

Embedded Systems Design Based on Formal
Models of Computation

Ivan Radojevic • Zoran Salcic

Embedded Systems Design
Based on Formal Models
of Computation

Ivan Radojevic
Defence Technology Agency
New Zealand Defence Force
Auckland
New Zealand
ivan_radojevic@hotmail.com

Zoran Salcic
Computer Systems Engineering
University of Auckland
Auckland
New Zealand
z.salcic@auckland.ac.nz

ISBN 978-94-007-1593-6 e-ISBN 978-94-007-1594-3
DOI 10.1007/978-94-007-1594-3
Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2011929884

© Springer Science+Business Media B.V. 2011
No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written
permission from the Publisher, with the exception of any material supplied specifically for the purpose
of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

v

One of the key problems in modern embedded systems design is the productivity
gap. While the performance of computing architectures has been rapidly increasing
in the past few decades, design tools have not kept pace. As a result, it is becoming
increasingly difficult for embedded systems designers to handle complex applica-
tions. Delays in product delivery and even project cancellations are quite common.
An obvious solution is to raise the abstraction level of design tools and at the same
time enable automatic synthesis from high level specifications. A complete embedded
application needs to be specified in a single system level language rather than using
programming languages and hardware description languages to create an early non-
optimal hardware/software partition. From a single system specification written in a
formal language, it is possible to automate design space exploration, hardware/
software partitioning, verification and synthesis, which gives an enormous boost to
design productivity. However, all these design activities can be automated by design
tools only if the system-level specification is constructed according to a formal
model of computation, which sets the rules for communication among concurrent
processes comprising the system. While several models of computation have been
successfully used in certain classes of applications, their applicability in complex
embedded system design is quite limited. In particular, there is a lack of suitable
models for heterogeneous embedded systems that contain both control-driven and
data-driven behaviours.

This book offers a new design methodology for design of heterogeneous
embedded systems. At the heart of the methodology lies a model of computation
called DFCharts. A complete design flow is covered, from a system specification in
a formal language to an implementation on a multiprocessor architecture. Throughout
the book examples are provided to illustrate main concepts. The reader is not
required to have a deep understanding of models of computation. Only basic
familiarity is assumed. For this reason, following the introductory Chaps. 1 and 2

Preface

vi Preface

describes a number of widely used models of computation and system level
languages. Chaps. 3–8 then present the DFCharts based design methodology.
The conclusion with future research directions follow in Chap. 9.

New Zealand Ivan Radojevic
Zoran Salcic

vii

1 Introduction ... 1
1.1 Embedded Systems Design .. 1
1.2 DFCharts .. 4
1.3 Book Organization ... 5

2 Models of Computation and Languages ... 7
2.1 Finite State Machine .. 7
2.2 Kahn Process Networks ... 9
2.3 Synchronous Dataflow ... 12
2.4 Synchronous/Reactive Model .. 13
2.5 Discrete Event Model ... 14
2.6 Communicating Sequential Processes.. 16
2.7 Petri Nets .. 20
2.8 Statecharts/Statemate ... 24
2.9 Argos .. 28
2.10 Esterel .. 29
2.11 Lustre and Signal ... 33
2.12 SystemC ... 34
2.13 Ptolemy .. 37

3 Specification in DFCharts .. 43
3.1 Introduction to DFCharts ... 43

3.1.1 Operators .. 43
3.1.2 Transition Priorities .. 46
3.1.3 Variables ... 47
3.1.4 Data Transfer Between FSM and SDF 49

3.2 Case Study: Frequency Relay .. 50
3.2.1 Peak Detection .. 51
3.2.2 Frequency and Rate of Change Calculations 52
3.2.3 Switch Control .. 53
3.2.4 Threshold Modification .. 54

Contents

viii Contents

3.3 DDFCharts ... 55
3.4 Frequency Relay Extension .. 57

4 Semantics of DFCharts ... 61
4.1 Automata Semantics... 62

4.1.1 FSM with Variables .. 66
4.1.2 Synchronous Parallel Operator ... 70
4.1.3 Asynchronous Parallel Operator .. 73
4.1.4 Hiding Operator .. 77
4.1.5 Refinement Operator .. 78
4.1.6 Mapping Syntax to Automata .. 82
4.1.7 Integrating SDF Graphs into Automata Semantics 84

4.2 TSM Semantics .. 86
4.2.1 Data Transfer from SDF to FSM .. 88
4.2.2 Data Transfer from FSM to SDF .. 90

4.3 The Impact of Clock Speeds .. 91

5 DFCharts in SystemC and Esterel ... 93
5.1 Analysis Based on Requirements ... 93

5.1.1 Concurrent Processes ... 94
5.1.2 Rendezvous Communication .. 94
5.1.3 Buffers and Firing Rules for Dataflow 95
5.1.4 HCFSM with Synchronous/Reactive
 Communication .. 96
5.1.5 Data Transformations ... 98
5.1.6 Multiple Processes Inside a State ... 99
5.1.7 Comparison Between SystemC and Esterel 100

5.2 Numerical Results .. 100
5.3 Feature Extensions of SystemC and Esterel..................................... 102

6 Java Environment for DFCharts ... 105
6.1 FSM Classes ... 105

6.1.1 Declaration of Reference Variables for I/O Signals,
States and Variables .. 107

6.1.2 Inner Classes for Transition Inputs
and Transition Outputs ... 107

6.1.3 Constructor Parameters .. 109
6.1.4 Signal and Shared Variable Connections,

Initialization of Local Variables ... 109
6.1.5 Linking States, Transition Inputs

and Transition Outputs ... 110
6.1.6 Local Signals, Shared Variables and Channels

for Lower Level FSMs and SDFGs 110
6.1.7 Instantiation of Lower Level FSMs
 and SDFGs ... 112
6.1.8 State Refinement .. 113

ixContents

6.2 SDFG Classes... 113
6.2.1 Constructor Parameters .. 115
6.2.2 Instantiation of Actors .. 115
6.2.3 Actor Connections .. 116

6.3 Top Level Classes ... 116
6.3.1 Constructor Parameters .. 117
6.3.2 Instantiation of Input and Output Signals 117
6.3.3 Local Signals, Shared Variables

and Channels for Top Level FSMs and SDFGs 117
6.3.4 Instantiation of Top Level FSMs and SDFGs 118
6.3.5 Top Level Refinement .. 118

6.4 Simulation .. 119
6.5 Library Classes ... 119

6.5.1 Base Classes ... 120
6.5.2 FSM Component Classes ... 121
6.5.3 FSM Communication Classes .. 121
6.5.4 FSM-SDF Communication Classes 122
6.5.5 Synchronization Class .. 122

6.6 Frequency Relay Revisited ... 123

7 Heterogeneous Reactive Architectures

of Embedded Systems ... 125
7.1 Background and Trends ... 125
7.2 Architecture Framework – HETRA ... 127
7.3 Reactive Processors as the Elements of the

Heterogeneous Architecture ... 131
7.3.1 Reactive Microprocessor – ReMIC 132
7.3.2 Power Aware ReMIC-PA ... 135

7.4 Example of Heterogeneous Reactive
Architecture – HiDRA ... 137
7.4.1 An Overview of HiDRA ... 138
7.4.2 An Implementation of HiDRA ... 139

8 Implementation of DFCharts on HiDRA .. 143
8.1 DFCharts Design Methodology ... 143

8.1.1 Specification ... 145
8.1.2 FSM Compositions ... 145
8.1.3 Allocation and Partitioning .. 145
8.1.4 Synthesis ... 147
8.1.5 Performance Evaluation ... 148

8.2 Execution of DFCharts Specifications on HiDRA 148
8.2.1 Signals and Variables.. 148
8.2.2 FSM Thread .. 152
8.2.3 Hierarchical and Parallel Compositions 155
8.2.4 FSM Scheduler ... 157

x Contents

8.2.5 Master Tick Handler ... 159
8.2.6 Slave Tick Handler ... 162

8.3 Frequency Relay Implementation .. 162

9 Conclusions .. 169
9.1 Summary and Overview ... 169
9.2 Future Research .. 171

9.2.1 DDFCharts Design Flow .. 171
9.2.2 Hardware Implementation .. 171
9.2.3 Strong Abort ... 172
9.2.4 Including More Expressive Dataflow Models 172
9.2.5 Program State ... 172
9.2.6 Formal Verification ... 173
9.2.7 Proof of Correctness for DFCharts Implementation 173

References .. 175

Index ... 181

xi

Fig. 1.1 Graphical syntax of DFCharts.. 5

Fig. 2.1 Simple state transition diagram .. 8
Fig. 2.2 Possible trace for FSM in Fig 3.1 .. 8
Fig. 2.3 FSM with valued events ... 8
Fig. 2.4 Mealy and Moore machines ... 9
Fig. 2.5 A Kahn process network example.. 10
Fig. 2.6 An SDF graph .. 12
Fig. 2.7 Event ordering in DE and process networks.

(a) Discrete event (b) Kahn process network 15
Fig. 2.8 Simultaneous events in DE .. 15
Fig. 2.9 Instantaneous feedback in DE .. 16
Fig. 2.10 Formal definition of Petri net ... 21
Fig. 2.11 Petri Net modeling chemical reaction.

(a) Before transition (b) after transition ... 22
Fig. 2.12 Finite capacity net, its transformation and reachability graph

(a) Finite capacity Petri net (b) finite capacity net from
(a) transformed (c) reachability graph for Petri net in (a) 23

Fig. 2.13 A Petri net with concurrent activities ... 24
Fig. 2.14 A basic FSM... 25
Fig. 2.15 Hierarchical equivalent of Fig. 2.14 ... 25
Fig. 2.16 Statechart with AND states .. 26
Fig. 2.17 Basic FSM equivalent to statechart in Fig. 2.16 26
Fig. 2.18 Infinite loop due to instantaneous broadcast 27
Fig. 2.19 Argos example ... 28
Fig. 2.20 Causality errors (a) no solution (b) multiple solutions 29
Fig. 2.21 Esterel example .. 32
Fig. 2.22 SystemC description of a counter .. 36
Fig. 2.23 Mixing FSM and SDF in Ptolemy ... 40
Fig. 2.24 HDF with FSM and SDF ... 41

List of Figures

xii List of Figures

Fig. 3.1 A DFCharts specification ... 44
Fig. 3.2 Communication between an SDFG

and a lower level FSM ... 46
Fig. 3.3 Transition priorities .. 47
Fig. 3.4 DFCharts specification with variables ... 48
Fig. 3.5 Communication between FSMs

and SDFGs through variables .. 50
Fig. 3.6 Frequency relay – top level .. 51
Fig. 3.7 Frequency and rate of change calculations 53
Fig. 3.8 Switch control and timer .. 54
Fig. 3.9 Parameter settings .. 55
Fig. 3.10 Threshold reception.. 55
Fig. 3.11 A DDFCharts specification .. 56
Fig. 3.12 Extended frequency relay – top level ... 57
Fig. 3.13 Extended frequency relay – node N1 ... 58
Fig. 3.14 Extended frequency relay – node N2 ... 59

Fig. 4.1 Clocks in DFCharts .. 62
Fig. 4.2 Building the equivalent FSM for the example in Fig. 3.1 63
Fig. 4.3 Possible composition of a non-gclk FSM 64
Fig. 4.4 A multiclock FSM .. 65
Fig. 4.5 A multiclock synchronous system ... 66
Fig. 4.6 A specification with one input signal and two conditions 67
Fig. 4.7 A specification with two input signals and one channel 68
Fig. 4.8 Synchronous product with a single clock 69
Fig. 4.9 Synchronous product with two synchronized clocks 69
Fig. 4.10 Asynchronous product ... 69
Fig. 4.11 FSM A1 .. 71
Fig. 4.12 FSM A2 .. 71
Fig. 4.13 FSM A3 = A1||A2 ... 72
Fig. 4.14 FSM A4 .. 75
Fig. 4.15 FSM A5 .. 75
Fig. 4.16 FSM A6 .. 76
Fig. 4.17 FSM A7 .. 81
Fig. 4.18 FSM A8 .. 81
Fig. 4.19 FSM A9 = A7 12S

⇓ A8 .. 81
Fig. 4.20 FSM A10 .. 81
Fig. 4.21 FSM A11 = A9 11S

↓ A10 .. 82
Fig. 4.22 FSM that represents SDF graph with two inputs

and two outputs .. 85
Fig. 4.23 Execution states of SDF1 from Fig. 3.5 ... 86
Fig. 4.24 STF process .. 87
Fig. 4.25 FTS process .. 88
Fig. 4.26 A specification with behaviour sensitive

to clock speeds ... 92

xiiiList of Figures

Fig. 5.1 Hierarchical FSMs in SystemC .. 97
Fig. 5.2 Esterel specification of timer in frequency relay 97
Fig. 5.3 Section of SystemC code for averaging filter

in frequency relay ... 98
Fig. 5.4 Modified model to better suite the SystemC

specification ... 99

Fig. 6.1 Structure of FSM classes.. 106
Fig. 6.2 Signals, variables and states in FSM4 .. 107
Fig. 6.3 The input for transition S41 → S42 in FSM4 108
Fig. 6.4 The output for transition S43 → S41 in FSM4 108
Fig. 6.5 The output for transition S42 → S43 in FSM4 108
Fig. 6.6 Parameters of FSM4 constructor .. 109
Fig. 6.7 Connections and initializations in FSM4 110
Fig. 6.8 Creating transitions in FSM4 ... 110
Fig. 6.9 Signal start_roc, shared variable ave_freq

and channel ch1 in FSM1... 111
Fig. 6.10 The input for transition S31 → S32 in FSM3 112
Fig. 6.11 Instantiation of FSM3 .. 113
Fig. 6.12 Instantiation of FSM4 .. 113
Fig. 6.13 Instantiation of SDF1 ... 113
Fig. 6.14 Refinement of S2 in FSM1... 113
Fig. 6.15 Structure of SDF classes .. 114
Fig. 6.16 Class that specifies SDF1 ... 114
Fig. 6.17 Averaging filter actor in SDF1 ... 116
Fig. 6.18 Structure of top level classes .. 117
Fig. 6.19 Top level of frequency relay ... 118
Fig. 6.20 Execution of the top level class of the frequency relay 119
Fig. 6.21 Input file format ... 119

Fig. 7.1 Heterogeneous system on chip (HSoC) – HETRA 130
Fig. 7.2 REMIC block diagram ... 134
Fig. 7.3 ReMIC-PA block diagram .. 136
Fig. 7.4 Mapping of an application to HiDRA architecture 139
Fig. 7.5 SM configuration between MP and AP.. 140
Fig. 7.6 Data memory address spaces of MP and SPs 140
Fig. 7.7 Signal connections between MP and APs 140
Fig. 7.8 HiDRA implementation with one MP and two APs 141

Fig. 8.1 DFCharts based design flow... 144
Fig. 8.2 Flow of control between FTs, FSM scheduler

and tick handler .. 148
Fig. 8.3 Comparing memory and reactive signals 150
Fig. 8.4 Architecture for DFCharts implementation 151
Fig. 8.5 FSM thread ... 153
Fig. 8.6 A DFCharts specification consisting of three FSMs 156

xiv List of Figures

Fig. 8.7 Implementation of specification from Fig. 8.6
without any FSM compositions ... 157

Fig. 8.8 Implementation of specification from Fig. 8.6
with hierarchical composition of FSM1 and FSM3 158

Fig. 8.9 FSM scheduler ... 158
Fig. 8.10 Master tick handler... 160
Fig. 8.11 Control of SDF iteration length ... 161
Fig. 8.12 DFCharts design flow without SDF iteration control 162
Fig. 8.13 Slave tick handler ... 163
Fig. 8.14 Partitioning for the second implementation option 164
Fig. 8.15 Frequency relay implementation with one

ReMIC processor ... 164
Fig. 8.16 Frequency relay implementation with two

ReMIC processors .. 165

xv

List of Tables

Table 2.1 Esterel kernel statements .. 30
Table 2.2 Boolean flows and clocks in Lustre ... 33

Table 5.1 Level of support provided by SystemC and Esterel 100
Table 5.2 SystemC files for frequency relay specification 101
Table 5.3 Esterel files for frequency relay specification 101

Table 7.1 Reactive instruction set .. 133
Table 7.2 ReMIC-PA additional power control instruction set 137

Table 8.1 Thread lengths in the first solution ... 165
Table 8.2 Program and data memories ... 165
Table 8.3 Performance comparisons between two implementations 166

1I. Radojevic and Z. Salcic, Embedded Systems Design Based on Formal

Models of Computation, DOI 10.1007/978-94-007-1594-3_1,

© Springer Science+Business Media B.V. 2011

1.1 Embedded Systems Design

An embedded computing system represents a set of processing elements embedded

inside a larger system and usually communicates with the physical world. Although

embedded systems are already widespread, the number of applications is expanding

both in traditional areas such as communications, consumer electronics, aerospace,

automotive, and in new ones such as biomedical.

Embedded systems differ in a number of ways from general purpose computing

systems. An embedded system must be able to work at a rate imposed by the envi-

ronment, which is not a requirement for a general purpose computing system.

Concurrency and timing issues must be dealt with in embedded systems design.

Furthermore, a range of constraints has to be faced. Some of the usual ones are

performance, cost and power. While a general purpose computing system involves

only software, an embedded system is often a mixture of software and hardware

parts. Software runs on traditional microprocessors, digital signal processors

(DSP) and various application specific processors (ASP). Hardware parts are

implemented with application specific circuits (ASIC) or field programmable gate

arrays (FPGA).

Traditionally, embedded system design starts with an informal specification.

A decision is immediately made on how the functionality is going to be split between

software and hardware. From this point, software and hardware parts are designed

and verified separately. Software is written with programming languages like

C/C++ and Java. Hardware description languages (HDL) like VHDL and Verilog are

used for the design of the hardware part of the system. The major difficulty comes

when interfaces between software and hardware parts are created. At this stage

many small implementation details must be handled because there is no standard

way in which software and hardware communicate. Many problems are discovered,

which sometimes necessitate a complete redesign. Moreover, it is difficult to verify

that the final implementation satisfies the original specification.

Chapter 1

Introduction

2 1 Introduction

The traditional design methodology, which is still used in most embedded

designs, may be satisfactory for smaller and medium sized systems. However, it is

becoming increasingly difficult to use for large systems. The functionality and com-

plexity of embedded systems keeps growing. Technology advances make it possible

to integrate an increasing number of components on a single chip. Moore’s law,

which states that the number of transistors on a chip doubles every 18 months, still

holds. On the other hand, design methods are improving much slower. This results

in a problem, known as productivity gap [1].

Design at higher levels of abstraction is a promising solution to overcome the

productivity gap [2]. It should start with a specification created with a formal

language. A variety of languages have been proposed for that purpose [3]. A speci-

fication should capture only the behaviour of a system without any reference to

implementation. Various names have been used to refer to this level of abstraction

such as system, behavioural, algorithmic or functional level. As much as possible of

the system verification should take place at the system-level. The system-level veri-

fication is much faster than the verification at lower levels of abstraction since many

low level implementation details are not visible. Simulation is still the main verifi-

cation method, but formal verification [4] is becoming important especially for

safety critical embedded systems. After the verification has been completed, the

final implementation consisting of software and hardware parts should ideally be

synthesized automatically.

The behaviour of an embedded system is usually captured as a set of concurrent,

communicating processes. The rules that are used for computation inside processes

and communication between processes are determined by a model of computation

[5, 6]. The computation inside each process is sequential. A finite state machine

(FSM) [7] can be used to describe it, or more expressive models could be used that

may have the full power of Turing machines. It is much more difficult to decide on

the concurrency model that dictates the communication between processes. Currently,

most embedded software design is done with threads which communicate using

mutual exclusions locks, semaphores and interrupts. These communication mecha-

nisms are difficult to use and often result in bugs that are hard to detect [8]. Sometimes

a design may work for years before bugs show up and it suddenly crashes.

The alternatives to threads are various concurrency models with formal semantics.

They employ different scheduling policies and communication mechanisms resulting

in different orderings of events, which trigger or are associated with system opera-

tions. The most frequently used ones are discrete event [9], asynchronous dataflow

[10], synchronous reactive [11], Petri nets [12] and process algebras such as com-

municating sequential processes (CSP) [13] and calculus of communicating sys-

tems (CCS) [14]. All these models impose some restrictions on communication but

in return provide useful properties. The designer would have most freedom if com-

munication between processes were unrestricted. However, tools would not be able

to analyse such specifications and automated synthesis would not be possible.

Instead, a specification would have to be refined manually to a lower level of abstrac-

tion. Because of manual refinement, it would be necessary to verify that the behaviour

has been preserved.

31.1 Embedded Systems Design

In general there is a trade-off between analyzability and expressiveness in a model

of computation. A successful model needs to strike a balance. It needs to provide a

framework for analysis but at the same time it needs to be expressive enough.

An important feature of embedded systems behaviour is heterogeneity. Two

major types of embedded systems behaviour can be identified: control-dominated

and data-dominated. Control-dominated systems have to quickly react to events

that arrive from the external environment at irregular and random time instances.

A lift controller and vehicle automation are examples of control-dominated sys-

tems. Reaction time is less important for data-dominated systems which operate

on samples that arrive at regular intervals. However, data-dominated systems per-

form computations that are much more intensive than those in control-dominated

systems. Most of digital signal processing algorithms, such as FFT, FIR and IIR

filters, are data-dominated. Most embedded systems contain both control-dominated

and data-dominated behaviours. For example, a mobile phone has to perform

data-dominated operations such as speech processing, coding, modulation but it

also has to take care of control-dominated operations such as network protocols

or reacting to user commands.

With the integration of analogue parts together with digital parts on a single chip,

heterogeneity of embedded systems will become even more pronounced. Models

that aim to address these mixed signal systems need to be able to support continuous

time. In this book, we are concerned with purely digital systems. Thus, when we

refer to heterogeneous embedded systems, we mean systems that represent a mixture

of data-dominated and control dominated parts.

Well established models of computation have specific advantages but are not

able to successfully handle entire heterogeneous embedded systems. Asynchronous

dataflow models [10] consist of processes that communicate through FIFO channels

with blocking reads. Using blocking reads ensures that outputs do not depend on the

scheduling order and speeds of processes. Dataflow models have been successfully

applied in signal processing and other transformational systems. However, they lack

reactivity because of blocking reads. In the synchronous/reactive model [11], all

processes read inputs and produce outputs simultaneously when a clock tick occurs.

Blocking reads are not necessary for determinism. This feature is evident in syn-

chronous language Esterel [15], which is deterministic, but has plenty of reactive

statements. Synchronous/reactive model has also had success in the signal process-

ing area with languages Lustre [16] and Signal [17], which have dataflow flavour.

The requirement that all events in a system are synchronous can have a big imple-

mentation price. This especially applies in the design of large systems on chip. It

may mean that all processing elements in a system must wait for each other at some

point even though they are performing unrelated tasks. In the context of a pure

hardware implementation, distributing a single clock can be a problem.

Modelling heterogeneous embedded systems is still an open research area with

plenty of room for advancement. This is witnessed by the absence of mature, well-

developed tools for heterogeneous systems. Esterel studio [18] is a commercial

design environment from Esterel technologies, which uses Esterel language for

creating specifications. It is very convenient for design of control-dominated systems

4 1 Introduction

but lacks features to support data-dominated behaviour. Another tool from Esterel

technologies called SCADE is based around synchronous language Lustre, but it

also allows insertion of FSMs to support control-dominated behaviours. The com-

bination of Lustre and FSMs is still completely synchronous. Hence it could have

implementation difficulties when applied in the design of large embedded systems.

In order to produce efficient implementations, Polis [19] and its commercial suc-

cessor VCC use a globally synchronous locally asynchronous (GALS) model

called Codesign finite state machines (CFSM). However, their target is just con-

trol-dominated behaviour. Ptolemy [20] is a graphical environment that supports a

variety of models of computation. It is still primarily used for simulation. Automatic

synthesis has been demonstrated for synchronous dataflow (SDF) domain, but not

for heterogeneous specifications. Simulink [21], while it does have some code

generation capabilities, is also primarily a simulation environment. Recently, a het-

erogeneous model called SysteMOC [122, 123] has emerged. It combines dataflow

and finite state machines in a relatively straightforward manner, which allows for

efficient design space exploration and synthesis.

In this book, after reviewing most widely used models of computation and

languages for embedded systems design, we present an approach for designing het-

erogeneous embedded systems based on our model of computation called DFCharts.

A complete design flow from the specification to the implementation on a multipro-

cessor architecture is described. The methodology is demonstrated with a practical

heterogeneous embedded system applied in power systems monitoring. In addition,

we suggest how DFCharts based modelling can be used to improve design with two

popular system level languages, SystemC and Esterel.

While DFCharts can be used for specification of distributed systems, it is not

highly suitable for this task since it does not have any special features that support

distributed processes. For this reason, an extension of DFCharts towards distributed

systems called DDFCharts (Distributed DFCharts) has been designed. The seman-

tics of DDFCharts will be described alongside DFCharts in this book. However, the

design flow from DDFCharts specifications has not yet been completely developed

and it remains an important future research direction.

1.2 DFCharts

DFCharts combines hierarchical concurrent finite state machines (HCFSM) [22]

with synchronous dataflow graphs (SDFG) [23]. Three communication mechanisms

are employed in DFCharts: synchronous broadcast used between FSMs, FIFO chan-

nels used inside SDFGs, and rendezvous channels used between FSMs and SDFGs.

The semantics of synchronous broadcast is as in Argos [24], a Statechart [22] variant

with purely synchronous communication. An SDFG can be placed anywhere in the

FSM hierarchy. Thus, it is possible to specify complex control logic that leads to

activation and termination of SDFGs. When expressed with its graphical syntax, the

DFCharts model looks as shown in Fig. 1.1.

51.3 Book Organization

We have described the semantics of communication between FSMs and SDFGs

in detail within tagged-signal model (TSM) framework [25]. Another type of seman-

tics we use is based on automata. It is similar to the semantics of Argos. It represents

the operation of an SDFG as an FSM. In this way a complete DFCharts model can

be flattened to produce a single FSM. This in turn allows the model behaviour to be

analysed globally. The automata based semantics can handle any dataflow model

that has a clearly defined iteration and executes in bounded memory. For example,

cyclo-static dataflow (CSDF) [26] can be easily incorporated in DFCharts, but Kahn

process network (KPN) [27] would require an extension in the current semantics.

We focus on SDF, which is suitable for a large range of applications.

