function (5.157) establishes mappings from K 

into { }0,1,..., 1, , 1,..., 1M k k k m= − + − , and from kE  into 

{ }2 11, , ,..., m

m m m m
E ε ε ε −= , respectively. 

 

 

Fig. 5.51 Geometrical interpretation of the k-periodic l- multiple discrete-valued MVN  

activation function (5.157) 

Since m kl= , then each element from M and mE  has exactly l prototypes in 

K and kE , respectively. In turn, this means that the neuron’s output determined 

by (5.157) is equal to 

0 1 1

0,1,..., 1,0,1,..., 1,...,0,1,..., 1,

l

lk m

k k k

−

=

− − −��	�
 ��	�
 ��	�

��������	�������


 

(5.158) 

depending on which one of the m sectors (whose ordinal numbers are determined 

by the elements of the set M) the weighted sum is located in. 

Hence, the MVN activation function in this case becomes k-periodic and  

l-multiple.  

In terms of multiple-valued logic, the activation function (5.157) projects a  

k-valued function )( 1 nx ..., ,xf  into an m-valued function ( )1  nf x , ..., x� . Evi-

dently, ( )1 nf x ,...,x�  is a partially defined function in m-valued logic because 

, k mK M E E⊂ ⊂ , and 
n n

k m
E E⊂ . 
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If ( )1,..., :n kf x x T E→  is not a k-valued threshold function, then its do-

main does not allow the edged decomposition (see Section 2.3) 

[ ]0 1 1,  ,  ...,  kT C C C −= . Projecting ( )1,..., nf x x  into kl m= -valued logic 

using the activation function (5.157), we create in this m-valued logic the function 

( )1,..., : ; n n

n m kf x x T E T E T O→ ⊆ ∨ ⊆�  whose domain may have the 

edged decomposition 
0 1 1 1 1,  ,  ...,  , , ,...,

k k k m
T C C C C C C− + −

⎡ ⎤= ⎣ ⎦� � � � � � . Moreover, if 

this edged decomposition exists, it exactly follows from its existence that  

1

, 0,..., 1;1 ; ,
jt

j j j

j i j t s

i

C C j k t m C C t s
=

= = − ≤ < = ∅ ≠� � �∩∪ . 

It is important that both functions ( )1,..., nf x x  and ( )1,..., nf x x�  have the 

same domain T. This means that the initial function ( )1,..., nf x x , not being a k-

valued threshold function, is projected to a partially defined m-valued threshold 

function. 

Let us refer the MVN with the activation function (5.157) as the multi-valued 

neuron with a periodic activation function (MVN-P). 

The following theorem, which generalizes Theorem 5.20 for k-valued in-

put/output mappings, is proven by the last considerations. 

 

Theorem 5.21. If the input/output mapping ( )1,..., :n kf x x T E→  can be im-

plemented using a single MVN-P with the activation function (5.157) and the 

weighting vector ( )0 1, ,..., nW w w w= , then there exist a partially defined m-

valued threshold function ( )1,..., :n mf x x T E→� , which can be implemented 

using a single discrete MVN with the activation function (2.50) (where k=m) and 

the same weighting vector ( )0 1, ,..., nW w w w= . 

It is important to mention that if 1l =  in (5.157) then m=k and the activation 

function (5.157) coincides with the activation function (2.50) accurate within the 

interpretation of the neuron’s output (if the weighted sum is located in the jth sec-

tor, then according to (2.50) the neuron’s output is equal to 
2 /ij k j

k
e E

π ε= ∈ , 

which is the jth of kth roots of unity, while in (5.157) it is equal to j K∈ ), and 

MVN-P becomes regular MVN. It is also important to mention that if k=2 in 

(5.157), then the activation function (5.157) coincides with the UBN activation 

function (5.156), sequence (5.158) becomes an alternating sequence 1, -1, 1, -1, 

…, and MVN-P becomes UBN. Hence, the MVN-P is a neuron, for which both 

MVN and UBN are its particular cases. 
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MVN-P may have a great practical sense if )( 1 nx ..., ,xf , being a non-

threshold function of k-valued logic, could be projected into a partially defined 

threshold function of m-valued logic and therefore it will be possible to learn it us-

ing a single MVN-P with the activation function (5.157). 

When we told that the activation function (5.157) projects a k-valued function 

)( 1 nx ..., ,xf  into m-valued logic, we kept in mind that the weighted sum z, on 

which the activation functions depends, is known. But in turn, the weighted sum is 

a function of the neuron weights for the fixed inputs 1,..., nx x  

0 1 1 ... n nz w w x w x= + + + . 

This means that to establish the projection determined by the activation function 

(5.157), we have to find the corresponding weights. To find them, a learning algo-

rithm should be used. 

5.2.3   Learning Algorithm for MVN-P 

A learning algorithm, which we are going to present here, was recently developed 

by the author of this book and comprehensively described in the paper [61]. On 

the one hand, this learning algorithm is based on the modification of the MVN 

learning algorithm considered above in Section 3.1. On the other hand, this learn-

ing algorithm is based on the same idea as the UBN learning algorithm, which we 

have just presented in Section 5.1. The latter becomes clear when we take into ac-

count that UBN is nothing else than a particular case of MVN-P, just for k=2. 

Let us take the MVN learning algorithm described in Section 3.1 and based on 

either of the error-correction learning rules (3.92) or (3.94)-(3.96) as the initial 

point for out MVN-P learning algorithm. Let us adapt this MVN learning algo-

rithm to MVN-P. Thus, we have to modify the standard MVN learning algorithm 

based on the error-correction rule in such a way that it will work for MVN with 

the periodic activation function (5.157) (for the MVN-P). Let us assume for sim-

plicity, but without loss of generality that the learning rule (3.92) will be used. It  

is important to mention that the learning rules (3.94)-(3.96) can also be used  

because, as we have seen (Theorem 3.17), the convergence of the MVN learning 

algorithm with the error-correction learning rule does not depend on its modifica-

tion ((3.92) or (3.94)-(3.96)). 

Let the MVN input/output mapping is described by the k-valued function 

( )1 nf x ,...,x , which is not a threshold function of k-valued logic. Since this 

function is non-threshold, there is no way to learn it using a single MVN with  

the activation function (2.50). Let us try to learn ( )1 nf x ,...,x  in m-valued logic 

using a single MVN-P with the activation function (5.157).  
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Thus, the expected result of this learning process is the representation of 

( )1 nf x ,...,x  according to (2.51), where the activation function lP  determined 

by (5.157) substitutes for the activation function P determined by (2.50) 

( ) ( )1 0 1 1,..., ...n l n nf x x P w w x w x= + + +  (5.159) 

To organize this learning process, we will use the same learning rule (3.92).  

To determine a desired output in the error-correction learning rule (3.92), we  

may use the same approach, which we used for the UBN learning algorithm in 

Section 5.1.  

So, the learning rule (3.92) requires that a desired neuron output is pre-

determined. Unlike the case of regular MVN with the activation function (2.50), a 

desired output in terms of m-valued logic cannot be determined unambiguously 

for MVN-P with the activation function (3.157) for 2l ≥ . According to (3.157), 

there are exactly l sectors out of m on the complex plane, where this activation 

function is equal to the given desired output d K∈  (see (5.158) and Fig. 5.51). 

Therefore, there are exactly l out of m mth roots of unity that can be used as the 

desired outputs in the learning rule (3.92). Which one of them should we choose?  

Let us make this choice using two self-adaptive learning strategies, which will 

make it possible to determine a desired output during the learning process every 

time, when the neuron’s output is incorrect. 

The first strategy is based on the same idea, which was used for UBN. Since 

MVN-P is a generalization of UBN for 2k > , we suggest using here the same 

learning strategy that was used in the UBN error-correction learning algorithm in 

Section 5.1. There is the following idea behind this approach. The UBN activation 

function (5.156) determines an alterning sequence 1, -1, 1, -1, … with respect to 

sectors on the complex plane. Hence, if the actual output of UBN is not correct, in 

order to make the correction, we can “move” the weighted sum into either of the 

sectors adjacent to the one where the current weighted sum is located. It was 

suggested to always move it to the sector, which is the closest one to the current 

weighted sum (in terms of angular distance).  

Let us employ the same approach here for MVN-P. Let 2l ≥  in (5.157) and 

{ }0,1,..., 1d k∈ −  be the desired output. The activation function (5.157) deter-

mines the k-periodic and l-multiple sequence (5.158) with respect to sectors on the 

complex plane. Suppose that the current MVN-P output is not correct and the 

current weighted sum is located in the sector { }0,1,..., 1s M m∈ = − , where 

m kl= . 

Since 2l ≥  in (5.157), there are exactly l sectors on the complex plane, where 

function (5.157) takes a correct value (see also Fig. 5.51). Two of these l sectors are 

the closest ones to sector s (from right and left sides, respectively). From these two 

sectors, we choose sector q whose border is closer to the current weighted sum z in 

terms of the angular distance. Then the learning rule (3.92) can be  
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applied. Hence, the first learning strategy for the MVN-P with the activation  

function (5.157) is as follows. Let a learning set for the function (input/output 

mapping) ( )1 nf x ,...,x  to be learned contains N learning samples and 

{ }1,...,j N∈
 
be the number of the current learning sample, r be the number of 

the learning iteration, and Learning is a flag, which is “True” if the weights  

adjustment is required and “False” otherwise.  

The iterative learning process consists of the following steps: 

 

Learning Strategy 1. 

1) Set r=1, j=1, and Learning=’False’.  

2) Check (5.159) for the learning sample j. 
3) If (5.159) holds  

then set 1j j= + , otherwise set Learning=’True’ and  

go to Step 5.  

4) If j N≤  then go to Step 2, otherwise go to Step 9. 

5) Let z be the current value of the weighted sum and ( ) ,s

mP z s Mε= ∈ , 

( )P z  is the activation function (2.50), where m is substituted for k. Hence 

the MVN-P actual output is ( ) mod
l

P z s k= . Find 

{ }1 0,1,..., 1q M m∈ = − , which determines the closest sector to the sth 

one, where the output is correct, from the right, and find 2q M∈ , which de-

termines the closest sector to the sth one, where the output is correct, from 

the left (this means that 
1 modq k d= and 

2 modq k d= ). 

6) If ( )( ) ( )( )1 2( 1)2 / 2 /
arg arg mod 2 arg arg mod 2

i q m iq m
z e e z

π ππ π+− ≤ −  

then 1q q=  

else 2q q= . 

7) Set the desired output for the learning rule (3.92) equal 
q

m
ε . 

8) Apply the learning rule (3.92) to adjust the weights. 

9) Set 1j j= +  and return to Step 4. 

10) If Learning=’False’  

then go to Step 10,  

else set r=r+1, j=1, Learning=’False’ and go to Step 2. 

11) End. 

 

Let us now consider the second learning strategy, which is somewhat different. 

The activation function (5.157) divides the complex plane into l domains, and 

each of them consists of k sectors (Fig. 5.51). Since a function f to be learned as a 

partially defined function of m-valued logic ( m lk= ) is in fact a k-valued  
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function, then each of l domains contains those k values, which may be used as the 

desired outputs of the MVN-P. Suppose that the the current MVN-P output is not 

correct, and the current weighted sum is located in the sector 

{ }0,1,..., 1s M m∈ = − . This sector in turn is located in the tth l-domain (out 

of l, [ ]/t s k= ). Since there are l l-domains and each of them contains a poten-

tial correct output, we have l options to choose the desired output. Let us choose it 

in the same tth l-domain, where the current actual output is located. Hence, 

( )1,...,K nq tk f x x= + , where ( )1,...,K nf x x  is a desired value of the 

function to be learned in terms of traditional multiple-valued logic 

( ( ) { }1,..., 0,1,..., 1K nf x x K k∈ = −  and respectively, 

( ) { }2 1

1,..., 1, , ,..., k

n k k k k
f x x E ε ε ε −∈ = ). Once q is determined, this means 

that 
q

m
ε  be the desired output and the learning rule (3.92) can be applied. 

Let again a learning set for the function (input/output mapping) )( 1 nx ..., ,xf  to 

be learned contains N learning samples, { }1,...,j N∈
 
be the number of the cur-

rent learning sample, r be the number of the learning iteration, and Learning is a 

flag, which is “True” if the weights adjustment is required and “False” otherwise. 

The iterative learning process for the second strategy consists of the following 

steps: 

 

Learning Strategy 2. 

1) Set r=1, j=1, and Learning=’False’.  

2) Check (5.159) for the learning sample j. 
3) If (5.159) holds  

then set 1j j= + ,  

else set Learning =’True’ and go to Step 5.  

4) If j N≤   

then go to Step 2,  

else go to Step 8. 

5) Let the actual neuron output is located in the sector 

{ }0,1,..., 1 .s M m∈ = −  Then [ ] { }/ 0,1,..., 1t s k l= ∈ −  is the number 

of that l-domain, where sector s is located. Set ( )1,...,K nq tk f x x= + . 

6) Apply the learning rule (3.92) to adjust the weights. 

7) Set 1j j= +  and return to Step 4. 

8) If Learning=’False’  

then go to Step 9,  

else set r=r+1, j=1, Learning=’False’ and go to Step 2. 

9) End. 

 



5.2   k-Valued MVN with a Periodic Activation Function 191 

 

The learning strategies 1 and 2 determine two variants of the same MVN-P learning 

algorithm, which can be based on either of the learning rules (3.92), (3.94)-(3.98). 

The convergence of this learning algorithm follows from the convergence of the 

regular MVN learning algorithm with the error-correction learning rule  

(see Theorem 3.17). Indeed, if our input/output mapping ( )1 nf x ,...,x  is a non-

threshold function of k-valued logic, but it can be projected to a partially defined 

threshold function ( )1 nf x ,...,x�  of m-valued logic (where , 2m kl l= ≥ ), then 

the MVN learning algorithm has to converge for the last function according to 

Theorem 3.17. The MVN-P learning algorithm based on the either of learning rules 

(3.92), (3.94)-(3.96) differs from the MVN learning algorithm only at one point. 

While for the regular MVN learning a desired output is pre-determined, for the 

MVN-P learning a desired output in terms of m-valued logic should be determined 

during the learning process. If the function ( )1 nf x ,...,x�  obtained using either of 

Learning Strategies 1 or 2 is a partially defined m-valued threshold function, its 

learning has to converge to a weighting vector of this function (a weighting vector 

of this function can always be obtained after a finite number of learning iterations). 

Thus, in other words, if a non-threshold k-valued function ( )1 nf x ,...,x  can 

be projected to and associated with a partially defined m-valued threshold function 

( )1 nf x ,...,x� , then its learning by a single MVN-P is reduced to the learning of 

the function ( )1 nf x ,...,x�  by a single MVN. 

We have to mention that we do not consider here any general mechanism of 

such a projection of a k-valued function into m-valued logic that the resulting m-

valued function will be threshold and therefore it will be possible to learn it by a 

single neuron. It is a separate problem, which is still open and can be a good and 

interesting subject for the further work. 

It is interesting that in terms of learning a k-valued function, the learning algo-

rithm presented here is supervised. However, in terms of learning an m-valued 

function, this learning algorithm is unsupervised. We do not have a prior knowl-

edge about those m-valued output values, which will be assigned to the input sam-

ples. A process of this assignment is self-adaptive, and this adaptation is reached 

by the learning procedure (Strategies 1 and 2), if a corresponding function is a par-

tially defined m-valued threshold function. 

It should be mentioned that for k=2 in (5.157) the MVN-P learning algorithm 

(Strategy 1) coincides with the UBN learning algorithm based on the error-

correction rule (see Section 5.1). On the other hand, for k>2 and l=1 in (5.157)  

the MVN-P learning algorithm (both Strategy 1 and Strategy 2) coincides with  

the MVN learning algorithm based on the error-correction rule (see Sections 3.1 

and 3.3).  

This means that a concept of the MVN-P generalizes and includes the corre-

sponding MVN and UBN concepts. 



192 5   Multi-Valued Neuron with a Periodic Activation Function

 

5.3   Simulation Results for k-Valued MVN with a Periodic 

Activation Function 

As it was shown above, MVN-P can learn input/output mappings that are non-

linearly separable in the real domain. We would like to consider here a number of 

non-linearly separable benchmark classification problems and a non-linearly sepa-

rable mod k  addition problem, which can be learned using a single MVN-P. 

Moreover, we would like to show that a single MVN-P not only formally learns 

non-linearly separable problems, but it can really be successfully used for solving 

non-linearly separable classification problems, showing very good results that are 

better or comparable with the solutions obtained using neural networks or support 

vector machines. However, it is very important to mention that MVN-P is just a 

single neuron, and it employs fewer parameters than any network or SVM. 

So, let us consider some examples. Most of them were presented by the author 

of this book in his recently published paper [61], some of them will be presented 

here for the first time, but even those published earlier will be presented here in 

more detail. In all simulations, we used the MVN-P software simulator written  

in Borland Delphi 5.0 environment, running on a PC with the Intel® Core™2  

Duo CPU. 

5.3.1   Iris 

This famous benchmark database was downloaded from the UC Irvine Machine 

Learning Repository [89]. The data set contains 3 classes of 50 instances each, 

where each class refers to a type of iris plant. Four real-valued (continuous)  

features are used to describe the data instances. Thus, we have here 4-dimensional 

3-class classification problem. It is known [89] that the first class is linearly sepa-

rable from the other two but the latter are not linearly separable from each other. 

Thus, a regular single MVN with the discrete activation function (2.50), as well as 

any other single artificial neuron cannot learn this problem completely. 

However, a single MVN-P with the activation function (5.157) 

( 3, 3, 9l k m= = = ) learns the Iris problem completely with no errors. To trans-

form the input features into the numbers located on the unit circle, we used the  

linear transformation (2.53) with 2 / 3α π=  (this choice of α is based on the con-

sideration that there are exactly 3 classes in this problem). It is necessary to say that 

the problem is really complicated and it is not so easy to learn it. For example, the 

learning algorithm based on the Learning Strategy 1 does not converge even after 

55,000,000 iterations independently from the learning rule, which is applied, al-

though the error decreases very quickly and after 50-100 iterations there are stably 

not more than 1-7 samples, which still require the weights adjustment. However, 

the learning algorithm based on the Learning Strategy 2 and the learning rule (3.96) 

converges with the zero error. Seven independent runs of the learning algorithm 
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starting from the different random weights
1
 converged after 9,379,027 – 

43,878,728 iterations. Every time the error decreases very quickly and after 50-100 

iterations there are stably 1 or just a few more samples, which still require the 

weights adjustment, but their final adjustment takes time (5-12 hours). Neverthe-

less, this result is very interesting, because to our best knowledge this is the first 

time when the “Iris” problem was learned using just a single neuron. 

