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Foreword

It is our great pleasure to welcome a new book “Average Time Complexity of
Decision Trees” by Igor Chikalov. This book is devoted to the study of average
time complexity (average depth and weighted average depth) of decision trees
over finite and infinite sets of attributes. It contains exact and approximate
algorithms for decision tree optimization, and bounds on minimum average
time complexity of decision trees. The average time complexity measures can
be used in searching for the minimum description length of induced data
models. Hence, there exist relationships of the presented results with the
minimum description length principle (MDL).

The considered applications include the study of average depth of decision
trees for Boolean functions from closed classes, the comparison of results of
the performance of greedy heuristics for average depth minimization with
optimal decision trees constructed by dynamic programming algorithm, and
optimization of decision trees for the corner point recognition problem from
computer vision.

The book can be interesting for researchers working on time complexity
of algorithms and specialists in machine learning.

The author, Igor Chikalov, received his PhD degree in 2002 from Nizhny
Novgorod State University, Russia. During nine years he was working for
Intel Corp. as a senior software engineer/research scientist in machine learn-
ing applications to the control and diagnostic problems of semiconductor
manufacturing. Since 2009 he is a senior research scientist in King Abdul-
lah University of Science and Technology, Saudi Arabia. His current research
interests include supervised machine learning and extensions of dynamic pro-
gramming to the optimization of decision trees and decision rules.

The author deserves the highest appreciation for his outstanding work.

Mikhail Moshkov
May 2011 Andrzej Skowron



Preface

The monograph is devoted to theoretical and experimental study of decision

trees with a focus on minimizing the average time complexity. The study re-

sulted in upper and lower bounds on the minimum average time complexity

of decision trees for identification problems. Previously known bounds from

information theory are extended to the case of identification problem with

an arbitrary set of attributes. Some examples of identification problems are

presented giving an evidence that the obtained bounds are close to unimprov-

able. In addition to universal bounds, we study effectiveness of representing

several types of discrete functions in a form of decision trees. In particular,

for each closed class of Boolean functions we obtained upper bounds on the

average depth of decision trees implementing functions from this class.

The monograph also studies the problem of algorithm design for optimal

decision tree construction. An algorithm based on dynamic programming

is proposed that describes a set of optimal trees and allows for subsequent

optimization on other criteria. Experimental results show applicability of the

algorithm to real-life applications that are represented by decision tables

containing dozens of attributes and several thousands of objects.

Beside individual identification problems, infinite classes of problems are

considered. It describes necessary conditions on such classes in order to have

polynomial complexity algorithms for optimal decision tree construction.

The presented results can be of interest for researchers in test theory,

rough set theory and machine learning. Some results may be considered for

including in graduate courses on discrete mathematics and computer science.

The monograph can be used as a reference to prior results in the area.

Some results were obtained in collaboration with Dr. Mikhail Moshkov

and published in joint papers [51, 52, 53, 54, 56]. I am heartily thankful to

Dr. Moshkov for help in preparing this book.



X Preface

I would like to acknowledge and extend my gratitude to Victor Eruhimov

for fruitful discussions about applications of decision trees and Dr. Andrzej

Skowron for constructive criticism and suggestions for improvement of the

book.

Thuwal, Saudi Arabia,

April 2011 Igor Chikalov
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Chapter 1

Introduction

Decision trees appeared in 50-60s of the last century in theoretical computer

science [14, 64, 80] and applications [24, 37]. Similar objects are also con-

sidered by natural and social sciences, for example, taxonomy keys [30] or

questionnaires [63]. Decision trees naturally represent identification and test-

ing algorithms that specify the next test to perform based on the results of

the previous tests. A number of particular formulations were generalized by

Garey [27] as identification problem that is a problem of distinguishing ob-

jects described by a common set of attributes. More general formulation is

provided by decision table framework [34, 65] where objects can have incom-

plete set of attributes and non-unique class labels. In that case, acquiring

class label is enough to solve the problem: identifying a particular object is

not required. In this context, decision trees found many applications in test

theory [39, 45, 46, 81], fault diagnosis [14, 60, 72], rough set theory [61, 62],

discrete optimization, non-procedural programming languages [34], analysis

of algorithm complexity [38], computer vision [74], computational geometry

[69].

Decision tree is also a way of representing data in a structured hierarchical

manner. It describes a recursive partitioning of a set of objects into groups

according to the attribute values. Such representation reveals various patterns

in data like object similarity and common characteristics of several objects. If

objects are divided into classes, decision tree gives an idea of which attributes

are important for assigning an object to a certain class. In machine learning

problems, decision trees show ability to generalization that is capturing strong

dependencies only and ignoring the weak ones which are resulted from a finite

sample size and do not reflect properties of the data source [8, 71]. Compact

decision trees are easily interpreted by human experts that makes it favorable

over other models. The state-of-the-art statistical modeling techniques like

tree ensembles [7, 26] use decision trees for its insensitivity to outliers and

I. Chikalov: Average Time Complexity of Decision Trees, ISRL 21, pp. 1–14.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2011



2 1 Introduction

uniform way of dealing with numeric and categorical (discrete unordered)

attributes.

In most cases, multiple decision trees are available for the same problem.

Not all of them are equally favorable. Depending on the application, a tree

is required to have minimal storage complexity or guaranteed time complex-

ity in all cases, or minimal expected number of tests. This leads to different

strategies for building of decision trees. Bounds on the minimum tree com-

plexity and algorithms for optimal tree constriction are studied in test theory

[21, 49, 46, 47, 81], rough set theory [57, 58, 79], search theory [1], machine

learning [33, 71]. It was discovered, that for almost all criteria, the problem

of building an optimal decision tree is NP -hard, and for many cases there are

results preserving a polynomial time approximation. The problem of design

of effective algorithms for building decision trees is still open. Though, recent

advances proved that greedy algorithms [12, 32] build trees that are close to

optimal for some cases.

In this monograph, several known results on the average time complexity of

decision trees are generalized and a number of new problems are considered.

The main goal is to obtain bounds on the minimum average time complexity

of decision trees and design effective algorithms for building decision trees for

some classes of information systems. Methods of combinatorics, probability

theory and complexity theory are used in the proofs as well as concepts from

various branches of discrete mathematics and computer science.

The monograph consists of five chapters. Chapter 2.4.3 considers bounds

on the minimum average weighted depth of decision trees. Upper and lower

bounds on the average time complexity of decision trees were known previ-

ously for a problem with a complete set of attributes. These bounds depending

only on the entropy of probability distribution follow from results of coding

theory [41, 77] and are widely applied in search theory (see, e.g. [1]). Chap-

ter 2.4.3 generalizes these bounds to the case of the average weighed depth

of decision trees for an arbitrary identification problem. In the first section,

an upper bound on the average weighted depth of decision trees and more

precise bound on the average depth are proved. These bounds depend on the

entropy and a parameter M(z), which is introduced by Moshkov in [46]. An

analogous parameter of the exact learning problem is called extended teach-

ing dimension [4, 33]. In general case, calculating M(z) is computationally

intractable, but for several classes of problems, either exact value or tight

bounds on M(z) can be obtained by theoretical analysis.

The second section describes conditions on the problem structure and the

probability distribution for objects that enable problem decomposition. Un-

der these conditions an optimal decision tree for the initial problem can be

synthesized from optimal decision trees for simpler problems. This technique
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is used to build a class of problems for which the minimum average depth of

decision tree is close to its upper bound given in the first section.

Chapter 3.2 is devoted to several applications that can effectively use de-

cision trees. It consists of two sections. The first section studies the average

depth of decision trees implementing Boolean functions. A Shannon type

function is considered that describes growth of the average depth of decision

trees with growth of the number of arguments in the functions being imple-

mented. For each closed class of Boolean functions [68, 36], a lower and an

upper bound is obtained on a Shannon type function characterizing this class.

The obtained results are compared to the analogous results for the depth of

decision trees described in [48]. The notion of decision table partition used in

the proofs is similar to the notion of system of nonoverlapping coverings of

Boolean cube used in spectral methods of digital logic [6], but the type of cov-

ering is estimated from the parent closed class of the function rather than its

spectral properties. It allows to improve lower bounds on the average depth

of decision trees for some functions (e.g., the voting function and the logical

sum). The second section shows that each branching program with the mini-

mum average weighted depth is a read-once branching program. Due to this

fact, known exponential lower bounds on the number of nodes in read-once

branching programs for several combinatorial problems [59, 66, 83, 84, 85]

are applicable to branching programs with the minimum average weighted

depth.

Chapter 4.4.2 is devoted to algorithms for decision tree construction. The

first section describes an algorithm A that builds a set of decision trees with

the minimum average weighted depth for a problem given in a form of de-

cision table. The idea of the algorithm is based on dynamic programming

[27, 42, 60, 76]. The second section describes experimental results of using A
for implementing Boolean functions by decision trees. The third section is de-

voted to greedy algorithms. It describes a general scheme of greedy algorithm,

defines several data impurity functions, and describes results of a comparative

study of performance of several greedy algorithms applied to data sets from

UCI Machine Learning Repository [25]. The fourth section describes results

of applying A to a practical problem of computer vision—fast detection of

corner points [75].

Chapter 5.2 considers a class of information systems called restricted in-

formation systems. It consists of two sections. The first section proves that

for restricted information systems (and only for such systems), there exist

upper bounds on the average depth of decision trees that depend only on

the entropy of object probability distribution. The second section gives nec-

essary and sufficient conditions that make the time complexity of the above

considered algorithm A limited from above by a polynomial on the number of
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rows in a table. These conditions contain the requirement for the information

system to be restricted. In [1], the average depth of decision tree is studied

for some problems (e.g., the problem of finding a leak in a pipeline). The

obtained results generalize bounds from [1] to an arbitrary restricted infor-

mation system and give polynomial algorithms for building optimal decision

trees.

The monograph contains mainly theoretical results that can be used for

design of effective algorithms for building decision trees and for analysis of

complexity of representing various objects by decision trees. These results

can be of interest for researchers in test theory, rough set theory and logical

analysis of data. The monograph can be used as a part of a course for graduate

students and Ph. D. studies.

1.1 Basic Notions

Denote ω = {0, 1, 2, . . .}, and for k ∈ ω \ {0, 1}, denote Ek = {0, . . . , k − 1}.

1.1.1 Information Systems

Let A be a nonempty set, F a set of functions defined on A and taking

values from Ek, so that for any f ∈ F , the condition f �≡ const holds. The

functions from F are called attributes, and the pair U = (A, F ) is called

k-valued information system (or simply information system) .

A weight function for the information system U is a function of the form

Ψ : F → {1, 2, . . .} that assigns a weight Ψ(f) to each attribute f ∈ F .

1.1.2 Problems Over Information Systems

A problem over the information system U is defined by a tuple z = (ν, f1, . . . ,

fn), where ν : En
k → {0, 1, . . . , kn − 1} and f1, . . . , fn ∈ F . The problem

z consists in finding the value z(a) = ν(f1(a), . . . , fn(a)) for an arbitrary

element a ∈ A.

Two elements a and b from A are equivalent for the problem z if fi(a) =

fi(b) for i = 1, . . . , n. This equivalence relation defines a partition of A

into nonempty equivalence classes Q1, . . . , Qs. Let us denote by Tz the set

{d̄1, . . . , d̄s} ⊆ En
k where d̄i = (f1(a), . . . , fn(a)) and a ∈ Qi, i = 1, . . . , s.

A problem z is called diagnostic if for any two tuples d̄i, d̄j ∈ Tz, d̄i �= d̄j , the

condition ν(d̄i) �= ν(d̄j) holds.
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Probability distribution for the problem z is a mapping P : Tz → ω \ {0}.
For d̄ ∈ Tz, the value P (d̄)/

∑

δ̄∈Tz
P (δ̄) can be interpreted as a probability

of the event (f1(a), . . . , fn(a)) = d̄ for an arbitrary element a from A.

1.1.3 Decision Trees

A decision tree for the problem z = (ν, f1, . . . , fn) is a finite oriented tree

with root in which:

• each nonterminal node is assigned with an attribute from the set {f1, . . . ,

fn} (i.e. decision trees use only the attributes listed in the description of

the problem z);

• each nonterminal node has exactly k outgoing edges which are labeled with

the numbers 0, . . . , k − 1 respectively;

• each terminal node is assigned with a number from ω.

Let us describe the algorithm represented by a decision tree. Let the input

be an element a ∈ A. First, the root is assigned to be the current node.

Let us describe one step of the algorithm. If the current node is terminal,

the algorithm returns as result the number assigned to the current node and

finishes. Otherwise, let fc be the attribute assigned to the current node. For

δ = 0, . . . , k−1, let eδ be the edge that leaves the current node and is labeled

with δ. The value fc(a) is calculated, and the node that the edge efc(a) enters

becomes the current node. Then the algorithm proceeds to the next step.

1.1.4 Decision Tables

Let U be a k-valued information system, Ψ a weight function for U , z =

(ν, f1, . . . , fn) a problem over U , and P a probability distribution for z. Let

Tz = {d̄1, . . . , d̄s}. The set Tz can be represented as a rectangular table filled

with numbers from Ek. Rows of the table correspond to the equivalence classes,

columns to the attributes, and each number is the value of the corresponding

attribute for all elements of the corresponding equivalence class. Let us assign

the i-th column with the weight of the attribute fi for i = 1, . . . , n, and assign

the row d̄j with the numbers ν(d̄j) and P (d̄j) for j = 1, . . . , s. We will de-

note the resulted table T ∗
z and call it decision table for the problem z. Further

several algorithms will be considered that take as input a tabular representa-

tion of the problem z.

A two-player game can be associated with the table T ∗
z . The first player

thinks of a row d̄ from T ∗
z . The goal of the second player is to ascertain the

number ν(d̄) assigned to the row d̄ in T ∗
z . The second player is allowed to
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ask questions of the following form: he can choose a column and ask which

number is on the intersection of the column and the row that the first player

has in mind. A strategy of the second player can be represented in a form of

a decision tree.

Denote Ωz = {(fi, δ) : fi ∈ {f1, . . . , fn}, δ ∈ Ek}, and denote Ω∗
z the

set of all finite words in the alphabet Ωz including the empty word λ. Let

us extend the mapping Ψ to the set Ω∗
z . Let α be an arbitrary word from

Ω∗
z . If α = λ, then Ψ(α) = 0. For α = (fi1 , δ1) . . . (fit

, δt), t > 0, assume

Ψ(α) = Ψ(fi1) + . . . + Ψ(fit
).

Let α ∈ Ω∗
z . Define a separable subtable Tzα of the table Tz in the following

way. If α = λ, then Tzα = Tz. Let α �= λ and α = (fi1 , δ1) . . . (fim
, δm). Then

Tzα is the subtable of the table Tz that contains only the rows which have

the numbers δ1, . . . , δm in the columns i1, . . . , im respectively. We will say

that a table is terminal if it contains no rows or ν(x) ≡ const on the set of

rows. Denote S(z) the set of all nonterminal separable subtables of the table

Tz.

For an arbitrary table T from S(z), we denote by D(T ) the number of

rows in T and denote N(T, P ) =
∑

d̄∈T P (d̄).

Let Γ be a decision tree for the problem z. Set to the correspondence

to each path ξ = v1, r1, . . . , vt, rt, vt+1 in Γ a word π(ξ) ∈ Ω∗
z . Let t ≥ 1,

for j = 1, . . . , t, the node vj be assigned with an attribute fij
, and the

edge rj , leaving vj and entering vj+1 be assigned with a number δj. Then

π(ξ) = (fi1 , δ1), . . . , (fit
, δt). We assume π(ξ) = λ for a path ξ consisting of

a single node .

A path from the root to a terminal node is called complete. Denote

Ξ(Γ ) the set of complete paths in decision tree Γ . One can see that
⋃

ξ∈Ξ(Γ ) Tzπ(ξ) = Tz, and for any two different complete paths ξ1, ξ2, the

relation Tzπ(ξ1) ∩ Tzπ(ξ2) = ∅ holds.

We will state that a decision tree Γ solves the problem z if for an arbitrary

row d̄ ∈ Tz, the terminal node of the complete path ξ such that d̄ ∈ Tzπ(ξ) is

assigned with the number ν(d̄). In other words, for an arbitrary element a ∈
A, the terminal node of the path on which computations for a are performed

is labeled with the number z(a).

1.1.5 Complexity Measures of Decision Trees

Let U = (A, F ) be an information system, Ψ a weight function for U and

z a problem over U . Let Γ be a decision tree for z that solves the problem

z. For an arbitrary row d̄ ∈ Tz, denote ξd̄ the complete path in Γ on which

computations for the n-tuple of attribute values d̄ are performed.
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As the main complexity measure the average weighted depth of the decision

tree Γ relative to the probability distribution P (or, briefly, P -average weighted

depth of Γ ) will be used. It is defined in the following way:

hΨ (Γ, P, z) =
1

N(Tz, P )

∑

d̄∈Tz

Ψ(π(ξd̄))P (d̄) .

In addition to the average weighted depth, the weighted depth will be used

as a complexity measure of decision trees. Weighted depth of decision tree Γ

is defined as follows:

gΨ (Γ, z) = max
d̄∈Tz

Ψ(π(ξd̄)) .

If Ψ ≡ 1, then the considered complexity measures are called average depth

and depth, and denoted h(Γ, P, z) and g(Γ, z). Further we will omit the symbol

z in the notations h(Γ, P, z) and g(Γ, z) if it is clear which problem is meant.

Denote hΨ (z, P ) and h(z, P ) respectively the minimum P -average weighted

depth and the minimum P -average depth of the decision tree for the prob-

lem z that solves z. For a weight function Ψ , a problem z and a probability

distribution P , a decision tree that solves z and has the minimum P -average

depth is called optimal for z and P , and a tree that solves z and has the

minimum P -average weighted depth is called optimal for Ψ , z and P .

1.2 Overview of Results

This section briefly describes main theoretical results of the monograph.

1.2.1 Bounds on Average Weighted Depth

Let U be an information system and Ψ a weight function for U . First,

we define a parameter MΨ (z) for a problem z = (ν, f1, . . . , fn) over U . If

z(x) ≡ const on the set A, then MΨ (z) = 0. Otherwise, for an arbitrary tuple

δ̄ = (δ1, . . . , δn) ∈ En
k , denote MΨ (z, δ̄) the minimum natural number m such

that there exist numbers i1, . . . , ir ∈ {1, . . . , n} possessing the following con-

ditions: Ψ(fi1) + . . . + Ψ(fir
) ≤ m and either the set of solutions on A of the

system of equations {fi1(x) = δi1 , . . . , fir
(x) = δir

} is empty or z(x) ≡ const

on this set. Then

MΨ (z) = max
δ̄∈En

k

MΨ (z, δ̄) .

If Ψ ≡ 1, then the parameter MΨ (z) is denoted by M(z).

As a parameter of probability distribution P we will use the entropy of

probability distribution
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H(P ) = log2 N(Tz, P ) − 1

N(Tz, P )

∑

d̄∈Tz

P (d̄) log2 P (d̄) .

If a diagnostic problem contains all possible attributes, then a known noise-

less coding theorem is applicable saying that the minimum average depth of

decision tree is between H(P ) and H(P ) + 1. The following theorem gener-

alizes the lower bound to the case of the average weighted depth of decision

tree for an arbitrary diagnostic problem.

Theorem. (Theorem 2.2 from Sect. 2.2) Let U be a k-valued information

system, Ψ a weight function for U , z a diagnostic problem over U , and P a

probability distribution for z. Then

hΨ (z, P ) ≥ H(P )

log2 k
.

The following theorem gives an upper bound on the minimum average

weighted depth of decision tree for an arbitrary problem.

Theorem. (Theorem 2.3 from Sect. 2.2) Let U be an information system, Ψ

a weight function for U , z a problem over U , and P a probability distribution

for z. Then

hΨ (z, P ) ≤ MΨ (z)(H(P ) + 1) .

Since the average depth of decision tree is a particular case of the average

weighted depth, the above considered bounds hold for the average depth as

well. However, the upper bound on the average depth can be improved.

Theorem. (Theorem 2.4 from Sect. 2.3) Let z be a problem over an infor-

mation system U , and P a probability distribution for z. Then

h(z, P ) ≤

⎧

⎪

⎪

⎨

⎪

⎪

⎩

M(z) , if M(z) ≤ 1 ,

M(z) + 2H(P ) , if 2 ≤ M(z) ≤ 3 ,

M(z) + M(z)
log2 M(z)H(P ) , if M(z) ≥ 4 .

In Sect. 2.4, a possibility of reduction is considered for a problem over 2-valued

information system. An algorithm is described that constructs a decision

tree for the initial problem from decision trees for subproblems that form so-

called proper decomposition of the original problem. The section also contains

sufficient conditions for the synthesized decision tree to be optimal relative

to the average depth.
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The decomposition technique allows finding decision trees with the mini-

mum average depth for some classes of problems. In Sect. 2.4.3, it is used to

prove that the upper bound on the average depth of decision tree given by

Theorem 2.4 is close to unimprovable.

Theorem. For an arbitrary natural numbers m ≥ 2, n ≥ 3 there exists an

information system Un
m, a problem zn

m over Un
m with mn classes of equivalence

and a probability distribution Pn
m ≡ 1 such that

h(z, P ) ≥ (M(z) − 2)H(P )

2 log2 M(z)
.

This theorem immediately follows from Theorem 2.6 given in Sect. 2.4.3.

1.2.2 Representing Boolean Functions by Decision

Trees

In Chap. 3.2, efficiency of representation of Boolean functions by deci-

sion trees is studied. A Boolean function f(x1, . . . , xn) can be represented

as a problem z = (f, x1, . . . , xn) over the information system Un =

(En
2 , {x1, . . . , xn}). The problem z has two equivalence classes Q0 and Q1

containing the sets of binary tuples on which f takes the values 0 and 1

respectively. A decision tree solving the problem z is called a decision tree

implementing f . Denote by g(f) and h(f) respectively the minimum depth of

a decision tree implementing f and the minimum average depth of a decision

tree implementing f relative to the probability distribution P ≡ 1.

Denote by dim f the number of arguments of the function f . Let B be a

set of Boolean functions. Consider the functions

GB(n) = max{g(f) : f ∈ B, dim f ≤ n}

and

HB(n) = max{h(f) : f ∈ B, dim f ≤ n}

that characterize the growth in the worst case of the minimum depth and

the minimum average depth of decision trees implementing Boolean functions

from B with growth of the number of function arguments. Note that HB(n) ≤
GB(n) for any n.

Section 3.1.2 contains several statements that give an upper and a lower

bounds of HB(n) for each closed class of Boolean functions B. The nota-

tion of closed classes of Boolean functions is in accordance with [36]; the

classes and the class inclusion diagram are described in Appendix A. It is
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shown that the function HB(n) is either limited from above by a constant or

grows linearly. The work [48] gives exact values of GB(n) for each closed class

of Boolean functions. The following two theorems characterize the relation

between HB(n) and GB(n).

Theorem. (Theorem 3.2 from Sect. 3.1) Let B be a closed class of Boolean

functions, and n a natural number. Let at least one of the following conditions

hold:

a) n = 1;

b) B ∈ {O1, . . . , O9, L1, . . . , L5, C1, C2, C3};
c) B ∈ {C4, D1, D3} and n is odd;

d) B ∈ {D1, D2, D3} and n = 2.

Then HB(n) = GB(n). If none of the conditions a), b), c), d) hold, then

HB(n) < GB(n).

Theorem. (Theorem 3.3 from Sect. 3.1) Let B be a closed class of Boolean

functions. Then

a) limn→∞ HB(n)/GB(n) = 0 if B ∈ {S1, S3, S5, S6, P1, P3, P5, P6};
b) HB(n)/GB(n) = 1 if B ∈ {O1, . . . , O9, L1, . . . , L5, C1, C2, C3};
c) limn→∞ HB(n)/GB(n) = 1 if B ∈ {C4, M1, . . . , M4, D1, D2, D3};
d) limn→∞ HB(n)/GB(n) = 1/2 if B ∈ {F∞

1 , . . . , F∞
8 };

e) 1/2 − ε(n) < HB(n)/GB(n) < 1 where ε(n) = O(1/
√

n) if B ∈
{Fµ

1 , . . . , Fµ
8 } and μ ≥ 2.

If the number of nodes is estimated in addition to the average weighted depth,

it is reasonable to combine isomorphic subtrees in decision tree. The resulted

object is called branching program. A branching program is called read-once

if in any path from the root to a terminal node, each attribute encounters at

most once. The following theorem shows that the requirement to a branching

program to be read-once is rather strong as any branching program with the

minimum average weighted depth is a read-once branching program.

Theorem. (Theorem 3.4 from Sect. 3.2) Let U be a 2-valued information

system, Ψ a weight function for U , z a problem over U , and P a probability

distribution for z. Let G be a branching program for z that solves z and is

optimal for Ψ , z and P . Then G is a read-once branching program.

In [66], it is shown that a read-once branching program implementing the

function Mult : {0, 1}2n → {0, 1} (the middle bit of the multiplication of two

n-bit integers) contains at least 2Ω(
√

n) nodes. In [83, 84, 85], the function

n/2−Clique−Only : {0, 1}n2 → {0, 1} is considered that receives adjacency

matrix of a graph with n nodes and takes the value 1 if and only if the graph
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contains a n/2-clique and does not contain any other edges. It is shown that a

read-once branching program implementing the function n/2−Clique−Only

contains at least 2Ω(n) nodes, while there is a branching program with O(n3)

nodes implementing n/2 − Clique − Only such that any attribute appears

at most twice in each path. In [59], it is shown that a branching program

implementing the characteristic functions of Bose-Chaudhuri codes contains

at least exp(Ω(
√

n/2)) nodes.

Theorem 3.4 shows that the branching programs that are optimal relative

to the average weighted depth have the same or greater number of nodes than

the read-once branching programs with the minimum number of nodes.

1.2.3 Algorithms for Decision Tree Construction

Let U = (A, F ) be an information system and z = (ν, f1, . . . , fn) a problem

over U . Let T be a separable subtable of Tz. For i ∈ {1, . . . , n}, denote

E(T, i) the set of numbers contained in i-th column of the table T , and

denote E(T ) = {i : i ∈ {1, . . . , n}, |E(T, i)| ≥ 2}.
Among decision trees for the problem z that solve z we distinguish ir-

redundant decision trees. Consider an arbitrary node w of the tree Γ and

denote path(Γ, w) the path from the root to w. Let T = Tzπ(path(Γ, w)) be

a terminal subtable and ν(x) ≡ r on the set of rows of the table T for some

r ∈ ω. Then w is a terminal node labeled with r. Let T be a nonterminal

subtable. Then w is labeled with an attribute fi where i ∈ E(T ). Finally,

each node w such that Tzπ(path(Γ, w)) = ∅ is labeled with the number 0.