All FSMs in a DFCharts model are driven by a single clock. On the other hand,

each SDFG operates at its own speed. Structurally, a DFCharts model resembles an

Esterel program with asynchronous tasks where asynchronous tasks are comparable

to SDFGs and possibly other dataflow models placed in DFCharts. However, asyn-

chronous tasks in Esterel are essentially part of the external environment, outside

the Esterel semantics as we discussed in [28]. They are very vaguely defined. In

DFCharts semantics, SDFGs are fully integrated.

1.3 Book Organization

Chapter 2 provides a brief survey of models of computation that are used in embed-

ded systems design. It also covers system level languages, which can be related to

models of computation. Some of these languages are based on a single model of

computation while others are capable of describing multiple ones.

Fig. 1.1 Graphical syntax of DFCharts

FSM1 FSM2

SDF1

SDF2

FSM3

6 1 Introduction

Chapter 3 informally describes the semantics of DFCharts using several simple

examples. It also shows how DFCharts can be used to model a practical heteroge-

neous embedded system called frequency relay. This system is used throughout the

rest of the book as a case study. In Chap. 3, we also present an extension of DFCharts

towards distributed systems called DDFCharts. The modelling power of DDFCharts

is demonstrated on an extended version of the frequency relay case study.

Chapter 4 presents the formal semantics of DFCharts. The core DFCharts seman-

tics is automata based. However, the tagged signal model is also used for describing

the interface between FSMs and SDFGs. An interesting feature of the automata

based DFCharts semantics is its basic building block called multiclock FSM, where

transitions can be triggered by more than one clock. In the usual FSM model all

transitions are driven by a single clock.

Chapter 5 takes a closer look at two popular system level languages, SystemC

and Esterel. It suggests how embedded system design with these two languages can

be improved by incorporating DFCharts based modelling.

Chapter 6 describes Java environment for simulating DFCharts designs. While

the Java packages underpinning execution and synchronization of FSMs are com-

pletely new, the simulation of SDFGs is done by invoking Ptolemy. There are very

few interfacing problems in this solution since Ptolemy software has also been

designed in Java.

Chapter 7 provides an overview of the current state of the art multiprocessor

architectures and points to their deficiencies in implementing heterogeneous embed-

ded systems. It then defines a new type of architecture called HETRA which has

special features for supporting heterogonous embedded systems. The subset of

HETRA called HiDRA has a major role in the DFCharts based design flow.

Chapter 8 describes in detail the DFCharts based design flow for heterogeneous

embedded systems. It starts from a high level specification, which is refined into

lower level processes that are mapped on HiDRA processing units. A major strength

of the DFCharts based design flow is the ability to support a trade-off between

implementation efficiency and verification effort. This is quite useful in the design

of large heterogeneous embedded systems.

Finally, Chap. 9 presents a conclusion and some open future directions in

research.

7I. Radojevic and Z. Salcic, Embedded Systems Design Based on Formal

Models of Computation, DOI 10.1007/978-94-007-1594-3_2,
© Springer Science+Business Media B.V. 2011

This chapter looks at several important models of computation and languages for
embedded systems design. We do not attempt to draw sharp distinctions between
models and languages. Thus, the topics in this section are not divided strictly to
either models of computation or languages. A model of computation is commonly
used for defining the semantics of a language. However, when a model of computa-
tion is expressed with a simple syntax, it can also be called a language. For example,
synchronous dataflow (SDF) is usually thought of as a model of computation. But
as soon as it is expressed with a simple graphical syntax consisting of a network of
blocks connected with arrows, it is not incorrect to call it a language.

2.1 Finite State Machine

An FSM [7] can be defined as a tuple of six elements:

Q is a finite set of states –
 – S is a set of input symbols
 – D is a set of output symbols
 – d is a transition function mapping Q × S to Q × D

q0 is the initial state –

An FSM reacts to inputs by entering the next state and producing outputs as
defined by the transition function d. The state transition diagram is a common way
of representing an FSM. A simple state transition diagram is shown in Fig. 2.1.

In this case Q = {A,B}; S = {c,d,e}; D = {x,y}; d(A,c) = (x,B), d(B,d) = (A,y) and
d(B,e) = (B,y), q0 = A.

States are denoted by circles. Transitions are denoted by arcs. Every transition is
associated with a guard and an action. This is labelled as guard/action on the cor-
responding arc. Guard denotes the enabling input event i ∈ S that causes a transition

Chapter 2

Models of Computation and Languages

8 2 Models of Computation and Languages

from one state to another. Action denotes the output event o ∈ D that is produced as
result of the transition.

If a non-enabling input event occurs in a certain state, the implicit self-transition
is assumed. A sequence of reactions, sometimes called trace, shows a sequence
of states and a sequence of output symbols caused by a sequence of input symbols.
A possible trace for the FSM in Fig. 2.1 is shown in Fig. 2.2

The FSM model is closely related to the finite automata (FA) model. An FA is
designed to recognize whether a sequence of input symbols belongs or does not
belong to a certain language. Thus it accepts or rejects a sequence of input symbols.
An FSM also produces a sequence of output symbols in addition to changing states.

Input and output events can be pure or they can carry a value. If an event is pure,
it can only be present or absent. A valued event, besides being present or absent,
also has a value when it is present.

Valued events increase the expressiveness of an FSM. A Boolean expression
representing the guard of a transition can contain values of events. Values of output
events can be expressed in terms of arithmetic operations. An example of a state
transition diagram with valued events is given in Fig. 2.3.

In the above example, “ = = ” is used for input events to test equality, whereas
“=” is used for output events as an assignment operator. A Boolean expression in a

A B

c/x

d/y

e/y

Fig. 2.1 Simple state transition
diagram

Input symbol d c e d ……….

Next state A B B A ……….

Output symbol - x y y ……….

Current state A A B B ……….

Fig. 2.2 Possible trace for FSM in Fig 3.1

e[e<3] / y[y

A

c∧d [c==5]/x [1]

B

Fig. 2.3 FSM with valued
events

92.2 Kahn Process Networks

transition guard may require that some events be absent for the transition to take
place. In Fig. 2.3, [5]c d c∧ == means that the transition occurs if c is present and
has the value of 5 and d is absent.

Generally, two types of FSMs are commonly used. A Mealy machine is an FSM
where outputs are associated with the transition. A Moore machine is an FSM where
outputs are associated with the present state of the FSM. The FSMs presented so far
are Mealy machines since their outputs are associated with transitions.

A Moore machine may have more states than the equivalent Mealy machine.
Figure 2.4 shows the Mealy machine (part (a)) from Fig. 2.1 with the equivalent
Moore machine (part (b)).

FSMs can be specified formally in a clear way. Their strong formal properties
make them attractive for safety critical applications. It is easier to avoid undesirable
states with FSMs then with if-else, goto and other statements found in programming
languages.

A single FSM could hardly be used to cover the entire control behaviour of a
larger system because it would have an impractically large number of states. The
usefulness of FSMs was largely increased when Harel introduced Statecharts
(described in Sect. 2.7). In Statecharts, a single FSM state can be refined to another
FSM. Thus, a hierarchical description of system behaviour is possible. The other
major innovation in Statecharts is the possibility of having two or more states that
are active at the same time. This helps in describing concurrent behaviours. A sim-
ple flat FSM has no means to describe hierarchy and concurrency, the two features
that are commonly found in embedded systems.

2.2 Kahn Process Networks

Synchronous dataflow (SDF), which is used in DFCharts, belongs to the group of
dataflow models in which processes communicate through first-in-first-out (FIFO)
channels using blocking reads. In order to understand the properties of SDF, we
need to explore the most general model in the dataflow group, called Kahn Process
Networks (KPN) [27].

KPN processes communicate through FIFO channels using blocking reads and non-
blocking writes. At any point during the execution of a Kahn process network, a process

c/x

d/y

e/y

BA A/y

B1/x

B2/y

c

d

e

a b

Fig. 2.4 Mealy and Moore machines

10 2 Models of Computation and Languages

can either be waiting for an input or doing computations. Since blocking reads are used,
a process cannot test a channel for the presence of data. If a process attempts to read
from an empty channel it will become blocked until data arrives on the channel.

Figure 2.5 shows a KPN example that was used in [27]. The two instances of
process h copy data from input to output, but initially they output 0 and 1. Without
these initial tokens the network would be deadlocked from the start. Process g cop-
ies data from input channel X to output channels T1 and T2, alternately. Process f
copies data alternately from input channels Y and Z to output channel X.

In the denotational semantics of Kahn process networks, processes are mathe-
matically defined as functions that map potentially infinite input streams to output
streams. A stream is a sequence of data elements X = [x

1
, x

2
, x

3
, x

4
…], where indices

are used to specify temporal features of the sequence. The empty sequence is marked
by the symbol ⊥ . A relation on streams called prefix ordering [10] is useful for
analyzing the mathematical properties of Kahn process networks. For example the
sequence X = [0] is a prefix of the sequence Y = [0,1] which is in turn a prefix of
Z = [0,1,2]. The relation “X is a prefix of Y or equal to Y” is written as X Y⊆ .

A chain is an ordered set in which any two elements are comparable. Alternate
names for a chain are linearly ordered set and totally ordered set [29]. In the context of
Kahn process networks, elements of a chain are sequences and they are compared with
the prefix ordering relation ⊆ . Any increasing chain X

 = (X
1
,X

2
 …) with 1 2X X⊆ ⊆ …

has a least upper bound XΠ

 (symbol Π is used to denote a least upper bound). A least
upper bound is a sequence whose length tends towards infinity:

lim

i

i

X X

→∞

= Π

The set of all sequences is a complete partial order (c.p.o.) with the relation ⊆ ,
since any increasing chain of sequences in this set has a least upper bound.

In Kahn process networks, a process f maps input streams to output streams.
A process f is continuous if and only if for any increasing chain X

 = (X
1
,X

2
 …):

 () ()f X f XΠ = Π

f

g

h(0) h(1)X

ZY

T1 T2

Fig. 2.5 A Kahn process
network example

112.2 Kahn Process Networks

If a process is continuous, it is also monotonic (the opposite is not necessarily
true). Monotonicity means that:

() ()X Y f X f Y⊆ ⇒ ⊆

A process network can be described with a set of equations, with one equation
for each process. For example, the process network in Fig. 2.5 can be represented by
the following set of equations:

() () () ()1 1 2 2 1 2T g X ,T g X ,X f Y,Z , Y h T ,0 , Z h(T ,1)= = = = =

The system of equations above can be reduced to a single equation. For instance
the equation for X is:

()() ()()()1 2X f h g X ,0 , h g X ,1=

If all processes are continuous the set of equations has a unique least fixpoint
solution. The solution represents the histories of tokens that appeared on the com-
munication channels. For example, the solution for X is an infinite sequence of
alternating 0’s and 1’s – X = f(Y,Z) = [0,1,0,1 …]. The proof by induction can be
found in [27].

The blocking read semantics of Kahn process networks ensures that processes
are continuous. Therefore a set of equations describing a Kahn process network will
have a unique least fixed point solution. This leads to a very useful property of KPN.
Any execution order of processes will yield the same solution i.e. the same histories
of tokens on the communication channels.

While the execution order cannot influence the histories of tokens, it can greatly
impact memory requirements (buffer sizes). Since writes are non-blocking, there
are no restrictions on buffer sizes. There are two major methods for scheduling
Kahn process networks, data-driven scheduling and demand driven scheduling
[30]. In data driven scheduling, the semantics of the Kahn process networks is
satisfied in a simple way – a process is unblocked as soon as data is available. Data
driven scheduling can lead to unbounded accumulation of tokens on communica-
tion channels.

An alternative strategy is to use demand driven scheduling of processes, where a
process is activated only when the tokens it produces are needed by another process.
Kahn and MacQueen describe a demand driven scheduling method in [31]. A pro-
cess that needs tokens is marked as hungry and that causes the producer of those
tokens to be activated. That, in turn, can cause another activation. All the scheduling
is done by a single process.

Regardless of the type of scheduling employed, decisions in KPN have to be
made at run time. Thus, context switching becomes inevitable if multiple processes
run on a single processor. Valuable time has to be spent on saving the state of the
current thread before the control can be transferred to another thread.

12 2 Models of Computation and Languages

2.3 Synchronous Dataflow

Synchronous dataflow (SDF) [23, 32] imposes limitations on KPN in order to make
static scheduling possible. An SDF network is composed of actors that are con-
nected by FIFO channels. When an actor fires, it consumes tokens from input chan-
nels and produces tokens on output channels. Firings of an SDF actor create a
process. The firing rule of an actor specifies how many tokens are consumed on each
input. In SDF, the constant number of tokens is consumed on each input in every
firing i.e. the firing rule remains the same. It should also be emphasised that an SDF
actor has to output a constant number of tokens on each output in every firing. Due
to constant consumption and production rates of tokens it is possible to make very
efficient static schedules.

Figure 2.6 shows an SDF network that consists of three actors. Consumption
and production rates are labelled on each channel. For example, from the direc-
tion of the ch1, it can be seen that its production rate is RA1 and its consumption
rate is RC1.

There are two steps in constructing a static schedule for an SDF graph. The first
step is to determine how many times each actor should fire during an iteration. An
iteration is a series of actor firings that return the channels to their original state. The
number of tokens in a channel is the same before and after an iteration. The first step
is accomplished by solving the set of balance equations [32]. Balance equations
state that production and consumption of tokens must be equal on all channels. The
balance equations for the SDF graph from Fig. 2.6 are shown below.

 FA RA1 FC RC1× = ×

 FA RA2 FB RB1× = ×

 FB RB2 FC RC2× = ×

FA, FB, FC are integers showing how many times actors A, B and C fire in a
single iteration. They form a firing or repetition vector. The least positive integer
solution is taken. For example if RA1 = 2, RA2 = 2, RB1 = 3, RB2 = 3, RC1 = 6 and
RC2 = 6 then FA = 3, FB = 2 and FC = 1.

If the only solution to the set of equations is zeros, the SDF graph is said to be
inconsistent [33]. This means that production and consumption of tokens cannot be
balanced on all channels. As a result, the execution of an inconsistent SDF graph

A

B

C
RA1 RC1

RC2

RB2RB1

RA2

ch1

ch2 ch3

Fig. 2.6 An SDF graph

132.4 Synchronous/Reactive Model

results in unbounded accumulation of tokens on channels. The graph from Fig. 2.6
would become inconsistent if RC1 were equal to 5, for example.

The second step is to analyse data dependencies between SDF actors in order to
determine the order of firings. Multiple valid execution orders can emerge from the
analysis due to different interleaving of actor firings. For example, the execution
orders AAABBC and AABABC can both be used for the SDF graph from Fig. 2.6.

An SDF graph can contain a cycle that is formed by two or more channels. Initial
tokens must be placed on a channel in the cycle so that deadlock does not occur.
This was relevant for the KPN example from Fig. 2.5 where the two h processes
produced initial values.

SDF is suitable for a wide range of digital signal processing (DSP) systems with
constant data rates. It has efficient static scheduling and always executes in bounded
memory. These properties are very useful in embedded systems design. For this
reason, SDF graphs have been adopted as a part of DFCharts. For systems with vari-
able rates, KPN or dynamic dataflow models can be used. There are many dataflow
models whose expressiveness falls between SDF and KPN, such as boolean data-
flow (BDF) [34], cyclostatic dataflow (CSDF) [26], parameterized synchronous
dataflow (PSDF) [35], multidimensional synchronous dataflow [36], synchronous
piggyback dataflow [37] among others.

A large amount of research has been done on synchronous dataflow resulting in
numerous techniques and algorithms for memory optimization [38–44], simulation
[45, 46], software synthesis [47, 48], hardware synthesis [49–51], and HW/SW
codesign [52–54].

2.4 Synchronous/Reactive Model

The synchronous reactive (SR) model of computation [11] is the underlying model for
the group of synchronous languages which includes Esterel [15], Argos [24], Lustre
[16] and Signal [17]. A brief description of all four languages can be found in [55]. In
the SR model of computation, time is divided into discrete instants. In each instant
(tick), inputs are read and outputs are computed instantaneously. This is the central
assumption in the synchrony hypothesis of the SR model. Instantaneous computation
and communication makes outputs synchronous to inputs. The status of each signal
has to be defined in each tick. It can be either present (true) or absent (false).

This model is similar to synchronous digital circuits that are driven by clocks. As
a result, SR models can be efficiently synthesised into hardware. Software synthesis
is also possible. In that case, the time between two successive instants is usually not
constant.

The assumption of instantaneous computation facilitates hierarchical specifica-
tion of systems. When a process is broken down into several other processes, they
will all have instantaneous computation.

Zero delay communication represents a challenge for compilers of synchronous
languages. An SR compiler has to be able to deal with causality loops that arise as

14 2 Models of Computation and Languages

a result of zero delays. When resolving the status of each signal in a tick three
general outcomes are possible:

There is a single solution. The signal is either present or absent. –
There is no solution. The model does not make sense. –
Both the presence and absence of the signal satisfy the model. Thus, the system –
is non-deterministic.

The first outcome is the desired one. The last two outcomes should be rejected by
the compiler and an error should be reported to the user. The three possible cases are
illustrated in Sects. 2.3 and 2.4 with Esterel and Argos programs.

There are two distinct styles of synchronous modelling [11], which emerged dur-
ing the development of the synchronous languages. The first one is known as State

Based Formalisms (SBF), the second one is known as Multiple Clocked Recurrent

Systems (MCRS’s). The oldest and most developed synchronous language Esterel,
uses the first style. Argos is also an SBF-style synchronous language. On the other
hand, declarative dataflow languages Lustre and Signal use the second style.

State based formalisms are convenient for specifying control-dominated systems
but they are not efficient in dataflow modelling. It is the opposite with MCRS’s.
Their main use is in specifying signal processing systems but it is more difficult to
specify systems that step through different states. There have been attempts to unify
two styles in a single environment as in [56, 57].

Synchronous programs can always be compiled into finite state machines. This
property is very important since it greatly facilitates formal verification and ensures
that memory requirements are known at compile time.

In Kahn process networks and related dataflow models, events are partially
ordered. Events on a single channel are totally ordered, but they in general have no
relation with events on other channels. In synchronous models, events are totally
ordered. This has an important impact in modelling reactive systems, which have to
promptly respond to every event that comes from the external environment. Reactive
systems often have to wait for several events simultaneously. A KPN process cannot
wait on multiple channels at the same time since it must implement blocking reads
in order to achieve determinism. On the other hand, a synchronous process can test
a channel before reading it and still preserve determinism. The downside of the total
ordering of events is that it may unnecessarily reduce the implementation space by
overspecifying the system, especially in the case of data-dominated systems.

It is interesting to note that due to the differences in event ordering, synchronous
dataflow (SDF) is not an appropriate name when KPN based dataflow models are
compared against synchronous models. To avoid confusion, a better name would be
statically scheduled dataflow (SSDF) as suggested in [6].

2.5 Discrete Event Model

Discrete event (DE) [9] is the only MoC that incorporates the notion of physical
time. Every event in DE carries a value and a time stamp. A DE block is activated
when it receives an event to process. Events are processed chronologically. It is the

152.5 Discrete Event Model

task of a DE scheduler to ensure that events with the smallest time stamp are
processed first.

Events in DE are globally ordered. Figure 2.7 illustrates the difference in terms
of ordering of events between the DE model and Kahn process networks.

In the DE model any two events are comparable even if they belong to different
signals. Two events can either be simultaneous or one occurs before the other. This
is shown in Fig. 2.7a. When a model employs a partial ordering scheme, as in Kahn
process networks for instance, events that belong to the same signal are totally
ordered but events across different signals may not be comparable at all. This is
illustrated in Fig. 2.7b. There are three signals A, B and C. For example, events A1
and C1 are not related.

Total ordering of events can overspecify systems, which makes implementation
more difficult. It is easier to build parallel systems when events across signals are
not related. In theory the DE model should be suitable for modelling distributed
systems, but creating a DE simulator for distributed systems can be a difficult task
since there may be a very large number of events that need to be sorted.

It was mentioned in the previous section that events in SR are also totally ordered.
However, the total ordering of events is easier to implement in SR than in DE, since
every event in SR is related to the global clock. The SR compilers rely on the global
clock to sort events.

Simultaneous events and feedback loops with zero delay are the two major prob-
lems in DE model. Figure 2.8 illustrates the problem with simultaneous events.
Block B produces zero delay. The time stamp of an event that passes through block
B remains unchanged. Therefore block C receives two events with the identical time
stamp T, one from block A, and another from block B. The DE scheduler has to

t

t

A

B

A1 A2 A3 A4

B1 B2 B3 B4

C1 C2 C3 C4

a b

Fig. 2.7 Event ordering in DE and process networks. (a) Discrete event (b) Kahn process network

A B C

T

T

Fig. 2.8 Simultaneous events
in DE

16 2 Models of Computation and Languages

determine which event block C should process first or whether it should take two
events at the same time, in which case both events are covered in one firing.

There are three different methods that the current DE simulators use in dealing
with this problem. The ambiguity in Fig. 2.8 may be left unresolved. The processing
of the two events is scheduled randomly. The result is a nondeterministic system
which is generally undesirable.

The second approach is to break the relevant time instant into microsteps with
infinitesimal time delays between microsteps. By doing that, a two-dimensional
time model is effectively introduced. The time between two microsteps can be
marked as Dt for instance. For example when an event passes through block B its
time stamp is increased by Dt. The event appears at the output of block B with the
time stamp T + Dt. When block C is invoked it processes first the event from block
A which has the time stamp t. It then fires again and accepts the event from block B
with the time stamp T + Dt. The infinitesimal time delays are not visible to the user.
They are only used internally by the DE simulator.

The third approach is based on the analysis of data precedences statically within
a single time instant, which is done in the Ptolemy [20] DE simulator. Arcs in a DE
graph are assigned different priorities. The order of actions is always known when
two simultaneous events appear at the same input.

Adding a feedback loop from block C to block A with C having zero processing
time would create a situation that could not be resolved. This is shown in Fig. 2.9. An
event circulates around the instantaneous loop without any increment in time stamp.

Digital hardware systems can be well described in DE. Both VHDL and Verilog
simulators use DE as the underlying model of computation.

DE is mainly used for simulation. Global ordering of events with time stamps is
expensive in real implementations.

2.6 Communicating Sequential Processes

A system described in communicating sequential processes (CSP) [13] consists of
processes that execute independently in a sequential manner, but have to synchronize
when they are communicating. When a process reaches a point of synchronisation
with another process it has to stop and wait for the other process regardless of whether

A B C

T

T

T

Fig. 2.9 Instantaneous
feedback in DE

172.6 Communicating Sequential Processes

it has to read or write. Both reads and writes are blocking. Processes have to
participate in common operations at the same time. This type of communication
where processes have to synchronize in order to communicate is called rendezvous.

Every process is defined with its alphabet, which contains the names of events
that are relevant to the description of the process. The actual occurrence of an event
is regarded as instantaneous or atomic. When an activity with some duration needs
to be represented, it should have a starting event and an ending event.

In [13] processes that describe various vending machines are used as examples.
For example, a simple vending machine has only two relevant events – coin and
choc (chocolate). When the machine gets a coin it gives out a chocolate. Generally
upper case letters are used for processes and lower case letters are used for events.
Let the process be called VM. Then its alphabet is written as

{ }VM coin, choc is used to denote an alphabet=α α

In order to explain the behaviour of CSP, several key CSP operators are intro-
duced, together with examples, in the following paragraphs. Some operators that are
less frequently used are omitted. A detailed description can be found in [13].

The sequential behaviour of a process is described with the prefix operator “→”.
Let x be an event and let P be a process. Then x → P (pronounced “x then P”)
describes an object that which first engages in the event x and behaves as described
by P. The prefix operator cannot be used between two processes. It would be incor-
rect to write P → Q.

For example a simple vending machine that breaks after receiving a coin is
described as:

 VM1 coin STOP= →

STOP is a process that indicates unsuccessful termination. STOP does not react
to any events. A successful termination also exists in CSP and will be introduced
later. If a process gets into that state, no event can occur. A simple vending machine
that serves two customers before it breaks is described as follows:

 VM2 coin choc coin choc STOP= → → → →

The description indicates that the event choc can happen only after the event
coin. The machine will not give a chocolate unless a coin is inserted.

Many processes will never stop. After executing a certain action they will go
back to their initial state. Processes of that kind can best be described recursively.
CSP supports recursive definitions, i.e. definitions in which a process name appears
on both sides of the equation. For example the process CLOCK has only one event
called tick. Thus the alphabet of the clock is aCLOCK = {tick}. The process is
recursively defined as

 CLOCK tick CLOCK= →

The above definition is equivalent to CLOCK = tick → tick → CLOCK,

18 2 Models of Computation and Languages

CLOCK = tick → tick → tick → CLOCK etc. This sequence can be unfolded as
many times as necessary. Obviously recursive definitions are very useful in process
descriptions.

Hoare seems to prefer another form of recursive definition that is more formal.
For example a good vending machine that does not break is defined recursively in
the way shown above as follows:

 VM3 coin choc VM3= → →

The alternative and more formal definition according to Hoare is in the form of
mX:A.F(X) where the letter m is used to denote a recursive expression, X is a local
variable used in the recursive expression, and A is the alphabet of the expression i.e.
the set of the names of events that appear in the expression. The alphabet is often
omitted. Instead of X any other letter can be used, for example Y etc. VM3 is alter-
natively defined by m with the definition below:

{ }VM3 X : coin, choc .(coin choc X)µ= → →

Another important operator in CSP is the choice operator written as the bar |. The
choice operator allows the environment in which the process operates to choose a
sequence of actions that the process should perform. For example a vending machine
may offer a choice of slots for inserting a 2p coin or a 1p coin. A customer decides
which slot to use. The choice operator is used in conjunction with the prefix opera-
tor. In the expression below, two distinct events x and y initiate two distinct streams
of behaviour:

 (x P | y Q)→ →

If x occurs before y, the subsequent behaviour of the object is defined by P.
Similarly if y occurs before x, the subsequent behaviour of the object is defined by
Q. The environment decides which event occurs first and thus which path is taken.
The choice operator has to be used with the prefix operator. It would be incorrect to
write P | Q.

As an example for the choice operator, a vending machine that offers a choice to
the customer is defined below. The customer inserts a 5p coin and then chooses
which combination of change to take.

