


for Modern Processors

Post-Silicon and Runtime Verification



  



 

 

 

 

 

 

 
Verification for Modern

Processors

Ilya Wagner     Valeria Bertacco•

Post-Silicon and Runtime



 

 

 

 

 

 

 

 

 

 

 

 

Springer New York Dordrecht Heidelberg London 
  

All rights reserved. This work may not be translated or copied in whole or in part without the 

New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. 

software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. 
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they 
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are 
subject to proprietary rights. 
 
Printed on acid-free paper 
 
Springer is part of Springer Science+Business Media (www.springer.com) 

 

written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, 

Use in connection with any form of information storage and retrieval, electronic adaptation, computer 

ISBN 978-1-4419-8033-5 

© Springer Science+Business Media, LLC 2011 

e-ISBN 978-1-4419-8034-2 
DOI 10.1007/978-1-4419-8034-2 

Ilya Wagner

USA

and Computer Science
Department of Electrical Engineering 

University of Michigan

Valeria Bertacco

USA
valeria@umich.edu

ilya.wagner@intel.com 

Platform Validation Engineering Group
Intel Corporation
Hillsboro, Oregon

Ann Arbor, Michigan 

http://www.springer.com


To my niece Ellie, who showed me

the miracle of learning.

Ilya Wagner

To all my students, who make working

in the field of verification such a rewarding

experience.

Valeria Bertacco



  



Preface

The growing complexity of modern processor designs and their shrinking produc-

tion schedules cause an increasing number of errors to escape into released products.

Many of these escaped bugs can have dramatic effects on the security and stabil-

ity of consumer systems, undermine the image of the manufacturing company and

cause substantial financial grief. Moreover, recent trends towards multi-core pro-

cessor chips, with complex memory subsystems and sometimes non-deterministic

communication delays, further exacerbate the problem with more subtle, yet more

devastating, escaped bugs. This worsening situation calls for high-efficiency and

high-coverage verification methodologies for systems under development, a goal

that is unachievable with today’s pre-silicon simulation and formal validation so-

lutions. In light of this, functional post-silicon validation and runtime verification

are becoming vitally important components of a modern microprocessor develop-

ment process. Post-silicon validation leverages orders of magnitude performance

improvements over pre-silicon simulation while providing very high coverage. Run-

time verification solutions augment the hardware with on-chip monitors and check-

ing modules that can detect erroneous executions in systems deployed in the field

and recover from them dynamically.

The purpose of this book is to present and discuss the state of the art in post-

silicon and runtime verification techniques: two very recent and fast growing trends

in the world of microprocessor design and verification. The first part of this book

begins with a high-level overview of the various verification activities that a proces-

sor is subjected to as it moves through its life-cycle, from architectural conception

to silicon deployment. When a chip is being designed, and before early hardware

prototypes are manufactured, the verification landscape is dominated by two main

groups of techniques: simulation-based validation and formal verification. Simula-

tion solutions leverage a model of the design’s structure, often written in specialized

hardware programming languages, and validate a design by providing input stimuli

to the model and evaluating its responses to those stimuli. Formal techniques, on the

other hand, treat a design as a mathematical description of its functionality and fo-

cus on proving a wide range of properties of its functional behavior. Unfortunately,

these two categories of validation methods are becoming increasingly inadequate
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in coping with the complexity of modern multi-core systems. This is exactly where

post-silicon and runtime validation techniques, the primary scope of this book, can

lend a much needed hand.

Throughout the book we present a range of recent solutions in these two domains,

designed specifically to identify functional bugs located in different components of

a modern processor, from individual computational cores to the memory subsystem

and on-chip fabrics for inter-core communication. We transition into the second part

of the book by presenting mainstream post-silicon validation and test activities that

are currently being deployed in industrial development environments and outline

important performance bottlenecks of these techniques. We then present Reversi,

our proposed methodology to alleviate these bottlenecks in processor cores. Basic

principles of inter-core communication through shared memory are overviewed in

the following chapter, which also details new approaches to validation of commu-

nication invariants in silicon prototypes. We conclude the discussion of functional

post-silicon validation with a novel echnique, targeted specifically to modern multi-

cores, called Dacota.

The recently proposed approaches to validation that we collected in part two

of this book have an enormous potential to improve verification performance and

coverage; however, there still is a chance that complex and subtle errors evade them

and escape into end-user silicon systems. Runtime solutions, the focus of the third

part of this work, are designed to address these situations and to guarantee that

a processor performs correctly even in presence of escaped design bugs without

degrading user experience. To better analyze these techniques we investigate the

taxonomy of escaped bugs reported for some of the processor designs available

today, and we also classify runtime approaches into two major groups: checker- and

patching-based. In the remainder of part three we detail several runtime verification

methods within both categories, first relating to individual cores and then to multi-

core systems. We conclude the book with a glance towards the future, discussing

modern trends in processor architecture and silicon technology, and their potential

impacts on the verification of upcoming designs.
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Acronyms

ALU Arithmetic-logic unit. A hardware block that performs integer arithmetic

and logic functions, such as addition, subtraction, logic AND, etc.

API Application programming interface. A set of functions and routines which

describe the interface of a software application. API description is typi-

cally limited to the application interface, and does not specify the way the

functionality of the program is actually implemented.

ATPG Automatic test pattern generation. A technique for post-silicon validation

of a manufactured circuit, which attempts to expose errors in fabrication of

individual gates and interconnect in the design. ATPG tools use a software

representation of the netlist to derive input stimuli that can expose a variety

of manufacturing defects and then apply these tests to the prototype.

BDD Binary decision diagrams. A data structure for compact representation and

fast operations on Boolean logic functions. BDDs are commonly used as

an underlying engine of formal verification approaches, such as symbolic

simulation, reachability analysis and model checking.

BIOS Basic input-output system. A firmware residing on the motherboard, that

tests and configures various modules of a computer system upon startup.

BMC Bounded model checking. A pre-silicon verification technique which es-

tablishes adherence of design’s behavior, within a finite number of clock

cycles, to formal specifications, often written as temporal logic formulas.

CPI Cycles per instruction. A metric of processor performance, which mea-

sures the average number of clock cycles that the device needs to perform

one operation.

CPU Central processing unit. Electronic circuit capable of executing software

programs, synonymous to the word “microprocessor”.

DFT Design for testability. A class of techniques, which enable testing and de-

bugging of digital circuits, e.g., scan-chains, boundary-scan, on-chip logic

analyzers, etc.

ECC Error-correcting code. A special redundant encoding of the data that al-

lows to recover the information even if some of the bits of it are corrupted.

Typically used to protect computer storage, such as memory and caches.
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EDA Electronic design automation. A generic name for computer-aided tools

for electronics design, as well as for the companies producing and de-

ploying such tools.

FPGA Field-programmable gate array. A digital circuit, which can be programmed

to implement arbitrary logic functions. FPGAs are commonly used to em-

ulate behavior of complex devices, such as microprocessors, before the

first prototype is manufactured.

FPU Floating point unit. A hardware block that performs floating point compu-

tation inside of the processor.

FRCL Field-repairable control logic. A hardware patching solution, which aug-

ments a processor with a programmable matcher to detect and recover

from erroneous control logic states.

FSM Finite state machine. A graph description of hardware block operation.

Consists of graph vertices, describing states of the machine, and edges,

identifying legal transitions between the states.

GPU Graphics processing unit. An electronic circuit dedicated to processing

graphical information, before it is sent to a computer display. GPU chips

are commonly placed on the motherboard or implemented as a separate

graphics card.

HDL Hardware description language. A class of programming languages that

are used to describe functionality and organization of digital hardware, so

the behavior of the design can be simulated.

ILP Instruction level parallelism. A potential overlap in the execution of in-

dependent instructions. ILP measures how many operations in a program

can be performed in parallel.

ISA Instruction set architecture. A complete list of all instructions and oper-

ations that a processor can execute. ISA also often includes a complete

specification of the processor interface, in terms of communication proto-

cols, interrupt handling, etc.

JTAG Joint test action group. Initially, an industry group that designed boundary-

scan technique for circuit board testing. Later, term JTAG became synony-

mous with the boundary scan architecture.

NMR N-modular redundancy. A resiliency technique, where N modules (identi-

cal or heterogeneous) compute the same function in parallel. Errors in one

unit can then be detected and corrected through majority voting scheme.

OCLA On-chip logic analyzer. A circuit, residing on a processor die, which can

be programmed to monitor for specific activity of the processor and record

the internal state of the chip upon occurrence of the trigger.

OS Operating system. A software supervisor that manages the hardware and

user-level programs of a computer system. An operating system provides

applications with access to the hardware and coordinates the resource

sharing in a computer system.

PCI Peripheral component interconnect. A type of computer bus that connects

peripheral devices of a system, e.g., graphics and network cards, to the

motherboard and the processor.
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PSMI Periodic state management interrupt. A technology developed at Intel,

which allows to periodically stop program execution and collect the in-

ternal state of a silicon prototype for post-silicon debugging.

QoS Quality of service. A network control mechanism that distributes re-

sources to different classes of traffic to achieve deterministic or statistical

guarantees of system performance.

ROB Re-order buffer. A hardware block for instruction re-ordering used in

complex out-of-order processor architectures. To hide the effects of long-

latency operations a processor may issue instructions in an order different

than that of the original program and use an ROB to ensure that the in-

struction stream is committed in strict program order.

ROM Read-only memory. A class of storage of computer devices, where stored

data cannot be modified. In microprocessor domain read-only memory is

typically implemented as a hard-wired lookup table.

RTG Random test generator. A software that creates randomized sequences of

inputs to the design for testing purposes. Typically the test stimuli are not

entirely random, but are constrained to a subset of all valid inputs to the

design.

RTL Register transfer level. An register transfer level description of a logic

device consists of memory elements (registers) and functions that transfer

the data between them. An RTL description is typically implemented in a

hardware description language.

SAT Boolean satisfiability. A class of problems that establishes if there exist

an assignment to variables of a Boolean formula that evaluates it to true.

SAT-solvers and their derivatives are often used by formal verification ap-

proaches, such as equivalence checking.

SEU Single event upset. A change or corruption of the state of a latch (or a

flip-flop), due to an energetic particle strike.

SPICE Simulation program with integrated circuit emphasis. A class of simu-

lation software that can evaluate the behavior of an integrated circuit

from the electrical standpoint. SPICE technique solve complex differen-

tial equations, which describe how voltage and current at in various points

in the design change over time, thus, operating at lower abstraction level

than logic simulation solutions.

STG State transition graph. A graph description of states and transitions be-

tween the states that hardware can assume at runtime. Synonymous to

finite state machine.

SoC System-on-a-chip. A hardware device that integrates multiple components

of a computer system, e.g., processing cores, non-volitile memory, periph-

eral controllers, etc. on a single silicon die.

TLB Translation look-aside buffer. A hardware module that acts as a fast cache

to a larger and slower lookup table, thus increasing processor performance

for accesses that hit in the TLB.



  



Part I

VERIFICATION OF A MODERN
PROCESSOR



This part of the book provides a high-level overview of the design and verification

cycle of a modern processor, starting from the early design phases, to prototype

manufacturing and testing and to product release. In the second chapter we explore

each of the three major phases of the verification universe: pre-silicon verification,

post-silicon validation and runtime techniques. For each phase, we discuss several

key solutions and investigate their main advantages and drawbacks. Most impor-

tantly, we compare performance and coverage of verification methods across dif-

ferent phases, making the case for functional post-silicon and runtime verification

techniques.



Chapter 1

VERIFICATION OF A MODERN

PROCESSOR

Abstract. Over the past four decades, microprocessors have come to be a vital and

inseparable part of the modern world, becoming the digital brain of numerous elec-

tronic devices and gadgets that make today’s lifestyle possible. Processors are ca-

pable of performing computation at astonishingly high speeds and are extremely

integrated, occupying only a few square centimeters of silicon die. However, this

computational power comes at a price: the task of verifying a modern micropro-

cessor and guaranteeing the correctness of its operation is increasingly challenging,

even for most established processor vendors. To deliver always higher performance

to end-users, processor manufacturers are forced to design progressively more com-

plex circuits and employ immense verification teams to eliminate critical design

bugs in a timely manner. Unfortunately, too often size doesn’t seem to matter in

verification, as schedules continue to slip, and microprocessors find their way to the

marketplace with design errors. In this chapter we overview the life-cycle of a mi-

croprocessors, discuss the challenges of verifying these devices, and show examples

of hardware errors that have escaped into production silicon because of insufficient

validation an d their impact.

1.1 The Birth of the Microprocessor

Over the past four decades microprocessors have permeated our world, ushering in

the digital age and enabling numerous technologies, without which today’s life style

would be all but impossible. Processors are microscopic circuits printed onto silicon

dies and consisting of hundreds of millions of transistors interconnected by wires.

What distinguishes microprocessors from other integrated circuits is their ability to

execute arbitrary software programs. In other words, processors make digital de-

vices programmable and flexible, so a single device can efficiently perform various

operations, depending on the program that is running on it. In our every day activi-

ties we encounter and use these tiny devices hundreds of times, often without even

realizing it. Processors allow us to untether our phones from the wired network and
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enable mobile communications, while their counterparts, deployed by phone com-

panies, made communications richer and much more reliable. Processors monitor

the health of hospital patients, control airplanes, tally election votes and predict

weather. And, of course, they power millions of personal computers of all shapes

and sizes, as well as the backbone of the Internet, a vital and inseparable part of

modern life. The computational power of these devices grows every year at an as-

tonishing pace: not long ago processors were only capable of executing just a few

thousands operations per second, while today they can perform billions of complex

computations per second. Finally, in the past few years, hardware design houses

have introduced multi-core processors, that is, systems comprising multiple proces-

sors (cores) on the single silicon die. These systems, can execute several programs

concurrently, thereby multiplying the overall performance delivered to the user.

However, to be so powerful, processors implement extremely complex architec-

tures, making the design and manufacturing of these devices a major challenge for

the semiconductor industry. Companies such as Intel, IBM and AMD are forced to

dedicate hundreds of engineers for years at a time to continue to advance micropro-

cessor technology and deliver the next generation processors to end-users. More-

over, as these designs grow in complexity, it becomes increasingly harder to verify

them and ensure that they operate properly. Design houses report that today verifica-

tion efforts significantly overweigh design activities, and that they often staff their

teams with two verification engineers per designer. Unfortunately, the complexity

and the number of features in each new generation of CPUs have quickly outpaced

the capabilities of even the largest industrial teams. As a consequence, today it is

impossible to provide high-quality verification of microprocessors with traditional

means, and products released to the public are becoming less and less reliable. Fur-

thermore, early in the development process engineers must assess the verifiability

of all the features that they want to introduce into the new product: if proposed fea-

tures cannot pass high-quality validation on time and within budget, they cannot be

deployed in the final product and are removed from the design plan, resulting in a

reduced set of capabilities and performance of the new system.

The consequences of this trend of diminishing quality in verification can be dra-

matic: indeed, the impact of bugs in production microprocessors can range widely

from innocuous to devastating, for several reasons. For instance, it is possible for a

computer system to become compromised, in terms of safety and security, because

of a hardware bug. As a result, a system with a buggy processor becomes vulner-

able to security attacks. Attacks of this type could be perpetrated even on systems

running completely correct software, since they rely exclusively on underlying hard-

ware flaws [Int04, Kas08]. Moreover, bugs can have a disastrous financial impact on

the manufacturing company by triggering a costly recall of faulty hardware, as was

the case in a past Intel processor [Mar08]; or causing significant delays in product

release, similar to what happened with AMD’s Phenom, released in 2007 [Val07].

The impact in both cases is estimated in billions of dollars, due to the large volume

of defective components that a functional bug always entails. To prevent devastat-

ing errors from seeping into the released designs, a variety of techniques have been

devised to detect and correct issues during system’s design and manufacturing. Con-
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ceptually, these verification approaches can be divided into three families, based on

where they intervene in a processor life-cycle: pre-silicon, post-silicon and runtime

verification solutions.

Pre-silicon techniques are heavily deployed in the early stages of a processor’s

design, before any silicon prototype of the device is available, and can be classified

as simulation-based or formal solutions. Simulation-based methods are the most

common approaches to locate design errors in microprocessors. Random instruc-

tion sequences are generated and fed into a detailed software model, also called a

hardware description of a design, results are computed by simulation of this model

and then checked for correctness. This approach is used extensively in the industry,

yet it suffers from a number of drawbacks. First, the simulation speed of the detailed

hardware description is several orders of magnitude slower than the actual proces-

sor’s performance. Therefore, only relatively short test sequences can be checked in

this phase; for instance, it is almost impossible to simulate an operating system boot

sequence, or the complete execution of a software application running on the pro-

cessor. More importantly, simulation-based validation is a non-exhaustive process:

the number of configurations and possible behaviors of a modern microprocessor is

too large to allow for the system to be fully checked in a reasonable time.

Another family of pre-silicon solutions, formal verification techniques, solves the

non-exhaustive nature of simulation, using sophisticated mathematical derivations

to reason about a design. If all possible behaviors of the processor could be described

with mathematical formulas, then it would be possible to prove the correctness of

the device’s operation as a theorem. In practice, in the best scenarios it is possible

to guarantee that a design will not exhibit a certain erroneous behavior, or that it

will never produce a result that differs from a known-correct reference model. The

primary drawback of formal techniques, however, is that they are far from capable

of dealing with the complexity of modern designs, and thus their use is limited to

only a few, small components within the processor.

After a microprocessor is sufficiently verified at the pre-silicon stage, a proto-

type is manufactured and subjected to post-silicon validation where tests can, for

the first time, be executed on the actual hardware. The key advantage of post-silicon

validation is that its raw performance enables significantly faster verification than

pre-silicon software-based simulation, thus it could deliver much better correct-

ness guarantees. Unfortunately, post-silicon validation presents a challenge when

it comes to detection and diagnosis of errors because of the limited observability

provided by this technique, since at this stage it is impossible to monitor the internal

components of the hardware prototype. Therefore, errors cannot be detected until

they generate an invalid result, or cause the system to hang. The limited observabil-

ity leads to extremely involved and time consuming debugging procedures, with the

result that today post-silicon validation and debugging has become the single largest

cost factor for processor companies such as Intel.

Due to the limitations of pre- and post-silicon verification, and shrinking time-

lines for product delivery, processor manufacturers have started to accept the fact

that bugs do slip into production hardware and thus they are beginning to explore

runtime verification solutions that can repair a device directly at the customer’s site.
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“Patching” microprocessor bugs, however, is a non-trivial task, since the function-

ality of the device is already embodied in the transistors comprising the silicon die,

and it cannot be easily modified at this point. To enable in-the-field patching, design-

ers create special processor components dedicated to detecting erroneous behaviors

and recovering from them. Runtime verification is currently in its early research

stage: a few techniques have been recently proposed by academic research, while

problem-specific solutions are starting to appear in commercial products.

1.2 Verification Throughout the Processor Life-cycle

A traditional microprocessor’s design and manufacturing flow (shown in Figure 1.1)

consists of a series of steps that considers a high-level description of processor oper-

ation (specification), refines and transforms it, and, finally, implements the specified

functionalities on a silicon die. After each step, the design is progressively verified,

to ensure that, after all transformation and concretization steps, the behavior of the

device still adheres to the original specification. The process starts with a high-level

specification of the microprocessor’s required characteristics and functionalities, of-

ten described in a natural language, and/or diagrams describing its basic structure

and how the device should interface to other digital systems. This specification is

then converted to an architectural model of the device, typically written in a high-

level programming language (such as C). This model represents the first formalized

reference of the final system’s behavior. Implementation in a hardware description

language (HDL) can then start. The HDL description of the design describes the op-

eration of individual sub-modules of the processor, as well as their interactions, and

is also known as the register-transfer level (RTL) model. This RTL model is then

verified to establish its equivalence to the architectural model through simulation-

based and formal techniques. The outcome of simulation-based tests is compared

to those of the known-correct (or “golden”) architectural model and discrepancies,

indicators of errors, are identified and fixed. In addition to simulation-based tech-

niques, in pre-silicon verification, engineers often employ formal methods, which

can check correctness of a design using mathematical proofs and can thus guarantee

the absence of certain types of errors. Unfortunately, formal methods cannot handle

complex RTL models due to their limited scalability, therefore, their usage is limited

to a few, small critical blocks.

Once the RTL model is sufficiently validated, designers use synthesis software

that maps HDL into individual logic gates, registers and wires, generating a netlist

of the circuit. Since conversion from an RTL model to a netlist may incur errors, spe-

cialized verification solutions intervene again to check that this new transformation

is still equivalent to the previous model. Place and route software applications then

calculate how individual logic elements in the netlist can be placed on the silicon

die to produce a design that fulfills the required characteristics of power, area, delay,

etc. After placement, the final description of the design is taped-out, i.e., sent to a

fabrication facility to be manufactured. When the first hardware prototypes become
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Fig. 1.1 Modern microprocessor design and verification flow. In the pre-silicon phase an ar-
chitectural model, derived from the original design specification, is converted into an RTL imple-
mentation in a hardware description language (HDL). The RTL model can then be synthesized,
producing a design netlist. Place and route software calculates where individual logic gates and
wire connections should be placed on the silicon die and then a prototype of the processor is man-
ufactured. Once a prototype becomes available, it is subjected to post-silicon validation. Only after
the hardware is shown to be sufficiently stable in this validation phase, the processor is released
and deployed in the market.

available, they can be inserted into a computer system for post-silicon validation

(as opposed to the pre-silicon verification that occurs before the tape-out). One of

the distinguishing features of post-silicon verification is its high performance: the

same performance as the final product, which is orders of magnitude higher than

simulation speeds in the pre-silicon domain. Typically, at this stage engineers try

to evaluate the hardware in real life-like settings, such as booting operating sys-

tems, executing legacy programs, etc. The prototype is also subjected to additional

random tests, in an attempt to create a diverse pool of scenarios where differences

between the hardware and the architectural model can be identified to flag any re-

maining errors. When a bug is found at this stage, the RTL model is modified to

correct the issue and the design often must be manufactured again (this process is

called re-spin).

A processor design usually goes through several re-spins, as bugs are progres-

sively exposed and fixed in manufactured prototypes. Ultimately, the design is sta-

bilized and it can go into production. Unfortunately, due to the complexity of any

modern processor, it is impossible to exhaustively verify its behavior either in pre-

silicon or in post-silicon, thus subtle, but sometimes critical, bugs often slip through

all validation stages. Until recently, if a critical functional bug was exposed in end-

user’s hardware, manufacturers had no other choice but to recall the device. Today



8 1 VERIFICATION OF A MODERN PROCESSOR

vendors are starting to develop measures to avoid such costly recalls and allow their

products to be patched in the field. Researchers in academia have also proposed

solutions to ensure correctness of processor operation with special on-die check-

ers. Patching- and checker-based techniques are cumulatively classified as runtime

verification approaches. In Chapter 2 we review the current techniques deployed in

pre-silicon, post-silicon and runtime phases in more details, while in the remainder

of the book we concentrate on several new promising solutions in the two latter

domains.

1.3 Verification of a Modern Processor: a Case Study

The importance and difficulty of microprocessor verification is often underestimated

today by casual users and electronic design industry professionals alike. One of the

main causes of this is the fact that processor vendors rarely release exact data about

their internal validation techniques and experiences into the public domain, and are

even more cautions to disclose information about any encountered bugs. This is

understandable from the business point of view to a certain degree, since a large

portion of the tools and methodology used in validation by design companies are

developed in-house and are used as competitive advantage against rival vendors.

Likewise, information about any sort of bug, even those that had been fixed before

product release, casts a negative image on the manufacturer and could potentially

reveal confidential details about the inner-workings of the product. Nevertheless,

there are a few publications from processor vendors that shed light on the validation

of their products and give some degree of appreciation of the challenges faced by

verification engineers.

One of the most comprehensive of such studies reports the pre-silicon validation

effort on the Pentium 4 project , which was a new processor designed based on In-

tel’s 7th generation NetBurst architecture [Ben05, Ben01]. In this work, authored

by Bob Bentley, the daunting task of verification engineers is vividly described.

The design process for Pentium 4 was started at Intel in 1996 and continued until

tape-out three years later. During this time the validation team increased from 10 to

70 people, the majority of which had to be trained to use such verification tools as

model checking, cluster-level simulation, etc. By tape-out time, the processor had

undergone a transformation from a high-level idea and an architectural description

to an RTL design of more than one million lines and was validated at cluster- and

chip-level for more than 200 billions simulation cycles. This number is an astonish-

ing feat if one takes into account that the chip-level simulation speed did not exceed

5Hz, due to sheer size of the RTL code base: that corresponds to more than a thou-

sand years of cumulative simulation time. Consequently, the majority of pre-silicon

simulation was done at cluster level, which not only allowed for faster simulation,

but added much needed controllability to individual processor blocks. Moreover,

as the RTL code was modified, regressions suites were executed time and again to

maintain code stability throughout the development. To aid with this verification ef-
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fort, the engineering team had to resort to large server farms that processed batches

of tests around the clock.

Pre-silicon validation, however, was not limited to simulation: the Pentium 4 val-

idation project pioneered an extensive use of formal validation techniques for the

microprocessor domain. Yet, those were only applied to a few critical blocks, such

as the floating point unit and decoder logic, since the full design, comprising 42

million transistors, was too much for formal tools to handle. Thus, these mathe-

matical approaches were selectively directed towards blocks that had been sources

of errors in past designs. The effort payed off well, and several critical bugs were

exposed and fixed before tape-out. One of those had a probability of occurrence of

1 in 5 ∗ 1020 floating-point instructions, thus it was very likely that it would have

escaped a simulation-only verification methodology; its discovery overted a disaster

that could have been critical for the company.

While the “quality” of bugs caught by formal verification was high, the quantity

was fairly low (about 6% of total pre-silicon bugs), since only a few blocks were

targeted. Simulation-based validation with randomized tests at cluster-level, on the

other hand, provided for the majority of errors exposed (3,411 out of total of 7,855),

due to its scalability and relatively high speed. To make randomized test generation

as effective as possible, engineers tracked 2.5 million unit-level types of behavior

inside the device and directed the testing sequences to cover as many of these con-

ditions as possible. Directed assembly-level tests (over 12,000 in total) also led to

a very high error discovery rate, accounting for more than 2,000 bugs. Note that, a

number of additional issues were also exposed in testbenches and validation tools,

and had to be addressed during the verification process. These issues are not ac-

counted for in the reported 7,855 bugs. Post-silicon validation issues are also not

accounted for in the total. This phase of the design cycle of Pentium 4 was only

ten months long, yet during this time the device executed orders of magnitude more

cycles than in the three years of pre-silicon effort. Operating at speeds of 1GHz and

up, these prototypes underwent testing at different temperatures and voltages, run

scores of applications and random tests, and communicated with a range of periph-

eral devices. In addition to time and engineering efforts, post-silicon validation also

incurs high equipment costs: verification engineers commonly have to build and de-

bug specialized in-house testing and analysis platforms and purchase test-pattern

generators, optical probing machines and logic analyzers, with costs in the range of

hundreds of thousands of dollars.

1.4 Looking Ahead

The comprehensive report discussed in the previous section was compiled for a

processor designed in the late 90’s, nevertheless, it provides an accurate picture of

industrial-scale validation, which we can use as a baseline reference for outlining

future trends in verification. From the early 1970s, Moore’s law implacably has

pushed the device density up, and since the release of the first Pentium 4, proces-
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Table 1.1 Characteristics of processor designs developed during 2000-2008.

Year Name
Tech-

noglogy
(nm)

Number of
transistors

(mil.)

Die
area

(mm2)

Number
of

cores

Inter-core
comm.

medium

2000
Intel Pentium 4
Willamette

180 42 217 1 —-

2004
Intel Pentium 4
Prescott

90 125 109 1 —-

2005 IBM Cell 90 234 221 9 bus

2005
UltraSPARC
T1 Niagara

90 300 378 8 crossbar

2006
Intel Core 2
Merom

65 291 143 2 bus

2007
AMD Phenom
X4 Agena

65 463 285 4 bus

2007
Intel Polaris
prototype

65 100 275 80 2D mesh

2007 Tilera TILE64 90 615 430 64 2D mesh

2008
Intel Core i7
Bloomfield

45 731 263 4 crossbar

sor complexity has increased by at least an order of magnitude. In Table 1.1 we

report the characteristics of several notable processor designs developed in the past

decade for comparison, analysis, and as an indicator of future trends. The first crit-

ical point to note is the fact that, since the first Pentium 4, silicon fabrication tech-

nology has shrunk from 180 to 45nm. Moreover, various advanced features, such

as support for simultaneous multi-threading, multiple power savings techniques and

virtualization, have become commonplace. More importantly, modern designs of-

ten contain multiple computing cores, sometimes heterogeneous, communicating

with each other through on-die media. This diversification of on-chip resources is

expected to continue well into the future: designers have already began to integrate

peripheral components, such as memory controllers and graphics, into the main pro-

cessor. Thus, we can foresee that the CPU of the 21st century will be comparable

to a complex system on a chip (SoC), with a wide range of functionalities and in-

terdependent components, all requiring thorough validation. Production timelines

of these integrated circuits, however, are not expected to increase, since end-users

continue to demand higher performance and broader functionality at the same pace.

Consequently, designers will be forced to staff larger validation teams and increase

investments into simulation servers, prototyping tools, etc. Worse still, the perfor-

mance of traditional verification and design tools in the future will be lagging behind

the complexity of final silicon products even more. For instance, due to an increased

number of on-die components, the performance of a full chip-level simulation for
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future designs is not expected to be greater (and will probably be worse) than that of

the Pentium 4, despite significant improvements in the simulation hardware hosts.

As the number of features grows, in some cases full-system simulation may become

unfeasible. Likewise, increasing capabilities of formal verification tools in the future

will be outpaced by the complexity of critical modules requiring formal analysis.

In this worsening situation, the number of total bugs in processor products and the

speed with which they are discovered in the field is rapidly increasing. Researchers

have already reported that the escape bug discovery rate in Core 2 Duo designs is 3

times larger than that of the Pentium 4 design [CMA08]. Note that these are func-

tional errors that have evaded all validation efforts and found their way into the final

product, deployed in millions of computer systems world-wide. Thus, they entail a

very high risk of having a critical impact on the user base and the design house. It is

already clear that because of the expanding gap between complexity and verification

effort, in the future errors will continue to slip into silicon, potentially causing much

more damage than the infamous FDIV bug, which resulted in a $420 million loss for

Intel in the mid-90s [Mar08]. For instance, as recently as 2007, an error in the trans-

lation look-aside buffer of the third level cache in the Phenom processor by AMD

forced the manufacturer to delay the market release by several months. Not only this

delayed the distribution of the product to the market, but also created much nega-

tive publicity for the company, and influenced the price of its stock [Val07]. From

this grim picture we draw the conclusion that new validation solutions are critically

needed to enable the continued evolution of microprocessors designs in the future.

This concern is also voiced in the International Technology Roadmap (ITRS) for

Semiconductors, which states that “without major breakthroughs, verification will

be a non-scalable, show-stopping barrier to further progress in the semiconductor

industry.” ITRS also reports that there are no solutions available to provide high-

quality verification of integrated circuits and sufficiently low rate of escapes beyond

the year 2016 [ITR07].

1.5 Summary

Microprocessors have entered our world four decades ago and since that time have

played a vital role in our everyday life. Throughout these forty years, the capabilities

of these amazing devices have been increasing exponentially, and today processors

are capable of performing billions of computations per second, and executing multi-

ple software applications in parallel. This performance level was enabled by rapidly

growing complexity of integrated circuits, which, in turn, exacerbated the problem

of their verification. To validate modern processors, consisting of hundreds of mil-

lions of transistors, manufacturing companies are forced to employ large verification

teams, develop new validation technology and invest into costly testing and analysis

equipment. Traditionally, this verification activity is broken down into three major

steps: pre-silicon verification, post-silicon validation, and runtime verification.The

former two are conducted internally by the vendors on a software model of the de-
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vice and and a silicon prototype, respectively, and are primarily carried out through

execution of test sequences. However, as we discussed in this chapter, the com-

plexity of modern processors prohibits their exhaustive verification, and thus errors

often slip into final products, causing damage to both end-users and vendor com-

panies. To protect hardware deployed in the field from such errors, researches have

recently started to propose techniques for runtime verification and to rethink post-

silicon validation strategies to derive better quality of results from them. Some of

the emerging techniques in these domains will be presented in detail in the later

chapters of this book, however, first, we must take a deeper look into a traditional

processor verification cycle to understand advantages and limitations of each of its

steps.
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Chapter 2

THE VERIFICATION UNIVERSE

Abstract. In this chapter we take the reader through a typical microprocessor’s life-

cycle, from its first high-level specification to a finished product deployed in a end-

user’s system, and overview the verification techniques that are applied at each step

of this flow. We first discuss pre-silicon verification, the process of validating a

model of the processor at various levels of abstraction, from an architectural speci-

fication to a gate-level netlist. Throughout the pre-silicon phase, two main families

of techniques are commonly used: formal methods and simulation-based solutions.

While the former provide mathematical guarantees of design correctness, the lat-

ter are significantly more scalable and, consequently, are more commonly used in

the industry today. After the first few prototypes of a processor are manufactured,

validation enters the post-silicon domain, where tests can run on the actual silicon

hardware. The raw performance of in-hardware execution is one of the major advan-

tages of post-silicon validation, while lack of internal observability and limited de-

buggability are its main drawbacks. To alleviate this, designers often augment their

creations with special features for silicon state acquisition, which we review here.

After an arduous process of pre- and post-silicon validation, the device is released to

the market and finds its way into a final system. Yet, it may still contain subtle bugs,

which could not be exposed earlier by designers due to very compressed production

timelines. To combat these escaped errors, vendors and researchers in industry and

academia have began investigating alternative dynamic verification techniques: with

minimal impact on the processor’s performance, these solutions monitor its health

and invoke specialized correction mechanisms when errors manifest at runtime. As

we show in this chapter, all three phases of verification, pre-silicon, post-silicon and

runtime, have their unique advantages and limitations, which must be taken into ac-

count by design houses to attain sufficient verification coverage within their time

and cost budgets and to avoid major catastrophes caused by releasing faulty proces-

sor products to the commercial market.
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2.1 Pre-silicon Verification

Pre-silicon verification is a multi-step process, which is aimed at establishing if

a design adheres to its specification and fulfills the designer’s intentions. Pre-silicon

verification, or design-time verification, is conducted before any silicon prototype

is available (hence its name), and operates over a range of different descriptions of

a digital design: architectural, RTL, gate-level, etc. The higher levels of abstraction

of the design allow engineers to check, often through mathematical proofs, funda-

mental properties of a circuit’s operation, such as absence of erroneous behaviors

and adherence to formally specified invariants in its functionality. The design is

then progressively refined to include more detail, requiring the designers to check

correctness after each transformation. However, with the growing level of detail,

the time and computational effort required to validate the design’s functionality in-

creases as well, thus, in practice, only the most critical blocks of a modern processor

are fully verified at all levels of abstraction before tape-out.

The history of pre-silicon verification of digital circuits goes hand in hand with

the evolution of these devices over the last several decades: what began as a fairly

simple in-house activity, quickly became a large industry of its own. Today, tens of

electronic design automation (EDA) companies and a handful of the largest digi-

tal design houses offer designers a wide variety of software and hardware tools to

address various phases of pre-silicon verification; while researchers in industry and

academia alike publish thousands of papers yearly on the subject. Some of these

techniques can be applied to any logic design, while others are domain-specific

heuristics that improve the performance of verification for certain types of designs.

Since it would be impossible for us to cover the entire spectrum of solutions avail-

able, in this section we simply focus on presenting a concise overview of the most

vital verification techniques, and provide a range of references at the end of the

chapter for the readers interested in deepening their knowledge on the subject.

2.1.1 From specification to microarchitectural description

In today’s microprocessor industry, verification begins early in the design cycle,

when architects of the new design develop a detailed set of specifications, outlining

the major component blocks and describing their functionality. This specification

document is then used as the yardstick to verify various pre-production implemen-

tations of the design at varying levels of detail. Note, however, that the document is

typically written by several people in a natural human language, such as English,

and, therefore, may contain hidden ambiguities or contradictions. Consequently,

when bugs are found during the verification of a behavioral model, these might be

due to a poor implementation or may be caused by errors in the specification itself,

which then must be clarified and updated. As soon as a design specification becomes

available, verification engineers begin crafting a test plan that outlines how individ-
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ual blocks and the entire system will be verified, how bugs will be diagnosed and

tracked, and how verification thoroughness, also known as coverage, will be mea-

sured. As with the specification, the test plan is not created once and forever, but

rather evolves and morphs, as designers add, modify and refine processor’s features.

At the same time, with specification at hand, engineers may begin implement-

ing the design at the architectural (or ISA) level, describing the way the processor

interacts with the rest of the computer system. For instance, they determine the for-

mat of all supported instructions, interrupts, communication protocols, etc., but do

not concern themselves with the details of the inner structure of the design. This is

somewhat similar to devising the API of a software application without detailed de-

scriptions of individual functions. Note that operating systems, user-level programs

and many hardware components in a computing platform interact with the proces-

sor at the ISA level, and for the most part, need not be aware of its internals. In the

end, the specification is transformed into an architectural simulator of the processor,

which is typically a program written in a high-level programming language. As an

example, Simics [MCE+02] and Bochs [Boc07] are fairly popular architectural sim-

ulators. An architectural simulator enables the engineers to evaluate the high level

functionality of the design by simulating applications and it also provides early es-

timations of its performance. The latter, however, are very approximate, since at

this point the exact latency of various operations is unknown. More importantly,

at this stage of the development, the architectural simulator becomes the embodi-

ment of the specification and in later verification stages it is referred to as a golden

model of the design, to which detailed implementations (netlist-level and circuit-

level) can be efficiently compared. The architectural simulator can then be refined

into a microarchitectural description , where the detailed functionality of individual

sub-modules of the processor is specified (examples of microarchitectural simula-

tors are SimpleScalar [BA08] and GEMS [MSB+05]). With a microarchitectural

simulator designers define the internal behavior of the processor and characterize

performance-oriented features such as pipelining, out-of-order execution, branch

prediction, etc. The microarchitectural description, however, does not specify how

these blocks will be implemented in silicon and is usually also written in a high-level

language, such as C, C++ or SystemC. Nevertheless, with the detailed information

on instruction latency and throughput now available, the performance of the device

can be benchmarked through simulation of software applications and other tests.

2.1.2 Verification through logic simulation

The microarchitectural level design is then further refined into a register-transfer

level (RTL) implementation, typically written in a hardware design language (HDL),

such as Verilog [IEE01b], SystemVerilog [IEE07] or VHDL[IEE04] . At this level,

the functionality of individual blocks is further broken down into logic/mathematical

operations and storage elements to contain the results of computation. Because of

this refinement, the size of the code base becomes significantly larger, while the sim-
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ulation performance of the design decreases by 4-5 orders of magnitude, compared

to the architectural level. With a register-transfer level description it is possible to

simulate and evaluate the behavior of the system very accurately, tracking the inter-

action of all components. The vast majority of the verification effort is dedicated to

testing and simulating this level of the design description and most functional design

bugs are exposed and corrected at this stage. However, one of the main drawbacks

of simulation-based techniques is the fact that they can only identify the presence

of errors but cannot guarantee their absence. In other words, with logic simulation

designers can check if the processor behaves properly, i.e., adheres to its specifica-

tion, when running specific program sequences, designed and selected by the design

team. However, there still may be latent bugs manifesting only when running other

programs, that had not been simulated and verified. Nevertheless, this technique

remains the primary method to validate RTL designs, especially in the micropro-

cessor industry, due to its ability to scale and operate even on very complex proces-

sor descriptions. During logic simulation, internal design signals are monitored and

evaluated one by one, making the time required to complete the simulation directly

proportional to the size of the design and the length of the executed test sequence.

Therefore, full processor designs can be simulated for millions of cycles, often pro-

viding satisfactory confidence that the system is error-free. Example of commercial

logic simulators available today include VCS [Syn09] and ModelSim [Men08]. In

this chapter we overview the basic components of a logic simulation framework,

while the reader is encouraged to investigate surveys, such as [GTKS05, Mei93],

and works on functional verification, such as [Mic03, WGR05], for a more detailed

analysis of a range of simulation tools, setups and techniques.

In a typical framework for RTL simulation, illustrated in Figure 2.1, the design

under validation is wrapped in a test environment that models the behavior of other

components external to the system under verification. For instance, when the entire

processor is simulated, the test environment represents systems external to the CPU,

such as memory, peripherals, etc. The test environment and the design are executed

together within the logic simulator. The simulator itself is a software application

parsing the RTL code of the design and the test environment and computing cir-

cuit’s output values when subjected to a given test. The outputs are generated by

evaluating each internal design component throughout the entire simulated time in-

terval. A simulator obtains the values of primary inputs to the design from a test and

then evaluates the circuit’s internal logic, as well as its primary outputs, in discrete

timesteps. The obtained data can then be saved into a file for later comparison with

the outputs of an architectural simulator, used as a golden model, or can be presented

to a verification engineer in form of waveforms, i.e., a diagram of the signals’ values

over time. The latter form is often adopted when diagnosing incorrect test responses

to investigate the root cause of a bug, since all signal transitions can be visualized.

Test sequences supplied to the simulator can be deterministic, such as manually-

generated assembly tests, or may be pseudo-random. The former are usually short

and designed to validate specific features or modules of the device, as required by

the test plan. Randomized tests are most commonly focused on system-level aspects

and interactions, subjecting the design to a variety of stressful stimuli. To this end,
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verification engineers leverage pseudo-random test generators (also called RTGs)

that can be tuned to produce streams of valid instructions with a wide range of prop-

erties, e.g., focused activity on certain functional units, specific inter-instruction de-

pendencies, and so on [BLL+04, AAF+04]. Some RTGs have the ability to monitor

a number of pre-selected internal design signals and use the information to dynam-

ically adjust the test they generate so to boost stimulus quality [WBA07, FZ03].

Furthermore, the most relevant random and directed tests are combined into regres-

sion suites: sets of tests simulated each time that the design is modified, to guarantee

that that the changes did not produce new bugs.

As mentioned before, simulation-based techniques can not provide guarantees

of design correctness for the scenarios that are not explicitly tested. To gauge the

need for additional verification throughout an industrial-scale digital system devel-

opment, designers track coverage, which is a measure of thoroughness of verifica-

tion. For example, achieving a 100% code coverage is a typical goal, thus requiring

that every statement in the RTL code is activated in simulation least once. Code cov-

erage alone is a fairly weak metric to evaluate the completeness of a test suite; thus,

more sophisticated measures such as functional and transaction coverage are com-

monly used in addition to code coverage [Glu06]. As discussed in detail in [Piz04],

functional coverage metrics allow to evaluate the testing quality of high-level func-

tions in a design’s block in a thorough and systematic fashion.

One of the shortcomings of the framework just described is its reliance on the

architectural simulator to detect errors. Because modern microprocessors are ex-

tremely complex systems, with vast amounts of internal state, subtle errors in inner

blocks can often take hundreds or thousands of cycles to manifest at the architectural

level. Tracing an error backwards from an erroneous architectural event to the actual

malfunction is a tedious and time-consuming process; therefore, the ability to detect

issues as soon as they occur is a major advantage in terms of length of the diagnosis

effort. One way to achieve this, is to use high-level behavioral models of individual

blocks, instead of a monolithic architectural simulator. These models can be derived

from the microarchitectural description of the processor and converted to dedicated

checking units, running concurrently with the RTL simulation and comparing their

output to the corresponding block’s simulated output. Sometimes, block-level errors

can be identified with simple scoreboards, which could, for instance, keep track of

request-response pairs and thus detect rogue messages. Alternatively, designers can

use assertions or checkers to encode invariants of the design’s operation and make

sure that they are upheld throughout the simulation. More information on this topic

can also be found in [FKL04, YPA06]. Assertions on input signals are also helpful

in detecting improper communication between blocks or errors arising from misin-

terpretation of the specification. Digital logic designers may interpret the specifica-

tion in different ways while developing their components. However, if they encode

their assumptions on the behavior of the surrounding components in the form of

assertions, mismatches can be detected early in the development process, as soon

as blocks are integrated. Finally, assertions may be used to evaluate coverage by

monitoring the input signals into the assertion. To enable these advanced verifica-

tion concepts, in the past few years, the electronic design industry has developed
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Fig. 2.1 A typical framework for simulation-based verification. Inputs to a logic simulator are
typically manually-written directed tests and/or randomized sequences produced automatically by
a pseudo-random test generator. Tests are fed into a logic simulator, which, in turn, uses them as
stimuli to the integrated test environment and design description. The test environment emulates
the behavior of blocks surrounding the design under test. The simulator computed outputs and
internal signal values of the design from the test’s inputs. These outputs can then be analyzed with
a variety of tools: they can be compared with the output of a golden architectural model, can be
viewed as waveforms, particularly for error diagnosis, can be monitored by assertions and checkers
to detect violations of invariants in the design behavior and, finally, can be used to track coverage,
thus evaluating the thoroughness of the test.

dedicated languages for hardware verification (HVLs), some examples of which are

OpenVera [HKM01], the e language [HMN01] and SystemVerilog [IEE07]. The

latter implements a unified framework for both hardware design and verification,

providing an object-oriented programming model, a rich assertion specification lan-

guage, and even automatic coverage collection.
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2.1.3 Formal verification

Formal verification encompasses a variety techniques that have one common prin-

ciple: to prove with mathematical guarantees that the design abides to a certain

specification under all valid input sequences. If the design does not adheres to the

specification the formal techniques should produce a counterexample execution se-

quence, which describes one way of violating the specification. To this end, the

design under verification and the specification must be represented as mathemati-

cal/logic formulas subjected to formal analysis. One of the most important advan-

tages of these solutions over simulation-based techniques is the ability to prove cor-

rectness for all legal stimuli sequences. As we described in the previous section,

only explicitly simulated behaviors of the design can be tested for correctness and,

consequently, only the presence of bugs can be established. Formal verification ap-

proaches, however, can reason about absence of errors in a design, without the need

to exhaustively check all of its behaviors one by one. The body of work in the field

of formal verification is immense and diverse: for decades researchers in industry

and academia have been developing several families of solutions and algorithms,

which are all too numerous to be fully discussed in this book. Fortunately for the

readers, sources such as [Ber05, PF05, PBG05, BAWR07, WGR05, CGP08, KG99]

and many others, describe the solutions in this domain in much greater detail. In this

book, we overview some of the most notable techniques in the field in the hope to

stir the readers’ curiosity to investigate this research field further. However, before

we begin this survey, we first must take a look at two main computation engines,

which empower a large fraction of formal methods, namely SAT solvers and binary

decision diagrams (BDDs).

SAT is a short-hand notation for Boolean satisfiability, which is the classic the-

oretical computer science NP-complete problem of determining if there exists an

assignment of Boolean variables that evaluates a given Boolean formula to true, or

showing that no such assignment exists. Therefore, given Boolean formulas describ-

ing a logic design and a property to be verified, a SAT-based algorithm constructs

an instance of a SAT problem, in which a satisfactory assignment of variables rep-

resents a violation of the property. For example, given a design that arbitrates bus

accesses between two masters, one can use a SAT-solver to prove that it will never

assert both grant lines at the same time. Boolean satisfiability can also be applied to

sequential circuits, which are in this case “unrolled” into a larger design by replica-

tion of the combinational logic part and elimination of the internal state elements.

Engineers can then check if certain erroneous states can be reached in this “un-

rolled” design or if invariants of execution are always satisfied. As we will describe

in the subsequent section, SAT techniques can also be used for equivalence check-

ing, i.e., establishing if two representations of a circuit behave the same way for

all input sequences. Today, there is a variety of stand-alone SAT-solver applications

available, typically they either implement a variation of the Davis-Putnam algorithm

[DP60] as, for instance, GRASP [MSS99] and MiniSAT [ES03], or use stochastic

methods to search for satisfiable variable assignments as in WalkSAT [SKC95].

Heuristics and inference procedures used in these engines can dramatically improve
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the performance of the solver; however, in the worst case the satisfiability problem

remains NP, that is, as of today, it requires exponential time on the input size to com-

plete execution. As a result, solutions based on SAT solvers cannot be guaranteed

to provide results within reasonable time. Furthermore, when handling sequential

designs, these techniques tend to dramatically increase the size of the SAT problem,

due to the aforementioned circuit “unrolling”, further exacerbating the problem.
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Fig. 2.2 Binary decision diagrams. a. A full-size decision tree for the logic function f =
A|(B&C): each layer of nodes represents a logic variable and edges represent assignments to the
variable. In the figure, solid edges represent a 1 assignment, while dashed edges represent a 0 value
of the variable. The leaf nodes of the tree are either of 1- or 0-type and represents the value that the
entire Boolean expression for the assignment in the corresponding path from root to leaf. Note that
the size of the full-size decision tree is exponential in the number of variables in the formula. b.

Reduced ordered binary decision diagram for the logic function f = A|(B&C). In this data structure
redundant nodes are removed, creating a compact representation for the same Boolean expression.

Binary decision diagrams (BDDs), the second main computational engine used

in formal verification, are data structures to represent Boolean functions [Bry86].

BDDs are acyclic directed graphs: each node represents one variable in the formula

and has two outgoing edges, one for each possible variable assignment – 0 and 1

(see Figure 2.2). There are two types of terminal (also called “leaf”) nodes in the

graph, 0 and 1, which correspond to the value assumed by the entire function for

a given variable assignment. Thus, a path from the root of the graph to a leaf node

corresponds to a variable assignment. The corresponding leaf node at the end of the

path represents the value that the logic function assumes for the assignment. BDDs

are reduced to contain fewer nodes and edges and, as a result, can often represent

complex Boolean functions compactly [Bry86, BRB90]. An example of this is il-

lustrated in Figure 2.2.b, where redundant nodes and edges in the complete binary

decision tree for the function f = A|(B&C) are removed, creating a structure that is

linear in the number of variables. BDD software packages as, for instance CUDD

[Som09], contain routines that allow a fast and efficient manipulation of BDDs and
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on-the-fly tree minimization algorithms. Within formal verification, binary decision

diagrams can be used for equivalence checking, i.e., testing if two circuits imple-

ment the same logical function, in reachability analysis and symbolic simulation, as

well as in other techniques. In reachability analysis, BDDs are used to represent the

set of states that a design can attain under all possible inputs. This set can be later

analyzed to detect the presence of erroneous states. In symbolic simulation, on the

other hand, decision diagrams store formulas representing the design’s state and the

functionality of the outputs in terms of all possible input values. There are, how-

ever, a few drawbacks to BDD-based solutions, the most important one being the

“memory explosion problem”: a situation, where functions cannot be represented

compactly by the data structure, causing a prohibitively large number of nodes to be

created in the host computer’s memory. As a consequence, the host may terminate

before completion of the formal proof. The engineering team is then forced to re-

structure the design or apply simplifying assumptions or constraints to the system,

abstracting away some of the possible behaviors.

As we already mentioned above, SAT-solvers and BDD libraries enable design-

ers to establish how circuits operate under all possible input conditions and conduct

a variety of analyses. Let us now briefly review some of the formal verification

solutions that are employed in today’s semiconductor industry, outlining their ad-

vantages and limitations. Note that only major families of solutions are presented

here, since a comprehensive survey is beyond the scope of this book.

Theorem proving is a powerful technique that uses automatic reasoning to derive

proof for “theorems” about the system under study. Theorems are mathematical for-

mulas that describe the design’s functionality and its properties in abstract form.

Theorem provers may use a variety of theories to derive the mathematical trans-

formations required to prove a given theorem. More information may be found in

[KK94], which also provides a collection of references on this subject. Theorem

provers have found wide acceptance in both the software and hardware verifica-

tion domains, however, these systems are still not fully automatic and often human

assistance is required in directing the proof derivation process. Consequently, en-

gineers spend valuable time investigating conjectures produced by the prover tool

and assisting it in reaching its goal. Furthermore, the behavior of the design and the

properties are usually specified in abstract form, requiring even more engineering

effort. As the result, theorem provers are often applied to high-level protocol or ar-

chitectural descriptions to ensure that such invariants as absence of deadlock and

fairness are upheld. The RTL implementation can then be compared to the formally

verified architectural model using more scalable techniques, such as simulation.

The reachability analysis problem has been mentioned before and consists of char-

acterizing the set of states that a design can attain during execution. To this end the

combinational function of the design is typically represented as a binary decision

diagram and the reset state of the circuit is used to initialize the “reached set”. Then

BDD manipulation functions are used to compute all states that the system can at-

tain after one clock cycle of execution, which are then added to the reached set.
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The process continues until the host runs out of memory or the reached set stops in-

creasing, in which case the obtained set contains all states that a system can achieve

throughout the execution and can be subsequently analyzed for absence of errors and

presence of runtime invariants. Reachability analysis is a very powerful verification

tool, although one must keep in mind that this technique, as other BDD-based solu-

tions, suffers from the memory explosion problem and has limited scalability. See

also publications such as [CBM89, RS95] for more information on this approach.

Model checking, described in detail in [CGP08, CBRZ01], is another powerful

technique that establishes if states and transitions within the design adhere to a for-

mal specification. Properties in this technique are typically written as formulas in

temporal logic, which reasons about events in time, for instance, a property may

require that a given system’s event will eventually occur, independently of the type

of execution. However, frequently, formal properties have a limited time window in

which they need to be considered, in which case bounded model checking (BMC)

can be used. In bounded model checking a property is considered only over a finite

number of clock cycles of execution: if no violation is exposed then the property

holds. Solutions in this domain may use either BDDs or SAT solvers as the under-

lying engine. A variety of property specification languages exists today, including

PSL [Acc04], recently extended to PSL/Sugar [CVK04], System Verilog Assertion

language (SVA) [VR05], which is a subset of SystemVerilog, the proprietary Blue-

spec language [Arv03], TLA+ [Lam02], etc. However, since these languages are

declarative, they are often fairly complex to use in describing non-trivial properties

and in general are more difficult to use than imperative languages. Indeed, indus-

try experts report that, when a property violation is exposed in model checking, it

is more often the case that the problem lies in the property description than in the

design itself. The scalability of model checking may also be limited due to the un-

derlying engines’s complexity and memory demands.

Symbolic simulation [CJB79, Bry85, BBB+87, BBS90, Ber05] has many similari-

ties with logic simulation, in that output functions are computed based on input val-

ues. The main difference here is that inputs are now symbolic Boolean variables and,

consequently, outputs are Boolean functions. For instance, the symbolic simulation

of the small logic block in Figure 2.3 produces the Boolean expression A&(B|C) for

the output, which we show in the BDD depicted by the output wire. Expressions for

the state of the design and the values of its outputs are updated at each simulation

cycle. The Boolean expressions altogether are a compact representation of all the

possible behaviors that the design can manifest, for all possible inputs, within the

simulated cycles. To find the response of the circuit for a concrete input sequence (a

sequence of 0s and 1s), one simply needs to evaluate the computed expressions with

appropriate values for the primary inputs. Consequently, symbolic simulation can

be used to compute a reached state set (within a fixed number of simulation cycles)

or prove a bounded time property. As with other solutions, however, the reliance on

BDDs brings the possibility of the simulator exhausting the memory resources of

the host before errors in the circuit can be identified.
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Fig. 2.3 An example of symbolic simulation. In symbolic simulation, outputs and internal design
nodes are expressed as Boolean functions of the primary inputs, which, in turn, are described by
Boolean variables. In the circuit shown in the figure, symbols A, B and C are applied to the primary
inputs and the output assumes the resulting expression A&(B|C). Functions in symbolic simulation
are typically represented by binary decision diagrams, as the one shown at the circuit’s output.