The following proposition shows that among irredundant decision trees,

at least one has the minimum average depth.

Proposition. (Proposition 4.1 from Sect. 4.1) Let U be an information

system, Ψ a weight function for U , z a problem over U , and P a probabil-

ity distribution for z. Then there exists an irredundant decision tree that is

optimal for Ψ , z and P .

Denote by Tree(Tz) the set of irredundant decision trees for the problem z. In

Sect. 4.1, an algorithm A is described that constructs the set of optimal irre-

dundant decision trees for the problem z. At the first stage of the algorithm,

a graph ∆(z) of separable subtables of the table Tz is constructed. The graph

in some sense describes all irredundant decision trees for the problem z. Then

the algorithm reduces the graph ∆(z) resulting the graph ∆Ψ,P (z). The fol-

lowing theorem is a direct consequence of Proposition 4.2 and Theorem 4.1.

It characterizes the set of trees described by the graph ∆Ψ,P (z).

Theorem. Let U be an information system, Ψ a weight function, z a problem

over U , and P a probability distribution for z. Then the algorithm A given
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the extended table T ∗
z builds a graph ∆Ψ,P (z) that describes the set of all

irredundant decision trees that are optimal relative to the average weighted

depth.

For an arbitrary polynomial Q, a probability distribution P is called Q-

restricted if for an arbitrary row d̄ ∈ Tz, the length of the binary notation of

the number P (d̄) does not exceed Q(n) where n is the number of columns in

the table. One more theorem formulated in Sect. 4.1 characterizes the time

complexity of the algorithm A.

Theorem. (Theorem 4.2 from Sect. 4.1) Let Q(x) be some polynomial. Then

for an arbitrary problem z = (ν, f1, . . . , fn) and an arbitrary Q-restricted

probability distribution P for the problem z, the working time of the algorithm

A is proportional to the number of rows D(Tz) if the table T ∗
z is terminal. If

the table T ∗
z is nonterminal, the working time of the algorithm A is bounded

from below by the maximum of the values n, the number of nonterminal sep-

arable subtables |S(z)|, D(Tz) and the maximum length of attribute weight in

binary notation, and is bounded from above by a polynomial on these values.

1.2.4 Restricted Information Systems

Chapter 5.2 among all other information systems distinguishes so-called re-

stricted information systems. The property of being restricted implies a com-

mon upper bound on the minimum average weighted depth of decision tree

that depends only on the entropy of probability distribution and holds for all

problems over the information system. Another property of restricted infor-

mation systems is that under reasonable assumptions about weight function

and probability distribution, the working time of the algorithm A is limited

from above by a polynomial on the number of attributes in the problem

description.

For an arbitrary natural number t, a system of equations of the form

{f1(x) = δ1, . . . , ft(x) = δt} where f1, . . . , ft ∈ F and δ1, . . . , δt ∈ Ek, is

called a system of equations over U . An information system U is called r-

restricted (restricted) if each compatible system of equations over U has an

equivalent subsystem that contains at most r equations.

For a system of equations {f1(x) = δ1, . . . , ft(x) = δt} over the information

system U , the value
∑t

i=1 Ψ(fi) is called the weight of the system of equations.

An information system U is called r-restricted (restricted) relative to Ψ

if each compatible system of equations over U has an equivalent subsystem

whose weight does not exceed r.
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Example. (Example 5.1 from Sect. 5.1) Let A = Rn, and F be a nonempty

set of mappings from Rn to R. Consider an infinite family of functions [F ] =

{sign(f + α) + 1 : f ∈ F, α ∈ R} (note that the expression (sign(x) + 1)

takes the value 0 for a negative x, 1 for x = 0, and 2 for a positive x). If

|F | = k < ∞, then the information system U = (A, [F ]) is 2k-restricted (or

2k-restricted relative to the weight function Ψ ≡ 1).

The following theorem for an arbitrary problem over a restricted information

system and an arbitrary probability distribution, gives an upper bound on

the minimum average weighted depth of decision tree that depends only on

the entropy of probability distribution.

Theorem. (Theorem 5.1 from Sect. 5.1) Let U be an information system, Ψ

a weight function for U , and U be r-restricted relative to Ψ where r is some

natural number. Then hΨ (z, P ) ≤ 2r(H(P ) + 1) for an arbitrary problem z

over U and an arbitrary probability distribution P for z.

The following theorem shows that the conditions of Theorem 5.1 are neces-

sary and sufficient for existence of a linear upper bound depending only on

the entropy and considering non-linear bounds does not extend the class of

information systems that have upper bounds depending only on the entropy.

Theorem. (Theorem 5.2 from Sect. 5.1) Let U be an information system

that is not restricted relative to the weight function Ψ for U . Then for an

arbitrary ε > 0, there is no function Φ that is limited within the interval [0, ε]

and possesses the condition hΨ (z, P ) ≤ Φ(H(P )) for any problem z over U

and any probability distribution P for z.

Denote Z(U) the set of problems over the information system U . For an

arbitrary problem z, denote by dim z the number of attributes listed in the

description of z.

Consider the functions

SU (n) = max{|S(z)| : z ∈ Z(U), dim z ≤ n}

and

DU (n) = max{D(Tz) : z ∈ Z(U), dim z ≤ n}

that characterize the dependence of the maximum number of separable subta-

bles and the maximum number of rows on the number of columns in decision

tables over U .

Let Ψ be restricted from above by some constant, and Q(x) be some poly-

nomial. Theorem 4.2 implies that for an arbitrary problem z over U and an

arbitrary Q-restricted probability distribution for the problem z, the time

complexity of the algorithm A is restricted from above by a polynomial on
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the number of attributes in the problem description if the functions SU (n)

and DU (n) are restricted from above by a polynomial on n. Also, one can see

that the time complexity of the algorithm A has an exponential lower bound

if the function SU (n) grows exponentially.

Theorem. (Theorem 5.3 from Sect. 5.2) Let U = (A, F ) be a k-valued in-

formation system. Then the following statements hold:

a) if U is r-restricted, then SU (n) ≤ (nk)r + 1 and DU (n) ≤ (nk)r + 1 for

any natural number n;

b) if U is not restricted, then SU (n) ≥ 2n − 1 for any natural number n.



Chapter 2

Bounds on Average Time Complexity of
Decision Trees

In this chapter, bounds on the average depth and the average weighted depth

of decision trees are considered. Similar problems are studied in search theory

[1], coding theory [77], design and analysis of algorithms (e.g., sorting) [38].

For any diagnostic problem, the minimum average depth of decision tree is

bounded from below by the entropy of probability distribution (with a mul-

tiplier 1/log2 k for a problem over a k-valued information system). Among

diagnostic problems, the problems with a complete set of attributes have the

lowest minimum average depth of decision trees (e.g, the problem of building

optimal prefix code [1] and a blood test study in assumption that exactly

one patient is ill [23]). For such problems, the minimum average depth of

decision tree exceeds the lower bound by at most one. The minimum aver-

age depth reaches the maximum on the problems in which each attribute

is “indispensable” [44] (e.g., a diagnostic problem with n attributes and kn

pairwise different rows in the decision table and the problem of implementing

the modulo 2 summation function). These problems have the minimum av-

erage depth of decision tree equal to the number of attributes in the problem

description.

We also consider a possibility of problem decomposition. Some problems

have a hierarchy of attributes: “basic” attributes perform a rough classifica-

tion, and “extended” ones can be applied to refine the solution. In this case,

the leaf composition [44] can be applied: a tree for rough classification is built

using basic attributes only, and then each leaf is replaced with a tree that

does fine classification using extended attributes only. We are interested in

finding the conditions that make the tree resulted from such composition to

have the minimum average time complexity. In this case, applying problem

decomposition leads to both comprehensive and effective solution.

The chapter consists of four sections. The first section gives a known bound

for a diagnostic problem with a complete set of attributes. The second section

I. Chikalov: Average Time Complexity of Decision Trees, ISRL 21, pp. 15–39.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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generalizes the known lower bound and gives an upper bound for the average

weighted depth, which depends on the parameter M(z) and the entropy of

probability distribution. The third section gives more precise upper bound

for the minimum average depth of decision tree. The fourth section describes

sufficient conditions for problem decomposition which allow synthesizing an

optimal tree for the initial problem from optimal trees for subproblems. An

example of decomposable problem is considered that has the minimum aver-

age depth of decision tree close to the upper bound given in Sect. 2.3. The

results of this chapter were previously published in [16, 18, 51, 52, 53, 54].

2.1 Known Bounds

A problem z = (ν, f1, . . . , fn) with s equivalence classes Q1, . . . , Qs over a

k-valued information system U = (A, F ) contains a complete set of attributes

if for an arbitrary partition {1, . . . , s} =
⋃

j∈Ek
Ij (where Ii ∩Ij = ∅ if i �= j),

there exists an attribute ft ∈ {f1, . . . , fn} such that

⋃

i∈Ij

Qi = {a ∈ A : ft(a) = j}

for each j ∈ Ek.

The following theorem gives a bound on the average depth of decision

tree for a diagnostic problem that contains a complete set of attributes. The

bound follows from coding theory results and is well known in search theory

(see, for example, [1]).

Theorem 2.1. Let z be a diagnostic problem with a complete set of attributes

over a k-valued information system U , and P a probability distribution for

z. Then
H(P )

log2 k
≤ h(z, P ) ≤ H(P )

log2 k
+ 1 .

2.2 Bounds on Average Weighted Depth

The following theorem generalizes the lower bound to the case of the average

weighted depth of decision tree for an arbitrary diagnostic problem.

Theorem 2.2. Let U be a k-valued information system, Ψ a weight function

for U , z a diagnostic problem over U , and P a probability distribution for z.

Then

hΨ (z, P ) ≥ H(P )

log2 k
.
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Proof. Let U = (A, F ), z = (ν, f1, . . . , fn), and the problem z contains s

equivalence classes Q1, . . . , Qs. Let (I1
0 , . . . , I1

k−1), . . . , (Ir
0 , . . . , Ir

k−1) be all

possible partitions of the set {1, . . . , s} possessing the following conditions:

∪k−1
j=0 It

j = {1, . . . , s}, and for any numbers i, j ∈ Ek, i �= j, for t = 1, . . . , r,

the relation It
i ∩ It

j = ∅ holds. Define an attribute gt : A → Ek, t = 1, . . . , r,

as follows. If a ∈ Qi and i ∈ It
j , then gt(a) = j. Consider the problem

z′ = (ν′, f1, . . . , fn, g1, . . . , gr) over the information system U ′ = (A, F ∪
{g1, . . . , gr}) where ν′ : En+r

k → ω, and ν′(δ1, . . . , δn, δn+1, . . . , δn+r) =

ν(δ1, . . . , δn) for each (δ1, . . . , δn+r) ∈ En+r
k . According to the definition of

the attributes g1, . . . , gr, we have that the problem z′ contains a complete set

of attributes, and z′ has the same equivalence classes as the problem z. Evi-

dently, z′(a) = z(a) for any element a ∈ A. Then z′ is a diagnostic problem

and Theorem 2.1 implies

h(z′, P ) ≥ H(P )

log2 k
. (2.1)

Let Γ be a decision tree for the problem z that solves z. One can see that Γ

is a decision tree for the problem z′ that solves z′. Then

h(z, P ) ≥ h(z′, P ) . (2.2)

Since Ψ(f) ≥ 1 for an arbitrary attribute f ∈ F , the relation hΨ (z, P ) ≥
h(z, P ) holds. The last inequality, (2.1) and (2.2) imply the bound given by

the theorem statement. ⊓⊔

The following theorem gives an upper bound on the minimum average

weighted depth of decision tree for an arbitrary problem.

Theorem 2.3. Let U be an information system, Ψ a weight function for U ,

z a problem over U , and P a probability distribution for z. Then

hΨ (z, P ) ≤ MΨ (z)H(P ) + MΨ (z) .

The following proposition shows that the additive constant MΨ (z) in the

right part of the inequality is inherent.

Proposition 2.1. For an arbitrary m ∈ ω \ {0}, there exists a 2-valued in-

formation system U , a weight function Ψ for U , a problem z over U and a

sequence of probability distributions P1, P2, . . . for z, such that MΨ (z) = m,

limi→∞ H(Pi) = 0, and limi→∞ hΨ (z, Pi) = m.
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Proof. Let m ∈ ω \ {0}. Define a 2-valued information system U as follows:

U = (A, F ) where A = {0, 1, . . . , m}, F = {f1, . . . , fm} and

fi(a) =

{

1 , if i = a ,

0 , if i �= a ,

for any fi ∈ F and a ∈ A. Assume that Ψ(fi) = 1 for i = 1, . . . , m. Let

z = (ν, f1, . . . , fm) be a diagnostic problem. One can see that z has (m + 1)

equivalence classes Q0 = {0}, Q1 = {1}, . . . , Qm = {m}, the table Tz contains

(m+1) rows and it is not a terminal table. Consider a probability distribution

Pi for z, defined as follows:

Pi(δ̄) =

{

i , if δ̄ = (0, 0, . . . , 0) ,

1 , if δ̄ ∈ Tz \ {(0, 0, . . . , 0)} .

One can see that limi→∞ H(Pi) = 0. Let δ̄ ∈ Em
2 . It is easy to show, that

MΨ (z, δ̄) = 1 for δ̄ �= (0, . . . , 0), and MΨ (z, δ̄) = m for δ̄ = (0, . . . , 0). Conse-

quently, MΨ (z) = m.

Let i ∈ ω \ {0}, Γ be a decision tree for the problem z that solves z,

and has hΨ (Γ, Pi) = hΨ (z, Pi). Consider a complete path ξ in Γ such that

(0, . . . , 0) ∈ Tzπ(ξ). One can see that the length of the path ξ is at least

m. Consequently, hΨ (Γ, Pi) ≥ mi/(i + m), and hΨ (z, Pi) ≥ mi/(i + m).

Theorem 2.3 implies hΨ (z, Pi) ≤ MΨ (z)(H(Pi) + 1) = m(H(Pi) + 1). Using

these relations, we have that limi→∞ hΨ (z, Pi) = m. ⊓⊔

2.3 Upper Bound on Average Depth

Since the average depth of decision tree is a particular case of the average

weighted depth, the above considered upper and lower bounds hold for the

average depth as well. However, the upper bound on the average depth can

be improved.

Theorem 2.4. Let z be a problem over an information system U , and P a

probability distribution for z. Then

h(z, P ) ≤

⎧

⎪

⎪

⎨

⎪

⎪

⎩

M(z) , if M(z) ≤ 1 ,

M(z) + 2H(P ) , if 2 ≤ M(z) ≤ 3 ,

M(z) + M(z)
log2 M(z)H(P ) , if M(z) ≥ 4 .

Theorem 2.6 in Sect. 2.4.3 characterizes quality of the obtained bound.
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2.3.1 Process of Building Decision Trees YU,Ψ

Let U = (A, F ) be a k-valued information system, Ψ a weight function for

U , z = (ν, f1, . . . , fn) a problem over U , and P a probability distribution for

z. In this section, a process YU,Ψ is considered that takes as input z and P ,

and builds a decision tree YU,Ψ (z, P ) that solves the problem z. The bounds

given by Theorem 2.3 and Theorem 2.4 are resulted from analysis of decision

trees built by this process.

The set F can be uncountable and the function Ψ can be incomputable,

so in general case, the process YU,Ψ is a way of defining the decision tree

YU,Ψ (z, P ) rather than an algorithm.

The process YU,Ψ includes a subprocess XΨ that builds a decision tree

XΨ (z, P, T ) by given z, P and an arbitrary nonterminal subtable T of the

table Tz.

Define a mapping numz : Ω∗
z → ω. For j = 1, 2, . . ., denote by rj the

j-th prime number. Let β ∈ Ω∗
z . If β = λ, then numz(β) = 1. Let β �= λ

and β = (fi1 , δ1) . . . (fit
, δt). Then numz(β) = ri1

1 × . . . × rit

t . The number

numz(β) will be called z-number of the word β.

For an arbitrary word α ∈ Ω∗
z , denote h(α) the length of the word α and

denote χ(α) the set of letters from the alphabet Ωz that are contained in α.

Description of the subprocess XΨ

Let the subprocess XΨ be applied to the triplet z, P , T , where T is a

nonterminal subtable of the table Tz.

Step 1. For each i ∈ {1, . . . , n}, assume σi to be the minimum number σ

from Ek for which

N(T (fi, σ), P ) = max{N(T (fi, δ), P ) : δ ∈ Ek} .

Denote σ̄ = (σ1, . . . , σn). Let β be the word with the minimum z-number

among all words in Ω∗
z possessing the following conditions: χ(β) ⊆ {(f1, σ1),

. . . , (fn, σn)}, the subtable Tβ is terminal, and Ψ(β) = MΨ (z, σ̄). Note that

β �= λ, because the subtable T is nonterminal. Let β = (fi1 , σi1 ) . . . (fim
, σim

).

Denote I1 = {fi1 , . . . , fim
}. Build a tree that consists of a single node. Assign

the word λ to this node. Denote G1 the obtained tree. Proceed to the step 2.

Let t ≥ 1 steps have been already done and a tree Gt and a set It have

been built.

Step (t + 1). Find in the tree Gt the only node w that is assigned with a

word from Ω∗
z . Denote α the word assigned to w.

If It = ∅, then assign to w the number 0 instead of the word α. Denote

the resulted tree XΨ (z, P, T ). The subprocess XΨ is completed.
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Let It �= ∅. Let j be the minimum number form the set {1, . . . , n} possess-

ing the following conditions: fj ∈ It and

max{N(Tα(fj, σ), P ) : σ ∈ Ek \ {σj}}
≥ max{N(Tα(fi, σ), P ) : σ ∈ Ek \ {σi}}

for any fi ∈ It. Assign the attribute fj to the node w instead of the word α.

For each σ ∈ Ek, add to the tree Gt a node wσ and the edge that leaves the

node w and enters wσ. Assign the number σ to that edge. Label the node wσ

with the word α(fj , σj) if σ = σj , or with the number 0 otherwise. Denote by

Gt+1 the resulted tree. Assume It+1 = It \ {fj}. Proceed to the step (t + 2).

Description of the process YU,Ψ

Let the process YU,Ψ be applied to the pair (z, P ).

Step 1. Assume T = Tz. Build a decision tree that consists of a single node

v.

Let T be a terminal table. Then assign the number ν(δ̄) to the node v

where δ̄ is an arbitrary row from T . Denote YU,Ψ (z, P ) the resulted decision

tree. The process YU,Ψ is completed.

Let T be a nonterminal table. Assign the word λ to the node v and proceed

to the next step.

Let t ≥ 1 steps have been already done. Denote G the tree built at the

step t.

Step (t+1). If no node in G is assigned with a word from Ω∗
z , then denote

YU,Ψ (z, P ) the tree G. The process YU,Ψ is completed. Otherwise, choose in

G a terminal node v, which is assigned with a word from Ω∗
z . Denote α the

word assigned to v.

Let Tα be a terminal subtable. If Tα = ∅, then assign to v the number 0

instead of the word α. If Tα �= ∅, then assign to v the number ν(δ̄) instead

of α where δ̄ is an arbitrary row from Tα. Proceed to the step (t + 2).

Let Tα be a nonterminal subtable. Apply the subprocess XΨ to build the

decision tree XΨ (z, P, Tα). For each complete path ξ in XΨ (z, P, Tα), replace

the number 0 assigned to its terminal node, with the word απ(ξ). Denote Γ

the tree resulted from this replacement. Replace in G the node v with the

tree Γ . Proceed to the step (t + 2).

2.3.2 Proofs of Theorems 2.3 and 2.4

This section contains proofs of the upper bounds on the minimum average

time complexity of decision trees given in Sect. 2.2 and Sect. 2.3.
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Lemma 2.1. Let U = (A, F ) be a k-valued information system, Ψ a weight

function for U , z = (ν, f1, . . . , fn) a problem over U , P a probability distribu-

tion for z, and T a nonterminal subtable of the table Tz. Then the following

conditions hold for each complete path ξ in the decision tree XΨ (z, P, T ):

a) Ψ(π(ξ)) ≤ MΨ (z);

b) if Tπ(ξ) is a nonterminal subtable, then

N(Tπ(ξ), P ) ≤ N(T, P )/ max{2, h(π(ξ))} .

Proof. For each i ∈ {1, . . . , n}, denote σi the minimum number from Ek such

that

N(T (fi, σi), P ) = max{N(T (fi, σ), P ) : σ ∈ Ek} .

Denote σ̄ = (σ1, . . . , σn). Denote β a word from Ω∗
z with the minimum z-

number possessing the following conditions: χ(β) ⊆ {(f1, σ1), . . . , (fn, σn)},
Tβ is a terminal table, and Ψ(β) = MΨ (z, σ̄). Obviously, all letters in the

word β are pairwise different. Using this property of the word β and the

description of the subprocess XΨ , one can show that there exists a complete

path ξ0 in the tree XΨ (z, P, T ) such that χ(π(ξ0)) = χ(β), and the words

π(ξ0) and β are of equal length. Then Tπ(ξ0) is a terminal subtable, and

Ψ(π(ξ0)) = Ψ(β). Taking into account the choice of the word β, we have

Ψ(π(ξ0)) = MΨ (z, σ̄) . (2.3)

Let π(ξ0) = (fj1 , σj1) . . . (fjm
, σjm

). Denote α0 = λ, and for i = 1, . . . , m,

denote αi = (fj1 , σj1) . . . (fji
, σji

). For i = 1, . . . , m, denote δji
the minimum

number from Ek \ {σji
} such that

N(Tαi−1(fji
, δji

), P ) = max{N(Tαi−1(fji
, σ), P ) : σ ∈ Ek \ {σji

}} .

Let ξ be an arbitrary complete path in the decision tree XΨ (z, P, T ). Let

ξ = ξ0. By applying (2.3), we obtain Ψ(π(ξ0)) = MΨ (z, σ̄) ≤ MΨ (z). Let ξ �=
ξ0. One can see that there exist numbers r ∈ {1, . . . , m} and δ ∈ Ek such that

π(ξ) = αr−1(fjr
, δ). Therefore, Ψ(π(ξ)) ≤ Ψ(π(ξ0)) and Ψ(π(ξ)) ≤ MΨ (z).

Part (a) of the lemma is proved.

Let ξ be an arbitrary complete path in the decision tree XΨ (z, P, T ), for

which Tπ(ξ) is a nonterminal subtable. The fact that the subtable Tπ(ξ0)

is terminal implies ξ �= ξ0. It is easy to see that there exist numbers r ∈
{1, . . . , m} and δ ∈ Ek such that δ �= σjr

and π(ξ) = αr−1(fjr
, δ).

Let us show that N(Tπ(ξ), P ) ≤ N(T, P )/2. Evidently,

N(Tπ(ξ), P ) ≤ N(T (fjr
, δ), P ) .
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Taking into account the choice of the word σjr
, we obtain that N(T (fjr

, δ),

P ) ≤ N(T (fjr
, σjr

), P ). Since δ �= σjr
, the relation

N(T (fjr
, δ), P ) + N(T (fjr

, σjr
), P ) ≤ N(T, P )

holds. Consequently, N(Tπ(ξ), P ) ≤ N(T, P )/2.

Obviously, h(π(ξ)) = r. Let r ≥ 2. Let us show that N(Tπ(ξ), P ) ≤
N(T, P )/r. Since δji+1

�= σji+1
, the inequalities

N(Tαi+1, P ) + N(Tαi(fji+1
, δji+1

), P ) ≤ N(Tαi, P )

hold for i = 0, . . . , r − 2. Summing these inequalities by i from 0 to r − 2, we

obtain

N(Tαr−1, P ) +

r−2
∑

i=0

N(Tαi(fji+1
, δji+1

), P ) ≤ N(T, P ) . (2.4)

Let us show that for any i ∈ {0, . . . , r − 2},

N(Tπ(ξ), P ) ≤ N(Tαi(fji+1
, δji+1

), P ) . (2.5)

The inequality

N(Tαi(fjr
, δ), P ) ≤ N(Tαi(fji+1

, δji+1
), P )

follows from the choice of the attribute fji+1
(see description of the subprocess

XΨ ) and the definition of the number δji+1
. The inequality

N(Tπ(ξ), P ) ≤ N(Tαi(fjr
, δ), P )

is obvious. These two inequalities imply (2.5). The inequality N(Tπ(ξ), P ) ≤
N(Tαr−1, P ) is obvious. This inequality, (2.4) and (2.5) imply rN(Tπ(ξ), P )

≤ N(T, P ). Since r ≥ 2, the relation N(Tπ(ξ), P ) ≤ N(T, P )/r holds. Part

(b) of the lemma is proved. ⊓⊔

Using the description of the process YU,Ψ and subprocess XΨ , and Lemma

2.1, it is not hard to prove the following proposition.

Proposition 2.2. Let U be an information system, and Ψ a weight function

for U . Then for any problem z over U and any probability distribution P

for z, the process YU,Ψ ends in a finite number of steps. The resulted tree

YU,Ψ (z, P ) is a decision tree for the problem z that solves z.
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Proof of Theorem 2.3. If Tz is a terminal table, then the equality hΨ (YU,Ψ (z,

P )) = 0 follows from the description of the process YU,Ψ . This equality and

Proposition 2.2 imply hΨ (z, P ) ≤ 0.

Let Tz be a nonterminal table. Consider an arbitrary row d̄ ∈ Tz and find

the complete path ξd̄ in the decision tree YU,Ψ (z, P ) such that d̄ ∈ Tzπ(ξd̄).

From the description of the process YU,Ψ and the assumption that Tz is a

nonterminal table it follows that π(ξd̄) = π(ξd̄
1 ) . . . π(ξd̄

m) for some m ∈ ω\{0}
where ξd̄

1 is a complete path in the decision tree XΨ (z, P, T ), and (if m ≥ 2)

ξd̄
i is a complete path in the decision tree XΨ (z, P, Tπ(ξd̄

1) . . . π(ξd̄
i−1)), i =

2, . . . , m.

By the assumption, the table Tz is nonterminal. If m ≥ 2, then the descrip-

tion of the process YU,Ψ implies Tπ(ξd̄
1 ) . . . π(ξd̄

i−1) is a nonterminal table for

i = 2, . . . , m. Applying part (a) of Lemma 2.1, we obtain Ψ(π(ξd̄
i )) ≤ MΨ (z)

for i = 1, . . . , m. Consequently,

Ψ(π(ξd̄)) =

m
∑

i=1

Ψ(π(ξd̄
i )) ≤ mMΨ (z) . (2.6)

Let us show that m ≤ − log2 P (d̄)+log2 N(Tz, P )+1. Evidently, the inequal-

ity holds for m = 1. Let m ≥ 2. Part (b) of Lemma 2.1 implies

N(Tzπ(ξd̄
1 ) . . . π(ξd̄

m−1), P ) ≤ N(Tz, P )

2m−1
.

