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Preface

This book is a result of our ongoing research on network reliability. Started in

1991 [1], it was first summarized in ‘‘Models of Network Reliability: Analysis,

Combinatorics and Monte Carlo’’ [2]. Recently, we have widened our approach to

include networks with many (more than two) states. In [2] we considered only

networks with two states: UP and DOWN, mainly for the situation where DOWN

meant loss of terminal connectivity. This was a relatively narrow approach and it

becomes much more comprehensive when we assume that a network can have

many states that reflect its degradation in the process of nodes or links failures.

Such a comprehensive approach enables to describe probabilistically the process

of network gradual disintegration into isolated clusters, which starts when all

terminals are connected to each other and ends with partial or total isolation of

all terminals. Another option that such an approach affords is to follow the size of

the network’s largest connected component when network nodes are subject to

random ‘‘attack’’.

The main formal tools for our investigation are the so-called multidimensional

D-spectrum and the marginal D-spectra. D-spectrum is an object of combinatorial

nature and is completely determined by the system structure function. This allows

to develop efficient Monte Carlo procedures for approximating system D-spectra

and serves as a basis for numerical analysis and reliability calculations in the area

of network reliability and resilience.

The exposition is as follows. The first chapter is devoted to the theory. It starts

with a brief summary of a traditional material on reliability of monotone binary

systems and their applications to networks (Sects. 1.1 and 1.2), with the difference

being that we extend the definition of the binary system to the case of more than

two states.

Section 1.3 contains the definition of the D-spectrum and the marginal

D-spectra. In simple words, D-spectrum is a multidimensional discrete probability

distribution, whose rth coordinate is the discrete distribution of the number of the

component whose failure causes the transition of the network from state J + 1 into

state J. In binary situation with only one such transition, the D-spectrum
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numerically coincides with so-called signature introduced by Samaniego in [3]

and is equivalent to so-called Internal Distribution suggested by Lomonosov in

[1].

Sections 1.3–1.5 contain extensions of the D-spectra to recurrent networks and

series and parallel connection and network-type systems, as well to the case when

network components may have several states. The latter we call networks with

colored links.

One of the most important issues in network reliability is the network design

aimed at improving its reliability parameters. The central role here belongs to the

reliability gradient function which shows the increase of system reliability as a

function of component reliability increase. In the case of independent and equally

reliable components the gradient coincides with so-called Birnbaum Importance

Measure (BIM) [4].

Even for small networks we meet the situation when the analytic formula for

network reliability is not available and the straightforward computation of the

gradient function becomes practically impossible.

It turns out, however, that the BIM of a component can be estimated via a

network combinatorial parameter, so-called BIM-spectrum, which is closely

related to the network D-spectrum (Sect. 1.6). An extension of the BIM-spectrum

allows to obtain a combinatorial formula for another important index, so-called

Joint Reliability Index [5], which is the second mixed derivative of network

reliability function.

In general case of arbitrary component reliabilities the calculation of gradient

function becomes more involved but nevertheless can be carried out using another

combinatorial characteristic of the network, so-called border states. In words, the

border state is a network DOWN state which has a unit Manhattan distance from

the network UP state. The material related to network gradient function is pre-

sented in Sect. 1.7.

We believe that a central issue in reliability engineering is the ability to effi-

ciently calculate the numerical values of the theoretically derived reliability

indices. Since the exact computations are as a rule NP-complete, the Monte Carlo

approximations remain our main computation tool. Section 1.8 describes in a non

formal way three main Monte Carlo procedures: estimation of network connec-

tivity, estimation of the D-spectra and component BIMs, and the estimation of the

gradient function. A quite natural question is the accuracy which can be provided

by a limited, say M = 105 to 107 Monte Carlo replications, within reasonable time

limits. We demonstrate that in typical cases, such as approximating the reliability

of a five-dimensional cubic network with 32 nodes and 80 edges, M = 106 repli-

cations guarantees an absolute error not exceeding 7 9 10-4, which is a satis-

factory accuracy for engineering calculations.

Chapter 2 is devoted to applications. In Sect. 2.1 we compare the behavior of

networks under random attack on their nodes. We present an example in which a

regular network is more resilient than the scale-free network with the same number

of nodes and links.
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Section 2.2 describes various approaches to network reliability design based on

improving their reliability by means of reinforcing several nodes or several links

combined with deletion of the least important components.

Section 2.3 deals with an example of an optimal pre-disaster management of a

transportation network. This is implemented by the ‘‘best’’ choice of the subset of

links which are reinforced to provide given level of terminal connectivity, subject

to budgetary constraint.

Finally, Sect. 2.4 is an example of a detailed probabilistic follow-up of the

network disintegration into isolated clusters when the links fail in a random order.

We hope that this work will be of interest to reliability researchers involved in

network design and study, and to reliability engineers interested in applications of

the theory to practical calculations of network reliability parameters.
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Notation and Abbreviations

i.i.d. Independent identically distributed

i.r.v. Independent random variables

r.v. Random variable

c.d.f. Cumulative distribution function (CDF)

d.f. Density function

s, X, Y, Z Random variables

up, down States of a binary component

UP, DOWN States of a binary system

X�Uð0; 1Þ r.v. X is uniformly distributed on [0,1]

E[X] Mathematical expectation (mean value) of

r.v. X

Var[X] Variance of r.v. X

r Square root of variance, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

Var½X�
p

,

also termed standard deviation

rX Standard deviation of r.v. X

X�ExpðkÞ r.v. X has an exponential distribution with

parameter

k : PðX� tÞ ¼ 1� expð�ktÞ; t� 0

r.e.[X] Relative error of r.v. X. Defined as

rX/E[X], for nonnegative r.v.s only

X�}ðl; rÞ r.v. X has mean value l and st.dev r

BIM Birnbaum importance measure

BIMj Birnbaum importance measure of compo-

nent j

JRI Joint reliability index

xi Indicator variable of binary component i

x = (x1, x2, ..., xn) System component state vector

u(�) System structure function

xi



Xi Random indicator variable of binary com-

ponent i

f
ðsÞ ¼ ðf

ðsÞ
1 ; f

ðsÞ
2 ; . . .; f

ðsÞ
n Þ The sth marginal D-spectrum

FðsÞðxÞ ¼
Px

i¼1 f
ðsÞ
i ; x ¼ 1; 2; . . .; n The sth cumulative marginal D-spectrum

R ¼ Wðp1; p2; . . .; pkÞ System reliability as a function of com-

ponents reliability

rR ¼ ðoR=op1; . . .; oR=opnÞ System gradient vector

J Network state. J = 0 denotes network

DOWN state

n, k Number of components in the network

(nodes or links)

Y The random number of components whose

failure causes the network to change its

state, for example, from UP to DOWN

PN(J; p) Probability that the network N is in state J

Xi:n The ith order statistic from the random

sample of fX1; . . .;Xng
respr(N;b) Probabilistic resilience of network N

g ¼ resprðN; bÞ=n Probabilistic resilience rate; n is the num-

ber of nodes or links in the network

N = (V, E, T) Network with vertex (node) set V, edge

(link) set E and terminal set T
�d Average node degree

xii Notation and Abbreviations



Chapter 1

Theory

Abstract Sections 1 and 2 present brief summary of a standard material on relia-

bility of monotone binary systems and their applications to networks. The definition

of the binary system is extended to the case of more than two states. Section 3 con-

tains the definition of the D-spectrum and the marginal D-spectra. D-spectrum is a

multidimensional discrete probability distribution, whose rth coordinate is a discrete

distribution of the number of the component whose failure causes the transition of

the network from state j + 1, into state j computed under assumption that com-

ponents fail in random order. D-spectrum is a combinatorial characteristic of the

system which in particular case of two-state system with i.i.d. components coincides

with Samaniego’s signature. Network probabilistic resilience presented in Section 2

is the (1 − β)-quantile of the cumulative marginal D-spectrum. Sections 3, 4 show

how to compute D-spectra for recurrent networks and series-parallel connection of

network-type systems. Section 5 considers networks with multi-state edges which

we call networks with colored links. Section 6 deals with Birnbaum Importance

Measure (BIM) of network components for networks with identical and indepen-

dent components. It is shown that the BIM of component j can be estimated via a

network combinatorial parameter, so-called BIM-spectrum, which is closely related

to the network D-spectrum. An extension of the BIM-spectrum allows to obtain a

combinatorial formula for another important index, so-called Joint Reliability Index.

Section 7 discusses reliability gradient function which allows to compute the increase

of system reliability as a function of component reliability increase. In general case of

arbitrary component reliabilities the calculation of gradient function becomes more

involved but nevertheless can be carried out by using another combinatorial char-

acteristic of the network, so-called border states. Border state is a network DOWN

state which has a unit Manhattan distance from the network UP state. As a rule,

most of computations aimed at network reliability estimation are NP-complete, and

the Monte Carlo approximations remain our main computation tool. Section 1.8

describes in a non formal way three principal Monte Carlo procedures: estimation

of network connectivity, estimation of the D-spectra and component BIM’s, and

the estimation of the gradient function. It discusses also the question of accuracy
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provided by a limited number of Monte Carlo replications which guarantee a numer-

ical result with an error small enough for engineering calculations. Finally, Sect. 9

discusses the construction of D-spectra for the case when a single component failure

(e.g. node failure) leads the network to change its state J to state J − k, k ≥ 2.

Keywords Multi-state network · Multi-state D-spectra · Component importance

measure · Gradient function · Border states · Monte Carlo accuracy

1.1 Graphs, Networks, Terminals, Structure Function

We meet networks every day and everywhere in our life. For formal study of network

properties we must operate with abstract models of networks. In further, our principal

network model will be a triple N = (V, E, T ), where V is the vertex or node set,

|V | = m, E is the edge or link set, |E | = n, and T is a set of special nodes called

terminals, T ⊆ V, |T | = h.

In simple words, a network is a collection of circles (nodes) and links, i.e. line

segments connecting the nodes. Terminals are marked as bold circles, like in Fig. 1.1.

In most situations we will be dealing with networks having several states, accord-

ing to the presence or absence of connection between the terminals. We say that

two terminals a and b are connected if there is a path of links connecting them. For

example, the path (a, d) ↔ (d, e) ↔ (e, b) connects terminals a and b.

If all terminals are connected to each other, we say that the network is T-connected.

A subset V1 ⊂ V is called an isolated component of N if all nodes in V1 are connected

to each other and there are no edges of type e = (a, b), where a ∈ V1 and b ∈
V −V1. An isolated node is considered as isolated component. An isolated component

of N is called a cluster if it contains at least one terminal node. A single terminal

node is considered as a cluster.

The network on Fig. 1.1 has only one cluster. If the links 1 = (a, d), 7 = ( f, e),

8 = ( f, b), 4 = (g, c) and 10 = (g, b) will be erased, then there will be two (isolated)

clusters in N: one cluster will contain terminal a and another—terminals b and c.

Suppose that links 1 = (a, d), 7 = ( f, e), 9 = (e, b) and 3 = (e, c) are erased. Then

the network falls apart into two isolated components, one of which is a cluster.

Our exposition will be centered around network behavior when its elements (nodes

and/or links) fail. We will deal mainly with so-called binary elements which can be

in two states up and down denoted by 1 and 0, respectively. When speaking about

links, link i failure means that this link is erased, i.e. it does not exist. The state of

link i, i = 1, . . . , n is denoted by binary variable xi . If xi = 1, link i is up; if xi = 0,

link i is down. xi is often called link indicator variable. In some models, the elements

subject to failure are network nodes (vertices). If the indicator variable of node j is

y j = 0, i.e. node j is down, it means that all links incident to node j are erased, but

the node itself remain intact. So, for example, if node f on Fig. 1.1 is down, all four

links 6 = (a, f ), 7 = (e, f ), 8 = (b, f ) and 5 = (g, f ) are erased. By agreement, the

terminals do not fail.
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Fig. 1.1 Network with 11
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The next step will be introducing a compact description of all network element

states. We will use vector notation x = (x1, x2, x3, . . . , xn). For example, if all odd

numbered links are down, and all even numbered links are up, network state vector

for Fig. 1.1 will be x = (0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0).

It will be assumed that the network can be in several states denoted by integers

J = 0, 1, 2, . . . , L . The dependence of network’s state on the state of its elements

(nodes or links) will be determined by means of the so-called structure function ϕ(x).

Let us consider several examples of typical structure functions.

Example 1.1.1 (Simplest s–t network, Fig. 1.2a)

This network has two terminals s and t and four links 1 = (s, a), 2 = (a, b), 3 = (b, c),

4 = (c, t) which are subject to failure. By definition, the network has two states, UP

(J = 1), if all links are up or DOWN (J = 0), otherwise. Formally,

ϕ(x)=
4
∏

i = 1

xi = min
1≤i≤4

xi . (1.1.1)

In reliability theory, this network is called series system.

Example 1.1.2 (Two s–t networks in parallel, Fig. 1.2b)

This network has also two terminals s and t and two “paths” of links in parallel. By

definition, it is UP if and only if there is a connection between s and t. Elements

subject to failure are links. Formally,

ϕ(x)= 1 −
(

1 −
3
∏

i = 1

xi

)(

1 −
7
∏

i = 4

xi

)

= max(x1x2x3, x4x5x6x7). (1.1.2)

In reliability theory, this network is called a parallel connection of two series systems.

It is desirable to have a systematic way of constructing a formula for the structure

function ϕ(·). It is relatively easy to do this for a binary case when the network
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Fig. 1.3 Bridge s–t network

(a) and star-type network (b)
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has only two states—UP and DOWN. This will be done by introducing the notions

of minimal cuts and minimal paths. Before doing this let us impose some natural

demands on ϕ(·).
We will use the notation x < y if the components of x are less or equal to the

components of y, but there is at least one component j such that x j < y j .

Definition 1.1.1 (Monotone system) A network with structure function ϕ(·) is called

monotone if it has the following properties:

(i) ϕ(0, 0, . . . , 0)= 0, ϕ(1, 1, . . . , 1)= L > 0;
(ii) x < y ⇒ ϕ(x) ≤ ϕ(y).

In words: the network is DOWN (J = 0) if all its elements are down; if all elements

are up, the network state is L > 0; the state of the network can not become worse if

any of its elements change its state from down to up.

Let us assume that the network is binary, i.e. it can be in two states UP (J = 1) or

DOWN (J = 0). For this situation we introduce important notions of path set, path

vector, cut set and cut vector.

Definition 1.1.2 (Cut vector, cut set, path vector, path set)

A state vector x is called a cut vector if ϕ(x)= 0. The set Ct (x)= {i : xi = 0} is

called a cut set. If, in addition, for any y > x, ϕ(y)= 1, then the corresponding cut

set is called minimal cut set, or simply minimal cut. A state vector x is called a path

vector if ϕ(x)= 1. The set Pt (x)= {i : xi = 1} is called a path set. If, in addition, for

any y < x, ϕ(y)= 0, then the corresponding path set is called minimal path set, or

simply minimal path.

Let us illustrate these notions by an example of a bridge-type network shown on

Fig. 1.3a.

Bridge network has two terminals, four nodes and five links. Links are subject to

failures. The network is UP if and only if the connection between s and t does exist.

x = (1, 1, 1, 0, 1) is a path vector and {1, 2, 3, 5} is the corresponding path set, but

not a minimal path set since it can be reduced to {1, 3, 5} and remains a path set. The

latter is a minimal path. Similarly, x = (1, 1, 1, 0, 0) is a cut vector, but {1, 2, 3} is

not a minimal cut. The set {1, 2} is, on the contrary, a minimal cut set.

Now we are ready to represent the central result of this section.
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Theorem 1.1.1 (Structure function representation)

Suppose that the network has a binary structure function. Let Pt1 , Pt2 , . . . , Pts be the

minimal path sets of the network and Ct1 , Ct2 , . . . , Ctk be the minimal cut sets of the

network. Then

ϕ(x)= 1 −
s
∏

j = 1

⎛

⎜

⎝
1 −

∏

i∈Pt j

xi

⎞

⎟

⎠
=

k
∏

j = 1

⎛

⎜

⎝
1 −

∏

i∈Ct j

(1 − xi )

⎞

⎟

⎠
. (1.1.3)

Proof Assume that there is at least one minimal path set, all elements of which are

up, say Pt1 . Then �i∈Pt1
xi = 1 and this leads to ϕ(x)= 1. Suppose now that the

network is UP. Then there must be at least one minimal path having all its elements

in the up state. This proves the first equality. The proof of the second equality is

similar and we omit it. ⊓⊔
For small networks, where enumeration of all minimal cut sets or all minimal

path sets is a feasible problem, this theorem opens a way to network reliability

calculations.

Let us conclude this section with several examples of defining the structure func-

tion ϕ(·).
a. Flow in the network. Consider again the bridge network shown on Fig. 1.3a.

Suppose that each link has capacity 1 and network state is determined as the

maximal flow which can be delivered from s to t. The elements of network

subject to failure are the links. Obviously, ϕ(1, 1, 1, 1, 1)= ϕ(1, 1, 0, 1, 1)= 2.

If one of the links 1, 2, 4 or 5 is down, the flow from s to t drops by one and

ϕ(·)= 1. If all links of one min cut set are down, then ϕ(·)= 0, for example,

ϕ(0, 1, 0, 1, 0)= 0.

b. Three-terminal connectivity. Suppose that in the bridge network, nodes s, t

and a are terminals. Again the links are subject to failure. The function ϕ(·)
is set to be 1 (UP) if and only if all terminals are connected to each other,

i.e. there is only one cluster in the network. Otherwise, ϕ(·)= 0. For example,

ϕ(1, 0, 0, 1, 0)= 1 and ϕ(0, 1, 0, 0, 1)= 0. Indeed if only links 2 and 5 are up,

terminal a becomes isolated and the network is DOWN, by definition.

c. Several isolated components in the network. Figure 1.3b shows a small star-

type network with five nodes. Elements of the network subject to failure are the

nodes. ϕ(·) is set to be equal to 5 minus the number of isolated components in

the network. Node failure means that all edges incident to this node are erased.

So, if all nodes are connected to each other into one component, ϕ(·) is 4. If

a single node 1, 2, 3 or 4 fails, the number of isolated components increases

by one. If node s fails, the networks falls apart into 5 isolated components and

ϕ(·) becomes 0.
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1.2 Network Reliability

1.2.1 Binary Networks with Independent Binary Components

Contrary to the previous section, let us now assume that the state of network com-

ponent i (node or link) is described by a binary random variable X i , defined as

P(X i = 1)= pi , P(X i = 0)= 1 − pi = qi , (1.2.1)

where 1 and 0 correspond to up and down state, respectively.

It will be assumed that all components are mutually independent. This implies

that the joint distribution of X1, X2, . . . , Xn is completely determined by component

reliabilities p1, p2, . . . , pn .

Denote by X = (X1, X2, . . . , Xn) the network state vector which now is a random

vector. Correspondingly, the network structure function ϕ(X) becomes a binary ran-

dom variable: ϕ(X)= 1 corresponds to network UP state and ϕ(X)= 0—to network

DOWN state.