As discussed above, modern digital logic designers have access to a wide va-

riety of high-quality formal tools that can be used for different types of analyses

and proofs. Yet all of them have limitations, requiring either deep knowledge of

declarative languages for specification of formal properties or being prone to ex-

hausting memory and time resources. Consequently, processor designers, who work

with extremely large and complex system descriptions, must continue to rely mostly

on logic simulation for verification of their products at the pre-silicon level. The

guarantees for correctness that formal techniques provide, however, have not been

overlooked by the microprocessor industry, and formal tools are often deployed to

verify the most critical blocks in modern processors, particularly control units. In

addition, researchers have designed methods to merge the power of formal analysis

with the scalability of simulation-based techniques, creating hybrid or semi-formal

solutions, such as the ones surveyed in [BAWR07]. Hybrid solutions use a variety

of techniques to leverage the scalability of simulation tools and the depth of analy-

sis of formal techniques to reach better coverage quality with a manageable amount

of resources. They often use a tight integration among several tools and make an

effort to have them exchange relevant information. Although hybrid solutions com-

bine the best of the formal and simulation worlds, their performance is still outpaced

by the growing complexity of processor designs and shortening production sched-

ules. Thus, the verification gap continues to grow and designs go into the silicon

prototype stage with latent bugs.
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2.1.4 Logic optimization and equivalence verification

The RTL simulation and formal analysis described above are, perhaps, the most

important and effort-consuming steps in the entire processor design flow. After these

steps are completed, the register-transfer level description of the design must be

transformed and further refined before a prototype can be manufactured. The next

step in the design flow is logic synthesis, which automatically converts an RTL

description into a gate-level netlist (see [HS06] for more details of logic synthesis

algorithms and tools). To this end, expressions in the RTL source code are expanded

and mapped to structures of logic gates, based on the target library specific to the

manufacturing process to be used. These, in turn, are further transformed through

local and global optimizations in order to attain a design with better characteristics,

such as lower timing delay, smaller area, etc. Again, with the increasing level of

detail, the code base grows further and, correspondingly, the performance of the

circuit’s simulation is reduced. Formal techniques are often deployed in this stage

to check that transformations and optimizations applied during synthesis do not alter

the functionality of the design. This task is called equivalence checking and it is most

often deployed to prove the equivalence of the combinational portion of a circuit. In

contrast, sequential equivalence checking has not yet reached sufficient robustness

to be commonly deployed in the industry. The basis of combinational equivalence

checking relies on the construction of a miter circuit connecting two netlists from

before and after a given transformation. The corresponding primary inputs in both

netlists are tied together, while the corresponding outputs are connected through xor

gates, as shown in Figure 2.4. Several techniques can then be used to prove that

the miter circuit outputs 0 under all possible input stimuli, thus indicating that the

outputs of the two netlist are always identical when subjected to identical input.

Among these, are BDD-based techniques, used in a fashion similar to symbolic

simulation, SAT solvers proving that the miter circuit cannot be satisfied (that is,

can never evaluate to 1), and also graph isomorphism algorithms, which allow to

prune the size of the circuits whose equivalence must be proven.

After the netlist is synthesized, optimized and validated, it must undergo the

place and route phase, where a specific location on silicon is identified for each

logic gate in the design and all connecting wires are routed among the placed gates

[AMS08]. Only after this phase the processor is finally described at the level of

individual transistors, and thus engineers can validate properties such as electrical

drive strength and timing with accurate SPICE (Simulation Program with Integrated

Circuit Emphasis) techniques. It is typical at this stage to only be able to analyze a

small portion of the design at a time, and to focus mostly to the critical paths through

the processor’s sub-modules.
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Fig. 2.4 Miter circuit construction for equivalence checking. To check that two versions A and
B of a design implement the same combinational logic function, a miter is built by tying corre-
sponding primary inputs together and xor-ing corresponding primary outputs. Several techniques,
including formal verification engines such as Binary Decision Diagrams and SAT solvers can then
invoked to prove that under the outputs of such miter circuit can never evaluate to 1, under all
possible input combinations.

2.1.5 Emulation and beyond

As mentioned before, RTL simulation is several orders of magnitude slower than

simulation at the architectural level. However, its performance can be improved by

leveraging emulation techniques. In emulation, also called fast-prototyping, a de-

sign is mapped into programmable hardware components, such as FPGAs. These

components can be configured after their manufacturing to implement any logic

function in hardware and, thus, can be used to create early prototypes of complex

systems before they are manufactured. Several companies provide fast prototyping

solutions based on FPGAs or other specialized reconfigurable components. It is typ-

ical for these systems to have lower performance and lower device density than the

final manufactured version of the system under verification. On the other hand, em-

ulation can be conducted on a hardware prototype at much better performance than

in a software simulator. Modern FPGAs can run at speeds of hundreds of mega-

hertz (about one order magnitude slower than today’s processors) and one may need

dozens of them to model a single processor. Note also that, when a block of logic is

mapped to an FPGA, its internal signals become invisible to the engineer, thus error

diagnosis may become more challenging, unless other means of access to internal

signals are specifically implemented in the prototype. Despite these shortcomings,

the emulation of a processor design is an important and useful step in pre-silicon

verification, since it allows a detailed netlist description to be executed at fairly high

performance, enabling testing with longer sequences of stimuli and achieving higher

design coverage.
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After the design is deemed sufficiently bug-free, that is, satisfactory coverage

levels are reached and the design is stable, the device is taped out, i.e., sent to the

fabrication facility to be manufactured in silicon. Once the first few prototypes are

available, the verification transitions into the post-silicon phase, which we describe

in the following section. It is important to remember, that the pre- and post-silicon

phases of processor validation are not disjoint ventures - much of the verification

collateral, generated in early design stages, can and should be reused for validation

of the manufactured hardware. For instance, random test generators, directed tests

and regression suites can be shared between the two. Moreover, in the case of ran-

domized tests, architectural simulators can be used to check the output of the actual

hardware prototypes for correctness. Finally, RTL simulation and emulation pro-

vide valuable support in silicon debugging. As we explain later, observability of the

design’s internal signals in post-silicon validation is extremely limited, therefore, it

is very difficult to diagnose internal design conditions that manifest in to an error.

To alleviate this, test sequences exposing bugs may be replayed in RTL simulation

or emulated, to narrow the region affected by the problem and to diagnose the root

cause of the error.

In summary, the pre-silicon verification of a modern processor is a complex and

arduous task, which requires deep understanding of the design and the capabilities

of validation tools, as well as good planning and management skills. After each de-

sign transformation, several important questions must be answered: what needs to

be verified? how do we verify it? and how do we know when verification is sat-

isfactory? Time is another important concern in this process, since designers must

meet stringent schedules, so their products remain competitive in the market. There-

fore, they must often forgo guarantees of full correctness for the circuit, and rely on

coverage and other indirect measures of validation thoroughness and completeness.

Exacerbating the process further is the fact that the design process is not a straight-

forward one - some modules and verification collaterals may be inherited from pre-

vious generations of the product, and some may be only available in a low level

description. For instance, performance-critical units may be first created at gate or

transistor level (so called full-custom design), and the corresponding RTL is gener-

ated later. Moreover, often the verification steps discussed in this section must be

revisited several times, e.g., when a change in one unit triggers modifications to oth-

ers components. Thus, pre-silicon verification goes hand in hand with design, and it

is often hard to separate them from each other.

2.2 Post-silicon Validation

Post-silicon validation commences when the first prototype of a design becomes

available. With the actual silicon in hand, designers can test many physical char-

acteristics of the device, which could not be validated with models of the design.

For instance, engineers can determine the operational region of the design in terms

of such parameters as temperature, voltage and frequency. Physical properties of
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the device can also be evaluated using detailed transistor-level descriptions, as dis-

cussed in the previous section but, when using such models, these analyses can only

be conducted on fairly small portions of the design and on very short execution se-

quences, making it difficult to attain highly quality measures of electrical aspects.

For instance, the operational region of the device cannot be evaluated precisely in

pre-silicon and must be checked after the device is manufactured. The actual oper-

ational region of the design is compared to the requirements imposed by the speci-

fication, driven by the market sector targeted by this product. Processors for mobile

platforms, for example, usually must operate at lower voltages, to reduce power con-

sumption, while server processors, for which performance is paramount, can tolerate

higher temperatures, but also must run at much higher frequency. Other electrical

properties that are also typically checked at this stage include drive strength of the

I/O pins, power consumption, etc.

Most of the electrical defects targeted during post-silicon validation are first dis-

covered as functional errors. For instance, incorrectly sized transistors on the die

may result in unanticipated critical paths. Consequently, when the device is running

at high frequency, occasionally data will not propagate through these paths within a

single cycle, resulting in incorrect computation results. Similarly, jitter in the clock

signal may cause internal flip-flops to latch erroneous data values, or cross-talk be-

tween buses may corrupt messages in flight. Such bugs are frequently first found

as failures of test sequences to which the prototype is subjected. Designers proceed

then to investigate the nature of the bug: by executing the same test sequence on a

other prototypes they can determine if the bug is of electrical or functional nature.

In fact, functional bugs will manifest on all prototypes, while electrical ones will

only occur in a fraction of the chips. Bugs that manifest only in a very small portion

of the prototypes are deemed to be due to manufacturing defects. Because each of

these issues are diagnosed with distinct methods, a correct classification is key to

shorten the diagnosis time.

In debugging electrical defects, engineers try to first determine the boundaries

of the failure, i.e., discover the range of conditions that trigger the problem, so it

can be reproduced and analyzed in the future. To this end shmoo plots that depict

failure occurrences as a function of frequency and supply voltage are created. Typ-

ically, multiple shmoo plots for different temperature settings are created, adding

the third dimension to the failure region of the processor. This data can then be an-

alyzed for characteristic patterns of various bug types. For instance, failures at high

temperatures are strong indicators of transistor leakage and critical path violations,

while errors that occur at low temperatures are often due to race conditions, charge

sharing, etc. [JG04]. Designers then try to pinpoint the area of the circuit where

the error occurs by adjusting the operating parameters of individual sub-modules

with techniques such as on-die clock shrinks, clock skewing circuits [JPG01] and

optical probing , which relies on lasers to measure voltage across individual transis-

tors on the die [EWR00]. In optical probing, the silicon substrate on the back side

of the die is etched and infrared light is pulsed at a precise point of the die. The

silicon substrate is partially transparent to this wavelength, while doped regions of

transistors reflect the laser back. If electrical charge is present in these regions, the
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power of the reflected light changes, allowing the engineers to measure the voltage.

Note that in this case, the top side of the processor, where multiple metal layers

reside, does not need to be physically etched or probed, so integrity of the die is not

violated. Unfortunately, the laser cannot get to the back side of the die through a

heat sink, which, therefore, must be removed around the sampling point. While pro-

viding good spacial and timing resolution, optical probing remains a very expensive

and often ineffective way of testing, since it requires sophisticated apparatus and en-

ables access to only a single location at a time. Finally, when the issue is narrowed

down to a small block, transistor-level simulation can be leveraged to establish the

root cause of the bug and determine ways to remedy it.

As we mentioned above, in addition to electrical bugs, two types of issues can

be discovered in manufactured prototypes: fabrication defects and functional errors,

which are the target of structural testing and functional post-silicon validation, re-

spectively. Although similar at first glance, these approaches have a very important

difference in that testing assumes that the pre-silicon netlist is functionally correct

and tries to establish if each prototype faithfully and fully implements it. Validation,

on the other hand checks if the prototype’s functionality adheres to the specifica-

tion, that is, if the processor can properly execute software and correctly interact

with other components of a computer system. In the following section we overview

structural testing approaches and discuss silicon state acquisition techniques, which

are typically deployed in complex designs to improve testability. Incidentally, most

of these acquisition solutions can be also used in post-silicon validation, discussed

in Section 2.2.2.

2.2.1 Structural testing

Modern integrated circuits are manufactured with a photolithographic process,

which “prints” individual transistors, as well as metal interconnect between them,

in multiple layers onto a silicon substrate. However, due to the nanometer-scale of

transistors and wires, their features’ boundaries may be blurry or distorted. This

may cause, for example, two metal paths to be shorted together, or result in mis-

alignment of the doped regions of a transistor, impairing the overall functionality

of the circuit. The phase of post-silicon validation that tries to uncover these faults

is called structural testing. In this framework, the gate-level netlist of the design is

assumed as the golden model of functionality and used by automatic test pattern

generators (ATPGs) in producing test sequences that check these design aspects.

An ATPG analyzes the combinational logic of the netlist and infers test vectors that

would expose a range of possible defects generated in the manufacturing process.

In a sense, ATPG-based structural testing can be thought of as equivalence checking

between the pre-production and the printed netlists. The type of faults that ATPGs

can discover include shorts and opens, “stuck-at” defects, where a wire’s value never

changes, and violations of the circuit’s internal propagation delays. ATPG patterns

are then applied to the silicon prototype and the responses are compared to those
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predicted by simulation on the pre-production netlist. For example, to test an imple-

mentation of a two-input logical and gate, an ATPG solution would check that the

output of the silicon prototype is consistent with the truth table of the function, that

is only when both inputs are high, the output value is equal to one. Modern testing

tools typically do not subject the design to an exhaustive set of test vectors, which

may be prohibitively large, but use advanced heuristics to minimize the set of test

patterns without loss of defect coverage. Note, however, that ATPG testers cannot

discover functional errors in the circuit, that is, discrepancies between design intent

and the implemented silicon prototype.

In addition to its inability to discover functional errors in the circuit, the scala-

bility of structural testing is severely limited in sequential designs: i.e., systems that

have internal storage elements in addition to combinational logic blocks. This is es-

pecially pronounced in complex microprocessor designs, where data is retained by

internal storage elements for many cycles. As a consequence, it is virtually impos-

sible for an ATPG technique to create test vectors to be applied to primary inputs of

the circuit that can test behavior of logic functions deep inside of the design and con-

trol all types of manufacturing faults. Likewise, it may be impossible to propagate

the information about the error to primary outputs to be observed by the designer.

Faced with the dual problem of controllability and observability in such complex

sequential circuits, it is mainstream today to augment the design with structures that

allow comparatively easier access to internal logic nodes through I/O pins. This is

commonly referred to as design for testability, or DFT. In particular, DFT tech-

niques often provide ways to sample and write state elements of the circuits, such

as flip-flops and latches, so combinational logic can efficiently be tested by ATPG

patterns. Furthermore, as discussed later in this chapter, DFT techniques play an

important role in functional post-silicon validation and debug, where they are used

to analyze the internal behavior of a prototype that leads to an error. Research on

structural testing and DFT has been carried out for decades in both industry and

academia and it would be impossible to overview the most successful techniques

within the scope of this section. Therefore, we will limit ourselves to briefly discuss

a handful of the most notable solutions for silicon state acquisition, and recommend

two textbooks as starting points for a more in depth study: “Digital Systems Testing

and Testable Design” [ABF94] and “Essentials in Electronic Testing” [BA00].

One of the most basic and classic techniques in the DFT domain are scan chain

components, an example of which is shown in Figure 2.5. To include a scan chain in

a design, flip-flops are augmented with an additional data input (scan in) and output

(scan out), as well as an enable line. The scan in and scan out lines of different stor-

age elements are then connected serially into a scan chain, the ends of which are tied

to special I/O pins of the device. When the scan enable signal is de-asserted, the flip-

flops act as regular storage cells and the processor operates in normal mode. When

enable is asserted, on the other hand, the scan chain reconfigures itself into a serial

register, so that data can be passed serially from one flip-flop to another. With this

tool at hand, verification engineers can suspend execution and scan out the values of

the chained storage elements through a single output wire and analyze it. Moreover,

an arbitrary internal state can be pre-set through the scan in functionality, enabling
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Fig. 2.5 Scan flip-flop design. To insert a regular D flip-flop in a scan chain, the flip-flop is aug-
mented with a scan multiplexer, which selects the source of data to be stored. During regular
operation, the S en (scan enable) signal is de-asserted and the flip-flop stores bits from the Data
line. When enable is asserted, however, the flip-flop samples the scan in (S in) signal instead. This
allows the designers to create a scan chain, by connecting the scan out (S out) output with a scan
in input of the next flip-flop in the chain. The last output in this chain is connected to a dedicated
circuit output port, so that the internal state of the system may be shifted out by asserting S en
signal and pulsing the clock. Likewise, since the S in input of the first chain element is driven
from a circuit’s primary input, engineers can quickly pre-set an arbitrary internal state in the de-
sign for testing and debugging purposes. Note that during scan chain operations the regular design
functionality is suspended.

fine-grain controllability of the device, in addition to observability. Particular im-

plementations of the scan technique vary in different designs and include full-scan

(all state elements are connected), partial scan (a subset of flip-flops is connected),

and multiple parallel chains. The drawbacks of the approach are a somewhat slower

latch operation, the additional area and interconnect overheads, and, most impor-

tantly, the need to suspend operation of the device under test to shift the state out or

bring a new state in, an activity that requires several clock cycles.

Modern scan chains often rely on an even more complex scan flip-flop design,

that overcomes the limitation of having to suspend execution while routing state

in and out of the system. Hold-scan flip-flops consists of two basic scan flip-flops

connected together, called a primary and a shadow flip-flop, as shown in Figure 2.6.

When the capture line is asserted, the shadow element samples and stores the value

of the main latch. This flip-flop can be reconfigured into a scan chain connection

at any later time, so the sampled data can be routed outside of the device. Since

the chain comprises only shadow flip-flops and operates on an independent clock,

the device can continue to function normally, while the captured snapshot is being

transferred out. Similarly, a new state can be loaded into the shadow latches without

interrupting the operation of the device and then propagated to main flip-flops by

the asserting the update line. Although hold-scan flip-flops have significantly larger

area than the baseline design of Figure 2.5, it provides the designers with much more

flexibility in the debugging process and, consequently, and it is frequently deployed

in microprocessor systems [KDF+04].
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Fig. 2.6 Hold-scan flip-flop design. Hold-scan flip-flops provide the ability to overlap system ex-
ecution with scan activity. The component comprises two scan flip-flops, a primary and a shadow
flip-flop. The shadow flip-flop can capture and hold the state of the primary storage element.
Shadow elements are connected in chain and can transmit the captured values without the need
to suspend regular system operation. Similarly they can be used to load a system state, which is
then transferred to the primary flip-flops by asserting the update signal. Note that shadow flip-
flops operate on a separate clock (S clk), so that the transmit frequency can be decoupled from the
system’s operating frequency.

Boundary-scan is another technique often used in structural testing and valida-

tion, to allow individual modules of the processor to be tested in isolation [IEE01a].

Boundary-scan was developed by the Joint Test Action Group (JTAG), which was

formed by the industry to enable testing of complex circuits boards. JTAG calls for

inputs and outputs of the chip, or a block of logic, to be tied to dedicated, scan

storage elements, as shown in Figure 2.7. These cells can be configured to perform

several distinct functions by means of specialized control logic. For instance, inputs

to the block can be captured to verify operation of other modules or can be used

provide stimulus to the block. The response to the stimulus can be then observed
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Fig. 2.7 Boundary-scan technique (JTAG). Scan storage cells are inserted and connected to the
I/O pins of a chip or at the boundary of internal logic blocks. These cells are also chained together
as indicated by the dashed lines in the figure. Through an additional on-die JTAG controller, de-
signers can control the operation of the cells and use them to test the interconnect among chips on
the same board or among blocks within a chip, and test individual blocks in isolation.

in the boundary-scan flip-flops tied to its outputs. Today, JTAG technology is often

extended to perform additional configuration and testing operations, such as on-chip

programming, access to special memory or registers, etc.

Despite all these functionalities, scan-based techniques still lack an important

feature, that is, automatic acquisition of the internal state triggered by a design’s

behavior. Scan chain technology requires that an enable pin is externally asserted

in order to initiate sampling. On-chip logic analyzers (OCLA) alleviate this lim-

itation, augmenting the device with programmable trigger-detection and response

logic, thus making the sampling activity programmable [CKM+04]. OCLAs are

designed to observe internal signals continuously and to match them against pre-

set triggering conditions such as, for instance, a signal assuming a specific, user-

programmed logic value or undergoing a certain transition. When a triggering con-

dition occurs, the analyzer begins a continuous sampling of the design’s state for a

given time period and stores the data into dedicated memory. A designer can later

download this data and monitor the behavior of the circuit throughout several cycles

of execution. Unfortunately, the advanced functionality of on-chip logic analyzers

comes at the price of high area penalty and the need to route the sampling wires

throughout the die. In the highly competitive settings of the microprocessor indus-

try, this area overhead can rarely be afforded, compelling companies to limit the use

of OCLAs [Lit02] and/or diagnose bugs by relying simply on the scan-based testing

and verification techniques overviewed above.
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2.2.2 Functional post-silicon validation

Identification of functional bugs is another crucial part of the processor design and

manufacturing effort, whose importance has been quickly growing in recent years.

As we mentioned earlier, functional post-silicon validation differs from structural

testing in that it does not target errors due to manufacturing issues, but strives to

establish if the prototype adheres to its specification and faithfully embodies the de-

signer’s intent. The main advantage that designers can leverage in post-silicon, com-

pared to pre-manufacturing validation, is the test execution speed. Indeed, instead of

an architectural or RTL simulation, in post-silicon validation programs execute on

the actual hardware, outperforming the former two techniques by multiple orders

of magnitude. Therefore, significantly longer sequences can be tested and, conse-

quently, higher coverage may be attained. To put things in perspective, consider that

during the many months of validation of the Pentium 4 processor, an experience dis-

cussed in Section 1.3, a total of about 200 billion cycles were simulated before tape-

out [Ben01]. After manufacturing, these accounts for only three minutes of runtime

in the actual processor, which operates at 1GHz frequency. Functional post-silicon

validation is carried out through directed and parameterized random tests. The draw-

back of the latter is the lack of a known correct outcome, needed to determine the

correctness of the silicon prototype’s output. Thus, to find the correct responses, en-

gineers turn to architectural simulators. These have much lower performance than

prototype hardware, and thus vendors are often forced to employ large server farms

to simulate the same random tests that they run on silicon and derive correct outputs

to compare against the prototype’s results [Rot00]. Nevertheless, verification with

randomized programs remains a central component of the post-silicon validation

process, since it often exposes many unexpected behaviors of the system missed by

directed tests. Following the same rationale, designers often randomize the manner

in which primary inputs of the prototype, such as external interrupts, are asserted

during a test and alter the delay of messages sent to and from the processor on the

system bus. Typically, this is done with custom hardware components, which reside

on the same board as the prototype under test and can be programmed to exhibit a

variety of behaviors [SFH+03].

In addition to the functional validation of the prototype itself, the post-silicon

phase must also evaluate the compatibility of the processor with a number of de-

ployment platforms. For this purpose, the device is plugged into a typical system

board with commercially available peripherals. On this complete system the verifi-

cation team runs a broad range of directed benchmarks and software applications.

Examples include the boot up software of several operating systems, commercial

applications, performance benchmarks, legacy software, and so on. The operating

conditions of the prototype in this case, are not as stressful as with randomized tests,

however, these tests are still necessary to establish system compatibility throughout

hours of actual runtime.

Identifying an erroneous behavior in functional post-silicon validation is only the

beginning of a long and arduous journey to determine the root cause of the problem

and fix it. As with electrical defects, the process begins with trying to reproduce
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the bug and determine the conditions under which it occurs. Throughout this activ-

ity, DFT techniques, discussed above, play a vital role, since with these solutions

designers can sample the internal state of the prototype and unwind the events that

caused erroneous output behavior all the way back to the bug. In addition to generic

state acquisition solutions, such as scan and OCLA, in the microprocessor indus-

try, engineers often deploy a number of domain-specific techniques, which take ad-

vantage of the system’s built-in performance counters and special interrupt modes.

For instance, an external interrupt can be programmed to invoke a software routine

which dumps the processor’s state to memory, and then it can be asserted several

times during a test execution to facilitate bug diagnosis [SFH+03]. It is important

to note, however, that silicon state acquisition techniques such as this may alter the

timing of events occurring within the processor, obfuscating the error.

Once a set of traces leading to an error is obtained, engineers can go back to

pre-silicon techniques to reproduce and identify the bug in simulation or through

formal methods. Since pre-silicon simulation has much lower performance than a

prototype, full replay of long traces – typical of post-silicon runs – cannot be com-

pleted in reasonable time. Two possible remedies to this problem are trace mini-

mization, a technique that can shorten a trace while still exposing the bug under

study, e.g., [CBM07b, SVM07], or the identification of a subset of events necessary

for the occurrence of the error, typically accomplished by state analysis through

DFT structures. A shorter trace can then be replayed in simulation, perhaps at full

chip-level first and then at block granularity, and the root cause of the issue can

be established. At this point formal tools may also be used to identify conditions

under which the error manifest, as well as error location in an RTL design descrip-

tion [CWBM07]. The intermediate states that the design enters on its path from the

reset condition to the bug can be used for guidance, in practice decomposing the

problem into smaller subproblems, each solvable formally [HTB+09]. In addition

to pinpointing the error location, formal analysis can be used to suggest the way the

issue can be corrected to restore proper design functionality [SV06, CBM07a]. Fi-

nally, when the issue is diagnosed, designers propose corrections that are evaluated

in pre-silicon first and then put into new versions of the prototype. Because silicon

manufacturing is a costly and time consuming process, engineers always strive to

develop work-arounds for a problem so to continue the validation of a prototype as

long as possible without the need for a re-spin, that is a new tape-out. Moreover,

non-critical bugs not get fixed through hardware design modifications, and instead

may be simply documented with the processor’s errata or be overcome through

other non-hardware solutions.

Despite a wide range of solutions available in this domain, post-silicon validation

remains a difficult and expensive activity. Processor vendors are forced to invest into

such expensive hardware as high-speed logic analyzers, optical probing machines

and simulation server farms, in addition to employing large teams of professional

verification engineers. As a consequence, design teams have traditionally relied on

high-quality pre-silicon verification to expose the majority of errors in a proces-

sor. Unfortunately, with the growing complexity of today’s processors and lagging

speeds of RTL simulation and verification, this is becoming harder and harder to
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accomplish. Novel technologies, such as hyper-threading, multi-core architectures,

variable-delay on-die interconnect and virtualization, exacerbate the problem fur-

ther, stretching to the limit pre-silicon verification capabilities of even the largest

processor vendors. Post-silicon functional verification has been called in to pick up

the slack, and as a consequence, the fraction of design costs devoted to post-silicon

validation has been increasing steadily in recent years [Yer06]. In the future, we

expect this trend to continue, and anticipate the appearance of novel and exciting

processor features that advance the capabilities of post-silicon validation.

2.3 Runtime Verification

In the previous sections we covered the main pre- and post-silicon validation steps,

occurring behind the doors of the design house, before a processor is released to

the market. With these techniques, the engineering team detects the vast majority

of design bugs. However, a very small fraction may, and often does, escape into

the final silicon product. The reasons for this lack of completeness lie in the inher-

ent limitation of pre- and post-silicon technology: formal pre-silicon approaches are

not scalable to designs as large as today’s microprocessors and require that device’s

specifications and verification goals are carefully crafted as mathematical expres-

sions - a feat unachievable in many cases. Simulation-based pre-silicon techniques,

on the other hand, can be applied to significantly larger designs, but, in return, they

provide much lower levels of correctness guarantees. In other words, simulation

can only vouch for the error-free execution of cases that were exercised during the

test execution and, consequently, bugs can be left lurking in the areas of a design

unexplored by the tests. Furthermore, as the design is taken from its architectural

description to RTL, the level of detail increases, reducing simulation performance

by orders of magnitude. As a result, only fairly short test sequences can be executed

on a full-system RTL model, before the design is manufactured. Post-silicon val-

idation exposes a silicon prototype to much harsher and longer testing, revealing

additional bugs that could not be discovered before manufacturing, such as electri-

cal and manufacturing defects, as well as hard-to-reach functional bugs. The crucial

shortcoming of this development phase is the lack of observability of the device’s

internal signals and state. While silicon state acquisition methods alleviate this pro-

cess, hardware prototype diagnosis and debugging remains to this day one of the

most challenging design tasks.

Overall, both pre- and post-silicon validation can expose the vast majority of bugs

in a modern microprocessor, but, unfortunately, they cannot identify all of them in

a reasonable time. Thus, there is always a small number of escaped bugs, which

find their way into the final silicon product shipped to end-users. Sometimes vendor

companies make information about such errors available, publishing specification

updates or errata sheets. Typically, these escaped bugs occur rarely – which is why

they are very hard to find – and may include cases of unanticipated interactions

between on-chip components or between a processor and the peripherals connected
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to it. Nevertheless, they can cause significant damage to the company, which may be

forced to issue a recall or delay the release of the product. More importantly, unlike

buggy software, circuits printed onto a silicon substrate cannot be easily modified

to correct an issue, especially if they reside in millions of computers distributed

all over the world. Therefore, processor vendors and researchers in academia alike

have began developing solutions to guarantee correct operation of their products in

the field, even in presence of hardware bugs, with so-called dynamic, or runtime

verification techniques.

The most primitive form of runtime verification consists of modifying any soft-

ware application running on the hardware platform to avoid the occurrence of the

erroneous sequence. This method is referred to as instruction patching and it is

most commonly used in the embedded domain, where both hardware and the lower-

level software, such as drivers and system libraries, are strictly controlled by the

same vendor. In general purpose computing platforms, however, it is practically im-

possible to rewrite all possible software applications that a buggy processor may

execute once in the field. In these platforms, engineers attempt to disable the func-

tional blocks responsible for the issue, whenever possible. This can be accomplished

through basic input-output system (BIOS) re-configuration. A BIOS is bootable

firmware program stored in non-violatile memory on the motherboard of the sys-

tem, the program executes at computer startup to configure the system before an

operating system is loaded. To allow in-the-field system reconfiguration (through

component disabling), designers augment some blocks of the processor with spe-

cial programmable flags, sometimes known as chicken bits. If a bug is discovered

that can be isolated to one of this logic blocks, the manufacturer can re-write the

BIOS firmware so to disable it at startup, and thus fix the issue. However, disabling

a hardware module will often lead to lower system performance or, possibly, a re-

duced feature set. For instance, in a recent AMD’s Phenom processor a look-aside

buffer had to be disabled in the cache to avoid a race condition that would hang the

whole system. The consequence was a 10% performance drop [AMD08], an amount

sufficient to cause a notable financial impact to the manufacturer. An alternative so-

lution that exercises more fine-grain control on the design’s features, and, therefore,

has lower performance penalty, was developed at Intel after the FDIV error fiasco

[SC04]. This technique, called microcode update, allows the processor to change the

semantics of execution of individual ISA instructions. Essentially, the decode stage

of a processor pipeline is made programmable and, through firmware updates, it be-

comes possible to re-program the execution semantics of individual instructions. At

runtime, when instructions leading to a bug are fetched and decoded, the execution

sequence for those instruction is replaced based on the firmware information and

the occurrence of the bug can be circumvented. Note that, similar to BIOS firmware

update, microcode updates must be developed offline by the processor vendor com-

pany after the escaped error is discovered in a released product and the root cause

of the bug is diagnosed.

While microcode update technology faithfully served the industry in the last

decade, it was not without problems of its own. For instance, AMD’s implemen-

tation of this technology itself was found at some point to contain an uncorrectable
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bug [AMD03]. More importantly, as the complexity of processors increased and

multi-core designs appeared on the consumer market, this relatively simple tech-

nology became insufficient to detect and patch errors arising from complex interac-

tions between on-die modules. Subsequently, researchers in academia have began

investigating approaches that enable error patching at the level of individual control

logic signals [WBA06, SNC+07]. These techniques augment the processor with

programmable pattern matchers, which monitor control logic signals of the device

and compare them with bug patterns loaded at startup. When a match occurs, an

error recovery mechanism is triggered to bypass the issue. Patterns describing the

bugs, also called bug signatures or fingerprints, are created and distributed by pro-

cessor vendors similarly to BIOS and microcode updates.

The most important drawback of all patching-based approaches, however, is the

fact that a significant amount of time passes between when a bug is first discov-

ered and reported and when a patch is released. During this time the error could

be exploited by malicious users to breach the security of a computer system or

render it inoperable. Therefore, in many applications it is desirable to be able to

guarantee the correctness and security of a processor’s operation even in presence

of unknown escaped errors. Traditionally, in domains where errors cannot be toler-

ated, such as aero-space, or military applications, this goal has been accomplished

through N-modular redundancy design, where multiple distinct implementations of

the same hardware are deployed together and operate concurrently. All modules in

this case are derived from a same specification, but are implemented independently

and, therefore, are unlikely to contain identical errors. At runtime, the modules oper-

ate concurrently and errors are detected (and possibly corrected) when results differ

among the various implementations. Although this redundancy may provide fairly

good protection from errors, its cost and area overheads are far beyond what can

be afforded in commercial processors. As a result, in recent years, researchers have

proposed a number of novel, low cost, runtime verification solutions. Many of these

solutions are based on hardware checkers, small blocks encoding invariants of cor-

rectness for the design’s operation: for instance they can be used to dynamically

validate the operation of individual cores [Aus00, DBB07] or the communication

between them [MS05]. Other solutions have also proposed the insertion of local

checkers distributed throughout the design to monitor the correctness of functional

invariants [NdPC+04, BM05]. When an error is detected, a recovery mechanism is

invoked, so the system can circumvent the troublesome spot and then return to nor-

mal execution. The key difference between checker- and patching-based solutions is

that the former encode the correct scenarios of processor operation, while the latter

compare the state of the design with known erroneous patterns. Typically, checker-

based techniques incur higher area penalty; on the other hand, they ensure operation

of the system even in the presence of undiscovered bugs.

Overall, runtime verification is a new and exciting field in processor design and

validation, which promises to dramatically improve the quality of commercial pro-

cessors and protect both vendors and end-users from escaped errors. Solutions in this

area have just began to appear in the research literature and are yet to be fully em-

braced by the industry. However, we believe that the growing complexity of modern
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processors will inevitably lead to the deployment of runtime verification techniques

into commercial designs. Nevertheless, they will not become a substitute for pre-

and post-silicon validation efforts. Each one of these domains has unique and irre-

placeable advantages, and it is most likely that all of them will come together into

a balanced solution, complementing each other and providing utmost efficiency in

microprocessor validation.

2.4 Summary

In this chapter we presented a broad overview of verification techniques at all lev-

els of a processor’s life-cycle: from pre-silicon to in-the-field deployment. As we

reported, verification goes hand in hand with the design process, and often must

quickly adapt to modification in the specifications of a device. In pre-silicon verifi-

cation, which is conducted on a range of software models of the design, simulation-

based techniques remain the workhorse of the the industry, primarily, due to their

scalability. On the other hand, formal verification, where a processor is subjected to

rigorous mathematical proofs, does not scale to large designs, but can provide sig-

nificantly higher guarantees of correctness. Therefore, formal tools are often used

to selectively target relatively small internal modules of a processor that are more

prone to errors and are of vital importance to the functionality of the device.

Post-silicon validation commences once a prototype of the processor is manufac-

tured and targets electrical, functional and manufacturing defects. The latter ones

are often diagnosed with efficient ATPG solutions, which subject the prototype to a

variety of structural test vectors. To achieve efficient testing and debugging in this

domain, engineers gain access to the internal state of a prototype through a range

of DFT mechanisms, such as scan-chains, JTAG, etc. Functional post-silicon vali-

dation, on the other hand, aims to establish that a design truly adheres to its original

specification and operates properly in a wide range of computing platforms. In par-

ticular, functional post-silicon validation in today’s industry consists of executing a

mix of directed and randomized tests on the hardware prototype, and then validating

the corresponding outcomes against those produced by an architectural simulator or

checking for a pre-designed result.

When the prototype is deemed sufficiently stable in the post-silicon phase, it is

released to the market and deployed in the field. Due to short production schedules

in today’s competitive market, which often result in insufficient pre- and post-silicon

validation, processors are frequently released with a small number of subtle bugs. To

bypass such errors in the field engineers make their designs re-configurable through

BIOS and firmware patches, or augment them with hardware checkers to monitor

execution correctness, in addition to providing recovery mechanisms upon bug de-

tection. Each of the three classes of verification solutions, pre-silicon, post-silicon

and runtime, has unique advantages and drawbacks and therefore, all of them must

used in concert to achieve the highest level of protection from errors and to ensure

minimum performance, cost and silicon area impact.
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Part II

FUNCTIONAL POST-SILICON
VERIFICATION



This part of the book investigates emerging approaches in functional post-silicon

validation of modern processors. In recent years, diagnosis of functional errors

leveraging prototype hardware has been attracting interest from both research and

development groups. This is primarily due to high execution performance achiev-

able by post-silicon validation methods, compared to pre-silicon simulation tech-

niques. However, the observability of a design’s internal state is severely limited

during the post-silicon phase, making it extremely difficult to identify the root cause

of a bug. Consequently, approaches in this domain tend to rely on observation of er-

rors through frequent inspection of the architectural processor state via silicon state

acquisition techniques. We begin the first chapter in this part of the book with a

detailed overview of post-silicon validation, as it is conducted in the industry today,

and identify a critical bottleneck in this traditional framework. Subsequently, we

discuss a novel solution that eliminates this bottleneck, unlocking the full potential

of this methodology. In the following chapter we focus our discussion to multi-core

designs and first examine the typical architectural framework for these devices and

identify shared memory communication as the primary challenge in the verification

of such designs. Three solutions for post-silicon validation of the memory subsys-

tem in chip multiprocessors are then presented in that and the following chapter.



Chapter 3

POST-SILICON VALIDATION OF

PROCESSOR CORES

Abstract. Verification remains an integral and crucial phase of the modern mi-

croprocessor design and manufacturing process. Unfortunately, with soaring de-

sign complexities and decreasing time-to-market windows, today’s verification ap-

proaches are incapable of fully validating a processor design before its release to

the public. Increasingly, post-silicon validation is deployed to detect complex func-

tional bugs, in addition to exposing electrical and manufacturing defects. This is

due to the significantly higher execution performance offered by post-silicon meth-

ods, compared to pre-silicon approaches. We begin this chapter with an overview

of traditional post-silicon validation techniques, as reported by the industry. We pay

special attention to error detection and debugging methodologies discussed in the lit-

erature and identify several crucial drawbacks in traditional post-silicon techniques.

In particular, we show how the performance of architectural simulators, used to

determine the correctness of post-silicon tests, have become a bottleneck in cur-

rent methodologies. We then discuss in detail a novel solution to address this issue,

called Reversi. Reversi generates random programs in such a way that their correct

final state is known at generation time, thus completely eliminating the need for

architectural simulation. At the end of the chapter, we demonstrate experimentally

that Reversi generates tests exposing more bugs faster, and can speed up post-silicon

validation by 20 times, when compared to traditional flows.

3.1 Traditional post-silicon validation in industry

Verification remains an unavoidable, yet quite challenging and time-consuming as-

pect of the microprocessor design and fabrication process. With shortening product

timelines and increasing time-to-market pressure, processor manufacturing houses

are forced to pour more and more resources into verification. The problem is ex-

acerbated by the appearance and growing adoption of multi-core architectures. The

design effort in these systems is often less than that of a single-core processor of sim-

ilar size, since here identical cores are replicated multiple times within the design,
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occupying a large fraction of the silicon die area. The verification effort is higher

however, because inter-core communication must also be verified, in addition to the

cores themselves; and it often introduces non-deterministic behavior in the system

as a whole. Therefore, with processor complexity increasing rapidly, and verifica-

tion coverage lagging behind, bugs, such as the AMD Opteron REP MOVS error

[AMD05] and the functional problems in the Intel’s Core 2 Duo [Int07a, Int07b],

continue to slip into production silicon.

As discussed in the previous chapter, hardware verification can be divided into

three phases: pre-silicon, post-silicon and runtime. Pre-silicon verification employs

two major families of solutions: simulation-based tools and formal techniques. Al-

though formal solutions can be used to prove key design properties, such as absence

of deadlock, proper ALU and FPU functionality, etc., they suffer from the memory

explosion problem and can ultimately be used only on small design modules. For

example, in the verification of the Intel Pentium 4 processor, formal methods were

used only on floating-point units, schedulers and instruction decoders [Ben01]. Sim-

ulation approaches, on the other hand, do not have such strict limitations, but neither

can provide hard guarantees of correctness: only those behaviors that have occurred

during the simulation can be validated. Nevertheless, simulation remains the method

of choice for pre-silicon verification due to its scalability.

Post-silicon validation relies on a concept similar to simulation: the hardware

prototype executes as many randomly generated input vectors as possible. How-

ever, there are a few key differences between this approach and pre-silicon verifi-

cation. First, the execution on a hardware prototype is several orders of magnitude

faster than any functional simulator, therefore, significantly more test vectors can be

checked. However, this high speed comes at the price of limited observability: the

internal state of the prototype cannot be fully and easily observed, forcing engineers

to diagnose errors from the architectural state of the system or to periodically sus-

pend test execution to record the internal state of the processor via special testing

interfaces. Finally, in addition to functional testing, post-silicon validation allows

engineers to test electrical properties of the design, such as maximum frequency,

compliance with I/O interface specifications, etc.

Runtime solutions, which have started to appear recently, take verification past

the release of the product and ensure correctness of operation of the device in the

field. To this end, the device is typically augmented with extra hardware to moni-

tor the execution, detect errors and violations of invariants and recover from them.

In addition to avoiding functional bugs, runtime verification approaches can also

provide protection from transient errors, which occur because of energetic particle

strikes, and permanent faults due to transistor wearout. In the later chapters of the

book we investigate such runtime solutions in much detail, so let us now concentrate

on post-silicon techniques employed by the industry.

As reported in [Rot00, SFH+03, BASS07, KAI07], industrial-scale post-silicon

validation can divided into two parallel thrusts: compatibility verification and system

validation (Figures 3.1 and 3.2, respectively). The former one analyzes the opera-

tion of the system in a typical execution environment, such as a standard desktop or

server system. Thus, for testing purposes, the prototype is inserted into a reference
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Typical workloads:

Operating systems

User-level applications

Performance benchmarks
Silicon

prototype

Reference motherboard

Extension cardsMemory

Chipset

Fig. 3.1 Post-silicon validation: compatibility verification setup. The processor’s silicon pro-
totype is inserted into a reference motherboard with commercially available chipset, memory and
extension cards. The system then runs directed tests such as operating systems, user-level appli-
cations and performance benchmarks. While compatibility verification has relatively low cost, its
coverage of the newest and, thus, most bug-prone features is low, because the software applications
do not extensively probe these components.

motherboard equipped with off-the-shelf available hardware. The design is then ex-

ercised by running a variety of commercial applications, such as operating systems,

legacy software, performance benchmarks, and so on. The advantage of compati-

bility verification is that it is relatively cheap, since both the software tests and the

hardware infrastructure (that is, the platform on which the system is running) are,

for the most part, readily available and mature components. Moreover, error detec-

tion is conducted in a fairly straightforward fashion: bugs can be detected through a

system hang, application error messages, etc. In other words, engineers leverage the

known-correct behavior of the hardware and software platform in compatibility test-

ing as the yardstick to determine processor correctness. The drawback of this type

of post-silicon validation is that it provides very low coverage of the new processor

features, since those are not stimulated by legacy applications. Furthermore, since

tests are executed on an average-user platform, the “stressfulness” of the valida-

tion stimuli is also low, leading in turn to insufficient coverage. Finally, debugging

during compatibility verification is extremely complex, being exacerbated by the

lack of specialized features to suspend test execution and provide access to internal

processor signals’ values.

System validation, on the other hand, is typically carried forward through ran-

domized programs, which attempt to thoroughly investigate the broad set of pos-

sible operations of the processor, including corner case behaviors, as well as high

traffic and high computation density operations. In this setup, quick error detection

and debugging are greatly emphasized, as is the need for coverage metrics, i.e., the

measure of effectiveness of a test program in stimulating certain aspects of the de-
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Typical workloads:
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Fig. 3.2 Post-silicon validation: system validation setup. The prototype silicon processor is ver-
ified on a custom-built motherboard equipped with a number of testing and debugging modules,
including tester cards, off-chip communication traffic snoopers/recorders, etc. In system valida-
tion, the typical workload includes stressful randomized programs targeting hard-to-reach corner
cases of the design’s behavior. In addition, new features and components are highly stimulated in
an attempt to expose subtle bugs. Note that, given the randomized nature of these tests, system val-
idation must rely on off-chip architectural level simulation to determine the correct test outcomes.

sign to expose potential flaws. To this end, system-level validation platforms are

often custom-built by the product verification teams and are equipped with special

additional hardware for testing and debugging, such as off-chip traffic snoopers. In

addition, they provide connectivity to external logic analyzers, and the ability to run

programmable test generators, as shown in Figure 3.2. An example of a real-world

system validation setup is presented in a work discussing post-silicon validation

of the Pentium M processor [SFH+03]. There, the validation platform included an

interrupt generator (dubbed the “mobile agent”) and a system bus transaction gener-

ator. The former was to assert certain signals, such as external interrupts, and emu-

late a variety of system-wide events in response to triggers sent out by the processor.

The transaction generator was designed to observe and dynamically modify the data
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traffic between the processor and the chipset. It could respond to bus requests with

predefined or randomized data and subject the processor to stressful activity. Both

these components were implemented on a programmable FPGA fabric, and thus

could be easily adapted to focus on the validation of a range of different proces-

sor features. In addition, for some tests, they could be used in lieu of memory and

external peripherals and emulate their interaction with the processor. Finally, the

testing board included a traffic recorder to log the activity observed on the external

processor bus for debugging purposes.

A more recent example of an industrial-scale system validation platform, in this

case for the Intel Core 2 Duo design, was reported in [BASS07]: the authors aug-

mented the platform with a high-speed logic analyzer, configured to record sys-

tem bus transactions for offline error checking and coverage analysis. For the first

objective, the observed data was sent to batch servers that checked it using prede-

fined protocol-level rules. The coverage measurement was provided with the aid of a

database of all known system bus transactions and all possible pairs of back to back

transactions. After each successful test, observed bus messages were tagged in the

database until the desired coverage level was achieved (for this particular product it

was 100% coverage of single transactions and 54% of all pairwise combinations).

Although these techniques provide great support to the validation process, note that

all of them operate at the architectural level, observing and controlling the processor

only through its I/O pins, and keeping the internal state and activity of the system

obscured from the engineers. Therefore, in most cases, bug diagnosis is extremely

challenging using these methods, since basic information of internal processor ac-

tivity is missing. Furthermore, even the coverage information that can be collected

is extremely partial and based on the little data that can be collected from external

observation, with the result that high-quality post-silicon validation is very hard to

achieve with this type of frameworks.

The drawback of limited internal observability of a processor prototype can be

addressed by probing or other silicon state acquisition techniques, as outlined in

Section 2.2. Recall that optical probing methods can be deployed for sampling of

individual wires and transistors on a silicon die [EWR00], but tend to be inefficient

since only a handful of locations can be monitored at once. For more efficient di-

agnostic, industrial designs are often augmented with special on-die features, such

as scan-chains [KDF+04], JTAG ports [MDM+06], cycle breakpoints [BEC06] and

on-chip logic analyzers [Lit02], which allow high-speed access to much of the in-

ternal state of the device. As a tradeoff, however, these techniques incur some area

penalty and are limited in the amount of information that can be observed “at speed”.

Thus, after the internal buffers of these components become full, execution must be

suspended and the recorded data must be transferred to external storage. Recently,

a more homogeneous framework for post-silicon state acquisition was proposed in

[ABD+06], and so far it has been employed in several industrial validation projects.

In the context of microprocessor verification, these general solutions are often

complemented by domain-specific techniques to further improve observability and

accelerate the debugging process. For instance, as discussed in [SFH+03], during

the validation of the Intel’s Pentium M processor the verification team leveraged a
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periodic state management interrupt (PSMI) mechanism to access the microarchi-

tectural state of the processor. When the PSMI interrupt pin was asserted, execution

was suspended and a software routine would upload the internal state of the pro-

cessor to memory. By pulsing this signal periodically, the authors obtained several

checkpoints close to the error manifestation time and used them to replay tests and

diagnose the root cause of the bugs. Internal state observability can also be used to

improve the quality and the data collection process of post-silicon coverage, as indi-

cated in [BASS07]. In that work, the authors set internal processor counters to mon-

itor the occurrence of certain events during execution. By means of these counters,

rare microarchitectural events could be identified, and the team could parametrize

test generation to target the corresponding insufficiently validated scenarios. An-

other interesting coverage data collection technique outlined in [BASS07] relies on

the microcode patching mechanism often available in modern processors. We will

overview microcode patching in a later chapter, along with other runtime solutions;

in [BASS07] it was not employed to fix errors, but instead to detect occurrences of

internal events. Specifically, the authors developed custom microcode patches to be

invoked when certain instructions were in execution; these patches would sample

the processor’s state and transmit it to the external platform through JTAG ports.

This solution enabled a significant increase in the amount of microarchitectural in-

formation collected and greatly improved post-silicon validation coverage. Similar

experiences were reported by the multi-core UltraSPARC T2 post-silicon valida-

tion team [KAI07]. In this project, debugging features such as scan-chains, on-chip

triggers, and JTAG ports were exploited to observe the prototype’s internal state,

while the test generation was conducted in software running on the processor itself.

Particular attention in this case was dedicated to the validation of the inter-core com-

munication block and a novel on-die encryption module included in the T2 design.

The design of the framework used for obtaining the silicon state, however, is

just one aspect of post-silicon debug, since even when access to the system’s in-

ternal signals is available, it is often extremely hard to diagnose the root cause of

an issue. This is due to the extreme complexity of modern microprocessors, where

the effects of an error are often manifested millions of cycles after its occurrence.

Therefore, engineers often spend much of their time replaying the test and sampling

the internal state at different points in time and with different time granularities, ide-

ally “zooming in” on the bug. Supporting the engineering team in this arduous task

are trace minimization tools, such as [CBM07b]. This solution accepts as inputs a

simulation trace exposing a functional error and structural information about the cir-

cuit, producing a much shorter test sequence that still reveals that same bug. When

short bug traces are available, it is possible to perform debugging using RTL sim-

ulation, leveraging methodologies similar to pre-silicon verification, where observ-

ability and controllability are not an issue. After the source of the error is identified,

the validation team investigates how it can be corrected and suggests RTL modifi-

cations to be implemented in later hardware versions. Overall, as you may imagine,

the process of post-silicon debugging and repair requires significant insights into the

functionality and implementation of the circuit-level structures, necessitating close

human guidance. A recent research solution in [CWBM07] proposed to automate
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this process with the use of formal verification techniques: given a buggy RTL de-

sign, a high-level (architectural) golden model and a trace leading to the error, the

tool presented in that work automatically augments the design with additional inter-

nal signals and then formulates the diagnosis problem as a pseudo-Boolean set of

constraints. Solving this problem allows the technique to pinpoint the location(s) in

the RTL code that are responsible for the incorrect behavior and to suggest modifi-

cations that will repair the error. Notice that this approach does not require internal

design state information, and only needs a set of correct output responses to test

inputs. However, since the correct system behavior in this case is defined only by

these responses, the tool will only suggest modifications that make the outcomes

of the RTL and architectural models match for the input sequences provided, and

cannot guarantee system’s correctness for other test sequences. While promising,

this technique may not be scalable to circuits as complex as microprocessors and,

to the best of our knowledge, has not been deployed in industry contexts, where

post-silicon debug still remains more of an art, than a scientific methodology.

In summary, a few concepts and challenges are common to all post-silicon valida-

tion methodologies discussed so far: i) observability and controllability are scarce,

ii) raw system simulation performance is very high, iii) diagnosis and correction are

extremely challenging, and to date very few systematic methodologies are available

to attack this problem. Finally, iv) all system-level validation activities require the

use of randomized tests, which must be capable of cleverly stimulating different

design activity to boost the validation coverage. While these program sequences al-

low the hardware prototype to be stressed, that is, be subjected to intense activity in

one design aspect, nevertheless, they have an inherent handicap in their lack of test

outcome knowledge. In other words, when a random test is generated, designers do

not know what the correct result of its execution should be, and are forced to run

this program on a distinct golden model of the same design. The final state of the

golden model can then be compared to the state of the hardware prototype, which

is obtained via silicon access mechanisms, as discussed above. To provide correct

responses, two types of golden models can be used: if the test only exercises legacy

instructions, an older generation processor can provide the correct outcome; on the

other hand, to validate new features of the design, engineers must resort to logic sim-

ulation or, possibly, emulation. Clearly, validation of the new features is of critical

importance, since often new components are the source of the majority of bugs. As

a consequence, simulation, which even at the architectural level performs orders of

magnitude slower than actual silicon, becomes the bottleneck in this process. Under

these circumstances, design houses are forced to spend enormous computational re-

sources on server farms, in charge of simulating many tests in parallel, trying to keep

up with the high performance of the silicon prototype [Rot00]. If, however, the final

outcomes of these tests were to be known a priori, as it is in directed tests, it would

be possible to avoid this simulation bottleneck, and greatly speed up random-testing

post-silicon validation, while keeping the benefits of its high coverage. A solution

designed exactly for this purpose was proposed recently by us in [WB08]. In the

remainder of this chapter we analyze this technique in detail, presenting an example

of generated test programs and evaluating the performance of the approach.
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3.2 The Reversi Test Generation System

Typically post-silicon functional validation in industry has been conducted with

two types of tests: parameterized directed tests and constrained-random (or pseudo-

random) tests. Although the former ones can provide high coverage, they require

significant human effort to be developed. Pseudo-random tests, constrained to pro-

duce only valid instruction sequences, can be generated automatically, however, of-

ten suffer from lower coverage. More importantly, the final state of the processor

after executing a random test sequence is unknown. Therefore, engineers must re-

sort to simulating the design’s golden model to compute the final processor state and

check it against state dumps of the actual hardware prototype (Figure 3.3).

=

Critic
al path

Random 
generator

Architectural simulation

Constrained-
random 
program

Simulator
final state

Prototype
final state

Custom test motherboard

Fig. 3.3 A typical post-silicon system validation flow. In a typical post-silicon methodology,
random tests are produced by a test generator and fed to both a golden model simulator and a
silicon prototype. Bugs are flagged by differences between the prototype’s and simulator’s final
states. Both test generation and simulation are performed by software executing on a host machine
at relatively low performance when compared to the test execution performance of the silicon
prototype. Thus, the performance bottleneck of this setup is the architectural simulation server.