One can see that d̄ ∈ Tzπ(ξd̄
1 ) . . . π(ξd̄

m−1). Taking into account this condition,

we obtain

N(Tzπ(ξd̄
1 ) . . . π(ξd̄

m−1), P ) ≥ P (d̄) .

Consequently, 2m−1 ≤ N(Tz, P )/P (d̄) and m ≤ − log2 P (d̄)+log2 N(Tz, P )+

1. The obtained inequality and (2.6) result in

Ψ(π(ξd̄)) ≤ MΨ (z)(− log2 P (d̄) + log2 N(Tz, P ) + 1) .

From the definition of the weighted average depth it follows that

hΨ (YU,Ψ (z, P ), P ) =
1

N(Tz, P )

∑

d̄∈Tz

Ψ(π(ξd̄))P (d̄)

≤ 1

N(Tz, P )
MΨ (z)

∑

d̄∈Tz

(log2 N(Tz, P ) − log2 P (d̄) + 1)P (d̄)

= MΨ (z)(H(P ) + 1) .

This inequality and Proposition 2.2 imply hΨ (z, P ) ≤ MΨ (z)(H(P )+ 1). ⊓⊔
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Proof of Theorem 2.4. Let z = (ν, f1, . . . fn). If M(z) = 0, one can see that

the table Tz is terminal and h(z, P ) = 0.

Let M(z) = 1. Assume that for i = 1, . . . , n, there exists a number δi ∈
Ek such that ν(x) �≡ const on the set of rows of the subtable Tz(fi, δi).

Denote δ̄ = (δ1, . . . , δn). One can see that M(z, δ̄) ≥ 2, but, according to the

definition, M(z, δ̄) ≤ M(z) = 1. This contradiction shows that there exists

an attribute fi ∈ {f1, . . . , fn} such that for any δ ∈ Ek, either Tz(fi, δ) is

empty or ν(x) ≡ const on the set of rows of this table. It is easy to show

that there exists a decision tree Γ for the problem z that solves z for which

h(Γ, P ) = 1. Consequently, h(z, P ) ≤ 1.

Let M(z) ≥ 2. This inequality requires Tz to be a nonterminal table.

Consider an arbitrary row d̄ ∈ Tz and find a complete path ξd̄ in the decision

tree YU,h(z, P ) such that d̄ ∈ Tzπ(ξd̄). From the description of the process

YU,h and from the fact that Tz is a nonterminal subtable it follows that

π(ξd̄) = π(ξd̄
1 ) . . . π(ξd̄

m) for some m ∈ ω \ {0} where ξd̄
1 is a complete path in

the decision tree Xh(z, P, Tz), and (if m ≥ 2) ξd̄
i is a complete path in the

decision tree Xh(z, P, Tπ(ξt
1) . . . π(ξt

i−1)), i = 2, . . . , m. Denote rd̄
i = h(π(ξd̄

i ))

for i = 1, . . . , m. Let us estimate the value h(π(ξd̄)) =
∑m

i=1 rd̄
i . We will prove

that

h(π(ξd̄)) ≤

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

−2 log2 P (d̄) + 2 log2 N(Tz, P )

+M(z) ,
if 2 ≤ M(z) ≤ 3 ,

M(z)

log2 M(z)
(− log2 P (d̄)

+ log2 N(Tz, P )) + M(z) ,

if M(z) ≥ 4 .

(2.7)

Let m = 1. Part (a) of Lemma 2.1 implies that rd̄
1 ≤ M(z). Therefore, the

inequality (2.7) holds for m = 1. Let m ≥ 2. Denote yd̄
i = max{2, rd̄

i } for i =

1, . . . , m. By the assumption, Tz is a nonterminal table. From the description

of the process YU,h it follows that Tzπ(ξd̄
1 ) . . . π(ξd̄

i ) is a nonterminal subtable

for i = 1, . . . , m − 1. Lemma 2.1 and inequality m ≥ 2 imply

N(Tzπ(ξd̄
1 ) . . . π(ξd̄

m−1), P ) ≤ N(Tz, P )
∏m−1

i=1 yd̄
i

.

Since d̄ ∈ Tzπ(ξd̄
1 ) . . . π(ξd̄

m−1), we obtain N(Tπ(ξd̄
1 ) . . . π(ξd̄

m−1), P ) ≥ P (d̄).

Consequently,
m−1
∏

i=1

yd̄
i ≤ N(Tz, P )

P (d̄)
.
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Taking the binary logarithm of both sides results in

m−1
∑

i=1

log2 yd̄
i ≤ − log2 P (d̄) + log2 N(Tz, P ) .

This inequality implies

m
∑

i=1

rd̄
i = rd̄

m +

m−1
∑

i=1

(log2 yd̄
i (rd̄

i / log2 yd̄
i ))

≤ rd̄
m + (

m−1
∑

i=1

log2 yd̄
i )(max{rd̄

i / log2 yd̄
i : i ∈ {1, . . . , m − 1}})

≤ rd̄
m − (log2 P (d) − log2 N(Tz, P ))

×(max{rd̄
i / log2 yd̄

i : i ∈ {1, . . . , m − 1}}) .

(2.8)

Consider the function q(x) = x/ log2(max{2, x}), x ∈ ω \ {0}. One can see

that q(0) = 0, q(1) = 1, q(2) = 2, q(3) < 2, q(4) = 2, and the function q(x)

is monotonically increasing for x ≥ 3. Therefore, for any n ∈ ω \ {0}, the

following condition holds:

max{q(i) : i ∈ {0, . . . , n}} =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 , if n = 1 ,

2 , if 2 ≤ n ≤ 3 ,
n

log2 n , if n ≥ 4 .

(2.9)

From part (a) of Lemma 2.1 it follows that the inequality

rd̄
i ≤ M(z) (2.10)

holds for i = 1, . . . , m. From (2.9), (2.10) and the inequality M(z) ≥ 2 we

have

max{rd̄
i / log2 yd̄

i : i ∈ {1, . . . , m − 1}}

≤ max{q(i) : i ∈ {0, . . . , M(z)}} =

{

2 , if 2 ≤ M(z) ≤ 3 ,
M(z)

log2 M(z) , if M(z) ≥ 4 .
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These inequalities and inequalities (2.8) and (2.10) imply (2.7). Then

h(YU,h(z, P ), P ) =
∑

d̄∈Tz

h(π(ξd̄))P (d̄)

≤
{

M(z) + 2H(P ) , if 2 ≤ M(z) ≤ 3 ,

M(z) + M(z)
log2 M(z)H(P ) , if M(z) ≥ 4 .

Proposition 2.2 results in correctness of the theorem for M(z) ≥ 2. ⊓⊔

2.4 On Possibility of Problem Decomposition

In this section, a possibility of reduction is considered for a problem over

2-valued information system. Under certain conditions an optimal (relative

to the average depth) decision tree can be constructed as a composition of

optimal decision trees for simpler problems that form so-called proper de-

composition of the original problem.

2.4.1 Proper Problem Decomposition

Let U = (A, F ) be a 2-valued information system, z0 = (ν0, f
0
1 , . . . , f0

n0
) a

diagnostic problem over U with m classes of equivalence A1, . . . , Am. Let

Tz0
= {d̄0

1, . . . , d̄
0
m} where d̄0

i = (f0
1 (ai), . . . , f

0
n0

(ai)), ai ∈ Ai, i = 1, . . . , m.

For i = 1, . . . , m, let zi = (νi, f
i
1, . . . , f i

ni
) be a problem over the informa-

tion system (Ai, F ) with si classes of equivalence, and the table Tzi
contains

si rows d̄i
1, . . . , d̄

i
si

. For i = 1, . . . , m, let Pi be an arbitrary probability dis-

tribution for the problem zi, and P0 = (N(Tz1
, P1), . . . , N(Tzm

, Pm)) be a

probability distribution for the problem z0.

For i = 0, . . . , m and j = 1, . . . , si, denote σ̄i
j = (ᾱi,j

0 ᾱi,j
1 . . . ᾱi,j

m ) where

ᾱi,j
k ∈ Enk

2 , k = 0, . . . , m, and

ᾱi,j
k =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

d̄0
i , if k = 0 ,

d̄i
j , if k = i ,

(0, . . . , 0) , if k ∈ {1, . . .m} \ {i} .

Define a function ν : En0+...+nm

2 → ω as follows:

ν(δ̄) =

{

νi(d̄
i
j) , if δ̄ = σ̄i

j for some i ∈ {1, . . . , m}and j ∈ {1, . . . , si} ,

0 , otherwise .
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Consider a problem z = (ν, f0
1 , . . . , f0

n0
, f̃1

1 , . . . , f̃1
n1

, . . . , f̃m
1 , . . . , f̃m

nm
) over U ,

where

f̃ i
j(a) =

{

f i
j(a) , if a ∈ Ai ,

0 , if a /∈ Ai ,

for j = 1, . . . , ni, i = 1, . . . , m and a ∈ A. One can see that the ta-

ble Tz contains the rows σ̄1
1 , . . . , σ̄

1
s1

, . . . , σ̄m
1 , . . . , σ̄m

sm
and does not con-

tain any other rows. Define a probability distribution P for the problem

z as follows: P (σ̄i
j) = Pi(d̄

i
j) for j = 1, . . . , si and i = 1, . . . , m. The set

((z0, P0), (z1, P1), . . . , (zm, Pm)) is called a proper decomposition of the pair

(z, P ) if:

i) for j = 1, . . . , ni and i = 1, . . . , m, the inequality

N(Tzi
(f i

j , 1), Pi) ≤
minl∈1,...,m N(Tzl

, Pl)

2

holds;

ii) for any i, j ∈ {1, . . . , m}, i �= j and c ∈ ω such that

qi =
∑

d̄∈Tzi
,νi(d̄)=c

Pi(d̄)/N(Tzi
, Pi) > 0

and

qj =
∑

d̄∈Tzj
,νj(d̄)=c

Pj(d̄)/N(Tzj
, Pj) > 0 ,

the inequalities min(qi, qj) < 1/2 and max(qi, qj) < 1 hold.

Let ((z0, P0), (z1, P1), . . . , (zm, Pm)) be a proper decomposition of the pair

(z, P ), and Γi be a decision tree for the problem zi that solves zi, i = 0, . . . , m.

For i = 1, . . . , m, apply the following transformation to the tree Γi. For each

nonterminal node w, replace the attribute f i
j that is assigned to w with the

corresponding attribute f̃ i
j . Denote the resulted tree by Γ̃i.

For i = 1, . . . , m, let us find a complete path ξi in Γ0 such that d̄0
i ∈

Tz0
π(ξi) and replace the terminal node of the path ξi with the tree Γ̃i. Denote

the resulted tree by Φ(Γ0, Γ1, . . . , Γm).

2.4.2 Theorem of Decomposition

Theorem 2.5. Let z be a problem over a 2-valued information system U , P

a probability distribution for z, and ((z0, P0), (z1, P1), . . . , (zm, Pm)) a proper

decomposition of the pair (z, P ). Let Γi be a decision tree for zi that solves zi
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and is optimal for zi and Pi, i = 0, . . . , m. Then the tree Φ(Γ0, Γ1, . . . , Γm)

is a decision tree for the problem z that solves z and is optimal for z and P .

We preface proof of the theorem by a series of lemmas. Let us define some

auxiliary notions.

Let Γ be a decision tree for the problem z. Denote V (Γ ) and E(Γ ) the

set of nodes and the set of edges of Γ respectively. For an arbitrary node

v ∈ V (Γ ), denote by path(Γ, v) the path from the root of Γ to the node

v. For an arbitrary nonterminal node v ∈ V (Γ ) and an arbitrary number

δ ∈ {0, 1}, denote by e(Γ, v, δ) the edge that leaves v and is labeled with δ.

Let v be a nonterminal node in the tree Γ and f the attribute assigned to v.

The node v is called essential if the table Tzπ(path(Γ, v))(f, δ) is nonempty

for δ = 0, 1. The decision tree is called reduced if all its nonterminal nodes

are essential.

Let z be a problem over information system, P a probability distribution

for z, and ((z0, P0), (z1, P1), . . . , (zm, Pm)) a proper decomposition for the

pair (z, P ). An attribute from the description of the problem z is called basic

if it is contained in the description of z0, or extended otherwise.

Let Γ be a reduced decision tree for the problem z, and ξ = v1, e1,

. . . , vt, et, vt+1 a complete path in Γ where v1, . . . , vt+1 ∈ V (Γ ) and e1, . . . ,

et ∈ E(Γ ), t ≥ 1. Let for some k ∈ {1, . . . , t + 1}, the node vi be assigned

with a basic attribute if and only if i < k. Then the path ξ is called ordered

by basic attributes.

Let the path ξ be not ordered by basic attributes. For i = 1, . . . , t, denote

fi the attribute assigned to the node vi. Then there exist natural j and

k, j < k ≤ t such that fj , . . . , fk−1 are extended attributes, fk is a basic

attribute, and (if j > 1) f1, . . . , fj−1 are basic attributes. Denote

N0(ξ) = N(Tzπ(path(Γ, vk))(fk, 0), P )

and

N1(ξ) = N(Tzπ(path(Γ, vk))(fk, 1), P ) .

Since vk is assigned with a basic attribute and Γ is a reduced tree, we have

that for i = j, . . . , k − 1, the edge ei is assigned with the number 0. For

i = j, . . . , k − 1, denote wi the node that the edge e(Γ, vi, 1) enters, and

denote σi the number such that Tzπ(path(Γ, wi)) = Tzπ(path(Γ, wi))(fk, σi).

The path ξ is called reducible if k ≥ j +3 and the set {σj , . . . , σk−1} contains

both 0 and 1.

Define a path reduction operation. Let the operation be applied to the

path ξ.
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Step 1. For δ = 0, 1, denote Γ (δ) the subtree that the edge e(Γ, vk, δ)

enters, and denote e(δ) = e(Γ, vk, δ). If vj is not the root of Γ , then reroute

the edge ej−1 so that it enters the node vk. Proceed to the step 2.

Let i steps have already been done for some 1 ≤ i ≤ k − j.

Step (i + 1). Reroute the edge e(σj+i−1) so that it enters the node vj+i−1.

Denote e(σj+i−1) = e(Γ, vj+i−1, 0). Proceed to the step (i + 2).

Step (k − j + 2). For δ = 0, 1, reroute the edge e(δ) so that it enters the

subtree Γ (δ). The transformation is completed.

Lemma 2.2. Let z be a problem over an information system, P a probability

distribution for z and D a proper decomposition for the pair (z, P ). Let Γ

be a reduced decision tree for z that solves z, ξ a complete path in Γ that is

not ordered by basic attributes, and Γ̃ the tree resulted from applying the path

reduction operation to ξ. Then

a) Γ̃ is a decision tree for z that solves z;

b) h(Γ̃ , P ) ≤ h(Γ, P );

c) h(Γ̃ , P ) ≤ h(Γ, P ) − (N0(ξ) + N1(ξ))/N(Tz, P ) if ξ is a reducible path.

Proof. One can see from the description of the path reduction operation

that Γ̃ is a decision tree for the problem z. Let us show that Γ̃ solves z.

Let ξ = v1, e1, . . . , vt, et, vt+1 where v1, . . . , vt+1 ∈ V (Γ ), e1, . . . , et ∈ E(Γ ),

t ≥ 1, and for i = 1, . . . , t, the node vi is assigned with an attribute fi.

Then there exist natural j and k, j < k ≤ t, such that fj , . . . , fk−1 are

extended attributes, fk is a basic attribute, and (if j > 1) f1, . . . , fj−1 are

basic attributes. Let d̄ ∈ Tz be an arbitrary row, and φ a complete path

in Γ such that d̄ ∈ Tzπ(φ). Denote φ̃ the complete path in Γ̃ that ends

in the same terminal node as φ. Let us show that d̄ ∈ Tzπ(φ̃). If vj �∈ φ,

then φ̃ = φ. If vk ∈ φ, then the path φ̃ is obtained from φ by deleting

several pairs consisting of a node and one of its outgoing edges. Therefore

Tzπ(φ̃) ⊇ Tzπ(φ). Let vi ∈ φ and vi+1 �∈ φ for some i ∈ {j, . . . , k − 1}.
Since vi+1 /∈ φ, the edge that leaves the node vi and is contained in the

path φ, is labeled with 1. The fact that fi is an extended attribute implies

that the set of solutions of the equation fi(x) = 1 is contained in one of the

equivalence classes of the problem z0. Then there exists a number δ ∈ {0, 1}
such that Tzπ(φ) = Tzπ(φ)(fk, δ). From the description of the path reduction

operation it follows that the path φ̃ is obtained from φ by deleting several

pairs consisting of a node and one of its outgoing edges and by adding the pair

(vk, e(Γ, vk, δ)). Therefore, Tzπ(φ̃) ⊇ Tzπ(φ)(fk, δ), and, taking into account

the last relation, Tzπ(φ̃) ⊇ Tzπ(φ). In general case, Tzπ(φ̃) ⊇ Tzπ(φ) and

d̄ ∈ Tzπ(φ̃). Then the fact that Γ solves the problem z implies that Γ̃ also

solves z.
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Let us prove part (b) and (c) of the lemma. Since Γ is a reduced decision

tree, vk is an essential node. Then for δ = 0, 1, the table Tz0
π(path(Γ, vj))

contains at least one row in which the attribute fk takes the value δ. Denote

this row d̄0
iδ

and denote Pδ = N(Tziδ
, Piδ

). For i = j, . . . , k − 1, denote wi

the node which the edge e(Γ, vi, 1) enters, denote σi the number from the set

{0, 1} such that Tzπ(path(Γ, wi)) = Tzπ(path(Γ, wi))(fk, σi), and denote

Ni = N(Tzπ(path(Γ, vi)(fi, 1)), P ) .

Then for δ = 0, 1, the following relation holds:

k−1
∑

i=j,σi=δ

Ni + Nδ(ξ) ≥ Pδ . (2.11)

Consider several cases.

1) Let σj = . . . = σk−1. One can see that ξ is not a reducible path. Then

h(Γ̃ , P ) = h(Γ, P ) +
1

N(Tz, P )

⎛

⎝

k−1
∑

i=j

Ni − (k − j)N1−σj
(ξ)

⎞

⎠ . (2.12)

The relation (i) from the definition of the proper problem decomposition

implies Ni ≤ P1−σj
for i = j, . . . , k − 1. Summing these inequalities, we

obtain
k−1
∑

i=j

Ni ≤ (k − j)P1−σj
. (2.13)

From (2.11) it follows that

N1−σj
(ξ) ≥ P1−σj

. (2.14)

The relations (2.12), (2.13), (2.14) imply (b).

2) Let k = j +2 and σj �= σj+1. One can see that ξ is not a reducible path.

Then

h(Γ̃ , P ) = h(Γ, P ) +
Nj − Nσj+1

(ξ)

N(Tz, P )
. (2.15)

The relation (i) implies

Nj + Nj+1 ≤ Pσj+1
. (2.16)

From (2.11) it follows that

Nj+1 + Nσj+1
(ξ) ≥ Pσj+1

. (2.17)
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The relations (2.15), (2.16), (2.17) imply (b).

3) Let k ≥ j + 3, σj �= σj+1 and σj = σj+2. One can see that ξ is a

reducible path. Then

h(Γ̃ , P ) ≤ h(Γ, P ) +
1

N(Tz, P )

×

⎛

⎝Nj − Nσj
(ξ) − 2Nσj+1

(ξ) −
k−1
∑

i=j+2,σi=σj+1

Ni

⎞

⎠ .

(2.18)

The relation (i) implies

Nj + Nj+1 ≤ Pσj+1
. (2.19)

From (2.11) it follows that

Nj+1 +

k−1
∑

i=j+2,σi=σj+1

Ni + Nσj+1
(ξ) ≥ Pσj+1

. (2.20)

The relations (2.18), (2.19), (2.20) imply (c).

4) Let k ≥ j + 3, σj �= σj+1 and σj �= σj+2. One can see that ξ is a

reducible path. Then

h(Γ̃ , P ) ≤ h(Γ, P ) +
1

N(Tz, P )

×

⎛

⎝Nj − 2Nσj
(ξ) − Nσj+1

(ξ) −
k−1
∑

i=j+2,σi=σj

Ni

⎞

⎠ .

(2.21)

The relation (i) implies that

Nj ≤ 1

2
Pσj

. (2.22)

From (2.11) it follows that

Nj +

k−1
∑

i=j+2,σi=σj

Ni + Nσj
(ξ) ≥ Pσj

. (2.23)

The relations (2.21), (2.22), (2.23) imply (c).

5) Let k ≥ j + 3, σj = σj+1 = . . . = σm, and σm �= σm+1 for some

m ∈ {j + 1, . . . , k − 2}. One can see that ξ is a reducible path. Then
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h(Γ̃ , P ) ≤ h(Γ, P ) +

∑m
i=j Ni

N(Tz, P )
− (m − j)

N(Tz, P )

×

⎛

⎝

k−1
∑

i=m+1,σi=σm+1

Ni − (m − j + 1)N1−σj
(ξ) − Nσj

(ξ)

⎞

⎠ .

(2.24)

The relation (i) implies Ni ≤ P1−σj
/2 for i = j, . . . , m. Summing these

inequalities, we obtain

m
∑

i=j

Ni ≤
m − j + 1

2
P1−σj

. (2.25)

From (2.11) it follows that

k−1
∑

i=m+1,σi=σm+1

Ni + N1−σj
(ξ) ≥ P1−σj

. (2.26)

The relations (2.24), (2.25), (2.26) imply (c).

One can see that the cases 1-5 cover all possible combinations of j, k,σj ,. . . ,

σk−1. Statement (b) of the lemma holds for each case and statement (c) holds

for the cases in which ξ is a reducible path, so the lemma is proved. ⊓⊔

Lemma 2.3. Let U be a 2-valued information system, Ψ a weight function

for U , z a problem over U and P a probability distribution for z. Let Γ be a

decision tree for the problem z, that solves z and is optimal for Ψ , z and P .

Then Γ is a reduced decision tree.

Proof. Let U = (A, F ). Suppose that Γ is not a reduced decision tree. Let v

be an inessential node in Γ such that the path φ from the root to the node v

does not contain any other inessential nodes. One can see that Tzπ(φ) �= ∅.
Denote by f the attribute assigned to v. Then there exists a number σ ∈ {0, 1}
such that Tzπ(φ) = Tzπ(φ)(f, σ). For δ = 0, 1, denote Γδ the subtree whose

root the edge e(Γ, v, δ) enters. If v is not the root of Γ , then denote r the

edge that enters v and transform Γ so that the edge r enters the root of the

subtree Γσ. Delete from Γ the node v, the edges e(Γ, v, 0), e(Γ, v, 1) and the

subtree Γ1−σ. Denote Γ̃ the resulted tree. One can see that Γ̃ is a decision

tree for z. Let us prove that Γ̃ solves the problem z.

For an arbitrary row d̄ ∈ Tz, denote ξd̄ the complete path in Γ such that

d̄ ∈ Tzπ(ξd̄). Since Tzπ(φ) = Tzπ(φ)(f, σ), the terminal node of the path ξd̄

is not contained in Γ1−σ and was not removed by the transformation. De-

note ξ̃d̄ the complete path in Γ̃ that ends in the same terminal node as ξd̄.
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If v �∈ ξd̄, then the paths ξd̄ and ξ̃d̄ coincide, so Tzπ(ξd̄) = Tzπ(ξ̃d̄) and

Ψ(ξd̄) = Ψ(ξ̃d̄). If v ∈ ξd̄, then the path ξ̃d̄ is resulted from ξd̄ by re-

moving the node v and the edge eσ. Then Ψ(ξd̄) = Ψ(ξ̃d̄) − Ψ(f). Since

Tzπ(φ) = Tzπ(φ)(f, σ), the relation Tzπ(ξd̄) = Tzπ(ξ̃d̄) holds. Then the fact

that Γ solves z, implies that Γ̃ solves z. The relation Tzπ(φ) �= ∅ implies

v ∈ ξδ̄ for some δ̄ ∈ Tz. Then hΨ (Γ̃ , P ) ≤ hΨ (Γ, P )−Ψ(f)P (δ̄)/N(Tz, P ) and

hΨ (Γ̃ , P ) < hΨ (Γ, P ). The latter equality contradicts optimality of the tree Γ

and the resulted contradiction proves the lemma. ⊓⊔

Lemma 2.4. Let z be a problem over an information system, P a probability

distribution for z, and D a proper decomposition of the pair (z, P ). Then

there exists a decision tree for the problem z that solves z and is optimal for

z and P , in which each path is ordered by basic attributes.

Proof. Let Γ be a decision tree for z that solves z and is optimal for z and P .

Denote W (Γ ) the set of nodes in Γ such that any node w ∈ W (Γ ) is assigned

with a basic attribute and at least one node in the path path(Γ, w) is assigned

with an extended attribute. Obviously, if W (Γ ) = ∅, then all paths in Γ are

ordered by basic attributes.

Let W (Γ ) �= ∅. Consider an arbitrary complete path ξ in Γ that is not

ordered by basic attributes. Let w be the first node in ξ that is contained in

W (Γ ). According to Lemma 2.3, Γ is a reduced decision tree. Let us apply

to ξ the path reduction operation and denote the resulted tree Γ̃ . Lemma 2.2

implies that Γ̃ is a decision tree for z that solves z and is optimal for z and

P . One can see that W (Γ̃ ) ⊆ W (Γ )\{w}. Let us apply the above-mentioned

transformation to Γ̃ and repeat this procedure until W (Γ̃ ) = ∅. Thus the

desired decision tree is obtained in a finite number of steps. ⊓⊔

Let z be a problem over an information system, P a probability distribution

for z and ((z0, P0), (z1, P1), . . . , (zm, Pm)) a proper decomposition for the pair

(z, P ). We will say that the tree Γ is completely ordered if for each row

d̄ ∈ Tz0
, there exists a node vd̄ in Γ such that Tz0

(path(Γ, vd̄)) = {d̄}, and all

nodes in the path path(Γ, vd̄) are assigned with basic attributes with possible

exception of vd̄.

Lemma 2.5. Let z be a problem over information system, P a probability

distribution for z, and D a proper decomposition for the pair (z, P ). Then

there exists a decision tree for the problem z that solves z, is optimal for z

and P , and is completely ordered.