Definition 1.2.1 (Network reliability)

Network reliability R0 is the probability that the structure function equals 1:

R0 = P(ϕ(X)= 1). (1.2.2)

Since ϕ(·) is binary, the last formula can be rewritten as

R0 = E [ϕ(X)] = �(p1, p2, . . . , pn). (1.2.3)

Formula (1.2.3) is very useful since the operation of taking expectation E[·] consid-

erably simplifies reliability calculations.

In the future we will need an important relationship called pivotal decomposition,

see [1, 8]. Denote by �(p1, p2, . . . , 1 j , . . . , pn) the probability of our network when

its jth component is replaced by an absolutely reliable (permanently up), p j : = 1.

Similarly, �(p1, p2, . . . , 0 j , . . . , pn) will be the network reliability when its jth

component is permanently down, p j : = 0.

Theorem 1.2.1 (Pivotal decomposition)

R0 = p j · �(p1, p2, . . . , 1 j , . . . , pn) + (1 − p j ) · �(p1, p2, . . . , 0 j , . . . , pn).

(1.2.4)

The proof is elementary and based on the Law of Total Probability, see e.g. [8],

Chap. 1.

Example 1.2.1 (Reliability of series, parallel and bridge networks)

The structure function for the network shown on Fig. 1.2a is ϕ(X)= X1 X2 X3 X4.

By (1.2.3),
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R0 =
4
∏

i = 1

pi .

For the network on Fig. 1.2b,

ϕ(X)= 1 − (1 − X1 X2 X3)(1 − X4 X5 X6 X7).

Applying the E[·] operator and using the fact that the the expressions in the paren-

theses are independent, we obtain that

R0 = 1 − (1 − p1 p2 p3)(1 − p4 p5 p6 p7).

Unfortunately, not always we have series, parallel or series–parallel networks.

The simplest example is the bridge network on Fig. 1.3a. There are four minimal

path sets connecting s and t: (1, 4),(2, 5),(1, 3, 5) and (2, 3, 4). Using (1.1.3), we can

represent system structure function as

ϕ(X)= 1 − (1 − X1 X4)(1 − X2 X5)(1 − X1 X3 X5)(1 − X2 X3 X4).

Here the expressions in the brackets have common terms and therefore are not inde-

pendent. Before we apply the E[·] operator, we must first open the brackets. Fortu-

nately, algebraic operations are considerably simplified due to the fact that for binary

variables X2
i = X i . We present the final result for pi ≡ p:

R0(p)= 2p2 + 2p3 − 5p4 + 2p5.

This formula is called reliability polynomial. It should be noted that even for

relatively small networks having 10–15 components, which are not of series–parallel

type, the enumeration of all minimal path sets becomes a very difficult problem.

The situation considered in this section allows two physical interpretations. The

first one is that the state of each component is determined by a random “lottery”:

component i is declared as being up (down) as a result of random lottery which pro-

duces the results with probability pi and 1 − pi = qi , respectively. Time coordinate

is not present here, and one can imagine that all lotteries take place simultaneously

or in some arbitrary sequence of time instants.

The second interpretation is related to a random process of operation—repair

for network components. Assume that component i has random intervals ξ
(i)
k , k = 1,

2, 3, . . . , of operation (up-periods) alternating with random intervals of repair

η
(i)
k , k = 1, 2, 3, . . . , (down-periods). Suppose that ξ

(i)
k , η

(i)
k , k = 1, 2, . . . , are inde-

pendent and have mean values μ(i) and ν(i), respectively. The following quantity

A(i)
v = μ(i)

μ(i) + ν(i)
(1.2.5)
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is called stationary availability of component i. The physical meaning of A
(i)
v is the

following. Let P(i)(t) be the probability that component i is up at the time instant t.

Then

lim
t→∞

P(i)(t)= A(i)
v . (1.2.6)

Simply speaking, the stationary availability is the probability that component is

up at some remote time moment, formally at t → ∞. Another interpretation, see e.g.

[1, 8] is the following. Denote by V (i)(T ) the total amount of time on the interval

[0, T ] during which component i was up. It can be proved that

A(i)
v = lim

T →∞
E[V (i)(T )]/T . (1.2.7)

Now let us consider the expression ϕ
(

A
(1)
v , A

(2)
v , . . . , A

(n)
v

)

= Av. It is called

system stationary availability and its physical meaning is the probability that the

network is UP at some remote instant of time. Formal details of the proof of this

statement can be found, e.g. in [1], Chap. 7.

1.2.2 Network Components with Independent Lifetimes

In this section, it will be assumed that network component i (node or link) has

random lifetime τi with cumulative distribution function (CDF) Fi (t)= P(τi ≤ t).

{τi }, i = 1, 2, . . . , n, are independent positive continuous random variables, and at

time t = 0 all components start their operation being in up state. After the component

fails, it is not renewed and remains in state down forever.

It will be convenient to characterize the state of component i at time t by a binary

random variable X i (t). X i (t)= 1 if and only if τi > t. If τi ≤ t, X i (t)= 0.

In other words, X i (t) is equal 1 as long as the component is up, and becomes 0 when

the component goes down. Let X(t)= (X1(t), X2(t), . . . , Xn(t)) be the component

vector state at time t.

Definition 1.2.2 (Network lifetime)

If the network has two states, UP and DOWN, its lifetime τN is the time until it enters

the DOWN state:

τN = inf[t : ϕ(X(t))= 0]. (1.2.8)

Let us define network reliability R0(t) as the probability that τN exceeds t:

R0(t)= P(τN > t).

R0 is often called network survival function. In the previous section we have

defined the “static” network reliability as R0 = E[ϕ(X1, X2, . . . , Xn)] =�(p1,

p2, . . . , pn).



1.2 Network Reliability 9

Theorem 1.2.1 (Network survival function)

Let Ri (t)= P(τi > t)= 1 − Fi (t). Then

R0(t)=�(R1(t), R2(t), . . . , Rn(t)). (1.2.9)

Proof By the definition of Ri (t), R0(t) is the probability that the network is UP at

the time instant t. Since the network is a monotone system, it was in state UP during

the whole interval [0, t], or R0(t)= P(τN > t). ⊓⊔
This theorem says that if we have the expression of network reliability in the form

of a function of component up probabilities pi , just replace each pi by Ri (t) and

we will have the network survival function.

The following example shows how to obtain the survival function for a series–

parallel networks.

Example 1.2.2 (Minimum–maximum calculus)

Suppose we have a series-type s–t network with n links. Link i has lifetime τi .

The network lifetime is, obviously, determined by the minimum of τ1, . . . , τn . The

network survives time t if and only if all links do so. Therefore,

Rser(t)=
n
∏

i = 1

(1 − Fi (t))=
n
∏

i = 1

Ri (t).

Suppose now that terminals s,t are connected by n links in parallel. Obviously,

this network lifetime τN = max[τ1, τ2, . . . , τn]. This network becomes DOWN if and

only if all links are down. Therefore,

Rpar(t)= 1 −
n
∏

i = 1

(1 − Ri (t)).

Now it is easy to handle a network which is a series or parallel combination of

another series or parallel subnetworks. For example, consider network on Fig. 1.2b.

Denote by τa the lifetime of the upper path of three links, and by τb—the lifetime of

the lower path. Then τN = max[τa, τb] and R0(t)= 1− Fa(t)Fb(t). Here, obviously,

τa = min[τ1, τ2, τ3] and τb = min[τ4, . . . , τ7]. Combining all together, we obtain that

R0(t)= 1 −
(

1 −
3
∏

i = 1

(1 − Fi (t))

)(

1 −
7
∏

i = 4

(1 − Fi (t))

)

.

In conclusion, let us present a very useful formula for computing the mean network

lifetime. It can be proved that

E[τN] =
∫ ∞

0

R0(t) dt. (1.2.10)
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1.2.3 Concluding Remarks: Network Resilience

The theory which we presented in previous two sections may create an impression

that we are able to solve easily all network reliability problems. This might be true if

we could have an explicit analytic expression for the network structure function ϕ(·).
A first warning that the situation is not so simple we got when we considered the

bridge network. Fortunately, we could easily find out all minimal paths in this small

network. Doing the same for larger network with, say 15 links, would be already a

very difficult problem. In practice, the previously developed techniques are efficient

only for a very narrow family of series–parallel s–t network-type systems.

Let us not forget another favorable fact which considerably simplified all cal-

culations: in all examples in two previous sections we had a binary (1/0) structure

function. In this case, we put into work the powerful operation of taking mathemat-

ical expectation which immediately provided the probability that the network is in

UP state, see e.g. (1.2.3).

Real-life situations, even after formalization and simplification, are much more

complex than the binary 0/1 case with known structure function. Consider, for exam-

ple, the following network model. All network nodes are terminals, links have i.i.d.

lifetimes with known CDF G(t). The network state is determined as a function of

the number of isolated clusters in it. For example, the state is defined as J = 3 if all

terminals are connected (one cluster), J = 2 if there are exactly two clusters, J = 1 if

the network disintegrates into three clusters, and finally J = 0 (DOWN) if the network

falls apart into four or more clusters. We are interested in finding the probabilities

PN(J ; t) that at any given time instant t the network is in state J. Obviously, all

our techniques developed so far are not sufficient to tackle this problem and more

powerful tools are needed.

The classical network theory is mostly oriented on computer and communication

networks. It approaches network reliability problems from somewhat different angle.

If the “standard” reliability theory is interested in finding such principal quantities

as probability of connectivity and/or network lifetime distribution function, network

theory develops and studies probabilistic network robustness statistics in general and

probabilistic resilience, in particular. Wikipedia gives the following definition:

“Resilience is the ability to provide and maintain an acceptable level of service in

the face of faults and challenges to normal functioning operation.”

Resilience is considered as a superset to survivability which is defined as “capa-

bility to fulfill network mission in the presence of attacking, failures and accidents

of network components”.

Both these definitions are too general to apply them in practice. We would like to

present here a more formal version of network probabilistic resilience by citing the

definitions from [3], Sect. 15.4.2, pp. 434–435.

In the case of random failures, the disconnection probability of a network N is

defined as

P(N; i)= P[N is disconnected exactly after i th failure].
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Another important notion is presented in the following.

Definition 1.2.3 (Probabilistic resilience [3], p. 435)

Let N be a network with n components . The probabilistic resilience respr(N;β) is

the largest number of component failures such that N is still UP with probability

1 − β, that is

respr(N, β)= max

{

I :
I
∑

i = 1

P(N, i) ≤ β

}

.

In ref. [3], network components are the nodes, and the authors assume that the node

failures appear in random order, that is all n! node orderings are equally probable.

Obviously similar definitions remain valid in the case when the components subject

to failure are the network links.

1.3 D-Spectra

1.3.1 Introduction

In this section, we introduce a topological invariant of the network which we call

multidimensional destruction spectrum (D-spectrum). The D-spectrum will be our

main tool for studying network with more than two states.

Let us assume that the network can be in several states which we formally mark

by integer J. J = K corresponds to the “best” state with highest performance level

of the network. J = K − 1, K − 2, . . . , denote network states in the process of its

gradual deterioration (disintegration). State J = 0 is assigned to network total failure

(collapse).

For example, consider a network in which all nodes are terminals. The components

of the network subject to failure are the links. Assume that links fail one after another,

in random order. Network state is defined in accordance with the number of isolated

clusters in it. Initially, there is a single cluster, and this is the best state of the network.

Suppose that the maximal permissible number of clusters which allows the network

to operate is 3. When network falls apart into 4 or more clusters it is considered as its

total failure (collapse). So, we define network state J = 3 when there is exactly one

cluster, J = 2—for two clusters, J = 1—for three clusters and finally J = 0 (DOWN)

for four or more clusters.

When network components which fail are the links, a single link failure either

does not change the number of clusters in the network or causes its increase by one.

Similar is the situation with the network whose state is defined as the maximal s–t

flow when links have capacity equal one.

The situation is different when the network components subject to failure are

nodes. Consider, for example, the network shown on Fig. 1.3b. It has five nodes
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subject to failure. Let us remind that node failure means elimination of all links

incident to this node while the node remains intact. Let the state of the network be

defined as [5—the number of isolated components]. If all 5 nodes are up, network

state is J = 4 because all nodes constitute a single component. Suppose the nodes

fail in the following order: {1, 2, s}. After the first failure we have two isolated

components and therefore J = 3. (An isolated node is also considered a component).

After node 2 fails, network state becomes J = 2. Finally, after node s fails, all nodes

become isolated, and the network state drops to J = 0 (DOWN). So, in this example,

a single component failure causes network state change by two units.

Formally, it is convenient to distinguish between two types of networks:

single-step and multi-step .

Definition 1.3.1 (Single-step network)

If a single component failure either leaves the network state unchanged or causes its

decrease by one, the network is called single-step. Otherwise, we call it multi-step.

1.3.2 D-Spectrum of a Single-Step Network

Denote by e1, e2, . . . , en the network components which are subject to failure. Sup-

pose that the network can be in K + 1 states numbered J = K , J = K − 1, . . . ,

J = 1, J = 0. Consider a random permutation π of network component numbers:

π = (ei1 , ei2 , ei3 , . . . , ein )

Suppose that all these components are up and we move along the permutation,

from left to right, and turn each component from up to down. Suppose, the network

state is controlled after each step. In a single-step network, we will observe exactly K

occasions when the network state has changed by one, from K to K −1, from K −1

to K − 2, etc, until the entrance from state J = 1 into the state J = 0 (DOWN).

Definition 1.3.2

(The anchors) The ordinal number in the permutation π of the component whose

turning down causes network state to change from J = K − I to J = K − I − 1,

I = 0, 1, . . . , K − 1, is called the (I + 1)th anchor and is denoted rI+1. Each per-

mutation has therefore K anchors.

Example 1.3.1 (Link failures in four terminal network, Fig. 1.4)

The figure shows the gradual disintegration of the four-terminal network when the

links fail in the following random order π = (1, 3, 4, 2). The network has four states:

J = 3, when there is one cluster, J = 2 for two clusters, J = 1 for three clusters and

J = 0 (DOWN) for four clusters. Correspondingly, the transition 3 → 2 occurs when

link 3 fails, 2 → 1—when link 4 fails and 1 → 0 when link 2 fails. Therefore, the

first anchor equals 2, the second—3, and the third anchor is 4. Note that anchor value

is not the link number but the ordinal number of the position of the corresponding

link in the random permutation.
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J=3 J=3 J=2 J=1 J=0

One One Two Three Four

cluster cluster clusters clusters clusters

Fig. 1.4 Disintegration of four terminal network. Links fail in the following order: π = (1, 3, 4, 2)

Assume that all permutations are equally probable. Each permutation of n com-

ponents has probability 1/n!
Definition 1.3.3 (Multidimensional D-spectrum) The K-dimensional discrete den-

sity

f (α1, α2, . . . , αK )= P (ri (π)= αi , i = 1, 2, . . . , K )

= number of permutations with ri (π)= αi , i = 1, 2, . . . , K

n!
(1.3.1)

for 1 ≤ α1 < α2 < · · · < αK ≤ n is called network multidimensional D-spectrum.

A few comments. Letter “D” for the spectrum signifies the process of network

destruction since we eliminated (turned from up to down) its components moving

along the permutation from left to right. Later we will give examples of a dual

procedure when we move from right to left along π and turn components from down

to up. It will produce a C-spectrum, “C” stands for construction.

Obviously, for single-step networks,

∑

1≤α1<α2<···<αK ≤n

f (α1, α2, . . . , αK )= 1.

It is important to stress that the D-spectrum is a combinatorial parameter of the

network. It depends only on the network structure and the definition of its states.

It does not depend on probabilistic characterization of the real random mechanism

which governs network component failures. In particular, if the network components

have i.i.d. lifetimes with continuous CDF G(t), the D-spectrum remains the same for

any G(t).

Let us consider several examples. First, return to the network on Fig. 1.4. In the

permutation π = (1, 3, 4, 2), r1 = 2, r2 = 3, r3 = 4. Due to the symmetry of the net-

work, the same positions of the anchors will be in every one of 4! = 24 permutations.

Therefore for this example, for each π, always α1 = 2, α2 = 3, α3 = 4 and

f (r1 = 2, r2 = 3, r3 = 4)= 1.

More interesting example is presented on Fig. 1.5.
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1
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One One Two Three
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2 3 3

Three

Fig. 1.5 Network with four links subject to failure and three terminals (bold). Edges fail in the

order π = (4, 2, 3, 1)

Example 1.3.2 (Network with four links and three terminals)

Here the network has three states: J = 2 for one cluster, J = 1 for two clusters and

J = 0 (DOWN) for three clusters. Links are subject to failure. Correspondingly, there

are two anchors, r1, r2. The first corresponds to the transition 2 → 1, the second—

to the transition 1 → 0. For the permutation π = (4, 2, 3, 1), r1(π)= 2, r2(π)= 3.

Analyzing all 4! = 24 permutations we can find out that in 12 of them we have

r1(π)= 2, r2(π)= 3, in 4 of them r1(π)= 3, r2(π)= 4, and in remaining 8—

r1(π)= 2, r2(π)= 4. Therefore,

f (r1 = 2, r2 = 3)= 12/24, f (r1 = 3, r2 = 4)= 4/24,

f (r1 = 2, r2 = 4)= 8/24.

Our main interest will be the probabilistic description of each particular anchor.

More formally, we will be interested in the marginal distribution of the position of

each of the K anchors.

Definition 1.3.4 (The sth marginal D-spectrum)

The distribution

f (s) =
(

f
(s)
1 , f

(s)
2 , . . . , f (s)

n

)

of the position of the sth anchor is called the sth marginal D-spectrum. Here

f
(s)
i = P (the sth anchor position is i) . (1.3.2)

Obviously,

f
(s)
i = P(rs(π)= i)

=
∑

{1≤α1<···<αs = i<···<αK ≤n}
f (α1, α2, . . . , αs = i, . . . , αK ). (1.3.3)

Example 1.3.2-continued

It is easy to find out that

f (1) = (0, 20/24, 4/24, 0), f (2) = (0, 0, 12/24, 12/24).
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It is more convenient to operate with so-called cumulative (marginal) spectrum.

Definition 1.3.5 (The sth cumulative D-spectrum)

The cumulative distribution function F (s)(x) of the position of the sth anchor in

random permutation π is called the sth cumulative D-spectrum:

F (s)(x)=
x
∑

i = 1

f
(s)
i , x = 1, 2, . . . , n. (1.3.4)

Let us clarify the probabilistic meaning of F (s)(x). Divide all network states

{J } into two sets, U and D. To set U belong all states J : J > K − s, and to

the complementary set D all the remaining states J : J ≤ K − s. Denote by Y(s)

the random number of components needed to be turned down in the course of the

destruction process to cause the transition from U to D.

Obviously,

f
(s)
i = P

(

Y(s) = i
)

, i = 1, . . . , n.

Then

F (s)(x)= P
(

Y(s) ≤ x
)

.

In words: F (s)(x) is the CDF of the number of components to be destroyed to cause

the transition from U to D.

Example 1.3.2-continued

It is easy to find out that

F (1)(1)= 0, F (1)(2)= 5/6, F (1)(3)= 1 = F (1)(4).

Similarly,

F (2)(1)= 0, F (2)(2)= 0, F (2)(3)= 1/2, F (2)(4)= 1.

