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Preface 

The combination of different intelligent methods is a very active research area in 

Artificial Intelligence (AI). The aim is to create integrated or hybrid methods that 

benefit from each of their components. It is generally believed that complex 

problems can be easier solved with such integrated or hybrid methods. 

Some of the existing efforts combine what are called soft computing methods 

(fuzzy logic, neural networks and genetic algorithms) either among themselves or 

with more traditional AI methods such as logic and rules. Another stream of 

efforts integrates case-based reasoning or machine learning with soft-computing 

or traditional AI methods. Yet another integrates agent-based approaches with 

logic and also non-symbolic approaches. Some of the combinations have been 

quite important and more extensively used, like neuro-symbolic methods, neuro-

fuzzy methods and methods combining rule-based and case-based reasoning. 

However, there are other combinations that are still under investigation, such as 

those related to the Semantic Web. In some cases, combinations are based on first 

principles, whereas in other cases they are created in the context of specific 

applications. 

The 2
nd

 Workshop on “Combinations of Intelligent Methods and Applications” 

(CIMA 2010) was intended to become a forum for exchanging experience and 

ideas among researchers and practitioners who are dealing with combining 

intelligent methods either based on first principles or in the context of specific 

applications.  

Important issues of the Workshop were (but not limited to) the following: 

 

• Case-Based Reasoning Integrations 

• Genetic Algorithms Integrations 

• Combinations for the Semantic Web 

• Combinations and Web Intelligence 

• Combinations and Web Mining 

• Fuzzy-Evolutionary Systems 

• Hybrid deterministic and stochastic optimisation methods 

• Hybrid Knowledge Representation Approaches/Systems 

• Hybrid and Distributed Ontologies 

• Information Fusion Techniques for Hybrid Intelligent Systems 

• Integrations of Neural Networks 

• Intelligent Agents Integrations 

 

 



VI Preface

 

• Machine Learning Combinations 

• Neuro-Fuzzy Approaches/Systems 

• Applications of Combinations of Intelligent Methods to 

o Biology & Bioinformatics 

o Education & Distance Learning 

o Medicine & Health Care 

 

CIMA 2010 was held in conjunction with the 22
nd

 IEEE International Conference 

on Tools with Artificial Intelligence (ICTAI 2010). Also, we organized a special 

track in ICTAI 2010, under the same title.  

This volume includes revised versions of the papers presented in CIMA 2010 

and one of the short papers presented in the corresponding ICTAI 2010 special 

track. We have also included a paper of ours as invited paper. 

We would like to express our appreciation to all authors of submitted papers as 

well as to the members of CIMA-10 program committee for their excellent work. 

We would like also to thank Prof. Eric Gregoire, the ICTAI-10 PC Chair for his 

help and hospitality. 

We hope that these proceedings will be useful to both researchers and 

developers. Given the success of the first two Workshops on combinations of 

intelligent methods, we intend to continue our effort in the coming years. 

 

 

Ioannis Hatzilygeroudis 

Jim Prentzas 

 



Workshop Organization 

Chairs-Organizers 

Ioannis Hatzilygeroudis University of Patras, Greece 

Jim Prentzas Democritus University of Thrace, Greece 

Program Committee 

Ajith Abraham MIR Labs, Europe 

Plamen Agelov Lancaster University, UK 

Emilio Corchado University of Salamanca, Spain 

Ronald Denaux University of Leeds, UK 

George Dounias University of the Aegean, Greece 

Artur S. d’Avila Garcez City University, UK 

Elpida Keravnou-Papailiou University of Cyprus, Cyprus 

Constantinos Koutsojannis University of Patras, Greece 

Rudolf Kruse University of Magdeburg, Germany 

George Magoulas Birkbeck College, Univ. of London, UK 

Toni Moreno University Rovira i Virgili, Spain 

Ciprian-Daniel Neagu University of Bradford, UK 

Vasile Palade Oxford University, UK 

David Sanchez University Rovira i Virgili, Spain 

Douglas Vieira Enacom-Handcrafted Technologies, Brazil 

 



Contents

Defeasible Planning through Multi-agent Argumentation . . . . 1
Sergio Pajares, Eva Onaindia

Operator Behavior Modelling in a Submarine . . . . . . . . . . . . . . . . 21
Isabelle Toulgoat, Pierre Siegel, Yves Lacroix

Automatic Wrapper Adaptation by Tree Edit Distance

Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Emilio Ferrara, Robert Baumgartner

Representing Temporal Knowledge in the Semantic Web:

The Extended 4D Fluents Approach . . . . . . . . . . . . . . . . . . . . . . . . . 55
Sotiris Batsakis, Euripides G.M. Petrakis

Combining a Multi-Document Update Summarization

System –CBSEAS– with a Genetic Algorithm . . . . . . . . . . . . . . . 71
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Defeasible Planning through Multi-agent

Argumentation

Sergio Pajares and Eva Onaindia

Abstract. The work reported here introduces DefPlanner, an argumentation-based

partial-order planner where different agents that have a partial, and possibly con-

tradictory, knowledge of the world articulate arguments for and against supporting

preconditions of the actions to be included in a plan. In this paper, we introduce

an extension to multiple agents of the defeasible argumentation formalism that has

been proposed to address the task of planning in a single agent environment.

1 Introduction

Planning is the art of building control algorithms that synthesize a course of action to

achieve a desired set of goals. The mainstream in planning is that of using heuristic

functions to evaluate goals and choices of action or states on the basis of their ex-

pected utility to the planning agent [7]. In classical planning, intelligent agents must

be able to set goals and achieve them, they have a perfect and complete knowledge

of the world, and they assume their view of the world can only be changed through

the execution of the planning actions. However, in many real-world applications,

agents often have contradictory information about the environment and their deduc-

tions are not always certain information, but plausible, since the conclusions can be

withdrawn when new pieces of knowledge are posted by other agents.

On the other hand, argumentation, which has recently become a very active re-

search field in computer science [2], can be viewed as a powerful tool for reason-

ing about inconsistent information through a rational interaction of arguments for

and against some conclusion. Systems that build on defeasible argumentation ap-

ply theoretical reasoning for the generation and evaluation of arguments, and they

Sergio Pajares · Eva Onaindia

Universidad Politécnica de Valencia, Camino de Vera s/n 46022 Valencia, Spain

e-mail: spajares@dsic.upv.es,onaindia@dsic.upv.es
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2 S. Pajares and E. Onaindia

are used to build applications that deal with incomplete and contradictory infor-

mation in dynamic domains ([11][5][10][12]). Particularly, the application of an

argumentation-based formalism to deal with the defeasible nature of reasoning dur-

ing the construction of a plan has been addressed by Garcia and Simari [13][6].

This paper extends the work of [6] and presents DefPlanner, a defeasible argu-

mentation planner developed for multi-agent environments. We explicitly consider

several entities (agents) in the argumentative process for the support of the condi-

tions of a planning action. Some recent works like [16][15] realize argumentation

in multi-agent systems using defeasible reasoning but they are not particularly con-

cerned with the task of planning. Specifically, we consider propositional STRIPS

planning representation augmented with the incorporation of different sources of

defeasible information (agents). Defplanner is a partial-order planner ([1][9]) that

invokes an argumentation process where many different agents with different opin-

ions exchange arguments and counterarguments in order to determine whether a

given precondition of an action is supported or not, i.e. it can be defeasibly derived

or not.

This paper is organized as follows. Next section summarizes the main notions

on defeasible logic and partial-order planning. Section 3 elaborates on the use of

argumentation during the construction of a partial-order plan. Section 4 presents the

defeasible argumentation process in a multi-agent system, and section 5 presents an

example of application. Finally, section 6 concludes and presents some future work.

2 Background

2.1 Defeasible Logic

In this section, we summarize the main concepts of the work on Defeasible Logic

Programming (DeLP), a formalism that combines Logic Programming and Defea-

sible Argumentation [5]. The basic elements in DeLP are facts and rules. Let L

denote a set of literals, where a literal h is a fact A or a negated fact ∼A, and, the

symbol ∽ represents the strong negation. The set of rules is divided into strict rules,

i.e. rules encoding strict consequences, and defeasible rules, which derive uncertain

or defeasible conclusions. A strict rule is an ordered pair head ← body, and a de-

feasible rule is an ordered pair head −� body, where head is a literal, and body is

a finite non-empty set of literals. For example, the strict rule animal ← bird is de-

noting the piece of information ”a bird is an animal”. However, a defeasible rule is

used to describe tentative knowledge that may be used if nothing else can be posed

against it, e.g. ”birds fly” (fly −� bird).

Using facts, strict and defeasible rules, an agent is able to satisfy some literal h

as in other rule-based systems. Let X be a set of facts in L , STR a set of strict rules,

and DEF a set of defeasible rules. A defeasible derivation for a literal h from X ,

denoted as X |∼ h, consists of a finite sequence h1, . . . ,hn = h of literals such that hi

is a fact (hi ∈ L ), or there is a rule in STR ∪ DEF with head hi and body b1, . . . ,bk,

and every literal of the body is an element h j of the sequence appearing before hi
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( j < i). A set X is contradictory, denoted X |∼ ⊥, if two contradictory literals, eg. h

and ∽ h, can be derived from X .

In our planning framework, the agent’s knowledge base is formed by a consistent

set of facts Ψ , and a set of defeasible rules Δ .

Definition 1. Let h be a literal, and let K = (Ψ ,Δ) be the knowledge base of an

agent. We say that 〈A ,h〉 is an argument structure for h, or simply argument for

h, if A is a set of defeasible rules of Δ , such that:

• there exists a defeasible derivation of h from Ψ ∪A ,

• the set Ψ ∪A is non-contradictory, and

• A is minimal, i.e., there is not a A
′
⊂ A , such that A

′
satisfies the above two

conditions.

The literal h is called the conclusion of the argument, and A the support of the

argument.

Definition 2. Two literals h1 and h2 disagree iff the setΨ ∪{h1,h2} is contradictory.

Two complementary literals h and ∼h disagree because for any set Ψ , Ψ ∪{h,∼h}
is contradictory. We say that the argument 〈A1,h1〉 is in conflict or counter-argues

the argument 〈A2,h2〉 at the literal h, if and only if there exists a sub-argument

〈A ,h〉 of 〈A2,h2〉, that is A ⊆ A2, such that h and h1 disagree. If 〈A1,h1〉 is a

counterargument for 〈A2,h2〉 at literal h, then h is called a counter-argument point,

and the subargument 〈A ,h〉 is called the disagreement subargument [5].

In short, two arguments are in conflict if they support contradictory conclusions, or

one of the arguments is in conflict with an inner part of the other argument. That

is, if the head of a defeasible rule in one of the arguments contradicts the head of a

defeasible rule in the other argument.

In order to deal with counterarguments, a central aspect is to establish a formal

comparison criterion among arguments. A possible preference relation among ar-

guments is the so-called generalized specificity [14]. We consider an argument A 1

is preferred to an argument A 2 if A 1 is more precise (it is based on more infor-

mation), or more concise (it uses fewer rules in the conclusion derivation). In such

a case, it is said A 1 is more specific than A 2. For example, 〈{c−�a,b},c〉 is more

specific than 〈{∼c−� ∼a},∼c〉. We use 〈A 1,h1〉 ≻ 〈A 2,h2〉 to denote 〈A 1,h1〉 is

more specific than 〈A 2,h2〉 The preference criterion is needed to decide whether

an argument defeats another or not, as disagreement does not imply preference.

Definition 3. The argument 〈A1,h1〉 is a defeater for 〈A2,h2〉 iff there is a subargu-

ment 〈A,h〉 of 〈A2,h2〉 such that 〈A1,h1〉 is a counterargument of 〈A2,h2〉 at literal

h, and 〈A1,h1〉 ≻ 〈A,h〉.

Definition 4. An argumentation line for 〈A0,h0〉 is a sequence of arguments, de-

noted Λ = [〈A0,h0〉, . . . ,〈Am,hm〉], where each element of the sequence 〈Ai,hi〉,
i > 0, is a defeater of its predecessor 〈Ai−1,hi−1〉. Certain constraints over Λ are

considered in [5] in order to avoid several problematic and undesirable situations

that may arise in Λ .
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Definition 5. A dialectical tree for the argument 〈A0,h0〉, denoted T〈A0,h0〉, is de-

fined by the root of the tree, labeled with 〈A0,h0〉, and a set of argumentation lines

from the root, where every node (except the root) represents a defeater of its parent,

and leaves correspond to non-defeated arguments, arguments with no defeaters.

Some examples of dialectical trees can be found in [5]. In order to decide whether

the argument at the root of a given dialectical tree is defeated or not, it is necessary

to perform a bottom-up analysis of the tree. Every leaf of the tree is marked un-

defeated and every inner node is marked defeated, if it has at least one child node

marked undefeated. Otherwise, it is marked undefeated. Let T ∗
〈A ,h〉 denote a marked

dialectical tree of the argument 〈A ,h〉. A literal h is said to be warranted, if and

only if there is an argument 〈A ,h〉 for h such that the root of the marked dialectical

tree T ∗
〈A ,h〉 is marked undefeated. In such a case, 〈A ,h〉 is a warrant for h. If a lit-

eral h is a fact then h is also warranted as there are no counterarguments for 〈 /0,h〉.
Otherwise, if all arguments for h are marked as defeated then the literal h is said to

be not warranted.

2.2 Partial-Order Planning

Planning is the art of building control algorithms that synthesize a course of action

to achieve a desired set of goals. We consider planning problems encoded in a for-

mal, first-order language such as STRIPS [4], particularly in a propositional version

of STRIPS. We will denote the set of all propositions by P (ground facts or liter-

als). A planning state s is defined as a finite set propositions s ⊆ P . A (grounded)

planning task is a triple T = 〈O, i,G 〉, where O is the set of deterministic ac-

tions of the agent’s model that describes the state changes, and i ⊆ P (the initial

state) and G ⊆ P (the goals) are sets of propositions. An action a ∈ O is a tuple

a = (pre(a),add(a),del(a)), where pre(a) ⊆ P is the set of propositions that rep-

resents the action’s preconditions, and add(a)⊆ P and del(a) ⊆ P are the sets of

propositions that represent the positive and negative effects, respectively. We will

represent an action a as follows:

{q1, . . . ,qn,∼r1, . . . ,∼rm}
id
←− {p1, . . . , pk} (1)

where id is the action name, ∀k
i=1 pi ∈ pre(a), ∀n

i=1qi ∈ add(a), and ∀m
i=1ri ∈ del(a).

An action a is executable in state s if pre(a)⊆ s. The state resulting from executing

a is defined as s′ = (s\del(a))∪add(a). That is, we delete any proposition in s that

belongs to del(a), and add the propositions in add(a). A solution plan (Π ) for a

planning task T is a set of actions Π = {a1, . . . ,an} ⊆ O such that when applied

to i, it leads to a final state in which the goals G are satisfied. A planning task T is

solvable if there exists at least one plan for it.

In what follows, we provide a brief introduction to the Partial-Order Planning

(POP) paradigm ([1][9]). A more detailed tutorial can be found in [17]. In POP,

search is done through the space of incomplete partially-ordered plans as opposite

to state-based planning. Thus, a key concept in POP is that of partial-order plan.
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Definition 6. A partial-order plan is a tuple Π = 〈A P,OR,C L,OC,U L〉, where:

• A P ⊆ O is the set of ground actions1 in Π .

• OR is a set of ordering constraints (≺) over O

• C L is a set of causal links over O . A causal link is of the form (ai, p,a j), and

denotes that the precondition p of action a j will be supported by an add effect of

action ai.

• OC is the set of open conditions of Π . Let ai ∈ O; if ∃p ∈ pre(ai)∧ � ∃a j ∈
O/(a j, p,ai) ⊆CL, then p is said to be an open condition.

• U L is the set of unsafe causal links of Π , also called the threats. Let (ai, p,a j)⊆
C L; (ai, p,a j) is unsafe if there exists an action ak ∈ O such that p ∈ del(ak)
and OR∪{ai ≺ ak ≺ a j} is consistent.

Given a planning task T = 〈O, i,G 〉, a POP algorithm starts with an empty partial

plan and keeps refining it until a solution plan is found. The initial empty plan

Π0 = 〈A P,OR,C L,OC,U L〉 contains only two dummy actions A P = {a0,a f },

the start action a0, and the finish action a f , where pre(a f ) = G , add(a0) = i, {a0 ≺
a f } ⊆ OR, C L = /0, OC = G and U L = /0. The empty plan has no causal links

or threats, but, has open condition corresponding to the preconditions of a f (the

top-level goals G ). A refinement step in a POP algorithm involves two things; first,

selecting a flaw (an open condition or a threat) in a partial plan Π , and then selecting

a resolver for the flaw. The different ways of solving a flaw are:

• Supporting an open condition with an action step. If p is an open condition, an

action a needs to be selected that achieves p. a can be a new action from O , or

any action that already exists in A P. Solving an open condition involves adding

a causal link to Π to record that p is achieved by the chosen action step.

• Solving a threat with an ordering constraint. When the flaw chosen is an unsafe

causal link (ai, p,a j) that is threatened by an action ak, it can be repaired either

by adding the ordering constraint ak ≺ ai, or the constraint a j ≺ ak, into OR. This

solving method involves reordering the action steps in Π .

Definition 7. A plan Π = 〈A P,OR,C L,OC,U L〉 is complete if it has no open

conditions (OC = /0).

Definition 8. A plan Π = 〈A P,OR,C L,OC,U L〉 is conflict-free if it has no unsafe

causal links (U L = /0).

Definition 9. A plan Π = 〈A P,OR,C L,OC,U L〉 is a solution if it is complete and

conflict-free.

1 Partial-order planners are capable of handling partially instantiated action instances and

hence, the definition of a partial order plan typically includes a set of equality constraints

on free variables in O [9]. We will, however, restrict our attention to ground action in-

stances without any loss of generality for our purposes.
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3 Argumentation in POP

The task of the agents in classical planning is to be able to set goals and achieve

them, i.e. finding a causal chain of actions that, when applied in the initial state, it

achieves the desired (sub)goals. In this sense, the set pre(a) of a planning action a

is interpreted as a set of achievable preconditions. However, actions can also have

preconditions whose predicates are not affected by any of the actions available to

the planning agent. Instead, the predicate’s truth value is the result of a derivation

obtained by forward chaining inference rules. More concretely, in our framework,

the agent is equipped with a set of planning actions, O , and a knowledge base K =
(Ψ ,Δ) where:

• Ψ is a consistent set of facts. Initially, Ψ = i, and this set will be updated accord-

ingly with the add and del effects of the applicable actions.

• Δ is a set of defeasible rules that will be used to derive plausible information,

tentative conclusions that might be withdrawn with new pieces of information.

In conclusion, a planning action a is a tuple a = (pre(a),add(a),del(a)), where the

set pre(a) is divided into two subsets:

• pre ach(a) denotes the set of achievable preconditions of the action a. The se-

mantics is the same as in classical planning; an achievable precondition p of an

action a is supported if it exists a set of actions from O that achieves the fact, and

p holds in the state in which a will be applied, i.e. p is not deleted by any action

before it holds in the state.

• pre der(a) denotes the set of derivable preconditions of the action a, the set of

preconditions that can be solved via a defeasible derivation. More particularly,

the semantics is that a derivable precondition p of an action a is supported if

there exists an argument 〈A, p〉 such that the root of a the tree T ∗
〈A ,p〉 is marked

undefeated, i.e. p is warranted in the state in which a will be applied.

Achievable preconditions are supported in a partial-order plan through action steps

(see section 2.2). On the other hand, derivable preconditions are supported through

argument steps as proposed in the argumentation-based formalism presented in [6].

Hence, we define a POP paradigm in combination with the argumentation formalism

described in section 2.1, and we analyze the interplay of arguments and actions when

constructing plans using POP techniques.

Definition 10. Let K = (Ψ ,Δ) be the knowledge base of an agent; and let 〈A , p〉,
A ⊆ Δ , an argument that supports a derivable literal p. The set f acts(A ) contains

the facts that appear in the bodies of the rules in A .

In a partial-order plan Π , when an argument 〈A , p〉 is used to support a derivable

precondition p of an action ai, Π will contain a new element, a support link of

the form (A , p,ai). This refinement step for solving a derivable precondition of

an action is called argument step [6]. Like causal links, support links are used to

support a derivable precondition with the conclusion of an argument. Assuming an
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argument step A 1 = 〈A , p〉, we can interpret that add(A 1) = {p}, and pre(A 1)=
f acts(A 1). As can be observed, the introduction of argument steps does not imply

any changes in the POP algorithm.

Under this new perspective, we reformulate the definition 6 as follows: A partial-

order plan is a tuple Π = 〈A P∪A R,OR,C L∪S L,OC∪DP,U L〉, where A P,

OR, C L, OC and U L have the usual meaning, A R is the set of argument steps

included in Π , S L is the set of support links, and DP is the set of pending derivable

preconditions of the actions in Π . Note that the facts of an argument step are the

achievable preconditions of the argument and as such they are included as open

conditions in the set OC.

Unlike the approach presented in [6], DefPlanner is a defeasible argumentation-

based planner in which many different agents with different opinions argue with

each other on the warranty of a given argument. During the plan construction, at

the time of solving a derivable precondition p, DefPlanner invokes a procedure and

agents initiate a discussion in order to check whether p can be warranted or not.

This procedure builds a dialectical tree for each supporting argument of p and fi-

nally returns whether p is defeated or undefeated. This multi-agent discussion is

explained in detail in next section. Hence, in the case of DefPlanner, argument steps

are only inserted in a partial-order plan as long as it has been proven the argument

is undefeated. This contrasts with other approaches in which each supporting ar-

gument gives rise to a different alternative in the POP algorithm, and discussions

on the warranty of a given argument take place in case a counter-argument is in-

troduced in the plan. In conclusion, DefPlanner only inserts provably undefeated

arguments in a plan, and, consequently, no threats involving two argument steps

may appear in our approach. Let 〈A 1, p〉 be an argument step inserted in a plan Π ;

if argument 〈A 2,q〉 is later inserted in Π then DefPlanner guarantees A 2 is not a

counter-argument of A 1 and viceversa.

Additionally, in this first approach of DefPlanner, we assume a piece of infor-

mation can not be both derived and achieved. That is, a proposition p is either

defeasibly derived through a dialectical tree by using the rules in Δ , or achieved

through a course of actions in O . Thus, the predicates of defeasible information are

never affected by the available planning actions O and, consequently, no action-

argument threats exist. In section 6, we elaborate on this issue for future versions of

DefPlanner.

4 Defeasible Argumentation in a Multi-Agent System

DefPlanner implements a Multi-Agent System (MAS) (figure 1) to assist during the

construction plan. Agents can adopt one of the four different roles specified in this

MAS:
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• Client role: The user is represented by an agent playing this role, which is in

charge of requesting a plan for a given set of goals.

• POP role: The agent playing this role, that is, the planner takes as input the set of

goals and returns a solution plan that satisfies the client goals. There is only one

agent playing the POP role per MAS.

• Argumentative role: An agent agi which plays this role is associated with a set

of defeasible rules representing the tentative information of the agent about the

environment (Δi). The task of each argumentative agent agi is to participate as

far as possible in the multi-agent discussions for warranting a given literal. Each

agent has an associated utility function2 that is used to maximize its benefits.

• Mediator role: The agent which plays this role (only one per MAS) is in charge

of managing the multi-agent argumentation process.

A MAS, as defined in this paper, is formed by a POP agent which reasons about

which action step (for solving an open condition), or ordering constraint (for solving

a threat) should be chosen in the next iteration of the POP algorithm; a group of

non-self-interested argumentative agents, which join together to reason about the

argument step that should be chosen to satisfy/warrant a derivable precondition;

POP Agent

Argumentative Agent 2

Argumentative Agent 3

Client Agent

Mediator Agent

Argumentative Agent 1

D
e
fP
la
n
n
e
r

Fig. 1 An overview of DefPlanner.

2 For instance, in terms of less cost, time, resources or increased safety could be expressed

their utility functions.
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and, a mediator agent, which coordinates the multi-agent argumentation process for

warranting a literal.

4.1 DefPlanner Algorithm

The POP agent implements an extension of the traditional POP algorithm by con-

sidering the introduction of argument steps, and corresponding support links, to

resolve a defeasible precondition (Algorithm 1). The three non-determinist choose

statements state that the algorithm has to make a choice among different alternatives

(selecting the next partial-plan to work on, selecting a pending derivable precondi-

tion in the partial plan, or selecting the next open condition/threat to study). Typi-

cally, the selected choice will be the result of the application of a specific heuristic

[7]. The multi argumentation function encodes the defeasible argumentation multi-

agent process, which will be explained in detail in the next subsection.

The traditional POP algorithm works as follows: starting with the initial empty

plan Π0 (step 1 in Algorithm 1), it works through the application of successive

refinement steps at each iteration. First, it chooses a partial-order plan from the list

of candidates (step 3 in Algorithm 1), and then it applies a refinement step that

involves selecting a flaw (threat or open condition) in the partial-order plan (step 11

in Algorithm 1).

In contrast with the traditional POP algorithm, the new algorithm considers argu-

ment steps, besides action steps, to support unsatisfied derivable preconditions. The

POP agent takes an argument step as the support from the defeasible argumentation

multi-agent process (section 4.2) to derive a defeasible precondition. If no argument

steps can be constructed to support a derivable precondition, then it prunes3 the se-

lected plan Π from Plan List. Note that, unlike the achievable preconditions, the

algorithm does not branch for each different argument step that supports a derivable

precondition. As it will be explained later, in case of more than one undefeated ar-

gument step for a given defeasible precondition, the voting phase will select the best

argument step according to the preference criterion of generalized specificity (see

section 2.1).

The process ends when both subgoal list 1 and subgoal list 2 are empty, in

whose case Π is a solution plan, or when Plan List is empty, in whose case there is

not a solution plan.

4.2 Defeasible Argumentation Multi-Agent Process

The objective of this process is to have multiple agents reasoning (discussing)

about the warrant for a particular derivable precondition p requested by the POP

agent. The output of the process will be an argument step, if it exists an unde-

feated argument structure for p; otherwise, the procedure will return NIL (step 8 in

3 i.e. the plan is discarded and the search process does not continue exploring through this

plan.
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1: Plan list := Π0

2: repeat

3: choose Π ∈ Plan list

subgoal list 1 := DP(Π)
subgoal list 2 := OC(Π)

⋃

U L(Π)
4: if (subgoal list 1

⋃

subgoal list 2 = /0) then

5: return Π {Plan solution}
6: else if subgoal list 1 �= /0 then

7: choose Φ ∈ subgoal list1
Πa := multi argumentation(Φ)

8: if Πa �= NIL then

9: then Plan list := Plan list
⋃

Πa

10: else

11: choose Φ ∈ subgoal list2
Relevant := {Πr},∀ Πr that resolves Φ {Each r is a choice (partial-order

planning) to solve Φ}
12: if Relevant �= /0 then

13: Plan list := Plan list
⋃

Relevant

14: until Plan list = /0

15: return fail {Not exists plan}

Algorithm 1. Outline of the DefPlanner algorithm

Algorithm 1) thus indicating there is no refinement plan that supports the defeasible

precondition p.

In what follows, we will consider the notions defined in the section 2.1, such

as argument structure, disagreement, argumentation line, etc. Unlike single-agent

contexts, in our multi-agent framework arguments and counter-arguments will be

proposed by different argumentative agents in the MAS.

DefPlanner divides the reasoning process into three phases: the Dialogue Phase,

in which arguments and counter arguments are proposed, the Evaluation Phase, in

which each argument proposal to derive p is marked as defeated or undefeated, and

the Voting Phase, in which a voting is applied - in case of more than one undefeated

argument structure- to choose the best undefeated proposal for p according to the

preference criterion.

4.2.1 Dialogue Phase

Both the argumentative agents and the mediator agent are involved in this phase. The

argumentative agents of the MAS provide two functionalities: (I) propose an initial

argument structure to support a derivable precondition p, which will be the root of

a dialectical tree, and (II) propose a counterargument to the argument articulated by

another agent in the argumentation line. We assume that argumentative agents are

ordered according to their indexes: 1, 2, ..., n. The proposed model follows a rotating

shift approach4, in which an argumentative agent can only participate during its turn.

4 The shift approach allows to treat uniformly each agent.
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The mediator agent is in charge of adding the proposed arguments to the appropriate

dialectical tree or creating a new dialectical tree in case of a new initial argument

structure.

Let 〈X i,h〉 be an argument structure where X is the argument support, i denotes

the argumentative proposer agent, and h is the conclusion supported by the argu-

ment. Extending the definition 4 (section 2.1), an argumentation line in DefPlanner,

Λ = [〈X i,h0〉,〈Y
j,h1〉 . . . ,〈,Z

i,hn〉], is a sequence of argument structures from

different argumentative agents such that two consecutive argument structures can-

not be proposed by the same agent; i.e. 〈X i,h0〉, 〈Y
j,h1〉, and i �= j. Thereby,

DefPlanner does not allow agents giving counterarguments to their own arguments,

and this is achieved by ensuring that the agent’s local belief base (Δi) is consis-

tent with respect to the global belief base (Ψ ). In this first version of DefPlanner,

at the turn of an argumentative agent, it has to articulate all the arguments for a

given derivable precondition, or all its counterarguments for a given argument, so

an agent can jump-shift the turn only if it lacks sufficient information to make a new

proposal. However, in future versions, we will consider to model other different

kinds of argumentation strategies.

Specifically, the aim of this phase is to provide reasons that support a deriv-

able precondition p ∈ pre der(a). A new argument 〈X i, p〉 represents the root of

a dialectical tree T〈X ,p〉. In order to determine whether 〈X i, p〉 is an undefeated

argument or not in the next phase, agents alternatively propose a counter-argument

as a defeater to any of the leaf nodes of the dialectical tree T〈X ,p〉. According to [5],

a counter-argument 〈Y j,h2〉 to the argument 〈X i,h1〉 can be a direct attack to the

conclusion, that is h2 and h1 are contradictory literals, or can be an indirect attack by

arguing an inner point h of 〈X j,h1〉. Since counter-arguments are arguments too,

there may exist defeaters for them, and so on, thus giving rise to the argumentation

lines of T〈X ,p〉.

4.2.2 Evaluation Phase

At this phase, the aim is to decide whether a dialectical tree of a defeasible pre-

condition p is marked as undefeated or defeated. More specifically, the mediator

agent performs a bottom-up-analysis for each dialectical tree T〈X ,p〉 developed in

the above phase, obtaining a set of marked dialectical trees
n
⋃

0

T ∗
〈X ,p〉, where n is

the total number of dialectical trees for p. Nodes will be recursively marked as D

(defeated) or U (undefeated) like the minimax tree used in Artificial Intelligence for

game trees. At the end of this process, each root argument 〈X i, p〉 will be marked

as defeated or undefeated (Definition 5). In DefPlanner, a derivable precondition p

is warranted if it has at least a root argument that satisfies p, and the corresponding

dialectical tree is marked as U (undefeated).
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4.2.3 Voting Phase

If the derivable precondition p has more than one undefeated argument, we must

choose one of them as the support for p in a partial-order plan Π . In this phase,

agents vote the most preferable undefeated argument according to their own utility

function. The undefeated argument structure with the highest number of votes will

be the selected argument step to be included in Π . In case of tie-breaking, the me-

diator agent makes the final decision. So, the voting idea is that each agent votes

according to their

Different partial plans For instance, the next utility function could be adopted:

generalized specificity [14], a function that favors two aspects in an argument to

derive a derivable precondition: it prefers (1) a more precise argument (i.e., with

greater information content) or (2) a more concise argument (i.e., with less use of

rules). So, the undefeated arguments with greater information and less rules would

be preferred.

The following section illustrates the application of this protocol to an example

scenario in order to obtain a solution plan for a planning task.

5 Example of Application

Figure 2 shows the planning scenario where we will put our argumentation-based

model to work. There are two different locations in this scenario l1 and l2. As can

be seen in the figure, there are three different connections between l1 and l2: via

truck, train or plane, and so the client agent can reach l2 by using any of these three

transport means. The client agent, the truck, the train and the plane are initially

located at l1. The goal of the problem is to have the client agent in l2. Following,

we present the objects defined in this problem:

• l1, l2, ca - location 1, location 2, and the client agent

• tr, tra, pl - a truck, a train, a plane,

• r, tl, al, ae - a road, a railway, an airline company, the airline experts,

• tv, in, - television news, internet news

• bw, sn, wg, - bad weather, snow, wind gusts

• br, vi, ll, es f - bad railroad, adequate visibility, landslides, electrical supply fail-

ure

• rm, va, ds - airplane engines work well, volcano ash cloud hits airline, dangerous

situation

• h, j6, t j - holidays, June 6, and traffic jam.

The actions the client agent can perform are the following ones:

• Mp(? j,?k): moving plane pl from location j to k. It must exist an airline com-

pany to travel from j to k, and absence of dangerous situations to assure safety.

Moving a plane takes 3 time units.

• fMt(? j,?k): fast-moving truck tr from location j to k. It must exist a road from j

to k, and assure there is no traffic jam between j and k. This action takes 8 time

units.
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l2

tra

tr

l1

ca
l1

pl

Fig. 2 Scenario of the application example
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• sMt(? j,?k): slow-moving truck tr from location j to k. It must exist a road from

j to k. This action takes 20 time units.

• Mt(? j,?k): moving train tra from location j to k. There must exist a railway from

j to k, and no bad railroad conditions to assure an adequate visibility. This action

takes 10 time units.

Our multi-agent system consists of the POP agent, the mediator agent and three

argumentative agents, Bob, Joe and Ann. Agents have different knowledge and two

pieces of information from different agents can appear to be contradictory. Let’s

assume that each argumentative agent is a travel agency, that Joe uses TV as a

source of information, but Ann prefers Internet to keep up to date. The goal (G ) is

to have the agent ca at position l2, (at ca l2). The global belief base (Ψ ), the local

belief bases (ΔBob, ΔJoe, ΔAnn), and the action base (O) are detailed as follows:

Ψ =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(have in); (have tv); (have vi); (have va);
(have wg); (today j6); (have ae); (at ca l1);

(at tr l1); (at pl l1); (at tra l1);
(link l1 l2 r); (link l1 l2 tl); (link l1 l2 al);

⎫

⎪

⎪

⎬

⎪

⎪

⎭

ΔBob =

{

br−�ll; ll −�wg; bw−�wg;

ds−�{va,tv};

}
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ΔJoe =

⎧

⎨

⎩

br−�es f ; es f −�sn; br−�sn; ∼bw−�sn;

sn−�tv; t j−�h;

h−� j6; ∼ds−�rm; rm−�ae;

⎫

⎬

⎭

ΔAnn =

{

∼bw−�h; h−� j6; ∼ll−�∼bw;

∼br−�∼bw;∼bw−�in; ∼sn � in; ∼rm−�va;

}

For the sake of simplicity, Bob, Joe and Ann have the same utility function. Specif-

ically, we consider the same comparison criterion among defeaters arguments (sec-

tion 2.1), as an utility function that returns the best undefeated argument. In what

follows, we explain how DefPlanner works to obtain a complete plan Π that satisfies

the goal G .

5.1 Searching for a Solution Plan

5.1.1 Step 1

The planning process starts with the empty plan Π0 (leftmost plan in Figure 5). For

solving the precondition Φ = (at ca l2), the POP agent has four different action

choices {mP(l1, l2), mFt(tr, l1, l2), mT (l1, l2), mSt(tr, l1, l2)}, so four new

partial-order plans {Π0.1,Π0.2,Π0.3,Π0.4} are added to Plan List (see Figure 6).