Proof. Let D = ((z0, P0), (z1, P1), . . . , (zm, Pm)), and zi = (νi, f
i
1, . . . , f

i
ni

) for

i = 0, . . . , m. Let A1, . . . , Am be the equivalence classes of the problem z0,

Tz0
= {δ̄1, . . . , δ̄m}, and δ̄i = (f0

1 (ai), . . . , f0
n0

(ai)), ai ∈ Ai for i = 1, . . . , m.
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According to Lemma 2.4, there exists a decision tree Γ for the problem z

that solves z and is optimal for z and P , in which each complete path is

ordered by basic attributes. We will say that rows δ̄i, δ̄j ∈ Tz0
, i �= j are

separated in Γ with basic attributes if there is a node v ∈ Γ that is assigned

with a basic attribute f0
k , and for some number δ ∈ {0, 1}, the relations

δ̄i ∈ Tz0
π(path(Γ, v))(f0

k , δ) and δ̄j ∈ Tz0
π(path(Γ, v))(f0

k , 1−δ) hold. Denote

R(Γ ) the number of unordered pairs of rows in the table Tz0
, which are not

separated in Γ with basic attributes. Obviously, if R(Γ ) = 0, then Γ is a

completely ordered decision tree.

Let R(Γ ) �= 0. Let δ̄i = (δi
1, . . . , δ

i
n0

) and δ̄j = (δj
1, . . . , δ

j
n0

) be rows of Tz0
,

which are not separated in Γ with basic attributes. Choose a number r ∈
{1, . . . , n0} such that δi

r �= δj
r . Consider a row d̄ = (d0

1, . . . , d
0
n0

, . . . , dm
1 , . . . ,

dm
nm

) ∈ Tz for which (d0
1, . . . , d

0
n0

) = δ̄i. Find a complete path φ in the

tree Γ such that d̄ ∈ Tzπ(φ). The inequality (ii) implies that there exists a

row c̄ = (c0
1, . . . , c

0
n0

, . . . , cm
1 , . . . , cm

nm
) ∈ Tz such that (c0

1, . . . , c
0
n0

) = δ̄i or

(c0
1, . . . , c

0
n0

) = δ̄j , but c̄ /∈ Tzπ(φ). Then at least one node in the path φ is

assigned with an extended attribute. Denote v1 the first node of the path

φ that is assigned with an extended attribute, and denote G the subtree of

Γ whose root is v1. Denote ξ a complete path in G such that each edge is

assigned with the number 0. Let ξ = v1, e1, . . . , vt, et, vt+1 where v1, . . . , vt ∈
V (Γ ) and e1, . . . , et ∈ E(Γ ). Consider two cases.

1) Let Tzπ(path(Γ, vt+1)) = Tzπ(path(Γ, vt+1))(f
0
r , σ) for some σ ∈ {0, 1}.

Denote k the minimum number, for which the relation Tzπ(path(Γ, vk)) =

Tzπ(path(Γ, vk))(f0
r , σ) holds. Denote ēk−1 = e(Γ, vk−1, 1), and denote w

the node, which the edge ēk−1 enters. Assign the attribute f0
r to the node

vk−1, the number σ to the edge ek−1 and the number (1 − σ) to the edge

ēk−1. Denote Γ̃ the resulted decision tree. In order to show that Γ̃ solves

z, it is sufficient to prove correctness of the equality Tzπ(path(Γ, w)) =

Tzπ(path(Γ, w))(f0
r , 1−σ). Since the node v1 is assigned with an extended at-

tribute and the path ξ is ordered by basic attributes, the node vk−1 is assigned

with an extended attribute. Then Tzπ(path(Γ, w)) = Tzπ(path(Γ, w))(f0
r , σ1)

for some σ1 ∈ {0, 1}. By the choice of the number k, the relation

Tzπ(path(Γ, vk−1)) �= Tzπ(path(Γ, vk−1))(f
0
r , σ)

holds. Therefore,

Tzπ(path(Γ, w)) = Tzπ(path(Γ, w))(f0
r , 1 − σ) ,

and Γ̃ solves the problem z. Obviously, h(Γ̃ , P ) = h(Γ, P ) and the tree Γ̃ is

optimal for z and P . Denote ξ̃ the complete path in the tree Γ̃ that ends in

the node vt+1. Let us apply to ξ̃ the path reduction operation and denote the
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resulted tree Γ̂ . From Lemma 2.2 it follows that Γ̂ is a decision tree for the

problem z that solves z and is optimal for z and P . One can see that each

complete path in Γ̂ is ordered by basic attributes, and R(Γ̂ ) ≤ R(Γ ) − 1.

2) Let Tzπ(path(Γ, vt+1)) �= Tzπ(path(Γ, vt+1))(f
0
r , σ) for σ = 0, 1. Then

the inequalities (i) and (ii) from the definition of the proper problem de-

composition imply that t ≥ 3, and for some k1, k2 ∈ {1, . . . , t}, the node

vk1
is assigned with an attribute from the set {f̃ i

1, . . . , f̃
i
ni
}, and the node

vk2
is assigned with an attribute from the set {f̃ j

1 , . . . , f̃ j
nj
}. Denote α the

number assigned to the node vt+1. Assign the attribute f0
r to the node

vt+1, add two edges leaving this node and label them with the numbers

0 and 1 respectively. Add to the tree Γ two nodes w0 and w1, assign

the number α to these nodes and transform the tree Γ so that the edge

e(Γ, vt+1, σ) enters the node wσ for σ = 0, 1. Denote the resulted tree Γ̃ .

One can see that Γ̃ is a decision tree for the problem z that solves z and

h(Γ̃ , P ) = h(Γ, P ) + N(Tzπ(ξ), P )/N(Tz, P ). Denote ξ̃ the complete path in

the tree Γ̃ that ends in w0. One can see that N0(ξ̃) + N1(ξ̃) = N(Tzπ(ξ), P ).

Apply the path reduction operation to the path ξ̃ and denote the resulted

tree Γ̂ . From Lemma 2.2 it follows that Γ̂ is a decision tree for the problem

z that solves z, and h(Γ̂ , P ) ≤ h(Γ̃ , P ) − (N0(ξ̃) + N1(ξ̃))/N(Tz, P ). Then

h(Γ̂ , P ) ≤ h(Γ, P ) and the decision tree Γ̂ is optimal for z and P . One can

see that each complete path in the tree Γ̂ is ordered by basic attributes and

R(Γ̂ ) ≤ R(Γ ) − 1.

Let us apply the above-mentioned transformation to Γ̂ and repeat this

procedure until R(Γ ) = 0. Thus we obtain the desired decision tree in a

finite number of steps. ⊓⊔

Proof of Theorem 2.5. Let us show that the decision tree Φ = Φ(Γ0, Γ1, . . . ,

Γm) solves the problem z. Denote by A1, . . . , Am the equivalence classes of the

problem z0. Let Tz0
= {d̄1, . . . , d̄m} where d̄i = (f0

1 (ai), . . . , f0
n0

(ai)), ai ∈ Ai,

i = 1, . . . , m. Consider an arbitrary row δ̄ = (δ0
1 , . . . , δ0

n0
, . . . , δm

1 , . . . , δm
nm

) ∈
Tz. Let (δ0

1 , . . . , δ
0
n0

) = d̄i for some i ∈ {1, . . . , m}. Denote ξδ̄ the complete

path in the decision tree Φ such that δ̄ ∈ Tzπ(ξδ̄). From the definition of the

tree Φ it follows that the terminal node of the path ξδ̄ belongs to the subtree

Γ̃i. Since the decision tree Γi solves the problem zi, the terminal node of the

path ξi is assigned with the number νi(δ
i
1, . . . , δ

i
ni

). From the definition of

proper decomposition we have ν(δ̄) = νi(δ
i
1, . . . , δ

i
ni

). Therefore, Φ solves the

problem z.

Let us show that Φ is optimal for z and P . From Lemma 2.5 it follows

that there exists a decision tree G for the problem z that solves z, is opti-

mal for z and P , and is completely ordered. For i = 1, . . . , m, denote vi the
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node of the tree G such that Tz0
π(path(G, vi)) = {d̄i} and all nodes in the

path path(G, vi), are assigned with basic attributes with possible exception

of the node vi. For i = 1, . . . , m, delete from the tree G the subtree whose

root is vi, but leave vi itself. Assign to vi the number ν0(d̄
i). Denote the

resulted tree G0. According to Lemma 2.3, G is a reduced decision tree. It

implies that all nonterminal nodes of the tree G0 are encountered in the

paths path(G0, v1), . . . , path(G0, vm). Then all nonterminal nodes in G0 are

assigned with basic attributes and G0 is a decision tree for z0. One can see

that G0 solves z0. Then,

h(G0, P0) ≥ h(z0, P0) . (2.27)

Let zi = (νi, f
i
1, . . . , f

i
ni

) for i = 0, . . . , m, and z = (ν, f0
1 , . . . , f0

n0
, f̃1

1 , . . . ,

f̃1
n1

, . . . , f̃m
1 , . . . , f̃m

nm
).

For an arbitrary i ∈ {1, . . . , m}, consider the subtree G̃i of the tree G whose

root is the node vi. By definition, f̃ j
k ≡ 0 in the set Ai for any j ∈ {1, . . . , m}\

{i}, k ∈ {1, . . . , nj}. Then the fact that G is a reduced decision tree implies

that all nonterminal nodes of the tree G̃i are assigned with attributes from

the set {f̃ i
1, . . . , f̃

i
ni
}. For each nonterminal node w in G̃i, let us replace the

attribute f̃ i
j assigned to w with the corresponding attribute f i

j . Denote Gi

the resulted tree. One can see that Gi is a decision tree for zi that solves zi.

Then

h(Gi, Pi) ≥ h(zi, Pi) . (2.28)

Let us compare the average depth of the trees G and Φ. One can see that

h(Φ, P ) = h(Γ0, P0) +
1

N(Tz, P )

m
∑

i=1

N(Tzi
, Pi)h(Γi, Pi)

and

h(G, P ) = h(G0, P0) +
1

N(Tz, P )

m
∑

i=1

N(Tzi
, Pi)h(Gi, Pi) .

Since Γ0, Γ1, . . . , Γm are optimal decision trees, the inequalities (2.27) and

(2.28) result in h(Φ, P ) ≤ h(G, P ). Therefore, Φ is an optimal decision tree

for z and P . ⊓⊔
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2.4.3 Example of Decomposable Problem

Theorem 2.5 allows for finding decision trees with the minimum average depth

for some classes of problems. This section shows that the upper bound on the

average depth of decision tree given by Theorem 2.4 is close to unimprovable.

Theorem 2.6. For arbitrary natural numbers m ≥ 2, n, there exists a 2-

valued information system Un
m, a problem zn

m over Un
m with mn equivalence

classes and a probability distribution Pn
m ≡ 1 such that H(P ) = n log2 m,

M(z) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

m − 1 , if n = 1 ,

m , if n = 2 ,

m + 1 , if n ≥ 3 ,

and h(z, P ) =
(m + 2)(m − 1)

2m
n .

We preface the proof of the theorem by several auxiliary definitions. Let

m ≥ 2, n be arbitrary natural numbers. Define a system of circles Bn
m in

a plane. By definition, B1
m is m non-intersecting circles such that no one is

enclosed to another. Let the system Bi−1
m have been already defined. Then the

system Bi
m consists of m non-intersecting circles, such that no one is enclosed

to another, and there is a system of the kind Bi−1
m inside each circle. A circle

in Bn
m is called zero order circle if it does not contain any circles from Bn

m. Let

for some i < n, circles of orders from zero to (i−1) have been already defined.

A circle from Bn
m is called i-th order circle if the order of all enclosed circles

is at most (i − 1) and is equal to (i − 1) for at least one circle. One can see

that Bn
m contains s = mn zero order circles. Denote these circles C1, . . . , Cs.

For i = 1, . . . , s, denote ai a point inside Ci, and denote A = {a1, . . . , as}. Set

into correspondence to each circle C from Bn
m a function f : A → {0, 1}. The

function f takes the value 1 on an element ai if the point ai is located inside

the circle C, and 0 otherwise. Denote F = {f1, . . . , ft} the set of functions

that correspond to all circles from Bn
m. Then Un

m = (A, F ).

Let zn
m = (ν, f1, . . . , ft) be a diagnostic problem over Un

m. The following

lemma gives the value of the parameter M(z) for the problem zn
m.

Lemma 2.6. Let m ≥ 2, n be arbitrary natural numbers. Then

M(zn
m) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

m − 1 , if n = 1 ,

m , if n = 2 ,

m + 1 , if n ≥ 3 .
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Proof. Consider the case n ≥ 3. Let us calculate M(z, δ̄) for an arbitrary

tuple δ̄ ∈ {0, 1}t. Let δ̄ = (0, . . . , 0). The system of equations {f1(x) =

0, . . . , fm(x) = 0} does not have a solution on the set A if f1, . . . , fm are

pairwise different attributes corresponding to (n− 1)-th order circles. There-

fore, M(zn
m, δ̄) ≤ m. Let δ̄ �= (0, . . . , 0). Denote C0 a circle of the small-

est order such that its corresponding attribute takes the value 1 on δ̄. De-

note n0 the order of the circle C0 and fi0 its corresponding attribute. If

n0 = 0, then the equation fi0(x) = 1 has a single solution on the set A, and

M(zn
m, δ̄) = 1. Let n0 ≥ 1. Denote fi1 , . . . , fim

the attributes corresponding

to the (n0 − 1)-th order circles that are enclosed into C0. By the choice of

C0, the attributes fi1 , . . . , fim
take the value 0 on δ̄. The system of equations

{fi0(x) = 1, fi1(x) = 0, . . . , fim
(x) = 0} does not have a solution on the set

A, so M(zn
m, δ̄) ≤ m + 1. Therefore,

M(zn
m) ≤ m + 1 . (2.29)

Let C2 be an arbitrary second order circle. Consider a tuple δ̄ = (δ1, . . . , δt)

in which the values of the attributes corresponding to C2 and all circles that

contains C2 are set to 1, and all other elements are set to 0. Let us show

that M(zn
m, δ̄) ≥ m + 1. Denote fi0 the attribute corresponding to C2, and

fi1 , . . . , fim
the attributes corresponding to the first order circles enclosed

into C2. Let S = {fj1(x) = δj1 , . . . , fjk
(x) = δjk

} be an arbitrary system of

equations that either does not have a solution on the A or zn
m(x) ≡ const

on the set of solutions. Let l ∈ {1, . . . , k}. Replace the equation fjl
(x) = δjl

with the equation fir
(x) = 0 if the circle corresponding to the attribute fjl

is either enclosed into the circle corresponding to fir
or coincides with it

for some r ∈ {1, . . . , m}. Otherwise, replace the equation fjl
(x) = δjl

with

the equation fi0(x) = 1. Let us make such replacement for l = 1, . . . , s,

and denote the resulted system S1. One can see that the system S1 contains

at most k equations, the set of solutions of S1 on A is a subset of the set

of solutions of S on A, and S1 is a subsystem of the system S2 = {fi0(x) =

1, fi1(x) = 0, . . . , fim
(x) = 0}. Assume that S1 �= S2. One can see that in this

case zn
m(x) �≡ const on the set of solutions of S1 on A. But this is impossible.

Therefore, k ≥ m+1. Then any system of equations that either do not have a

solution on A or have a set of solutions coinciding with some equivalence class

contains at least (m + 1) equations, and M(zn
m, δ̄) ≥ m + 1. This inequality

and (2.29) imply M(zn
m) = m + 1. The cases n = 1 and n = 2 are considered

similarly. ⊓⊔

Proof of Theorem 2.6. We apply induction on n. Let n = 1. Define a decision

tree Γ for the problem z1
m. The decision tree Γ contains (m − 1) nontermi-

nal nodes v1, . . . , vm−1, which are assigned with pairwise different attributes
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f1, . . . , fm−1, and m terminal nodes vm, w1, . . . , wm−1. For i = 1, . . . , m − 1,

two edges leave the node vi that are labeled with the numbers 0 and 1

respectively. The edge labeled with 0 enters the node vi+1 and the edge

labeled with 1 enters the node wi. For i = 1, . . . , m − 1, the node wi is as-

signed with the number z1
m(ai) where ai is an element of the set A such that

fi(ai) = 1. The node vm is assigned with the number z1
m(a0) where a0 is an

element of the set A such that fi(a0) = 0 for i = 1, . . . , m − 1. The decision

tree Γ does not contain any other nodes and edges. One can see that Γ solves

the problem z1
m and is optimal for z1

m and P 1
m. Let us calculate the average

depth of Γ :

h(Γ, P 1
m) =

1

m
(

m−1
∑

i=1

i + (m − 1)) =
(m + 2)(m − 1)

2m
.

Then, h(z1
m, P 1

m) = (m + 2)(m − 1)/(2m).

Let n be a natural number greater than 1 such that the theorem holds

for all natural numbers less than n. Denote C1, . . . , Cm the (n − 1)-th or-

der circles contained in the system Bn
m, and f1, . . . , fm their correspond-

ing attributes. Consider a decomposition ((z0, P0), (z1, P1), . . . , (zm, Pm)) of

the pair (zn
m, Pn

m). The diagnostic problem z0 contains only the attributes

f1, . . . , fm. For i = 1, . . . , m, the problem zi contains all attributes cor-

responding to the circles enclosed in Ci, and zi(x) is the mapping zn
m :

A → ω restricted to the set {a ∈ A : fi(a) = 1}. Let for i = 0, . . . , m,

Pi be a uniform probability distribution for the problem zi. One can see

that ((z0, P0), (z1, P1), . . . , (zm, Pm)) is a proper decomposition of the pair

(zn
m, Pn

m), h(z0, P0) = h(z1
m, P 1

m) and h(zi, Pi) = h(zn−1
m , Pn−1

m ) for i =

1, . . . , m. Using induction hypothesis, we obtain h(z0, P0) = (m + 2)(m − 1)

/(2m) and h(zi, Pi) = [(m + 2)(m − 1)/(2m)](n− 1) for i = 1, . . . , m. Let Γi

be a decision tree for the problem zi that solves zi and is optimal for zi and

Pi, i = 0, . . . , m. Let Φ = Φ(Γ0, Γ1, . . . , Γm). From the definition of the tree

Φ it follows that

h(Φ, Pn
m) = h(Γ0, P0) +

m
∑

i=1

h(Γi, Pi)

m
=

(m + 2)(m − 1)

2m
n .

Using Theorem 2.5, we obtain h(zn
m, Pn

m) = [(m + 2)(m − 1)/(2m)]n. ⊓⊔



Chapter 3

Representing Boolean Functions by
Decision Trees

A Boolean or discrete function can be represented by a decision tree. A com-

pact form of decision tree named binary decision diagram or branching pro-

gram is widely known in logic design [2, 40]. This representation is equivalent

to other forms, and in some cases it is more compact than values table or even

the formula [44]. Representing a function in the form of decision tree allows

applying graph algorithms for various transformations [10]. Decision trees

and branching programs are used for effective hardware [15] and software

[5] implementation of functions. For the implementation to be effective, the

function representation should have minimal time and space complexity. The

average depth of decision tree characterizes the expected computing time,

and the number of nodes in branching program characterizes the number of

functional elements required for implementation. Often these two criteria are

incompatible, i.e. there is no solution that is optimal on both time and space

complexity.

The chapter considers several problems of representing functions in the

form of decision trees. It consists of two sections. The first section studies the

average time complexity of representing Boolean functions by decision trees.

The complexity of a class of functions can be characterized by a Shannon type

function H(n) that shows the dependence of the minimum average depth of

decision tree in the worst case on the number of function arguments. For each

closed class of Boolean functions B, a lower and an upper bound on HB(n)

are given. Analogous results for the depth of decision trees are described in

[48]. The second section considers branching programs with the minimum

average weighted depth. It is proven that such programs are read-once, i.e.

each attribute is checked at most once along each path. This fact implies

high lower bounds on the number of nodes in branching programs with the

minimum average weighted depth for several known functions.

Results of this chapter were previously published in [19].

I. Chikalov: Average Time Complexity of Decision Trees, ISRL 21, pp. 41–60.
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3.1 On Average Depth of Decision Trees Implementing

Boolean Functions

This section contains some auxiliary notions followed by propositions that

give bounds on the function H(n) for all closed classes of Boolean functions.

The notation of closed classes of Boolean functions is in accordance with [36];

the classes and the class inclusion diagram are described in Appendix A.

3.1.1 Auxiliary Notions

A function of the form f : En
2 → E2 is called Boolean function. The constants

0 and 1 also are Boolean functions.

Let f(x1, . . . , xn) be a Boolean function. A variable xi of the function f

will be called essential if there exist two n-tuples δ̄ and σ̄ from En
2 which differ

only in the i-th digit and for which f(δ̄) �= f(σ̄). Variables of the function f

which are not essential will be called inessential.

Let us set into correspondence to a Boolean function f(x1, . . . , xn) a prob-

lem z = (f, x1, . . . , xn) over the information system Un = (En
2 , {x1, . . . , xn}).

The problem z has two equivalence classes Q0 and Q1 containing the sets of

binary tuples on which f takes the value 0 and 1 respectively. A decision tree

solving the problem z is called a decision tree implementing f . Denote g(f)

and h(f) respectively the minimum depth of a decision tree implementing f

and the minimum average depth of a decision tree implementing f relative

to the probability distribution P ≡ 1.

Denote dim f the number of arguments of the function f . Let B be a set

of Boolean functions. Consider the functions

GB(n) = max{g(f) : f ∈ B, dim f ≤ n}

and

HB(n) = max{h(f) : f ∈ B, dim f ≤ n}

that characterize the growth in the worst case of the minimum depth and

the minimum average depth of decision trees implementing Boolean functions

from B with growth of the number of function arguments. Note that HB(n) ≤
GB(n) for any n.



3.1 On Average Depth of Decision Trees Implementing Boolean Functions 43

3.1.2 Bounds on Function HB(n)

In this section, a number of propositions are formulated that for each closed

class of Boolean functions B give the upper and the lower bound on HB(n)

followed by two theorems that compare the values GB(n) and HB(n).

Proposition 3.1. For B ∈ {O2, O3, O7}, the relation HB(n) = 0 holds.

Proposition 3.2. For B ∈ {O1, O4, O5, O6, O8, O9}, the relation HB(n) = 1

holds.

Proposition 3.3. For B ∈ {S1, S3, S5, S6, P1, P3, P5, P6}, the relation

HB(n) =

{

2 − 1
2n−1 , if n ≥ 2 ,

1 , if n = 1 .

holds.

Proposition 3.4. For B ∈ {L1, L2, L3, C1, C2, C3}, the relation HB(n) = n

holds.

Proposition 3.5. For B ∈ {L4, L5}, the relation

HB(n) =

{

n , if n = 2k + 1 , k ≥ 0 ,

n − 1 , if n = 2k, k ≥ 1

holds.

Proposition 3.6. For B = C4, the relation

HB(n) =

{

n , if n = 2k + 1, k ≥ 0 ,

n − 1
2n−1 , if n = 2k, k ≥ 1

holds.

Proposition 3.7. For B ∈ {D1, D3}, the following relations hold:

a) HB(n) = n, if n = 2k + 1, k ≥ 0;

b) n − 1.7/
√

n ≤ HB(n) ≤ n − 1/2n−1, if n = 2k, k ≥ 1.

Proposition 3.8. For B ∈ {M1, M2, M3, M4}, the relation

n + 1 −
√

n + 1 ≤ HB(n) ≤ n − ⌊n/2⌋2−⌊n/2⌋

holds.
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Proposition 3.9. For B = D2, the relation

n + 1/2 −
√

n + 1 ≤ HB(n) ≤ n − ⌊n/2⌋2−⌊n/2⌋

holds.

Proposition 3.10. For B ∈ {F∞
1 , F∞

4 , F∞
5 , F∞

8 }, the relation HB(n) = (n+

1)/2 holds.

Proposition 3.11. For B ∈ {F∞
2 , F∞

3 , F∞
6 , F∞

7 }, the relation

1 + (n −√
n)/2 ≤ HB(n) ≤ (n + 1)/2, n ≥ 1

holds.

Proposition 3.12. For B ∈ {Fµ
1 , Fµ

4 , Fµ
5 , Fµ

8 }, μ ≥ 2, the relation

(n + 1)/2 ≤ HB(n) ≤ n − ⌊n/2⌋2−⌊n/2⌋

holds.

Proposition 3.13. For any B ∈ {Fµ
2 , Fµ

3 , Fµ
6 , Fµ

7 }, μ ≥ 2, the relation

1 + (n −√
n)/2 ≤ HB(n) ≤ n − ⌊n/2⌋2−⌊n/2⌋

holds.

The following theorem is proved by Moshkov.

Theorem 3.1 ([48]). Let B be a closed class of Boolean functions and n be

a natural number. Then

a) if B ∈ {O2, O3, O7}, then GB(n) = 0;

b) if B ∈ {O1, O4, O5, O6, O8, O9}, then GB(n) = 1;

c) if B ∈ {L4, L5}, then GB(n) =

{

n , if n is odd ,

n − 1 , if n is even ;

d) if B ∈ {D1, D2, D3}, then GB(n) =

{

n , if n ≥ 3 ,

1 , if n ≤ 2 ;

e) if the class B does not coincide with any classes mentioned in (a) – (d),

then GB(n) = n.

The following two theorems immediately follow from the previous theorem

and Propositions 3.1-3.13. These theorems characterize the relation between

HB(n) and GB(n) for each closed class of Boolean functions.
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Theorem 3.2. Let B be a closed class of Boolean functions, and n a natural

number. Let at least one of the following conditions hold:

a) n = 1;

b) B ∈ {O1, . . . , O9, L1, . . . , L5, C1, C2, C3};
c) B ∈ {C4, D1, D3} and n is odd;

d) B ∈ {D1, D2, D3} and n = 2.

Then HB(n) = GB(n). If none of the conditions (a), (b), (c), (d) hold, then

HB(n) < GB(n).

Theorem 3.3. Let B be a closed class of Boolean functions. Then

a) limn→∞ HB(n)/GB(n) = 0 if B ∈ {S1, S3, S5, S6, P1, P3, P5, P6};
b) HB(n)/GB(n) = 1 if B ∈ {O1, . . . , O9, L1, . . . , L5, C1, C2, C3};
c) limn→∞ HB(n)/GB(n) = 1 if B ∈ {C4, M1, . . . , M4, D1, D2, D3};
d) limn→∞ HB(n)/GB(n) = 1/2 if B ∈ {F∞

1 , . . . , F∞
8 };

e)
1

2
− ε(n) <

HB(n)

GB(n)
< 1

where ε(n) = O(1/
√

n) if B ∈ {Fµ
1 , . . . , Fµ

8 } and μ ≥ 2.

3.1.3 Proofs of Propositions 3.1-3.13

We preface proof of the propositions by a series of lemmas. Since in this

section the uniform probability distribution is assumed, it is omitted in no-

tations, so the average depth of a tree Γ is denoted by h(Γ ).

For an arbitrary path ξ in a decision tree Γ , denote its length by lΓ (ξ).