The results of the one of the learning sessions are shown in Fig. 5.52. In  

Fig. 5.52a, the normalized weighted sums are plotted for all the 150 samples from 

the data set. It is interesting that after the learning process converges, for the Class 

“0” (known and referred to as “Iris Setosa” [89]), the weighted sums for all in-

stances appear in the same single sector on the complex plane (sector 6, see  

Fig. 5.52a). By the way, according to the activation function (5.157), the MVN-P 

output for all the samples from this class is equal to 6 mod3 0= . Thus, Class “0” 

is a single cluster class.  

Each of two other classes contains two different clusters (this is why they can-

not be linearly separated from each other in the real domain!). For the second class 

(“Iris Versicolour”), 45 out of 50 learning samples appear in the sector 7, but other 

5 learning samples appear in the sector 1 located in the different “l-domain” (clus-

ter) (see Fig. 5.52a). According to the activation function (5.157), the MVN-P 

output for all the samples from this class is equal to 1 ( 7mod3 1=  and 

1mod3 1= ). For the third class (“Iris Virginica”), the weighted sums for all the 

instances except one appear in the same single sector on the complex plane (sector 

2), but for the one instance (every time the same) the weighted sum appears in the 

different sector (sector 8) belonging to the different “l-domain” (cluster). Accord-

ing to the activation function (5.157), the MVN-P output for all the samples from 

this class is equal to 2 ( 2mod3 2=  and 8mod3 2= ). For the reader’s conven-

ience, a fragment showing where exactly five “special” elements from the Class 1 

and one “special” element from the Class 2 are located is enlarged in Fig. 5.52b. 

Hence, the second and the third classes, which initially are known as non-linearly 

separable (in the real domain), become linearly separable in the complex domain. 

This means that while there is no 3-edged decomposition [ ]0 1 2, ,T C C C=  

(where 0 1 2, ,C C C  are our three classes) for the Iris problem, there exists the 9-

edged decomposition [ ]0 1 8, ,...,T A A A= . Subsets 0 3 4 5, , ,A A A A  are empty. 

Other subsets of the edged decomposition contain all the elements of the Iris data-

set as follows (see Fig. 5.52a) 

0 6 1 1 7 2 2 8; ;C A C A A C A A= = =∪ ∪ . 

                                                           
1 Here and further the initial weights (both real and imaginary parts) are random numbers 

from the interval [0, 1] generated using a standard generator. 
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(a) The results of learning of the “Iris” problem. + - Class 0, x – Class 1, * - Class 2 

While Class 0 contains a single cluster (sector 6), Class 1 and Class 2 contain two  

clusters each (Class 1 - sectors 1 and 7, Class 2 – sectors 2 and 8) 

 

(b) 5 out of 50 representatives of Class 1 belong to the cluster located in the sector1, 

and a single representative of Class 2 belong to the cluster located in the sector 8 

 
Fig. 5.52 Learning of the “Iris” problem. Three “Iris” classes are linearly separated in  

9-valued logic 
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It is interesting that this effect is achieved by the self adaptation of the MVN-P 

learning algorithm. 

Another important experiment with the “Iris” data set was checking the MVN-

P’s ability to solve a classification problem. We used 5-fold cross validation. The 

data set was every time randomly separated into a learning set containing 75 sam-

ples (25 from each class) and a testing set also containing 75 samples. The best  

results are obtained for the activation function (5.157) with 2, 3, 6l k m= = = . 

The Learning Strategy 1 and the learning rule (3.92) were used. The learning algo-

rithm requires for its convergence with the zero error 10-288 iterations (which 

takes just a few seconds). The classification results are absolutely stable: 73 out of 

75 instances are classified correctly (the classification rate is 97.33%). All  

instances from the first class are always classified correctly and there is one classi-

fication error in each of other two classes. These results practically coincide with 

the best known results for this benchmark data set [90]: (97.33 for the one-against-

one SVM and 97.62 for the dendogram-based SVM). However, it is important to 

mention that the one-against-one SVM for 3 classes contains 3 binary decision 

SVMs, the dendogram-based SVM for 3 classes contains 5 binary decision SVMs, 

while we solved the Iris problem using just a single MVN-P. 

5.3.2   Two Spirals 

The two spirals problem is a well known non-linearly separable classification 

problem, where the two spirals points (see Fig. 5.53) must be classified as belong-

ing to the 1
st
 or to the 

2
nd

 spiral. Thus, this 

is 2-dimensional, 2-

class classification 

problem. The stan-

dard two spirals data 

set usually consists of 

194 points (97 belong 

to the 1
st
 spiral and 

other 97 points be-

long to the 2
nd

 spiral). 

The following results 

are known as the best 

for this problem so 

far. The two spirals 

problem can be 

learned completely 

with no errors by the 

MLMVN [62] containing 30 hidden neurons in a single hidden layer and a single 

output neuron. This learning process requires about 800,000 iterations. The best 

known result for the standard backpropagation network (MLF) with the same  

 

Fig. 5.53 Two spirals 
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topology is 14% errors after 150,000 learning iterations [91]. For the cross-

validation testing, where each second point of each spiral goes to the learning set 

and each other second point goes to the testing set, one of the best known results is 

reported in [92]. The classification accuracy up to 94.2% is shown there by 

BDKSVM, which employs along with a traditional SVM the merits of the kNN 

classifier. A fuzzy kernel perceptron shows the accuracy up to 74.5%. [93]. The 

MLMVN shows the accuracy of about 70% [62]. 

A single MVN-P with the activation function (5.157) ( )2, 2, 4l k m= = =  

significantly outperforms all mentioned techniques. Just 2-3 learning iterations are 

required to learn the two spirals problem completely with no errors using the 

Learning Strategy 1 and learning rule (3.92). Just 3-6 iterations are required to 

achieve the same result using the Learning Strategy 1 and learning rule (3.94). 

These results are based on the ten independent runs of the learning algorithm for 

each of the learning rules. We also used ten independent runs to check the classifi-

cation ability of a single MVN-P with the activation function (5.157) 

( )2, 2, 4l k m= = =  using the cross-validation. The two spirals data were di-

vided into the learning set (98 samples) and testing set (96 samples). We reached 

the absolute success in this testing: 100% classification accuracy is achieved in all 

our experiments. Just 2-3 iterations were needed to learn the learning set using the 

Learning Strategy 1 and the learning rule (3.92), and 3-5 iterations were needed to 

do the same using the Learning Strategy 1 and the learning rule (3.94). 

5.3.3   Breast Cancer Wisconsin (Diagnostic) 

This famous benchmark database was downloaded from the UC Irvine Machine 

Learning Repository [89]. The data set contains 2 classes, which are represented 

by 569 instances (357 benign and 212 malignant) that are described by 30 real-

valued features. Thus, this is 30-dimensional, 2-class classification problem. To 

transform the input features into the numbers located on the unit circle, we used 

the linear transformation (2.53) with 6.0α = . The whole data set may be easily 

learned by a single MVN-P with the activation function (5.157) 

( )2, 2, 4l k m= = = . Ten independent runs give from 280 to 370 iterations for 

the Learning Strategy 1 – learning rule (3.92) and from 380 to 423 iterations for 

the Learning Strategy 2 – learning rule (3.92) (there are the best results among dif-

ferent combinations of learning strategies and rules).  

To check the classification ability of a single MVN-P, we used 10-fold cross-

validation as it is recommended for this data set, for example, in [89] and [94]. 

The entire data set was randomly divided into the 10 subsets, 9 of them contained 

57 samples and the last one contained 56 samples. The learning set every time was 

formed from 9 of 10 subsets and the remaining subset was used as the testing set. 

We used the same parameters in the activation function (5.157) 

( )2, 2, 4l k m= = = . The best average classification accuracy (97.68%) was 
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achieved with the Learning Strategy 2 and learning rule (3.92). The learning proc-

ess required from 74 to 258 iterations. The classification accuracy is comparable 

with the results reported for SVM in [94] (98.56% for the regular SVM and 

99.29% for the SVM with an additional “majority decision” tool) and a bit better 

than 97.5% reported as the estimated accuracy for the different classification 

methods in [89]. However, a single MVN-P use fewer parameters than, for exam-

ple, SVM (the average amount of support vectors for different kernels used in [94] 

is 54.6, whereas the MVN-P uses 31 weights). 

5.3.4   Sonar 

This famous benchmark database was also downloaded from the UC Irvine Ma-

chine Learning Repository [89]. It contains 208 samples that are described by 60 

real-valued features. Thus, this is 30-dimensional, 2-class classification problem, 

which is non-linearly separable. To transform the input features into the numbers 

located on the unit circle, we used (2.53) with 6.0α = . There are two classes 

(“mine” and “rock”) to which these samples belong. The whole data set may be 

easily learned by a single MVN-P with the activation function 

(5.157) ( )2, 2, 4l k m= = = . Ten independent runs give from 75 to 156 itera-

tions for the Learning Strategy 1 – learning rule (3.92) and from 59 to 78 iterations 

for the Learning Strategy 2 – learning rule (3.92) (there are the best results among 

different combinations of learning strategies and rules). 

To check the classification ability of a single MVN-P, we divided the data set 

into a learning set and a testing set (104 samples in each), as it is recommended by 

the developers of this data set [89]. The same parameters were used in the activa-

tion function (5.157) ( )2, 2, 4l k m= = = . The best classification results were 

achieved using the Learning Strategy 2 - learning rule (3.92). The learning process 

required from 24 to 31 iterations. The average classification accuracy for 10 inde-

pendent runs is 86.63% and the best achieved accuracy is 91.3%. This is compara-

ble to the best known results reported in [93] – 94% (Fuzzy Kernel Perceptron), 

89.5% (SVM), and in [62] - 88%-93% (MLMVN). It is important to mention that 

all mentioned competitive techniques employ more parameters than a single 

MVN-P. It is also necessary to take into account that a Fuzzy Kernel Perceptron is 

much more sophisticated tool than a single neuron. 

5.3.5   Parity N Problem 

Parity n problem is a mod 2 addition of n variables. Its particular case for n=2 is 

XOR, perhaps the most popular non-linearly separable problem considered in the 

literature. We have already convinced that the XOR problem can easily be solved 

using a single UBN (see Table 1.7, p. 42). We have also seen (see Table 5.15, p. 

176) that the Parity 3 problem can be solved using a single UBN. As we have  
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mentioned, it was experimentally shown by the author of this book in [88] that the 

Parity n problem is easily solvable using a single UBN up to n=14 (this does not 

mean that for larger n it is not solvable, simply experimental testing was not per-

formed for n>14). Let us summarize the results of this experimental testing here. 

Actually, as we have seen, UBN is nothing else than MVN-P for k=2. So, we 

used MVN-P with the activation function (5.157) and the learning algorithm with 

the Learning Strategy 1, which we have just described. The learning rule (3.92) 

was used in this learning algorithm. The results are summarized in Table 5.17. 

Everywhere we show the results for such minimal l in (5.157), for which the learn-

ing process converged after not more than 200,000 iterations. 

 
Table 5.17 The results of solving Parity n problem for 3 14n≤ ≤  using a single MVN-P 

Number of variables, 

n in the Parity n  

problem 
l in (157) 

Number of sectors 

(m in (157) ) 

Number of learning 

iterations (average of 

5 independent runs) 

3 3 6 8 

4 4 8 23 

5 5 10 37 

6 6 12 52 

7 7 14 55 

8 8 16 24312 

9 11 22 57 

10 14 28 428 

11 15 30 1383 

12 18 36 1525 

13 19 38 16975 

14 22 44 3098 

5.3.6   Mod k Addition of n k-Valued Variables 

This problem may be considered as a generalization of the famous and popular 

Parity n problem for the k-valued case. In fact, Parity n problem is a mod 2  

addition of n variables. mod k addition of n variables is a non-threshold k-valued 

function for any k and any n and therefore it cannot be learned by a single MVN. 

To our best knowledge there is no evidence that this function can be learned by 

any other single neuron. However, as we will see now, it is not a problem to learn 

this problem using a single MVN-P with the activation function (5.157).  

We do not have a universal solution of the problem of mod k  addition of n 

variables in terms of the relationship between k and n on the one side and l in 

(5.157) on the other side. However, we can show here that this multiple-valued 

problem is really solvable at least for those k and n, for which we have performed 

experimental testing [61, 95].  

The experimental results are summarized in Table 5.18. Since the Learning 

Strategy 1 showed better performance for this problem (fewer learning iterations 

and time), all results are given for this strategy only.  
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Our goal was to find a minimal l in (5.157), for which the learning process con-

verges. For each combination of k and n on the one hand, and for each learning 

rule, on the other hand, such a minimal value of l is presented. The average num-

ber of iterations for seven independent runs of the learning process and its stan-

dard deviation are also presented for each combination of k and n for each learn-

ing rule. We considered the learning process non-converging if there was no 

convergence after 200,000 iterations. The learning error for all learning rules 

drops very quickly, but fine adjustment of the weights takes more time. For some 

k and n and for some of learning rules we used a staggered learning technique. 

This means that unlike a regular learning technique, where all learning samples 

participate in the learning process from the beginning, the staggered method ex-

pands a learning set step by step. For example, let A be a learning set and its car-

dinality is N. The set A can be represented as a union of non-overlapping subsets 

1 2, ,..., sA A A . Then the learning process starts from the subset 1A . Once it con-

verged, it has to continue for the extended learning set 1 2A A∪  starting from the 

weights that were obtained for 1A . Once it converges, the learning set has to be 

extended to 1 2 3A A A∪ ∪ , adding one more subset after the previous learning 

session converged. Finally, we obtain the learning set 

1 2 1... s sA A A A A− =∪ ∪ ∪ ∪ . This approach is efficient when the function to 

be learned has a number of high jumps. 

If there are exactly s high jumps, then s sequential learning sessions with s ex-

panding learning sets 1 1 2 1, ,..., ... sA A A A A A=∪ ∪ ∪  lead to faster conver-

gence of the learning algorithm. For example, the function mod k addition of n 

variables has exactly 
n

k  learning samples. For any k and n, this function has mul-

tiple high jumps from k-1 to 0. These jumps can be used to determine partitioning 

of the corresponding learning set into s non-overlapping subsets 1 2, ,..., sA A A . 

First, the learning process has to be run for 1A . Once it converges, it has to be run 

for 1 2A A∪ . This set contains one high jump, but since the starting weighting 

vector, which already works for 1A , better approaches the resulting weighting 

vector, the learning process for 1 2A A∪  converges better starting from this 

weighting vector than starting from a random one. Then this process has to be 

continued up to the learning set 1 ... sA A A=∪ ∪ . We used this staggered learn-

ing technique, for example, for 5, 2k n= = , for 6, 2k n= =  and some other k 

and n (see the footnote in Table 5.18.). While neither of learning rules (3.92), 

(3.94)-(3.96) leads to the convergence of the standard learning algorithm after 

200,000 iterations for these specific k and n, the staggered technique leads to very 

quick convergence of the learning process for all four learning rules. 
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Thus, for all the experiments, we show in Table 5.18 the smallest l in (5.157), 

for which the convergence was reached. 

 
Table 5.18 Simulation Results for mod k addition of n k-valued variables 

  

k n 

Average number of learning iterations (Iter.) for 7 independent runs, its standard deviation 

(SD), and minimal value of l in (5.157), for which the learning process converged.  

Learning rule (3.92) Learning rule (3.94) Learning rule (3.95) Learning rule (3.96)

Iter. SD l Iter. SD l Iter. SD l Iter. SD l 

3 2 14 5 2 18048 44957 2 54 14 2 1005 1384 2 

3 3 2466 2268 10 3773 1721 10 2568 1988 10 2862 676 12 

3 4 4296 2921 11 391404 158688 7 2002 1272 14 1728 767 11 

3 5 78596 87158 18 344440 308044 22 236242 188276 18 23372 8255 24 

3 6 237202 172100 36 50292 91260 39 291950 346862 27 41083 23117 30 

3 7 518313 395671 41 1556379 798841 41 489366 229706 22 390786 260953 25 

4 2 2693 3385 3 135 163 3 9411 23 3 66011 567 3 

4 3 2571 1772 7 12175 5407 7 411 190 7 602 436 7 

4 4 50151 35314 10 140850 88118 10 47818 53349 13 3797 2756 13 

4 5 73469111 231353 13 35591011 98208 13 17464911 148655 16 20962911 189481 15 

4 6 13113911 185316 42 17126911 104685 15 5980711 57060 34 30667211 312548 30 

4 7 108050 30309 39 110809 37286 38 90734 35474 37 95055 39581 38 

5 2 9611 22 4 8111 16 4 8211 23 4 19711 82 5 

5 3 120211 193 9 141911 264 9 146011 308 9 147011 191 9 

5 4 460411 393 13 489311 211 13 560611 374 13 618211 616 13 

5 5 2281211 3977 22 1727411 1682 18 1740211 3415 18 2147011 1959 18 

5 6 10567211 20071 26 19644111 5635 22 6660911 9888 33 269311 310 24 

5 7 630490 192494 52 557635 305579 49 16192 24618 35 5280 2433 31 

6 2 27211 110 4 12011 33 4 9511 35 4 29511 65 4 

6 3 109733 2400 14 4131 4039 10 861 150 11 834 221 10 

6 4 118128 15596 14 48002 11652 14 961511 1159 16 1095111 1265 16 

6 5 71241 74463 21 15986 14835 21 128550 105115 20 42122 26631 20 

6 6 9225711 4773 33 19454411 203936 26 13040511 25104 27 12281411 9447 27 

6 7 24723211 64747 31 26256411 13614 31 26065411 32977 37 25729811 2291 37 

1 - staggered learning technique used. This means that a learning set was extended step by step. Initially 

first k samples were learned, then starting from the obtained weights 2k samples were learned, then 3k, etc. 

up to kn samples in a whole learning set 
 

 

 

As we have discovered above (Theorem 5.21), if some k-valued input/output 

mapping is a non-threshold k-valued function, but it can be learned using a single 

MVN-P, this means that this non-threshold k-valued function is projected to a par-

tially defined kl m= -valued function. In practice, this partially-defined m-valued 

threshold function, which is not known prior to the learning session, is generated 

by the learning process.  