VM4 in5p (out1p out1p out1p out2p VM4= → → → → →

 | out2p out1p out2p VM4)→ → →

In all of the examples above only single processes were considered. In CSP
processes can be made to run in parallel by using the concurrency operator ||. P || Q
means that the system is composed of two processes that are running concurrently.
The two processes have to synchronize on any event that is common to their alpha-
bets. Events that are not common are executed independently by one of the two
processes.

192.6 Communicating Sequential Processes

An interesting example that illustrates the use of the concurrency operator is
given in [13]. Two processes are defined and then composed into a system using ||.
The two processes are called NOISYVM (noisy vending machine) and CUST
(customer). The alphabet of NOISYVM is defined below.

{ }NOISYVM coin, choc, clink, clunk, toffeeα =

The machine offers chocolate or toffee. The event clink is the sound that a coin
makes when it is inserted. The event clunk is another sound that the machine makes
on completion of a transaction. This time the machine has run out of toffee and it
only outputs a chocolate after receiving a coin.

 NOISYVM (coin clink choc clunk NOISYVM)= → → → →

The customer prefers to get toffee. When he doesn’t get toffee he says a curse,
which is included in the alphabet of CUST given below.

{ }CUST coin, choc, curse, toffeeα =

 CUST (coin (toffee CUST | curse choc CUST))= → → → →

The system that results from the concurrent composition of the two processes is
defined below.

()NOISYVM || CUST X.(coin (clink curse choc clunk Xµ= → → → → →

 | curse clink choc clunk X))→ → → →

It should be noted that the two processes are synchronized on the event choc: the
machine outputs it and the customer takes it. Choc appears in both alphabets. On the
other hand, the events curse and clink occur asynchronously. They can occur one
before the other or simultaneously. If they occur simultaneously it does not matter
which one is recorded first.

This example clearly illustrates the essence of CSP: processes have to synchro-
nize only on common events. Otherwise, they are asynchronous. Therefore CSP is
not a completely synchronous MoC like synchronous/reactive model. In the SR
model all actions are executed in lock-step. In CSP, processes synchronize only at
rendezvous points.

Several other operators are briefly mentioned in the rest of the section.
When two processes P and Q are composed into a system, but do not have to

synchronize on any events, their composition is written as P ||| Q which is read “P
interleave Q”. The events of the two processes are arbitrarily interleaved.

The unsuccessful termination is represented with the process STOP. The suc-
cessful termination also exists and is represented by the process SKIP. SKIP does
not react to any events in the same way as STOP. If a process finishes with SKIP it
may be followed by another process. This is written as P;Q. Q is started after P
successfully terminates.

20 2 Models of Computation and Languages

In the examples shown so far, events could not be classified as inputs or outputs.
In CSP the distinction between inputs and outputs is made using channels. Channels
carry events. For example a simple process that inputs a message and then outputs
the same message is defined as follows

 COPYBIT X.(in? x (out!x X))µ= → →

where () () { }in COPYBIT aout COPYBIT 0,1α = =

The alphabet of the input and output channels shows that the events 0 and 1 can
occur on both channels.

Around the same time CSP was being developed, another similar model was
emerging. The model is called Calculus of Communicating Systems (CCS). The
model was created by Milner who later wrote a book about it [14]. Generally the
two models are fairly similar, partly because the developers influenced each other
while working on them. The basis of CCS are also processes that independently
operate but have to synchronize on common events. Both models had a large impact
on the research in concurrent systems. One of the main reasons for that is a sound
formal treatment behind both models. An important property of concurrent systems
such as deadlock can be formally analysed in CSP and CCS. Another example
of formal analysis available in CSP and CCS is determining whether an implemen-
tation of a process satisfies its specification.

2.7 Petri Nets

Petri nets [12] is a graphical model that emerged in 1960s. Since then, many appli-
cations have been modeled with Petri nets and many research papers related to them
have been published. While Petri nets is a tool for graphical modelling, it can also
be mathematically analysed. In this section, though, only the basic features of Petri
nets are introduced through examples.

Petri nets can be used to describe a wide range of applications. Systems that are
suitable to be described by Petri nets are asynchronous, concurrent, distributed, and
nondeterministic.

A Petri net is a bipartite directed graph. It consists of two kinds of nodes: places
and transitions. Places are usually represented as circles while transitions are usu-
ally represented as bars or boxes. Places and transitions are joined by arcs. An arc
can be drawn between a place and a transition but it is not allowed to join two places
or two transitions. An arc can go from a transition to a place in which case it is
marked as (t

i
, p

i
) or it can go from a place to a transition in which case it is marked

as (p
i
, t

i
). It cannot go from a transition to a transition (t

i
, t

j
) or from a place to a place

(p
i
, p

j
).With respect to a particular transition, a place can either be input place if the

direction of the arc is (p,t) or output place if the direction of the arc is (t,p).
Places hold one or more tokens. Tokens are usually marked as dots inside places.

When a Petri net fires, i.e. a transition is made, the numbers of tokens in various

212.7 Petri Nets

places change. The numbers of tokens in places represent a state of a Petri net which
is in Petri nets terminology called marking. Each place is marked with the number
of tokens it currently holds. The marking of a place is labelled as M(p

i
). The initial

marking of a Petri net is denoted as M
0
.

Arcs are weighted. The weighting of an arc shows how many tokens can flow
through the arc during a transition. The weighting of an arc is labelled as w(p,t) or
w(t,p) depending on the direction of an arc. Everything that has been said so far
about Petri net can be summarized in the formal definition in Fig. 2.10.

The behaviour of a Petri net can be analyzed by observing the set of states (mark-
ings) that a Petri net steps through. A state change occurs upon a transition when
markings of places (numbers of tokens they hold) are changed. The rule regarding
transitions is described in the three points below:

A transition is – enabled in each input place is marked with at least w(p,t) tokens
where w(p,t) is the weighting of the corresponding arc.
An enabled transition may or may not occur. –
When a transition occurs w(p,t) tokens are removed from each input place and –
w(t,p) tokens are added to each output place.

A transition that has no input place is called source transition. A source transition
is unconditionally enabled. A transition that has no output place is called sink transi-
tion. A sink transition consumes tokens but it does not produce any.

A transition p and a place t are called self-loop if p is both the input and output
place of t. A Petri net that does not contain any self-loops is called pure. A Petri net
is called ordinary if the weighting of each of its arcs is one.

Fig. 2.10 Formal definition of Petri net

22 2 Models of Computation and Languages

A simple example in Fig. 2.11 illustrates the transition rule. The Petri net in
Fig. 2.11 models the well known chemical reaction 2H

2
 + O

2
 → 2 H

2
O. Part (a) shows

that transition t is enabled since each of the input places is marked with enough input
tokens. The initial marking of the net is M

0
 = (M(H

2
) M(O

2
) M(H

2
O)) = (2 2 0). Part (b)

shows the state of the net after the transition has occurred. Two tokens have been
removed from the input place H

2
 as the weighting of the arc (H

2
, t) is two. One token

has been removed from the input place O
2
 as the weighting of the arc (O

2
, t) is one.

Two tokens have been added to the output place H
2
O as the weighting of the arc

(t, H
2
O) is two. After the transition the new marking is M

1
 = (0 1 2). In part (b) the

transition t is disabled since the place H
2
 has no tokens and it has to have at least two.

The Petri net in Fig. 2.11 has an infinite capacity, because there is no bound on the
number of tokens in each place. In practice, though, it may be more realistic to put a
limit on the number of tokens in each place. Petri nets whose places are bounded are
called finite capacity Petri nets. The capacity of place p is labelled as K(p).

When a Petri net is a finite capacity net, a transition has to account for the finite
capacity of places. After a transition, the number of tokens in the output places must
not exceed their capacities. This kind of transition rule that takes into account the
capacity constraints is called strong transition rule. In the above example, weak
transition rule was applied since the Petri net was an infinite capacity net, so the
capacity constrains were not relevant.

In fact there are two options that can be used on a finite capacity net denoted as
(N, M

0
). Either the strong transition rule can be used or the weak transition rule can

be used on the transformed net 0(N ,M)′ ′ . The transformation from (N, M
0
) to

0(N ,M)′ ′ consists of the two steps shown below:

For each place p in (N, M –
0
) add a complementary place in 0(N ,M)′ ′ . The initial

marking of the complementary place should be () () ()0 0M p K p M p′ ′ = − .
New arcs must be added to connect complementary places to transitions. For –
every arc (t,p) add a new arc (p¢,t) with weighting w(p¢,t) = w(t,p). For every arc
(p,t) add a new arc (t, p¢) with weighting w(t, p¢) = w(p,t).

The effect of this transformation is that the sum of tokens in a place p and its
complementary place p¢ is equal to the capacity of the place p (K(p)) before and
after transition when the weak transition rule is applied. Figure 2.12 gives an
example of the transformation.

H2

O2

2

1

2

H2O

H2

O2

2

1

2

H2O

tt

a b

Fig. 2.11 Petri Net modeling chemical reaction. (a) Before transition (b) after transition

232.7 Petri Nets

Part (a) shows a finite capacity net. The initial marking is M
0
 = (1 0) and the only

enabled transition is t
1
. After t

1
 fires the new marking is M

1
 = (2 0). The transitions

t
2
 and t

3
 are now enabled. If t

2
 fires the new marking is M

2
 = (0 0). Otherwise if t

3

fires the new marking is M
3
 = (0 1). By repeating this process a reachability graph

can be drawn which is shown in Fig. 2.12c.
The finite capacity net (N, M

0
) in part (a) can be transformed into 0(N ,M)′ ′

shown in part (b). The first step is to add complementary places 1p′ and 2p′
with their initial markings () () ()0 1 1 0 1M p K p M p 2 1 1′ ′ = − = − = and

() () ()0 2 2 0 2M p K p M p 1 0 1= − = −′ =′ . The second step is to add new arcs to con-
nect the complementary places to the transitions. For example for ()2 4 2p , t ,p′ ′ is added
with ()4 2w t ,p 1′ = since w(p

2
, t

4
) = 1 and ()2 3p , t′ with ()2 3w p , t 1′ = since

()3 2w t ,p 1= . Similarly for 1p ′ three arc are drawn: () ()2 1 1 1t ,p , p , t′ ′ and ()3 1t ,p ′ with
() ()2 1 1 2w t ,p w p , t 2=′ = , () ()1 1 1 1w p , t w t ,p 1=′ = and () ()3 1 1 3w t ,p w p , t 2=′ = .

t2

t1 t3 t4p1 p2

2

1

2 1 1

K(p1)= 2 K(p2)= 1

t2

t1 t3 t4p1 p2

2

1

2 1 1

2

1p'1

2
1

1

p'2

10

20

0 0 01

11

21

t1
t1

t
4

t2 t3

t4

t1

t1 t2

t4

a

b

c

Fig. 2.12 Finite capacity net, its transformation and reachability graph (a) Finite capacity Petri net
(b) finite capacity net from (a) transformed (c) reachability graph for Petri net in (a)

24 2 Models of Computation and Languages

The reachability graph for 0(N ,M)′ ′ in Fig. 2.12b can be constructed in the same
way as the reachability graph for (N, M

0
) in Fig. 2.12a which is shown Fig. 2.12c. It

can be shown that the two reachability graphs are isomorphic. This means that the
two nets (N, M

0
) and 0(N ,M)′ ′ are equivalent in the sense that both have the same

set of all possible firing sequences.
There is a variety of applications that can be modelled with Petri nets. Considering

all of them would take an enormous amount of space. One example is selected
where it is shown how concurrency can be represented using Petri nets. A Petri net
that contains two concurrent activities is shown in Fig. 2.13.

In the Petri net in Fig. 2.13 two concurrent activities begin when t
1
 fires.

Transitions t
2
 and t

3
 can fire independently of each other. This is enabled by the fact

that all places in the two parallel branches have only one incoming and one outgoing
arc (p

5
 is also like that). The Petri net in Fig. 2.13 belongs to the subclass of Petri

nets called marked graph. In a marked graph all places have exactly one incoming
and one outgoing arc.

In embedded systems applications a clear disadvantage of Petri nets is the lack of
hierarchy. Also, Petri nets are highly nondeterministic because of nondeterministic
firings of transitions. Nondeterminism can make the analysis of a large embedded
system difficult. It has been shown, however, that many smaller embedded applications
can be successfully represented with Petri nets.

2.8 Statecharts/Statemate

It was pointed out in Sect. 2.1 that flat sequential FSMs are inadequate for repre-
senting complex control systems. The number of states and transitions becomes
very large and the whole system becomes unmanageable. Harel introduced in [22]

t2

t3
t4t1

p1

p2

p3

p4

p5

Par Begin Par End

Fig. 2.13 A Petri net with concurrent activities

252.8 Statecharts/Statemate

some innovations that largely improved the usefulness of FSMs. The resulting visual
language was called Statecharts. A tool called Statemate based around Statecharts
was also developed. Both are discussed in this section.

In Harel’s paper an FSM transition is labelled as a[b]/c. This type of notation
was already introduced in Sect. 2.1. a is the event that causes the transition, b repre-
sents the condition which has to be fulfilled for the transition to take place when a
occurs, and c is the output event generated by the transition which causes other
transitions as will be illustrated later in the section. In Statecharts, the output events
are called actions.

The basic FSM is neither hierarchical nor concurrent. Hierarchy and concur-
rency are common features in embedded systems. In Statecharts the two key innova-
tions are OR states used to describe hierarchy and AND states used to describe
concurrency. Figures 2.14 and 2.15 illustrate the use of OR states. Figure 2.14 shows
a basic flat FSM with three states A, B, C. Figure 2.15 shows an equivalent hierar-
chical FSM.

In the FSM in Fig. 2.14 the same event b leads from states A and C to state B. It
is convenient to cluster these two states into a superstate called D in Fig. 2.15. State
D contains two OR states A and C. When D is entered, either A or C becomes active
but not both. So OR states actually behave as exclusive OR states. When the event
b occurs D is left which means that either A or C is left, and B is entered. It should
be noticed that in Fig. 2.14 two arcs are used to represent this change while in
Fig. 2.15 only one arc is used. In this simple example the FSM in Fig. 2.14 can be
easily understood, and reducing the number of transitions may not seem significant,
but in complex systems reducing the number of transitions brings large benefits. By
introducing hierarchy with OR states the number of transitions is reduced and it is
generally easier to understand the system.

The second key innovation in Statecharts is the use of AND states to represent
concurrency. Figure 2.16 shows how AND states are represented. State Y is an

A

C

B

α

β

β

δ

g (P)

Fig. 2.14 A basic FSM

A

C

D

B

α

δ

β
g (P)

Fig. 2.15 Hierarchical
equivalent of Fig. 2.14

26 2 Models of Computation and Languages

orthogonal product of states A and D. Orhogonality is the term that is often used in
[22] to denote concurrency. Being in state Y means that both states A and D are
simultaneously active. Thus A and D are AND states. Graphically AND states are
separated by a dashed line.

State A contains OR states B and C, while state D contains OR states F, E and G.
Arrows pointed to B and F mean that these two states are the default states for A and
D, respectively. This means that, when Y is entered from outside, states B and F
become simultaneously active. Simultaneous transitions are possible in AND states.
For example if B and F are active and the event a occurs states C and G are entered
at the same time. Some events can cause a change in only one AND state. For
example if F is active and m occurs, E is entered but there is no change in A. So
while AND states are concurrent they can operate independently.

The equivalent basic FSM of the statechart in Fig. 2.16 is shown in Fig. 2.17. The
FSM in Fig. 2.17 contains six states since in Fig. 2.16 A contains two states and D
contains three states. If A and D contained thousand states each the FSM in Fig. 2.17
would contain million states. This is so called state explosion problem, which makes
it very difficult to represent large concurrent systems with basic FSMs.

There are some other features of Statecharts such as history, condition and selec-
tion entrances, timeouts and delays, which are not discussed here. Those features
are less important than OR and AND states described above.

In the examples so far, FSM transitions did not produce any actions. Those tran-
sitions were in the form of a[b] rather than a[b]/c. Actions can trigger other transi-
tions so they are not really different from other events. In Statecharts, concurrent
states communicate by the broadcast mechanism. Actions are instantaneous and
they are immediately visible to all states. A state does not have to be prepared to
receive an action as in rendezvous.

B

C

α β
(inG)

A

E

G

Fγ

µ

δ

α

DFig. 2.16 Statechart with AND
states

B,E

C,E

α

B,F

B,G

µ

C,F
µ

C,Gα

δ

γ
α β

δ

γ

α

Fig. 2.17 Basic FSM
equivalent to statechart in
Fig. 2.16

272.8 Statecharts/Statemate

The broadcast mechanism can create some interesting semantic problems. Harel
outlined in [22] some of those problems and did not provide an immediate solution.
That triggered lots of research on Statecharts resulting in at least 20 different variants.
Von der Beeck provides a good summary of Statecharts variants in [68]. Figure 2.18
illustrates one of the problems related to communication in Statecharts.

It is not difficult to see that an infinite loop of transitions is produced when any
of the four events occurs. A tool that analyses Statecharts must be able to detect
directed cycles like this and report an error.

Statecharts can represent the reactive part of an embedded system but they can-
not be used for transformative data functions. Statemate [82] is a tool based around
Statecharts that allows specification and analysis of a complete embedded system
including data parts.

Statemate incorporates module-charts, activity-charts and statecharts. In the
examples above it was shown how an action produced in a transition can cause other
transitions. In Statemate actions can also trigger activities. Unlike actions, activities
take time. Activities are represented by activity-charts. The purpose of activity-
charts is to represent data parts of the system under development (SUD) in Statemate.
SUD is the term used in [82], a paper that describes Statemate.

In Statemate, statecharts are used to represent the reactive part of a system, but
they are also used to control activity-charts, which, represent the data part of a system.
Module-charts represent statecharts and activity-charts at a level that is closer to
physical implementation. For example module-charts indicate how an activity-chart
maps to a particular processor.

Statecharts control activity-charts by actions produced upon state transitions.
Examples of some actions are start(a), suspend(a), resume(a), stop(a) where a is an
activity. Statecharts and activity charts can be mixed at any level of hierarchy.

Atomic activities (those that cannot be further decomposed) are described by a
programming language, but it is not indicated in [82] which programming language
has to be used. Perhaps, several different programming languages may be used.

After a system has been described in Statemate using module-charts, activity-
charts and statecharts, it can be simulated. Statemate can also synthesize the system
description into C-code.

Although Statemate is equipped to support a complete design of embedded sys-
tems, statecharts that are used to model reactive behaviour are definitely the part
that attracted the most attention. It is interesting to note that in Statecharts it is pos-
sible for an arc to connect two states at different hierarchical levels as seen in some

A

B

C

D

βα / δγ / γβ / αδ /

Fig. 2.18 Infinite loop due
to instantaneous broadcast

28 2 Models of Computation and Languages

of the examples above. This jumping across hierarchy has been criticized by some
researchers who believe it compromises the modularity of a design. In fact some
variants of Statecharts like Argos allow declaration of local signals inside a state,
which cannot be seen by higher level states.

2.9 Argos

A single, flat FSM is suitable for specifying sequential controllers, but it can hardly
handle more complicated embedded systems where support for concurrency and
hierarchy becomes necessary. This weakness was addressed in Statecharts [22],
which introduced hierarchical and concurrent compositions of FSMs and several
other useful features. It was described in [22] that concurrent FSMs communicate
using synchronous broadcast with the assumption of instantaneous communication.
However, many questions regarding instantaneous loops were left unanswered. This
semantic gap resulted in more than 20 different versions of Statecharts [68]
approaching causality problems in different ways. Argos is a version of Statecharts
that uses the principles of Esterel to deal with semantic challenges caused by instan-
taneous communication. Unlike other Statecharts variants, Argos complier rejects
all programs that contain non-determinism that the programmer did not intend to
have, i.e. implicit non-determinism. Another distinguishing feature of Argos is that
it forbids inter-level transitions, which connect two states on different hierarchical
levels. This emphasizes modularity.

The three basic Argos operators that are applied on FSMs are: synchronous
parallel, refinement and hiding (localization). They were introduced in [69]. Later,
a few additional operators were described in [24]. Figure 2.19 shows an Argos
specification with the three main operators.

a a/c c d/p

c

S11 S21

S12 S22

e

e/r

S31 S32

refinement

hiding

synchronous parallel

FSM1 FSM2

FSM3

Fig. 2.19 Argos example

292.10 Esterel

The top level FSMs are connected by the synchronous parallel operator and
communicate using the local signal c. When FSM1 is in S11 and a is present, it
makes the transition to S12 and emits c. If FSM2 is in S22, the presence of c instan-
taneously triggers the transition to S21. When FSM1 makes the transition from S12
to S11 it preempts FSM3. Only weak abort is available in Argos. Thus FSM3 is
allowed to react in the tick in which it is pre-empted. For example if it is in S32 and
e is present in the instant of pre-emption, r will be emitted.

As in Esterel, causality problems due to instantaneous communication can also
appear in Argos. Two examples are shown in Fig. 2.20. A dot between input sig-
nals means logical AND (conjunction). A line above the name of a signal denotes
its absence.

The specification in Fig. 2.20a has no meaningful behaviour. If c is present and a
is absent, FSM1 makes the transition from S11 to S12 and emits b. Since b is pres-
ent FSM2 makes the transition from S21 to S22 and emits a. This means that a is
present and absent simultaneously, which is not possible. Figure 2.20b illustrates
non-determinism. If c is present, both FSMs can take transitions and emit signals a
and b that are necessary for their activations or transitions are not taken and a and b
are not emitted.

2.10 Esterel

Esterel is an imperative language based on the synchronous reactive model of
computation that was described in Sect. 2.3. Since the synchrony hypothesis is used
in Esterel, it is assumed that all communications and computations take zero time.
As a result outputs are synchronous to inputs. Communication is achieved by syn-
chronous broadcast. Events produced by one process are immediately visible to
other processes. Esterel is a deterministic language. For a given sequence of inputs
only one sequence of outputs is possible.

Esterel programs communicate with external environment through signals and
sensors. Signals are used as inputs and outputs. Sensors can only be used as inputs.

c.a/b b/a

S11 S21

S12 S22

FSM1 FSM2

c.a/b b/a

S11 S21

S12 S22

FSM1 FSM2

a b

Fig. 2.20 Causality errors (a) no solution (b) multiple solutions

30 2 Models of Computation and Languages

Signals can be pure or valued. Pure signals only have status at each instant. The
status of a signal indicates whether the signal is present or absent. Valued signals
also carry a value besides status. Valued signal S is denoted as S(v) where v repre-
sents the value. In expressions, the value of the signal S is denoted as ?S. If different
values of the same signal are produced by multiple processes at the same time
instant, it has to be specified how those values are combined. For example different
values can be added to produce the resulting value. It can also be specified that it is
forbidden to have multiple values for a signal at any time instant.

There are two types of Esterel statements: primitive statements and derived state-
ments. Derived statements are actually derived from primitive statements. From the
point of view of the programmer, derived statements are user-friendly and they also
make programs shorter. An example of how a statement is derived will be shown
later in this section. Primitive statements can be divided in two groups: basic imper-
ative statements and temporal statements. Basic imperative statements take no time,
they are executed instantaneously. Temporal statements handle signals and they take
time. Table 2.1 lists the primitive statements, which form the basic Esterel kernel.
The table was taken from [15] slightly modified to reflect recent changes in the
Esterel syntax.

Most of the statements in Table 2.1 are found in other imperative languages. The
statements emit and abort when are specific to Esterel. Nothing does nothing and
takes no time. Halt does nothing but it never terminates so it takes time. The assign-
ment statement and external procedure call are both instantaneous. Emit evaluates
the value of the signal, emits the signal with its value and terminates. The emission
is instantaneous. The sequence of statements is executed sequentially but since the
computation is assumed to be infinitely fast the whole sequence takes no time. For
example, a sequence

 : 1; : 1X X X= = +

Table 2.1 Esterel kernel statements

Statement Interpretation

nothing Dummy statement

halt Halting statement

X : = exp Assignment statement

call P (variable-list) (expression-list) External procedure call

emit S(exp) Signal emission

stat
1
; stat

2
Sequence

loop stat end Infinite loop

if exp than stat
1
 else stat

2
 end Conditional

abort stat when S Watchdog

stat
1
 || stat

2
Parallel statement

trap T in stat end Trap definition

exit T Exit from trap

var X : type in stat end Local variable declaration

signal S (combine type with comb) in stat end Local signal declaration

312.10 Esterel

results in X being equal to 2. The sequence above takes zero time, but it is executed
in the correct order. The number of statements in a sequence has to be finite. For
example statements such as

 : 0; loop : 1endX X X= = +

are not allowed. The loop construct never terminates. When the body of a loop ter-
minates the loop is instantly restarted. The expression in if then else conditional can
be composed of both signals and variables in the latest version of Esterel. Thus, the
present statement which is used exclusively for testing signals became obsolete.

The execution of abort when can end in two ways. The body inside the construct
can finish before signal S occurs. If S occurs before the body finishes, the body is
terminated instantly without being allowed to execute in the instant of termination.
This type of abort is strong. It is also possible to create a weak abort simply by writ-
ing weak abort instead of abort. Weak abort can also be made using trap. When
weak abort is used, the body is allowed to execute in the instant of termination.

The branches of a parallel statement start simultaneously. A parallel statement
terminates when all of its branches have terminated.

The trap exit construct is a powerful control mechanism also found in some other
languages. Trap defines a block of statements that instantly terminate when the
corresponding exit statement is executed.

There are several useful derived statements in Esterel such as await, every, each,

sustain. It is shown below what await is equivalent to.

await S instead of abort

halt

when S

The basic unit of an Esterel program is called module. A module consists of the
declaration part and statement part. In the declaration part, types, constants, func-
tions and procedures used in the module are declared. Esterel is used in combination
with a host language, which can be C for instance. Earlier Esterel versions had only
basic types and operators built in, such as integer, Boolean, basic arithmetic and
logic operators. More complex operators and types had to be imported from the host
language. The latest Esterel version [58] includes more complicated data types that
are mainly geared towards hardware modelling. The declaration part can also spec-
ify relations between signals. For example a relation can state that two signals never
occur at the same time. This helps the Esterel compiler in optimisation. An example
of an Esterel module is given in Fig. 2.21.

The first top level parallel branch emits O with the value of 1 after either A or B
occurs. This operation can be pre-empted by R, which is emitted by the second
parallel branch when C occurs.

It was mentioned in Sect. 2.3 that the powerful zero delay communication
mechanism of the SR model can create causality problems. In particular, two
kinds of problems were mentioned: lack of solution and multiple solutions.