5.1.2 Step 2

Let’s assume the POP selects the plan Π0.1 because it is the plan that takes fewer

time units. Then we have A P(Π0.1) = {mP(l1, l2)}. The action mP(l1, l2) has a

derivable precondition p =∼ds meaning that the plane can only fly if it is assured

that no dangerous situation is expected during the flight. The POP agent invokes the

mediator agent that calls the multi argumentation function, and it proposes a new

dialogue phase to check whether p is warranted or not.

Joe takes the first shift, and puts forward the initial argument 〈E Joe,∼ds〉 with

E Joe = {∼ds−�rm; rm−�ae}, indicating that the airline experts assert the airplane

engines work well and that there will be no dangerous situation. When counter-

arguments to this argument are requested, Ann responds5 with 〈E Ann,∼rm〉 with

E Ann = {∼rm−�va}, and Bob responds 〈C Bob,ds〉 with C Bob = {ds−�{va,tv}}. No-

body has more information to argue against, so the process ends here. Figure 3

shows the argument 〈E Joe,∼ds〉 is marked as defeated, and, consequently, ∼ds is not

warranted. The multi argumentation function returns Π0.1.1 = NIL because ∼ds is

not warranted. Thereby, Π0.1 is discarded from the Plan list.

5.1.3 Step 3

Let’s assume the next plan to be selected is Π0.2 (see Figure 6), where = A P(Π0.2)=
{mFt(tr 1, l1, l2)}. The action mFt(tr 1, l1, l2) has a derivable precondition

5 An argumentative agent responds if it is at its turn.
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〈E Joe,∼ds〉D

〈E Ann,∼rm〉U

��������

〈C Bob,ds〉U

��������

Fig. 3 Marked dialectical tree for the derivable precondition ∼ds at step 2 of the plan solution

process

p =∼t j, indicating that there should not be traffic jam for fast-moving truck. The

POP agent selects Π0.2 because it is the second plan with fewer time units. The POP

agent invokes the mediator agent that calls the multi argumentation function, and it

proposes a new dialogue phase to check whether ∼t j is warranted or not.

Bob and Ann have not traffic jam information, and Joe knows there is traffic jam

because today is June 6, and {t j−�h; h−� j6}. Therefore, nobody can support ∼t j,

and, multi argumentation function returns Π0.2.1 = NIL. Thereby, Π0.2 is discarded

from Plan list.

5.1.4 Step 4

Assuming the next selected plan is Π0.3 (Figure 6) where A P(Π0.3) =
{mT (l1, l2)}, the action mT (l1, l2) has a derivable preconditions which indicates

the railroad must not be in bad conditions; then, Φ =∼br.

Ann takes the first shift, and puts forward the initial argument 〈F Ann,∼br〉 with

F Ann = {∼br−�∼bw;∼bw−�in}, i.e., internet news say that bad weather is not

expected, and, therefore, the railroad will not be in bad conditions. Next, Bob

takes the shift and responds directly attacking ∼br with 〈A Bob,br〉, where A Bob =
{br−�ll; ll −�wg}, meaning that wind gusts are expected according to the infor-

mation in the initial state, and because of that landslides may occur. If landslides

happen to occur, then it is likely the case to have the railroad in bad conditions.

Joe takes the shift, and responds to ∼br with 〈BJoe,br〉 with BJoe = {br−�es f ;

es f −�sn; sn−�tv}, and, 〈C Joe,br〉 with C Joe = {br−�sn; sn−�tv}. That is, according

to Joe’s information, television news report it will snow, and so the railroad is likely

to be in bad conditions as well as having a electrical supply failure, which causes to

have the railroad in bad conditions.

When counterarguments to 〈BJoe,br〉 and 〈C Joe,br〉 are requested, Ann responds

with 〈A Ann,∼sn〉, where A Ann = {∼sn � in}. When asked to counter-argue 〈A Bob,br〉,
Ann responds with 〈BAnn,∼ll〉 where BAnn = {∼ll −�∼bw;∼bw−�in}. According to

Ann’s information, internet reports that no bad weather is expected and so there is

no chance to find landslides.

In turn, when asked to counter-argue 〈BAnn,∼ll〉, Bob takes the shift, and re-

sponds 〈BBob,bw〉 with BBob = {bw−�wg}. In turn, Joe responds 〈D Joe,∼bw〉
with D Joe = {∼bw−�sn; sn−�tv}, and, Ann responds 〈C Ann,∼bw〉 with C Ann =
{∼bw−�h; h−� j6}, and 〈DAnn,∼bw〉 with DAnn = {∼bw−�in}.



16 S. Pajares and E. Onaindia

〈F Ann,∼br〉U

〈A Bob,br〉D

��������

〈BJoe,br〉D 〈C Joe,br〉D

���������

〈BAnn,∼ll〉U 〈A Ann,∼sn〉U 〈A Ann,∼sn〉U

〈BBob,bw〉D

〈D Joe,∼bw〉U 〈C Ann,∼bw〉U

��������

〈DAnn,∼bw〉U

����������������������

Fig. 4 Marked dialectical tree for the derivable precondition ∼br at step 2 of the plan solution

process

Figure 4 shows that the argument 〈F Ann,∼br〉 is marked as undefeated, and, con-

sequently, the derivable precondition ∼br is warranted. The multi argumentation

function returns Π0.3.1, an extension of Π0.3 with F Ann and CL(F Ann).

5.1.5 Step 5

Assuming the plan selected next is Π0.3.1 (because it has less duration than Π0.4),

the POP agent extends Π0.3.1 to Π0.3.1.1, adding a causal link between f acts(F Ann)
and the initial state Ψ (Figure 6). Π0.3.1.1 is a solution plan that satisfies the goal G

(Figure 5).

FINISH FINISHFINISH

START STARTSTART

mT mT

FINISH

START

mT

Fig. 5 Different partial plans for the example scenario
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(at ca l2)

mP mFt mT mSt

brtjds
X X

Fig. 6 Search in the space of partial-order plans for the example scenario

6 Conclusions and Related Work

In this paper, we have presented DefPlanner, a defeasible argumentation-based plan-

ner that allows multiple agents with partial and contradictory knowledge articulate

reasons for and against the precondition of a planning action. Along the paper, we

have introduced the necessary modifications to include a defeasible reasoning into

a POP algorithm. This new and enriched planner opens up many possibilities to be

applied to a multi-agent planning context.

DefPlanner builds on the approximation of Garcia et al [6], and extends their

work by incorporating multiple agents at the time of deciding which literals (con-

ditions of a planning action or derivable preconditions) are warranted. Our work

is also related to conformant planning [8], an approach to deal with planning with

incomplete information in which the purpose is to generate plans given uncertainty

about the initial state and action effects, and without any sensing capabilities during

plan execution. However, unlike conformant planning, our approach is a powerful

planning mechanism for reasoning about contradictory information coming from

different sources or agents. In this sense, in the literature of classical planning we

can hardly find approaches to deal with contradictory information because, among

other reasons, there are very few attempts to extend planning to a multiagent en-

vironment, being a notably exception the work of Brenner and Nebel [3]. Hence,

DefPlanner is a novel approach regarding the consideration of incomplete and con-

tradictory information of multiple reasoning entities, i.e. agents.

As for future work, we are interested in extending the argumentation process to

achievable preconditions; that is, a new approach towards the integration of rea-

soning about action steps (practical reasoning) and reasoning about argument steps

(defeasible reasoning). Particularly, our next immediate step is to endow agents

with planning capabilities, rather than just limiting agents to perform defeasible

reasoning and discuss the warranty of literals, and thus come up with a defeasible



18 S. Pajares and E. Onaindia

multiagent planning approach. In this context, we will also study the choice of hav-

ing non-cooperative agents in the MAS.
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Operator Behavior Modelling in a Submarine

Isabelle Toulgoat, Pierre Siegel, and Yves Lacroix

Abstract. Simulations of naval action estimate the operational performance of

warships or submarines for a given scenario. In common models, the operator’s

reactions are predefined. This is not realistic: the operator’s decision can produce

unexpected reactions.

This paper presents a method to model operator decision in simulations. This

method allows to reason about incomplete, revisable and uncertain information: an

operator has partial information about his environment only and must revise his

decisions. Our method uses a nonmonotonic logic: the rules of behavior are for-

malized with default logic, to which we added a consideration of time. Our method

uses preferences to manage choice between different rules, with simple probabilistic

techniques.

This method has been implemented in Prolog, interfaced to DCNS simulator

framework and applied to a scenario involving two adverse submarines.

1 Introduction

Simulations of naval action estimate the operational performance of warships or

submarines for a given scenario. For example, a submarine must be discreet,

in order not to be detected by an ennemy. One of the main aspect regarding
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operational performance of a submarine is the detection acoustique performance

and the risk of being detected by an ennemy. At the DCNS, the simulator frame-

work ATANOR models complex scenarios involving several platforms with combat

system and equipment [18].

In this simulator framework, the behavior is modelled with Petri nets [13], com-

posed of places, which model the equipment states and transitions between these

places. These transitions are activated by internal and external events. Only one

place is activated at the same time, which forbids simultaneous actions.

The modelling of behavior rules with Petri nets provides automatic reactions of

the combat system to a tactical situation. This is not realistic: in a tactical situation

the decision of an operator is a key aspect, which can provide unexpected reactions.

Moreover, a disadvantage of the modelling with Petri nets is to have to revise its

implementation for any new behavior [7].

The purpose of this work is to develop a system allowing to model the behavior

of an operator in the performance simulations. We worked on a case study involving

two adverse submarines. This system has to obey several requirements:

• to be able to model the behavior rules of the operator.

• to be able to reason with incomplete, revisable and uncertain information.

Indeed, an operator has a partial sight of this environment only. This environ-

ment is always changing: the submarine can lose the detection, it hasn’t the exact

position of its adversary, it is just an estimation. . . . Therefore he must reason

with uncertain and incomplete information. His decisions must be revised with

the arrival of new information [17] [6].

• to choose between different proposals when the system proposes several actions

for a same situation.

• to allow the addition of new behavior rules, without having to modify the knowl-

edge representation and without calling into question the previous rules (unlike

the Petri nets, in which the modifications are complicated).

• to be able to reason with general rules, without having to compile in a very pre-

cise way all the information. It is not necessary for the user to describe all the

possibilities.

This work is financed by the DCNS company for military applications: we need a

simple and robust program. Therefore, we used the most widely known nonmono-

tonic logic: the default logic. We added a consideration of time: we have submarine’s

data at the time t , and the extensions calculus gives all the possible extensions at the

next time t + 1 . Each extension is a proposal for the action of the submarine. We

calculate a weight function for each extension, thanks to preferences on defaults.

Then, we use simple probabilistic techniques to choose between these extensions.

This work has been implemented using Prolog, and interfaced with DCNS simulator

[21], [19].

In the following paper we will first present the case study and some behavior

rules. Then, we will present the limits of the classical logic and why we need the

nonmonotonic logic. We will explain the formalization of the behavior rules with
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default logic. We use only normal defaults and Horn clauses in order to simplify the

program, though we could extend this work to other case studies, with more compli-

cated rules. Next we explain the choice between the extensions thanks to preferences

with simple probabilistic techniques. Finally, some results are presented.

2 Case Study: Submarine Detection and Tracking

In a scenario including two submarines, we model the decision of an on-watch of-

ficer in the submarine according to the events perceived on the tactical situation.

In this purpose, we questioned submariners about this case study, and we inferred

behavior rules. These rules are really used in a submarine. During this work, we

always got in touch with submariners, in order to complete the rules.

Here are some examples of these rules:

• Rule 1: As long as the submarine has no detection, it continues a random research

trajectory in its patrol area. During that process, the submarine makes successive

straight sections: it goes straight ahead and sometimes it changes its course. The

submarine is deaf in its rear (behind the submarine, the sonar’s reception is de-

creased for several reasons), this manœuver allows the submarine to check that

it isn’t tracked. With this manœuver, the submarine covers the entire patrol zone,

in order to increase its chances to detect an intruder.

Remark: it is a rule of minimal change [8] [23] [6]. This rule is applied as long

as the submarine has no new information.

• Rule 2: If the submarine detects another submarine, the officer engages the fol-

lowing actions:

– Collision avoidance manœuver.

– Elaboration of the solution manœuver: he manœuvers in order to confirm his

information about the distance, the course and the speed of the enemy.

– Bypassing of the enemy manœuver: when the officer is sure not to be detected,

he gets closer to the enemy’s rear, position in which he won’t be detected.

– Tracking manœuver: when the submarine is in the enemy’s rear, it begins the

tracking: it makes straight sections in the enemy’s rear, avoiding to be detected

and keeping good information about the enemy’s kinematics.

• Rule 3: If the submarine is detected when it makes one of the following manœu-

vers: elaboration of the solution, bypassing of the enemy or tracking, it must

escape: the officer manœuvers in order to go away from the enemy, aiming the

loss of contact.

• Rule 4: If the submarine is a diesel submarine and more than a few hours have

passed since the last battery charge, it must rise to the surface and use the snorkel

to take air from the surface and evacuate exhaust gas.

• Rule 5: If the submarine loses the contact during the tracking, the officer rallies

the last position of the adversary and searches for it.
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If he finds it, then he resumes the tracking actions (Rule 2).

If after one hour he hasn’t found it, he resumes the random research trajectory

(Rule 1).

During this research hour, the submarine can not rise and use the snorkel (Rule

4).

• Rule 6: With the sonar called MOAS (Mine and Obstacle Avoidance System),

the submarine can detect mines, big rocks, cliffs. If the submarine detects a big

rock, it changes its course in order to place the rock to one side.

These rules can be in competition: at a same time, it is possible that the submarine

needs to do several actions. For example, it needs to rise the surface and use the

snorkel and it needs to continue the tracking. The system must be able to manage

these alternative choices.

3 Classical Logic and Its Limits

The classical logics, as the mathematical or the propositional logics, are monotonic:

if we add information or a formula E’ to a formula E, everything which was deduced

from E will be deduced from E ∪ E’.This monotonicity will generate problems to

reason with incomplete, uncertain and revisable information. Indeed, in this case, it

can happen that previously established conclusions turn invalid due to new informa-

tion arrival or information change.

• The classical logic doesn’t allow to reason about incomplete information. Let us

take the rule: ”Generally, a submarine with no detection makes a random research

trajectory”. At first sight, we can express this type of information within the first-

order logic:

Rule 1:

∀x,¬detection(x) → random trajectory(x) (1)

This formulation is coherent if the only known information is ”The submarine

has no detection”.

But if we had the rule: ”If more than four hours have passed since the last battery

charge, the submarine must rise to the surface and use the snorkel to take air.”,

we express it within first-order logic:

Rule 2:

∀x, T lc(x) ≥ 4 → snorkel(x) (2)

where T lc denotes the time since the last charge and snorkel the action of rising

to the surface and using the snorkel.

With these rules, it is difficult to manage general rules containing an important

number of exceptions [17].

• The classical logic doesn’t allow to revise the information: it doesn’t plan to

revise the previously established deductions. Let us take again the rules 1 and 2.

Knowing that the submarine has no detection, we deduce that it must make a
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random trajectory. But, if we know that more than four hours passed since the

last battery charge, we conclude that the submarine must use the snorkel.

We obtain two conclusions which are not consistent: the submarine can not make

at the same time these two actions.

It illustrates how classical logics don’t allow revising the reasoning and the con-

clusions. This kind of reasoning is common in artificial intelligence, as well as

in the daily life.

In the case of a submarine, blind in submersion, the only information comes from

passive sonar system, this information is uncertain and incomplete [15], [3]. The

officer must be able to revise the decisions with the arrival of new information.

We need a logic which allows to reason about incomplete, uncertain and revisable

information.

4 Nonmonotonic Logic and Default Logic

A nonmonotonic logic allows to eliminate the monotony property of the classical

logic: if a reasoning gives some conclusions using some given knowledge, these

conclusions could be revised with the addition of new knowledge.

A nonmonotonic logic allows to take the incomplete, revisable, uncertain infor-

mation into account. This logic has a natural similarity with the human reasoning:

due to the lack of information or lack of time, one can reason with partial knowledge

and revise the conclusions when one has more information.

The default logic, introduced by Ray Reiter [16], is the most widely used logic. It

formalizes the default reasoning: conclusions can be made, in the absence of oppo-

site proof. A default logic is defined by ∆ = (D, W ), W is a set of facts (formulae

from propositional logic or the first-order logic), and with D, a set of defaults, (in-

ference rules with specific content, which handle uncertainty).

Let us remind the definitions of defaults and extensions:

Definition: Default

A default is an expression of the form:

A(X) : B(X)

C(X)
(3)

where A(X), B(X) and C(X) are formulae and X is a set of variables. A(X) is the

prerequisite, B(X) is the justification and C(X) is the consequent. Intuitively, this

default ( formula 3) means: if A(X) is true, if it is possible that B(X) is true (B(X) is

consistent), then C(X) is true.

If B(X) = C(X), the default is normal. The normal default means: ” Normally,

the As are Bs”.
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Definition: Extension

The use of defaults allows to deduce more formulae from a knowledge base W.

To generate the deduced formulae, we calculate extensions, which are defined as

follows:

E is an extension of ∆ if and only if E = ∪i=0,∞Ei , with

E0 = W and for i ≥ O,

Ei+1 = Th(Ei) ∪ {C/(
A : B

C
) ∈ D, A ∈ Ei,¬B /∈ E}

where Th(Ei) is the set of theorems obtained in a monotonic way from Ei.

It is important to notice that E appears in the definition of Ei+1. So, we need to

know E to find Ei, it is not possible to obtain the extensions with an incremental

algorithm.

If we work with normal defaults, the definition of an extension is changed: we

need to verify that ¬B /∈ Ei:

E0 = W and for i ≥ O,

Ei+1 = Th(Ei) ∪ {B/(
A : B

B
) ∈ D, A ∈ Ei,¬B /∈ Ei}

where Th(Ei) is the set of theorem obtained in a monotonic way from Ei.

For our case study, we only use normal defaults, but we could extend our work

to general defaults.

5 Rules Formalization with Default Logic

5.1 Time Consideration

To formalize the rules of behavior, we used default logic, to which we added a

consideration of time. Indeed, we have submarines data at the time t, and we have

to deduce the submarines instructions at the next time t+1, taking into account the

state of the submarine and updated information. These instructions will generate the

submarine updated data for time t+1. To introduce the time, we used previous work

by Cordier and Siegel [6].

We need the time consideration in the definitions of the facts W and the defaults

D of the default logic ∆ = (D, W ).

5.2 Facts Definition with Time Consideration

The set of facts W is defined with formulae from propositional logic or first-order

logic.
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• We used basic facts (or ground literals) like, for example: d e tection(dt),
course(ct), speed(st). . . The basic facts define the submarine information at the

time t.
• We use only Horn clauses. They allow us to write two types of rules:

– the Horn clauses with a positive literal, written as follows:

(g(t) ∨ ¬f1(t) ∨ . . . ∨ ¬fk(t)) (4)

where the fi(t) and g(t) are positive literal at time t. This formula can also be

written with an implication:

(f1(t) ∧ . . . ∧ fk(t)) → g(t) (5)

This type of rules allows to define rules which are always true, these are classic

rules of expert systems.

Example: we formalise a rule such as ”If the submarine has a random research

trajectory, it turns by an angle between α and β”, as follows:

random trajectory(Xt) → turn(Xt, (α, β)) (6)

– the Horn clauses with no positive literal, written as:

(¬f1(t) ∨ . . . ∨ ¬fk(t)), (7)

ie

¬(f1(t) ∧ . . . ∧ fk(t)) (8)

We use these rules to define mutual exclusions in pairs, these are the predicates

which can not be executed at the same time:

(¬f1(t) ∨ ¬f2(t)) (9)

equivalent to

¬(f1(t) ∧ f2(t)) (10)

Example: we can define a rule such as ”The submarine can not make at the

same time a random research trajectory and rise to use the snorkel” as follows:

¬(random trajectory(Xt) ∧ snorkel(Xt)) (11)

The basic facts and the Horn clauses are easily understandable for the users, and

we obtain a simple program. However, we could generalize our work to other

clauses.
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5.3 Default Definition with Time Consideration

The defaults D are inference rules with specific content, they allow to manage un-

certainty. They express the fact that, if there is no contradiction to execute an action,

the submarine can do it. We use here only normal defaults. The normal defaults

allow to ensure the existence of at least one extension [16] and to obtain a simple

algorithm of extension calculus. However, we could generalize our work with other

defaults.

They allow us to formalize rules such as ”If the submarine has no detection, then

it makes a random research trajectory” in the following way:

¬detection(Xt) : random trajectory(Xt+1)

random trajectory(Xt+1)
(12)

This default means: ”If the submarine has no detection at time t and if it can make

a random research trajectory at time t+1, it makes a random research trajectory at

time t+1”.

The defaults allow us to define general rules on the behavior of the submarine

(rise to the surface to use snorkel, collision avoidance, tracking. . . ). Then, the set

of facts allows to specify, for each behavior, the action to realize (change course,

speed, submersion) and the mutual exclusions between the behaviors.

5.4 Extension Calculus

We use extensions calculus to study all the defaults and to retain the defaults that

answer the problem in a coherent way. Each extension is a possible solution to

the problem: according to the submarine state at the time t, an extension gives a

possible solution of action for the submarine at the next time t+1 [20]. The normal

defaults grant the existence of at least one extension. Generally, we will have several

extensions for the same knowledge base.

We could use the answer set programming [12] to calculate the extensions, which

are equivalent. In order to have a simple system, we rather implement our own

extension calculus. The normal defaults and the Horn clauses allow to implement

easily the extensions calculus with the Prolog language. We called our program

NoMROD for Non-Monotonic Reasoning for Operator Decision.

6 Extensions Selection with Preferences

The aim of this part is to simulate the officer decision. In a tactical situation, the

decision of an operator is a key aspect. At each time, the officer has to choose be-

tween the actions. We define a method to choose between the different extensions

proposed. This method allows to simulate different types of behavior, depending on

the officer’s character.
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We distinguish two stages in this method. The first stage consists in defining gen-

eral principles for the extension selection, and a weight function for the extension

with a multi-criteria decision aid method. This weight function is a general formula,

which can be used for other case studies. This function handles the officer’s behavior

at two levels:

• the importance of each default according to different criteria, with preference

coefficients C 1, . . . , Cn, which allow to define preferences on defaults.These co-

efficients describe the importance of each action.

• the officer character with the character coefficients β1, . . . , βn: which criteria will

he favor? Thanks to these character coefficients, we can model different officers:

careful, bold. . .

Next, the second stage is more specific to the case study. We define a method to

select an extension, thanks to the weight function.

6.1 Extension Selection Principles

First, we study some principles and requirements to which the extension selection

must answer:

1. to choose the interesting extension and let the others aside.

Example: NoMROD proposes two extensions: to make a random research trajec-

tory or to rise to the surface and use the snorkel to take air.

The random research trajectory is a rule of minimal change: it is applied while the

submarine has no new information. The officer will choose to rise to the surface,

which is a more important behavior.

2. to choose the extensions which are obligatory ( for the crew survival).

For example, the officer can postpone the rising to use the snorkel, if he is doing

another important action (for example the tracking). When this rule is verified,

the officer has approximately thirty minutes of battery. When this reserve will be

practically empty, the officer will be obliged to rise.

3. to manage the choice between several extensions.

Example:NoMROD proposes two extensions: avoid the collision with a subma-

rine and avoid the collision with a big rock. These two behaviors are very impor-

tant for the submarine safety. NoMROD must be able to choose between exten-

sions which have the same importance.

4. to respect the minimal change: while the submarine has no new information, it

stays in the same state, it doesn’t change its behavior. We must give more chance

to an action already engaged.

With this rule, the officer will persist in its choices, he won’t oscillate between

several behaviors. However, NoMROD must be able to stop an action if another

becomes obligatory.

Example: NoMROD proposes two extensions: to track the enemy and to rise to

the surface and use the snorkel to take air. We suppose that the system chooses

the tracking. These two extensions will be proposed again while the rising won’t
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be executed. The best choice for the officer is to carry on the tracking, and when

the rising becomes obligatory (the submarine has just enough battery to rise to

the surface), he must execute this action.

When the submarine begins an action, it seems important to carry on this action

during a certain time. The officer can not change his opinion too often.

5. the enemy submarine doesn’t have to guess which action our officer will select.

These principles are some principles of common sense. Aside from last principle,

the other can be applied generally to other case studies.

6.2 Extensions Weight Function

We define a weight function to give weights to the extensions.These weights quan-

tify the extensions importance. In order to define this weight function, we use a

method of multi-criteria decision aid (MCDA). MCDA aims at modelling the pref-

erences of a decision maker. It allows the decision maker to solve complex problems,

where several criteria must be handled in the choice [2],[22]. There are several cat-

egories of methods in MCDA. We use the multi-attribute utility theory. This theory

is based on the following axiom:

Every decision maker tries unconsciously to maximize a function

U = U (g 1, . . . , gn), (13)

which aggregates all the points of view to be handled (with gi the criteria).

In order to define a general method to define the extensions weight functions, we

use a simple aggregation function: the weighted sum.

Each extension uses defaults. First, we attribute preference coefficients on de-

faults. Next, we calculate the utility function for each extension, and finally we

calculate the weight functions for each extension using the weighted sums.

6.2.1 Preference’s Coefficients on Defaults

Each default is a general behavior. In order to specify the importance of behaviors,

the user allocates preference coefficients to the defaults.

In a similar way, the preferences are used within a system of nonmonotonic rea-

soning, allowing finding an appropriate compromise solution. For example, Brewka

[4] defined a prioritized default logic, with a definition of order in which defaults

must be applied.

Different preference coefficients C1, . . . , Cn are attributed to specify the impor-

tance of the defaults according to different criteria.

For example, we can specify the default importance for the submarine safety, the

efficiency on the submarine mission, the order obedience, ecologist criterion. . .

For each default Dj , we attribute values to these coefficients C1j . . . Ckj , . . . , Cnj .

We fixed arbitrarily these coefficients between 0 and 1000.
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6.2.2 Utility Function

Each extension E i uses defaults:

E i = {D 1 . . . , Dm}

For each extension Ei, we calculate the scores

{Score1(Ei), . . . , Scoren(Ei)}

which correspond respectively with the coefficients C1, . . . , Cn.

A score Scorek(Ei) is the sum of the coefficients Ck of each default used in the

extension Ei:

Scorek(Ei) =
m

∑

j=1

Ckj (14)

We suppose that NoMROD proposes p extensions. For each Scorek(Ei) for an

extension Ei, we calculate a utility function µk(Ei). The sum of the utility functions

µk must be equal to 1:
p

∑

j=1

µk(Ej) = 1 (15)

The score Scorek(Ei) is divided by the sum of all the Scorek(Ej) of the p exten-

sions proposed by the system:

µk(Ei) =
Scorek(Ei)

p
∑

j=1

Scorek(Ej)

(16)

µk(Ei) is the evaluation of the extension Ei, according to the criterion Ci.

6.2.3 Officer’s Character

We want to model the officer’s character. According to his character, the officer will

use different tactics.

For example, a careful officer will give more importance to the behaviors which

ensure the submarine safety. A bold officer will favor the efficient behavior for the

submarine mission. To model these characters, the user defines character coefficients

β1, . . . , βn in the weight function, such as the sum of these coefficients is equal to

one
n

∑

k=1

βk = 1 (17)
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6.2.4 Weight Function

Finally, we use a simple function to aggregate criteria: the weighted sum. For each

extension Ei, we have:

P (Ei) =

n
∑

k=1

βkµk(Ei) (18)

with the equation 17. The sum of the extension weight functions has the following

property:
p

∑

i=1

P (Ei) = 1. (19)

We obtain a general formula, which could be easily reused with other case study.

The use of the weighted sum as aggregation function implies some limitations

[10]. More specially, this function can favor the extreme extensions (for example,

an extension with a utility function very small for a criterion and with a utility func-

tion very important for an other criterion) to the detriment of an other extension with

more well-balanced utility functions. Other aggregation functions, such as the Cho-

quet intergal [9], allow to solve this problem by handling the interaction between

criteria. We plan to test this aggregation function in future work.

6.2.5 Example of Weight Function Calculus

We define four defaults:

{D1, D2, D3, D4},

and two coefficents: the submarine safety Csafety , and the efficiency on the subma-

rine mission Cefficiency .

We attribute values to each default:

Defaults Csafety Cefficiency

D1 500 600

D2 10 800

D3 1000 900

D4 50 60

We suppose we have to choose between two extensions:

E1 = {D1, D4} and E2 = {D2, D3, D4}.

We calculate the extensions scores (cf. formula 14):

Scores E1 E2

Scoresafety 550 1060

Scoreefficiency 660 1760
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We calculate the utility functions (cf. formula 16):

µ E1 E2

µsafety

550

1610

1060

1610

µefficiency

660

2420

1760

2420

Finally, we have the weight functions (cf. formula 18):

P (E1) = βsafety ∗ µsafety (E1) + βefficiency ∗ µefficiency(E1)

P (E2) = βsafety ∗ µsafety (E2) + βefficiency ∗ µefficiency(E2)

If the officer prefers to favor the safety of his submarine rather than the mission

efficiency, we can define: βsafety = 0.6 and βefficiency = 0.4. With this example,

we obtain:

P (E1) = 0.31 and P (E2) = 0.69.

6.3 Random Extension Choice

In a tactical situation, the decision of an operator is a key aspect, which can provide

unexpected reactions. In our case study, the choice hasn’t to be always determin-

ist. Moreover, with deterministic reactions, it is easy for the opposing submarine to

guess these reactions (principle 5). We need a choice method, which handles these

unexpected reactions.

For these reasons, we don’t choose always the extension with the maximum

weight function. We prefer to introduce an additional part of uncertainty with a

random choice. However, this random choice must be coherent with the princi-

ples which guide the officer’s decision, and with the extension selection principles

defined previously.

6.3.1 Random Choice

The random choice is based on a random sampling: we have p extensions:

E1, . . . , Ep

and the respective weight functions:

P (E1), . . . , P (Ep)

with the formula 19. Each weight function P (Ei) is the probability for the extension

to be chosen.
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Example 1: We have to choose between two extensions:

• E1 with the weight function P (E1) = 0.1.

• E2 with the weight function P (E2) = 0.9.

With this random choice, we manage the choice between several extensions

(principle 3).

6.3.2 Correction on the Extension Weight Function

With this random sampling, we have problems to solve. The random choice is realist

if we have to choose between extensions with close weight.

However, if we have an extension with a very important weight, we want to

choose this one (example 1).

We have the same problem in the following example (example 2). The system

proposes six extensions: five extensions with the same weight function 0.1 and

one with the weight function equal to 0.5. The random sampling gives as much

chances to be chosen to the five extensions with the weight function equal to 0.1:

5 ∗ 0.1 = 0.5, as to the extension with the weight function equal to 0.5. In such a

case, it seems more natural to choose the extension with the weight function equal

to 0.5.

We have to modify the weight function, in order to give a more important weight

to the important extension, and less important weights to the others. In this purpose,

we apply a correction to the weight function: the power function f(x) = xk, with

k > 1.

The correction is applied as follows:

• We have to choose between p extensions :

E1, . . . , Ep,

and the respective weight functions:

P (E1), . . . , P (Ep),

with the formula 19.

• We apply the power function

f(x) = xk (20)

with k > 1: P (E1)
k, . . . , P (Ep)

k. The more k will be important, the more the

extensions with small weights will be minimized.

• The sum of the weight functions must be equal to one: we divide with the sum of

the extensions weights

P (Ej)
k

p
∑

i=1

P (Ei)
k

(21)
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This correction gives more importance to the extensions with high weight function,

and less importance to the others. For the moment, we don’t fix the value of the

power k , we want to test different values.

Let us apply this correction on the example 2. We take the power function f (x ) =
x 2. The weight function 0.1 becomes 0.12 = 0.01 and the weight function 0.5

becomes 0.52 = 0.25.

We want the sum of the weight functions equal to 1. The sum of the weight

functions with correction is
6

∑

i=1

P (Ei) = 0.3.

We obtain:

• Five extensions with the weight function
0.12

0.3
= 0.04.

• One extension with the weight function
0.52

0.3
= 0.8.

With the correction, we give more chances to the extension with the more important

weight to be chosen.

6.3.3 Filtering of the Extensions with Small Weight Functions

To be sure to choose the most interesting extension and let the others aside (principle

1), we eliminate the extension with very small weight functions. We fix a threshold:

the extensions with a weight function smaller than this threshold are removed.

6.4 Respect for Minimal Change

To respect the minimal change (principle 4), we define a general rule of minimal

change. In this purpose, we remember the submarine behavior (random research

trajectory, collision avoidance,. . . ) at the time t. We call this behavior Behavior(t),
and the condition to be in this behavior: Prerequisite, which corresponds to the

default prerequisite for this behavior. The general rule of minimal change is a

default:

Dmin ch =
Behavior(t) ∧Prerequisite(t) : Behavior(t + 1)

Behavior(t + 1)
(22)

This rule means: ” If the prerequisite of the previous behavior are always true at the

time t, and if it is possible to stay in this behavior at time t + 1, the submarine can

stay in this behavior at time t + 1”.

The preference coefficients C1 . . . Cn can not be too important, in order to allow

new behaviors. This rule gives more chances to an action already beginning and

allows also persistency (principle 4).
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7 Interface with the Simulator Framework and Results

An interface has been realized between NoMROD and the DCNS simulator frame-

work ATANOR. ATANOR sends to NoMROD the information about the submarine

at which we apply the behavior rules (course, speed, submersion, position) and about

the enemy submarine (detection, position, speed).

NoMROD compiles the behavior rules, selects an extension and sends back the

instruction of course, speed and submersion to the simulator framework. On the

figure 1, we have an example of a run of NoMROD, interfaced with the simulator

ATANOR.

We call Submarine 1 the submarine to which we apply the behavior rules of

NoMROD. And we note Submarine 2 the enemy submarine, whose behavior is de-

fined by ATANOR. The goal for the enemy submarine is to cross the patrol area

without being detected. This transit is modeled with straight sections, which course

is selected to match an average course.

In this scenario, the submarine 1 makes random research trajectory, because it

has no detection. When it detects the enemy, the officer makes the sequence of

actions: collision avoidance, elaboration of the solution, bypassing the enemy and

tracking. The trajectory evaluated at the beginning is far from the real trajectory of

the submarine 2. The manœuver of elaboration of the solution allows to obtain a

better estimation of this trajectory.

We obtain an efficient program. To simulate a scenario of 2h40, the calculus time

used by ATANOR and NoMROD is 6 seconds and the NoMROD program only used

20 % of this calculus time.

Fig. 1 Detection and tracking of a submarine
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This scenario has been validated by submariners. They recognize the actions en-

gaged when they detect a submarine. Moreover, we obtain a robust program. In the

simulations, the trajectory evaluated by the submarine 1 about the submarine 2 give

a bad estimation, far from the real trajectory of the submarine 2. In spite of this

uncertain information, the modelling of the behavior allows to carry out the mission

of tracking. Finally, this modelling was used to study the influence of the officer

behavior on the operational performance of a submarine, with Monte-Carlo type

statistical analyses.