5.3   Simulation Results for k-Valued MVN with a Periodic Activation Function 201 

 

As it follows from our experiments mod k addition of n variables functions for 

any 2k ≥  and any n are projected into partially defined kl m= -valued threshold 

functions, which are so-called minimal monotonic functions. 

This means the following. Let ( )1 ,...,i i

i n
X x x=  and ( )1 ,...,j j

j n
X x x= . Vec-

tor 
iX  precedes to vector 

j
X  (

i j
X X≺ ) if ,  1,...,i j

s s
x x s n≤ ∀ = . Function 

( )1,..., nf x x  is called monotonic if for any two sets of variables 
iX  and 

j
X , 

such that 
i jX X≺ , the following holds 

( ) ( ) ( ) ( )1 1,..., ,...,i i j j

i n j n
f X f x x f X f x x= ≤ = . 

An m-valued function ( )1,..., nf x x  is called minimal monotonic [88], if it is 

monotonic and for any two closest comparable sets of variables ( )1 ,...,i i

i n
X x x=  

and ( )1 ,...,j j

j n
X x x= , if 

i j
X X≺ , then ( ) ( )1 1,..., ,..., 1j j i i

n n
f x x f x x− ≤ , 

that is ( )1 ,...,j j

n
f x x  is either equal to ( )1 ,...,i i

n
f x x  or is greater than 

( )1 ,...,i i

n
f x x  by exactly 1. 

A very interesting experimental fact is that all partially defined m-valued func-

tions, to which mod k additions of n variables were projected by the learning 

process are minimal monotonic m-valued functions. Let us consider several 

examples for different k and n (see Table 5.19 - Table 5.24).  

 
Table 5.19 XOR – mod 2 addition of 2 variables, l=2, m=4 in (5.157) 

1x  2x  
( )

( )
1 2

1 2

,

mod 2

f x x

x x

=

= +

 

{ }0,1, 2,3j M∈ =
 

2x2=4-valued function 

( )1 2,f x x�  

0 0 0 0 

0 1 1 1 

1 0 1 1 

1 1 0 2 

 
In all these tables, the first columns contain values of the corresponding inputs 

(input variables) 1 nx ,...,x . The second to the last column contains values of the k-

valued function ( )1 nf x ,...,x , which we learn, and the last column contains 

values of that partially defined kl=m-valued function ( )1 nf x ,...,x� , to which the 
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initial function was projected by the learning algorithm. For simplicity, we show 

the values of the input variables and functions f  and f�  in the regular multiple-

valued alphabets { }0,1,..., 1K k= −  and { }0,1,..., ,..., 1M k m= − . The 

reader may easily convert these values to such that belong to kE  and mE , 

respectively (if j K∈ , then 
2 /i j k

k
e E

π ∈ ). 

 
Table 5.20 Parity 3 – mod 2 addition of 3 variables, l=3, m=6 in (5.157) 

1x  2x  3x  
( )

( )
1 2 3

1 2 3

, ,

mod 2

f x x x

x x x

=

= + +

 

{ }0,1,...,5j M∈ =
 

2x3=6-valued function 

( )1 2 3, ,f x x x�  

0 0 0 0 0 

0 0 1 1 1 

0 1 0 1 1 

0 1 1 0 2 

1 0 0 1 1 

1 0 1 0 2 

1 1 0 0 2 

1 1 1 1 3 

 
Table 5.21 Parity 4 – mod 2 addition of 4 variables, l=3, m=6 in (5.157) 

 

1x  2x  3x  4x
 

( )

( )
1 2 3 4

1 2 3 4

, , ,

mod 2

f x x x x

x x x x

=

= + + +

 

{ }0,1,...,7j M∈ =
 

2x4=8-valued function 

( )1 2 3 4, , ,f x x x x�  

0 0 0 0 0 0 

0 0 0 1 1 1 

0 0 1 0 1 1 

0 0 1 1 0 2 

0 1 0 0 1 1 

0 1 0 1 0 2 

0 1 1 0 0 2 

0 1 1 1 1 3 

1 0 0 0 1 1 

1 0 0 1 0 2 

1 0 1 0 0 2 

1 0 1 1 1 3 

1 1 0 0 0 2 

1 1 0 1 1 3 

1 1 1 0 1 3 

1 1 1 1 0 4 
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Table 5.22 mod 3 addition of 3 variables, l=3, m=9 in (5.157) 

 

 

1x  2x  3x  
( )

( )
1 2 3

1 2 3

, ,

mod3

f x x x

x x x

=

= + +
 

{ }0,1,...,9j M∈ =
 

3x3=9-valued function 

( )1 2 3, ,f x x x�  

0 0 0 0 21 

0 0 1 1 22 

0 0 2 2 23 

0 1 0 1 22 

0 1 1 2 23 

0 1 2 0 24 

0 2 0 2 23 

0 2 1 0 24 

0 2 2 1 25 

1 0 0 1 22 

1 0 1 2 23 

1 0 2 0 24 

1 1 0 2 23 

1 1 1 0 24 

1 1 2 1 25 

1 2 0 0 24 

1 2 1 1 25 

1 2 2 2 26 

2 0 0 2 23 

2 0 1 0 24 

2 0 2 1 25 

2 1 0 0 24 

2 1 1 1 25 

2 1 2 2 26 

2 2 0 1 25 

2 2 1 2 26 

2 2 2 0 27 

 
As it is clearly seen from all three examples, the corresponding m-valued 

functions are minimal monotonic functions. All these functions can be learned 

using a single MVN with the activation function (2.50) because they are partially 

defined kl=m-valued threshold functions. 
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Table 5.23 mod 5 addition of 2 variables, l=4, m=20 in (5.157)

 

1x  2x  
( )

( )
1 2

1 2

,

mod5

f x x

x x

=

= +
 

{ }0,1,...,9j M∈ =
 

5x4=20-valued function 

( )1 2,f x x�  

0 0 0 0 

0 1 1 1 

0 2 2 2 

0 3 3 3 

0 4 4 4 

1 0 1 1 

1 1 2 2 

1 2 3 3 

1 3 4 4 

1 4 0 5 

2 0 2 2 

2 1 3 3 

2 2 4 4 

2 3 0 5 

2 4 1 6 

3 0 3 3 

3 1 4 4 

3 2 0 5 

3 3 1 6 

3 4 2 7 

4 0 4 4 

4 1 0 5 

4 2 1 6 

4 3 2 7 

4 4 3 8 
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Table 5.24 mod 6 addition of 2 variables, l=4, m=24 in (5.157)
 

1x  2x  
( )

( )
1 2

1 2

,

mod 6

f x x

x x

=

= +
 

{ }0,1,..., 23j M∈ =
 

6x4=24-valued function 

( )1 2,f x x�  

0 0 0 6 

0 1 1 7 

0 2 2 8 

0 3 3 9 

0 4 4 10 

0 5 5 11 

1 0 1 7 

1 1 2 8 

1 2 3 9 

1 3 4 10 

1 4 5 11 

1 5 0 12 

2 0 2 8 

2 1 3 9 

2 2 4 10 

2 3 5 11 

2 4 0 12 

2 5 1 13 

3 0 3 9 

3 1 4 10 

3 2 5 11 

3 3 0 12 

3 4 1 13 

3 5 2 14 

4 0 4 10 

4 1 5 11 

4 2 0 12 

4 3 1 13 

4 4 2 14 

4 5 3 15 

5 0 5 11 

5 1 0 12 

5 2 1 13 

5 3 2 14 

5 4 3 15 

5 5 4 16 

 
It should be mentioned that neither of the learning rules (3.92), (3.94)-(3.96) 

can be distinguished as the “best”. Each of them can be good for solving different 

problems. It is also not possible to distinguish the best among Learning Strategies 

1 and 2. For example, the “Iris” problem can be learned with no errors only using 

the Strategy 2, while for some other problems Strategy 1 gives better results.  
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A deeper study of advantages and disadvantages of the developed learning strate-

gies and rules will be an interesting direction for the further research. 

5.4   Concluding Remarks to Chapter 5 

In this Chapter, we have considered the multi-valued neuron with a periodic acti-

vation function (MVN-P). This is a discrete-valued neuron (whose inputs can be 

discrete or continuous), which can learn input/output mappings that are non-

linearly separable in the real domain, but become linearly separable in the  

complex domain. 

First, we have considered the universal binary neuron (UBN). This neuron with 

a binary output was a prototype of MVN-P. We have shown that UBN with its pe-

riodic activation function projects a binary input/output mapping, which is non-

linearly separable, into an 2l m= -valued partially defined threshold function, 

which can be learned using a single neuron. We have considered the UBN learn-

ing algorithm, which is based on the MVN learning algorithm employing also 

self-adaptivity. We have shown that a single UBN may easily learn such problems 

as XOR and Parity. 

Then we have introduced MVN-P. The MVN-P concept generalizes the two-

valued UBN concept for the k-valued case. The MVN-P has a periodic activation 

function, which projects k-valued logic into kl m= -valued logic. Thus, this acti-

vation function is k-periodic and l-repetitive. The most wonderful property of 

MVN-P is its ability to learn k-valued input/output mappings, which are  

non-linearly separable in k-valued logic, but become linearly separable in  

kl m= -valued logic. This means that MVN-P may project a non-linearly separa-

ble k-valued function into a partially defined linearly separable m-valued function. 

We have considered the MVN-P learning algorithm with the two learning 

strategies. This learning algorithm is semi-supervised and semi-self-adaptive. 

While a desired neuron output is known in advance, a periodicity of its activation 

function allows its self-adaptation to the input/output mapping. We have shown 

that the MVN-P learning can be based on the same error-correction learning rules 

that the regular MVN learning. The most important application of MVN-P is its 

ability to solve multi-class and multi-cluster classification problems, which are 

non-linearly separable in the real domain, without any extension of the initial 

space where a problem is defined. 

MVN-P can also be used as the output neuron in MLMVN. This may help to 

solve highly nonlinear classification problems. 
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Chapter 6  

Applications of MVN and MLMVN  

"The scientist is not a person who gives the right answers, he is one who asks the 

right questions." 

 

Claude Lévi-Strauss 

 

 

In this Chapter, we will consider some applications of MVN and MLMVN. In 

Chapters 2-5 we have introduced MVN, we have deeply considered all aspects of 

its learning, we have also introduced MLMVN and its derivative-free backpropa-

gation learning algorithm; finally we have introduced MVN-P, the multi-valued 

neuron with a periodic activation function and its learning algorithm. We have il-

lustrated all fundamental considerations by a number of examples. Mostly we 

have considered so far how MVN, MVN-P, and MLMVN solve some popular 

benchmark problems. It is a time now to consider some other applications includ-

ing some real-world applications. In Section 6.1, we will consider how MLMVN 

can be used for solving a problem of blur and its parameters identification, which 

is of crucial importance in image deblurring. In Section 6.2, we will show how 

MLMVN can be used for solving financial time series prediction problems. In 

Section 6.3, we will consider how MVN can successfully be used in associative 

memories. Some other MVN applications will be observed and some concluding 

remarks will be given in Section 6.4. 

6.1   Identification of Blur and Its Parameters Using MLMVN 

Identification of a blur mathematical model and its parameters is very important 

for restoration of blurred images. We would like to present here how MLMVN 

can be successfully used for solving this important problem. The results, which 

will be presented here, were obtained by the author of this book together with 

Dmitriy Paliy, Jacek Zurada, and Jaakko Astola and were published in their paper 

[77]. Thus, this Section will be mostly based on the paper [77], with some addi-

tional details and illustrations. Since there are different blur models, which may 

have different parameters, their identification is a multi-class classification prob-

lem, and it is very interesting to compare how this problem is solved by MLMVN 

and other machine learning techniques. 
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6.1.1   Importance of Blur and Its Parameters Identification 

Let us first clarify why it is so important for image deblurring to be able to iden-

tify a mathematical model of blur and its parameters. 

Usually blur is treated as the low-pass distortions introduced into an image.  

It can be caused by many different reasons: by the relative motion between the 

camera and the original scene, by the optical system which is out of focus, by at-

mospheric turbulence (optical satellite imaging), aberrations in the optical system, 

etc. [96]. Any type of blur, which is spatially invariant, can be expressed by the 

convolution kernel in the integral equation [96]. Hence, deblurring (restoration) of 

a blurred image is an ill-posed inverse problem, and regularization is commonly 

used when solving this problem [97]. 

Mathematically, a variety of image capturing principles can be modelled by the 

Fredholm integral of the first kind in 2R  space ( ) ( ) ( )
X

z t v t l q l dl= ,∫  where 

2
t l X, ∈ ⊂ R , v  is a point-spread function (PSF) of a system, q  is an image  

intensity function, and ( )z t  is an observed image [98]. PSF determines what hap-

pens with a point after an image is captured by an optical system. In other words, 

PSF describes how the point source of light is spread over the image plane. It is 

one of the main characteristics of the optical system. The more spread is a point, 

the more blurred is an image. PSF determines a specific type of this spreading, and 

determines a type of blur, respectively.  

A natural simplification is that the PSF v  is shift-invariant which leads to a 

convolution operation in the observation model. We assume that the convolution 

is discrete and noise is present. Hence, the observed image z  is given in the fol-

lowing form: 

( ) ( )( ) ( )z t v q t tε= ∗ + , 
(6.160) 

 

where " "∗  denotes the convolution, t  is defined on the regular x y
L L×  lattice, 

( ){ }, ; 0 1 1; 0 1 1
x y

t T x y x L y L∈ = = , ,..., − = , , ..., − , and ( )tε  is the noise. 

It is assumed that the noise is white Gaussian with zero-mean and variance 
2σ ,  

2( ) ~ (0 ).t Nε σ,  In the 2D frequency domain the model (6.160) takes the form: 

 

( ) ( ) ( ) ( )Z V Qω ω ω ε ω= + ,  (6.161) 

 

where ( ) { ( )}Z F z tω =  is a representation of a signal z  in a Fourier domain 

and {}F ⋅  is a discrete Fourier transform, ( ) { ( )},V F v tω =  

( ) { ( )},Q F q tω =  ( ) { ( )}F tε ω ε= , and Wω ∈ ,  
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{( )  2 ,
x y i i i

W k Lω ω ω π= , ; = /  0 1 1,i ik L= , ,..., −  }i x y= ,  is the nor-

malized 2D frequency. 

Image restoration is a process of the removal of the degradation caused by PSF. 

Mathematically this is an inverse problem. It is usually referred to as a deconvolu-

tion [98]. Usually this problem is ill-posed and it results in the instability of a  

solution. It is also sensitive to noise. The stability can be provided by constraints 

imposed on the solution. A general approach to such problems refers to the meth-

ods of Lagrange multipliers and the Tikhonov regularization [97]. The regularized 

inverse filter can be obtained as a solution of the least square problem with a pen-

alty term:  

2 2

2 2
,J Z VQ Qα= − +  

(6.162) 

 

where 0α ≥  is a regularization parameter and 
2

⋅  denotes 
2

l − norm. Here, the 

first term 
2

2
Z VQ−  gives the fidelity to the available data Z  and the second term 

bounds the power of this estimate by means of the regularization parameter α. In 

(6.162), and further, we omit the argument ω in the Fourier transform variables. 

The solution is usually obtained in the following form by minimizing (6.162):  
 

1

2
ˆ ˆˆ ( ) { }

V
Q Z q x F Q

V
α

α

−= , =
+

, (6.163) 

 

where Q̂  is an estimate of Q , �qα  is an estimate of the true image q, and V  is a 

complex-conjugate value of V . 

There exist a variety of sophisticated and efficient deblurring techniques such 

as deconvolution based on the Wiener filter [96, 99], nonparametric image deblur-

ring using local polynomial approximation with spatially-adaptive scale selection 

based on the intersection of confidence intervals rule [99], Fourier-wavelet regu-

larized deconvolution [100], etc. A common and very important property of all 

these techniques is that they assume a prior knowledge of a blurring kernel, which 

is completely determined by a point spread function (PSF), and its parameter (pa-

rameters). If PSF is unknown, regularization based on (6.162) and (6.163) cannot 

be used to solve the deblurring problem. Hence, to apply any regularization tech-

nique, it is very important to reconstruct PSF, to create its mathematical model, 

which is as close as it is possible to the reality. This reconstruction can be based 

on the recognition (identification) of the mathematical model of PSF and its pa-

rameter (parameters). When a PSF model and its parameters are recognized, PSF 

can be easily reconstructed and then a regularization technique can be used for 

image restoration. To solve this recognition problem, some machine learning 

technique should be used. We would like to show, how this problem can be solved 

using MLMVN. 
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It should also be mentioned that when PSF is unknown, the image deblurring 

becomes a blind deconvolution problem [101]. Most of the methods to solve it are 

iterative, and, therefore, computationally costly. Due to the presence of noise, they 

suffer from instability and convergence problems. So it should be more efficient to 

use regularization. In turn, to use it, PSF must be identified first. 

6.1.2   Specification of the PSF Recognition Problem 

We will use MLMVN to recognize perhaps the most popular PSFs: Gaussian, mo-

tion, and rectangular (boxcar) blurs. We aim to identify simultaneously both  

the blur, which is characterized by PSF, and its parameter (parameters). Let us 

consider all these PSF models and show how they depend on the corresponding 

parameters. 

For a variety of devices, like photo or video camera, microscope, telescope, etc., 

and for turbulence of the atmosphere, PSFs are often approximated by the Gaus-

sian function:  

2 2

2 2

1
( ) exp

2

x y
v t

πτ τ

⎛ ⎞+
= −⎜ ⎟⎝ ⎠  (6.164) 

 

where the variance 
2τ  is a parameter of the PSF (Fig. 6.54a). Its Fourier transform 

V is also a Gaussian function and its absolute values | |V  are shown in Fig. 6.54d. 