Denote the logical negation operation by ¬ and the modulo 2 summation by

⊕. A Boolean function f(x1, . . . , xn) is called symmetrical if for each tuple

δ̄ ∈ En
2 and each permutation p of n elements, the relation f(δ̄) = f(p(δ̄))

holds.

Lemma 3.1. Let f0(x1, . . . , xn) and f1(x1, . . . , xn) be arbitrary Boolean

functions for some natural number n. Let Γ0 and Γ1 be decision trees im-

plementing f0 and f1 respectively. Let Γ be a decision tree of the following

form:

a) the root of Γ is assigned with the attribute xn+1;

b) for δ = 0, 1, an edge eδ leaves the root of Γ and enters the root of Γδ,

which is labeled with the number δ;

c) Γ does not contain any other nodes and edges.
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Then the following statements are true:

a) the decision tree Γ implements the function ¬xn+1 ∧ f0 ∨ xn+1 ∧ f1;

b) h(Γ ) = 1 + (h(Γ0) + h(Γ1))/2.

Proof. Consider an arbitrary tuple δ̄ = (δ1, . . . , δn+1) and find in the tree Γ

the path ξ(δ̄) on which computations for δ̄ are performed. Since the root of

Γ is assigned with the attribute xn+1, the terminal node of the path ξ(δ̄) is

located in the tree Γδn+1
. Denote δ̄∗ = (δ1, . . . , δn) and denote ξδn+1(δ̄∗) the

part of ξ(δ̄) from the root of the tree Γδn+1
to the terminal node. One can

see that in the tree Γδn+1
, computations for the tuple δ̄∗ are performed along

the path ξδn+1(δ̄∗). Since the tree Γδn+1
implements the function fδn+1

, the

terminal node of the path ξ(δ̄) is assigned with the number fδn+1
(δ1, . . . , δn) =

¬δn+1∧f0(δ1, . . . , δn)∨δn+1∧f1(δ1, . . . , δn). Therefore, the tree Γ implements

the function¬xn+1 ∧ f0 ∨ xn+1 ∧ f1.

Obviously, the length of the path ξ(δ̄) is greater by 1 than the length of

the path ξδn+1(δ̄∗). Then

h(Γ ) =
1

2n+1

∑

δ∈En+1

2

lΓ (ξ(δ))

=
1

2

⎛

⎝

1

2n

∑

δ̄∗∈En
2

(lΓ (ξ0(δ̄∗)) + 1) +
1

2n

∑

δ̄∗∈En
2

(lΓ (ξ1(δ̄∗)) + 1)

⎞

⎠

=
1

2
(h(Γ0) + 1 + h(Γ1) + 1) = 1 +

h(Γ0) + h(Γ1)

2
.

⊓⊔
The following lemma gives a combinatorial identity, which will be used fur-

ther. Denote g(n, t) =
∑n

i=t Ct
i /2i.

Lemma 3.2. For arbitrary natural numbers n, t ≤ n, the equality g(n, t) =

2 − 1/2n
∑t

i=0 Ci
n+1 holds.

Proof. Apply the following transformations:

g(n, t) =
n

∑

i=t

1

2i
Ct

i =
n+1
∑

i=t

1

2i
Ct

i −
1

2n+1
Ct

n+1 =
n

∑

i=t−1

1

2i+1
Ct

i+1

− 1

2n+1
Ct

n+1 =
1

2

(

n
∑

i=t−1

1

2i
Ct

i +

n
∑

i=t−1

1

2i
Ct−1

i − 1

2n
Ct

n+1

)

=
1

2

(

g(n, t) + g(n, t − 1) − 1

2n
Ct

n+1

)

.
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Then we have

g(n, t) = g(n, t − 1) − 1

2n
Ct

n+1 . (3.1)

Let us modify g(n, 1) as follows:

g(n, 1) =

n
∑

i=1

i

2i
=

1

2
+

2

4
+ . . . +

n − 1

2n−1
+

n

2n
=

1

2
+

2

4
+ . . .

+
n − 1

2n−1
+

n

2n−1
− n

2n
= 1 +

1

2
+

1

4
+ . . . +

1

2n−1
− n

2n

=
1 − 1

2n

1 − 1
2

− n

2n
= 2

2n − 1

2n
− n

2n
= 2 − 1

2n
− n + 1

2n
.

Then g(n, 1) can be expressed in the following form:

g(n, 1) = 2 − 1

2n

(

C0
n+1 + C1

n+1

)

. (3.2)

The equalities (3.1) and (3.2) imply g(n, t) = 2−1/2n
∑t

i=0 Ci
n+1. ⊓⊔

Lemma 3.3. The function

f(n) = (n + 1) −
√

2(n + 1)√
3n + 5

− (n +
3

2
−
√

n + 2)

takes positive values for any natural number n ≥ 3.

Proof. Convert all terms to the common denominator:

f(n) =
√

n + 2 − 1

2
−

√
2(n + 1)√
3n + 5

=
2
√

n + 2
√

3n + 5 −
√

3n + 5 − 2
√

2(n + 1)

2
√

3n + 5
=

φ(n)

2
√

3n + 5
.

The denominator is always positive, so f(n) has the same sign as φ(n). Apply

the following transformations:

φ(n) = (4n + 7) − (
√

3n + 5 −
√

n + 2)2 −
√

3n + 5 − 2
√

2(n + 1)

> (4n + 7) − (
√

3n + 6 −
√

n + 2)2 −
√

3n + 5 − 2
√

2(n + 1)

= (4n + 7) − (
√

3 − 1)2(n + 2) −
√

3n + 5 − 2
√

2(n + 1)

= 2(
√

3 −
√

2)n + 4
√

3 − 2
√

2 − 1 −
√

3n + 5 > 0.6n + 3 −
√

3n + 5

= ψ(n) .

The facts that ψ(n) is monotonically increasing and ψ(3) > 0 prove the

lemma. ⊓⊔



48 3 Representing Boolean Functions by Decision Trees

For an arbitrary natural number k, the Boolean function that takes value 1 if

and only if at least k its arguments are set to 1 is called a threshold function

with the threshold k. Denote by Thrn,k the threshold function of n variables

with the threshold k.

Lemma 3.4. For an arbitrary natural number n, the relation h(Thrn,⌈n/2⌉) ≥
n + 1 −

√
n + 1 holds, and for an arbitrary odd n ≥ 3, the relation

h(Thrn,(n+1)/2) ≥ n +
3

2
−
√

n + 2

holds.

Proof. Denote m = ⌈n/2⌉. Let Γ be an optimal decision tree implementing

the function Thrn,m. Let us transform Γ as follows. We will process nonter-

minal nodes layer by layer starting from the root. Let v be the current node,

rv the distance from the root to v, and Γv the tree whose root is v. If v is

assigned with the attribute xrv+1, then skip this node and proceed to the

next node. Let v is assigned with an attribute xs that differs from xrv+1.

Lemma 2.3 implies that Γ is a reduced tree. Then for each path in Γ , the

attributes assigned to the nonterminal nodes of this path are pairwise differ-

ent. Therefore, no node in Γv except the root is assigned with the attribute

xs. Assign the attribute xrv+1 to the node v, assign the attribute xs to all

nonterminal nodes in Γv which were assigned with the attribute xrv+1, and

proceed to the next node.

One can see that Γv is a decision tree implementing the function Thrn,m(δ1,

. . . , δrv
, xrv+1, . . . , xn) for some δ1, . . . , δrv

∈ {0, 1}. Since this function is

symmetrical, the transformation keeps the function implemented by Γv and

does not change the average depth of the tree.

Denote Γ̂ the resulted tree. From the description of the transformation it

follows that Γ̂ is an optimal decision tree implementing the function Thrn,m,

and for i = 1, . . . , n, all nodes in the i-th layer are assigned with the attribute

xi. According to Lemma 2.3, Γ̂ is a reduced decision tree. One can see that for

a tuple δ̄ = (δ1, . . . , δn) ∈ En
2 , the length of the path on which computations

for δ̄ are performed is equal to i if and only if one of the following conditions

hold:

• δi = 1, and exactly (m − 1) elements of the tuple (δ1, . . . , δi−1) are equal

to one;

• δi = 0, and exactly (n − m) elements of the tuple (δ1, . . . , δi−1) are equal

to zero.

In other words, the length of the path is the minimum of the position of the

m-th one and the position of the (n − m + 1)-th zero in the tuple δ̄.
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For i = 1, . . . , n, there are 2n−i(Cm−1
i−1 + Cn−m

i−1 ) tuples corresponding to

the paths in Γ̂ of the length i. Then the average depth of the decision tree Γ̂

is equal to

h(Γ̂ ) = 2−n
n

∑

i=1

i2n−i(Cm−1
i−1 + Cn−m

i−1 ) .

Applying simple transformations and using the previously introduced nota-

tion g(n, t), we obtain h(Γ̂ ) = h(Thrn,m) = mg(n, m) + (n− m + 1)g(n, n−
m + 1). Applying Lemma 3.2, we obtain

h(Thrn,m) = 2(n + 1) − 1

2n

(

m

m
∑

i=0

Ci
n+1 + (n − m + 1)

n−m+1
∑

i=0

Ci
n+1

)

.

If n is odd, then m = (n + 1)/2. Taking into account that (n + 1)/2 =

n − (n + 1)/2 + 1, and

(n+1)/2
∑

i=0

Ci
n+1 = 2n +

1

2
C

(n+1)/2
n+1

as the number of binary tuples of the length (n + 1) containing at most

(n + 1)/2 ones, we have

h(Thrn,m) = (n + 1)

(

1 − 1

2n+1
C

(n+1)/2
n+1

)

.

Using a known bound from [29] (see Chap. 8, Exercise 8.5.2)

Cn
2n ≤ 4n

√
3n + 1

, (3.3)

we obtain that h(Thrn,m) ≥ (n + 1)(1 −
√

2/
√

3n + 5) ≥ (n + 1) −
√

n + 1.

Applying Lemma 3.3, we obtain the bound h(Thrn,m) ≥ n + 3/2 −
√

n + 2

for any odd n ≥ 3.

Let n be even. Then m = n/2. Taking into account that
∑n/2

i=0 Ci
n+1 = 2n

and
∑n/2+1

i=0 Ci
n+1 = 2n + C

n/2+1
n+1 , we have

h(Thrn,m) = (n + 1) − 1

2n

(n

2
+ 1

)

C
n/2+1
n+1 = (n + 1)

(

1 − 1

2n
Cn/2

n

)

.

The inequality (3.3) implies h(Thrn,m) ≥ (n + 1)(1 −
√

2/
√

3n + 2) ≥ (n +

1) −
√

n + 1. ⊓⊔
Let z = (ν, f1, . . . , fn) be a problem over a 2-valued information system. A set

of terminal separable subtables {I1, . . . , Ik} of the table Tz is called compatible
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if for some natural number l ≤ n, there exist numbers a1, . . . , al ∈ {1, . . . , n},
and for i = 1, . . . , k, there exist tuples δ̄i = (δi

1, . . . , δ
i
l) ∈ El

2, δ̄i �= δ̄j for

i �= j, such that Ii = Tz(fa1
, δi

1) . . . (fal
, δi

l ). We will say that the terminal

separable subtables I1, . . . , Ik form a partition of the table Tz if
⋃k

i=1 Ii = Tz,

and Ii ∩ Ij = ∅ for i �= j.

Lemma 3.5. Let z = (ν, f1, . . . , fn) be a problem over 2-valued information

system such that Tz = En
2 , and P be a probability distribution for the problem

z. Then the following statements are valid:

a) for an arbitrary compatible set of terminal separable subtables {I1, . . . ,

Ik} of the table Tz, the inequality

h(z, P ) ≤ n − 1

N(Tz, P )

k
∑

i=1

log2 D(Ii)N(Ii, P ) (3.4)

holds;

b) there exists a partition of the table Tz for which the relation (3.4) holds

as equality.

Proof. Let us prove part (a) of the lemma. Let ν(x) ≡ const = νi on the set

of rows of the table Ii for i = 1, . . . , k. Without loss of generality, assume

that Ii = Tz(f1, δi
1) . . . (fl, δ

i
l ) for some δi

1, . . . , δ
i
l ∈ E2, i = 1, . . . , k. Let us

build a decision tree Γ for the problem z in the following way.

Step 0. Build a complete binary tree of the length (l + 1). For i = 1, . . . , l,

assign the attribute fi to each node in the i-th layer and proceed to the first

step.

Let t ≥ 0 steps have been already performed.

Step (t + 1). If each terminal node in the tree Γ has been already labeled

with a number, the algorithm finishes. Otherwise, choose in Γ an unlabeled

terminal node v. Denote by ξ the path from the root to the node v. If Tzπ(ξ) =

Ii for some i ∈ {1, . . . , k}, then label the node v with the number νi and

proceed to the next step. Otherwise, replace the node v with a complete

binary tree Γv of the depth (n − l + 1), and for i = 1, . . . , n − l, assign the

attribute fl+i to all nonterminal nodes in the i-th layer of the tree Γv. Then

assign to each terminal node w of the tree Γv the natural number aw defined

as follows. Denote by φ the path from the root of the tree Γ to the node w.

Since each of the attributes f1, . . . , fn is assigned to a node in the path φ

and Tz = En
2 , the subtable Tzπ(φ) consists of a single row. Denote that row

δ̄ and assume aw = ν(δ̄). Proceed to the step (t + 2).

One can see that the algorithm finishes after the (2l+1)-th step and the

resulted decision tree solves the problem z. For an arbitrary tuple δ̄ ∈ Tz,

denote by ξ(δ̄) the complete path on which computations for δ̄ are performed.
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From the description of tree building procedure, the length of ξ(δ̄) is equal

to l if δ̄ ∈ Ii for some i ∈ {1, . . . , k}, and is equal to n otherwise. Denote

I = I1 ∪ . . . ∪ Ik. Then the expression for the average depth of the decision

tree Γ has the following form:

h(Γ, P ) =
1

N(Tz, P )

⎛

⎝n
∑

δ̄∈Tz\I

P (δ̄) + l
∑

δ̄∈I

P (δ̄)

⎞

⎠

= n − 1

N(Tz, P )

k
∑

i=1

(n − l)N(Ii, P ) .

(3.5)

Since Tz = En
2 , each subtable Ii contains exactly 2n−l rows, and log2 D(Ii)

= n − l. Taking into account the obvious inequality h(z, P ) ≤ h(Γ, P ), the

inequality (3.5) can be easily transformed into (3.4).

Let us prove part (b) of the lemma. Let Γ be an optimal decision tree for

the problem z. Denote by W (Γ ) the set of nonterminal nodes in the decision

tree Γ . For an arbitrary terminal node w ∈ W (Γ ), denote by path(w) the

path from the root to the node w. Since the tree Γ solves z, Tzπ(path(w)) is

a terminal subtable, Tzπ(path(w1)) ∩ Tzπ(path(w2)) = ∅ for any two differ-

ent nodes w1 and w2, and
⋃

w∈W (Γ ) Tz(π(path(w))) = Tz. For an arbitrary

terminal node w ∈ W (Γ ), denote Iw = Tzπ(path(w)) and choose the set

{Iw : w ∈ W (Γ )} as the desired partition. From Lemma 2.3 it follows that

Γ is a reduced tree. Then for an arbitrary terminal node w ∈ W (Γ ), the

nonterminal nodes of the path path(w) are assigned with pairwise different

attributes. From the condition Tz = En
2 it follows that the number of rows in

the subtable Iw is equal to 2n−lΓ (path(w)). Therefore, the length of the path

on which computations for all rows of the table Iw are performed is equal to

(n− log2 D(Iw)). Finally, we transform the expression for the average depth

of the decision tree Γ :

h(Γ, P ) =
1

N(Tz, P )

∑

δ̄∈Tz

lΓ (ξ(δ̄))P (δ̄)

=
1

N(Tz, P )

∑

w∈W (Γ )

lΓ (path(w))N(Iw , P )

=
1

N(Tz, P )

∑

w∈W (Γ )

(n − log2 D(Iw))N(Iw , P )

= n − 1

N(Tz, P )

∑

w∈W (Γ )

log2 D(Iw)N(Iw , P ) . ⊓⊔
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Lemma 3.6. For an arbitrary natural number n, the minimum average depth

of decision trees implementing Boolean functions x1 ⊕ . . .⊕xn and x1 ⊕ . . .⊕
xn ⊕ 1 is equal to n.

Proof. Let z = (f, x1, . . . , xn) be a problem corresponding to the function

f(x1, . . . , xn) = x1 ⊕ . . . ⊕ xn. Let us show that Tz does not have terminal

separable subtables that contain more than one row. Assume the contrary.

Let there exist a word α ∈ Ωz such that Tzα is a terminal separable subtable

containing at least two rows δ̄ = (δ1, . . . , δn) and σ̄ = (σ1, . . . , σn), δ̄ �= σ̄.

Let δi �= σi for some i ∈ {1, . . . , n}. Then the word α does not contain the

letters (xi, 0) and (xi, 1). Since Tz = En
2 , the subtable Tzα also contains the

row δ̄∗ = (δ1, . . . , δi − 1,¬δi, δi+1, . . . , δn). Since f(δ̄) �= f(δ̄∗), we obtain a

contradiction with the assumption that Tzα is a terminal subtable. Therefore,

all terminal separable subtables of Tz consist of a single row. From part (b)

of Lemma 3.5 it follows that h(f) = n. The lemma is proved analogously for

the function x1 ⊕ . . .⊕xn ⊕ 1. ⊓⊔

Lemma 3.7. Let f(x1, ..., xn) be an arbitrary non-constant Boolean function.

Denote by f̂ one of the functions f(x1, ..., xn) ∧ xn+1, f(x1, ..., xn) ∧ ¬xn+1,

f(x1, ..., xn)∨xn+1, f(x1, ..., xn)∨¬xn+1. Then the relation h(f̂) = 1+h(f)/2

holds.

Proof. Let us prove the lemma by induction on the number of essential vari-

ables of the function f . Obviously, each function that have a single essential

variable can be represented (up to inessential variables) in the form f(x) = x

or f(x) = ¬x, and the lemma is valid for these functions.

Let the lemma be valid for all functions with at most (t − 1) essential

variables for some t > 1. Let f be a function with t essential variables.

Denote f̂ = f(x1, ..., xn) ∧ xn+1.

Let us build a decision tree Γ̂ in the following way. The root of Γ̂ is assigned

with the attribute xn+1. Two edges leave the root labeled with the numbers

0 and 1. The edge labeled with 0 enters a terminal node which is labeled with

the number 0. The edge labeled with 1 enters the root of an optimal decision

tree implementing the function f . The decision tree Γ̂ does not contain any

other nodes and edges. It is easy to see that Γ̂ implements the function f̂ .

According to Lemma 3.1,

h(Γ̂ ) = 1 +
h(f)

2
. (3.6)

To prove the lemma it is sufficient to show that Γ̂ is an optimal decision

tree. Assume the contrary. In this case, there exists an optimal decision tree
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Γ whose root is assigned with an attribute other than xn+1. Assume without

loss of generality that it is the attribute x1. For δ = 0, 1, denote eδ the edge

that leaves the root of Γ and is labeled with the number δ, and denote Γδ the

decision tree whose root the edge eδ enters. One can see that the decision tree

Γδ implements the function f(δ, x2, . . . , xn) ∧ xn+1. Since f has t essential

variables, at least one of the functions f(0, x2, . . . , xn), f(1, x2, . . . , xn) is a

non-constant function. Let both functions possess this condition. Then the

induction base implies that for δ = 0, 1, the relation

h(f(δ, x2, . . . , xn) ∧ xn+1) = 1 +
h(f(δ, x2, . . . , xn))

2
(3.7)

holds. From Lemma 3.1 it follows that

h(Γ ) = 1 +
1

2

(

1 +
h(f(0, x2, . . . , xn))

2
+ 1 +

h(f(1, x2, . . . , xn))

2

)

.

Then

h(Γ ) = 2 +
h(f(0, x2, . . . , xn)) + h(f(1, x2, . . . , xn))

4
. (3.8)

Let us build a decision tree G as follows. The root of G is assigned with the

attribute x1. Two edges leave the root labeled with the numbers 0 and 1. For

δ = 0, 1, the edge labeled with the number δ enters the root of an optimal

decision tree for the function f(δ, x2, . . . , xn). The tree G does not contain

any other nodes and edges. One can see that G implements the function f .

According to Lemma 3.1,

h(G) = 1 +
h(f(0, x2, . . . , xn)) + h(f(1, x2, . . . , xn))

2
. (3.9)

Taking into account the inequality h(f) ≤ h(G) and substituting (3.9)

into (3.8), we obtain that h(Γ ) ≥ 3/2 + h(f)/2. Comparing the last re-

lation to (3.6), we have h(Γ ) > h(Γ̂ ) that contradicts the assumption

that Γ is an optimal decision tree. Therefore, only one of the functions

f(0, x2, . . . , xn), f(1, x2, . . . , xn) is non-constant. Suppose for the definite-

ness that f(1, x2, . . . , xn) ≡ const. Then f can be represented in the form f =

x1∨f(0, x2, . . . , xn) or f = ¬x1∧f(0, x2, . . . , xn). The induction base implies

that h(f) = 1 + h(f(0, x2, . . . , xn))/2. The function f(0, x2, . . . , xn) ∧ xn+1

is non-constant, and for δ = 0, the relation (3.7) holds. Then the relation

h(f(0, x2, . . . , xn) ∧ xn+1) = h(f) holds and implies

h(f̂) = h(Γ ) = 1 +
h(f)

2
+

h(f(1, x2, . . . , xn) ∧ xn+1)

2
.
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Comparing this relation with (3.6), we have h(f̂) ≤ h(Γ̂ ) that contradicts

the assumption that the tree Γ̂ is not optimal. Consequently, the tree Γ̂ is

optimal and h(f) = 1 + h(f)/2. The induction step is proved analogously for

other types of the function f̂ listed in the lemma. ⊓⊔

For arbitrary numbers x, σ ∈ E2, denote

xσ =

{

x , if σ = 0 ,

¬x , if σ = 1 .

Proof of Proposition 3.1. For an arbitrary natural number n and a number

σ ∈ E2, set into correspondence to the function f(x1, . . . , xn) ≡ σ a decision

tree Γ0(σ) that consists of a single terminal node labeled with σ. One can see

that the tree Γ0(σ) implements f and h(Γ0(σ)) = 0. Then HB(n) = 0. ⊓⊔

Proof of Proposition 3.2. For an arbitrary natural number n, a natural num-

ber i ≤ n, and a number σ ∈ E2 set into correspondence to the function

f(x1, . . . , xn) = xσ
i a decision tree Γ1(i, σ). The decision tree Γ1(i, σ) con-

sists of one nonterminal node v labeled with the attribute xi and two termi-

nal nodes w0 and w1 labeled with the numbers 0σ and 1σ respectively. For

δ = 0, 1, there is an edge leaving v and entering wδ, and this edge is labeled

with the number δ. The tree Γ1(i, σ) does not contain other nodes and edges.

One can see that the tree Γ1(i, σ) implements f and h(Γ1(i, σ)) = 1.

On the other hand, a decision tree that implements a non-constant Boolean

function must have at least two terminal nodes and, consequently, at least

one nonterminal node. Therefore, Γ1(i, σ) is an optimal decision tree and

HB(n) = 1. ⊓⊔

Proof of Proposition 3.3. Any function of n arguments from the set S1∪S3∪
S5 ∪ S6 ∪ P1 ∪P3 ∪ P5 ∪ P6 up to argument names can be represented in the

form f0(x1, . . . , xn) = 0, f1(x1, . . . , xn) = 1, f1
t (x1, . . . , xn) = x1 ∨ . . .∨ xt or

f2
t (x1, . . . , xn) = x1∧. . .∧xt where t ≤ n. Let us prove by induction on t that

the relation h(f1
t ) = h(f2

t ) = 2 − 1/2t−1 holds for t = 1, . . . , n. If t = 1, then

f1
t ≡ f2

t ≡ x1 and h(f1
t ) = h(f2

t ) = 1. Let the relation be valid for each i less

than t. From Lemma 3.7 it follows that h(f1
t ) = 1 + h(f1

t−1)/2 and h(f2
t ) =

1 + h(f2
t−1)/2. According to the inductive hypothesis, h(f1

t−1) = h(f2
t−1) =

2−1/2t−2. Then h(f1
t ) = h(f2

t ) = 1+(2−1/2t−2)/2 = 2−1/2t−1. One can see

that maxt∈{1,...,n} h(f1
t ) = maxt∈{1,...,n} h(f2

t ) = 2− 21−n and the maximum

is reached on the functions f1
n and f2

n. Then validity of the proposition follows

from the fact that for n ≥ 1, each of the classes S1, S3, S5, S6, P1, P3, P5, P6

contains at least one of the functions f1
n and f2

n. ⊓⊔
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Proof of Proposition 3.4. Each of the closed classes listed in the proposition

contains at least one of the functions x1⊕ . . .⊕xn and x1⊕ . . .⊕xn⊕1. Using

Lemma 3.6, we obtain that HB(n) ≥ n. On the other hand, obviously, any

Boolean function of n arguments can be implemented by a decision tree of

the average depth at most n. Consequently, HB(n) = n. ⊓⊔

Proof of Proposition 3.5. For n = 2k + 1, both classes contain the function

x1 ⊕ . . .⊕ xn and validity of the proposition is proved analogously to Propo-

sition 3.4. For n = 2k, none of the classes contain a function with n essential

variables and both classes contain the function x1 ⊕ . . . ⊕ xn−1. Therefore,

HB(n) = n− 1. ⊓⊔

Proof of Proposition 3.6. For n = 2k+1, the class contains the function x1⊕
. . .⊕xn, and validity of the proposition is proved analogously to Proposition

3.4. Let n = 2k, and f be the function such that h(f) = HB(n). Let z =

(f, x1, . . . , xn) be a problem corresponding to the function f . Consider a

sequence of rows δ̄0, . . . , δ̄n ∈ Tz where δ̄0 = (0, . . . , 0, 0), δ̄1 = (0, . . . , 0, 1),

δ̄2 = (0, . . . , 1, 1), . . ., δ̄n = (1, . . . , 1, 1). Note that f(δ̄0) = 0 and f(δ̄n) = 1

because f ∈ C4. Since n = 2k, the relation f(δ̄i) = f(δ̄i+1) holds for some

i ∈ {0, . . . , n − 1}. Thus the table Tz has a terminal separable subtable

Tz(x0, 0)(x1, 0) . . . (xi−1, 0)(xi+1, 1) . . . (xn, 1) containing exactly two rows:

δ̄i and δ̄i+1. From part (a) of Lemma 3.5 it follows that h(f) ≤ n − 21−n.

Then HB(n) ≤ n − 21−n.