Unfortunately, the simulation of the golden model is several orders of magnitude

slower than the hardware execution, therefore, the computation of the final state be-

comes a bottleneck for the entire effort. The methodology proposed here addresses

this issue by developing a post-silicon solution which fully exploits the performance

of the hardware under test. It is based on a test generator, called Reversi, that pro-

duces tests whose outcome is known by construction. This allows Reversi-based

post-silicon flow to bypass the simulation step and speed up the overall validation,

as illustrated in Figure 3.4.
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Fig. 3.4 A Reversi post-silicon system validation flow. A Reversi-based flow does not require
an architectural simulator: random reversible programs can be generated on a tester board or on
the hardware prototype itself. These programs are characterized by producing matching initial and
final processor state when executed correctly. Consequently, bugs are flagged when differences are
observed between the initial state of the prototype and its final state after executing the test.

The key observation that allowed the development of Reversi is that many in-

structions in a processor’s ISA have counterparts, i.e., operations whose functional-

ity has a corresponding inverse instruction, such as restoring a value in a particular

register, clearing a set of flags, etc. Moreover, if no single instruction exists to re-

verse the action of another, one can devise a small program sequence to be used to

the same effect. This was the case, for example, for the integer multiply instruction

in one of the ISAs that we will discuss in the experimental evaluation presented

in Section 3.5. No instruction for integer division was available in that ISA, thus

software emulation of division was used to revert the effects of multiplication. Note

that, if the emulation routine exposed any error in the hardware prototype, the re-

sult of the multiplication would not be reversed correctly. The presence of inverse

functions enables generation of programs that include every instruction in an ISA,

and for which the final register values match exactly the initial ones. In other terms,

if x is a vector representing the processor state, and each Fi / F−1
i pair represents

a distinct function (either an ISA instruction or an instruction block) and the cor-

responding inverse, then a program generated by Reversi can be thought of as the

following sequence: F−1
1 (F−1

2 (...(F−1
n (Fn(...(F2(F1(x)..). Errors in the underlying

hardware can then be discovered if:

x 6= F−1
1 (F−1

2 (...(F−1
n (Fn(...(F2(F1(x)..) (3.1)
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3.3 Reversible and Non-reversible Instructions

In order to create reversible programs, one need to first analyze the design’s ISA

and identify inverse instructions (or instruction sequences) for each of the opera-

tions. By applying these operations in the manner discussed above, the state of the

processor can be first modified and then properly restored (in the absence of bugs).

This can be achieved by creating a block database containing pairs of functional

blocks: for each operation block, there is a corresponding inverse block. Each block

contains either a single instruction or a small program sequence. An operation block

modifies the value of a register, called the focus register, while its inverse restores

its initial value. The ID of the focus register for each block is a parameter set by

Reversi dynamically during test generation. Therefore, the same block may appear

in the test program multiple times, each time modifying a different register, which

allows a varied set of programs to be created. Note that blocks operate only on a

single focus register at a time to maintain the reversibility of the program and track

the correctness of its execution. Thus, for instructions with multiple operands, only

one register is the focus register, while other operands are randomly generated by

Reversi according to the instruction format. The flexible and robust structure of the

block database allows the Reversi algorithm to be agnostic to the functionality of in-

dividual blocks and the underlying ISA, making the framework readily adaptable to

different processor architectures. Moreover, since each block in Reversi may contain

multiple instructions, it is possible to populate the database with complex functions,

including loops, procedure calls, etc., and create elaborate tests representative of

real software applications. In the following section we discuss individual classes of

instructions and details of operation and inverse block verifying them.

3.3.1 Arithmetic and logic instructions

The design of blocks containing arithmetic and logic instructions is summarized

in Table 3.1 and is fairly straightforward, since the majority of these operations

have a simple inverse directly available in the ISA. For example, add (addition)

can be reversed by sub (subtraction), while inc (increment) can be reversed by dec

(decrement), ror (rotate right) by rol (rotate left) and so on. If an instruction does

not have a counterpart in the ISA, a small routine can be used to emulate its inverse.

Some Boolean logic instructions, such as and and or, do not have direct inverses,

however, these operations can be used to construct an xor logic function, which

can then be reversed by another xor instruction. Such structure is also beneficial for

verification of the xor instruction itself, since the operation and its inverse block in

this case exercise different hardware modules. Situations where the same processor

components are exercised to execute a function and its inverse should be avoided

this is the last candidate. next esc will revert to uncompleted text. o prevent bugs

being masked by faulty hardware.
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Table 3.1 Reversi blocks for arithmetic and logic instructions.

Instruction Operation Block Inverse Block

add add sub

sub sub add

inc inc dec

dec dec inc

xor xor

xor function emulated by a com-
bination of and, or, and not
instructions: a xor b =
(a and not(b)) or (not (a) and b)

not not not function emulated with nand:
not a = a nand a

neg neg
negation function emulated with
multiplication by -1: -a = a*(-1)

and

xor function emulated by a com-
bination of and, or, and not
instructions: a xor b =
(a and not(b)) or (not (a) and b)

xor

or

xor function emulated by a com-
bination of and, or, and not
instructions: a xor b =
(a and not(b)) or (not (a) and b)

xor

mult mult
integer division emulated with
Booth’s algorithm subroutine

rol rol ror

ror ror rol

sll
two step process:
1. store lost bits
2. sll

two step process:
1. srl
2. restore lost bits

srl
two step process:
1. store lost bits
2. srl

two step process:
1. sll
2. restore lost bits

sra

three step process:
1. store lost bits
2. create mask
3. sra

three step process:
1. rol
2. apply mask
3. restore lost bits

Some ISA operations, for example sll (logic shift left) and srl (logic shift right),

cause some of the data bits to be lost. In order to be able to restore fully the initial

value of the focus register, we must mask out these bits and store them in a scratch-

pad memory before applying the operation. When the program reaches the inverse

block, it first applies the reverse operation (i.e., shift in the opposite direction in this

case) and then loads and restores the bits from memory. Finally, the outcome of an
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ROL focus reg, shift amount

Mask = 0xFFFFFFFF

Store lost bits

Operation block Inverse block

Focus reg > 0

SLL mask, shift amount

SRA focus reg, shift amount

Store mask

XNOR focus reg, mask

Restore lost bits

Fig. 3.5 Operation and inverse blocks for the shift-arithmetic right sra instruction. The op-
eration block first stores aside the bits that would be lost when executing the sra instruction. Then
a filter mask is set up based on the arithmetic sign of the focus register; the sra is executed, and
finally the filter mask is also stored aside. The inverse block uses a rotate left instruction to relocate
the bits of the focus register in their original position, then uses the mask to filter sign bits that were
set during the sra instruction, and finally restores bits that were eliminated by the shift operation.

instruction may depend on the sign or value of the focus register, which is not known

at generation time. For example, shift-arithmetic right (sra) will preserve the sign

of the value by replicating its most significant bit. To detect errors in this operation

we developed the scheme illustrated in Figure 3.5: first, the bits that will be lost

due to the shift operation are stored in memory, then the sign of the focus register is

checked and a bit-mask is created accordingly. For positive values of the register, the

mask is 0xFF..F, while for negative values the mask has the bits corresponding to

the shift amount (SA) set to 0 (note that the shift amount is encoded in the instruction

itself, thus known at generation time). Finally, the sra function is applied. To check

the correct operation of the function in the inverse block we first apply a (rotate left)

rol instruction, and then overlay the mask with an xnor operation. The use of a ro-

tate operation in the inverse block allows us to detect bugs in the sra instruction that

affect the most significant bits of the focus register. The subsequent xnor operation

will propagate potential bugs in any bit position of the register. To better illustrate

this process, we present an example of a short program generated using this scheme

for two systems in Figure 3.6. The left part of the image shows an assembly-level

program generated by Reversi from the template in Figure 3.5. The system in Figure

3.6.b implements the operation correctly, and thus executes the program correctly,

restoring the original value of the focus register, while the other system does not

replicate the sign bit properly due to a bug in its hardware implementation, an issue

detected by Reversi through the mismatch of initial and final focus register’s values.

Errors in the arithmetic shift operation for positive values of the focus register will

also be detected by programs generated following this template.
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Focus reg: $r1=0xFA01, Shift amount=3, Mask reg=$r3, Temp reg=$r5

Mask=0xFFFF

Mask=0xFFF8

Focus reg=0xFF40

Store 0x1

Store 0xFFF8

Focus reg=0xFA07

Focus reg=0xFA00

Focus reg=0xFA01

Mask=0xFFFF

Mask=0xFFF8

Focus reg=0x1F40

Store 0x1

Store 0xFFF8

Focus reg=0xFA00

Focus reg=0xFA07

Focus reg=0xFA07

a. b. c.

$r3 = 0xFFFF

$r3 = sll $r3, 3

L1: $r1 = sra $r1, 3

$r5 = andi $r1, 0x111

st $r3  memory

st $r5   memory

bgz $r1, L1

ld memory  $r3
$r1 = xnor $r1, $r3

$r1 = rol $r1, 3

ld memory  $r5
$r1 = or $r1, $r5

Fig. 3.6 An example of a program testing the shift-arithmetic right sra instruction. The left
part of the figure shows an example program generated based on the template of Figure 3.5. Ex-

ecution on two systems is also shown: the system on the left (b.) is implemented correctly, and
thus restores the original value of the focus register upon completion of program execution. The
system on the right (c.), on the other hand, includes an implementation bug, which manifests when
executing the sra instruction. The erroneous value computed in the focus register is propagated
through the program and can be detected at completion by simply comparing the initial and final
values of the focus register.

3.3.2 Load/store instructions

In Reversi, the correctness of load and store instructions is checked by copying a

data structure to and from memory: a region of memory is initialized with random

values and load/store pairs are used to copy it to a new location. The copy operation

is not required to preserve the order of the data bytes, rather, the data structure is

treated as a pool of values, which can appear out of order at destination, as illustrated
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in the schematic of Figure 3.7. This allows tests generated by Reversi to closely

resemble real applications, where load instructions bring data from memory to the

processor, and stores copy results of the computation back to memory. Moreover,

because of their random nature, Reversi programs contain a variety of cache and

memory access patterns, that can expose corner case bugs in the memory subsystem.

To check the correctness of the final state of the memory, a signature of the memory

values is obtained by hashing them together using xor instructions. This signature is

computed at the beginning and at the end of the test and the two values are compared

to detect possible mismatches. This approach allows Reversi to expose load/store-

related issues such as illegal memory accesses and/or data corruption.

SRC_MEM [ i ] TEMP_REG

TEMP_REG DST_MEM [ j ]

Program:

...
SRC_MEM [ n ] TEMP_REG

TEMP_REG DST_MEM [ m ] ...

...

SRC

Memory:

DST

Fig. 3.7 Testing of load and store instructions in Reversi. Load/store instruction pairs are used
to copy bytes between two memory regions. The order of data values may be reshuffled, but values
must not be eliminated nor duplicated, since their xor-based signatures must match.

3.3.3 Branch instructions

A basic block database of Reversi would also contain templates to test a range of

branch instructions with different properties: forward/backward branches, taken/not-

taken, etc.For example, an operation block for a forward taken branch (Figure 3.8)

contains a store operation that saves the value of the focus register to scratchpad

memory, followed by a load that overwrites the focus register with a predetermined

constant. Finally, the branch instruction itself follows, branching conditionally on

the focus register holding the constant value just loaded. Although the constant is

generated randomly, its value is dependent on the type and specific instance of the

tested branch, to support bug diagnosis in case of test failure. For example, a tem-

plate for a beq (branch if equal) instruction overwrites the focus register with a

random constant and then loads a temporary register with the same value used in

the branch instruction under test. With reference to Figure 3.8, the destination of the

branch is located in the inverse block, which also contains a load operation restor-

ing the focus register and a return (to the operation block) jump. Therefore, if all

control flow instructions are executed correctly, the value of the focus register after

the execution of these blocks is preserved. If, however, the branch is not taken by
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a faulty hardware, the focus register would not be restored. Note that the code in

the inverse block is only accessible via the corresponding branch under test and it is

bypassed otherwise. On the other hand, if the unconditional branch fencing off the

inverse block of Figure 3.8 is not taken due to a bug, the halt instruction is executed,

and the test ends without fully restoring the original processor state.

Halt

Modifying load

Store

Operation block Inverse block

Conditional branch Restoring load

Unconditional 

branch

Return jump

Fig. 3.8 Reversi template for forward-taken branch instructions. The operation block includes

a load instruction modifying the value stored in the focus register. The load is preceded by a store
instruction to preserve the current focus register’s value. A conditional forward branch testing for
the value just loaded in the register is then the central part of this operation block. If the instruction
executes correctly, the branch will be taken, execution will transfer in the inverse block, where the
saved value of the focus register is restored, and then execution is returned to complete execution
of the operation block. The inverse block should be simply skipped in a fully functional processor,
as indicated by its first instruction being an unconditional jump.

Halt

Modifying load

Store

Operation block Inverse block

Conditional branch

Unconditional 

branch

Return jump

Restoring load

Fig. 3.9 Reversi template for forward not-taken branch instructions. The operation block op-
erates similarly as the one in Figure 3.8; however, now the conditional branch should not be taken,
since the focus register is tested against a different value from what was just loaded, and the restor-
ing load is part of the operation block now. In case of execution of this flow in a faulty hardware,
it is possible that the branch is still taken erroneously, in which case the restoring load would
be bypassed by the chain of jump instructions, and the final value of the focus register would be
incorrect, revealing the bug.
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The structure of the blocks for a forward not-taken branch is similar to the one

described above and it is shown in Figure 3.9, differing only in the location of the

restoring load. Templates for other types of control flow instructions can be inferred

from the examples shown in Figures 3.8 and 3.9. We use a similar technique to

detect other faulty control flow operations, initializing all unused locations in the

program to halt instructions.

3.3.4 Control register manipulation

In many modern processors there exist several special control registers. In general

terms, we can classify them into two groups: mode control registers, that can only be

accessed by special instructions and specify the machine’s mode of operation; and

execution flag registers, that cannot be changed directly by the user/programmer,

but are affected indirectly by executed instructions. For instance, a register en-

abling/disabling the first level cache is a mode control register, while a register stor-

ing the ALU overflow bit, or comparison result bits from the comparator (equal,

greater-than, etc.) is an execution flag register.

XOR focus register, control register

Control register = mask

Store original control register

Operation block Inverse block

XOR focus register, mask

Restore original control register

Fig. 3.10 Reversi template for mode control registers. Mode control registers are tested by
exercising the instructions dedicated to set their internal bits. In the operation block a mode control
register is overwritten with a new mask, after storing its original value aside in a temporary register.
That same mask is also xor-ed in the focus register, so that this register now reflects the update. In
the inverse block, the focus register’s value is using the mask stored in the control register (which
should match the original mask), and then the original control register value is also restored. If the
instruction setting the control register, or any of the intermediate instructions, erroneously affects
the mask, the focus register will not be restored correctly, and the test execution will fail.

Reversi exploits the fact that the value of the mode control registers can be modi-

fied only through specific instructions, and must remain unchanged throughout other

parts of program execution. To test the proper operation of a control register, the fol-

lowing sequence of steps is taken: in the operation block, the original value of the

control register is first stored to memory, then the new bit-mask setting the new con-

figuration is loaded into the control register and also xor-ed into the focus register.

In the inverse block, Reversi first accesses the control register and xors it with the

focus register, ideally restoring its value. Then the original value of the control reg-
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ister is loaded from memory and set. The flow just described is illustrated in Figure

3.10. Note that if the control register were erroneously modified between the exe-

cution of the operation block and its inverse block, the focus register’s value would

reflect this error.

Halt

Temp. register = conditional flags

Arithmetic / comparison

Operation block Inverse block

Unconditional

branch
Counterpart operations

Unconditional 

branch

AND temp. register, conditional flags

Return jump

Fig. 3.11 Reversi template for execution flag registers. Execution flag registers are set as a
byproduct of the execution of other instructions: arithmetic, logic, or relational. A Reversi template
for these flags would first execute an instruction with the purpose of setting one of these flags, and
then store the flags on a temporary register. In the inverse block a code snippet would execute to
determine if the flag under test should be set or not, and then the situation is checked by analyzing
the execution flag register value that was stored aside. If the flags match, execution continue from
the end of the operation block. Note how in a correct execution situation, the inverse block is only
accessed from the operation block.

Reversi can also check the correctness of execution flag registers, because in-

structions affecting them (arithmetic, logic and relational) have counterparts in

terms of which flags they set. For instance, if comp $r1, $r2 sets the greater-

than bit, then comp $r2, $r1 must set the less-than bit. Similarly, knowing that

a + b > c ≡ b > c− a, one can check that an add operation sets the overflow bit

in the execution flag register correctly. For instance, assume that

add $r1, $r2, $r3 # overflow, i.e., $r3 > MAX

generates and overflow, because $r3 is larger than the largest integer that can be

represented in this system (MAX). Then one can check that the execution of this ad-

dition properly sets the overflow bit in an execution flag register with the following

code snippet:

sub MAX, $r1, $r3

comp $r2, $r3 # must set greater-than bit

If the comp instruction sets the greater-than flag, then it follows that $r2 > (MAX -

$r1), and thus the earlier addition must have overflowed. This example also shows
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that individual bits of the execution flag register can be used to check other bits in

the register. The template for a Reversi block structure to validate the execution flag

register is presented in Figure 3.11: the operation block executes a comparison or an

arithmetic operation affecting the flags, stores the flags values in a temporary regis-

ter and then jumps to the inverse block. The inverse block executes the counterpart

operations, that is, it executes the necessary instructions to derive the flags values,

similarly to the example provided above, and then checks that they correspond to

those computed in the operation block. With reference to the example discussed,

the template would first execute the add instruction in the operation block and then

determine if it had set an overflow bit by executing the subtraction and comparison

in the inverse block and testing the greater-than bit.

3.3.5 Floating point instructions

Floating point operations present a unique challenge to Reversi due to the their in-

herent imprecision: in the majority of cases the result of the computation is rounded,

making it impossible to restore the operands exactly. To address this issue one must

recognize this intrinsic approximation and take into account the relative error that

is introduced by these operations. This can be done by constructing a table indexed

by the operands’ exponents and checking that the relative error obtained after each

operation and its inverse is within the expected boundaries. Although this solution

would not lead to a strictly reversible program, it is still useful for detecting bugs in

the execution of floating point instructions.

3.3.6 Limitations

The Reversi framework enables the creation of high-coverage tests with a verifiable

final state. However, this approach has a few limitations. The most important one

stems from the fact that Reversi relies on the existence of inverse functions that

can fully and precisely restore the internal state of the processor. For example, if

the integer division operation were implemented in such a way that the remainder

was discarded, the value of the dividend could not be restored precisely. Similarly,

floating point instructions do not always provide high precision, however, they can

still be partially verified by the approach just discussed. Unfortunately, input and

output operations are inherently irreversible and cannot be easily validated through

a Reversi solution. For example, external interrupts cannot be expected to arrive at

a certain time and cannot be “undone” by the core.

In addition, Reversi is also not suitable for instructions whose output depends

on the input operands’ values. For instance, a divide-by-0 operation may trigger an

exception and/or set an error bit. Due to the fact that input operand values in Reversi

are assigned at random, it is very unlikely that a zero divisor would occur, but if it

were, the block database presented in this section could not reverse the instruction
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properly. It is possible to address these type of issues by augmenting the database

with specialized blocks to exercise corner case situations such as this.

3.3.7 Reversi Generator

As described in Section 3.2, reversible programs generated by Reversi consist of se-

quences of operation and inverse blocks instantiated from the block database. How-

ever, a single sequence of blocks only alters a single focus register, therefore, to

create complex and more interesting programs, Reversi generates multiple block se-

quences (called stacks), each altering a different focus register. The stacks are then

interleaved into a single reversible test program, as Figure 3.12 illustrates.

F1
-1(x) G1

-1(x) H1
-1(x)

F2
-1(x) G2

-1(x) H2
-1(x)

... ... ...
F1(x) G1(x) H1(x)

F2(x) G2(x) H2(x)

Stack 1 Stack 2 Stack N

..

..

Interleaved
program

Stacks

B
lo

c
k
s

Block

database

R
e
ve

rs
i

Fig. 3.12 Reversi operation. Given a database of functional blocks, Reversi produces a set of
stacks, consisting of blocks and inverse operations assembled in reverse order. Each stack operates
on a single focus register, modifying it in such a way that the register’s final value matches the
initial one. The stacks are then interleaved into a program with predictable outcome.

Stack generation. During the test generation, Reversi randomly selects functional

blocks from the database and creates a user-specified number of stacks, each cen-

tered on a single, randomly selected focus register and consisting of several blocks

and their inverses. Each stack also uses a few additional temporary registers to sup-

port the computation required in each block. Blocks are then arranged so that all in-

verse blocks follow all the operation blocks in inverse order (as required by Eq. 3.1).

On a properly working processor the focus register should be transformed through

each operation block, and then have each transformation reversed while executing

the inverse block, so that at the end of the stack execution the focus register is

restored to its original value. Note that the sets of temporary registers used by oper-

ations in each stack are completely disjoint to simplify stack interleaving.
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Stack interleaving. After the user-specified number of stacks is generated, Reversi

interleaves them by selecting instructions from each stack and chaining them to-

gether to form a single test program. Note that some instructions may be grouped

together into “atomic operations”, meaning that the interleaving phase cannot insert

instructions between them. The atomicity indicator is provided in the block defini-

tion in the database.

To balance the selection algorithm, each stack should have a different probability

of selection, based on its length, so to avoid having a long tail from a single stack

at the end of the program. The probability of selecting the next instruction should

be directly proportional to the remaining length of that stack, in other words the

probability of selecting the next operation from a given stack j is:

Pj =
|stack j|

∑i |stacki|
(3.2)

where |stack j| is the number of atomic operations in stack j. After each removal

of an atomic operation, all Pj’s are recomputed using the updated stack lengths.

Note that the requirements of using disjoint sets of registers in each stack places an

upper bound on the total number of stacks that can be simultaneously interleaved

in Reversi. This limitation was deemed preferable to the alternative of developing

more complex dynamic register set partitioning (as in some compiler techniques)

because it leads to much faster test generation.

The test program must also include a routine responsible for calculating the sig-

natures of the values stored in the memory regions used for load/store instruction

testing. This routine is executed at the beginning of the program on the source mem-

ory region, and on the destination region at the end of the test. When the program

terminates, the final values of the focus registers and the signature of the destina-

tion region are compared to the initial state of the system computed and stored by

Reversi in the test preamble, to determine if the execution was error-free.

It is also important to note that Reversi programs can provide more aid in de-

bugging than traditional randomly generated programs. If the test results indicate

that there is a bug in the processor, a validation engineer can quickly check if the

exposing instruction sequence is located in an individual stack, by re-running the

program without interleaving. Insights into the nature of the bug can also be found

by “peeling” operation and inverse blocks from the program. Therefore, a reversible

program exposing a bug can be dramatically shortened to alleviate debugging. In

contrast, in a traditional flow, a costly re-simulation is required to obtain the new

golden state after each change of the test program.
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3.4 Example

This section presents an example of a program generated by Reversi for a simple

instruction set outlined in Table 3.2. Two stacks for this ISA, using focus registers

$r7 and $r11, are shown in Figure 3.13. For both stacks the function blocks are

labeled in the left column and boxes mark atomic operations. The stack on the left

in Figure 3.13 contains simple arithmetic/logic operations, while the stack on the

right includes logic instructions, load/store pairs and a block for a forward taken

conditional branch. Sets of register IDs for both stacks are allocated dynamically

by Reversi and are disjoint. Initial focus register values (reg val1 and reg val2),

constants (const1-const3) and locations accessed by load and store instructions in

the program are also selected at random.

Table 3.2 Instruction set architecture for the example of Section 3.4

Instruction Semantics

halt Stop the execution

add $r1, $r2, $r3 $r3 = $r1+$r2

sub $r1, $r2, $r3 $r3 = $r1-$r2

neg $r1, $r2 $r2 = -$r1

ld $r1, var $r1 = MEM [var ]

st $r1, var MEM [var ] = $r1

beq $r1, $r2, label PC = ($r1==$r2 ) ? label : PC+1

Register $r0 is hardwired to the value 0

An interleaving of the stacks into a single program is shown in Figure 3.14.

Conditions that must hold after this program executes are: $r7= reg val1, $r11 =

reg val2 and the signatures for source and destination memory regions used dur-

ing load/store operation blocks must match. Note that the branch code in block G2

was generated by Reversi to be taken. Thus, during correct operation, the execution

should modify the value of $r11 and jump to the label L1. Then the processor re-

stores the value of the focus register and takes the unconditional branch returning

to L2. When operating properly, the processor should not execute line L1 again and

skip directly to L3. If instead the branch in G2 is not taken because of a functional

error in the system, then the exit condition described above does not hold, and an

erroneous value of the focus register will be propagated to the end of the execu-

tion, exposing a bug. Thus, by evaluating the final values of the focus registers $r7

and $r11 and the signature of the destination memory regions, Reversi can quickly

determine if the program has exposed any functional bugs in the processor design.



66 3 POST-SILICON VALIDATION OF PROCESSOR CORES

F
1
-1

(x
)

F
2
-1

(x
)

F
2
(x

)
F

1
(x

)            ld $r3, const1

           add $r7, $r3, $r10

           ld $r7, const2

           xor $r10, $r7, $r15

           ld $r5, const2

           xor $r15, $r5, $r10

           ld $r2, const1

          sub $r10, $r2, $r7

start1: ld $r7, reg_val1
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)           ld $r1, src_mem1

         st $r1, dst_mem2

         st $r11, tmp_mem1

        beq $r0, $r0, L3
        halt
L1: ld $r11, tmp_mem1
        beq $r0, $r0, L2
L3:

start2: ld $r11, reg_val2

         beq $r11, $r30, L1
L2:

G
3
(x

)          ld $r1, const4

        add $r11, $r1, $r6

G
3
-1
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)

         ld $r9, const4

        sub $r6, $r9, $r11

        ld $r1, src_mem2

        st $r1 dst_mem1

IN
IT

1

IN
IT

2

         ld $r11, const3

         ld $r30, const3

Fig. 3.13 Two program stacks generated for the example of Section 3.4. The stacks in the
figure are generated by Reversi for the example ISA described in Table 3.2. Register $r7 is the
focus register for the stack on the left, which contains simple arithmetic and logic operation blocks
and inverses. The stack on the right has focus register $r11 and includes more complex blocks:
logic, load/store and a block for a forward taken branch. In both stacks, operation blocks have been
labeled in the left column, so that the correspondence with their inverse could be easily noted.
Finally, each element of the stack is an atomic operation, comprising one or more ISA instructions.

3.5 Experimental Framework

To evaluate the performance of Reversi, we created two reversible instruction block

databases: one implementing a subset of the DEC Alpha instruction set and an-

other implementing a subset of the x86 ISA. The database for the Alpha instruc-

tion set contained 17 distinct blocks for arithmetic and logic functions, testing a

range of instruction formats (register/register and register/immediate), and 5 blocks

for each type of relational instructions. In addition to that, the database included 3

blocks for load and store instructions, an unconditional jump block and 16 branch

blocks containing 4 distinct branching instructions, each in four possible modes

(forward/backward and taken/not-taken).
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         beq $r11, $r30, L1
L2:

        beq $r0, $r0, L3
        halt
L1: ld $r11, tmp_mem1
        beq $r0, $r0, L2
L3:   

            ld $r3, const1

          add $r7, $r3, $r10

           xor $r10, $r7, $r15

          ld $r5, const2

          xor $r15, $r5, $r10

          ld $r2, const1

         sub $r10, $r2, $r7

start1:  ld $r7, reg_val1

           ld $r1, src_mem1

start2: ld $r11, reg_val2

          st $r1, dst_mem2

         st $r11, tmp_mem1

          ld $r1, const4

          add $r11, $r1, $r6

          ld $r9, const4

          sub $r6, $r9, $r11

          ld $r1, src_mem2

          st $r1 dst_mem1

$r7 = reg_val1

$r11 = reg_val2
xor [src_mem] = xor [dst_mem]

         ld $r11, const3

         ld $r30, const3

           ld $r7, const2

Fig. 3.14 The final test program for the example of Section 3.4. The two stacks of Figure 3.13
are interleaved using the algorithm provided in Section 3.3.7 to obtain a final Reversi-generated
test program. Note that the final values of the focus registers are compared against the initial values
stored in memory, and the signatures of the load/store operation blocks memory region are checked.
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Similarly, the x86 block database contained 32 logic-arithmetic blocks testing

multiple instruction formats (register/register, register/immediate, register/memory,

memory/register), 3 load/store blocks, 1 compare block and 40 branch blocks, for a

total of 76 operation blocks and 76 inverse blocks. Reversi itself was implemented

as an optimized program in C, which instantiated the block database, created and

then interleaved a specified number of stacks. Additionally, Reversi augmented the

test program with specialized routines initializing the state of the processor with

random-generated values and performing the final state check when the test termi-

nates. The blocks of the database were partially pre-assembled in binary, and Reversi

was responsible for setting the appropriate bit-fields in each instruction with register

IDs, randomly generated constants, etc. These bit assignments were all performed

on demand through bit-wise operations during program generation.

To compare Reversi with a traditional system post-silicon validation setup as

shown in Figure 3.3, we created an assembly-level constrained-random test genera-

tor. In addition, for the architectural simulation phase of the traditional post-silicon

flow we used the M5 [M507] simulator for the Alpha instruction set programs and

the Bochs [Boc07] architectural simulator for the x86 ISA. Test generation and sim-

ulation for both Reversi and the traditional post-silicon flow was performed on a

3.2GHz Pentium 4 machine with 2GB of memory.

3.5.1 Performance Evaluation

In the first experiment, we compared the validation performance of the traditional

post-silicon system setup of Section 3.1 with the Reversi setup that we implemented.

The total time for the traditional flow consisted of i) the time to create a program on

the constrained-random test generator, plus ii) the time for the instruction set sim-

ulator (either M5 or Bochs) to simulate the program and compute the golden final

state of the system and iii) the execution time on the silicon prototype (this can be

overlaid with the simulation time). For the Reversi flow, we should include i) the

Reversi test generation time and ii) the time to execute the test on the silicon proto-

type. Performance for the Alpha-based processor design was measured over shorter

program sequences, while longer programs were tested on the x86 architecture. The

results of the experiments are presented in Figures 3.15 and 3.16. The plot in Figure

3.15 shows also the performance of a typical pre-silicon logic simulator (using a

behavioral Verilog model of the Alpha design) for comparison. As the graphs indi-

cate, the Reversi-based approach flow provides a performance improvement of 19.5

times and 21.5 times over a typical post-silicon system setup for the Alpha and x86

designs, respectively. It should be noted that in addition to eliminating the archi-

tectural simulation step from the flow, Reversi is more efficient because it operates

on pre-assembled blocks. In a traditional approach, on the other hand, the generator

must frequently solve complex constraints to produce valid and meaningful tests.

Moreover, due to the presence of branching instructions and PC-relative branches,

the program generator must produce tests in assembly language and then call an
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assembler to convert them to machine code. Reversi, however, does not need an ex-

ternal assembler, since it implements internally all functions required to generate

the binary code.
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Fig. 3.15 Validation performance of a Reversi setup against a typical post-silicon system

setup for an Alpha-based processor. The total time for the typical post-silicon setup includes
the test program generation and the longer among simulation and test execution time. The time for
Reversi includes test generation and execution. For comparison we also report the performance of
a pre-silicon RTL simulator running the same tests.

1

10

100

1,000

10,000

100,000

100,0000

Traditional Post-Si

Reversi

T
o
ta

l 
ti
m

e
 (

m
s
)

0K      200K    400K      600K      800K    1000K  1200K   1400K

Dynamic instructions

Fig. 3.16 Validation performance of a Reversi setup against a typical post-silicon system

setup for an x86-based processor. The total time for the typical post-silicon setup includes the
test program generation and the longer among simulation and test execution time. The time for
Reversi includes test generation and execution.
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3.5.2 Design Error Coverage

In the second experiment, we used an RTL implementation of a 5-stage processor

pipeline running a subset of the Alpha ISA to create 20 different design variants,

each containing a single bug from Table 3.3. We applied Reversi and a typical post-

silicon setup to each design, and had the two frameworks generating test programs

of increasing length until the bug was exposed. Note that, in order to identify a

functional bug with a randomly generated program, the correct final state must first

be computed by running the test on a golden model. For each buggy design, the

experiment was repeated ten times using different random seeds to initialize the

constrained-random test generator and Reversi. This was done to obtain statistical

confidence in the results. Figure 3.17 reports the minimum, average and maximum

time required for both setups to expose the bug.

Table 3.3 Functional errors injected in a 5-stage processor pipeline based on the Alpha ISA.

Bug Description

ld st addr load to store address forwarding fault

regfile rd faulty internal forwarding in register file read port A

fwd mem error in forwarding dependency resolution

fwd reg31 forwarding through register 31 (constant 0)

ucbr cbr unconditional branch after conditional branch fails

fwd wb unnecessary forwarding from writeback stage

regfile wr invalid write access to register file

flush pipeline flush on specific register file access

srl invalid execution of logical right shift

scmp cbr invalid forwarding from signed compare to a branch

cbr st backward conditional branch after a store is not taken

ld st data load to store data forwarding fault

ucmp cbr invalid forwarding from unsigned compare to a branch

back cbr specific backward conditional branch is never taken

add over incorrect handling of overflow on add

loop incorrect execution of looping sequence

jsr incorrect handling of jsr with invalid address

back ucbr fault in backward unconditional branch

sh back br fault in branch resolution for short backward branch

ld arith invalid execution of a load followed by arithmetic

As the plots of Figure 3.17 indicate, Reversi can find all bugs faster than the

typical post-silicon setup. Furthermore, some of the bugs, such as loop, jsr and

sh back br, could not exposed by the post-silicon setup in any of the runs (each

run could execute for at most 13,000 instructions). This is due to the unique nature
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Fig. 3.17 Average time to expose functional errors in a typical post-silicon flow and Reversi.

Each experiment was run ten times seeding Reversi or the constrained-random test generator with
a different value each time. During each run, tests of increasing lengths were generated and exe-
cuted until when the bug was exposed or until 13,000 instructions had executed. The chart reports
minimum, average and maximum times to expose the bug injected in each design variant, as de-
scribed in Table 3.3. Note that bugs loop, jsr and sh back br could not be exposed by any of the
experiment runs by a typical post-silicon setup within the time boundary.
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of the programs generated by Reversi – they are designed so that only correctly op-

erating hardware produces an easily verifiable result. Thus, incorrect operations can

be detected quickly at execution completion. Moreover, Reversi creates complex

programs with multiple interleaved execution flows that exercise all operations in

the instruction-set architecture, frequently exposing potential corner case bugs.

It’s worth observing that, in several of the typical post-silicon setup experiments,

such as fw wb), a shorter test program exposed a bug, while a longer sequences

of instructions did not. This could be explained by the random nature of the test:

operations deep in the test may overwrite registers/memory locations that contain

incorrect values due to earlier instructions exposing the bug, thus eliminating the

evidence of the error. Therefore, a longer random program does not necessarily find

more bugs than a shorter one. Reversi programs, on the other hand, are specifically

designed so that any behavior corrupting the processor state is propagated to the exit

point and exposed to the validation engineer.

3.6 Summary

In this chapter we overviewed traditional post-silicon validation methodologies as

presented in several reports from processor vendor companies. Methodologies for

post-silicon validation in the microprocessor industry can be grouped into compat-

ibility verification, testing a processor in typical deployment settings, and system

validation, stressing a broad range of features of the silicon prototype, and in par-

ticular newly developed parts of the design. This latter approach requires the devel-

opment of custom system hardware and relies heavily on architectural simulation to

compute correct test results to be compared with the prototype’s results.

After identifying that this simulation step is precisely the bottleneck of the entire

post-silicon validation process, we presented a recent methodology that leverages

the performance potential of the hardware prototype itself and bypasses the slow

architectural simulation phase. Test programs generated by our framework, Reversi,

explore complex execution scenarios and, most importantly, produce identical initial

and final architectural states in the processor, thus eliminating the need for an exter-

nal component to determine if the test executed correctly. Reversi builds programs

from sequences of functional blocks, which modify the state of the machine, and

inverse blocks that reverse earlier operations and restore the original machine state.

Individual blocks are parameterized and may consist of one or several instructions,

selected at random from a block database during test generation. Reversi handles

all types of ISA instructions: arithmetic (integer and floating point), logic, memory

accesses, control flow and control register operations. As the experimental evalua-

tion in Section 3.5 demonstrate, Reversi creates programs capable of finding more

bugs faster than traditional constrained-random test generation techniques. More-

over, due to the omission of the architectural simulation step, Reversi can generate

and execute tests approximately twenty times faster than methodologies based on a

typical post-silicon system validation flow.
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In the future, Reversi could be improved to require only minimal system re-

sources to run, such as OS primitives, I/O drivers, etc., so that it could execute

on the same test system board as the silicon prototype under test. Test programs

in this setup could be generated by a more reliable and thoroughly tested previous

generation processor. This would deliver better performance than we showed in the

experimental evaluation section, because of the faster communication between the

Reversi generator and the prototype. We also foresee the possibility of deploying

this solution in a multi-core platform, where Reversi software runs on a subset of

the processor cores in the device under test, while other cores are being tested. This

would allow Reversi to achieve a test generation performance that significantly ex-

ceeds the performance of today’s methods and approaches validation throughput

levels comparable with throughput of actual silicon.
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Chapter 4

POST-SILICON VERIFICATION OF

MULTI-CORE PROCESSORS

Abstract. In the past four decades, microprocessor architectures have evolved from

relatively simple circuits to highly optimized, performance-oriented designs with

multiple parallel execution pipelines, running at gigahertz frequencies. However,

in the beginning of the 21st century, designers realized that processor frequencies

could no longer be increased, mainly due to power density constraints. Thus, to keep

responding to users’ demand for higher performance, they turned towards multi-core

designs. In these architectures, multiple central processing units (cores) perform

independent computations in parallel, communicating through on-chip intercon-

nect and shared memory hierarchies. Because of the shorter and simpler pipelines

and lower operation frequencies of individual cores, multi-core chips deliver much

higher multi-threaded performance and demand lower power than traditional archi-

tectures. Today, with two- and four- core processor systems being mainstream, this

trend continues as manufacturers roll out prototypes and application-specific sys-

tems with as many as 80 processing elements. Yet, the verification of multi-core

designs has become even more complex when compared to uniprocessors, due to

the concurrent interaction among cores, often leading to non-deterministic behav-

ior. Since the majority of designs rely on shared memory protocols for inter-core

communication, issues such as cache coherence and memory consistency have be-

come dominant in the multi-core verification process. At early design stages, pow-

erful formal tools can be wielded to ensure correctness of high-level models of these

protocols. Verification of the implementations of cache coherence and memory con-

sistency, however, still remains challenging, especially in the post-silicon domain,

where much of the device’s internals cannot be observed. In this chapter, we briefly

overview the history and basic structure of state-of-the-art multi-core architectures

and discuss the challenges of their verification. We will also overview two post-

silicon solutions designed for validation of cache coherence protocols and memory

consistency, setting the tone for the next chapter, where we present a comprehensive

low-cost framework for the post-silicon validation of these aspects.
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4.1 Overview of Multi-core Processor Architectures

For about three decades, microprocessor performance and complexity has grown

following the trends predicted by Moore’s law, indicating that technology advances

would lead to a doubling of the number of transistors on a die every 18-24 months.

As individual transistors shrank, their switching speeds became faster, allowing mi-

croprocessors to run at higher frequencies and deliver higher performance. More-

over, processor designers continued to improve the architecture of their creations,

devising such innovations as pipelining, super-scalar and out-of-order execution.

However, in the beginning of the 21st century, the frequency race among processor

manufacturers hit a wall: chips, operating at frequencies as high as 3.5GHz (Pen-

tium 4 Prescott), became too power dense to be viable for consumer electronics.

Moreover, the gains of new architectural advancements exploiting instruction-level

parallelism became marginal. For example, to support higher frequencies, pipelines

were stretched to 30+ stages, requiring complex branch prediction mechanisms to

sustain performance. Similarly, superscalar designs could issue up to four instruc-

tions in parallel, however typical software applications rarely exhibited this much

instruction-level parallelism (ILP), making wider pipelines inefficient. Yet, user de-

mand for performance continued to increase, forcing designers to transition to a new

type of processor architecture: multi-core.

Multi-core designs feature several computing elements (cores), processing data

in parallel, thus executing multiple programs, or multiple threads of a single pro-

gram, at the same time. Individual cores of these architectures are usually simpler

than state-of-the-art uniprocessors, with shorter pipelines (about than ten stages) and

less aggressive branch prediction engines. Despite that, the throughput of multi-core

designs is significantly higher than that of uniprocessors for a majority of today’s

tasks and applications. More importantly, since multi-cores typically run at lower

frequencies and can dynamically shut down unused processing elements, they re-

quire significantly less power per executed instruction than previous design gen-

erations. Finally, multi-cores provide inherent reliability through sparing: if some

cores are found to be faulty, they can be disabled, leading to a reduced performance

final product for a lower cost market segment (e.g., Intel Core Solo [Int09], AMD

Phenom X3 [AMD09]).

In the past decade, while two and four core processors have become mainstream,

researchers have continued to push the envelope of architectural improvements, cre-

ating chips with performance levels never imagined before. In 2005, Sun Microsys-

tems unveiled the UltraSPARC T1 (Niagara), which featured eight cores. Each core

had only six pipeline stages, but was capable of executing four threads simultane-

ously, making the CPU appear to the application level as 32 independent processors.

Niagara also featured a crossbar interconnect between the cores and four banks of

shared L2 cache, providing more than 200 GB/s of cumulative bandwidth [KAO05].

The second generation Niagara processor (released in 2007) deepened the pipelines

of individual cores to eight stages, doubled the number of threads each core could

execute and boosted the floating point computation performance of the system. In

the same year, Tilera introduced the Tile64 processor with 64 VLIW cores on a
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single die. The cores have private L1 and L2 caches and are connected by a 2D

mesh network [BEA+08]. A similar 2D mesh network was used in the Intel’s Po-

laris prototype design, which contains 80 floating-point elements and delivers a per-

formance of 1.28TFLOPs [VHR+07]. In contrast with these systems, which have

multiple identical cores, the IBM’s Cell processor (released in 2006) is a hetero-

geneous multi-core design. It features a single Power Processing Element (PPE),

which acts as a controller for multiple Synergistic Processing Elements (SPE), de-

signed as application-specific SIMD-type engines [KDH+05].
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Fig. 4.1 Structure of a multi-core. Multiple cores (0 through N-1) have separate local caches, but
communicate with each other and the shared main memory via interconnect. Note that data updates
in a cache must eventually propagate to other nodes of the system, so to ensure proper shared
memory communication. Cache coherence protocols are used to guarantee that read operations
return the most recent value for each location, while memory consistency models in multi-core
systems specify allowed interleaving between accesses to different addresses.

Although multi-core designs present significant performance benefits and power

savings to the end-user, they exacerbate the problem of processor verification. In

the majority of modern multi-core processors, the communication is implemented

through shared memory. In other words, a core uses read and write operations to
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access locations in shared memory and distribute information, such as computa-

tional results or control messages, to other cores. To speed up memory accesses,

however, designers frequently add caches to individual cores to store the most fre-

quently accessed data and instructions. Thus, for every memory access, a local cache

is checked first and, if the information is not found there, the shared memory is ac-

cessed. As a consequence, a store instruction issued by a core may simply update the

value saved in its local cache, without propagating the data to the memory shared

among all the cores. A typical structure of such systems is shown in Figure 4.1.

Note that in a multi-core processor there may be several cores that require ac-

cess and the ability to update a same memory location, thus designers must imple-

ment mechanisms to ensure that all memory accesses return the most up-to-date

value. This property is called memory or cache coherence. Typically, to guarantee

coherence, designers implement a global coherence protocol for each of the local

caches in the system. The implementation of the protocol is often distributed be-

tween cache and memory controllers, which cooperate and coordinate movements

of data among local caches to ensure coherence. Another important property of any

shared memory communication system is memory consistency, which imposes the

ordering conditions on interleaving of accesses to distinct addresses during execu-

tion. Several consistency models, ranging in complexity and flexibility, have been

proposed [CSG98]. For some of them consistency is enforced by the underlying

hardware and is transparent to software applications, while for others ordering con-

straints are relaxed and users can rely on special ISA instructions to enforce the

required ordering. Unfortunately, guaranteeing the correctness of cache coherence

and memory consistency remains a challenging task today, even for simple multi-

core processor architectures.

Pre-silicon verification of multi-core and multiprocessor systems has been a

strong focus of academic and industrial communities for a long time. Since the

introduction of massively parallel supercomputers, this effort mostly relied either

on direct tests (programs) or constrained-random simulation techniques. Wood, et

al. in [WGK90] used random test generation to verify cache coherence of the shared

memory 36-node SPUR machine, developed at the University of California, Berke-

ley [HEL+86]. In this work, CPU nodes of the simulated system were replaced by

randomized test generators that stressed the memory subsystem and, in particular,

its cache coherence protocol. The generators issued simple accesses to addresses

randomly chosen from a predetermined list and then checked the results of these

transactions. Since addresses on the list were shared among multiple test genera-

tors, complex interactions of the cache and memory controllers were often invoked

and tested. Note that the generators were not stressing all possible coherence interac-

tions deterministically, but were attempting to probabilistically validate the memory

subsystem. Overall, as reported by the authors, this random testing approach was re-

sponsible for exposing more than 53% of the functional bugs found in the system

before its tape-out.

Formal techniques are also recognized as a valuable tool at early stages of multi-

core/multiprocessor design. For example, Murϕ [DDHY92] was developed specifi-

cally for protocol specification and formal analysis. The Murϕ language allows the
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user to specify a variety of systems, including non-deterministic protocols, through a

set of declarations, rules (condition-action pairs) and invariants. Once the specifica-

tion written in Murϕ is compiled, it is the job of an automatically-generated verifier

to identify possible invariant violations, deadlocks or erroneous states. Chen, et al.

in [CYGC06] demonstrated how Murϕ can be extended to reason about coherence

even in systems with multiple levels of caches. The authors show that protocols at

different levels of such hierarchy can be partially abstracted to simplify the verifi-

cation process. If the abstract model exhibits violations of coherence properties, a

designer may obtain a counterexample trace and then replay it on the actual protocol,

to check if it is indeed a violation. This counterexample refinement is, unfortunately,

a limiting factor of the approach in [CYGC06], since it cannot be fully automated

and requires extensive human assistance.

Several notable approaches to multiprocessor verification adopted in industry in-

clude the work at Cray [ASL03] and at IBM [Ger03]. The former work investigated

the verification of memory consistency, a significantly more challenging problem

than cache coherence verification. Murϕ was used in the first part of this project to

create and verify an abstract formal memory model of the Cray X1 system. Formal

execution traces were then extracted and re-encoded into “witness strings”, stimuli

that could be applied to an RTL model of the design to verify a certain property. The

author estimates that this formal “guidance” allowed them to increase the overall

productivity of the verification process by more than a factor of 30. Similarly, in

[Ger03] Murϕ was used to verify the ASCI Blue’s memory protocol; however, due

to the system’s complexity, the author still had to resort to develop formal proofs of

liveliness and deadlock absence manually, and then use these to guide Murϕ in the

model checking process. Yet, to validate the RTL implementation of the design, the

author still had to resort to logic simulation, due to the inability of formal tools to

handle such complexity.

4.2 The Challenge of Multi-core Processor Verification

Since the end of the uniprocessor era in 2000, multi-cores have become the high-

performance computation engines of choice in the modern world. However, while

these architectures brought unquestionable performance improvements and power

consumption benefits, they added further challenges to the verification process. This

is because all possible interactions between individual cores must be verified in

those architectures. Thus, the heaviest burden falls on the verification of the com-

munication protocol, rather than on datapath and pipeline control logic. As men-

tioned above, interaction between cores is often implemented as a shared memory

protocol, with several processors communicating via an interconnect structure (bus,

network, etc.) with each other and the main memory, as shown in Figure 4.1. Unfor-

tunately, the latency of a memory access in such a system can be significantly higher

than in a single-processor machine, since memory is physically located much fur-

ther away from the cores and their local caches. A processor’s request often must
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go through a network interface and traverse multiple hops to reach the memory

controller and then return the data in response. Therefore, caches, which reside

within each core/processor and amortize the access time, are vital for system’s per-

formance. On the other hand, this complicates the interaction between cores, since

data values in some of the local caches may differ from those in the main memory.
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To guarantee that all processors have a coherent view of each memory location

and all data changes are propagated through the entire system with the best possible

performance, a variety of cache coherence protocols have been proposed. As an

example, in Figure 4.2 we present a finite state machine (FSM) representing the

MESI invalidation coherence protocol [CSG98], where (from the point of view of

each cache controller) a particular memory location can be in one of four states:

“Modified” (M), “Exclusive” (E), “Shared” (S) or “Invalid” (I). For example, if core

C1 has memory location 0x1000 in its cache in state “S”, that implies that the value

in C1’s cache is the same as in the main memory and that same memory location

can also be in the shared state in other caches.

Note that the finite state machine of the protocol shown in Figure 4.2 only reflects

the view of a single processor core on the state of the memory location. Therefore,

the FSM for the full system protocol for a single memory location is a product

of N finite state machines, where N is the number of processor nodes or cores in

the system. A product FSM for a MESI-based system with three cores is shown in



4.2 The Challenge of Multi-core Processor Verification 81

Figure 4.3. In this product FSM, states are labeled by combining the MESI state

of each node for that particular memory location. For instance, when a location is

in shared state in cores C0 and C1, while it is not cached in C2, the corresponding

FSM state is “SSI”. Verification of memory coherence includes determining the

correctness of this system-level FSM, which encodes all possible interactions of

individual nodes with respect to one memory location. The main aspects to verify

in this case are absence of invalid transitions and invalid states (for example, states

where several cores have the same location in “Modified” simultaneously).
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Fig. 4.3 Finite state machine for the cache coherence protocol for a three core MESI-based

system. Each local core follows the MESI protocol shown in Figure 4.2. The system-level state
machine is constructed as a cross-product of three local FSMs. Each cache line in the system
resides in one of the states shown in the figure: for instance, a state where the first and second
cores have the cache line’s data in a “Shared” state and the third core does not have the data cached
corresponds to the global state “SSI”

Another crucial aspect of multi-core computing is memory consistency, which

defines the legal order for memory accesses in the machine. The issue of consis-

tency arises from the fact that scalable interconnects in multiprocessors may reorder

request messages, thus different cores may perceive the sequence of load and store
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operations in a different order. For example, the strict consistency model demands

that all memory operations are observed in the same order in which they were issued

by all processor cores. In other words, Strict Consistency requires a global arbitra-

tion mechanism among all accesses and thus, severely limits the performance of

the system. Consequently, this model remains mostly theoretical and has never been

implemented in a practical multi-core/multiprocessor system. On the other hand,

sequential consistency [Lam97], requires that the same order is observed by all pro-

cessors, although this may differ from the order in which accesses are actually is-

sued. Sequential consistency can be easily implemented in systems containing a

communication medium that imposes a unique ordering on all memory requests, for

instance bus-based multi-core CPUs. Other models, such as processor consistency

and total store ordering, force even fewer restrictions on the order in which actions

may occur. However, their implementations require dedicated ISA instructions so

to allow software developers to have precise control over the ordering of memory

accesses, possibly at a performance cost. Memory consistency is typically hard to

verify, since implemented models tend to have a wide range of distinct correct be-

haviors to be tested. Unfortunately, lack of thoroughness in this verification may

result in escaped bugs causing unexpected software behavior.

As mentioned earlier, verification of cache coherence and memory consistency in

shared memory multi-core processors is a crucial challenge faced by today’s hard-

ware designers. Even if protocols can be proven correct for a high-level abstract

model by using powerful formal tools, their implementations in RTL and silicon are

often significantly more complex, since they include various performance optimiza-

tion features, such as translation look-aside buffers (TLBs) and reordering load/store

buffers. Moreover, in RTL, individual transitions in the protocol state machine are

often broken down into multiple operations, introducing numerous implementation-

level states into cache coherence FSMs, and, thus, exponentially increasing their

state space. Similarly, the problem of verification of memory consistency is exacer-

bated by these implementations, since the number of possible interactions between

cores grows by orders of magnitudes compared to the original protocol description.

Thus, protocols that are formally proven to be bug free in a high-level specification,

may still be implemented with subtle, yet dangerous errors, that must be detected

before system release.

The challenge of multi-core processor validation is especially pronounced in the

post-silicon domain where, given a multi-core prototype, hardware engineers sub-

ject it to a variety of deterministic and randomized tests. In these tests, major errors

such as deadlock, memory corruption, livelock or invalid outcome of a program,

can be detected at the CPU’s interface-level. However, diagnosing the root cause of

such errors is a daunting task, due to severely limited visibility of the design. At this

stage, the design prototype is operating at frequencies comparable to those of the fi-

nal deployed product, and to access most of its internal state engineers must rely on

mechanism such as scan chains, JTAG interfaces, etc., which often require the exe-

cution to be suspend during state acquisition. Consequently, the timing of the events

occurring within the processor may be altered, impairing the ability to reproduce

the error. Furthermore, most processor’s performance-related features are virtually
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transparent to the executing software, making it practically impossible to detect and

diagnose errors in those components. For instance, a typical program does not dis-

tinguish between a load operation that hits in the cache and one that is propagated to

main memory, without very accurate measurements of execution timing. Likewise,

the state of cache controllers and of TLBs cannot be probed by user-level programs;

thus the behavior of a coherence protocol cannot be verified without suspending ex-

ecution and accessing the CPU’s microarchitectural state via debug ports. However,

these interruptions of the processor’s execution may alter the timing of coherence

and consistency events and mask hard-to-find corner case bugs, which arise due

to specific timing of communication messages. Moreover, while the invariants of

a cache coherence protocol are often strict and deterministic, memory consistency

models frequently allow for multiple correct outcomes of an instruction sequence.

Therefore, timing and interleaving of events that lead to a bug must be recorded and

replayed in the same precise order to fully diagnose an issue. Special on-chip data

structures, such as performance monitors and on-chip logic analyzers, increase the

visibility of the silicon hardware, however, in today’s competitive market, vendors

often forgo these structures in favor of performance enhancements. As a result, the

memory subsystem of modern multi-core CPUs frequently contains multiple crit-

ical errors. For instance, the study in [DBB08] shows that more than 10% of the

errors reported in multi-core processors errata documents are related to the mem-

ory subsystem. The infamous error in the AMD’s Phenom processor [Val07] is also

related to the memory subsystem, in particular to the translation look-aside buffer

in the shared cache. With the number of cores and complexity of cache hierarchies

growing in the future, the number of such errors is bound to increase, and it will be

the task of verification teams to devise novel and clever validation methodologies to

discover these bugs before the system is released to the market.

In the remainder of this chapter we will overview two post-silicon techniques that

enable efficient validation of shared memory communication in multi-core designs.

The first solution aims specifically at verification of cache coherence protocols, min-

imizing the area penalty and the performance cost to the end-user of the product.

The second technique is designed for post-silicon validation of memory consistency

with minimal performance overhead. In order to incur a minimal performance im-

pact, the latter solution requires the addition of several verification-specific on-die

modules, and thus it comes at a noticeable area cost.