32 2 Models of Computation and Languages

Those two problems will now be illustrated on Esterel programs. The program
below demonstrates the first problem – no solution.

signal S in
 present S else emit S end
end

If it is assumed that signal S is not present then it is emitted so it is present. This
contradiction cannot be resolved since the whole statement is executed in a single
instant. The second program demonstrates the second causality problem – multiple
solutions.

signal S1, S2 in
 present S1 else emit S2 end
 ||
 present S2 else emit S1 end
end

The program has two solutions. In one solution S1 is present and S2 is absent. In
the other solution S2 is present and S1 is absent. Hence the program is nondetermin-
istic. An Esterel compiler has to reject both programs.

The first Esterel compiler [15] converts an Esterel program into a flat FSM.
The resulting code is very fast but it is impractical for large systems due to expo-
nential increase in code size. The second Esterel compiler [59] translates an
Esterel program into a synchronous digital circuit. The resulting code is compact,
but its execution is very slow since every gate has to be evaluated in every reac-
tion. Recent Esterel compilers [60–62] produce fast and compact code by simulating

Fig. 2.21 Esterel example

332.11 Lustre and Signal

the reactive features of Esterel, but they cannot compile a number of correct cyclic
Esterel programs.

Esterel’s reactive statements have inspired several modifications of C/C++ and
Java to make them more suitable for embedded systems. Some examples are
Modeling reactive systems in Java [63], ECL [64], Jester [65], Reactive-C[66],
JavaTime [67].

2.11 Lustre and Signal

Lustre [36] and Signal [37] also belong to the group of synchronous languages.
Unlike Esterel, which is an imperative language, Lustre and Signal are declarative
dataflow languages. The main motivation behind the creation of Lustre and Signal
was the fact that most embedded system designers have background in signal
processing and control systems, not computer science. Signal processing/control
systems are often modelled with equations in which variables are expressed as func-
tions of time. Therefore, according to the creators of Lustre and Signal, dataflow
languages would be a natural choice for control/signal processing engineers rather
than imperative languages computer scientists are used to.

In Lustre and Signal, every variable refers to a f low which is a sequence of values
associated with a clock. Lustre and Signal have more powerful clocking schemes
than Esterel. For example, in Lustre, it is very easy to derive slower clocks using
flows of Boolean values. This is illustrated in Table 2.2.

A clock derived from a Boolean flow represents a sequence of instants where the
flow is true. The basic clock is the fastest clock. In the table above, the Boolean flow
B1 is associated with the fastest clock. B2 is a Boolean flow that is associated with
the clock derived from B1. A clock can also be derived from B2.

Synchronous dataflow languages can successfully describe some systems where
clock rates are multiples of each other. It is more difficult to describe systems where
data arrives irregularly. In that case, events that indicate absence of samples can be
used, but in this way the system specification tends to become inefficient.

In [36] it is stated that Lustre can effectively describe both signal processing and
reactive systems. Some examples that show how Lustre can describe reactive sys-
tems are given. It is true that Lustre can specify reactive systems, but it is not straight-
forward to do that. Synchronous dataflow is convenient for specifying some signal
processing systems, but not reactive systems since states are not easily specified.

Table 2.2 Boolean flows and clocks in Lustre

Basic clock 1 2 3 4 5 6 7 8

Values of B1 True True False True False True False False

Clock derived from B1 1 2 3 4

Values of B2 False True True False

Clock derived from B2 1 2

34 2 Models of Computation and Languages

Synchronous dataflow languages are often regarded as being close to Kahn
process networks. However there is one important difference – synchronous data-
flow languages are synchronous, while Kahn process networks are asynchronous.
Kahn process networks use buffers for communication between nodes. This is not
the case in Lustre and Signal.

2.12 SystemC

SystemC [70–72] is an attempt to expand the widely used programming language
C++ with features that would make it suitable for specifying embedded systems.
SystemC is a class library of C++ and can be compiled on any C++ compiler. This
is a clear advantage since there are well-developed, mature tools for C++. SystemC
includes constructs to support specification of embedded systems characteristics
such as timing, concurrency and reactive behaviour. Such construct cannot be found
in the standard C/C++ programming environment.

SystemC enables designers to represent both hardware and software parts of an
embedded system in the single environment. A specification in SystemC is execut-
able because it can be simulated. In fact, SystemC allows specifying and simulating
a system at different levels of abstraction, ranging from highly abstract system models
down to cycle based models. The ability to simulate a high level system specification
brings large benefits to the design process. System functionality can be verified
before implementation begins. Mistakes can be uncovered early in the design pro-
cess, when it is much cheaper to remove them than in well advanced design stages.

The main idea behind SystemC version 1.0 is to enable the designers to describe
both software and hardware using the same language. For that purpose some fea-
tures of hardware description languages were incorporated in the SystemC class
library. Later SystemC 1.0 evolved into SystemC 2.0. The current version is 2.2 but
we will focus only on major changes that occurred between the releases 1.0 and 2.0.
With respect to SystemC 1.0, SystemC 2.0 is better equipped for system-level mod-
elling. This is mainly due to new communication mechanisms that appeared in
SystemC 2.0. The second version still supports everything from the first version. In
the following paragraphs SystemC 1.0 is firstly described. Later in the section, the
features that defined SystemC 2.0 are outlined.

A specification in SystemC consists of modules. A module can instantiate lower
level modules, thus supporting hierarchy. Modules contain processes that describe
system functionality. Three kinds of processes exist as will be described below.
Modules are connected through ports which can be bi-directional or uni-directional.
Ports are connected with signals. There is a wide range of signal types available in
SystemC in order to support different levels of abstraction. Clocks are also available
as a special signal type.

Breaking a system into modules enables division of tasks among designers.
A module can be modified such that its external interface and functionality remain the
same and the only thing that is changed is the way in which the function is described.
In this way other modules in the design are unaffected. The external interface of a

352.12 SystemC

module is represented by its ports. There are three types of ports: input, output and
input – output ports. Every port also has a data type associated with it. Modules are
declared with the SystemC keyword SC_MODULE. For example the declaration of
a module that describes a fifo (first-in-first-out) buffer is given below.

SC_MODULE (fifo) {
 sc_in < bool > load;
 sc_in < bool > read;
 sc_inout < int > data;
 sc_out < bool > full;
 sc_out < bool > empty;
 // module description not shown
}

Only the ports of the module are shown, not the functionality. The module has
two input ports, two output ports and one bi-directional input-output port. The input
and output ports are used for control and are all of type boolean. The bi-directional
data port is of type integer.

Ports of different modules are connected with signals. A signal declaration only
indicates which data type is carried by the signal, while the direction (in, out, inout)
is not specified as it is in the case of ports. The direction of data flow in a signal is
determined by ports that are connected together by the signal.

Local variables can be used to store data received through ports. Local variables
are only visible inside the module in which they are declared, unless they are explic-
itly made to be visible in other modules. Local variables can be of any C++ data
type, SystemC data type or user-defined data type.

The functionality in a module is defined by processes. Processes are registered with
the SystemC kernel. Processes are sensitive to signal changes. A process starts execut-
ing when there is a change in at least one of the signals the process is sensitive to. Some
processes are similar to C++ functions. They execute sequentially and return control
once they have stepped through all statements. Other processes are different in that they
may be suspended by halting statements and then resumed at some later instant.

There are three types of processes in SystemC: methods, threads and clocked
threads. Methods behave like C++ functions. A method starts executing statements
sequentially when called. It returns control to the calling mechanism when it reaches
the end. The execution of a method has to be completed. For that reason, it is recom-
mended in SystemC User’s Guide that designers should be careful to avoid making
infinite loops inside a method.

Threads may be suspended and resumed. A thread is suspended when the wait()
function is encountered. It is resumed when one of the signals in its sensitivity list
changes.

Clocked threads are a special case of threads. Clocked threads are suspended and
resumed in the same way as threads. However the sensitivity list of a clocked thread
contains only one signal, and that signal is a clock. Furthermore, a clocked thread is
sensitive to only one edge of the clock. Clocked threads resemble the way in which
synchronous digital circuits are specified. For example, a synchronous process in
VHDL contains only a clock signal in its sensitivity list.

36 2 Models of Computation and Languages

The code in Fig. 2.22 illustrates how a counter is specified in SystemC inside a
module.

The behaviour of the module is described by the process count_up, which is of
the type method. The process is triggered by the positive edge of the clock. This is
specified in the line “sensitive_pos < < clock”. When the process is triggered, the
value on input port load is checked. If it is true, variable count_val is assigned the
value of input port din. Otherwise, count_val is incremented by one. count_val is a
local variable, visible only in the module. It should be noted that every module is
initialized by a constructor. The keyword SC_CTOR is used for constructors.

In SystemC 1.0 modules communicate through ports which are connected by
hardware signals. The behaviour of those signals is essentially the same as in VHDL
and Verilog. From the point of view of the system level designer, communication
using only hardware signals is insufficient to capture highly abstract features that
are apparent at the system level. For that reason new communication mechanisms
were added leading to the second release. For example, in SystemC 2.0, a sema-
phore or a mutex are available to protect shared data used by communicating mod-
ules. Modules can also communicate using FIFOs, another type of communication
not directly supported in SystemC 1.0. Moreover, it is possible for users to define

Fig. 2.22 SystemC description of a counter

372.13 Ptolemy

their own communication mechanisms. In order to do that, the user has to define a
new channel and its interfaces. Channels and interfaces are two new kinds of objects
in SystemC 2.0. A channel defines a communication mechanism. An interface is
used to connect a port of a module to a channel. FIFO, mutex and semaphore are
examples of built-in SystemC 2.0 channels.

With abstract communication mechanisms, it becomes possible to work at levels
of abstraction that are higher than RTL. Transaction level modelling (TLM) [71] is
an example of such a level. In TLM, processing elements typically communicate by
procedure calls, whereby a whole packet of data can be transferred. Implementation
details seen at the register transfer level are omitted. As a result, TLM simulations
are much faster than RTL simulations. Extensive research in modelling embedded
systems at the TLM level has been carried out recently [73–78].

Designs in SystemC can be simulated with testbenches. A testbench typically
contains a module that generates inputs for the design under test (DUT), the DUT
itself, and a module that checks the outputs of the DUT. It is often the case that a
testbench does not contain a module for checking outputs; instead the designer man-
ually checks outputs. Designs at various levels of abstractions can be simulated.

It is worth mentioning that the development of interfaces and channels in
SystemC 2.0 was significantly influenced by another system-level language based
on C, called SpecC [79]. While SystemC libraries are defined using the standard C/
C++ syntax, SpecC extends the standard ANSI-C by adding new constructs to sup-
port hardware and system-level features. HardwareC [80] and Handel-C [81] are
also examples of languages that extend C in order to support hardware design.

2.13 Ptolemy

Ptolemy is an environment for modelling heterogeneous systems. Embedded sys-
tems are often heterogeneous in that they encompass different models of computa-
tion. Their heterogeneity also stems from the fact that they are composed of software
and hardware components.

The basic object in Ptolemy is called block. In the first version of Ptolemy [83]
blocks are described in C++. In the second, expanded version [84] blocks are
described in Java. Blocks communicate with the external environment through port-
holes. Blocks can use different methods for communication. Other objects in
Ptolemy are derived from blocks. It should be noted that Ptolemy intensively uses
object oriented programming.

Ptolemy has several domains. Domains represent models of computation. Examples
of the domains in Ptolemy are process networks (PN), dynamic dataflow (DDF),
Boolean data flow (BDF), synchronous dataflow (SDF), discrete event (DE), synchro-
nous/reactive (SR). SDF is the most developed domain in Ptolemy. In fact, Ptolemy’s
predecessors only supported the dataflow model of computation. A star is an object
derived from a block. A star always belongs to a certain domain. An object called galaxy
can be formed from stars. Galaxies are hierarchical – they can contain other galaxies.

38 2 Models of Computation and Languages

Another object derived from a block is called target. There are two types of targets in
Ptolemy: simulation and code generation. An object called scheduler is needed to
determine the order of execution of stars. Like stars, schedulers are also related to
domains. Different domains have different schedulers. Finally, putting together stars,
galaxies, schedulers and a target results in a complete application is called universe.
What is done with a universe depends on its target – it can be either simulated or code
can be generated from it (C and VHDL code generators are available).

The key feature of Ptolemy is that stars from different domains can be mixed. This
allows multiple models of computation to be present in a single system. It is impor-
tant to emphasize that one domain can be embedded inside another, hierarchically,
but different domains cannot be at the same hierarchical level. A domain can be
embedded inside another by the mechanism called wormhole. Externally, a worm-
hole behaves according to the semantics of the domain it is in, just like any other star
or galaxy that belong to that domain. However, the internal behaviour of a wormhole
is entirely different because it contains another domain with different semantics. The
interface between the domain that resides in a wormhole and the external domain in
which the wormhole is placed is called Event Horizon. Two conversions take place
on the event horizon. One of them is the conversion between particles that cross the
interface from one domain to another. For example, if DE (discrete event) is embed-
ded inside SDF (synchronous data flow), a particle going from SDF to DE has to be
attached a time stamp, i.e. an SDF particle has to be transformed into a DE particle.
The converse is true in the opposite direction. The other conversion is to do with
schedulers. The schedulers in two interacting domains have to synchronize.

The above description gives an idea of how different models of computation are
treated in Ptolemy. Different models of computation are kept pure. The main focus
is placed on the interface between different models. The opposite approach in han-
dling multiple models of computation is to compose them more tightly, mix their
properties so that basically a new model results, which contains everything that its
ingredients contain. The developers of Ptolemy criticize this brute-force approach
because it results in what they call in [20] emergent behaviour. The designer expects
that the resulting model of computation will have the properties of the models from
which it was created. Instead, it often happens that the resulting model exhibits
unexpected and undesired behaviour. It is also difficult to analyse the model.

On the other hand, it is questionable whether the approach in Ptolemy entirely
preserves the properties of combined models. Some models are so different that it is
really difficult to make them interact in a meaningful way.

In order to illustrate a system specification in Ptolemy this section focuses on
combinations between FSM and other models of computation. The reason for
choosing this combination is that it probably has the greatest chance of successfully
representing mixed control/dataflow systems.

The combination of FSM and other models of computation is called *charts [85]
in Ptolemy (pronounced star charts) where * denotes a wildcard indicating that it is
possible to combine various models of computation with FSM. In *charts the con-
currency semantics is decoupled from the FSM model. The concurrency semantics
depends on the model that is combined with FSM. It is possible to have multiple
concurrency semantics in a single system. In [85], the authors discuss combining

392.13 Ptolemy

FSM with DF, DE and SR. In this section the FSM / DF combination is mostly
discussed, in particular combining FSM with SDF (synchronous data flow).

Figure 2.23 shows a system that is composed of FSM and dataflow domains.
There are five levels of hierarchy marked as (a), (b), (c), (d), (e). A hierarchical
decomposition as in Fig. 2.23 is typical in Ptolemy. The hierarchy can be arbitrarily
deep. Each hierarchical level belongs to a particular domain or model of computa-
tion. The model of computation determines how the blocks at that level communi-
cate. For example the communication at level (a) is governed by SDF. Two or more
models of computation cannot coexist in parallel at the same level of computation.
In terms of what happens inside blocks, the black-box approach is taken. Blocks can
be defined with different models of computation. It is only the communication
between blocks that is governed by a single model of computation.

In *charts, an FSM can be used to describe a block. A state of an FSM can also
be refined to another model. One of the problems with refining a state of an FSM in
Ptolemy is that the refining system has to complete an iteration when the state is left.
This is possible in SDF, for example, where a complete cycle can be defined as an
iteration. A complete cycle returns buffers to their initial state. It would be more
difficult to refine an FSM state with a Kahn process network, since a Kahn process
network operates on infinite streams and cannot be divided into iterations.

A homogenous SDF actor consumes / produces only one token on each input/
output. A homogenous SDF actor fits naturally into the FSM model. It is more dif-
ficult to handle a nonhomogenous actor. For example, in Fig. 2.23 actor A consumes
two tokens from input a and one token from input b, so it is a nonhomogenous actor
(numbers in brackets indicate how many tokens are consumed or produced). It is
refined to an FSM. At the FSM level, the two tokens from the input a are treated as
events. It was decided [85] to order multiple events with the notation from the lan-
guage Signal. a denotes the most recent event while a$1 denotes the second most
recent event. Suppose that the FSM is in the state a and the SDF actor fires. The
FSM takes the transition from a to b if both a and a$1 are present. The presence or
absence of an event is explicitly encoded in the corresponding SDF token. The tran-
sition produces the output event x which appears on the output x(1) of the SDF actor A.
The SDF actor D at level (d) is also refined to an FSM. The output of SDF actor B
produces two tokens y(2), but the FSM below produces only one event y. The inter-
pretation is that y is present while y$1 is always absent since it is not mentioned in
the transition. The events y and y$1 at level (e) are connected to y(2) at level (d).

At levels (d) and (e) an FSM is activated whenever the SDF block refined by the
FSM fires. It is often useful not to activate an FSM when the higher level SDF block
fires. This is especially the case when one or more states of the FSM are refined by
SDF blocks. Therefore there are two types of firings associated with SDF/FSM
combinations [85]. Type A firing is when an SDF block fires but the FSM that refines
it is not activated, instead the system that refines the FSM is activated. Type B firing
is when an SDF block fires and the FSM that refines it is activated, as well as the
system that refines the FSM. For example suppose that the schedule of the SDF
network at level (a) is {D,C,C,C,E} and the FSM at level B is in state b. The first
two firings of C at level (a) will be of type A. The FSM at level (b) will simple
ignore all events. It will just pass tokens down to level (c). The third firing of C will

40 2 Models of Computation and Languages

c/ y

b

a∧a$1 / x

B

FSM

α

A

FSM

βα

SDF

c(2) y(2)

BA

x(1)

b(1)

a(2)

FSM

SDF

y(2)

b(2)

a(4)

C

D C E

y(2)

b(2)

a(4)

b∨b$1

a$3 ∧(a$2 ∨(a$1 ∧a))/ x

βα

a

b

c

d

e

Fig. 2.23 Mixing FSM and SDF in Ptolemy

be of type B. This time the FSM will pass tokens to level (c), but it will also respond
to them by producing the transition from b to a if the condition b ∨ b$1 is true.

Difficulties in combining FSM and SDF arise when states of an FSM are refined
into SDF subsystems that do not consume the same number of tokens. If the FSM

412.13 Ptolemy

refines an SDF block, the number of tokens consumed by the SDF block cannot be
constant. Therefore, it seems that it is necessary to use dynamic dataflow. However,
in that case, all advantages of SDF such as static scheduling would be lost. In [85],
a new model called heterochronous dataflow (HDF) is proposed. In HDF, the num-
bers of tokens consumed by inputs and the numbers of tokens produced by outputs
are not constant, but the list of possibilities is finite so static scheduling is still pos-
sible. An example of a system that uses HDF is shown in Fig. 2.24.

In Fig. 2.24, state a of the FSM is refined into an SDF subsystem that consumes
three tokens and produces one token, while state β is refined into an SDF subsys-
tem that consumes one token and produces two tokens. As a result of that, block A
at the HDF level can either consume three tokens and produce one token or con-
sume one token and produce two tokens. It is possible to do scheduling of an HDF
system statically. Details can be found in [85].

In Ptolemy, the basic idea is to keep different models of computations separate
and concentrate on their communication. Having each level of hierarchy defined by
one model of computation should make the analysis of complex systems easier.
Furthermore, hierarchical composition in Ptolemy encourages clean, modular
design. Unfortunately, interaction between different models of computation is rarely
straightforward. Models have to adjust to each other in order to be able to commu-
nicate, which often leads to restrictions in their expressive power.

b(2) x(1,2)

CBA

a(3,1) y(1)

α β

FSM

B

a∧a$1/ x

HDF

a

a(3) x(1) a(1) x(2)

SDF SDF

Fig. 2.24 HDF with FSM and SDF

43I. Radojevic and Z. Salcic, Embedded Systems Design Based on Formal

Models of Computation, DOI 10.1007/978-94-007-1594-3_3,

© Springer Science+Business Media B.V. 2011

This chapter describes how embedded systems are specified in DFCharts. Section 3.1

presents an introduction to specification in DFCharts. Section 3.2 illustrates the

application of DFCharts on a practical heterogeneous embedded system called

frequency relay. Section 3.3 discusses languages and models related to DFCharts.

Section 3.4 presents an extension of DFCharts called DDFCharts, which gives

another dimension to DFCharts of being suitable to formally model class of distrib-

uted embedded systems.

3.1 Introduction to DFCharts

DFCharts targets heterogeneous embedded systems by mixing finite state machines

(FSM) with synchronous dataflow graphs (SDFG). All FSMs in a DFCharts speci-

fication are driven by the same clock. On the other hand, each SDFG operates inde-

pendently at its own speed. A DFCharts specification typically consists of multiple

levels of hierarchy. The highest hierarchical level is referred to as “top level”. FSMs

and SDFGs that are placed at the top level are always active. Lower hierarchical

levels are obtained by refining states of FSMs. When a state is entered, the objects

that refine it are activated. They are terminated when the state is left.

3.1.1 Operators

The three most important operators in Argos (synchronous parallel, localization, and

refinement) are also used in DFCharts to combine FSMs. The scope of the refinement

operator is extended in DFCharts, and a state of an FSM can be refined not only by

another FSM, but also by an SDFG. There are three ways in which a state of an FSM

can be refined: only by FSMs; only by SDFGs; by FSMs and SDFGs at the same time,

Chapter 3

Specification in DFCharts

44 3 Specification in DFCharts

i.e. concurrently. The fourth operator of DFCharts, named asynchronous parallel, is

used to connect an FSM and an SDFG on the same level of hierarchy. The use of the

operators is illustrated in Fig. 3.1, which shows an example DFCharts specification. It

consists of seven FSMs and two SDFGs, with three hierarchical levels.

The two top level FSMs, FSM1 and FSM2, execute concurrently as indicated by

the synchronous parallel operator. In each tick of the clock, they read inputs and

instantaneously produce outputs. Local signal d is used for synchronization. When

S11

S12 S13 c

b/d
a

S21

S22

d/f e

signal d;

FSM1 FSM2

S31

S32

g/t g

FSM3

S41

S42

ch1? j

S51

S52

ch2! h/m

A

B

C

1

2

1

1

1
1

1

1

ch2

ch1

ch3

ch4

channel ch1, ch2;

S71

S72

ch5? r

S61

S63

S62

p/n

q p

q

q

FSM4 FSM5
SDF1

C A
2

2

1 ch5 ch6

channel float ch5;

SDF2

FSM6 FSM7

asynchronousparallel

localization synchronousparallelrefinement

1 1

2

B

Fig. 3.1 A DFCharts specification

453.1 Introduction to DFCharts

FSM1 is in S13 and input b is present, the transition to S11 is taken and d is emitted.

If FSM2 is in state S21, d causes the transition from S21 to S22.

When state S22 of FSM2 is entered, FSM3 is started. When e is present, FSM2

leaves S22 and FSM3 is terminated in the same instant. Weak aborts are used in

DFCharts as in Argos, which means that an FSM is allowed to produce outputs in

the instant it is aborted. Thus, if both e and g are present, and FSM3 is S31, then t is

emitted. Another type of refinement is illustrated in FSM1, where S12 state is

refined by one SDFG and two FSMs.

An SDFG has two kinds of buffers: internal and interface buffers. Internal buffers

are used for communication between actors within a graph. Interface buffers, which

can be input or output, are used for communication between actors and FSMs or

external environment. The execution of an SDFG consists of a series of iterations.

Before each iteration, the SDFG has to receive inputs and send outputs produced

during the previous iteration. As no outputs have been computed before the first

iteration, the output buffers must contain initial tokens. Initial tokens can also be

placed on internal buffers to prevent deadlock.

Input and output buffers are connected to the external environment and FSMs

through channels. In Fig. 3.1, ch3 and ch4 connect SDF1 to the external environ-

ment, while ch1 and ch2 connect it to FSM4 and FSM5. The direction of each chan-

nel is indicated by an arrow. The communication between an SDFG and an FSM

through a channel can occur only when both sides are ready for it. When the com-

munication on a channel has taken place, both sides are notified by the event called

rendezvous. It should be mentioned that in CSP [13], processes also have to meet in

order to communicate. However, the procedure leading to rendezvous is slightly

different. In CSP, both reads and writes are blocking. If the sender wants to send, but

the receiver is not ready to receive, the sender will block. Similarly, if the receiver

is ready to receive, but the sender is not ready to send, the receiver will block. In

DFCharts, an SDFG cannot start the next iteration until communications on all of its

channels have been completed. However, an FSM can abort waiting for rendezvous

regardless of whether it is attempting to send or receive.

As mentioned previously, an SDFG is ready to communicate on all channels

when it finishes an iteration. An FSM is ready to communicate on a single channel

when it enters a rendezvous state. A state is called rendezvous state if it has an out-

going transition that is triggered by rendezvous. Rendezvous states cannot be

refined. An FSM may spend many ticks in the rendezvous state waiting for rendez-

vous, but rendezvous itself is instantaneous – the communication on a channel

happens in a single tick. In Fig. 3.1, the rendezvous states are S41, S52 and S71.

When FSM5 is in S52, it is ready to send on ch2 as seen from the transition ch2!.

The CSP notation is used where ‘?’ is used to denote input, while ‘!’ is used to

denote output. When SDF1 is ready to receive on ch2, the rendezvous occurs trig-

gering the transition ch2!, which leads to S51. In this example, ch2 is used purely

for synchronization. SDF1 only receives a token that acknowledges that the rendez-

vous has been completed on the channel. There is no real data flowing through.

More interesting examples with typed channels will be presented later in this section

after the introduction of variables.

46 3 Specification in DFCharts

For semantic purposes, we will assume that the communication between an

SDFG and external environment also occurs when both sides are ready. However, in

practical embedded applications, the external environment cannot wait. Data will be

lost if the SDFG is not ready to receive it in its input buffers. Consequentially, there

is a timing constraint that has to be satisfied. This issue will be dealt with in Chap.

7, which discusses implementation of DFCharts.

It should be noted that after each iteration of an SDFG, the rendezvous on each

channel occurs only once. Suppose that FSM4 enters S42 in the instant when the

rendezvous on ch1 occurs. In the next tick of the FSM clock, j is present which

causes FSM4 to go to S41 again. In the meantime SDF1 has not started a new itera-

tion since the rendezvous on ch2 has not occurred yet. The rendezvous will not

occur again on ch1 until SDF1 completes a new iteration.