Consider the function f(x1, ..., xn) = x1 ∧ . . .∧ xn ∨ (x1 ⊕ . . .⊕ xn). Let z

be the problem corresponding to the function f . One can see that the table

Tz has n terminal separable subtables I1, . . . , In, Ii = Tz(x1, 1) . . . (xi−1,

1)(xi+1, 1) . . . (xn, 1), containing two rows and does not have other terminal

separable subtables containing more than one row. The subtables I1, . . . , In

have the common row (1, . . . , 1). Thus any partition of the table Tz can

contain only one of the subtables I1, . . . , In. From part (b) of Lemma 3.5 it

follows that h(f) = n−21−n. Then HB(n) = n−21−n. ⊓⊔

Proof of Proposition 3.7. For n = 2k + 1, both classes contain one of the

functions x1 ⊕ . . . ⊕ xn, x1 ⊕ . . . ⊕ xn ⊕ 1 and validity of the proposition

is proved analogously to Proposition 3.4. Let n = 2k. Since D1 ⊆ C4 and

D3 ⊆ C4, validity of the upper bound follows from Proposition 3.6.

Consider a function f(x1, . . . , xn) defined as follows: on a tuple δ̄ =

(δ1, . . . , δn) it takes the value (δ1 ⊕ . . . ⊕ δn) if the number of zeros in δ̄

is greater than the number of ones, the value (δ1⊕ . . .⊕ δn⊕1) if the number

of zeros in δ̄ is less than the number of ones, and the value δ1 if the number of

zeros is equal to the number of ones. Let us show that any terminal separable

subtable I of the table Tz contains at most one row in which the number
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of zeros differs from the number of ones. Assume the contrary, i.e. the table

I contains at least two such rows. Let the number of zeros in the first row

exceed the number of ones. If the second row possesses the same condition,

then the subtable I contains two rows δ̄1 and δ̄2 in which the number of ze-

ros is greater than the number of ones and which differ exactly in one digit.

If the number of ones in the second row exceeds the number of zeros, then

the subtable I contains two rows δ̄1 and δ̄2 with (n/2 − 1) and (n/2 + 1)

ones respectively. According to the definition of the function, f(δ̄1) �= f(δ̄2)

for both cases that contradicts the assumption that I is a terminal subtable.

The case when the first row contains more zeros than ones is considered anal-

ogously. Therefore, each terminal separable subtable of the table Tz contains

at most one row in which the number of zeros differs from the number of ones.

It implies that any terminal separable subtable of Tz contains at most two

rows and each two-row subtable contains a row with n/2 zeros and n/2 ones.

Obviously, the table Tz contains C
n/2
n such rows. Then any partition of the

table Tz contains at most C
n/2
n subtables with two rows and does not contain

subtables with a greater number of rows. According to part (b) of Lemma

3.5, the relation h(f) ≥ n − 1/2n−1C
n/2
n holds. Using the bound (3.3), we

obtain

HB(n) ≥ h(f) ≥ n − 2
√

2√
3

1√
n
≥ n − 1.7√

n
. ⊓⊔

Proof of Proposition 3.8. It is not hard to show that each class contains

the function Thrn,⌈n/2⌉. Validity of the lower bound of the lemma imme-

diately follows from Lemma 3.4. Let us prove validity of the upper bound.

Let f(x1, . . . , xn) be a function for which the equality h(f) = HB(n) holds.

Denote z = (f, x1, . . . , xn) the problem corresponding to the function f .

Consider the value of the function f(δ̄) on the tuple δ̄ = (δ1, . . . , δn) where

δ1 = δ2 = . . . = δm = 1, δm+1 = δm+2 = . . . = δn = 0, m = ⌊n/2⌋.
If f(δ̄) = 1, then f takes the value 1 on all tuples in which the first m

digits are set to 1. Then the table Tz has a terminal separable subtable

Tz(x1, 1)(x2, 1) . . . (xm, 1), containing 2n−m = 2⌊(n+1)/2⌋ rows. From part (a)

of Lemma 3.5 it follows that

h(f) ≤ n − ⌊(n + 1)/2⌋ 2−⌊(n+1)/2⌋ . (3.10)

If f(δ̄) = 0, then the function f takes the value 0 on all tuples in which the

last (n − m) digits are set to 0. Thus the table Tz has a terminal separable

subtable Tz(xm+1, 0)(xm+2, 0) . . . (xn, 0) containing 2m = 2⌊n/2⌋ rows. From

part (a) of Lemma 3.5 it follows that
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h(f) ≤ n − ⌊n/2⌋ 2−⌊n/2⌋ . (3.11)

By taking the weakest bound of (3.10) and (3.11), we obtain HB(n) = h(f) ≤
n−⌊n/2⌋2−⌊n/2⌋. ⊓⊔

Proof of Proposition 3.9. It is easy to show that the class D2 contains the

function Thrn,(n+1)/2 for an arbitrary odd n, and the function Thrn−1,n/2

for an arbitrary even n. Then validity of the lower bound for an arbitrary

n ≥ 3 follows from Lemma 3.4. Validity of the lower bound for n = 1, 2

can be proved by a direct check. The upper bound follows from the relation

D2 ⊂ M1 and Proposition 3.8. ⊓⊔

Proof of Proposition 3.10. One can see that each function of n argu-

ments from the set F∞
1 ∪ F∞

4 ∪ F∞
5 ∪ F∞

8 can be represented in the form

f0
n(x1, . . . , xn) = xi ∨ φ0

n−1(x1, . . . , xi−1, xi+1, . . . , xn) or f1
n(x1, . . . , xn) =

xi ∧φ1
n−1(x1, . . . , xi−1, xi+1, . . . , xn). If φδ

n−1 is a constant function for δ = 0

or δ = 1, then h(f δ
n) ≤ 1. Let the function φδ

n−1 be non-constant. According

to Lemma 3.7, h(f δ
n) = 1 + h(φδ

n−1)/2. Since the function φδ
n−1 has at most

(n − 1) essential variables, h(φδ
n−1) ≤ n− 1 and h(f δ

n) ≤ 1 + (n − 1)/2. This

relation holds for all functions and, consequently, HB(n) ≤ (n + 1)/2.

For σ = 0, 1, consider the functions f0,σ
n (x1, . . . , xn) = x1 ∨ (x2 ⊕ . . . ⊕

xn ⊕ σ) and f1,σ
n (x1, . . . , xn) = x1 ∧ (x2 ⊕ . . . ⊕ xn ⊕ σ). One can see that

for an arbitrary natural n, each of the classes F∞
1 , F∞

4 , F∞
5 , F∞

8 contains at

least one of these functions. According to Lemma 3.7, h(f0,σ
n ) = h(f1,σ

n ) =

1+h(x2 ⊕ . . . ⊕ xn ⊕ σ)/2 = (n+1)/2. Then HB(n)=(n+1)/2. ⊓⊔

Proof of Proposition 3.11. One can see that each class contains one of the

functions

f1 = Thrn−1,⌈(n−1)/2⌉(x1, . . . , xn−1) ∧ xn ,

f2 = Thrn−1,⌈(n−1)/2⌉(x1, . . . , xn−1) ∨ xn

for every n > 1. According to Lemma 3.4, h(Thrn−1,⌈(n−1)/2⌉) ≥ n − √
n.

According to Lemma 3.7, h(f1) = h(f2) ≥ 1 + (n − √
n)/2. Validity of the

lower bound for n = 1 can be proved by a direct check. Validity of the

upper bound follows from the relations F∞
2 ⊆ F∞

1 , F∞
3 ⊆ F∞

4 , F∞
6 ⊆ F∞

5

F∞
7 ⊆ F∞

8 and Proposition 3.10. ⊓⊔

Proof of Proposition 3.12. Validity of the lower bound follows from the

relations Fµ
1 ⊇ F∞

1 , Fµ
4 ⊇ F∞

4 , Fµ
5 ⊇ F∞

5 , Fµ
8 ⊇ F∞

8 , μ ≥ 2 and Proposition

3.10.
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Let B = F 2
4 , f(x1, . . . , xn) be a function such that h(f) = HB(n). Let

z = (f, x1, . . . , xn) be the problem corresponding to f . Since F 2
4 ⊆ C2, the

relation f(1, . . . , 1) = 1 holds. The lower bound implies that f differs from

the constant 1. Then there exists a number k, 1 ≤ k ≤ n such that f takes

the value 1 on all tuples containing less than k zeros, and there exists a tuple

containing exactly k zeros on which the function takes the value 0. Then

the table Tz has a terminal separable subtable Tz(x1, 1)(x2, 1) . . . (xn−k+1, 1)

that contains 2k−1 rows. According to part (a) of Lemma 3.5, the inequality

h(f) ≤ n − k − 1

2k−1
(3.12)

holds. Without loss of generality, assume that the function takes the value 0

on the tuple δ̄ = (δ1, . . . , δn) in which δ1 = δ2 = . . . = δk = 0 and δk+1 =

δk+2 = . . . = δn = 1. Then in each tuple δ̄ = (δ1, . . . , δn) such that f(δ̄) = 0,

at least one of the first k digits δ1, . . . , δk is set to zero. Therefore, the table Tz

has a terminal separable subtable Tz(x1, 1)(x2, 1) . . . (xk, 1) containing 2n−k

rows. According to part (a) of Lemma 3.5, the inequality

h(f) ≤ n − n − k

2n−k
(3.13)

holds.

The weakest of the bounds (3.12) and (3.13) reaches the maximum on

k = ⌊(n+1)/2⌋. Consequently, HB(n) ≤ n−⌊n/2⌋2−⌊n/2⌋. The upper bound

for B = F 2
8 is proved analogously. The upper bound for the remaining classes

follows from the relations Fµ
1 ⊆ F 2

4 , Fµ
4 ⊆ F 2

4 , Fµ
5 ⊆ F 2

8 , Fµ
8 ⊆ F 2

8 that are

valid for any natural μ ≥ 2. ⊓⊔

Proof of Proposition 3.13. Validity of the lower bound follows from the

relations Fµ
2 ⊇ F∞

2 , Fµ
3 ⊇ F∞

3 , Fµ
6 ⊇ F∞

6 , Fµ
7 ⊇ F∞

7 , μ ≥ 2 and Proposition

3.11.

Validity of the upper bound follows from the relations Fµ
2 ⊆ Fµ

1 , Fµ
3 ⊆ Fµ

4 ,

Fµ
6 ⊆ Fµ

5 Fµ
7 ⊆ Fµ

8 , μ ≥ 2 and Proposition 3.12. ⊓⊔

3.2 On Branching Programs with Minimum Average

Depth

This section considers a possibility of joint optimization of time and space

complexity. For this purpose, a decision tree is represented in a compact form

named branching program. According to Theorem 3.4, the requirement to a

branching program to have the minimum average weighted depth is rather

strong, since all branching programs with the minimum average weighted
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depth are read-once. This fact reveals a contradiction between time and space

complexity requirements, because many problems have high lower bounds on

the number of nodes in a read-once branching program. The section con-

cludes with description of several problems, for which the number of nodes

in a branching program with the minimum average weighted depth grows

exponentially with the number of attributes.

Let U = (A, F ) be a 2-valued information system, and Ψ a weight function

for U . A branching program for the problem z = (ν, f1, . . . , fn) over U is a

finite oriented acyclic graph in which:

a) at least one edge enters each node except one called the root of the branch-

ing program;

b) each terminal node (a node that does not have outgoing edges) is labeled

with a number from ω.

c) two edges leave each nonterminal node, labeled with the numbers 0 and

1 respectively;

d) each nonterminal node is assigned with an attribute from the set {f1, . . . ,

fn}.
A path from the root to a terminal node is called complete. A branching

program is called read-once if in each complete path, all nonterminal nodes

are assigned with pairwise different attributes.

Let G be a branching program for the problem z. For an arbitrary com-

plete path ξ in G, let us define the subtable Tzπ(ξ) of the table Tz and the

path weight Ψ(ξ) in the same way as it is defined for decision trees. For

an arbitrary row d̄ ∈ Tz, denote by ξd̄ the complete path in G such that

d̄ ∈ Tzπ(ξd̄). We will say that a branching program G solves the problem z

if for each row d̄ ∈ Tz, the terminal node of the path ξd̄ is labeled with the

number ν(d̄). Let P be a probability distribution for the problem z. The value

hΨ (G, P, z) =
∑

d̄∈Tz
Ψ(ξd̄)P (d̄)/N(Tz, P ) is called P -average weighted depth

of the branching program G. A branching program G for the problem z that

solves z and has the minimum P -average weighted depth is called optimal

for Ψ , z and P .

Theorem 3.4. Let U be a 2-valued information system, Ψ a weight function

for U , z a problem over U , and P a probability distribution for z. Let G be a

branching program for z that solves z and is optimal for Ψ , z and P . Then

G is a read-once branching program.

Proof. For an arbitrary node v, we will call v-subprogram of the branching

program G the set of nodes and edges from G to which an oriented path from

v exists. Let v be a node such that for each node w of v-subprogram, each

path from the root of G to w contains v. Let v have k > 1 incoming edges
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r1, . . . , rk. For i = 2, . . . , k, let us add to the program G a subprogram Gi

that coincide to v-subprogram and transform G so that the edge ri enters the

root of the subprogram Gi. Let us repeat this transformation until at most

one edge enters each node in G. Denote the resulted graph Γ . One can see

that Γ is a decision tree for the problem z that solves z and is optimal for

Ψ , z and P .

Assume G is not a read-once branching program. Then there is a complete

path ξ in Γ containing two nonterminal nodes v1 and v2 which are assigned

with the same attribute f . Let v1 precede v2 in the path ξ. Denote e the edge

that leaves v1 and is contained in the path ξ, and σ the number assigned to

e. Denote ξ2 the path from the root of Γ to the node v2. One can see that

either Tzπ(ξ2) = ∅ or Tzπ(ξ2)(f, δ) = Tzπ(ξ2) for some δ �= σ. Then the node

v2 is not essential and the tree Γ is not reduced. According to Lemma 2.3,

the tree Γ is not optimal for Ψ , z and P . Then the branching program G is

not optimal for Ψ , z and P which contradicts the premise of the theorem and

thus concludes the proof. ⊓⊔

Let us conclude with some examples of problems for which the minimum num-

ber of nodes in the branching program with the minimum average weighted

depth grows exponentially with the number of attributes. For an arbitrary

Boolean function f(x1, . . . , xn), we will say that a branching program imple-

ments f if it solves the problem z = (f, x1, . . . , xn).

In [66], it is shown that a read-once branching program implementing the

function Mult : {0, 1}2n → {0, 1} (the middle bit in the product of two

n-bit integers) contains at least 2Ω(
√

n) nodes. In [83, 84, 85], a function

n/2− Clique− Only : {0, 1}n2 → {0, 1} is considered that takes as input an

incidence matrix for a graph with n nodes. The function takes the value 1 if

and only if the graph contains a n/2-clique and does not contain other edges.

It is shown that a read-once branching program implementing the function

n/2−Clique−Only contains at least 2Ω(n) nodes. Note that there is a branch-

ing program implementing n/2−Clique−Only such that it has O(n3) nodes,

and any attribute appears at most twice in each complete path. In [59], it

is shown that a read-once branching program implementing the characteris-

tic function of Bose-Chaudhuri codes contains at least exp(Ω(
√

n/2)) nodes.

Theorem 3.4 shows that the branching programs that are optimal relative to

the average weighted depth have the same or greater number of nodes than

the read-once branching programs with the minimum number of nodes.



Chapter 4

Algorithms for Decision Tree
Construction

The study of algorithms for decision tree construction was initiated in 1960s.

The first algorithms are based on the separation heuristic [13, 31] that at

each step tries dividing the set of objects as evenly as possible. Later Garey

and Graham [28] showed that such algorithm may construct decision trees

whose average depth is arbitrarily far from the minimum. Hyafil and Rivest in

[35] proved NP -hardness of DT problem that is constructing a tree with the

minimum average depth for a diagnostic problem over 2-valued information

system and uniform probability distribution. Cox et al. in [22] showed that

for a two-class problem over information system, even finding the root node

attribute for an optimal tree is an NP -hard problem.

Several exact algorithms of decision tree construction are known but, as

could be expected, none of them have polynomial time complexity in gen-

eral case. The algorithms based on dynamic programming [27, 60, 76] build

decision tree bottom-up by synthesizing a tree for a table from trees for its

separable subtables. The algorithms based on branch-and-bound technique

perform depth-first search in the space of possible tree prefixes [9, 73]. The

second method is more complex from the computational point of view, but it

can serve as a base for approximation algorithms that use heuristics to guide

search. A combination of the two approaches is described in [42]. There are

also algorithms that use logic methods to analyze the function being imple-

mented like finding function implicants [11] or T-terms [82]. A comprehensive

survey of the algorithms can be found in [44].

Most of approximate algorithms for decision tree construction are greedy.

These algorithms construct trees in a top-down fashion by minimizing some

data impurity function at each step. Activity of a variable [43], entropy

[70, 78] and Gini index [8] are widely used as data impurity functions. For

some problems, a detailed analysis of existence of algorithms with a guar-

anteed approximation ratio has been performed. Adler and Heeringa [32]

I. Chikalov: Average Time Complexity of Decision Trees, ISRL 21, pp. 61–78.
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proved absence of polynomial-time approximation scheme for DT problem

unless P = NP and described an algorithm that has (ln n + 1) approxima-

tion ratio. Chakaravarthy et al. [12] generalized the results to k-DT that is

construction of a decision tree with the minimum average depth for a diag-

nostic problem over k-valued information system and an arbitrary probability

distribution. They proved NP -hardness of Ω(log n) approximation and de-

scribed an algorithm that has O(log k log n) approximation ratio. A similar

problem, building a tree with the minimum average depth for a binary classi-

fication problem over a 2-valued information system and uniform probability

distribution, is surprisingly harder. In [32], an approximation-preserving re-

duction of the problem to ConDT is done that is building the minimum size

tree for a binary classification problem over 2-valued information system. For

the latter problem, Alekhnovich et al. [3] proved absence of polynomial time

c lnn-approximation for any constant c unless NP ⊆ DTIME[2mǫ

] for some

ǫ < 1.

The chapter is devoted to theoretical and experimental study of several

exact and approximate algorithms for decision tree construction. It consists

of four sections. The first section describes an algorithm A based on dynamic

programming. The idea is close to [42], but it was devised by the author

independently in collaboration with Dr. Moshkov. The algorithm takes as

input a decision table and finds the set of all so-called irredundant decision

trees that have the minimum average weighted depth. The second section ex-

perimentally estimates the approximation ratio of several greedy algorithms

on data sets from UCI Machine Learning Repository [25]. The third section

describes using A for calculating exact values of the Shannon type function

H(n) for the class of monotone Boolean functions for small n. The fourth

section contains experimental results of applying A for building an optimal

tree for corner point detection [74], a technique used in computer vision to

track objects.

Some results of this chapter have been published in [20, 21, 55].

4.1 Algorithm A for Decision Tree Construction

In this section, an algorithm is considered that builds an optimal decision

tree with the minimum average weighted depth for a problem represented in

the form of decision table. The idea of the algorithm is based on dynamic

programming [27, 42, 60, 76].
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4.1.1 Representation of Set of Irredundant Decision

Trees

Let U = (A, F ) be an information system, and z = (ν, f1, . . . , fn) a problem

over U . Let T be a separable subtable of Tz. For i ∈ {1, . . . , n}, denote E(T, i)

the set of numbers contained in the i-th column of the table T , and denote

E(T ) = {i : i ∈ {1, . . . , n}, |E(T, i)| ≥ 2}.
Among decision trees for the problem z that solve z we distinguish irre-

dundant decision trees. Consider an arbitrary node w of the tree Γ and its

corresponding separable subtable T = Tzπ(path(Γ, w)). Let T be a terminal

subtable, and ν(x) ≡ r on the set of rows of the table T for some r ∈ ω. Then

w is a terminal node labeled with r. Let T be a nonterminal subtable. Then

w is labeled with an attribute fi where i ∈ E(T ). Finally, each node w such

that Tzπ(path(Γ, w)) = ∅ is labeled with the number 0.

The following proposition shows that among irredundant decision trees,

at least one has the minimum average weighted depth.

Proposition 4.1. Let U be an information system, Ψ a weight function for

U , z a problem over U , and P a probability distribution for z. Then there

exists an irredundant decision tree that is optimal for Ψ , z and P .

Proof. Let Γ be a decision tree for the problem z that solves z, and Γ be

optimal for Ψ , z and P . Let us consider an algorithm that transforms Γ into

an irredundant decision tree. The algorithm sequentially processes all nodes

of the tree Γ . Let w be the current node. Denote T = Tzπ(path(w)). The

algorithm tries to apply the following rules to each node.

• If T = ∅, then replace the subtree whose root is w with a single node

labeled with 0;

• If T is a terminal subtable and ν(x) ≡ r on the set of rows of the table

T , then replace the subtree whose root is w with a single node labeled

with r;

• Let T be a nonterminal subtable and w be labeled with an attribute fi,

i /∈ E(T ). Then E(T, i) = {δ} for some δ ∈ Ek. Denote by Γδ the decision

tree whose root the edge leaving w and labeled with δ enters. Then replace

the subtree whose root is w with Γδ.

Since each node is considered at most once, the algorithm ends in a finite

number of steps. Denote the resulted decision tree by Γ̂ . One can see that Γ̂ is
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an irredundant decision tree for T . Obviously, the applied transformation does

not increase the complexity and thus Γ̂ remains optimal. ⊓⊔

Let T be a separable subtable of Tz. Let us define a problem zT corre-

sponding to the table T . Let Tz = {d̄1, . . . , d̄s} and Q1, . . . , Qs ∈ A be

equivalence classes such that (f1(qi), . . . , fn(qi)) = d̄i for any qi ∈ Qi. Let

T = {d̄i1 , . . . , d̄it
}. Then zT is the problem with the same description as z

over the information system (Qi1 ∪ . . . ∪ Qit
, F ). Note that zTz

is the initial

problem.

Denote by Tree∗(T ) the set of irredundant decision trees for the problem

zT . Assume technically that for T = ∅, the set Tree∗(T ) contains a single

tree that is a node labeled with the number 0. Consider an algorithm B
for construction of the graph ∆(z), which represents in some sense the set

Tree∗(Tz). Nodes of this graph are some separable subtables of the table Tz.

During each step, the algorithm processes exactly one node and marks this

node with the symbol *. The algorithm starts with the graph which consists

of one node Tz, and finishes when all nodes of the graph are processed.

Let the algorithm have performed p steps. Describe the step (p+1). If in the

considered graph all nodes have already been processed, then the algorithm

finishes, and the considered graph is ∆(z). Let the graph have an unprocessed

node (table) T . If T is a terminal subtable and ν(x) ≡ r on the set of rows of

the table T , then label the considered node with the number r, mark it with

the symbol * and pass to the step (p + 2).

Let T be a nonterminal subtable. For each i ∈ E(T ), draw from the node

T a bundle of edges. Let E(T, i) = {δ1, . . . , δt}. Then draw t edges from T ,

and label these edges with the pairs (fi, δ1), . . . , (fi, δt) respectively. These

edges enter the nodes T (fi, δ1), . . . , T (fi, δt). If some of these nodes are not

in the graph, then add these nodes to the graph. The algorithm marks the

node T with the symbol * and proceeds to the step (p + 2).

r

Fig. 4.1 Trivial
decision tree

Γ1 Γt

fi

0 0

δ1 δt γ1 γk−t

. . .. . .

Fig. 4.2 Aggregated decision tree
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Now for each node of the graph ∆(z), we describe the set of decision trees

corresponding to it. It is clear that ∆(z) is a directed acyclic graph. A graph

node is called terminal if it does not have outgoing edges. We will “move”

from terminal nodes which are labeled with numbers to the node Tz. Let T

be a node which is labeled with the number r. Then the only trivial decision

tree depicted on Fig. 4.1 corresponds to the considered node. Let T be a

node (table), such that ν(x) �≡ const on the set of rows of T . Let i ∈ E(T ),

E(T, i) = {δ1, . . . , δt}, and Ek \ E(T, i) = {γ1, . . . , γk−t}. Let Γ1, . . . , Γt be

decision trees from the sets corresponding to the nodes T (fi, δ1), . . . , T (fi, δt).

Then the decision tree depicted on Fig. 4.2 belongs to the set of decision

trees, which corresponds to the node T . All such decision trees belong to the

considered set. This set does not contain any other decision trees.

For any node T , denote by Tree(T ) the set of decision trees corresponding

to T described by the graph ∆(z). The following proposition shows that ∆(z)

represents all irredundant decision trees for the problem z.

Proposition 4.2. Let U be an information system, and z a problem over U .

Let T be a node in the graph ∆(z). Then Tree(T ) = Tree∗(T ).

Proof. Prove the proposition by induction on the nodes of the graph ∆(z). For

each terminal node T , there is only one irredundant decision tree depicted on

Fig. 4.1 and the set Tree(T ) contains only this tree. Let T be a nonterminal

node and the proposition hold for all its descendants. Consider an arbitrary

decision tree Γ ∈ Tree(T ). Obviously, Γ contains more than one node. Let

the root of Γ be labeled with an attribute fi. For each δ ∈ Ek, denote by Γδ

the decision tree connected to the root of Γ with the edge labeled with the

number δ. From the definition of the set Tree(T ) it follows that i is contained

in the set E(T ); for each δ ∈ E(T, i), the decision tree Γδ belongs to the set

Tree(T (fi, δ)); and for each δ /∈ E(T, i), the decision tree Γδ is a single node

labeled with the number 0. According to the induction base, the tree Γδ is

an irredundant decision tree for the problem zT (fi,δ). Then the tree Γ is an

irredundant decision tree for the table zT , so Tree(T ) ⊆ Tree∗(T ).

Now consider an arbitrary irredundant decision tree Γ̂ for the problem

zT . According to the definition of irredundant tree, the root of Γ̂ is labeled

with an attribute fi, i ∈ E(T ), and the subtrees whose roots are nodes in the

second floor are irredundant decision trees for the corresponding descendants

of the node T . Then according to the definition of the set Tree(T ), the tree

Γ̂ belongs to Tree(T ), and Tree(T ) = Tree∗(T ). ⊓⊔

The following proposition gives upper and lower bounds on the time com-

plexity of the algorithm B (further we assume that k is fixed and do not study

dependence of the algorithm time complexity on k).
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Proposition 4.3. For an arbitrary problem z = (ν, f1, . . . , fn) represented

in the form of decision table T ∗
z , the working time of the algorithm B is

proportional to the number of rows D(Tz) if Tz is a terminal table. If Tz is a

nonterminal table, the working time of the algorithm B is bounded from below

by the maximum of the values n, |S(z)|, D(Tz) and is bounded from above by

a polynomial on these values.

Proof. At start, the algorithm B reads D(Tz) values of ν(x) function to check

if Tz is a terminal table. If the table Tz is terminal, the algorithm builds

the graph ∆(z) that consist of a single node and finishes, so the statement

obviously hold.