Remark 1 Suppose that the network has four mutually exclusive states:

UP, DOWN1, DOWN2, DOWN3.

On each particular permutation π the first anchor signifies the transition from

UP → DOWN1, the second anchor—the transition DOWN1 → DOWN2 and the

third anchor—the transition DOWN2 → DOWN3. Suppose x components have failed

in random order. Then F (1)(x) is the probability that the network is in DOWN1 or

DOWN2 or DOWN3. F (2)(x) is the probability that the network is in state DOWN2

or DOWN3. And F (3)(x) is the probability that the network is in state DOWN3. This

reasoning is very similar to the claim that if the rth event in the renewal process took

place in the interval [0, t0], then there were r or more events on the interval [0, t0].
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Now let us describe the principal combinatorial property of the cumulative mar-

ginal D-spectra. For this purpose, let us consider a binary network, i.e. a network with

two states J = 1 (UP) and J = 0 (DOWN). If a network has more than two states, we

divide them into two groups J ≥ L and J < L . For example, if the network has four

states J = 3, 2, 1, 0 we take L = 2 and declare states J = 3, 2 as the UP state and

the remaining states J = 1, 0 as DOWN state. Here the second marginal D-spectrum

determines the probability f
(2)
k that the transition from UP to DOWN takes place

after turning down the kth component in the permutation. To simplify the notation

we will omit the upper index s at the relevant marginal D-spectra.

Assume now that the network is in the DOWN state. Consider the set SDOWN of

all vectors v = (x1, x2, . . . , xn) with binary 0/1 components such that v ∈ SDOWN ⇔
ϕ(v)= 0. v is called failure vector (also a cut vector, see Definition 1.1.2). The set

SDOWN can be divided into several subsets according to the number of zeroes in the

failure vectors. Denote by C(x) the number of failure vectors with exactly x zeroes,

x = 1, 2, . . . , n.

The following theorem establishes an important combinatorial property of the

cumulative D-spectrum .

Theorem 1.3.1

C(x)= F(x) · n!
x !(n − x)! , x = 1, 2, . . . , n. (1.3.5)

Before proving (1.3.5), let us illustrate Theorem 1.3.1 by an example.

Example 1.3.3 (Failure sets of bridge network, Fig. 1.3a)

The bridge failure is defined as disconnection of s and t. The bridge never fails when

only one link is down. Therefore, f1 = 0. Analyzing 5! = 120 permutations of 5 links,

it is easy to find out that the bridge fails when exactly two links fail in 24 of them, and

thus f2 = 1/5. After four links are down, the bridge is always down. Thus, f5 = 0.

There are exactly 24 permutations with the anchor on the fourth position. Thus,

f4 = 1/5. Therefore, f3 = 3/5, and

F(1)= 0, F(2)= 1/5, F(3)= 4/5, F(4)= 1, F(5)= 1.

By the Theorem 1.3.1, C(1)= 0, C(2)= 2, C(3)= 8, C(4)= 5, C(5)= 1. Indeed,

there are no failure vectors with only one component down, there are exactly two

failure vectors with two components down, namely (0,0,1,1,1) and (1,1,1,0,0), and

8 failure vectors with exactly three zeroes, etc.

Proof ([10], p. 114)

Consider a random permutation π = (i1, . . . , in) Declare the first x elements of it

as being down and the rest as being up. If this permutation determines the network

DOWN state, call it (x; D)-permutation. Denote by N(x) the total number of (x,

D)-permutations. Obviously, the probability to have an (x, D)-permutation equals

N (x)/n!. But on the other hand, this probability equals F(x)= f1 + · · · + fx by

our definition of the destruction process. Therefore, F(x)= N (x)/n!. When we
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define a DOWN state with exactly x components being down, their location in π is

not relevant. All permutations obtained by permuting x down components between

themselves and the remaining (n − x) between themselves correspond, in fact, to the

same failure vector with x components being down. Therefore, C(x)= N (x)/(x !(n−
x)!)= F(x) · n!/(x !(n − x)!), which completes the proof. ⊓⊔

Suppose we chose randomly a set of x components in the network and declare

them down. All sets of x components chosen from n components are equally probable.

There are, as we have denoted, C(x) sets with x zeroes that are failure sets. Then it

follows from the theorem above that the probability that such set will cause network

failure is C(x) divided by the total number of ways to select x components out of

n, i.e. it equals F(x). This property of the cumulative D-spectrum was used in [14]

to estimate the damage associated with network destruction which is subject to an

attack on its links.

Remark 2 Let us now recall the Definition 1.2.3 of probabilistic resilience.

Obviously, 1 − F(x) is the probability that the network is UP after turning x of

its components (nodes or vertices) to down. Let xmax be the largest x such that

1 − F(x) > 1 − β. Then this xmax is the probabilistic β-resilience of the network

according to the Definition 1.2.3.

Remark 3 The networks with many states and their D-spectra have been introduced

in [14] and [11], see also [12]. The connection between the D-spectra and system

failure states (1.3.5) is a known fact. For example, F. Samaniego [19] mentions the

connection between S(x)= 1 − F(x) and the number of systems path sets with

exactly x components in up state, which is, in fact, a dual equivalent of (1.3.5).

Remark 4 In applications we operate with the D-spectra in the form of the marginal

discrete density { fi } or in the form of the marginal cumulative D-spectrum {F(x)}.
For sake of brevity, we often omit the words “marginal” and/or “cumulative”, and

rely on the notation f· and F(·).

1.3.3 Formula for Network DOWN Probability

Suppose that the network has two states, UP and DOWN and we know its cumulative

marginal D-spectrum (1.3.4) F(x), x = 1, 2, . . . , n. Suppose that the network has

independent binary components, and the probability that the ith component is up

equals p, the same for all i. Denote by QN(p) the probability that the network is

DOWN and let q = 1 − p. The connection between F(x) and failure set with C(x)

established by Theorem 1.3.1 leads us to the formula for QN(p).

Corollary 1.3.1 (Formula for QN(p). )

QN(p)=
n
∑

x = 1

C(x)qx p(n−x) =
n
∑

x = 1

F(x)qx p(n−x) n!
x !(n − x)! . (1.3.6)



18 1 Theory

Proof Each failure set with x components down and (n − x) components up has

probability qx p(n−x). All failure sets with x component down have probability

C(x)qx p(n−x). If the network is DOWN, it must be in one of its down states. This

explains the sum in (1.3.6). ⊓⊔
The Corollary allows another interpretation in terms of network lifetime. Suppose

that all network components have i.i.d. random lifetimes τ1, τ2, . . . , τn, P(τi ≤
t)= G(t) for all i = 1, . . . , n. Assume that G(t) is a continuous function. Suppose all

components start functioning at time t = 0. Consider a time instant t0. Let P(τi ≤
t0)= q. q is the probability that component i is down at the instant t0. (Formally, we

should write at the instant t0 + 0). Therefore, the expression

n
∑

x = 1

C(x)(G(t0))
x (1 − G(t0))

(n−x) = P(network is DOWNat t0).

But the last expression gives the probability that network lifetime τN ≤ t0. Denot-

ing network lifetime CDF by GN(t0), we arrive at the expression

GN(t0)=
n
∑

x = 1

C(x)(G(t0))
x (1 − G(t0))

(n−x). (1.3.7)

The expression for the mean network lifetime is the following:

E[τN] =
∫ ∞

0

(1 − GN(t)) dt. (1.3.8)

What can be done if not all components are identical? Formally, (1.3.6) is not

valid if not all pi ≡ p. Nevertheless, this formula can be useful if it is known that all

pi lie in a relatively narrow interval [pmin, pmax]. It is a well -known fact established

in reliability theory, see e.g. [1] , that system reliability is a monotone increasing

function of component reliability. Therefore, for pi ∈ [pmin, pmax] = �,

QN(p1, . . . , pn) ∈ [QN(pmax), QN(pmin)] . (1.3.9)

This formula might be useful if our information about component reliability is

not accurate but allows to establish a relatively narrow interval � for pi values.

Remark 1

The formula (1.3.7) gives the CDF of network lifetime for the case of i.i.d. component

lifetimes τi ∼ G(t). This formula is equivalent to the well-known Samaniego’s

representation [18, 19] of coherent system lifetime via the so-called system signature

and the CDF’s of order statistics of the random sample τ1, τ2, . . . , τn . Numerically

the signature coincides with the D-spectrum of a binary network.

In Samaniego’s definition of signature, all components of the system have i.i.d.

continuous lifetime distributions. Equation 1.3.9 allows to obtain simple bounds on

system lifetime distribution for the case when the i.i.d. condition is replaced by
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weaker condition of independent continuous component lifetimes which may not be

necessarily identical.

Suppose that component i has a continuous lifetime τi ∼ Gi (t). Define the upper

and the lower CDF’s GU (t) and GL(t), respectively, according to the formulas:

GU (t)= max [G1(t), G2(t), . . . , Gn(t)] , t ∈ (0,∞),

and

GL(t)= min [G1(t), G2(t), . . . , Gn(t)] , t ∈ (0,∞).

Then obviously, for each t⋆, component failure probability q(t⋆) ∈
[

GL(t⋆),GU (t⋆)
]

.

Using (1.3.7) we immediately obtain bounds on network lifetime CDF in the form

GN(t⋆) ∈ [G(L)
N (t⋆), G

(U )
N (t⋆)],

where

G
(L)
N (t⋆)=

n
∑

x = 1

C(x)(GL(t⋆))x
(

1 − GL(t (⋆))
)(n−x)

and

G
(U )
N (t⋆)=

n
∑

x = 1

C(x)(GU (t⋆))x
(

1 − GU (t (⋆))
)(n−x)

.

More detailed discussion on F.Samaniego’s approach will be continued in

Sect. 1.3.5.

Let us conclude this section by a formula which gives an approximation to QN(p)

for the case of a highly reliable network. Formally, let us assume that q = (1 −
p)= δ → 0. Then the main term in the formula (1.3.6) will be the first term with

minimal nonzero C(x)= C(xmin). Its contribution will be C(xmin)δ
xmin and

QN(p = 1 − δ)= C(xmin)δ
xmin(1 + o(1)) (1.3.10)

as δ → 0.

Note that xmin is the size of the minimal-size min cut set of the network. For

example, in the bridge-type s-t network there are two cut sets of size two, i.e. xmin = 2,

and the main term will be 2δ2. Later we will demonstrate that (1.3.10) gives quite

accurate failure probability estimates for small δ. We call the main term in (1.3.10)

the Burtin–Pittel approximation, see [8] and reference there. This approximation was

first suggested in a slightly different form by Burtin and Pittel [4] in 1972.
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1.3.4 Networks with Many States

Now let us return to the situation where the network has K + 1 states, denoted as

J = K , J = K − 1, . . . , J = 1 and J = 0. As a typical example we can have in

mind a network with h = K + 1 terminals. State J = K means that all terminals are

connected to each other, J = K − 1 denotes the situation with two isolated clusters,

and so on. Finally, J = 0 means complete network collapse, i.e. its disintegration

into K + 1 isolated clusters. Let p be the probability that the network component is

up, the same for all components. Assume also that components fail independently.

Our goal is to derive the formulas for PN(J ; p), the probability that the network is

in state J = K , K −1, . . . , 0. This will be done by means of the marginal D-spectra,

using the dichotomy of network states into two groups: the states with J ≥ L and

the complementary group with J < L , where L = K , K − 1, . . . , 1.

Let us declare the state J = K as network UP state and all other states with

J < K as network DOWN state. Then, using (1.3.6) and our first marginal D-

spectrum F (1)(x) we can write that the probability that N is DOWN, (i.e. is in one of

the states J = K − 1, . . . , J = 0) is equal to

K−1
∑

J = 1

PN(J ; p)=
n
∑

x = 1

F (1)(x)qx p(n−x) n!
x !(n − x)! . (1.3.11)

Next let us declare the states J = K and J = K − 1 as our new UP state and

all the remaining states—as the new DOWN state. Then, using our second marginal

D-spectrum we obtain that

K−2
∑

J = 1

PN(J ; p)=
n
∑

x = 1

F (2)(x)qx p(n−x) n!
x !(n − x)! . (1.3.12)

Comparing (1.3.11) and (1.3.12) we obtain that

PN(K − 1; p)=
n
∑

x = 1

[

F (1)(x) − F (2)(x)
]

qx p(n−x) n!
x !(n − x)! . (1.3.13)

Moving further the “barrier” between the UP and DOWN states, we arrive at the

desired result formulated as

Theorem 1.3.2 Put F (K+1)(x)= 0. Then for J = K − 1, . . . , 0,

PN(J ; p)=
n
∑

x = 1

[

F (K−J )(x) − F (K−J+1)(x)
]

qx p(n−x) n!
x !(n − x)! . (1.3.14)
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1.3.5 D-Spectrum and Signature

The readers familiar with Reliability theory and with so-called signatures of coher-

ent systems, see e.g. [17–19], may realize that numerically the signature s = (s1,

s2, . . . , sn) coincides with the marginal D-spectrum of binary network f = ( f1,

f2, ., fn) introduced in Sect. 1.3.2.

F. Samaniego [19], p. 21 gives the following definition:

Assume that the lifetimes of coherent systems n components are independent and identically

distributed according to the (continuous) distribution G. The signature denoted by s is an

n-dimensional probability vector whose ith element si is equal to the probability that ith

component failure causes the system to fail. In brief, si = P(T = X i :n), where T is the

failure time of the system and X i :n is the ith order statistic of the n component failure times,

that is, the time of ith component failure.

The principal result of F. Samaniego [18, 19] is the representation of the system

lifetime distribution Gs(t) in the following form:

Gs(t)= P(T ≤ t)=
n
∑

i = 1

si P(X i :n ≤ t). (1.3.15)

If we substitute into this formula the well-known expression of the CDF of ith

order statistic, see [5], and rearrange the terms, we arrive at the expression (1.3.6)

for network failure probability.

Suppose that the network N has three states, J = 2, J = 1 and J = 0 (DOWN).

Let the network starts its life at time t = 0 in state J = 2. Denote by τN,1 the entrance

time into state J = 1, and by τN,2 the network lifetime, i.e. the time of entrance

into J = 0. In our notation, the two-dimensional D-spectral density f (i, j) is the

probability that the transitions J = 2 → J = 1 and J = 1 → J = 0 coincide with the

ith and jth order statistics, respectively, of the random sample X1, X2, . . . , Xn, 1 ≤
i < j ≤ n. Using the Law of Total Probability, we arrive at the expression:

P
(

τN,1 ≤ T1&τN,2 ≤ T2

)

=
∑

1≤i< j≤n

f (i, j)G(i, j)(T1, T2), (1.3.16)

where G(i, j)(T1, T2) is the joint CDF of (i, j)th order statistics, see [5], p. 11. This

formula is a two-dimensional analogue of Samaniego’s formula (1.3.15).

The recent work [17] calls fi in (1.3.2) the discrete signature. The work [6]

introduced the D-spectrum under the name Internal Distribution (ID) and presented

Monte Carlo simulated ID’s for several complete graphs and the dodecahedron net-

work. Later on, instead of ID we used the term D-spectrum, see [9, 10, 12].

Let us return to the properties of the cumulative D-spectrum, Sect. 1.3.2. We have

established that the cumulative D-spectrum is directly connected to the number of

failure sets of the given structure (network), see formula (1.3.5). Speaking formally,

the D-spectrum is a functional of the system structure function. If the structure func-

tion ϕ(x) → {0, 1} is known, we can obtain the D-spectrum. If so, we can say that
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the signature defined above by Samaniego [18, 19] is in fact a system structural char-

acteristic which can be obtained without any assumptions regarding the component

lifetime distribution, and in particular, without the i.i.d. assumption.

The i.i.d. assumptions were critical to establish the principal formula (1.3.15)

which gives us the the system lifetime CDF Gs(t) representation via the system

signature. This formula, after simple algebra, can be rewritten in the following more

compact form:

Gs(t)=
n
∑

x = 1

S(x) · (G(t))x (1 − G(t))n−x n!/(x !(n − x)!) (1.3.17)

where G(t) is the component lifetime CDF, and S(x)= s1 + s2 + · · · + sx is

the Samaniego’s cumulative signature (coinciding with the cumulative D-spectrum

F(x)= f1 + · · · + fx ).

Let us try to answer the following question:

Which properties of Gs(t) are preserved, partially or completely, after some of

the i.i.d. and G-continuity assumptions will be relaxed?

Let us reexamine (1.3.17) and put t = t0. Then we have the system DOWN prob-

ability Gs(t0) at the instant t0 in the following form:

Gs(t0)=
n
∑

x = 1

S(x)qx
0 (1 − q0)

(n−x)n!/(x !(n − x)!), (1.3.18)

where q0 = G(t0). We see, therefore, that Gs(t0) depends only on the value G(t) at

the point t = t0. The information about the values of G(t) for other t values is not

relevant. Note that independence of components is important because without it we

can not determine the probabilistic weight of a failure set with x components being

down and (n − x) being up as qx
0 (1 − q0)

(n−x).

Now assume that all we know about G(t0)= q0 is that it lies within an interval

δ = [qmin, qmax] . Then by the monotone property of the reliability function, see [1],

Chap. 1, we will obtain that

Gs(t0) ∈ �= [Gs(qmin), Gs(qmax)] . (1.3.19)

Now imagine that a single component j is different from others, and its CDF is

G j (t0)= q j , qmin < q j < q0. Then, by the same monotone property of reli-

ability function, the failure probability of the system will become smaller but

remains in the same interval �. Now it is obvious that component j lifetime CDF’s

G j (t), j = 1, . . . , n, can be different, and (1.3.19) holds true if all G j (t0) ∈ δ.

We arrive therefore at the conclusion that (1.3.19) holds if system components

are independent but not necessary identically distributed.

The reasoning above can be repeated by moving the point t0 along the t-axis.

Suppose that the component lifetime CDF’s G j (t), j = 1, 2, . . . , n, lie within a

“belt” created by their supremum and infimum. So, suppose, that there are such two

continuous CDF’s GL(t) and GU (t) that for all t ≥ 0
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GL(t) ≤ G j (t) ≤ GU (t), j = 1, 2, . . . , n.

Then, obviously, (1.3.19) can be modified as follows.

Gs(t) ∈ [GL(t), GU (t)] , (1.3.20)

where

GL(t)=
n
∑

i = 1

si P
(

Y L
(i :n) ≤ t

)

, (1.3.21)

and

GU (t)=
n
∑

i = 1

si P
(

Y U
(i :n) ≤ t

)

. (1.3.22)

Here Y L
(i :n)

and Y U
(i :n)

are the corresponding order statistics from the populations with

CDFs GL(t) and GU (t), respectively. Summing up, we have relaxed the assumption

of identical distribution of component lives but for the price that system lifetime CDF

will not be known exactly and will lie within bounds.

The assumption that all component lifetimes G j (t), j = 1, . . . , n, must be con-

tinuous can be relaxed too. We will not go into this rather technical issue.

Remark The number of isolated clusters in the network is not the only way to define

the number of states in the multistate case. Another approach of practical importance

to defining the state of the network is the follow-up of the size of the maximal isolated

component in the network determined as the number of nodes in this component.