8 Conclusion

The default logic allowed to formalize the behaviour rules of an officer in a sub-

marine, by handling the incomplete, uncertain and revisable information on the

environment.

With the use of Horn clauses and normal defaults, we obtain a simple, robust and

efficient program, appropriate for military applications. Moreover, this is a work

which can be applied generally, by using other clauses and other defaults.

We had to interface our work with the simulator framework ATANOR, in order

to do statistical studies. We obtain good calculus time, so we can do such studies.

The obtained system compiles the available information and gives all the possi-

bilities of actions with the extensions. To simulate the officer’s choice, we defined a

method to choose an extension:

• we defined weight functions for extensions, with preference coefficients on the

defaults and a weighted sum;

• we defined a method to choose an extension thanks to these weight functions with

a probabilistic technique: a random choice with corrections (power function and

threshold) to be coherent with the principles which guide the officer’s decisions.

We would like now to test another aggregation function: the Choquet integral, which

allows to handle the interaction between the criteria. We must also work on a general

method to attribute the value of the preference coefficients on the defaults and the

character coefficients: we could use learning to attribute the best values.

Other methods exist to model the behavior: the behavior-based systems, intro-

duced in robotics in 1980 [5], [11], [14], [1]. Another model has been tested: this

model is based on the schema theory, developed by Arkin in 1989 [1]. This model,

presented in [18], has some disadvantage:

• It is difficult to add a new behavior, because this method uses finite state au-

tomaton. If we want to add a new behavior, we have to review the finite state

automaton.

• All the activated behavior are considered for the final instruction of the officer.

We have a risk to obtain an incoherent behavior, which doesn’t answer to the

purpose of each activated behavior.
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Our approach with the default logic allows to add easily a new behavior: we don’t

use Petri nets or states machines. The user will be able to add new rules, without

having to care about rules previously established. So, we have the advantage to

work with general rules, the defaults. We have just to define the mutual exclusions

between the different behaviours. With the mutual exclusions, we have no risk to

obtain incoherent behavior.
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Automatic Wrapper Adaptation by Tree Edit

Distance Matching

Emilio Ferrara and Robert Baumgartner

Abstract. Information distributed through the Web keeps growing faster day by day,

and for this reason, several techniques for extracting Web data have been suggested

during last years. Often, extraction tasks are performed through so called wrappers,

procedures extracting information from Web pages, e.g. implementing logic-based

techniques. Many fields of application today require a strong degree of robustness

of wrappers, in order not to compromise assets of information or reliability of data

extracted.

Unfortunately, wrappers may fail in the task of extracting data from a Web page,

if its structure changes, sometimes even slightly, thus requiring the exploiting of new

techniques to be automatically held so as to adapt the wrapper to the new structure

of the page, in case of failure. In this work we present a novel approach of auto-

matic wrapper adaptation based on the measurement of similarity of trees through

improved tree edit distance matching techniques.

1 Introduction

Web data extraction, during last years, captured attention both of academic research

and enterprise world because of the huge, and still growing, amount of information

distributed through the Web. Online documents are published in several formats but

previous work primarily focused on the extraction of information from HTML Web

pages.
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Most of the wrapper generation tools developed during last years provide to full

support for users in building data extraction programs (a.k.a. wrappers) automati-

cally and in a visual way. They can reproduce the navigation flow simulating the

human behavior, providing support for technologies adopted to develop Web pages,

and so on. Unfortunately, a problem still holds: wrappers, because of their intrin-

sic nature and the complexity of extraction tasks they perform, usually are strictly

connected to the structure of Web pages (i.e. DOM tree) they handle. Sometimes,

also slight changes to that structure can cause the failure of extraction tasks. A cou-

ple of wrapper generation systems try to natively avoid problems caused by minor

changes, usually building more elastic wrappers (e.g. working with relative, instead

of absolute, XPath queries to identify elements).

Regardless of the degree of flexibility of the wrapper generator, wrapper main-

tenance is still a required step of a wrapper life-cycle. Once the wrapper has been

correctly developed, it could work for a long time without any malfunction. The

main problem in the wrapper maintenance is that no one can predict when or what

kind of changes could occur in Web pages.

Fortunately, local and minor changes in Web pages are much more frequent

case than deep modifications (e.g. layout rebuilding, interfaces re-engineering, etc.).

However, it could also be possible, after a minor modification on a page, that the

wrapper keeps working but data extracted are incorrect; this is usually even worse,

because it causes a lack of consistency of the whole data extracted. For this reason,

state-of-the-art tools started to perform validation and cleansing on data extracted;

they also provide caching services to keep copy of the last working version of Web

pages involved in extraction tasks, so as to detect changes; finally, they notify to

maintainers any change, letting possible to repair or rewrite the wrapper itself. De-

pending on the complexity of the wrapper, it could be more convenient to rewrite it

from scratch instead of trying to find causes of errors and fix them.

Ideally, a robust and reliable wrapper should include directives to auto-repair

itself in case of malfunction or failure in performing its task. Our solution of au-

tomatic wrapper adaptation relies on exploiting the possibility of comparing some

structural information acquired from the old version of the Web page, with the new

one, thus making it possible to re-induct automatically the wrapper, with a custom

degree of accuracy.

The rest of the paper is organized as follows: in Section 2 we consider the related

work on theoretical background and Web data extraction, in particular regarding

algorithms, techniques and problems of wrapper maintenance and adaptation. Sec-

tions 3 covers the automatic wrapper adaptation idea we developed, detailing some

interesting aspects of algorithms and providing some examples. Experimentation

and results are discussed in Section 4. Section 5, finally, presents some conclusive

considerations.

2 Related Work

Theoretical background on techniques and algorithms widely adopted in this work

relies on several Computer Science and Applied Mathematics fields such as
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Algorithms and Data Structures and Artificial Intelligence. In the setting of Web

data extraction, especially algorithms on (DOM) trees play a predominant role. Ap-

proaches to analyze similarities between trees were developed starting from the

well-known problem of finding the longest common subsequence(s) between two

strings. Several algorithms were suggested, for example Hirshberg [4] provided the

proof of correctness of three of them.

Soon, a strong interconnection between this problem and the similarity between

trees has been pointed out: Tai [13] introduced the notion of distance as measure of

the (dis)similarity between two trees and extended the notion of longest common

subsequence(s) between strings to trees. Several tree edit distance algorithms were

suggested, providing a way to transform a labeled tree in another one through lo-

cal operations, like inserting, deleting and relabeling nodes. Bille [1] reported, in a

comprehensive survey on the tree edit distance and related problems, summarizing

approaches and analyzing algorithms.

Algorithms based on the tree edit distance usually are complex to be implemented

and imply a high computational cost. They also provide more information than

needed, if one just wants to get an estimate on the similarity. Considering these rea-

sons, Selkow [12] developed a top-down trees isomorphism algorithm called simple

tree matching, that establishes the degree of similarity between two trees, analyz-

ing subtrees recursively. Yang [16] suggested an improvement of the simple tree

matching algorithm, introducing weights.

During years, some improvements to tree edit distance techniques have been in-

troduced: Shasha and Zhang [18] provided proof of correctness and implementation

of some new parallelizable algorithms for computing edit distances between trees,

lowering complexity of O(|T1|·|T2|·min(depth(T1), leaves(T1))·min(depth(T2),
leaves(T2))), for the non parallel implementation, to O(|T1|+|T2|), for the parallel

one; Klein [6], finally, suggested a fast method for computing the edit distance be-

tween unrooted ordered trees in O(n3 logn). An overview of interesting applications

of these algorithms in Computer Science can be found in Tekli et al. [14].

Literature on Web data extraction is manifold: Ferrara et al. [3] provided a com-

prehensive survey on application areas and used techniques, and Laender et al. [8]

give a very good overview on wrapper generation techniques. Focusing on wrapper

adaptation, Chidlovskii [2] presented some experimental results of combining and

applying some grammatical and logic-based rules. Lerman et al. [9] developed a

machine-learning based system for wrapper verification and reinduction in case of

failure in extracting data from Web pages.

Meng et al. [10] suggested a new approach, called SG-WRAM (Schema-Guided

WRApper Maintenance), for wrapper maintenance, considering that changes in Web

pages always preserve syntactic features (i.e. data patterns, string lengths, etc.),

hyperlinks and annotations (e.g. descriptive information representing the semantic

meaning of a piece of information in its context).

Wong [15] developed a probabilistic framework to adapt a previously learned

wrapper to unseen Web pages, including the possibility of discovering new at-

tributes, not included in the first one, relying on the extraction knowledge related

to the first wrapping task and on the collection of items gathered from the first Web
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page. Raposo et al. [11] already suggested the possibility of exploiting previously

acquired information, e.g. queries results, to re-induct a new wrapper from an old

one not working anymore, because of structural changes in Web pages.

Kim et al. [5] compared results of simple tree matching and a modified weighed

version of the same algorithm, in extracting information from HTML Web pages;

this approach shares similarities to the one followed here to perform adaptation

of wrappers. Kowalkiewicz et al. [7] focused on robustness of wrappers exploiting

absolute and relative XPath queries.

3 Wrapper Adaptation

As previously mentioned, our idea is to compare some helpful structural information

stored by applying the wrapper on the original version of the Web page, searching

for similarities in the new one.

3.1 Primary Goals

Regardless of the method of extraction implemented by the wrapping system (e.g.

we can consider a simple XPath), elements identified and represented as subtrees of

the DOM tree of the Web page, can be exploited to find similarities between two

different versions.

In the simplest case, the XPath identifies just a single element on the Web page

(Figure 1.A); our idea is to look for some elements, in the new Web page, shar-

ing similarities with the original one, evaluating comparable features (e.g. subtrees,

attributes, etc.); we call these elements candidates; among candidates, the one show-

ing the higher degree of similarity, probably, represents the new version of the orig-

inal element.

It is possible to extend the same approach in the common case in which the XPath

identifies multiple similar elements on the original page (e.g. a XPath selecting re-

sults of a search in a retail online shop, represented as table rows, divs or list items)

(Figure 1.B); it is possible to identify multiple elements sharing a similar structure

in the new page, within a custom level of accuracy (e.g. establishing a threshold

value of similarity). Section 4 discusses also these cases.

Once identified, elements in the new version of the Web page can be extracted as

usual, for example just re-inducting the XPath. Our purpose is to define some rules

to enable the wrapper to face the problem of automatically adapting itself to extract

information from the new Web page.

We implemented this approach in a commercial tool 1; the most efficient way to

acquire some structural information about elements the original wrapper extracts, is

to store them inside the definition of the wrapper itself. For example, generating sig-

natures representing the DOM subtree of extracted elements from the original Web

page, stored as a tree diagram, or a simple XML document (or, even, the HTML

1 Lixto Suite, www.lixto.com
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Fig. 1 Examples of XPaths over trees, selecting one (A) or multiple (B) items.

itself). This shrewdness avoids that we need to store the whole original page, ensur-

ing better performances and efficiency.

This technique requires just a few settings during the definition of the wrapper

step: the user enables the automatic wrapper adaptation feature and set an accuracy

threshold. During the execution of the wrapper, if some XPath definition does not

match a node, the wrapper adaptation algorithm automatically starts and tries to find

the new version of the missing node.

3.2 Details

First of all, to establish a measure of similarity between two trees we need to find

some comparable properties between them. In HTML Web pages, each node of the

DOM tree represents an HTML element defined by a tag (or, otherwise, free text).

The simplest way to evaluate similarity between two elements is to compare their

tag name. Elements own some particular common attributes (e.g. id, class, etc.) and

some type-related attributes (e.g. href for anchors, src for images, etc.); it is possible

to exploit this information for additional checks and comparisons.

The algorithm selects candidates between subtrees sharing the same root element,

or, in some cases, comparable -but not identical- elements, analyzing tags. This is

very effective in those cases of deep modification of the structure of an object (e.g.

conversion of tables in divs).

As discussed in Section 2, several approaches have been developed to analyze

similarities between HTML trees; for our purpose we improved a version of the

simple tree matching algorithm, originally led by Selkow [12]; we call it clustered

tree matching. There are two important novel aspects we are introducing in fac-

ing the problem of the automatic wrapper adaptation: first of all, exploiting previ-

ously acquired information through a smart and focused usage of the tree similarity

comparison; thus adopting a consolidated approach in a new field of application.

Moreover, we contributed applying some particular and useful changes to the algo-

rithm itself, improving its behavior in the HTML trees similarity measurement.
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3.3 Simple Tree Matching

Let d(n) to be the degree of a node n (i.e. the number of first-level children); let T(i)

to be the i-th subtree of the tree rooted at node T; this is a possible implementation

of the simple tree matching algorithm:

Algorithm 1. SimpleTreeMatching(T
′
, T

′′
)

1: if T
′

has the same label of T
′′

then

2: m ← d(T
′
)

3: n ← d(T
′′
)

4: for i = 0 to m do

5: M[i][0] ← 0;

6: for j = 0 to n do

7: M[0][ j] ← 0;

8: for all i such that 1 ≤ i ≤ m do

9: for all j such that 1 ≤ j ≤ n do

10: M[i][ j] ← Max(M[i][ j−1], M[i−1][ j], M[i−1][ j −1]+W [i][ j]) where W [i][ j]
= SimpleTreeMatching(T

′
(i−1), T

′′
( j−1))

11: return M[m][n]+1

12: else

13: return 0

Advantages of adopting this algorithm, which has been shown quite effective

for Web data extraction [5, 17], are multiple; for example, the simple tree match-

ing algorithm evaluates similarity between two trees by producing the maximum

matching through dynamic programming, without computing inserting, relabeling

and deleting operations; moreover, tree edit distance algorithms relies on complex

implementations to achieve good performance, instead simple tree matching, or sim-

ilar algorithms are very simple to implement.

The computational cost is O(n2 ·max(leaves(T
′
), leaves(T

′′
)) ·max(depth(T

′
),

depth(T
′′
))), thus ensuring good performances, applied to HTML trees. There are

some limitations; most of them are irrelevant but there is an important one: this ap-

proach can not match permutations of nodes. Despite this intrinsic limit, this tech-

nique appears to fit very well to our purpose of measuring HTML trees similarity.

3.4 Clustered Tree Matching

Let t(n) to be the number of total siblings of a node n including itself:
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Algorithm 2. ClusteredTreeMatching(T
′
, T

′′
)

1: {Change line 11 with the following code}
2: if m > 0 AND n > 0 then

3: return M[m][n] * 1 / Max(t(T
′
), t(T

′′
))

4: else

5: return M[m][n] + 1 / Max(t(T
′
), t(T

′′
))

In order to better reflect a good measure of similarity between HTML trees, we

applied some focused changes to the way of assignment of a value for each matching

node.

In the simple tree matching algorithm the assigned matching value is always 1.

After leading some analysis and considerations on structure of HTML pages, our

intuition was to assign a weighed value, with the purpose of attributing less impor-

tance to slight changes, in the structure of the tree, when they occur in deep sublevels

(e.g. missing/added leaves, small truncated/added branches, etc.) and also when they

occur in sublevels with many nodes, because these mainly represent HTML list of

items, table rows, etc., usually more likely to modifications.

In the clustered tree matching, the weighed value assigned to a match between

two nodes is 1, divided by the greater number of siblings with respect to the two

compared nodes, considering nodes themselves (e.g. Figure 2.A, 2.B); thus reducing

the impact of missing/added nodes.

Before assigning a weight, the algorithm checks if it is comparing two leaves or

a leaf with a node which has children (or two nodes which both have children). The

final contribution of a sublevel of leaves is the sum of assigned weighted values to

each leaf (cfr. Code Line (4,5)); thus, the contribution of the parent node of those

leaves is equal to its weighed value multiplied by the sum of contributions of its

children (cfr. Code Line (2,3)). This choice produces an effect of clustering the pro-

cess of matching, subtree by subtree; this implies that, for each sublevel of leaves

the maximum sum of assigned values is 1; thus, for each parent node of that sub-

level the maximum value of the multiplication of its contribution with the sum of

contributions of its children, is 1; each cluster, singly considered, contributes with a

maximum value of 1. In the last recursion of this top-down algorithm, the two roots

will be evaluated. The resulting value at the end of the process is the measure of

similarity between the two trees, expressed in the interval [0,1]. The closer the final

value is to 1, the more the two trees are similar.

Let us analyze the behavior of the algorithm with an example, already used by

[16] and [17] to explain the simple tree matching (Figure 2): 2.A and 2.B are two

very simple generic rooted labeled trees (i.e. the same structure of HTML trees).

They show several similarities except for some missing nodes/branches.

Applying the clustered tree matching algorithm, in the first step (Figure 2.A, 2.B)

contributions assigned to leaves, with respect to matches between the two trees, re-

flect the past considerations (e.g. a value of 1
3

is established for nodes (h), (i) and

(j), although two of them are missing in 2.B). Going up to parents, the summation
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2
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1
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1
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1
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N15

b

N16
1
4
·
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1
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·

(N20+N21)

g

N20
1
2
·N22

h

N22
1
3

f
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1
2

Fig. 2 A and B are two similar labeled rooted trees.

of contributions of matching leaves is multiplied by the relative value of each node

(e.g. in the first sublevel, the contribution of each node is 1
4

because of the four

first-sublevel nodes in 2.A).

Once completed these operations for all nodes of the sublevel, values are added

and the final measure of similarity for the two trees is obtained. Intuitively, in more

complex and deeper trees, this process is iteratively executed for all the sublevels.

The deeper a mismatch is found, the less its missing contribution will affect the

final measure of similarity. Analogous considerations hold for missing/added nodes

and branches, sublevels with many nodes, etc. Table 1 shows M and W matrices

containing contributions and weights.

Table 1 W and M matrices for each matching subtree.

W N18 N19

N6 1
2

0

N7 0 1
2

M 0 N18 N18-19

0 0 0 0

N6 0 1
2

1
2

N6-7 0 1
2

1

W N18 N19

N9 0 1
2

N10 1
2

0

M 0 N18 N18-19

0 0 0 0

N9 0 0 1
2

N9-10 0 1
2

1
2

W N8

N20 0

N21 1
2

M 0 N8

0 0 0

N20 0 0

N20-21 0 1
2

W N12 N13 N14

N22 1
3

0 0

M 0 N12 N12-13 N12-14

0 0 0 0 0

N22 0 1
3

1
3

1
3

W N11

N20 1
6

N21 0

M 0 N11

0 0 0

N20 0 1
6

N20-21 0 1
6

W N2 N3 N4 N5

N16 1
4

0 1
8

0

N17 0 1
8

0 1
24

M 0 N2 N2-3 N2-4 N2-5

0 0 0 0 0 0

N16 0 1
4

1
4

1
4

1
4

N16-17 0 1
4

3
8

3
8

3
8
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In this example, ClusteredTreeMatching(2.A, 2.B) returns a measure of similar-

ity of 3
8

(0.375) whereas SimpleTreeMatching(2.A, 2.B) would return a mapping

value of 7; the main difference on results provided by these two algorithms is the

following: our clustered tree matching intrinsically produces an absolute measure

of similarity between the two compared trees; the simple tree matching, instead,

returns the mapping value and then it needs subsequent operations to establish the

measure of similarity.

Hypothetically, in the simple tree matching case, we could suppose to establish

a good estimation of similarity dividing the mapping value by the total number of

nodes of the tree with more nodes; indeed, a value calculated in this way would

be linear with respect to the number of nodes, thus ignoring important information

as the position of mismatches, the number of mismatches with respect to the total

number of subnodes/leaves in a particular sublevel, etc.

In this case, for example, the measure of similarity between 2.A and 2.B, ap-

plying this approach, would be 7
14

(0.5). A greater value of similarity could sug-

gest, wrongly, that this approach is more accurate. Experimentation showed us that,

the closer the measure of similarity is to reflect changes in complex structures, the

higher the accuracy of the matching process is. This fits particularly well for HTML

trees, which often show very rich and articulated structures.

The main advantage of using the clustered tree matching algorithm is that, the

more the structure of considered trees is complex and similar, the more the measure

of similarity will be accurate. On the other hand, for simple and quite different

trees the accuracy of this approach is lower than the one ensured by the simple

tree matching. But, as already underlined, the most of changes in Web pages are

usually minor changes, thus clustered tree matching appears to be a valid technique

to achieve a reliable process of automatic wrapper adaptation.

4 Experimentation

In this section we discuss some experimentation performed on common fields of

application [3] and following results. We tried to automatically adapt wrappers, pre-

viously built to extract information from particular Web pages, after some -often

minor- structural changes.

All the followings are real use cases: we did not modify any Web page, original

owners did; thus re-publishing pages with changes and altering the behavior of old

wrappers. Our will to handle real use cases limits the number of examples of this

study. These real use cases confirmed our expectations and simulations on ad hoc

examples we prepared to test the algorithms.

We obtained an acceptable degree of precision using the simple tree matching and

a great rate of precision/recall using the clustered tree matching. Precision, Recall

and F-Measure will summarize these results showed in Table 2. We focused on

following areas, widely interested by Web data extraction:
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• News and Information: Google News 2 is a valid use case for wrapper adaptation;

templates change frequently and sometimes is not possible to identify elements

with old wrappers.

• Web Search: Google Search 3 completely rebuilt the results page layout in the

same period we started our experimentation 4; we exploited the possibility of

automatically adapting wrappers built on the old version of the result page.

• Social Networks: another great example of continuous restyling is represented by

the most common social network, Facebook 5; we successfully adapted wrappers

extracting friend lists also exploiting additional checks performed on attributes.

• Social Bookmarking: building folksonomies and tagging contents is a common

behavior of Web 2.0 users. Several Websites provide platforms to aggregate and

classify sources of information and these could be extracted, so, as usual, wrapper

adaptation is needed to face chages. We choose Delicious 6 for our experimenta-

tion obtaining stunning results.

• Retail: these Websites are common fields of application of data extraction and

Ebay 7 is a nice real use case for wrapper adaptation, continuously showing,

often almost invisible, structural changes which require wrappers to be adapted

to continue working correctly.

• Comparison Shopping: related to the previous category, many Websites provide

tools to compare prices and features of products. Often, it is interesting to ex-

tract this information and sometimes this task requires adaptation of wrappers to

structural changes of Web pages. Kelkoo 8 provided us a good use case to test

our approach.

• Journals and Communities: Web data extraction tasks can also be performed on

the millions of online Web journals, blogs and forums, based on open source blog

publishing applications (e.g. Wordpress 9, Serendipity 10, etc.), CMS (e.g. Joomla
11, Drupal 12, etc.) and community management systems (e.g. phpBB 13, SMF 14,

etc.). These platforms allow changing templates and often this implies wrappers

must be adapted. We lead the automatic adaptation process on Techcrunch 15, a

tech journal built on Wordpress.

2 http://news.google.com
3 http://www.google.com
4 http://googleblog.blogspot.com/2010/05/spring-metamorphosis-googles-new-look.html
5 http://www.facebook.com
6 http://www.delicious.com
7 http://www.ebay.com
8 http://shopping.kelkoo.co.uk
9 http://wordpress.org

10 http://www.s9y.org
11 http://www.joomla.org
12 http://drupal.org
13 http://www.phpbb.com
14 http://www.simplemachines.org
15 http://www.techcrunch.com
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Table 2 Experimental results.

Simple Tree Matching Clustered Tree Matching

Precision/Recall Precision/Recall

URL threshold true pos. false pos. false neg. true pos. false pos. false neg.

news.google.com 90% 604 - 52 644 - 12

google.com 80% 100 - 60 136 - 24

facebook.com 65% 240 72 - 240 12 -

delicious.com 40% 100 4 - 100 - -

ebay.com 85% 200 12 - 196 - 4

kelkoo.co.uk 40% 60 4 - 58 - 2

techcrunch.com 85% 52 - 28 80 - -

Total - 1356 92 140 1454 12 42

Recall - 90.64% 97.19%

Precision - 93.65% 99.18%

F-Measure - 92.13% 98.18%

We adapted wrappers for these 7 use cases considering 70 Web pages; Table 2 sum-

marizes results obtained comparing the two algorithms applied on the same page,

with the same configuration (threshold, additional checks, etc.). Threshold repre-

sents the value of similarity required to match two trees. The columns true pos.,

false pos. and false neg. represent true and false positive and false negative items

extracted from Web pages through adapted wrappers.

In some situations of deep changes (Facebook, Kelkoo, Delicious) we had to

lower the threshold in order to correctly match the most of the results. Both the al-

gorithms show a great elasticity and it is possible to adapt wrappers with a high

degree of reliability; the simple tree matching approach shows a weaker recall

value, whereas performances of the clustered tree matching are stunning (F-Measure

greater than 98% is an impressive result). Sometimes, additional checks on nodes

attributes are performed to refine results of both the two algorithms. For example,

we can additionally include attributes as part of the node label (e.g. id, name and

class) to refine results. Also without including these additional checks, the most of

the time the false positive results are very limited in number (cfr. the Facebook use

case).

Figure 3 shows a screenshot of the developed tool, performing an automatic

wrapper adaptation task: in this example we adapted the wrapper defined for ex-

tracting Google news, whereas the original XPath was not working because of some

structural changes in the layout of news. Elements identified by the original XPath

are highlighted in red in the upper browser, elements highlighted in the bottom

browser represent the recognized ones through the wrapper adaptation process.
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Fig. 3 An example of Wrapper Adaptation.

5 Conclusion

This work presents new scenarios, analyzing Wrapper Adaptation related problems

from a novel point of view, introducing improvements to algorithms and new fields

of application.

There are several possible improvements to our approach we can already imagine.

First of all, it could be very interesting to extend the matching criteria we used, mak-

ing the tree matching algorithm smarter. Actually, we already included features like

analyzing attributes (e.g. id, name and class) instead of just comparing labels/tags

or node types. The accuracy of the matching process benefits of these additional

checks and it is possible, for example, to improve this aspect with a more complex

matching technique, containing full path information, all attributes, etc.

It could be interesting to compare these algorithms, with other tree edit distance

approaches working with permutations; although, intuitively, simple tree matching

based algorithms can not handle permutations on nodes, maybe it is possible to

develop some enhanced version which solves this limitation. Furthermore, just con-

sidering the tree structure can be limiting in some particular situations: if a new node

has only empty textual fields (or, equally, if a deleted node had only empty fields) we

could suppose its weight should be null. In some particular situation this inference

works well, in some others, instead, it could provoke mismatches. It could also be

interesting to exploit textual properties, nevertheless, not necessarily adopting Natu-

ral Language Processing techniques (e.g. using logic-based approaches, like regular

expressions, or string edit distance algorithms, or just the length of strings – treating

two nodes as equal only if the textual content is similar or of similar length).

The tree grammar could also be used in a machine learning approach, for exam-

ple creating some tree templates to match similar structures or tree/cluster diagrams

to classify and identify several different topologies of common substructures in Web



Automatic Wrapper Adaptation by Tree Edit Distance Matching 53

pages. This process of simplification is already used to store a light-weight snapshot

of elements identified by a wrapper applied on a Web page, at the time of extraction;

actually, this feature allows the algorithm to work also without the original version

of the page, but just exploiting some information about extracted items. This possi-

bility opens new scenarios for future work on Wrapper Adaptation.

Concluding, the clustered tree matching algorithm we described is very extensi-

ble and resilient, so as ensuring its use in several different fields, for example it per-

fectly fits in identifying similar elements belonging to a same structure but showing

some small differences among them. Experimentation on wrapper adaptation has

already been performed inside a productive tool, the Lixto Suite, this because our

approach has been shown to be solid enough to be implemented in real systems,

ensuring great reliability and, generically, stunning results.
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Representing Temporal Knowledge in the

Semantic Web: The Extended 4D Fluents
Approach

Sotiris Batsakis and Euripides G.M. Petrakis

Abstract. Representing information that evolves in time in ontologies, as well as

reasoning over static and dynamic ontologies are the areas of interest in this work.

Building upon well established standards of the semantic Web and the 4D-fluents

approach for representing the evolution of temporal information in ontologies, this

work demonstrates how qualitative temporal relations that are common in natural

language expressions (i.e., relations between time intervals like “before”, “after”,

etc.) are represented in ontologies. Existing approaches allow for representations of

temporal information, but do not support representation of qualitative relations and

reasoning.

1 Introduction

Ontologies offer the means for representing high level concepts, their properties and

their interrelationships. Dynamic ontologies will in addition enable representation of

information evolving in time. In particular, dynamic ontologies are not only suitable

for describing static scenes with static objects (e.g., objects in photographs) but also

enable representation of events with objects and properties changing in time (e.g.,

moving objects in a video). Representation of both static and dynamic information

in ontologies, as well as reasoning over static and dynamic ontologies are exactly

the problems this work is dealing with.

Representation of dynamic features calls for mechanisms allowing representation

of the notion of time (and of properties varying in time) [1]. Methods for achiev-

ing this goal include (among others), temporal description logics [11], temporal

RDF [13], versioning [6], named graphs [18], reification, N-ary relations [2] and

the 4D-fluent (perdurantist) approach [9] with the last being the most efficient. All
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approaches suffer from data redundancy as several objects are created for each

binary relationship changing in time (i.e., for each new event, a new temporal object

and an additional binary relationship for each temporal property of this object is

created and associated with existing classes) thus complicating the ontology. Also,

adding a time argument to binary relationships may (as in reification and named

graphs) complicate application of OWL language constructs (e.g., cardinality con-

straints, inverse, transitive relations are no longer applicable) thus limiting OWL

expressivity and obstructing reasoning. The 4D fluents approach, still suffers from

data redundancy but maintains OWL expressiveness and reasoning support (i.e., an

OWL reasoner such as Pellet can still be applied to fully exploit OWL semantics

over the 4D fluent representation). However, time and temporal constructs repre-

senting the evolution of binary relationships in time, still offer additional semantics

which can be exploited by applying additional rules (e.g., rules on Allen relation-

ships). This is also a problem this work is dealing with.

Reasoning on temporal knowledge is still an active research area and has been

investigated previously in other domains (temporal logics [11], temporal data bases

[10]). To the best of our knowledge this is the first work to address this problem

within the context of ontologies. More specifically, we show how results from pre-

vious research efforts [17, 28, 25] can be ported into ontological representations

such as the extended 4D fluents representation proposed in this work.

In our earlier work [4] we showed how temporal information (also the evolution

of temporal concepts) can be represented effectively in OWL. Concepts varying in

time are represented as 4-D dimensional objects, with the 4-th dimension being the

time. This work extends this approach in certain ways: The 4-D fluents mechanism

is enhanced with qualitative (in addition to quantitative) temporal expressions allow-

ing for the representation of temporal intervals with unknown starting and ending

points by means of their relation (e.g., “before”, “after”) to other time intervals.

Adding reasoning support to the above representation is also a contribution of the

present work: A set of inference rules is proposed whose purpose is to assert addi-

tional implied facts into the knowledge base (i.e., determine the temporal relation

between two events given their relations with a third one). Reasoning becomes fea-

sible by using a tractable subset of the set of Allen’s relationships [17]. Specifically,

the reasoning mechanism incorporates rules for inferring certain temporal relations

from existing ones using additional axioms based on compositions of Allen relations

and by checking temporal assertions for consistency (i.e., path consistency checking

is implemented).

Adding query support to the extended 4D fluent representation is an additional

contribution of this work. More specifically, we extend the TOQL query language

[4] to handle qualitative temporal relationships and the extended 4D fluent repre-

sentation.

Related work in the field of knowledge representation is discussed in Section 2.

This includes issues related to representing and reasoning over information evolving

in time. The temporal representation model is presented in Section 3 and the corre-

sponding reasoning mechanism in Section 3.1, followed by evaluation in Section 4

and conclusions and issues for future work in Section 5.
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2 Background and Related Work

Several representation languages are defined for the Semantic Web, the most impor-

tant of them are referred to as the OWL-family [7, 22] of ontology languages for

ontology building and knowledge representation. Representation languages such as

RDF, OWL (which is based on description logics), the same as frame-based and

object-oriented languages (F-logic) are all based on binary relations. Binary rela-

tions simply connect two instances (e.g., an employee with a company) without any

temporal information. Nevertheless, representation of time using OWL is feasible,

although complicated [2, 9].

The OWL-Time temporal ontology [5] describes the temporal content of Web

pages and the temporal properties of Web services. Apart from language constructs

for the representation of time in ontologies, there is still a need for mechanisms for

the representation of the evolution of concepts (e.g., events) in time. This is related

to the problem of the representation of time in temporal (relational and object ori-

ented) databases. Existing methods are relying mostly on temporal Entity Relation

(ER) models [10] taking into account valid time (i.e., time interval during which a

relation holds), transaction time (i.e., time at which a database entry is updated) or

both. Also time is represented by time instants, intervals or finite sets of intervals.

However, representation of time in OWL differs because (a) OWL semantics are not

equivalent to ER model semantics (e.g., OWL adopts the Open World Assumption

while ER model adopts the Closed World Assumption) and (b) relations in OWL

are restricted to binary ones. Representation of time in the Semantic Web can be

achieved using Temporal Description logics (TDLs) [11, 12], Reification, N-ary re-

lations [2], temporal RDF [13], Versioning [6], named graphs [18] or 4D-fluents [9].

Temporal Description Logics (TDLs) extend standard description logics (DLs)

that form the basis for semantic Web standards with additional constructs such as

“always in the past”, “sometime in the future”. TDLs offer additional expressive ca-

pabilities over non temporal DLs and retain decidability (with an appropriate selec-

tion of allowable constructs) but they require extending OWL syntax and semantics

with additional temporal constructs. Representing information regarding specific

time points requires support for concrete domains, resulting to the proliferation of

objects [11].

Temporal RDF [13] proposes extending RDF by labeling properties with the time

interval they hold. This approach also requires extending the syntax and semantics

of the standard RDF, although representation over RDF (e.g., using reification) can

be achieved. Note that Temporal-RDF cannot express incomplete information , by

means of qualitative relations.

Reification is a general purpose technique for representing n-ary relations using

a language such as OWL that permits only binary relations. Specifically, an n-ary

relation is represented as a new object that has all the arguments of the n-ary relation

as objects of properties. For example if the relation R holds between objects A and

B at time t, this is expressed as R(A,B,t). Furthermore, in OWL using reification this

is expressed as a new object with R,A,B and t being objects of properties. Fig. 1

illustrates the relation WorksFor(Employee, Company, TimeInterval) representing
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Fig. 1 Example of Reification

the fact that an employee works for a company during a time interval. Reification

suffers mainly from two disadvantages: (a) data redundancy, because a new object is

created whenever a temporal relation has to be represented (this problem is common

to all approaches based on non temporal Description Logics such as OWL-DL) and

(b) offers limited OWL reasoning capabilities [9] since relation R is represented as

the object of a property thus OWL semantics over properties are no longer applicable

(i.e., the properties of a relation are no longer associated directly with the relation

itself).

N-ary relations is also a general purpose technique that represents an n-ary re-

lation using an additional object. In contrast to reification, the n-ary relation is not

represented as the object of a property but as two properties each related with the

new object. These two objects are related to each other with an n-ary relation. This is

also illustrated in Fig.2. This approach requires only one additional object for every

temporal interval, maintains property semantics but suffers from data redundancy

in the case of inverse and symmetric properties [2] (e.g., the inverse of a relation is

added explicitly twice instead of once as in 4D-fluents).