An FSM can be at a lower hierarchical level than an SDFG it communicates

with. An example of that situation is given in Fig. 3.2. SDF1, placed at the top level

communicates on ch2 with FSM2 that refines state S12. This example also shows

that waiting for rendezvous can be pre-empted by a higher level transition; in this

case triggered by input signal a.

3.1.2 Transition Priorities

In Fig. 3.1, state S61 has an outgoing transition labelled q p∧ , where ∧ denotes

logical and, while the bar above p denotes logical not. Besides and and not, the logi-

cal connective or (∨) can also be used in construction of Boolean expressions. The

purpose of the and connective in this example is to make p and q p∧ exclusive so

that the execution of the FSM is deterministic. The transition triggered by p has the

priority over the one triggered by q p∧ . Making triggers exclusive in this way can

S11

S12

a a
A B

1 1 2

SDF1

FSM1

ch1 ch2

S21 S22
ch2?

b/c

FSM2

Fig. 3.2 Communication

between an SDFG and a lower

level FSM

473.1 Introduction to DFCharts

be difficult if a large number of signals are involved. In DFCharts, this problem can

be handled by specifying transition priorities directly. This is illustrated in Fig. 3.3

by adding priority labels on transitions.

A rendezvous state can be left due to transitions that are triggered by signals.

However, the transition that is triggered by rendezvous must always have the highest

priority as shown in state S31. A rendezvous must happen if it is enabled.

3.1.3 Variables

The examples presented so far did not contain any data. Few practical applications

can be specified by FSMs that only use pure signals. For this reason, variables can

be employed in DFCharts. An FSM that uses variables becomes FSMD (FSM with

datapath). Variables are also important for communication between FSMs and

SDFGs. Under rare circumstances will an SDFG just synchronize with one or more

FSMs, which was the case in Fig. 3.1. Usually, it will send and receive data.

DFCharts supports the use of variables, which can be shared or local. A local variable

can only be used by a single FSM while shared variables can be used by multiple

FSMs. However, among concurrently running FSMs, only a single FSM may write to

a shared variable. The value of a local variable can change during a tick. On the other

hand, a shared variable cannot have its value changed during a tick. If the writer updates

a shared variable, the new value will be visible to the readers only in the next tick.

When variables are used, transitions can also contain conditions on variables and

procedures that update variables. The general form of a transition is t[c]/O,P where

t is the transition trigger (either Boolean expression on signals or rendezvous), c is

the condition on variables, O is the set of emitted output signals and P is the set of

invoked procedures. Note that a transition cannot have a condition on variables if it

is triggered by rendezvous.

Figure 3.4 shows a DFCharts specification with variables. Each variable has to be

declared, and initialized if necessary. The declaration has to indicate the data type of the

variable. In the Java environment implementing DFCharts, described in Chap. 6, only

primitive data types float, integer and Boolean are currently supported for shared vari-

ables. However, the type of a local variable may be any data structure created in Java.

S11

S12

a a b

c

1 2

3

S21

S22

a a b a c

1
2

S31

S32

a ch1?

1
2

c/o

FSM1 FSM2 FSM31Fig. 3.3 Transition priorities

48 3 Specification in DFCharts

FSM1 contains two variables, local variable lv and shared variable sv. lv is only

seen by FSM1 while sv can also be accessed by other FSMs that declare it. sv is

written in the procedure that is called when FSM1 makes the transition from S11 to

S12. In that procedure, lv is first incremented by one, and then sv gets the new value

of lv multiplied by two. Since the value of a shared variable remains constant in a

single tick, a procedure like {sv = sv + 1; sv = sv*2;} would be pointless. The first

statement would not have any effect on sv. The new value seen in the next tick will

be determined by the last assignment, which is sv = sv*2 in this case. Smaller pro-

cedures, like the one just described, can be immediately shown in curly brackets.

The names of the larger procedures such as proc1 and proc2 are given in italics and

the contents are defined elsewhere.

FSM2 reads sv in conditions sv < 18 and sv > 11. Similarly to procedures, short

conditions are immediately shown, while long ones like c1 and c2 in FSM6 are

indicated in italics and defined elsewhere. Since FSM2 is just a reader of sv, all

descendants from FSM2 would only be able to read sv as well. Descendants from

FSM1 may also write sv, but in any single tick only one FSM may be the writer.

FSM3 and FSM5, which write sv in procedures proc1 and proc2, respectively, are

S11 2S2 S21 S12

a/{lv=lv+1; sv=lv*2;}

a/{lv=lv+1;}

S23

b/o

b[sv<18]

b[sv>11] b

shared variable: int sv=0;

variable: int lv=1;

S31

S32

c/proc1 c/d

S41

S42

e d/[sv<5]

a

S13

d

FSM1 FSM2

shared variable: int sv;

signal: d;

FSM3 FSM4

S51

S52

f/proc2 f

S61

S62

g g/[c2]

g[c1]

shared variable: int sv;

FSM5 FSM6

1

2

1

2 1

2

Fig. 3.4 DFCharts specification with variables

493.1 Introduction to DFCharts

both allowed to be writers since they cannot be active at the same time. On the other

hand, FSM3 and FSM4 cannot both write. FSM4, like FSM6, can only read sv.

It should be pointed out that outgoing transitions of a hierarchical state that is

refined by an FSM that writes a shared variable cannot contain procedures that write

the same shared variable. This can be seen in Fig. 3.4. The transitions going out of

S12 and S13 do not contain procedures that write sv, since FSM3 and FSM5 write

sv. The purpose of this restriction is to prevent FSMs at different hierarchical levels

to write the same shared variable simultaneously.

3.1.4 Data Transfer Between FSM and SDF

The condition that there may be only one active writer of a shared variable can easily

be abandoned if resolution functions are introduced, as in VHDL for example. In fact,

the behaviour of variables shared between FSMs is not an essential part of DFCharts

semantics. A lot more important aspect, which is characteristic to DFCharts, is how

variables are used to enable transfer of data between FSMs and SDFGs. This is where

array variables become important. Figure 3.5 shows a DFCharts specification, which

illustrates how variables are used in communication between FSMs and SDFGs.

When channels are used for data transfer, not just for mere synchronization as in

Fig. 3.1, their data type must be declared. As in the case of shared variables, the

DFCharts Java environment currently supports only the transfer of primitive data

types across channels. Besides the data type, the declaration of a channel also indi-

cates how many tokens pass through it when rendezvous occurs. In Fig. 3.5, ch2

transfers two tokens, while all the others transfer only one.

When rendezvous occurs on ch1, FSM1 makes a transition from S11 to S12, but

at the same time, the received integer is stored in shared variable x. FSM2 sends data

from variable y on ch2, which is stored in the input buffer of actor A, which belongs

to SDF1. The number next to the actor indicates that two tokens are stored. Thus,

FSM2 has to send two integers. This in turn means that variable y has to be an array

having two integers, as seen in its declaration. The elements of y are accessed using

the usual array notation, which can be seen from the procedure called when FSM2

makes the transition of priority 1 from S1 to S2. Variables needed for transmission

or reception of multiple tokens, such as y, must be arrays and not simply sets of ele-

ments where the order does not matter. The reason is that the order in which tokens

are stored in SDF buffers is often significant.

FSM3 communicates with SDF2 and SDF3 using local variable z. In S31, it is

ready to send the value contained in z on ch6 to SDF2. In S32, it is ready to receive

a value on ch7 from SDF3 and store it in z. In the instant when rendezvous occurs,

an implicit procedure occurs that copies the value from a variable to a channel or

vice versa. Instead of ch7?z we could write ch7/{z = ch7_token} where ch7_token

denotes the value that is received on ch7. Similarly, instead of ch6!z we could write

ch6/ {ch6_token = z}. The transition from S32 to S31 also calls a procedure that

multiplies z by two. It must be emphasized that the implicit rendezvous procedure

is always executed first. The variable is first modified by rendezvous and then

50 3 Specification in DFCharts

multiplied by two. It cannot be the other way around. Otherwise, non-determinism

could occur due to different execution orders.

When an FSM uses a shared variable for rendezvous, it must be the only active

writer of the variable. This ensures that the value of the variable will not change

while the FSM is in the rendezvous state.

3.2 Case Study: Frequency Relay

Power systems need protection from overloading. When a power system is overloaded

some loads must be disconnected in order to prevent damage. A significant decrease in

the frequency level of the main AC signal whose normal value is 50 (or 60) Hz indicates

that the system may be dangerously overloaded. The same problem is also detected

when the rate of change of the frequency of AC signal is too fast. The frequency relay

is a system that measures the frequency and its rate of change in a power network.

S11

S12

ch1?x a

S21

S22

ch2!y

b[x>9]{y(0)=y(0)+1;

y(1)=y(0)+2;}

A

B

C

2

2

1

1

1
1

3

1

ch2

ch1

ch3

ch4

shared variable: int x=0;

variable: int y[2]=(1,0);

channel: int ch1, ch2[2];

S31

S32

ch6!z ch7?z/{z=2*z;}

variable float z = 0.1;

FSM1 FSM2
SDF1

B A
2 2 2 1 ch7 ch8

channel: float ch6, ch7;

SDF3

FSM3

2

b

1

B A
1 1 1 1 ch5 ch6

SDF2

Fig. 3.5 Communication between FSMs and SDFGs through variables

513.2 Case Study: Frequency Relay

Measurement results are compared against a set of thresholds that can be modified

through a user interface. There are six thresholds in total, three for the frequency and

three for the rate of change. If the current thresholds indicate that the frequency is too

low or its rate of change too fast some loads are disconnected from the network by

opening one or more switches (three in the presented case), as determined by a decision

algorithm. Loads are gradually reconnected if the frequency and its rate of change

improve. The specification consists of seven FSMs and one SDFG. In the following

figures, we will show all signals and channels but only important variables.

Figure 3.6 shows the top level FSM. The main operation in the system occurs in

S12 which is entered from the initial state S11 when on is present. In that transition,

the thresholds are set to default values in init_thresh() procedure. S31, where noth-

ing happens, is entered from S12 when off is present. S11 can be reached from the

other two states with reset.

3.2.1 Peak Detection

S12 is refined by six FSMs and one SDFG. The purpose of SDF1 is to find the time

between every two consecutive peaks in the AC waveform. With this information,

the frequency can easily be determined. SDF1 consists of three blocks, each having

averaging

filter

symmetry

function

peak

detection

1 1 1 1

FSM2

parameter

settings

FSM6

timer

FSM5

switch

control

FSM4

rate of change

calculation

FSM3

frequency

 calculation

11

fp_in

fp_out

on/init_thresh() reset

reset

off
on

variable : float thr1=0, thr2=0, thr3=0, thr4=0, thr5=0, thr6=0;

S13S11

S12

FSM1– top level

SDF1 – find peaks

channel: fp_out

2 1

1

2

Fig. 3.6 Frequency relay – top level

52 3 Specification in DFCharts

a single input and a single output. All consumption and production rates are equal

to one token. Thus, SDF1 is a homogeneous graph.

The AC signal is sampled by an analogue-to-digital (ADC) converter, which is not

a part of the specification since DFCharts handles purely digital systems. The sam-

pling frequency is 8 KHz. Samples are sent on fp_in to SDF1. They first go through

the averaging filter, which is designed to remove some noise from the signal. After

the averaging filter, the signal is processed by the symmetry function block. The

algorithm performed in this block may be expressed by the following equation:

/2

0

() (())(())r x L f x L f x
π

θ

θ θ
=

= + + + −∑ (3.1)

where L is a positive constant, f(x) the input signal and r(x) symmetry function that

indicates maxima of the input function. It can be noticed from the equation above

that the algorithm resembles autocorrelation. It magnifies and makes easy to iso-

late the points of maximum value in the AC signal, thus making their detection in

the presence of noise easier. Maximum points are used as reference points for the

frequency calculation. More details on the theory behind the signal processing

operations performed inside the symmetry detection block can be found in [86].

Using the results from the symmetry detection block, the peak detection block

identifies peaks in the waveform. A sample is a peak if it is larger than its predeces-

sor and it successor. When a sample is a peak, the peak detection block sends on

ch1 the number of samples counted between the current peak and the previous one.

Otherwise, zero is sent.

3.2.2 Frequency and Rate of Change Calculations

The data sent on fp_out is received by FSM3, shown in Fig. 3.7. In the instant when

rendezvous takes place on ch1, FSM3 makes a transition from S31 to S32 while

storing the number of samples in local variable din. In the next tick, the value of din

is examined. If it is zero, the transition is taken back to S31, where a new rendez-

vous is awaited. Otherwise, the transition to S33 is taken, which calls procedure

af_calc() (average frequency calculation). The instantaneous frequency is easily

calculated by dividing the sampling frequency with the number of samples between

the last two peaks. In order to smooth out any spikes and noise in the AC waveform,

the frequency is averaged over four values. In the next tick, the average frequency

value is compared with the three frequency thresholds (thr1, thr2 and thr3) in pro-

cedure fs_calc() (frequency status calculation). Fs (frequency status) is an integer

that indicates the position of the average frequency with respect to the thresholds. It

can take four values: 0 if ave_freq > thr1, 1 if thr1 > ave_freq > thr2, 2 if thr2 > ave_

freq > thr3, and 3 if thr3 > ave_freq.

The rate of change of the frequency is handled by FSM4, shown in Fig. 3.7. It

remains in the initial state S41 until FSM3 emits start_roc. When start_roc is present

533.2 Case Study: Frequency Relay

the transition from S41 to S42 is made calling aroc_calc() (average rate of change

calculation) procedure. The instantaneous rate of change is calculated in the proce-

dure from the current and previous values of the average frequency. The average

rate of change is then calculated using four values. In the next tick, rs_calc() is

called, which determines the value of rs (rate of change status) based on the average

rate of change and the three related thresholds th4, th5 and th6. The thresholds are

used in exactly the same way as with fs. Thus, rs also takes one of the possible four

values, 0, 1, 2 or 3. Finally, the transition from S43 to S41 emits rd (roc done) which

brings FSM3 to the initial state and tells FSM5 to check the values of fs and rs.

3.2.3 Switch Control

FSM5, shown in Fig. 3.8, determines how many switches should be closed (turned

on) using the values of fs and rs. In fact, each state of FSM5 directly corresponds to

the state of the switches. In S51 all three switches are closed; in S52 two are closed;

in S53 one is closed; all three are open in S54. The presence of rd signals that the

values of fs and rs have been updated leading to a possible state change. The values

of fs and rs are read in conditions c1, c2, and c3, which stand for fs ==1 ∨ rs ==1,

fs ==2 ∨ rs ==2, and fs ==3 ∨ rs ==3 respectively. Increasing values of fs and rs

indicate increasing network load. FSM5 immediately has to respond by opening an

appropriate number of switches. On the other hand, when the network condition

begins to improve, which is marked by decreasing values of fs and rs, switches are

reconnected one by one after a certain period of time. This is why there is a transi-

tion from S51 to S54, but not the other way around. To get from S54 to S51, FSM5

must go through S53 and S52.

[din !=0]

/af_calc()

 true/

fs_calc() ,start_roc

rd

variable: float ave_freq=0; int fs=0, rs=0;

signal: start_roc, rd;

start_roc/

aroc_calc()

true/

rs_calc()

true/rd

S41

S42

S43

S32

S33

S34

FSM4 – rate of change calculation FSM3 – frequency calculation

S31

fp_out?din

[din==0]

Fig. 3.7 Frequency and rate of change calculations

54 3 Specification in DFCharts

The time needed for a switch to get reconnected represents a number of ticks,

counted by FSM6 (Fig. 3.8). FSM5 and FSM6 communicate through the shared

variable of type Boolean to (time out) and local signal st (start timer). All transi-

tions in FSM5 start the timer except the one from S52 to S51. This transition does

not start the timer since there are no more switches left to reconnect. When the

timer is started, FSM6 makes the transition from S61 to S62 and sets the count

variable v to zero. In each tick v is incremented until it reaches the limit. This pro-

cess can be reset any time by another st. When the limit is reached FSM6 goes back

to S61 with to becoming true. A transition can then be triggered in FSM5 with the

condition to == T.

3.2.4 Threshold Modification

Threshold modification is handled by FSM2 and FSM7, shown in Figs. 3.9 and

3.10. The process of entering new thresholds begins when input sth (start thresh-

olds) is present. FSM2 emits inth (input threshold) and enters state S22, which is

refined by FSM7. Thresholds are received one by one in FSM7. In each transition nt

(next threshold) is emitted, except for the transitions from S76 to S77, which emit

alld (all done). Each threshold has two possible values that are selected by inputs

thresh0 and thresh1. It is also possible to leave a threshold unchanged using skip.

The number of possible values for each threshold can be increased by using binary

coding so that two inputs can cover four values. Moreover, the number of inputs

could be increased. The selection is recorded with procedure set_ft for frequency

thresholds and set_rt for rate of change thresholds.

rd[c1]/st

rd[c2]/st

[to==T]

[to==T]/st

S51 S52

S53S54

rd[c3]/st rd[c2]/st

rd[c3]/st

rd[c3]/st

rd[c2]/st

rd[c3]/st

rd[c1]/st

st/{v=0;to=F}

st/{v=0}

st[v<lim]/{v=v+1}

st[v==lim]/{to=T}

variable: int fs=0, rs=0; bool to = false;

S61

S62

signal:rd, st;

FSM5 – switch controlFSM6 – timer

1

2

3

1

2

3

1
2

3

4

1
2

3

1

2

[to==T]/st

variable: int v;

Fig. 3.8 Switch control and timer

553.3 DDFCharts

In FSM7, new threshold values are just recorded and do not take effect until

procedure update in FSM2 is completed in the transition from S23 to S21. It is pos-

sible to pre-empt FSM7 either by done or cancel. When done occurs all new thresh-

old values recorded before the pre-emption are written in update. In contrast, when

cancel occurs all recorded values are cleared in procedure clr.

3.3 DDFCharts

Besides the mixture of control-dominated and data-dominated parts another important

feature of complex embedded systems is distributed processing. Distributed systems

are usually thought of as being comprised of physically distant processing elements,

sth/inth

cancel/
clr()

done

alld

true/
update()

S21 S23

FSM7

S22

FSM2 – parameter settings

signal: alld

2

1 3

Fig. 3.9 Parameter settings

thresh0/nt,

set_ ft(1,0)

 thresh1/nt,

set_ ft(1,1)

skip/nt

1

2

3 thresh0/nt,

set_ ft (2,0)

thresh1/nt,

set_ ft(2,1)

skip/nt

1

2

3

skip/nt

thresh1/nt

set_ ft(3,1)

thresh0/nt

set_ ft(3,0)

1 2

3

skip/nt

thresh1/nt

set_rt(1 ,1)

thresh0/nt

set_rt(1 ,0)

skip,nt

thresh1/nt

set_rt(2,1)

thresh0/nt

set_rt(2 ,0)

skip/alld

thresh0/alld

set_rt(3,0)

thresh1/alld

set_rt(3,1)

1

2

3

1
2

3

1 2

3

S71 S72 S73

S74S75S76

S77

FSM7 –threshold reception

Fig. 3.10 Threshold reception

56 3 Specification in DFCharts

but this type of structure can also exist on a single chip. A single DFCharts model is

well suited for capturing the behaviour of a single localized system but it is more dif-

ficult to model a whole network. For the purpose of modelling distributed systems, an

extension of DFCharts, called Distributed DFCharts (DDFCharts), is introduced. In a

DDFCharts model, multiple DFCharts nodes are connected at the top level. In this defi-

nition, a DFCharts node is a single DFCharts model as described in previous sections.

Within each DFCharts node, four operators are used to connect FSMs and SDFGs

as described in previous sections. However, an additional operator is needed in

DDFCharts models to connect FSMs that belong to different nodes. This operator is

based on asynchronous rendezvous communication. It is illustrated in Fig. 3.11 with

a simple DDFCharts specification.

N3

a
b

ch1

ch2
c

N2N1

d

S11

S12

e

e ch1!/f

S21

S22

ch2? f

signal: f;

S31

S32

ch2! d

B A
1 1 1 1 ch4 ch3

SDF1

e

S41

S42

ch3!e

channel: ch3;

FSM1(gclk1) FSM2(gclk1) FSM3(gclk2)

FSM4(gclk2)

refinement
localization

asymmetricasynchronousparallel

symmetricasynchronousparallel

synchronousparallel

Fig. 3.11 A DDFCharts specification

573.4 Frequency Relay Extension

The DDFCharts specification in Fig. 3.11 is a network of three nodes, N1, N2

and N3. Only the contents of nodes N1 and N2 are shown. The semantics of syn-

chronous parallel, asynchronous parallel, hiding and refinement operators is exactly

the same as in DFCharts. Data handling with variables is also identical, although the

simple example in Fig. 3.11 does not contain any. The asynchronous parallel opera-

tor is called asymmetric asynchronous parallel (AAP) operator in DDFCharts, to

distinguish it from the symmetric asynchronous parallel (SAP) operator, which

enables communication between DDFCharts nodes. The AAP operator connects an

FSM and an SDFG within the same DDFCharts node, while the SAP operator con-

nects two FSMs from two different DDFCharts nodes.

FSMs that are connected by the SAP operator are driven by different clocks. This

is explicitly indicated in Fig. 3.11. For example, FSM2 from N1 is driven by gclk1,

while FSM3 from N2 is driven by gclk2. The semantics of the SAP operator is very

similar to the semantics of the AAP operator. Both sides must be ready for com-

munication to occur. FSMs connected by the SAP operator are ready to communi-

cate when they are in rendezvous states. The rendezvous states in FSM2 and FSM3

are S22 and S32 respectively. When these states are entered, the next ticks of gclk1

and gclk2 will occur simultaneously. Thus, transitions from S22 to S21 and S32 to

S31 will be taken in the same instant.

3.4 Frequency Relay Extension

The frequency relay case study can be extended so that one or more parameters can

be received remotely through a wireless CDMA link. As an example, the top level

of one possible extension is shown in Fig. 3.12. In this version the constant lim

used by FSM6 in Fig. 3.8 is now a parameter, which is received wirelessly using a

CDMA receiver.

The system is specified in DDFCharts with two nodes at the top level as shown

in Fig. 3.12. The top level of node N1 is shown in Fig. 3.13. It is almost unchanged

from Sect. 3.2. The only difference is variable lim which is received through chan-

nel tp from node N2. Previously, it was a constant.

The purpose of node N2 is to receive the value of lim from a remote location and

pass it on to node N1. It consists of two FSMs and two SDFGs as shown in Fig. 3.14.

N1 N2

tp

coder_out

decoder_in

thresh0

thresh1

skip

sth

cancel

done
nth

inth

Fig. 3.12 Extended frequency relay – top level

58 3 Specification in DFCharts

SDF3 represents a CDMA receiver which operates as described in [87]. Note that

this is only a simplified model which contains the decoding part while omitting

despreading and demodulation stages. In a single iteration, the receiver decodes an

incoming packet of 384 bits to produce a frame of 80 information bits. In this case

only 16 bits are needed to hold the value that is passed as an integer through channel

rx_out to FSM8.

FSM8 receives the data from channel rx_out in state S81 and stores it in variable

lim that can also be read by FSM9. In state S82, it sends the value of lim to SDF2

through channel tx_in. SDF2 represents a CDMA transmitter. The reason for trans-

mitting back the value of lim to the remote location is simply to acknowledge its

reception. When FSM8 makes the transition from state S82 to S81, and it also emits

signal update, which triggers a transition in FSM9.

The CDMA transmitter specified by SDF2 is also a simplified model which con-

tains the coding part, but it excludes spreading and modulation. In a single iteration,

the input frame of 80 information bits increases to 576 bits after going through

varios coding blocks.

When FSM9 receives the update event from FSM8, it makes the transition from its

initial state S91 to S92, where it sends the value of lim through channel tp to node N1.

averaging

filter

symmetry

function

peak

detection

1 1 1 1

FSM2

parameter

settings

FSM6

timer

FSM5

switch

control

FSM4

rate of change

calculation

FSM3

frequency

calculation

11

fp_in

fp_out

on/init_thresh() reset

reset?lim

off
on

variable : floatthr1=0, thr2=0, thr3=0, thr4=0, thr5=0, thr6=0; int lim;

S13S11

S12

FSM1– top level

SDF1 – find peaks

channel: fp_out

21

1

2

Fig. 3.13 Extended frequency relay – node N1

593.4 Frequency Relay Extension

CRC

encoder
Add 8-bit

encoder tail

convolutional

encoder

88 88 96 96

symbol

repetition

block

interleaver

288

288 576 576 576

 88 96
192

remove

repeated symbols

block

deinterleaver
192 384 384 384

convolutional

decoder

remove 8-bit

encoder tail

CRC

decoder

coder_out

decoder_in

SDF2 - transmitter

SDF3 - receiver

S81

S82

S91

S92

update tp!lim

variable: int lim = 0;

channel: int tx_in, int rx_out;

signal: update;

tx_in

rx_out

rx_out?lim tx_in!lim/update

9688

Fig. 3.14 Extended frequency relay – node N2

61

In this chapter we present the formal semantics of DFCharts. Section 4.1 discusses
the automata semantics, introduced first in [88], where the behaviour of a complete
specification is expressed as an FSM. This section is divided into seven sub-sections
Section 4.1.1 introduces multiclock FSMs that are used as inputs to DFCharts operators.
Sections 4.1.2–4.1.5 define the semantics of four DFCharts operators: synchronous
parallel, asynchronous parallel, localization\hiding and refinement. DFCharts
operators are defined in a similar style as Argos [24] operators. However, because of
the use of multiclock FSMs, their operation is quite different. Section 4.1.6 defines
with a simple language how the operators may be applied on multiclock FSMs.
As seen in Chap. 3, an SDFG and an FSM are connected with the asynchronous
parallel operator. According to the semantics of the asynchronous parallel operator
in Sect. 4.1.3, it operates only on FSMs like all other operators. For this reason, an
SDFG is represented as an FSM so that it can be combined with “real FSMs”. This
is the topic of Sect. 4.1.7. Since an SDFG proceeds at its own speeds, an FSM that
represents an SDFG (“SDF FSM”) is triggered by a clock that is different from the
clock of real FSMs. Thus, when a “real FSM” and “SDF FSM” are combined, a
multiclock FSM results. In the definitions of operators, which comprise DFCharts
automata semantics, rendezvous is treated simply as an event that triggers a transi-
tion. What exactly happens on the channel is irrelevant. This is the topic of Sect. 4.2.
It examines in detail the ordering of events on a channel within the Tagged Signal
Model (TSM) framework. The analysis leads to understanding of how an array
variable produces multiple SDF tokens and vice versa. Data transfer from SDF to
FSM is the topic of Sect. 4.2.1, while Sect. 4.2.2.deals with data transfer from FSM
to SDF. The TSM semantics of DFCharts was previously described in [89]. Finally,
Sect. 4.3 examines the effect of clock speeds on DFCharts behaviour.