4.3 Cache Coherence Verification Using String Matching

In this section we overview CoSMa, a solution to post-silicon cache coherence val-

idation in shared memory multi-core designs, originally presented in the work of

DeOrio, et al. [DBB08]. The solution uses a novel distributed tracking mechanism

to monitor the coherence activity in the local caches of each core, as well as in the

shared second-level cache. This activity is logged and stored compactly in existing

on-chip structures to minimize the area overhead; it is then checked at regular inter-
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vals for inconsistencies, which reveal coherence violations. Checking is performed

through a software implementation of a string matching algorithm, from which the

approach derive its name: CoSMa, Coherence String Matching. This solution is

geared specifically for post-silicon validation: indeed, activity logging is transpar-

ent to normal operation, minimizing interference with the actual test in execution.

Moreover, CoSMa is only active during the post-silicon validation phase of the de-

sign process and can be turned off before system release to the marker, making the

solution invisible to an end-user.
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Fig. 4.4 Multi-core system reconfiguration for CoSMa post-silicon validation. A typical multi-
core system with private L1 caches and a common, shared second-level cache is reconfigured dur-
ing CoSMa post-silicon validation. Portions of L1 and L2 caches are converted into local and
global history logs, respectively. In addition, the master and slave checker modules are enabled to

periodically collect and broadcast history data. Coherence validation is implemented as a software
string matching algorithm that executes on the cores of the device under validation at regular inter-
vals. After conclusion of the post-silicon validation process, CoSMa is disabled and the history log
space is reclaimed by the caches, resulting in no performance impact and near-zero area overhead
in the final system delivered to the user.
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An overview of CoSMa alterations to a baseline multi-core architecture are

shown in Figure 4.4. As the figure shows, when CoSMa is enabled for post-silicon

validation, a portion of each core’s private L1 cache is converted into logged activ-

ity storage. As deterministic and/or random tests are executed by the processor, this

storage dynamically keeps track of the coherence state of individual cache lines.

Similarly, a portion of the second-level cache, which in this work is assumed to be

inclusive, is configured to record the history of system’s states associated with cache

lines. The shared cache is also augmented with a master checker - a small hardware

module which periodically stops and suspends the execution of the main program

and interacts with slave checkers in individual cores to perform coherence valida-

tion. When the validation procedure completes, if no errors are found, the storage

structures are reset and the execution of the program resumes. Note that CoSMa can

be deployed in a wide range of multi-core architectures, even very different from

the one in Figure 4.4, including systems with multiple levels of cache hierarchy, or

different cache sharing schemes.
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Fig. 4.5 CoSMa execution flow. When logging resources are exhausted normal execution is sus-
pended and the system enters pre-check, where it waits for all pending accesses to complete and
flushes communication hardware, such as queues, buffers, etc. Then the master checker begins
broadcasting the global history strings of the lines in the shared cache, while checkers residing in
L1 caches compare these strings to their local histories. In addition, local checkers are responsi-
ble for identification of any unchecked lines remaining in their respective caches. Upon a history
mismatch or if a valid unchecked line is found, CoSMa reports an error to the user, if, however, no
errors were detected, normal execution resumes after system-wide synchronization.

The master checker circuit is located within the L2 cache controller and it is in-

voked either with a specified time interval or when a history log in a core fills up,

to conduct coherence validation. During the validation process the system behaves

according to the protocol in Figure 4.5. Before validation commences, all cores sus-
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pend normal execution and all in-flight memory accesses are allowed to complete.

Then the master checker starts broadcasting the global history of all the valid lines

in the second-level cache, one by one. Each history string consists of the sequence

of coherence states visited by a line since the last check, with additional informa-

tion, such as IDs of the cores that accessed the line and timestamps of the accesses.

The slave checkers receive these history strings and invoke a software-based string

matching algorithm that checks the compatibility of local and global activity strings.

A local and a global history string are mutually compatible if there exist at least one

valid sequence of memory operations that could have generated both of them. Once

all valid lines in the L2 cache have been broadcasted and checked, the slave check-

ers proceed to check that all remaining local lines are invalid. Finally, the system is

globally synchronized, storage structures used for coherence checking are cleared,

and normal program execution is resumed.

CoSMa can be configured to use one of two different coherence checking algo-

rithms, each with different coverage/performance tradeoffs. Both are implemented

in software and execute on the computational cores of the device under validation,

thus minimizing area penalty. Consequently, before CoSMa is activated, the func-

tionality of individual cores must be checked, possibly with solutions similar to

Reversi (see Chapter 3). The first checking algorithm, low-overhead, is optimized

for higher performance and minimizes the perturbation on the system under valida-

tion. In this scenario, only protocol-level states, such as “Modified”, “Exclusive”,

“Shared” or “Invalid” for the MESI protocol described in the previous section, are

saved in the line’s history log. Thus, the resulting log entry consists of a string of

symbols from a finite alphabet (“M”, “E”, “S”, “I”). Once the address of the cache

line and associated global history are received by a slave checker, it invokes the

following three step software string matching algorithm: first, the sequence is com-

pressed to account for cases where the L2 cache line’s state remained unchanged

while multiple L1 caches competed for access to the line. For instance, if two cores

attempted simultaneously to modify the line several times, their histories would in-

clude subsequences such as “MIMIM”, while the global history log would only

contain one occurrence of the state “M”. Thus, local histories with alternating valid

and invalid states are compressed to a single state, (“M” for the example above). In

the second step of the low-overhead algorithm, history sequences are partitioned at

the invalid state boundary, since an “Invalid” state in the L1 cache may correspond

to any state in the second-level cache. Note however, that a valid state in the L1

cache must be properly represented in the global history observed by L2. Thus, at

the end of this step, both local and global history are comprised of an ordered series

of substrings, each representing the activity occurring between two invalid states. In

the last step, the algorithm matching of the substrings to a global history string. Note

also that the matching must preserve substring ordering, that is, the first substring

must be matched to a global history in a position before the second substring match,

etc. Figure 4.6 illustrates this process through an example.

The authors computed the upper bound complexity of this algorithm to be

( d
b
)p+1, where d is the length of the L2 history, p is the number of partitions of

L2 history, and b is the average number of states traversed in the L2 history before



4.3 Cache Coherence Verification Using String Matching 87

I M I E S M I E I ...

I M I S M I ...

L2 cache string

L1 cache string

Match Match

Fig. 4.6 CoSMa’s low-overhead checking algorithm. Local and global history logs are first com-
pressed, then partitioned at “Invalid” state boundary and, finally, substrings are matched for com-
patibility. In the example shown in the figure, the first part of a global history string includes three
partitions: “M”, “ESM” and “E”; while the first part of a local history comprises two partitions,
“M” and “SM”. Note that the two first partitions match, and the second local partition is a substring
of the second global partition. Paritition ordering must be maintained in matching local and global
coherence history strings.

finding each L1’s substring. They also propose a coverage/performance tradeoff,

which eliminates the occurrence of the worst case complexity by occasionally leav-

ing some of the line histories unchecked. Since the need for this simplification is in

practice extremely rare, the overall coverage is for the most part unaffected. It is im-

portant to remember, however, that the performance overhead of this algorithm only

occurs during post-silicon validation, since CoSMa is disabled after the completion

of the validation process.
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Fig. 4.7 CoSMa’s high-coverage checking algorithm. In the high-coverage algorithm additional
information is stored in the history log, namely the ID of the core generating the activity and
a timestamp of the access. By using this information it is easy to align corresponding activity
between a local core and the portion of the global activity generated by that core at the shared
cache. In the example shown in the figure, the history strings have been “stretched” based on
timestamp information. With this algorithm it is easy to check that both history strings observe the
same (or compatible) activity during each time interval for the core under analysis.
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The low-overhead algorithm keeps the history strings compact, and thus it al-

lows for long execution intervals between the checks, since the amount of activity

that can be stored in the CoSMa-reserved portion of the cache is plentiful. On the

other hand, this algorithm may not identify subtle timing-related errors, which do

not manifest in a corrupt coherence protocol state. Thus, the authors present an al-

ternative algorithm, called high-coverage, that stores significantly more information

in each log entry, namely the protocol state, a timestamp and the core ID generating

the activity. During the checking phase, local and global histories are aligned based

on the timestamps (Figure 4.7) and coherence compatibility is then performed. This

high coverage algorithm is shown to have only linear complexity in the number of

entries in the history string.

In their evaluation of the system, the authors relied on a four-node CMP sys-

tem simulated with the Wisconsin GEMS simulator [MSB+05]. Overall, the per-

formance overhead, caused by periodic interruption in normal execution to perform

the checks, varied from 1% to 23%, averaging to 7% for real life application bench-

marks. Both checking algorithms showed similar performance overhead per check

(about 1,000 cycles); however, the high-coverage algorithm was invoked more often

on average. In addition, the authors evaluated the impact of seven distinct coherence

bugs inspired by the Intel Core 2 Duo errata document [Int08], which they injected

in their experimental platform. They noted that the low-overhead algorithm required

more time to expose most of these bugs than the high-coverage solution (1M vs.

100K cycles, respectively). Moreover, the low-overhead solution was not able to

detect two of the errors, which arose from timing perturbations in the system. Fi-

nally, the authors estimate that, for the OpenSPARC T1 processor, the area overhead

of CoSMa checkers is below 0.002%, consisting only of the silicon area required by

the logic circuits coordinating the logging activity and the checking phase.

The work of DeOrio, et al. presents an effective approach to post-silicon vali-

dation of cache coherence in multi-core processors, using a history string match-

ing technique. One of the highlights of the proposed solution is the novel usage

of existing on-chip data structures for storage of memory subsystem activity with

minimal perturbation to system execution and negligible area overhead. The solu-

tion also allows for flexible design effort tradeoffs with two coherence checking

algorithms with different performance/coverage characteristics. Altogether, CoSMa

addresses several of the critical challenges in the validation of multi-core CPUs and

enables high-throughput automatic post-silicon validation of the memory subsys-

tem. However, this is limited only to cache coherence checking, falling short of

the broader and more complex issue of memory consistency validation. Recall that

memory consistency models describe the allowed order of interleaving between ac-

cesses to multiple addresses, thus CoSMa’s tracking of coherence strings cannot

provide this type of validation. In the past, it has been shown that memory con-

sistency can be verified through analysis of the constraint graph representing the

sequence of program’s memory accesses and dependencies between them. How-

ever, traditionally this analysis could only be performed done offline or during short

pre-silicon tests. Recently Chen, et al. have proposed a novel solution that brings

constraint graph analysis into the post-silicon and runtime verification universe. In
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the next section we overview this technique and investigate its advantages, as well

as its overheads. Then, in Chapter 5, we present a post-silicon memory consistency

validation solution that we developed recently, which combines the principle of con-

straint graph analysis with the novel cache partitioning scheme proposed in CoSMa.

Therefore, this framework enables efficient detection of a wide variety of memory

consistency and cache coherence errors, with no performance overhead and near-

zero area penalty for the end-customer.

4.4 Verification of Memory Consistency Through Constraint

Graph Analysis

Memory consistency is one of the most crucial and one of the hardest properties to

validate in multi-core processors. Unlike cache coherence, which describes the in-

teractions among accesses to a single address, consistency characterizes the allowed

interleaving of all memory accesses in the system. Therefore, a consistency model

provides the application-level programmer with a set of invariants and rules neces-

sary for development of multi-threaded programs. The underlying protocol enforc-

ing these guarantees can be fairly simple and can be proven correct formally at de-

sign time. However, due to various performance enhancements, such as out-of-order

execution, cache hierarchy, non-uniform memory accesses, etc., the actual hardware

implementation of the shared memory communication is significantly more com-

plex. Coupled with severely limited observability at the post-silicon phase, the prob-

lem of validation of memory consistency has become a formidable challenge that

cannot be resolved efficiently by traditional methods. As a consequence, researches

recently started to propose solutions which augment the baseline multi-core proces-

sor with on-die detectors capable of recognizing consistency violations during the

execution of post-silicon tests and benchmarks. One of such approaches has been

proposed by Chen, et al. in [CMP08].

In that work the authors propose to detect consistency violations through the ver-

ification of the corresponding constraint graph observed during execution. A con-

straint graph for a segment of a program consists of vertices representing memory

instructions and directed edges describing program order constraints and data de-

pendencies between operations. These are derived and logged by individual cores

during program execution and are then combined into a single graph. Memory con-

sistency errors, which result in invalid interleaving of accesses and, thus, disagree-

ment between the cores on the order of occurred operations, can then be identified

as loops in the constraint graph. In the past, validation of consistency through graph

checking has been performed offline [SS88] only after completion of the entire pro-

gram. Chen, et al. however, rightfully acknowledge that this cannot be applied to

validation of actual hardware prototypes, since it is impossible to log all of a pro-

gram’s memory accesses at speed and within reasonable area overhead. Instead, they

developed an algorithm for slicing the constraint graph, so individual sections can be

checked dynamically by dedicated hardware. To this end, each core marks instruc-
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tions with unique IDs and logs the identifier of the oldest operation that was issued,

but have not yet completed. When constraint subgraph construction begins, the cores

merge this information and determine which instructions have retired and, thus, have

completed any interaction with the rest of the system. The graph is then built only

for completed instructions, which no longer can be influenced by outstanding oper-

ations. In addition to partitioning the validation problem into manageable slices, the

authors also develop a graph reduction algorithm, so that only information essen-

tial to consistency verification is logged. This is performed by applying transitive

closure to the data in the logs and discarding vertices that do not have inter-core

dependence edges. As a result of these optimizations, program execution, graph

construction and graph analysis can be pipelined and performed efficiently concur-

rently, while the amount of data that must be logged between checks is fairly small

and does not require overwhelming storage resources.

The implementation of the solution in [CMP08] is presented in Figure 4.8, where

dark blocks indicate units added to the baseline CPU design for consistency val-

idation. In particular, each core’s cache is extended to record the local history of

accesses to its lines. When lines are moved between caches due to coherence ac-

tivity, snapshots of these history logs are piggybacked onto the coherence traffic,

so that dependency edges between instructions of different cores can be identified.

These inter-core dependence edges are derived dynamically by local observer mod-

ules and are stored in their internal buffers. The authors also add a victim cache to

catch lines evicted from local caches of individual cores to prevent losing the related

history information. Periodically, the local observers communicate their logs over

dedicated point-to-point links to a centralized hardware graph checker, which is re-

sponsible for identifying the slicing points in the logs, building the constraint graph

and analyzing it for presence of loops. Construction and analysis in this framework

are done in parallel with main program execution, so this approach incurs no per-

formance overhead. A small penalty is payed to transfer history snapshots between

the cores together with coherence traffic (this is estimated to require approximately

5% additional bandwidth), while the greatest impact of the approach is in terms

of silicon area. In the dual core system that the authors used for evaluation, local

caches had to be augmented by 30% in area to accommodate local observers and

history storage. An additional penalty is incurred by the victim cache (whose size

is estimated to be 3/4 of an individual L1 cache) and the central graph checker (ap-

proximately the size of an individual L1 cache). Unfortunately, often manufacturers

are extremely conservative when it comes to using on-die real estate for features

that do not improve the performance of the final system. Thus, the footprint of this

validation collateral may be just too large to enable its adoption as a post-silicon

solution. Yet, the need to validate coherence and consistency in multi-cores has be-

come more and more important with each new generation of designs and it may be

soon a critical need. In the next chapter we present a framework that provides sim-

ilar validation functionality as the one just discussed, but incurs significantly lower

area overhead through reuse of existing on-chip resources and implementation of

the analysis algorithm in software. The tradeoff of this solution, called Dacota, is

in performance overhead, since it requires temporary suspension of the execution to
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Fig. 4.8 Memory ordering validation using constraint graph checking. The baseline multi-
core processor is augmented with units that observe the behavior of different memory accesses. In
particular, cache lines are extended to retain information about the history of operations performed
at the corresponding address, while local observer modules record inter-core dependences observed
by individual cores. A small victim cache is also added to retain the information related to evicted
cache lines. The logged data is periodically transferred to a hardware graph checker via dedicated
point-to-point links. The graph checker constructs a dependency graph of the executed program
slice concurrently with the execution of the next program block. This graph consists of vertices
representing individual memory instructions and edges characterizing dependencies among them.
The graph is then checked for presence of cycles, revealing memory ordering violations.

conduct the validation analysis from time to time. Note however, that this penalty is

payed only during the post-silicon validation phase, so the end-user’s experience is

not impacted.
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4.5 Summary

In this chapter we discussed the challenge of verification of multi-core processors,

an increasingly popular type of processor architecture today. In multi-core designs,

different computational cores execute independent instruction streams in parallel,

communicating through a shared memory subsystem. To speed up the execution

of memory accesses, these systems are commonly equipped with several levels of

cache hierarchy. Consequently, communication among processor’s cores becomes

complex and often harder to verify. The two main properties of shared memory de-

signs that must be verified to ensure correctness of operation are cache coherence,

which guarantees that all load operations obtain the most recently written value,

and memory consistency, which imposes the allowed order of interleaving among

accesses. While verification of high-level coherence protocols and consistency mod-

els can be done efficiently with formal tools at the pre-silicon level, the actual RTL

implementations and silicon prototypes are extremely hard to validate, due to the

enormous state space of the global protocol state machine and to the perceived non-

determinism of the memory subsystem. To aid the validation of these critical as-

pects, researchers have recently began to propose post-silicon solutions that recon-

figure a processor to record the behavior of the memory subsystem and later check it

for coherence and consistency violations. The first solution that we discussed in this

chapter, CoSMa, is limited to the verification of cache coherence protocols, while

the second technique is designed to detect memory consistency violations through

constraint graph analysis. In the following chapter, we present Dacota, a comprehen-

sive solution for post-silicon validation of memory subsystems, which combines the

low area penalty of CoSMa with the broad validation capabilities of the constraint

graph analysis technique.
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Chapter 5

CONSISTENCY VERIFICATION USING

DATA COLORING

Abstract. Today, the number of functional errors escaping design verification and

released into final silicon is growing, due to the increasing complexity of micropro-

cessor systems and the shrinking production schedules of their development. The

recent, widespread adoption of multi-core processor architectures is exacerbating

the problem, due to the variable communication delays of their memory subsystem,

making them even more prone to subtle and devastating bugs. This deteriorating

situation calls for high-efficiency, high-coverage results in functional validation, re-

sults that could be achieved by leveraging the performance of post-silicon validation,

that is, all that verification activity that surrounds and applies to prototype silicon

hardware. The orders-of-magnitude faster testing in post-silicon enables designers

to achieve much higher coverage before market release, but only if the limitations

of this technology concerning bug diagnosis and internal node observability can be

overcome. In this chapter we demonstrate the full performance of post-silicon vali-

dation through Dacota, a new high-coverage solution for the validation of memory

consistency models in multi-cores. When activated, Dacota reconfigures a portion

of the cache storage to log the activity of memory operations using a compact data-

coloring scheme. Logs are periodically aggregated and checked by a distributed

software algorithm running in-situ on the processor cores to verify the correct or-

dering of the memory operations observed. When a design is ready for customer

shipment, Dacota can be deactivated, releasing all the cache storage to mainstream

data and instruction caching. The only remaining mark of Dacota is a small sili-

con area footprint, less than 0.01% of the area for an open source multi-core design

used in our evaluation (three orders of magnitude smaller than previous solutions).

We found in our experimental analysis that Dacota is effective in exposing a variety

of memory subsystem bugs, and that it delivers high design coverage capabilities

at a 26% performance slowdown for real-world applications, incurred only when

Dacota is active during post-silicon validation.
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5.1 Introduction

The advent of multi-core processors pushed computer systems towards new levels

of performance, and brought hardware manufacturers face to face with the challenge

of verifying these designs, which feature complex memory subsystems, often man-

ifesting variable data transfer delays, which in turn may cause a non-deterministic

execution stream by the multi-core processor. The deteriorating situation leads to an

increasing number of subtle, yet devastating, bugs slipping into production silicon,

and calls for high-efficiency, high-coverage validation. To address the challenge,

functional post-silicon validation, where experiments are run directly on newly man-

ufactured prototype hardware, is becoming a vitally important aspect of today’s de-

sign process. The key advantage of post-silicon validation is that its raw perfor-

mance provides significantly faster testing and analysis than pre-silicon simulation,

thus promising to deliver much higher coverage before the product is released to

customers. On the other hand, testing a manufactured chip entails an almost com-

plete loss of observability of the design’s internal signals and state. As we described

in Section 2.2, although internal values can be accessed through several debug and

testing mechanisms, the delicate timing of events in the memory subsystem of multi-

cores may be perturbed in the process. Alternative solutions, such as internal trace

structures that sample and store the system’s activity at speed and with minimal per-

turbation, occupy precious die area and are unlikely to be deployed in competitive

commercial designs. Overall, new solutions are needed that address the validation

problem in post-silicon effectively and efficiently: providing accurate replay, sup-

porting bug diagnosis activities and with a zero, or near-zero, area footprint. We

discuss, here and in the previous chapter, very recently research solutions that strive

to accomplish these goals.

In the previous chapter we described CoSMa, a post-silicon cache coherence vali-

dation technique that claims a portion of the system’s local and shared caches to hold

activity history, and then periodically validates this activity through a software string

matching algorithm. Note that CoSMa focuses only on the validation of coherency

protocols and could not be applied to the verification of memory consistency, i.e., the

interleaving of accesses to different addresses. In that chapter we also overviewed

a solution proposed by Chen, et al. [CMP08] that brings post-silicon validation fur-

ther, enabling validation of memory consistency invariants in complex multi-core

designs. Yet the area penalty incurred by this technique is quite large, making it

unlikely to be deployed in commercial multi-core architectures. This chapter dis-

cusses in detail a lightweight and comprehensive technique to detect functional er-

rors in cache coherence and memory consistency protocols in multi-cores during

post-silicon validation. The solution, called Dacota (Data-coloring for COnsistency

Testing and Analysis), was originally presented by DeOrio, et al. in [DWB09]. It

offers the benefit of high validation coverage and debugging support at a very small

performance impact and near-zero area overhead. Enabled only during post-silicon

validation, it incorporates a simple in-hardware activity logging mechanism that

observes selected events during program execution. Periodically, a software-based
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validation algorithm examines the logs to detect possible violations in the ordering

of memory operations, indicative of an error in coherence or consistency.

Dacota shares some common traits with CoSMa, for instance, when Dacota is

enabled, an activity logging mechanism located at each level one (L1) cache stores

a compact encoding of memory accesses. However, in Dacota, caches are also tem-

porarily reconfigured to include an access vector associated with each line: the ac-

cess vectors contain a counter “color” value, incremented with each store operation

to the line and used to disambiguate distinct accesses to the same cache line during

execution. In addition, after each load and store is completed, the issuing CMP core

logs the address and color values of the access in an activity log, which is also main-

tained in the local cache. Thus, activity logs record the history of memory accesses

in program order for each individual core. When local cache storage is exhausted,

activity logs are aggregated and validated by a software-based algorithm, leverag-

ing the same processor cores for the analysis. Validation is performed by building

a graph from the activity log where vertices represent accesses and edges indicate

the observed ordering between them. Correct memory ordering is then checked by

inspecting the graph for cycles. By leveraging existing cache storage and CPU com-

putation resources, Dacota incurs an extremely small silicon area overhead, and it

can be completely disabled upon product shipment, leading to a zero performance

impact to the end-user.

5.2 Dacota Overview

Dacota comprises a small set of hardware components to be embedded in the multi-

core design to be validated, which requires minimal modifications to the existing

design. In addition, a software routine must be loaded in the system to coordinate

the activities when checking the correctness of the memory activity collected. A

schematic of Dacota’s hardware architecture is shown in Figure 5.1. In the figure,

we assume a generic multi-core architecture where multiple simple processing ele-

ments (cores), each with private L1 caches, are connected via an on-chip intercon-

nect fabric to a shared L2 cache. When Dacota is enabled, the system is reconfigured

so that a portion of the cache resources are reserved for Dacota’s core activity logs

(hashed blocks in the L1 caches of Figure 5.1). The fraction of the cache used by

Dacota is configurable; for instance, a simple implementation could allocate half of

the cache to activity log space, and the other half to normal data storage.

Processor activity is organized into epochs: within an epoch, program execution

alternates with Dacota’s checking phase. The latter can be divided into three phases,

log aggregation, graph construction and policy validation. A schematic of an epoch’s

activities is shown in Figure 5.2. During normal program execution, Dacota mon-

itors memory transactions in the background, by updating and transmitting access

vectors along with data, and logging snapshots of these vectors. When log storage

space is exhausted, program execution is suspended, data in transit is allowed to

reach its destination, and the data portions of all local caches are then frozen. At
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Fig. 5.1 Multi-core processor enhanced with Dacota for post-silicon validation. To augment a
multi-core system to support Dacota, individual cache lines must be partitioned to include an access

vector, which stores information necessary to track the order of memory accesses. In addition, a
portion of each local cache is used as activity log storage, instead of normal data storage. Finally,
local cache controllers are augmented to include control hardware to support Dacota’s operation.
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Fig. 5.2 Dacota runtime operation. When Dacota is enabled, activity is organized into epochs.
Within an epoch, benchmark execution progresses normally while access vectors are transferred
together with data blocks, and activity is logged in the background. After log space resources are
exhausted, logs are aggregated and analyzed by a graph-based algorithm (policy validation). If
an error is detected, execution is halted and the logs are presented to the engineering team for
diagnosis, otherwise a new epoch begins by resuming execution.
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this point, all cores drain their activity logs into a dedicated region of uncacheable

memory (log aggregation). Next, each core in the system builds a consistency graph

representing the ordering of memory operations. The consistency graph, which can

be very easily adapted to support a number of consistency models, is examined by

the policy validation algorithm to expose memory ordering errors. If the analysis

exposes an error, information from the activity logs can be leveraged to support

subsequent diagnosis and debugging. Otherwise, activity logs and access vectors

are cleared and the next epoch begins.

While Dacota is active, each cache line is partitioned to include additional in-

formation alongside the data block in a form of an access vector that records the

number and the order of store operations issued to the line. Each core modifying the

data in a local cache line also updates the corresponding access vector. Traveling

throughout the system with its data block, the access vector records the order of

store operations to the block. A snapshot of the access vector is also stored in the

local cache’s core activity log upon each memory operation, along with the address.

These logs are later analyzed to validate the ordering of memory operations. When

required to support specific consistency models (such as weak consistency), Dacota

may also log special memory synchronization instructions.

When logging resources are exhausted, Dacota’s analysis algorithm validates the

ordering of memory operations from the contents of the logs. The algorithm builds

a consistency graph from the aggregated core activity logs; vertices represent mem-

ory accesses, while directed edges indicate operation sequencing as perceived by

different cores. Additional edges may also be added to the graph, depending on the

consistency protocol in use in the system under study. Memory ordering errors man-

ifest as loops in the graph, thus a direct analysis of the consistency graph determines

if an error has occurred with respect to the consistency model. The analysis engine

can also expose coherence violations if they are manifest in the consistency graph

or if they are exposed by incompatible access vectors in the activity log. Dacota’s

analysis algorithm is executed entirely in software on the existing CPU resources

of the multi-core processor, thus it does not require any offline post-analysis nor

off-chip data transfer.

5.3 Activity Logging

The activity logging system in Dacota records the order of shared memory accesses

observed by different cores. To this end, Dacota maintains both an access vector at-

tached to each cache line and activity logs residing in local caches. The information

in the access vectors and logs is updated concurrently with program execution and

incurs no performance overhead during this phase. However, when the log storage

resources are exhausted, normal execution is suspended and the logs are aggregated

and analyzed by the policy validation engine, as discussed in Section 5.4.
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5.3.1 Access vector

Dacota logs the order of accesses to cache lines using a scheme based on data col-

oring. Each cache line is partitioned into two parts: one for program data and the

other to store the access vector; these travel together through the interconnect and

caches of the processor. Each core has a dedicated entry in the vector: the entry is

updated when the corresponding core performs a store access to the cache line. The

vector also includes one additional entry, reserved to count the total number of store

operations to the line since the beginning of the epoch. Figure 5.3 shows several

examples of access vectors, with the counter entry shown in black.
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Fig. 5.3 Dacota access vector. An access vector associated with each cache line is used to track
the order of store operations. a. Access vector at the beginning of an epoch. b. Access vector
indicating modifications (in order) by core 0, core 2 and core 1. c. and d. Examples of aliasing due
to multiple store operations by a same core. In c. it can be inferred that core 0 performed three store
operations, because the other access vector entries are all 0; in d. the complete order of operations
cannot be recovered: either core 0 or core 1 performed the first store operation, but we cannot infer
which of the two.

At the beginning of an epoch, the counter and all entries of the vector are initial-

ized to zero. With each issued store, Dacota automatically increments the counter

and then copies the new counter value to the vector entry corresponding to the issu-

ing core. Updates to the counter are accomplished automatically by Dacota’s control

hardware and do not require read-modify-write operations to be issued by the CPU.

Dacota also enforces a policy that a saturated counter triggers the end of the pro-

gram execution phase in an epoch: this is a necessary measure to avoid aliasing in
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the access vector’s entries. The result of this process is an access vector with mono-

tonically increasing counter values over time, and reflecting the chronological order

in which cores modified a line.

To illustrate how access vectors operate, we show several examples in Figure

5.3.a-d. Part 5.3.a shows a vector associated with an unmodified cache line: all of

its N entries and the vector’s counter have a zero value. Figure 5.3.b shows the

result of three store operations (as indicated by a counter value of 3), with the first

issued by core 0, the second by core 2, and the last by core 1. At the beginning of

an epoch, this line started with a vector as in 5.3.a; after core 0’s store, the counter

and the first entry were updated to 1. When core 2 issued its store operation, the

counter was incremented to 2 and the value was also copied into the third entry of

the vector. Finally, the latest store by core 1 changed the access vector to its present

state shown in Figure 5.3.b. Observe that in this example the access vector uniquely

identifies the order of all store operations to the address block. In contrast, Figure

5.3.c shows a situation of aliasing, where three store operations have occurred, yet,

only the issuing core for the last one can be identified. However, for this example,

the cores issuing the previous store operations can be inferred: the fact that all other

entries are at 0 indicates that core 0 is indeed responsible for all the stores. In the last

example of Figure 5.3.d, the unique order of the accesses to the cache line cannot

be determined, since it is unknown whether core 0 or core 1 issued the first store

operation. Note, however, that if we had a snapshot of this access vector before the

third store operation was issued, we would be able to establish the issuing order of

operations precisely.

To manage access vectors, Dacota requires the addition of a small hardware block

to the cache controllers (darker blocks in Figure 5.1). This hardware component is

responsible for incrementing the counter and updating the access vector’s individ-

ual entries. At the cost of increased hardware complexity, it would be possible to

eliminate the counter entry from the access vector and simply retrieve the counter

value by extracting the highest value in the access vector entries. This alternative

approach incurs higher area cost, but could be interesting for systems where storage

resources for access vectors are limited.

5.3.2 Core Activity Log

While access vectors record the order of accesses to individual cache lines, activity

logs record the order of accesses among different cache lines. Stored in a reclaimed

portion of the local caches, activity logs record a series of access vector snapshots.

When a core issues a load or a store operation, Dacota copies the updated access

vector to the activity log, together with the type of access (load/store) and the cor-

responding cache line tag. The activity log is maintained as a queue and entries are

allocated in program order, and then written in order of operation completion, which

may differ from the program order. By leveraging the order and contents of the ac-

tivity logs, Dacota can later reconstruct the order of memory operations perceived
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Fig. 5.4 Example of Dacota’s activity log operation. The activity log records snapshots of ac-
cess vectors in program order, to track the perceived order of memory operations by each local
core. An index counter is used to point to the next available entry in the activity log queue. In
addition, a small index table is used to connect memory accesses that have not yet completed to
their corresponding log entry. In the example, b. the local core first issues a store operation to line
A, correspondingly updating the index counter and index table. b. Then a load to line B is issued
and completes before store A. c. Next, the store to line A completes and the updated vector is now
logged in the first entry of the activity log. d. Finally, after additional load operations to C and D,
the log storage is exhausted, thus triggering the checking phase of Dacota.
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by each core. To reconfigure Dacota’s portion of the local caches as a queue, we

augment it with a simple up-counter that cycles through the allocated ways and sets.

The tag array stores a portion of the location’s address, while the data block stores

spill-over address bits and the instantaneous value of the access vector associated

with the line. In addition, since the order of completion of memory operations may

be different from program order, Dacota must also maintain an index table to con-

vert between outstanding memory accesses and entries in the activity log. Since it

only needs to index outstanding memory accesses, the table can be quite small.

Figure 5.4.a-d shows an example of activity log operation. First, the core issues a

store to location A, allocating an entry for it in the log and recording the mapping in

the index table. Before the store completes, a load to address B is issued and com-

pleted (Figure 5.4.b), logging the access vector of line B. When the store completes

in Figure 5.4.c, the vector of line A is copied to its preallocated entry. When the log

fills (Figure 5.4.d), a signal is asserted and the policy validation is invoked.

In developing Dacota, we observed that logging each memory access led to pro-

hibitively large storage requirements. Thus, we optimized the design to log a load

access only if it triggered a cache miss, either because the data block is not cached,

or because the copy in the cache is obsolete due to modification by another core. No

loss in coverage is incurred by this optimization, when operating under the simple

assumption that hit accesses to local caches are serviced correctly.

5.3.3 Activity Logging Example

An example of Dacota’s logging system in operation is presented in Figure 5.5. In

the example, we assume to have a CMP with two cores implementing a MESI co-

herence protocol and with a load/store buffer that enforces strict program order. The

example shows several snapshots of a possible system execution and the correspond-

ing logging information generated and stored by Dacota. Throughout the example,

we adopt the following notation to report the information stored in the access vector:

c0|c1cnt, where c0 and c1 are the values corresponding to the entries for core 0 and

core 1, and cnt is the counter’s value. As an example, the access vectors in Figure

5.3.a and 5.3.d are recorded as 0|00 and 3|23, respectively. For simplicity we do not

show the index table and the index counter of the activity log in this example.

Initially, both local (L1) caches, as well as all the activity logs, are empty (this

situation is not shown in the figure). A first access operation, a store to location

A, is issued by core 0, triggering the memory system to bring line A into the L1

cache in the modified state. The access vector of the cache line is then updated and

stored with the cache line’s data: the counter is incremented and the new value (1)

is copied into core 0’s entry. The resulting value 1|01 and the address of A are also

copied to the core’s activity log. Figure 5.5.a shows a schematic of the system at

the completion of this operation, reporting the values in A’s access vector and the

contents of the activity logs for both cores. The letter in parenthesis in the data cache

block indicates the coherence state of the cache line, in this case, “Modified”.
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Fig. 5.5 An example of Dacota activity logging system. The example assumes a system with
two cores,using a MESI coherence protocol and in-order execution of individual cores’ memory
operations. The three snapshots illustrates the state of the system and the information logged by
Dacota after the execution of the following subsequent operations: a. core 0 stores to location A;
b. core 0 loads B while core 1 stores to A; and c. core 0 loads A while core 1 modifies B.
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Subsequently, core 0 issues a load to location B and core 1 issues a store to A.

The status of the system at the completion of these two activities is shown in Figure

5.5.b. Note that line B, with access vector 0|00, is brought to core 0’s local cache

and recorded in its activity log. Note that since this is a load operation, the access

vector is not modified. The implications of core 1’s store from Dacota’s standpoint

are as follows: line A must be invalidated in core 0’s cache and transferred to core

1 in modified state. The vector is transferred together with the data and updated to

1|22. The log of core 0 still preserves its log entry for its earlier store to A, while the

line itself is no longer in core 0’s cache (indicated in gray text in the figure). Finally,

in Figure 5.5.c core 0 has just completed a load to A and core 1 has completed a

store to B. The latter invalidates line B in core 0’s cache, transfers it to core 1 and

updates the vector to 0|11. The former, puts line A in shared state. Upon loading A

back in core 0’s cache, a new entry is appended at this core’s activity log.

At the end of execution Dacota uses the logs to see how the order of operations

was perceived by individual cores. For instance, if the execution completed as in

Figure 5.5.c, Dacota would collect the following log entries A:1|01, B:0|00, A:1|22

for core 0 and A:1|22, B:0|11 for core 1. From this it would be able to infer that

core 0 perceived its store to A to occur before core 1’s store to B.

5.4 Policy Validation Algorithm

Dacota’s policy validation algorithm takes the activity logs as input, builds a directed

graph representing the memory operation ordering, and finally inspects this graph

to detect potential memory system’s errors. The algorithm is invoked each time log

resources are exhausted, either one of the activity log storage spaces become full,

or one of the access vectors’ counters saturates. The first step of the algorithm is to

aggregate all the access logs. This process can overlap with the second phase, that

is the graph construction process, which may begin as soon as the first portion of

logged data is available. The graph construction process is specific to the memory

consistency protocol adopted in the system under study. Finally, the last step is the

policy validation proper, which is carried out by analyzing the generated graph.

To minimize the area overhead incurred by Dacota, we implemented the checking

algorithm in software; the algorithm is designed to execute directly on the core of

the processor under validation

5.4.1 Access Log Aggregation

When a core detects that its log is full or the counter of the accessed line’s vec-

tor reached the maximum value, it broadcasts a message to the global memory or

second-level cache controller requesting to begin a validation phase. Upon receipt

of the message, this controller requires all cores to stop execution and wait for all

pending memory operations to complete. Each core, upon completion of all its pend-
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ing operations, responds to the message acknowledging that it has reached a stable

state. The second-level cache wait for all cores to respond, and then issues a second

message requesting that all cores freeze the data portion of their L1 cache and be-

gin transfer their local activity logs to uncacheable memory (a portion of the main

memory), where the data can be accessed by all cores. Note that we use uncacheable

memory to collect the activity logs so that all cores can access the information with-

out altering the state of their local data cache, a necessary requirements to minimize

the interference of Dacota with the system’s mainstream execution.

5.4.2 Graph Construction

After activity logs are relocated to main memory, Dacota proceeds to build a directed

graph, representing the observed ordering of memory operations. Vertices in the

graph represent unique memory accesses issued during the current epoch by any

core. Edges are derived from the relative ordering of events as indicated by the

activity logs and from the ordering constraints specific to the consistency model

adopted in the system. As graph construction progresses, Dacota also checks that

coherence invariants are maintained in the system by inspecting the access vectors

of individual cache lines.

1 Graph Construction()

2 Graph G, Coherence Order Map M

3 Activity Log L[0..N-1]

4 Foreach core c in N

5 Foreach entry e in L[c]

6 If Exists M[Address(e)]

7 Verify Coherence(M,e)

8 Add Coherence Order(M,e)

9 Add Vertex(e,G)

10 Edges E = Ordering Edges(L[c],e)

11 Add Edges(E,G)

12 End

13 End

Fig. 5.6 Pseudocode of Dacota’s graph construction algorithm. The algorithm iterates through
all entries of each core’s activity log and generates a coherence map, to detect basic coherence
violations (lines 6-8), and a consistency graph, whose edges are determined by the specific consis-
tency model in use in the system under validation (lines 9-11).

Figure 5.6 provides a high-level pseudocode for the graph construction algo-

rithm. The algorithm iterates over each core and log entry, building the consistency

graph and, at the same time, performing a preliminary analysis to verify that all

store operations to an individual cache line are compatible with a unique ordering

of issuing events. In other words, it checks that for each individual cache line, all
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cores agree on the same order for which write operations were issued. This is a key

requirement in cache coherency; Dacota verifies it by employing a data structure,

the coherence map, that maps each line’s address to an ordered list of all store op-

erations issued for that line by any core. The algorithm inspects each entry of each

activity log and, every time the line’s address is encountered, the corresponding ac-

cess vector is retrieved and compared or added to the coherence map (lines 6-8 in

Figure 5.6). Because each access vector includes a global counter of the write oper-

ations, it is easy to order the write operations issued to a given address. In addition,

since a new snapshot of the access vector is stored in the activity log every time a

new write operation completes, the algorithm can determine which core issued each

of the write operations. When a log entry reveals an access that was not previously

observed, the ID of the corresponding core issuing the access is added to the list in

the proper location. For instance, with respect to the example of Section 5.3.3 and

Figure 5.5, after this analysis the coherence map would contain 0,1 for address A

indicating that the first write operation to address A was performed by core 0, and

the second by core 1. While scanning the activity logs it is also possible to detect

and incongruence in these records. For instance, if two cores modify a cache line at

the same time, due to a bug in the coherence protocol, there would be two entries in

distinct activity logs, reporting the same order index for two distinct cores, and this

situation could be detected in this preliminary analysis.

While building the coherence map, Dacota also uses the information in the logs

to build the constraint graph for the consistency model, as indicated in lines 9-11

of Figure 5.6. For each read or write operation (to any address) occurred during the

epoch a new vertex is built in the consistency graph. Thus, the algorithm builds a

new vertex for each entry of each activity log: indeed, as we discussed earlier, a new

activity log entry is created for each memory access by a local core. Thus a vertex

is uniquely identified by (i) the core issuing the corresponding operation, (ii) the

type of operation (load or store), (iii) the target address of the operation, and (iv) an

index providing chronological order between operations from a same core (this can

simply be the index counter value of the entry),

The edges in the graph depend on the specific consistency model adopted in the

system. Below we discuss the specific edge addition rules for a number of consis-

tency protocols. At the end, the graph is checked for loops, which are indicators of

an error in the memory operation ordering, as we discuss later in this section and

illustrate with examples.

Sequential consistency. The sequential consistency model imposes that all cores

perceive a unique order for all load/store operations in the system. The consistency

graph for this protocol includes two types of edges: program order edges and ad-

dress reference edges. Program order edges are derived from the order of entries

within each activity log: there must be an edge from the vertex corresponding to

each entry to the vertex corresponding to the following entry in the activity log.

Address reference edges connects vertices referring to a same location, of any type,

from any core: each vertex has an outgoing edge to a vertex corresponding to the

next operation (load or store) to that same address.
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ST A1

ST  B1

ST C2

ST E1

ST B2

ST A2

LD B1

ST C1

ST D1

Core 0 Core 1
ST A1

ST B1

ST C2

ST A2

ST C1

ST E1 ST D1

ST B2

LD B1

Fig. 5.7 Sequential consistency constraint graph example. The schematic on the left shows the
interleaved sequence of loads and stores issued by two cores for the example. Subscripts associ-
ated with symbolic addresses distinguish among the distinct values written at those addresses by
subsequent store operations; gray arrow lines connect all operations affecting a given address in
chronological order. The consistency graph for this example is shown on the right: each operation
corresponds to a distinct vertex; in addition solid edges represent program order constraints, while
dashed ones indicate address reference dependencies.

Figure 5.7 shows an example of this construction: the left part is a schematic of

the operations occurring in two cores of the processor: core 0 performed five store

operations to A, B, C, E and then to B again. Core 1 performed a store to A, then

loaded B and finally stored C and D. Operations by both cores are positioned so to be

suggestive of their relative timing. Gray arrow lines indicate the order between oper-

ations by different cores on a same address: for instance, core 0 updated the contents

of A with a store first, then core 1 modified A again. Note also that the subscript in-

dex next to the symbolic address is used to distinguish among the values written at

that address by distinct store operations. All the information in this schematic can be

directly derived from the activity logs: each column corresponds to the activity log

of a distinct core; within a column, individual load or store operations correspond to

entries in the activity log, in the same order. Subscript indexes are retrieved directly

from the counter in each log entry. Gray cross-arrows are derived by comparing en-

tries for a same address on distinct cores: the counter field and the type of operation

are sufficient to determine the proper ordering among these operations. The diagram

on the right in Figure 5.7 shows the corresponding consistency graph built by Da-

cota when operating in a machine with sequential consistency. The graph resembles

closely the schematic just discussed, thus all the information necessary can be easily

retrieved by inspection of the activity logs. In the graph, program order edges are

indicated by continuous lines, while address reference edges are dashed.
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Total store ordering (TSO). This consistency protocol relaxes the constraints of se-

quential consistency by allowing loads to complete before previously issued stores

to a same location. When building the consistency graph for this protocol, only

store operations in the activity log correspond to vertices in the graph. Edges in-

clude program order edges and address reference edges, similarly to the sequential

consistency model just discussed. An additional set of edges is derived from load

information: chronological edges represent inferred ordering among stores to differ-

ent locations and can be derived from the contents of the access vectors logged due

to load operations. Specifically, for each load, Dacota identifies the most recent store

operation that modified that same location by inspecting the access vector, and from

that it infers that any subsequent store to that same location had not been executed

yet. It then retrieves the vertex corresponding to the most recent store executed ex-

ecuted by the same core before the load under study, and creates an edge from this

vertex to the inferred following store to the load location. In addition, it also creates

an edge from the last store that accessed the load location to the next store issued by

this core. As an example, in Figure 5.8, the two chronological edges (A2 → B2 and

B1 →C1) are derived in this way when analyzing the LD B1 operation from core 1.

Core 0 Core 1

ST A1

ST  B1

ST C2

ST E1

ST B2

ST A2

LD B1

ST C1

ST D1

ST A1

ST B1

ST C2

ST A2

ST C1

ST E1 ST D1

ST B2

Fig. 5.8 Total store ordering consistency constraint graph example. The schematic on the left
shows the interleaved sequence of loads and stores issued by two cores for the example. The con-
sistency graph for the example is shown on the right: only store operations correspond to a vertex
in the graph; in addition solid edges represent program order constraints, while dashed ones in-
dicate address reference dependencies. Chronological edges, representing inferred chronological
order derived from load operations, are shown with dotted lines.

Figure 5.8 shows an example of the consistency graph generated for total store

ordering. The schematic on the left is the same as the one of Figure 5.7, and it

shows the sequence of load/store operations that the two cores issued. The consis-
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tency graph on the right is derived from this sequence of operations in a machine

with total store ordering. The graph contains only vertices corresponding to store

instructions, as well as program order edges (continuous lines), address reference

edges (dashed) and two chronological edges (dotted lines).

Processor consistency. This consistency model requires that the perceived order of

store operations issued by a given core is the same throughout the entire system.

This property must hold for each core; however, there is no constraint on how store

operations from different cores are interleaved together, and each core may observe

a different interleaving. For this model, each core must build its own consistency

graph, using a process similar to that of TSO, but creating vertices only for store

operations issued by the local core. Edges include program order edges, address

reference edges and chronological edges derived from load operations.

Other consistency models. Weak consistency models require that only special in-

structions (such as memory barriers) be perceived in a unique order throughout the

system, while the observed interleaving of accesses between synchronization oper-

ations may be different for different cores. In this case, beside recording loads and

stores in the activity logs, Dacota also records the occurrence of these synchroniza-

tion instructions and uses them as vertices in graph construction. Edges among these

synchronization vertices are derived from activity log entries of ordinary memory

accesses, such as loads and stores.

5.4.3 Consistency Graph Analysis

Consistency graphs in Dacota are built to reflect the order in which accesses issued

by individual cores are perceived in the system. To find violations, indicators of

functional errors, Dacota searches the graphs for loops, employing a modified ver-

sion of the depth first search (DFS) algorithm [Knu97]. The algorithm retains the

complexity of the underlying implementation of DFS, that is, O(E), where E is the

number of edges in the graph. In addition, to ensure maximum performance, Da-

cota aggressively applies transitive closure during construction, thus reducing the

number of edges in the final graph.

Note that this solution does not use any additional hardware to implement policy

validation: this allows Dacota to limit its silicon area overhead to a minimum, and

to provide maximum flexibility in the type of analyses it can conduct. Moreover, it

enables us to deploy a concurrent algorithm for the analysis, particularly for weaker

consistency models, fairly common in today’s multi-cores, where several distinct

graphs must be constructed. For consistency policies that require the construction

of a single graph, such as sequential consistency, Dacota can also leverage some

concurrency, particularly in the graph analysis process where loops within the graph

must be detected. Specifically, several cores will apply the same search algorithm,

starting from distinct graph vertices. To further boost the performance of Dacota
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during policy validation, the storage previously occupied by the activity logs, which

are now residing in main memory, is reconfigured to be used as regular cache space.

When the analysis is completed, the Dacota portion of the cache is cleared once

again to free space for the activity logs, and the data cache is thawed. A new epoch

may now begin.

5.4.4 Error Detection Examples

In this section we present two examples, one of a system including a coherence error

and one for a consistency error, and illustrate how Dacota identifies them.

Coherence bug example. The system in Figure 5.9 comprises two processor cores

and operates with a MESI coherence protocol. At the beginning of a new epoch,

core 0 loads the memory location A in exclusive state. This situation is depicted in

part a. of the figure, where we show the address, access vector and exclusive tag for

data at address A. In addition, Dacota adds one entry to the activity log reporting

this load operation.

Subsequently, core 1 updates the value of location A, as shown in Figure 5.9.b.

However, note that, due to a coherence protocol bug, core 0 does not invalidate A

in its own cache, instead it changes its state to shared. When later core 0 attempts

to store a new value to A, too, it does so by simply updating its local copy (Figure

5.9.c), since it did not invalidate that copy earlier. Now two distinct copies of this

data exists on two distinct caches at the same time, a violation of the coherence pro-

tocol. As a result the corresponding entry in the activity log simply reports that core

0 performed the first store operation to A. This is in conflict with the activity log at

core 1, which indicates that core 1 is the core that executed the first store operation

to location A. At the end of the epoch, during the policy validation algorithm, Da-

cota has a chance to compare these two entries and detect and report the issue.

Consistency bug example. A more complex fault, this time in memory consistency,

is shown in Figure 5.10, where we assume the same system as in the previous ex-

ample, implementing a sequential consistency protocol. In this example, core 0 per-

forms two store operations to locations A first, and B afterwards. At the same time,

core 1 issues two load operations, again, to location A first, and B later. However,

possibly due to an incorrect behavior of the memory controller, the load B operation

is completed first in core 1, followed by the load of A. As it can be noted from the

activity logs, Dacota recorded that A was first loaded by core 1, and later modified

by core 0. After the store to A, core 0 also modifies B, which is later read by core 1.

At the end of the epoch, Dacota builds the corresponding constraint graph, shown

in the lower part of the figure. Dacota can detect the sequential consistency violation

dy noting the existence of a loop in the graph. The consistency bug has become

evident because the two cores perceived two different ordering of load/store events,

as indicated in their local activity logs.
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Fig. 5.9 Cache coherence error example. This two-cores system operates with a MESI coher-
ence protocol. At the beginning of a new epoch, a. core 0 loads the value of location A, thus the
corresponding cache is in exclusive state for this core. b. Later on, core 1 requests to modify line A,
however, the location is erroneously updated to shared state in core 0, instead of being invalidated.
c. When core 0’s attempts a new update to cache line A, it updates its own local copy, leading to a
coherence conflict. Because the activity logs of the two cores report that both cores where the first
to update the value at A, Dacota can detect this error during policy validation.
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Fig. 5.10 Sequential consistency violation example. The dual-core processor operates with a
sequential consistency protocol. The sequence of events in the example starts with a load A for
core 1, followed by a store to A and then B by core 0, and finally with a load of B back in core 1.
However, due to a bug in core 1’s execution, the initial load to A is erroneously reordered to execute
after the load to B. At the end of the epoch, Dacota builds the consistency graph and detects that
the order in which accesses to A and B are observed by the two cores is different (by noting the
existence of a loop), exposing a violation of the consistency protocol.

5.4.5 Checking Algorithm Requirements

To minimize the area overhead of Dacota, its checking algorithm is designed as soft-

ware routine, instead of dedicated hardware. Therefore, for the approach to be reli-

able, the computational correctness of the individual cores must be determined first,

as well as their ability to access main memory. Note that main memory accesses use

the same subsystem that Dacota is verifying, however, bugs in the memory subsys-

tem are unlikely to manifest errors in the analysis portion of an epoch, during graph

construction and policy validation, because of the absence of memory race condi-

tions. The cores drain the activity logs into disjoint memory regions and then use

this information without overwriting it. Moreover, since the logs are aggregated in

an uncacheable memory region, caches are not involved in the transfer, eliminating

the chance that coherence or consistency bugs may corrupt the analysis process.
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5.5 Strengths and Limitations

While Dacota is effective in exposing a diverse range of functional errors in the

memory subsystem of a multi-core architecture, there are some limitations to its ap-

proach. First, its ability to detect bugs is dependent on the quality of the stimulus,

that is, the program running on the system under test. Thus, Dacota can only find

bugs that are uncovered by the workload running on the system. For example, work-

loads without shared data will not uncover coherence or consistency-related bugs,

nor will very small ones that do not stress the memory system. Bugs that result in

deadlock or in the system freezing are also not flagged by Dacota, as we assume

that forward progress is always maintained.

Moreover, bugs that do not affect the execution’s semantics evade capture by

our validation system. For instance, consider a cache line shared by two cores, both

in the shared state of a MESI protocol. If one processor silently (and incorrectly)

modifies the line’s state to exclusive the system becomes incoherent. Yet, if no store

is performed to the line, the execution semantics of the program is not violated. A

subsequent store operation, however, will make the error manifest, since it updates

its access vector and activity logs. Furthermore, when Dacota is implemented with

the optimization that activity is logged only on cache misses, as we mentioned in

Section 5.3.2, errors related to the local handling cache hits would not be detected

by the system. However, this aspect can be verified through properties local to an

individual cache and its interface with its corresponding core, a process requiring

much fewer resources than verification of system-wide cache coherence and mem-

ory consistency invariants.

5.5.1 Debugging with Dacota

One of the major strengths of Dacota is the support that it provides for the debugging

effort following the detection of a bug. Indeed, the activity logs available at the end

of an epoch are a useful debugging resource, providing detailed information about

each cache line accessed, which cores accessed them, and when store operations

occurred. With this information, an engineer can clearly see the memory activity of

all processor cores, as well as system-level events leading up to the bug. Moreover,

since the data portions of the cores’ L1 caches are frozen during Dacota analysis,

the data residing in them can also be leveraged to provide additional insights about

the violation. Finally, Dacota could be augmented with small hardware components

to log the state of each core’s internal registers at the end of an epoch, providing

engineers with more information about the program execution. These features allow

Dacota to be deployed for debugging of complex and non-deterministic multi-core

systems.
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5.5.2 Design Considerations

In order to make Dacota a viable post-silicon solution, its design was driven by

three primary goals: high coverage, low area overhead and debuggability. Perfor-

mance was an additional consideration, as high execution speed is critical to our

primary goal of high coverage. Early in the design phase, we considered attaching

only a sequence counter to each cache line and storing these values in the activity

log with each memory operation. While this minimalist setup eliminates the need

for access vectors, we quickly found that the analysis algorithm corresponding to

this storage mechanism was grossly inefficient. Since the sequence counter did not

record the order of accesses to the line, the order had to be inferred from the logs of

the other cores in the system, requiring the algorithm to walk the entire set of aggre-

gated access logs during the construction of each vertex in the graph. With the logs

placed in uncacheable memory, the performance overhead of the graph construction

process outweighed the savings in log storage space. Furthermore, this scheme lost

writer identification information, thus significantly hampering debuggability. With

the addition of the access vector, graph construction becomes much faster, as well

as it provides additional debugging information. These decisions are validated by

our experimental results, which indicate that longer periods of execution between

checks, as would be allowed with more compact activity logs, do not necessarily

lead to better performance for the software graph analysis algorithm.