Let T ∗
z be a nonterminal table. From the definition of a problem over

information system it follows that |E(Tz)| = n, so the algorithm builds n

bundles of edges leaving the root. One can see that the algorithm B performs

at least |S(z)| steps, so the lower bound holds.

The number of steps of the algorithm B is limited from above by the

number of nonterminal subtables and their immediate descendants in the

graph ∆(z) that is at most |S(z)|nk. For a table T , construction of the sets

E(T ) and E(T, i) takes a linear time on the length of the table representation,

i.e. nD(T ). It is easy to implement a procedure which given a subtable T

checks if the corresponding node presents in the graph, and has a polynomial

time complexity on |S(z)| and D(T ). While processing a nonterminal table

T , the algorithm needs to build a set of subtables of the form T (fi, σ) that

can be done in a polynomial time on n and D(T ).

Then the total working time of the algorithm is bounded from above by a

polynomial on |S(z)|, n and D(T ). ⊓⊔

4.1.2 Procedure of Optimization

Let us describe a procedure which transforms the graph ∆(z) into its proper

subgraph ∆Ψ,P (z). It begins from the terminal nodes and moves to the node

Tz. The procedure assigns a number to each node and possibly removes some

bundles of edges which start in the considered node. First, the number 0 is

assigned to each terminal node. Consider a node T which is not terminal and

a bundle of edges which starts in this node. Let the edges be labeled with

pairs (fi, δ1), . . . , (fi, δt), and they enter the nodes T (fi, δ1), . . . , T (fi, δt) to

which numbers p1, . . . , pt have been already assigned. Then assign the number

Ψ(fi)N(T, P ) +
∑t

j=1 pj to the considered bundle.

Let p be the minimum of the numbers assigned to the bundles starting in

T . The procedure assigns p to the node T and removes the bundles starting

in T which are assigned with numbers greater than p. After all nodes are

processed, the procedure removes from the graph all nodes such that there
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is no directed path from the node Tz to the considered node. Denote the

resulted graph by ∆Ψ,P (z).

As each nonterminal node keeps at least one bundle of the outgoing edges,

all terminal nodes of ∆Ψ,P (z) are terminal nodes of the graph ∆(z). As it

was described earlier, we can set to correspondence a set of decision trees

TreeΨ,P (T ) to each node T of ∆Ψ,P (z). One can see that all these deci-

sion trees belong to the set Tree(T ). Denote by Tree⋆
Ψ,P (T ) the subset of

Tree(T ) containing all decision trees that are optimal relative to the av-

erage weighted depth, i.e. Tree⋆
Ψ,P (T ) = {Γ̂ ∈ Tree(T ) : hΨ (Γ̂ , zT , P ) =

minΓ∈Tree(T ) hΨ (Γ, zT , P )}. The following theorem shows that the optimiza-

tion procedure removes all and only non-optimal decision trees.

Theorem 4.1. Let U be an information system, Ψ a weight function, z a

problem over U , and P a probability distribution for z. Let T be an arbitrary

node in the graph ∆(z). Then TreeΨ,P (T ) = Tree⋆
Ψ,P (T ).

We preface proof of the theorem by the following lemma.

Lemma 4.1. Let U be an information system, Ψ a weight function, z a prob-

lem over U , and P a probability distribution for z. Let T be an arbitrary node

in the graph ∆(z), and p the number assigned to T by the optimization pro-

cedure. Then for each decision tree Γ from the set TreeΨ,P (T ), the equality

p = N(T, P )hΨ(Γ, zT , P ) holds.

Proof. Prove the lemma by induction on the nodes of ∆(z). For each terminal

node T , only one irredundant decision tree Γ exists depicted on Fig. 4.1 and

the statement of the lemma obviously holds for T . Let now T be a nonterminal

node and the statement of lemma holds for all descendants of T . Consider

an arbitrary decision tree Γ ∈ TreeΨ,P (T ). Let the root of Γ be labeled with

an attribute fi. Let E(T, i) = {a1, . . . , at}. For j = 1, . . . , t, denote by Γj the

decision tree connected to the root of Γ with the edge labeled with aj . Let for

j = 1, . . . , t, the node T (fi, aj) be labeled with a number pj . For j = 1, . . . , t,

denote zj = zT (fi,aj).

The induction base implies that the equality pj = N(T (fi, aj), P )hΨ (Γj ,

zj, P ) holds for j = 1, . . . , t. According to the definition of the optimization

procedure, p = Ψ(fi)N(T, P ) +
∑t

j=1 pj . Since Γ is an irredundant decision

tree, for any δ /∈ E(T, i), the edge that leaves the root of Γ and is labeled

with δ, enters a terminal node.

From the definition of the average weighted depth we have

hΨ (Γ, zT , P ) = Ψ(fi) +
1

N(T, P )

t
∑

j=1

N(T (fi, aj))hΨ (Γt, zj , P ) . (4.1)
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From the last three equalities we have p = N(T, P )hΨ (Γ, zT , P ). Since Γ is

an arbitrary tree from TreeΨ,P (T ), all the trees in TreeΨ,P (T ) have the same

complexity equal to p. ⊓⊔

Proof of Theorem 4.1. The theorem will be proved by induction on the

nodes of the graph ∆(z). Let T be a terminal node. Then the set Tree(T )

contains only the tree depicted on Fig. 4.1 and this tree is not removed by

the optimization procedure. Then the statement of the theorem holds for the

node T .

Let now T be a nonterminal node in ∆(z), and the statement of the the-

orem hold for any descendant of T in the graph ∆(z). Let the optimization

procedure assigned a number p to the node T . Lemma 4.1 implies that all

decision trees in TreeΨ,P (T ) have the same complexity p. Consider an arbi-

trary decision tree Γ from the set Tree⋆
Ψ,P (T ). From the definition of the set

Tree⋆
Ψ,P (T ) we have

N(T, P )hΨ (Γ, zT , P ) ≤ p . (4.2)

Let us show that N(T, P )hΨ (Γ, zT , P ) = p. Let the root of Γ be assigned

with an attribute fi. Since Γ is an irredundant decision tree, i ∈ E(T ).

Let E(T, i) = {a1, . . . , at}. For j = 1, . . . , t, denote by Γj the subtree

that is connected to the root with the edge labeled with aj . One can see

that Γj is contained in the set Tree(T (fi, aj)). Let pj be the number as-

signed to the node T (fi, aj) during optimization. For j = 1, . . . , t, denote

zj = zT (fi,aj). Since the theorem holds for the node T (fi, aj), we have

N(T (fi, aj), P )hΨ (Γj , zj , P ) ≥ pj . From the description of the optimization

process it follows that Ψ(fi)N(T, P )+
∑t

j=1 pj ≥ p. Since Γ is an irredundant

decision tree, for any δ /∈ E(T, i), the edge that leaves the root of Γ and is

labeled with δ, enters a terminal node.

From the two last equalities and (4.1) we have N(T, P )hΨ(Γ, zT , P ) ≥ p,

and, recalling (4.2), N(T, P )hΨ (Γ, zT , P ) = p. Then

TreeΨ,P (T ) ⊆ Tree⋆
Ψ,P (T ) . (4.3)

Due to (4.1), optimality of the tree Γ implies optimality of each tree Γj ,

so Γj ∈ Tree⋆
Ψ,P (T (fi, aj)) for j = 1, . . . , t. Then, according to the induction

base, Γj belongs to the set TreeΨ,P (T (fi, aj)) for j = 1, . . . , t. Consider the

bundle of edges in the graph ∆(z) that leave the node T and are labeled with

the pairs (fi, a1), . . . , (fi, at). Since N(T, P )hΨ (Γ, zT , P ) = p, these edges

were not removed by the optimization procedure. Then, according to the

definition of the set TreeΨ,P (T ), the tree Γ belongs to this set. As Γ was

chosen arbitrarily, we have Tree⋆
Ψ,P (T ) ⊆ TreeΨ,P (T ), and due to (4.3),

Tree⋆
Ψ,P (T ) = TreeΨ,P (T ). ⊓⊔
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Consider an algorithm A that given a table T ∗
z first builds a graph ∆(z),

then transforms it resulting graph ∆Ψ,P (z) and finally extracts one of trees

described by the graph ∆Ψ,P (z). For an arbitrary polynomial Q, a probability

distribution P is called Q-restricted if for an arbitrary row d̄ ∈ Tz, the length

of the binary notation of the number P (d̄) does not exceed Q(n) where n is

the number of columns in the table. The following theorem characterizes the

time complexity of the algorithm A.

Theorem 4.2. Let Q(x) be some polynomial. Then for an arbitrary problem

z = (ν, f1, . . . , fn) and an arbitrary Q-restricted probability distribution P

for the problem z, the working time of the algorithm A is proportional to

the number of rows D(Tz) if the table T ∗
z is terminal. If the table T ∗

z is

nonterminal, the working time of the algorithm A is bounded from below by

the maximum of the values n, the number of nonterminal separable subtables

|S(z)|, D(Tz) and the maximum length of attribute weight in binary notation,

and is bounded from above by a polynomial on these values.

Proof. If the table T ∗
z is terminal, the working time of the algorithm B is

proportional to D(Tz) according to Proposition 4.3. Since the graph ∆(z)

contains a single node, the remaining steps of the algorithm A are completed

in a constant time, so the statement of the theorem holds.

Let T ∗
z be a nonterminal table. While calculating the number to assign to

the node Tz in the graph ∆(z), the optimization procedure necessarily reads

the weights of all attributes. This fact and Proposition 4.3 prove the lower

bound on the working time of the algorithm A.

Let us prove the upper bound. From Proposition 4.3 it follows that the

working time of the algorithm B is limited from above by a polynomial on

D(Tz), n and |S(z)|. The optimization procedure performs exactly (|S(z)|+1)

steps. The time of computing pi is limited from above by a polynomial on

the maximum length of the attribute weight notation (denote it by l), Q(n)

and D(T ). The time of computing p given pi is proportional to the number of

bundles that is at most n. Given the graph ∆Ψ,P (z), an optimal tree can be

obtained by the time proportional to the number of nodes in the graph, which

is limited from above by a polynomial on n and |S(z)|. Then the theorem

statement is a consequence of the facts that both the number of steps and

the complexity of each step are bounded from above by a polynomial on n,

|S(z)|, D(Tz) and l. ⊓⊔

4.2 Greedy Algorithms

A greedy algorithm builds a decision tree in a top-down fashion, minimiz-

ing some impurity criteria at each step. There are several impurity criteria
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based on information-theoretical [71, 78], statistical [8] and combinatorial

[43] approaches. In this section, several impurity criteria are defined followed

by a general description of greedy algorithm and experimental results that

compare the average depth of decision trees built by different algorithms.

Let U = (A, F ) be an information system, Ψ a weight function for U ,

z = (ν, f1, . . . , fn) a problem over an U , and P a probability distribution for

z.

Let T be a separable subtable of Tz. Let the function ν(x) take l dif-

ferent values ν1, . . . , νl on the rows of T . For i = 1, ..., l, denote Ni =
∑

d̄∈T,ν(d̄)=νi
P (d̄). We consider four uncertainty measures:

• entropy: ent(T ) = −∑l
i=1 (Ni/N(T, P ) log2(Ni/N(T, P ))) (we assume

0 log2 0 = 0);

• Gini index: gini(T ) = 1 − ∑l
i=1 (Ni/N(T, P ))2 ;

• misclassification error: me(T ) = 1 − maxi=1,...,lNi/N(T, P );

• weighted number of unordered pairs of rows labeled with different deci-

sions: rt(T ) =
(

N(T, P )2 − ∑l
i=1 N2

i

)

/2 (note that rt(T ) = N(T, P )2

× gini(T )/2);

Let i ∈ E(T ) and E(T, i) = {a1, . . . , at}. The attribute fi divides the ta-

ble T into the subtables T1 = T (fi, a1), . . . , Tt = T (fi, at). We now de-

fine an impurity function I which assigns impurity I(T, fi) to this parti-

tion. Let us fix an uncertainty measure U from the set {ent, gini, me, rt}
and the type of impurity function: sum or weighted-sum. Then for the type

sum, I(T, fi) =
∑t

j=1 U(Tj), and for the type weighted-sum, I(T, fi) =
∑t

j=1 U(Tj)N(Tj)/N(T ). As a result, we have eight different impurity func-

tions.

Consider an algorithm G that given representation of a problem z and a

probability distribution P in the form of decision table T ∗
z builds a decision

tree G(z, P ).

Step 1. Assume T = Tz. Build a decision tree that contains a single node v.

Let T be a terminal table. Then assign the number ν(δ̄) to the node v where

δ̄ is an arbitrary row from T . Denote G(z, P ) the resulted decision tree. The

process G is completed.

Let T be a nonterminal table. Assign the word λ to the node v and proceed

to the next step.

Let t ≥ 1 steps have been already done. Denote Γ the tree built at the

step t.

Step (t+1). If none of the nodes in Γ is assigned with a word from Ω∗
z , then

denote G(z, P ) the tree Γ . The process Γ is completed. Otherwise, choose in

Γ a node w which is assigned with a word α from Ω∗
z .
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Let Tα be a terminal subtable. If Tα = ∅, then instead of α assign to

w the number 0. If Tα �= ∅, then instead of α assign to w the number ν(δ̄)

where δ̄ is an arbitrary row from Tα. Proceed to the step (t + 2).

Let Tα be a nonterminal subtable. Then for each fi ∈ E(Tα), compute

the value I(Tα, fi) and assign to the node w the attribute fi0 where i0 is the

minimum i ∈ {1, . . . , n} for which I(T, fi) has the minimum value. For each

δ ∈ E(Tα, fi0), add to the tree Γ the node w(δ), mark this node with the

word α(fi0 , δ), draw the edge from w to w(δ), and mark this edge with δ.

Proceed to the step (t + 2).

Different impurity functions result in different greedy algorithms. The fol-

lowing experiment compares the average depth of decision trees built by these

algorithms with the minimum average depth calculated by the algorithm A.

Table 4.1 Average depth of decision trees built by different algorithms

Data Min. avg. sum weighted sum
set depth ent gini rt me ent gini rt me

adult-stretch 1.50 1.50 1.50 3.50 1.50 1.50 1.50 3.50 1.50
agaricus-lepiota 1.52 2.35 2.35 1.54 1.52 1.52 1.52 1.52 1.98
balance-scale 3.55 3.55 3.55 3.61 3.55 3.55 3.55 3.61 3.55
breast-cancer 3.24 6.36 6.36 4.06 3.30 3.49 3.70 3.30 3.35

cars 2.95 3.06 3.06 3.72 3.76 2.95 2.96 4.00 4.39
flags 2.72 9.31 9.73 3.21 2.81 3.16 3.16 2.82 2.80

hayes-roth-data 2.62 2.64 2.64 2.64 2.62 2.64 2.64 2.62 2.62
house-votes-84 3.54 5.88 6.99 5.29 3.77 3.68 3.80 3.77 3.63

lenses 1.80 1.80 1.80 3.00 3.00 3.00 1.80 3.00 3.00
lymphography 2.67 7.09 7.09 3.37 2.83 3.12 3.12 2.79 2.78
monks-1-test 2.50 4.50 4.50 2.50 2.50 2.50 2.50 2.50 2.50
monks-1-train 2.53 4.34 4.34 2.53 2.77 3.19 3.22 2.53 2.53
monks-2-test 5.30 5.33 5.33 5.37 5.54 5.40 5.40 5.54 5.54
monks-2-train 4.11 4.70 4.70 4.54 4.20 4.34 4.34 4.26 4.28
monks-3-test 1.83 4.11 2.78 2.78 1.83 1.83 2.08 1.83 1.83
monks-3-train 2.51 3.76 3.03 2.71 2.53 2.54 2.54 2.53 2.53

nursery 3.45 4.05 4.21 3.76 3.76 3.48 3.46 3.85 4.18
poker-hand-train 4.09 6.54 6.54 4.66 4.12 4.12 4.12 4.12 4.13
shuttle-landing 2.33 3.93 3.93 2.93 2.33 2.40 2.40 2.33 2.33
soybean-small 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.89

spect-test 2.95 5.93 5.55 4.93 3.48 3.04 3.34 3.47 3.44
teeth 2.78 4.39 4.52 2.78 2.83 2.83 2.78 2.83 2.83

tic-tac-toe 4.35 4.88 4.68 4.82 4.94 4.60 4.58 5.03 5.11
zoo-data 2.29 3.86 3.86 2.44 2.37 2.37 2.37 2.37 2.41

ARD 0.564 0.539 0.222 0.070 0.066 0.052 0.126 0.121
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The data sets were taken from UCI Machine Learning Repository [25].

Each data set is represented as a table containing several input columns and

an output (decision) column. Some data sets contain index columns that

take unique value for each row. Such columns were removed. Some tables

contain rows with identical values in all columns, possibly, except the decision

column. In this case, each group of identical rows was replaced with a single

row with common values in all input columns and the most common value in

the decision column. Some tables contains missing values. Each missing value

was replaced with the most common value in the corresponding column.

The resulted table was interpreted as a decision table T ∗
z where in-

put columns represent attribute values and the output column represents

values of the function ν(x). We assume uniform probability distribution

P (x) ≡ 1. As an integral performance measure we consider the average rel-

ative deviation(ARD). For an approximate algorithm X , a set of problems

Z = {z1, . . . , zt}, and a set of probability distributions P = {P1, . . . , Pt},

ARD(X ,Z,P) =
1

t

t
∑

i=1

hX (zi, Pi) − h(zi, Pi)

h(zi, Pi)
,

where hX (zi, Pi) is the P -average depth of the decision tree for zi built by

X . We assume that none of the tables Tzi
are terminal, so h(zi, Pi) > 0 for

i = 1, . . . , t.

Table 4.1 shows results of experiments with 24 data sets. Each row contains

data set name, the minimum average depth of decision tree calculated by the

algorithm A, and the average depth of decision trees built by each of the

eight greedy algorithms. The last row shows the average relative difference

for the greedy algorithms. One can see that a combination of weighted sum

with Gini index (the criterion used by CART [8]) and entropy (the criterion

used by ID3 [70]) results in the least ARD values.

4.3 Modeling Monotonic Boolean Functions by

Decision Trees

The property of the algorithm A to build optimal decision trees can be

used to find exact values of the Shannon-type function HB(n) described

in Chap. 3.2 for small n. In this section, an experiment is described that

calculates HB(n) for monotone functions depending on up to six variables.

The number of monotone functions of n arguments (also known as Dedekind

number M(n)) is a rapidly growing sequence. The second column of Table 4.2

contains number M(n) for n = 1, . . . , 6. Using algorithm A, we built optimal
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Fig. 4.3 Spectrum of h(f) values for n = 5

decision trees for all functions and thus calculated the value of HB(n) that

is given in the third column. The fourth and fifth column contain the lower

and the upper bound on HB(n) which are given by Proposition 3.8.

Table 4.2 HB(n) and its bounds for the class of monotone functions

n M(n) HB(n) Lower Upper
bound bound

1 3 1 0.59 1
2 6 1.5 1.27 1.5
3 20 2.5 2 2.5
4 168 3.125 2.76 3.5
5 7561 4.125 3.55 4.5
6 7828354 4.8125 4.35 5.63

The experiments revealed that the minimum average depth reaches its

maximum on threshold functions described in Sect. 3.1.3. For odd n, the

only function having h(f) = HB(n) is Thrn,(n+1)/2. For even n, there are

two such functions: Thrn,n/2 and Thrn,n/2+1. Note that all these functions

are α-functions, so the obtained value of HB(n) is the same for the classes

M1, M2, M3, M4. The function Thrn,(n+1)/2 is a self-dual function for odd

n, so the obtained values of HB(n), n = 1, 3, 5, are applicable to the class

D2. The experiment also allows to find the histogram of distribution of the
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Fig. 4.4 Spectrum of h(f) values for n = 6

minimum average depth among functions in M1 of n variables. Fig. 4.3 and

4.4 show histogram of h(f) for monotone functions of five and six variables.

4.4 Constructing Optimal Decision Trees for Corner

Point Detection

In this section, we consider a problem that originated in computer vision:

constructing an optimal testing strategy for corner point detection by FAST

algorithm [74, 75]. The problem can be formulated as a problem of building a

decision tree with the minimum average depth. We experimentally compare

performance of the algorithm A and several greedy algorithms that differ in

the attribute selection criterion.

4.4.1 Corner Point Detection Problem

One of the important problems considered in computer vision is object track-

ing that is given a video stream, locating an object and determining its

position in each frame. There are several approaches to object tracking. One

of the accepted approaches is detecting feature points and acquiring the ob-

ject position by these points. Rosten and Drummond devised FAST algorithm

[74, 75] that tracks an object by position of its corners and proposed a simple
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Fig. 4.5 [74] FAST Feature detection in an image patch. The highlighted squares
are the pixels used in the feature detection. The pixel at C is the center of a detected
corner: the dashed line passes through 12 contiguous pixels that are brighter than C

by more than the threshold γ.

algorithm for corner point detection. The algorithm iterates through all im-

age pixels and detects corner points by comparing the intensity of the current

pixel and surrounding pixels. In order to determine if an image pixel a is a

corner point, a circle of 16 pixels (a Bresenham circle of radius 3) surround-

ing a is examined: the intensity of each pixel of the circle is compared with

the intensity of a. The pixel a is assumed to be a corner point if at least 12

contiguous pixels on the circle are all either brighter or darker than a by a

given threshold γ (Fig. 4.5).

The surrounding pixels can be tested in an arbitrary order, and the re-

quired number of tests depends on the data and the chosen order of testing.

A good testing strategy can reduce the expected number of checks and thus

reduce the running time of the algorithm. One can see that in order to claim

the current pixel as a corner point, at least 12 checks needs to be done, but

some candidate pixels can be rejected after only four checks. For example,

checking the circle points 1, 5, 9 and 13 allows to reject candidates that do

not have at least three out of four pixels either darker or lighter than the

central pixel.

For an arbitrary pixel a and for i = 1, . . . , 16, denote by φi(a) the intensity

of the i-th pixel in the circle surrounding a (the pixel ordering is shown on

Fig. 4.3) and denote by φc(a) the intensity of the pixel a. The pixel a can

be represented as an object that is characterized by the attributes f1, . . . , f16

where
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fi(a) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 , if φi(a) − φc(a) < −γ ,

1 , if |φi(a) − φc(a)| ≤ γ ,

2 , if φi(a) − φc(a) > γ .

The problem of corner point detection can be formulated as a problem

z = (ν, f1, . . . , f16) over a 3-valued information system U = (A, F ). The set

A contains examples of image patches collected from the training data set that

is a set of images or a video fragment that is similar to one the algorithm will

work with. The set F consists of the attributes f1, . . . , f16, and the function

ν takes the value 1 if given combination of attribute values correspond to

a corner point, and 0 otherwise. Using the training data set, one can also

estimate a probability distribution P as cardinality of the equivalence classes

obtained by partitioning of A with the attributes from F . Then a valid testing

strategy can be represented by a decision tree for z that solves z, and an

optimal strategy corresponds to a tree with the minimum P -average depth.

4.4.2 Experimental Results

Following the method proposed by the authors of FAST algorithm, we es-

timated the probability distribution from the training data. For each pixel

a (except a 2-pixel outer boundary of each image), we calculated the tuple

(f1(a), . . . , f16(a)) of attribute values. Then we formed a decision table T ∗
z

that contains as rows all tuples of attribute values encountered in the train-

ing data. Each row is assigned with the estimated probability that is the

number of occurrences of the corresponding tuple. We did not include to the

decision table the rows that do not appear in the training data. These tuples

of attribute values may encounter on other images and may be misclassified,

but we suppose they are less probable, so the number of misclassifications

will be small and can be compensated by the sensor fusion technique on a

subsequent stage of the object tracking algorithm.

We performed an experiment that compares the average depth of decision

trees built by the greedy algorithms with the minimum value. For training,

we took three groups of images considered in [75] named box, junk and maze

and tried five values of the threshold γ: 30, 40, 50, 70 and 100. For each set of

images and each threshold value, a decision table T ∗
z was constructed. Then

for each decision table, decision trees were build by the algorithm A and by

three greedy algorithms that use a combination of weighted-sum impurity

function with gini, ent and me uncertainty measures respectively.
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Table 4.3 Characteristics of decision tables

Data set Threshold # of # of corner # of # of Time,
rows points nodes edges s

maze 100 1343 8 88577 363418 1
maze 70 5303 476 1699986 9223694 59
maze 50 15198 2135 5030983 24660203 339
maze 40 27295 4165 8167123 37285264 830
maze 30 50750 9310 14278124 60596561 2404
junk 100 146 0 0 0 0
junk 70 980 8 40045 157697 1
junk 50 3509 101 742765 4055185 20
junk 40 8323 282 1926830 9946555 85
junk 30 18243 847 4379006 22110004 350
box 100 680 15 58186 308882 1
box 70 3225 113 918734 4876964 23
box 50 10972 546 4059543 20901371 215
box 40 20080 1487 7075517 33320358 574
box 30 38381 4258 12404116 53458575 1660

Table 4.4 Average depth of decision trees

Data set Threshold Min. avg. Uncertainty measure
γ depth ent gini me

maze 100 1.27327 1.38421 1.4073 1.28518
maze 70 2.97021 3.31982 3.43315 3.32529
maze 50 3.07119 3.25339 3.49671 3.38137
maze 40 3.13391 3.28679 3.55746 3.45605
maze 30 3.27496 3.4028 3.73163 3.53888
junk 70 1.17653 1.22653 1.22653 1.22653
junk 50 2.58393 2.73041 2.77344 2.76917
junk 40 2.77556 3.01826 2.97345 2.98738
junk 30 2.84794 3.04665 3.08738 3.17831
box 100 1.26912 2.19706 2.28824 1.28235
box 70 2.68217 2.83969 3.05891 2.8093
box 50 3.05851 3.24426 3.34962 3.35992
box 40 3.14631 3.43322 3.60652 3.60931
box 30 3.27373 3.47195 3.62302 3.72645

ARD 0.10738 0.14914 0.07744
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For each decision table, Table 4.3 cites the total number of rows and the

number of corner points detected in the training data. Additionally, the table

shows the number of nodes and the number of edges in the graph ∆(z), and

the running time of the algorithm A. The results give an evidence that A is

capable of processing a table containing up to 50, 000 rows and producing a

graph with more than 14, 000, 000 nodes. Table 4.4 gives the average depth

of decision trees built by the exact algorithm and by the greedy algorithms.

One can see that an optimal strategy requires less than four points to test on

average. For each uncertainty measure U , the last row contains the average

relative deviation of the greedy algorithm that uses U in the impurity criteria.