Consider, for example, the bridge network, Fig. 1.3a. It has four nodes and five links.

Suppose the links fail in our destruction process in the following order: 1, 5, 2, 3, 4.

The size of the maximal connected component is xmax = 4 (after links 1 and 5 fail),

then it becomes 3, 2 and 1, respectively, after the failure of links 2, 3 and 4.

An example which uses this type of network state definition will be considered in

Sect. 2.1. We will define three states of 32-node network which will be subject to a

random “attack” on its nodes: xmax > 10, 3 < xmax ≤ 10, and xmax ≤ 3.

1.3.6 Renewal Process of Component Failures

There might be several approaches to modeling the process of network component

failures. The simplest one is to assume that the components fail according to inde-

pendent random “lotteries” in which component i is declared to be up or down with

probability pi ≡ p and 1 − pi ≡ q, respectively. Samaniego’s model [18] puts the

component failures into a frame of a process developing in time by assuming that

the rth failure time equals to Xr :n, the rth order statistic from the sample of i.i.d.

http://dx.doi.org/10.1007/978-3-642-22374-7_2
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component lifetimes X1, X2, . . . , Xn . The i.i.d. and G-continuity assumption guar-

antees that all orders of component failure appearance in time are equally probable.

A natural probabilistic model for the process of component failure appearance might

be the following: component failures appear according to a renewal process ξ(t)

defined as a sequence of i.i.d. positive random variables Z1, Z2, . . . , Zk, . . . , see

[1], Chap. 6. The events in ξ(t) appear at the instants ϑk =
∑k

m = 1 Zm, k = 1, 2, . . . .

Assume also that all orders of component failures appearance are equally probable.

Then a natural variation of formula (1.3.15) may be derived as follows.

Suppose the network has two states, UP and DOWN, and we know the corre-

sponding cumulative D-spectrum F(x). Denote by N(t) the number of renewals in the

interval [0, t]. Formulas for P(N (t)= k)= ρk are well known in Renewal Theory

and easily obtainable via the convolutions of the CDFs of r.v.’s Zi . On the other

hand, we know the probability F(x) that the network is DOWN if x of its components

are turned down. Let T be the network lifetime. Therefore, by the formula of Total

Probability,

P(T ≤ t)=
∞
∑

x = 1

ρx · F(x),

where we set F(x) ≡ 1 for x > n.

1.4 Series, Parallel and Recurrent Systems

1.4.1 Spectra of Parallel, Series and Recurrent Networks

Suppose we have two s–t networks N1 and N2. We know the cumulative D-spectra

of these networks, F1(x), x = 1, 2, . . . , n and F2(y), y = 1, 2, . . . , m. We create a

new network N which is a parallel connections of N1 and N2. This situation can take

place, for example in the design of communication networks. Our goal is to find out

the D-spectrum of N. It will be assumed that both networks consist of independent

and identical components, i.e. q1 = q2 = q.

The material below is based on the theory and ideas presented in detailed and

general form in the recent paper [21].

By the definition of parallel system, N is DOWN if and only if both N1 and N2

are DOWN.

P(N is DOWN)=
(

n
∑

x = 1

C1(x)qx pn−x

)

·

⎛

⎝

m
∑

y = 1

C2(y)q y pn−y

⎞

⎠ , (1.4.1)

where C1(x), C2(y) are the number of failure sets of size x and y in the first and the

second network, respectively. After simple algebra, this formula takes the form
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Fig. 1.6 Series connection

of two small networks (a)

and a recurrent system (b)

1

2

3

a b

P(N is DOWN)=
n+m
∑

z = 1

C(z)qz pn+m−z, (1.4.2)

where

C(z)=
z
∑

j = 1

C1( j)C2(z − j), z = 1, 2, . . . , n + m.

From here it follows that the D-spectrum of the parallel network N is

FN(z)= C(z) · z!(n + m − z)!/(n + m)!, z = 1, . . . , n + m. (1.4.3)

Very similar is the situation with two networks in series connection. We will

consider this situation on an example, see Fig. 1.6a.

Example 1.4.1 (Two networks in series)

Both networks have three components, see Fig. 1.6a. The first network has C1(1)= 1,

C1(2)= 3, and C1(3)= 1, and the second—only one failure set of size 3, i.e.

C2(3)= 1. Let Q1 and Q2 be the DOWN probabilities of the first and second net-

work, respectively. Then the DOWN probability for the series connection of these

networks is

QN = 1 − (1 − Q1)(1 − Q2)= 1 −
(

1 − qp2 − 3q2 p − q3
)

(1 − q3).

Now it remains to bring the expression for QN to the (qp)-polynomial form. This

will be done by replacing 1 by (q + p)6 and by replacing 1 by (q + p)3 in the terms

(1 − Q1) and (1 − Q2):

QN = (q + p)6 −
(

(q + p)3 − Q1

) (

(q + p)3 − Q2

)

.

Now apply the operator Expand[QN] of Mathematica [22] to the expression of

QN. The output will be the following:

QN = qp5 + 6q2 p4 + 14q3 p3 + 15q4 p2 + 6q5 p + q6.

We obtain, therefore, that the network has C(1)= 1, C(2)= 6, C(3)= 14, C(4)= 15,

C(5)= 6, C(6)= 1. From (1.4.3) it follows that the cumulative D-spectrum of the

series network is
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F(1)= 5/30, F(2)= 12/30, F(3)= 21/30, F(4)= 1 = F(5)= F(6).

Recurrent network is an arbitrary s–t network N whose links are identical arbitrary

s–t networks. More precisely, each link e = (a, b) of N is replaced by an s1 − t1
network, the same for all links, in such a way that node a : = s1 and b : = t1.

N is called the organizing network and its links are called modules, see [1], Chap. 1.

For example, the organizing network might be the network shown on Fig. 1.1 and

each of its eleven modules may be an s–t network, in particular case, a bridge. We

assume that all modules are identical and have independent and identical components.

Following Sect. 4 of [21], we will obtain the D-spectrum of a recurrent network

in the following way.

Assume that we know the D-spectra of the organizing network and of the module

network.

Let the formula for the DOWN probability of the organizing structure N be as

follows:

P(N is DOWN)=
n
∑

x = 1

C⋆(x)(q⋆)x (p⋆)n−x , (1.4.4)

where C⋆(x) is the number of failure sets of size x which is expressed via the D-

spectrum F⋆(x) of the organizing network as

C⋆(x)= F⋆(x) · n!/(x !(n − x)!). (1.4.5)

In (1.4.4), q⋆ is the down probability of the module, which has an expression:

q⋆ =
m
∑

y = 1

C(y)q y pm−y, (1.4.6)

where C(y) is the number of failure sets of size y of the module, q is the element down

probability, and m is the number of components in the module. C(y) is expressed via

the module cumulative D-spectrum F(y):

C(y)= F(y) · m!/ (y!(m − y)!) . (1.4.7)

It is convenient to have a formula for p⋆ = 1 − q⋆ in a “standard” form via the

number of path sets of the module. Omitting elementary calculations, see [19], p. 80,

we present it as

p⋆ =
m
∑

x = 1

K (x)px qm−x , (1.4.8)

where K(x) is the number of path-sets of the module with exactly x elements up and

the remaining (m − x)—down. K(x) is expressed via the cumulative D-spectrum of

the module in the following form:
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K (x)= [1 − F(m − x)]m!/(x !(m − x)!). (1.4.9)

Here x = 1, . . . , m, and F(0)= 0.

In order to obtain the spectrum of the whole network we must substitute the

expressions for q⋆ and p⋆ = 1 − q⋆ (1.4.6) and (1.4.8) into (1.4.9) and bring the

whole expression to the homogeneous (pq)-polynomial form. This polynomial has

degree n ·m and the coefficient at qz(1− p)(nm−z) is the number H(z) of failure sets of

the resulting network with exactly z components down, z = 1, . . . , nm, and (nm−z)

components up. H(z) and the network cumulative D-spectrum are connected via the

familiar expression

H(z)= FN(z) · (n · m)!/ (z! · (n · m − z)!) . (1.4.10)

Example 1.4.2 (Series–parallel system of three bridge modules, Fig. 1.6b)

Suppose we have an organizing network S consisting of two modules 1,2 in parallel,

connected in series to module 3, see Fig. 1.6b. Each module is a bridge network. It

is easy to see that S has one failure set of size 1, three failure sets of size 2 and one

failure set of size 3. From here it follows that its DOWN probability equals

QS = q⋆(p⋆)2 + 3(q⋆)2 p⋆ + (q⋆)3.

The cumulative D-spectrum of the bridge network is

F(1)= 0, F(2)= 1/5, F(3)= 4/5, F(4)= 1, F(5)= 1.

From here bridge module down probability q⋆ is

q⋆ = 2q2 p3 + 8q3 p2 + 5q4 p + q5.

Similarly, it is easy to establish that

p⋆ = 1 − q⋆ = 2p2q3 + 8p3q2 + 5p4q + p5.

Now substitute the expressions of p⋆ and q⋆ into QS and bring it to the (pq)-

polynomial form. We omit some algebra and present below the coefficients of

qx , x = 1, 2, . . . , 15:

0, 2, 28, 179, 703, 1891, 3597, 4803, 4445, 2899, 1357, 455, 105, 15, 1.

Using the formula (1.4.10), we obtain the cumulative D-spectrum, see the Table 1.1.

Spizzichino et al. [21] present an example of the D-spectrum for a bridge structure

consisting of similar bridge-type modules. Spizzichino et al. [21] discusses in detail

also the interaction of two combinatorial approaches to constructing D-spectra for

series, parallel and recurrent networks which are based on dual interplay in consid-

ering network UP and DOWN probabilities via the system failure (cut) sets and path

sets.
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Table 1.1 D-spectrum of the

system of three bridge

modules

x F(x) x F(x) x F(x)

1 0 6 0.377822 11 0.994139

2 0.0190476 7 0.558974 12 1

3 0.0615385 8 0.748387 13 1

4 0.131136 9 0.888112 14 1

5 0.234099 10 0.965368 15 1

1.4.2 Generalized Series and Parallel Multistate Systems

We can extend the notions of parallel and series connection of components tradition-

ally used in Reliability theory to the multi-state systems. Suppose that we have two

systems SA and SB . The first system can be in the following states JA = K A, K A −
1, . . . , 1, 0, and the second—in the states JB = K B, K B − 1, . . . , 1, 0. When con-

sidered separately, the system A has, by definition, the failure state DOWN A when

it is in the states with the number JA < L A. Similarly, the failure state for the

DOWN B-system is defined as the set of states with the numbers JB < L B .

Definition 1.4.1

The system S = (SA ∧ SB) is called G-parallel connection of systems SA and SB if

its DOWN state DOWN S is defined as

DOWN S = (JA < L A)
⋂

(JB < L B).

The system S = (SA ∨ SB) is called G-series connection of systems SA and SB if its

DOWN state DOWN S is defined as

DOWN S = (JA < L A)
⋃

(JB < L B).

“G” stands for generalized.

It is worth noting that the above definition is different from the definition tradi-

tionally used in the theory of multi-state systems, see e.g. [15, 16]. Note also, that

G-series and G-parallel systems can not be represented in traditional way, similar to

shown on Fig. 1.6a.

Our goal is to find the D-spectrum for the G-parallel and G-series system.

In fact, this problem can be easily solved along the lines of the solution for

parallel and/or series connection considered in Sect. 1.4.1. For this purpose, we

must determine the cumulative D-spectra for the subsystems A and B related

to their failure states DOWN A and DOWN B . Let us denote these spectra as

FA(x), x = 1, 2, . . . , n A and FB(y), y = 1, 2, . . . , nB , respectively. From now on

act exactly as in Sect. 1.4.1.

Example 1.4.3 (G-parallel connection of two networks, see Fig. 1.7)

In this example, A is a four terminal network shown on the left part of Fig. 1.7. and

B is a three terminal network shown on the right part of the figure. In both networks



1.4 Series, Parallel and Recurrent Systems 29

Fig. 1.7 Two networks in

G-parallel connection
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the components subject to failure are the links. DOWN A and DOWN B are defined as

the presence of two or more clusters in a network. Network A always disintegrates

into two clusters after the failure of two links. The same is true for network B. The

cumulative D-spectra are, therefore

FA(1)= 0, FA(2)= 1, FA(3)= FA(4)= 1; FB(1)= 0,

FB(2)= FB(3)= 1.

From here it follows that

P(DOWN A)= 6q2 p2 + 4q3 p + q4,

and

P(DOWN B)= 3q2 p + q3.

By the definition of G-parallel system S = SA ∧ SB,

P(DOWN S)= P(DOWN A) · P(DOWN B)= |after simple algebra|
= 18q4 p3 + 18q5 p2 + 7q6 p + q7.

Using (1.4.3), it is easy to obtain the cumulative D-spectrum of the G-parallel system

(n A + nB = 7):

F(1)= F(2)= F(3)= 0, F(4)= 18/35, F(5)= 36/42, F(6)= F(7)= 1.

1.5 Networks with Colored Links

Suppose, each link of the network N can be in r states, r > 2. To keep the exposition

simple we consider r = 3. We denote these states as 0, 1 and 2. State 0 means that

the link is erased (does not exist). For better visualization assume that state 1 means

that the link is colored blue and state 2—that it is colored green.

Link state is chosen randomly. Each link, independently of others, is in state 0

(erased) with probability p0, in state 1 (blue) with probability p1, and in state 2

(green) with probability p2 = 1 − p0 − p1.
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We say that there is, for example, a blue T-terminal set if the terminals are

connected to each other by blue links. Let us define the following network states

after random choice of each link state.

1. The terminals are not connected to each other. This network state is defined as

DOWN. The complement to this set is denoted as UP.

2. There is a green T-terminal set. Denote this network state as UPgreen.

3. There is a blue T-terminal set. Denote this network state as UPblue.

P(DOWN) is already known. Indeed, we can imagine a binary situation: either a

link is erased with probability q = p0 or not erased (colored in blue or green), with

p = 1 − p0. Then

P(DOWN)=
n
∑

x = 1

C(x)px
0 (1 − p0)

n−x , (1.5.1)

where C(x) is expressed via the cumulative D-spectrum in a usual way

C(x)= F(x) · n!/(x !(n − x)!).

To obtain P(UPgreen) imagine that all non green edges are erased. Then we are

in a binary situation and can apply (1.5.1) with an obvious change of UP to UPgreen

and p to p2, q = 1 − p2:

P(UPgreen)= 1 −
n
∑

x = 1

C(x)(1 − p2)
x pn−x

2 . (1.5.2)

Similarly, we can obtain the probability of P(UPblue):

P(UPblue)= 1 −
n
∑

x = 1

C(x)(1 − p1)
x pn−x

1 . (1.5.3)

Finally,

P(UPcolor)= 1 − P(DOWN).

Let us consider an example.

Example 1.5.1 (Complete 6-node graph with colored links, Fig. 1.8)

Below is the simulated edge D-spectrum for all-node connectivity:

f5 = 0.002050, f6 = 0.010155, f7 = 0.029820, f8 = 0.071937,

f9 = 0.155212, f10 = 0.298834, f11 = 0.431992.

Suppose that p0 = 0.2, p1 = 0.3, p2 = 0.5. The calculations give the following

results:
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Fig. 1.8 K6 graph

P(DOWN)= 0.00196122, P(UPgreen)= 0.814912,

P(UPblue)= 0.316939.

Note, that the sum of these probabilities exceeds 1 since UPgreen and UPblue

have a nonempty intersection.

1.6 Network Component Importance

1.6.1 Birnbaum Measure of Component Importance

In this section, we will introduce so-called Birnbaum Importance Measure (BIM)

for system components, see [1, 2]. In simple words, BIM of component j (denoted

BIM j ) is the gain of system reliability obtained by replacing down component j by

an absolutely reliable one. Formally, BIM j is defined as follows.

Definition 1.6.1 (BIM j ).

BIM j = �(p1, p2, . . . , 1 j , . . . , pk) − �(p1, p2, . . . , 0 j , . . . , pk).

Equivalently, BIM j can be represented via the function

G(p1, p2, . . . , pk)= 1 − �(p1, p2, . . . , pk)

as

BIM j = G(p1, p2, . . . , 0 j , . . . , pk) − G(p1, p2, . . . , 1 j , . . . , pk), (1.6.1)

where G(p1, p2, . . . , 0 j , . . . , pk) is the probability that our system is DOWN when

component j is permanently down, and G(p1, p2, . . . , 1 j , . . . , pk) is the probability

that our system is DOWN when component j is permanently up.

Among many measures of importance, Birnbaum’s measure is the most popular

and useful. It follows from the fact that

BIM j = ∂�(p1, p2, . . . , p j , . . . , pk)

∂p j

, (1.6.2)
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which, in turn, follows from the pivotal decomposition formula (1.2.4) by taking

derivative with respect to p j .

Suppose that component j is replaced by more reliable one having reliability

p⋆
j = p j + δp j . Then, the main part of system reliability increment will be

δR = BIM j · δp j .

The knowledge of component BIMs is the key element in finding the optimal

system reinforcement strategy.

The use of BIM in reliability practice was very limited since typically the system

reliability function�(·) is not available in explicit form. It turns out that in the case

of equal component reliability p j ≡ p, there is a surprising connection between the

BIMs and the network D-spectrum and its modification called BIM-spectrum which

allows estimating and ranking the component BIMs without knowing the analytic

form of system reliability function, see [10], Chap. 10.

1.6.2 BIM-Spectrum

In this section, we introduce a new combinatorial object called BIM-spectrum. It is

closely connected to the D-spectrum (Sect. 1.3). Suppose the network has k elements

subject to failure, and these elements are numbered as 1, 2, 3, . . . , k. Consider the

set of all k! permutations of these numbers. A particular permutation is denoted as

π = (i1, i2, . . . , ik). As it was described in Sect. 1.3, for each particular π we consider

the destruction process of turning down the elements of π by moving from left to

right.

Definition 1.6.2 (BIM-spectrum)

Let N (x; 0 j ) be the number of permutations satisfying the following two conditions:

(i) If the first x elements in the permutation are down, then the network is DOWN;

(ii) Element j is among the first x elements of the permutation.

The collection
{

z(x, j)= N (x; 0 j ) · (x !(k − x)!/k!)
}

for a fixed j and x = 1,

2, . . . , k is called the BIM j -spectrum, or the importance spectrum of

component j.

The collection of all {z(x; j), x = 1, 2, . . . , k} for j = 1, . . . , k is called system

BIM-spectrum and denoted BIM ⋄ S.

Denote by N(x) the number of permutations satisfying (i) only. Denote by

N (x; 1 j )= N (x) − N (x; 0 j ).

The main result of Sect. 1.6 is the following theorem proved in [10], p. 144.