5.6 Experimental Evaluation of Dacota

The quality and efficiency of Dacota has been evaluated by simulating a multi-core

system that incorporates this solution. On this platform we studied the error cov-

erage provided, and the performance and area impact of this post-silicon solution.

We also varied a number of configurations parameter to evaluate their impact on

Dacota: we setup several variants of the system with different activity log lengths

and analyzed their effect on consistency graph size and policy validation algorithm

runtime. In addition, we measured how the amount of communication and computa-

tion overheads incurred by Dacota varies across multiple software benchmarks and

activity log sizes.

The simulation framework is based on a multi-core system modeled with the

Wisconsin Multifacet GEMS memory subsystem simulator [MSB+05]. The design

contains 16 cores, each with a 16 entry load/store buffer, 128kB L1 cache, a sin-

gle 4MB L2 cache and a 4x4 on-chip mesh interconnect. The coherence protocol

adopted in the system is the MOESI directory protocol, and total store ordering is

the consistency model implemented. In addition, we designed and ran simulations

on a number of variants of this system: several experiments have been run on a sys-

tem that used token coherence to synchronize the caches, and we also evaluated two

alternative interconnect types, crossbar and switch-based. The components of Da-

cota are implemented as a simulator plug-in, which include methods to manipulate
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the access vector and manage the cores’ activity logs. Finally, the policy validation

algorithm is implemented in software using the Boost graph library (BGL) [SLL02].

The algorithm’s runtime was calculated by simulating its execution using the Sim-

pleScalar architectural simulator [BA08].

The set of workloads used to evaluate Dacota are a combination of real-world

programs and random stimulus. We used the ten SPLASH2 benchmarks [WOT+95],

compiled for a 16-cores shared memory architecture, considering execution traces

of 10,000,000 dynamic instructions generated by the Virtutech Simics simulator

[MCE+02]. In addition, to induce more stress on the memory subsystem, we cre-

ated eight synthetic tests of directed-random stimulus with varying degrees of data

sharing, each containing 1,000,000 memory accesses. Three of these benchmarks

used a fairly small address space that could fit into the cores’ L1 caches without

eviction, while the other five used significantly larger memory ranges and could not

be fully contained in the L1 caches. Additionally, we created benchmarks using the

GEMS built-in random test generator executing the “barrier” and “locks” patterns.

5.6.1 Design Error Coverage

For the first experiment we created eight different variants of our design, each in-

cluding a distinct coherence and/or consistency-related error. The functional errors

were inspired by known issues in commercial multi-core designs reported in pub-

licly available errata documents. We then ran our SPLASH2 and synthetic bench-

marks with Dacota enabled, recording the number of execution cycles required to

expose the bug. The results of this study are reported in Table 5.1, where we provide

a short description of each bug. We also computed the average number of cycles that

exposing benchmarks take to reach the bug (not all programs encountered all errors).

It can be noted from the table that all the injected bugs were discovered by Dacota,

and that all but one required less then three millions execution cycles on average, an

amount that corresponding to a very small runtime in a hardware prototype.

5.6.2 Performance Evaluation

We also investigated the computation and communication overhead of running Da-

cota relative to the execution time of the testbench without Dacota. In this study, it

was assumed that one half of the L1 cache, which we sized at 64kB, was devoted

to data storage and associated access vectors, and the activity log space was limited

to 256 entries fitting in 32kB. Figure 5.11 includes two plots, the top plot reports

results on the SPLASH2 benchmarks, the bottom one refers to the synthetic bench-

marks, that is, randomly generated programs with various degrees of data sharing

and the “barrier” and “locks” tests native of GEMS simulator. The left-side verti-

cal axis indicate the fraction of overhead with respect to a same benchmark run-

ning without Dacota. The gray and black bars in the plot refer to this axis, and
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Table 5.1 Functional error coverage: number of execution cycles required for Dacota to

detect each bug.

Bug name Description of the error
Avg. cycles to

expose bug

shared store
store to a shared line may not
invalidate other caches

0.252M

invisible store
store message may not reach all
cores

1.32M

store alloc 1
store allocation in any core may not
occur properly

1.93M

store alloc 2
store allocation in a single core may
not occur properly

2.27M

reorder 1 invalid store reordering (all cores) 1.38M

reorder 2
invalid store reordering (by a single
core)

2.82M

reorder 3
invalid store reordering (to a single
address)

2.87M

reorder 4
invalid store reordering (to a single
address by a single core)

5.61M

they show the computation and communication overheads, respectively. Computa-

tion overhead accounts for the time spent running the constraint graph construction

algorithm and the policy validation algorithm. Communication overhead refers to

the additional time spent transferring the activity logs to uncacheable memory at the

beginning of the checking phase in Dacota and then distributing the logs to indi-

vidual cores for graph analysis. The dashed lines mark average values over all the

benchmarks in each plot for both of these overheads. Finally we also plot in the

graph the amount of data traffic imposed by Dacota to the system during normal

program execution. This extra traffic, measured in kilobytes, is required to transfer

access vectors along with each data line that is moved to and from local caches. The

values for each benchmarks are indicated by the black stars with reference to the

right side vertical axis.

Note from the figure that the average overhead for SPLASH2 benchmarks is

26%, while for randomly generated benchmarks is 150%. Overall, these values are

well within the acceptable range for post-silicon techniques; indeed, overheads of

300-500% are perfectly acceptable for solutions currently adopted in this domain.

The overhead for random benchmarks is somewhat higher due to the intrinsic nature

of these tests, designed specifically to stress the memory subsystem. Consequently,

when running these tests, the fraction of program instructions issuing memory oper-

ations is markedly higher, generating many more entries in the activity logs, which

in turn must be analyzed by Dacota more frequently.
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Fig. 5.11 Dacota’s performance overhead. The graphs plot the performance overhead incurred
by the system when Dacota is active in post-silicon validation. The gray bars report the computation
overhead incurred for each benchmark and the black bars plot the communication overhead. Both
bars are with reference to the left side vertical axis. The amount of additional traffic incurred during
normal operation is also plotted with reference to the right side vertical axis. The top plot reports
results for the SPLASH2 benchmarks, the bottom one for the synthetic benchmarks. Dashed lines
indicate average values of the overheads for the set of benchmarks in the plot.

The Dacota implementation that we used in the experimental setup serializes the

two phases of activity log transfer and graph construction; in practice there could

be a significant overlap, since the construction of the constraint graph may begin

as soon as there is at least one activity log available in uncacheable memory. If

we had this optimization in place, the aggregate overhead would be smaller than

that reported in Figure 5.11. It is also important to note that, since Dacota can (and

should) be disabled upon product shipment, these performance overheads are only

incurred during in-house validation of silicon prototypes.
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Fig. 5.12 Computation overhead vs. activity log size. The plots report the computation overhead
incurred by a number of testbenches when using a varying amount of activity log storage space.
The size of the activity log used in each evaluation is represented on the horizonal axis. The top
part plots SPLASH2 benchmarks results, the bottom part focuses on synthetic benchmarks. Also
reported with light gray markers is the average result over all SPLASH2 and all synthetic tests.

The next study focus on the impact of the activity logs storage space. For this

experiment, we repeated a same simulation multiple times, each time varying the

size this storage and measured the communication and computation overheads in-

curred. The results of the analysis are presented in Figure 5.12 and 5.13. Both figures
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Fig. 5.13 Communication overhead vs. activity log size. The plots report the communication
overhead incurred by a number of testbenches, named in the legend, when using a varying amount

of activity log storage space. The top part plots SPLASH2 benchmarks, while the bottom part
focuses on synthetic benchmarks. Also reported with light gray markers is the average result over
all testbenches in each family: SPLASH2 and synthetic.

include two plots each, the top one focusing on SPLASH2 benchmarks, and the bot-

tom one on the synthetic tests (“locks”, “barrier” and randomly generated): since the

impact of Dacota appears to be very different for these two classes of tests, we strove

to conduct separate analyses throughout the evaluation. Figure 5.12 reports results
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with respect to computation overhead, while Figure 5.13 focuses on communication

overhead. In each of the plots, the horizontal axis indicates the size, in number of

entries, of the activity log storage in each local cache. The legend reports the names

of the individual testbenches analyzed. The plot line with light gray markers shows

the average over all tests of each family, that is, the top graph includes the average

over all then SPLASH2 benchmarks we evaluated, and the bottom graph indicates

the average over all ten synthetic benchmarks.

The computation overhead analysis reveals some interesting trends: for some

benchmarks, such as fft, lu and locks, the overhead monotonically decreases with

larger log storage space. However, several other benchmarks, including cholesky,

radix, etc., present a local minimum at medium log sizes. Most of the synthetic

benchmarks, on the other hand, seem to impose more overhead when they have

larger storage available for activity logs. We believe that these trends may be ex-

plained by the memory access patterns of the individual benchmarks: testbenches

with high density memory accesses and with much data sharing fill quickly any ac-

tivity storage and the amount of data to process in graph construction and policy

validation increases both in size (because of the larger storage) and complexity (be-

cause of the high fraction of data sharing), leading to a marked increase in compu-

tation demands. Testbenches with relatively infrequent memory accesses and little

sharing instead pose little challenge to the policy validation algorithm. In addition,

it is not infrequent for these testbenches to trigger a checking phase because of the

saturation of a counter in the access vector, rather than because of exhaustion of log

storage space.

In Figure 5.13, it can be noted that the communication overhead is practically

constant for all testbenches, that is, the time spent transferring activity log data is

a constant fraction of the execution time. This seems a logical result since large

activity log storage space requires more transferring time, but also allows for longer

epochs with longer intervals of time spent in normal computation. Aggregating all

our results, we found that 256 entries per activity log seems to strike a good balance

leading to a generally low overhead.

We also studied the impact of different interconnect topologies on Dacota per-

formance and overheads imposed. To this end we conducted additional experiments

using the same set of testbenches and varying the size of activity log storage but

over two alternate systems: one using a crossbar interconnect and one using a hi-

erarchical switch interconnect architecture. For each of these architectures, we also

evaluated the system when the coherence protocol was token coherence instead of

MOESI. Overall we found that Dacota’s performance was not affected in any appre-

ciable amount by the interconnect topology; however the use of the token coherence

protocol led to an 8% reduction in communication overhead. Investigating this re-

sult, we found that the ratio of traffic due to Dacota moving activity log data over

normal system traffic is lower with token coherency because of the larger number of

control messages present only during normal execution and required to implement

this coherence scheme.

Finally, we evaluated how often Dacota must be invoked to aggregate log data

and run the policy validation algorithm. This is directly related to the average length
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Fig. 5.14 Normal execution cycles within an epoch. The plots report the average number of cy-

cles spent in normal program execution between each pair of checking phases, for a number of
SPLASH2 and synthetic benchmarks. The graph line with light gray marker indicates the aver-
age over all SPLASH2 benchmarks (top plot), over the smaller synthetic benchmarks in the plot
(middle), and over all remaining synthetic benchmarks (bottom).
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of an epoch of execution. Figure 5.14 reports the results of this study indicating how

many clock cycles of program execution are completed, on average, between each

pair of checking phases. The top plot reports representative results for a number of

SPLASH2 benchmarks, while the two bottom plots report results for the synthetic

benchmarks, the smaller ones in the middle plot and the larger ones in the bottom

plot. In each plot the average number of cycles between checks is graphed against

the size of the activity log storage space. The plot line with light gray markers reports

average information: in the top plot the average is over all SPLASH2 benchmarks,

in the middle plot it is over only the testbenches in the graph, and in the bottom plot

it is over all other synthetic benchmarks.

As it can be noted, and as intuition suggests, increasing log storage leads to

longer intervals between checks, since more memory accesses can be recorded be-

fore the storage space saturates. Note, however, that there are a number of exception

to this rule of thumb: for instance, the barrier benchmark does not seem to be ben-

efiting from log storage with more than 512 entries. The plateau in this benchmark

occurs because the check is triggered by access vector counter saturation, not due to

the filling of the log. Benchmark small 0 shared has a similar pattern as well. Recall

that the smaller synthetic programs in this experiment, including small 0 shared,

have address spaces that fit completely in the L1 caches of the individual cores. In

addition, this particular benchmark has no shared data, thus lines cached by the cores

are never invalidated or evicted. As a result, activity logs with 512 entries of more

never fill throughout the entire execution of the benchmark, and Dacota analysis is

invoked only once, after the benchmark’s completion.

5.6.3 Area Evaluation

In order to deploy Dacota in a multi-core system, a few small hardware components

must be added. To perform a coarse evaluation of the area occupied by these com-

ponents, we designed them using a register-transfer level language (Verilog HDL),

synthesized them and gathered their size from the synthesis tool final report. The

Dacota modules included a control block for updating the counter and access vec-

tor, a state machine to manage the activity log space, and an index table to maintain

the conversion between program order and completion order of memory accesses,

as discussed in Section 5.3. The modules were synthesized with Synopsys Design

Compiler targeting a TSMC library at the 90nm technology node. The collective

area required to deploy all these modules was reported at 5,216µm2. For com-

parison, an OpenSPARC T1 [LTS+07] processor occupies approximately 378mm2.

Placing a full set of Dacota modules next to each of the eight cores in this design

would result in an area overhead of 0.01%, an area impact fairly negligible, even

for such area-sensitive platforms as modern microprocessors. The underlying rea-

son why Dacota can be deployed with such small area overhead lies in its ability

to reuse reuse of existing hardware structures for most of its activity, such as cache

storage, and its leveraging software algorithm for policy validation, instead of dedi-

cating silicon area to implement this task.



124 5 CONSISTENCY VERIFICATION USING DATA COLORING

In order to put Dacota’s area overhead in perspective, we also compared its stor-

age requirements with two other memory consistency validation solutions: the tech-

nique by [CMP08] overviewed in Section 4.4 and a runtime approach proposed by

Meixner, et al. in [MS06]. We will discuss this latter approach in more details in

Section 8.1. A conservative estimation of the added storage requirements for the

first technique results in 171kB for a 16-node system, similar to the one used in our

experimental evaluation. This includes all the overhead components in [CMP08]:

extension of individual cache lines, area occupied by local observers, victim cache

and central graph checker. In the case of the solution by Meixner et al., at least

486kB of storage are required by the detection hardware itself, while another 432kB

would be needed to implement SafetyNet, a checkpointing framework that enables

runtime error recovery [SMHW02], totalling 918kB. In contrast, since Dacota is ca-

pable of reusing existing storage space for its activity logging, it requires very little

additional hardware, a 2B counter and a 32B table at each node, totaling 544B in the

16-processors system used in our evaluation. Thus, considering these conservative

estimates, our solution is approximately 321 times smaller than the post-silicon val-

idation technique in [CMP08] and 1,728 times smaller than the solution in [MS06].

5.7 Summary

In this chapter we presented Dacota, a novel solution for high-coverage post-silicon

validation of memory ordering in multi-core processor systems. When enabled by

the verification team, Dacota stores information about the sequence of executed

memory operations, periodically aggregating this data to perform a software-based

policy validation. The validation algorithm is implemented purely in software to

minimize this solution’s area impact and executes the software portion on exist-

ing processor resources. Leveraging approximately six orders of magnitude perfor-

mance advantage over pre-silicon simulation, Dacota’s post-silicon approach is able

to offer significantly higher coverage compared to pre-silicon techniques. The av-

erage performance overhead of Dacota, compared to execution with error detection

disabled, is 26% for SPLASH2 benchmarks, which exhibit memory access patterns

fairly representative of typical programs. Moreover, through reuse of existing hard-

ware resources, Dacota is capable of limiting its area penalty to than 0.01% for a

commercial design, such as the OpenSPARC T1 system, and it can provide a two to

three orders of magnitude area advantage over other popular post-silicon and run-

time solutions for memory consistency.

We found that Dacota is effective in detecting subtle consistency and coherence

bugs, showing its promise as a solution to the problem of validating the order of

memory operations in CMP systems. Furthermore, Dacota enables post-silicon de-

bugging support, providing invaluable information to the validation team. Once the

post-silicon validation phase is completed, Dacota can be disabled before product

shipment, thus completely eliminating the experience of any performance degrada-

tion by an end-user.
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Solutions such as Dacota and Reversi, overviewed in Chapter 3, open new fron-

tiers in microprocessor verification, by allowing functional tests to be executed di-

rectly on prototype hardware with significant increase in performance compared to

pre-silicon techniques. To become successful, post-silicon techniques must incur

minimal hardware overhead and strive to reuse existing on-chip resources for vali-

dation purposes, yet still provide sufficient test quality and coverage. Furthermore,

promising post-silicon validation approaches should include support for debugging

by providing valuable clues to the root cause of a bug. All of these features al-

low post-silicon validation to shorten the processor verification cycle and eliminate

significantly more bugs before the product is released. However, even with these

advanced methods, designers cannot completely guarantee correctness of all pro-

cessor’s behaviors, and subtle errors may still slip into production silicon. To com-

bat these escaped errors in hardware components deployed in the field, researchers

have began proposing runtime validation solutions, techniques that operate concur-

rently with the system monitoring the correctness of its functionality and providing

correction mechanisms when errors manifest in the field. In the remaining chapters

of this book we overview several of the most prominent techniques in this domain,

analyzing their performance and bug finding capabilities.
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Part III

RUNTIME VERIFICATION FOR
MODERN MICROPROCESSORS



As microprocessor complexity grows with each new generation of products, the

capabilities of even the most advanced pre-release (i.e., pre- and post-silicon) ver-

ification solutions still severely lags behind, allowing bugs to slip into production

hardware and compromise the stability and security of customers’ systems. Because

of this, researchers in academia and industry recently started to propose solutions

that extend verification and protection from bugs to a deployed processor by means

of patching and/or additional on-chip hardware. The purpose of this additional hard-

ware components is to monitor the stability of the system at runtime. In this third

part of the book we overview and classify escaped bugs in commercial processors

available today, collecting them from publicly available errata report documents.

We then present research solutions leveraging hardware checkers to ensure correct-

ness of runtime operation. This introduction is followed by the presentation of a

comprehensive solution for patching processors’ hardware in the field and for pro-

tecting users from unknown escaped bugs. Following the discussion of techniques to

protect individual processor cores, we turn our attention to multi-cores and present

one checker-based and one patching-based runtime verification solution for these

architectures. In our concluding remarks we recap the state-of-the-art approaches

to microprocessor validation and outline future research thrusts that are crucial in

closing the verification gap and protecting both manufacturers and end-users from

the severe impacts of processor design bugs.



Chapter 6

RUNTIME VERIFICATION WITH

PATCHING AND HARDWARE CHECKERS

Abstract. With this chapter we begin our discussion of the functional correctness

solutions that can be pursued past the release of a new microprocessor design, when

the device is already shipped and installed in an end-customer’s system. Error detec-

tion at this stage of the processor’s life cycle entails monitoring its behavior dynam-

ically, by observing the internal state of the device with dedicated hardware compo-

nents residing on the silicon die. In addition to error detection, runtime validation

solutions, also called in-the-field solutions, must include an effective recovery and

error bypass algorithm, to ensure minimal performance loss and forward progress

of the system even in presence of bugs. To make the case for dynamic validation in

this chapter, we first discuss the type, criticality and number of escaped design er-

rors reported in several processors products. We then overview two major classes of

runtime solutions: checker-based approaches and patching-based ones: the main dif-

ference between these two techniques lies in the underlying error detection mecha-

nism. Checker-based solutions focus on verifying high-level system invariants, usu-

ally specified at design-time and then mapped to dedicated hardware components.

Patching techniques address bugs of which the manufacturer becomes aware after

product release and provide programmable means to describe these bugs so that the

system can later identify their occurrence at runtime. We then contrast these two

frameworks in terms of error coverage, usage flow and performance overhead, and

present in detail some of the most popular academic and industrial solutions known

today for each of the two classes.

6.1 Analysis of Escaped Errors in Commercial Processors

Despite impressive efforts by microprocessor manufacturers to build correct de-

signs, bugs do escape the verification process. This section examines escaped er-

rors reported by the respective design house for a number of AMD, Intel (x86

and ARM families), and IBM (PowerPC family) processors. We study errata re-

ports for several designs and classify each escaped bug based on its nature and
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hardware unit affected. The results of our analysis are plotted in Figure 6.1. The

data sources for the chart are from several Pentium and Celeron products [DDJ06,

Kon09, Int02a, Int02b, Int04, Int05], Athlon and Opteron processors [AMD05],

StrongARM-SA1100 [Int00], and PowerPC 750GX [IBM05]. The first observation

that can be made from the chart is that the control portion of the design is the source

of a fairly large fraction of escaped bugs. Below we discuss each of the categories

in our classification:

52%

5% 8%

16%

19%
Control

logic

Microcode
Functional units

Electrical faults

Memory system

Fig. 6.1 Classification of escaped bugs reported for a number of commercial processors. The
chart groups escaped bugs into five different classes and plots the relative incidence of each group.
Data sources for the analysis are from a number of x86 [DDJ06, Kon09, Int02a, Int02b, Int04,
Int05, AMD05], StrongARM-SA1100 [Int00], and PowerPC 750GX [IBM05] processors.

Processor’s control logic: These bugs are the result of incorrect decisions made

at the occurrence of important execution events and bad interactions between con-

current events. Usually they are caused by an unforeseen execution scenario and/or

incomplete or incorrect functional specification. An example of this type of escape

was reported for the Opteron processor, where a “REP MOVS” instruction was re-

ported to cause the following instruction to be occasionally bypassed [AMD05].

Functional units: These are design bugs in functional units that may lead to erro-

neous computation results. This category includes bugs in microarchitectural com-

ponents, such as branch predictors and translation look-aside buffers. A well known

example of this type of bugs was reported for the Pentium processor, where a lookup

table used to implement the division algorithm contained some incorrect entries.

This bug, also known as the “FDIV bug”, led the processor to compute incorrect

results when performing a division between specific pairs of input values [DDJ06].

Memory system control: These are bugs in the implementation of the processor’s

memory subsystem, which includes caches, memory interfaces and instruction pre-

fetching units. An example of this type of bug was reported for the Pentium III

processor, where in certain specific situations the interaction between the instruc-

tion fetch unit and the data cache unit through the main bus could cause the entire

system to hang [Int05].
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Microcode: These are bugs in the implementation of the microcode for particular

instructions. These bugs may be as well considered software bugs, since microcode

programs for individual instructions are implemented in software and uploaded to

dedicated memory units. As a result, once they are known, they may also be cor-

rected more easily than those in the previous categories, through what is called a

microcode update. An example of such bugs can be found in the 386 processor,

where the microcode responsible for checking the minimum size of the task state

segment, which must be 103 bytes long, incorrectly allowed segments of 101 and

102 bytes due to a flaw [Kon09].

Electrical faults: These are design errors occurring when certain logic paths do not

meet the specified timing requirement. Usually these paths are only activated under

exceptional and rare conditions, which had not been foreseen at design time, and

thus had not been checked. In addition, they can only be manifest if a processor is

operating at or close to its maximum frequency-voltage point, so that propagation

delays are stressing the timing requirements. An example of this problem occurred

in the StrongARM SA-1100 processor, where the load register signed byte (LDRSB)

instruction would fail when it was fetched from the pre-fetch buffer by not meeting

the required time constraint [Int00].

As it can be noted from the chart, control logic bugs dominate the errata reports

with a 52% incidence, at least in the systems that we studied. The high occurrence

of this type of escape bugs can be justified by considering the design complexity en-

tailed in developing these control logic blocks, which must handle the interactions

between multiple instructions. This complexity is responsible for making it impos-

sible to fully verify these modules with formal tools at design time. While these

units are thoroughly tested in simulation, frequently only a fraction of their wide

range of functional behaviors can be validated due to the short product development

timelines and the relatively slow simulation performance for RTL descriptions. As a

result, unforeseen corner case situation may remain unchecked. Other related stud-

ies on the sources of errors corroborate our findings, including the work by Van

Campenhout [CMH00]. This study reports that many design flaws are the result of

incorrectly implemented interactions between major processor components or an

unexpected combination of rarely occurring events.

A recent analysis of reported escaped bugs by Constantinides, et al. [CMA08]

indicates that the number of discovered escaped bugs is increasing with each new

generation of microprocessors. Assuming that the fraction of bugs discovered after

product release is proportional to the number of bugs that are indeed present in the

product and to the number of parts deployed in the field, this leads to the conjecture

that the number of bugs escaping into finished products is actually increasing. The

conjecture can be justified by the increased complexity, particularly in the control

logic, of newer processor designs.

Finally, the advent of multi-core architectures seems to negatively affect the over-

all landscape. Indeed the same study by Constantinides, et al. notes that the rate at

which new escaped bugs are discovered is three times larger for multi-core sys-
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tems than it was for even the most complex uniprocessor designs. An independent

analysis by DeOrio, et al. [DBB08], focusing on multi-core processors errata doc-

uments, reveals that 10% of the bugs in these architectures occur in the memory

subsystem. Thus, it seems that the most recent processor architectures are manifest-

ing a worsening of overall design quality, possibly due to new, complex memory

subsystems. The non-deterministic propagation delay in most memory subsystems

of modern multi-cores leads to non-unique, and sometime unpredictable, execution

outcomes. These are much harder to verify than the outcome of uniprocessor sys-

tems, for which there is only one correct result that can be easily corroborated by an

architectural simulator.

All of these studies clearly indicate the inability of pre-release verification so-

lution to produce a processor that is completely bug-free, and such inability is be-

coming sharper, as each new product generation is released with more and more

escaped bugs. It comes with no surprise then that many design houses are becom-

ing more and more interested in investigating runtime, or in-the-field, solutions for

functional correctness to address this pressing issue. As of today a few partial so-

lutions have been developed in the industry and are already deployed in available

microprocessors. More radical and encompassing techniques have been proposed

in academic settings and research labs and, in some cases, are being explored for

potential commercial deployment.

6.2 Classification of Runtime Verification Solutions

The runtime verification solutions available in industry or proposed by academia

can be grouped into two families: checker-based techniques, as the ones described in

[Aus00, MBS08, MS06, DBB07] and patching solutions such as those in [WBA08,

SNC+07, GC95, MP99]. The common trait of checker-based techniques is that error

detection is performed through a dedicated hardware component; this component is

responsible for monitoring the execution continuously at runtime to detect anoma-

lies or violations of invariants and triggering recovery when necessary.

DIVA [Aus00] is an example of one of the first checker-based solutions to ensure

correctness of execution for a single core processor. This framework augments a

uniprocessor’s complex pipeline with a very simple “checker core”; the checker

core validates all computation results of the complex core by recomputing the same

operations. If the simple core detects a mismatch, its results are assumed correct

and fed back to the complex core to recover from the error. A similar solution by

DeOrio, et al. [DBB07] strives to reduce the area overhead imposed by the DIVA

system by limiting the focus of the checker to only detect and correct the control

logic errors in the complex pipeline. In this solution, it is assumed that the datapath

of the core can be verified formally, since it consists only of the functional units,

and excludes all complex inter-instruction activity that is typically coordinated by

the control units along with many performance-enhancing units, such as branch

predictors, instruction pre-fetchers, etc. As a result, the formally verified datapath

can be relied upon for error recovery and correction, eliminating the need to dedicate

additional hardware for the correct computation of results.



6.2 Classification of Runtime Verification Solutions 133

A recent work by Meixner, et al. [MBS08], called Argus, proposes another

checker-based runtime verification solution for simple processor cores. This mech-

anism does not focus on functional bugs that escaped design-time verification, but

instead targets the protection from soft errors, electrical errors of short duration

that may occur when the silicon chip is hit by radiation. Soft errors are becom-

ing an increasing concern in the semiconductor industry because smaller, nanome-

ter scale, silicon transistors are more susceptible to them than previous technology

generations. Argus leverages compile time information about a program’s execution

flow that is embedded in the program’s binary code. During program execution, this

information is compared against signatures generated at runtime by checkers dis-

tributed throughout the core. When an error is detected through a signature mis-

match, Argus flushes the pipeline and re-executes the offending instruction.

Patching-based approaches, on the other hand, focus on providing programmable

mechanisms to allow a system to side step the occurrence of bugs at runtime. A re-

quirement of patching-based solutions is that bugs must be known by vendors and

encoded in the programmable framework in order to be avoided. Thus, processor

manufacturers are required to diagnose an escaped bug that they want to correct

to determine the system’s configurations that trigger it, and create and distribute

patches to sidestep those situations among all end-users. Two main techniques in

this domain have been developed in industrial settings and are deployed in a num-

ber of products. Both use software mechanisms to address functional errors:

Instruction patching. Instruction patching allows to bypass functional errors that

affect the implementation of individual instructions. In this technique, the assembly

source code of a software application must be inspected, and each occurrence of the

corrupted instruction must be replaced with other instructions, or short assembly

code sequences, to perform the same operation. By creating software programs that

do not use the corrupted instruction, the vendors prevent the functional bug hidden

in its implementation from being triggered. Note that this technique requires re-

compilation of every software application running on the system. Instruction patch-

ing was the initial work-around used to bypass the Pentium FDIV bug: Linux- and

Windows-based compilers were updated to generate code which would run a pre-

liminary test to determine if the underlying processor suffered from the error. If the

test indicated so, a floating-point divide emulation routine would be used instead of

FDIV instruction to avoid using the hardware divider [SE04]. A similar technique

was also used to port Windows NT to Alpha processors [BHS99]: a hardware bug

in the underflow exception mechanism of Alpha processors forced software devel-

opers to make the operating system step in and emulate the offending instructions

in software. A specific advantage of this approach was that it could operate in a

completely transparent fashion to the user – beside the requirement of installing an

operating system patch. Performance-wise, however, this approach does not seem

very promising. For example, the FDIV fix in the Microsoft Visual C++ compiler

may incur up to a 100% performance overhead on a flawed processor. Even on cor-

rectly working designs, the workaround may impose up to a 10% penalty [Mic09].
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Microcode patching. As the term suggests, microcode patching consists of mecha-

nisms to modify microcode instruction sequences in a system deployed in the field.

In this solution, microcode programs are stored in dedicated memory components

and can be updated by specialized software patches. Reportedly, both Intel and

AMD processors include this ability to update their microcode after deployment

in the field [GC95, MP99, Car90]. Microcode patches are loaded into a small on-die

buffer memory during system startup. This buffer memory is consulted first when

microcode routines are called in the pipeline’s decode stage, thus overriding existing

microcode. This technique can change the semantics of any individual instruction,

similarly to instruction patching; however, the main advantage of this solution is that

microcode substitution occurs internally in the pipeline, thus no modification of soft-

ware applications is necessary. The concept of patchable microcode is not new, as

many early computers, such as the Xerox Alto and DEC LSI-11, supported writable

micro-stores, allowing engineers to update the implementation of individual instruc-

tions at any time [BP80]. Related to microcode patching is also a firmware update

technique, which modifies BIOS and motherboard settings with the purpose of cor-

recting functional issues at the system-level. For example, adjusting the processor’s

voltage and frequency, or disabling certain performance features in the BIOS may

prevent the occurrence of certain bugs. One important aspect in development of mi-

crocode patching solutions is their security: indeed it is extremely important that

only the processor’s vendor has the ability to modify the design’s microcode; if it

was possible for a third party to accomplish the same goal, then systems would be

extremely vulnerable to security attack directly at the hardware level.

While these techniques have proven their value in commercial solutions, their

potentially high performance impact limits their viability in many situations. For in-

stance, in the case of the Pentium FDIV bug, all divide instructions had to be tested

to detect if they manifested the bug, and replaced by emulated routine if needed,

leading to significant slowdowns. Additionally, many control logic bugs cannot be

easily associated with a particular instruction, thus they cannot be avoided through

any of these solutions. For example, the Intel 486 processor included a bug that

manifested when a non-maskable interrupt occurred in the same cycle as a global

segment violation; in this situation the violation would not be detected [DDJ06].

Short of emulating every instruction, this bug could not be fixed with instruction

patches. Motivated by these limitations, researchers have started to propose solu-

tions that allow the processor’s control logic units to be patched directly, thus ad-

dressing non instruction-centric issues, such as interactions between operations or

between instructions and interrupts. These techniques are still very new and are still

at the research stage.

In the remainder of this chapter we discuss and compare a number of runtime

verification solutions: those by Austin [Aus00], DeOrio, et al. [DBB07], Meixner,

et al. [MBS08] and Sarangi, et al. [SNC+07]. We start by investigating DIVA –

one of the first dynamic verification approaches based on a complete functional

checker. We also examine the technique proposed by DeOrio, et al. [DBB07], which

leverages design-time formal verification to reduce the checker area, and compare it

against the DIVA solution. Next, we present Argus [MBS08], a solution for checker-
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based runtime verification of simple processor cores. The work of Sarangi, et al.

[SNC+07] is a patching-based approach proposing a distributed patching mecha-

nism and several error recovery and bypass schemes.

In the upcoming Chapter 7 we will continue our discussion of hardware patch-

ing solutions with the presentation of two additional techniques recently developed

by us: Field-Repairable Control Logic (FRCL) [WBA08] and Semantic Guardians

[WB07]. Finally, in Chapter 8 we shift our focus to runtime verification of multi-

core systems, in particular, to in-the-field validation of such communication invari-

ants as cache coherence and memory consistency. There we discuss a checker-based

solution developed by Meixner, et al. [MS06] and our own patching approach, called

Caspar [WB09]. Both are recent proposals to combat a growing number of memory

subsystem bugs and ensure correctness of execution in the context of multi-cores.

6.3 DIVA: Dynamic Verification of Microprocessors

The DIVA project [Aus00] by Austin constitutes one of the first runtime verification

solutions for microprocessor designs. Considered one of the key contributions in the

field of dynamic validation, the project introduced the term dynamic hardware ver-

ification and sparked interest for this field in many research environments, both in

industry and academia. The work makes a strong case for validation beyond tradi-

tional pre-release methods, because of the inability of design-time verification tools

to keep up with the growing complexity of processor architectures. It also argues

that any practical runtime technique must have very small area and performance im-

pacts in order to be viable in commercial solutions, which are very sensitive to cost

and user experience.

DIVA (Dynamic Implementation Verification Architecture) consists of a hard-

ware component, called the “checker core”, implementing a simple in-order proces-

sor pipeline, and deployed next to a complex uniprocessor core, whose function-

ality was not exhaustively validated at design time. Figure 6.2 shows a conceptual

schematic of a DIVA-augmented processor. The task of the checker core is to val-

idate the correctness of each of main core’s computations at runtime, by detecting

and correcting erroneous execution and allowing only error-free operations to retire.

When the checker core detects an error in the execution, it raises an exception and

replaces the incorrect value with an internally computed correct result. Instructions

that were in flight in the main core are then flushed, so that any effects of the erro-

neous computation are eliminated. The main core then restarts operation from the

last known-correct architectural state. The situation is somewhat similar to a mis-

prediction in a speculative branch operation: the main core in DIVA “predicts” that

all operations will complete without errors, while the checker verifies the prediction

before allowing an instruction to retire, and flushes the pipeline if a “misprediction”

occurs. To ensure forward progress in the pipeline and to detect deadlock errors, the

checker core also includes a watchdog timer. The timer is set to the maximum theo-

retical latency of any operation, and it is reset whenever an instruction is committed.
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Fig. 6.2 DIVA architecture. DIVA augments a complex uniprocessor pipeline (main core) with
a simple in-order processor (checker core). The checker verifies the correctness of each dynamic
instruction, allowing only error-free operations to retire. For each instruction, it checks that the cor-
rect input values were used and recomputes the instruction’s results. Note how error-free computa-
tion and correct inter-instruction communication are validated in concurrent stages of the checker
pipeline. If a mismatch is detected, the main core’s computation is discarded and the checker’s re-
sults are committed. The watchdog timer ensures forward progress and detects pipeline deadlocks.

6.3.1 Checker core operation

The checker core enforces several crucial invariants of program execution in modern

processors, that is, correctness of computation, control and communication, as well

as guarantee of forward progress. The watchdog timer enforces forward progress,

while the checker core enforces the other invariants by recomputing instructions’

results and verifying correctness of communication between operations.

For each instruction being executed, the main core supplies the checker with

source values and the result that it had computed. With this data, the checker re-

executes the instruction internally (stage Exec in Figure 6.2) and the outcome is

compared to the one provided by the main core (stage Cmpr). This activity of the

checker core allows to validate results of arithmetic operations, as well as target

address computations in control instructions. Note that the computation units in the

checker may be implemented differently than the main core’s arithmetic and logic

units. For instance, the ALU in the checker should be designed to minimize area and

maximize verifiability, since DIVA must rely on the functional correctness of this

unit. On the other hand, the ALUs in the main core should prioritize performance.

Communication-related errors may arise due to memory address miscalculations,

renaming logic faults, etc. To provide comprehensive protection against such errors,

the DIVA checker has access to the main core’s architected registers and memory

(stage Src read) and verifies that values used by the main core as instruction inputs

are indeed correct (stage Src check). These two checker stages operate concurrently

with the stages validating the computation, so that the overall checker pipeline is
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only two stages deep. Frequently, instructions executing in the main core may re-

ceive their input values via the bypass/forwarding network from preceding instruc-

tions. As it can be gathered from Figure 6.2, however, by the time an instruction

reaches the Src read stage, all preceding operations – with the exception of the one

in the Src check stage – have completed and committed their results to the proper

registers and/or memory locations. In the Src read stage, the checker core reads

the values from the specified input locations, which by now have been updated and

compares them with values used by the main core. Consequently, DIVA can validate

that any data forwarding and reordering that has occurred in the main core adheres

to the architectural communication model. For instructions depending directly on

values computed in the preceding instruction, DIVA relies on a simple bypass bus

from Src check to Src read. Finally, DIVA assumes that individual storage elements

in the core are protected by error-correcting codes (ECC), so that no errors may

occur while storing new values. If a communication error is discovered, the main

core is flushed and the instruction is re-executed: during the second execution the

main pipeline should retrieve the source values from architected storage, thus the

new result should be free of communication-related errors.

One of the critical aspects in the DIVA solution is the difference in performance

between the main core and the checker core. The former is optimized for perfor-

mance and it includes such features as register renaming, out-of-order execution,

branch prediction, etc. The checker core is designed for verifiability and minimal

area impact, thus it values simplicity over performance. However, the checker core

is capable of trailing the main core’s operation at the same speed because it can ben-

efit from all the results computed by the main core, and it simply validates them. It

would be possible to view the DIVA solution as comprising a simple processor (the

checker core) connected to an extremely complex and highly accurate speculative

unit (the main core), which provides the correct information (results, destination ad-

dresses and registers, etc.) most of the time. The DIVA checker effectively “rides in

the wake” of the main pipeline’s execution, observing the speculatively computed

values and control flow transitions produced by it. This creates a large amount of

instruction-level parallelism in the checker, drastically simplifying the complexity

of its circuitry. Consequently, the checker is amenable to formal verification ap-

proaches, which guarantee absence of functional bugs in that part of the design and,

by extension, correctness of operation of the entire device.

6.3.2 DIVA in action

We now illustrate the operation of a processor design equipped with a DIVA checker

through an example. Consider a system as the one shown in Figure 6.3.a: there are

five instructions currently in flight in the main core; three additional instructions

have completed their execution and are now in the checker core for validation.

For sake of the example, assume that instruction INST2 executed incorrectly. The

checker’s Cmpr stage detects the incorrect result and raises the pipeline flush signal
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Fig. 6.3 Example of DIVA operation. A complex uniprocessor core equipped with a DIVA
checker core is executing an instruction stream. a. Three instructions have completed execution
and are undergoing validation in the checker core before being committed. After the results for
INST2 are recomputed in the checker’s Exec stage, the Cmpr stage detects an error by comparison
with the original results, and triggers a pipeline flush to initiate recovery. b. INST2’s result has been
corrected and the instruction is committed. The pipeline is then restarted at INST3, so to guarantee
that the incorrect result generated by INST2 does not propagate to subsequent operations.

to initiate a recovery. At the time of the detection, instruction INST1 was already in

the commit stage, thus it has updated the architectural storage and it has completed.

Instruction INST2 will be corrected in the Cmpr stage and the correct result will

be used in the commit stage. Instruction INST3 and subsequent ones will restart

execution after the pipeline flush is completed, as shown in Figure 6.3.b. The re-

execution of all instructions following instruction INST2 is necessary so to prevent

the original invalid result from propagating to subsequent computations.
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6.3.3 Benefits and limitations

In addition to functional errors, the DIVA mechanism is also very effective against

transient faults (soft errors) that may occur in the main core. As mentioned in Sec-

tion 6.2 during the discussion of the Argus solution, latest generations of nanometer

scale transistors are increasingly susceptible to these issues, due to the smaller chan-

nel size. The incidence of radiation causing soft errors is uniform over the chip’s

surface, thus the large main core is much more prone to this type of errors than

the small checker core. As a result, DIVA’s ability to protect the main core from

errors of this nature, together with the protection provided by ECC-enhanced stor-

age elements, provides a fairly effective solution against computation errors due to

transient faults.

Note that DIVA can also be deployed for post-silicon validation support. In this

setting, the checker is used to detect errors while the system is running complex

testbenches in pre-release hardware prototypes. More interestingly, the checker core

is extremely valuable in providing a workaround for critical bugs detected in post-

silicon, allowing the validation process to continue without requiring a costly and

time-consuming design respin to fix the issue.

From the author’s evaluation in [Aus00], the performance impact of the checker

core on the overall system is minimal. In absence of errors, the throughput of the

system is mostly unchanged, since the checker core simply increases the system’s

latency. There is, however, an estimated 3% cycles-per-instruction (CPI) penalty

due to the access to registers and memory by the checker core in its Src read stage.

These accesses compete for the same resources as the main core’s accesses to reg-

ister file and memory. If additional read ports were available for the checker core’s

accesses the penalty would become negligible (0.03%). When errors are present,

the performance impact is directly related to the errors’ frequency of occurrence:

since each error triggers a pipeline flush, there is a performance cost in refilling the

system’s pipeline. For instance, with errors occurring every 1000 cycles, the perfor-

mance impact was measured to be approximately 2.6%, while if recovery had to be

performed for each instruction, the device could only operate at 7% of its original

speed while still producing functionally correct results.

The area impact of the checker core, on the other hand, can be an important

limitation of DIVA framework. This core must feature a functionally complete pro-

cessor and it is estimated to occupy approximately 10% of the total die area. This

issue has been addressed by DeOrio, et al. in [DBB07], who observed that that er-

rors in functional units have become relatively rare, while control logic bugs are

prevalent. This can be attributed to the fact that historically formal verification tools

have been used predominantly to verify functional units and datapath modules with

well defined behavior. In contrast, control logic blocks change radically from gen-

eration to generation of processors, and their complexity continues to increase as

designs implement always new and advanced technologies, such as multi-threading

and virtualization. Focusing on the higher benefit of protecting control logic, De-

Orio, et al. have suggested a runtime verification scheme with significantly lower
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area footprint than DIVA. The smaller area footprint is a direct benefit of a smaller

checker block, which trusts the correctness of the main core’s datapath.
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Fig. 6.4 Chico architecture for control logic bugs. A complex processor pipeline is augmented
with a checker block comprising a Check and a Commit stages, a golden register file and a watchdog
timer. Upon instruction commit, values are simultaneously updated on both the main core’s and
the golden register file. The Check stage verifies that register renaming and data forwarding in
the out-of-order core were performed correctly. When an error is detected, the pipeline is flushed
and the main core is reconfigured to a simple mode of operation, allowing only one instruction in
the pipeline at a time. Correctness of execution during error recovery is guaranteed because input
values are always retrieved from the register file. Normal operation may resume once the offending
instruction completes.

The authors of [DBB07] assume that the processor’s datapath has been formally

verified at design time, thus the computation results by the processor core are always

correct. Errors may still occur because of potential bugs hidden in the design’s con-

trol logic, which may cause incorrect input values to be sent to the execution units.

The solution proposed by DeOrio, et al., called Chico, augments the main core with

a checker block comprising a Check and a Commit stages responsible for validat-

ing the correctness of value propagation to and from execution units. In addition, the

checker core includes a dedicated golden register file and a watchdog timer as shown

in Figure 6.4. The golden register file is used to validate inter-instruction communi-

cation in the main core, and the watchdog timer guarantees forward progress as in

the DIVA solution.

When instructions are committed, values are updated in both register files simul-

taneously. Note that the main core’s register file is often designed specifically for

out-of-order execution and register renaming, thus contains several times more reg-

isters than are visible to the software. The golden register file, on the other hand,

only contains the architected registers, and, consequently, it is much smaller and
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simpler. Instructions are propagated through the pipeline together with their source

values, received either from the register file or from the forwarding network. In the

Check stage, these values are compared to those stored in the golden register file to

verify the correctness of renaming logic, data forwarding, etc. An error in the re-

naming logic or in the bypass network would manifest as a mismatch in the Check

stage of the Chico core, triggering the recovery process. When recovery is needed,

the processor’s pipeline is flushed and reconfigured to a simple mode where only

one instruction is allowed in the main core at a time. As a result, in this mode of

operation all control logic errors are circumvented, since input values are simply

retrieved from the register file and the formally verified datapath ensures that com-

putation executes correctly. After the failed instruction is re-executed, the processor

may resume normal operation until the next mismatch occurs or, as in DIVA, a

watchdog timer detects a pipeline deadlock.

Although conceptually similar to DIVA, the approach by DeOrio, et al. is differ-

ent in several key points. First, it has lower coverage, since only data communication

errors can be detected by the checker. Additionally, while the DIVA checker con-

tains the recovery mechanism in itself, Chico relies on existing processor units that

are amenable to formal verification, namely the datapath. By trading off a fraction of

the coverage while employing formal verification on a portion of the main core, the

authors were able to significantly reduce the area of the checker, making it an order

of magnitude smaller than the full fledged multi-stage checker pipeline in DIVA.

6.4 Runtime Verification of Simple Cores with Argus

As mentioned in Chapter 4, with the advent of multi-core architectures over the

past ten years, there has been a shift from extremely complex and deeply pipelined

uniprocessors chips to simpler and smaller cores to be deployed in several units on a

multi-core silicon die. In the 90’s, wide superscalar, out-of-order pipelines were the

staple of processor design; by the end of the decade, their excessive power density

ultimately had put an end to the “megahertz race” and had forced manufacturers

to investigate more energy efficient architectures. Today, the prevalent solution is a

processor with several relatively simple and efficient processing elements, commu-

nicating with each other via on-die interconnect. Multi-core designs have become

mainstream of the industry for a wide range of market segments: from supercom-

puters to handhelds and smartphones. Individual cores in these processors usually

have single-issue, in-order pipelines, approximately five to fifteen stages deep. The

requirements for effective dynamic verification of these architectures are then fairly

different than those of the complex out-of-order cores targeted by DIVA. Indeed, the

DIVA checker was in itself a simple pipeline re-executing the instructions completed

by a complex uniprocessor. In a multi-core environment, augmenting the individual

cores with a DIVA-style checker would be inefficient in terms of die area, power

and performance.
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A runtime verification solution optimized specifically for simple processor cores

was presented very recently in the work by Meixner, et al. [MBS08]. The frame-

work, called Argus, combines several dynamic verification techniques to provide a

comprehensive solution validating dataflow, control flow, computational correctness

and memory accesses in simple cores. A signature-based dynamic flow technique

proposed by the authors in their earlier work [MS07] is used to check data flow and

control flow. Computational correctness is checked by a set of distributed functional

checkers, which augment individual blocks of the execution engine in the proces-

sor. Finally, correctness of memory operations is verified with a novel address/data

hashing scheme, capable of detecting misdirected accesses, as well as data corrup-

tion. Note that the Argus solution focuses on error detection alone, and it does not

provide mechanisms for runtime error correction. Hence, to bypass detected errors,

must rely on instruction re-execution or emulation. As a result, Argus can provide

near-full protection against transient faults caused by SEUs and voltage fluctuations,

but it has limited potential to recover from functional design errors.

The basis of Argus’ error detection mechanism is a technique that establishes

equivalence between static data and control flow graphs and the dynamic flow of

the program being executed. To compute static flow graphs, Argus operates at com-

pile time, dividing the binary program into basic blocks, usually at granularity of

branch instructions, and generating signatures representing the flow within each

block. The dataflow graph consists of a set of source and sink nodes representing the

machine’s architectural state at the beginning and end of an instruction block, inter-

mediate nodes representing individual instructions and directed edges representing

data/control dependencies. The signature of an instruction within a flow is derived

by hashing the instruction’s ID and its source registers; it is then appended to the

instruction’s destination register. Through these registers signatures are propagated

and encapsulated to all instructions in the basic block. Final signatures for archi-

tectural state registers are concatenated together to form the block’s dataflow graph

signature (DGS). The DGS’s are embedded into the binary program either with spe-

cial instructions or by reclaiming unused bits in native instructions and will be used

at runtime for dynamic verification.

To conduct runtime verification, statically computed DGS’s are extracted from

the program’s binary and are compared to signatures dynamically generated at run-

time. To this end, each architectural register in the processor’s pipeline is augmented

with dedicated storage for signatures. Signature are propagated together with regis-

ter values through the pipeline, where they are updated dynamically by the execu-

tion units and memory interface modules, and then are written back to the dedicated

storage, as illustrated in Figure 6.5. Program counter and memory have also sig-

nature registers associated with them. The former allow to detect errors in control

flow transfer, i.e., when the program counter is incorrectly modified by a branch

instruction; the memory signature is handled slightly differently and ensures that

all operations are delivered correctly to the memory system. Note that Argus does

not track dataflow through individual memory locations, since this would require

prohibitively large amounts of overhead for signature storage. At the end of the exe-

cution of each basic block, the Argus checker compares the extracted compile-time
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signature with the one calculated dynamically, to verify the correctness of the exe-

cution flow. In addition to the current block’s DGS, Argus piggybacks the signatures

of the block’s legal successors to the program binary. Therefore, transitions between

blocks due to data dependent branches and jumps can also be verified dynamically.

In addition, Argus checks the actual computation of individual instructions with

distributed checkers, shadowing the processor’s main functional units. These check-

ers are specifically designed to perform simple and fast validation of the main blocks

by re-computing only a subset of bits of the result. The number of bits computed

by the checkers can be selected by the designer, allowing to trade off error coverage

for checker’s area and performance. Issues such as data corruption and misdirected

accesses are monitored through parity codes and a dedicated address/data multiplex-

ing technique. In this technique, for each store access, the physical address of the

location is xor-ed with the data and written to memory along with the parity bit of

the data. On a read, the physical address computed by the load instruction is xor-ed

with the loaded value and parity is checked, to detect bit flips and other memory

subsystem errors. Finally, to provide the ability to detect potential deadlocks, Argus

augments the design with a watchdog timer guaranteeing that the pipeline is not

stalled for longer than the programmed number of cycles.
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Experimental results demonstrate that Argus detects as much as 98% of un-

masked transient and permanent faults injected into the gate-level implementation

of an OpenRISC 1200 processor core. A fraction of the masked faults, i.e., errors

that do not compromise the correctness of execution, was also detected by Argus;

more importantly, the framework never produced a false positive. The authors es-

timate the area penalty of the approach to be approximately 10%. Recall that the

main core in this study was significantly smaller and less complex than the out-of-

order core targeted by DIVA, thus maintaining a small area profile was a much more

challenging task in this project. Overall, Argus provides excellent protection from

transient faults, detection of permanent faults and a flexible tradeoff of error de-

tection coverage vs. design area/performance. While the Argus framework in itself

does not provide a recovery mechanism beside program re-execution, the solution

could be augmented with formally verified rollback and recovery hardware, such as

the solutions discussed in Chapter 7, to provide a general and efficient solution for

functional runtime verification.

6.5 Hardware Patching Approaches for Runtime Verification

As mentioned in Section 6.2, hardware patching solutions present an alternative

to checker-based techniques in ensuring correctness of processor operation at run-

time. Indeed, patching approaches rely on a pool of on-die programmable moni-

tors, which continuously observe the internal state of the design, in contrast with

checkers solutions employing re-computation and verification of global invariants.

In a patching framework, a hardware error must first be detected and reported to

the manufacturer. Here, in turn, the support team investigates the issue, diagnoses

the triggering conditions of the bug and encodes it into a patch. The patch is then

distributed to end-users and uploaded to the on-die programmable monitors at sys-

tem startup. At runtime, when an internal configuration of the processor matches

the scenario described in the patch, a recovery mechanism is initiated to bypass a

potential occurrence of the error. Compared to checker-based solutions, patching

techniques usually incur significantly smaller area and performance overheads in

absence of bugs; on the other hand, they provide protection only for known and de-

bugged issues. As discussed earlier, patching has been traditionally applied at the

instruction or micro-operation level in practical industry solutions (see instruction

and microcode patching in Section 6.2). Yet, these industry-deployed approaches

are not all-powerful: they miss a large portion of subtle processor bugs, particu-

larly ones related to interaction between instructions at runtime. Moreover, patching

may occasionally may cause severe performance loss. To address the growing need

for more efficient and rigorous solutions, researchers have proposed patching tech-

niques that operate on a level lower than microcode, and, therefore, allow for a more

precise identification of errors. One such technique was developed concurrently by

a group of researchers at the University of Illinois – Urbana-Champaign and at the

University of California – San Diego [SNC+07].
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Fig. 6.6 Architecture for runtime hardware patching The processor die is partitioned into
“neighborhoods”, each containing a condition detector and an error detector unit. Condition de-
tectors tap into wires within a neighborhood and monitor them at runtime for specific, pre-
programmed conditions. Error detector blocks are responsible for identifying if an observed se-
quence of events leads to an erroneous state of the system and recovery is required. Erroneous states
spanning multiple neighborhoods can be detected with the support of a programmable communi-
cation network, linking all detectors on the processor die together. Possible recovery mechanisms
include pipeline flushing and re-execution (with or without checkpointing), instruction stream edit-
ing and hypervisor-based recovery.

In this solution, the authors recommend the use of a field-programmable on-die

error detection network, consisting of multiple condition detectors tapping into sig-

nals within a region (called a “neighborhood”) of a processor die. A neighborhood

in this case may include the processor core and other on-die peripheral controllers.

During runtime execution, these detectors observe the values of the tapped signals

and match them against pre-programmed conditions. In an event that a condition,

such as a specific state transition or signal value change, is encountered, the condi-

tion detector alerts the corresponding error detector, which is pre-loaded with error

fingerprints. In the framework of [SNC+07], each fingerprint consists of a set of

events and time intervals between them to describe a hardware bug. Thus, at run-

time, error detectors keep track of encountered conditions and their time stamps,

and compare them to error fingerprints in the patch. Note that several error detec-

tors, each observing a small block in the design, can operate in parallel, ensuring

simultaneous identification and avoidance of multiple hardware bugs. Moreover,

the authors discuss the possibility of interconnecting detectors in different regions

of the processor via a dedicated network to allow for efficient diagnosis of the most
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complex processor errors (see Figure 6.6). Once all conditions and time intervals of

a bug are matched, detectors alert the processor recovery unit, which can be config-

ured to invoke one or several of the circumvention mechanisms discussed below.