Another source of blur is a uniform linear motion which occurs while taking a 

picture of a moving object relatively to the camera: 

2 2
1

,  / 2,  cos sin ,
( )

otherwise,0,

x y h x y
v t h

φ φ
⎧⎪ + < =

= ⎨⎪⎩
 

(6.165) 

 

where h  is a parameter, which depends on the velocity of the moving object and 

describes the length of motion in pixels, and φ  is the angle between the motion 

orientation and the horizontal axis. Any uniform function like (6.165) (Fig. 6.54b) 

is characterized by the number of slopes in the frequency domain (Fig. 6.54e). 

The uniform rectangular blur is described by the following function (Fig. 6.54c): 
 

2

1
, ,  ,  

( ) 2 2

otherwise,0,

h h
x y

v t h

⎧
< <⎪

= ⎨⎪⎩  
(6.166) 

 

where parameter h  defines the size of smoothing area. The frequency characteris-

tic of (6.166) is shown in Fig. 6.54f. 
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Fig. 6.54 Types of PSF : a) Gaussian PSF with 2τ =  and size 21 21× ; b) Linear uniform motion 

blur of the length 5; c) Boxcar blur of the size 3 3× ; d) frequency characteristics of a);  

e) frequency characteristics of b); f) frequency characteristics of c). 

 
It is practically impossible to recognize PSF in spatial domain. It follows from 

Fig. 6.54 that it is much strongly marked in the frequency domain. Thus, our task 

is to recognize PSF definitely in the frequency domain using magnitude of the 

Fourier transform as a feature space. Then, after PSF and its parameters are recog-

nized, the PSF v can be reconstructed from (6.164)-(6.166) (depending on which 

model of blur was identified), then its Fourier transform V can be found, and then 

Q̂ , which is the approximation of the Fourier transform of the original image q 

(see (6.160) ) can be obtained from (6.163).  

6.1.3   Choice of the Features  

So, the observed image z(t) is modeled as the output of a linear shift-invariant sys-

tem (6.160) which is characterized by PSF. Those PSFs, which are considered 

here, are determined by (6.164)-(6.166). As we have realized, each of them has its 

own very specific characteristics in the frequency domain.  

Hence it is natural to use magnitudes of their Fourier spectral coefficients as 

features for classification. Since originally the observation is not v (v is not 

known) but z, we use spectral coefficients of z to form input training (and testing) 

vectors in order to identify the PSF v. Since this model in the frequency domain is 

the product of spectra of the true object Q and the PSF V, we state the problem as 

recognition of the shape of V and its parameters from the power-spectral density 

(PSD) of the observation Z, i.e. from 
2

Z Z Z= ⋅ , which in terms of statistical 

expectation can be rewritten as: 
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{ } { }2 2 2 2 2
E Z E QV Q Vε σ= + = +  (6.167) 

 

where 
2σ  is the variance of noise in (6.161).  

Thus we will use here log Z  to form pattern vectors X whose membership we 

have to recognize. Our classes are determined not only by the corresponding PSF 

model, but also by certain values of its parameters (
2τ  for the Gaussian PSF (6.164), 

and h for the motion PSF (6.165) and the rectangular PSF (6.166), respectively). 

Examples of log Z  values are shown in Fig. 6.55. It is just necessary to take 

into account that distortions in the Fourier transform magnitude caused by blur are 

so clear just if there is no noise on an image. For noisy images (even when there is 

some very slight noise added) this picture becomes hidden, and blur model cannot 

be identified visually. 

The distortions of PSD for the test image Cameraman (Fig. 6.55a) that are typical 

for each type of blur (Fig. 6.55b,c) are clearly visible in Fig. 6.55e,f (just take into 

account that DC (zero-frequency) in Fig. 6.55d,e,f is located in the top-left corner, 

not in the center. High frequencies are located closer to the center, respectively. 

For simplicity (but without loss of generality) we may consider just square  

images z(t), i.e. x yL L L= =  in (6.160), and (6.161). In order to obtain the pat-

tern vector ( )1,...,
n

X x x=  where ; 1,...,ix i n=  is located on the unit circle (to 

be able to use these pattern vectors as MVN and MLMVN inputs), we perform the 

following transformation. Taking into account that the PSF v is symmetrical, PSD 

of z(t) (6.167) is used as follows to obtain ; 1,...,jx j n= : 

( )( ) ( )

( ) ( )
1 2, min

max min

log log
exp 2 ,

log log

k k

j

Z Z
x i 

Z Z

ω
π

⎛ ⎞−⎜ ⎟= ⎜ ⎟−⎜ ⎟⎝ ⎠
 (6.168) 

where 

1 2 2

1 2

2 1

1,..., / 2 1, for ,  1,..., / 2 1,

/ 2,..., 2, for 1,  1,..., / 2 1,

1,...,3 / 2 3, for 1,  1,..., / 2 1,

j L k k k L

j L L k k L

j L L k k L

= − = = −⎧⎪
= − = = −⎨⎪ = − − = = −⎩

 (6.169) 

i is an imaginary unity, and ( )( )
1 2 1 2max , ,

max
k k k k

Z Z ω= , 

( )( )
1 2 1 2min , ,

min .
k k k k

Z Z ω=   
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Fig. 6.55 True test Cameraman image (a) blurred by: b) Gaussian blur with 2τ = ;  

c) rectangular blur of the size 9 9× ;  

log |Z| of the true test Cameraman image (d) blurred by: e) Gaussian blur with 2τ = ;  

f) rectangular blur of the size 9 9× ; 

The normalized log |Z| values used as arguments to generate training vectors in (6.168) and 

(6.169) obtained from the true test Cameraman image (g) blurred by:  

h) Gaussian blur with 2τ = ; i) rectangular blur of the size 9 9×  

 
Eventually, the number of the features and the length of the pattern vector, respec-

tively was chosen as 3 / 2 3n L= − . 

Some examples of the values log Z  normalized to be in the range [0,1] as  

follows  

( )
( )( ) ( )

( ) ( )
1 2, min

max min

log log
log

log log

k k

norm

Z Z
Z

Z Z

ω −
=

−
, 

are shown in Fig. 6.55g,h,i. They are used in (6.168) and (6.169) to produce the 

pattern vectors X.  
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Selection of those spectral 

coefficients, which are used  

as the features, is shown in  

Fig. 6.56. Coordinates of the 

spectral coefficients, which are 

used as the features, are ob-

tained according to (6.169). 

These spectral coefficients are 

located on the three intervals 

that are shown by arrows in 

Fig. 6.56. 

Thus, we use just a very  

limited number of the spectral 

coefficients as the features. For 

example, for 256 x 256 images 

whose Fourier spectra contain 

65536 coefficients, we select 

just 381 of them as our features 

according to (6.169). 

6.1.4   Output Definition: “Winner Takes It All Rule” for MLMVN 

As we have mentioned from the beginning, blur and its parameters identification 

is a multi-class classification problem. A class is determined by a certain blur 

model and the corresponding parameter value. Now we can define classes, which 

we want to recognize, and specify our desired outputs. 

We are going to recognize the following six types of blur with the following  

parameters: 

1) the Gaussian blur is considered with 

{ }1,  1.33,  1.66, 2, 2.33,  2.66,  3τ ∈  in (6.164); 

2) the linear uniform horizontal motion blur of the lengths 3, 5, 7, 9  

( 0φ = ) in (6.165); 

3) the linear uniform vertical motion blur of the length 3, 5, 7, 9 ( 90φ =  

degrees) in (6.165); 

4) the linear uniform diagonal motion from South-West to North-East blur  

of the lengths 3, 5, 7, 9 ( 45φ =  degrees) in (6.165); 

5) the linear uniform diagonal motion from South-East to North-West blur 

of the lengths 3, 5, 7, 9( 135φ =  degrees), in (6.165); 

6) rectangular has sizes 3x3, 5x5, 7x7, and 9x9 in (6.166). 

Hence, for the Gaussian blur we have 7 classes (determined by 7 parameter val-

ues), for the linear uniform horizontal, vertical, and two diagonal motion blurs we 

have 4 classes for each of them, and for the rectangular blur we also have 4 

 

Fig. 6.56 Selection of the features according to 

(6.169)  
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classes. Thus, there are 27 “blurred” classes in total. One more class has to be re-

served for unblurred images. Hence, finally we have 28 classes. 

Taking into account that we have six different blur models, for their identifica-

tion we use six neurons in the MLMVN output layer. Each neuron is associated 

with a certain blur model. Since we want to recognize not only a blur model, but 

also its parameter, each of these six output neurons has to solve multi-class classi-

fication problem. For each blur model we consider different parameter values, and 

each of these values determines a separate class.  

Thus, on the one hand, each MVN in the output layer has to classify a parame-

ter of the corresponding blur model, and, on the other hand, it has to reject other 

blurs, as well as unblurred images. Hence, if the ith type of blur is characterized 

by p parameters, then 

the mth output neuron 

; 1,...,6mN m =  (that 

one associated with 

this type of blur) has to 

work in p+1=k-valued 

logic. For instance, a 

neuron, which is asso-

ciated with the Gaus-

sian blur, has to work 

in 8-valued logic. 

There are 7 values of 

the Gaussian blur pa-

rameter τ, which de-

termine 7 classes, and 

the 8
th

 class label is reserved for the rejection and unblurred images. Since for 

other blurs we consider 4 possible parameter values, other 5 output layer MVNs 

have to work in 5-valued logic (4 values are reserved for the class labels corre-

sponding to the parameter values and the 5
th

 value is reserved for the rejection and 

unblurred images). This is illustrated in Fig. 6.57. Each of the six output neurons 

is the discrete MVN with the k-valued activation function (2.50), which divides 

the complex plane into k equal sectors. The first k-1 sectors (0, 1, …, k-2) form the 

Classification domain, where each sector corresponds to the certain value of the 

parameter of the corresponding blur model. The last sector (k-1
st
) is reserved for 

the Rejection domain. The desired output for the neuron ; 1,...,6mN m =  is 

formed in the following way. If the input pattern X corresponds to the mth type of 

blur and jth value of the parameter (j=0, 1, …, k-2), then the desired output is 
2 /i j k

e
π

 (the desired domain is the jth sector). If the input pattern X corresponds to 

any different type of blur, not associated with the neuron mN , or to the absence of 

any blur, then the desired output is 
2 ( 1)/i k k

e
π −

 (the desired domain is the last (k-

1
st
) sector). 

Fig. 6.57 Reservation of the k domains in the k-valued acti-

vation function of the output MVN  
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(a) (b) 

Fig. 6.58 The weighted sum of the ith output neuron (fig. (a) ) is located closer to the bisec-

tor of the sector than the weighted sum of the jth output neuron (fig. (b) ). This means that 

the ith neuron iN  is the winner, and that its output is the network output 

 
To determine the network output, the “winner takes it all” technique is used.  

It is implemented for MLMVN in the following way. Ideally, only one out of N 

output neurons should recognize a test sample. Suppose, this is the ith output neu-

ron iN . This means that only this neuron’s weighted sum appears in one of the 

sectors 0,1,..., 2ik −  ( ik  is the value of logic, in which the neuron iN  works), 

while all the other neurons’ weighted sums are expected to appear in the sector 

1; 1,..., 1, 1,...,
j

k j i i N− = − + . The latter means that all the other neurons re-

ject the corresponding test sample. This is a classical interpretation of the “winner 

takes it all” technique for MLMVN. However, this ideal situation may not be the 

case, because often more than one output neuron can classify a test sample as 

“its”. This means that for more than one output neuron the weighted sum appears 

in one of the sectors 0,1,..., 2; 1,...,
j

k j N− = . The network output cannot be 

ambiguous, what can we do in this situation? We should use some additional crite-

rion to determine the network output. Since the most reliable output should be that 

one, which is as distant as it is possible from the sector borders in terms of angular 

distance, that output neuron (out of those whose weighted sum appears in one of 

the sectors 0,1,..., 2; 1,...,
j

k j N− = ) will be a winner whose weighted sum is 

as close as possible to the bisector of that sector where it is located. This means 

that this weighted sum is located as far as it possible from the sector’s border.  

This is illustrated in Fig. 6.58. The weighted sum iz  of the ith output neuron iN  

(Fig. 6.58a) is located closer to the bisector of the sector than the weighted sum 

j
z  of the jth output neuron 

j
N  (Fig. 6.58b). This means that the ith neuron iN  
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is the winner, and that its output is the network output. If 
i j

k k≠ , which means 

that the output neurons iN  and 
j

N  work in different valued logic and sectors on 

the complex plane have different angular size for these neurons, respectively, a 

normalized angular distance from the current weighted sum to the bisector of the 

sector where it is located should be measured. To normalize this angular distance, 

its absolute value should be divided by the angular size of the sector 

2arg (2 1)arg

2 /

k
z s

k

ε

π

− +
 if the weighted sum is located in the sth sectror  

( 2arg
k

ε  is the angle corresponding to the bisector of the 0
th

 sector). 

It is important to mention that the “winner takes it all” technique should always 

be utilized for MLMVN with multiple output neurons in the same way, using the 

additional “angular” criterion for the network output formation, which we have 

just described. Of course, this approach works not only for solving the blur identi-

fication problem, but wherever MLMVN with multiple output neurons is used for 

solving any classification problem. 

6.1.5   Simulation Results 

To test the MLMVN’s ability to identify a blur model and its parameters, we have 

created a database from 150 grayscale images with sizes 256x256. This database 

was split into the learning and testing sets. 100 images are used to generate the 

learning set and 50 other images are used to generate the testing set. Since we con-

sider 28 classes (27 “blurred” classes formed by six types of blur, five of them 

with the four parameter values and one with the seven parameter values, along 

with the class of clean images - 5 i 4+7+1=28), the training set consists of 

2800=28 i 100 pattern vectors, and the testing set consists of 1400=28 i 50 pattern 

vectors. The white Gaussian noise was added to all images. The level of noise in 

(6.160) is selected satisfying BSNR (the blurred signal-to-noise-ratio
1
) to be equal 

to 40 dB. 

                                                           

1
 The blurred signal-to-noise ratio is defined as 

( )
2

10 2
10log

f f
BSNR

Mσ

−
=

�
, where 

f  is a blurred image without noise, f�  is the expectation of the clean image, M is the 

number of pixels, and 
2σ  is the noise variance. To estimate the quality of the restora-

tion, the improved signal-to-noise-ratio 
( )

( )

2

10 2
10log

ˆ

f g
ISNR

f f

−
=

−
 (where f  is an 

original image, g  is a degraded image, and f̂  is a restored image) is used.  
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As we have calcu-

lated above, accord-

ing to (6.169) for 

256x256 images, our 

pattern vectors con-

tain 381 components. 

Hence, our network 

has 381 inputs. Ex-

perimentally, we 

have found that the 

best results are ob-

tained with a network containing two hidden layers, 5 neurons in the first hidden 

layer, and 35 neurons in the second hidden layer. As we agreed above, our net-

work has to contain 6 neurons in the output layer (each neuron is responsible for a 

certain blur model). Thus, the topology of MLMVN, which we used, is  

381-5-35-6. A network with fewer hidden neurons needs more iterations for learn-

ing, while a network with more hidden neurons does not improve the results. 

To evaluate the quality of classification, the classification rate  

100%correct

total

N
CR

N
= ⋅ , 

where totalN  is a total number of pattern vectors X in the testing set, and correctN  

is a number pattern vectors correctly classified by the trained network, is used. It 

expresses the number of correct classifications in terms of percentage (%). 
For a comparison, we have chosen classical MLF with backpropagation learn-

ing algorithm and SVM. Fletcher-Reeves Conjugate Gradient [102] and Scaled 
Conjugate Gradient [103] backpropagation training algorithms were used for MLF 
training. They are implemented in MATLAB Neural Networks Toolbox. In order 
to draw objective comparison, we used MLF with exactly the same topology as 
MLMVN (381-5-35-6). The hidden layer neurons have tan-sigmoid activation 
function, and the output layer neurons have linear activation function. For classifi-
cation, the range of values [ 1,1]−  of the output neurons activation function is  
divided into intervals according to the number of classes associated with the corre-
sponding neuron). Additionally, to avoid possible speculations on the complexity 
of complex-valued and real-valued neural networks (a “skeptical” view is that a 
complex-valued network employs twice more parameters

2
), we also used MLF 

with a “doubled” number of hidden neurons 381-10-70-6. 
For SVM modeling we used MATLAB code available in [104]. SVM-based 

classification was performed following the well-developed strategy “one against 
all” to use a combination of several binary SVM classifiers to solve a given multi-
class problem [105]. Since we have 27 “blurred” classes, the ensemble of the 27 
binary decision SVMs is used, respectively. Each of these 27 SVMs recognizes a 
certain blur with its parameter and rejects all other blurs along with unblurred im-
ages. Thus, a pattern rejected by all the SVMs considered unblurred. 
                                                           
2 In fact, it is not possible to agree with this “skeptical” view, because mathematically a 

complex number is a single number, not a pair of real numbers 

 
Fig. 6.59 MLMVN used for blur model and  its parameter 

identification   
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The following results were obtained. MLF with both topologies and both learning 

algorithms failed to learn the problem with some acceptable accuracy. MLF could 

not drop the learning error below 5%, but it is even more important that its classifi-

cation rate could not exceed 90%, which is significantly lower than the one for 

MLMVN and SVM. The results for MLMVN and SVM are shown in Table 6.25. 

 
Table 6.25 Classification results for blur identification 

Classification Rate 
BLUR 

MLMVN SVM 

No blur 96% 100% 

Gaussian 99% 99.4% 

Rectangular 98% 96.4% 

Motion Horizontal 98.5% 96.4% 

Motion Vertical 98.3% 96.4% 

Motion Notrh-East Diagonal 97.9% 96.5% 

Motion North-West Diagonal 97.2% 96.5% 

 

  

(a) (b) 

Fig. 6.60 (a) Test noisy blurred Cameraman image with 9x9 rectangular blur (b) The 

blurred image reconstructed using the regularization technique [99] after the blur and its pa-

rameter have been identified using MLMVN (ISNR=3.88 dB)  

 
The results are comparable with each other. Both tools, MLMVN and SVM, 

were trained with the zero error. Both demonstrate the excellent classification rate. 