Fig. 2 Example of N-ary Relations
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Versioning [6] suggests that the ontology has different versions (one per instance

of time). When a change takes place, a new version is created. Versioning suffers

from several disadvantages: (a) changes even on single attributes require that a new

version of the ontology be created leading to information redundancy (b) searching

for events occurred at time instances or during time intervals requires exhaustive

searches in multiple versions of the ontology, (c) it is not clear how the relation

between evolving classes is represented. Furthermore, ontology languages such as

OWL [7] are based on binary relations (relations connecting two instances) with no

time dimension regarding ontology versions.

Named Graphs [18] represent the temporal context of a property by inclusion of

a triple representing the property in a named graph (i.e., a subgraph into the RDF

graph of the ontology specified by a distinct name). The default (i.e., main) RDF

graph contains definitions of interval start and end points for each named graph,

thus a property is stored in a named graph with start and end points corresponding

to the time interval that the property holds. Named graphs are not part of the OWL

specification [24] (i.e., there are not OWL constructs translated into named graphs)

and they are not supported by OWL reasoners.

The 4D-fluent (perdurantist) approach [9] shows how temporal information and

the evolution of temporal concepts can be represented effectively in OWL. Concepts

in time are represented as 4-dimensional objects with the 4th dimension being the

time. Time instances and time intervals are represented as instances of a time in-

terval class which in turn is related with time concepts varying in time. Changes

occur on the properties of the temporal part of the ontology keeping the entities of

the static part unchanged. The 4D-fluent approach still suffers from data redundancy

but in contrast to other approaches it maintain full OWL expressiveness and reason-

ing support. N-ary relations[2] is considered to be an alternative to the 4-D fluents

approach, although the 4-D fluents representation where the property is holding

among two timeslices of objects and not between the two objects and the intermedi-

ate object representing their relation may seems more natural to users. TOWL [23]

is a temporal representation approach based on 4-D fluents that extends OWL syntax

with temporal concepts and supports quantitative time intervals.

3 Extended 4D Fluents Approach

Following the approach by Welty and Fikes [9], to add time dimension to an

ontology, classes TimeSlice and TimeInterval with properties tsTimeSliceOf and

tsTimeInterval are introduced. Class TimeSlice is the domain class for entities rep-

resenting temporal parts (i.e., “time slices”) and class TimeInterval is the domain

class of time intervals. A time interval holds the temporal information of a time

slice. Property tsTimeSliceOf connects an instance of class TimeSlice with an en-

tity, and property tsTimeInterval connects an instance of class TimeSlice with an

instance of class TimeInterval. Properties having a time dimension are called fluent

properties and connect instances of class TimeSlice.
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Fig. 3 Dynamic Enterprise Ontology

Fig. 3 illustrates a temporal ontology with classes Company with datatype property

companyName and Employee with datatype property employeeName. In this ex-

ample, CompanyName and EmployeeName are static properties (their value do not

change in time), while properties employs and worksFor (i.e., inverse of employs)

are dynamic (fluent) properties whose values may change in time. Because they are

fluent properties, their domain (and range) is of class TimeSlice. CompanyTimeSlice

and EmployeeTimeslice are instances of class TimeSlice and are provided to denote

that the domain of properties worksFor and employs, are time slices restricted to be

slices of a specific class. For example, the domain of property employs is not class

TimeSlice but it is restricted to instances that are time slices of class Company.

The 4-D fluent mechanism forms the basis of the proposed temporal ontology

representation. In this work, the 4D-fluent representation is enhanced with qualita-

tive temporal relations holding between time intervals whose starting and ending

points are not specified. This is implemented by introducing temporal relationships

as object relations between time intervals. This can be one of the 13 pairwise disjoint

Allen’s relations [17] of Fig. 4.

By allowing for qualitative relations the expressive power of the representation

increases. Temporal RDF and 4-D fluents both require closed temporal intervals

for the representation of temporal information, while semiclosed and open intervals

can’t be represented effectively in a formal way. If their endpoints are unknown,

ad-hoc approaches [18] that handle open intervals by extending their start or end
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ji

Meets(i,j)

Before(i,j)

Overlaps(i,j)

Starts(i,j)

During(i,j)

Finishes(i,j)

Equals(i,j)

Inverse RelationRelation

After(j,i)

MetBy(j,i)

OverlappedBy(j,i)

StartedBy(j,i)

Contains(j,i)

FinishedBy(j,i)

Fig. 4 Allen’s Temporal Relations

point infinitely are not appropriate, since lack of knowledge (about their endpoints)

is interpreted as if a property always holds in the past or future. In this work, this is

handled by Allen relations: for example, if interval t1 is known and t2 is unknown

but we know that t2 starts when t1 ends, then we can assert that t2 is met by t1.

Likewise, if an interval t3 with unknown endpoints is introduced and t3 is be f ore

t1 then, using compositions of Allen relations [17], we infer that t3 is be f ore t2

although both interval’s endpoints are unknown and their relation is not represented

explicitly in the ontology. Semiclosed intervals can be handled in a similar way. For

example, if t1 starts at time point 1, still holds at time point 2, but it’s endpoint is

unknown, we assert that t1 is started by interval t2:[1,2]. Fig.5 illustrates the dy-

namic ontology schema representing the scenario “George lived in Crete from 2004

to 2010 and then he moved to Athens”. In this example, we don’t know whether

George still lives in Athens.

Overall, the model demonstrates enhanced expressivity compared to previous ap-

proaches [18, 19, 23, 15] by combining 4D-fluents [9] with Allen’s temporal rela-

tions, their formal semantics and composition rules as defined in [17].

3.1 Temporal Reasoning

Reasoning is realized by introducing a set of SWRL [27] rules operating on tempo-

ral intervals. Reasoners that support DL-safe rules such as Pellet [16] can be used for

inference and consistency checking over temporal relations. In addition to reason-

ing applying on temporal relations, the Pellet reasoner is applied on the ontology

schema to infer additional facts using OWL semantics (e.g., facts due symmetric

relationships and class-subclass relationships).
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Fig. 5 Instantiation example

The temporal reasoning rules are based on composing pairs of basic Allen’s rela-

tions of Fig. 4 as defined in [17]. The composition table of basic Allen’s relations is

presented in Table 1. Relations BEFORE, AFTER, MEETS, METBY, OVERLAPS,

OVERLAPPEDBY, DURING, CONTAINS, STARTS, STARTEDBY, ENDS, END-

EDBY and EQUALS are represented using symbols B, A, M, Mi, O, Oi, D, Di, S,

Si, F, Fi and = respecively. Compositions with EQUALS are not presented since

these compositions keep the initial relations unchanged. The composition table rep-

resents the result of the composition of two Allen relations. For example, if relation

R1 holds between interval1 and interval2 and relation R2 holds between interval2

and interval3 then the entry of the Table 1 corresponding to line R1 and column

R2 denotes the possible relation(s) holding between interval1 and interval3. Not

all compositions yield a unique relation as a result. For example the composition of

relations During and Meets yields the relation Be f ore as result while the composi-

tion of relations Overlaps and During yields three possible relations Starts, Over-

laps and During. Rules corresponding to compositions of relations R1, R2 yielding

unique relations R3 as a result can be represented using SWRL as follows:

R1(x,y)∧R2(y,z) � R3(x,z)

An example of temporal inference rule is the following:

DURING(x,y)∧MEETS(y,z) � BEFORE(x,z)

Rules yielding a set of possible relations as a result can’t be represented in SWRL

since disjunctions of atomic formulas are not permitted as a rule head. Instead,
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Table 1 Composition Table for Allen’s temporal relations.

disjunctions of relations are represented using new relations whose compositions

must also be defined and asserted into the knowledge base. For example, if the rela-

tion DOS represents the disjunction of relations During, Overlaps and Starts, then

the composition of Overlaps and During can be represented as follows:

OVERLAPS(x,y)∧DURING(y,z) � DOS(x,z)

Note that the set of possible disjunctions over all basic Allen’s relations is 213 but

subsets of this set that are closed under composition (i.e., compositions of relation

pairs from this subset yield also a relation in this subset) do exist [25, 28]. In this

work we use the tractable subset introduced in [28].

In addition to the above, the following axioms are also asserted into the knowl-

edge base:

• Four transitivity axioms (for the relations BEFORE, FINISHEDBY, CONTAINS,

STARTEDBY).



64 S. Batsakis and E.G.M. Petrakis

• Six inverse axioms (relations AFTER, METBY, OVERLAPPEDBY, START-

EDBY, CONTAINS and FINISHEDBY are the inverses of BEFORE, MEETS,

OVERLAPS, STARTS, DURING and FINISHES respectively).

• One equality axiom (relation EQUALS).

• Rules defining the relation holding between two intervals with known starting

and ending points (e.g., if ending of interval1 is smaller than the start of interval2

the interval1 is before interval2) are part of the ontology as well.

Notice that, starting and ending points of intervals are represented using concrete

datatypes such as xsd:date that support ordering relations. Axioms concerning rela-

tions that represent disjunctions of basic relations are defined using the correspond-

ing axioms for these basic relations. Specifically, compositions of disjunctions of

basic relations are defined as the disjunction of the compositions of these basic re-

lations. For example the composition of relation DOS (representing the disjunction

of During, Overlaps and Starts), and the relation During yields the relation DOS as

a result as follows:

DOS ◦During � (During∨Overlaps∨Starts)◦During �

(During ◦During)∨ (Overlaps◦During)∨ (Starts◦During)

� (During)∨ (During∨Overlaps∨Starts)∨ (During)

� During∨Starts∨Overlaps � DOS

The symbol ◦ denotes composition of relations, and compositions of basic (non-

disjunctive) relations are defined using Table 1. Similarly, the inverse of a disjunc-

tion of basic relations is the disjunction of the inverses of these basic relations as

presented in Fig. 4. For example the inverse of the disjunction of relations Be f ore

and Meets is the disjunction of the inverse relations of Be f ore and Meets (A f ter

and MetBy respectively).

By applying compositions of relations the implied relations may be inconsistent.

Consistency checking is achieved using path consistency [14, 25, 28]. Path consis-

tency is implemented by consecutive applications of the following formula:

∀x,y,k Rs(x,y) � Ri(x,y)∩ (R j(x,k)◦Rk(k,y))

representing intersection of compositions of relations with existing relations (the

symbol ∩ denotes intersection and the symbol ◦ denotes composition and symbols

Ri, R j, Rk, Rs denote Allen relations). The formula is applied until a fixed point is

reached (i.e., application of rules doesn’t yield new inferences) or until the empty

set is reached, implying that the ontology is inconsistent.

An additional set of rules defining the result of intersection of relations holding

between two intervals are also introduced. These rules have the form:

R1(x,y)∧R2(x,y) � R3(x,y)
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where R3 can be the empty relation. For example the intersection of relation DOS

(represents the disjunction of During, Overlaps and Starts), and the relation During

yields the relation During as result:

DOS(x,y)∧During(x,y) � During(x,y)

Intersection of relations During and Starts yields the empty relation, and an incon-

sistency is detected:

Starts(x,y)∧During(x,y) � ⊥

Notice that, using the full set of 213 relations leads to intractability [29]. Tractable

subsets of relations that polynomial time algorithms such as path-consistency are

sound and complete (while these algorithms are approximation algorithms in the

case of the full Allen algebra) do exist [25, 28, 30]. The largest such set (corre-

sponding to the maximal tractable subset of Allen relations containing all basic

relations when applying the path consistency method) comprises of 868 relations

[25]. Tractable subsets of Allen relations containing 83 or 188 relations [28] can

be used for reasoning as well, offering reduced expressivity but increased efficiency

over the maximal subset of [25].

An ontology based on a set containing 83 relations (i.e., the continuous endpoint

subclass presented in [28]) has been implemented in this work. Other relations cor-

responding to disjunctions of basic relations that are not supported (i.e., they don’t

belong to the subset referred to above) can’t be asserted into the ontology. In [28]

reasoning regarding time instants in addition to intervals is presented as well. Specif-

ically qualitative relations regarding instants form a tractable set if the relation �=
(i.e., a temporal instant is before or after another instant) is excluded. Reasoning

regarding relations between interval and instants is achieved by translating interval

relations to relations regarding their endpoints as specified in [17].

3.2 Querying Temporal Information

Querying temporal information over the semantic Web using general purpose lan-

guages such as [8] and SeRQL [3] is a tedious task. Recent work on query lan-

guages for temporal ontologies include TOQL [4] (extended with spatial operators

at [33]) and t-SPARQL [18] using 4-D fluents and named graphs respectively for

the representation of temporal information. Notice that, t-SPARQL suggests using

named graphs as the underlying representation mechanism of temporal information

and therefore, does not preserve OWL expressiveness, has no reasoning support and

does not support representation of qualitative temporal expressions. TOQL handles

all these issues. In this work TOQL is used for querying the temporal ontology.

TOQL is a query language that treats classes and properties of an ontology

almost like tables and columns of a database. The language is enhanced with a

set of temporal operators (i.e., the AT and Allen operators). TOQL follows an SQL-

like syntax (SELECT-FROM-WHERE) and supports SQL operators and constructs
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such as LIMIT, OFFSET, AND, OR,MINUS, UNION, UNION ALL, INTERSECT,

EXISTS, ALL, ANY, IN.

TOQL also introduces clause “AT” which compares a fluent property (i.e., the

time interval in which the property is true) with a time period (time interval) or time

point and returns fluents holding true at the specified time interval, thus enabling

temporal queries without requiring familiarity with the underlying representation

mechanism for the end user. For example the following TOQL query retrieves the

name of the company employee “x” was working for, from time=3 to time=5:

SELECT Company.companyName

FROM Company, Employee

WHERE Company.hasEmployee:Employee AT(3,5)

AND Employee.employeeName LIKE “x”

The following Allen operators are also supported: BEFORE, AFTER, MEETS,

METBY, OVERLAPS, OVERLAPPEDBY, DURING, CONTAINS, STARTS,

STARTEDBY, ENDS, ENDEDBY and EQUALS, representing the corresponding

relations holding between two time intervals specified either using quantitative (i.e.,

interval with specified end points) description or qualitative Allen relations. The fol-

lowing query retrieves the name of the company that hired employee “x” and then

employee “y”:

SELECT Company.companyName

FROM Company, Employee AS E1, Employee AS E2

WHERE Company.hasEmployee:E1

BEFORE Company.hasEmployee:E2

AND E1.employeeName like “x”

AND E1.employeeName LIKE “y”

In this work, extending TOQL to support queries over qualitative relations required

certain modifications to the language. The basic SQL syntax remains the same,

however, Allen operators aren’t translated to comparisons of interval endpoints as

in [4] but to Allen relations holding between intervals after reasoning is applied.

The AT operator in [4] requires that interval endpoints are defined. Here, we intro-

duce two additional operators namely ALWAYS AT and SOMETIME AT querying

for fluents holding always during the interval in question and some time in the

interval in question respecively. The AT operator in [4] corresponds to the pro-

posed ALWAYS AT operator. Specifically, the ALWAYS AT operator returns flu-

ents holding at intervals that EQUALS, CONTAINS, STARTEDBY or ENDEDBY

the interval in question. The SOMETIME AT operators returns fluents holding at

intervals that OVERLAP, OVERLAPPEDBY, START, STARTEDBY, END, END-

EDBY, EQUAL, CONTAIN or DURING the interval in question. These semantics
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in conjunction with the reasoning mechanism will allow for application of the op-

erators on qualitative intervals in addition to quantitative ones that are supported by

the AT operator.

4 Evaluation

The resulting OWL ontology is characterized by SHRIF(D) DL expressivity and it

is decidable since it doesn’t contain role inclusion axioms with cyclic dependences

[21] (role axioms in the ontology are restricted to disjointness, transitivity and in-

verse axioms). Adding the set of temporal qualitative rules of Sec. 3.1 retains de-

cidability since rules are DL-safe rules as defined at [26, 31] and they apply only on

named individuals of the ontology Abox using Pellet (which support DL-safe rules

[32]). Furthermore, computing the rules has polynomial time complexity since a

tractable subset of Allen’s relations is used.

As shown in [14, 25, 28], by restricting the supported relations set to a tractable

subset of Allen’s algebra, path consistency has O(n5) time complexity (with n being

the number of intervals). Also, any time interval can be related with every other

interval by at most k relations, where k is the size of the set of supported relations.

Therefore, for n intervals, using O(k2) rules, at most O(kn2) relations can be asserted

into the knowledge base. Note that, extending the model for the full set of relations

would result into an intractable reasoning procedure.

An alternative approach towards implementing a temporal reasoner would be to

extend Pellet to handle a (tractable) relations set, along with the supported axioms

and path consistency checking, similarly to the way PelletSpatial [20] implements

reasoning over RCC-8 topologic relations. This approach has the following advan-

tages: (a) The underlying representation is more simple since only the 13 Basic

Allen relations have to be defined and (b) certain improvements regarding efficiency

and scalability can be added. On the other hand, this approach requires additional

software to handle the ontology, while our approach requires only standard seman-

tic Web tools such as Pellet and SWRL. Because reasoning is part of the ontology

model, maintenance of the ontology requires that changes are applied to the ontol-

ogy only and not to the reasoner (other approaches such as [20] require modifying

both the ontology and the reasoner).

5 Conclusions and Future Work

We introduce an ontology model capable of handling temporal information in on-

tologies. The proposed model extends the 4D fluent representation of [4] to handle

both quantitative and qualitative temporal information. The representation mech-

anism incorporates reasoning rules for inferring certain temporal relations from

existing ones and for checking temporal assertions for consistency. Extending the

model to support spatial relations and addressing scalability issues using appropriate

indexing mechanisms are directions for further research.
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Extending TOQL [4] to handle the proposed 4D fluent representation is another

contribution of this work. A desirable feature of TOQL is that it does not require that

the user be familiar with the peculiarities of the underlying 4D fluent representation

mechanism (which may be complicated leading to complicated query expressions

in other query languages such as SPARQL [8]). Extending SPARQL, the current

W3C standard to support 4D fluents and similar operators is an important issue for

future research. t-SPARQL [18] is an example of work along these lines. Notice

though that t-SPARQL suggest using named graphs as the underlying temporal rep-

resentation (does not support 4D fluents) and therefore, does not maintain full OWL

expressiveness and has no reasoning support.
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Combining a Multi-Document Update

Summarization System –CBSEAS– with a
Genetic Algorithm

Aurélien Bossard and Christophe Rodrigues

Abstract. In this paper, we present a combination of a multi-document summa-

rization system with a genetic algorithm. We first introduce a novel approach for

automatic summarization. CBSEAS, the system which implements this approach,

integrates a new method to detect redundancy at its very core in order to produce

summaries with a good informational diversity. However, the evaluation of our sys-

tem at TAC 2008 —Text Analysis Conference— revealed that system adaptation to

a specific domain is fundamental to obtain summaries of an acceptable quality.

The second part of this paper is dedicated to a genetic algorithm which aims to

adapt our system to specific domains. We present its evaluation by TAC 2009 on a

newswire articles summarization task and show that this optimization is having a

great influence on both human and automatic evaluations.

1 Introduction

As more information becomes available online, people confront a new problem: dis-

orientation due to the abundance of information. Document retrieval and text sum-

marization systems can be used to address this problem. While document retrieval

engines can help a user to filter out documents, summarization systems can extract

and present the essential content of these documents.

Recently, the DUC —Document Understanding Conference— now known as

TAC —Text Analysis Conference1— evaluation campaigns have proposed to eval-

uate automatic summarization systems. These competitions have led to recent

improvements in summarization and its evaluation.
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Université Paris 13, 93430 Villetaneuse, France

e-mail: firstname.lastname@lipn.univ-paris13.fr

1 http://nist.tac.gov

I. Hatzilygeroudis and J. Prentzas (Eds.): Comb. of Intell. Methods and Appl., SIST 8, pp. 71–87.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

firstname.lastname@lipn.univ-paris13.fr


72 A. Bossard and C. Rodrigues

In this paper, we present our system, called CBSEAS —Clustering Based Sen-

tence Extractor for Automatic Summarization— and its adaptation to the newswire

article summarization task: the use of a genetic algorithm which aims at finding

automatically the best suited parameter combination as input of the system.

We first give a quick overview of existing automatic summarization systems. In

a second section, we describe our system. We then present our method for param-

eters optimization, based on a genetic algorithm. In a last section, we discuss the

results obtained by our system: its performance on the summarization task, and the

influence of the parameters values.

2 Automatic Extractive Summarization Overview

The extractive approaches to automatic summarization consist in selecting the most

pertinent sentences or phrases and assemble them together to create a summary. This

section gives an overview of this kind of approaches.

2.1 Feature-Based Approaches

Edmundson [7] defined textual clues which can be used to determine the importance

of a sentence. In particular, he set a list of cue words, such as ”hardly” or ”impos-

sible”, using term frequency, sentence position (in a news article for example, the

first sentences are the most important) and the number of words occuring in the title.

These clues are still used by recent systems, like the one of Kupiec [12].

This kind of approaches does not take into account the overall content of the

documents. That is why automatic summarization has evolved into sentence selec-

tion using the “centrality” feature: the sentence importance relatively to the overall

documents content.

2.2 Centrality-Based Approaches

Other systems focus on term frequency. Luhn [15] led the way of frequency-based

sentence extraction systems. He proposed to build a list of important terms. The

importance of a term depends on wether or not its frequency belongs or not to a

predefined range. The more a sentence presents words belonging to this list, the

more important it is. Radev [19] took advantage of the advances in text statistics

by integrating the tf.idf metric to Luhn’s method. The list of important terms, that

Radev calls ”centroid”, is composed of the nterms with the highest tf.idf –the tf.idf

metric was introduced by Salton[20]. The sentences are ranked according to their

similarity to the centroid. Radev also included a post-processing step to eliminate

redundancy from the summary. He implemented this method in an online multi-

document summarizer, MEAD2 [18].

Radev further improved MEAD using another sentence selection method which

he named “Graph-based centrality” [8]. It consists in computing similarity between

2 http://www.newsinessence.com/clair/meaddemo/demo.cgi
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sentences, and then selecting sentences which are considered as “central” in a graph

where nodes are sentences and edges are similarities. The most central sentences are

those which have been visited most after a random walk on the graph. This method

is inspired by the concept of prestige in social network.

The clue-based, term frequency-based and “graph-based centrality” methods are

efficient when selecting the sentences which reflect the global content of the docu-

ments to be summed up. Such a sentence is called ”central”. However, these methods

are not designed to generate good summaries according to informational diversity.

Now, informational diversity is almost as important as centrality when evaluating a

summary. Indeed, a summary should contain all the important pieces of information

which should not be repeated.

2.3 Dealing with Diversity

In multi-document summarization, the risk of extracting two sentences conveying

the same information is greater than in a single-document summarization problem-

atic. Moreover, identifying redundancy is a critical task, as information appearing

several times in different documents can be qualified as important.

The previously presented systems are dealing with redundancy as a post-processing

step. Goldberg [9], assuming that redundancy should be the key concept of multi-

document summarization, offered a method to deal with redundancy at the same time

as sentence selection. For that purpose, he used a “Markov absorbing chain random

walk” on a graph representing the different sentences of the corpus to summarize.

MMR-MD, introduced by Carbonnel in [5], is a measure which needs a passage

clustering: all passages considered as synonyms are grouped into the same clus-

ters. MMR-MD takes into account the similarity to a query, coverage of a passage

(clusters that it belongs to), content in the passage, similarity to passages already

selected for the summary, belonging to a cluster or to a document that has already

contributed a passage to the summary.

The problem of this measure lies in the clustering method: in the literature, clus-

tering is generally fulfilled using a threshold. If a passage has a similarity to a cluster

centroid higher than a threshold, then it is added to this cluster. This makes it a su-

pervised clustering method.

Considering that diversity is the main issue in multi-document summarization,

we want our method to first deal with diversity, grouping sentences in clusters ac-

cording to the information they convey. The diversity management has to be unsu-

pervised in order to be adapted to every type of documents. Our method will then

apply local centrality-based selection methods to extract one sentence per cluster.

3 CBSEAS: A Clustering-Based Sentence Extractor for

Automatic Summarization

We want to specifically manage the multi-document aspect by considering redun-

dancy as the main issue of multi-document summarization. Indeed, we consider
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the documents to summarize as made up by groups of sentences carrying the same

information. In each of these clusters, one sentence can be considered as central.

Extracting this sentence, and not another one, in every cluster can lead to sum-

maries in which the risk of redundancy is minimized. The summaries generated with

this method may carry a good informational diversity. We here briefly present our

system, which is further described in [2].

3.1 Pre-processing

All sentences go through a POS tagger, TreeTagger3. While studying news corpora,

we identified several categories of news. Only a few of them present some particular-

ities which make them worthwhile for an automatic summarization system. Details

are available in [4]. Documents are classified using a keywords/structure clue based

categorizer, into four categories:

• Classic news (1: presentation of the event, 2: the premisses, possibly 3: the con-

sequences or projection in the future);

• Chronologies (list of related events ordered chronologically, cf Figure 1);

• Comparative news (the state of the article topic in different places or at different

times, cf Figure 1);

• Enumerative news (an enumeration of facts, recommandations...).

The last three categories are very interesting for an automatic summarizer. In fact,

they make up at most 5% of the total number of newswire articles in AQUAINT-24.

But, in the training corpus of the “Update Task”, they contain 80% of the pertinent

information. Moreover, they are written in a concise style, and can be easily inserted

into a summary.

sim(s1, s2) =

∑

mt

weight(mt)×fsim(s1, s2)

fsim(s1, s2) + gsim(s1, s2)
∑

mt

weight(mt)
(1)

fsim(s1, s2) =
∑

n1∈s1

∑

n2∈s2

tsim(n1, n2) ×
tfidf(n1) + tfidf(n2)

2
(2)

gsim(s1, s2) = card ((n1 ∈ s1, n2 ∈ s2) | tsim(n1, n2) < δ) (3)

where mt are the morphological types, s1 and s2 the sentences, tsim the similarity between

two terms using WordNet and the JCn similarity measure [11] and δ a similarity threshold.

3 http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
4 AQUAINT-2 is a corpus built by NIST and composed of 900.000 news articles from dif-

ferent sources (AFP, APW, NYT...)
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(a) A comparative news

(b) A chronology

Fig. 1 News examples

3.2 Sentence Pre-selection

First, our system ranks all the sentences according to their similarity to the docu-

ments centroid, composed of the mterms with the highest tf.idf. In the case a user

query is provided, the sentences are ranked according to their relevance to the query.

We then select the best ranked sentences, using an empiric threshold. This method

has been changed with the integration of the genetic algorithm, as shown in Sec. 4.

3.3 Sentence Clustering

Similarity between sentences is computed using a variant of the “Jaccard” measure,

shown in Equations 1, 2 and 3. Other similarity measures exist, such as cosine sim-

ilarity, but this measure allows us to take into account the similarity between two

different terms in the sentence similarity computation. This point is important as

linguistic variation could otherwise not be managed.

Once the similarities are computed, we cluster the sentences using fast global

k-means (description of the algorithm is in Figure 2) using the similarity matrix.
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for all ejinE %%Initialize the first cluster with all the elements

C1 ← ej

for i from 1 to k do

for j from 1 to i

center(Cj ) ← argmaxem

∑

en∈Cj
sim(em, en)

for all ej in E

ej →Cl|Clmaximizessim(center(Cl, ej)
add a new cluster: Ci. It initially contains only its

center, the worst represented element in its cluster.

done

Fig. 2 Fast global k-means algorithm

3.4 Sentence Final Selection

After this clustering step, we select one sentence per cluster in order to produce

a summary that maximizes the informational diversity. The selected sentence has

to be central in the document and relevant to the query. The system chooses the

sentence that maximizes a weighted sum of four scores :

• Similarity to user query/centroid;

• Similarity to cluster center;

• Important sentence score (implemented after TAC 2008 campaign);

• Difference in length between the scored sentence and the desired sentence length.

The “Important sentence score” is the inverse of the sentence position in the doc-

ument if the sentence is part of a “classic news”, or 1 if the sentence is part of the

body of a news classified as a chronology, an enumerative news or a comparative

news.

3.5 Managing Update for TAC “Update Task”

Sometimes, a user wants to know what is new about a topic since the last time he

has read news about it. That is why the TAC 2008 and TAC 2009 “Update Task”

consisted in summarizing a first document set, then summarizing what is new in a

second document set.

CBSEAS –Clustering-Based Sentence Extractor for Automatic Summarization–

clusters semantically close sentences. In others terms, it creates different clusters for

semantically distant sentences. Our clustering method can also be used to differen-

ciate sentences carrying new pieces of information from sentences carrying already

known pieces of information, and so for managing update. In fact, sentences carry-

ing old pieces of information are semantically close from the sentences that a user

has already read.

CBSEAS has proven to be efficient at grouping together semantically close

sentences and differentiate semantically far ones. In fact, the results obtained by

CBSEAS on TAC 2008 Opinion Task are good, as CBSEAS appears at the third
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place for avoiding redundancy in the summaries [3]. This is another reason for us-

ing our clustering method to differentiate update sentences from non-update ones.

Before trying to identify update sentences, we need to modelize the pieces of

information that the user requesting the update summary has already read. We can

then confront the new documents to this model in order to determine if sentences

from these documents carry new pieces of information. So the first step of our al-

gorithm is to cluster the sentences from the documents the user has already read

–which we call DI– into kI groups, as in Sec. 3.3 for the generation of a standard

summary.

The model thus computed –MI– is then used for the second step of our algorithm,

which consists in determining if a sentence from the new documents –DU– is to be

grouped with the sentences from DI , or to create a new cluster which will only

contain update sentences. Fast global k-means algorithm, slightly modified, can be

used to confront elements to a previously established model in order to determine

if these elements can be an integral part of the model. We here describe the second

clustering part of our update algorithm.

First, our algorithm selects the sentences from DU same as for DI (cf Sec. 3.2).

Then, it computes the similarities between sentences from DU with the cluster cen-

ters of MI and between all the sentences from DU . Then it adds the new sentences

to MI , and iterates fast global k-means from the kI iteration with the following

constraints:

• The sentences from DI can not be moved to another cluster; this is done to pre-

serve the MI model which encodes the old pieces of information. It also avoids

to disturb the semantic range of the new clusters that bear novelty.

• The cluster centers from MI can not be recomputed; as the semantic range of

a cluster depends directly on its center, this prevents the semantic range of MI

clusters from being changed by the integration of new elements from DU .

In order to favor sentences from the second set of document being part of the update

clusters, a negative weight can be assigned to the similarities between sentences

belonging to the first document set and sentences belonging to the second.

Once the update clusters have been populated, the update summary is generated

by extracting one sentence per update cluster, as in Sec. 3.4.

4 Optimizing CBSEAS Parameters

News article summarization differs from scientific article summarization or tech-

nical report summarization. When aiming at finding similar sentences in order to

detect central sentences in a technical report, a system should not focus on the same

markers as for blogs or novel summarization. Dealing with scientific articles, cen-

trality could not be the best indicator of sentence importance. Teufel has shown in

[21] that examining the rhetorical status of a sentence —its position in the docu-

ment structure, if it contains cue phrases...— is a good way to figure out if it should

appear in the final summary.
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Our participation to both the “Update Task” (cf Sec. 3.5) and the “Opinion Task”

—Summarizing opinions found in blogs— of TAC 2008 showed us that our system

can be competitive; it ranked second on the “Opinion Task”, but its poor behavior

on the “Update Task” showed that adaptation Splays a crucial role in performing

better on this task. For this purpose, we have first implemented a score that takes

into account specific news structure traits (cf Sec. 3.4), and have chosen to use

a learning technique that automatically adapts CBSEAS’ weights according to a

scoring method.

TAC 2008 campaign provided us a corpus, manual reference summaries, and an

automatic evaluation framework: ROUGE5. ROUGE is a package of automatic eval-

uation measures using unigram co-occurrences between summary pairs [13]. When

computing ROUGE scores between an automatic summary and one or more man-

ual summary, we can efficiently evaluate the information content of the automatic

summary. Also, our system takes fourteen parameters as input:

1. number of sentences desired as output;

2. average desired sentence length ;

3. weights of proper names, (4.) nouns, (5.) adjectives, (6.) adverbs, (7.) verbs and

(8.) numbers in the similarity function (cf Sec. 3.3);

9. number of pre-selected sentences from the first and the (10.) second document

sets ;

11. weight of similarity to cluster center, (12.) important sentence score, (13.) and

length difference in the final sentence selection scoring (cf Sec. 3.4);

14. reduction of similarities between first document set and second document set

sentences (cf Sec. 3.4).

We have all it takes for an environment interactive learning method.

4.1 Overview of Parameters Optimization for Automatic

Summarization

In the field of trainable summarizers, systems combine basic features and try to find

the best weight combination using an algorithm that adapts weights to maximize

a fitness score. Kupiec [12] and Aone [1] used similar features to Edmundson [7]

and optimized the weight of every feature using a trainable feature combiner using

Bayesian network. MCBA [23] added two scores: a centrality score —intersection

of sentence keywords and the other sentences keywords on the union of sentence

keywords and the other sentences keywords)— and the similarity to title. The best

weight combination is approximated using a genetic algorithm. Osborne used a gra-

dient search method to optimize the feature weights[17].

In a more statistical-oriented approach, the PYTHY system [22] used standard

features and different frequency-based features. The search for the best weight com-

bination was based on a dynamic programming solution for the knapsack problem

described in [16].

5 http://berouge.com
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4.2 What Type of Algorithm?

In our case, we cannot prove the regularity and continuity of a function from the

hypothesis space to the summary score. Indeed, the parameters we use are not only

weights for linear features combination. Now, function continuity is a pre-required

for gradient search methods to work correctly. Moreover, as some parameters oper-

ate at different steps of our algorithm and on different aspects of sentence selection,

building up a probabilistic model of hypothesis space that takes into account param-

eters dependencies is too complicated. The number of parameters (14) emphasizes

the hugeness of the search space. Consequently, a genetic algorithm seems an ap-

propriate method to learn the best parameters combination.

Genetic algorithms have been introduced by John Holland [10]. Holland aims at

using species natural adaptation metaphor in order to automatically realize an opti-

mal adaptation to an environment. The main idea is to generate individuals, and by

means of mutation and crossing over selected individuals, to father a new generation

of individual that will be more adapted to its environment than the previous one.

4.3 ROUGE-SU4 Metric Liability

We are using ROUGE-SU4 metric to automatically evaluate the quality of the sum-

maries. We won’t describe this metric, but one can find details about it in [13]. The

liability of this metric is crucial for the genetic algorithm. During TAC 2008 cam-

paign, three evaluations have been conducted:

• an entirely manual evaluation: assessors had to fill a grid with scores such as non-

redundancy, readability, overall responsiveness6, grammaticality, readability;

• pyramid evaluation [14], which consists in manually comparing the information

available in the automatic summaries with the information available in the refer-

ence summaries;

• ROUGE evaluation.

Amongst the ten best ranked systems in responsiveness score, only four appeared

in the top ten of ROUGE-SU4 scores. However, five out of the six other systems

from this top ten ranked between the average and the poorest system in readabil-

ity. This means that readability has a great influence on a human assessor judging

the responsiveness. We noticed that systems ranked low in readability were using

rewriting rules or sentence compression methods that make summaries less read-

able. Here is an extract of a summary created by one of these systems: “The A380

will take over from the Boeing 747 (...?). The Airbus official said he had not seen any

sign (of what?). Airbus says the A380 will produce half (as what?) as the 747. Most

airports originally thought to accommodate (...?) the A380. The A380 is designed

to carry 555 passengers. The plane’s engineers will begin to find out (what?).”.