Theorem 1.6.1 (Formula for BIM j )

Let pi ≡ p. Then
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BIM j =
k
∑

x = 1

N (x; 0 j )q
x−1(1 − q)k−x − N (x; 1 j )q

x (1 − q)k−x−1

x !(k − x)! . (1.6.3)

Proof Recall that

BIM j = G(p1, p2, . . . , 0 j , . . . , pk) − G(p1, p2, . . . , 1 j , . . . , pk).(∗)

The number of permutations such that the first x components in them, being down,

create a DOWN state, and down component e j is among these components, equals

N (x; 0 j ). Each fixed permutation counted in N (x; 0 j ) creates a DOWN state which

has probability qx−1(1 − q)(k−x). Taking into account that a particular system state

with x components down and k − x components up is repeated x !(k − x)! times in

different permutations, we conclude that the first term in (1.6.3) is equal to the first

term in (∗). Similarly, we argue that the second term in (1.6.3) equals the second

term in (∗), which concludes the proof. ⊓⊔
The main value of this theorem is that it shows that the component BIMs are

closely related to system combinatorial parameters. From the computational point of

view, it is important to note that computing the values N (x; 0 j ) can easily be carried

out by means of a minor modification of the Monte Carlo algorithm for estimating

system D-spectra.

Theorem 1.6.2

Suppose that we are given the BIM ⋄ S for our network. Let us fix two indices

α and β �= α.

If for all x, i = 1, 2, . . . , k, z(x, α) ≥ z(x, β), then BIMα ≥ BIMβ for all q

values.

We omit the proof of this theorem, see [10] Chap. 10.

Example 1.6.1 (BIM for the edges of H3.)

Consider the hypercube H3 network shown on Fig. 1.9. Elements subject to failure

are the edges. Nodes 1, 3, and 6 are terminals. Network failure is defined as the

loss of terminal connectivity. The UP state is therefore the situation when all three

terminals are connected to each other.

As it follows from Theorem 1.6.2, for ranking elements by their BIMs, it is

sufficient to compare elements BIM-spectra. Table 1.2 presents the estimated BIM-

spectra for three edges 1, 7, and 10, based on 10,000 Monte Carlo replications. It

is seen from the table that z(x; 1) ≥ z(x; 7) ≥ z(x; 10), for all x except x = 9, 10.

The violation of the domination of edge 1 over edge 7 for x = 9, 10 we explain

by random error in estimating the BIM-spectra which for M = 10,000 replications

has standard deviation 0.009.

Therefore, comparing these three edges we can conclude that edge 1 is the “most

important” and edge 7 is the “second important” among the three edges. Note that

comparing BIM spectra of all 12 edges of the given network, we arrive at the conclu-

sion that there are three groups of edges ranked by their importance. The first group

consists of equally important edges 1, 4, 5. In the second group there are edges 2, 3,
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Fig. 1.9 Hypercube H3
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Table 1.2 Simulated

BIM-spectra for nodes

1, 7, 10

x z(x; 1) z(x; 7) z(x; 10)

2 0.0 0.0 0.0

3 0.0052 0.0039 0.0

4 0.0345 0.0277 0.0133

5 0.1298 0.1210 0.0844

6 0.3396 0.3238 0.2689

7 0.5285 0.5086 0.4769

8 0.6541 0.6416 0.6310

9 0.7515 0.7539 0.7486

10 0.8346 0.8368 0.8363

11 0.9187 0.9180 0.9176

12 1 1 1

6, 7, 9, 11, and in the third - 8, 10, 12. This ranking has clear intuitive explanation.

Indeed, the edges from the first group have the common property: one node of each

edge is a terminal and the second is on the distance 1 from two other terminals. In

the second group, one node of each edge is some terminal and the second is on the

distance 1 from only one terminal node. Three remaining edges are in the third group.

1.6.3 BIMs for Network with Several States

Obviously, the notion of BIM is applicable to any network reliability criterion. In

the previous section, we considered an example when the network failure was the

loss of terminal connectivity. If we imagine that in Example 1.6.1 the edge failures

happen in distinct time instants, the first stage of violating terminal connectivity will

be a separation of one terminal of two others, and the second (and final) stage—the

isolation of all three terminals of each other.

We could therefore take more detailed approach and declare system failure as a

separation of a terminal from two others and calculate the component importance
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for this failure definition. We could declare the system failure as the isolation of

all three terminals and calculate another set of BIMs for network components. We

see therefore that for multistate systems we can define several sets of component

importance measures.

Let us describe in more detail the BIM calculation for the situation when the

network has K +1 states, K > 1 (or the network has h = K +1 terminals). Network

states are J = K , J = K − 1, . . . , J = 1, J = 0. J = K means that network is

in the UP state (a single cluster). J = K − 1 means that network is separated into

two isolated clusters, and so on. If J = 0, then network is in complete collapse, i.e.

all terminals are isolated from each other, and there are K + 1 clusters. Denote by

PN(J ; p) the probability that the network is in state J, J = K , K − 1, . . . , 0, and

p = (p1, p2, . . . , pk).

In the multistate situation we define K BIM-spectra, for each J = K , K −1, . . . , 1,

in the following way. Fix some J0, 1 ≤ J0 ≤ K . Define all states J ≥ J0 as the

UP state and all other states J < J0 as the DOWN state. Now for each J0 we have

a dichotomy of all network states into UP and DOWN, and the definition of BIM

and of the BIM-spectra given in the previous section may be applied to this binary

situation. Let us reformulate the BIM definition.

Definition 1.6.3

For each J0, 1 ≤ J0 ≤ K , element’s j BIM is defined as

BIM j = ∂ R(p1, . . . , pk)

∂p j

= R(p1, . . . , 1 j , . . . , pk)

− R(p1, . . . , 0 j , , . . . , pk)= G(p1, . . . , 0 j , , . . . , pk)

− G(p1, . . . , 1 j , . . . , pk), (1.6.4)

where

R(p)=
∑

J0≤J≤K

PN(J ; p),

and the meaning of R(p1, . . . , 1 j , . . . , pk) and R(p1, . . . , 0 j , , . . . , pk) is as

described in the BIM definition in the previous section.

Now for each J0, 1 ≤ J0 ≤ K , the BIM-spectrum definition is the same as in the

previous section, because we reduced the multistate case to the binary UP, DOWN

case. We remind that we consider the case of pi ≡ p.

Example 1.6.2

Let us return to the network shown on Fig. 1.9. Now we have three states corre-

sponding to J0 = 2, J0 = 1 and there are therefore two BIM-spectra. The first (for

J0 = 2) has been already presented in the Table 1.2. Table 1.3 presents the estimated

BIM-spectra for the same three edges 1, 7, and 10, for J0 = 1. It is seen from the table

that for each x, z(x; 1) ≥ z(x, 7) ≥ z(x, 10). We see therefore that these elements

are ranked exactly as in the previous UP–DOWN case. The data (not presented here)

say that BIM ordering is the same as in the previous example. Our conjecture (so far



36 1 Theory

Table 1.3 Second simulated

BIM-spectra for nodes

1, 7, 10

x z(x; 1) z(x; 7) z(x; 10)

6 0.0123 0.0096 0.0058

7 0.1268 0.0968 0.0871

8 0.3009 0.2565 0.2508

9 0.4958 0.4532 0.4523

10 0.6723 0.6511 0.6501

11 0.8347 0.8316 0.8287

12 1 1 1

based only on limited experimental data) is that BIM ranking for multistate network

is very little influenced by the choice of J0.

1.6.4 Joint Reliability Importance

Joint Reliability Importance (JRI) for two components have been introduced by

Hong and Lie [13] as a measure of components interaction in determining system

reliability, see also [23]. JRI for components i and j is defined as

JRI(i, j) = ∂2�(p)

∂pi∂p j

.

Before we proceed, let us analyze the role of second derivatives in system reli-

ability increase if two components i and j simultaneously get reinforced and their

initial reliability pi and p j is increased by �pi and �p j , respectively. It is easy to

establish, using pivotal decomposition with respect to components i and j, that the

second derivatives of type

∂2�(p1, . . . , pk)

∂p2
i

are equal zero. Then the Taylor series expansion gives that

�(p1, . . . , pi + �pi , . . . , p j + �p j , . . . , pk) ≈ �(p1, . . . , pi , . . . , p j , . . . , pk)

+ ∂�(p1, . . . , pk)

∂pi

�pi + ∂�(p1, . . . , pk)

∂p j

�p j + ∂2�(p1, . . . , pk)

∂pi∂p j

�pi�p j .

If we take into account that |∂2�(p1, . . . , pk)/∂pi∂p j | ≤ 1, (which is easy to prove),

we conclude that the JRI’s impact on more accurate reliability estimation is rather

small relative to the impact of the BIMs.

We present Theorem 1.6.3 for computing the JRI. It is based on using pivotal

formula and combinatorial arguments and resembles the derivation of BIM j , see

[20] for the detailed proof.
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Let δi = 1/0 be the indicator variable for the component i, which is equal 0 if

i is among the x components turned down and is equal 1, otherwise. Similarly we

define δ j for component j �= i. Let F(x; δi , δ j ) be the joint probability of the events

(Y ≤ x), δi and δ j . For example, F(x; 0i , 0 j ) is the probability that the system is

DOWN after x components are turned down in permutation π, and components i and

j are among them.

Theorem 1.6.3

JRI(i j) = k!
[

k
∑

x = 1

F(x; 1i , 0 j )q
x−1 p(k−x−1)/(x !(k − x)!)

+
k
∑

x = 1

F(x; 0i , 1 j )q
x−1 p(k−x−1)/(x !(k − x)!)

−
k
∑

x = 1

F(x; 0i , 0 j )q
x−2 p(k−x)/(x !(k − x)!)

−
k
∑

x = 1

F(x; 1i , 1 j )q
x p(k−x−2)/(x !(k − x)!)

]

(1.6.5)

1.7 Reliability Gradient

1.7.1 Border States. Evolution Process

In this section, we will consider a network with components having different up

probabilities: P(component i is up)= pi , i = 1, . . . , k. In this model, the technique

developed in the previous section does not work and we have to develop new approach

to finding the reliability gradient vector.

Suppose that we have a binary network with two states, UP and DOWN. The

probability that the network is UP is given by the following function

RN = �(p1, p2, . . . , pk).

Our main goal is to develop a method for estimating the so-called reliability gradient

vector.

Definition 1.7.1 Reliability gradient vector.

The reliability gradient vector ∇ RN is the vector whose components are the partial

derivatives of �(·):

∇ RN =
(

∂�

∂p1
, . . . ,

∂�

∂pk

)

. (1.7.1)
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Fig. 1.10 The network with two terminals (bold) and its evolution process. Nodes are born in the

following order: 1 → 2 → 3 (double circled)

A computationally efficient algorithm for Monte Carlo estimation of ∇ RN is

based on identifying so-called border states of the network, see [10], Chap. 5 and

[7]. Before we give their definition, let us consider an example.

Example 1.7.1 (Evolution of a small s–t network with 4 nonterminal nodes)

Figure 1.10 shows a trajectory of the random process of gradual node births until

the network becomes s–t connected. When a node is born, all links incident to this

node become “alive”.

When node 3 is born, the network becomes s–t connected.

The state denoted by DN ⋆ directly preceding the UP state is the so-called border

state. Formally, we give the following

Definition 1.7.2 (Border state)

Border state is a network DOWN state whose Manhattan distance from the UP state

is 1.

This definition says that a vector v = (x1, x2, . . . , xk) with binary components

determines a border state if

(i) it is a DOWN state, i.e. ϕ(v)= 0 and

(ii) there is a vector w = (0, 0, . . . , 0, 1, 0, . . . , 0) such that ϕ(v + w)= 1.

In the example above, v = (1, 1, 0, 0) and w = (0, 0, 1, 0).

The next step is to identify the set Ŵ(v) of all components whose addition to the

border state v ∈ DN ⋆ transfers the network into the UP state. So, for example, for

the border state shown on Fig. 1.10, adding the nodes 3 or 4 transfers the network

into the UP state. Thus, here for v = (1, 1, 0, 0), Ŵ(v)= {3, 4}. We will call Ŵ(v) the

activating set of the border state v.
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It is important to note that the border states and their activating sets are topological

parameters of the network and of the definition of its DOWN state. Similarly to the

D-spectra, they do not depend on the probabilistic mechanism governing network

components failures.

To proceed further we will introduce an artificial evolution process on network

components. Assume that at time t = 0 all components are down, and component

i, independently of others, is born at the random instant ξi , which has Exponential

distribution with parameter λi . Let us remind that it means the following:

P(ξi ≤ t)= pi (t)= 1 − exp−λi t , t > 0.

Before the birth, the component is down. Once it is born, it becomes up forever.

Thus, pi (t0) is the probability that the component was born on [0, t0] and is up at the

instant t0. The complementary probability qi (t0)= 1 − pi (t0) is the probability that

at t0 the component i is down (has yet not born).

For a fixed time instant t = t0, we will denote pi (t0)= pi and 1 − pi (t0)= qi .

Now we remind to the reader the fundamental property of the Exponential distrib-

ution (see e.g. [1, 8, 10]) that a component i which was not born before the instant t0,

will be born in the small interval [t0, t0 + δt] with probability λi · δt + o(δt), δt → 0

not depending on t. (This is the so-called memoryless property). λi is called the birth

rate of component i.

Let us denote by �(v) the sum of all birth rates of the set Ŵ(v) which activates

the border state v:

�(v)=
∑

j∈Ŵ(v)

λ j .

Let us call �(v) the flow from the state v. Let P(v; t) be the probability that the

network is in state v at time t.

1.7.2 Gradient Formula

Let us denote by RN(t)= � (p1(t), p2(t), . . . , pk(t)) the probability that the net-

work is UP at the instant t. We will derive a differential equation for RN(t). Below

is the standard reasoning leading to this differential equation borrowed from [7, 10].

Let us consider the event “the network is UP at the instant t + δt ”. This event

takes place if and only if the network was already in UP at the instant t or it was

at time t in one of its border states and went into UP in the interval [t, t + δt]. All

other possibilities which involve more than one transition during this interval are

of magnitude o(δt) when δt → 0. This leads to the following relationship between

RN(t + δt) and RN(t):

RN(t + δt)= RN(t) +
∑

v∈DN ⋆

P(v; t)(v)δt + o(δt).
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Now transfer RN(t) to the left-hand side, divide both sides by δt and set δt → 0.

We arrive at the following relationship:

dRN(t)

dt
=
∑

v∈DN ⋆

P(v; t)�(v). (1.7.2)

Now recall that RN(t)= RN (p1(t), p2(t), . . . , pk(t)) and represent the left-hand

side of (1.7.2) using the chain rule of differentiation:

dRN (p1(t), p2(t), . . . , pk(t))

dt
=

k
∑

j = 1

∂ RN

∂p j

· dp j (t)

dt
. (1.7.3)

Now take into account that

p j (t)= 1 − e−λ j t ,
dp j (t)

dt
= λ j e

−λ j t = λ j q j (t),

and rewrite the left-hand side of (1.7.2) in the following form:

dRN(t)

dt
=

k
∑

j = 1

∂ RN

∂p j

·q j (t) ·λ j = ∇ RN •{q1(t)λ1, q2(t)λ2, . . . , qk(t)λk}. (1.7.4)

The sign “ • ” is a shorthand notation for the scalar product of vectors ∇ RN =
{∂ RN/∂p1, ∂ RN/∂p2, . . . , ∂ RN/∂pk} and {q1(t)λ1, q2(t)λ2, . . . , qk(t)λk}.

Comparing (1.7.2) and (1.7.4) and setting t = t0 we arrive at the desired relation-

ship which expresses the gradient vector via the probabilities of the border states and

the corresponding flows.

Theorem 1.7.1

∇ RN • {q1λ1, q2λ2, . . . , qkλk} =
∑

v∈DN ⋆

P(v; t)�(v). (1.7.5)

To apply (1.7.5) to finding ∂ RN/∂pi , we have to regroup the terms in the right-

hand side and to find the probability of all border states which become “activated”

by component i, i.e. whose probabilities are multiplied by λi . Let us show how it

works on an example of a small s–t network.

Example 1.7.2 (s–t network with unreliable nodes, Fig. 1.10)

Let us find out all network UP states. There are seven such states:

(1, 1, 1, 1), (1, 1, 1, 0), (1, 1, 0, 1), (1, 0, 1, 1), (0, 1, 1, 1); (1, 0, 1, 0), (0, 1, 0, 1).

Node i is up with probability pi . Denote by H =
∏4

i = 1 pi . It is easy to find that

RN = H · [1 + (1 − p2)/p2 + (1 − p3)/p3 + (1 − p4)/p4

+ (1 − p2)(1 − p4)/p2 p4 + (1 − p1)(1 − p3)/p1 p3 + (1 − p1)/p1] .
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From here it follows after some algebra that

∂ RN /∂p1 = (1 − p2)p3 p4 + p2(1 − p4)p3 + (1 − p2)(1 − p4)p3.

There are four border states with two adjacent nodes in up:

(1, 1, 0, 0), (1, 0, 0, 1), (0, 0, 1, 1), (0, 1, 1, 0),

and four border states with only one node in up:

(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1).

Only three of the above border states are activated by the birth of node 1:

(0, 0, 1, 1), (0, 1, 1, 0), (0, 0, 0, 1).

The probability of these states is equal to

(1 − p1) · [(1 − p2)p3 p4 + p2(1 − p4)p3 + (1 − p2)(1 − p4)p3].

The multiple at (1 − p1)= q1 equals to ∂ RN/∂p1, in accord with Theorem 1.7.1.

1.8 Basic Monte Carlo Algorithms

This section presents a non formal description of three principal algorithms which

serve as a basis for reliability calculations in this book. A detailed description of

these algorithms and their properties can be found in [10].

1.8.1 Testing the Network Terminal Connectivity

Checking network terminal connectivity is a common task for considerable part of

network algorithms. Among many methods available for this task, the following

method is very convenient for all algorithms considered in this book (and also [10]).

It is based on so called Disjoint Set Structures (DSS), see [10].

Suppose that N′ = (V ′, E ′, T ) is some state of the network N = (V, E, T ), i.e

E ′ ⊆ E, and V ′ is the set of nodes incident to edges from E ′. It is necessary to check

whether each pair of terminals from T is connected by some path consisting of edges

from E ′.
The idea of the method is as follows.

1. Let us initially associate each node v ∈ V ′ with a component Cv consisting of

only one node v.

2. Suppose that is given some permutation π of edges from E ′.
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3. Choose sequentially the edges from π moving from left to right.Suppose e ∈
E ′, e = (a, b) is chosen. If the nodes a and b belong to different components,

merge these components. From now on the new component will contain both

nodes a and b and the ’old’ components will not exist anymore. If the nodes

a and b belong to the same component do nothing. Note that initially each

component consists of exactly one node but after some steps this is not so.

Note also that if two nodes belong to one component, then these nodes are

connected by the edges from E ′.
4. After all edges were chosen, it must be checked whether there exists a compo-

nent which contains all terminals. If yes, then N′ is T-terminal connected.

1.8.2 Estimating the D-Spectra and Component Importance

By definition, D-spectra and BIM-spectra are closely connected to analyzing per-

mutations of network components and fixing for each permutation the position of

the component which, being turned down, causes the appearance of certain event.

For example, this event may be network passage from state K − I into the state

K − I − 1 (see Sect. 1.3.2), or entering the state when the size of maximal isolated

cluster becomes less than some fixed number (see Remark in Sect. 1.3.5).

Suppose that number of network elements equals n.