Five out of seven classes are a little bit better classified by MLMVN. Clean im-

ages and images degraded by the Gaussian blur are a little better classified by 

SVM. However, the complexity of the SVM ensemble, which is used for solving 

this multi-class problem, is significantly higher than the one of the MLMVN! 

Each SVM uses approximately 2,500•381=952,500 support vectors, so there are 

about 952,500•28 = 25,717,500 support vectors in total, while the MLMVN uses 

(381+1)•5+35•(5+1)+6•(35+1)=2336 weights in total. 
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The results of using the MLMVN classification for image reconstruction are 

shown in Fig. 1.7 for the test Cameraman image. The adaptive deconvolution 

technique proposed in [99] has been used after the blur and its parameter identi-

fied
3
.  The image was blurred by the rectangular blur (6.166) 9x9. Classified PSF 

coincides with the true PSF, and the value of improved signal-to-noise ratio 

(ISNR) criterion is 3.88 dB. 

Thus, we see that MLMVN can be successfully used for solving a challenging 

and sophisticated real-world multi-class classification problem of blur and its  

parameters identification. It is interesting that the result shown by MLMVN is 

significantly better than the one shown by MLF. The result shown by MLMVN is  

also slightly better than the one shown by SVM. However, the complexity of the 

MLMVN in terms of the number of parameters employed is significantly smaller 

than of the one of SVM! 

6.2   Financial Time Series Prediction Using MLMVN 

6.2.1   Mathematical Model 

We have already considered in Section 4.4 how MLMVN predicts time series. 

However, we have limited our considerations there just by the famous benchmark 

problem – prediction of the artificially generated Mackey-Glass chaotic time se-

ries. As we remember, MLMVN has shown very good results, outperforming 

other techniques. 

However, time series prediction often appears in real-world applications. One 

of these applications is prediction of main stock indexes, stock prices, currency 

exchange rates, etc. We have to say from the beginning that we will not study here 

deeply time series, methods of their analysis and prediction. We should address 

the reader interested in this area, for example, to the fundamental monograph 

[106] by G. Box, G. Jenkins, and G. Reinsel. We also will not consider here  

examples of time series prediction from very different areas, which are usually of-

fered to the participants of time series prediction competitions usually timed to 

neural networks conferences
4
. We just would like to show here how MLMVN can 

be successfully used for a long-term time series prediction. 

According to the definition given, for example, in [106], a time series is a se-

quence of data points, measured typically at successive times spaced at uniform 

time intervals. Thus, mathematically, if 0 1, ,..., ,...
n

t t t  are the time slots such  

that 10,1,... 
i i

i t t t const+∀ = − = ∆ = , and 0 1, ,..., ,...
n

x x x  are data points 

measured at the time slots 0 1, ,..., ,...
n

t t t , then we say that 

0 0 1 1( ), ( ),..., ( ),...
n n

x x t x x t x x t= = =  is a time series. 

                                                           
3 MATLAB code for this technique is available following the link 

http://www.cs.tut.fi/~lasip/. 
 

4 See, for example http://www.neural-forecasting-competition.com/ 
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Among many other time series there is a group of them, which is commonly re-

ferred to as financial time series. There are series of historical data of main stock 

indexes, stock prices, and currency exchange rates usually measured at the mo-

ment when the corresponding market closes. A very popular problem is prediction 

of such time series. Time series prediction in general is prediction of future mem-

bers in the corresponding series based on other members known from historical 

data. There are many different methods of time series analysis and their predic-

tion, which are out of scope of this book. We just have to mention that any method 

of prediction is based on some certain mathematical model, which is used for 

modeling of the corresponding time series. 

We will use here perhaps the simplest, but natural model, which is very suitable 

for MLMVN. So let 0 0 1 1( ), ( ),..., ( ),...
n n

x x t x x t x x t= = =  be a time series. 

Let us suppose that there exist some functional dependence among the series 

members, according to which the n+1
st
 member’s value is a function of the pre-

ceding n members’ values 
 

( )

( )

( )

( )

0 1

1 1

2 2 1

1

,...,

,..., ,

,..., ,

...

,..., .

n n

n n

n n

n j j n j

x f x x

x f x x

x f x x

x f x x

−

+

+ +

+ + −

=

=

=

=

 (6.170) 

 

This model can be used for prediction in the following way. Suppose we have 

historical data for some time series 0 1 1 1, ,..., , , ,...,
n n n r

x x x x x x− + . Suppose that 

there exist the functional dependence (6.170) among the time series members. Our 

task is to predict the following members of the series, that is 1 2, ,...
r r

x x+ + , which 

are not known. How we can solve this problem? According to our assumption, 

(6.170) holds for our time series, but f  is not known. However, we can approach 

this function using some machine learning tool. This means that we have to from a 

learning set from the known series members. Since the first r members of the time 

series are known, and according to (6.170) each following member is a function of 

the preceding n members, our learning set should contain the following learning 

samples and desired outputs, respectively: 

( )

( )

( )

( )
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1 1

2 1 2
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As soon as the learning process is completed, f  can be implemented as its ap-

proximation f̂ , which is resulted from the learning process, and future members 

of the time series can be predicted as follows 

 

( )

( )

( )

1 1

2 2 1

3 3 1 2

ˆˆ ,...,

ˆˆ ˆ,..., , ,

ˆˆ ˆ ˆ,..., , , ,

...

r r n r

r r n r r

r r n r r r

x f x x

x f x x x

x f x x x x

+ − +

+ − + +

+ − + + +

=

=

=

 (6.171) 

The heat sign in (6.171) above a series member means that the corresponding 

value is not a true value, but the predicted (estimated) value of the future member 

of the time series. It is important to mention that the predicting rule (6.171) differs 

from the one we used for Mackey-Glass time series prediction where only true 

values were used to predict future values. The latter is a commonly used  

approach in time series modeling, but it becomes not applicable, for example, to 

financial time series. Indeed, if we know just r series members, and we want to 

predict the following members, only the r+1
st
 member can be predicted from the 

true historically known members. To predict the r+2
nd

 member, according to 

(6.170) and (6.171) we have to base this prediction on the values of n-1 true mem-

bers 2 ,...,
r n r

x x− + , and on the just predicted value 1
ˆ

r
x + . In general, to predict 

each following member of the series, every time we have to base this prediction 

on a one more predicted member. 

The question is: for how long it is possible to predict a time series in this way, 

particularly a financial time series? We would like to show here that using 

MLMVN it is possible to make realistic long-term predictions, up to one year 

ahead. 

All financial time series are unsteady, they are usually characterized by high 

volatility. This means that a virtual function (6.170) is highly nonlinear and con-

tains many small and possibly high jumps. To approximate such a function with a 

high accuracy using a feedforward neural network, we should use a network with 

two hidden layers. A network with just a single hidden layer will be able just to 

build a much smoothed approximation where all the mentioned jumps will be av-

eraged. As a result, just very global long-term trends could be followed. Hence, 

we should use MLMVN with two hidden layers. 

To make long-term predictions, we should also use a long array of historical 

data for the training purposes. Only learning many different trends during a long 

period of time, it is possible to make long-term predictions. Intuitively, we fol-

lowed the next rule: to make prediction for a year ahead, it is necessary to learn 

the preceding two-year history. 

Taking into account that the behavior of any financial market should depend on 

the preceding events that occurred not only yesterday, day before yesterday, or 

even a month ago, we have chosen n=250 in (6.170) (250 is the approximate num-
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ber of business days during a year). This means that according to our model the 

value of each member of a time series depends on the values of the preceding 250 

members. 

Thus our task is to learn an input/output mapping described by a continuous 

function of 250 variables. This means that our network has 250 inputs. Since  

we want to learn a two year history and as we told, there are approximately  

250 business days in a year, our learning set has to contain 500 samples, so r=500 

in (6.171). 

6.2.2   Implementation and Simulation Results 

A simple empirical consideration shows that having 250 inputs, we should try first 

to reduce the space where our problem is considered, therefore the first hidden 

layer should contain a very small amount of neurons. But then, this space should 

be significantly extended, to ensure that we will follow all possible small jumps of 

our input/output mapping. Thus, we used MLMVN with the topology 

250-2-32768-1 (250 inputs, 2 neurons in the first hidden layer, 32768 neurons in 

the second hidden layer and a single output neuron). The number 32768 is deter-

mined just by two reasons. The first reason is, as we told, the necessity to have as 

much as possible neurons in the second hidden layer, to follow all jumps of a 

function to be learned. That MLMVN software simulator, which we used, allows 

using up to 33000 neurons in a layer. The choice of the number 32768 was finally 

determined by its “beauty” as it is a power of 2. 

To transform time series values into numbers located on the unit circle (to be 

able to use them as MLMVN inputs and outputs), transformation (2.53) (see p. 64) 

was used. We adapted this transformation as follows 

[ ] [ [, 2 0, 2 ;

;

0,..., ,

j

j

j j

i

j
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y a b
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x e
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where 0 1, ,...,
n

y y y  is the original time series. If min
0,1,...,

min
j

j n
y y

=
=  and 

max
0,1,...,

max
j

j n
y y

=
= , then a and b were chosen in the following way 

( )min max min0.125a y y y= − −  and ( )max max min0.125b y y y= + − . This 

extension of the range is important to avoid closeness to each other of the numbers 

on the unit circle corresponding to minimal and maximal values of a time series. 

Evidently, to return back to the original data scale, it is necessary to perform the 

inverse transformation 
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To control the learning process, the root mean square error (RMSE) stopping cri-

terion (4.142) (see p. 156) was used. The local error threshold µ′  (see (4.143) and 

footnote 3 in p. 156) was chosen / 2µ λ′ = , where λ  is the RMSE threshold 

from (4.143). 

Let us now consider two examples of prediction. We predicted Dow Jones  

Industrial Average index and Euro/Dollar exchange rate. 
 

1. Dow Jones Industrial Average 
 

To train MLMVN, we created a learning set containing 500 samples correspond-

ing to the period from December 29, 2005 to December 24, 2007. Then, after the 

learning process converged, we made prediction for the following year, from De-

cember 26, 2007 to December 19, 2008. The dataset was downloaded from Yahoo 

Finance. To control the learning process, we used RMSE threshold 110.0λ =  in 

(4.143) and 55.0µ′ = . The results are shown in Fig. 6.61. 

 

Fig. 6.61 Results of learning and prediction of Dow Jones using MLMVN  

The learning error (RMSE) on which the learning process was stopped is 104.6. 

The prediction error (RMSE) is 593.2. However, we did not expect that the pre-

dicted data should coincide with the actual data. Our goal was to check whether it 

is possible to predict all major trends. From this point of view the results are more 
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than satisfactory. For example, dramatic fall of the market, which occurred during 

the first week of October 2008, was predicted with a very high accuracy. Thus, 

that global financial crisis, which spread over the world economy, could be pre-

dicted 9 months before it occurred. 

 

2. Euro/Dollar Exchange Rate 
 

The Euro/Dollar exchange rate was predicted for approximately the same period 

of time. To train MLMVN, we created a learning set containing 500 samples cor-

responding to the period from December 30, 2005 to December 18, 2007. Then,  

after the learning process converged, we made prediction for the following 10 

months, from December 19, 2007 to October 31, 2008. The dataset was 

downloaded from the Bank of England data collection. To control the learning 

process, we used RMSE threshold 0.005λ =  in (4.143) and 0.0025µ′ = . The 

results are shown in Fig. 6.62. 

 

Fig. 6.62 Results of learning and prediction of EUR/USD exchange rate using MLMVN 

 
The learning error (RMSE) on which the learning process was stopped is 

0.0042. The prediction error (RMSE) is 0.0213. As well as for Dow Jones time se-

ries, we did not expect that the predicted data should coincide with the actual data. 

Our goal was the same - to check whether it is possible to predict all major trends. 

As well as it was for the Down Jones time series, from this point of view the re-

sults are more than satisfactory. For example, dramatic fall of the Euro against the 
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US dollar, which occurred during September-October 2008 as a result of the 

global financial crisis, was predicted with a very high accuracy. Thus, again that 

global financial crisis, which spread over the world economy, could be predicted 9 

months before it occurred. 

Of course, we do not want to state that it is always possible to predict any  

financial time series with the same high accuracy. Such predictions are possible 

only if some similar trends are presented in the historical data used to train a  

network. 

Actually, our goal was to show high potential of MLMVN in solving highly 

nonlinear problems. It was also very interesting to confirm in practice that the 

productivity of the MLMVN learning algorithm does not depend on the number of 

layers and neurons in layers. 

6.3   MVN-Based Associative Memories 

Associative memory is a memory, which is addressed and can be accessed by its 

content (as opposed to an explicit address). Thus, reference clues are "associated" 

with actual memory contents until a desirable match (or set of matches) is found. 

A concept of associative memory was first suggested in 1977 by Teuvo Kohonen 

in his book [22]. 

We are not going to discuss here fundamentals of different associative memo-

ries and their organization. We will concentrate on several MVN-based associa-

tive memories. First of all, it is important to mention that any neural-based  

associative memory is always based on some recurrent neural network that is a 

network, which can update its state recurrently. Indeed, what does it mean to store 

some patterns in an associative memory based on some neural network? This 

means that this network can learn these patterns, building associations among one 

or another “parts” of each pattern. For example, if we want to store gray-scale im-

ages in such a memory, it has to build associations among intensity values in the 

pixels of each of these images or among spectral coefficients of their Fourier spec-

tra. Then this network should be able to reconstruct any of those images from their 

parts or distorted versions, processing them recurrently, step-by-step retrieving a 

pattern, which was originally stored. The first historically known neural network, 

which could work as an associative memory, was a Hopfield neural network [21], 

which we observed in detail in Section 1.3 (see pp. 36-37). Another recurrent neu-

ral network, which also can be used as an associative memory, is a cellular neural 

network (CNN), which we also observed in Section 1.3 (see pp. 37-38). 

Two-state threshold neurons, which were initially used by J. Hopfield and his 

successors as basic network neurons determined a limitation of the corresponding 

associative memories: they could store only binary patterns. A classical binary as-

sociative memory is exactly a Hopfield network. In 1990, S. Tan, J. Hao, and  

J. Vandewalle suggested a CNN-based binary associative memory [107].  

However, it was very attractive to develop multi-state associative memories, for 

example, to store there gray-scale images (but not only them – any multi-valued 

patterns). Of course, there are different multi-valued associative memories based 

on various ideas. We will observe here one of this ideas – the use of MVN as a ba-
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sic tool for multi-valued neural associative memories. Since MVN is a multi-state 

neuron, its use in associative memories is very natural. Moreover, there are several 

original MVN-based associative memories developed by different authors. Let us 

observe them. 

6.3.1   A CNN-MVN-Based Associative Memory 

The first MVN-based associative memory was suggested by the author of this 

book and Naum Aizenberg in 1992 in their paper [38] (where, by the way, the 

term “multi-valued neuron” was used for the first time). It was a generalization of 

the CNN-based binary associative memory proposed in [107]. It was suggested to 

use discrete MVN as a basic neuron in a cellular neural network and to use this 

cellular neural network to store multi-valued patterns, for example, gray-scale im-

ages. To store NxM patterns, a network of the same size, with 3x3 local connec-

tions should be used. 3x3 local connections mean that inputs of each neuron are  

connected to outputs of 8 neurons from its local 3x3 neighborhood and to its own 

output, and its output is connected to inputs of the same adjacent neurons. Thus, it 

is a network whose topology is illustrated in Fig. 1.13 (see p. 38). Taking into  

account that a basic neuron of the suggested CNN is MVN, the dynamics of the 

network is described by the following equation, which can easily be obtained from 

(1.39), which describes the CNN dynamics in general. The output 
mj

s  of the mjth 

neuron at cycle 1t +  is 

( ) ( )01 ;

1 1, 1 1.

mj mj

mj rp rp

rp

s t P w w s t

m r m j p j

⎛ ⎞
+ = +⎜ ⎟⎝ ⎠

− ≤ ≤ + − ≤ ≤ +

∑
 (6.172) 

 

Here P is the activation function (2.50) of the discrete MVN, 
rp

s  is the output of 

the rpth neuron (which is simultaneously the input of the mjth neuron), and 
mj

i
w  

is the weight corresponding to the ith input of the mjth neuron. 

Not being sure that time (in 1992) how this approach will work for large k in 

(2.50) (for example, to store 256-valued gray-scale images, we should take 

k=256), the authors limited their considerations by k=4. Thus, let us suppose that 

we are going to store in this memory 4-valued NxM gray-scale images. To encode 

these images in the form suitable for MVN, a simple transformation 

{ }2 / ; 0,1,..., 1ig k
f e g k

π= ∈ −  was used (in our particular case k=4 , but in 

general this is the number of gray levels in images that we want to store). Two 

learning rules were suggested to train the network. The first is the Hebb rule 

(3.107) adapted to this particular case as follows 
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0

1

1

;

;

1,..., ; 1,..., ; 1 1; 1 1.

L
mj i

mj

i

L
mj i i

rp mj rp

i

w f

w f f

m N j M m r m j p j

=

=

=

=

= = − ≤ ≤ + − ≤ ≤ +

∑
∑  

(6.173) 

 

Here mj are indexes of the current neuron, rp are indexes of neurons from a 3x3 

local neighborhood of the current neuron, L is the number of patterns to be stored 

in the memory, 1,...,i L=  is the number of the current pattern, 
i

mjf  is the inten-

sity value in the mjth pixel of the ith pattern, bar stands for complex conjugation, 

and 0

mj
w  is a free weight (bias) of the current neuron. 

However, only a very limited amount of patterns could be retrieved from the 

memory without any error if the network was trained with the learning rule 

(6.173). It is important to understand that even a single error was very clearly visi-

ble (only 4-valued patterns were considered!), and, as a result, the second learning 

rule was suggested. Actually, it was the learning rule (3.80) adapted to this par-

ticular case. Whenever the desired output did not coincide with the actual output, 

the weights were updated in the following way. 