One can see that the greedy algorithms construct decision trees with the

average depth 7−15% greater than the minimum. The greedy algorithm that

uses uncertainty measure me has the minimum ARD. However, for smaller

values of γ, there is larger variety of data (more rows in the decision table)

and the greedy algorithm that uses ent performs better (this is, in fact, ID3

algorithm [70] applied for this problem in [75]).



Chapter 5

Problems over Information Systems

The problems of estimation of the minimum average time complexity of de-

cision trees and design of efficient algorithms are complex in general case.

The upper bounds described in Chap. 2.4.3 can not be applied directly due

to large computational complexity of the parameter M(z). Under reasonable

assumptions about the relation of P and NP , there are no polynomial time

algorithms with good approximation ratio [12, 32]. One of the possible solu-

tions is to consider particular classes of problems and improve the existing

results using characteristics of the considered classes.

We use the notion of information system to describe a class of problems.

The set of objects and the set of attributes are allowed to be infinite (but

countable). Among all information systems, we distinguish the restricted in-

formation systems in which any system of equations of the type “attribute”

= “value” has an equivalent subsystem whose weight is below a predefined

threshold.

The first section describes the notion of restricted information system and

gives bounds on the average weighted depth of decision trees depending only

on the entropy. In the second section, we prove that for a restricted informa-

tion system, under reasonable assumptions about weight function and prob-

ability distribution, the time complexity of the algorithm A is limited from

above by a polynomial on the number of attributes in the problem descrip-

tion. Some results of this chapter were published in [17].

5.1 On Bounds on Average Depth of Decision Trees

Depending Only on Entropy

Let U = (A, F ) be an information system and Ψ be a weight function for

U . Theorem 2.3 gives a bound on the minimum average weighted depth of

I. Chikalov: Average Time Complexity of Decision Trees, ISRL 21, pp. 79–84.
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decision tree for an arbitrary problem z over U . However, efficiency of this

bound is limited due to large computational complexity of the parameter

MΨ (z). Let us consider a necessary and sufficient condition for existence of a

function Φ such that hΨ (z, P ) ≤ Φ(H(P )) for any problem z over U and any

probability distribution P for z.

For an arbitrary natural number t, a system of equations of the form

{f1(x) = δ1, . . . , ft(x) = δt} , (5.1)

where f1, . . . , ft ∈ F and δ1, . . . , δt ∈ Ek is called a system of equations over

U . A system of equations over U is called irreducible, if it does not have any

proper equivalent subsystems. An information system U is called r-restricted

(restricted) if each compatible system of equations over U has an equivalent

subsystem that contains at most r equations.

For the system of equations (5.1), the value
∑t

i=1 Ψ(fi) is called the weight

of the system. An information system U is called r-restricted (restricted)

relative to Ψ if each compatible system of equations over U has an equivalent

subsystem whose weight does not exceed r.

Example 5.1. Let A = Rn, and F be a nonempty set of mappings from Rn to

R. Consider an infinite family of functions [F ] = {sign(f +α)+1 : f ∈ F, α ∈
R} (note that the expression (sign(x) + 1) takes the value 0 for a negative x,

1 for x = 0, and 2 for a positive x). If |F | = k < ∞, then the information

system U = (A, [F ]) is 2k-restricted (or 2k-restricted relative to the weight

function Ψ ≡ 1).

The following theorem for an arbitrary problem over a restricted information

system and an arbitrary probability distribution, gives an upper bound on

the minimum average weighted depth of decision tree that depends only on

the entropy of probability distribution.

Theorem 5.1. Let U be an information system, Ψ a weight function for U

and U be r-restricted relative to Ψ where r is some natural number. Then

hΨ (z, P ) ≤ 2r(H(P )+1) for an arbitrary problem z over U and an arbitrary

probability distribution P for z.

Proof. Let U be a k-valued information system, U = (A, F ) and z =

(ν, f1, . . . , fn). If z ≡ const on A, then obviously MΨ (z) ≤ r. Let z �≡ const on

A. Let us consider an arbitrary tuple δ̄ = (δ1, . . . , δn) from En
k and show that

MΨ (z, δ̄) ≤ 2r. From the definition of the parameter MΨ (z, δ̄) it follows that

there exists an irreducible system of equations S = {fi1(x) = δi1 , . . . , fit
(x) =

δit
} over z such that t > 0 and the weight of the system is MΨ (z, δ̄). De-

note by A(S) the set of solutions of this system on A. If A(S) �= ∅, then the
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weight of S does not exceed r. Let A(S) = ∅. Denote S1 = S \ {fi1(x) = δi1}.
The equality A(S) = ∅ and the fact that S is irreducible imply that S1 is a

compatible irreducible system. Therefore, the weight of the system S1 does

not exceed r and the weight of the system S does not exceed r + Ψ(fi1).

According to the definition of system of equations, fi1(x) �≡ const on A. Con-

sequently, there exists a number δ ∈ Ek for which the set of solutions of the

equation fi1(a) = δ is a nonempty proper subset of A. Then the system of

equations {fi1(x) = δ} is irreducible and compatible, and its weight (that is

equal to Ψ(fi1)) does not exceed r. Therefore, the weight of the system of

equations S does not exceed 2r and the value of the parameter MΨ (z) (as

the maximum of MΨ (z, δ̄), δ̄ ∈ En
k ) does not exceed 2r. Theorem 2.3 implies

that hΨ (z, P ) ≤ 2r(H(P )+1). ⊓⊔

The following theorem shows that the conditions of Theorem 5.1 are neces-

sary and sufficient for existence of a linear upper bound depending only on

the entropy and considering non-linear bounds does not extend the class of

information systems that have upper bounds depending only on the entropy.

Theorem 5.2. Let U be an information system that is not restricted rela-

tive to the weight function Ψ for U . Then for an arbitrary ε > 0, there is

no function Φ that is limited within the interval [0, ε] and possesses the con-

dition hΨ (z, P ) ≤ Φ(H(P )) for any problem z over U and any probability

distribution P for z.

Proof. Let U = (A, F ) be a k-valued information system. Assume that for

some ε > 0, there exists a function Φ such that Φ(x) ≤ K, x ∈ [0, ε], and

hΨ (z, P ) ≤ Φ(H(P )) for any problem z over U and any probability distri-

bution P for z. By the premise of the theorem, for each natural number i,

there exists an irreducible compatible system of equations Si with the weight

at least i. For i = 1, 2, . . ., set into correspondence to the system of equa-

tions Si a problem zi over U . Let Si = {f i
1(x) = δi

1, . . . , f
i
ni

(x) = δi
ni
}. Then

zi = (νi, f
i
1, . . . , f

i
ni

) where νi : {0, 1}ni → ω,

νi(δ̄) =

{

1 , if δ̄ = δ̄i ,

0 , if δ̄ �= δ̄i ,

and δ̄i = (δi
1, . . . , δ

i
ni

). Let the table Tzi
contain si rows. Define a probability

distribution Pi as follows:

Pi(d̄) =

{

(s2
i − si + 1) , if d̄ = δ̄i ,

1, if d̄ �= δ̄i .
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Let the function Ψ be not limited. This allows for choosing the systems Si

such that each of them consists of a single equation. Then si ∈ {2, . . . , k} for

any i ∈ ω\{0}, and the value Φ(H(Pi)) takes at most k different values. Con-

sequently, Φ(H(Pi)) is limited from above by some constant (for convenience

of notations let it be equal to K).

Let the function Ψ be limited. This allows for choosing the systems of

equations such that for any natural i the system Si contains at least i equa-

tions. Irreducibility of the system Si implies the inequality si ≥ i. From the

definition of entropy it follows that H(Pi) ≥ 0 for any natural number i.

Apply the following transformations:

H(Pi) = log2 s2
i −

1

s2
i

(s2
i − si + 1) log2(s

2
i − si + 1)

= log2 s2
i −

(

1 − si − 1

s2
i

)(

log2 s2
i + log2(1 − si − 1

s2

)

< −
(

1 − si − 1

s2
i

)

log2

(

1 − si − 1

s2
i

)

+
2

si
log2 si .

One can see that for i → ∞, both summands tend to zero. Then there exists

a number i0 ∈ ω \ {0} such that H(Pi) < ε for i ≥ i0. According to the

assumption, Φ(H(Pi)) ≤ K for i ≥ i0.

Let Γi be a decision tree for the problem zi that solves zi, and Γi be

optimal for Ψ , zi and Pi. Then there exists a complete path ξi in Γi such

that δ̄i ∈ Tzi
π(ξi). Since for an arbitrary row d̄ ∈ Tzi

, d̄ �= δ̄i, the relation

ν(d̄) �= ν(δ̄i) holds, the subtable Tzi
π(ξi) does not contain other rows except

δ̄i. Irreducibility of the system Si implies Ψ(ξi) ≥ i, and the nonterminal

nodes of the path ξi are assigned with all attributes from the set {f i
1, . . . , f

i
ni
}.

Using the definition of the average weighted depth, we obtain

hΨ (Γ, Pi) ≥
Ψ(ξi)Pi(δ

i)

N(Tzi
, Pi)

≥ i(s2
i − si + 1)

s2
i

≥ i

2
.

Taking into account that the tree Γi is optimal for Ψ , zi and Pi, we have

hΨ (zi, Pi) ≥ i/2. Therefore, there exists a number i1 ∈ ω \ {0} such that

hΨ (zi, Pi) > K for i ≥ i1. Then for any number i∗ > max(i0, i1), the inequal-

ity hΨ (zi∗ , Pi∗) > Φ(H(Pi∗ )) holds. Consequently, the considered assumption

is wrong. ⊓⊔
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5.2 Polynomiality Criterion for Algorithm A

Let U = (A, f1, f2, . . .) be an infinite information system and Ψ a weight

function for U . Denote Z(U) the set of problems over the information system

U . For an arbitrary problem z, denote by dim z the number of attributes listed

in the description of z.

Consider the functions

SU (n) = max{|S(z)| : z ∈ Z(U), dim z ≤ n}

and

DU (n) = max{D(Tz) : z ∈ Z(U), dim z ≤ n}

that characterize the dependence of the maximum number of separable subta-

bles and the maximum number of rows on the number of columns in decision

tables over U .

Let Ψ be restricted from above by some constant, and Q(x) be some poly-

nomial. Theorem 4.2 implies that for an arbitrary problem z over U and an

arbitrary Q-restricted probability distribution for the problem z, the time

complexity of the algorithm A is restricted from above by a polynomial on

the number of attributes in the problem description if the functions SU (n)

and DU (n) are restricted from above by a polynomial on n. Also, one can see

that the time complexity of the algorithm A has an exponential lower bound

if the function SU (n) grows exponentially.

Theorem 5.3. Let U = (A, F ) be a k-valued information system. Then the

following statements hold:

a) if U is r-restricted, then SU (n) ≤ (nk)r + 1 and DU (n) ≤ (nk)r + 1 for

any natural number n;

b) if U is not restricted, then SU (n) ≥ 2n − 1 for any natural number n.

Proof. a) Let U be r-restricted and z = (ν, f1, . . . , fn) ∈ Z(U). One can

see that the values |S(Tz)| and D(Tz) do not exceed the number of pairwise

nonequivalent compatible subsystems of the system of equations {f1(x) =

0, . . . , fn(x) = 0, . . . , f1(x) = k − 1, . . . , fn(x) = k − 1} including the empty

system (assume the set of solutions of the empty system to be equal to A).

Since the system of equations U is r-restricted, each compatible system of

equations over U contains an equivalent subsystem of at most r equations.

Then |S(z)| ≤ (dim z)rkr+1 and D(Tz) ≤ (dim z)rkr+1. Therefore, SU (n) ≤
(nk)r + 1 and DU (n) ≤ (nk)r + 1.

b) Let U be not restricted and n be a natural number. Then there exists

an irreducible system of equations over U containing at least n. equations.

Since each its subsystem is irreducible, there exists an irreducible system
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over U that consists of n equations. Let it be the system (5.1) which will be

denoted by W . Let us show that any two different subsystems W1 and W2 of

W are not equivalent. Assume the contrary. Then the systems W \ (W1 \W2)

and W \ (W2 \ W1) are equivalent to W , and at least one of them is a

proper subsystem of W that is impossible. Consider a diagnostic problem

z = (ν, f1, . . . , fn). One can set into correspondence to a proper subsys-

tem {fi1(x) = δ1, . . . , fit
(x) = δt} of the system W the separable subtable

Tz(fi1 , δ1) . . . (fit
, δt) of the table Tz. Since any two different subsystems are

nonequivalent to each other and to the system W , the subtables correspond-

ing to these subsystems are different and nonterminal. Then |S(Tz)| ≥ 2n−1.

Therefore, SU (n) ≥ 2n − 1. ⊓⊔



Conclusions

The monograph considers several aspects of the problem of constructing

decision trees with the minimum time complexity. A known bound on the

minimum average depth for a problem with a complete set of attributes is

generalized in two ways. First, a bound for an arbitrary problem is obtained

that depends on the parameter M(z). Second, a class of restricted informa-

tion systems is described; so all problems over a restricted information system

have a common bound depending only on the entropy. A necessary condition

for the problem decomposition is described that might be too restrictive for

using in applications, but it works in constructive proofs.

An exact algorithm A for construction of decision trees has been studied

both theoretically and experimentally. The experimental results described in

Chap. 4.4.2 show that A is capable of processing a table with 16 attributes

and more than 50000 rows. A class of all information systems was described

for which the algorithm has polynomial time complexity on the decision table

size. It allows further optimization by using branch and bound methods to

reduce the search space. Current parallel computing environments enable

an effective implementation of such algorithms and make it applicable for

practical problems described by decision tables of a moderate size.



Appendix A

Closed Classes of Boolean Functions

The lattice of all classes of Boolean functions closed relative to the operation

of substitution has been described by Post in [67, 68]. In [36], Yablonskii,

Gavrilov and Kudriavtzev considered the structure of all classes of Boolean

functions closed relative to the operation of substitution and the operations

of insertion and deletion of inessential variable. Appendix contains the de-

scription of this structure that is slightly different from Post’s lattice.The

text of Appendix is close to the text of Appendix in [50].

A.1 Some Definitions and Notation

Let U be a set of Boolean functions, f(x1, . . . , xn) be a function from U , and

gi be either a function from U or a variable, i = 1, . . . , n. We will say that

the function f(g1, . . . , gn) is obtained from functions from U by the operation

of substitution.

Let f(x1, . . . , xn) be a Boolean function. A variable xi of the function f

is essential if there exist two n-tuples δ̄ and σ̄ from En
2 that differ only

in the i-th digit and for which f(δ̄) �= f(σ̄). The variables of the func-

tion f that are not essential are called inessential variables. Let xj be an

inessential variable of the function f and g(x1, . . . , xj−1, xj+1, . . . , xn) =

f(x1, . . . , xj−1, 0, xj+1, . . . , xn). We will say that the function g is obtained

from f by the operation of deletion of inessential variable. We will say that

the function f is obtained from g by the operation of insertion of inessential

variable.

Let U be a nonempty set of Boolean functions. We denote by [U ] the clo-

sure of the set U relative to the operation of substitution and the operations

of insertion and deletion of inessential variable. The set U is called a closed

class if U = [U ].

I. Chikalov: Average Time Complexity of Decision Trees, ISRL 21, pp. 87–85.
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The notion of a formula over U is defined inductively in the following way:

a) The expression f(x1, . . . , xn), where f(x1, . . . , xn) is a function from U ,

is a formula over U .

b) Let f(x1, . . . , xn) be a function from U and ϕ1, . . . , ϕn be expres-

sions that are either formulas over U or variables. Then the expression

f(ϕ1, . . . , ϕn) is a formula over U .

A Boolean function corresponds in natural way to any formula over U . We

will say that the formula realizes this Boolean function.

Denote by [U ]1 the closure of the set U relative to the operation of sub-

stitution. One can show that [U ]1 coincides with the set of functions realized

by formulas over U . Denote by [U ]2 the closure of the set [U ]1 relative to

the operations of insertion and deletion of inessential variable. One can show

that [U ] = [U ]2.

We denote the logical negation operation by ¬ and the modulo 2 sum-

mation by ⊕. For a natural n and t ∈ E2, denote by t̃n the n-tuple

(t, t, . . . , t) ∈ En
2 . Let f be a Boolean function depending on n variables.

The function f is called α-function if f(t̃n) = t for any t ∈ E2, β-function if

f(t̃n) = 1 for any t ∈ E2, and γ-function if f(t̃n) = 0 for any t ∈ E2.

A function f is called a linear function if f = c0⊕ c1x1 ⊕ . . .⊕ cnxn where

ci ∈ E2, 0 ≤ i ≤ n. A function f is called a self-dual function if f(x1, . . . , xn)

= ¬f(¬x1, . . . ,¬xn). A function f is called a monotone function if for any

n-tuples δ̄ = (δ1, . . . , δn) and σ̄ = (σ1, . . . , σn) from En
2 such that δi ≤ σi,

1 ≤ i ≤ n, the inequality f(δ̄) ≤ f(σ̄) holds.

Let μ ∈ ω \ {0, 1}. We will say that a function f(x1, . . . , xn) satisfies the

condition 〈aµ〉 if for any μ tuples from En
2 on which f takes the value 0 there

exists a number j ∈ {1, . . . , n} such that in each of the considered tuples the

j-th digit is equal to 0. We will say that the function f satisfies the condition

〈a∞〉 if there exists a number j ∈ {1, . . . , n} such that in any n-tuple from

En
2 on which f takes the value 0 the j-th digit is equal to 0. We will say that

the function f satisfies the condition 〈Aµ〉 if for any μ tuples from En
2 on

which f takes the value 1 there exists a number j ∈ {1, . . . , n} such that in

each of the considered tuples the j-th digit is equal to 1. We will say that a

function f satisfies the condition 〈A∞〉 if there exists a number j ∈ {1, . . . , n}
such that in any n-tuple from En

2 on which f takes the value 1 the j-th digit

is equal to 1. The constant 1, by definition, satisfies the condition 〈a∞〉 and

does not satisfy the condition 〈A2〉. The constant 0, by definition, satisfies

the condition 〈A∞〉 and does not satisfy the condition 〈a2〉.
Let μ ∈ ω \ {0, 1}. Denote

hµ =

µ+1
∨

i=1

(x1 ∧ x2 ∧ . . . ∧ xi−1 ∧ xi+1 ∧ . . . ∧ xµ+1)
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and

h∗
µ =

µ+1
∧

i=1

(x1 ∨ x2 ∨ . . . ∨ xi−1 ∨ xi+1 ∨ . . . ∨ xµ+1) .

A.2 Description of All Closed Classes of Boolean

Functions

In this subsection, all closed classes of Boolean functions are listed. For each

class the Post notation is given, the description of functions contained in

the considered class is presented, and a finite set of Boolean functions is

given such that its closure relative to the operation of substitution and the

operations of insertion and deletion of inessential variable is equal to this

class.

As in [36], two Boolean functions are called equal if one of them can

be obtained from the other by the operations of insertion and deletion of

inessential variable.

The inclusion diagram for closed classes of Boolean functions [36] is de-

picted in Fig. A.1. Each closed class is represented by a dot. The dots cor-

responding to certain classes U and V are connected with an edge if V is

immediately included into U (there are no intermediate classes between U

and V ); in this case, the dot corresponding to the outer class U is placed

higher on the diagram. 1. The class O1 = [{x}]. This class consists of all

functions equal to the function x, and all functions obtained from them by

renaming of variables without identification.

2. The class O2 = [{1}]. This class consists of all functions equal to the

function 1.

3. The class O3 = [{0}]. This class consists of all functions equal to the

function 0.

4. The class O4 = [{¬x}]. This class consists of all functions equal to

the functions x or ¬x, and all functions obtained from them by renaming of

variables without identification.

5. The class O5 = [{x, 1}]. This class consists of all functions equal to

the functions 1 or x, and all functions obtained from them by renaming of

variables without identification.

6. The class O6 = [{x, 0}]. This class consists of all functions equal to

the functions 0 or x, and all functions obtained from them by renaming of

variables without identification.

7. The class O7 = [{0, 1}]. This class consists of all functions equal to the

functions 0 or 1.
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Fig. A.1 Inclusion diagram for closed classes of Boolean functions

8. The class O8 = [{x, 0, 1}]. This class consists of all functions equal to

the functions 0, 1 or x, and all functions obtained from them by renaming of

variables without identification.

9. The class O9 = [{¬x, 0}]. This class consists of all functions equal to the

functions 0, 1, ¬x, or x, and all functions obtained from them by renaming

of variables without identification.

10. The class S1 = [{x ∨ y}]. This class consists of all disjunctions (i.e.,

functions of the form
∨n

i=1 xi, n = 1, 2, . . . and all functions obtained from

them by renaming of variables without identification).

11. The class S3 = [{x ∨ y, 1}]. This class consists of all disjunctions and

all functions equal to 1.
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12. The class S5 = [{x ∨ y, 0}]. This class consists of all disjunctions and

all functions equal to 0.

13. The class S6 = [{x∨y, 0, 1}]. This class consists of all disjunctions and

all functions equal to the functions 0 or 1.

14. The class P1 = [{x ∧ y}]. This class consists of all conjunctions (i.e.,

functions of the form
∧n

i=1 xi, n = 1, 2, . . . and all functions obtained from

them by renaming of variables without identification).

15. The class P3 = [{x ∧ y, 0}]. This class consists of all conjunctions and

all functions equal to 0.

16. The class P5 = [{x ∧ y, 1}]. This class consists of all conjunctions and

all functions equal to 1.

17. The class P6 = [{x ∧ y, 0, 1}]. This class consists of all conjunctions

and all functions equal to 0 or 1.

18. The class L1 = [{x ⊕ y, 1}]. This class consists of all linear functions.

19. The class L2 = [{x⊕y⊕1}]. This class consists of all linear α-functions

and β-functions (i.e., functions of the form
⊕2k

i=1 xi ⊕ 1,
⊕2l+1

i=1 xi, k, l =

0, 1, 2, . . . and all functions obtained from them by renaming of variables

without identification).

20. The class L3 = [{x ⊕ y}]. This class consists of all linear α-functions

and γ-functions (i.e., functions of the form
⊕l

i=1 xi, l = 0, 1, 2, . . . and all

functions obtained from them by renaming of variables without identifica-

tion).

21. The class L4 = [{x⊕y⊕z}]. This class consists of all linear α-functions

(i.e., functions of the form
⊕2l+1

i=1 xi, l = 0, 1, 2, . . . and all functions obtained

from them by renaming of variables without identification).

22. The class L5 = [{x ⊕ y ⊕ z ⊕ 1}]. This class consists of all linear

self-dual functions (i.e., functions of the form
⊕2l+1

i=1 xi ⊕ 1,
⊕2l+1

i=1 xi, l =

0, 1, 2, . . . and all functions obtained from them by renaming of variables

without identification).

23. The class D2 = [{(x∧ y)∨ (x ∧ z)∨ (y ∧ z)}]. This class consists of all

self-dual monotone functions.

24. The class D1 = [{(x∧ y)∨ (x∧ ¬z)∨ (y ∧ ¬z)}]. This class consists of

all self-dual α-functions.

25. The class D3 = [{(x∧¬y)∨ (x∧¬z)∨ (¬y ∧¬z)}]. This class consists

of all self-dual functions.

26. The class A1 = M1 = [{x ∧ y, x ∨ y, 0, 1}]. This class consists of all

monotone functions.

27. The class A2 = M2 = [{x ∧ y, x ∨ y, 1}]. This class consists of all

monotone α-functions and β-functions.
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28. The class A3 = M3 = [{x ∧ y, x ∨ y, 0}]. This class consists of all

monotone α-functions and γ-functions.

29. The class A4 = M4 = [{x∧y, x∨y}]. This class consists of all monotone

α-functions.

30. The class C1 = [{¬(x∧y)}]. This class consists of all Boolean functions.

31. The class C2 = [{x∨y, x⊕y⊕1}]. This class consists of all α-functions

and β-functions.

32. The class C3 = [{x ∧ y, x ⊕ y}]. This class consists of all α-functions

and γ-functions.

33. The class C4 = [{x ∨ y, x ∧ (y ⊕ z ⊕ 1)}]. This class consists of all

α-functions.

34. The class Fµ
1 = [{x ∨ (y ∧ ¬z), h∗

µ}], μ = 2, 3, . . . . This class consists

of all α-functions satisfying the condition 〈aµ〉.
35. The class Fµ

2 , μ = 2, 3, . . . where Fµ
2 = [{x ∨ (y ∧ z), h∗

2}] if μ = 2,

and Fµ
2 = [{h∗

µ}] if μ ≥ 3. This class consists of all monotone α-functions

satisfying the condition 〈aµ〉.
36. The class Fµ

3 = [{1, h∗
µ}], μ = 2, 3, . . . . This class consists of all

monotone functions satisfying the condition 〈aµ〉.
37. The class Fµ

4 = [{x ∨ ¬y, h∗
µ}], μ = 2, 3, . . . . This class consists of all

functions satisfying the condition 〈aµ〉.
38. The class Fµ

5 = [{x ∧ (y ∨ ¬z), hµ}], μ = 2, 3, . . . . This class consists

of all α-functions satisfying the condition 〈Aµ〉.
39. The class Fµ

6 , μ = 2, 3, . . . where Fµ
6 = [{x ∧ (y ∨ z), h2}] if μ = 2,

and Fµ
6 = [{hµ}] if μ ≥ 3. This class consists of all monotone α-functions

satisfying the condition 〈Aµ〉.
40. The class Fµ

7 = [{0, hµ}], μ = 2, 3, . . . . This class consists of all

monotone functions satisfying the condition 〈Aµ〉.
41. The class Fµ

8 = [{x ∧ ¬y, hµ}], μ = 2, 3, . . . . This class consists of all

functions satisfying the condition 〈Aµ〉.
42. The class F∞

1 = [{x∨ (y ∧ ¬z)}]. This class consists of all α-functions

satisfying the condition 〈a∞〉.
43. The class F∞

2 = [{x ∨ (y ∧ z)}]. This class consists of all monotone

α-functions satisfying the condition 〈a∞〉.
44. The class F∞

3 = [{1, x ∨ (y ∧ z)}]. This class consists of all monotone

functions satisfying the condition 〈a∞〉.
45. The class F∞

4 = [{x∨¬y}]. This class consists of all functions satisfying

the condition 〈a∞〉.
46. The class F∞

5 = [{x∧ (y ∨ ¬z)}]. This class consists of all α-functions

satisfying the condition 〈A∞〉.
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47. The class F∞
6 = [{x ∧ (y ∨ z)}]. This class consists of all monotone

α-functions satisfying the condition 〈A∞〉.
48. The class F∞

7 = [{0, x ∧ (y ∨ z)}]. This class consists of all monotone

functions satisfying the condition 〈A∞〉.
49. The class F∞

8 = [{x∧¬y}]. This class consists of all functions satisfying

the condition 〈A∞〉.
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