For each type of D-spectrum, and for each i = 1, . . . , n, we must estimate the

number of permutations satisfying an appropriate condition at the moment i. After-

wards, we calculate the estimates of the D-spectrum. For example, we see that sub-

stituting into (1.3.1) the estimated numbers of permutations having ri (π)= αi we

arrive at the estimate of the multidimensional D-spectrum.

The method for estimating the number of permutations for D-spectra or BIM-

spectra in general form works as follows.

1. Suppose that the criterion (event) is given.

Denote by N (Di ) and N (BIMi, j ), i, j = 1, . . . , n the number of permutations

in M trials for D-spectrum and BIM-spectrum, respectively.

Put N (Di )= 0 and N (BIMi, j )= 0 for all i, j = 1, . . . , n.

2. Simulate random permutation π of network elements. Turn down elements of

π, moving along it from the left to right. Stop at the index i when the defined

event takes place.

Note that for all kinds of spectra, for fixing the event we use the DSS-method,

which gives full information about the network state, i.e the number of com-

ponents, the size of each component, presence of terminals in components and

so on.

3. For D-spectrum let N (Di ) : = N (Di ) + 1

4. For BIM-spectrum, check whether the following two conditions are satisfied:

(a) the event takes place at the index i;

(b) the element j is to the left from or at the place of the index i.
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If (a) and (b) take place, put N (BIMi, j ) : = N (BIMi, j ) + 1. Repeat the steps

2–4 M times.

5. The estimated number of permutations for D-spectrum and B-spectrum are

equal N (Di ) · n!/M and N (BIMi, j ) · n!/M, respectively.

1.8.3 Estimating the Gradient Vector

Let us remind that the definition of gradient vector is connected to an artificial

evolution process on network elements, see Sect. 1.7.1. Initially, at t = 0 all elements

are down. At some random moment, element e is “born” and remains up forever.

This random moment is exponentially distributed with parameter λ(e).

Fix some instant t0 and choose λ(e) so that exp(−λ(e)t0)= q(e), the down prob-

ability of element e.

The method used for estimating the gradient vector is based on a special graph-

theoretic construction called Lomonosov’s Turnip, see Chap. 9 in [10]. The idea of

this method is given below.

1. Denote by ̂∂ R/∂pi the estimate of ∂ R/∂pi . Put ̂∂ R/∂pi : = 0 for all

i, i = 1, . . . , n.

2. Simulate random permutation π of network elements using transition proba-

bilities (for details see [10], Chap. 9).

3. Turn elements from down to up moving along π, from the left to right.

4. For each network element i do the following.

(a) Fix the first border state B which may be transferred into UP state by

activating element i.

(b) Fix the first UP state U defined by the permutation π.

(c) Denote by ξ(B) and ξ(U ) the random moments at which the evolution

process enters the states B and U, respectively. Calculate Conv = P(ξ(B)

≤ t0) − P(ξ(U ) ≤ t0) and put

̂∂ R/∂pi : = ̂∂ R/∂pi + Conv.

(The methods for calculating convolutions are described in [10], see

Chap. 7 and Appendix B)

5. Repeat 2–4 M times.

6. For each i, put ̂∂ R/∂pi/M · qi .

1.8.4 Accuracy of Monte Carlo Reliability Estimation

We estimate the ith element of the marginal D-spectrum { fi } by the ratio f̂i = Mi/M,

where Mi is the number of cases, out of M, where the network failure was observed
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on the ith position of the permutation in the process of turning down the network

components. It is known from statistics that f̂i is an unbiased estimator of fi and its

variance and standard deviation are equal

σ 2 = Var[ f̂i ] = fi (1 − fi )

M
(1.8.1)

and

σ =
√

fi (1 − fi )

M
,

respectively. From here it follows that the relative error r.e. of f̂i equals

r.e.=
√

(1 − fi )

M · fi

. (1.8.2)

The r.e. does not exceed 1/
√

M · fi . Thus, for example, if we want to guarantee

r.e. < 0.1, we have to take

M > 100/ fi .

So, to estimate with r.e. 0.1 (10%) the probability of 0.0005. we must take

M > 100/0.0005 = 200, 000. What follows from that simple arithmetics is that

in order to estimate with reasonable accuracy the first terms in the spectra (which

are as a rule, the smallest ones), the number of replications must be very large.

So, for accurate estimation of f5 in the D-spectrum of 5-dimensional cube network

(see e.g. [10], p. 193), the number of replications M must be of magnitude 108.

( f5, the first element of the spectrum is about 10−6). It is important to know the first

nonzero element of the D-spectrum in the case when we want to estimate the number

Cmin of min-size min cuts. It should be noted that this itself is a NP-hard problem,

and there is no easy solution for it, except for network with regular structure, like

cubes, butterflies, rectangular grid etc. For example, in the five-dimensional cube,

the number Cmin = 32, the number of nodes in the network.

Accurate estimation of the minimal nonzero elements of the spectrum is the most

critical situation and is, in fact, an exceptional and most difficult case of using Monte

Carlo for approximating the D-spectra. A typical application of the D-spectra is

calculating network DOWN probability using the cumulative D-spectrum, see for

example, formula (1.8.3).

The crucial observation is that the less accurately estimated terms of the D-spectra

are the smallest and their contribution to P(DOWN) is rather small. On the other hand,

the sum in the formula for the final result contains a large number of terms, and it

is not clear how the errors in estimating each one of them may influence the final

result. One way to estimate the error in calculating P(DOWN) is to use the explicit

formula for its variance, see e.g. [9] and [10], p. 110. Here we will present a version
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of bootstrap estimation of the error in reliability calculations based on Monte Carlo

estimated D-spectrum.

Let us present a typical formula for computing P(DOWN;q) in the following form:

P(DOWN; q)=
k
∑

x = 1

(

x
∑

i = 1

fi

)

k!qx (1 − q)k−x/(x !(k − x)!). (1.8.3)

Now let us simulate a random error in computing each fi . We will do it for a

typical case of M = 106 replications for estimating the spectrum. We replace fi by

fi (ε)= fi + ε

where

ε ∼ Normal (0, 1) · 0.001 ·
√

fi · (1 − fi )

is a normally distributed random variable with zero mean value and standard deviation

0.001 ·
√

fi · (1 − fi ).

Then put

P(DOWN; q, ε)=
k
∑

x = 1

(

x
∑

i = 1

fi (ε)

)

k!qx (1 − q)k−x/(x !(k − x)!). (1.8.4)

For a fixed value of q, compute ten replicas of P(DOWN; q, ε) and calculate the

maximal value of the observed difference

δ = |P(DOWN; q) − P(DOWN; q, ε)|.

Since δ may change for different q, we repeat this process for several q values in

order to cover a wide range of network DOWN probabilities, from highly reliable

networks to networks with P(DOWN; q) > 0.3.

Table 1.4 presents the results of typical error calculation for a 5-dimensional cube

network H5. It has 32 nodes and 80 edges, edges are subject to failure. Figure 1.11

presents the plot of its D-spectrum.

We see from Table 1.4 that the δ is very small and practically does not affect

the result, and we can conclude that M = 106 Monte Carlo replications provide

satisfactory accuracy of the Monte Carlo estimation, far beyond the statistical errors

arising in estimating the q values from empirical or expert data.

To be on the safe side, we assume that for the reliability simulation of networks

of size H5, the maximal error does not exceed ±0.0007. If we reduce the number of

replication 10 times and take M = 105, the maximal error increases by factor of ≈ 3,

and is of order ±0.002, which by our opinion, is satisfactory for most of reliability

calculations.
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Table 1.4 Simulated

maximal errors in estimating

P(DOWN; q)

q P(DOWN; q) max δ

0.1 0.000386 0.000025

0.2 0.010452 0.0001

0.3 0.077612 0.0006

0.4 0.296269 0.0007

Fig. 1.11 The { fi } spectrum

for H5 (nonreliable edges,

all-node connectivity)
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1.9 D-Spectra for Multi-Step Systems

As the reader remembers, in single-step network, single component failure either

leaves the state of the network unchanged, or causes its drop by one unit. So

is the situation with link failures. Suppose that the network has K + 1 states,

denoted as J = K , J = K − 1, . . . , J = 0. Thus, moving along the permutation

π = (i1, i2, . . . , ik) of link numbers and turning them from up to down, we neces-

sarily will meet K components which, being turned down from up, caused the K

transitions K → (K −1), (K −1) → (K −2), . . . , 1 → 0. Thus, each permutation

produces one realization of each of the K anchors, each of which is the position of

the component causing a transition. This leads to the fact that the marginal D-spectra

f (i), i = 1, . . . , K (see Definition 1.3.4) are proper discrete distributions.

This situation, however, may change if the network is not a single-step, i.e. elim-

ination (failure) of a single component may cause the network state drop by more

than one unit. Let us consider an example of a network in which the components

subject to failure are the nodes, see Fig. 1.12. We remind that node failure means

elimination of all edges incident to this node but the node remains intact.

Example 1.9.1 (Number of clusters for node failures)

The upper panel of the figure shows what happens when the nodes 1, 2, 3 fail in the

order given by π = (1, 2, 3). The number of clusters change gradually increasing by

one unit after each failure: 1 → 2 → 3 → 4. Correspondingly, this permutation

produces the positions 1, 2 and 3 for the first, second and third anchor, respectively.

The lower panel shows network disintegration when the nodes fail in the order

given by π = (3, 1, 2). Here the number of clusters change in the following order:
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Fig. 1.12 Network with seven nodes, four terminals (bold)

1 → 3 → 4 → 4 : after node 3 fails, the number of clusters jumps up by two units.

So, if we follow the rules for single-jump networks, we locate only two jumps and

conclude that the first anchor for the transition into 2 clusters is missing, the second

equals 1 and the third equals 2. In that case we will not obtain proper distributions

of the marginal spectra.

The conclusion from this example is that we must change the anchor defini-

tion for multi-jump systems. So, if a node failure causes the increase of clusters

from 1 to 3, we must treat this event as two events happened simultaneously:

the change from 1 to 2, and the change from 2 to 3. As a result, we define the

first anchor being equal to the second, i.e. r1 = r2 = 1. The situation for the per-

mutations π = (3, 2, 1) and π = (2, 3, 1) will be the same. For π = (2, 1, 3) we

have r1 = r2 = 1, r3 = 3; for π = (1, 3, 2) we obtain r1 = 1, r2 = r3 = 2. Finally,

π = (1, 2, 3) is the only permutation where the anchors are separated: r1 = 1, r2 = 2,

r3 = 3.

It is easy to obtain now the cumulative marginal spectra:

F (1)(1)= 1; F (2)(1)= 2/3, F (2)(2)= 1;

F (3)(1)= 0, F (3)(2)= 2/3, F (3)(3)= 1.

Here F (1)(x) is the probability that after x failures, the number of clusters is

≥ 2, F (2)(x) is the probability that after x failures, the number of clusters is

≥ 3, F (3)(x) is the probability that after x failures, the number of clusters is 4.

Remember that the number of failure sets of size x is connected to the D-spectrum

via the formula C(x)= F(x) ·k!/(x !(k−x)!). Since now we have several cumulative

D-spectra, we will use the notation

C (s)(x)= F (s)(x) · k!/(x !(k − x)!),

where

C (s)(x)= (number of failure sets with x components down and number of clusters > s).

It is easy to find out that C (2)(1)= 2, C (2)(2)= 3, C (2)(3)= 1.



48 1 Theory

Indeed, there are in total seven failure sets:

{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}.

The number of clusters is 3 or 4 for two sets with one component down, for three

sets with two components down, and one set with three components down.

Now we are ready to formulate the general rule for defining, for each permutation,

all its K anchors.

If at the failure of the component on ith position in π the system jumps from the

state J = K − A into state J = K − A − B, and B > 1, we assume that

r(A+1)(π)= · · · = r(A+B)(π)= i.

Remark

Since the marginal cumulative D-spectra is our main tool for investigating networks

in the process of their disintegration into isolated clusters, we might take an alternative

approach to the multi-step networks. We simply illustrate it on the same example

with a seven node network shown on Fig. 1.12.

Example 1.9.1-continued

Suppose that we accept a “dichotomic” approach and consider only two states: UP

when there is one cluster and its complement DOWN (2, 3, or 4 clusters). Then,

obviously, the transition U P → DOWN takes place after a single node fails, i.e. the

first corresponding cumulative spectrum is

F (1)(1)= F (1)(2)= F (1)(3)= 1.(∗)

Now define the UP state if the number of clusters is 1 or 2 and DOWN—as its

complement (3 or 4 clusters.) Then it is easy to see that in four permutations where

the first position is occupied by nodes 2 or 3, the U P → DOWN transition takes

place when the nodes 2 or 3 fail, and in the remaining two permutations, when two

nodes fail. This will bring us the following cumulative D-spectrum:

F (2)(1)= 4/6, F (2)(2)= F (2)(3)= 1.(∗∗)

Finally, if DOWN is defined when there are 4 clusters and its complement (1, 2

or 3 clusters) is UP, then analyzing all six permutations we find out that the third

cumulative D-spectrum will be

F (3)(1)= 0, F (3)(2)= 4/6, F (3)(3)= 1.(∗ ∗ ∗)

We see that (∗), (∗∗) and (∗ ∗ ∗) coincide with the previously obtained results.

Now we are ready to formulate the general rule for defining, for each permutation,

all its K anchors.

Rule : multidimensional D − spectra for multi − step networks.
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If at the failure of the component on ith position in π the system jumps from the state

J = K − A into state J = K − A − B, and B > 1, put

r(A+1)(π)= · · · = r(A+B)(π)= i. (1.9.1)
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Chapter 2

Applications

Abstract In Sect. 1 we compare the probabilistic behavior (the resilience) of three

networks under random attack on their nodes: (1) five-dimensional cube network; (2)

a network obtained by preferential attachment; (3) a slightly modified 9/11 terrorist

network. All three networks have the same number of nodes and links, and their

failure is defined as disintegration into isolated components of maximal size of 10

nodes. Section 2 describes various approaches to network reliability design based

on improving their reliability by means of reinforcing several nodes or several links,

combined with deletion of the least important components. Section 3 analyzes various

scenarios of predisaster management of a transportation network with 34 edges, 25

nodes and 4 terminals. The management is carried out by the ”best” choice of the

subset of links which are reinforced to provide given level of terminal connectivity,

subject to budgetary constraint. Section 4 presents a probabilistic follow-up of a four-

state network disintegration process when the network links fail in random order.

Keywords Nodes failures · Optimal network design · Predisaster management ·
Multistate network disintegration

2.1 Network Under Attack: Symmetric Versus

Scale-Free Network

In this section we will compare the nodal resilience of three networks with the same

number of nodes k = 32, the same number of links n = 80, but strongly differing by

their structure.

The first network has a completely symmetric structure. It is a five dimensional

cube network H5 with 25 = 32 nodes. It is convenient to number the nodes by a

five digit binary number, from (0,0,0,0,0) to (1,1,1,1,1). Each node is incident to five

links connecting this node to five other nodes whose numbers differ by a single digit.

So, for example, the node (0,0,0,0,0) is incident to five links connecting it to the

nodes (1,0,0,0,0), (0,1,0,0,0), (0,0,1,0,0), (0,0,0,1,0) and (0,0,0,0,1). Cubic networks

I. Gertsbakh and Y. Shpungin, Network Reliability and Resilience, 51

SpringerBriefs in Electrical and Computer Engineering,

DOI: 10.1007/978-3-642-22374-7_2, © Ilya Gertsbakh 2011
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have some optimal properties in the process of information delivery between nodes

(see [18]) and because of that they are used as a frame for connecting computer

stations (nodes) into a computer network.

The second network was created using the so-called preferential attachment

method [13], Sect. 6.4. As suggested by Barabasi and Albert [2] in 1999, this method

was supposed to reproduce the natural growth of large networks with a strongly

nonuniform degree distribution and with the appearance of several nodes with very

high number of adjacent links, called “hubs”. Construction of a network starts with

a “kernel” network N0 = (V0, E0) having a small number of nodes |V0| = m0 and

several edges n0, |E0| = n0. On each step of the construction, a new node v with d

edges is added to the existing network, and the probability that v will be connected

by an edge to an existing node w is proportional to the degree dw of node w.

We carried out this construction adding on each step a new node and five links,

to obtain a network with 32 nodes and exactly 80 edges. This network—we call it

Prefnet—has three nodes of degrees 13, 10, and 8, respectively, two nodes of degree

9, and the remaining nodes with degrees ranging from 2 to 6.

The third network is a modification of the network of terrorists responsible for

the September 11 attack. Following the reference given in [3], p. 277, we took

the description of this network from Valdis Krebs’ website http://www.orgnet.com.

This network has as its nodes the 19 hijackers who directly took part in the Sep-

tember 11 airplane attacks and 15 other people supporting them. The connections

between all these people is represented by a network which has in total 34 nodes and

91 links. With regard to the node degree this network is highly non homogeneous. Its

nodes can be classified into three groups. In the first, there are 6 nodes having small

degree—one or two. There is a large “middle” group of 22 nodes, each one linked to

3–7 other nodes. The third group are the “hubs” linked to 8–16 other nodes, among

them, there is one node linked to 16 nodes (representing the leader Mohammed Atta),

one node linked to 14 nodes and a few nodes linked to 10–12 nodes. In order to carry

out a valid comparison with H5 and Prefnet, we modified slightly this network by

deleting from it two nodes and 11 links. All connections of the hubs have been

preserved. In further, we call this network Ternet. Comparing to Prefnet, Ternet is

more irregular, its node degrees are more dispersed.

A.L. Barabasi mentioned the terrorist network in the context of the investigation

of the behavior of scale-free networks [3, 19] under the intentional attacks on their

most “important” nodes, which are their hubs. Networks with a single central node

(so-called “spider networks”) are very sensitive to the attack on their central node.

Contrary to these networks, the scale-free networks without a spider are created in

the process of self-organization and reveal a great degree of resilience and continue

to function even after several of their hubs had been eliminated. So, A. Barabasi

writes “... despite his central role, taking out Atta would not crippled the cell. The

rest of the hubs would have kept the web together, possibly carrying out the attack

without his help” (p. 223).

Ternet, Prefnet and H5 have the same number of nodes (32) and the same average

node degree 5. We decided to compare these three networks with respect to their

resilience to the situation when they will be subject to a random attack on their

http://dx.doi.org/10.1007/978-3-642-22374-7_6
http://www.orgnet.com
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nodes. These attacks mean that the nodes of each of these networks are subject to

random independent failures taking place in random order. We remind that node

failure means elimination of all links incident to this node.

We define two “degrees” of all-network damage (network failure):

Degree I. Network has disintegrated into separate isolated components of maximal

size not exceeding max = 10. In the terms of a terrorist network, we assume that

Degree I preserves considerable ability for hostile activities. For a network designed

for maintaining normal life (food supply, emergency actions, defense, etc.) degree I

means preserving relatively good capabilities to continue normal functioning for a

relatively large part of network nodes.

Degree II. Network has disintegrated into separate isolated components of maxi-

mal size less or equal max = 3. Degree II means a very limited level of the potential

for hostile actions for a terrorist network and very limited ability to maintain normal

operation for any network providing supply/medical care, etc. Degree II means, in

fact, a collapse of the network.