0 0

1
;

10

1
;

10

1,..., ; 1,..., ; 1 1; 1 1,

mj mj i

mj

mj mj i i

rp rp mj rp

w w f

w w f f

m N j M m r m j p j

ω

ω

= +

= +

= = − ≤ ≤ + − ≤ ≤ +

�

�  
(6.174) 

 

where the choice of ω depends on the angular distance between the desired and 

actual output and is described earlier (see p.104). 

Evidently, the learning process based on the rule (6.173) is a single-stage proc-

ess, while the one based on the rule (6.174) is iterative. The latter one continued 

until the zero error was reached. However, its convergence could be reached very 

quickly (maximum 10-20 iterations, depending on the number of stored patterns, 

and just a few iterations if the learning process based on (6.174) starts not from the 

random weights, but from the Hebbian ones obtained according to (6.173) ). After 

the network was trained, it could retrieve the stored patterns according to (6.172). 

Later, the same network was used as 256-valued associative memory [60]. To 

store 256-valued patterns, for example, gray-scale images with 256 gray levels, 

just a single change is required – it is necessary to take k=256 in the discrete MVN 

activation function (2.50). The learning time for 256-valued patterns and the learn-

ing process based on (6.174) is a little bit longer (100-200 iterations per a neuron 

for 20 images in the learning set) when the learning starts from the random 

weights, but still the learning process based on (6.174) requires just a few itera-
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tions when it starts from the Hebbian weights obtained according to (6.173). It 

should be mentioned that to avoid occasional jumps over the “0/2π border” during 

the pattern retrieval procedure (if we store k� -valued patterns in our associative 

memory), k in (2.50) should be taken larger than k� . Actually, for example, for 

256-valued gray-scale images it was enough to choose k=264. 

The retrieval capability of the network trained using the rule (6.174) was sig-

nificantly higher than the ones of the network trained using the Hebb rule (6.173). 

It can easily retrieve corrupted patterns unless there are no more than 3 errors in 

each 3x3 local neighborhood. 

 

  

(a) Original image “Alenka” (b) Original image corrupted by 20% random-

valued (range 0…255) impulse noise 

  
(c) Image restored by CNN-MVN after 

50 iterations 

(d) Image restored by CNN-MVN after 

150 iterations, PSNR=33.62 

Fig. 6.63 Restoration of the image corrupted by impulse noise in the CNN-MVN associa-

tive memory 

 
The example of image restoration in the CNN-MVN-based associative memory 

is shown in Fig. 6.63. The 256x256 CNN-MVN with 3x3 local connections was 

trained using a set of twenty 256x256 gray-scale images with 256 gray levels. One 
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of these images in shown in Fig. 6.63a. To avoid occasional black-white inversion 

during the restoration process, k=264 was used in the discrete MVN activation 

function (2.50). After the learning process was completed, the original image from 

Fig. 6.63a corrupted by random-valued impulse noise (the corruption rate 20%,  

the range of noise is 0…255) (Fig. 6.63b) was processed by CNN-MVN in order 

to retrieve it. The network retrieved the image iteratively, according to (6.172). 

The image retrieved after 50 iterations is shown in Fig. 6.63c. It is clearly visible 

that a significant part of corrupted pixels is already restored. The image retrieved 

after 150 iterations is shown in Fig. 6.63d. Visually it does not have any distinc-

tion with the originally stored image (Fig. 6.63a). In fact, PSNR
5
 for image in  

Fig. 6.63d is 33.62, which corresponds to the standard deviation 5.3. It is worth to 

mention that the associative memory is not a filter. First of all, it cannot remove 

noise from any image, but just from prototypes of those images stored in the 

memory. Secondly, the associative memory should just retrieve a stored pattern 

with some acceptable accuracy. 

A potential capacity (the number of patterns, which can be stored) of the CNN-

MVN-based associative memory is huge. Since CNN is a network with a feedback 

connection, regardless of number of patterns to be stored, that input/output  

mapping, which has to be learned by each neuron in CNN-MVN with 3x3 local 

connections, is always described by the following function 

( )
1 2 3

4 5 6 1 5 9 5

7 8 9

,..., ,..., ,

x x x

f x x x f x x x x

x x x

⎛ ⎞⎜ ⎟ = =⎜ ⎟⎜ ⎟⎝ ⎠
 

which is always a multiple-valued threshold function that can always be learned 

by a single MVN. Any variable i
x  is a threshold function because it always  

can be implemented by a trivial weighting vector ( )0,0,..., 0, ,0,..., 0iW w=  

with a single non-zero component i
w . Evidently, the mentioned function may  

take 
9

k  values. This means that the upper bound for the capacity of the  

                                                           
5 Peak signal-to-noise ratio (PSNR), is the ratio between the maximum possible power of a 

signal and the power of corrupting noise. PSNR is usually expressed in terms of the loga-

rithmic decibel scale. For example, for two NxM images A  and Â  it is expressed as 

10

ˆ

PSNR 20log

AA

MAX

SD

⎛ ⎞
= ⎜ ⎟⎜ ⎟⎝ ⎠ db, where MAX is the maximum possible intensity 

value (for example, for 256 gray-level images MAX=255), and ˆAA
SD  is the standard 

deviation between images A and Â , that is

( )
2

,

ˆ

ˆ
ij ij

i j

AA

A A

SD
M N

−

=
×

∑
. 
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NxM CNN-MVN-based associative memory with 3x3 local connections is 
9

NMk . Of course, it will be more and more difficult to obtain a non-trivial (with 

more than a single informally non-zero weight) weighting vector for each neuron 

when the number of the stored patterns increases. A problem is that the absolute 

value of the weight 5w  will become larger and larger in comparison to the one of 

the other weights. However, the number 
9

NMk  is so large, that it is difficult to 

say, where it is possible to find so many patterns to store. 

CNN-MVN suffers more not from the possibility to get just near-trivial weights 

for its neurons, but from another disadvantage. Since CNN is a locally connected 

network, complete corruption (or even incomplete, but significant corruption) 

even of a single 3x3 local neighborhood means impossibility of retrieval of the in-

formation in that neighborhood. Nevertheless, this CNN-MVN-based associative 

memory was an important step to the future. It showed that MVN can be used as a 

basic neuron in recurrent neural networks and therefore it can be used as a basic 

neuron in associative memories. Let us consider other MVN-based associative 

memories, which were developed after that first and which employ not cellular, 

but other network architectures. 

6.3.2   A Hopfield MVN-Based Associative Memory 

In 1996, Stanislaw Jankowski, Andrzej Lozowski, and Jacek M. Zurada presented 

in their paper [108] a model of the Hopfield MVN-based associative memory. 

They considered a Hopfield network (see Fig. 1.12, p. 36) with discrete MVN as a 

basic neuron. On the one hand, this model of an associative memory follows tradi-

tional Hopfield’s ideas. But one the other hand, being based on MVN, this model 

opens many new opportunities, first of all to store and retrieve multi-valued pat-

terns. It also shows that MVN can be used as a basic neuron in a Hopfield net-

work. It is important that this model became very popular and the paper [108] is 

one of the most cited papers devoted to MVN. That deep analysis of a Hopfield 

MVN-based network, which is done in [108] and which was later followed by a 

new design method developed by Mehmet Kerem Müezzinoğlu, Cüneyt Güzeliş, 
and Jacek M. Zurada in [109] is very important for better understanding of MVN 

properties and advantages. Let us consider an MVN-based Hopfield associative 

memory in detail, following [108, 109] and adapting some notations to those we 

use in this book. 

Let us consider a Hopfield neural network composed from N fully connected 

discrete MVNs with the activation function (2.50). Thus, the network state S  is 

an N-dimensional complex-valued vector ( )1 2, , ..., NS s s s=  

where { }0 1, ,..., k

m k k k k
s E ε ε ε −∈ = , 

2 /i k

k
e

πε = . Each neuron in this network 

performs in the following way.  

To train this network, the Hebb rule (3.107) with the normalization by the  

number N of neurons in the network (and the number of inputs of each neuron,  
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respectively) was used. Hence, to store L N-dimensional patterns presented by 

vectors ( )1
,..., ; 1,...,r r

N
f f r L= , the following rule is used 

1

1
;   , 1,..., ,

L
r r

mj m j

r

w f f m j N
L =

= =∑  (6.175) 

where the bar sign stands for complex conjugation. 

It easily follows from (6.175) that unlike in a classical Hopfiled network  

where always 
mj jm

w w= , in MVN-based Hopfield network this property is 

modified and 
mj jm

w w= . This means that the synaptic NxN matrix created from  

all the weights is a Hermitian matrix (a matrix, which is equal to its own  

conjugate-transpose) 

12 1 1 1

12 2 1 2

1 1 2 1 1

1 2 1

0 ...

0 ...

... ... ... ... ...

... 0

... 0

N N

N N

N N N N

N N N N

w w w

w w w

w w w

w w w

−

−

− − −

−

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

W . 

The weighted sum of the mth neuron is 

;  1,...,m mj j

j

z w s m N= =∑ , 

where 
mj

w  is the weight corresponding to the synaptic connection between the jth 

neuron and the mth neuron. 

Network dynamics (that is the output of the mth neuron at cycle 1t + ) is  

determined by the following equation 
 

( ) ( )21 ( ) ;  1,..., ,m k ms t P z t m Nε+ = =  (6.176) 

 

where the multiplier 
2 /2 /

2

i k i k

k
e e

π πε = =  is a phase shifter, which was sug-

gested to adjust the weighted sum such that it should appear in that sector to 

whose lower border it is closer. In fact, it determines half a sector shift of the 

weighted sum in phase. 

It is important to mention that it follows from (6.175) that this model does not 

employ a bias for its neurons. There is no “free weight” 0w . 

As we have seen considering a classical Hopfield network (see Section 1.3,  

pp. 36-37), this network is characterized by the energy function (1.38). Updating 

its states during the retrieval process, the network converges to the local minimum 
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of the energy function. To prove stability of the Hopfield associative memory 

based on (6.175)-(6.176), the following energy function was suggested in [108] 

1
( ) .

2
mj m j

m j

E S w s s= − ∑∑  (6.177) 

 

Since the synaptic matrix W  is Hermitian, the energy function (6.177) is  

real-valued.  

The network has asynchronous dynamics (that is its neurons update their states 

independently on each other). Network stability is proven in [108] in the following 

terms. The change of the energy function (6.177) of the Hopfield MVN-based 

neural network with the synaptic weights obtained according to (6.175) (which 

form a Hermitian matrix with nonnegative diagonal entries ( 0
mm

w ≥ ) ), neuron 

outputs determined by (6.176), and asynchronous dynamics S S′→ , is non-

positive ( ) ( ) 0E E S E S′∆ = − ≤  only when S S′ = . 

Storage capacity estimation of a Hopfield MVN-based neural network was 

done in [108] in terms of probability of an error in the network response. 

In 2003, in their paper [109], M. K. Müezzinoğlu, C. Güzeliş, and J. M. Zurada 

suggested a new design method for the Hopfield MVN-based associative memory, 

which improves its retrieval capability. Let us present it briefly, following [109] 

and adapting some notations. This method employs a set of inequalities to inter-

pret each pattern stored in the memory as a strict local minimum of a quadratic 

energy function. This improvement makes it possible to improve retrieval capabil-

ity of the network. The energy function (6.177) can be presented as a real-valued 

quadratic form 

1
( )

2

T
E S S S= − W . 

To ensure that this quadratic form reaches a local minimum at each element of the 

set ( ){ }1 ,..., ; 1,...,r r

NF f f r L= =  of patterns to be stored in the memory, the 

energy function has to satisfy the following condition for each X F∈  
 

1( ) ( ), ( ) { }E X E Y Y X X< ∀ ∈Β − , (6.178) 

 

where 1( )YΒ  is the 1-neighborhood of X, which is defined as 

{ } { }2 / 2 /

1

1

( ) : , ,
N

i k i k

j j j j m m

j

X Y y x e y x e y x j m X
π π−

=

Β = = ∨ = = ≠ ∪∪ . 

Substituting (6.177) into (6.178), we obtain 2N inequalities that should be satisfied 

by the weights, that is by the elements of the matrix W  
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1, ( ) { }mj m j mj m j

m j m j

w x x w y y Y X X> ∀ ∈Β −∑∑ ∑∑ , 

which implies 

( ) ( ) 1

1

0, ( ) { }
mj m j m j mj m j m j

m j N

w x x y y w x x y y Y X X
≤ < ≤

− + − > ∀ ∈Β −∑ . 

Taking into account that  

{ } { } { } { }2 Re Re 2 Im Im
mj m j mj m j mj m j mj m j

w x x w x x w x x w x x+ = − , 

it is easy to obtain from the previous equation the following 

{ } { } { }( ){

{ } { } { }( )}
1

1

Re Re Re

        Im Im Im 0, ( ) { }.

mj m j m j

m j N

mj m j m j

w x x y y

w y y x x Y X X

≤ < ≤

−

+ − > ∀ ∈Β −

∑
 

Let us take into account that if 
ˆ2 /ji x k

j kx e E
π

= ∈ , and 

ˆ2 /
,mi x k

m k
x e E

π= ∈ then

{ } ( ) { } ( )ˆ ˆ ˆ ˆRe cos 2 / ( ) ; Im sin 2 / ( ) ,
m j m j m j m j

x x k x x x x k x xπ π= − + = − +

where { }ˆ ˆ, 0,1,..., 1m jx x K k∈ = − . 

Hence (6.178), that is a necessary and sufficient condition for the energy  

function to reach its local minimum for each X F∈ , can now be re-written as 

the following inequality 

{ } ( ) ( )

{ } ( ) ( )

1

2 2
ˆ ˆ ˆ ˆRe cos cos

2 2
ˆ ˆ ˆ ˆ     Im sin sin 0.

mj j m j m

m j N

mj j m j m

w x x y y
k k

w y y x x
k k

π π

π π

≤ < ≤

⎧ ⎡ ⎤⎛ ⎞ ⎛ ⎞
− − −⎨ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎩

⎫⎡ ⎤⎛ ⎞ ⎛ ⎞
+ − − − >⎬⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎭

∑
 (6.179) 

To obtain all the weights, it is enough to solve (6.179) with respect to 

; , 1,...,
mj

w m j N= . This approach guarantees that all patterns from the set F, 

which we want to store in the memory, are attractors of the network that is those 

fixed points where the energy function reaches its local minima.  

However, this does not ensure that the energy function has no other 

local minima. If the latter is the case, the network may have other fixed points (at-

tractors), which differ from the elements of the set F. This means that the network 

may occasionally “retrieve” some spurious patterns. For example, it follows from 

(6.178), (6.179), and the considerations above that (6.179) constructed for a  
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pattern ( )1 ,..., ; ; 1,...,r r r

N j k
f f F f E r L∈ ∈ =  would be exactly the same con-

structed for each vector ( ) ( )1 ,..., ,..., ;r r t t t

N k k k k
f f Eε ε ε⊗ ∈ , where ⊗  stands 

for component-wise multiplication of two vectors. This means that the weights  

obtained from (6.179) may potentially produce at least ( 1) ( 1)k F k L− = −  

spurious pattern vectors (there is a multiplier k-1, not k in a front of L, because the 

component-wise multiplication by the vector ( ) ( )0 0,..., 1,...,1
k k

ε ε =  does not 

produce any new pattern). As it was suggested in [109], at least such (trivial) spu-

rious pattern vectors can be eliminated by introducing a bias to a weighting vector 

of each neuron. This is equivalent to adding a constant (for example, 
2 /i k

k
e

πε = ) 

as the 0
th

 component of each pattern vector, which become in this way 

( )1, ,..., ; 1,..., .r r

k N
f f r Lε =  Respectively, this is also equivalent to adding one 

more neuron (0
th

) to the network, and the output of this neuron is constantly equal 

to 
2 /i k

k
e

πε =  during the recurrent retrieval process. This means that the mth neu-

ron of the network 1,...,m N=  gets a bias (a “free weight” or a “complex 

threshold”), which is equal to 0 0m k m
w wε=� . Hence the weighted sum of the mth 

neuron of the network is equal now to 

0 ;  1,...,m m mj j

j

z w w s m N= + =∑� , 

and dynamics of this neuron is still described by (6.176). 

It is important to mention that a little bit later we will see how this property of 

the MVN-based Hopfield network to “memorize” spurious patterns along with the 

true patterns can be successfully used to store in the memory rotated images along 

with the original images. To get this effect, it will be necessary to represent im-

ages to be stored in the memory in the frequency domain. We will consider this 

approach in the last subsection of Section 6.3. 

To find the weights using this improved design technique, the following algo-

rithm should be used. 

1) For each element X F∈ , which we want to store in the memory, and for 

each 1( ) { }Y X X∈Β − , calculate the row vector 

( )12 12 13 13 10 10 23 23 24 24 20 20 0 0... | ... | ... | N Nc s c d c d c d c d c d c d , 

where ( )2
ˆ ˆcosmj j mc x x

k

π⎛ ⎞
= −⎜ ⎟⎝ ⎠  and ( )2

ˆ ˆsin
mj j m

d y y
k

π⎛ ⎞⎛ ⎞
= −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ , and 

append it to ( 1)N N N× + matrix A  (which is initially empty). 
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2) Find a solution 
( 1)N N +′∈q \  for the inequality system 0=Aq  using any 

appropriate method. 

3) Construct the Hermitian matrix 

1 2 2 1 2

1 2 4 3 4 2

2 1 2 4 3 4 2

0 ...

0

... ... 0 ...

... 0

N N

N N

N N N N

q iq q iq

q iq q iq

q iq q iq

−

− −

− − −

′ ′ ′ ′+ +⎛ ⎞⎜ ⎟′ ′ ′ ′− +⎜ ⎟′ = ⎜ ⎟⎜ ⎟
′ ′ ′ ′− +⎝ ⎠

W . 

4) Extract the weights from ′W  as 
mj mj

w w′=  for , 1, 2,...,m j N=  and 

2 /

0 , 1

i k

m m Nw e wπ
+

′=  for 1,2,...,m N= . 