6 Overall responsiveness is the answer to the question : “How much would you pay for this

summary?”
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One can see that this summary, although it obtained good ROUGE scores, is not

understandable. The summarization system has removed phrases that are essential

for sentences comprehension.

ROUGE-SU4 is a good metric to evaluate different summaries created by extrac-

tion systems that do not modify extracted sentences when summarizing documents

such as newswire articles, where sentences are all syntactically correct. So this met-

ric is adapted to our optimization problem.

4.4 Our Genetic Algorithm

4.4.1 The Individuals

Each individual is composed of 14 parameters, which are described in Section 4.

We empirically set their variation space. The Table 1 shows the space in which they

fluctuate.

4.4.2 Individuals Selection Method

The evaluation of one individual is for us a time costly operation. That is the reason

why we have chosen a tournament selection method, which has the advantage to be

easily parallelized. For each generation of γ individuals, µ tournaments between λ

individuals are organized. The winner of each tournament is selected to be part of

the next generation parents. Another advantage of this method lies in the fact that

it preserves diversity because the selected individuals are not forced to be the best

ones. This prevents the algorithm from getting stuck in a local minimum.

δi =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

⌈

log(vali −mini) × rand(0, 1)
⌉

, vali �= mini, randi(0, 1) < loweri (4)

1, vali = mini, randi(0, 1) < loweri (5)
⌈

log(vali − maxi) × rand(0, 1)
⌉

, vali �= maxi, randi(0, 1) > loweri (6)

1, vali = maxi, randi(0, 1) > loweri.(7)

where vali is the value of parameter i,

and

loweri =
vali − mini

maxi − mini

, (8)

with i from 1 to 14.
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Table 1 Parameters’ variation space

parameter min max step

num. of sentences 1 20 1

av. length 1 20 1

num. of pre-selected sent. 1 200 1

num. of pre-selected sent. update 1 200 1

nouns weight 1 300 1

proper names weight 1 300 1

verbs weight 1 300 1

adjectives weight 1 300 1

adverbs weight 1 300 1

numbers weight 1 300 1

cluster center sim weight 1 300 1

important sent. score weight 1 300 1

length difference score weight 1 300 1

update sim reduction 0 1 0.01

4.4.3 Mutation Operator

As we do not know what parameters are dependent one to another, we want to

change several parameters at the same time. In order to avoid a too heavy vari-

ation due to the simultaneous mutation of several parameters, we have chosen to

limit the variation quantity (δi) of a parameter, weakening the probability to obtain

a strong variation. We do that by using a logarithmic variation described in Equa-

tions 4 and 8.

4.4.4 Creating a New Generation

Each generation is composed of 100 individuals. The algorithm organizes twenty

tournaments with fifteen randomly selected representatives. This seems to be a good

compromise between quick evolution and diversity preservation. Each new gener-

ation is composed of the twenty winners, forty individuals created by mutating the

winners, and the last forty created by randomly crossing the winners.

4.5 Training and Evaluation Data

TAC 2008 and 2009 “Update Task” consisted in creating two abstracts for forty-

eight pairs of document sets. As computing a summary is time expensive, we de-

cided to limit the training data to nine pairs of document sets. The evaluation data is

composed of the forty other pairs of document sets.
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5 Evaluation

TAC 2008 campaign has shown that automatic evaluation was still not as trustable as

manual evaluation when dealing with summaries [6]. Although automatic evaluation

proves to be useful to quickly judge the quality of a summary or to act as a fitness

score for a learning algorithm, we cannot entirely rely on automatic evaluation.

Our goal is to figure out at what point the optimization of the parameters really

improves the quality of the automatic created summaries. We propose here two ways

to do this: using ROUGE scores to see if the optimized parameters have led to an

enhancement on the evaluation data, and letting an assessor judge if there is a visible

improvement of the summaries quality.

We selected the best manually evaluated summarizer from TAC 2008, and our

summarizer CBSEAS before and after the optimization. We selected fifteen pairs of

document sets, and submitted the results of both of the three systems to an asses-

sor, giving the automatically created summaries random ids, in order to avoid the

assessor being able to identify the origin of summaries.

We then asked two questions to the assessor:

• Which one of the three summaries reflects best the documents content? (this

summary gets the score 6)
• Compared to the best summary, give a score between 1 and five to the two other

ones:

– 5: the summary is almost as informative as the best one;

– 4: the summary is a bit less informative than the best one;

– 3: the summary is less informative than the best one;

– 2: the summary is really less informative than the best one;

– 1: no comparison is possible, the best summary overtakes this one.

We participated to TAC 2009 in order to validate that our system is performing better

and to evaluate its competitiveness.

6 Results and Discussion

The Table 2 shows the combination of features selected by the genetic algorithm

after 80 generations. It points out that setting a low weight of the proper names

weight has a positive influence on the summary ROUGE scores. Also, the more

important types seem to be the common names, adjectives and verbs. Adverbs are

having a lesser influence on the summary quality.

The weight of proper names is so small because most of the selected sentences

contain the same proper names, due to the fact that pre-selected sentences are close

to the user query. This query is indeed most of the time oriented by named entities.

So, having proper names playing an important role in sentence similarity compu-

tation brings noise to the similarity measure and affects negatively the clustering

algorithm. In a more general way, this validates the observation of Aone et al. [1]:

decreasing the impact of proper names in the sentence selection method for auto-

matic news summarization increases the quality of the summaries.
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Fig. 3 ROUGE scores comparison of CBSEAS with TAC 2008 other participants

Fig. 4 ROUGE scores comparison of CBSEAS with TAC 2009 other participants

Setting the variable “update sim reduction” in a way that strenghtens the simi-

larities between sentences from the first and the second set of documents leads to

the generation of higher scored summaries. This means that decreasing the proba-

bility that a sentence from the second document set will appear in an update cluster

improves the quality of the update management.

It is interesting to note that the feature “similarity to cluster center” gets the low-

est weight in the last step of our algorithm. As recent works have proven the per-

tinence of graph-based methods for automatic summarization, this tends to prove

that our similarity score is not adapted to such a feature. Other similarity measures

should be reassessed in order to increase the impact of this feature.
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Fig. 5 Average of individual scores, and best individual for each generation

Table 2 Winning set of parameters

parameter value

num. of sentences 14

av. length 8

num. of pre-selected sent. 47

num. of pre-selected sent. update 83

nouns weight 171

proper names weight 29

verbs weight 207

adjectives weight 270

adverbs weight 12

numbers weight 66

cluster center sim weight 7

important sent. score weight 258

length difference score weight 72

update sim reduction 0.87

We observe that manual evaluation presented in Table 3 and automatic evaluation

agree: optimizing our parameters for this task has led to an important improvement

of the summaries quality, but CBSEAS still does not overtake the best automatic

systems of TAC 2008. This has been confirmed by our participation to TAC 2009

and the manual results of this conference, as shown by Fig. 4 (Pyramid and overall

responsiveness evaluations). However, the system ranks among the best quarter of

all participating systems.
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Table 3 Manual evaluation

Best TAC CBSEAS w/o Optimized

system optimization CBSEAS

Standard summaries

Number of times 9 2 4

winning

non winning summaries 4.7 3.9 4.3

average score

Update summaries

Number of times 8 2 5

winning

non winning summaries 5 3.7 4.5

average score

Overall scores

Number of times 17 4 9

winning

non winning summaries

average score 4.8 3.8 4.4

7 Conclusion

In this article, we presented our approach to generic multi-document summarization

and update management, and the integration of news articles structure to our system,

CBSEAS. We also presented a way to optimize the system we have developed via

a genetic algorithm. The results obtained by both manual and automatic evaluations

have shown us that the quality of our summaries has greatly improved. The impact of

domain characteristics are important when automatically summarizing documents.

The use of a genetic algorithm to optimize the features treatment in our systems has

revealed some counter-intuitive observations. Although a human judgment is nec-

essary, we cannot exclude automatic ways to find the best parameters combination

for a given task. The results of TAC 2009 also show that our system still needs some

improvements to rank among the very best systems. More linguistic methods, such

as sentence compression or sentence reranking should be investigated to improve

the overall quality of the summaries generated by CBSEAS.
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Extraction of Essential Events with Application

to Damage Evaluation on Fuel Cells

Teppei Kitagawa, Ken-ichi Fukui, Kazuhisa Sato,

Junichiro Mizusaki, and Masayuki Numao

Abstract. Although sudden changes of the event phase in complex system may in-

dicate underlying essential forces, such events are not frequent. In the present paper,

we propose an essential event extractor (E3) scheme to extract relatively rare but co-

occurring event sequences in event phase transitions. In E3, the self-organizing map

(SOM) is used as vector quantization (VQ) to encode non-symbolic events and Key-

Graph as a co-occurrence graph. Afterwards, event transitions on the co-occurrence

graph can be obtained by referring to an occurrence density estimation on the topol-

ogy map of VQ. We demonstrate the E3 using an acoustic emission (AE) event

sequence observed during a damage test of fuel cells and obtain reasonable and

essential co-occurring damage sequences that exhibit mechanical effects.

1 Introduction

Most of the researches on mining from sequential or temporal data focuses on major

trends or frequent patterns starting with Apriori[2, 10]. However, rare events play

an important role for discovery of hidden forces under complex system, such as

financial crash, rupture in a composite material, and earthquake. Sornette [26]

stated, “Most complex systems in the natural and social sciences do exhibit rare

and sudden transitions that occur over time intervals that are short compared with

the characteristic time scales of their posterior evolution. Such extreme events ex-

press more than anything else the underlying forces usually hidden by an almost
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perfect balance and thus provide the potential for a better scientific understanding

of complex systems.” This work deals with an event sequence observed from such

complex system, and we define essential events as follows:

Definition 1 (essential events). Essential events are the events that exhibit the po-

tential forces and appear in the phase transitions, which are short periods compared

to their posterior evolution, by releasing the accumulated potential forces.

Although there exist several researches on discovery of important rare events[29,

18, 28, 22, 1], these works deal with symbolic sequential data, which means each

event is described by category. However, a lot of non-categorical data exists in the

real world, such as financial data, sensor data. It is an important task to discover

essential rare events from an event sequence where an event is described by a set of

features or defined by (dis)similarity to other events.

We propose in this paper the essential event extractor (E3) for a non-symbolic

event sequence, using vector quantization (VQ) as an encoder. Then a co-occurrence

analysis was applied to extract rare events which co-occur with fundamental high

frequent events. The nature of VQ is to capture the entire data distribution by the

small number of vectors, but not to divide the data distribution into meaningful clus-

ters. This property is important for an unknown domain because most clustering al-

gorithms have limitations, such as pre-setting of the number of clusters, a threshold

to merge clusters, or a chaining effect[30].

We combined the self-organizing map (SOM)[12] as a VQ and KeyGraph[18]

as a co-occurrence graph. The SOM and KeyGraph have very good compatibility

because they are both forms of exploratory data analysis (EDA)[27], which support

the user in investigating the data. As for a related work, Ohsawa applied KeyGraph

to an earthquake sequence in order to discover risky active faults[19, 17]. However,

each earthquake event is assigned to the nearest pre-defined active fault. The present

paper contributes to the relaxation of this requirement, but requires (dis)similarity

between events.

Based on an experiment using an acoustic emission (AE) event sequence ob-

tained through an solid oxide fuel cells (SOFC) damage test, we demonstrate that

the proposed E3 can extract essential AE events. These AE events exhibit potential

mechanical effects between the component materials of the fuel cells.

2 Essential Event Extractor (E3)

2.1 Overview

The present work deals with a non-symbolic event sequence. Non-symbolic event

in this work is defined as:

Definition 2 (non-symbolic event). An event Xi is characterized by (dis)similarity

to other events, i.e., ∀ j d(Xi,X j). For example, d(Xi,X j) is defined by Euclidean

distance of feature vectors between Xi and X j.
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vector quantization

 - infer event type

 - infer event phase

co-occurrence graph

 - extract locally influenced events

 - extract globally influenced events

density estimation

SOM KeyGraph

gpeqfg

fgeqfg

Fig. 1 Overview of essential event extractor (E3)

Then, an event sequence is defined as:

Definition 3 (event sequence). An event sequence is a set of ordered events denoted

by D = X1, . . . ,XT , where Xt refers to the tth event.

The overview of the proposed E3 is illustrated in Fig. 1. In E3, the SOM provides VQ

as well as a low-dimensional representation of the data distribution, which allows the

user to investigate individual events and to understand intuitively the entire picture

of all events. In addition, the SOM encodes the entire data distribution by prototype

vectors and provides codes to KeyGraph. KeyGraph then generates a graph that

is based on the co-occurrence frequency of the prototypes within a certain period.

KeyGraph extracts two types of events, the one is locally influenced (fundamental)

events that are high occurrence frequency and the other is globally influenced events

that are rare but co-occur with fundamental events. These globally influenced events

are candidates of essential events.

Meanwhile, by estimating the occurrence probability density distribution of the

prototypes within the topology map obtained by the SOM, the user can infer the

event type and event phase based on the change in the estimated density distribu-

tion and the best matched events. Afterwards, referring to the transition direction

by the estimated density change of the prototypes, the co-occurrence graph can be

decomposed into small sequences that are highly correlated with phase transitions.

Consequently, co-occurring event sequences in phase transitions, that is essential

events, can be obtained within the low-dimensional map that exhibit the potential

forces.

2.2 Kernel SOM

2.2.1 Overview

The SOM[12] is an unsupervised, competitive neural network learning model that

has been applied in various domains, such as clustering and visualization of con-

tents, control or monitoring of an industrial instrument, medical check, and so

on[20]. The kernel SOM[4] was used in the present study, where the kernel trick

is a method to extend a linear method to non-linear using a kernel function that
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maps into higher-dimensional space by an indirect manner. Although the SOM is

originally a non-linear method, we used the kernel SOM so as to introduce an appro-

priate dissimilarity function for the application of damage evaluation of fuel cells.

The kernel function used in the application is described in section 3.3.1

Here, let a function φ : O → H maps an original data space O to a high

dimensional feature space H . Then, a kernel function is defined as Gram matrix

of a positive semidefinite: K(xi,x j) ≡ φ(xi) ·φ(x j).

2.2.2 Kernel SOM Algorithm

Suppose N input data { x1, ··· ,xN } are given, where xi = (xi,1, ··· ,xi,v) is a

v-dimensional data. Let M neurons of the prototype (reference) vectors be

{ m1, ··· ,mM } , where m j = (m j,1, ··· ,m j,v). In addition, let the position of M neu-

rons in the topological layer be r j = (x j,y j) : j = 1, ··· ,M. The number of neurons

and the layout of the topological layer must be pre-defined, and a regular or hexag-

onal grid is normally used. The following shows the learning algorithm that uses a

batch process and decreasing strategy of the learning parameter.

S1 (Initialization). Initialize the prototype vectors { m1(t), ··· ,mM(t)} randomly,

also set an iteration counter as t = 1. In the kernel SOM, since mi(t) cannot be cal-

culated in H , the dissimilarity between a prototype mi(t) and an input xn denoted

by { di,n(t) : n = 1, ··· ,N } is used instead of mi(t).
S2 (Searching BMU). Search the best matching units (BMUs), in other words

the winner neurons { c(x1), ··· ,c(xN)} for all inputs by the nearest neuron:

c(n) = arg min
i=1,···,M

di,n(t). (1)

S3 (Termination condition). Exit if the winner neurons { c(x1), ··· ,c(xN)} were

not changed or the iteration reached t = tmax.

S4 (Updating prototypes). Update the prototype vectors { m1(t), ··· ,mM(t)} by

the following equation:

di,n(t + 1) ≡ ||φ(xn) − mi(t + 1)||2

= K(xn,xn) − 2γ ∑
j

hc( j),iK(xn,x j)

+γ2 ∑
k

∑
l

hc(k),ihc(l),iK(xk,xl), (2)

where ‖ · ‖ denotes L2-norm, and γ = 1/∑n hc(n),i is a normalization factor. In the

kernel SOM, also φ(xn) cannot be calculated, the prototype vectors are updated

in an indirect manner using the kernel function. In addition, hi, j is a neighborhood

function that defines the effect of the neighborhood of the winner, and a Gaussian

function is typically used as a neighborhood function:
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hi, j = exp
(

−
‖ ri − r j‖

2

2σ2

)

. (3)

S5 (Iterative processing). Decrease the neighborhood radius σ , also increase the

iteration counter t ← t + 1. Then, return to step S2.

2.3 Density Estimation

Density estimation is used to estimate the occurrence density of events on the topol-

ogy map obtained by the SOM. Since a simple histogram has a problem with appro-

priate setting of the intervals to count the data, density estimation is an alternative

to the histogram that estimates the generative density distribution at any point with-

out setting of the intervals. Since no background knowledge is available with the

data distribution of damage events of fuel cells, non-parametric density estimation

is suitable. Therefore, we used kernel density estimation (KDE)[25].

The probability density by KDE at point x ∈ Rv is given by:

PKDE(x) =
1

Nbv

N

∑
i=1

K
(x−xi

b

)

, (4)

where b is a band width, N is the number of data points, and v is the number of

dimension. The larger b becomes, the smoother the distribution that can be obtained.

In addition, K(x) is a kernel function1 at x. The Gaussian kernel was used in the

present study:

K(x) =
1

2π−v/2
exp

(

−
‖x‖2

2

)

. (5)

2.4 KeyGraph

While KeyGraph[18] is originally proposed for keywords extraction from text data,

it is extended as general co-occurrence event extraction scheme. Suppose symbolic

sequence D = [e1, · · · ,ei][ei+1, · · · ,e j] · · · [ek, · · · ,el] (i < j < k < l) is given, where

“[·]” is called “basket” indicating one meaningful set (e.g., one sentence). The pro-

cedure of KeyGraph consists of the following two steps:

K1 (Extracting locally influenced events). Firstly extract a pre-defined number

of themost frequentevents inDasverticesVl.Locally influenced graph Gl(Vl ,El),
which represents fundamental causes, can then be obtained with a pre-defined

number of the most frequently co-occurring event pairs among Vl as edges El .

In the present paper, the Jaccard coefficient was used as the local co-occurrence

frequency, where the counting is based on baskets.

K2 (Extracting globally influenced events). Let s be a basket, |e|s be the num-

ber of events e that appear in basket s, and |g|s be the number of events e′ ∈ g

1 The meaning of “kernel” here is a density function, while in kernel trick is a positive

semidefinite Gram matrix.
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Fig. 2 A transition arrow is added between the BMUs in a KeyGraph if there exist an order

of major peaks of the density distributions pair

that appear in basket s, where set of events g is composed of the connected nodes

in Gl . The conditional probability by which event e ∈ D occurred with the set of

events g ∈ Vl is then defined by global(e,g) as follows:

global(e,g) =
∑s∈ D |e|s|g− e|s

∑s∈D ∑e′( 	=e)∈g |e
′|s|e|s

, (6)

where |g− e|s =

{

|g|s −|e|s if e ∈ g,

|g|s otherwise.
(7)

The globally influenced events graph Gg(Vg,Eg) is then extracted with the pre-

defined number of the highest key(e) as Vg, where key(e) is defined by the sum

of global(e,g) for all clusters g, and e ∈Vg and e′ ∈ g of the highest co-occurring

event pairs are connected as Eg. These events are not frequent but are important

events in terms of the conditional probability of fundamental causes. Finally, total

graph G is obtained by merging Gl and Gg.

As an implementation of KeyGraph, Polaris2 was used in this work.

2.5 The E3 Algorithm

The procedure of the proposed E3 consists of the following five steps:

E1 (Encoding). Assume an event sequence D = X1,X2, · · · ,XT is observed. After

the learning of the SOM, the best matching unit (BMU) for all events are ob-

tained, i.e., the coordinates of the nearest prototype neuron: (x1,y1), · · · ,(xT ,yT ).
E2 (Partitioning). Separate D into baskets s = [Xt , · · · ,Xt+l]. In the original Key-

Graph, a basket corresponds to a set of words within a sentence. Since this pro-

cedure depends on application, this step is explained in section 3.3.2.

2 http://www.chokkan.org/software/polaris/ (in Japanese)
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E3 (Extracting co-occurrence graph). Extract a graph G by applying KeyGraph

to D.

E4 (Add event transition). Estimate the occurrence density in spatio-temporal

space of (xt ,yt ,t) : t = 1, · · · ,T , i.e., BMUs on the topology map of the SOM and

time. Afterwards, add an arrow between the BMUs in a KeyGraph G if an order

of major peaks exists in the density distribution of two nodes, i.e., prototypes

(Fig. 2).

E5 (Decoding). In the graph G, edges and nodes that were added as transitions in

the step E4 are mapped onto the topology map of the SOM by the coordinates of

the prototypes.

Here, the underlying assumption is that an interpretable topology map was obtained

by the SOM with density estimation. In addition, although the step E4 is currently

performed manually, this is not so great a burden because KeyGraph extracts a small

number of co-occurring events.

3 Application to Damage Evaluation of Fuel Cells

3.1 The Problem in Fuel Cells

The fuel cell is regarded as a highly efficient, low-pollution power generation system

that produces electricity by direct chemical reaction. Solid oxide fuel cells (SOFC),

in particular, have attracted a great deal of attention because they have a power

generation efficiency of nearly 70% when combined with a gas turbine. However, a

crucial issue in putting SOFC into practical use is the establishment of a technique

for evaluating the deterioration of SOFC in the operating environment[31, 3, 13].

Since SOFC operate in harsh environments (i.e., high temperature, oxidation-

reduction), the reaction area is decreased by fracture damage, and the cell per-

formance is reduced as a result. Previously, the degree of degradation has been

estimated using an electrochemical method that measures chemical degradation.

Two of the co-authors have succeeded in observing mechanical damage to SOFC

using the acoustic emission (AE) method[24]. Acoustic emission is an elastic wave

(i.e., vibration, sound waves, including ultrasonic wave) produced by damage, such

as cracks in the material, or by friction between materials. Depending on the “frac-

ture mode” (i.e., opening or shear), the type of material, the fracture energy, the

shear rate, and other factors, distinct AE wave forms are produced[15].

We previously developed the basis upon which to explore numerous AE events

using the method based on a self-organizing map (SOM)[8, 6] as well as a complex

network analysis[7]. In these studies, we revealed that the transition of the damage

phase in SOFC also suddenly occurs as mentioned in [26]. The present study is an

attempt to infer mechanical effect in SOFC from an AE event sequence. Most of the

researches on AE events including other than SOFC did not focus on co-occurring

AE events, but rather on typical clustering or classification tasks [5, 23, 9, 21].
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3.2 Damage Evaluation Test of Fuel Cells

A schematic diagram of the apparatus used to perform the SOFC performance test is

shown in Fig. 3. The test section was initially heated up to 800 ◦ C in order to melt a

soda glass ring and was then gradually decreased to room temperature (Fig. 4). The

AE measurement was performed using a wide-band piezoelectric transducer3. The

AE transducer was attached to an outer Al2O3 tube away from the heated section.

The sampling rate is 1 MHz, and so the observable maximum frequency is 500 KHz.

Over 60 hours of running the SOFC, 1,429 AE events were extracted by the burst

extraction method[11, 8].

Note that this damage evaluation test was to rupture the cells intentionally

while lowering the temperature. Therefore, the knowledge obtained through this

3 PAC UT-1000, URL: http://www.pacndt.com
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experiment is not directly available to actual running the SOFC. However, it is suf-

ficient to demonstrate and confirm the reasonableness of the proposed E3.

3.3 Adaptation of E3 to AE Event Sequence

3.3.1 Kernel Function

In the present work, the Kullback-Leibler (KL) divergence was used as the ker-

nel function between frequency spectra of AE events for the kernel SOM. The KL

divergence is widely known as a metric of probability distribution. We assume a

frequency spectrum as a probability distribution, in the same manner that Moreno

et al. applied the KL divergence to SVM for image spectrum classification[16].

Let v−discrete points of a frequency spectrum be xi = (xi,1, · · · ,xi,v). Then, the

KL kernel function is defined as:

KKL(xi,x j) = exp(−αJS (xi,x j)) , (8)

JS(xi,x j) = KL(xi,x j)+ KL(x j,xi)

=
v

∑
k=1

{

xi,k log
xi,k

x j,k
+ x j,k log

x j,k

xi,k

}

, (9)

where JS(xi,x j) denotes the Jensen-Shannon divergence, which symmetrizes the

KL divergence, and α > 0 is a scaling parameter. Note that the spectra must be

normalized as ∑k xi,k = 1, since KL divergence is originally for a probability distri-

bution.

In advance, we have validated the performance of the kernel SOM with KL kernel

for AE events data, using the benchmark data of damage related sounds, such as

crack of a block of wood[6]. The result showed the KL kernel provides the best

performance in terms of F-measure compared to the general kernel functions, such

as Gaussian kernel, and the standard SOM.

...
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Fig. 5 Partition of an AE event sequence into baskets
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3.3.2 Partition of AE Event Sequence

Assume that the potential stress in a composite material is released after a large-

energy AE event occurs, i.e., interactions of internal forces are reset. In this research,

the observed AE event sequence was divided into baskets followed by [19, 17],

assuming a sequence until a large-energy AE event occurs to be a chain of damage

progression (Fig. 5). These baskets are used in the KeyGraph.

More concretely, at first calculate the energy for all events, E1,E2, · · · ,ET , where

Ei = ∑ j x2
i, j. Then divide the AE event sequence into baskets s = [Xt , · · · ,Xt+l ], where

each basket satisfies the following condition:

Et+i ≤ Eσ and Et+l > Eσ (i = 0, · · · , l −1), (10)

where Eσ is an energy threshold. Then the AE event sequence is, for example,

described as D = [· · · (4,6),(7,8), · · · ,(1,5)] · · · [(7,8),(10,2),(1,5)] · · · in Fig. 5.

3.4 Inference of Physical Interpretation of the Topology Map

The number of neurons in the SOM was set to 15×15 with a regular grid. Here, the

number of neurons does not affect the result if there are sufficient neurons to capture

the data distribution. In addition, the parameter of the KL kernel function was set

to α = 0.95, which yields a reasonable result. Fig. 6 shows the occurrence density

distribution of the AE events on the topology map of the SOM for each instant of

time. The bandwidth was set to b = 0.34 in the KDE, which was determined by

10-fold cross validation.

The frequently occurring regions change dynamically according to time in Fig. 6.

The approximate frequent occurring regions and samples of AE events are illus-

trated in Fig. 7. Such regions imply a certain AE type, e.g., cracking of electrolytes.

Two of the co-authors, whose major fields are fuel cells and fracture mechanics,

provided a physical interpretation of the topology map, by referring to actual AE

waves, frequency spectrum, and the temperature of frequent occurring period. In

this manner, the damage type and phase transition was inferred as follows, also as

summarized in Table 1.

(A) AE events in region (A) in Fig. 7 occurred mostly in the heating period, as

shown in Fig. 4. In addition, since all of the AE events were low-energy events,

this region was inferred as squeaking of the members.

(B) This region appeared from the beginning of lowering the temperature with the

outbreak type of high-energy AE event. Therefore, region (B) was inferred as the

progression of the initial cracks, or other cracks, because of the unevenness of the

materials. These AE events are may be both in the electrolyte and the electrodes.

(C) Since continuous type AE events, the frequency spectra of which are similar

to the AE events in region (B), occur in this region, region (C) was inferred as

squeaking of the members, followed by region (B).

(D) The AE events in this region are high-frequency events. Thus, region (D) was

inferred as cracking of the electrolytes of hard materials.
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(e) t = 1,100
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(f) t = 1,300

Fig. 6 Damage transition of SOFC by the kernel SOM with density estimation (upper: 3D

representation, lower: 2D contour representation)
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Table 1 Inferred damage type from the kernel SOM with the density distribution

Region Frequent period Damage type

(A) t = 1 - 180 squeaking of the members during heating

(B) t = 100 - 400 progression of the initial cracks

(C) t = 220 - 600 squeaking of the members followed by (B)

(D) t = 550 - 1,100 cracks in the electrolyte

(E) t = 900 - 1,350 cracks in the glass seal

(F) t = 1,000 - 1,429 cracks in and exfoliation of the electrode

(E) Region (E) was inferred as cracking of the glass seal. Since this region ap-

pears from around 100◦C, which is the solidifying temperature of the glass seal.

Moreover, the frequent region shifts from the left to the right, as shown in Figs.

6(d) through 6(f), changing the frequency spectrum gradually. The glass seal is

the only material that changes its state depending on the temperature.

(F) The AE events in this region are low-frequency, outbreak type events, which

means exfoliation of the electrode together with cracks because of difference of

heat contraction ratios.
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Fig. 8 Output of KeyGraph with event transition. Black nodes denote high frequent funda-

mental events and white nodes denote rare essential events. Node labels are the coordinates

of prototypes by the kernel SOM
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3.5 Mechanical Effects Inferred by E3 Analysis

The output of KeyGraph is shown in Fig. 8. The energy threshold Eσ was set to

1,500 from among 1,000, 1,250, 1,500, 1,750, and 2,000, the effect of the energy

threshold is discussed in section 3.6. A black node indicates a prototype of a locally

influenced event, i.e., fundamental event, whereas a white node indicates a prototype

of a globally influenced event. A solid line indicates higher occurrence frequency

than a dotted line. Event transitions, which are shown by arrows in the graph, were

then added by referring to the density change of the prototype events pairs (Fig. 9).

An ending event of the transitions is denoted as a double circle.

These extracted event transitions were mapped onto the topology map shown in

Fig. 10. Fig. 10(a) shows the transitions from region (B) to region (D), indicating

that the progression of the initial cracks affects the electrolyte, while Fig. 10(b)

shows the transitions from region (D) to region (B) in the direction opposite that

shown in Fig. 10(a). Thus, mutual interaction exists in the progression of the initial

cracks and the electrolyte. Fig. 10(c) shows transitions from region (B) to region

(E) via (D), indicating that the progression of initial cracks affects the electrolyte

same as in Fig. 10(a) and in addition cracks of the electrolyte affects the glass seal.

Moreover, region (E) which is cracks of the glass seal is affected by electrolyte and

electrode whose regions are (D) and (F) as illustrated in Fig. 10(c) to Fig. 10(f).

On the other hand, there is no influence from regions (A) and (C) on any other

region. This is reasonable because these regions are inferred as squeaking of the

members. In addition, the glass seal does not affect the other materials, and only

the glass seal is affected by the other materials. Moreover, a result that is interesting
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Fig. 9 An order of major peaks on occurrence density change of the prototypes
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Fig. 10 Mapped co-occurring event transitions from KeyGraph onto the topology map

to even experts in the field of fuel cells is that no effect between the electrolyte

and the electrode were extracted, even though the electrolyte and the electrodes are

structurally connected.

Note that the prototype events indicated by a white node were extracted by condi-

tional probability, the most fundamental causes of which are indicated by the origins

of the arrows in Fig. 10(a) to Fig. 10(e). Since these events cannot be extracted only

by their occurrence frequency, the results show that relatively rare but co-occurring

essential events in phase transitions were extracted.
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Table 2 Occurrence/co-occurring frequency of transition events

event transition a → b N(a), N(b) N(a∩b)

Co-occurring LI events

( 1,11)→( 7, 1) 9, 14 4

( 5,15)→( 5, 1) 11, 11 4

( 1,14)→(12, 1) 9, 15 4

(13,12)→( 1,11) 9, 9 4

(15,11)→(13, 1) 9, 11 4

Co-occurring GI events

( 9,15)→( 3,14)∗ 9, 5 4

( 1,11)→( 5, 3)∗ 9, 5 4

( 1,15)→(11, 8)∗ 9, 8 3

( 5,15)→(11, 8)∗ 11, 8 3

(11, 8)∗→(10,15) 8, 11 3

( 8,15)→( 3,13)∗ 9, 7 2

( 9,15)→( 3,13)∗ 9, 7 2

( 1,14)→( 5, 3)∗ 9, 5 2

( 8,15)→( 5, 3)∗ 9, 5 2

( 9,15)→( 5, 3)∗ 9, 5 2

Table 3 Parameter settings of the KeyGraph

parameter \ Eσ 1,000 1,250 1,500 1,750 2,000

LI events 30 28 26 26 24

LI event pairs 32 35 26 25 26

GI events 10 10 10 10 10

GI event pairs 27 28 29 24 23

Table 4 Effect of the energy threshold

transition \ Eσ 1,000 1,250 1,500 1,750 2,000

(B) → (D) 3 8 4 4 4

(D) → (B) 3 1 2 1 0

(B) → (E) 1 1 2 0 0

(D) → (E) 4 3 5 4 5

(E) → (D) 1 0 0 0 1

(F) → (E) 1 1 1 1 1

total 13 14 14 10 11

3.6 Extracted Essential Rare Events

Table 2 shows the occurrence frequency of the extracted transition events from the

above experiment. The listed event transitions correspond to Fig. 10. Here, N(a) de-

notes the occurrence frequency of event ‘a’, where the frequency means the number

of baskets containing event ‘a’ at least one. Locally and globally influenced events,
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which are denoted by LI and GI, were extracted respectively by steps K1 and K2 of

the KeyGraph algorithm. GI events are marked as a ∗ in table 2.

While five transitions of co-occurring LIevents were extracted, that of co-occurring

GI events was ten. This fact means that co-occurring AE events during damage phase

transitions were extracted more by conditional probability of fundamental AE events

rather than by high frequent fundamental events.

3.7 Effect of Energy Threshold

This section discusses the effect of energy threshold Eσ which is a parameter to

divide an AE event sequence into baskets. The larger Eσ is the more events obtain

in one basket and the less number of basket.

The parameter settings of the KeyGarph for every Eσ is listed in Table 3. The

occurrence frequency of AE events was fixed by nine for every Eσ , because the

number of prototypes which has more than ten AE events as BMU was relatively

few, while more than eight was too many with this SOM learning result. From this

fact, the number of LI events were 24 to 30. The number of co-occurring LI event

pairs, which are links in the KeyGraph, were set to around the number of LI events.

Also GI events was set to 10, and co-occurring GI event pairs were set to around the

number of LI events.

With these settings, in order to investigate the effect of Eσ to the inferred me-

chanical effects, we compared the number of event transitions extracted by E3 as

shown in Table 4. The appropriate Eσ is around 1,250 to 1,500 as transition (B)→(E)

disappears above 1,750 and (E)→(D) appears 1,000 and 2,000. (E)→(D) suppose

to appear by chance depending on relative frequency when Eσ is an inappropriate

setting. Whereas, (F)→(E) appeared not by chance since it appears in every Eσ .

Eσ =1,500 is well balanced in terms of the number of appeared transitions. Also
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Fig. 11 Inferred mechanical effects in SOFC by E3 analysis



Extraction of Essential Events with Application to Damage Evaluation 105

the important fact is that Eσ is not sensitive to the final inferred mechanical effects,

even though the output of KeyGraph is different.

Considering above discussion, the final inferred mechanical effects is illustrated

in Fig. 11. The thick arrow in the map indicates strong effect and thin arrow indicates

weak effect.

3.8 Scenario

This section describes a scenario of the damage process of SOFC inferred from our

E3 analysis (Fig. 11 together with Table 1).

1) Stable running period: Although squeaking of the members of the materials occur

(region (A)), these events do not affect damage of the cells at all. That is, these

events can be disregarded as noise events when monitoring the running.