Flush and replay. This technique attempts to bypass hardware errors by squash-

ing all operations in flight and restarting execution from the first not-yet-committed

instruction. Note that flushing the pipeline alleviates pressure on the execution en-

gine, retirement logic and other units of the CPU: this by itself may be sufficient

to avoid an error. However, if flushing alone is incapable of bypassing the bug, the

recovery unit may modify the instruction issue timing or the interleaving of opera-

tions by controlling the pipeline’s fetch stage (see instruction stream editing. This

recovery scheme is somewhat similar to the degraded mode of operation of our field-

repairable logic solution described in Chapter 7. However, unlike that approach, the

replay technique here is not formally verified to provide reliable error bypass, rather

it attempts to circumvent the error probabilistically. If the issue is not resolved dur-

ing replay, a more sophisticated recovery method is invoked at the next detection.

Instruction stream editing attempts to bypass errors by dynamically altering the

stream of operations executed by the pipeline when a bug is detected. To this end,

noop instructions can be inserted into the fetched stream to modify the interleaving

between conflicting operations. Note that the operation stream is edited only when

a conflict leading to an error is detected. Therefore, this technique avoids the un-

necessary overheads of microcode patching, which replaces each occurrence of an

instruction with an altered micro-operation stream, regardless of conflicts.

Replay with checkpointing is an extension of the flush and replay method that can

be useful in situations where the architectural state of the machine is corrupted by an

erroneous activity. For example, an improperly issued store instruction may modify

the state of the caches in a multi-core machine; this must be properly restored before

recovery through flush and replay commences. To enable this solution, the authors

propose to augment the design with a checkpointing framework such as SafetyNet

[SMHW02] or ReViveI/O [NMGT06]. We will overview checkpointing techniques

in Chapter 8 in the context of runtime validation of multi-core processors. Note that,

in order to make this recovery option available in a system, the checkpointing mech-

anism has to actively running at all times. This may incur additional costs in silicon

area and performance, even when no error is present.

Hypervisor-based recovery is a more sophisticated error bypass scheme, compared

to the ones discussed so far, because it builds on a recent trend towards virtualization

technology. Hypervisors [PG74, BDF+03, McG07], or virtual machine monitors,

are low-level software systems that can execute directly on the computer hardware;

they provide an API so that guest operating systems and applications may access

the hardware. In other words, hypervisors take the place of the main operating sys-

tem and serve as “drivers” for the processor, memory and peripherals that programs

use to execute on the machine. Note, however, that virtual machine monitors do not
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generally emulate execution, but instead serve applications’ requests for hardware

management in a broad sense. In a system supporting virtualization technology,

when an error detector matches an error fingerprint, a hypervisor can be invoked to

bypass the issue. Depending on the designer choice, the hypervisor may provide the

required service through controlled rollback, hardware-reconfiguration, emulation

of a portion of the program, or other situation-specific solutions.

After investigating bugs reported in errata of various commercial processors,

Sarangi, et al. claim that the majority of those issues can be corrected at runtime

with their patching solution, with a negligible overhead due to wire-tapping and

fingerprint storage. The authors also suggest that performance deterioration due to

increased wire load and the need to conduct multi-cycle fingerprint matching is mi-

nor, and can be recovered with additional design-time circuit optimizations. Another

important step, that must be taken during the design process to enable this solution,

is the selection of wires to be monitored in the processor, a crucial aspect for pre-

cise and efficient error identification. This selection, however, must be completed

before any errors in the product are identified. As a result designers are forced to

reason about the importance of various internal signals and weigh the benefits and

drawbacks of monitoring them. To support this process, the authors suggest the use

of an algorithm that can automatically select signals based on past error history and

processor layout [STT06].

An alternative approach for providing runtime functional error detection through

patching was proposed very recently by Constantinides, et al. [CMA08]. Instead of

selecting specific signals to monitor, as in [SNC+07], this work provides a novel

framework where every storage element in the design is monitored. To this end, all

standard flip-flops in the system are extended with additional latches to store condi-

tion patterns and with combinational logic to perform the matching. The matching

flip-flops are divided into segments, based on their physical location on the proces-

sor die. All those belonging to a same segment are then tied together with or gates to

provide a segment-wide matcher. These segment-wide matchers are then connected

through a tree-like network to the central unit, which is responsible for initiating

recovery and bypass when an error is detected. Note that in this case every element

of the processor’s state is monitored, thus, the coverage of the design’s internal state

in this framework is greatly increased and engineers do not need to pre-select which

signals to observe at design time. For comparison, in the work of Sarangi, et al. 270

of the Pentium 4’s internal signals are observed, while in [CMA08] 39,000 flip-flops

in OpenSPARC T1 were monitored. However, the area overhead of the solutions

grows correspondingly, surpassing 15% of the OpenSPARC T1 processor die. Fur-

thermore, the sizes of individual error signatures and patches to be distributed to cus-

tomers are also larger. Nevertheless, the approach developed by Constantinides still

holds much potential for systems where reliability and correctness are paramount,

e.g., aero-space and military applications. It may also become viable for consumer

microprocessors-based systems in the future, as transistors shrink and silicon real

estate becomes less expensive.
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In the next chapter we overview in detail another patching solution that pre-

dates [SNC+07]. In developing that approach, called field-repairable control logic

(FRCL), we relied on the observation of the internal processor state and on a com-

parison with pre-loaded bug patterns. Unlike the technique of Constantinides, we

deem the area overhead of the solution to be a crucial factor, and thus limit state

monitoring to a few crucial control logic signals to minimize silicon cost. The

matcher in our technique is monolithic, as opposed to the distributed and networked

error detector units in both frameworks described in this section. In our experimen-

tal evaluation we found that, even in fast, out-of-order pipelines, the propagation

delay through the undivided matcher does not exceed the critical path delay of the

main core, allowing us to forgo a tree- or network-based interconnect. The matcher

in our work is optimized specifically for the detection of pipeline control errors: the

dominant type of processor bug as shown in Section 6.1. In addition, we describe

a novel recovery mechanism: a formally verified, reliable mode of pipeline opera-

tion that allows us to safely bypass control logic bugs and ensure forward progress.

Finally, we analyze an extension of FRCL for hardware-security assurance applica-

tions, called a semantic guardian. Unlike patching solutions, which can only protect

from known and diagnosed errors, the semantic guardian framework ensures cor-

rectness of operation even against hidden, unknown bugs. Combined with FRCL

programmable matchers, semantic guardians enable a flexible and versatile protec-

tion from a variety of design errors in modern complex microprocessors.

6.6 Conclusions

Despite the best effort of pre-silicon verification and post-silicon validation, bugs

still slip into commercial hardware, leading to a wide range of potential problems,

from security holes in the end-user systems to safety issues, and to substantial fi-

nancial impacts on vendor companies. As indicated by the analysis in this chapter,

the majority of these escaped bugs occur in the control logic blocks of modern mi-

croprocessors and can be attributed to the extreme complexity of these modules.

To cope with the growing problem of escaped bugs, vendors traditionally relied on

system-level patching solutions, which modify the software, BIOS or microcode

executed by the processor to bypass hardware errors. Unfortunately, these tech-

niques often incur a significant performance overhead and cannot be used to fix all

control logic bugs. Therefore, researchers have recently proposed alternative solu-

tions for runtime verification, based on hardware checkers and patching. One of the

most prominent of the former group is DIVA, which augments a complex processor

pipeline with a simpler processor core to re-execute all operations and dynamically

verify the correctness of both control logic and datapath. In this chapter we also

overviewed two other checker-based solutions, one targeting the correctness of just

the control logic portion of a processor (DeOrio, et al.) and the other focusing on

the runtime validation of simple processor cores (Argus). We noted, however, that

all hardware-checker based solutions incur a fairly high area overhead due to the
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necessary inclusion of one or more checker modules. In contrast, hardware patching

solutions also discussed in this chapter have lower area penalty and, therefore, are

more likely to be adopted by the industry in the near future. In the next chapter we

discuss hardware patching with the field-repairable control logic (FRCL), analyze

its performance and area impact o this approach, and suggest how this technique

can be extended to protect even against unknown escaped errors.
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Chapter 7

HARDWARE PATCHING WITH

FIELD-REPAIRABLE CONTROL LOGIC

Abstract. This chapter describes in detail field-repairable control logic (FRCL), a

solution that we recently developed [WBA06]. FRCL is a patching-based runtime

verification technique that relies on an on-die programmable matcher. The matcher

compares the state of the processor to patterns describing known bugs. In particular,

FRCL targets control bugs in microprocessor cores, which, as our analysis in Sec-

tion 6.1 shows, dominate the landscape of escaped errors in commercial products.

To detect such control bugs, the matcher is engineered to monitor multiple critical

signals in a core’s control logic block. The patterns stored in the matcher are devel-

oped by the manufacturer after an escaped error is detected and diagnosed; patterns

are then distributed to end-users via patches, such as BIOS updates. When a buggy

situation is detected, the matcher recovers from it with a pipeline flush and invokes a

degraded mode of operation. In this mode, the complexity of the processor is greatly

reduced, sacrificing some performance features, but allowing to formally prove the

complete functional correctness of the system. Once the buggy situation is bypassed,

the processor resumes normal high-performance operation. We analyze different as-

pects of FRCL operation and describe a methodology for automatic selection of sig-

nals to be monitored by the matcher. Finally, we extend the field-repairable control

logic framework with semantic guardians - hardware circuits encoding all control

states of the design that have been verified prior to its release. With the help of the

guardians the processor can be guaranteed to always operate in a verified state (in

either normal or degraded mode), thus enabling trusted computation.

7.1 Introduction

Once a system is verified to a satisfactory level during its development, a design

house will ramp up its production and start distributing it to customers. Unfortu-

nately, due to shrinking development timelines and rapidly increasing complexity

of modern processors, released designs are never fully and exhaustively verified

and often contain subtle errors. These escaped bugs are eventually identified when

151

DOI 10.1007/978-1-4419-8034-2_7, © Springer Science+Business Media, LLC 2011 

I. Wagner and V. Bertacco, Post-Silicon and Runtime Verification for Modern Processors,



152 7 HARDWARE PATCHING WITH FIELD-REPAIRABLE CONTROL LOGIC

the system is already deployed in the field and cannot be easily corrected by the

manufacturer, since they require modification of the actual silicon die. Recogniz-

ing the inevitability of such errors and the need to efficiently fix them without a

costly product recall, researchers in recent years started to develop hardware patch-

ing solutions. Our analysis in Section 6.1 demonstrates that the majority of such

escaped errors occur in the control logic portion of the design, which traditionally

has been the hardest to verify. To enable efficient in-the-field patching of a pro-

cessor’s control logic, this chapter presents a low-cost and expressive mechanism,

called field-repairable control logic (FRCL), originally presented in [WBA06] and

later extended in [WBA08]. In this framework, when an escaped bug is exposed in

the field, the support team investigates it and generates a pattern describing the con-

trol state of the processor that triggers the occurrence of the bug. The pattern is then

sent to end customers as a patch and is loaded into an on-die state matcher at system

startup. The matcher constantly monitors the state of the processor and compares it

to the stored patterns to identify when the pipeline has entered a state associated

with a bug. Once the matcher has determined that the processor is in a flawed con-

trol state, the pipeline is flushed and forced into a degraded mode of operation for

the execution of the subsequent instruction.

In degraded mode, the processor starts execution from the first uncommitted in-

struction and allows only one operation to traverse the pipeline at a time. Therefore,

much of the control logic that handles interactions between operations can be turned

off. The resulting system is greatly simplified, enabling a complete formal verifica-

tion of the degraded mode at design time. In other words, we can guarantee that

instructions running in this mode complete properly, and thus can ensure forward

progress, even in the presence of design errors, by simply forcing the pipeline to

run in degraded mode. After the error is bypassed in degraded mode, the processor

returns to high-performance mode until the matcher finds another flawed control

state. In designing the state matcher, we have devoted special attention to creating a

system that can detect multiple design errors with minimal false positive triggering.

In addition, for situations where the number of patterns of design errors exceeds the

capacity of a given matcher, we developed a novel compression algorithm that com-

pacts the erroneous state patterns while minimizing the number of false positives

introduced by this process.

In Section 7.4 we extend the ideas of the field-repairable control logic technology

further, presenting a solution that provides protection even from unknown escaped

bugs in deployed systems. Instead of requiring a vendor company to identify an

escaped bug before we can repair it, we simply assume now that any configuration

that was not verified at design time is potentially a buggy configuration. Thus, in our

semantic guardian solution, we protect a system against all those configurations that

were not verified at design time. We will show in Section 7.5.6 that we can indeed

deliver such protection at minimal performance costs, since, even if the unverified

portion of a design is extensive, unverified configurations tend to occur rarely at run-

time. Moreover, we discuss how we can match a large set of unverified configuration

with little area overhead.
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7.2 Field-Repairable Control Logic Overview

This section presents the use flow and the process for correcting escaped bugs for

a design incorporating field-repairable control logic (FRCL) technology. We also

show the structure of the state matcher circuit and present a pattern compression

algorithm for cases when the number of patterns exceeds the size of the matcher.

Finally, we analyze an example of an actual bug that is repaired using our approach.

Design and verification

Tapeout release

1. Bug report sent to 

support team

2. Analysis & bug 

pattern development

3. Patch released

Processor 
without a patch

Design houseCustomer

Processor 
with a patch

Escaped bug found

Fig. 7.1 Field-repairable control logic use flow. After a component is shipped to customers and
a new bug is exposed in the field, a report detailing the bug is sent to the support team. The error is
analyzed and patterns representing the control states associated with the bug are issued as a patch.
On every startup, the processor loads the patterns into the state matcher and, if a bug is encountered
at runtime, it is bypassed through the reliable degraded mode.

Field-repairable control logic is designed to handle flaws in processor control

circuitry for components already deployed in the field. The flow of operation that

we envision for this approach is summarized in Figure 7.1 . When an escaped error

is detected by end customers, a report containing the error description, such as the
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sequence of executed operations and the values in the status registers, is sent to the

design house. Engineers on the product support team investigate the issue, identify

the root cause of the error and which products are affected by it, and decide on a

mechanism to correct the bug. As was mentioned in previous chapters, instruction

or microcode patching are valid approaches; however, they can have a very high

performance overhead or be too costly. We propose that engineers use instead our

solution, field-repairable control logic. By knowing the cause of the bug and which

signals are monitored by the matcher in defective processors, the engineering team

can create patterns that describe the flawed control state configuration leading to the

bug. The patterns then can be compressed using the algorithm presented in Section

7.2.3, and sent to customers as a patch. Patches are loaded into the state matcher,

which is a part of the system, at startup. Every time the patched error is encountered

at runtime, a recovery is initiated via degraded mode, as detailed in Section 7.2.4,

effectively fixing the bug. From a user standpoint this process is very similar to

that of patching software applications: errors discovered in the field are eliminated

through software patches sent to the customer base. These patches modify the soft-

ware application to fix the bug. Likewise, in field-repairable control logic, hardware

bugs can be fixed after product release via software patches sent to customers.

7.2.1 Pattern Generation

Patterns to address a design error can be created from the state transition graph

(STG) of a device. The correct STG consists of all the legal states of operation,

where each state is a specific configuration of internal signals, that are crucial to the

proper operation of the device. In addition, these states are connected by all the legal

transitions between them. Within this framework an error may occur because of an

additional erroneous transition from a legal state to an illegal state that should not

be part of the STG, or when an invalid transition connects two legal states, or by the

lack of a transition that should exist between states (Figure 7.2). In our solution we

add hardware support that relies on patterns to detect both illegal states and legal

states that are sources of illegal transitions. A pattern is a bit-vector representing the

state configuration of the internal signals associated with erroneous behavior of the

processor. Note that in this framework a single bug may be represented by multiple

patterns if it is caused, for example, by multiple illegal states. To limit the number of

patterns required to represent a bug or a set of bugs, we incorporated a novel pattern

compression algorithm, presented in Section 7.2.3, into our technology. In a real-

world scenario, after receiving a bug report, a product support team would analyze

the issue, try to reproduce the error in-house and identify its root cause. Tools such

as trace minimizers can be very helpful for this analysis, since they can significantly

shorten a trace that leads to a bug, thus simplifying the task of reproducing the

problem. Moreover, some of these tools, for example Butramin [CBM05], have the

ability to investigate alternative simulation scenarios that reach the same bug. This

allows the support team to pinpoint multiple processor control states associated with
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the bug and identify how these states map to the critical signals monitored by the

matcher at runtime. Afterwards, the configurations of the critical control signals

leading to the bug are compactly encoded and issued as a patch to end customers.

This process is repeated when new design errors or new scenarios exposing known

bugs are discovered.

S2a. S1

S0

S3

S4

Sx

S2S1

S0

S3

S4

Sx

b.

S2S1

S0

S3

S4

Sx

c.
S2S1

S0

S3

S4

Sx

d.

Fig. 7.2 Representing an error through a state transition graph (STG). a. Correct STG of a
device. (Sx is an unreachable illegal state). b. Erroneous STG including a transition to an illegal
state Sx c. Erroneous STG including an illegal transition between legal states S3 and S2 d. Erroneous
STG lacking a legal transition, S1 → S3.

7.2.2 Matching Flawed Configurations

As mentioned above, design errors and patterns describing them in our framework

are defined through configurations of control signals of the processor and transitions

between these configurations. At runtime these signals are continuously observed

by a state matcher and compared to pre-loaded patterns describing bugs. Therefore,

only bugs that manifest via these critical signals can be detected by the matcher.

Ideally, all of a design’s control signals could be used for this purpose; however,

complexity and stringent timing constraints of modern devices prevent such exten-

sive monitoring, allowing only for a small portion of the actual control state to be

routed to the matcher. In Section 7.3.3 we present techniques to select these critical

state bits among the prohibitively large control state of a microprocessor.

The state matcher can be thought of as a fully-associative cache with the width

of the tag being equal to the width of the critical control state vector, which in our
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Fig. 7.3 State matcher structure. The critical control state vector is first compared against the
fixed bits of a bug pattern. Then the don’t care bits in the pattern are overlayed, and the result is
reduced to a single match bit. The state matcher comprises multiple independent entries to allow
for multiple simultaneous comparisons against many patterns.

experiments was just several tens of bits long. The tag in this case is the pattern de-

scribing an erroneous configuration, thus if the control state vector matches any tag

in the cache, then a hit occurs and a potential bug situation is recognized. In order

to reduce the storage space in the matcher we structured it to allow the use of don’t

care bits in the patterns to be matched. The don’t care bits enable compact represen-

tations of multiple individual patterns of the critical control state that differ in just

a few bit positions. Using our state matcher, designers issuing a patch can specify

a bug pattern through a vector of 0’s, 1’s and don’t care bits (x): 0’s and 1’s repre-

sent the fixed value bits, while x’s can match any value in the corresponding control

vector position. Note, however, that the control state monitored by the matcher at

runtime contains only fixed bit values 0 and 1. Figure 7.7 shows several examples

of bug patterns loaded into a four-entry state matcher.

We also anticipate that a single patch may consist of multiple patterns, since a

single bug may be associated with several erroneous configurations, as mentioned

above, or the design may contain multiple unrelated bugs. To handle this situation

the state matcher we developed includes multiple independent entries, as shown

in Figure 7.3. On startup, each of the matcher’s entries is loaded with an individual

pattern containing fixed bits and don’t cares. At runtime the matcher simultaneously

compares the actual critical control bit values to all of the valid entries and asserts

the “Match” signal if at least one entry matches the control state vector. The number

of entries in a matcher has to be established at design time and it is one of the

engineering design tradeoffs. A larger matcher can be loaded with more patterns,

however, it occupies a larger area on the die and has a longer propagation delay. A

smaller matcher, on the other hand, might not be able to contain all of the patterns

and compression may be needed.
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7.2.3 Pattern Compression Algorithm

The pattern compression algorithm that we developed is inspired by classic two-

level logic minimization techniques, as described in [McC56]. Our algorithm com-

presses a number k of patterns into a state matcher with r-entries, where k > r. This

process, however, often over-approximates the bug pattern and introduces false pos-

itives, i.e., error-free configurations that will be mis-classified as buggy, and incur

some performance impact. Nevertheless, this compression may be necessary to fit

several patching patterns into an available state matcher of smaller size.

To map k patterns into an r-entry matcher, the algorithm first builds a proxim-

ity graph. The graph is a clique with k vertices, once for each of the k patterns,

and weighted edges connecting the vertices. The weights on the edges are assigned

using a variant of the Hamming distance metric. Specifically, we use an additive

metric, whereby corresponding bits are compared one to one, and each 0− 1 pair

contributes 1 to the weight, while each 1− x or 0− x pair contributes 0.5 to the

weight. Matching pairs (0− 0, 1− 1, and x − x) do not contribute to the weight.

As an example, consider the two patterns 101xx1 and 1001x1 shown in left part of

Figure 7.4. The two leftmost and two rightmost bits of the patterns are identical,

thus they contribute 0 to the weight. Bit 3 of the patterns, on the other hand, form

a 0−1 pair, contributing 1 to the weight, while bit 4 form a x−1 pair, leading to a

total weight of 1.5 on the edge connecting these patterns. The reasoning behind this

weighing structure is fairly straightforward: if we were to compact the two patterns

connected by an edge, we would have to replace every discording pair (0−1, x−0,

and x− 1), with an x, basically creating a minimum common pattern that contains

both the original ones. Matching pairs, however, would retain the values they had

in the original patterns. For instance, for the two patterns 101xx1 and 1001x1 men-

tioned above, the common pattern is 10xxx1, since we have two discording pairs in

the third and fourth bit positions. With this algorithm, each 0−1 pair contributes the

same degree of approximation in the resulting entry generated. However, pairs such

as 1−x or 0−x, will only have an approximating impact on one of the patterns (the

one with the 0 or 1), leaving the other unaffected, hence the corresponding weight

is halved.

An exception to the above metric is a case when one pattern is a subset of an-

other pattern. This is possible, because we allow patterns to have don’t care bits,

essentially representing both 0 and 1 values. In our framework we set the distance

between such proximity graph vertices to −1, guaranteeing that these vertex pairs

will be chosen first for compression, and the more specific pattern eliminated from

the graph.

Once the proximity graph is built, the two patterns connected by the minimum-

weight edge are merged together. If r ≤ k, the compression is completed, otherwise

the graph is updated using the compressed pattern just generated, instead of the two

original ones, and the process is repeated until we are left with a number of patterns

that fits in the matcher.

An example of pattern compression is provided in Figure 7.4. Here, for simplic-

ity, we assume that the matcher can only fit two pattern entries and initially there are
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Fig. 7.4 Pattern compression example. Four bug patterns are compressed to fit into a two-entry
matcher. A complete graph of the initial four patterns is generated and edges are labeled with
our Hamming distance variant metric. The first compression step combines two of the closest (in
terms of distance) patterns 101xx1 and 1001x1. The resultant pattern 10xxx1 has fixed bits in every
position where original patterns were identical and don’t care bits (x) in all other positions. In
the second step, edge weights from the newly generated pattern (shown in a dark gray oval) are
recomputed, and then pattern 100001 is eliminated, since it is contained in the pattern 10xxx1, as
the -1 label indicates. The final set of patterns is shown in the bottom part of the figure.

four bug patterns. After the proximity graph is initially built and edges are labeled,

the algorithm selects the edge with the smallest distance (D = 1.5) and merges pat-

terns 101xx1 and 1001x1 connected by it. As discussed above, the resulting pattern

is 10xxx1. When the edge weights are updated after this first step, the graph includes

three vertices and it is still too large for the matcher. Note, however, that the newly

added pattern (10xxx1), contains pattern 100001, thus the edge between them is la-

beled with distance −1. When the algorithm searches for the edge with the smallest

weight for the second compression iteration, this edge is selected and vertex 100001

is eliminated. Compression then terminates, since the resulting set of patterns fit into

a two-entry matcher.

Figure 7.5 shows a pseudo-code for the pattern compression algorithm just de-

scribed. Lines 2 to 8 generate the initial proximity graph by computing the weights

of all the edges either by detecting that vertex i contains vertex j (Contains function)

or computing our Hamming distance variant using the algorithm presented earlier

(Compute Distance function). Lines 10 to 13 select the pair to merge, remove one

pattern from the set and update the graph. The procedure is repeated until we reach

the desired number of patterns. Function Merge in line 11, generates a pattern that is

the minimum over-approximation of the two input patterns. The function first must

check for containment, in which case it returns the container pattern. Otherwise,
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1 Pattern Compress()

2 Graph G

3 Foreach Pattern i in G

4 Foreach Pattern j != i in G

5 If Contains(i, j)

6 Weight(i, j) = -1

7 Else

8 Weight(i, j) = Compute Distance (i, j)

9 While (Num Patterns > Matcher Entries)

10 (i, j) = Find Minimum Weight Edge (G)

11 Pattern i = Merge(Pattern i, Pattern j)

12 Delete Pattern j

13 Update_Edge_Weights (G)

14 Num Patterns--

Fig. 7.5 Pattern compression algorithm. Initially, a proximity graph for all bug patterns is gen-
erated and edge weights are computed in lines 2-8. The two closest patterns are merged and the
graph is updated in lines 10-13. The cycle is repeated until the set of patterns can fit into the fixed
size matcher.

it computes the merged pattern by substituting an x bit for each non-matching bit

pair. It is worth noting that the performance of the algorithm described could be

optimized in several ways, for instance by eliminating all edges with D = −1 in the

graph at once.

As mentioned earlier, the compression algorithm generates a set of patterns that

over-approximates the number of erroneous configurations. The resulting set of pat-

terns is still be capable of flagging all the erroneous configurations, however, it

will also flag additional correct configurations that have been included by the merg-

ing function (false positives). The impact on the overall system will not be one

of correctness, but one of performance, particularly if the occurrence of the ad-

ditional critical control configurations is frequent during a typical execution. We

measure the amount of approximation in the matcher’s detection ability as its speci-

ficity. The specificity is the probability that a state matcher will not flag a cor-

rect control state configuration as erroneous. Specificity can also be thought of as

1− f alse positive rate. Hence when there is no approximation, the matcher has an

ideal specificity of 1; increasing over-approximation produces decreasing specificity

values. It is important to note that by virtue of our design and the pattern compres-

sion algorithm, our system never produces a false negative, that is, it never fails to

identify any of the bug states observable through the selected critical control signals.
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Fig. 7.6 Field-repairable control logic (FRCL) in operation. a. The state matcher detects the
occurrence at runtime of a control state associated with a bug described in a pre-loaded pattern.
b. The pipeline is flushed to a known state. Then, execution advances in degraded mode allowing
only one instruction in the pipeline at a time. The degraded mode is formally verified, thus guar-
anteeing forward progress and correctness. c. After the offending instructions are bypassed, the
high-performance mode of operation is restored.
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7.2.4 Processor Recovery

After the set of patterns is generated and possibly compressed, it is issued to end

customers as a patch. We envision this step as similar to current microcode patch-

ing, where processor patches are included into BIOS (basic input-output system)

updates. Updates are distributed by operating system and hardware vendors and are

saved in non-volatile memory on the motherboard. At startup, when BIOS firmware

executes, patches are loaded into the processor by a special loader. Field-repairable

control logic can use an almost identical mechanism, and we expect FRCL patches

to be approximately of the same size of a microcode update (∼2KB or less). Af-

ter the patches, that is the bug patterns, are loaded at startup into the matcher, the

processor starts running. While none of the configurations recorded in the matcher

occurs during execution, activity proceeds normally (we call this mode of operation

high-performance mode). However, when a buggy state is detected, the pipeline is

flushed and the processor is switched to a reliable degraded mode of execution. Fig-

ure 7.6 shows an example of the execution flow occurring a bug pattern is matched in

a FRCL-equipped processor. In the example, we consider a simple in-order single-

issue pipeline, and we further assume that the interaction between a particular pair

of instructions INST2 and INST3 triggers a control bug, which has been identified

and encoded in a pattern already uploaded in the matcher.

The example shows that, when the pattern is detected by the matcher (Figure

7.6.a), the pipeline is flushed (Figure 7.6.b), that is all instructions except for INST1,

which is committed, are squashed. The processor then switches to the degraded

mode of execution. This mode is formally verified at design time; hence, we can

rely on it to correctly complete the next instruction (INST2), over several execution

cycles. Finally, the high-performance mode of operation is restored (Figure 7.6.c)

and the pipeline starts to refill starting with INST3. Without FRCL technology, a

problem such as the one just described would probably have required re-writing the

compiler software or the microcode-related to the instructions, to circumvent the bug

configuration. Note that to guarantee correctness with field-repairable control logic

it is sufficient to complete only one instruction before re-engaging normal operation

since, if the pipeline were to step again into an error state right away, it would once

again enter the degraded mode to complete the following instruction. On the other

hand, a designer may choose to run in degraded mode for several instructions to

guarantee bypassing the bug entirely in a single recovery.

7.2.5 Example

We now show the use of field-repairable control logic through an example inspired

by the Intel Celeron bug reported in [DDJ06], which we adapt here, for practical

reasons, to a simple five stage pipeline. The processor for the examples includes

a design flaw because of which it does not always enforce a required stall cycle

between two successive memory accesses. A stall is necessary in these situations
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Fig. 7.7 Example of FRCL activity during a memory access bug. The bug in this processor
allows two consecutive memory accesses (such as 8:store and 12:load) to proceed back to back
in the pipeline, instead of adding one stall cycle to allow for completion of each memory access.
When the bug is recognized by the state matcher, the pipeline is flushed and execution restarts
in degraded mode at the first uncommitted instruction (4:add). In degraded mode instructions go
through the pipeline one at a time: after the load has completed normal mode can be resumed, and,
thus, the bug is bypassed.

since all memory operations executes over two cycles: in the first one the mem-

ory address is placed on the bus, while on the second the data to/from memory is

made available on the same bus. Note that, if a memory operation is followed by a

non-memory instruction, the stall is not necessary and they are allowed to proceed

back to back, since the second operation does not use the memory controller while

advancing through the MEM stage of the pipeline.

We provide an example illustrating a runtime situation for this processor while

it encounters the bug described, and discuss how the field-repairable control logic

components intervene to bypass it without generating any erroneous result. In the

situation, illustrated in Figure 7.7, the program that is being run includes a sequence

containing a store and a load instructions back to back, a scenario that triggers the

bug described. The FRCL matching logic for the processor contains four entries

describing all possible combinations of two memory instructions in the ID and EX

stages of the pipeline. For instance, the first entry matches two valid memory read

instructions in the ID and EX stages of the pipeline. The second entry matches a

store in EX followed by a load in ID: this is the specific entry triggered during the

program execution for the example. When the match is triggered, first the pipeline

is flushed, then the recovery controller restarts execution in degraded mode at the
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first uncommitted instruction (in this case an add instruction that had reached the

memory stage of the pipeline). During recovery, only one instruction can be in the

pipeline at a time, thus the add would complete alone in five cycles, then the store

instruction would execute alone, and finally the load instruction would enter the

pipeline. This allows for plenty of extra cycles to complete each memory access

required. After a few instructions have completed in degraded mode, normal oper-

ation is resumed, and the pipeline is refilled. Note that the bug in the example is

completely and precisely described by the four patterns in the matcher, thus no false

positive matches are produced.

7.3 Design Flow

In this section we describe a design and verification flow that incorporates field-

repairable control logic technology. First, we show what modifications to a tradi-

tional design process are required to integrate our solution, and then we investigate

how to achieve complete formal verification of the degraded mode of operation.

Then we move on to overview techniques for the selection of the control state sig-

nals, including an automatic selection algorithm. Finally, we present some insights

on incorporating performance critical execution into an FRCL-protected design.

7.3.1 Overview of the Design Framework

As mentioned in Chapter 2, the verification of complex hardware components such

as microprocessors relies today on a variety of formal and simulation-based meth-

ods. The deployment of FRCL technology in a typical processor design flow re-

quires the addition of two key steps. The first consists in formally verifying all core

functionality of the processor when operating in degraded mode; this is required so

that FRCL can guarantee recovery from patched design errors. The second step to

be added is the selection of the signals that should become part of the “critical con-

trol state”. The overall FRCL-enhanced flow is shown in Figure 7.8, where the dark

gray boxes show the activities and parts involved in the first step, and the light gray

boxes show the same for the second step.

Note that in degraded mode instructions are never interacting with each other,

hence the formal verification of this mode of operation is greatly simplified over

traditional verification efforts of modern processors. For the most part this task is

reduced to the verification of individual functional blocks, which are already heav-

ily addressed by formal verification techniques in today’s industry. In addition, it

is important to check formally that each instruction in the instruction set architec-

ture can individually complete correctly. As shown in the figure, the system-level

verification of the complete processor (including the many performance enhancing

features) is performed using traditional methodology deployed by the design house
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Fig. 7.8 FRCL-enhanced processor design flow. In a FRCL-enhanced design flow, engineers
must complete two additional steps over a traditional flow. 1) They must formally verify the func-
tionality of core processor units, active in degraded mode (dark gray boxes) and 2) select control
signals to be monitored by the state matcher (light gray boxes). Matcher and recovery controller
are then incorporated into the final design shipped to the end customer (black boxes).

before the introduction of FRCL, typically a mix of random simulation and formal

property verification.

The control signal selection task entails identifying those signals that should be

monitored by the FRLC matcher. The routing of these signals must be enhanced in

the design so that they reach the state matcher, as sketched in Figure 7.3. The number

of entries in the matcher affects both total design area and overall performance of the

deployed component: a smaller matcher might require compression, thus impacting

processor performance through a higher rate of false positives.

In addition, engineers must also design a recovery controller to select among de-

graded and normal mode of operation. The structure of the controller is dependent

on the baseline processor architecture, and in most cases this block can be imple-

mented as a simple finite state machine capable of asserting the pipeline’s “flush”

signal and overwriting the program controller with an appropriate value to start re-

covery. Both matcher and recovery controller are included as additional components

in the silicon die of the final processor before product release.
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7.3.2 Verification Methodology

In addressing the formal verification of the degraded mode, we exploited a series of

optimizations made available by the intrinsic nature of this mode of operation. Most

of the complex functionality of the processor is naturally disabled in this mode and

only one instruction is allowed in the pipeline at any time, greatly reducing the frac-

tion of the design’s logic involved in proving each formal property. To this end,

it is important to note that it is not necessary to create a new, simplified version

of the design, instead, all of the optimizations are achieved either as a direct con-

sequence of the nature of the input stream (including only one instruction) or by

disabling the advanced features through a few configuration bits (the same that the

recovery controller would disable). As an example, modules such as branch predic-

tors and speculative execution units can be turned off with a variant of the “chicken

bits”, control bits common to many design developments to control the activation

of specific features. On the other hand, control logic responsible for data forward-

ing, squashing and out-of-order execution would be automatically pruned by formal

tools, due to the fact that these blocks are irrelevant when pipelining is not active.

Together, these two major ways of pruning the design lead to a degraded mode op-

eration that is sufficiently simplified to be tackled by traditional formal verification.

In our experiments we used Magellan from Synopsys [Syn10b] to verify both

our testbed processor designs. Magellan’s approach to formal verification was first

presented in [HSH+00]: it is a hybrid verification tool that employs several tech-

niques, including formal and directed-random simulation. Since in degraded mode

instructions are executed independently, we used Magellan to verify the function-

ality of each instruction in the ISA, one at a time. For each instruction, we wrote

assertions in the Verilog hardware design language to specify the expected result.

Constraint blocks fixed the instruction’s opcode and function field, while immedi-

ate fields and register identifiers were symbolically generated by Magellan to allow

for verification of all possible combinations of these values. An example of the as-

sertions verified for an add instruction is shown in Figure 7.9. The first module in

the figure, add valid, guarantees that only valid instructions of type specified, ad-

ditions in this case, can be executed. The second checker, add forward, enforces

forward progress by requiring the instruction to complete within a set number of

clock cycles. Finally, add sem enforces the appropriate semantic for additions by

checking that the correct result is written to the proper register file location during

the writeback stage. For more complex instructions, such as loads and branches,

additional checkers are needed to prove that the execution of the operation in the

degraded pipelined machine matches exactly the ISA specification. While we could

completely verify the degraded mode for both testbeds that we used in our experi-

mental evaluation (as discussed in Section 7.5), it should be pointed out that neither

design could be verified in high-performance mode, because of the much greater

complexity involved.
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//a. RTL checker for add validity

module add valid ( INST, valid, fail );

assign fail = valid & (INST[‘OPCODE] != ‘add);

endmodule

//b. RTL checker for ADD forward progress

module add forward (clock, reset, IR, valid, ...);

reg [3:0] count committed adds; //saturating

reg [3:0] clk cnt; //saturating

assign fail = (clk cnt == 4’d5) &

(count committed adds == 4’d0);

endmodule

//c. RTL checker for add semantics

module add sem (clock, reset, add in id,

add in wb, write dest, write data, ...);

reg [63:0] read a , read b ; //operands from RF

//result register ID read in decode stage

reg [4:0] dest id;

//shows that destination is chosen correctly

assign fail1 = !((!add in wb) || ((add in wb)

& (write dest == dest id)));

// shows that addition is performed properly

assign fail2 = !((!add in wb) || ((add in wb)

& (write data == read a + read b )));

endmodule

Fig. 7.9 RTL checkers used to verify the correctness of the add instruction with Synopsys’

Magellan. The formal verification tool proves that the checkers hold under any execution scenario,
as constrained by a. requiring the presence of only one valid add instruction in flight. The two
checkers for the instruction enforce b. forward progress and c. correctness of execution.

7.3.3 Control Signal Selection

A critical aspect of deploying field-repairable control logic is determining which

control state signals are to be monitored by the matcher. On one hand, it would be

ideal to monitor all sequential elements of a design; however, given the amount of

control state in complex pipelines, such approach would be either infeasible or ex-

tremely costly. For FRCL to be practical, the set of critical control signals should be

just a handful, selected among internal nets of the design; although this limitation

could potentially be a source of false positives at runtime. An example of the im-

pact of a poor signal selection is discussed in Section 7.5, where we present a bug,

r31-forward, used in our experimental evaluation, which describes an incorrect im-

plementation of data forwarding through register 31. In the Alpha ISA register 31 is



7.3 Design Flow 167

fixed to the value 0, hence cannot be used as a reference register for data forwarding.

If the critical signal set does not include the register fields of the various instructions

in execution, it is impossible to repair this bug without triggering all those config-

urations which require any type of data forwarding, causing an extremely high rate

of false positives.

We envision two possible solutions to address this problem. The first is to moni-

tor the destination register indices of all instructions at the EX/MEM and MEM/WB

stage boundaries by including them in the critical signal set. The downside of this

solution is that the critical signal pool would grow and possibly impact proces-

sor’s performance. For instance, for our in-order experimental testbed this would

correspond to a 30% increase in the number of signals monitored. The alternative

solution entails including a comparator asserting when a forwarding on register 31

is detected and adding one additional single bit to the critical control pool – the out-

put of the comparator. Both approaches would eliminate the false positives for the

r31-forward bug and improve the processor’s performance, although the additional

overhead in the latter case would be smaller than the former alternative. Therefore,

a designer deploying the FRCL approach should keep in mind possible corner cases

such as this and select the critical control pool taking into account a broad range of

bugs. It would be also very helpful to analyze previous designs and gain a sense of

where escaped errors have been exposed in the past.

7.3.4 Automatic Signal Selection

Since critical signal selection is of key importance for FRCL, we have developed

a software tool to support designers in this task. The tool considers the register-

transfer level (RTL) description of a design and it narrows down the candidate pool

for the critical control set. It does so by first automatically excluding poor candi-

dates such as wide buses, frequently related to data transfer, and then ranking the

remaining ones by decreasing relevance. The rank is computed by taking into con-

sideration the width of the cone of logic that a signal affects and the number of

sub-modules that they are connected to. For example, for the RTL block shown in

Figure 7.10, the critical state selection tool marks signal A as data (thus not a good

candidate), and signals B and C as control. Among the latter two, B is ranked higher

since it drives more signals than C (B drives C plus all the nodes that C drives),

suggesting that it is probably a more important control signal. When comparing the

manually selected critical signal set with the output of the automatic signal selector

tool for our experimental testbeds, we noted an 80% overlap. It should be noted that

the manual selection was performed by a designer who had full knowledge of the

microarchitecture, while the automatic selection tool was only analyzing the RTL

description of the processor design.

In Section 7.5 we present an experiment comparing the performance impact,

in terms of specificity (precision of the bug detection mechanism), of a range of

variants of manual and automatic selection. In particular, we analyzed the average
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specificity per signal, a measure of how much each signal is contributing to the

precision of the matcher. Solutions with higher average specificity per signal provide

higher specificity, which translates into higher performance and less area.

module example (A, B, C)

input [64:0] A;

input B;

output C;

assign C = !B & (A == 64’h0);

endmodule

Control rank 2C

Control rank 1B

DataA

Fig. 7.10 Example of automatic control selection for a simple module. Signal A is labeled as
data and low ranked because of its bit-width. Signal B is ranked higher than C because it has a
larger control set: it drives C and, by transitive property, all signals that C drives.

7.3.5 Performance-Critical Execution

For some systems execution performance may be more critical than correctness.

For example, in real-time systems, it is important to guarantee task completion at

a predictable time in order to meet scheduling deadlines and, in certain applica-

tions, partial correctness may suffice. In streaming video applications, the value of

the color of a particular pixel may be less crucial than the jitter of the stream. In

these situations, a field-repairable control logic approach, trading off performance

for correctness, may be undesirable. For these scenarios we propose having an ex-

tra control bit to enable/disable the matcher (Figure 7.11). The enable bit, however,

should only be modifiable in the highest privileged mode of the processor operation,

to ensure that user code does not exploit design errors for malicious reasons.

7.4 Trusted Hardware Design with Semantic Guardians

Although the field-repairable control logic framework enables effective patching of

a variety of complex processor bugs in the field, it can only do so with patterns gen-

erated offline by a design support team. The most critical consequence of this gap

between error discovery and patch availability is the potential for a malicious user

to exploit the bug to attack an unprotected system. To prevent this issue and enable

the design of truly trusted hardware, we proposed to extend the FRCL solution with

a technology called semantic guardians [WB07]. A semantic guardian comprises a

circuit, generated automatically at design time, which encodes all those design con-

figurations which have not been verified, and thus have the potential to hide a design

bug. Thus, the circuit is created at the end of the design process based on the valida-
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Fig. 7.11 A state matcher for performance-critical execution. Matcher activation can be by-
passed by asserting or de-asserting a dedicated bit in the processor status register.

tion effort, and it encodes all insufficiently validated configurations of the processor

control state. At runtime, the semantic guardian, similarly to a FRCL matcher, mon-

itors the critical control signals, forcing the design to switch to degraded mode each

time an unverified configuration is encountered. Thus, with this solution the proces-

sor operates always in one of two state sets: either states validated at design time

(when it is in high-performance mode), or states validated formally (when it is in

degraded mode). As a result, the chance of incorrect processor operation and the

security risks associated with it are eliminated.

The design flow we envision for our solution is shown in Figure 7.12 and it is

based on traditional design and verification flows as the FRCL methodology dis-

cussed in Section 7.3. We require that the design team formally verifies the units

that implement the key functionality of the device, i.e., the degraded mode opera-

tion. As it is the case for FRCL, in degraded mode the device must be capable of

performing all its functionality, however, it can operate at a baseline performance.

In the case of microprocessor designs, most design complexity is brought in by

performance-enhancing units, thus, this requirement leads to selecting only a few

and simple units, leading to a system that can be tackled by modern formal verifica-

tion tools.

The semantic guardian solution, however, differs from the FRCL framework in

its requirements for all remaining units: the goal now is to verify that the most

typical and frequently occurring operation scenarios are designed correctly. Indeed,

the key aspect of validation in a semantic guardian flow is to provide guarantees

that the system can operate correctly in “common” operations. These are typically

operations that occur frequently in the system and that also arise most frequently in

validation – indeed they are the easiest to reproduce in validation precisely because

they are common. The reasoning behind it is that the semantic guardian will trigger

the degraded mode every time it encounters a configuration not validated at design
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Fig. 7.12 Trusted hardware design flow. The degraded mode is verified thoroughly formally,
while the high-performance mode is validated focusing first on the most common functionality. A
semantic guardian is then automatically generated based on the behavior that has been validated
and manufactured with the design. The guardian, together with a recovery controller, switches the
design into the degraded mode whenever an unverified scenario is observed at runtime.

time. Therefore, validating common situations guarantees that the degraded mode

will not be triggered too frequently leading to a perceivable performance impact.

An important step in the design of a semantic guardian is the identification of

the signals representing the critical internal state of the design. This process can be

handled similarly to the corresponding one in FRCL (see Section 7.3.3). However,

in contrast with the previous technique, the values of the critical control signals are

tracked continuously by a guardian generator during system-level validation. The

configurations observed by the generator are labeled as trusted, since it is assumed

that the verification team has validated the behavior of the device for those states.

All others are considered untrusted. Afterwards the validation phase is completed,

the generator creates a combinational logic block, the semantic guardian, which

flags at runtime all untrusted configurations with respect to the critical control sig-

nals. The generator also generates automatically a recovery controller, connected to

the output of the semantic guardian. The controller has the responsibility of switch-

ing the design into degraded mode whenever the guardian flags an untrusted state.

It does so by disabling all design’s blocks except for the core functionality units.

Figure 7.13 shows an example of this solution for a simple pipelined processor. In

the figure, the guardian monitors the critical state, and, when an untrusted state is

encountered, it signals the recovery controller. The controller flushes all unfinished
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Fig. 7.13 Semantic guardian design for a pipelined processor. The semantic guardian is a com-
binational logic block connected to the critical control signals in the design and to a recovery
controller circuit. When an untrusted state is observed by the guardian at runtime, the recovery
controller flushes the pipeline and switches the processor into a degraded mode of operation, guar-
anteed to produce correct results while making forward progress. Once the untrusted situation is
bypassed, the device transitions back to high-performance mode.

instructions and restarts execution in degraded mode from the first uncommitted op-

eration. When the untrusted situation is bypassed, the recovery controller restores

the normal high-performance mode of operation.

To optimize area and propagation delay of a semantic guardian block, we propose

a range of heuristic optimizations. First, we synthesize both the untrusted configura-

tions set and its complement and select the smaller of the two circuits. Then, if any

of the untrusted configurations can be proven unreachable by a formal verification

tool, we can leverage this information as a don’t care set in optimizing the guardian

design. Additionally, designers might choose to trade off the specificity, or accu-

racy, of the semantic guardian for better circuit parameters. In this case, some of the

trusted states might be re-labeled as untrusted and included in the corresponding set.

This design choice has the potential to increase the effectiveness of the synthesis op-

timization algorithm, and therefore generate a smaller and faster semantic guardian.

On the other hand, it may also trigger false positives in the guardian detection mech-

anism, hence, it is important to take into account the frequency of occurrence of the

re-labeled states.
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Fig. 7.14 Semantic guardian and patching hardware operating in synergy. A patch extending
the set of trusted configurations can be uploaded to the matcher memory after a system is deployed
in the field. Afterwards, a match in the semantic guardian can be overwritten by the matcher as a
trusted state, avoiding the transition to degraded mode.

7.4.1 Combining Semantic Guardians and Hardware Patching

The semantic guardian solution presented above has the key advantage that it en-

ables trusted hardware execution for software applications running on hardware

processors. However, it also has one noticeable drawback – its rigidity. Once the

combinational circuit of the guardian is synthesized and manufactured, it cannot

be altered, even if, over time, additional verification efforts reduce the pool of un-

trusted states. This aspect may impact overall processor performance, particularly

if the guardian is generated after a short validation effort. To address this limitation

we suggest augmenting a guardian with FRCL-style programmable matchers. Since

semantic guardians ensure that the system is always operating in a verified state,

the patching mechanism in this case is used to overrule the guardian’s decision for

selected configurations. The configurations of choice would be those that have been

proven correct after design’s release, resulting in an overall performance boost.
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This scenario is illustrated in Figure 7.14: the hardware designer continues device

validation after product release. If and when an untrusted configuration becomes

sufficiently validated, it is encoded and uploaded via a patch to the matcher memory

at runtime. At runtime, if that configuration is ever flagged by the guardian, the

patching mechanism overwrites the decision, preventing the transition to degraded

mode. Therefore, this approach allows the design team to expand the set of trusted

configurations over time and, consequently, improve the performance of the design,

even after the device has been manufactured and shipped to end customers.

7.5 Experimental Evaluation

In this section we detail two prototype systems with field-repairable control logic

and semantic guardian support. Using simulation-based analysis, we examine the

error detection accuracy of FRCL for a number of design error scenarios and a range

of state matcher storage sizes. We also examine different criteria for selecting the

control state, including an automatic selection heuristic outlined in Section 7.3.4. In

addition, we analyze the area costs of adding this support to simple microprocessors

and the performance impact of degraded mode execution to determine the extent of

error recovery that can be tolerated. Finally, we investigate the semantic guardian

methodology outlined in Section 7.4, evaluating several guardian area/delay opti-

mization approaches.

7.5.1 Experimental Framework

To gauge the benefits and costs of field-repairable control logic, we implemented the

solution on two prototype processors. Although experimental in nature, these pro-

cessors have been already deployed and verified in several research projects. While

these processor pipelines do not have the complexity of a commercial offering, they

are non-trivial, robust designs that can provide a realistic basis to evaluate the field-

repairable control logic solution. For our experiments we implemented two variants

of the state matcher, one with four and and one with eight entries, and integrated

them into the two baseline architectures.

The first design is a 5-stage in-order pipeline implementing a subset of Alpha

ISA with 64-bit address/data words and 32-bit instructions. The pipeline a simple

global branch predictor, features forwarding from MEM and WB stages to ALU and

resolves branches in the EX stage. In our area evaluations we looked at two differ-

ent cache sizes: small 256-byte direct mapped instruction and data caches and larger

64KB caches. These were used to give us a better estimate of the silicon footprint

of our solution in different processor cores. Furthermore, for this design, we hand-

picked 26 control bits to be monitored by the matcher. The set of signals governs

operation of different logic blocks in the pipeline (datapath, forwarding, stalling,
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Table 7.1 In-order processor pipeline: control state bits monitored by the state matcher.

Name
Number of

bits
Pipeline stage

IF valid 1 Fetch

ID valid 1 Decode

EX valid 1 Execute

MEM valid 1 Memory

WB valid 1 Writeback

ID rd mem 1 Decode

ID wr mem 1 Decode

ID cond br 1 Decode

ID uncond br 1 Decode

EX rd mem 1 Execute

EX wr mem 1 Execute

EX cond br 1 Execute

EX uncond br 1 Execute

EX ALU function 5 Execute

EX br taken 1 Execute

EX hazard source a 2 Execute

EX hazard source b 2 Execute

MEM br taken 1 Memory

MEM bus command 2 Memory

Total 26

etc.) and were selected through a two-step process: we first analyzed a variety of

escaped bugs reported in commercial microprocessor errata, and then selected those

control signals that would have been good indicators of those bugs. This analysis

relies on the assumption that past escaped bugs provide a good gauge of future es-

capes. In addition, in making the selection, we were careful to choose signals which

encoded critical control situations in compact ways: for instance we chose not to

monitor the indices of source and destination registers of each instruction (which

requires several bits), but instead simply track the occurrence of data forwarding

(only a few bits). To limit the monitoring overhead, we also chose not to observe

any of the instruction opcode bits that are marched down each pipeline stage. As

detailed in Table 7.1, the majority of the critical control signals were drawn from

the ID and EX stages of the pipeline, where most of the control logic decisions

occur. For example, in the ID stage we selected some of the output bits of the de-

coder, which represent in compact form what type of operation must be executed,

and in the EX stage we selected the ALU control signals. Although this choice po-

tentially limited our capability to recognize a buggy state before instructions are

decoded in the ID stage, it also allowed us to reduce the number of critical control

bits to be monitored. Note also that, while we did not to modify the original design

in any way, it is possible to enhance the accuracy of error detection with minimal

additional logic. For example, we did not modify the design to provide an effective
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Table 7.2 Superscalar out-of-order processor: control state bits monitored by the matcher.

Name
Number of

bits
Pipeline module

ROB head commit 2 Re-order buffer

ROB head store address 1 Re-order buffer

ROB head store data 1 Re-order buffer

ROB head load 1 Re-order buffer

ROB full 1 Re-order buffer

RS full 1 Reservation stations

RS complete 2 Reservation stations

RS br miss 2 Reservation stations

Issue branch 2 Rename

Issue 2 Rename

Total 16

solution to overcome the r31-forward bug discussed in Section 7.3.3. We also did

not extend the design with additional pipeline latches to propagate extra informa-

tion on the instruction being executed through the pipeline: this could be done to

capture the specifics of an instruction leading to a bug, and, consequently, improve

the precision of the matcher.

The second processor is a much larger and complex out-of-order 2-way super-

scalar pipeline, implementing the same ISA. The core uses Tomasulo’s algorithm

with register renaming to re-order instruction execution. The design has four reser-

vation stations for each of the functional units and a 32-entry re-order buffer (ROB)

to hold speculative results. For performance reasons this pipeline featured a global

branch predictor with branch target buffer. Pipeline flushing for a branch mispre-

diction occurs when the branch reaches the head of the ROB. Memory operations

are performed also when a memory instruction reaches the head of the ROB, with a

store operation requiring two cycles. The re-order buffer can retire two instructions

at a time, unless one is a memory operation or a mispredicted branch. Similarly to

the in-order design, we have augmented the out-of-order pipeline with either 256-

byte direct mapped i- and d-caches or with 64KB caches for area evaluation. The

signals selected for the critical control pool include signals from the retirement logic

in the ROB, as well as control bits from the reservation stations and the renaming

logic as reported in Table 7.2.

Similarly to the in-order design, to minimize the number of observed signals, no

opcodes and instruction addresses were monitored. The matcher developed for this

design was capable of correctly matching scenarios involving branch misprediction,

memory operations, as well as corner cases of operation in the ROB and reservation

stations (e.g., a case when ROB fills up and the front-end should be stalled). Again,

a larger set of signals could be used to gather more information about the state of

the machine, however, for this design, the benefit would consist only in a shorter
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recovery time by recognizing problems earlier on. On the other hand, the ability to

identify erroneous configurations accurately would not be significantly improved,

since errors can still be detected when instructions reach the head of the ROB.

Both processor prototypes were specified in synthesizable RTL Verilog, and then

synthesized for minimum delay using Synopsys Design Compiler [Syn10a]. This

produced a structural Verilog specification of the processor implemented on Ar-

tisan standard logic cells in a TSMC 0.18µm fabrication technology. For perfor-

mance analysis, we ran a set of 28 microbenchmark programs, designed to fully

exercise the processor while providing small code footprints. These programs in-

cluded branching logic and memory interface tests, recursive computation, sorting

and mathematical programs, including integer matrix multiplication and emulation

of floating point computation. In addition, we ran both designs for 100,000 cycles

with a dynamically guided constrained-random test generator [WBA07] to verify

correctness of operation, as well as to provide a diverse stream of instruction com-

binations. Finally the core functionality of both systems was formally verified with

Synopsys Magellan [Syn10b].