The Hopfield MVN-based associative memory shows wonderful retrieval capa-

bilities. For example, it can successfully be applied to store gray-scale images and 

to retrieve them even when they are corrupted by heavy impulse noise. This net-

work does not suffer from the disadvantage of local connectivity, which character-

izes CNN-MVN-based associative memory. It is shown in [109] that the Hopfield 

MVN-based associative memory can retrieve gray-scale images corrupted by salt-

and-pepper noise with even 60% corruption rate. It was also shown in [109] that 

the improved design method presented there leads to better retrieval capability 

than the Hebbian learning employed earlier in [108]. 

6.3.3   MVN-Based Associative Memory with Random Connections 

We have just considered two associative memories with, let us say, “extreme” 

connecting topologies. One of them (CNN-MVN-based) has just a very limited 

amount of local connections where each neuron is connected only to its closest lo-

cal neighbors. Another one (the Hopfield MVN network) is fully-connected.  

A disadvantage of the first network is its limited retrieval capability, while a dis-

advantage of the second network is its complexity. For example, to store NxM 

gray-scale images in the Hopfield network, each neuron employs NxM weights, 

thus, the total amount of weighting parameters is 
2( )N M× , which is a huge 

number. This complicates utilization of such a network. For example, in [109], 

where the Hopfiled MVN-based network was used to store 100x100 gray-scale 

images, they were split into 500 fragments; each of them contained just 20 pixels. 

Thus, in fact, 500 separate associative memories were integrated into an ensemble. 

Can such a structure be simplified? Is it possible to find some compromise be-

tween a full connectivity, which is less sensitive to distortions in retrieved patterns 

and a local connectivity, which is much easier to implement? In 1995, in the small 

conference paper [110] the author of this book together with Naum Aizenberg and 

Georgy Krivosheev suggested an MVN-based recurrent neural network with ran-

dom connections. Later, in 2000, in [60], the author of this book together with 
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Naum Aizenberg and Joos Vandewalle developed this idea. To keep the integrity 

of our presentation, let us consider it here. 

Let us again consider a problem of storing NxM gray-scale images in an asso-

ciative memory. Let us, as it is usual for such a task, associate each pixel of our 

images with a neuron in a network. Thus, to solve our problem, we should use a 

network containing exactly NxM neurons. Evidently, if we need to store not 2D, 

but 1D patterns, nothing will change – to store N-dimensional vector-patterns, we 

should use a network containing N neurons. In CNN, each neuron is connected 

only to its closest neighbors, which means that each component of a pattern (each 

pixel of an image) is associated only with its closest neighbors. In the Hopfield 

network, each neuron is connected to all other neurons, which means that each 

component (pixel) of each pattern is associated with all other components (pixels). 

While in the first case local associations can be insufficient to retrieve a corrupted 

pattern, in the second case associations could be redundant. Let us consider a  

network topology, which is somewhere in the “middle” between local cellular 

connectivity and full Hopfield connectivity.  

So let us consider an MVN-based neural network containing NxM neurons. We 

will use this network as an associative memory to store NxM gray-scale images. 

Let us connect each neuron with just a limited amount of other neurons (like in a 

cellular network), but let us choose these “other neurons” to be connected with a 

given neuron, randomly. This means that they should be chosen not from a local 

neighborhood, but from the entire network. This is illustrated in Fig. 6.64. 

There are 25 neurons in the 

network. The inputs of the cen-

tral neuron are connected to the 

outputs of 6 (out of 25) ran-

domly selected neurons and to 

its own output. 

The upper bound for the stor-

age capacity of the NxM MVN-

based associative memory where 

each neuron has n inputs (one of 

which is a feedback input con-

nected to its own output) is 

.nNMk  This follows from the 

following. Each neuron in this 

network has n inputs and im-

plements an input/output map-

ping described by a multiple-

valued threshold function of n 

variables ( )1,...., nf x x . This function is threshold because the neuron has a 

feedback connection. If (without loss of generality) a feedback input is n
x , then 

( )1,...., n nf x x x= . But such a function is always threshold, which means that it 

 

Fig. 6.64 MVN-based neural network with random 

connections. The inputs of the central neuron are

connected to the outputs of 6 (out of 25) randomly

selected neurons and with its own output 
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can be learned using MVN. This function may take 
n

k  values. Since there are 

NxM neurons in the network, and each of them implements a function, which may 

take 
n

k  values, then up to 
nNMk  patterns can be stored in the network used as an 

associative memory. Similarly to CNN-MVN, it will be more and more difficult to 

obtain a non-trivial (with more than a single informally non-zero weight) weighting 

vector for each neuron when the number of the stored patterns increases. A prob-

lem is that the absolute value of the weight n
w  corresponding to the feedback input 

will become larger and larger in comparison to the one of the other weights. How-

ever, even for relatively small values of n, 
nNMk is so large, that it will not be 

possible to find so many patterns to store. To choose n, we should take into account 

the number of neurons in the network (which is the number of components (pixels) 

in our patterns to be stored). Experimentally it was shown that good results are 

shown with 0.01n NM×∼ . After n is fixed, connections for each neuron should 

be generated randomly: inputs of each neuron have to be connected to the outputs 

of randomly selected other n-1 neurons and with its own output. 

To train this network, the MVN learning algorithm based on the error-

correction learning rule (3.92) adapted to this particular case was used. Evidently, 

all the neurons should be trained separately. Whenever the desired output of the 

mjth neuron does not coincide with the actual output, the weights are updated in 

the following way. 

( )

( )

1

0 0

1
;

( 1)

1
;

( 1)

1,..., ; 1,..., ; ,..., ; 1,...,
n

mj mj i

mj mj

mj mj i i

r r mj mj r

mj mj

w w f Y
n

w w f Y f
n

m N j M r p p i L

= + −
+

= + −
+

= = = =

�

�  
(6.180) 

where mj are indexes of the current neuron, L is the number of patterns to be 

stored in the memory, 1,...,i L=  is the number of the current pattern, 
i

mjf  is the 

intensity value in the mjth pixel of the ith pattern (in its complex form), bar stands 

for complex conjugation, 1; ,...,i

r n
f r p p=  is the rth input of the mjth neuron 

taken from the ith pattern, 
1
,...,

nmj mj
p p  are the numbers of neurons whose out-

puts are connected to the inputs of the mjth neuron, 0

mj
w  is a free weight (bias) of 

the mjth neuron, and 
1

; ,...,
n

mj

r mj mjw r p p=  are its other n weights. 

The learning process based on the rule (6.180) is iterative. It is continued until 

the zero error is reached. However, its convergence could be reached very quickly 

(for example, it takes maximum 100-200 iterations for the 256x256 network 

where each neuron has 600 inputs and 20 training patterns). The learning process 

should converge faster when it starts from the Hebbian weights. After the network 

was trained, it could retrieve the stored patterns according to the following rule  
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( ) ( )
1

1

01 ;

1,..., ; 1,..., ; ,..., ,

mjn

mj

n

p

mj mj

mj r r

r p

mj mj

s t P w w s t

m N j M r p p

=

⎛ ⎞
+ = +⎜ ⎟⎜ ⎟⎝ ⎠

= = =

∑
 (6.181) 

which describes the recurrent dynamics of the network. Here P is the discrete 

MVN activation function (2.50). In other words, (6.181) determines the output 

mj
s  of the mjth neuron at cycle 1t + . 

To store 256-valued gray-scale images in our associative memory, and to avoid 

occasional jumps over the “0/2π border” during the pattern retrieval procedure, k 

in (2.50) should be taken larger than 256. Actually, for example, for 256-valued 

gray-scale images it was enough to choose k=264. 

 

  
(a) Original image “Alenka” with 75 % of pix-

els contained just Gaussian noise 
(b) Iterative Retrieval : 40 iterations 

  

(c) Iterative retrieval:80 iterations 
(d) Iterative retrieval: 150 iterations, 

PSNR=33.74 

Fig. 6.65 Retrieval of the image corrupted by Gaussian noise, which replaces 75% of the 

original information, in the MVN-based associative memory with random connections 
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The retrieval capability of the network trained using the rule (6.180) is impres-

sive. The example of image retrieval in the MVN-based associative memory with 

random connection is shown in Fig. 6.65. 

The 256x256 MVN-based neural network with random connections (each neu-

ron is connected to 59 other neurons and to itself) was trained using a set of 

twenty 256x256 gray-scale images with 256 gray levels. One of these images in 

shown in Fig. 6.63a. After the learning process was completed, the original image 

from Fig. 6.63a was corrupted by zero-mean Gaussian noise in such a way that a 

squared area, which is exactly 75% of the whole image area, was completely  

replaced by noise (Fig. 6.65a). Then the network retrieved the image iteratively, 

according to (6.181). The image retrieved after 40 iterations is shown in  

Fig. 6.65b. It is clearly visible that a significant part of corrupted pixels is already 

restored. The image retrieved after 80 iterations is shown in Fig. 6.65c. The image 

retrieved after 150 iterations is shown in Fig. 6.65d. Visually it does not have any 

distinction from the originally stored image (Fig. 6.63a). In fact, PSNR for image 

in Fig. 6.65d is 33.74, which corresponds to the standard deviation 5.24. It is again 

important to mention that the associative memory is not a filter. It does not re-

move noise, it restores a pattern, which was stored. In fact, there is no such a filter, 

which can remove Gaussian noise that replaces a signal completely in some con-

nected domain, like it is in Fig. 6.65a. 

6.3.4   An MVN-Based Associative Memory with Rotation  

Invariant Association 

In 2000, Hiroyuki Aoki and Yukio Kosugi suggested in their paper [111] a 

method, which makes an MVN-based associative memory rotation invariant. This 

idea was further developed in 2001 by the same authors together with Eiju Wata-

nabe and Atsushi Nagata in their paper [112] where they applied such a memory to 

store medical images. Let us present this idea here, following [111, 112] and 

adapting some notations to the style, which we use in this book. 

As we have seen above, the Hopfield MVN-based associative memory, when it 

memorizes patterns ( )1 ,..., ; ; 1,...,r r r

N j k
f f F f E r L∈ ∈ = , simultaneously 

memorizes patterns ( ) ( )1 ,..., ,..., ;r r t t t

N k k k k
f f Eε ε ε⊗ ∈ , where ⊗  stands for 

component-wise multiplication of two vectors. Hence, while we want to store L 

patterns in the memory and create exactly L fixed points (attractors), the memory 

simultaneously creates ( 1)k L−  more fixed points, which are spurious patterns. 

In fact, they are really spurious, but just if images to be stored in the memory are 

represented in the spatial domain. Really, in the spatial domain, the opera-

tion ( ) ( )1 ,..., ,..., ;r r t t t

N k k k k
f f Eε ε ε⊗ ∈  determines shift, which means that  

all the components (pixels) of a pattern to be stored, are shifted, creating a spuri-

ous pattern. An elegant solution, which was suggested in [111, 112], is based on  
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the frequency domain representation of patterns that we want to store in the  

memory and on the fundamental properties of phase (we considered them in detail 

in Section 1.4 (see pp. 43-44). 

So let us consider again the same memory design problem. We need to store 

L N M×  gray-scale images with k�  gray levels 

( ) { }1 ,..., ; 0,1,..., 1 ; 1,...,r r r

N jf f F f K k r L∈ ∈ = − =� � � �� �  in the MVN-based as-

sociative memory. Instead of spatial domain representation of images and their re-

coding in the MVN-suitable form as 

{ }2 / ; 0,1,..., 1 ;ig k
f e g K k k k

π= ∈ = − >� �� , we will use their frequency do-

main representation. Let 

( ){ } ( )ˆ ˆ , ; 0,1,..., 1; 0,1,..., 1f f n m DFT f n N m M′ ′ ′ ′= = = − = −�  

be the Fourier transform of f�  ( ,n m′ ′  are the corresponding spatial frequencies). 

Phases ( )ˆarg ,f n m′ ′  are the most suitable inputs for MVN. As we have seen 

(Fig. 1.15 and Fig. 1.16), phase completely contains all information about edges, 

boundaries, their orientation, etc. However, since we want not only to recognize a 

stored image, but to retrieve it, we should also memorize the magnitude informa-

tion. It was suggested in [111, 112] to include this information in phase as follows. 

Let ( ){ }max
ˆmax , ; 0,1,..., 1; 0,1,..., 1f f n m n N m M′ ′ ′ ′= = − = − . Then 

( )

max

ˆ ,
0 1

f n m

f

′ ′
< ≤ . Let us transform this ratio into the angular value 

( )
( )

max

ˆ ,
, arccos ; 0,1,..., 1; 0,1,..., 1.

f n m
n m n N m M

f
γ

⎛ ⎞′ ′⎜ ⎟′ ′ ′ ′= = − = −⎜ ⎟⎝ ⎠  

Let us now add ( ),n mγ ′ ′  to phases ( )ˆarg ,f n m′ ′ : 

( ) ( ) ( )ˆ, arg , , ;

0,1,..., 1; 0,1,..., 1.

n m f n m n m

n N m M

ϕ γ′ ′ ′ ′ ′ ′= +

′ ′= − = −
 (6.182) 

 

Now we can form patterns, which will be stored in the network 
 

( ) ( ),
, ; 0,1,..., 1; 0,1,..., 1.

i n m
f n m e n N m M

ϕ ′ ′′ ′ ′ ′= = − = −  (6.183) 
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Evidently, all ( ),f n m′ ′  determined by (6.183) are located on the unit circle, and 

they are natural inputs for MVN. It is wonderful that transformation (6.182), 

which “incorporates” magnitude into phase, is easily invertible. An initial image 

f�  can easily be restored as follows 

( ){ }max Ref f IDFT f=� , (6.184) 

where ( )IDFT f  is the inverse Fourier transform of f. 

The most wonderful property of the representation (6.182)-(6.183) is that  

storing original images in the associative memory, we simultaneously store their 

rotated versions, without any additional effort. Let us show this. 

It was suggested in [111, 112] to use M separate Hopfield-like MVN-based as-

sociative memories to store M N-dimensional vector-columns 

( ); 0,1,..., 1; 1,...,rf m m M r L′ ′ = − =  of the NxM- dimensional pattern ma-

trix ( ), ; 1,...,rf n m r L′ ′ =  for each of our L NxM patterns. We call these net-

works Hopfield-like because they are fully connected as a Hopfield network, but 

each neuron has also a feedback connection – one of its inputs is connected to its 

own output. 

Let us add to each N-dimensional vector- pattern 

( ); 0,1,..., 1; 1,...,rf m m M r L′ ′ = − = , which we want to store in our mem-

ory, the N + 1
st
 component, which is constantly equal to 

0 1
k

ε = . Hence, we are 

going to store in the memory patterns 
 

( ) ( )( ) ( )0 2 /

0 1 1, , ,..., ; ;

0,1,..., 1; 1,..., .

r r r i l k

r r k N
f m f m f f f e

m M r L

πε −
′ ′= =

′ = − =

I
 (6.185) 

 

Let us consider an arbitrary memory out of our M Hopfield memories. Its learning 

can be based on the normalized Hebb rule: 
 

( ) ( )
1

1
;   , 0,1,..., .

L
r r

tj t j

r

w f m f m t j N
L =

′ ′= =∑ I I
 (6.186) 

 

A wonderful property is that memorizing in this way a pattern ( )f m′ , this mem-

ory also memorizes k-1 phase-shifted patterns ( )2 / ; 1,..., 1i l k
e f m l k

π ′ = −
I

. 

This means that not only patterns ( ) ; 0,1,..., 1f m m M′ ′ = −  are the fixed 

point attractors for this associative memory, but also k-1 phase-shifted patterns  

 



6.3   MVN-Based Associative Memories 243

 

( ) ( )2 / 2 / 2 / 2 / 2 /

0 1 1, ,..., ; ;

1,..., 1

i l k i l k i l k i l k i l k

N
e f m e f e f e f e

l k

π π π π π
−

′ =

= −

I
 (6.187) 

 

are the fixed point attractors for this associative memory either. 

As any associative memory, this one, when shown any of patterns, which par-

ticipated in the learning process (see (6.185) ) or their noisy versions (we do not 

discuss here a level of noise to which this network is tolerant), can retrieve them. 

The retrieval procedure is determined by the network dynamics, which determines 

the output of each neuron at cycle 1t +  

( )
0

1 ;  , 0,1,..., ,
N

l lj j

j

s t P w s l j N
=

⎛ ⎞
+ = =⎜ ⎟⎝ ⎠∑  

where ; 0,1,...,
j

s j N=  is a state of the jth neuron. 

If now we are going to retrieve any of phase-shifted patterns (6.187), evidently, 

it will also be retrieved as a fixed point attractor. 

Let us try now to retrieve a phase-shifted pattern 

( ) ( )0 1 1, ,..., ;1Ng m f f fα α α −
′ =  whose shift α  is unknown (this means that 

the last (additional) component of the pattern vector ( )g m′  is equal to 
01
k

ε= ) 

or its noisy version. 

It is wonderful that this retrieval process converges to  

( ) ( )0 1 1, ,..., ;Ng m f f fβ β β β−
′ =

�
, 

where β  is a complex number 
argi

e
β

located on the unit circle. Thus, it is enough 

to multiply all the components of the vector ( )g m′
�

 by 
1 argi

e
ββ − −=  to obtain 

( ) ( )0 1 1, ,..., ;1
N

f m f f f −
′ =

�I
, from which we obtain a pattern 

( ) ( )0 1 1, ,..., Nf m f f f −
′ =

�
, which must be a close estimation (or the exact 

copy) of one of our initially stored patterns ( ); 1,...,rf m r L′ = . The example of 

this retrieval process is considered below. 

Since we have considered an arbitrary of our M associative memories, the same 

considerations are true for all of them. Thus, after we run the retrieval procedure 

in all of M associative memories, we restore an estimation 

( ), ; 0,1,..., 1; 0,1,... 1f n m n N m M′ ′ ′ ′= − = −
�

 of one of our initially stored 

Fourier “magnitude-rotated” patterns (6.183). 
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Then a spatial domain image ( ), ; 0,1,..., 1; 0,1,... 1f n m n N m M= − = −
�
�  

can be obtained using the procedure (6.184) based on the inverse Fourier trans-

form. This image is a closer estimation or exactly one of the original images 

( )1 ,..., ; 1,...,r r

r Nf f f F r L= ∈ =� � � � . 