2) Primary stage of lowering the temperature: At the beginning of lowering the tem-

perature to stop running, it begins to progress the initial small cracks because of

unevenness of the material (region (B)). The attendant squeaking of the members,

region (C), do not affect any other damage as well.

3) Secondary stage: With further lowering the temperature, stress is accumulated in

the heat-shrinkable electrolyte. Then, the cracks in the electrolyte are triggered

by the progression of the initial cracks ((B)→(D)). In contrast, though cracks of

the electrolyte promote the initial cracks, its effect is lesser ((D)→(B)).

4) Latter stage: As solidifying the glass seal, the glass seal accumulates stress

strained by the electrolyte. Then the glass seal is damaged by releasing the accu-

mulated internal stress with the trigger of cracks of the electrolyte ((D)→(E)).

5) Final stage: Although exfoliation together with cracks develop in the electrode

(region (F)), these are not affected from cracks of the electrolyte. Also progres-

sion of the initial cracks and cracks of the electrode promote the damage of the

glass seal ((B)→(E) and (F)→(E)).

4 Future Perspective

We demonstrated the proposed E3 using an AE event sequence observed by the

damage evaluation test on SOFC. The kernel SOM with density estimation provides

a comprehensive topology map that can infer the damage type and damage phase

transitions within the map. Afterwards, the E3 extracted and suggested AE events

on the map that are not frequent themselves, but co-occurred in phase transitions.

These AE events cannot be extracted only by the method based on the occurrence

frequency of a single event, e.g., density estimation.

The domain experts can reasonably explain the results as mechanical effects and

ascertain novel information. It is great advance that the domain experts can form a

hypothesis via E3. This hypothesis can be verified by checking the reproducibility

of the event sequences via several damage tests.
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In the proposed E3, event transitions are manually assigned by referring to the

occurrence density change of prototypes. In the future, activity propagation mecha-

nisms, such as priming activation indexing (PAI)[14], are an option for the natural

introduction of event transition to E3.

The proposed E3 can contribute to the clarification of the fracture mechanism

or to monitoring the phase transition point or fatal damage. In the future, the frac-

ture mechanism in the SOFC will be clarified by comparing several experimental

conditions and/or by combining computational simulation.

5 Conclusion

We proposed the essential event extractor (E3) scheme for a non-symbolic event

sequence to extract relatively rare but co-occurring events in phase transitions that

exhibit hidden forces. The self-organizing map (SOM) is used as vector quantization

(VQ) to encode non-symbolic events and KeyGraph as a co-occurrence graph. To-

gether with density estimation on the topology map of the SOM, co-occurring event

sequences can be obtained on the map. The E3 enhances the co-occurring analysis

of a symbolic sequence to a non-symbolic sequence, because E3 requires only the

dissimilarity between events.

We demonstrated E3 by applying to an acoustic emission (AE) event sequence

observed from damage test of fuel cells. Consequently, mechanical effects in the

fuel cells can be inferred by the result of E3 analysis, and these extracted effects

express hidden forces that appear during the damage phase transitions.
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Detecting Car Accidents Based on Traffic

Flow Measurements Using Machine
Learning Techniques

L.D.Tavares,G.R.L.Silva,D.A.G.Vieira,
R.R.Saldanha,andW.M.Caminhas

Abstract. Thispaperdealswiththeproblemofdetecting theoccurrence
ofa caraccidentinanurbanenvironment.Firstly,a modelbasedonCellu-
larAutomata isdesignedto simulatethetrafficflowwithitsmainfeatures
suchas: multiple lanes, cars, traffic lights, buses and bus stops. Afterwards,
machine learning techniques are tra ined with the traffic flow measurements
considering both the normal and the situation in which the accident caused
a partia l clo sure o f the lanes. Severa l machine learning techniques results are
presented to severa l car breaking scenarios.

1 Introduction

The land transportation system is an important resource fo r the country
economy and population well-being , thus, when this system do es not work
well, severa l sectors are affected. Considering , fo r instance, the urban transit
system of a Brazilian la rge city, such as Sã o Paulo or Belo Horizonte, this
problem can be even more serious. In these cities the most common prob-
lem is rela ted to congestion. Congestion can be generated when the number
o f vehicles is g reater than the capacity o f the road or fo r any momentary
interruption (accidents or maintenance of the road). Therefore, it is neces-
sary to develop tools that can detect the moment and place these problems
occur. Hence, a corrective action can be taken in order to returns the flow
to its normal state. The objective of this paper is to conduct a comparative
study of different classifiers in order to detect congestion in an urban traffic.
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For this study it was built a simulator of Urban Traffic flow using Cellu-
lar Automata (CA), called Cellular Automata for Urban Traffic Simulation
(CAUTS). This model considers the presence of cars, trucks, traffic lights,
buses and bus stops.

CA is, in short, the mathematical model discrete in time, space and states.
Its fundamental unit is called cell. This kind of model is based on two simple
components: local rules and neighborhood. Local rules are responsible for cal-
culating the next state of the cell, based on the influence of its neighborhood.
Only with those components CA can reproduce (simulate) dynamic complex
systems, ranging from biology to chemical reactions [1]. CAUTS has resources
capable of simulating most of the features of an urban traffic as main roads,
secondary roads, traffic lights and bus stop. Moreover, it is possible to gen-
erate events that cause traffic jams, such as stopped vehicles and accidents,
which is the main focus of this work. The database was tested with different
methods of classification, so that it can detect which part of the model and
at what time an incident occurred. The classifiers used were: (i) Näıve Bayes
(NB), (ii) Decision-Tree (DT), (iii) K-Nearest Neighbor (K-NN), (iv) Multi-
layer Perceptrons (MLPs), (v) Support Vector Machine (SVM), (vi) Adaptive
Neuro-Fuzzy Inference Systems (ANFIS). The paper is organized as follows.
Sections 4 and 5 show the basic concepts employed in the construction of
CAUTS model. Then, Section 7 contains the results obtained, considering
several different scenarios. Finally, the conclusion and future works are in
Section 8.

2 Overview on the Traffic Flow Theory

Theories of Traffic Flow seek to study and describe the relationships between
the vehicles, routes, components and infrastructure as traffic lights, signs,
among others, in mathematicians terms. These theories emerged in the 30’s in
an attempt to relate the magnitudes of flow density and velocity, by scientist
Bruce Greenshields. Today these theories are based all the tools and models
of traffic flow [2]. The applications of these theories are broad. Among them
are:

• Evaluation of alternative treatments in traffic management;
• Design and testing of new lanes;
• Models operational flow serving as a sub-module in other tools (model-

based traffic control and optimization and dynamic traffic assignment);
• Traffic management training.

Papageorgiou [3] explains the phenomena that do not always observed in
traffic are evident to the correct equation, and still divides approaches into
three categories:
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1. Purely deductive approaches: where it is necessary to know the laws of
physics exist that govern the phenomenon;

2. Purely inductive approaches: where real systems input/output pairs data
are available, which are then used to adjust general mathematical struc-
tures as ARIMA models, neural networks and polynomial approximations,
for example;

3. Intermediate approaches: where the first structural model exists and then
real data are used to adjust the model.

Whatever the approach taken, it is still possible to classify it using the fol-
lowing criteria [4]:

• Type of variables;
• Level of Detail;
• Representation of the process;
• Operationalization;
• Range of application.

Type of variables is defined on the bais of how it treats the passage of time, ie
environmental change occurs in a continuous or discrete. The level of detail

with respect to how the approach works existing entities in the model. The
microscopic approaches have a greater level of detail, where the entities are
treated individually. The macroscopic approaches have little level of detail
and understand the traffic as a whole. In an intermediate level of detail exist
mesoscopic approaches where blocks entities are treated as platoons. The rep-

resentation of the process is characterized by existence of random variables.
When they are not present the process is deterministic, on the other hand, if
they are needed the process is stochastic.

The criterion of operation checks whether the approach is analytical or by
simulation. Finally, the scale defines the scope of application of the approach,
for example, a city, an avenue, or simply a stretch of street.

3 Cellular Automata

Studies on the potential of CA started around 1950’s by von Neumann and
Ulam [1]. CA is, in short, a mathematical model discrete in time, space and
states. Its fundamental unit is called cell. This kind of model is based on two
simple components: local rules and neighborhood. Local rules are responsible
for calculating the next state of the cell, based on the influence of its neigh-
borhood. Only with those components CA can reproduce (simulate) dynamic
complex systems, ranging from biology to chemical reactions [1].

The simplest case of elementary CA is an one-dimensional array of cells,
where each cell can have the values 0 or 1. Consider a t

i as the state of the cell
of index i at the moment t, an example of local rule δ for this elementary CA
is [1] [5]:
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at+1
i = δ

(

at
i−1, a

t
i, a

t
i+1

)

(1)

Formally, CA is defined by a tuple A = (S, d, n, δ), where S is set of states that
one cell can assume, d is the dimension, n is the influence of the neighborhood
structure over a cell a, and δ is the local rule. In a uniform CA model the
same δ function is applied over all cells, but it is possible to have different
local rules for distinct sets of cells, in this case has a non-uniform or hybrid
CA [6]. CA may also include stochastic elements, such as probabilistic local
rules, as shown below:

δ (.) =

{

s1, if p
s2, if 1 − p

(2)

where p is the probability of occurrence of the state s1 ✂ S.The update of the
cells may occur in a synchronous or asynchronous form. The CA is classified
as synchronous if all cells are updated at the same time, but, if some parts of
the model are updated at different times the CA is classified as asynchronous.

The best known application, based on CA, is the ”Game of Life”, created
in 1970 by Conway [1] [7]. In this game each cell is a unicellular organism
that can assume one of two states: 0 - dead or 1 - alive. The local rules of
this game are:

• (R1) Under population: any living cell will die if it has less than two alive
neighbors;

• (R2) Overcrowding: any living cell will die if it has more than three alive
neighbors;

• (R3) Perpetuation: any cell will remain for the next generation if it has
two or three neighbors;

• (R4) Reborning: any dead cell will revive if it has exactly three live neigh-
bors.

Other examples of applications based on CA are well documented in the
literature, see, for instance, [8, 9, 10].

4 Simulator Features

Among several methods to traffic flow simulations, the ones based on the
use of Cellular Automata (CA) have received an especial attention of re-
searchers. Some papers from the 1990’s presented the bases concerning the
use of CA for traffic flow [11, 12, 13, 14, 15]. These results considered the
basic acceleration, deceleration, velocity randomization and velocity update
rules. A review considering road traffic flow can be found in[16]. It shows
that most of the concerns are related to acceleration, deceleration and lane
changes for freeways. Makowiec and Miklaszewski [17] added supplementary
rules to the traditional model such a way to increase the mean velocity. It
is expected that most of drivers want to travel as close as possible to the
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maximum allowed speed. The CA is a very useful and efficient method, and
can be applied to online simulation of traffic flow, as presented in [18]. In [19]
it was derived the critical behavior of a CA traffic flow model by means of
an order parameter breaking the symmetry of the jam-free phase. Fuks [20]
considered a deterministic CA model and derived a rigorous flow at arbitrary
time. Other important aspect is the jamming caused by the reduction of the
number of lanes. This reduction can be due to repairing, accidents and even
because it is part of the road design. Studying the road capacity, Nassab et.
al. [21] considered a road partial reduction from two lanes to one lane. The
blockage of one lane, caused by an accident car, was recently studied in [22].
This paper considers the study of a car accident in an urban environment.
By urban environment it is required to consider: (i) multi-lane traffic flow;
(ii) crossroads; (iii) traffic lights; (iv) trucks; (v) buses and; (vi) bus stops.
The presence of buses and bus stops requires specific rules. These rules are
important to the traffic flow in urban areas.

5 Model Definition

The model of urban traffic flow is implemented based on a two-dimensional
Stochastic Cellular Automata, called Cellular Automata for Urban Traffic
Simulation - CAUTS. CAUTS has resources capable of simulating the features
of an urban traffic as main roads, secondary roads, traffic lights and bus
stop. Moreover, it is possible to generate events that cause traffic jams, such
as stopped vehicles and accidents. The sub sections below will detail the
proposed model.

5.1 Maps Definitions

The cell of the model can represent one of two states: 0 - empty, 1 - occu-
pied. All cells of the model are square with side equal to 5.5 meters. This
measure represents the average sized car in the Brazil, taking into account
the distance between cars. The properties of cells are defined as a triple:
ci,j = { pd, sd, vmax} , where: (i) pd is the predominant direction; (ii)sd is
the secondary direction; (iii) vmax is the speed limit. For predominant di-
rection, means, the direction in which the vehicle will stay longer; and, by
secondary direction the change route or direction, such as lane-changing or
street change. The speed limit determines how many cells can be advanced
forward, at most, per iteration. Each direction d has a code, and their respec-
tive shift in the axis x and y, as can be illustrated in the Figure 1. Moreover,
it allows a vehicle to move forward up to 3 cells. To indicate that a cell is not
available for transit and the end of road (cell where vehicle is removed from
model), two triples, { 0, 0, 0} and { 9, 9, 9} , are used, respectively.
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5.2 Environmental Rules

These are the rules that change a set of cells to implement some de-
sired characteristics. One of the most important feature in urban traffic
is the presence of traffic lights. Consider the complementary set of traf-
fic lights T 1 and T 2, where the cells affected by these sets are defined as
T 1 = {(x1, y1) , (x2, y2) , . . . , (xn, yn)}. Similarly, consider T2, where, for ex-
ample, T1 is the set of traffic lights in the main road and T2 in the secondary
road. The complementarity, then, is defined by: T1(G reen) ⇒ T2(R ed),
T1(Y ellow ) ⇒ T2(R ed), T2(G reen) ⇒ T1(R ed), T2(Y ellow ) ⇒ T1(R ed). The
Equation 3 shows how the traffic lights can be modeled.

(R T ) :

⎧

⎨

⎩

T (R ed) ⇒ vmaxT = 0
T (Y ellow) ⇒ vmaxT = 1
T (Green) ⇒ vmaxT = vmax

(3)

∀(x, y) ∈ T .
As mentioned above, the model contains features that considers broken

vehicles or accidents. Consider the set A = {(x1, y1) , (x2, y2) , . . . , (xn, yn)}
as the location of the cells where the incident occurs, at time t0 with k
iterations long. Additionally, consider cod(A, t0−1) = cod(A, t0−1) as the cell
triple code before the incident. Since the cells not available for transit is
represented using {0, 0, 0}, then, the presence of stopped vehicle is modeled
as:

(RA) :

{

cod(A,t) = 000, if t ≤ t0 + k
cod(A,t) = cod(A,t0−1), otherwise

. (4)

At the beginning and the end of each road there is one sensor. These sensors
are responsible for capturing the statistics, such as, number of vehicles (flow)
and their speeds.

5.3 Vehicles Definitions

The model implemented has three types of vehicles: small vehicles, like cars,
and large vehicles, such as buses and trucks. Small vehicles occupy only one
cell, while large vehicles occupy three cells in length and the width of one cell.
Currently, the model considers that large vehicles can only move in the main
roads and can not switch lanes or routes. Buses and trucks differ, themselves,
by the fact that buses have to stop at bus stops. The vehicle models have
the following structure: (i) kind of vehicle: 1 − car, 2 − bus or 3 − truck;
(ii) vehicle location (x, y); (iii) lane change indicator (t1); (iv) vehicle current
speed (veli); (v) time of the vehicle last stopped (t2); (vi) sensor identifier
(sid). The feature (iii) is applied only when the vehicle is a car and indicates
how many iterations has passed from the time vehicle last changed a lane.
This serves to prevent the car change its lane by consecutive times. Because
of this, the model does not allow a vehicle leaving right lane and go to left
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Fig. 1 Code and respective dislocation (in x and y axis).

lane, whereas there is a central lane, instantly. Consider a vehicle v i in the
set V = { v 1, v2, . . . vi, . . . vn} at the moment t. The location of the vehicle
may be recovered by the expression:

loci =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[x1, y1] = posi(vi), if vi = car
⎡

⎣

x1 y1

x2 y2

x3 y3

⎤

⎦ = posi(vi), otherw ise
. (5)

Consider the location of all vehicles as L OC = posi(V ). The function diri =
direc(vi), where diri = [xd1, yd1] for small cars, indicates the vehicle moving,
according to the Figure 1. For instance, a vehicle is moving to the east, the
function direc(.) will be [xd, yd] = [1, 0] and [xd, yd] = [−1, 1] for northwest
moving. The current speed of the vehicle veli is accessed through the function
speed(vi). The maximum speed that a vehicle can achieve depends on its type
and its location at time t, as small cars tend to be faster than large vehicles
in urban traffic. The speed is computed as cells/iteration, of c/i. The speed
limit is calculated by the function vmaxi = velocmax(vi, loci). The Equation
6 defines the rule for local acceleration. This rule represents the intention of
the driver to speed up as much as possible, i.e., the speed limit of the road
will be respected.

(R1) : vel(i,R1) = min
(

vel(i,t) + 1, vmaxi

)

(6)

However, we know that drivers may, so seemingly random, reduce vehicle
speed. Consider α as the probability of a slowing down, then the local rule
for this event is given by 7.

if rand < αi,
(R2) : vel(i,R2) = max

(

vel(i,R1) − 1, 0
) . (7)
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The previous local rule is a representation of a natural factor in the urban
transit system and, in some way, can contribute to the rise in congestion. An-
other condition for the deceleration of the vehicle is the existence of obstacles
on the road. The nfreei = gap(vi) function is responsible for identifying
the maximum number of free cells in which the vehicle can move in a given
direction d, according to the Figure 1. The local rule for the downturn by
obstacles is given by Equation 8.

(R 3) : vel(i,R3) = min
(

vel(i,R2), nfreei

)

(8)

The rule R3 simulates, to some extent, the vision of the driver, it means, the
maximum that he can move is a combination of following factors: the road
speed limit, maximum speed that the vehicle can reach and the next obstacle.
Furthermore, it is defined in the model rules for local buses to consider the bus
stops. Consider S = {(x1, y1) , (x2, y2) , . . . , (xn, yn)} the set of cells located
in a bus stop. For a bus vi, consider t0 the moment where loci ∈ S and k the
stop duration, with a probability ϕi, defines de rules RS, as shown in Eq. 9.

(RS) :
If loci ∈ S, rand < ϕi, t < t0 + k and vi = bus

vel(i,t+1) = 0,
otherwise

vel(i,t+1) = vel(i,R3)

. (9)

Finally, the movement of the vehicle vi given the direction d of displacement
diri can be calculated by:

(R4) : loci,t+1 = loci + veli,t+1 ∗ diri . (10)

6 Overview on the Classification Methods

The traffic jam identification can be regarded as a problem of fault detection
class, where the transit is the studied system. The identification can be binary
(normal or congested) or multiple classes. In the following subsections will
be a brief explanation of the methods used. For more details about used
methods, we suggest to search the cited references.

6.1 Näıve Bayes Classifier

The NB is a simple and but efficient Bayesian network classifier. It is built
upon the strong assumption that different attributes are independent with
each other given the class [23]. Although this classifier has this strong assump-
tion, studies show that its performance is not affected when the database
does not have the attributes fully independent of each other [24]. Formally,
the model for the classifier has the following form (using Bayes Theorem):
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p (C|F 1, . . . , F n) =
p(C) p(F 1, . . . , F n|C)

p(F 1, . . . , F n)
. (11)

Where p(C) is the probability of occurrence of class C, p(F 1, . . . , F n|C) is the
maximum likelihood, and p(F 1, . . . , F n) is the evidence. All these parameters
can be obtained through the relative frequencies of training database [25].

6.2 Decision Tree Classifier

The DT is an inductive tree-like structure classifier where the basic idea is
break up a complex decision into a union of several simpler decisions [26].
In the branch nodes of the tree some classification rules are stored. This is
done in order to group similar samples in the same leaf nodes. DT is not, in
general, the algorithm itself but a means to perform the classification. The
best known algorithms to implement a DT are C4.5 and ID3. They differ,
mainly, in the way of how the attributes are sequenced for the decision. The
Figure 2 illustrates an example of DT with their IF...THEN ...ELSE... rules
form.

6.3 K-Nearest Neighbor

The K-NN method is one of the most simplest and oldest classifier, but, at the
same time, most important methods for regression and pattern classification.
It is based on the fact that similar instances tend to be closer in search space.
This method requires two parameters: k (which gives the method’s name) and
a metric d. The performance of this method of classification depends heavily

Fig. 2 An example of Decision Tree (source: Hung, C. and Chen, J.-H. (2009)).
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on the metric applied. Whatever the metric used to it comply with the four
properties below [27, 28]:

• No negativity: d(a, b ) ≥ 0;
• Reflexive: d(a, a) = 0;
• Symmetry: d(a, b ) = D(b , a);
• Triangular inequality: d(a, b ) + D(b , c) ≥ d(c, a).

6.4 Artificial Neural Network

The ANN is a biologically inspired method capable of capturing highly com-
plex non-linear functions. The fundamental unit of this network is called neu-

ron, designed by McCulloch and Pitts. When many neurons work together
to get a network called Multi-Layer Perceptron (MLP). There are several ar-
chitectures of MLP as recurrent neural network (RNN), the self-organizings
maps (SOM) and the radial basis function (RBF) where each one is capable
of performing different tasks [29, 30]. The best known method of learning is
called the backpropagation and is based on the motion made to correct the
weights of each neuron, which is the exit to the entrance of the network [31].

6.5 Support Vector Machine

Initially created to linearly separable problems, the SVM was created by
Vladimir Vapnik and co-authors in the late 90’s. The basic principle behind
SVM is to construct a hyperplane that is capable of separating the classes,
where the distance (or the surface) between them is the maximum possible
[29]. Recently, several methods were developed in order to adapt it for models
not linearly separable [32, 33]. Formally, the construction of the hyperplane
by the SVM can be defined by the following optimization problem [34]:

argmin
1

2
‖w‖2 + C

∑

i

ξ i (12)

subject to ci(w · xi − b ) ≥ 1 − ξ i 1 ≤ i ≤ n. (13)

Where w is the n dimensional vector, C is a penalty parameter controls the
trade-off between minimizing the classification error and maximizing the class
separation margin, b is a bias term

6.6 Adaptive Neuro-fuzzy Inference Systems

The ANFIS is a hybrid system that combines fuzzy logic with learning abili-
ties of Artificial Neural Networks. The fuzzy sets are those where each entry
is associated to a member function. Different sets of numbers (where an ele-
ment is or is not present), the fuzzy sets combine a degree of relevance to the
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Fig. 3 An ANFIS architecture(source: Ubeyli, E. D. (2009))

element. The learning process of ANFIS is similar to an MLP, ie using back-
propagation. The Figure 3 illustrates a typical architecture of ANFIS [35]. In
brief, the Layer 1 associated with each entry a member’s function. The layer
2 performs the multiply the degrees of the entries. The layer 3 is responsible
for normalization of degrees. The layer 4 is responsible for defuzzyfication
and finally, the layer 5 for the output.

7 Simulations and Results

7.1 Environment

The Figure 4 illustrates the layout of the implemented map to the simulator.
It consists of 1 main (horizontal) and 3 via secondary (vertical) roads.

The main routes are composed of 3 lanes and its maximum allowed speed
is 60 km/h (or 3 cells per iteration); furthermore, the secondary roads have
only 2 lanes and maximum speed allowed is 40 km/h (or 2 cells per iteration).
The entry of vehicles in the model is given in the following way:

Fig. 4 Layout of implemented map of CAUTS
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1. West-east Main roads: Probability of at least 10% of a vehicle entering the
model outside the time of greatest movement. This probability increases
linearly up to 70% between the hours of 7:00 a.m. to 8:00 a.m.. And, 50%
between the hours of 12:00 to 1:00 p.m.

2. East-West Main roads: Probability of at least 10% of a vehicle entering the
model outside the time of greatest movement. This probability increases
linearly up to 50% between the hours of 12:00 a.m. to 1:00 p.m.. And, 70%
between the hours of 4:00 p.m. to 5:00 p.m.

3. Secondary streets: Probability of at least 10% of a vehicle entering the
model outside the time of greatest movement. Increasing 30% in the hours
between 7:00 a.m. and 8:00 a.m., 12:00 and 1:00 p.m., and, 4:00 p.m. and
5:00 p.m..

For all scenarios are carried out 30% of large vehicles (between bus and
trucks), and, all simulated accidents occurred on the central lane of the west-
east main road, but in different blocks.

7.2 Parameters and Scenarios

The parameters used for the classifier are:

1. DT: was implemented using the C4.5 method, maximum depth=5;
2. K-NN: k = 17 and d = Euclidean distance;
3. ANN: MLP neural network with four layers, being [2, 25, 25, 2] the number

of neurons in each layer;
4. Fuzzy: Sugeno ANFIS using has 5 membership functions (Gaussian) for

each entry;
5. SVM: ξ = 0.5;

We simulated 5 different scenarios (08:00 to 09:00) with situations: (i) with-
out incidents; (ii) incident in the first block, (iii) incident in the second block,
(iv) incident in the third block and, (v) incident in the fourth block, accord-
ing to Fig. 4. The techniques were trained with the same parameters for all
considered the scenarios. The networks are trained to detect between the sit-
uations without and with accidents, therefore, they always consider situation
(i) as reference.

7.3 Results

Tables 1-4 present the results in descending order accuracy for all tested
topologies, ranging from 99% to 85%. For each scenario there are 400 records,
of which 80% were used for training and 20% for validation. Accuracy is the
average of 35 runs for each classifier (using validation data). For each sim-
ulation the training and validation set are randomly split. The results for
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all tested topologies presented good accuracy. This is mainly due to the fact
that a consistent (big enough) dataset can be arbitrary generated using the
CAUTS model. Moreover, it appears that a breakdown in the first blocks
is harder to detect than in the last ones. As it is well known, traffic jams
propagates backwards, therefore, the information of the first sensor are richer
than in the last ones. Indeed, more information is got when the accident takes
place in last blocks. This empirical expectation is observed in Tables 1-4.

Table 1 Performance of classifiers considering the scenarios (i) x (ii).

Classifiers Performance

Method Accuracy

MLP 96.50%

SVM 95.17%

DT 92.46%

KNN 92.02%

NB 86.12%

ANFIS 85.68%

Table 2 Performance of classifiers considering the scenarios (i) x (iii).

Classifiers Performance

Method Accuracy

DT 96.66%

SVM 92.21 %

ANFIS 90.95%

MLP 88.78%

NB 88.13%

KNN 87.48%

Table 3 Performance of classifiers considering the scenarios (i) x (iv).

Classifiers Performance

Method Accuracy

MLP 99.87%

NB 94.38%

DT 94.37%

KNN 92.64%

ANFIS 90.39%

SVM 89.14 %
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Table 4 Performance of classifiers considering scenarios (i) x(v).

Classifiers Performance

Method Accuracy

ANFIS 99.12%

MLP 97.34%

NB 93.68%

KNN 92.63%

SVM 91.67%

DT 89.15%

8 Final Considerations and Future Works

This paper has studied the use of machine learning techniques to detect car
breakdowns in an urban environment. Measurements of traffic flow in several
points in the main road are used to train the techniques. These measurements
were simulated in our model called CAUTS. Using this simulator it is possible
to generate several scenarios with low cost. Combining the tested methods
in a voting machine will be explored in a future work. Additionally, this
technique, which is based solely in the traffic flow, can be also combined
with other ones, as ones based on computer vision. Indeed, detecting the
traffic jams is one important aspect in the traffic flow control. Based on this
detection, the traffic lights can be adjusted such a way to decrease the harsh
caused by the breakdown. This is one of the future aspects to be explored in
this work. In fact, it is important to improve both, the CAUTS model and
the machine learning techniques.
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Next Generation Environments for  
Context-Aware Learning Design

*
 

Patricia Charlton and George D. Magoulas  

Abstract. Next generation Learning Design tools and applications have similar 

design requirements as intelligent applications that create, share and re-use content 

through the use of data specifications or formal models. In this paper, we present an 

approach that combines ontologies and autonomic computing principles to design and 

build next generation learning design environments that possess context-aware 

features. Our approach builds on the features of self-management and organisation of 

autonomic computing but uses self-configuration as a means to extend a knowledge-

based inference through the design of meta-level inference. This leads to the design 

and implementation of a next generation learning design tool that is context-aware 

supporting both knowledge push and knowledge pull to enable appropriate use of 

theory and practice when creating learning designs for use in higher education. 

1   Introduction 

One of the current interests in the field of “Learning Design” is to find ways to 

support teachers who wish to develop designs that incorporate digital technologies 

[11]. The focus from pedagogical point of view is to enable teachers to exploit the 

constructivist potential of digital technologies for learning: those that support 

learners in discussing, collaborating, and creating user-generated designs.  

The term “Learning Design” has been in use only in recent years; the earliest 

work in the field can be traced back to instructivist approaches, e.g. [10]. To make 

theoretical findings readily available to practitioners led to extensive work on 

Instructional Design Theory [15], which attempted to make learning theories more 

operational. The development of interest in “Learning Design” as a focus of 

research began with this recognition that the constructivist pedagogical theories 

did not easily transfer to the practice of teaching [13]. The emphasis on what 

learners were doing and how to support their activities was much less constrained 
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by constructivism. This dependence on the context in which learning takes place 

required an approach to teaching based on design principles rather than  

pre-defined instructional sequences [14]. Supporting these design principles has 

required re-thinking how to support learning designers.  

By leveraging the semantic web developments and knowledge management, 

and exploiting the observation that knowledge management building blocks 

(ontological models) form the domain grounding for context-aware applications 

we have designed and implemented a framework for supporting next generation 

Learning Design (LD) tools. To manage and exploit the semantics of concepts 

used when creating the learning design we use self-configuration, an autonomic 

computing technique, which enables us to infer about appropriate context changes, 

as well managing context alignment via the underlying ontological models.  

The paper is organized as follows: In Section 2 there is a review of learning design 

tools and identification of their limitations. Section 3 provides the requirements for a 

learning design environment and evaluates tools with respect to self-configurable and 

context-aware capabilities. Section 4 provides a short summary about the background 

of autonomic computing and context-aware systems and the use of ontologies. In 

Section 5 we present our approach to support context-aware learning design. Section 6 

illustrates the overall architecture and self-configurable inference details demonstrating 

the creation and management of context-paths. Section 7 concludes the paper. 

2   Learning Design Tools 

Existing e-learning systems and authoring tools have several limitations in respect 

of support provided and usability, and cannot accommodate the needs of teachers 

who increasingly look for more intelligent services and support when designing 

instruction [12]. This support can be potentially helpful in formulating teaching 

goals and lesson plans and in better accommodating learners’ needs by 

incorporating personalization technologies into teachers’ designs. In fact, at 

present, systems do not provide tools for identifying patterns in effective practice 

and offer no opportunities for teachers to personalize the learning experience and 

collaborate with peers in developing more effective designs.  

There is considerable work on developing various languages and formalisms for 

learning design (e.g. [22][23]). The Educational Modeling Language (EML), which 

appeared in 2000, was the outcome of work that started in 1997 by the IMS Global 

Consortium (IMS) and the OUNL. Initial work by the IMS targeted support 

processes for learning rather than the learning process itself but by early 2001 it was 

realized that a specification was needed to describe the learning processes. The EML 

approach to pedagogy is to provide a high-level abstraction of learning methods, 

including actors (e.g. tutors and students) and roles (e.g. activities) undertaken in an 

environment. The term "environment" has been used in this context to describe 

learning content, tools, communication, and other elements usable by learners and 

others in an activity. Activities are structured using a "learning flow" that includes 

decision-points (so that, for example, performance in one activity determines the 

next), sequences and choices. This high level of abstraction and flexibility makes 

EML a very powerful tool for expressing very different learning scenarios. The 
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EML focused on the entire learning process and was considered as complementary 

to the specifications developed by IMS. The IMS LD 1.0 adopted the XML format, 

which is not visible to the designer but works behind the scenes like the converters 

of document formats used in software applications (e.g. converting DOC format to 

HTML in MS Word).  
Other attempts in this area internationally, include the PALO language 

(http://sensei.ieec.uned.es/palo/) and the E2ML [19]. The PALO approach allows 

creation of a course-specific repository of semantically linked material rather than 

a set of local or distributed knowledge objects, which leads to the construction of a 

knowledge base that is organized along a set of themes/learning scenarios. This is 

considered as a core aspect of course development in PALO. In E2ML, goals, 

requirements and design of the teaching and learning activities are described in a 

visual language. The E2ML model is compliant with the IMS LD specification; it 

can be integrated with Learning Object Metadata standards and its usability has 

been explored in several studies.  
IMS LD has motivated developments in authoring using tools that exploit IMS 

LD concepts, such as the Unit of Learning (UoL), or are IMS LD compliant [20]. 

Some examples in this area are editors like CopperAuthor
1
 and Cosmos

2
 or the 

Reload LD Editor
3
, which can be run together with other tools and engines, like 

CopperCore
4
 or Sled

5
 . However, current tools are not very friendly to non 

technical users as they assume that the teacher is familiar with the technical 

editors and the specifications. Paquette’s work [22] uses OWL (the Web ontology 

language), as a key component in developing formal representations. This work 

can inform the development of next generation of environments for learning 

design by matching it with design-based representations that mesh with and 

extend effective teaching practice.   

3   Rational and Overview of Our Approach 

Although LD information can be quantified for engineering purposes, as done in 

the works mentioned above, only LD knowledge is of real social and economic 

importance and can help to increase the rate of adoption and change current 

teacher practices. This kind of knowledge must be assimilated by humans before 

they can use it and is not enough to copy information or reproduce learning design 

products mechanically using XML, Petri Nets or LAMS sequences. In our view a 

LD environment should work more like a system to manage tacit knowledge (i.e. 

knowledge acquired from practical experiences). This type of knowledge cannot 

be easily formalized (e.g. using Petri Nets) and not a single actor knows the whole 

picture. Thus it is hard to learn and pass on and this knowledge has not yet been 

given sufficient recognition in the approaches to LD so far. However, this form of 

knowledge is an essential part of the educational environment and affects its 

                                                           
 1 http://sourceforge.net/projects/copperauthor/ 

 2 http://www.collide.info/Members/admin/publications/ICCE05.260.pdf 

 3 http://www.reload.ac.uk/ 

 4 http://coppercore.sourceforge.net/ 

 5 http://sled.open.ac.uk/ 
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economic performance. Inclusion of the LD theory and practice from various 

perspectives and view points is the basis of our design which employs knowledge 

engineering to structure the LD concepts and learner designers’ requirements for 

flexibility in the design process in order to provide an environment for enabling 

knowledge push. This knowledge is an important component of the teaching 

profession, and social cooperation and a common understanding are crucial to task 

performance.  
Current LD tools described in Section 2 can be roughly organized into the 

following groups: (a) standards-based, (b) generic form-based, (c) authoring tools 

and (d) ontology-based. Table 1 provides an overview. 