7.5.2 Design Defects

To evaluate the performance of the field-repairable control logic solution, we

equipped the baseline designs with a matcher block, manually inserted a variety

of bugs into our designs, downloaded the appropriate patch to the matcher, and

then examined their overall performance and correctness of execution. In crafting

the design flaws to be introduced, we strove to emulate bugs reported in commer-

cial microprocessor errata documents covering all levels of the design hierarchy.

Usually, high-level bugs were the result of bad interactions between instructions

in flight. For example, opA-forward-wb breaks forwarding from the WB stage on

one operand, and 2-branch-ops prevents two consecutive branch instructions from

being processed correctly under rare circumstances. Medium-level bugs introduced

incorrect handling of instruction computations, such as store-mem-op, which causes

store operations to fail. Low-level bugs were highly-specific scenarios in which an

instruction would fail. For example, r31-forward is a bug causing forwarding on

register 31 to be performed incorrectly. Finally, the multi-bugs are a combination

of errors, forcing the state matcher to recognize larger collections of bug configu-

rations. For instance, multi-all is a design variant including all bugs that we intro-

duced. A summary of the bugs introduced in both designs is provided in the Table

7.3. It can be noted that, even for our relatively simple experimental designs, some

bugs require a unique and rare combination of events to occur in order to manifest

and be detected by the matcher.
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Table 7.3 Bugs introduced in the experimental processor pipelines.

Bug name Description of the error

In-order pipeline

2-mem-ops Two consecutive memory operations fail

opA-forward-wb Incorrect forwarding from WB stage on operand A

opA-forward-conf Incorrect hazard resolution on operand A

2-branch-ops Two consecutive taken branches fail

store-mem-op Store followed by another memory operation fails

load-branch A conditional branch depending on a preceding load fails

mult-branch A branch following a multiply instruction fails

mult-depend Multiply followed by a dependent instruction fails

r31-forward Forwarding on register 31 is done incorrectly

multi-1 2-mem-ops + opA-forward-wb +

opA-forward-conf + 2-branch-ops

multi-2 store-mem-op + load-branch + mult-branch

multi-3 mult-depend + r31-forward

multi-4 2-branch-ops + mult-branch + load-branch

Out-of-order pipeline

rob-full-store Store operation fails when ROB is full

rob-full-mem Any memory operation fails when ROB is full

double-retire Double-issue and double-retirement in the same cycle fails

double-retire-full Retirement of two instruction fails if two non-branch

instructions are added to full ROB at the same time

double-mispred ROB incorrectly flushes the pipeline if two branches

are mispredicted at the same time

rs-flush Reservation stations do not get flushed on a

branch mispredict if rs full signal is asserted

load-data Loaded data is not forwarded to dependent

instructions in the reservation stations

multi-all All out-of-order bugs combined

7.5.3 Specificity of the Matcher

The matcher’s task is that of identifying when the processor enters a buggy control

state, starting the process of switching the system to a degraded mode that provides

reliable execution. In this section we study the specificity of the state matcher, that

is, its accuracy in entering the degraded mode when and only when an erroneous

configuration occurs in the design.

Figures 7.15 and 7.16 plot the specificity of the state matcher for bugs in the

in-order and out-of-order processor designs. Recall that the specificity of an error is
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the fraction of recoveries that are due to an actual bug. Thus, if the specificity is 1.0,

the state matcher only recovers the machine when the actual bug is encountered. On

the other hand, a matcher with low specificity would be overly conservative in its

detection and enter the degraded mode more often than necessary. For instance, a

specificity of 0.40 indicates that an actual bug was corrected only during 40% of

the transitions to degraded mode, while the other 60% were unnecessary. In order to

gather a sense of the correlation between specificity and matcher size, we plot our

results considering a 4-entry, 8-entry and a infinite-entry, i.e., ideal, matcher. Each

of the specificities plotted in the Figures 7.15 and 7.16 were obtained by running the

buggy processor design on all the software programs indicated in Section 7.5.1.

It can be noted that for both processors, many of the bugs can be detected and

recovered with a specificity of 1.0, even when using the smallest matcher, thus no

spurious recoveries were initiated. Some combinations of multiple bugs (e.g., multi-
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1 and multi-2) had low specificities but, upon increasing the matcher size, the speci-

ficity reached again 1.0. For these combinations of bugs, a four entry matcher was

too small to accurately describe the state space associated with the bugs, but the

larger matcher overcame this problem. Finally, for a few of the bugs, e.g., mult-

depend in Figure 7.15 and load-data in Figure 7.16, even an infinite-size state

matcher could not reach perfect specificity. For these particular bugs, the lack of

specificity was not caused by pressure on the matcher, but rather by insufficient

access to critical control information, as described in Section 7.3.3. Thus, in these

setups, the matcher had to initiate recovery whenever there was a potential for a bug

occurrence, leading to the lower specificities shown.

2-
m

em
-o

ps

op
A-fo

rw
ar

d-
w
b

op
A-fo

rw
ar

d-
co

nf

2-
br

an
ch

-o
ps

st
or

e-
m

em
-o

p

lo
ad

-b
ra

nc
h

m
ul
t-b

ra
nc

h

m
ul
t-d

ep
en

d

r3
1-

fo
rw

ar
d

av
er

ag
e

single-instr double-instr auto-select

manual-select manual-select w/ ID

0.00

0.01

0.01

0.02

0.02

0.03

0.03

0.04

0.04

0.05

A
v
g

. 
s
p

e
c
if
ic

it
y
 p

e
r 

s
ig

n
a

l

Fig. 7.17 Average specificity per signal for a range of critical signal sets in the FRCL im-

plementation of the in-order pipeline. In this chart we compare the specificity of several signal
selection techniques: single-instr and double-instr monitor one or two instructions in the front-end
of the pipeline, respectively; manual-select monitors the 26 hand picked signals of Table 7.1 and
manual-select w/ ID augments it with 10 additional signals. In the auto-select approach we used
the algorithm of Section 7.3.4 to select critical signals in the processor automatically. After com-
puting the matcher specificity for each of the these techniques, we normalize it to the number of
monitored signals, to evaluate the average selection quality. In most cases the manual-select solu-

tion achieves best specificity at lower cost. However, auto-select, based on the automatic selection
algorithm of Section 7.3.3 achieves good results with no effort from a designer.

To evaluate the impact of various critical control signal selection policies and

compare them to the automatic approach described in Section 7.3.4, we also de-

veloped a range of FRCL implementations for the in-order pipeline design, using

different set of critical signals. The results of this analysis are shown in Figure 7.17.

In the first solution evaluated, single-instr, the critical control consists exclusively of

the 32-bit instruction being fetched. The second solution, called double-instr moni-

tors the instructions in the Fetch and Decode stages (64 instruction bits and 2 valid

bits in total). The third configuration (auto-select) includes all of the signals selected
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automatically by our heuristic algorithm from Section 7.3.4 for a total of 52 bits. For

this set up the automatic selection algorithm was configured to return all RTL signals

with non-zero control rank and bitwidth less than 16. The manual-select implemen-

tation corresponds exactly to the one from the experiments in Section 7.5.2, that is,

all the signals of Table 7.1. The final configuration, manual-select w/ID is similar to

manual-select, but it includes 10 extra signals to monitor the destination registers in

pipeline stages MEM and WB.

Matcher sizes for all of the variants contained enough entries to accommodate

even the largest patches, so compression was never required. For each design vari-

ant, we developed individual patches for the first 9 bugs listed in Table 7.3 (all but

the multi-bugs). We then measured the average specificity per signal for each of

them. This metric tracks the specificity divided by the number of signals in the

critical control set, providing a measure of which approach has the best perfor-

mance/area tradeoff. As shown in Figure 7.17, the manual-select variant produces

the best results for most bugs. The manual-select w/ ID solution has better speci-

ficity than manual-select, but at a higher price. Its main advantage is the good result

over r31-forward, which is made possible by its tracking destination register indices.

Note also that the automatic selection algorithm performs quite well, especially tak-

ing into account that this approach does not require any manual effort.

7.5.4 State Matcher Area and Timing Overheads

Implementing a field-repairable control logic solution requires the addition of the

critical control matcher logic, that is, the matcher itself and the recovery controller,

leading to an area overhead in the final design. Table 7.4 reports the area over-

head of a range of FRCL implementations, including a matcher size of 4 and 8

entries included in both the in-order and out-of-order designs and assuming 256B

and 64KB instruction and data caches. As shown in the table, the overhead of FRCL

is uniformly low. Even the larger state matcher with small pipelines and caches (in-

order-256B) results in an overhead of only about 2%. Designs with larger caches

and more complex pipelines have even lower overhead. Given the simplicity of our

baseline designs, we would expect the overhead for commercial-grade designs to

be even lower. Table 7.4 also presents the propagation delays through the matcher

block. Note that all solutions have propagation delays that are well below the clock

speed. Since FRCL matching is performed concurrently with normal pipeline oper-

ation, it does not affect overall design frequency. Finally, note that the matcher for

the out-of-order processor is faster because it monitors fewer control signals.
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Table 7.4 Area overhead and propagation delay for a range of FRCL implementations for

the in-order and out-of-order pipelines. Synthesis was completed targeting the 0.18µm tech-

nology node.

Matcher area
(in % of baseline design area)

In-order Out-of-order

256B 64KB 256B 64KB

4-entry matcher 1.10% 0.01% 0.34% 0.01%

8-entry matcher 2.20% 0.02% 0.68% 0.02%

Matcher propagation delay (ns)

In-order Out-of-order

(clk=11.5ns) (clk=6.5ns)

4-entry matcher 1.18ns 1.17ns

8-entry matcher 1.43ns 1.21ns

7.5.5 Performance Impact of Degraded Mode

During recovery the processor is switched into degraded mode to execute the next

instruction, and then returned to normal operation. Moreover, since in degraded

mode only one instruction at a time is allowed into the pipeline, virtually all

instruction-level parallelism is lost and program performance will suffer accord-

ingly. Figure 7.18 plots the performance of the in-order and out-of-order processors

as a function of increasing recovery frequency. As shown in the graph, for the per-

formance impact to be below 5%, the cost of recovery should not exceed 6 cycles

for each 1,000 for the in-order pipeline, and 10 per 1,000 cycles for the out-of-

order pipeline. For a more stringent margin of 2% impact, recovery rates should

not exceed 2/1,000 and 4/1,000 for the in-order and out-of-order processors, respec-

tively. In addition, recovery has a stronger impact on the in-order pipeline, due to

the fact that the out-of-order pipeline can better tolerate the loss of parallelism due

to its more capable instruction scheduler. Note that the rates of occurrence men-

tioned above are considered abnormally high for industrial designs, since even in

the pre-silicon verification domain millions of cycles of operation are typically sim-

ulated before release. Furthermore, with high-coverage post-silicon validation solu-

tions, such as Reversi (Chapter 3) and Dacota (Chapter 5), most of the commonly

occurring errors will be flushed and only very rare corner case bugs will escape.

Consequently, in practice, the performance degradation due to FRCL is negligible.
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Fig. 7.18 Impact of FRCL recovery on processor performance. Field-repairable control logic
technology incurs less than 5% performance impact as long as the frequency of bug occurrence
does not exceed 6 per 1,000 cycles in the in-order pipeline and 10 per 1,000 cycles in the out-of-
order pipeline.

Finally, Figures 7.19 and 7.20 show the CPI (clock cycles per instruction) of the

FRCL-equipped in-order and out-of-order pipelines. The CPI has been normalized

to the average CPI achieved when no patch was uploaded on the matcher (hence

degraded mode was never triggered). By comparison with Figures 7.15 and 7.16,

it can be noted that low specificity often results in increased CPI. However, the

worst case, 4 entry matcher on multi-1 bug, occurs because of an insufficiently sized

matcher and not because of the critical control signal selection.

7.5.6 Semantic Guardian Framework Analysis

For our experiments with semantic guardian technology we used the same setup as

in the FRCL study, including the the same two processor cores, critical signal sets

selected for each pipeline and degraded mode verification with Synopsys’ Magellan

for all instruction types. For the semantic guardian’s synthesis and optimization

we used a combinations of several techniques, including different configurations

of Espresso [BHMSV84] computing the ON- and OFF-set of the combinational

function. We also developed a proprietary heuristic that progressively collapses pairs

of states with Hamming distance of 1. Also, if the untrusted set encompassed more

than 50% of the total state space, the trusted set was used instead in generating the

guardian. Finally, we developed a script which considers the output of Espresso or

our minimization heuristic and produces a register-transfer level description of the

guardian circuit, which is then synthesized with Synopsys’ Design Compiler and

mapped to TSMC 0.18 and 0.13 µm libraries.
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but excluding multi-bugs to avoid double counting. As the chart indicates, the performance of
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Fig. 7.21 Trusted states vs. simulation effort for semantic guardians. By simulating and vali-
dating an increasing number of cycles, more system’s states can be labeled as trusted. Moreover,
a dynamically guided, closed-loop validation technique performs better then a simple constrained-
random approach, reaching higher coverage faster. With a larger number of trusted states the
guardian will trigger degraded mode less frequently, leading to higher overall performance.

In our first experiment we calculated the number of distinct critical signal

values combinations (trusted states) observed during the validation of the high-

performance mode. As input stimuli during this effort, we used both an open-loop

constrained-random generator and a dynamically guided, closed-loop, constrained-

random generator [WBA07]. In our framework, a state was considered trusted if

it was observed at least once during validation, since the signals we selected thor-

oughly describe the behavior of the processor control state machine. However, users

of this solution may choose to require multiple occurrence of a state before it is

considered trusted. The results of this experiment are shown in Figure 7.21. It can

be observed that, with increasing simulation length, i.e., increasing validation ef-

fort, the number of states labeled as trusted increases, leveling off at the far right

of the graph. Note that we could not perform formal verification of this complete

design because of its complexity and, therefore, could not estimate the fraction of

the overall reachable state space explored in simulation.

As a second experiment we analyzed various compression techniques to achieve

best area-delay parameters in the semantic guardian combinational logic. The re-

sults of this study are presented in Table 7.5. The columns list the compression

technique, number of bits in the ON and don’t care sets for the Boolean function to

be implemented, area in µm2 and propagation delay through the semantic guardian

in ns for two technology nodes. The Espresso+ and Espresso- techniques indicate

that the circuit was obtained optimizing either the ON-set or the OFF-set of the

logic function with Espresso. Compaction is our heuristic optimization technique

that progressively collapses pairs of states with Hamming distance of 1, and the last

two rows are combination solutions. The top half of the table shows results with

no additional optimizations by Design Compiler, while the bottom half shows the
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best circuit that we were able to synthesize with the most narrow timing and area

constraints set in Design Compiler. The best results in both sections are highlighted

in bold. Note how most techniques that we analyzed contribute optimal results for at

least some metric and the additional Design Compiler optimization always improves

propagation delays.

Table 7.5 Semantic guardian design: area and delay achieved with a range of synthesis opti-

mization techniques.

TSMC 0.18 µm TSMC 0.13 µm

Optimization
method

#ON-
set

#DC-
set

#area
µm2

#delay
ns

#area
µm2

#delay
ns

Without additional Design Compiler optimization

No optimization 52,104 0 18,600 4.07 9,900 3.78

Espresso+ 2,455 11,091 19,400 2.79 10,100 2.42

Espresso- 10,586 1,556 26,000 4.13 14,400 3.24

Compaction 18,137 843 12,100 2.76 6,200 2.47

Comp & Espr+ 2,449 11,097 19,600 2.78 10,100 2.46

Comp & Espr- 10,586 1,556 25,200 4.44 14,300 3.23

With additional Design Compiler optimization

No optimization 52,104 0 26,800 1.55 16,800 1.28

Espresso+ 2,455 11,091 21,200 1.14 17,100 0.93

Espresso- 10,586 1,556 32,400 1.59 26,400 1.27

Compaction 18,137 843 17,300 1.19 14,300 1.01

Comp & Espr+ 2,449 11,097 24,600 1.08 16,000 0.96

Comp & Espr- 10,586 1,556 31,600 1.56 26,900 1.30

In particular, we found that the more stringent the area and timing constraints,

the higher the priority Design Compiler gives to delay optimizations, producing a

significantly faster guardian. We also noted that Espresso generating the ON-set

(Espresso+) or Espresso in combination with our compaction approach (Comp &

Espr+) generated the circuit solutions with the smallest delay, at a tolerable area

penalty. For comparison, the area for the in-order core, excluding caches, in 0.18

µm technology is 500,000 µm2. Thus, with Design Compiler optimization, the best

guardian design can incur as little as 3.5% area overhead.

In addition, we investigated the possibility of generating a smaller and faster

circuit by re-labeling some of the trusted states as untrusted. Note that in this ex-

periment, the semantic guardian is generated from the trusted set, therefore, when

trusted but rarely occurring states are removed from the set, the guardian becomes

smaller. This effect is amplified due to better compressibility of the set when rare

states are removed. In other words, Espresso and our compaction heuristic were ca-
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pable of achieving better optimizations without these rare states. It is also possible

that, in addition, when these states were removed, more don’t care combinations

became available, enabling further simplification of the guardian design. For this

experiment, whose results are plotted in Figures 7.22 and 7.23, each state observed

in validation is labeled by its observation frequency, that is, the number of times

the state has been recorded, divided by the total number of simulation cycles. The

baseline matcher includes all trusted states and hence its cumulative observation fre-

quency is equal to 100%. Then we grouped states in clusters ordered by cumulative
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observation frequency, in steps of 0.25%. Thus, for example, the second data point

in the figures is generated using observed states accounting for 99.75% of the to-

tal observations. Each of the clusters was then progressively removed, one at a time,

from the trusted pool, and we created a new guardian each time. All guardians where

synthesized with the same settings and without timing or area constraints. Figures

7.22 and 7.23 indicate on the X-axis the trusted-set size reduction in percent. It can

be observed from the diagrams that there is a definite reduction in area for smaller

trusted sets, enabling up to a 4 times area reduction for just a 5% penalty in obser-

vation frequency. This trend can also be observed in the matching delay. The trust

re-labeling algorithm allows for a designer to trade off the accuracy of the semantic

guardian to improve its area and delay.

7.6 Summary

In this chapter we presented a technology called field-repairable control logic

(FRCL): a novel microprocessor patching solution designed to detect erroneous

control configurations and recover correct execution via a low-complexity, reliable

degraded mode. We described an efficient state matching mechanism that can be

programmed to detect occurrences of control errors and initiate processor recov-

ery. The technique was experimentally shown to have an area cost of less than 2%.

Moreover, with moderately sized matchers, we can ensure highly accurate detection

of bug states in nearly all of our experiments. We also showed how the framework

can be extended to include semantic guardians - combinational circuits forcing the

processor into degraded mode of operation whenever a control state unverified at

design time is encountered. Semantic guardians can be deployed separately or they

can be complemented by field-repairable control logic to protect processors from

unknown escaped errors. Finally, we examined the performance impact on software

running on these patched platforms, and found that, if recovery frequency is less

than 10 per 1,000 instructions in our out-of-order design, or less than 6 per 1,000

instructions in our in-order testbed, the performance impact is below 5%. Addition-

ally, analysis of semantic guardians demonstrates that these circuits can be subjected

to a variety of area/delay optimizations that improve their performance and min-

imize the silicon footprint. In particular, our experimental evaluation showed that

guardians can be optimized to occupy as little as 3.5% of a processor core and can

be further optimized using a re-labeling heuristic, trading off guardian performance

for silicon area. We also showed that the guardian circuit does not have any impact

on the performance of the processor while it is running in a verified state and, as

with FRCL, the impact of entering degraded mode is proportional to the frequency

of occurrence of untrusted states. Thus, a more thorough verification effort leads to

a smaller performance impact after product release.

This chapter makes a strong case for field-repairable control logic and semantic

guardians and shows that the approach holds great promise to insure hardware de-

signers and manufacturers against the potential disasters of releasing buggy silicon.
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Chapter 8

RUNTIME VERIFICATION IN

MULTI-CORES

Abstract. In this chapter we shift the focus of our discussion to multi-core proces-

sors and issues specific to their runtime verification. In Chapter 4 we overviewed

features of modern multi-core designs and described the growing challenge of their

verification. As we pointed out, this arduous task is exacerbated by the increasing

complexity of the shared memory communication subsystem and the need to ver-

ify two of its major system-wide properties: cache coherence and memory consis-

tency. In this chapter we present two runtime solutions designed specifically for this

purpose. The first technique, called Dynamic Verification of Memory Consistency

(DVMC), designed by Meixner, et al. is a checker-based solution, which employs

multiple distributed monitors to validate different aspects of communication at run-

time. The second solution, Caspar, was developed by us as a patching approach that

uses on-die matchers, programmed with patterns describing known bugs, to iden-

tify errors. Moreover, to be effective at runtime, both solutions include not only a

detection, but also a recovery mechanism, so bugs can be sidestepped and forward

progress can be maintained. Thus, as a part of our discussion, we also overview the

recovery techniques used in both DVMC and Caspar.

8.1 Dynamic Verification of Memory Consistency

As discussed in Chapter 4, multi-core architectures have become a staple of modern,

high-performance processor design, due to their beneficial power/performance char-

acteristics. Since the introduction of the first mainstream dual-core processors, the

number of computational elements in these devices have been increasing steadily

from generation to generation. While the architecture of individual cores remains

relatively simple, compared to the high-end superscalar out-of-order pipelines of the

previous decade, on-die interconnect and communication subsystems in these de-

signs are substantially more complex. Furthermore, as the number of cores grows,

the interconnect medium starts to move away from relatively unscalable buses to

complex interconnect fabric, such as point-to-point or mesh networks. This, in turn,

DOI 10.1007/978-1-4419-8034-2_8, © Springer Science+Business Media, LLC 2011 
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leads to non predictable communication latencies that depend on the network topol-

ogy and the application’s data transfer patterns. As a consequence, the verification of

the communication subsystem is becoming more and more important and resource

demanding, compared to the validation of individual cores. In particular, this entails

verifying such properties as cache coherence and memory consistency, described

earlier in Section 4.2. Finally, as design and production timelines keep shrinking,

processor manufacturers are forced to release their products well before they are

fully verified, exposing end-users to potential escaped errors. To combat the issue,

researchers have proposed runtime (dynamic) verification solutions, which augment

a baseline design with specialized hardware components, monitoring the state of the

system and initiating global recovery if an erroneous operation is detected.

One of the first solutions to address the correctness of operation in multi-core

shared memory systems at runtime was developed at Duke University [MS06]. This

work, called Dynamic Verification of Memory Consistency (DVMC) is a checker-

based solution, which augments individual cores with a set of distributed checkers,

dedicated hardware blocks that ascertain that the runtime behavior of the system

matches the consistency model specified at design time. If an error is detected, the

checkers initiate system-wide recovery, using a checkpointing scheme proposed by

Sorin, et al. in [SMHW02], called SafetyNet, that we briefly overview later in this

chapter. Conceptually, DVMC attempts to verify the three invariants of multi-core

operation: uniprocessor ordering, allowable reordering, and cache coherence. The

authors prove that satisfying these three properties is a sufficient condition to guar-

antee memory consistency. Below we discuss each invariant and then mechanisms

deployed to check them in detail.

Uniprocessor ordering. This invariant states that if a shared memory location was

accessed by a single core only, load operations issued to this address must return

the value of the last store issued by the core to the same address. Thus, private

data in any core’s cache must remain unchanged, unless modified by the core itself.

Runtime verification of this invariant can be enforced by a DIVA-like replay of all

memory operations before they commit, to check that values received during replay

match those obtained during execution (see Section 6.3 for details of the DIVA tech-

nique). To implement this invariant, DVMC requires an extra stage in the processor

pipeline, called the verification stage, which re-issues all memory operations just

before they retire. Note, however, that in this stage memory operations are issued

in commit order, thus correctness of out-of-order execution is checked against the

underlying architectural model of memory accesses. The replay of store operations,

however, must still be speculative, to prevent these accesses from affecting the ar-

chitectural state. Thus, the authors augment the system with a verification cache

(Figure 8.1), which captures write accesses and holds them until they retire.

Allowable reordering is another global property of memory consistency models,

which identifies how the order of memory operations can be changed. Consistency

models weaker than sequential consistency allow some accesses to bypass preced-

ing operations to improve overall system performance in presence of high-latency
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Fig. 8.1 Checker-based approach for Dynamic Verification of Memory Consistency (DVMC).

In this runtime solution Meixner, et al. validate three invariants of a memory consistency model:
uniprocessor ordering (checked by verification caches), allowed reordering (verified by ordering
tables) and cache coherence (through the coherence checkers and a shared coherence verifier).
The latter requires dedicated storage on each cache like to track access permissions and it entails
additional communication overhead. Error recovery is based on a distributed checkpointing system.

operations. For instance, total store ordering, discussed in Chapter 4.2, allows loads

to bypass stores to different addresses, while all stores must perform in program

order with respect to other stores (hence the name of this model). A few weaker

models also exist that relax these rules even further. DVMC can check the enforce-

ment of this invariant with an ordering table checker, as shown in Figure 8.1. The

pipeline is also slightly modified, augmenting each memory instruction with a se-

quence number. When a memory operation completes, the ordering table records its

number and checks that the operation did not violate the reordering rules of the sys-

tem’s consistency protocol, i.e., operations with higher sequence numbers that must

not bypass this access should not have completed yet. In addition, the table keeps

track of all outstanding operations to check that all accesses eventually complete.
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Cache coherence. Finally, to ensure consistency of the shared memory operation,

DVMC enforces system-wide cache coherence. The particular technique for this

was described in the early work by the same authors [MS05] and entails checking

that each cache line in the system is viewed by all cores as either “Shared” or “Ex-

clusive”. The period of time during which a line is in one of these states is called

an epoch. Thus, to validate the cache coherence invariant, one must check that ac-

cesses are only performed during appropriate epochs, and that epochs in which a

line is in Exclusive state in one cache do not time overlap with Exclusive epochs

in another cache. To this end, each core is augmented with a coherence checker

(Figure 8.1), which keeps track of active epochs for each cache line and period-

ically sends information messages to a memory controller. The messages include

such data as the logical time of the beginning and the end of the epoch, as viewed

by this particular core, as well as cache block checksums, which enable detection of

data corruption, rogue accesses, etc. The memory controller is also extended with

a table that compares the information messages from individual cores and detects

potential epoch overlaps, called coherence verifier. In general, Meixner shows that

the overhead due to information traffic is negligible, however, note that this system

requires synchronization of the coherence checker’s clocks, which may become a

problem in large systems with non predictable interconnect delays. Moreover, the

coherence checker has a somewhat large die area overhead, at least 7% of a node’s

cache, as estimated by the authors.

It is important to note that the specific implementation of the three invariants

is irrelevant in guaranteeing memory consistency. Therefore, individual detectors,

for instance the coherence checker, can be designed differently, e.g., for a differ-

ent area vs. performance tradeoff, without compromising the runtime guarantees of

the framework. The same observation holds for our runtime solution, called Caspar,

presented in detail in the next section. Since Caspar is not a checker-based tech-

nique, but a patching solution, it trades off area overhead of a coherence checker for

the requirement to develop error patterns offline.

The final aspect of DVMC that must still be investigated, is the recovery scheme

used to ensure forward progress after an error is detected. As described in the orig-

inal work, recovery from errors that have not altered the architectural state of a

system can be as straightforward as a pipeline flush and restart. However, the vast

majority of problems in multi-core processors arise not because of flaws at the lo-

cal memory interfaces, but are due to erroneous interactions among cores. In these

cases, by the time the error is detected by one core, system-wide architectural and

microarchitectural state may have already been affected, and one must resort to

checkpointing mechanisms to restore the last known-correct global state and restart

the execution. This was precisely the approach that the authors of the DVMC project

took, utilizing a checkpointing solution called SafetyNet [SMHW02], which they

had previously developed.

SafetyNet relies on logging data in dedicated storage distributed throughout the

system, and on a synchronization subsystem that binds individual cache transac-

tions to invidual epochs. The framework uses a checkpointing clock - a loosely
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synchronized logical time base, which individual nodes use to mark the beginning

of a checkpointing interval, as well as to identify transactions belonging to a certain

interval. To this end, an individual coherence transaction (consisting potentially of

multiple communication steps) is defined to belong to the epoch during which the

previous owner cache received the request and relinquished the ownership of the

line. Thus, upon receipt of a release request, the owner is responsible of piggyback-

ing the current epoch’s ID onto the response, so that the requester may label the

transaction appropriately. Two important consequences of this fact are the apparent

atomicity of memory transactions and unique and definite binding of each transi-

tion to an individual epoch throughout the system. The changes, caused by these

transactions, are maintained in storage logs, associated to each cache in the system.

For optimization of storage, SafetyNet features log-on-change policy, recording the

changes in local cache data/permissions only if they have been modified since the

beginning of the last checkpointing interval. Thus, if a checkpoint needs to be re-

stored, the logs are marshaled in reverse order, reverting the changes and restoring

the global state. Potentially, SafetyNet can store multiple checkpoints simultane-

ously, so that the system can rollback to various points in the past execution. How-

ever, for the purposes of runtime verification, a single checkpoint suffices. Among

the limitations of SafetyNet are the need for special techniques for replaying I/O op-

erations and the need for synchronization traffic or special checkpointing clock. The

former solution has been addressed in such related works as [NMGT06], while the

latter is discussed further in this chapter as part the presentation of the checkpointing

system used in Caspar.

DVMC was the first system to approach the challenge of runtime verification of

multi-cores in an organized and consistent matter: it contained both a distributed de-

tector network and a recovery solution. However, being a checker-based technique,

it incurred somewhat large area penalty, since individual blocks had to be “smart”

to encode various memory consistency invariants and detect violations thereof. In

our discussion of dynamic verification of individual cores in Chapter 6 we pre-

sented hardware patching as a viable alternative to checker-based solutions. Thus,

we propose to apply the same concept to runtime verification of a processor’s cache

subsystem and we investigate the benefits and drawbacks of this type of solution in

detail in the next sections.

8.2 Caspar: A Multi-core Patching Solution

The remainder of this chapter presents Caspar (CAche Subsystem PAtching and Re-

pair) – a novel patching-based runtime validation solution that was designed specif-

ically for multi-core processors. Caspar incorporates on-die cache-event detectors

to identify erroneous situations. Each detector is programmed at system startup

with error-condition patterns that are compared to a cache line’s state each time

a transition occurs in a local or shared cache. The patterns themselves are created

by the chip manufacturer and distributed to end-customers when new errors have



194 8 RUNTIME VERIFICATION IN MULTI-CORES

been discovered and debugged. When a memory-related error is detected by Cas-

par, a recovery and bypass sequence is triggered. The Caspar solution includes also a

lightweight checkpointing system to record the state of processor’s cores and caches

at regular intervals. In case of error, the recovery process begins by restoring the last

checkpoint snapshot of the system. Then, it replays the most recent execution by

relying on a reduced-complexity operation mode of the system, where only one

memory access is performed at a time. This style of execution ensures that there are

no interactions among the processor cores, therefore, memory coherence and con-

sistency can be guaranteed. Finally, after the recovery process has been executed for

a predefined period of time, the system resumes regular operation.

One of the key advantages of Caspar is its small performance impact in the ab-

sence of bugs. On the other hand, when the processor contains errors, the perfor-

mance of the system depends on the frequency of occurrence of the errors. More-

over, the event detectors in Caspar occupy less than 0.01% of the silicon die area

(for the OpenSPARC T1 machine), and the majority of the area overhead is due

to the checkpoint storage space. Note that checkpointing can be leveraged for pur-

poses beyond error recovery (e.g., post-silicon debugging), thus amortizing the cost

of implementing Caspar.

8.3 Caspar’s Design

In this section we overview the structure and operation of Caspar. We assume a

generic multi-core architecture, similar to the one in Figure 8.2. As shown in the

figure, the processor usually consists of multiple cores, each with a local L1 cache.

Controllers manage the caches, satisfying local requests, as well as requests from

other cores received through on-chip interconnect. In addition to the local data stor-

age, the cores have access to a larger shared second-level cache. To deploy Caspar

in such a system we require the addition of a few hardware modules to the base-

line system (darkened blocks in the figure). Note that our solutions is not limited

to this architecture and can be used in other multi-core designs with multiple levels

of caches, hierarchical or point-to-point interconnect, etc. The majority of the area

overhead is due to system-wide recovery, which requires storage space as it is im-

plemented through checkpointing. In Caspar we create a checkpoint of each core’s

state by logging the values of its architectural registers. To checkpoint caches we

implement a copy-on-write policy and record state and value of a line upon change.

Note that checkpoints in Caspar use local storage, eliminating the need to transfer

logged snapshots. In addition to checkpoint storage, Caspar augments each cache

with a programmable cache-event detector – a specialized circuit that compares

transitions experienced by individual lines with a pre-loaded pattern, thereby iden-

tifying memory subsystem errors. If a cache transition matches a detector pattern,

Caspar alerts the cache controller, which, in turn, signals the second-level cache to

initiate recovery and bypass.
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Fig. 8.2 Architecture of a multi-core system augmented for Caspar support. Caspar requires
the addition of detectors at each cache storing error-condition patterns and storage space for system
state snapshots taken at regular intervals.

Caspar’s operation is organized into epochs, as shown in the schematic of Figure

8.3. We assume that Caspar’s event detectors are loaded with appropriate patterns

describing erroneous events at startup. At the end of each checkpointing epochs the

system is synchronized and its state is recorded. Synchronization in our framework

is initiated by one of the cache controllers, level 1 (L1) or level 2 (L2), and forces

completion of all cache transactions in flight. During the synchronization phase no

new memory accesses are allowed to enter the system, thus all cache lines reach sta-

ble protocol states, after which, at the end of the epoch, a new distributed checkpoint

is taken. In the second epoch of the example shown in the figure, one of the detector

circuits identifies a cache transition corresponding to a known coherence issue and

triggers the recovery protocol, which stops program execution and restores the last

checkpoint. The L2 cache controller then starts polling individual cores, allowing

only one memory access at a time over the entire system, thus ensuring absence of

coherence race conditions and enforcing strict ordering of memory accesses. When
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Fig. 8.3 Timeline of a possible Caspar operation sequence. In the example no errors occur
during the first epoch, which completes with system synchronization and a new checkpointing
snapshot. During the second epoch an error occurs and it is detected by Caspar’s cache-event
detectors, triggering the recovery mechanism. The previous checkpoint is restored, then the system
attempts to bypass the error by re-executing while forcing strict ordering of accesses. After forward
progress is made, a new checkpoint is taken and a new epoch commences.

a user-specified number of accesses completes, Caspar stores a new checkpoint, and

the cores resume operation at full performance. Note that after completion of the last

memory operation in recovery mode, the system is again in a stable state, since dur-

ing recovery only one memory operation was executed at a time, thus guaranteeing

that no memory protocol issues due to core interactions could occur.

As discussed above, Caspar can be decomposed into three major components: the

event detectors, which identify bugs, the recovery and bypass mechanism that allows

Caspar to restore the last valid state and circumvent the error, and the checkpointing

system that periodically records the system’s state. In the rest of this section we

discuss each of these components and detail their implementation in Caspar.

8.3.1 Detection and Coverage

Caspar is designed specifically for patching errors in the memory subsystem by

comparing cache events (cache controller’s state machine transitions) to pre-loaded

patterns describing known bugs. Thus, Caspar can cover a wide class of functional

errors associated with unexpected events that are either handled improperly or not

handled by the coherence controller. Moreover, as we demonstrate later, Caspar can

be extended to detect and recover from memory consistency errors. However, in

its current implementation, Caspar is ineffective against bugs that cannot be rep-

resented through local state-machine transitions and are caused by invalid request

timing, etc. The detection feature of Caspar is implemented with event detectors –

small programmable blocks residing at each of the system’s caches. Since each co-

herence transition of a cache line is uniquely defined by a line’s present state and the

input trigger event, the error patterns in the detectors consist of two fields, matching

the state and the event, respectively. Each field is stored as a bit vector, where a 1 in
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any particular position matches a certain trigger or a state. Note that multiple bits in

a pattern can be set simultaneously to encode combinations of erroneous transitions.

The diagram of the hardware event detector is shown in Figure 8.4. During ev-

ery coherence transition, the line’s state and the input event are passed to one-hot

encoders, which convert them to bit-vectors describing the transition. The vectors

are then separately compared with stored patterns on a bit-by-bit basis. The error

detection signal, however, is asserted only if the match occurs in both fields. Caspar

detectors can also be extended to contain several entries, each identical to the one in

the figure, to perform multiple comparisons in parallel.
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Fig. 8.4 Caspar’s hardware event detector. Each bug pattern is partitioned into a state and an
event field, stored in two bit-vectors. Each bit set to 1 in a bit vector corresponds to an erroneous
state or trigger event. During each cache access, the detector encodes the current transition as two
one-hot encoded vectors and compares them with the stored patterns, asserting an error detection
signal only if at least one state and event vector pair match.

We now illustrate Caspar’s detection with the following short example. Assume

that a core is performing a store and the corresponding address line is in the inter-

mediate state “SM” (half-way between “Shared” and “Modified”), when an inval-

idation message arrives from another core. If the cache’s finite state machine was

incorrectly implemented, this race could result in a deadlock or coherence violation

in a non-Caspar system. However, by programming Caspar with a pattern describ-

ing this state (“SM”) and trigger (invalidation event), we can detect and avoid this

error at runtime.

In addition to coherence errors, the Caspar framework enables patching of more

complex and subtle issues related to memory consistency. As it was demonstrated in

the DVMC solution, consistency can be ensured if three system-wide invariants are

guaranteed: uniprocessor ordering, absence of illegal reorderings and cache coher-

ence. As discussed above, event detectors in Caspar recognize dangerous transitions

in the L1 and L2 caches, thus ensuring that the third invariant is upheld. Moreover, as
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was demonstrated in Section 8.1, the checkers for the former two properties can be

implemented efficiently in small logic blocks (non-programmable) that can signal

errors similarly to event detectors. With the addition of such checkers the cover-

age of our approach can be increased to include bugs which manifest themselves as

memory consistency violations.

8.3.2 Recovery and Bypass

Once an error in a program’s execution is detected, Caspar initiates a system-wide

mechanism to recover from the bug and circumvent it. To return the system to a

know-correct state Caspar forces all cores, as well as local and shared caches, to

restore the last checkpoint. Then the system attempts to bypass the error to ensure

forward progress. Since errors in the memory subsystem are triggered by interac-

tions of simultaneous accesses, we designed a bypass system to eliminate such race

conditions, at the cost of reduced performance. During this phase of operation, we

only allow one outstanding memory access in the system at a time, reconfiguring

the L2 cache controller to poll cores for requests directly in a round robin fash-

ion. Note that, in this case, coherence transitions in the system are never suspended

in intermediate states, and cache operations are simplified to the level of the un-

derlying high-level coherence protocol. Thus, correctness of the bypass operation

is sufficiently simplified that it can be verified using powerful formal techniques.

Moreover, since the second-level cache (or memory) explicitly orders each core’s

memory accesses, consistency in bypass mode can also be ensured.

After predefined number of accesses complete in bypass mode, the second-level

cache controller broadcasts a new checkpointing request, so that the stable state

reached in bypass is saved, and normal execution may resume. Note that many more

accesses are usually performed during an epoch’s normal execution than during

bypass, therefore, it is possible that the offending sequence of instructions reoccurs

after recovery completes, and the error is triggered again. However, in this case the

system rolls back only to the most recent checkpoint, reached after the last recovery,

thus guaranteeing forward progress so that the error is eventually circumvented.

Furthermore, since in flight data and message buffers are drained during recovery,

the specific interaction of accesses after bypass is often different than the one that

triggered the recovery originally. Thus, it is possible that when normal operation

resumes, the execution of the same instruction sequence does not produce the same

erroneous event again.

8.3.3 Checkpointing

Checkpointing in Caspar is designed to allow fast and efficient system recovery if

an erroneous event is detected. As mentioned above, storage for checkpoints is dis-
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tributed throughout the system to reside locally with each module whose state is to

be recorded. The implementation of a core’s checkpointing mechanism is straight-

forward, since in microprocessor pipelines it is sufficient to store the architectural

state in order to enable correct replay. In Caspar we provide checkpoint storage for

the cores via shadow registers that contain the architectural state at each snapshot.

Caches and memories are too large to be checkpointed in such a way, so for them

Caspar adopts a copy-on-write policy, recording the previous value or the coherence

state of a cache line only upon its first change after the beginning of a new epoch.

To this end, we augment each cache line with two modification bits to flag the modi-

fication of a line’s data and state during the current epoch. We also create a local log

organized as a hardware queue that records address, original state and data of altered

lines. The queue and the modification bits are accessed concurrently with the main

cache operation and are cleared when a new checkpoint is taken. Then, if a line’s

state is altered during an epoch, we set the corresponding state modification bit and

append the line’s address and previous state to the log queue. It is important to note

that if only the state is modified, then the line’s data is not copied to the log, allowing

for better utilization of the queue storage space. If the block is subsequently altered

again, the new change will not be logged, since we are only recording the informa-

tion necessary to recreate the system’s state at the time of the last checkpoint. To

restore the last checkpoint state, Caspar suspends the cores’ operation and performs

the following two tasks: each core’s architectural state is restored from the shadow

registers and, simultaneously, we traverse the log queues in reverse order, restoring

the state and/or data of the modified cache lines from the logs while resetting the

modification bits. When the traversal is completed, the log queues are cleared.

Although cache checkpoints in the system are distributed, their recording must be

synchronized, ensuring a consistent system state after recovery. In designing Caspar

we decided to avoid specialized physical clocks to synchronize the cores for check-

pointing, as required by solutions such as SafetyNet. Such clock networks would

require significant routing effort to be implemented in a large multi-core CPU, and

incur additional power and area overhead. Instead, Caspar relies on a four-step pro-

cedure, as illustrated in Figure 8.5. The synchronization is invoked by either a signal

from the watchdog timer in the second-level cache (1.a in the figure) or a message

from a cache controller that has exhausted its logging storage space (1.b). Sub-

sequently, the second-level cache controller broadcasts an explicit synchronization

message (2) stopping program execution in all cores. Once all cores have acknowl-

edged completion of all pending operations (3), the L2 broadcasts a “checkpoint”

message and the state of the device is recorded as the new checkpoint (4).

8.4 Post-silicon Debugging with Caspar

In addition to providing runtime protection from subtle cache coherence and mem-

ory consistency bugs, Caspar can be used effectively in a variety of post-silicon de-

bugging and software profiling frameworks. To this end, checkpointing and recovery
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Fig. 8.5 Synchronization for checkpointing snapshot in Caspar. Synchronization requests are
initiated either by the watchdog timer in the level 2 cache controller (1.a) or by a local cache con-
troller that exhausted its log space (1.b). Following the request, the L2 cache controller broadcasts
a synchronization message to all cores (2), who, in turn, stop issuing new memory accesses, wait
for completion of all pending operations and, finally, acknowledge synchronization (3). As the final
step, the L2 controller sends a “checkpoint” message triggering the architectural state of the cores
to be saved, and future changes in local caches to be logged.

capabilities are disabled, allowing the system to run at full speed. In addition, the

detectors can be reconfigured to monitor and count the number of occurrences of

each event, or to issue a system trap on a match. In this setup, the patterns loaded

in the detectors do not describe erroneous events, but rather transitions that are of

particular interest to the validation team. The system can be further enhanced with

dynamic pattern replacement to detect complex sequences of memory subsystem

events and further aid in the debugging process.
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8.5 Experimental Evaluation

To evaluate the performance of the Caspar patching solution, we used a setup similar

to the one used to analyze our post-silicon validation system Dacota (see Chapter 5).

We simulated the operation of Caspar in a 16-node multi-core processor using the

Wisconsin Multifacet GEMS memory subsystem simulator [MSB+05]. The local

L1 caches were 64KB each, while the shared L2 cache had a size of 4MB. Cores

were interconnected with a mesh network and used the MOESI directory protocol

for coherence. Caspar was implemented inside the GEMS memory tester module as

a collection of functions to initiate checkpointing, recovery and bypass procedures,

and to manage the event detectors, which were inserted into the system’s caches and

directory controller.

Caspar was tested using a set of twenty benchmarks that included ten traces of

SPLASH2 suite [WOT+95] and additional randomly generated stimuli. We sampled

the SPLASH2 benchmark traces for 10,000,000 instructions, using the Virtutech

Simics simulator [MCE+02]. Random benchmarks, on the other hand, contained

1,000,000 memory accesses and varied in their degree of data sharing and total ad-

dress space used. Several of these synthetic programs had a small data set and could

fit entirely in the L1 caches of individual cores, thus eviction was never invoked.

Other random benchmarks has a much larger profile than the side of the level 1 sys-

tem caches so, throughout their execution, lines were frequently moved between the

shared L2 cache and the local caches. Two of the synthetic benchmarks used GEMS’

built-in random traffic generators executing the “barrier” and “locks” patterns.

8.5.1 Error Resiliency Analysis

In our first study, we created thirteen different buggy versions of the multi-core

processor under test, by injecting a different bug in each variant. The bugs, listed

in Table 8.1, affect various modules of the design and were derived from publicly

available errata of commercial multi-core processors and then adapted to our evalu-

ation framework. Each bug was associated with a particular state machine transition

and was described uniquely by the error patterns loaded in Caspar’s event detec-

tors. These errors represent complex corner cases of operation of the L1 caches, the

L2 cache and the directory unit, when multiple accesses race for resources, or an

unexpected request arrives when the system is in an intermediate coherence state.

Memory-related errors such as these can often lead to cache corruption and/or dead-

lock in real life systems.

For each bug, we calculated the frequency of occurrence by recording the number

of times the corresponding state and trigger combinations occurred during normal

operation (i.e., with checkpointing and detection disabled) while running all of our

testcases. These frequency values are reported in the last column of Table 8.1. We

then re-run our experiment with Caspar in place and found that, when the patterns

identifying the bugs were loaded into the detectors, all test completed correctly.



202 8 RUNTIME VERIFICATION IN MULTI-CORES

Table 8.1 Design bugs injected in our experimental platform with relative frequency of oc-

currence (occurrences/1,000,000 cycles).

Bug name Description of the error Frequency

L1 Store race
L1 transitions from S to M while
another cache issues a store

0.32

L1 WBack+Load
L1 evicting dirty data while
another cache issues a load

0.72

L1 Owner Evict
+Load

L1 owner evicting dirty data while
another cache issues a load

0.04

L2 Block+Unblock
L2 blocked, waiting for ack while
requester issues unblock

34.3

L2 Block+Load
L2 blocked, waiting on directory
while L1 issues a load to the line

0.03

L2 Load race L2 load while another load arrives 0.12

L2 WB L2 WB while dirty data arrives 2.72

Dir Block+Unblock
Directory blocked on a load while
L2 issues unblock

35.1

Dir Clean WB mem
Directory blocked on WB while
clean WB forwarded to mem

12.3

Dir Dirty WB mem
Directory blocked on WB while
dirty WB forwarded to mem

21.7

Dir Clean WB L2
Directory blocked on WB while
clean WB forwarded to L2

0.04

Dir Dirty WB L2
Directory blocked on WB while
dirty WB forwarded to L2

0.09

Dir Store+Unblock
Directory blocked on a store while
L2 issues unblock

34.2

8.5.2 Checkpointing Overhead

In our second study we analyzed the overhead of Caspar’s checkpointing process.

Recall that, to take a checkpointing snapshot, the system must first synchronize, and

thus the execution of some memory accesses must be delayed. Consequently, longer

epochs result in less frequent synchronization, and less delay impact on the appli-

cation. On the other hand, due to the copy-on-write policy for cache checkpointing,

longer epochs can only be achieved with larger log sizes, which in turn imposes

a higher area overhead. We investigate this tradeoff in Figure 8.6, where we plot

performance and area penalty for a range of epoch lengths. The area overhead is

calculated as the percentage of cache lines that were modified on average during

each simulation’s epoch, and thus had to be logged. Each data point is computed
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as an average over the twenty benchmarks in our setup. Individual benchmarks de-

viated slightly from this average: less than 4% for synthetic random programs and

less than 1% for SPLASH2 applications. As the figure indicates, longer epochs lead

to better performance when no errors manifest, as in our setup for this evaluation.

However, in presence of errors, longer epochs will have a higher performance im-

pact because the number of cycles spent in bypass mode increases – most often due

to several recovery events caused to a same bug manifesting far from the begin-

ning of the epoch. Based on these findings, for the subsequent experiments, we set

the checkpointing epoch length to 8,000 cycles, which translates to roughly a 2.4%

performance impact and a 5.8% area overhead.
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Fig. 8.6 Performance and area of Caspar’s checkpointing system. The chart reports perfor-
mance and area overhead imposed by the checkpointing infrastructure for varying epoch lengths.
With longer intervals between checkpoints (i.e., epoch lengths) more cache lines must be logged,
leading to higher area overhead. Performance overhead, on the other hand, is smaller for longer
epochs, due to the fact that system synchronization is invoked less frequently.

8.5.3 Caspar Recovery Performance

In addition to evaluating the overhead of our solution strictly due to checkpointing,

we also investigated the performance overhead entailed by the Caspar detection and

recovery mechanisms by executing our twenty benchmarks in presence of different

bugs. In this study, we fixed the bypass period length to 2,000 instructions, and

then recorded the fraction of the execution time that the system spent in each of the

four phases: normal operation, synchronization for checkpoint, recovery and bypass.

The results of the study are shown in Figure 8.7, where we also plot the average

over the thirteen design bugs and report again the bug occurrence frequencies from

Table 8.1 for reference. As the experiment demonstrates, for more frequent bugs,

a significant portion of the execution is spent in recovery and bypass, while, for

rare errors, this fraction is negligible. Note that all errors were detected by Caspar

precisely, since they were all associated with unique transitions of the caches’ finite
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state machines. In this study we observed that, sometimes, several detections were

required to bypass a single bug instance. This was the case when the error occurred

late in an epoch and a 2,000-instruction bypass was insufficient to circumvent the

problem within the first recovery. We also observed situations where several error

situations, clustered nearby each other in program execution, were circumvented

with just one bypass. Therefore, longer bypass sequences may be beneficial for bugs

that are frequent or tend to occur in groups.
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Fig. 8.7 Breakdown of execution time. Fraction of time spent in normal execution, checkpoint-
ing, recovery and bypass, for each of the thirteen design bugs over all benchmarks. Note that for
errors that have high occurrence rate (as indicated by the frequency values) recovery and bypass
constitute a large fraction of the total execution time, while for rare bugs this fraction is negligible.

To analyze the impact of the bypass sequence length on the system’s perfor-

mance we conducted an additional study on five of the design bugs with a widely

varied frequency of occurrence. In this experiment the bypass length varied from

500 to 5,000 instructions and the overall performance slowdown of the system was

recorded (see Figure 8.8). As it can be noted in the figure, longer bypass intervals are

beneficial for frequent errors, primarily because they allow to circumvent an error

at the first recovery phase and they have a higher chance of covering multiple errors

in a single bypass. On the other hand, we notice an opposite trend for rare bugs (L1

WBack+Load and L2 Block+Load). In these cases, errors instances are significantly

farther from each other, thus a longer bypass period did not reduce the number of

recoveries and only incurred higher performance overhead. From this study we con-

clude that Caspar’s fixed-length bypass strategy is not optimal for all bugs. Indeed,

the system could be improved to load the number of instructions to run in bypass

together with each bug pattern or, to calculate the bypass length dynamically based

on where the last error was detected from the beginning of the epoch.
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8.5.4 Area Overhead

Finally, we investigated the area overhead of Caspar’s event detectors. To this end,

we implemented the detectors for the L1 and L2 caches in Verilog HDL and syn-

thesized them using the TSMC 90nm technology. The area of the L1 and L2 cache

detectors was found to be 984.2µm2 and 2,422µm2, respectively. In comparison,

an OpenSPARC T1 design, which has eight cores with private caches and a shared

four-bank L2 cache, has an approximate area of 378mm2 [LTS+07]. Thus, placing

event detectors in each private cache and in each L2 bank incurs an area overhead of

0.005%, a negligible penalty compared to the area of the checkpointing log storage

analyzed in Section 8.5.2. Considering that the area overhead of the checkpointing is

calculated as a percentage of the area of the caches, we find that in the OpenSPARC

T1 design the checkpointing logs and detectors of Caspar will occupy less than 3%

of the total processor die area.

8.6 Summary

In this chapter we overviewed two runtime verification solutions designed specifi-

cally for modern multi-core processors. The first technique, Dynamic Verification

of Memory Consistency (DVMC), is based on non-programmable checkers that en-

force three invariants common to all memory consistency models: uniprocessor or-

dering, allowed reordering and cache coherence. When a violation to an invari-

ant is detected, DVMC uses a checkpointing technique to roll back the processor’s

state and restart execution. The second solution presented, called Caspar, was de-

signed by us for efficient in-the-field patching and repair of the memory subsystem

in multi-core processors. As DVMC, Caspar relies on periodic system checkpoint-
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ing, but uses programmable event detectors instead of hardware checkers to identify

erroneous transitions in the cache controllers’ state machines. When an error is de-

tected during the processor’s operation, Caspar suspends the execution, recovers the

last correct checkpointed system state, and attempts to bypass the bug by enforc-

ing race-free memory activity. Our experimental results demonstrate that Caspar’s

checkpointing scheme incurs little performance and area penalty (2.4% and 5.8%,

respectively, for the target system in our experiments). The DVMC technique, on

the other hand, relies on a more heavyweight checkpointing scheme (SafetyNet),

which has lower performance impact, but occupies a larger fraction of a silicon die.

Nevertheless, with no errors present in the design, the performance impact of Cas-

par (due to checkpointing) is still quite small. When errors do occur, recovery can

potentially become expensive; however, we found experimentally that with low er-

ror frequencies (which is expected in commercial systems that undergo heavy pre-

and post-silicon verification) the overall performance penalty is also small. These

features allow Caspar to work as an effective patching solution, protecting even the

most complex of today’s designs.
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Chapter 9

ENSURING CORRECTNESS IN FUTURE

MICROPROCESSORS

Abstract. In the concluding chapter of this book we present our outlook at the future

of processor verification. As the complexity of microprocessors grows and volumes

of production increase, hardware vendors are subjected to greater risks of showstop-

per bugs. Yet, when it comes to verification, the microprocessor industry is often

reactive, developing new solutions after critical escapes occur. Here, we advocate a

proactive approach to verification, where the chip’s architecture is analyzed early in

the design phase and pre-silicon, post-silicon and runtime techniques are integrated

and developed according to a design’s needs. In this chapter we also overview up-

coming trends in microprocessor architectures, such as heterogeneous multi-core

structures and complex on-chip interconnects, and discuss how these trends will

affect the nature of processor validation.