Chapter 4

Semantics of DFCharts

I. Radojevic and Z. Salcic, Embedded Systems Design Based on Formal

Models of Computation, DOI 10.1007/978-94-007-1594-3_4,
© Springer Science+Business Media B.V. 2011

62 4 Semantics of DFCharts

4.1 Automata Semantics

In DFCharts automata semantics, the behaviour of a specification is determined by
its equivalent, flat FSM, as in Argos. The equivalent FSM is obtained by combining
FSMs and SDFGs using four operators: synchronous parallel (||), asynchronous
parallel (\\), hiding (\) and refinement (̄ marks the state refinement by FSMs with
or without SDFGs whileß marks the state refinement only by an SDFG). All four
DFCharts operators are associative. The synchronous parallel operator is also
commutative. The equivalent FSM is constructed bottom-up, by starting from the
lowest hierarchical levels and moving upwards to the top level. Inside a state, all
FSMs are firstly combined by the synchronous parallel operator with the hiding
operator applied if there are any local signals. Then, the equivalent FSM is combined
with SDFGs by the asynchronous parallel operator to produce another single flat
FSM. The resulting FSM is then combined with the higher-level FSM by the
refinement operator.

Of course, the process described above would not be possible without representing
the operation of an SDFG as an FSM, which will be discussed in Sect. 4.1.7. While
“real FSMs” are all driven by the same clock, which we will call gclk (global clock),
“SDF FSMs” are driven by their own individual clocks. Each clock in DFCharts
semantics is a sequence of ticks. As in synchronous languages, each tick denotes a
reaction. Clocks of “SDF FSMs” synchronize with gclk only when a rendezvous
occurs. It is important to mention that gclk can start and stop SDF clocks. The relation
between gclk and SDF clocks is illustrated with the example in Fig. 4.1. Ticks occur
simultaneously only at rendezvous points when two clocks are synchronized, as indi-
cated by dotted lines. Ticks cannot occur simultaneously by chance. This assumption
needs to be made to ensure deterministic behaviour. As indicated in Fig. 4.1, it is
possible that ticks of two SDFclocks occur simultaneously, but this is only the result
of their simultaneous synchronization with gclk. SDF clocks cannot synchronize
directly. It should be noted that SDF is not the only model that can be abstractly
represented as an FSM and connected with FSMs through channels. Other dataflow
models, which have clearly defined iteration, can easily be incorporated.

gclk

sdfclk 1

sdfclk 2
sdfclk2 inactive

gclk – sdfclk 1

rendezvous

gclk – sdfclk2

rendezvous

gclk – sdfclk1–sdfcl k2

rendezvous

Fig. 4.1 Clocks in DFCharts

634.1 Automata Semantics

The steps for building the equivalent FSM E for the example in Fig. 3.1, which
is reproduced here, are shown in Fig. 4.2. E1 to E7 are intermediate equivalent
FSMs created in the process. Each step indicates the operator that is applied. Also,
the clock(s) for each FSM are given in brackets. FSMs that have more than one
clock are called multiclock FSMs. FSMs that refine the same state are placed in a
rectangle. We explain a few steps in the beginning. At the lowest level of hierarchy are
FSM6, FSM7 and SDF2. FSM6 and FSM7 are firstly combined with the synchro-
nous parallel operator producing the equivalent FSM E1. E1 and SDF2-FSM are
then combined with the asynchronous parallel operator producing the equivalent
FSM E2. Since the clock of E1 is gclk and the clock of SDF2-FSM is sdfclk

2
,

FSM6
(gclk)

FSM7
(gclk)

SDF2-FSM
(sdfclk2)

 E1

(gclk)

FSM4
(gclk)

 E2

(gclk, sdfclk2)

 E3

(gclk, sdfclk2)

FSM5
(gclk)

SDF1-FSM
(sdfclk1)

 E4
(gclk, sdfclk2)

FSM1

(gclk)
 E5

(gclk, sdfclk1, sdfclk2)

FSM3

(gclk)

FSM2

(gclk)

 E6
(gclk, sdfclk1, sdfclk2)

 E7

(gclk)

 E

(gclk, sdfclk1, sdfclk2)

||

\\

↓

||

\\

↓ ↓

||, \

Fig. 4.2 Building the equivalent FSM for the example in Fig. 3.1

64 4 Semantics of DFCharts

E2 must have both gclk and sdfclk
2
. In the next step the hierarchical operator is

applied on FSM4 and E2 to produce E3. The process continues until E is reached,
which represents the behaviour of the whole specification in Fig. 3.1. It is important to
observe that only the asynchronous parallel operator can produce a multi-clock FSM
from two single-clock FSMs. The synchronous parallel and refinement operators
produce a multiclock FSM if at least one of their input FSMs is multiclock.

We divide FSMs that appear in DFCharts automata semantics in two groups:

 – gclk FSMs: These can be a single clock FSMs driven by gclk or multiclock FSMs
that have other clocks besides gclk.

 – non-gclk FSMs: These are single clock FSMs used to model SDF and possibly
other dataflow models.

In Fig. 4.2, SDF2-FSM and SDF1-FSM are non-gclk FSMs. All other FSMs are
gclk FSMs. A non-gclk FSM may also be derived from multiple FSMs. Figure 4.3
shows how SDF2-FSM from Fig. 4.2 may be constructed. A more detailed and precise
representation of an SDFG will be discussed in Sect. 4.1.7. At this point it is only
important to realize that a non-gclk FSM can be composed from other non-gclk
FSMs, which are connected by synchronous parallel and refinement operators.
The hiding operator is also applied if local signals exist.

Since multiclock FSM E is too large to be drawn on a single page we present a
simple multiclock FSM in Fig. 4.4. Due to space constraints gclk is written as k. The
additional clock in the FSM is k1. This notation will be followed in other figures
showing multiclock FSMs – gclk will be labelled as k, while other clocks will be
labelled k1, k2,… At the beginning of each transition label, it is indicated which
clock drives it. Synchronization of clocks is indicated by using brackets in the clock
label. All clocks that are synchronized with k are placed in brackets. In a multi-
clock FSM, inputs are tied to specific clocks. At each tick of k, input a is read.
On the other hand, input b is tied to clock k1. When k and k1 are synchronized, in
which case the clock label is <k(k1)>, a and b are read at the same time. A dot
between inputs in monomial means logical AND, while a bar over an input means
logical NOT.

SDF2-FSM

(sdfclk2)

SDF2-FSM1

(sdfclk2)

SDF2-E1

(sdfclk2)

SDF2-FSM2

(sdfclk2)

SDF2-FSM3

(sdfclk2)

↓

||

Fig. 4.3 Possible composition
of a non-gclk FSM

654.1 Automata Semantics

An alternative to having multiclock FSMs is to treat clocks as boolean inputs.
A base clock is introduced which is faster than any other clock. When a tick of the
base clock occurs, a transition will be taken if both its clock and input monomial are
true. Since there is effectively a single clock triggering all transitions the semantics
is likely to be simpler. This approach is used in Multiclock Esterel [58].

While it is desirable for the semantics to be as simple as possible, it should also
reflect the true behaviour of the system as closely as possible. The base clock is
fictitious. It does not show up in implementation. Moreover, it may be difficult to
think of clocks as inputs. In pure hardware implementation, which Multiclock
Esterel targets, clocks do appear as input signal lines in the synthesized circuit. This
is not the case in software implementation, where a clock tick could represent the
execution of several instructions.

In DFCharts, treating clocks as inputs is further complicated by the synchroniza-
tion of clocks. When two FSMs are ready to communicate from rendezvous states,
the next ticks of their clocks must occur simultaneously. If the clocks are viewed as
inputs, they must be both true in the next tick of the fictitious base clock. Forcing
clocks to have the same status means that they must be considered as a special kind
of inputs. As a result, the definitions of the operators for composition would have
to contain conditions attached to clocks. In the end, the single clock semantics may
not be significantly simpler than the semantics based on multiclock FSMs that is
presented in the following sections.

Reading asynchronous clocks like any other external inputs could result in many
unnecessary transitions, thus making analysis more difficult. As seen in Fig. 4.4,
there are four transitions going out of every state where clocks k and k1 are not

S11

S14

S12 S13

<k>

a

<k1>

b

<k1>

b

<k1>

b

<k>

a

<k1>

b

<k>

a

<k>

a

<k>

a

a

<k>

<k1>

b

b

<k1>

<k(k1)>

a.b

<k(k1)>

a.b

<k(k1)>

a.b/o1

a.b/o1

<k(k1)>

Fig. 4.4 A multiclock FSM

66 4 Semantics of DFCharts

synchronized: , , 1 , 2k a k a k b k b< > < > < > < > . If k and k1 are treated as inputs,
the total number of inputs becomes four resulting in sixteen transitions:

. 1. . , . 1. . , . 1. . , . 1. . , . 1. . , . 1. . , . 1. . , . 1. . ,

. 1. . , . 1. . , . 1. . , . 1. . , . 1. . , . 1. . , . 1. . , . 1. .

k k a b k k a b k k a b k k a b k k a b k k a b k k a b k k a b

k k a b k k a b k k a b k k a b k k a b k k a b k k a b k k a b

Including clocks in transition monomials is much more efficient in a multiclock
synchronous system, where all clocks are derived from the fastest clock. Figure 4.5
shows an example of multiclock synchronous system.

4.1.1 FSM with Variables

Definition 4.1. Finite state machine with variables

 0(, , , , , , , , , ,)A CLK Q q I R O V C T RQ Proc=

CLK is the set of clocks that drive FSM transitions. For gclk FSMs, gclk CLKÎ . For
non-gclk FSMs, gclk CLKÏ and 1CLK = . Q is set of states where q

0
 is the initial

state. I is the set of input signals. Each input signal can either be present (true) or
absent (false). R is the set of channel status signals (CS signals). It is composed of
external CS signals R

E
 and internal CS signals R

I
,

E I
R R R= È . In DFCharts autom-

ata semantics, CS signals are tested in the same way as input signals. When a clock
tick occurs, a CS signal is true if a rendezvous is happening on the corresponding
channel and false otherwise. O is the set of output signals. Each output signal can
either be emitted (true) or not emitted (false). V is the set of variables. C is the set
of conditions on variables. Like input signals, CS signals and output signals, condi-
tions are Boolean; they can be true or false. T is the set of transitions. RQ is the
rendezvous mapping function. T and RQ will be defined below. Proc is the set of
procedures on variables.

I, O, V, C, Proc and R
E
 are partitioned (divided into disjoint subsets) by clocks.

On the other hand, internal CS signals R
I
 are shared among clocks as they are used

for synchronization. Internal CS signals disappear when the asynchronous parallel
operator is applied (Sect. 4.1.3).

It was mentioned in Sect. 3.1.1 that each rendezvous state is used for commu-
nication on a single channel. However, when an equivalent FSM is obtained by

clk3

clk2

clk1

Fig. 4.5 A multiclock
synchronous system

674.1 Automata Semantics

combining two or more FSMs, a state may be linked to multiple channels. RQ,
defined below, is a function that maps CS signals to states. Each state is mapped to
zero or more CS signals.

Definition 4.2. Rendezvous mapping function

 : 2R
RQ q ®

Definition 4.3. FSM transitions

 2 () () () 2CLK O
T CLK Q B I B C B R Proc Q¢ ¢ ¢Í ´ ´ ´ ´ ´ ´ ´ ´

A transition is driven by a clock clk taken from the set CLK. In addition, in the case
of gclk multiclock FSMs, there could be a set of clocks taken from 2CLK (power set
of CLK) that have to synchronize with clk when the transition occurs. This is appli-
cable only when clk = gclk. ()B I ¢ where I I¢ Í is the set of Boolean formulas on
input signals that are bound to clk. Each formula is a complete monomial, or in other
words a conjunction that has to contain every input signal in I ¢ . ()B C¢ where
C C¢ Í is the set of Boolean formulas on variable conditions that are bound to clk.
Each formula is a complete monomial. ()B R¢ where R R¢ Í is the set Boolean
formulas (again complete monomials) on CS signals that are linked to the source
state of the transition and bound to clk.

We can write a transition as a tuple (, , , , ,)clk q i o p q¢ . . .i m c r= , where m, c and r
are monomials over input signals, conditions on variables and CS signals, respec-
tively. The dot between monomials denotes the AND operation exactly in the same
way as inside monomials. o and p denote output signals and procedures.

Complete monomials are required for the analysis of determinism and reactivity.
DFCharts examples given in Sect. 3.1 never contained complete monomials. The
requirement to specify complete monomials would significantly increase specifica-
tion time, especially when there are many conditions on variables. Fortunately, it is
not necessary since complete monomials can always be produced from incomplete
monomials by adding transitions. We illustrate this with two examples in Figs. 4.6
and 4.7. The first specification (Fig. 4.6a) has one input signal and two conditions
on variables, the second (Fig. 4.7a) has two input signals and one channel. In both
cases, all transitions are driven by gclk.. In Fig. 4.6b, b and c stand for conditions

S1 S2
a[v>4]

a[v<6]

a/{v=v+1;}

a[v<6]

1 1

2

2

shared variable: integer v;

a.b.c a.b.c

a.b.c

a.b.c

a.b.c

a.b.c

a.b.c

a.b.c

a.b.c

S1 S2

a.b.c/p

a.b.c/p

a.b.c

a.b.c

a.b.c

a.b.c

a.b.c

a b

Fig. 4.6 A specification with one input signal and two conditions

68 4 Semantics of DFCharts

[v > 4] and [v < 6], while p stands for procedure {v = v+1}. In Fig. 4.7b, CS signal c
corresponds to ch1?.

It can be observed in Fig. 4.6b that data abstraction is used when conditions
on variables are represented, since values of variables are not visible. For each
condition, it only matters whether it is true or false. Explicit representation of
variables would make any analysis, including causality related properties of deter-
minism and reactivity, impossible, since each variable can take an infinite number
of values. A similar approach for data abstraction is used in Esterel Studio [18].
There are many other approaches for ensuring that the state space is finite including
symbolic bisimulation [90] in CCS and region graphs in timed automata [91].
In each state, all input signals and all conditions are checked. However, this is not the
case with CS signals. A CS signal is only checked in the states it is associated with.
The variability in the number of outgoing transitions is seen in Fig. 4.7b, where S1
has 8 outgoing transitions and S2 has four outgoing transitions. For definitions of
reactivity and determinism, the variability in inputs from state to state does not pose
a problem. However, multiple clock domains are more difficult to deal with. A clock
domain is simply a set of FSMs that are driven by the same clock.

An obvious approach in handling reactivity and determinism for a multi-clock
FSM is to check them separately for each clock domain. Then we can state that an
FSM is deterministic and reactive if determinism and reactivity is satisfied in each
clock domain. In this discussion we are not concerned with the relation between
clocks. We only assume that ticks of two different clocks never occur simultane-
ously unless the clocks are synchronized. In Sect. 4.3, we examine how the relative
speeds of clocks affect behaviour.

Let MQC denote a function that returns the set of all complete monomials H that
are applicable to state q and clock clk i.e. (,)H MQC q clk= . 2n

H = , where n is the
number of inputs read by clock clk in state q. Determinism and reactivity are defined
as follows.

Definition 4.4. An FSM is deterministic if and only if

" Î " Î " Î ¢

Î Ù Î Þ = Ù = Ù =¢ ¢ ¢
1 1 1

2 2 2 1 2 1 2 1 2

, , (,), (, , , , ,)

(, , , , ,) () () ()

q Q clk CLK i MQC q clk clk q i o p q

T clk q i o p q T o o p p q q

S1 S2

ch1?

b

a

2

shared variable: integer v;

a.b

a.b

a.b
a.b.c

a.b.c

a.b.c

a.b.c

a.b.c

a.b.c

a.b.c

S1 S2

c = ch1?

1
a.b.c

a.b

a b

Fig. 4.7 A specification with two input signals and one channel

694.1 Automata Semantics

In every state, for every clock domain, no two transitions may have the same
input combination in order for the FSM to be deterministic.

Definition 4.5. An FSM is reactive if and only if

 , , (,), (, , , , ,)q Q clk CLK i MQC q clk clk q i o p q T¢" Î " Î " Î $ Î

In every state, for every clock domain, there has to be at least one transition for
each input combination in order for the FSM to be reactive.

Before giving the definitions of the operators, we present synchronous product
and asynchronous product (or interleaving), two well known methods used for
composing single clock FSMs. Synchronous parallel, asynchronous parallel and
refinement operators use both synchronous product and interleaving.

Synchronous product is shown in Fig. 4.8. The outgoing transitions from states
A and B are synchronously combined to produce the outgoing transitions from state
AB. This means that each transition monomial in state AB is obtained by ANDing
monomials from states A and B. In Fig. 4.8, all transitions are driven by the same
clock, but synchronous product may also be applied when two different clocks are
synchronized as shown in Fig. 4.9. Asynchronous product is simply interleaving of
transitions driven by two different clocks when they are not synchronized. It is
shown in Fig. 4.10. The transitions from states A and B are unchanged in state AB,
they are simply copied. It is important to emphasize that transitions driven by k and k1
are never enabled at the same time. Thus, the asynchronous product is deterministic
due to the explicit use of clocks.

A

a a

<k> <k>
B

b b

<k> <k>
AB

a.b

<k> <k> <k>
<k>

a.b a.b a.b

Fig. 4.8 Synchronous product with a single clock

A

a a

<k> <k>
B

b b

<k1> <k1>
AB

a.b

<k(k1)>
<k(k1)> <k(k1)>

<k(k1)>

a.b a.b a.b

Fig. 4.9 Synchronous product with two synchronized clocks

A

a a

<k> <k>
B

b b

<k1> <k1>
AB

a

<k> <k> <k1>
<k1>

b ba

Fig. 4.10 Asynchronous product

70 4 Semantics of DFCharts

When the asynchronous parallel and hiding operators are applied, internal signals
disappear. The removal of signals is done with the hiding function defined below.

Definition 4.6. Hiding Function

 : 2S
HF M M´ ®

S is the set of all inputs. M is the set of all possible monomials that can be formed
from inputs in set S. (,)HF m I m¢= where m¢ is the monomial that is obtained
when signals in set I are removed from monomial m .

We also define additional notation for monomials before the definitions of the
operators. For a monomial m , a

m is the set of all signals that appear in m , m
+ is

the set of signals that appear as positive elements in m while m
- the set of signals

that appear as negative elements in m . For example, for . .m a b c= , { , , }a
m a b c= ,

{ }m a
+ = and { , }m b c

- = .

4.1.2 Synchronous Parallel Operator

The synchronous parallel operator can connect two gclk FSMs or two non-gclk
FSMs driven by the same clock. FSMs connected by the synchronous parallel
operator must not have any common CS signals. When the definition below is
applied on two gclk FSMs, mclk stands for gclk. When two non-glck FSMs are
involved, mclk represents the single clock of the two FSMs. The transition set of the
FSM produced by the synchronous parallel operator consists of three types of
transitions, grouped into subsets that are marked in the definition below. Each
subset will be briefly described after the definition.

Definition 4.7. Synchronous parallel operator

1 1 01 1 1 1 1 1 1 1 1(, , , , , , , , , ,) ||CLK Q q I R O V C T RQ Proc

2 2 02 2 2 2 2 2 2 2 2(, , , , , , , , , ,)CLK Q q I R O V C T RQ Proc

= È ´ È È È1 2 1 2 01 02 1 2 1 2 1 2(, ,(,), , , ,CLK CLK Q Q q q I I R R O O

È È È1 2 1 2 1 2, , ,)V V C C T RQ Proc Proc

where

 1 1 1 2 2 2 1 2 1 2() () ()RQ q S RQ q S RQ q q S S= Ù = ® = È

and

= È Ù Ù Ù È È¢ ¢ ¢ ¢ ¢ ¢1 2 1 2 1 2 1 2 1 2 1 2 1 2{(, ,(,), , , , , ,T mclk CLK CLK q q m m c c r r O O Proc Proc

¢ ¢1 2(,)) |q q

1 1 1 1 1 1 1 1 1(, , , , , , , ,) ,mclk CLK q m c r O Proc q T¢ ¢ ¢ ¢ Î

1
2 2 2 2 2 2 2 2 2 1 2 1 2(, , , , , , , ,) , , }mclk CLK q m c r O Proc q T m m false c c false¢ ¢ ¢ ¢ Î Ù ¹ Ù ¹

714.1 Automata Semantics

È Æ ¢ ¢ ¢1 1 2 1 1 1 1 1 1 2{(, ,(,), , , , , ,(,)) |clk q q m c r O Proc q q

2
1 1 1 1 1 1 1 1 1 1(, , , , , , , ,) , }clk q m c r O Proc q T clk mclk¢ ¢ ¢Æ Î ¹

È Æ ¢ ¢ ¢2 1 2 2 2 2 2 2 1 2{(, ,(,), , , , , ,(,)) |clk q q m c r O Proc q q

3
2 2 2 2 2 2 2 2 2 2(, , , , , , , ,) , }clk q m c r O Proc q T clk mclk¢ ¢ ¢Æ Î ¹

 1. Both FSMs take their mclk driven transitions simultaneously.
 2. The first FSM makes a transition driven by a clock different than mclk, while the

second one is idle.
 3. The second FSM makes a transition driven by a clock different than mclk, while

the first one is idle.

The conditions 1 2m m falseÙ ¹ and 1 2c c falseÙ ¹ in the above definition are
important since they remove unwanted transitions that arise when the two FSMs
have common inputs. For a common input a, four combinations are produced: .a a,

.a a , .a a , and .a a . .a a and .a a must be removed since they have no meaning.
They always evaluate to false. They would also be a source of non-determinism
since they represent the same monomial. After the removal, the number of transitions
is halved. For n common inputs, the number of transitions is reduced by 2n . While
only synchronous product appears in the parallel operator of Argos, the synchro-
nous parallel operator of DFCharts involves both synchronous product (transition
subset 1) and interleaving (transitions subsets 2 and 3). Subsets 2 and 3 are empty
unless the asynchronous parallel operator has been applied beforehand at a lower
hierarchical level.

Figures 4.11–4.13 show FSMs A1, A2 and A3, respectively, and are used to
illustrate the application of the synchronous parallel operator. A3 is produced

a

<k><k1> <k1>

b/o2 b

a

<k(k1)>

a.b

<k(k1)>

a.b

<k(k1)>

a.b/o1

<k(k1)>

a.b/o1

S11 S12

<k>

Fig. 4.11 FSM A1

c

<k>
<k2> <k2>

d/o4 d

<k>

c

<k(k2)>

c.d

<k(k2)> c.d

<k(k2)> c.d/o3

<k(k2)>
c.d/o3

S21 S22

Fig. 4.12 FSM A2

72 4 Semantics of DFCharts

when A1 and A2 are merged by the synchronous parallel operator. In the diagram
showing A3, transitions that connect the same states are represented by a single line.
Transition labels are defined below the diagram. According to Definition 4.7, all
transitions that are driven by k (clock labels <k>, <k(k1)>, <k(k2)> and <k(k1,k2)>)
are in subset 1; all transitions that are driven by k1 (clock label <k1>) are in subset 2;
all transitions that are driven by k2 (clock label <k2>) are in subset 3.

T5

T9

T10
T7

T6

T3 T2

T12

T13

T8
T11

T4

T1

S11S22

S12S22

S12S21

S11S21

Fig. 4.13 FSM A3 = A1||A2

734.1 Automata Semantics

Theorem 4.1. When the synchronous parallel operator is applied on two deterministic

and reactive FSMs the resulting FSM is deterministic and reactive.

Proof

mclk: Let 1q
I , 1q

C , 1q
R be the sets of input signals, variable conditions and CS

signals bounded to mclk respectively for state 1q and similarly 2q
I , 2q

C , 2q
R for

state 2q . Let ci be the number of common inputs (signals and conditions),

1 2 1 2| | | |
q q q q

ci I I C C= Ç + Ç .The input signals, variable conditions and CS signals for

the equivalent state 1 2q q are 1 2 1 2q q q q
I I I= È , 1 2 1 2q q q q

C C C= È are 1 2 1 2q q q q
R R R= È .

The total number of inputs is 1 2 1 2 1 2| | | | | |
q q q q q q

ni I C R= + + . A necessary condition

for reactivity and determinism in state 1 2q q is that the number of outgoing tran-
sitions is 2ni

nt = .
From the definition of subset 1 of T, it is evident that the number of outgoing

transitions from state 1 2q q is equal to 1 2(·) / 2ci
nt nt nt= where 1nt and 2nt are the

numbers of outgoing transitions from the states 1q and 2q respectively. Since both

input FSMs are deterministic and reactive 1 1 1(| | | | | |)

1 2 q q qI C R
n

+ +
= and 2 2 2(| | | | | |)

2 2 q q qI C R
n

+ +
= .

Hence, 1 1 1 2 2 2 1 2 1 2 1 2(| | | | | |) (| | | | | |) (| | | | | | | | | | | |)
(2 ·2) / 2 2 2q q q q q q q q q q q qI C R I C R I I C C R R cici ni

n
+ + + + + + + + + -

= = = .
For non-determinism to be present, there would have to be two transitions out of

1 2q q with the same monomials, 1 1 1 2 2 2 1 1 1 2 2 2.m c r m c r m c r m c r¢ ¢ ¢ ¢ ¢ ¢Ù = Ù , which requires

1 1 1 1 1 1. . . .m c r m c r¢ ¢ ¢= and 2 2 2 2 2 2. . . .m c r m c r¢ ¢ ¢= . However, this cannot be true since the
assumption is that both input FSMs are deterministic. If each transition in T is
unique and there are 2ni transitions then all input combinations are defined which
means that reactivity is also satisfied.

Other clocks: Transitions that appear in subsets 2 and 3 are simply copied as in
Fig. 4.10. Thus determinism and reactivity are preserved. ■

4.1.3 Asynchronous Parallel Operator

In the definition below CR is the set of common CS signals between the two FSMs,

1 2CR R R= Ç . CR must not be empty. The left operand has to be a gclk FSM while
the right operand has to be a non-gclk FSM. The transition set T is divided into four
subsets that are explained below.