Table 1 Overview of Existing Tools and Main Properties 

Properties Learning Design Tools

Standards-

based

Generic form-

based

Authoring Ontology-

based

Self-configure No No No No

Context-aware No No No No

Inference No inference 

about theory

No inference;

static guidance 

about theory is 

used

Inference 

usually sup-

ports one 

theory

May provide 

inference

Formal ontol-

ogy

No In part May support 

concepts 

about one 

theory

Yes, only a 

model or lim-

ited set of the-

ory supported

Concepts Concepts and 

schemas for us-

age and integra-

tion

Concepts about 

LD are available 

as part of the form

Yes Yes

 

 
Standards-based approaches, such as Educational modeling languages and 

IMS-LD [2], provide greater interoperability between tools and designs. This 

approach enables building tools with specific functionality, e.g. LAMS
6
, Moodle

7
, 

which facilitate creating activity sequences, supporting from technical point of 

view modeling of various design methods, theories and approaches and generate 

designs through LD engines. Generic form-based tools, such as Phoebe
8
 and 

CompendiumLD
9
 are used for designing, managing and delivering learning 

activities and content, e.g. learning design documents and, in certain cases, enable 

collaboration, online learning and social networking (e.g. Cloudworks 
10

). They 

                                                           
 6 http://www.lamsinternational.com/ 

 7 http://moodle.org/ 

 8 http://www.phoebe.ox.ac.uk/ 

 9 http://compendiumld.open.ac.uk/ 
10 http://cloudworks.ac.uk/ 
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focus on one aspect of the design process and as a result designers need to learn 

and engage with a number of tools to benefit from re-use. Authoring tools usually 

support a particular instructional design theory and employ inference engines that 

enable sequencing and presentation of instructional material depending on learner 

characteristics; an overview is given in [4]. Ontology-based tools represent 

domain concepts and relationships [5][6] as well as educational theories and 

relationships [3] among them. They facilitate communication and sharing of LD 

knowledge through common vocabularies and the development of a rational for 

learning designs use, modeling, and most of the time promote a particular 

pedagogy approach. 

The tools discussed above do not support the context-aware needs for complex 

applications and they are limited in their adaptation to the context of use. While 

context-aware [9] is often classed as event-driven, here we mean data-driven or 

more precisely domain knowledge-driven: conventional context-aware systems 

use property values for matching and triggering related events while a knowledge-

aware system makes inferences between related concepts based on a deep domain 

and knowledge understanding. In the Learning Design Support Environment 

(LDSE) presented in this chapter this is enabled by a domain ontology that defines 

relevant concepts, which form both part of the problem definition and a solution, 

and inference rules to determine concepts that relate to the user’s current problem 

space. Thus, concepts, such as learning outcomes, learning activities, learning 

approaches etc. form the problem definition or the solution depending on the 

user’s context of use, e.g. for a designer who is following an approach to LD that 

is organized in terms of particular learning outcomes, the LDSE would exploit 

relationships between sets of learning outcomes and types of activities that are 

defined in terms of learning approaches that best serve them.  

In LDSE, thus, it is not data processing of properties and values in the 

conventional sense but concept relationships that influence the construction of a 

context path, which is then managed through LD inference rules to determine 

concepts that relate to the user’s problem space, i.e. user’s design requirements. 

Rules are triggered by LD concepts incorporated in users learning design and user 

actions during the process of LD. Moreover, this is an approach that does not 

make assumptions about a particular way of creating learning designs as typically 

done in LD tools described above; for example using standard templates or 

specific learning objects. Instead it is based on a context path that emerges as 

events, concepts and information become available.  

Let us consider for example a designer who creates her learning design 

employing concepts represented in the LDSE ontology. As the designer selects 

concepts to create her learning design (such as the concept “Learning outcome”) 

and expresses that the aim of her session is to “Communicate ideas in 

academically acceptable forms of expression and argument”, the LDSE inference 

engine is determining those concepts that are appropriate for the particular 

context. To this end, LDSE builds upon a number of “Learning Approaches” that 

are available in the system supporting the various learning outcomes. For 

example, in this case, the learning outcome “Synthesis” (following Bloom’s 

taxonomy) with instance “Communicate ideas” is supported by a learning 
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approach “Collaborative learning” that is best served by a set of “Learning 

activities”, whose instance “online collaborative project using simulator” could be 

suggested to the designer as a potentially useful element of her design. At any 

point the user can of course ignore specific concepts/suggestions of LDSE altering 

the context path.  

Apart from ontologies and inference rules, our approach exploits the type of 

features of self-management and organization that is expressed in autonomic 

computing [1]. LDSE uses self-configuration as a means to extend its knowledge-

based LD inference through the design of meta-level inference. The inclusion of a 

concept within a learning design means that other domain concepts maybe more 

relevant than they were before. A process of self-configuration at the meta-level 

permits the inference to inspect not just concepts but relationships as well. This is 

necessary in order to both manage and infer the creation of two context-paths. For 

example the addition to a learning design by the user can be a core concept 

(represented in the LDSE ontology), a modified concept, a shared concept that is 

situated, or content that is unknown to the LDSE system. The evaluation of the 

nature of the concept at that point in time by the inference engine prepares an 

alignment of concepts for next possible steps and LD tags. This provides a 

knowledge-aware application with flexibility in finding, using and presenting 

information to the user.  

Lastly, our approach has been designed to support multiple theories about LD, 

which assists in creating application context. This has been developed based on 

interviews with LD practitioners and LD case studies (see [8] for a full description 

of the methods used to construct our approach) and is theoretically underpinned by 

the Conversational Framework (CF) [16]. CF provides conceptual depth and 

perspective round a number of pedagogical theories with a clear mapping of a unit 

of learning into the broader ideas of a constructivist perspective. This has led to an 

ontological design of the system, where a unit of learning may differ both in 

concept and content to work of others, such as Mizoguichi [12] who attempted to 

create a theory-aware environment by adopting a particular instructional design 

theory.  

4   Autonomic Computing and Ontologies for Context-Aware LD 

Autonomic computing is aimed at designing and building systems that are self-

managing. The characteristics often attributed to an autonomic system are a self-

managing, autonomous and ubiquitous computing environment that completely 

hides complexity, thus providing the user with an interface that exactly meets 

his/her needs [1]. While LD identified the need for flexibility to support the 

functionality of self-management, there are two common autonomic computing 

design challenges that should be addressed: (a) what context to use for self-

management and (b) how to collect that particular context in both form and 

content.   

Several researchers [7] [9] have tried to categorize context-aware applications 

according to subjective criteria; a taxonomy on context-aware features is proposed in 

[7]. There are three general categories of context-aware features that context-aware 
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applications may support [9]: (a) services to a user, (b) automatic execution of a 

service, and (c) tagging of context to information for later retrieval.  

Here we consider LDSE to be context-aware if it can extract, interpret and use 

context information and adapt its functionality to the current context of use. LDSE 

uses the ontologies to provide context to assist in the creation of learning designs 

on behalf of the user.  

For example, let us consider the following scenario. The learning designer has 

chosen an annotated activity of the type “small discussion group”. The system 

automatically constructs the context path for this learning design and offers to the 

user relevant “Learning Outcome” recommendations. The recommendations come 

constructed with content that can be edited or used directly. This inference is 

performed indirectly by the LDSE via the concept “Learning Approach”. In 

LDSE, the LD concepts have many to many relationships, e.g. many activities 

may support the learning outcome “Comprehension”. As the user constructs 

concepts to complete their learning design the LDSE is constructing relevant 

knowledge. When the user edits or shares this learning design the same knowledge 

can be used to reference appropriately the concepts and immediately provide 

different views of the knowledge, such as LDSE view, user view, modified view 

illustrating the changes, e.g. activity, class size support, learning experience view 

etc. The user can change properties and concepts, such as class size, use of 

activities, e.g. on-line resources versus face-to-face teaching to see immediately 

what the implication is for a particular design for both the learner and teacher. It is 

the system’s perspective, built on the knowledge of the LD community. The 

learning designer is in control in terms of using recommendations when they seem 

appropriate and when to use system concepts rather than modified concepts etc. 

While terms can be changed, so can the context of use. Again, the system provides 

a “common context of use”. The modifications are held as contextual preferences 

by the user. The same principles of knowledge-based and self-configuration are 

applied. 

Fig. 1 illustrates the concepts used to automatically tag a learning design in the 

above scenario. This tagging is automatic as the inference engine is supporting the 

same concepts selected by the user that exist in the knowledge-base. Both the 

knowledge-base concepts and context of use are maintained in such a way that the 

inference is possible. This formal semantics underpin the design enabling 

preference re-use, e.g. such as previous terms or properties that have been created 

by the user and sharing of designs. Adaptation occurs using both the knowledge 

model and the self-configuration. The self-configuration principles build on the 

relationships and LD rules. This means that while self-configuration is generic, it 

is constrained by the principles of the domain. LD exploits the flexibility of 

concepts clusters and the modification of these concepts being constructed via the 

user-driven selection. The knowledge push and knowledge-aware is possible by 

exploiting the same principles of concept similarity, indirect mappings and look-

ahead strategy of self-configurability.  
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Fig. 1 Automatic creation of semantic tags for annotating learning design. 

In LDSE, ontologies are used to enable the user to find learning designs that 

best match their LD approach: the user can enter LD concepts that exist in the 

knowledge-base. A user requiring assistance in adding learning outcomes to their 

design can request all known learning outcomes from the knowledge-base. The 

knowledge-base will use any context about the current learning design to 

appropriately present the learning outcomes. This is possible because the LDSE 

contains both concepts and relationships, thus defining a “concept context about 

LD”. This is used as an inference template to assist in concept processing of the 

users request rather than a keyword search. Thus, the match is based on the formal 

processing of learning design concepts held in the knowledge-base. 

The ontologies enable personalization methods to create and manage personal 

learning designs to be applied to the creation, search and retrieval of appropriate 

learning designs.  They are also used to identify LD related concepts and content: 

the content entered by the user is related to the concepts in the knowledge-base, 

e.g. “Session topic” means that the user is working on concepts about a session. 

LDSE does not understand the domain of topics but the concepts about session. 

Hence as content is used within certain contexts, e.g. activities and session 

descriptions, the content is indirectly situated and thus tagged in this manner. This 

knowledge can be used to better categorize that content for further use. 

The application of context is about how to maintain and enhance the context of 

tagging (see Fig. 1): the learning designs are triggering configuration rules that 

self-adapt and self-organize the underlying concepts of a learning design as 

changes take place by the user. The context, which is represented as a set of 

concepts that are used to build a context-path, can provide the relevant knowledge 
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at run-time for the user. There are two context-based ontological models held by the 

LDSE. The first is the LDSE core ontology and the second is created at run-time 

when the user is creating their learning design, which may include modifications to 

the concepts that are part of the core ontology. As these modifications take place a 

meta-level inference is used to investigate the changes. 

The self-configurable inference is about supporting “individual” contextual 

information, from history of use or declared alternative terms, or modified properties 

about learning design context. The individual context information can come from re-

using previous learning designs, creation of personal terms from the common set of 

terms and refining the properties of common concepts that exist in the LDSE core 

ontology.  

5   Self-configuration Approach and Use of Ontologies 

In LDSE, users’ individual terms and concepts support their personal preferences of 

creating learning designs. The context is gradually constructed as users enter LD 

concepts in their learning designs. LD concepts either refer directly to concepts in the 

core ontology or are, new concepts and content that are added by the user. Thus, they 

cannot be recognized as part of the core ontology and are “indirectly” referenced. The 

self-configurable context is built as a path. It is created as a conceptual network. 

Concepts and properties are matched in terms of similarity measure that operates as 

constraints in determining which cluster of concepts best reflect the creation of a 

learning design.  

Self-configurable rules are used by the LDSE to assist in the automation of finding 

relevant concepts and content. The context of when to self-configure is built during 

the creation of the learning designs. If for example there is only one action to be taken 

in the next stage of the learning design, then self-configuration is simple – it is 

“execute” that action. If however, the user has made many modifications to the 

instances of a concept or set of concepts in use, e.g. editing a particular design. Then 

the LD engine needs to inspect the consequences of these changes both for 

appropriately tagging the design and for preparing possible next stages of the design. 

This requires the inference engine to reflect about if the current named concept is the 

most appropriately aligned concept. For example the user may have decided that the 

learning outcome they are designing for is Application (following Bloom’s 

taxonomy). However, the user makes significant changes to the session and selects 

both activities and content material that from an LDSE perspective is for “Learning 

Outcome” Evaluation- to determine this inference requires the LDSE to inspect not 

just the properties of the concepts but the relationships that are either direct or 

indirect. This triggers a context-path alignment that is used to position further 

appropriate use of concepts. On the one hand the user’s explicit reference to 

Application must be used as the user’s label but on the other hand content retrieval of 

other design content is appropriately mapped to Evaluation. Application is still used 

but Evaluation content is also retrieved. Now if the user uses the Evaluation content 

then while the LD is tagged with Application externally, e.g. in the interface, the 

LDSE specific tagging does two things: first it tags with a user specific learning 

outcome Application but then has an LDSE alignment context path that tags this as 
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Evaluation. The result is when the learning design is shared or re-used it is used as an 

example of serving both Application and Evaluation learning outcomes. To achieve 

such alignment of concepts requires meta-level inspection that is a relationship 

inspection not just a concept instance or property inspection as to design the specific 

rules for every case would be extremely difficult. This also enables the user to create 

their own terminology that can still be underpinned by the LDSE, e.g. for example a 

user may create a learning outcome that is not part of Bloom’s taxonomy. For 

example the user may wish to have a learning outcome called Creativity. Thus 

through the self-configuration the new learning outcome can be included and built. 

However, it does not form part of the core LDSE ontology but can be used and shared 

in the same way. 

The similarity measure and rules of thumb define a set of conditions to be 

ideally satisfied. A particular priority order is provided by the LDSE but other 

configurations are enabled to permit user divergence while supporting the LD 

creation process - the “best support from the LDSE system” – as illustrated in the 

example given above about the user’s view of learning outcome Application and 

LDSE view of the changes indicating learning outcome Evaluation. When there 

are user’s preferences and concepts mapped to rules using concept alignment then 

the meta-inference is used to find a solution to: (a) create a context path, (b) link 

the appropriate core concepts, and (c) re-use of the formal semantic tagging 

(which is a representation of the context path created at run time).  

5.1   Constructing a Context Path 

When the LDSE receives a user input, it reasons about this input and sets up a context 

path that reflects its understanding of the learning design being created. This context 

is passed to the inference configuration and the necessary computations needed to 

deal with the input are created. Once a concept has been added to the context path 

then the management of the context-path requires handling further modification to 

properties and deletion of concepts. These changes require a call to “configure” an 

inference inspection by self-configure rules again with type similarity-context, or 

same, or indirect-context. However, it is possible that a configuration can result in a 

context-path being unbounded or highly fragmented. Essentially, the set of concepts 

changes made by the user are such that the mapping to the core ontology is limited, 

and thus limited knowledge can be inferred from the context-path related to the 

current learning design.  

5.2   Managing the Context Path through Ontology Alignment 

In the LDSE there are two context-paths created. The first path contains the original 

core LDSE ontologies and the second path the LDSE ontologies used, modified 

concepts and the user-created ontologies. Both context-paths form part of the formal 

semantic tagging of the learning design. This means that when the editing of the 

design happens, or sharing or re-use, the underlying concepts and the context in 

which they were used can be drawn from to support the creation of further learning 

designs. Fig. 1 provides an example of using the LDSE to create learning design 

using the ontology. 
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Within the LDSE the core ontologies are known, possible extensions are 

enabled and although general extensions are possible through the self-configurable 

approach the ontology extension is scoped. The creation and management of the 

context-path is considered a simplified form of ontology alignment, which is 

described as the task of finding relationships holding between the entities of two 

different ontologies; thus establishing a set of mappings expressing the 

correspondence between two entities of different ontologies through their relation.  

The ontology alignment in LDSE is specialized to a set of correspondences 

between two ontologies, which are expressed as mappings between two context-

paths as well as within a context path. The mapping within a context-path is a 

formal expression that states the semantic relation between two entities belonging 

to different ontologies. However, between the two context-paths this provides one 

ontology as an extension or modification of another and thus the similarity-

measure becomes an evaluation of the extension or modification to use both the 

initial ontology and the user ontology edits to see if other core ontology may better 

serve to underpin the current learning design. The mappings are based on 

terminology and conceptual similarities. As the users are creating their learning 

design, some of the original concepts will be modified or new unknown concepts 

will be added. The concepts that are the same, modified or new are matched to the 

core ontology by using terminology and conceptual similarity. The result of this 

matching is used to generate the context-path of the learning design. Knowing the 

concepts that are similar is used to configure the next set of appropriate concepts 

for the user.  

 

Fig. 2 An example of ontologies and context creation that occurs when a user creates a 

simple session. 

Terminological similarity is the part of a mapping that expresses terminological 

relations between the lexical expressions used to name the entities to be mapped. 

Simple examples are: the name of two entities is the same, the name of an entity is 
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an abbreviation of the name of the other or has been created by the user through 

the LDSE pedagogy thesaurus (see Section 6) and contains same properties but 

different names of the concepts. 

Conceptual similarity is the part of a mapping that expresses the relation 

between entities in different ontologies. Simple examples are: concept c1 in 

ontology O1 is equivalent to concept c2 in ontology O2, concept c1 in ontology O1 

is similar to concept c2 in ontology O2, instance i1 in ontology O1 is the same as 

instance i2 in ontology O2. O2 is built as the user creates their learning designs and 

may never differ from the original ontology accept in values and terminology. 

However, extensions and modifications and deletion of properties are possible by 

the user and the inclusion of non core concepts means that handling the context of 

similarity and indirect mappings is required. This means: 

• given two ontologies O1 and O2 with different coverage, tells us how the two 

ontologies can be used together to achieve a (less partial) description of the LD 

domain in LDSE. This permits clustering relevant concepts when the user is 

creating, editing or sharing a learning design.  

• given two ontologies O1 and O2 with different granularity, tells us how facts in 

O1 can be systematically translated into facts of O2 (for example, how a fact f1 

belonging to O1 can be rewritten as a logically equivalent fact f2 in O2). The 

user may chose a particular instance but wish to use a different set of terms. If 

the properties remain the same then the LDSE can draw from the original 

concepts and relationships to provide relevant information. 

• given two ontologies O1 and O2 with different perspective, tells us how a fact f1 

in O1 would be seen from the perspective of O2.  

Over time the context-path itself provides the contextual cues in determining a 

user ontology alignment relative to the core ontology, e.g. through indirect 

context, frequency of use of certain terminology and concepts etc. The expression 

of alignment, simplified by this application, enables LD concepts adapted by the 

user to be linked to the LDSE core ontology. The use of  “with different 

perspectives” alignment enables the provision of a pedagogy framework, where 

the use of user terminology within the creation of learning design can be “aligned” 

with the underlying concepts in the LDSE supported by LD relationships. 

Fig 2 provides an example of ontologies and context creation that occurs when a 

user creates a simple session with a learning outcome using the LDSE ontology core 

concepts. In the knowledge-base there is a basic concept about a session. Each 

session will have a description and is ideally expected to have at least one other 

concept (indicated by the has-a relationship). The other concept can be, for example, 

educational aims, learning outcomes, learning activity sequence or summative 

assessment. In this example the user has chosen the “Learning Outcome” concept and 

a set of learning outcomes, such as those shown in Fig. 3 based on Bloom’s 

Taxonomy, are presented. Each learning outcome concept has a set of instances (an 

instance may also belong to a number of learning outcome concepts). 

In Fig. 3 “a Learning Outcome” is an abstract concept, which has a relationship 

links_to “Learning Activity ”. However, note the relationship from “Learning 

Activity” achieves “Learning Outcomes”. For the expert the concept “Learning 
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Activity” has details of achieving a particular learning outcome. It is meant to be 

some type of content, tool, instruction that a teacher will use during the lesson. 

However, the relationship links_to from “Learning Outcome” to “Learning Activity” 

is intuitively more vague/loose relationship.  

The concept hierarchy for “Learning Outcome” has a set of concrete classes that 

has the relationship “isa” (or is a kind of) e.g. “Comprehension” is a kind of learning 

outcome. Learning Outcomes also have relationships defined indirectly with session 

types and more directly with the learning approaches. Within certain concepts, 

properties are themselves concepts and so at any one interaction point with the user 

the LDSE inference engine can draw from the Knowledge-base (KB) a set of 

appropriate concepts to be used to help in the creation of learning design. This is the 

common use of KBs and inferencing to create inference-based contextual 

information. However, combining both the KB and self-configuration we can 

consider the broader scope of the LD context. 

 

Fig. 3 Learning outcomes in the knowledge-base. 

5.3   Self-configuration and Inference 

Designs that include meta-interpreters and reflective techniques have been applied 

to enable the modeling of code as data that can be later included in the system 

execution. It is a highly compelling technique in distributed systems and is used in 

various ways to enable users to download and automatically install software, 

where configurations of the software to the hardware are possible. We use this 

technique in LDSE to enable self-configuration as part of the inference steps about 

the learning design application. The contextual knowledge gathered as a learning 

design is created can be used at each inference stage to select appropriate 

concepts. Within the LD context the concept of “self” can be coarsely divided 

into: 

• The ability to handle high-level tasks and to automate the completion of these 

tasks. The possible types of knowledge are pre-defined (but not necessarily all 

instances of the knowledge) and the system has methods, rules and protocols to 

deal with the automation of tasks. In Fig. 4 the Learning Design Reasoner uses 

the LDSE ontology and user defined concepts to determine the concepts to be 

used and content inferencing for the user; 
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Fig. 4 Overview of LDSE Reasoner. 

 

• Self-management inferencing to determine the next action, when not all of the 

decision processes have been predefined and encoded. Fig. 4 illustrates where 

the self-configuration is triggered to inspect concepts from shared learning 

designs or when concepts are modified. The LD inference is then effected 

because direc#t concept inferencing may not be possible.  
 

The first point can be handled by leveraging an ontological model that captures 

the relationships of learning design. The designs can be annotated with formal 

concepts from the knowledge-base. The second representation of “self”, where an 

inference has the possibility to incorporate self-management, is useful during the 

evaluation of a LD or when re-using LDs. 

6   LDSE Architecture: Context-Awareness and  

Self-configuration Features 

Fig. 5(a) and (b) provides an illustration of the main components of the LDSE. 

The conceptual model is represented by the LD ontology and includes 

relationships that support the use of pedagogy theory in practice. The pedagogy 

thesaurus permits the user to define their own terms that are linked to the original 

concepts found in the LD ontology. The usage of the new terms and change to 

properties triggers a contextual cue analysis to see if there are closer matching 

concepts than the original concept used. The user model and preferences relate to 

frequently used LD knowledge and re-use, such as concepts and terms from the 

pedagogy thesaurus or the LD ontology. The contextual information generated 

through the interaction with the system is stored keeping the context path details 

for later use, e.g. when editing a design. The learning designs that have been 

created are stored including the relationships and changes made from the original 

LD ontology, concepts developed in the pedagogy thesaurus and other contextual 

information from the user model and preferences. The learning designs are  
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Fig. 5(a) Visualization and organization of the learning designs in LDSE 1.0. 

 

Fig. 5(b) Overview of context-aware LDSE architecture 

automatically tagged by the system with the appropriated instances and 

modifications from the learning design ontology. The community knowledge 

contains the content to be shared and how this is shared and the re-use of other 

learning designs that contain the learning design tags. 

The LDSE inference engine uses the ontology concepts to determine the 

appropriate knowledge, such as activities and learning outcomes to offer to the 

user. Contextual information is drawn from the user interactions and the 

conceptual models, learning designs and preferences held in knowledge-base. This 

permits “knowledge push” of recommendations to the user. The visualization of 

the designs is based on the same concepts from the ontology that have been 

modified to suite the learning design purpose. A time line presentation permits the 

user to see the set of scheduled activities. A pie chart permits the user to visualize 

the learning experience that is at the heart of their learning design, based on the 

concepts from the ontology. The form permits the user to enter free text and view 

recommendations and use the concepts that are available. The tree view of the 

learning design shows an overview to the user of the learning design, e.g. level of 

design, activities used during sessions etc. 
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Key to the design in order to enable both direct mapping and indirect mapping 

of contextual knowledge is the context path creation and management. As 

mentioned earlier there are two views of the context path maintained: the expected 

set of concepts and the modified set of concepts. There is also during the process 

of creating a learning design additional knowledge generated and, thus, associated 

with the context, e.g. preferences and particular content. The management of the 

context path is through the use of self-configuration system [24]. This enables 

both flexibility and context inspection at run-time; thus enabling the design 

adaptation and personalization. The creation of a context path requires the 

following types of knowledge-base inputs: 

1. A collection of concepts. Each concept or set of concepts has a set of 

properties. The starting concept of any context path will define the most 

relevant concept clusters that will follow.   

2. Relation between different concepts, which define the priority of concepts 

(close to/relevant) and can be determined by the context of a specific or set of 

configuration rules. 

3. Self-configuration context, which is defined by a set of configuration principles 

of learning design as part of the system. This is underpinned by the set of 

configuration rules. 

We use the principles of self-configuration to provide the framework in which the 

context path can be created. This allows flexibility of design for adaptation 

through changing concepts, modifying concepts and creating concepts.  

Self-configuration is a method to represent the process of inference. Self-

configuration is defined as meta-level inference so that the knowledge about the 

current context can be taken into account and appropriate concepts from the 

ontology can be included as certain data parameters change. The approach is used 

because it is impossible to design before hand all the choices and changes a user 

will make when creating their learning design. Very few properties of the LD 

concepts are fixed in terms of their values. While the LDSE has been designed 

with default preferences the true context and understanding of any given design is 

held in the user’s mind. Thus, the inference process tries to align the changes 

made by the user with the relationships held in the knowledge-base.  

In fact, what makes a concept unique is determined by the property, values and 

the relationships that concept has with other concepts. For example a teaching and 

learning activity has certain properties, e.g. an activity defined as “individual 

supervised project” means that the teacher’s time with the student contains 

“individual supervision”, i.e. the class size is one. If the activity is a group project 

then the class size is one or more. As the number of students change the learning 

experience through the group dynamics can change. Depending on the learning 

outcome there are different combinations and ways of organizing a session. It is 

possible during the design of a session that a teacher decides that the individual 

project supervision has a class size of five. There maybe many reasons that the 

teacher chooses to make this change. However, LDSE logically interprets this 

change as a trigger to find if other concepts and relationships internally are better 

suited to this new property value within the LDSE knowledge-base.  
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To this end, several meta-level partial inferences can occur. They are meta-

level because to determine the alignment of the data the inspection must take place 

taking into account the set of possible alternative concepts. Once the LDSE has 

inspected and evaluated the possible alignments then normal first-order inference 

can continue. However, the normal first-order inference context is determined by 

the process of self-configuration about LD, to include new concepts and the 

relationship with other concepts. This process of suspending the process of 

reasoning, reasoning about the process, and using the results to control subsequent 

reasoning is called reflection [25]. For example, self-configure inference of LD 

inference about create LD context and a set of LDs, then create LDi context 

produces a change to LDi, if and only if current concept Ci of LDi is different from 

the knowledge-base LDSEi.  

Concept(create context(LD), LDSE) ≠ Concept(LD, LDSE). 

Once the change is recognized then self-configuration of a new alignment to be 

included within the creation of the LD occurs. The alignment uses the concepts 

(properties and values) and the relationships to determine what “influence” this 

change in the concept has created for this learning design. 

The inferencing rules through self-configuration and the context path provide 

the necessary knowledge to manage two context paths and use this to generate 

semantic tags that take into account the user choices, modifications and original 

concepts from the domain. This permits both the creation and use of a pedagogy 

thesaurus, which is user-driven, and of user preferences. The preference model is 

built from frequency of use of the concepts and properties based on particular 

original concepts used and any modification of these concepts. Some of the 

concepts used by the user are “linked” by interaction only. That is the user 

generates a particular sequence to create their design. Other concepts are directly 

drawn from the domain concepts and are part of the initial LDSE context path. 

Other concepts are drawn from the pedagogy thesaurus, which links back to the 

original concepts. The preference concept may not link to the domain knowledge 

directly but is situated in a context of use and, thus, can be inferred through using 

the particular knowledge that is located near to the content. The nearness of a 

concept is determined by the context path and is based on the ontology alignment 

definitions given in Section 5. The knowledge is always driven by the original 

concepts but through the use of self-configuration the pedagogy thesaurus or 

preferences can be taken into account, and the creation of new or modified 

learning designs are adapted appropriately both with recommendations and 

automatic tagging by the system. 

The current implementation of the LDSE, user interface and integration of the 

different components is in Java (see Fig. 5). Protégé has been used to develop the 

LD domain ontology and JESS has been used to implement the inference engine 

and core functions of the self-configurable framework and contextual cues.  

7   Conclusion 

Semantic web technologies and autonomic computing principles were combined in 

this paper in an attempt to design and build a next generation learning design 
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environment. The paper described our approach which builds on the features of self-

management and organization of autonomic computing using self-configuration as a 

means to extend a knowledge-based inference through the design of meta-level 

inference. Through leveraging the formal semantics of ontological models and 

inference techniques our approach illustrates some of the key cues for enabling 

context-aware computations that provide intelligent functionality. The system creates 

context paths, linking together domain concepts to keep track of the context in which 

user’s learning designs are created. This leads to the design and implementation of a 

LD tool that is context-aware supporting both knowledge push and knowledge pull to 

enable appropriate use of theory and practice when generating learning designs for 

use in higher education. While being theory-aware is an important function of a 

learning design environment, being context-aware is also critical when including 

multiple resources and perspectives. In our approach these are combined through the 

inclusion of self-management functions as part of the knowledge inferencing. A 

preliminary evaluation of the context-aware features has been conducted with a small 

group of learning designers producing promising results for their effectiveness in 

supporting lecturers in practice. 
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Neurules-A Type of Neuro-symbolic Rules: An 
Overview

*
 

Jim Prentzas and Ioannis Hatzilygeroudis 

Abstract. Neurules are a kind of integrated rules integrating neurocomputing and 

production rules. Each neurule is represented as an adaline unit. Thus, the corre-

sponding neurule base consists of a number of autonomous adaline units (neu-

rules). Due to this fact, a modular and natural knowledge base is constructed, in 

contrast to existing connectionist knowledge bases. In this paper, we present an 

overview of our main work involving neurules. We focus on aspects concerning 

construction of neurules, efficient updates of neurule bases, neurule-based infer-

ence and combination of neurules with case-based reasoning. Neurules may be 

constructed from either symbolic rule bases or empirical data in the form of train-

ing examples. Due to the fact that the source knowledge of neurules may change 

with time, efficient updates of corresponding neurule bases to reflect such changes 

are performed. Furthermore, the neurule-based inference mechanism is interactive 

and more efficient than the inference mechanism used in connectionist expert sys-

tems. Finally, neurules can be naturally combined with case-based reasoning to 

provide a more effective representation scheme that exploits multiple knowledge 

sources and provides enhanced reasoning capabilities. 

1   Introduction 

The combination or integration of (two or more) different problem solving meth-

ods has given fruitful results in many application areas. The aim is to create  

combined formalisms or systems that benefit from each of their components. Dis-

advantages or limitations of specific intelligent methods can be surpassed or alle-

viated by their combination with other methods. It is generally believed that  

complex problems can be easier solved with such combinations (Medsker 1995).  
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A popular type of combinations is that of symbolic and connectionist  

approaches, usually called the neuro-symbolic approach. Advanced neuro-

symbolic formalisms and systems have been developed (Bookman and Sun 1993, 

Fu 1994, Medsker 1995, Hilario 1997, Sun and Alexandre 1997, McGarry et al. 

1999; Wermter and Sun 2000, Cloete and Zurada 2000, d’Avila Garcez et al 2002, 

d’Avila Garcez et al 2004, Hatzilygeroudis and Prentzas 2004a, Bader and Hitzler 

2005). Different types of neuro-symbolic approaches have been developed such as 

combinations of connectionist approaches with first-order logic (Bader et al. 2008, 

Shastri 2007), or with multi-valued logic (Komendantskaya et al. 2007) or with 

non-classical logic (d’Avila Garcez et al. 2007) or with symbolic rules (of pro-

positional type) (Gallant 1993, Towell and Shavlik 1994, Fu 1993, Hatzilyger-

oudis and Prentzas 2000b and 2001b). However, combinations of neural networks 

and symbolic rules seem to have given more applied results (Souici-Meslati and 

Sellami 2006, Xianyu et al. 2008, Yu et al. 2008) due to the complementary ad-

vantages and disadvantages of the two combined formalisms (Hatzilygeroudis and 

Prentzas 2004a). 

Symbolic rules have several advantages as well as some significant disadvan-

tages in terms of knowledge representation and reasoning. Their main advantages 

involve naturalness of representation and modularity (see e.g. Reichgelt 1991). 

The naturalness of rules facilitates comprehension of their encompassed knowl-

edge. Modularity refers to the fact that each rule is a discrete, autonomous unit 

enabling incremental development of the knowledge base as well as partial testing. 

Moreover, rule based systems provide an interactive inference mechanism, which 

guides the user in supplying input values, and an explanation mechanism, which 

justifies the reached conclusions. The provision of explanations is necessary in 

certain application domains (e.g. medicine) to justify system outputs. Symbolic 

rules have certain drawbacks besides advantages. An important disadvantage con-

cerns the knowledge acquisition bottleneck that is, the difficulty in acquiring rules 

from experts (see e.g. Gonzalez and Dankel 1993). The brittleness of rules is an-

other disadvantage. More specifically, it is not possible to draw conclusions from 

rules when there are missing values in the input data. For a specific rule, a certain 

number of condition values must be known in order to evaluate the logical func-

tion connecting its conditions. In addition, rules do not perform well in cases of 

unexpected input values or combinations of them. 

Neural networks represent a totally different approach to problem solving, 

known as connectionism (see e.g. Gallant 1993, Haykin 2008). Neural networks 

possess certain advantages but disadvantages as well. They are able to obtain 

knowledge from training examples. Therefore, empirical knowledge (i.e. training 

examples) available in several domains is exploited and interaction with the ex-

perts is reduced. Additional advantages of neural networks concern their ability to 

generalize that is, provide computation of correct outputs from input combinations 

not present in the training set, their ability to represent complex and imprecise 

knowledge and their efficiency in producing outputs. Compared to symbolic rules, 

neural networks possess significant disadvantages. Main such disadvantages con-

cern the lack of naturalness and modularity. It is difficult to comprehend the 

knowledge encompassed in neural networks and for this reason several rule  
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extraction methods have been presented (Andrews et al. 1995). Due to the lack of 

modularity, a neural network cannot be decomposed into components and form a 

modular structure. The aforementioned drawbacks result into the difficulty (if not 

inability) in providing explanations for outputs produced by neural networks. 

From the various neuro-symbolic approaches that have been presented, we con-

centrate on combinations that result in a uniform, seamless combination of the two 

component approaches. Such combinations are called unified, according to  

(Hilario, 1997), or integrated, according to (Bader and Hitzler, 2005). A main re-

search direction at combining rules and neural networks involves use of prior do-

main knowledge in neural network configuration. One could discern two different 

trends in this research direction. The one trend stems from (Holldobler and  

Kalinke 1994), where a connectionist network is developed that implements the 

meaning function of a propositional (definite) logic program. The other trend 

stems from (Towell and Shavlik 1994), which consists of two main steps: an exist-

ing domain theory in the form of propositional rules is used to construct an initial 

neural network and then training data are used to train the network. On the other 

hand, connectionist expert systems are integrated systems that represent relation-

ships between concepts associated with nodes in a neural network (Gallant 1988, 

Gallant 1993, Ghalwash 1998). The network also contains certain random cells 

that have no concepts assigned to them. These cells are introduced during  

construction. 