9.1 Advances and Trends in Processor Validation

Over the last four decades, advances in processor validation followed the evolution

of the designs under verification themselves, rapidly increasing in capabilities and

scope. Yet, as we discussed throughout this book, our ability to design digital cir-

cuits is constantly outpacing our ability to verify them, widening the verification

gap with every new generation of microprocessors. The response of chip designing

companies to this trend has been to employ mostly extensive, rather than intensive

approaches. In other words, verification teams and capital investments have grown,

while methods of validation have shown little change. Quantum improvements in

verification technology and new techniques have been developed most often in re-

sponse to the discovery of critical escape errors that had a major impact on a proces-

sor product. For example, the FDIV bug that escaped in the Intel Pentium processor,

and the subsequent recall of defective parts have led to significant profit losses and

caused a wave of negative publicity for Intel. This highlighted to all hardware ven-
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dors the value of employing formal pre-silicon verification practices, which could

have caught this error, in their design flows. As a response, Intel staffed its teams

with several additional verification engineers that focused exclusively on formal ver-

ification aspects, particularly of datapath units, leading to effective contributions (in

terms of discovering additional bugs early in the development phase) in subsequent

product generations.

Similarly, escaped control logic errors showed that without microcode patch-

ing techniques, the only viable options left to manufacturers upon discovery of a

bug were to recall the faulty components or to completely disable the affected on-

die features, often leading to severe performance loss. The 2007 escaped bug in

AMD’s newest Phenom processor, which was related to the memory subsystem, is

undoubtedly pushing the industry to step up verification efforts in cache-hierarchy

and on-chip interconnect, as well as to consider solutions that can ensure the runtime

correctness of memory operations. This bug and the trends towards increasing the

number of cores in a single chip, which in turn leads to extremely complex memory

subsystems, has already stimulated much research in academic environments and

has advocated the development of several of the techniques presented in this book.

9.2 A Proactive Approach to Verification

We believe, however, that in general a reactive approach to verification, where ac-

tions are taken only after a major slip-up, is fundamentally flawed: the financial

blow of a nasty escape to a manufacturing company may be too much to recover

with subsequent products. Production volumes today are much higher than, for in-

stance, in the days of the first Pentium generation, thus recalling millions of defected

microprocessors would cost a company today significantly more than the $420 mil-

lions reported by Intel in 1994. Delays in the release of a new processor have sim-

ilar effects in today’s competitive markets. Therefore, hardware validation must be

proactive: researchers in industry must analyze new designs for error vulnerabili-

ties, anticipate the types of errors that may occur in them and design verification

techniques to fulfill the project needs. To some degree, companies like Intel have al-

ready started to deploy this early validation analysis, however, more proactive steps

must be taken for future generations, when designs become even more complex.

In addition to complexity and device density growth, recently developed pro-

cessors are also incorporating new features, never tackled by verification before.

As with all cutting-edge, untested technologies, these features present greater ex-

posure to escaped bugs and, therefore, require the development of novel validation

techniques, geared specifically for them. For example, in this book we had sev-

eral discussions on validation solutions specific to multi-core designs. Before the

appearance of this processor architecture in the early 2000s, much of vendors’ ver-

ification resources were spent on a device’s computational engine. In multi-cores,

however, the focus has shifted, because datapaths are simpler and thus are easier to

validate, while the communication between cores through the memory subsystem
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has notably increased in complexity. Therefore, novel approaches for pre-silicon,

post-silicon and runtime verification of cache coherence and memory consistency

have been and are being developed. In the future, with the number of cores in a chip

expected to increase to tens and even hundreds, the importance and impact of the

interconnect subsystem will also grow, and, consequently, its validation will require

a much more significant share of a company’s resources.

It is also expected that complex interconnects in multi-core designs will also re-

quire scope of verification to be extended to include statistical validation of quality

of service (QoS). With more and more diverse components being integrated onto a

processor die, today’s microprocessors begin to look more like systems on a chip

(SoC), than the traditional computing devices of the past. For instance, the latest

CPU generations integrate on-chip on-die memory controllers and dedicated mod-

ules to communicate serially with peripheral devices. Furthermore, it is projected

that individual processor cores will become more application-specific in the future.

The initial stages of this trend can already be noted today with the integration of

graphics processing units and cryptographic cores on the same silicon die as the

general purpose processor. Consequently, on-chip communication protocols will

have to adapt to allow for different classes of traffic, each necessitating specific

guarantees for quality of service. For instance, data exchanges between general pur-

pose computational cores should be protected by guarantees of reliable delivery and

maximum acceptable latency to ensure the absence of deadlocks and inconsistent

memory states. In contrast, traffic streams to and from a graphics core or a hardware

video codec (COmpressor-DECompressor) can be delayed, and it is often accept-

able to even drop data packets in case of contention. As a result, a video output

could become jittery, degrading user experience; however, the overall correctness

of the system’s computation would not be compromised. A similar reasoning can

be made for the reliability of the data delivered to the various units: indeed, video

streams can typically endure a much higher error rate than control and general pur-

pose computation traffic. To address such situations, engineers could overdesign the

on-die network to effectively cope with peak amounts of traffic, eliminating the pos-

sibility of contention in the network altogether. The price of this choice, however,

may be a dramatic decrease in the power efficiency of the device, even to the point

of being unviable. An alternative approach is to provide QoS capabilities in deliv-

ering different message streams, similar to what is done today in the networking

domain, where different classes of traffic are provided statistically with different la-

tency guarantees. For instance, a typical quality of service may enforce a router con-

straint to forward no more than 60% of low priority traffic when the total influx into

the router exceeds a certain threshold. Such a constraint allows costly on-die net-

working resources to be used much more efficiently. However, engineers validating

this type of system will then be faced with the prospect of verifying these statistical

guarantees for individual routers, as well as for the entire network-on-chip. Formal

verification, in this case, may benefit greatly from advances incorporating queueing

theory, while self-guiding test generators will need to obtain feedback from on-chip

routing nodes to be able to stress various QoS operation modes in pre-silicon models

and early hardware prototypes.
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Runtime verification is also bound to become an important factor in future de-

signs, as semiconductor technology continues to shrink the size of on-die features.

As transistors become smaller, they also become less reliable and more susceptible

to dynamic errors, e.g., energetic particle strikes, voltage noise, etc. Moreover, with

smaller feature sizes, the average lifetime of individual transistors decreases, and

circuits made of billions of such unreliable components become likely to fail within

just a few years. It is important to note here, that if no protection measures are

taken, the failure of a single transistor can cause the entire system to malfunction

and become unusable. Today, silicon wearout issues are addressed with a host of

techniques in both the design and manufacturing domains. In the latter, freshly fab-

ricated silicon dies are subjected to burn-in tests, in which devices are overclocked

and overheated while they are being subjected to stressful computational stimuli:

the goal is to make the weakest transistors fail rapidly. Engineers then validate that

a device is still functioning correctly after the burn-in test. When that is the case,

some assurance can be attained that the silicon part will not break in a short term.

In addition, to ensure that individual transistor faults do not render an entire pro-

cessor inoperable, designers often add redundant modules to the system that can be

enabled upon failure of main processing blocks. Redundancy can, therefore, pro-

vide a reliable recovery mechanism, however, it becomes crucial in this case to

detect and diagnose errors in a timely manner at runtime. This is where runtime val-

idation techniques, which check the correctness of a device’s operation in the field,

can play a vital role. These solutions can silently monitor the health of a computer

system and invoke maintenance, reconfiguration and repair algorithms, if the effects

of aging begin to appear and manifest themselves as functional errors. Similarly,

runtime techniques can provide high-quality protection from dynamic errors (led by

transient errors in transistors), which may corrupt computation results and/or com-

munication messages. In fact, the majority of the runtime techniques presented in

Chapter 6 include dynamic error detection and correction as one of their primary

goals. Pre- and post-silicon verification approaches, on the other hand, need to be

extended to validate the performance of dynamic solutions at design time, so error

detection and recovery hardware itself is reliable and correct. Overall, with semi-

conductor technology moving deeper into the sub-micron domain, we expect that

verification and reliability concerns will be merged together, and errors of various

origins, such as functional, transient and wearout-related, will all be handled effi-

ciently by the same robust mechanisms.

Finally, future processors will probably include components from outside the tra-

ditional CMOS domain, which will also need to be verified to interact correctly with

the CPU’s digital logic. Micro-electro-mechanical devices and biological labs-on-

a-chip are, perhaps, two of the most intriguing examples of technologies that may

be incorporated into future processors. Verification of the internal functionality of

these exotic components and their communication with the rest of the processor

logic will require engineering knowledge from mechanics, physics, chemistry and

biology. Moreover, simulation and formal analysis tools will have to be augmented

to take these novel technologies into account. Likewise, post-silicon validation for

such components will be extended into domains of mechanical and biological test-
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ing. These examples are, however, somewhat extreme and it is more likely that the

majority of processors will avoid such unusual peripherals. Nevertheless, as we

pointed out before, on-chip components in modern processors are becoming het-

erogenous, and to cope with this growing diversification validation must be fused

with techniques from other fields. Most importantly, however, engineers in industry

and academia alike must always beware of growing design complexity and look into

novel solutions to try to close the verification gap.



References

[AAF+04] Allon Adir, Eli Almog, Laurent Fournier, Eitan Marcus, Michal Rimon, Michael
Vinov, and Avi Ziv. Genesys-pro: Innovations in test program generation for func-
tional processor verification. IEEE Design & Test of Computers, 21(2):84–93, 2004.

[ABD+06] Miron Abramovici, Paul Bradley, Kumar Dwarakanath, Peter Levin, Gerard
Memmi, and Dave Miller. A reconfigurable design-for-debug infrastructure for
SoCs. In DAC, Proceedings of the Design Automation Conference, pages 7–12,
July 2006.

[ABF94] Miron Abramovici, Melvin A. Breuer, and Arthur D. Friedman. Digital Systems

Testing and Testable Design. Wiley-IEEE Press, revised edition, September 1994.
[Acc04] Accellera. Property Specification Language Reference Manual, Rev 1.1, June 2004.

http://www.eda.org/vfv/docs/PSL-v1.1.pdf.
[AMD03] Advanced Micro Devices, Inc. AMD AthlonTMProcessor Model 6 Revision Guide,

October 2003. http://www.amd.com/us-en/assets/content_type/
white_papers_and_tech_docs/24332.pdf.

[AMD05] Advanced Micro Devices, Inc. Revision Guide for AMD AthlonTM64 and AMD

OpteronTMProcessors, August 2005. http://www.amd.com/us-en/

assets/content_type/white_papers_and_tech_docs/25759.

pdf.
[AMD08] Advanced Micro Devices, Inc. Revision Guide for AMD Family 10h Proces-

sors, April 2008. http://.amd.com/us-en/assets/content_type/

white_papers_and_tech_docs/41322.PDF.
[AMD09] AMD PhenomTMX4 Quad-Core and AMD PhenomTMX3 Triple-Core Proces-

sors for Home, 2009. http://www.amd.com/us-en/Processors/

ProductInformation/0,,30_118_15331_15332,00.html.
[AMS08] Charles J. Alpert, Dinesh P. Mehta, and Sachin S. Sapatnekar. Handbook of Algo-

rithms for Physical Automation. Taylor and Francis, first edition, 2008.
[Arv03] Arvind. Bluespec: A language for hardware design, simulation, synthesis and veri-

fication. In MEMOCODE, Proceedings of the ACM/EEE International Conference

on Formal Methods and Models for Co-Design, page 249, June 2003.
[ASL03] Dennis Abts, Steve Scott, and David J. Lilja. So many states, so little time: Verifying

memory coherence in the Cray X1. In IPDPS, Proceedings of the International

Symposium on Parallel and Distributed Processing, page 11.2, April 2003.
[Aus00] Todd Austin. DIVA: A dynamic approach to microprocessor verification. Journal

of Instruction-Level Parallelism, 2:1–26, May 2000.
[BA00] Michael Bushnell and Vishwanti Agrawal. Essentials of Electronic Testing for Dig-

ital, Memory and Mixed-signal VLSI Circuits. Springer, 2000.
[BA08] David Burger and Todd Austin. The SimpleScalar toolset, version 3.0, 2008. http:

//simplescalar.com.

213
DOI 10.1007/978-1-4419-8034-2, © Springer Science+Business Media, LLC 2011 

I. Wagner and V. Bertacco, Post-Silicon and Runtime Verification for Modern Processors,



214 References

[BASS07] Tommy Bojan, Manuel A. Arreola, Eran Shlomo, and Tal Shachar. Functional cov-
erage measurements and results in post-silicon validation of CoreTM2 Duo family.
In HLDVT, Proceedings of the International Workshop on High Level Design Vali-

dation and Test, pages 145–150, November 2007.
[BAWR07] Jayanta Bhadra, Magdy S. Abadir, Li-C. Wang, and Sandip Ray. A survey of hy-

brid techniques for functional verification. IEEE Design and Test of Computers,
24(2):112–122, March 2007.

[BBB+87] Randal E. Bryant, Derek L. Beatty, Karl Brace, Kyeongsoon Cho, and Thomas Shef-
fler. COSMOS: A compiled simulator for MOS circuits. In DAC, Proceedings of

the Design Automation Conference, pages 9–16, June 1987.
[BBS90] Derek L. Beatty, Randal E. Bryant, and Carl-Johann H. Seger. Synchronous circuit

verification by symbolic simulation: An illustration. In Proceedings of Sixth MIT

conference on advanced research in VLSI, pages 98–112, April 1990.
[BDF+03] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf

Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. In

SOSP, Proceedings of the ACM Symposium on Operating Systems Principles, pages
164–177, October 2003.

[BEA+08] Shane Bell, Bruce Edwards, John Amann, Rich Conlin, Kevin Joyce, Vince Le-
ung, John MacKay, Mike Reif, Liewei Bao, John Brown, Matthew Mattina, Chyi-
Chang Miao, Carl Ramey, David Wentzlaff, Walker Anderson, Ethan Berger,
Nat Fairbanks, Durlov Khan, Froilan Montenegro, Jay Stickney, and John Zook.
TILE64TMprocessor: A 64-core SoC with mesh interconnect. In ISSCC, Proceed-

ings of the International Solid State Circuits Conference, pages 88–598, February
2008.

[BEC06] Keith H. Bierman, David R. Emberson, and Liang T. Chen. U.S. Patent no. 7133818:

Method and apparatus for accelerated post-silicon testing and random number gen-

eration. Sun Microsystems, Inc., November 2006.
[Ben01] Bob Bentley. Validating the Intel R© Pentium R© 4 microprocessor. In DAC, Pro-

ceedings of the Design Automation Conference, pages 224–228, June 2001.
[Ben05] Bob Bentley. Validating a modern microprocessor. In CAV, Proceedings of the

International Conference on Computer Aided Verification, pages 2–4, July 2005.
[Ber05] Valeria Bertacco. Formal Verification Scalable Hardware Verification With Sym-

bolic Simulation. Springer, first edition, 2005.
[BHMSV84] Robert K. Brayton, Gary D. Hachtel, Curtis T. McMullen, and Alberto L.

Sangiovanni-Vincentelli. Logic Minimization Algorithms for VLSI Synthesis.
Kluwer Academic Publishers, first edition, 1984.

[BHS99] Eric B. Brett, David P. Hunter, and Sharon L. Smith. Moving Atom to Windows NT
for Alpha. Compaq DIGITAL Technical Journal, 10(2):1–26, January 1999.

[BLL+04] Michael Behm, John Ludden, Yossi Lichtenstein, Michal Rimon, and Michael Vi-
nov. Industrial experience with test generation languages for processor verification.
DAC, Proceedings of the Design Automation Conference, pages 36–40, June 2004.

[BM05] Ali A. Bayazit and Sharad Malik. Complementary use of runtime validation and
model checking. In ICCAD, Proceedings of the International Conference on Com-

puter Aided Design, pages 1052–1059, 2005.
[Boc07] Bochs: The open source IA-32 emulation project, September 2007. http://

bochs.sourceforge.net/.
[BP80] Henry Baker and Clinton Parker. High level language programs run ten times faster

in microstore. ACM SIGMICRO Newsletter, 11(3-4):171–177, 1980.
[BRB90] Karl Brace, Richard Rudell, and Randal E. Bryant. Efficient implementation of a

BDD package. In DAC, Proceedings of the Design Automation Conference, pages
40–45, June 1990.

[Bry85] Randal E. Bryant. Symbolic verification of MOS circuits. In Proceedings of Chapel

Hill Conference on VLSI, pages 419–438, May 1985.
[Bry86] Randal E. Bryant. Graph-based algorithms for Boolean function manipulation.

IEEE Transactions on Computers, 35:677–691, 1986.



References 215

[Car90] Adrian Carbine. U.S. Patent no. 5253255: Scan mechanism for monitoring the state

of internal signals of a VLSI microprocessor chip. Intel Corporation, November
1990.

[CBM89] Oliver Coudert, Christian Berthet, and Jean C. Madre. Verification of synchronous
sequential machines based on symbolic execution. In Proceedings of the Interna-

tional Workshop on Automatic Verification Methods for Finite State Systems, pages
365–373, June 1989.

[CBM05] Kai-hui Chang, Valeria Bertacco, and Igor Markov. Simulation-based bug trace min-
imization with BMC-based refinement. In ICCAD, Proceedings of the International

Conference on Computer Aided Design, pages 1045–1051, November 2005.
[CBM07a] Kai-hui Chang, Valeria Bertacco, and Igor Markov. Automating post-silicon de-

bugging and repair. In ICCAD, Proceedings of the International Conference on

Computer Aided Design, pages 91–98, November 2007.
[CBM07b] Kai-hui Chang, Valeria Bertacco, and Igor Markov. Simulation-based bug trace

minimization with BMC-based refinement. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 26(1):152–165, 2007.
[CBRZ01] Edmund M. Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded

model checking using satisfiability solving. Formal Methods in System Design,
19(1):7–34, 2001.

[CGP08] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. MIT

Press, sixth edition, 2008.
[CJB79] William C. Carter, William H. Joyner, and Daniel Brand. Symbolic simulation for

correct machine design. In DAC, Proceedings of the Design Automation Conference,
pages 280–286, June 1979.

[CKM+04] William D. Corti, Robert Kenny, Joseph O. Marsh, Steven C. Parker, Frank X. Scan-
zano, and Michael Won. U.S. Patent no. 6834360: On-chip logic analyzer. Interna-
tional Business Machines Corporation, December 2004.

[CMA08] Kypros Constantinides, Onur Mutlu, and Todd Austin. Online design bug detection:
RTL analysis, flexible mechanisms, and evaluation. In MICRO, Proceedings of the

International Symposium on Microarchitecture, pages 282–293, November 2008.
[CMH00] David Van Campenhout, Trevor Mudge, and John P. Hayes. Collection and analysis

of microprocessor design errors. IEEE Design and Test of Computers, 17(4):51–60,
2000.

[CMP08] Kaiyu Chen, Sharad Malik, and Priyadarsan Patra. Runtime validation of memory
ordering using constraint graph checking. In HPCA, Proceedings of the Interna-

tional Symposium on High-Performance Computer Architecture, pages 415–426,
February 2008.

[CSG98] David Culler, Jaswinder P. Singh, and Anoop Gupta. Parallel Computer Architec-

ture: A Hardware/Software Approach. Morgan Kaufmann, first edition, 1998.
[CVK04] Ben Cohen, Srinivasan Venkataramanan, and Ajeetha Kumari. Using PSL/Sugar for

Formal and Dynamic Verification. VhdlCohen Publishing, second edition, 2004.
[CWBM07] Kai-hui Chang, Ilya Wagner, Valeria Bertacco, and Igor Markov. Automatic error

diagnosis and correction for RTL designs. In HLDVT, Proceedings of the Interna-

tional Workshop on High Level Design Validation and Test, pages 65–72, November
2007.

[CYGC06] Xiaofang Chen, Yu Yang, Ganesh Gopalakrishnan, and Ching-Tsun Chou. Re-
ducing verification complexity of a multicore coherence protocol using as-
sume/guarantee. In FMCAD, Proceedings of the Formal Methods in Computer

Aided Design Conference, pages 81–88, November 2006.
[DBB07] Andrew DeOrio, Adam Bauserman, and Valeria Bertacco. Chico: An on-chip hard-

ware checker for pipeline control logic. In MTV, Proceedings of the International

Workshop on Microprocessor Test and Verification, pages 91–97, December 2007.
[DBB08] Andrew DeOrio, Adam Bauserman, and Valeria Bertacco. Post-silicon verification

for cache coherence. In ICCD, Proceedings of the International Conference on

Computer Design, pages 348–355, October 2008.



216 References

[DDHY92] David L. Dill, Andreas J. Drexler, Alan J. Hu, and C. Han Yang. Protocol verifica-
tion as a hardware design aid. In ICCD, Proceedings of the International Conference

on Computer Design, pages 522–525, October 1992.
[DDJ06] DDJ Microprocessor Center, 2006. http://www.x86.org/.
[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification theory.

Journal of the Association for Computing Machinery, 7(3):201–215, July 1960.
[DWB09] Andrew DeOrio, Ilya Wagner, and Valeria Bertacco. Dacota: Post-silicon validation

of the memory subsystem in multi-core designs. In HPCA, Proceedings of the Inter-

national Symposium on High-Performance Computer Architecture, pages 405–416,
February 2009.

[ES03] Niklas Een and Niklas Sorensson. An extensible SAT-solver. In Theory and Appli-

cations of Satisfiability Testing, volume 2919 of Lecture Notes in Computer Science,
pages 502–518. Springer, 2003.

[EWR00] Travis Eiles, Gary Woods, and Valluri Rao. Optical probing of flip-chip-packaged
microprocessors. In ISSCC, Proceedings of the International Solid State Circuits

Conference, pages 220–221, February 2000.
[FKL04] Harry Foster, Adam Krolnik, and David Lacey. Assertion-based design. Springer,

second edition, 2004.
[FZ03] Shai Fine and Avi Ziv. Coverage directed test generation for functional verification

using Bayesian networks. In DAC, Proceedings of the Design Automation Confer-

ence, pages 286–281, June 2003.
[GC95] Michael D. Goddard and David S. Christie. U.S. Patent no. 5796974: Microcode

patching apparatus and method. Advanced Micro Devices, Inc., November 1995.
[Ger03] Steven German. Formal design of cache memory protocols in IBM. Formal Methods

in System Design, 22(2):133–141, 2003.
[Glu06] Alon Gluska. Practical methods in coverage-oriented verification of the Merom

microprocessor. In DAC, Proceedings of the Design Automation Conference, pages
332–337, July 2006.

[GTKS05] Mehmet H. Gunes, Mitchell Thornton, Fatih Kocan, and Stephen Szygenda. A and
comparison of digital logic simulators. In MWSCAS, Proceedings of the Midwest

Symposium on Circuits and Systems, pages 744–749, August 2005.
[HEL+86] Mark D. Hill, Susan Eggers, Jim Larus, George Taylor, Glenn Adams, B. K. Bose,

Garth A. Gibson, Paul Hansen, Jon Keller, Shing Kong, Corinna Lee, Daebum Lee,
Joan Pendleton, Scott Ritchie, David A. Wood, Ben Zorn, Paul Hilfinger, Dave
Hodges, Randy H. Katz, John Ousterhout, and Dave Patterson. Design decisions
in SPUR. IEEE Computer, 19(11):8–22, November 1986.

[HKM01] Faisal I. Haque, Khizar A. Khan, and Jonathan Michelson. The Art of Verification

with Vera. Verification Central, first edition, 2001.
[HMN01] Yoav Hollander, Matthew Morley, and Amos Noy. The e language: A fresh sep-

aration of concerns. In TOOLS, Proceedings of the, International Conference on

Technology of Object-Oriented Languages, pages 41–50, March 2001.
[HS06] Gary D. Hachtel and Fabio Somenzi. Logic Synthesis and Verification Algorithms.

Springer, first edition, 2006.
[HSH+00] Pei-Hsin Ho, Thomas Shiple, Kevin Harer, James Kukula, Robert Damiano, Valeria

Bertacco, Jerry Taylor, and Jiang Long. Smart simulation using collaborative formal
and simulation engines. In ICCAD, Proceedings of the International Conference on

Computer Aided Design, pages 120–126, November 2000.
[HTB+09] Richard Ho, Michael Theobald, Brannon Batson, J.P. Grossman, Stanley C. Wang,

Joseph Gagliardo, Martin M. Deneroff, Ron O. Dror, and David E. Shaw. Post-
silicon debug using formal verification waypoints. In DVCon, Proceedings of the

Design and Verification Conference and Exhibition, pages 1–7, February 2009.
[IBM05] International Business Machines Corporation. IBM PowerPC 750GX

and 750GL RISC Microprocessor Errata Notice, July 2005. http:

//www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/

CC0918EAD88CB09E87256F5C006FF9E6.



References 217

[IEE01a] Institute of Electrical and Electronics Engineers. Standard test access port

and boundary-scan architecture. IEEE Std. 1149.1-2001., 2001. http://

ieeexplore.ieee.org/servlet/opac?punumber=7481.
[IEE01b] Institute of Electrical and Electronics Engineers. Standard Verilog hardware de-

scription language. Std 1364-2001., 2001. http://ieeexplore.ieee.org/
servlet/opac?punumber=7578.

[IEE04] Institute of Electrical and Electronics Engineers. Behavioural languages - Part

1-1: VHDL language reference manual. IEC 61691-1-1 First edition 2004-10;

IEEE 1076., 2004. http://ieeexplore.ieee.org/servlet/opac?

punumber=9649.
[IEE07] Institute of Electrical and Electronics Engineers. Standard for SystemVerilog - Uni-

fied Hardware Design, Specification, and Verification Language. Std 1800-2007,
2007. http://ieeexplore.ieee.org/servlet/opac?punumber=

4410438.
[Int00] Intel Corporation. Intel R©StrongARM R©SA-1100 Microprocessor Specification Up-

date, February 2000.
[Int02a] Intel Corporation. Intel R©Celeron R©Processor Specification Update, September

2002. http://developer.intel.com/design/celeron/specupdt/
24374847.pdf.

[Int02b] Intel Corporation. Intel R©Pentium R©II Processor Invalid Instruction Erra-

tum Overview, July 2002. http://developer.intel.com/design/

pentiumii/specupdt/24333749.pdf.
[Int04] Intel Corporation. Intel R©Pentium R©Processor Invalid Instruction Erratum

Overview, July 2004. http://www.intel.com/support/processors/

pentium/sb/cs-013151.htm.
[Int05] Intel Corporation. Intel R©Pentium R©III Processor Specification Update,

May 2005. http://download.intel.com/design/PentiumIII/

specupdt/24445355.pdf.
[Int07a] Intel Corporation. Intel R©CoreTMDuo Desktop Processor E6000 and E4000 Se-

quence Specification Update, November 2007. http://download.intel.

com/design/processor/specupdt/31327921.pdf.
[Int07b] Intel Corporation. Intel R©CoreTMExtreme Quad-Core Processor QX6000 Se-

quence and Intel R©CoreTMQuad Processor Q6000 Sequence, November 2007.
http://download.intel.com/design/processor/specupdt/

31559318.pdf.
[Int08] Intel Corporation. Intel R©CoreTM2 Duo and Intel R©CoreTM2 Solo Processor

for Intel R©Centrino R©Duo Processor Technology Specification Update, October
2008. http://download.intel.com/design/mobile/SPECUPDT/

31407918.pdf.
[Int09] Intel Corporation. Intel R©CoreTMSolo processor - Intel R©CoreTMSolo Proces-

sor support, 2009. http://www.intel.com/support/processors/

mobile/coresolo/.
[ITR07] International Technology Roadmap for Semiconductors executive summary, 2007.

http://www.itrs.net/Links/2007ITRS/Home2007.htm.
[JG04] Doug Josephson and Bob Gottlieb. The crazy mixed up world of silicon debug.

In CICC, Proceedings of the IEEE Custom Integrated Circuits Conference, pages
665–670, October 2004.

[JPG01] Doug Josephson, Steve Poehhnan, and Vincent Govan. Debug methodology for
the McKinley processor. In ITC, Proceedings of the International Test Conference,
pages 451–460, October 2001.

[KAI07] Jai Kumar, Catherine Ahlschlager, and Peter Isberg. Post-silicon verification
methodology on Sun’s UltraSPARC T2 processor. In HLDVT, Proceedings of the

International Workshop on High Level Design Validation and Test, page 47, Novem-
ber 2007.



218 References

[KAO05] Poonacha Kongetira, Kathirgamar Aingaran, and Kunle Olukotun. Niagara: a 32-
way multithreaded SPARC processor. IEEE Micro, 25(2):21 – 29, March 2005.

[Kas08] Kris Kaspersky. Remote code execution through Intel CPU bugs. In HITB, Pro-

ceedings of Hack In The Box Conference, October 2008.
[KDF+04] Ravishankar Kuppuswamy, Peter DesRosier, Derek Feltham, Rehan Sheikh, and

Paul Thadikaran. Full hold-scan systems in microprocessors: Cost/benefit analysis.
Intel Technology Journal, 08:63–72, February 2004.

[KDH+05] James A. Kahle, Michael N. Day, H. Peter Hofstee, Charles R. Johns, Thodore R.
Maeurer, and David Shippy. Introduction to the Cell multiprocessor. IBM Journal

of Research and Development, 49:589–604, 2005.
[KG99] Christoph Kern and Mark R. Greenstreet. Formal verification in hardware design: a

survey. ACM Transactions on Design Automation of Electronic Systems, 4(2):123–
193, 1999.

[KK94] Ramayya Kumar and Thomas Kropf. Theorem provers in circuit design: theory,

practice, and experience. Springer Berlin/ Heidelberg, first edition, 1994.
[Knu97] Donald E. Knuth. The Art of Computer Programming. Addison-Wesley Profes-

sional, third edition, 1997.
[Kon09] Dusko Koncaliev. Bugs in the Intel microprocessors, 2009. http://www.cs.

earlham.edu/˜dusko/cs63/.
[Lam97] Leslie Lamport. How to make a correct multiprocess program execute correctly on

a multiprocessor. IEEE Transactions on Computers, 46(7):779–782, 1997.
[Lam02] Leslie Lamport. Specifying systems: the TLA+ language and tools for hardware

and software engineers. Addison-Wesley Professional, 2002.
[Lit02] Timothe Litt. Support for debugging in the Alpha 21364 microprocessor. In ITC,

Proceedings of the International Test Conference, pages 584–589, October 2002.
[LTS+07] Ana S. Leon, Kenway W. Tam, Jinuk L. Shin, David Weisner, and Francis Schu-

macher. A power-efficient high-throughput 32-thread SPARC processor. IEEE

Journal of Solid-State Circuits, 42(1):7–16, January 2007.
[M507] The M5 simulator system, November 2007. http://www.m5sim.org.
[Mar08] John Markoff. Burned once, Intel prepares new chip fortified by constant tests.

New York Times, November 2008. http://www.nytimes.com/2008/11/

17/technology/companies/17chip.html.
[MBS08] Albert Meixner, Michael E. Bauer, and Daniel J. Sorin. Argus: Low-cost, compre-

hensive error detection in simple cores. IEEE Micro, 28(1):52–59, 2008.
[McC56] Edward J. McCluskey. Minimization of Boolean functions. Bell Systems Technical

Journal, 6(35):1417–1444, November 1956.
[MCE+02] Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Forsgren, Gus-

tav Hallberg, Johan Hogberg, Frederik Larsson, Andreas Moestedt, and Bengt
Werner. Simics: A full system simulation platform. IEEE Computer, 35(2):50–58,
2002.

[McG07] Harlan McGhan. The gHost in the machine. Microprocessor Report, 21(3):11–33,
March 2007.

[MDM+06] Massimiliano Melani, Francesco D’Ascoli, Corrado Marino, Luca Fanucci, Adolfo
Giambastiani, Alessandro Rochhi, Marco De Marinis, and Andrea Monterastelli.
An integrated flow from pre-silicon simulation to post-silicon verification. In Re-

search in Microelectronics and Electronics 2006, Ph.D., pages 205–208, June 2006.
[Mei93] Gerd Meister. A survey on parallel logic simulation. Technical report, University

of Saarland, Department of Computer Science, 1993.
[Men08] Mentor Graphics R©Inc. ModelSim - a comprehensive simulation and debug environ-

ment for complex ASIC and FPGA designs, 2008. http://www.model.com/.
[Mic03] Alexander Miczo. Digital logic testing and simulation. John Wiley and Sons, sec-

ond edition, 2003.
[Mic09] Microsoft Corporation. /QIfdiv (Enable Pentium R©FDIV Fix), 2009. http://

msdn2.microsoft.com/en-us/library/ms856573.aspx.



References 219

[MP99] Kevin J. McGrath and James K. Pickett. U.S. Patent no. 6438664: Microcode patch

device and method for patching microcode using match registers and patch routines.
Advanced Micro Devices, Inc., October 1999.

[MS05] Albert Meixner and Daniel J. Sorin. Dynamic verification of sequential consistency.
SIGARCH Computer Architecture News, 33(2):482–493, 2005.

[MS06] Albert Meixner and Daniel J. Sorin. Dynamic verification of memory consistency
in cache-coherent multithreaded computer architectures. In DSN, Proceedings of

the International Conference on Dependable Systems and Networks, pages 73–82,
June 2006.

[MS07] Albert Meixner and Daniel J. Sorin. Error detection using dynamic dataflow veri-
fication. In IPACT, Proceedings of the International Conference on Parallel Archi-

tectures and Compilation Techniques, pages 104–118, September 2007.
[MSB+05] Milo M. K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael R. Marty,

Min Xu, Alaa R. Alameldeen, Kevin E. Moore, Mark D. Hill, and David A. Wood.
Multifacet’s general execution-driven multiprocessor simulator (GEMS) toolset.
SIGARCH Computer Architecture News, 33(4):92–99, 2005.

[MSS99] Joao P. Marques-Silva and Karem A. Sakallah. GRASP: a search algorithm for
propositional satisfiability. IEEE Transactions on Computers, 48(5):506–521, 1999.

[NdPC+04] Jose A. Nacif, Flavio M. de Paula, Claudionor N. Coelho, Fernando C. Sica, Harry
Foster, Antonio O. Fernandes, and Diogenes C. da Silva. The Chip is Ready. Am I
done? On-chip Verification using Assertion Processors. In Symposium on Integrated

Circuits and System Design, pages 55–59, September 2004.
[NMGT06] Jun Nakano, Pablo Montesinos, Kourosh Gharachorloo, and Josep Torrellas. Re-

ViveI/O: efficient handling of I/O in highly-available rollback-recovery servers. In
International Symposium on High-Performance Computer Architecture, pages 203–
214, February 2006.

[PBG05] Mukul R. Prasad, Armin Biere, and Aarti Gupta. A survey of recent advances in
SAT-based formal verification. STTT, Journal on Software Tools for Technology

Transfer, 2:156–173, April 2005.
[PF05] Douglas L. Perry and Harry Foster. Applied Formal Verification: For Digital Circuit

Design. McGraw-Hill Professional, first edition, 2005.
[PG74] Gerald J. Popek and Robert P. Goldberg. Formal requirements for virtualizable third

generation architectures. Communications of the ACM, 17(7):412–421, 1974.
[Piz04] Andrew Piziali. Functional verification coverage measurement and analysis.

Springer, first edition, 2004.
[Rot00] Hemant Rotithor. Post-silicon validation methodology for microprocessors. IEEE

Design and Test of Computers, 17(4):77–88, October 2000.
[RS95] Kavita Ravi and Fabio Somenzi. High-density reachability analysis. In ICCAD, Pro-

ceedings of the International Conference on Computer Aided Design, pages 154–
158, February 1995.

[SC04] Tom Shanley and Bob Colwell. The Unabridged Pentium 4: IA32 Processor Ge-

nealogy. Addison-Wesley Professional, illustrated edition, 2004.
[SE04] Amitabh Srivastava and Alan Eustace. ATOM: A system for building customized

program analysis tools. ACM SIGPLAN Notices, 39(4):528–539, April 2004.
[SFH+03] Isic Silas, Igor Frumkin, Eilon Hazan, Ehud Mor, and Genadiy Zobin. System-

level validation of the Intel R© Pentium R© M processor. Intel Technology Journal,
07:38–43, May 2003.

[SKC95] Bart Selman, Henry Kautz, and Bram Cohen. Local search strategies for satisfiabil-
ity testing. In DIMACS Series in Discrete Mathematics and Theoretical Computer

Science, pages 521–532, 1995.
[SLL02] Jeremy Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost graph library:

user guide and reference manual. Addison-Wesley, 2002. http://www.boost.
org/doc/libs/release/libs/graph.



220 References

[SMHW02] Daniel J. Sorin, Milo M.K. Martin, Mark D. Hill, and David A. Wood. SafetyNet:
improving the availability of shared memory multiprocessors with global check-
point/recovery. In ISCA, Proceedings of the International Symposium on Computer

Architecture, pages 123–134, 2002.
[SNC+07] Smruti Sarangi, Satish Narayanasamy, Bruce Carneal, Abhishek Tiwari, Brad

Calder, and Josep Torrellas. Patching processor design errors with programmable
hardware. IEEE Micro, 27(1):12–25, 2007.

[Som09] Fabio Somenzi. CUDD: CU Decision Diagram Package, 2009. http://vlsi.
Colorado.edu/˜fabio/CUDD.

[SS88] Dennis Shasha and Marc Snir. Efficient and correct execution of parallel programs
that share memory. ACM Transactions on Programming Languages and Systems,

10(2):282–312, 1988.
[STT06] Smruti Sarangi, Abhishek Tiwari, and Josep Torrellas. Phoenix: Detecting and re-

covering from permanent processor design bugs with programmable hardware. In
MICRO, Proceedings of the International Symposium on Microarchitecture, pages
26–37, December 2006.

[SV06] Sean Safarpour and Andreas Veneris. Abstraction and refinement techniques in
automated design debugging. In MTV, Proceedings of the International Workshop

on Microprocessor Test and Verification, pages 88–93, December 2006.
[SVM07] Sean Safarpour, Andreas Veneris, and Hratch Mangassarian. Trace compaction us-

ing SAT-based reachability analysis. In ASP-DAC, Proceedings of the Asian-South

Pacific Design Automation Conference, pages 932–937, January 2007.
[Syn09] Synopsys R©Inc. VCS: Comprehensive RTL Verification Solution,

2009. http://www.synopsys.com/tools/verification/

functionalverification/pages/vcs.aspx.
[Syn10a] Synopsys R©Inc. Design Compiler 2010, 2010. http://www.

synopsys.com/tools/implementation/rtlsynthesis/pages/

designcompiler2010-ds.aspx.
[Syn10b] Synopsys R©Inc. Magellan: Hybrid RTL Formal Verification, 2010. http://www.

synopsys.com/tools/verification/functionalverification/

pages/magellan.aspx.
[Val07] Theo Valich. AMD delays Phenom 2.4 GHz due to TLB errata. The In-

quirer, November 2007. http://www.theinquirer.net/inquirer/

news/995/1025995/amd-delays-phenom-ghz-due-tlb.
[VHR+07] Sriram Vangal, Jason Howard, Gregory Ruhl, Saurabh Dighe, Howard Wilson,

James Tschanz, David Finan, Priya Iyer, Arvind Singh, Tiju Jacob, Shailendra Jain,
Sriram Venkataraman, Yatin Hoskote, and Nitin Borkar. An 80-tile 1.28TFLOPS
network-on-chip in 65nm CMOS. In ISSCC, Proceedings of the International Solid

State Circuits Conference, pages 5–7, February 2007.
[VR05] Srikanth Vijayaraghavan and Meyyappan Ramanathan. A practical guide for system

Verilog assertions. Springer, illustrated edition, 2005.
[WB07] Ilya Wagner and Valeria Bertacco. Engineering trust with semantic guardians. In

DATE, Proceedings of Design, Automation and Test in Europe Conference, pages
743–748, April 2007.

[WB08] Ilya Wagner and Valeria Bertacco. Reversi: Post-silicon validation system for mod-
ern microprocessors. In ICCD, Proceedings of the International Conference on

Computer Design, pages 307–314, October 2008.
[WB09] Ilya Wagner and Valeria Bertacco. Caspar: Hardware patching for multi-core pro-

cessors. In DATE, Proceedings of Design, Automation and Test in Europe Confer-

ence, pages 658–663, April 2009.
[WBA06] Ilya Wagner, Valeria Bertacco, and Todd Austin. Shielding against design flaws

with field repairable control logic. In DAC, Proceedings of the Design Automation

Conference, pages 344–347, July 2006.



References 221

[WBA07] Ilya Wagner, Valeria Bertacco, and Todd Austin. Microprocessor verification via
feedback-adjusted Markov Models. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, 26(6):1126–1138, 2007.
[WBA08] Ilya Wagner, Valeria Bertacco, and Todd Austin. Using field-repairable control logic

to correct design errors in microprocessors. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 27(2):380–393, 2008.
[WGK90] David A. Wood, Garth A. Gibson, and Randy H. Katz. Verifying a multiprocessor

cache controller using random test generation. IEEE Design and Test of Computers,
7(4):13–25, 1990.

[WGR05] Bruce Wile, John C. Goss, and Wolfgang Roesner. Comprehensive functional veri-

fication the complete industry cycle. Morgan Kaufmann, illustrated, annotated edi-

tion, 2005.
[WOT+95] Steven Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Singh, and Anoop Gupta.

The SPLASH-2 programs: characterization and methodological considerations. In
ISCA, Proceedings of the International Symposium on Computer Architecture,
pages 24–36, June 1995.

[Yer06] Siva Yerramilli. On the need for convergence between design validation and test. In
ITC, Proceedings of the International Test Conference, page 14, October 2006.

[YPA06] Jun Yuan, Carl Pixley, and Adnan Aziz. Constraint-Based Verification. Springer,
first edition, 2006.



Index

cache coherence, 78
MESI protocol, 80
patching with Caspar, 194
post-silicon verification, 83

validation with CoSMa, 83

design for testability, 29, 49
boundary scan, 31, 49, 82

hold scan, 30
on-chip logic analyzers, 32, 49, 83
periodic state management interrupt, 50

scan chains, 29, 49, 82

escaped errors, 13, 35, 151
analysis, 129

errata sheets, 35
error pattern, 154, 193
FDIV error, 11, 36
Phenom TLB error, 4, 36, 83

field-repairable control logic, 135, 151
critical signal selection, 166, 170
degraded mode, 152, 161

design flow, 163
error pattern generation, 154
high-performance mode, 152, 161
operation flow, 153

pattern compression, 157, 159
semantic guardian, 152, 168
state matcher, 151, 152, 155

trusted processor design, 168

hardware description language, 15

memory consistency, 78, 81, 190
activity logging, 101
constraint graph analysis, 89, 110

constraint graph generation, 106
data-coloring, 96

formal verification, 79
processor consistency, 82, 110

sequential consistency, 82, 107, 190

strcit consistency, 82
total store ordering, 82, 109, 191

validation with Dacota, 96
weak consistency, 110

multi-core processors
overview, 76

reconfiguration for Dacota, 97

runtime invariants, 190
structure, 79, 194

verification, 78, 190

post-silicon validation, 5
compatibility verification, 46

coverage, 49
electrical errors, 27

hardware debugging, 50, 114
operational region validation, 26

optical probing, 27

overview, 26
Reversi test generator, 52

shmoo plot, 27
structural testing, 28

system validation, 47
trace minimization, 50

traditional flow, 52

pre-silicon verification, 5
architectural model, 15

assertions, 17
binary decision diagrams, 20

coverage, 17
emulation, 25

equivalence checking, 24

223



224 Index

formal methods, 19
golden model, 15
hardware verification language, 18
hybrid solutions, 23
logic simulator, 16
logic synthesis, 24
memory explosion problem, 21
microarchitectural simulator, 15
model checking, 22
overview, 14
random test generators, 17

reachability analysis, 21
register-transfer level model, 15
RTL simulation, 16
satisfiability, 19
symbolic simulation, 22
test plan, 14
test regression suites, 17
theorem proving, 21
verification collateral, 26

processor verification flow, 6

quality of service verification, 209

reversible programs, 53
arithmetic/logic operations, 54
control flow operations, 58
control register operations, 60
floating point operations, 62
functional blocks, 54

generation, 63
limitations, 62
load/store operations, 57
post-silicon validation with, 53

runtime error recovery, 37, 146, 198
checkpointing, 146, 192, 194, 198
degraded mode operation, 152, 161, 194
flush and replay, 146
hypervisor-based, 146
instruction stream editing, 146
SafetyNet, 192

runtime verification, 5, 36
field-repairable control logic, 151
BIOS reconfiguration, 36
bug pattern, 37
classification, 132
control logic, 139
dataflow graph analysis, 142
DIVA, 135
DVMC, 190
hardware checkers, 37, 135, 190
hardware patching, 37, 145, 193
instruction patching, 36, 133
limitations, 37
microcode patching, 134
microcode update, 36
N-modular redundancy, 37
simple cores, 142

verification of Pentium 4, 8, 33


	Post-Silicon and Run- Time Verification for Modern Processors
	Preface
	Acknowledgements
	Contents
	Acronyms

	Part I VERIFICATION OF A MODERN PROCESSOR
	Chapter 1 VERIFICATION OF A MODERN PROCESSOR
	1.1 The Birth of the Microprocessor
	1.2 Verification Throughout the Processor Life-cycle
	1.3 Verification of a Modern Processor: a Case Study
	1.4 Looking Ahead
	1.5 Summary
	References

	Chapter 2 THE VERIFICATION UNIVERSE
	2.1 Pre-silicon Verification
	2.1.1 From specification to microarchitectural description
	2.1.2 Verification through logic simulation
	2.1.3 Formal verification
	2.1.4 Logic optimization and equivalence verification
	2.1.5 Emulation and beyond

	2.2 Post-silicon Validation
	2.2.1 Structural testing
	2.2.2 Functional post-silicon validation

	2.3 Runtime Verification
	2.4 Summary
	References

	Part II FUNCTIONAL POST-SILICON VERIFICATION
	Chapter 3 POST-SILICON VALIDATION OF PROCESSOR CORES
	3.1 Traditional post-silicon validation in industry
	3.2 The Reversi Test Generation System
	3.3 Reversible and Non-reversible Instructions
	3.3.1 Arithmetic and logic instructions
	3.3.2 Load/store instructions
	3.3.3 Branch instructions
	3.3.4 Control register manipulation
	3.3.5 Floating point instructions
	3.3.6 Limitations
	3.3.7 Reversi Generator

	3.4 Example
	3.5 Experimental Framework
	3.5.1 Performance Evaluation
	3.5.2 Design Error Coverage

	3.6 Summary
	References

	Chapter 4 POST-SILICON VERIFICATION OF MULTI-CORE PROCESSORS
	4.1 Overview of Multi-core Processor Architectures
	4.2 The Challenge of Multi-core Processor Verification
	4.3 Cache Coherence Verification Using String Matching
	4.4 Verification of Memory Consistency Through Constraint Graph Analysis
	4.5 Summary
	References

	Chapter 5 CONSISTENCY VERIFICATION USING DATA COLORING
	5.1 Introduction
	5.2 Dacota Overview
	5.3 Activity Logging
	5.3.1 Access vector
	5.3.2 Core Activity Log
	5.3.3 Activity Logging Example

	5.4 Policy Validation Algorithm
	5.4.1 Access Log Aggregation
	5.4.2 Graph Construction
	5.4.3 Consistency Graph Analysis
	5.4.4 Error Detection Examples
	5.4.5 Checking Algorithm Requirements

	5.5 Strengths and Limitations
	5.5.1 Debugging with Dacota
	5.5.2 Design Considerations

	5.6 Experimental Evaluation of Dacota
	5.6.1 Design Error Coverage
	5.6.2 Performance Evaluation
	5.6.3 Area Evaluation

	5.7 Summary
	References

	Part III RUNTIME VERIFICATION FOR MODERN MICROPROCESSORS
	Chapter 6 RUNTIME VERIFICATION WITH PATCHING AND HARDWARE CHECKERS
	6.1 Analysis of Escaped Errors in Commercial Processors
	6.2 Classification of Runtime Verification Solutions
	6.3 DIVA: Dynamic Verification of Microprocessors
	6.3.1 Checker core operation
	6.3.2 DIVA in action
	6.3.3 Benefits and limitations

	6.4 Runtime Verification of Simple Cores with Argus
	6.5 Hardware Patching Approaches for Runtime Verification
	6.6 Conclusions
	References

	Chapter 7 HARDWARE PATCHING WITH FIELD-REPAIRABLE CONTROL LOGIC
	7.1 Introduction
	7.2 Field-Repairable Control Logic Overview
	7.2.1 Pattern Generation
	7.2.2 Matching Flawed Configurations
	7.2.3 Pattern Compression Algorithm
	7.2.4 Processor Recovery
	7.2.5 Example

	7.3 Design Flow
	7.3.1 Overview of the Design Framework
	7.3.2 Verification Methodology
	7.3.3 Control Signal Selection
	7.3.4 Automatic Signal Selection
	7.3.5 Performance-Critical Execution

	7.4 Trusted Hardware Design with Semantic Guardians
	7.4.1 Combining Semantic Guardians and Hardware Patching

	7.5 Experimental Evaluation
	7.5.1 Experimental Framework
	7.5.2 Design Defects
	7.5.3 Specificity of the Matcher
	7.5.4 State Matcher Area and Timing Overheads
	7.5.5 Performance Impact of Degraded Mode
	7.5.6 Semantic Guardian Framework Analysis

	7.6 Summary
	References

	Chapter 8 RUNTIME VERIFICATION IN MULTI-CORES
	8.1 Dynamic Verification of Memory Consistency
	8.2 Caspar: A Multi-core Patching Solution
	8.3 Caspar’s Design
	8.3.1 Detection and Coverage
	8.3.2 Recovery and Bypass
	8.3.3 Checkpointing

	8.4 Post-silicon Debugging with Caspar
	8.5 Experimental Evaluation
	8.5.1 Error Resiliency Analysis
	8.5.2 Checkpointing Overhead
	8.5.3 Caspar Recovery Performance
	8.5.4 Area Overhead

	8.6 Summary
	References

	Chapter 9 ENSURING CORRECTNESS IN FUTURE MICROPROCESSORS
	9.1 Advances and Trends in Processor Validation
	9.2 A Proactive Approach to Verification

	References
	Index
	Cover
	Post-Silicon and Run- Time Verification for Modern Processors
	Preface
	Acknowledgements
	Contents
	Acronyms

	Part I VERIFICATION OF A MODERN PROCESSOR
	Chapter 1 VERIFICATION OF A MODERN PROCESSOR
	1.1 The Birth of the Microprocessor
	1.2 Verification Throughout the Processor Life-cycle
	1.3 Verification of a Modern Processor: a Case Study
	1.4 Looking Ahead
	1.5 Summary
	References

	Chapter 2 THE VERIFICATION UNIVERSE
	2.1 Pre-silicon Verification
	2.1.1 From specification to microarchitectural description
	2.1.2 Verification through logic simulation
	2.1.3 Formal verification
	2.1.4 Logic optimization and equivalence verification
	2.1.5 Emulation and beyond

	2.2 Post-silicon Validation
	2.2.1 Structural testing
	2.2.2 Functional post-silicon validation

	2.3 Runtime Verification
	2.4 Summary
	References


	Part II FUNCTIONAL POST-SILICON VERIFICATION
	Chapter 3 POST-SILICON VALIDATION OF PROCESSOR CORES
	3.1 Traditional post-silicon validation in industry
	3.2 The Reversi Test Generation System
	3.3 Reversible and Non-reversible Instructions
	3.3.1 Arithmetic and logic instructions
	3.3.2 Load/store instructions
	3.3.3 Branch instructions
	3.3.4 Control register manipulation
	3.3.5 Floating point instructions
	3.3.6 Limitations
	3.3.7 Reversi Generator

	3.4 Example
	3.5 Experimental Framework
	3.5.1 Performance Evaluation
	3.5.2 Design Error Coverage

	3.6 Summary
	References

	Chapter 4 POST-SILICON VERIFICATION OF MULTI-CORE PROCESSORS
	4.1 Overview of Multi-core Processor Architectures
	4.2 The Challenge of Multi-core Processor Verification
	4.3 Cache Coherence Verification Using String Matching
	4.4 Verification of Memory Consistency Through Constraint Graph Analysis
	4.5 Summary
	References

	Chapter 5 CONSISTENCY VERIFICATION USING DATA COLORING
	5.1 Introduction
	5.2 Dacota Overview
	5.3 Activity Logging
	5.3.1 Access vector
	5.3.2 Core Activity Log
	5.3.3 Activity Logging Example

	5.4 Policy Validation Algorithm
	5.4.1 Access Log Aggregation
	5.4.2 Graph Construction
	5.4.3 Consistency Graph Analysis
	5.4.4 Error Detection Examples
	5.4.5 Checking Algorithm Requirements

	5.5 Strengths and Limitations
	5.5.1 Debugging with Dacota

	5.6 Experimental Evaluation of Dacota
	5.5.2 Design Considerations
	5.6.1 Design Error Coverage
	5.6.2 Performance Evaluation
	5.6.3 Area Evaluation

	5.7 Summary
	References


	Part III RUNTIME VERIFICATION FOR MODERN MICROPROCESSORS
	Chapter 6 RUNTIME VERIFICATION WITH PATCHING AND HARDWARE CHECKERS
	6.1 Analysis of Escaped Errors in Commercial Processors
	6.2 Classification of Runtime Verification Solutions
	6.3 DIVA: Dynamic Verification of Microprocessors
	6.3.1 Checker core operation
	6.3.2 DIVA in action
	6.3.3 Benefits and limitations

	6.4 Runtime Verification of Simple Cores with Argus
	6.5 Hardware Patching Approaches for Runtime Verification
	6.6 Conclusions
	References

	Chapter 7 HARDWARE PATCHING WITH FIELD-REPAIRABLE CONTROL LOGIC
	7.1 Introduction
	7.2 Field-Repairable Control Logic Overview
	7.2.1 Pattern Generation
	7.2.2 Matching Flawed Configurations
	7.2.3 Pattern Compression Algorithm
	7.2.5 Example
	7.2.4 Processor Recovery

	7.3 Design Flow
	7.3.1 Overview of the Design Framework
	7.3.2 Verification Methodology
	7.3.3 Control Signal Selection
	7.3.4 Automatic Signal Selection

	7.4 Trusted Hardware Design with Semantic Guardians
	7.3.5 Performance-Critical Execution
	7.4.1 Combining Semantic Guardians and Hardware Patching

	7.5 Experimental Evaluation
	7.5.1 Experimental Framework
	7.5.2 Design Defects
	7.5.3 Specificity of the Matcher
	7.5.4 State Matcher Area and Timing Overheads
	7.5.5 Performance Impact of Degraded Mode
	7.5.6 Semantic Guardian Framework Analysis

	7.6 Summary
	References

	Chapter 8 RUNTIME VERIFICATION IN MULTI-CORES
	8.1 Dynamic Verification of Memory Consistency
	8.2 Caspar: A Multi-core Patching Solution
	8.3 Caspar’s Design
	8.3.1 Detection and Coverage
	8.3.2 Recovery and Bypass
	8.3.3 Checkpointing

	8.4 Post-silicon Debugging with Caspar
	8.5 Experimental Evaluation
	8.5.1 Error Resiliency Analysis
	8.5.2 Checkpointing Overhead
	8.5.3 Caspar Recovery Performance

	8.6 Summary
	8.5.4 Area Overhead

	References

	Chapter 9 ENSURING CORRECTNESS IN FUTURE MICROPROCESSORS
	9.1 Advances and Trends in Processor Validation
	9.2 A Proactive Approach to Verification


	References
	Index