Definition 4.8. Asynchronous parallel operator

1 1 01 1 1 1 1 1 1 1 1(, , , , , , , , , ,)\\CLK Q q I R O V C T RQ Proc

2 2 02 2 2 2 2 2 2 2 2(, , , , , , , , , ,)CLK Q q I R O V C T RQ Proc

= È ´ È È È1 2 1 2 01 02 1 2 1 2 1 2(, ,(,), ,() \ , ,CLK CLK Q Q q q I I R R CR O O

È È È1 2 1 2 1 2, , ,)V V C C T RQ Proc Proc

74 4 Semantics of DFCharts

where

1 1 1 2 2 2 1 2 1 2 1 2() () () () \ ()RQ q S RQ q S RQ q q S S S S= Ù = ® = È Ç

1 1 2 1 1 1 1 1 1 1 2{(, ,(,), , , (,), , ,(,)) |a
T gclk CLK q q m c HF r r CR O Proc q q¢ ¢ ¢ ¢= Ç

1 1 1 1 1 1 1 1 1(, , , , , , , ,) ,gclk CLK q m c r O Proc q T¢ ¢ ¢ Î

1
1 2 1() () , }RQ q RQ q r CR

+Ç =Æ Ç =Æ

È È Ù Ù Ù Ù Ç¢1 2 1 2 1 2 1 2 1 2 1 2{(, ,(,), , , (,()),a
gclk CLK clk q q m m c c HF r r r r CR

1 2 1 2 1 2, ,(,)) |O O Proc Proc q q¢ ¢ ¢ ¢ ¢ ¢È È

1 1 1 1 1 1 1 1 1(, , , , , , , ,) ,gclk CLK q m c r O Proc q T¢ ¢ ¢ ¢ Î

2 2 2 2 2 2 2 2 2(, , , , , , , ,) ,clk q m c r O Proc q T¢ ¢ ¢Æ Î

2
1 2 1 2 1 2 1 2() () ,() () (), }RQ q RQ q r r CR RQ q RQ q r r false

+Ç ¹ Æ Ù Ç = Ç Ù ¹

È Æ ¢ ¢ ¢1 1 2 1 1 1 1 1 1 2{(, ,(,), , , , , ,(,)) |clk q q m c r O Proc q q

3
1 1 1 1 1 1 1 1 1(, , , , , , , ,) }clk q m c r O Proc q T¢ ¢ ¢Æ Î

È Æ Ç ¢ ¢ ¢2 1 2 2 2 2 2 2 2 1 2{(, ,(,), , , (,), , ,(,)) |a
clk q q m c HF r r CR O Proc q q

4
2 2 2 2 2 2 2 2 2 1 2 2(, , , , , , , ,) , () () , }clk q m c r O Proc q T RQ q RQ q r CR

+Æ Î Ç =Æ Ç =Æ¢ ¢ ¢

 1. The first FSM makes a gclk transition while the second one is idle. In the current
states q

1
 and q

2
 the two FSMs have no common CS signals as denoted by

1 2() ()RQ q RQ qÇ =Æ . If q
1
 has a CS signal that belongs to the CR set, a rendez-

vous on the corresponding channel will never happen while the equivalent
machine is in q

1
q

2
. Therefore, all transitions where any common CS signal

appears as a positive input are removed as denoted by the condition 1r CR
+ Ç =Æ.

Transitions where all common CS signals appear as negative inputs survive, but
the common CS signals are removed with the hiding function as denoted by

1 1(,)a
HF r r CRÇ .

 2. The two FSMs are in the states which share at least one CS signal.
(1 2() ()RQ q RQ qÇ ¹ Æ). The next ticks of gclk and the clock of the second FSM
will occur simultaneously. A transition survives if CS signals corresponding to
common channels where rendezvous is about to happen (that belong to set

1 2() ()RQ q RQ qÇ) appear as positive inputs. This is denoted by the condition

1 2 1 2() () ()r r CR RQ q RQ q
+Ù Ç = Ç . This condition implies at the same time that

if a CS signal corresponds to a common channel where rendezvous will not
happen in the next tick (belongs to set 1 2/ (() ())CR RQ q RQ qÇ) it has to appear
as a negative input. All common CS signals are removed with the hiding function
as denoted by 1 2 1 2(,())a

HF r r r r CRÙ Ù Ç . The condition 1 2r r falseÙ ¹ removes
all invalid monomials like .a a .

 3. The first FSM makes a transition not driven by mclk. The second one is idle.
 4. The second FSM makes a transition while the first one is idle. The two FSMs are

in states which don’t share any CS signals. Therefore, only transitions where all
common CS signals appear as negative inputs survive.

754.1 Automata Semantics

While the synchronous product applied in the synchronous parallel operator
involves a single clock, the synchronous product applied in the asynchronous parallel
operator involves two different clocks. Both operators use interleaving.

The asynchronous parallel operator in CRSM [92], which combines two single-
clock FSMs, distinguishes three cases: the first FSM takes a transition while the
second one is idle, the second FSM takes a transition while the first one is idle, and
both FSMs take transitions simultaneously. These three cases are also found in
the asynchronous composition in CCS [14] and CSP [13]. In DFCharts, one of the
input FSMs is multiclock in general. The transitions of the multiclock FSM that are
driven by gclk have to be treated separately from those that are driven by other
clocks, since only gclk-driven transitions are involved in rendezvous. Thus, there
are four cases.

Figures 4.14–4.16 show FSMs A4, A5 and A6, respectively, which are used to
illustrate the application of the asynchronous parallel operator. In Figs. 4.14 and
4.15, r is a CS signal. It is separated from input signals by “,” so that it is easy to
distinguish. Comma means AND, exactly like dot. A6 is produced when A4
and A5 are merged by the asynchronous parallel operator. According to Definition
4.8 transitions in A6 can be classified as follows: all transitions that are driven
by k, where k is not synchronized with k2 (clock labels <k> and <k(k1)>), are
in subset 1; all transitions that are driven by k, where k is synchronized with k2
(clock label <k(k2)>), are in subset 2; all transitions that are driven by k1 (clock
label <k1>) are in subset 3; all transitions that are driven by k2 (clock label <k2>)
are in subset 4.

We look at how common CS signals are removed by the asynchronous parallel
operator by considering two states of the equivalent FSM A6 in Fig. 4.16, S11S21
where there is no rendezvous, and S11S22 where rendezvous occurs. There are
four transitions driven by k out of state S11 with monomials .a r , .a r , .a r , .a r .

a,r

<k> <k1> <k1>

b/o1 b

<k>
<k>

a.b

<k(k1)>

a.b

<k(k1)>

a.b/o2

<k(k1)>

a.b/o2

S11

S12

<k>

a,r

a,r a,r

<k(k1)>

Fig. 4.14 FSM A4

S21

<k2>

c S22

c
<k2>

<k2> c,r/o3

<k2> c,r

<k2>

c,r

<k2>
c,r Fig. 4.15 FSM A5

76 4 Semantics of DFCharts

When S11 is combined with S21, transitions where r appears as a positive input
have to be removed, which leaves .a r and .a r , and after hiding a and a. The tran-
sitions that are driven by k1 and k2 are simply copied.

CS signal r is common for states S11 and S22. Their outgoing transitions
driven by k and k2 are taken simultaneously because of rendezvous. There are 16
such transitions initially, but after conditions 1 2 1 2() () ()r r CR RQ q RQ q

+Ù Ç = Ç and

1 2r r falseÙ ¹ are applied only four survive as shown in Fig. 4.16. The transitions
that are driven by k1 are copied.

For each channel, it is known at compile-time in which state the rendezvous
will happen. This is possible due to the absence of strong abort in DFCharts.
For example, once FSM A6 enters state S11S22 the rendezvous on channel r must
happen in the next tick of k. If a weak abort occurs in the next tick due to a higher level
transition, A6 will be allowed to react. Due to the way in which FSMs are composed
in DFCharts, A6 can only be preempted by a transition that is driven by k.

T9T5

T6

T7T4

T3 T2

T8

T1

S11S22

S12S22

S12S21

S11S21

Fig. 4.16 FSM A6

774.1 Automata Semantics

Theorem 4.2. When the asynchronous parallel operator is applied on two deter mi nistic

and reactive FSMs, the resulting FSM is deterministic and reactive.

Proof

mclk: When the equivalent FSM is in a state where rendezvous will occur in the
next tick, mclk transitions are synchronously combined with the transitions of the
other clock. It was already proved that synchronous product preserves determinism
and reactivity. When a common CS signal is removed, other inputs are not affected.
For a CS signal r and monomial m, there are initially two possibilities: .r m and

.r m . If a positive CS signal is removed, .r m remains and after hiding only m. If
a negative CS signal is removed, .r m remains and after hiding only m. In both
cases, reactivity and determinism are preserved.

When the equivalent FSM is in a state where rendezvous cannot occur in the next
tick, mclk driven transitions are copied. The removal of negative CS inputs does not
affect determinism and reactivity as shown above.

Other clocks: The same argument applies as in the second paragraph in the mclk
part. Transitions are copied, while removal of negative CS signals does not affect
determinism and reactivity.■

4.1.4 Hiding Operator

Definition 4.9. Hiding/localization operator

0 0(, , , , , , , , , ,)\ (, , , \ , , \ , , , , ,)CLK Q q I R O V C T RQ Proc a CLK Q q I a R O a V C T RQ Proc= ¢

where

 {(, , , (,{ }), , , \ , ,) |T clk CLK q HF m a c r O a Proc q¢ ¢ ¢ ¢ ¢=

1(, , , , , , , ,) , , }clk CLK q m c r O Proc q T a O a m
+¢ ¢ ¢ ¢ ¢Î Î Î

È ¢ ¢ ¢ ¢{(, , , (,{ }), , , , ,) |clk CLK q HF m a c r O Proc q

2(, , , , , , , ,) , , }clk CLK q m c r O Proc q T a O a m
-¢ ¢ ¢ ¢ ¢Î Ï Î

 1. If the local signal is present in the input part of the transition and emitted in the
output part of the transition, then the transition survives and the local signal is
hidden.

 2. If the local signal is absent in the input part of the transition and not emitted in
the output part of the transition, then the transition survives and the local signal
is hidden.

Hiding was already seen in the context of the asynchronous parallel operator.
That type of hiding should not be confused with the one defined above. The hiding
operator from Definition 4.9 is used to synchronize two FSMs that are connected by

78 4 Semantics of DFCharts

the synchronous parallel operator or refinement operator. The synchronization is
performed with local signals. In contrast, the other type of hiding is built into the
asynchronous parallel operator and works with CS signals. The presence of two
types of hiding is not surprising as DFCharts employs two communication mecha-
nisms, synchronous broadcast and rendezvous.

The hiding operator from the definition above preserves neither determinism
nor reactivity. The causality cycles that can appear are exactly the same as those
described in the Argos section.

4.1.5 Refinement Operator

There are two variations of the refinement operator. Consequently, the definition
below consists of two parts. The first type of the refinement operator, labelled ̄ , is
used when both operands are either gclk FSMs or non-gclk FSMs. The second,
labelled ß , is used when the left operand is a gclk FSM while the right operand is
a non-gclk FSM. FSMs connected by the synchronous parallel operator must not
have any common CS signals.

Definition 4.10. Refinement operator

1 1 01 1 1 1 1 1 1 1 1(, , , , , , , , , ,)
q

CLK Q q I R O V C T RQ Proc ¯

2 2 02 2 2 2 2 2 2 2 2(, , , , , , , , , ,)CLK Q q I R O V C T RQ Proc

= È È ´ È È È1 2 1 2 01 1 2 1 2 1 2(,(\ { }) (), , , , ,CLK CLK Q q q Q q I I R R O O

È È È1 2 1 2 1 2, , ,)V V C C T RQ Proc Proc

where

 1 1 1 2 2 2 1 2 1 2() () ()RQ q S RQ q S RQ q q S S= Ù = ® = È

and

1
1 1 1 1 1 1 1 2 1 1 2{(, , , , , , , ,) | , }T mclk CLK q m c r O Proc q T q q q¢ ¢ ¢= Î ¹

È ¢ ¢ ¢1 1 1 1 1 1 1 02{(, , , , , , , ,(,)) |mclk CLK q m c r O Proc q q

2
1 1 1 1 1 1 1 1(, , , , , , , ,) }mclk CLK q m c r O Proc q T¢ ¢ ¢ Î

È Ù Ù¢ ¢ ¢2 1 1 2 1 2 2 2 2 2{(, ,(,), , , , , ,(,)) |mclk CLK q q m m c c r O Proc q q

1 1 1 1(, , , , , , , ,) , ,mclk q m c q T m
+Æ - Æ Æ Î =Æ

3
2 1 2 2 2 2 2 2 2 1 2 1 2(, , , , , , , ,) , , }mclk CLK q m c r O Proc q T m m false c c false¢ ¢ ¢ Î Ù ¹ Ù ¹

È Ù Ù È È¢ ¢ ¢ ¢ ¢2 1 1 2 1 2 2 1 2 1 2 02{(, ,(,), , , , , ,(,)) |mclk CLK q q m m c c r O O Proc Proc q q

1 1 1 1 1 1(, , , , , , , ,) , ,mclk q m c O Proc q T m
+¢ ¢Æ - Î ¹ Æ

794.1 Automata Semantics

4
2 1 2 2 2 2 2 2 2 1 2 1 2(, , , , , , , ,) , , }mclk CLK q m c r O Proc q T m m false c c false¢ ¢ ¢ Î Ù ¹ Ù ¹

È Ù Ù È È¢ ¢ ¢ ¢ ¢ ¢2 1 1 2 1 2 2 1 2 1 2{(, ,(,), , , , , ,) |mclk CLK q q m m c c r O O Proc Proc q

1 1 1 1 1(, , , , , , , ,) ,mclk q m c O Proc q T¢ ¢ ¢Æ - Î

5
2 1 2 2 2 2 2 2 2 1 2 1 2(, , , , , , , ,) , , }mclk CLK q m c r O Proc q T m m false c c false¢ ¢ ¢ Î Ù ¹ Ù ¹

È Æ Î ¹ ¹¢ ¢ 6
1 1 1 1 1 1 1 2 1 1 2 1{(, , , , , , , ,) | , , }clk q m c r O Proc q T q q q clk mclk

È Æ ¢ ¢2 1 2 2 2 2 2 2{(, ,(,), , , , , ,(,)) |clk q q m c r O Proc q q
7

2 1 2 2 2 2 2 2 2(, , , , , , , ,) }clk q m c r O Proc q T¢ ¢Æ Î

As in the definition of the synchronous parallel operator, mclk stands for gclk
when ¯ is applied on two gclk FSMs. In the case of non-gclk FSMs, mclk represents
the single clock of the two FSMs. The transition set, which consists of seven subsets,
is explained below.

 1. mclk driven transitions of the first FSM that don’t involve the refined state.
 2. mclk driven transitions of the first FSM that enter the refined state.
 3. The second (refining) FSM makes a mclk-driven transition while the first

FSM makes a mclk transition that loops back to the refined state. However, the
second FSM is not reset to its initial state q

02
 since the transition of the first

FSM does not involve any inputs that must be present (1m
+ = Æ).Transitions

where all inputs are absent are not specified by the programmer, they are
inserted in order to obtain complete monomials. So they should not reset the
refining FSM.

 4. Same as 3, but this time at least one of the inputs in the first FSM’s transition is
present, so the refining FSM is reset to its initial state.

 5. The refined state is left. Since the abort is weak, the outputs of the second FSM
are produced.

 6. The first FSM makes the transition that is not driven by mclk. The refined state is
not involved, since it is always entered and exited by mclk-driven transitions.

 7. The second FSM makes the transition that is not driven by mclk so the first
FSM is idle.

The second part of the definition is used when the state of a gclk FSM is refined
by a non-gclk FSM.

1 1 01 1 1 1 1 1 1 1 1(, , , , , , , , , ,)
q

CLK Q q I R O V C T RQ Proc ß

 2 2 02 2 2 2 2 2 2 2 2(, , , , , , , , , ,)CLK Q q I R O V C T RQ Proc

 = È È ´ È È È1 2 1 2 01 1 2 1 2 1 2(,(\ { }) (), , , , ,CLK CLK Q q q Q q I I R R O O

È È È1 2 1 2 1 2, , ,)V V C C T RQ Proc Proc

where

1 1 1 2 2 2 1 2 1 2() () ()RQ q S RQ q S RQ q q S S= Ù = ® = È

80 4 Semantics of DFCharts

and

1
1 1 1 1 1 1 1 2 1 1 2{(, , , , , , , ,) | , }T gclk CLK q m c r O Proc q T q q q¢ ¢ ¢= Î ¹

 È ¢ ¢ ¢1 1 1 1 1 1 1 02{(, , , , , , , ,(,)) |gclk CLK q m c r O Proc q q

2

1 1 1 1 1 1 1 1(, , , , , , , ,) }gclk CLK q m c r O Proc q T¢ ¢ ¢ Î

 È Æ - Æ Æ1 1 1 1{(, ,(,), , , , , ,(,)) |gclk q q m c q q

3

1 1 1 1 1(, , , , , , , ,) , }gclk q m c q T m
+Æ - Æ Æ Î =Æ

 È Æ - ¢ ¢1 1 1 1 1 02{(, ,(,), , , , , ,(,)) |gclk q q m c O Proc q q

4

1 1 1 1 1 1(, , , , , , , ,) , }gclk q m c O Proc q T m
+¢ ¢Æ - Î ¹ Æ

 È Æ - ¢ ¢1 1 1 1 1 2{(, ,(,), , , , , ,) |gclk q q m c O Proc q

5

1 1 1 1 2 1(, , , , , , , ,) }gclk q m c O Proc q T¢ ¢Æ - Î

 È Æ Î ¹ ¹¢ ¢ 6
1 1 1 1 1 1 1 2 1 1 2 1{(, , , , , , , ,) | , , }clk q m c r O Proc q T q q q clk mclk

 È Æ ¢ ¢2 1 2 2 2 2 2 2{(, ,(,), , , , , ,(,)) |clk q q m c r O Proc q q

7

2 1 2 2 2 2 2 2 2(, , , , , , , ,) }clk q m c r O Proc q T¢ ¢Æ Î

The transition set, which consists of seven subsets, is explained below.

 1. gclk driven transitions of the first FSM that don’t involve the refined state.
 2. Transitions of the first FSM that enter the refined state.
 3. The first FSM makes a transition that loops back to the refined state. The second

FSM is not reset to its initial state q
02

 since the transition of the first FSM does
not involve any input signals that must be present (1m

+ = Æ).
 4. Same as 3, but this time at least one of the input signals in the first FSM’s transi-

tion is present, so the refining FSM is reset to its initial state.
 5. The refined state is left. The abort is weak but there are no outputs from the

second FSM, since it does not react in this tick.
 6. The first FSM makes a transition that is not driven by gclk. The refined state is

not involved, since it is always entered and exited by mclk-driven transitions.
 7. The second FSM makes a transition while the first FSM is idle.

The definitions of the two versions of the hierarchical operator (̄ and ß) are
similar but there is an important difference, which creates the need for having two
versions instead of just one. In the definition of ¯ , synchronous product is present
in subsets 3, 4 and 5 of T. In the definitions of ß , synchronous product is com-
pletely absent. Transitions of the two input FSMs are just interleaved.

Figures 4.17–4.19 show FSMs A7, A8 and A9, respectively, which are used to
illustrate the application of the second version of the hierarchical operator. A9 is
produced when A8 refines state S12 of A7.

The first version of the hierarchical operator is illustrated with A9, A10 shown in
Fig. 4.20, and A11 shown in Fig. 4.21. A11 is produced when state S11 of A9 is
refined by A10.

814.1 Automata Semantics

Theorem 4.3. When the refinement operator is applied on two deterministic and

reactive FSMs, the resulting FSM is deterministic and reactive.

Proof

mclk: In the second version of the hierarchical operator (ß) all mclk transitions are
copied from the refined FSM. In the first version (̄), this is the case in subsets 1 and
2 of T. In subsets 3, 4 and 5, mclk transitions of the refined FSM are synchronously

S11 S12

<k>
a

a

a/o1
<k>

a

<k>
<k>

Fig. 4.17 FSM A7

S21

<k1>
b,r b

S22

b,r
<k1>

b,r/o2
<k1>

<k1> b,r

<k1>

b
<k1>

Fig. 4.18 FSM A8

S11 S12S21

a
<k>

b,r/o2 b,r

<k1>

b

b,r
<k1>

b,r

<k>

a

S12S22
<k>

a

<k1> <k1>

<k1>

b

<k1>

<k> a

a/o1 <k>

a

<k>

Fig. 4.19 FSM A9 = A7 12S
ß A8

c/o3

<k>
<k2> <k2>

d/o4
d

<k>

c

<k(k2)>

c.d

<k(k2)> c.d

<k(k2)> c.d/o3

<k(k2)>
c.d/o3

S31 S32

Fig. 4.20 FSM A10

82 4 Semantics of DFCharts

combined with mclk transitions of the refining FSM. It was already proved for
Theorem 3.1 that synchronous product preserves reactivity and determinism.

Other clocks: Transitions of the refined and refining FSMs remain unchanged.
They are copied to subsets 6 and 7. ■

4.1.6 Mapping Syntax to Automata

We identify two syntactic domains, the set of gclk specifications PM and the set
of non-gclk specifications PS. Two special variables M and S will be used to
stand for elements of PM and PS, respectively. There are also two semantic
domains discussed in the previous section, the set of gclk FSMs AM and the set of
non-gclk FSMs AS. Finally, two semantic functions, : { }rd

MSE PM AM® È ^ and
: { }rd

SSE PS AS® È ^ , are needed to map syntactic objects to semantic objects.
rd

AM is the set of deterministic and reactive FSMs within AM while rd
AS is the set

of deterministic and reactive FSMs within AS. Specifications that do not meet
the requirements for determinism and reactivity are considered incorrect and
mapped to ^ , pronounced “bottom”. Non-determinism and non-reactivity can be
produced with the hiding operator.

T5

T4

T3

T2

T1

S11S32 <k>

a

a <k>

<k1>

b

<k1>

<k1> <k1>

a

<k>
S12S22

a

<k>

b,r
<k1>

b,r

b

<k1>

b,r b,r/o2

S12S21S11S31

Fig. 4.21 FSM A11 = A9 11S
¯ A10

834.1 Automata Semantics

Listed below are the production rules which show ways in which syntactic
objects may be combined. On the syntactic side the synchronous parallel, asyn-
chronous parallel, refinement and localization/hiding operations are labelled s , a ,
r and l .

 = 1 1 2 2 1 2:: | | (, ,...,) | (, ,...,)
n n n

M M s M M a S M r q R q R q R M l a a a

1 1 2 2 1 2:: | (, ,...,)| (, ,...,)
n n n

S S s S Sr q S q S q S S l a a a=

:: |R M S=

All refinements can be specified in a single statement. On the other hand, the
refinement operator is defined to work with the refinement of a single state only.
Therefore, when giving the meaning to the refinement statement, the refinement
operator needs to be applied repeatedly, as many times as there are refinements, in
order to reach the final equivalent FSM. Note that subscript n in the refinement
statement denotes the number of refined states, not the total number of states, since
some states may be unrefined. The localization statement can also specify all local
signals at once. Thus, as in the case of the refinement operator, the localization
operator may need to be used multiple times to produce the FSM the localization
statement is mapped to.

The syntax is mapped to semantics as follows:

^ =^ =ì
í
î

^
= 1 2

1 2

1 2

() ()
()

() || ()

if MSE M or MSE M
MSE M s M

MSE M MSE M otherwise

() ()
()

() \\ ()

if MSE M or SSE S
MSE M a S

MSE M SSE S otherwise

^ =^ =^ì
= í
î

-

-

^ =^ $ Î =^ì
ï

ì ¯ =ï ï
= íï

ß =ïï î
= í

ì ¯ =ï ï
= íï

ß =ïï î
ï

Îî

1

1

1

1

1

1 1 2 2

1

1

() [1,] : ()

() () ::
:

() () ::
((, ,...,))

() ::

() ::

[2,]

i

i

i

q

n

q

n n

i q i

i

i q i

if MSE M or i n SE R

MSE M MSE R if R M
X X

MSE M SSE R if R S
MSE M r q R q R q R

X MSE R if R M
X

X SSE R if R S

for i n

 -

^ =^ì
ï

Î ^ï
= í
ï
ï = = Îî

1 2

1 1 1

()

((, ,...,))
:

() \ , \ [2,]

rd

n n

n

n

i i i

if MSE M

X if X AM else otherwise
MSE M l a a a

whereX isdefinedby

X MSE M a X X a for i n

84 4 Semantics of DFCharts

^ =^ =^ì
= í
î

1 2

1 2

1 2

() ()
()

() || ()

if SSE S or SSE S
SSE S s S

SSE S SSE S otherwise

-

^ =^ $ Î =^ì
ï

= ¯ï
= í

= ¯ Îï
ï
î

11 1

1 1 2 2

1

() [1,] : ()

: () (),
((, ,...,))

() [2,]
i

i

n q

n n

i i q i

if SSE S or i n SSE S

X X SSE S SSE S
SSE Sr q S q S q S

X X SSE S fori n

otherwise

 -

ì
ï
^ =^

Î ^

= = Î

ï
í
ï
ïî

1 2

1 1 1

()

((, ,...,))
:

() \ , \ [2,]

rd

n n

n

n

i i i

if SSE S

X if X AS else otherwise
SSE S l a a a

whereX isdefinedby

X SSE S a X X a for i n

4.1.7 Integrating SDF Graphs into Automata Semantics

Denotational semantics is the most common means of formally describing Kahn
process networks. As a restriction of Kahn process networks, the family of dataflow
process network models, which includes SDF, is also captured by denotational
semantics. It would be very difficult to integrate denotationally described SDFGs
with operationally described synchronous FSMs. Therefore, we have to represent
the SDFG as an FSM using the operators defined in previous sections. In every
iteration, the SDFG goes through two phases. In the first phase inputs are received
and outputs from the previous iteration are sent. In the second phase inputs are
processed and outputs are produced. The parallel and refinement operators.