Formally, Degree I means that the maximal component has 3 < Size ≤ 10 and

Degree II means that Size ≤ 3.

Let us turn to the formal tools which will be used to describe the network grad-

ual deterioration in the case of random node failures. Our D-spectrum technique is

well-designed for this purpose. Let us remind that we consider a random node num-

ber permutation π, and turn down one node after another moving along π from left to

right. In this process, the simulation algorithm follows up after the size of the maximal

connected component in the network and remembers the positions of those nodes in

the π whose failure signifies the entrance of the network into the states described

above as Degree I and II of destruction. We will observe therefore a two-dimensional

D-spectrum from which we will derive two marginal cumulative D-spectra denoted

as F(x; 1) and F(x; 2), x = 1, . . . , 32. We remind that F(x; 1), the first cumulative

D-spectrum, is the probability that the network is DOWN if Y ≤ x nodes have failed.

For the first spectrum, DOWN means that the maximal connected component has

the size less or equal 10. Similarly, the second spectrum F(x; 2) is the probability

that the maximal connected component in the network has the size less or equal 3

(Degree II). Figure 2.1 presents the graphs of the cumulative D-spectra for the Ternet,

Prefnet and H5. For Degrees I, II the maximal component size was max = 10, and

max = 3, respectively.

All six curves fall apart into two distinct groups: the three left curves represent the

first cumulative D-spectra for Ternet, Prefnet, and H5, from left to right, respectively.

Three curves on the right correspond, in the same order, to the Degree II of destruction.

The most surprising fact is that Ternet is most vulnerable in both groups and H5 has

the highest resilience in both groups.

This fact contradicts the hypothesis that a scale-free self organized network is

more resilient to the random attack on its nodes than a highly symmetric network.

It turns out that the opposite is true, and more resilient is the symmetric network

H5. After a relatively large number of nodes fail (more than 22), the maximal com-

ponent size becomes three (degree II), and all three networks behave similarly. The

advantage of H5 over Ternet and Prefnet becomes very small and vanishes with the



54 2 Applications

Fig. 2.1 The cumulative

D-spectra for three networks
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increase of x, which is quite natural: after most of nodes fail, H5 has lost all its

initial symmetry and differs very little from any other network which had initially a

highly irregular degree distribution.

Note also that for the Ternet, for example, for x = 25 the probability of having

Degree II is near 0.3. With complementary probability about 0.7 the maximal con-

nected component has the size greater than 3 but less or equal 32–25 = 7.

Next, let us compare the network failure probabilities P(DOWN; q) for various

node failure probability values q. Figure 2.2 presents calculation results for three

networks Ternet, Prefnet and H5, for two degrees of destruction. Degree I was

defined for max = 12 and Degree II for max = 3.

Six curves presented on Fig. 2.2 are naturally divided into two groups: the left for

degree I and the right for degree II. In each of these groups, the upper curve belongs

to Ternet, the lower—to H5 and the middle—to Prefnet.

The difference between these curves is quite distinct in the left group. So, for

q = 0.5, H5 is DOWN with probability near 0.18, while Ternet—with

probability 0.4. The difference between failure probabilities for H5 and Ternet is

near 0.2 for q ∈ [0.45, 65].
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Table 2.1 DOWN probability as a function of node failure probability q

q P(DOWN; q) H5 P(DOWN; q) Prefnet P(DOWN; q) Ternet

0.40 0.00227 0.053 0.134

0.45 0.070 0.126 0.245

0.50 0.170 0.250 0.395

0.55 0.332 0.424 0.567

0.60 0.538 0.619 0.733

0.65 0.740 0.793 0.846

0.70 0.889 0.914 0.947

0.75 0.967 0.975 0.986

0.80 0.994 0.996 0.998

0.85 0.9996 0.9999 1.0

As it is seen from Fig. 2.2, in the second group, all three networks behave similarly

and the difference in their DOWN probability is less than 0.05 uniformly with respect

to q values. This is explained by the fact that after a large number of nodes have already

failed (on the average, more than 0.6 × 32 = 19 ) all networks look similar and the

initial symmetry of H5 has been strongly reduced by random node failures.

Table 2.1 presents the numerical data on DOWN probabilities for destruction

degree I (max = 12).

So, for example, for q = 0.5, DOWN probabilities of H5 and Ternet are 0.170 and

0.395, respectively, which means that H5 is considerably more resilient.

2.2 Network Reliability Design

2.2.1 Introductory Remarks

Optimal network design is not a well-defined notion. It includes many particular

problems, most of which are NP-complete and whose solution is a hard computation

task.

The key words Network Reliability Design (NRD) produce on GOOGLE an astro-

nomic number of references. Let us try to classify the main directions of the works

in NRD.

One of the mathematically most interesting directions is the search of optimal

network structures which produce maximal network reliability measure under given

constraints on the number of network nodes and links, min cut set size or other

combinatorial parameters, see e.g. [16, 17]. Close to this direction are the Ball-

Provan bounds [1].

As a rule, in most applications, the researchers must compare and/or design a

network system within a class of predetermined structures [7]. Usually the network

“skeleton” is given, and the problem is the choice of links which must be introduced
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into the network or must be reinforced in the existing network to provide the desir-

able network reliability parameters. Typical for this line of research is the recent

work [5]. It considers finding a minimum cost network with given reliability con-

straints. Mathematically, the problem is formulated in terms of integer programming,

and powerful heuristics are suggested for its solution.

We must distinguish between two situations in the NRD. The first is when network

reliability has a known analytic expression via the parameters of network node/link

reliability, and the second is the case of unknown or practically non tractable expres-

sion of network reliability measure. The second situation is typical for networks of

any realistic size, say having more than 10 nodes and 20 links.

In practice, the Monte Carlo methods remain the main tool for calculating real-

size networks reliability for the purpose of NRD. One of the Monte Carlo reliability

estimation advantages is that it can work with unreliable links and/or unreliable

nodes, see e.g. [9], Chap. 8.

The NRD was investigated also using the cross-entropy modification of Monte

Carlo [21], as well as the genetic Monte Carlo algorithms [14]. We believe that

a combination of our methodology with genetic algorithms and the cross-entropy

approach would produce good practical results.

Our approach for solving the NRD problem is based on using reliability gradient

and so-called BIM-spectra, which are estimated by Monte Carlo simulation.

In this section we consider the following problem related to network design aimed

at improving its reliability.

Suppose that we have a network with unreliable elements (nodes or edges).

Network reliability is defined as the probability of its UP state, which is terminal

connectivity. The following two operations are allowed:

1. Reinforcing a component, i.e. replacing it by a more reliable one. This operation

can be applied to a given number of components.

2. Eliminating a component, i.e. a given number of components is supposed to be

eliminated from the system.

The purpose of the above two operations is to achieve the maximal network

reliability by “the best possible” choice of candidates for 1 and 2. The candidates

can be any network edge in case of non reliable edges, or any node, which is not a

terminal, in case of non reliable nodes. In practical terms, we must find the “most

relevant” components for reinforcing and the “most irrelevant” ones for elimination.

2.2.2 The Dodecahedron Network

The network reliability design will be illustrated by an example of so-called dodec-

ahedron network, see Fig. 2.3. It has 20 nodes and 30 edges, see [10]. Three nodes

1, 17 and 18 are terminals and the remaining 17 nodes are subject to failure. Node

failure leaves the node itself intact, but all edges incident to this node are erased.

Network UP state is defined as the terminal connectivity. Correspondingly, DOWN

http://dx.doi.org/10.1007/978-3-642-22374-7_8
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Fig. 2.3 The dodecahedron

network with three terminals
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Table 2.2 Simulated

BIM-spectra for nodes

2, 9, 20. M = 100,000

replications

x j = 2 j = 9 j = 20

4 0.0011 0.0 0.0018

5 0.0074 0.0011 0.0091

6 0.025 0.0098 0.033

7 0.067 0.036 0.083

8 0.13 0.095 0.16

9 0.24 0.19 0.28

10 0.38 0.35 0.43

11 0.54 0.51 0.58

12 0.66 0.65 0.68

13 0.75 0.75 0.76

14 0.82 0.82 0.82

15 0.88 0.88 0.88

16 0.94 0.94 0.94

17 1 1 1

is a loss of terminal connectivity. For example, if nodes 20, 5, 6, 2, 13, 12, 11 fail,

the network is in DOWN state.

As a preliminary step in NRD of this network, let us estimate the BIMs of network

nodes. Analyzing the BIM-spectra for all 17 nonterminal nodes, we conclude that

the node 20 is the most important and the node 2 is the second important. Table 2.2

presents the BIM-spectra for three nodes, and the domination of the node 20 over

node 2 is clearly seen.

2.2.3 Gradient-Based Network Reorganization

Remind that by network reorganization we mean the following procedure. Suppose

that k1 network elements must be replaced by more reliable ones and that k2 elements

can be eliminated. The elimination of non important elements is a reasonable decision
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on the network project design stage, since this operation might reduce the network

cost without significant loss of network reliability.

We deal with the following two cases. The first is the case of equal up probabilities

for all elements subject to failure. In this case we suggest the BIM-spectra heuristic

approach which works as follows.

Calculate the BIMs for all elements; reinforce the k1 elements with the highest

BIMs and delete the k2 elements with the lowest BIMs. This is a heuristic procedure

which is easily implemented and works quite well, especially for the case when

network components have equal up probabilities or these probabilities are close to

each other.

Note that after reinforcing a single element we are already in the case of non-equal

probabilities. Nevertheless, by our experience, the BIM-spectra method gives good

results also in the case of non-equal probabilities, when the values of probabilities

lie in some relatively small interval. This may be explained by our observation that

in most cases the “topological” or “structural” factor which is “concentrated” in the

BIM (and is represented by the BIM-spectra) prevail over the numerical factor.

It is understood that elimination of a node means elimination of all edges incident

to it. In case of unreliable edges, elimination of edges in the process of “trimming”

always is made to avoid the appearance of isolated nodes.

Gradient based network reorganization heuristic

1. Compute element gradients for the initial network reliability by the Monte Carlo

algorithm described in Sect. 1.8.3.

2. Choose the element having the maximal value of the product of the partial deriv-

ative times the element reliability increase, i.e. the maximal value of

δRs = δps ·
∂ R

∂ ps

, s = 1, 2, . . . , k

where δps = p⋆− ps and p⋆ is the reliability of the reinforced component. Denote

by v the number of this element.

3. Set the reliability of element v, pv := p⋆.

4. Repeat (1–3) k1 times.

5. Compute element gradient vector for the network with the reinforced component

reliability values.

6. Choose the element having the minimal value of the product

δRs = ps ·
∂ R

∂ ps

.

Denote by w the number of this element and Eliminate the element w.

7. Repeat (5–6) k2 times.

Let us illustrate how the above procedure works for the dodecahedron network.

Example 2.2.1 (Unreliable nodes).

We will consider the case of nonequal node reliability.

http://dx.doi.org/10.1007/978-3-642-22374-7_1
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Table 2.3 Estimated

reliability change for network

with unreliable nodes,

M = 100,000 replications

i qi = 1 − pi α = (∂ R/∂pi )(0.9 − pi ) pi (∂ R/∂pi )

2 0.3 0.0238 0.083

3 0.25 0.02 0.099

4 0.3 0.022 0.077

5 0.3 0.0096 0.034

6 0.25 0.008 0.04

7 0.25 0.008 0.042

8 0.25 0.0069 0.0345

9 0.25 0.0063 0.031

10 0.30 0.0096 0.034

11 0.25 0.0126 0.063

12 0.25 0.0112 0.057

13 0.20 0.0074 0.059

14 0.20 0.0035 0.028

15 0.25 0.0054 0.027

16 0.25 0.012 0.059

19 0.20 0.0023 0.019

20 0.2 0.0162 0.13

The node down probabilities are given by the second column of Table 2.3. They

range from 0.2 to 0.3. Suppose that we decide to reinforce three nodes and wish to

eliminate two nodes. The reinforcing in our example means changing the chosen node

by more reliable with the up probability p⋆ = 0.9. The initial estimate of network

reliability (based on M = 105 replications) equals R0 = 0.9076.

The third column gives the values of the product defined in 2 of the above proce-

dure. The values of the fourth column present the product defined in 6 of the same

procedure. If component i is eliminated from the network, network reliability will

decrease by the quantity shown in the fourth column.

We skip here the intermediate results of the calculations. The final results are the

following. Nodes 2, 20, and 11 were chosen for the reinforcement. The nodes 15 and

19 are eliminated. The final reliability of the reorganized network is R⋆ = 0.9348.

Without elimination of nodes 15 and 19 the network reliability would have been

slightly higher R1 = 0.9381.

Remark In our example it is easy to determine intuitively the “most relevant” and

“most irrelevant” nodes. Checking the third and the fourth column of Table 2.3 we

see that nodes 2, 11 and 20 already have the required maximal values of α and nodes

15 and 19 have the minimal reliability decrease values. The impression is that it is

enough to compute the gradient only once. For large networks with non-symmetrical

and complex topology and with highly scattered component up probabilities, we must

follow the gradient updating procedure as it has been described in the above heuristic.

The “reorganized” network is shown on Fig. 2.4. It is more reliable but it has lost

its initial symmetry.
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Fig. 2.4 Network with
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Example 2.2.2 (Unreliable edges).

Now let us consider slightly modified dodecahedron-type network presented on

Fig. 2.5. This network has reliable nodes and unreliable edges.

Suppose that the up probabilities of edges (1, 2), (7, 18), (11, 17) are 0.9. All

other edge up probabilities are 0.7. The initial estimate of network reliability (based

on 105 replications) equals R0 = 0.7769.

Our purpose is to increase the network reliability at least up to R⋆ = 0.95. Suppose

that we decided to reinforce the network by eliminating two (most irrelevant) edges

and by replacing the required number of edges by more reliable ones, with the up

probability equal 0.95.

Let us follow the above described gradient updating procedure. The initial gradient

values are presented in Table 2.4. From this table we see that the two candidates for
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Table 2.4 Estimated Reliability gradient for network with unreliable edges

i edge pi ∂ R/∂ pi i edge pi ∂ R/∂ pi

1 (1, 2) 0.9 0.1964 16 (8,14) 0.7 0.0574

2 (1, 3) 0.7 0.0653 17 (8,19) 0.7 0.0287

3 (1, 4) 0.7 0.0906 18 (9,15) 0.7 0.0219

4 (2, 5) 0.7 0.0836 19 (10,16) 0.7 0.0389

5 (2, 6) 0.7 0.1795 20 (11,12) 0.7 0.1435

6 (3, 8) 0.7 0.0642 21 (11,17) 0.9 0.1491

7 (4, 9) 0.7 0.0423 22 (12,20) 0.7 0.1051

8 (4.10) 0.7 0.0389 23 (13,14) 0.7 0.2078

9 (5, 10) 0.7 0.0334 24 (13,18) 0.7 0.0806

10 (5, 11) 0.7 0.0745 25 (14,19) 0.7 0.0632

11 (6, 7) 0.7 0.1894 26 (15,16) 0.7 0.0295

12 (6, 12) 0.7 0.0712 27 (15,19) 0.7 0.0230

13 (7, 13) 0.7 0.0515 28 (16,17) 0.7 0.0625

14 (7, 18) 0.9 0.1387 29 (17,19) 0.7 0.0954

15 (8, 9) 0.7 0.0253 30 (18,20) 0.7 0.1037

elimination are edges 18 = (9, 15) and 27 = (15, 19). Applying the gradient updating

procedure (we skip the appropriate computations) we arrive at the following solution.

Seven edges must be reinforced:

5 = (2, 6), 11 = (6, 7), 29 = (17, 19), 23 = (13, 14),

24 = (13, 18), 25 = (14, 19), 3 = (1, 4).

The reliability of the reinforced network is now R⋆ = 0.9547.

Remark It is worth noting that if we take for reinforcing seven most relevant edges

from Table 2.4 (i.e. the edges with largest ∂ R/∂ pi values), we get a little smaller

network reliability R1 = 0.9428.

Example 2.2.3 (“Crossing” of two networks).

Consider the networks presented on Figs. 2.3 (call it network a) and 2.5 (call it

network b). The components subject to failure in both networks are the edges. Let

Ea and Eb be the edge sets of these networks.

In this example we demonstrate a procedure of “crossing” these two networks:

we will obtain a new network with the 20 nodes and 30 edges, more reliable than a

and b.

First, we will create a new network having the edge set which is a union of the

edge sets of networks a and b; afterwards, we will reduce the united edge set by

eliminating most irrelevant edges.

Suppose that all edges in both networks have up probability 0.7. Then the estimated

values of the networks reliability are Ra = 0.7778 and Rb = 0.6820. Define network

c with the same set of nodes and with the edge set Ec = Ea

⋃
Eb.
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Fig. 2.6 Network with

unreliable edges after

“crossing”
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Network c has 20 nodes and 34 edges. Eliminate now the four most irrelevant

edges by applying the gradient method.

Let us omit the intermediate calculations. As a result we have to eliminate the

following four edges: (8, 14), (15, 16), (15, 19), (9, 15). The resulting network Ec is

shown in Fig. 2.6.

The surprising fact is that this network reliability has increased to Rc = 0.8375.

The way of “crossing” networks a and b to obtain a reliable network c is, in fact, an

operation which might become a basis for a genetic algorithm for network reliability

design.

2.3 Optimal Predisaster Design of Transportation Network

2.3.1 Formulation of the Problem. The Network

Optimal predisaster design means a decision on the network reinforcement policy in

order to achieve the best reliability characteristics of the network under given budget

constraint on the total cost of link reinforcement. In [24] the authors consider the road

network reconstruction policy aimed at achieving higher reliability for the case when

the traffic disruption is caused by road accidents. Interesting work [20] considers

optimal road network design to minimize the damage from a future earthquake in

the vicinity of Istanbul. The road network considered in [20] has 25 nodes and

30 edges, edges are subject to damage in the case of earthquake, and each edge e has

a cost for its reinforcement c(e). The reinforcement in the above cited work means that

the initial edge failure probability q(e) is being reduced to zero for the cost c(e). The

goal is to maximize the average probability of s − t-connection between five pairs of

terminal nodes, subject to given budget B on the total cost of reinforcement works.
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Fig. 2.7 Road network with 25 nodes, 34 links and 4 terminals (bold)

Gertsbakh and Shpungin [11, 25] consider the same road network and suggest a

rather straightforward knapsack-type algorithm to maximize the minimal probability

of the s-t connection. Interesting to note that the solution presented in [25] practically

coincides with the solution of [20].

In this section we consider an optimal road network reinforcement policy on an

example of a network with 25 nodes, 34 edges (links) and four terminals. The aim

of this policy is to maximize the probability of terminal connectivity. The network

is shown on Fig. 2.7.

Since there are many different ways to state and solve the problem, we will

consider several scenarios for the initial data and the problem formulation.