This means that the described associative memory can retrieve the phase-

shifted (rotated) patterns and therefore it is rotation invariant. 

Finally, let us demonstrate one simple example, how a phase-shifted pattern can 

be restored using the described approach. 

Let we want to store a pattern ( ) { }0 1 2, , ; 0,1,2,3jf f f f K∈ =� � � � � . Since 

4k =� , let us choose 6k =  in the discrete MVN activation function (2.50) (see 

Fig. 6.66). Let without loss of generality representation (6.183) of our pattern is 

( )2 3

6 6 6, ,f ε ε ε= . Then ( )2 3

6 6 6, , ,1f ε ε ε=� . Since we have to learn 4-

dimensional vector, our Hebbian network contains 4 neurons. Their weights we 

have to find according to (6.186). We can store them in the 4x4 matrix (each row 

corresponds to the weights of a particular neuron) 
5 4

6 6 6

5 2

6 6 6

2 3

6 6 6

5 4 3

6 6 6

1

1

1

1

ε ε ε

ε ε ε

ε ε ε

ε ε ε

⎛ ⎞⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠
W . 

 

Let us now consider the follow-

ing phase- shifted pattern 

( )
( )

2 2 2 2 2 3

6 6 6 6 6 6 6

3 4 5

6 6 6

, ,

             , , .

g fε ε ε ε ε ε ε

ε ε ε

= = =

=

Let us process it using our associa-

tive memory. First, we have to  

add one more component to our 

pattern ( ) ( )3 4 5

6 6 6
,1 , , ,1g g ε ε ε= =� . Exactly this pattern should be processed in 

the network.  

The results of this processing are as follows (P is the discrete MVN activation 

function (2.50), k=6, see Fig. 6.66). 
 

Neuron 0. ( )3 5 4 4 5 3 3 3 2

0 6 6 6 6 6 6 6 6 6 6 0 61 1 ;z P zε ε ε ε ε ε ε ε ε ε ε= ⋅ + + + ⋅ = + + + = . 

Neuron 1. ( )3 4 5 5 2 4 4 4 2 3

1 6 6 6 6 6 6 6 6 6 6 0 61 1 ;z P zε ε ε ε ε ε ε ε ε ε ε= + ⋅ + + ⋅ = + + + = . 

Neuron 2. ( )2 3 4 5 3 5 5 5 3 4

2 6 6 6 6 6 6 6 6 6 6 0 61 1 ;z P zε ε ε ε ε ε ε ε ε ε ε= + + ⋅ + ⋅ = + + + = . 

 

Fig. 6.66 The discrete MVN activation function

(2.50) for k=6 
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Neuron 3. ( )5 3 4 4 3 5 2 2 2

3 6 6 6 6 6 6 6 6 6 0 61 1;z P zε ε ε ε ε ε ε ε ε ε= + + + = + + + = . 

Thus, the retrieved pattern is ( )2 3 4

6 6 6 6
, , ,g ε ε ε ε=� . The last component of this  

retrieved pattern is 
2

6
ε . Let us find ( )

1
2

6
gε

−
�  according to the described procedure: 

( ) ( ) ( )1 5 5 2 3 4 2 3

6 6 6 6 6 6 6 6 6 6
, , , , , ,1g g gε ε ε ε ε ε ε ε ε ε

−
= = = =� � � . 

Extracting now the first three components of the last vector, we obtain nothing 

else than the original non-shifted pattern ( )2 3

6 6 6
, ,f ε ε ε= , which we have stored 

in the memory. 

This interesting approach presented in [111, 112] demonstrates not only a high 

potential of MVN and MVN-based neural networks, but also demonstrates how 

important it is to treat the phase information properly. This gives a wonderful pos-

sibility to develop new applications. 
6.4   So me Other Applications  of MVN-Based Neural Networ ks  

6.4   Some Other Applications of MVN-Based Neural Networks 

and Concluding Remarks to Chapter 6 
6.4   So me Other Applications  of MVN-Based Neural Networ ks  

In this Chapter, we have considered just some applications of MVN-based neural 

networks. There are perhaps the most remarkable earlier applications (associative 

memories) and recent applications (solving some real-world classification and 

prediction problems using MLMVN). 

Those applications, which we have considered in this Chapter, confirm high ef-

ficiency of MVN and MVN-based neural networks, as well as they definitely  

confirm important advantages of complex-valued neural networks over traditional 

real-valued machine learning techniques. Indeed, we have considered, for exam-

ple, the challenging multi-class classification problem of blur and its parameters 

identification. While classical MLF fails to solve this problem and SVM employs 

over 25 million parameters to solve it, MLMVN solves it employing more than 

1000 (!) times fewer parameters. It is important that a high accuracy demonstrated 

by MLMVN when solving this problem shows a reliable “margin of safety”. It is 

clearly visible that 28 classes considered in that problem is absolutely not a limit. 

If it would be necessary, MLMVN could learn and solve a classification problem 

with more classes. What just probably would be necessary – to increase amount of 

output neurons if new groups of classes will be considered (for example, more 

types of blur with their parameters). As we have seen, the MLMVN learning  

algorithm works efficiently regardless of how many neurons and layers are in the 

network. 

This property was also confirmed by the next application, which we have con-

sidered in this Chapter, financial time series prediction using MLMVN. We 

wanted to show that MLMVN can learn highly nonlinear real-world problems and 
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can show a high generalization capability. Financial time series are highly nonlin-

ear, they are very unsteady, contain many local and global jumps of different size. 

To learn them using a neural network with an aim to make long-term predictions, 

it is necessary to learn from a longer interval of historical data and to use a net-

work with as many hidden neurons as it is possible. Otherwise, it is impossible to 

follow all jumps in data corresponding to different trends. While, for example, it  

is very difficult to train MLF with thousands of neurons, it is not a problem to 

train MLMVN with even tens thousands of neurons. As a result, MLMVN can be 

efficiently used to make long-term predictions of time series. 

Other impressive applications of MVN-based neural networks, which we have 

considered in this Chapter, are MVN-based multistate associative memories. 

There are a Hopfield MVN-based associative memory, a cellular MVN-based as-

sociative memory, an MVN-based associative memory with random connections, 

and an ensemble of Hopfield-like memories. We have considered learning rules 

for these memories and analyzed their stability. We have also considered how 

these memories may retrieve patterns, which are stored there, even when highly 

corrupted patterns are shown to them. It is also important that we convinced one 

more time how essential it is to treat phase properly and how helpful and suitable 

is MVN to work with phase. 

We believe that all these applications along with those applications and bench-

mark tests, which we have considered earlier, clearly demonstrate advantages of 

MVN and MVN-based neural networks, their efficiency in solving pattern recog-

nition, classification, and prediction problems. 

However, the size of this book is limited and we have not considered some  

other applications of MVN-based neural networks. Our goal was first of all to 

consider in this book a fundamental character of complex-valued neural networks 

in general and MVN-based neural networks in particular. We have considered in 

detail some recently developed efficient applications (based on MLMVN) and 

some earlier fundamental applications (associative memories). Nevertheless, we 

would like to at least point out some other important applications of MVN-based 

neural networks, which have been developed earlier. 

We have mentioned many times that MVN is perhaps the most suitable ma-

chine learning tool, which may work with phase. We have also distinguished that 

Fourier phase spectrum can be used as a feature space for solving pattern recogni-

tion and classification problems. In 2002, in the paper [113], the author of this 

book together with E. Myasnikova, M. Samsonova, and J. Reinitz employed low 

frequency phases for solving the problem of gene expression patterns classifica-

tion. Gene expression patterns were taken from a confocal microscope, and a 

problem was to perform a classification corresponding to eight temporal stages of 

gene expression. Patterns from adjacent temporal classes were quite similar to 

each other and it was very difficult to find a feature space where they could be 

separated. It was suggested in [113] to form a feature space from phases corre-

sponding to the lowest frequencies. What is interesting, in 2002, when this work 

was done, MLMVN was not yet developed. To solve a problem, it was suggested 

to use an MVN-based neural network, which is possible to call an MVN-

ensemble, where each neuron was assigned to solve its part of the problem. This 
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approach was probably too artificial (first, two neurons classified patterns as be-

longing to classes 1-4 or 5-8, then other four neurons classified patterns as belong-

ing to classes 1-2, 3-4, 5-6, and 7-8, and finally eight neurons classified patterns as 

belonging to certain classes. The “wiener takes it all” technique was used on each 

stage). Nevertheless, the results were quite good; the average classification accu-

racy (over all classes) was 78.4% (it ranged from 70% to 91% for different 

classes). It is interesting that all other machine learning tools that were tested for 

solving the same problem, failed to approach this accuracy. The best result shown 

by an alternative technique (linear discriminant analysis) was 64.2%. We believe 

that these results were very important for showing that phases can be used as fea-

tures for image recognition and classification and for showing that since MVN 

preserves the phase information and treats it properly, it is a very suitable tool for 

working with phases. After MLMVN was developed in 2004-2007 and presented 

in [62], we believe that such classification problems as that one considered in 

[113] should be solved using MLMVN, and better results should be expected. But 

that basic approach to image recognition using phases as features and MVN-based 

neural network as a tool, which was presented in [113], merits to be mentioned 

here. 

There is another interesting line of MVN applications, which was not presented 

in this book. There are applications in image processing. This book was mostly 

devoted to MVN fundamentals. We also concentrated on recently developed solu-

tions (like MLMVN, its learning algorithm, and applications) and considered ap-

plications of MVN-based neural networks in pattern recognition, classification, 

and prediction.  

Application of MVN (mostly of MVN-based cellular neural network, CNN-

MVN) in image processing is not directly connected with its ability to learn. How-

ever, they extend an area where MVN can be used, and they are quite efficient. 

The first such an application was considered by the author of this book in his 

paper [114]. It was so-called precise edge detection, which is based on the split-

ting of an image into binary planes, their separate processing using a Boolean 

function and integration of the resulting binary planes into the resulting gray-scale 

image. Actually, it is clear that this kind of processing can be implemented with-

out any neural network. But what is interesting, those Boolean functions, which 

were used for edge detection corresponding to upward and downward brightness 

jumps and for edge detection by narrow direction in [114] and then in [60] and 

[115], are non-linearly separable. Hence, it was very attractive to learn them using 

the universal binary neuron (which is, as we remember, MVN-P with a periodic 

two-valued activation function). Learning of some of these Boolean functions  

was considered in [114] and [60]. Learning of Boolean functions for edge detec-

tion by narrow direction was considered later in [88]. After any of these Boolean 

functions is learned, it can be implemented using MVN-P. Then these neurons  

integrated in a cellular neural network process an image. 

Another interesting application is the use of specific nonlinearity of the discrete 

MVN activation function (2.50) for nonlinear filtering. Actually, in this case 

(2.50) applied to the weighted sum of intensity values in the local neighborhood of 

a processed pixel is simply considered as a filter, which is in fact a nonlinear filter. 
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This filter (multi-valued nonlinear filter) was considered in detail in [60, 116]. All 

properties of this filter are determined by its weights and the activation function 

(2.50). What is interesting, that depending on the weighting templates this filter 

can be used for additive and multiplicative noise reduction and for image en-

hancement. Evidently, this filter can be implemented using a cellular neural  

network with multi-valued neurons. In this case, each neuron processes a single 

pixel of an image. In the paper [115], a special attention was paid to application of 

multi-valued nonlinear filtering and neural edge detection methods in medical  

image processing. 
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Concluding Remarks 

“If it be now, 
'tis not to come; if it be not to come, it will be 
now; if it be not now, yet it will come: the 
readiness is all…” 
 
William Shakespeare, Hamlet 
 

 
Thus we are close to finish. Actually, what is left - following tradition, we have to 
make some concluding remarks. 

However, we would not like to repeat here again the formal content of the 
book. In fact, the reader can easily take a look at it or Chapter-by-Chapter over-
view in the Preface. 

What is the most important in this book and behind it in the author’s opinion? 
Our thinking is organized in such a way that often it is difficult to accept some-

thing, which does not look clear from the very beginning, which from the first 
point of view even contradicts to something we consider an axiom. A typical ex-
ample is how difficult it was for a scientific world to understand and to accept 
complex numbers. We have already mentioned in the Preface that it took about 
300 years for mathematicians to accept them and to understand their importance. 
Often we are too conservative to easily accept new ideas. 

The author may now share his own experience. A significant part of this book 
is devoted to MLMVN. However, to develop it, it was necessary to overcome a 
classical stereotype that the learning of any feedforward neural network can be 
based only on some optimization technique, which immediately leads to the ne-
cessity of differentiability of a neuron activation function to design a learning  
algorithm. But neither discrete nor continuous MVN activation functions are dif-
ferentiable! It took at least 2-3 years to understand that to develop MLMVN, it is 
possible to use the error-correction learning, which is simpler, reliable and does 
not require differentiability of an activation function.  

What does it mean? This means only that we should easier accept new ap-
proaches and new solutions. We should not see them just through some traditional 
stereotypes, which may prevent to understand them and to develop something, 
which is significantly different form something traditional. 

The main goal of this book is to show that complex-valued neural networks and 
particularly the ones with the multi-valued neuron are natural and powerful tools 
for solving challenging real-world problems in pattern recognition, classification, 
prediction, and simulation of complex systems. 
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We hope that presenting multi-valued neurons as explicitly as possible, we  
convinced the reader that complex-valued neural networks are as natural as their 
traditional real-valued counterparts. But we also hope that it was succeeded to 
show that often complex-valued neurons and neural networks are more powerful 
than real-valued neurons and neural networks and many other machine learning 
tools.  

We have started from a simple example, which shows how a single two-valued 
neuron with a periodic activation function easily solves the XOR problem. While 
most of neural networks textbooks state that since a single (real-valued!) neuron 
cannot learn such non-linearly separable problems as XOR, neural networks must 
be developed, we say here: not, many non-linearly separable problems can be 
learned by a single multi-valued neuron with complex-valued weights and com-
plex-valued activations function. Of course, neural networks from these neurons 
also can be developed, but they should be used for solving those challenging prob-
lems, which cannot be solved using real-valued neural networks with a desirable 
accuracy or which it is difficult to solve using other traditional machine learning 
techniques. 

New challenging problems generate new approaches and vice versa. This is a 
way of progress. The necessity of solving pattern recognition problems favored 
the development of machine learning in general, and artificial neurons and neural 
networks in particular. Today’s achievements in machine learning make it possi-
ble to solve those problems of pattern recognition that were even not considered 
yesterday. The necessity of solving multi-valued problems (especially, multi-class 
classification problems) was a very important stimulus for the development of 
multiple-valued logic over the field of complex numbers. In turn, this model of 
multiple-valued logic was followed by multi-valued neurons and neural networks 
based on them as utilizations of its basic ideas. The development of new solutions 
in this area makes it possible to consider more and more new applications. The 
first artificial neuron (McCulloch and Pitts) and the first learning rule (Hebb) were 
developed as simplified mathematical models of biological neurons and their 
learning. Today’s much more sophisticated artificial neurons and learning  
techniques make it possible to develop simulations of biological neurons and  
biological neural networks that are much closer to the reality. It is possible to 
demonstrate more and more such examples. 

In fact, complex-valued neural networks are now a rapidly developed area. 
They open new and very promising opportunities in solving challenging real-
world problems. We have seen that many problems considered in this book can be 
easier solved using MVN and MVN-based neural networks than using other tech-
niques. Some other problems cannot be solved using other techniques at all. 

Thus, we should not be afraid of new solutions, which may look not traditional 
and which should be even difficult to accept immediately. But the sooner we ac-
cept them and understand their efficiency, the more significant achievements we 
should expect, and the more challenging problems we may solve. 

So what is the most important, the reader may get from this book? There are the 
following fundamental facts, which we would like to distinguish. 
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• Complex-valued neural networks are absolutely natural as well as their 
real-valued counterparts. 

• Multiple-valued threshold logic over the field of complex numbers, being 
a generalization of traditional threshold logic, is a background on which 
the multi-valued neuron is based. 

• A single multi-valued neuron with complex-valued weights and complex-
valued activation function is significantly more functional than any real-
valued neuron. It can learn multi-valued input/output mappings, which 
cannot be learned using a single real-valued neuron. 

• A single MVN with a periodic activation function (MVN-P) may learn 
those input/output mappings, which are non-linearly separable in the real 
domain. Such problems as XOR and Parity n, for example, are about the 
simplest that can be learned by a single MVN-P. 

• The most efficient MVN learning rule is the error-correction rule, which 
generalizes the classical Rosenblatt-Novikoff error-correction rule for the 
multi-valued case. The learning algorithm based on this rule should not 
be considered as the optimization problem, which is its advantage; it does 
not suffer from the local minima phenomenon. 

• The latter is true not only for a single MVN, but for MLMVN, MVN-
based feedforward neural network. Its error-backpropagation and its 
learning algorithm are derivative-free. The MLMVN learning algorithm 
is based on the same error-correction learning rule as the learning algo-
rithm for a single MVN. 

• MLMVN can be used for solving those multi-class classification prob-
lems, time series prediction problems, which cannot be efficiently solved 
using other machine learning techniques. MLMVN can also be used for 
simulation of complex systems. 

• MVN treats the phase information properly and therefore it can easily 
employ phases as a feature space for solving classification and pattern 
recognition problems; it can also use phases to store patterns in an MVN-
based associative memory. 

• MVN can be a better model for simulation of a biological neuron. In bio-
logical neurons, the information transmitted by them to each other is  
encoded as the frequency of spikes. Since the frequency can easily be as-
sociated with phase, which determines the MVN state, inputs, and output, 
MVN can be used for simulation of a biological neuron. 

 
Finally, the author sincerely hopes that his main goal, the explicit presentation of 
MVN and MVN-based neural networks, is achieved by writing this book. 

Hopefully, this book will help to involve more people in research in the filed of 
complex-valued neural networks. The author will be glad and consider his work 
successful if more researches will use MVN and MVN-based neural networks for 
solving new challenging real-world problems. 
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