Most (if not all) of existing such approaches give pre-eminence to connection-

ism. Thus, they do not exploit representational advantages of symbolic rules, like 

naturalness and modularity. Moreover, with the exception of connectionist expert 

systems, they do not provide the functionalities of a rule-based system, like inter-

active inference and explanation. It should also be mentioned that as far as con-

nectionist expert systems are concerned, the presence of random cells results in 

certain incomprehensible explanations. 

Neurules (Hatzilygeroudis and Prentzas 2000a, Hatzilygeroudis and Prentzas 

2000b, Hatzilygeroudis and Prentzas 2001b) are a type of integrated rules combin-

ing symbolic rules (of propositional type) and neurocomputing. In contrast to oth-

er approaches, neurules give pre-eminence to the symbolic part of the integration. 

Therefore, they retain the naturalness and modularity of symbolic rules in a large 

degree. Neurules can be produced either from symbolic rules or from empirical 

data (Hatzilygeroudis and Prentzas 2000a, 2001b). Also a neurule-based system 

possesses an interactive inference mechanism (Hatzilygeroudis and Prentzas 2010) 

and provides explanations for drawn conclusions (Hatzilygeroudis and Prentzas 

2001a). Mechanisms for efficiently updating a neurule base, given changes to its 

source knowledge (i.e. symbolic rules or empirical data), have also been devel-

oped (Prentzas and Hatzilygeroudis 2005, Prentzas and Hatzilygeroudis 2007b). 

Neurules may also be effectively combined with case-based reasoning (Prentzas 

and Hatzilygeroudis 2002, Hatzilygeroudis and Prentzas 2004c). 

In this paper, we present an overview of our work concerning neurules. The 

structure of the paper is as follows. Section 2 presents the neurule-based knowl-

edge representation scheme. In Section 3 production of neurules from existing 

symbolic rules is presented. Section 4 discusses aspects regarding the mechanism 
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for efficiently updating a neurule base given changes to its symbolic source know-

ledge (i.e. symbolic rule base). Section 5 outlines construction of neurules from 

empirical data. Section 6 briefly discusses aspects regarding efficient updates of a 

neurule base due to availability of new empirical source data. Section 7 discusses 

the interactive neurule-based inference mechanism. Section 8 discusses issues 

concerning combination of neurules with case-based reasoning. Finally, Section 9 

concludes. 

2   Neurules 

2.1   Syntax and Semantics 

Neurules are a kind of integrated rules. The form of a neurule is depicted in 

Fig.1a. Each condition Ci is assigned a number sfi, called its significance factor. 

Moreover, each rule itself is assigned a number sf0, called its bias factor. Inter-

nally, each neurule is considered as an adaline unit (Fig.1b). The inputs Ci 

(i=1,...,n) of the unit are the conditions of the rule. The weights of the unit are the 

significance factors of the neurule and its bias is the bias factor of the neurule. 

Each input takes a value from the following set of discrete values: [1 (true), -1 

(false), 0 (unknown)]. 

The output D, which represents the conclusion (decision) of the rule, is  

calculated via the standard formulas: 
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where a is the activation value and f(x) the activation function, which is a thresh-

old function. Hence, the output can take one of two values (‘-1’, ‘1’) representing 

failure and success of the rule respectively. The significance factor of a condition 

represents the significance (weight) of the condition in drawing the conclusion. 

The LMS learning algorithm is used to compute the values of the significance fac-

tors as well as the bias factor of a neurule. Examples of neurules are shown in  

Table 3. 

The general syntax of a neurule (in a BNF notation, where ‘< >’ denotes  

non-terminal symbols) is: 

<rule>::= (<bias-factor>) if <conditions> then <conclusion> 

<conditions>::= <condition> | <condition>,<conditions> 

<condition>::= <variable> <l-predicate> <value> (<significance-factor>) 

<conclusion>::= <variable> <r-predicate> <value> . 

where <variable> denotes a variable, that is a symbol representing a concept in the 

domain, e.g. ‘sex’, ‘pain’ etc in a medical domain, and <l-predicate> denotes a  
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symbolic or a numeric predicate. The symbolic predicates are {is, isnot}, whereas the 

numeric predicates are {<, >, =}. <r-predicate> can only be a symbolic predicate. 

<value> denotes a value; it can be a symbol (e.g. “male”, “night-pain”) or a number 

(e.g “5”). <bias-factor> and <significance-factor> are (real) numbers. 

 
(sf0) if C1 (sf1), 

           C2   (sf2), 

               … 

            Cn (sfn) 

        then D 

 
              (a)                                  (b) 

Fig. 1 (a) Form of a neurule (b) a neurule as an adaline unit 

We distinguish three types of variables: 

• input or askable variables, that is variables for which the user will be prompted 

to give a value during inference, 

• intermediate or inferable variables, that is variables constituting intermediate 

goals of the inference process, 

• output or goal variables, that is variables constituting the (final) goals of the in-

ference process. 

We also distinguish between input, intermediate and output neurules. An input 

neurule is a neurule having only input variables in its conditions and intermediate 

or output variables in its conclusions. An intermediate neurule is a neurule having 

at least one intermediate variable in its conditions and intermediate variables in its 

conclusions. An output neurule is one having an output variable in its conclusions. 

2.2   Neurule-Based System Architecture 

In Figure 2, the architecture of a neurule-based system is illustrated. The run-time 

system (in the dashed rectangle) consists of five modules: the neurule base (NRB), 

the hybrid inference engine (HIE), the working memory (WM), the explanation 

mechanism (EXM) and the indexed case library (ICL). The first four of these 

modules are more or less functionally similar to those of a conventional rule-based 

system. HIE in combination with ICL can provide additional reasoning capabili-

ties (i.e. handling of exceptional situations). 

C1 C2 Cn 

. . .

(sf1) 
(sf2) 

(sfn) 

(sf0) 

D 
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Fig. 2 The architecture of a neurule-based system 

NRB contains neurules alongside certain information useful for updating neu-

rules when the source knowledge changes (see Sections 4 and 6). HIE is responsi-

ble for making inferences. HIE either performs purely neurule-based inference by 

taking into account the data in WM and the neurules in NRB or combines neurule-

based with case-based reasoning by also taking into account cases stored in the 

ICL. WM contains fact assertions either given by the user, as initial input data or 

during an inference course, or produced by the system, as intermediate or final 

conclusions during an inference course. ICL contains cases indexed by neurules in 

the NRB and is used by the approach combining neurule-based with case-based 

reasoning (see Section 8). 

The architecture also includes certain offline modules useful for producing and 

updating the contents of the NRB and for constructing an indexed case library 

(ICL). The contents of the NRB are produced from a symbolic rule base (SRB) or 

from empirical data (ED). Construction of a NRB from a symbolic rule base is 

performed by the rule conversion mechanism (RCM) presented in Section 3. Con-

struction of a NRB from empirical data is performed by the neurules production 

algorithm (NPA) presented in Section 5. The rule update mechanism (RUM) up-

dates the NRB to reflect changes to its symbolic rule source (see Section 4). RUM 

interacts with the RCM to perform its tasks. The data update mechanism (DUM) 

updates the NRB when new empirical data becomes available (see Section 6). The 

indexing construction mechanism (ICM) constructs an ICL by taking as input a 

case library (CL) and either symbolic rules indexing cases in CL or neurules. 
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3   Construction of a Neurule Base from a Symbolic Rule Base 

As mentioned above, neurules can be produced from either symbolic rules or  

empirical data. Here, we concentrate on the former. 

An existing (propositional type) SRB can be converted to a neurule base (NRB) 

by the rule conversion mechanism. The corresponding conversion mechanism is 

described in (Hatzilygeroudis and Prentzas 2000b). Conversion does not involve 

refinement of SRB, but creates an equivalent knowledge base. This means that the 

conclusions drawn from NRB are the same as those drawn from SRB, given the 

same inputs. Each produced neurule usually merges two or more symbolic rules 

with the same conclusion. Therefore, the size of the produced NRB is less than 

that of SRB as far as both the number of rules and the number of conditions is 

concerned. This results in improvements to the efficiency of the inferences from 

NRB, compared to those from SRB (Hatzilygeroudis and Prentzas 2000b). 

The conversion mechanism is outlined as follows: 

1. Group symbolic rules into merger sets. 

2. From each merger set, produce a merger. 

3. Produce a training set for each merger. 

4. Train each merger and produce one or more neurules. 

Each merger set contains all the rules of the SRB having the same conclusion. We 

call such merger sets initial merger sets. A merger is a neurule having as condi-

tions all the conditions of the symbolic rules in the corresponding merger set 

(without duplications) and significance factors as well as bias factor set to zero (or 

any other proper initial value). Each training set is extracted from the truth table of 

the combined logical function of the rules in its merger set (the disjunction of the 

conjunctions of the conditions of each rule), via a filtering process. Filtering 

eliminates the invalid rows of the truth table. Invalid rows are those with contra-

dicting or inconsistent values. 

Training of mergers is performed using the standard LMS algorithm. A limitation 

of the LMS algorithm is its inability to find a set of significance and bias factors that 

classify correctly all of the training patterns, in case that the training patterns of the 

training set are inseparable. In case that training is successful, one neurule will be 

produced. Otherwise, a splitting process is followed, which produces more than one 

neurule having the same conclusion, called sibling neurules.  

Splitting is performed in a way that each subset contains symbolic rules that are 

‘close’ to each other in some degree. Closeness between two symbolic rules is de-

fined as the number of their common conditions. Splitting is based on the notion 

of closeness due to the observation that separable sets have rules with larger aver-

age closeness than inseparable ones. A least closeness pair (LCP) of rules in a 

merger set is a pair of rules with the least closeness (LC) in the set. Initially, a 

LCP in the merger set is found and two subsets are created each containing as its 

initial element one of the rules of that pair, called its pivot. Each of the remaining 

rules is distributed between the two subsets based on their closeness to their piv-

ots. That is, each subset contains rules, which are closer to its pivot. If training  

fails, for a merger of a merger subset, the corresponding subset is further split into 
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two other subsets, based on one of its LCPs. This continues, until training suc-

ceeds or the merger subset contains only one rule that is converted into a neurule. 
 

Table 1 An example merger set 

R1 

if patient-class is human0-20, 

   pain-feature2 is continuous, 

   fever is no-fever, 

   antinflam-reaction is none 

then disease-type is primary-malignant 

 

R2 

if patient-class is human0-20, 

   pain-feature2 is night, 

   fever is low 

then disease-type is primary-malignant  

  

R3 

if patient-class is human0-20, 

   pain-feature2 is night, 

   fever is medium 

then disease-type is primary-malignant  

  

R4 

if patient-class is human0-20, 

   pain-feature2 is night, 

   fever is high 

then disease-type is primary-malignant 

R5 

if patient-class is human0-20, 

   pain-feature2 is night, 

   fever is no-fever, 

   antinflam-reaction is none 

then disease-type is primary-malignant 

 

R6 

if patient-class is human21-35, 

   pain-feature2 is night, 

   antinflam-reaction is none 

then disease-type is primary-malignant  

 

R7 

if patient-class is human36-55, 

   pain-feature2 is night, 

   fever is low 

then disease-type is primary-malignant  

 

R8 

if patient-class is human36-55, 

   pain-feature2 is night, 

   fever is medium 

then disease-type is primary-malignant 
 

As an example, to demonstrate application of the main steps of the conversion 

mechanism, we use the merger set of Table 1 that consists of eight symbolic rules 

{R1, R2, R3, R4, R5, R6, R7, R8}, taken from a medical diagnosis rule base. The 

merger constructed from this (initial) merger set contains the ten distinct condi-

tions of the eight rules and is shown in Table 2. The training set of the merger is 

extracted from the truth table of the combined logical function of the rules of the 

merger set:  

F = (C1 ∧ C2 ∧ C3 ∧ C4) ∨ (C1 ∧ C5 ∧ C6) ∨ (C1 ∧ C5 ∧ C7) 

      ∨ (C1 ∧ C5 ∧ C8) ∨ (C1 ∧ C5 ∧ C3 ∧ C4) ∨ (C9 ∧ C5 ∧ C4)  

∨ (C10 ∧ C5 ∧ C6) ∨ (C10 ∧ C5 ∧ C7) 

where C1≡patient-class is human0-20, C2≡pain-feature2 is continuous, C3≡fever 

is no-fever, C4≡antinflam-reaction is none, C5≡pain-feature2 is night, C6≡ fever 
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is low, C7≡ fever is medium, C8≡ fever is high, C9≡ patient-class is human21-35, 

C10≡ patient-class is human36-55. 

Table 2 The merger of the merger set of Table 1 

(0) if patient-class is human0-20 (0), 

         pain-feature2 is continuous (0), 

         fever is no-fever (0), 

         antinflam-reaction is none (0), 

         pain-feature2 is night (0), 

         fever is low (0), 

         fever is medium (0), 

         fever is high (0), 

         patient-class is human21-35 (0), 

         patient-class is human36-55 (0) 

      then disease-type is primary-malignant 

The truth table of F contains 2
10

=1024 training patterns, from which only 120 

patterns remain after application of the filtering process. The training patterns of 

the training set are inseparable and the initial merger set is split in two subsets: 

MS1={R1, R5, R6} and MS2={R2, R3, R4, R7, R8}. The LCP that guides split-

ting is (R1, R7). Training of the merger of MS1 is not successful. So, {R1, R5, 

R6} is split in {R1, R5} and {R6} with LCP: (R1, R6). The merger of {R1, R5} is 

successfully trained and neurule NR1-5 is produced. Rule R6 is converted to a 

neurule (i.e. NR6). The merger of MS2 is successfully trained and neurule NR2-3-

4-7-8 is produced. So, finally, from the initial merger set of eight symbolic rules, 

three neurules are produced. The produced neurules are shown in Table 3. 

Table 3 Neurules produced from the merger set of Table 1 

NR1-5 

(-2.5) if fever is no-fever (1.4), 

             antinflam-reaction is none (1.3), 

             patient-class is human0-20 (0.8), 

             pain-feature2 is continuous (0.8), 

             pain-feature2 is night (0.8) 

          then disease-type is primary-malignant 

 

NR6 

(-2.4) if patient-class is human21-35 (1.5), 

              pain-feature2 is night (1.4), 

              antinflam-reaction is none (1.3) 

          then disease-type is primary-malignant 

NR2-3-4-7-8 

(1.6) if patient-class is human0-20 (8.5), 

            pain-feature2 is night (8.2), 

            fever is medium (8.2), 

            patient-class is human36-55 (5.0), 

            fever is low (4.4), 

            fever is high (0.8) 

         then disease-type is primary-malignant 
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4   Efficient Updating of a Neurule Base Produced from a 

Symbolic Rule Base 

An aspect of interest involves the efficient updates of a NRB to reflect changes to 

its symbolic source knowledge. The basic changes to SRB can be (a) insertion of a 

new rule and (b) removal (or deletion) of an existing rule, since modification of a 

rule is equivalent to removal of the old rule and insertion of the new one. One  

approach to reflect such changes would be to reconvert the whole SRB and repro-

duce the whole NRB. Obviously such an approach would impose useless compu-

tational effort due to the fact that only specific parts of the SRB are affected from 

changes. To minimize the computational effort for performing updates, an effi-

cient mechanism has been developed (Prentzas and Hatzilygeroudis 2005) that re-

converts as small portion of SRB as possible. The modularity of NRB enables 

such an approach. Furthermore, the number of neurules after an update remains as 

small as possible, which is a significant aspect in terms of inference time-

efficiency. 

The update mechanism exploits the structure of a tree, called the splitting tree, 

that stores information related to the conversion process. More specifically, a 

splitting tree is used to store the splitting process for each initial merger set. The 

root of a tree corresponds to an initial merger set. The intermediate nodes and 

leaves correspond to the subsequent subsets, into which the initial merger set was 

split. An intermediate node denotes a subset that was split, due to training failure, 

whereas a leaf denotes a subset that was successfully trained and produced a neu-

rule. The pivot of each (sub)set is attached to the corresponding branch of the tree. 

Figure 3 depicts the splitting tree corresponding to the splitting process for the 

merger set of Table 1. 

Whenever a new symbolic rule R is inserted in SRB and there are more than 

one sibling neurule of R in NRB, the splitting tree is exploited to focus the update 

process on the neurules produced from the merger subset containing the rules 

closest to R. To achieve this, the splitting tree is traversed, starting from the root. 

Traversing is based on the closeness of the inserted rule to the LCP members of 

the merger subsets corresponding to the traversed nodes. Traversing ends at an in-

termediate node, when the corresponding merger subset contains a rule R' whose 

closeness to the inserted rule is less than the least closeness. Otherwise, traversing 

ends at a leaf. In case traversing stops at a leaf, the corresponding neurule is re-

moved from the NRB, the merger corresponding to the new merger set is trained, 

updating accordingly the NRB and the splitting tree. In case traversing stops at an 

intermediate node, the descending nodes as well as corresponding neurules are 

removed, the new merger set is split in two subsets based on LCP (R, R'), the two 

corresponding mergers are trained updating accordingly the NRB and the splitting 

tree. In any case, parts of the initial splitting tree are exploited to avoid useless 

computational effort. 
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Fig. 3 The splitting tree for merger set of Table 1 

Table 4 Inserted rule R9 and resulted neurule NR2-3-4-7-8-9 

R9 

if patient-class is human36-55, 

   pain-feature2 is night, 

   fever is high 

then disease-type is primary-malignant 

NR2-3-4-7-8-9 

(1.6) if pain-feature2 is night (8.2), 

            fever is high (8.0), 

            patient-class is human36-55 (5.0), 

            patient-class is human0-20 (4.9), 

           fever is medium (4.6), 

           fever is low (4.4) 

         then disease-type is primary-malignant 

Whenever an existing symbolic rule R is removed from SRB and there are 

more than one sibling neurule of R in NRB, the splitting tree is exploited in a way 

similar to the approach for rule insertion. Traversing ends at an intermediate node, 

when R is a member of LCP of its merger (sub)set. Otherwise, traversing ends at a 

leaf. Each case is handled accordingly. 

It should be mentioned that in certain situations of rule insertion/removal, the 

number of neurules contained in the NRB may decrease by one. A detailed presen-

tation of the update mechanism along with experimental results is presented in 

(Prentzas and Hatzilygeroudis 2005). 

 

Fig. 4 Insertion of R9: traversal of the splitting tree 
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Fig. 5 Final form of the splitting tree after insertion of R9 

We will demonstrate application of the update mechanism for rule insertion 

with an example. Let us consider the rules in Table 1 as constituting SRB and 

those in Table 3 as constituting NRB. Also, suppose that rule R9 (Table 4) is to be 

inserted. Information contained in the splitting tree shown in Figure 3 is exploited 

to efficiently perform the update of the NRB. Traversing of the splitting tree ends 

at the leaf related to subset {R2, R3, R4, R7, R8} (Figure 4). Notice that R9 is in-

serted into the merger sets corresponding to all traversed nodes. NR2-3-4-7-8 is 

removed from NRB. Training of the merger corresponding to the new merger 

(sub)set {R2, R3, R4, R7, R8, R9} is successful and the corresponding neurule 

NR2-3-4-7-8-9 is inserted into NRB (Table 4). The splitting tree takes the form 

shown in Figure 5. 

5   Producing a Neurule Base from Empirical Data 

In several domains, empirical data in the form of training examples are available 

and can be exploited to construct neurule bases. The neurules production algo-

rithm (NPA) constructs a neurule base from empirical data. NPA requires the fol-

lowing input: a set of domain variables V representing the domain concepts with 

their possible values, possible dependency information among domain variables 

and a set of empirical data S. Dependency information indicates which variables 

the intermediate, if any, and output variables depend on.  

NPA tries to produce one neurule for each output/intermediate variable value 

that is, one neurule for each possible output/intermediate conclusion. This is not 

always possible due to the fact that the training set may be inseparable. Therefore, 

more than one neurule having the same conclusion may be produced (i.e. sibling 

neurules). The main steps of NPA are outlined as follows: 

1. Construct initial neurules, based on dependency information. 

2. Extract an initial training set for each initial neurule from S. 

3. Train each initial neurule individually and produce corresponding neurule(s). 
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Initial neurules represent the possible intermediate or final conclusions. One initial 

neurule is constructed for each value of each intermediate or output variable. The 

conditions of each initial neurule include the variables that contribute in drawing 

the corresponding conclusion, as specified by the dependency information. Then, 

for each initial neurule its corresponding initial training set is extracted from the 

empirical dataset. A training pattern has the form [v1 v2 . . . vn d], where d is the 

desired value of a variable related to an intermediate or output conclusion and vi, 

i=1,…,n are the values of the variables it depends on, called component values. 

We distinguish between success examples and failure examples in a training set. 

Success examples are those having ‘1’ (‘true’) as their desired value, whereas fail-

ure examples are those having ‘-1’ (‘false’). Each initial neurule is individually 

trained, via the Least Mean Square (LMS) algorithm, using its own training set. 

Training is not always successful, that is a set of significance and bias factors can-

not always be found that correctly classify all of the training examples. This is the 

case when the training patterns are inseparable. When the algorithm succeeds, that 

is values for the bias and significance factors are calculated that classify all train-

ing patterns, one neurule is produced. When it fails, due to inseparability of the 

training examples, a splitting process is followed. More specifically, the initial 

training set of the neurule is split into two subsets and two copies of the initial 

neurule are trained, each using one of the training subsets. If training of either neu-

rule copy fails, its subset is further split into two other subsets and so on, until 

there is no failure or a subset contains only one success pattern. In this way, more 

than one neurule are produced, having the same conditions with different bias and 

significance factors and the same conclusion. 

Splitting is based on the notion of closeness between training patterns. The 

closeness between two examples is defined as the number of their common com-

ponent values. A least closeness pair (LCP) consists of two success examples that 

have the least closeness between them. Splitting a training set is based on an LCP. 

More specifically, each subset comprises one of the members of an LCP, the suc-

cess examples closer to it and all the failure examples of the initial training set. 

This stems from the intuition that existence of quite different examples causes in-

separability.  

To demonstrate application of NPA, we use an example problem taken from the 

UCI Machine Learning ftp repository (Frank and Asuncion 2010); it is called the 

LENSES problem. There are five domain variables, four input (i.e. age, spectacle, as-

tigmatic, tear-rate) and one output (lenses-class) that depends on the four input vari-

ables. Table 5 shows the corresponding empirical dataset consisting of twenty-four 

(24) patterns. The output variable takes three possible values (i.e. no-lenses, soft-

lenses, hard-lenses) and therefore three initial neurules are constructed. A training set 

is extracted for each initial neurule. Each of the three training sets consists of twenty-

four (24) patterns. The patterns in each of them have the same input values, but dif-

ferent output values. 
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Table 5 The empirical data set S for the lenses example problem 

age spectacle astigmatic tear-rate lenses-class 

young myope no reduced no-lenses 

young myope no normal soft-lenses 

young myope yes reduced no-lenses 

young myope yes normal hard-lenses 

young hypermetrope no reduced no-lenses 

young hypermetrope no normal soft-lenses 

young hypermetrope yes reduced no-lenses 

young hypermetrope yes normal hard-lenses 

pre-presbyopic myope no reduced no-lenses 

pre-presbyopic myope no normal soft-lenses 

pre-presbyopic myope yes reduced no-lenses 

pre-presbyopic myope yes normal hard-lenses 

pre-presbyopic hypermetrope no reduced no-lenses 

pre-presbyopic hypermetrope no normal soft-lenses 

pre-presbyopic hypermetrope yes reduced no-lenses 

pre-presbyopic hypermetrope yes normal no-lenses 

presbyopic myope no reduced no-lenses 

presbyopic myope no normal no-lenses 

presbyopic myope yes reduced no-lenses 

presbyopic myope yes normal hard-lenses 

presbyopic hypermetrope no reduced no-lenses 

presbyopic hypermetrope no normal soft-lenses 

presbyopic hypermetrope yes reduced no-lenses 

presbyopic hypermetrope yes normal no-lenses 
 

 
The (final) neurules produced are shown in Table 6. For the first two initial neu-

rules, the calculated factors successfully classified all training patterns. The produced 

neurules NR1 and NR2. However, the same didn’t happen with the third initial neu-

rule. Its training set had to be split, two copies of the third initial neurule were trained 

with each subset and neurules and finally neurules NR3 and NR4 were produced.  
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Table 6 The neurules produced from the empirical set of lenses problem 

NR1 

(-13.1) if age is young (8.8), 

                age is pre-presbyopic (1.5), 

                age is presbyopic (1.2), 

                spectacle is myope (1.6), 

                spectacle is hypermetrope (-2.7), 

                astigmatic is no (-6.1), 

                astigmatic is yes (4.4), 

                tear-rate is reduced (-5.7), 

                tear-rate is normal (4.6) 

            then lenses-class is hard-lenses 

NR3 

(-4.6) if age is young (-4.4), 

              age is pre-presbyopic (2.6), 

              age is presbyopic (3.2), 

              spectacle is myope (-4.2), 

              spectacle is hypermetrope (3.4), 

              astigmatic is no (-4.5), 

              astigmatic is yes (3.3), 

              tear-rate is reduced (6.5), 

              tear-rate is normal (-8.0) 

           then lenses-class is no-lenses 

NR2 

(-14.6) if age is young (6.4), 

                age is pre-presbyopic (6.9), 

                age is presbyopic (-0.4), 

                spectacle is myope (-3.9), 

                spectacle is hypermetrope (3.1), 

                astigmatic is no (6.9), 

                astigmatic is yes (-7.4), 

                tear-rate is reduced (-7.9), 

           tear-rate is normal (6.2) 

        then lenses-class is soft-lenses 

NR4 

(-2.2) if age is young (-2.6), 

              age is pre-presbyopic (-2.5), 

              age is presbyopic (5.0), 

              spectacle is myope (1.0), 

              spectacle is hypermetrope (-2.5), 

              astigmatic is no (5.1), 

              astigmatic is yes (-6.2), 

              tear-rate is reduced (8.1), 

              tear-rate is normal (-9.5) 

           then lenses-class is no-lenses 

6   Efficient Updating of a Neurule Base Produced from 

Empirical Data 

In certain domains, training examples become available over time. Therefore, an 

aspect of interest involves the efficient updates of a NRB to reflect availability of 

new empirical source knowledge. In (Prentzas and Hatzilygeroudis 2007b) we 

present an efficient mechanism for performing such updates. The mechanism is 

based on splitting trees containing information regarding the splitting process for 

each training set of each initial neurule, in a similar way to that in Section 4. The 

root of each tree corresponds to the initial training set. Descendant nodes corre-

spond to the subsequent subsets into which the initial training set was split. Each 

leaf denotes subsets that was successfully trained and produced a neurule. The 

members of the LCP that guided each split are attached to the corresponding 

branches of the tree. 

The splitting tree is useful to perform updates in case more than one sibling 

neurules have been produced. The availability of a new training example means 

insertion of a new success example into a specific initial training set and insertion 
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of a new failure example into all other initial training sets. Splitting trees enable to 

perform such updates efficiently.  

To insert a new success example not satisfied by the existing neurules produced 

from the initial training set, the corresponding splitting tree is traversed to starting 

from the root and ending at a leaf or an intermediate node. Traversing is based on 

the closeness between the new success example and the LCPs attached to the 

edges of the splitting tree. Retraining of the corresponding subset is performed 

updating the NRB and the splitting tree. 

The insertion of a failure example not satisfied by the existing neurules into an 

initial training set requires training of the subsets corresponding to leaves of the 

splitting tree whose corresponding neurules misclassify the new failure example. 

The corresponding existing neurules are removed from the NRB, whereas the 

newly created ones are inserted.  

7   Neurule-Based Inference Engine 

The neurule-based inference engine implements the way neurules co-operate to 

reach a conclusion. The choice of the next rule to be considered is based on a neu-

rocomputing measure, but the rest is symbolic (Hatzilygeroudis and Prentzas 

2010). 

Generally, the output of a neurule is computed according to Eq. (1) (Section 

2.1). However, it is possible to deduce the output of a neurule without knowing 

the values of all of its conditions. To achieve this, we define for each neurule the 

known sum (kn-sum) and the remaining sum (rem-sum). More specifically, 

‘known-sum’ is the weighted sum of the values of the already known (i.e. evalu-

ated) conditions (inputs) of the corresponding neurule. ‘Remaining sum’ is the 

sum of absolute values of significance factors corresponding to all unevaluated 

conditions of the neurule. Therefore, ‘remaining sum’ represents the largest possi-

ble weighted sum of the remaining (i.e. unevaluated) conditions of the neurule. 

If |kn-sum| > rem-sum for a certain neurule, then evaluation of its conditions 

can stop, because its output can be deduced regardless of the values of the un-

evaluated conditions. In this case, its output is guaranteed to be ‘1’ if kn-sum > 0 

whereas it is ‘-1’, if kn-sum < 0. In the first case, we say that the neurule is fired, 

whereas in the second that it is blocked. 

A condition evaluates to ‘true’, if it matches a fact in the working memory that 

is, there is a fact with the same variable, predicate and value. A condition evalu-

ates to ‘unknown’, if there is a fact with the same variable, predicate and ‘un-

known’ as its value. A condition cannot be evaluated if there is no fact in the 

working memory with the same variable. In this case, either a question is made to 

the user to provide data for the variable, in case of an input variable, or an inter-

mediate neurule with a conclusion containing the variable is examined, in case of 

an intermediate variable. A condition with an input variable evaluates to ‘false’, if 

there is a fact in the working memory with the same variable, predicate and differ-

ent value. A condition with an intermediate variable evaluates to ‘false’ if addi-

tionally to the latter there is no unevaluated intermediate neurule that has a con-

clusion with the same variable. Inference stops either when one or more output 
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neurules are fired (success) or there is no further action (failure). To facilitate in-

ference, conditions of neurules are organized according to the descending order of 

their significance factors. 

In (Hatzilygeroudis and Prentzas 2001a) we present initial work for the provi-

sion of explanations concerning neurule-based inference. Explanations involve 

‘how’ type rules justifying how conclusions were reached. 

Neurule-based inference has certain advantages. When a neurule base is  

produced from a symbolic rule base, experimental results have shown that neu-

rule-based inference is more efficient than the corresponding symbolic rule-based 

inference (Hatzilygeroudis and Prentzas 2000b). Another advantage of neurule-

based reasoning compared to symbolic rule-based reasoning is the ability to reach 

conclusions from neurules even if some of the conditions are unknown. This is not 

possible in symbolic rule-based reasoning. A symbolic rule needs all its conditions 

to be known in order to produce a conclusion.  

Most neuro-symbolic approaches, except connectionist expert systems, do not 

support functionalities like interactive inference and provision of natural explana-

tions. Neurule-based inference is more efficient than the inference mechanism 

used in connectionist expert systems (Hatzilygeroudis and Prentzas 2010). 

8   Combining Neurule-Based and Case-Based Reasoning 

Case-based reasoning is an approach that exploits knowledge encompassed in 

stored past cases to handle similar new cases (Aamodt and Plaza 1994). It is useful 

in several domains where an abundant number of past cases are available. A case-

based system stores useful experience obtained when handling new cases and is 

continuously enhanced during operation. Case-based representations offer several 

advantages such as easy knowledge acquisition, naturalness, modularity, ability to 

express specialized knowledge, self-updatability. There are also issues of CBR 

that may give rise to problems such as adaptation, inference efficiency regarding 

case retrieval, provision of explanations, difficulties in knowledge acquisition in 

certain domains (Prentzas and Hatzilygeroudis 2007a, 2009). 

Combinations of case-based reasoning with other intelligent methods have been 

pursued in several domains resulting into more effective representation schemes. 

One of the most effective types of combinations involves combination of case-

based reasoning with rule-based reasoning (Prentzas and Hatzilygeroudis 2007a). 

Such combinations offer benefits since the advantages of rule-based reasoning and 

case-based reasoning are complementary to a large degree. An overall advantage 

of such combined approaches involves naturalness and modularity of the represen-

tation scheme. Neurules are a type of integrated rules offering advantages com-

pared to symbolic rules. In (Prentzas and Hatzilygeroudis 2002, Hatzilygeroudis 

and Prentzas 2004c) we explored the combination of neurule-based with case-

based reasoning. A main benefit, among others, deriving from this combination 

concerns accuracy improvement as cases may fill in gaps of neurules in domain 

knowledge representation. Furthermore, characteristics of the formalism involve 

naturalness, modularity, ability to exploit multiple types of knowledge sources and 

self-updatability. Few approaches combine case-based reasoning with multiple 
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other intelligent methods with the other methods being outside the case-based rea-

soning cycle. 

In the representation scheme combining neurules with case-based reasoning, 

neurules index cases representing their exceptions. The indexing construction 

module implements the process of acquiring an indexing scheme. The specific 

process may take as input alternative types of available knowledge: (a) available 

neurules and cases or (b) available symbolic rules and exception cases.  

Let us consider that the indexing process takes as input available neurules and 

cases. To acquire an indexing scheme, neurule-based reasoning is performed for 

the neurules based on the attribute values of each case. A case is indexed as a neu-

rule’s exception, whenever the neurule fires and the value of the conclusion vari-

able do not match the corresponding attribute value of the case. 

The alternative type of knowledge concerns an available formalism of symbolic 

rules and indexed exception cases as the one presented in (Golding and Rosen-

bloom 1996). The indexing scheme is acquired by first converting symbolic rules 

to neurules and then associating the produced neurules with the exception cases of 

the symbolic rules belonging to their merger sets. 

The hybrid inference process combining neurule-based with case-based reason-

ing focuses on neurules (i.e. neurule-based reasoning). If an adequate number of 

the conditions of a neurule are fulfilled so that it can fire, firing of the neurule is 

suspended and CBR is performed for its indexed exception cases. CBR results are 

evaluated as in (Golding and Rosenbloom 1996) to assess whether the neurule will 

fire or whether the conclusion proposed by the exception case will be considered 

valid. 

9   Conclusions 

In this paper, we present an overview of our main research work involving neu-

rules, a type of hybrid neuro-symbolic rules. An attractive feature of neurules is 

that compared to other connectionist approaches they retain the modularity and to 

some degree the naturalness of symbolic rules. In contrast to most neuro-symbolic 

approaches, a neurule-based system also provides an interactive inference mecha-

nism and explanation facilities. We outlined aspects regarding construction of 

neurules from symbolic rule bases or empirical data, efficient updating of a neu-

rule base constructed from symbolic rule bases or empirical data, neurule-based 

inference and combination of neurules with case-based reasoning. 

Neurules have been used in developing an Intelligent Tutoring System (Prent-

zas, Hatzilygeroudis and Garofalakis 2002, Hatzilygeroudis and Prentzas 2004b). 

Intelligent Tutoring Systems (ITSs) require discrete knowledge bases to perform 

tasks of their different units (i.e. user modeling unit, pedagogical unit). Neurules 

facilitated the development and performance of the ITS since they satisfy most of 

the representation requirements concerning ITSs (Hatzilygeroudis and Prentzas 

2004d, 2006). More specifically, neurule bases can be constructed from alternative 

knowledge sources producing a natural and modular representation scheme. In-

cremental development of neurule bases is also supported to accommodate source 
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knowledge changes. Furthermore, neurule-based inference is natural, robust and 

time-efficient. 

Our future work is directed to a number of aspects. Such aspects involve find-

ing ways to (a) improve the neurule-based inference efficiency, (b) provide natural 

explanations, (c) incorporate fuzziness into neurules and (d) improve the mecha-

nisms constructing neurules. Another future direction will involve use of neurules 

in different applications. 
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