2.3.2 Scenario A

All links (edges) have the same failure probability q(e)= 0.3 in the case of the

earthquake, all link failures are independent events. We can choose any set of links

for the reinforcement. If a link is reinforced, its failure probability reduces from

q(e)= 0.3 to q⋆(e)= 0.1. The reinforcement cost is the same for all links. The

network has the initial probability of terminal connectivity R0 = 0.474, as it can be

established using Monte Carlo simulation. Our goal is to raise this probability to

a relatively high level R⋆ = 0.85 by choosing the minimal number of links to be

reinforced. (This formulation is dual to the situation considered in [20], where the

reliability was maximized under cost constraints).

Since all links are equally reliable, the main tool for choosing the links for rein-

forcement is the analysis of their BIMs. Obviously, the best candidates will be the

links with the highest BIM values.
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It was established that in order to achieve the desired level of R⋆ = 0.846 it is

enough to reinforce the following 12 links:

2 = (1, 3), 3 = (1, 23), 7 = (3, 5), 12 = (7, 10), 14 = (8, 9),

18 = (11, 13), 24 = (15, 18), 29 = (18, 21), 30 = (19, 20),

31 = (19, 25), 32 = (20, 22), 33 = (21, 23).

2.3.3 Scenario B

Now we modify the problem and assign different reliabilities to the links, ranging

from 0.6 to 0.8, but preserve equal reinforcement costs for all links. We also assume

that link reliability after reinforcement becomes 0.9 for all links. The goal, as in Sce-

nario A, remains the same—achieving the reliability R⋆ = 0.850 by minimal cost.

All necessary information for the solution is presented in Table 2.5. The third col-

umn shows the link reliabilities p(e)= 1 − q(e). 11 links are assigned p(e)= 0.6,

11 links—p(e)= 0.7, and 12 links—p(e)= 0.8. The initial network reliability is

R0 = 0.5011. The fifth column gives the values of the partial derivatives, and the

sixth—the reliability increase α after replacing a link having reliability p by a rein-

forced link with reliability p⋆ = 0.9. As in the previous Scenario A, reinforcement

of 12 links (marked by ⋆) achieve the goal and provide the desired level of reliability

R⋆ = 0.850. It is a remarkable fact that these links are located in “one run” from the

sixth column of the table as the links with the maximal value of

α =
∂ R

∂ p(e)
· (0.9 − p(e)).

Theoretically, after choosing one or two links for the reinforcement, the link relia-

bilities change and the gradient vector changes too. Interesting to note that the initial

ordering from column 6 remains the same. Thus, in Scenario B, the crucial role

plays the gradient vector and the corresponding Monte Carlo procedure for BIMs

estimation, see Sect. 1.8.

2.3.4 Scenario C

In this Scenario we introduce different reinforcement costs for different links, see the

fourth column of Table 2.5. The links are divided into five categories, according to

the costs of their reinforcement. The costs are nominated to be c(e)= 1–4 or 5. Low

cost c(e)= 1 reflects minor reinforcement work needed to be carried out, the cost

c(e)= 5 corresponds to fundamental reconstruction. The reinforcement goal remains

the same: to achieve R⋆ = 0.850 for the minimal cost. Note, that the total cost for the

choice made in Scenario B (see the starred values in the Table 2.5, in column 5) is

http://dx.doi.org/10.1007/978-3-642-22374-7_1
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Table 2.5 Edges, costs and the initial ∂ R/∂p(e) values

i edge e p(e) cost c(e) ∂ R/∂ p(e) α = ∂ R/∂ p(e) · (0.9 − p(e)) α/c(e)

1 2 3 4 5 6 7

1 (1, 2) 0.8 1 0.091793 0.0092 0.0092

2 (1, 3) 0.6 2 0.137580 0.0413* 0.0206

3 (1, 23) 0.7 3 0.140512 0.0281* 0.0094

4 (2, 4) 0.8 4 0.091213 0.091 0.0023

5 (2, 22) 0.6 5 0.088629 0.0266* 0.053

6 (3, 4) 0.7 1 0.068969 0.0138 0.0138

7 (3, 5) 0.8 2 0.207425 0.0207 0.0104

8 (4, 6) 0.6 3 0.062008 0.0186 0.0062

9 (5, 8) 0.7 4 0.044431 0.0089 0.0022

10 (5, 10) 0.8 5 0.102330 0.00102 0.020

11 (6, 7) 0.6 1 0.062211 0.0187 0.0187

12 (7, 10) 0.7 2 0.129837 0.0260 0.013

13 (7, 11) 0.8 3 0.119049 0.0119 0.0040

14 (8, 9) 0.6 4 0.103155 0.0309* 0.0077

15 (8, 10) 0.8 5 0.052998 0.0106 0.0021

16 (9, 11) 0.8 1 0.062072 0.0062 0.0062

17 (9, 24) 0.6 2 0.094320 0.0283* 0.0142

18 (11, 13) 0.7 3 0.210631 0.0421* 0.0140

19 (12, 13) 0.8 4 0.272573 0.0273* 0.0068

20 (12, 16) 0.6 5 0.079393 0.0238 0.0048

21 (12, 25) 0.7 1 0.128011 0.0256 0.0256*

22 (13, 14) 0.8 2 0.076247 0.0076 0.0038

23 (14, 15) 0.6 3 0.105462 0.0316* 0.0105

24 (15, 18) 0.7 4 0.158136 0.0316* 0.0079

25 (15, 24) 0.8 5 0.070892 0.0071 0.0014

26 (16, 17) 0.6 1 0.077771 0.0233 0.0233*

27 (17, 21) 0.7 2 0.068477 0.0137 0.0068

28 (18, 20) 0.8 3 0.152753 0.0153 0.0051

29 (18, 21) 0.6 4 0.131870 0.0396* 0.0099

30 (19, 20) 0.7 5 0.131850 0.0264* 0.0053

31 (19, 25) 0.8 1 0.112046 0.0112 0.0112

32 (20, 22) 0.6 2 0.147710 0.0433* 0.0216*

33 (21, 23) 0.8 3 0.120779 0.0242 0.0080

34 (22, 23) 0.8 4 0.057959 0.0058 0.0014

∑

(e:2,3,5,14,17,18,19,23,24,29,30,32)

c(e)= 41.

Now the crucial role in the choice of links for reinforcement belongs to the ratio

α/c(e),

which is the reliability increase per unit cost. Following the logic of the heuristic

Knapsack solution, we find out a group of three links which have the largest values
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of this ratio. They are the links 21, 26, 32, see column 7 of Table 2.5. We raise their

reliability to the value p⋆ = 0.9 and the probability of terminal connectivity becomes

equal R1 = 0.593.

Now recompute the gradient vector and repeat the same procedure. The choice will

be to reinforce links 2, 6 and 11, which gives R2 = 0.659. (We omit the intermediate

calculations).

The next iteration adds links 12, 18, 31 and the result is R3 = 0.738.

The fourth iteration adds links 3, 7 and 17 and results in R⋆ = 0.795.

Finally, only the fifth iteration which adds links 19, 27 and 29 achieves the desired

reliability and even exceeds it: R = 0.864. The total cost of this choice is

C =
∑

(e:21,26,32,2,6,11,12,18,31,3,7,17,19,27,29)

c(e)= 31.

This is a considerable saving comparing to the cost of the result achieved in

Scenario B. If 12 edges with minimal cost would have been chosen for the rein-

forcement, then the cost would be only 15, but the reliability would be very low—

R = 0.794.

To underline the difficulty arising in finding the “optimal” solution, let us mention

that we could lower the cost C by 4 units by excluding the link 19, but the reliability

would become 0.842, which is below the desired level. Excluding link 29 would

produce the same cost 31–4 = 27 but with reliability 0.833. In other words, there is a

principal difficulty in comparing the “best” solution with the “second best” because

of different costs.

The sequential application of the knapsack principle (i.e. choosing for reinforce-

ment the link which on each step has the largest value of α among the non reinforced

links) is, by our believe, a reliable way of getting good if not the best possible

solution. In applying this principle we can manipulate by the size of the step, i.e.

choose simultaneously several links for reinforcement. In the above example we took

three links and the whole solution was carried out in five steps. We have tried several

other strategies, and in particular, tried to choose a single link on each step, so that the

whole solution was made in 14 steps with recomputing after each step the gradient

vector.

Surprisingly, we obtained a slightly better result: reinforcing only 14 links (instead

of 15) we achieved reliability R⋆ = 0.873 for the same cost of C = 31. The links to

reinforce are the following:

21, 32, 2, 26, 11, 31, 12, 18, 17, 3, 7, 27, 29, 20.

It should be noted that the choice of the links to be reinforced on steps 9–14 was

based on very small differences between the values of α/c(e) which might have

appeared as a result of a statistical error in Monte Carlo simulation of the gradient.

Since the difference R⋆−R = 0.009 exceeds the statistical error caused by reliability

estimation for M = 100,000 replications, we are inclined to assume that the single-

step strategy is preferable.
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2.4 Network Disintegration

2.4.1 Introduction

In this section we consider the following situation. Network components (links)

start to fail, in random order, one after another. In reality, this may happen as a

result of a sequence of heavy road accidents, natural disasters (floods, earthquakes,

fires) or an intentional “enemy attack”. Sooner or later, one or several terminals gets

isolated from other terminals, and the process continues until the network completely

collapses. Network collapse, by our definition, is network disintegration into isolated

clusters, i.e. the network state in which each terminal becomes isolated from all other

terminals.

Our goal is to provide a probabilistic description of this process. In particular, we

are interested in the probability P(x; W ) that after a failure of x links the networks

has disintegrated into W clusters.

Several examples of this kind are presented in [15] and [12]. The main formal

tool for investigating network disintegration is its marginal D-spectra, see Sect. 1.3.

The network disintegration we will illustrate by the example of the transportation

network considered in the previous section. This network has 25 nodes, 4 of which

are terminals, and 34 links. Its UP state corresponds to W = 1, i.e. when there is only

one cluster (all four terminals are connected to each other). In the process of gradual

link failures, the network enters state W = 2, W = 3 and eventually disintegrates into

four isolated clusters (W = 4). The process of gradual link failures can be considered

in various time frames. For example, a reasonable assumption is that links failures

take place according to an “external” Poisson shock process with parameter λ, see

e.g. [4, 8]. Another assumption is to imagine that links have random i.i.d. lifetimes

τ1, . . . , τ34 with a continuous CDF H(t)= P(τi ≤ t), see [22, 23]. Important is the

fact that links fail in random order, and all possible orders are equally probable. This

is automatically guaranteed by the i.i.d. assumption. We will not specify the temporal

process of link failures appearance and will count the “time” in the units of failed

links. This is equivalent to the assumption that links fail at the instants t = 1, 2, 3, . . .

2.4.2 Discrete Densities of the Transition Times

The discrete marginal densities for the location of the first, second and third anchor

are presented in Table 2.6, columns 2–4. We see that the appearance of two clusters

happens in the interval x ∈ [3, 23]. Elementary calculations give that the average

number of link failures for this event is m1 =
∑34

x = 1 x · f (1)(x)= 10.4. The appear-

ance of three clusters happens in diapason x ∈ [6, 27], and the average is m2 = 14.3.

The appearance of four clusters is described by the third spectrum (the last column)

and takes place for x ∈ [8, 32], with the average m3 = 18.8. Summing up, two clus-

ters appear on the average after x = 10 links fail, and each next cluster appears, on the

http://dx.doi.org/10.1007/978-3-642-22374-7_1
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Table 2.6 Edge spectra for the transport network

x f (1) f (2) f (3)

1 0 0 0

2 0 0 0

3 0.00216 0 0

4 0.00775 0 0

5 0.01799 0 0

6 0.03674 0.00014 0

7 0.06284 0.00127 0

8 0.09842 0.00593 0.00001

9 0.13231 0.01729 0.00015

10 0.15362 0.04225 0.00108

11 0.15198 0.08104 0.00488

12 0.12819 0.12221 0.01421

13 0.09072 0.15000 0.03248

14 0.05604 0.14950 0.05813

15 0.03230 0.12982 0.08072

16 0.01663 0.10444 0.09758

17 0.00740 0.07595 0.10963

18 0.00307 0.05026 0.10699

19 0.00118 0.03204 0.10134

20 0.00050 0.01846 0.09017

21 0.00012 0.00982 0.07558

22 0.00003 0.00520 0.06189

23 0.00001 0.00258 0.04916

24 0 0.00107 0.03741

25 0 0.00043 0.02765

26 0 0.00020 0.01923

27 0 0.00010 0.01336

28 0 0 0.00877

29 0 0 0.00536

30 0 0 0.00248

31 0 0 0.00137

32 0 0 0.00037

33 0 0 0

34 0 0 0

average, after 4–5 link failure. The graphs of the discrete densities f (r) are presented

in Fig. 2.8.

2.4.3 The Cumulative D-Spectra and State Probabilities

The cumulative D-spectra F (i)(x), i = 1–3 are presented in Table 2.7 in the columns

2–4. We remind that F (1)(x) is the probability that after x links have failed, the

network has two or more clusters. Similarly, F (2)(x) is the probability that after x
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link have failed, there are at least three clusters. Finally, F (3)(x)= P(x, W = 4) is

the probability that the network has four clusters. The last two columns give the

probabilities that there are exactly 2 or 3 clusters, respectively. Obviously,

P(x; 2)= F (1)(x) − F (2)(x), P(x; 3)= F (2)(x) − F (3)(x),

see Sect. 1.3.

Figure 2.9 presents the graphs of all three cumulative spectra.

2.4.4 Network State Probabilities as Function of q

In conclusion, we consider the network state probabilities as a function of link failure

probability q. According to Sect. 1.3,

P(UP) = P(1 cluster; q)= 1−

34∑

x = 1

F (1)(x)qx (1−q)(34−x)34!/((x !(34−x)!),

http://dx.doi.org/10.1007/978-3-642-22374-7_1
http://dx.doi.org/10.1007/978-3-642-22374-7_1
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Table 2.7 Edge cumulative D-spectra and state probabilities, M = 105

x F (1)(x) F (2)(x) F (3)(x) = P(x; 4) P(x; 2) P(x; 3)

1 0 0 0 0 0

2 0 0 0 0 0

3 0.00216 0 0 0.00216 0

4 0.00991 0 0 0.00991 0

5 0.02790 0 0 0.02790 0

6 0.06464 0.00014 0 0.06450 0.00014

7 0.12748 0.00141 0 0.12607 0.00141

8 0.22590 0.00734 0.00001 0.15250 0.00733

9 0.35821 0.02463 0.00016 0.33358 0.02447

10 0.51183 0.06688 0.00124 0.44495 0.06564

11 0.66381 0.14792 0.00612 0.51589 0.1418

12 0.79200 0.27013 0.02033 0.52187 0.2498

13 0.88272 0.42013 0.05281 0.44259 0.36732

14 0.93876 0.56963 0.11094 0.36913 0.45869

15 0.97106 0.69945 0.19166 0.27161 0.50779

16 0.98769 0.80389 0.28924 0.18380 0.51465

17 0.99509 0.87984 0.39887 0.11525 0.48097

18 0.99816 0.93010 0.50586 0.06806 0.42424

19 0.99934 0.96214 0.60720 0.03720 0.35494

20 0.99984 0.98060 0.69737 0.01924 0.28323

21 0.99996 0.99042 0.77295 0.00954 0.28323

22 0.99999 0.99562 0.83484 0.00437 0.21747

23 1 0.99820 0.88840 0.00180 0.16078

24 1 0.99927 0.92141 0.00073 0.11420

25 1 0.99970 0.94906 0.00030 0.07786

26 1 0.99990 0.96829 0.00010 0.05064

27 1 1 0.98165 0 0.03161

28 1 1 0.99042 0 0.01835

29 1 1 0.99578 0 0.00958

30 1 1 0.99826 0 0.00422

31 1 1 0.99963 0 0.00174

32 1 1 1 0 0

33 1 1 1 0 0

34 1 1 1 0 0

P(2; q) = P(2 clusters; q) =

34∑

x = 1

(F (1)(x) − F (2)(x))qx (1 − q)(34−x)34!/((x !(34 − x)!),

P(3; q) = P(3 clusters; q) =

34∑

x = 1

(F (2)(x) − F (3)(x))qx (1 − q)(34−x)34!/((x !(34 − x)!),

P(4; q)= P(4 clusters; q)=

34∑

x = 1

F (3)(x)qx (1 − q)(34−x)34!/((x !(34 − x)!).
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Table 2.8 Network state

probabilities
q P(UP) P(2) P(3) P(4)

0.1 0.981 0.019 0.0003 0.000001

0.2 0.817 0.160 0.021 0.016

0.3 0.475 0.351 0.145 0.029

0.4 0.148 0.336 0.337 0.155

0.5 0.037 0.168 0.389 0.406

Table 2.8 presents the numerical values of these probabilities for q = 0.1(0.1)0.5.

We see from it how the probabilities are distributed between the states of the network.

For example, for q = 0.2 the network is UP with probability 0.817, and the most of

the remaining probability belongs to the state with exactly two clusters. For q = 0.4,

the network is UP with probability 0.148 only, and with probabilities about 1/3 there

are two or three clusters, respectively.

2.4.5 Network Resilience

We remind that the probabilistic resilience of the network respr (N;β) is the largest

value x such that 1 − F(x)> 1 − β, where F(x) is the cumulative D-spectrum, see

Sect. 1.3.2. Assume β = 0.075. From Table 2.7, column 2, we see that with respect

to network terminal connectivity,

respr (N;β)= 6,

which gives a rather low value of relative resilience ([6], p. 435)

η =
respr (N;β)

34
= 0.17.

If the network failure is defined as the total collapse (4 clusters), then from the fourth

column of Table 2.7. we see that

respr (N;β)= 13,

which gives the relative resilience η = 13/34 = 0.38.

These η values reflect rather low network reliability which is quite understandable

because the network is not dense and the average node degree d = 34×2/25 = 2.72.
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Gradient vector, 40, 64, 66

I
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Knapsack solution, 65
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Link reinforcement, 62
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Minimal path, 4

Monotone system, 4

Monte Carlo algorithms, 41

Monte Carlo methods, 56

Monte Carlo procedure, 64

Monte Carlo, estimation accuracy, 44

Multi-step network, 12, 46

Multi-step, single-step systems, 12, 46

Multidimensional D-spectrum, 13

N

Network DOWN probability,

bounds, 17

Network UP and DOWN states, 6

Network clusters and terminals

Network collapse, 67

Network design, heuristic, 58

Network disintegration, 67

Network lifetime, 8, 18, 24

Network reinforcement, 62

Network reliability, 6

Network reliability design, 55

Network reorganization, 57

Network resilience, 10, 71

Network state vector, 6

Network states, definition, 11

Network states, probability, 69

Network survival function, 6

Network with many states, 20

Network, definition, 1

Network, vertices, nodes, terminals, 1

Networks in parallel, 24

Networks in series, 24

Node elimination, 12

Node failure, 2

Node importance in

dodecahedron, 57

Node relevance, 59

Normal zero mean r.v., 45

O

Optimal solution, 66

Order statistic, 21

Organizing network, 26

P

Parallel system, 3

Path vector, path set, 4
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Scenario A of network design, 63

Scenario B, network reinforcement, 64
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Series system, 3
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Signature, 18

Signature of recurrent system, 27
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Spectrum estimation, 45

Spider-network, 52

Standard deviation, 33
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