Definition 4.11. Synchronous dataflow graph with m inputs and n outputs

io
SDF TOP IOPAR= ¯

 0(, , , , , , , , ,)TOP Q q I R O V C T RQ Proc=

where

(,)Q io processing= ,
0 ,q io=

{ } { _ |1 } { _ |1 }
i i

I gs in qi i m in qo i n= È £ £ È £ £ , R = Æ , O = Æ ,

{ _ |1 } { _ |1 }
i i

V data in i m data out i n= £ £ È £ £ , C = Æ ,
1 2{ , }T t t= ,

,RQ = Æ { _ _ }Proc assign output values=

1 1 2 1 2(, , , _ . _ ... _ . _ . _ ...

_ , , , , ,)

= Æ

- - Æ Æ
m

n

t sdfclk io in qi in qi in qi in qo in qo

in qo processing

854.1 Automata Semantics

2 (, , , , , , ,{ _ _ },)t sdfclk processing gs assign output values io= Æ - - Æ

1 2 1 2|| || ... || || || || ... ||
m n

IOPAR IN IN IN OUT OUT OUT=

0(, , , , , , , , ,)IN Q q I R O V C T RQ Proc=

where

1 2(,)Q q q= ,
0 1, { }q q I= = Æ , { _ }R ch in= , O = Æ , { _ }V data in= ,

1{ }T t= ,

1{(, _)}RQ q ch in= , { _ _ }Proc ch out proc=

1 1 2(, , , , , _ , , _ _ ,)t sdfclk q ch in ch in proc q= Æ - - Æ

0(, , , , , , , , ,)OUT Q q I R O V C T RQ Proc=

where

1 2(,)Q q q=
0 1, { }q q I= = Æ , { _ }R ch out= , O = Æ, { _ }V data out= ,

1{ }T t= ,

1{(, _)}RQ q ch out= , { _ _ }Proc ch out proc=

1 1 2(, , , , , _ , , _ _ ,)t sdfclk q ch out ch out proc q= Æ - - Æ

With this definition, an SDFG can be placed in the AS set (non-gclk FSMs) and
used as the right operand of the asynchronous parallel operator. Figure 4.22 shows
how an SDF graph with two inputs and two outputs is seen as an FSM. All transitions
are driven by sdfclk. din and dout stand for data_in and data_out in Definition 4.11.
aov stands for assign_output_values. The two phases are represented as two
states in the top level FSM. The io state is refined by concurrent FSMs that handle
receiving and sending data. Note that the output FSMs send the initial values of their
data_out variables before the first iteration. In the processing state data_in variables

qi10

qi11

ch_in1? din1

qi20

qi21

ch_in2? din2

qo10

qo11

ch_out2? dout2

qo20

qo21

ch_out2? dout2

io

processing gs/aov

in_qi11 in_qi21 in_qo11 in_qo21

Fig. 4.22 FSM that represents SDF graph with two inputs and two outputs

86 4 Semantics of DFCharts

are read and data_out variables are written. Inputs of type in_qi or in_qo are present
when their corresponding states are active. Gs is the signal that denotes that the
outputs have been produced leading to the I/O state.

An important feature of “SDF FSM” is that waiting for rendezvous can never be
pre-empted on any channel. This significantly simplifies the implementation of
rendezvous, which is described in Chap. 7 among other implementation aspects
of DFCharts. The implementation of rendezvous is more difficult in a more general
case where both sides are allowed to abort [93].

Obviously this is a very high level view as all internal signals are hidden inside
the processing state. As we mentioned above, what happens inside the processing
state is usually described with denotational semantics. However, Kahn process
networks and other dataflow models can also be described operationally as in [39], for
example. When the operational semantics is employed, the whole dataflow network
is typically seen as a labelled transition system where the state is determined by
the state of processes and the state of channels. The state of a channel is simply the
number of tokens present in it. In Kahn process networks and other dynamic dataflow
models, channels can grow infinitely large resulting in the infinite state space. On the
other hand, channels are bounded in SDF. Furthermore, SDF processes contain no
state; they transform data in the same way in each firing. Therefore the state of an
SDF network is determined purely by the content of channels.

Figure 4.23 shows how an iteration of SDF1 in Fig. 3.5 can be seen as a series of
states. The first state is when two input tokens have been received in each input
channel which makes actors A and B ready to fire. The second, third and fourth state
are entered after actors A, B and C fire, respectively. We need to emphasize that
while an execution order has a finite state space, multiple execution orders exist for
an SDFG in general. Thus the processing state is not refined in the general definition,
but it can be refined once the execution order has been decided.

4.2 TSM Semantics

In TSM an event is defined as a pair (,)e t v= , where t TÎ is a tag while v VÎ is a
value. T is the set of tags while V is the set of values. A signal is a set of events. It is
a member of 2T V´ or a subset of T V´ . It is defined as partial function from T to V .
Partial in this case means that a signal does not have to be defined for every t TÎ .

A

B

C

A

B

C

A

B

C

A

B

C

Fig. 4.23 Execution states of SDF1 from Fig. 3.5

874.2 TSM Semantics

Tags do not necessarily represent physical time. They might only be used to
denote the ordering of events. This is the case in DFCharts which is an untimed
model. The order among events is described by the ordering relation “£”, which is
defined on the set T [25]. The relation is reflexive (:a T a a" Î £), antisymmetric
(" Î £ Ù £ ® =, : ())a b T a b b a a b , transitive (" Î £ Ù £ ® £, , : ())a b c T a b b c a c .
A related irreflexive relation is also defined, denoted “ < ”. The ordering of tags
induces the ordering of events. Given two events 1 1 1(,)e t v= and 1 2 2(,)e t v= , then

1 2e e< if and only if 1 2t t< . Two events can also have equivalent tags. In that case
they are synchronous.

Since DFCharts is a heterogeneous model that consists of HCFSM and SDF
models, we use two sets of tags T ¢ and T ¢¢ in order to distinguish between the two
constituent models. T ¢ will be used to define synchronous signals in the HCFSM
model, while T ¢¢ will be used to define asynchronous signals in the SDF model. T ¢
is a totally ordered set, which means that for any two tags 1t¢ and 2t¢ , 1 2t t¢ ¢= , 1 2t t¢ ¢<
or 2 1t t¢ ¢< . T ¢¢ is a partially ordered set. This means that there exist two tags 1 2,t t T¢¢ ¢¢ ¢¢Î
such that

1 2t t£¢¢ ¢¢ú .
We also define two sets of values V ¢ and V ¢¢ . V ¢ is the set of values produced in

the HCFSM (synchronous) domain while V ¢¢ is the set of values produced in the
SDF (asynchronous) domain. An event from the synchronous domain is defined as

(,)e t vec¢ ¢= where t T¢ ¢Î . As indicated in the previous section a valued event in
DFCharts carries a group (vector) of values. For this reason we define vec as a tuple
of n values which can be taken either from V ¢ or V ¢¢ . The interface processes, which
will be defined shortly, transport values across the two domains. In addition vec can
take two special values ^ and p . ^ denotes the absence of an event, while p
denotes that the event is present but it carries no value i.e. it is a pure event. The set
of n-tuples over V ¢ is denoted as n

V ¢ while the set of n-tuples over V ¢¢ is denoted
as n

V ¢¢ . Thus { ,)n n
vec V V p¢ ¢¢Î È È ^ .

Events in the asynchronous SDF domain carry only one value. An event in the
asynchronous domain is defined as (,)e t v¢¢ ¢¢= , where t T¢¢ ¢¢Î and v V V¢¢ ¢Î È .

The communication between an SDF graph and FSMs is performed using two
interface processes shown in Figs. 4.24. and 4.25. STF converts SDF output signals
into FSM input signals. FTS does the opposite. It converts FSM output signals into

so1
so2

som

sor

rfi1
rfi2

rfim

fi1
fi2

fim

STF

Fig. 4.24 STF process

88 4 Semantics of DFCharts

SDF input signals. Note that these processes are implicit, as they are only used for
semantic purposes. They are not seen in specifications such as that in Fig. 3.5 where
input and output signals in both directions are simply connected together. Both pro-
cesses are triggered by the same tick signal that is used to trigger all FSMs in a
DFCharts specification. When they consume inputs, they instantaneously produce
outputs. Thus we can say that they belong to the synchronous domain of DFCharts.
When triggered by a tick, each process invokes a set of functions that map parts of
input signals to parts of output signals. Each function handles one output signal.
Complete output signals are built as processes that are repeatedly triggered by the
tick signal.

4.2.1 Data Transfer from SDF to FSM

STF has three inputs: the set of signals SO, the set of signals RFI and the signal sor.
It outputs the set of signals FI. The signals in SO and FI are explicit in specification
while sor and the signals in RFI are implicit and should be generated during imple-
mentation. We first describe the explicit signals.

{ |1 }
i

SO so i m= £ £ is the set of m output signals of the SDFG that communicate
with FSMs. When defined in the TSM framework each

i
so SOÎ is a set of events

,{ | }
i i j

so e j N¢¢= Î where N is the set of natural numbers. ,i j i
e so¢¢ Î is defined as

, , ,(,)
i j i j i j

e t v¢¢ ¢¢= , where ,i j
t T¢¢ ¢¢Î and ,i j

v V ¢¢Î giving
i

so T V¢¢ ¢¢Í ´ . Events within
i

so
are totally ordered. j is an index that defines ordering. Given two events ,i p

e¢¢ , ,i q
e¢¢ ,

p q< (here < is the ordinary ordering relation for integers) implies , ,i p i q
e e¢¢ ¢¢< .

However, as signals in SO are asynchronous, two events that belong to two differ-
ent signals ,x p x

e so¢¢ Î and ,y q y
e so¢¢ Î are in general not related by £, i.e. , ,x p y q

e e£ú¢¢ ¢¢
regardless of p and q .

FI is the set of synchronous input FSM signals that result from the conversion
of the SDF output signals. Each

i
so SOÎ is converted into one

i
fi FIÎ . Thus SO

and FI are of the same size m we defined above i.e. { |1 }
i

FI fi i m= £ £ . Each

i
fi FIÎ is a set of events ,{ | }

i i j
fi e j N¢= Î . ,i j i

e f¢ Î is defined as , , ,(,)
i j i j i j

e t vec¢ ¢=

fo1
fo2

fom

sir

rfo1
rfo2

rfo

si1
si2

sim

FTS

Fig. 4.25 FTS process

894.2 TSM Semantics

where ,i j
t T¢ ¢Î and , { }in

i j
vec V ¢¢Î È ^ , hence , , ,1 , ,2 , ,(,)

ii j i j i j i j n
vec v v v¢¢ ¢¢ ¢¢= carries

i
n

values produced in the SDF domain i.e. , ,1 , ,2 , ,,
ii j i j i j n

v v v V¢¢ ¢¢ ¢¢ ¢¢Î and it is possible that

, ()
i j

vec = ^ which means that the event is absent. All events within the same signal
i have to carry the same number of values

i
n . This is due to the rule that the SDF

graph must produce the same number of output tokens in each iteration. Events in
different signals can carry a different number of values. Within each

i
fi FIÎ , all

events are totally ordered as in asynchronous SDFG output signals. Moreover,
events are also ordered across all

i
fi FIÎ . Given two events that belong to two

different signals ,x p x
e fi¢ Î and ,y q y

e fi¢ Î , p q< implies that , ,x p y q
e e¢ ¢< . If p q=

than , ,x p y q
e e= which means that ,x p

e and ,y q
e are synchronous events. Therefore

we can drop the signal index in the tag so that , ,(,)
i j j i j

e t vec¢ ¢= .
The synchronous signals in RFI indicate whether the input FSM channels are

ready for rendezvous. In particular, each
i

rfi RFIÎ shows whether the correspon-
ding

i
fi is ready to receive data. Data can be sent through

i
fi if the rendezvous state

that is connected to
i

fi is active. Each
i

rfi RFIÎ is a set of events ,{ | }
ii rf j

rfi e j N¢= Î
, where , ,(,)

i irf j j rf j
e t vec¢ ¢= . The signals in RFI are pure. Hence, ,irf j

vec can take two
values. If

i
rfi is present in the jth tick, then ,irf j

vec p= , otherwise if it is absent then

,irf j
vec =^ . The presence of

i
rfi indicates that

i
fi is ready to receive data, whereas

the absence indicates the opposite.
sor (SDFG outputs ready) also belongs to the synchronous domain. It is a set of

events ,{ | }
sor j

sor e j N¢= Î , where , ,(,)
sor j j sor j

e t vec¢ ¢= and ,sor j
vec can take one of

the two values, p or ^ . What the signals in RFI do for the signals in FI, sor does for
the signals in SO. If sor is present, the output SDFG signals are ready to send data;
if it is absent they are not ready. Since SDFG output signals are all ready or not
ready at the same time, only one signal is needed to indicate their status.

When STF is triggered by a tick of the clock, it invokes the following function
for each output channel:

 , , , 1 , 2 , ,(, ,{ , ,..., })
i i i i ii sor j rf j i k i k i k n i j

stf e e e e e e+ + +
¢ ¢ ¢¢ ¢¢ ¢¢ ¢= (4.1)

which is equivalent to

, , , 1 , 1 , 2 , 2

, , ,

((,),(,),{(,),(,),...,

(,)}) (,)

i i i i i

i i i i

i j sor j j rf j i k i k i k i k

i k n i k n j i j

stf t vec t vec t v t v

t v t vec

+ + + +

+ +

¢ ¢ ¢¢ ¢¢ ¢¢ ¢¢

=¢¢ ¢¢ ¢ (4.2)

with

+ + + = Ù =¢¢ ¢¢ ¢¢ìï
= í

^ïî

, 1 , 2 , , ,

,

(, ...) if

 otherwise

i i i i ii k i k i k n sor j rf j

i j

v v v vec p vec p
vec

where n
i
 is a constant that denotes the number of tokens (events in TSM) produced

on the channel in one iteration of the SDFG. On the other hand k
i
 is a variable,

which increases with the number of completed iterations. For example, if we assume
that five tokens are produced in each iteration of the SDFG, k

i
 = 0 after the first

90 4 Semantics of DFCharts

iteration and k
i
 = 5 after the second iteration. If we label the number of completed

SDFG iterations as r we can express k
i
 as

 ·
i i

k r n= (4.3)

If ,sor j
e¢ and ,irf j

e¢ are present stf
i
 takes values spread across multiple events in the

asynchronous domain and groups them under a single event in the synchronous
domain. Otherwise if ,sor j

e¢ is absent (SDF graph is not ready to communicate) and/
or ,irf j

e¢ is absent (the rendezvous state for fi is not active), then the communication
does not occur, so ,i j

e¢ is absent.
An important effect of STF is that values carried by asynchronous signals in SO

can become synchronous as shown in the example below where there are three
channels and five iterations have been completed.

 1 1 1 1 11 , , 1,4· 1 1,4· 2 1,4· 1, 1,(, ,{ , ,..., }) (,)
sor j rf j n n n n j j j

stf e e e e e e t vec+ + +
¢ ¢ ¢¢ ¢¢ ¢¢ ¢ ¢= =

 2 2 2 2 22 , , 2,4· 1 2,4· 2 2,4· 2, 2,(, ,{ , ,..., }) (,)
sor j rf j n n n n j j j

stf e e e e e e t vec+ + +
¢ ¢ ¢¢ ¢¢ ¢¢ ¢ ¢= =

 3 3 3 3 33 , , 3,4· 1 3,4· 2 3,4· 3, 3,(, ,{ , ,..., }) (,)
sor j rf j n n n n j j j

stf e e e e e e t vec+ + +
¢ ¢ ¢¢ ¢¢ ¢¢ ¢ ¢= =

If ,sor j
e¢ ,

1 ,rf j
e¢ ,

2 ,rf j
e¢ and

3 ,rf j
e¢ are all present in the jth tick, then 1, j

e¢ , 2, j
e¢ , 3, j

e¢ will
also be present and they will carry the values from the asynchronous domain.

4.2.2 Data Transfer from FSM to SDF

FTS performs conversion in the opposite direction. It takes three inputs: the set
of signals FO, the set of signals RFO and signal sir. It outputs the set of signals
SI. FO is the set of synchronous FSM signals that provide input data for the
SDFG. We define that there are m signals in FO so that { |1 }

i
FO fo i m= £ £ .

Each
i

fo FOÍ is a set of events ,{ | }
i i j

fo e j N¢= Î . ,i j i
e fo¢ Î is defined as

, ,(,)
i j j i j

e t vec¢ ¢= where
j

t T¢ ¢Î and , { }il

i j
vec V ¢Î È ^ . Thus ({ })il

i
fo T V¢ ¢Î ´ È ^

and , , ,1 , ,2 , ,(,)
ii j i j i j i j l

vec v v v¢ ¢ ¢= carries
i

l values produced in the synchronous domain
i.e. , ,1 , ,2 , ,,

ii j i j i j l
v v v V¢ ¢ ¢ ¢Î . If the event is absent than , ()

i j
vec = ^ . SI is the set of

SDF input signals that receive tokens from FSMs. As each
i

fo FOÍ is converted
into one

i
si SIÎ , there are m signals in SI i.e. { |1 }

i
SI si i m= £ £ . Each

i
si SIÎ is

a set of events ,{ | }
i i j

si e j N¢¢= Î . ,i j i
e si¢¢ Î is defined as , , ,(,)

i j i j i j
e t v¢¢ ¢¢= where

,i j
t T¢¢ ¢¢Î and ,i j

v V ¢Î giving
i

si T V¢¢ ¢Í ´ . Ordering of events in synchronous
HCFSM and asynchronous SDF signals was already described when STF was
discussed.

Each
i

rfo RFOÎ is a set of events ,{ | }
ii rf j

rfo e j N¢= Î , where , ,(,)
i irf j j rf j

e t vec¢ ¢=
and , { , }

irf j
vec pÎ ^ . If ,irf j

e¢ is present the corresponding rendezvous state is active,
if it is absent the state is inactive. On the other hand ,{ | }

sir j
sir e j N¢= Î which also

belongs to the synchronous domain, shows the status of the SDFG input signals.
If ,sir j

e¢ is present the SDFG is ready to receive inputs. If ,sir j
e¢ is absent it is not.

914.3 The Impact of Clock Speeds

When FTS is triggered by a tick of the clock, it invokes the following function
for each output channel:

+ + +

=¢ ¢ ¢ ¢ ¢ ¢

= Ù =¢¢ ¢¢ ¢¢ìï
= í

Æïî

, , , , , ,

, 1 , 2 , , ,

(, ,) ((,),(,),(,))

{ , ,..., } if

 otherwise

i i

i i i i i

i sir j rf j i j i j sir j j rf j j i j

i q i q i q l sir j rf j

fts e e e fts t vec t vec t vec

e e e vec p vec p

 (4.4)

where

 , 1 , 2 , , 1 , ,1 , 2 , ,2 , , ,{ , ,..., } {(,),(,),...,(,)
i i i i i i i i ii q i q i q l i q i j i q i j i q l i j l

e e e t v t v t v+ + + + + +
¢¢ ¢¢ ¢¢ ¢¢ ¢ ¢¢ ¢ ¢¢ ¢=

In (4.4) l
i
 is a constant that denotes the number of tokens consumed on si

i
 in one

SDF iteration while q
i
 is a variable which can be expressed as

 ·
i i

q r l= (4.5)

where r is the number of completed SDF iterations.
An important effect of FTS is that values carried by synchronous signals in FO

become desynchronised, as shown in the example below, where there are three
channels and five iterations have been completed. We also assume that all input
events are present.

 1 1 1 1 11 , , 1, 1,5· 1 1,5· 2 1,5·(, ,) { , ,..., }
sir j rf j j l l l l

fts e e e e e e+ + +
¢ ¢ ¢ ¢¢ ¢¢ ¢¢=

 2 2 2 2 22 , , 2, 2,5· 1 2,5· 2 2,5·(, ,) { , ,..., }
sir j rf j j l l l l

fts e e e e e e+ + +
¢ ¢ ¢ ¢¢ ¢¢ ¢¢=

 3 3 3 3 33 , , 3, 3,5· 1 3,5· 2 3,5·(, ,) { , ,..., }
sir j rf j j l l l l

fts e e e e e e+ + +
¢ ¢ ¢ ¢¢ ¢¢ ¢¢=

4.3 The Impact of Clock Speeds

In Sect. 4.1.1, when we discussed determinism we focused on each clock domain
separately without paying attention to effects caused by the relation between clocks.
The aim of this section is to show how clock speeds can impact the overall behaviour
of a system. For some systems, such as the frequency relay, clock speeds are only
important for time constraints. For others, such as the one presented in Fig. 4.26,
they completely change the system behaviour.

The specification in Fig. 4.26 does not have any input signals, but it has two
output signals, c and d. When FSM1 makes a transition from S3 to S1 both SDF1
and FSM3 are ready to operate. After each iteration, SDF1 outputs integer 3 on ch1
while ch2 is only used for synchronization. FSM3 increments shared variable v2 in
every tick.

Both of its transitions are always enabled. If SDF1 always takes three gclk ticks
to complete its iteration, the system will not produce any output. If it always takes

92 4 Semantics of DFCharts

more than three ticks, a sequence of c outputs will be produced, and if it always
takes less than three ticks, a sequence of d outputs will produced. In addition,
any combination of behaviours is possible if the length of SDF1 iterations is not
constant in terms of gclk ticks.

Determinism is not viewed consistently across the literature. In [94], the authors
claim that Multiclock Esterel is deterministic even though the behaviour of a speci-
fication can be influenced by clock speeds as in DFCharts. The non-determinism
arising from clocks is considered to be external. On the other hand, the Kahn
process networks (KPN) model is said to be deterministic exactly because the
output sequence is independent of process speeds. Whether we call non-determinism
due to clocks external or internal it does pose a problem to design if not handled
properly. We could completely avoid this issue in DFCharts semantics by fixing the
speed of every SDFG to a constant number of gclk ticks. That would be a poor
solution, because it would severely reduce implementation space. Instead, we allow
experimenting with different speeds of SDFGs relative to gclk in DFCharts design
flow. As a result, verification becomes more intensive but efficient implementation
can be obtained in the end.

A B

ch2!/a

ch1?v1/b

[v1> v2]/c

[v1== v2]

[v1< v2]/d

a/{v2=0;} b

S1

S3

S2

S1

S2

shared variable: int v2=0;
variable: int v1;

SDF1

ch1

ch2

1 1 1

1

S1 S2

/{v2=v2+1;}

/{v2=v2+1;}

FSM1 FSM2

FSM3

channel: int ch1; ch2;

signal a,b;

Fig. 4.26 A specification with behaviour sensitive to clock speeds

93I. Radojevic and Z. Salcic, Embedded Systems Design Based on Formal

Models of Computation, DOI 10.1007/978-94-007-1594-3_5,
© Springer Science+Business Media B.V. 2011

With graphical syntax presented in Chap. 1 and Java-based textual syntax given in
Chap. 6, DFCharts can be used as a language for specification of embedded systems.
In this chapter we use DFCharts as a model of computation to assess the effective-
ness of two popular system level languages, SystemC and Esterel, in capturing
behaviour of heterogeneous embedded systems. While SystemC is being proposed
by an industry consortium and has no formal semantics, Esterel has a formal seman-
tics and formal verification capabilities. Hence, both these languages represent dif-
fering perspectives on system-level modelling. The frequency relay case study was
specified in both languages, following the DFCharts model as closely as possible.
Using this analysis, we can identify what needs to be improved in each language in
order to increase their ability to handle heterogeneous embedded systems. The rela-
tion between the two languages and DFCharts was previously described in [105].

In Sect. 5.1 we list the requirements for SystemC and Esterel according to
DFCharts features. For each requirement we discuss the level of support provided
by SystemC and Esterel, mainly by using observations made while specifying the
frequency relay in both languages. As neither language was able to completely fol-
low the target DFCharts model, we describe the resulting deviations from DFCharts
in the frequency relay specifications. In Sect. 5.2, we discuss some numerical results,
such as code size and simulation speed, that were obtained after describing the fre-
quency relay in SystemC and Esterel. Finally, Sect. 5.3 suggests some modifications
in the semantics and syntax of SystemC and Esterel that would lead to their better
support for heterogeneous embedded systems.

5.1 Analysis Based on Requirements

The list of requirements is as follows:

 1. Concurrent processes – an essential requirement, which is a precondition for all
the other points to follow.

Chapter 5

DFCharts in SystemC and Esterel

94 5 DFCharts in SystemC and Esterel

 2. Rendezvous communication.
 3. Buffered communication between processes and specification of firing rules for

dataflow modules.
 4. Support for HCFSM model with synchronous communication.
 5. Imperative statements to describe data transformations inside SDF actors, as

well as smaller computations performed by FSMs.
 6. Hierarchy and preemption – multiple processes inside a hierarchical state

and termination of lower-level processes instantly upon an exit from the hier-
archical state.

5.1.1 Concurrent Processes

5.1.1.1 SystemC

Concurrency is implicitly assumed in SystemC. Processes defined in a single
module are concurrent. When multiple modules are connected at any level of hier-
archy, they always execute concurrently. In fact, specifying the execution order of
modules, such as sequential or pipelined execution available in other languages like
SpecC [79], is not possible in SystemC. The designer would have to manipulate the
execution order of modules by using control signals.

5.1.1.2 Esterel

Concurrency can be explicitly created using the parallel operator || at any level of
hierarchy. The branches in a parallel operator can contain any number of statements.
The || operator creates concurrent threads that communicate and synchronize using
synchronous broadcast. This is based on the SR model of computation where a
global clock is assumed. Inputs and corresponding outputs are generated in the same
tick of the global clock, leading to a zero delay model. Also, events generated in any
thread are broadcasted to all other threads. Any other form of concurrency will have
to be emulated by clever programming.

5.1.2 Rendezvous Communication

5.1.2.1 SystemC

SystemC does not offer any high level construct that implements rendezvous directly.
However it should not be difficult to create rendezvous between two processes using
wait statements.

955.1 Analysis Based on Requirements

5.1.2.2 Esterel

As in SystemC, rendezvous cannot be specified directly. It has to be created using a
combination of await and emit statements that need to be programmed appropriately.

5.1.3 Buffers and Firing Rules for Dataflow

5.1.3.1 SystemC

FIFO buffers can be implemented in SystemC by the primitive channel sc_fifo.
Because of constant data rates, SDF blocks should be implemented as method
processes. There should be no need to use less efficient thread processes. However
only thread processes that are dynamically scheduled by the SystemC kernel can
use sc_fifo buffers. As a result, static scheduling of the SDF model cannot be easily
implemented. Moreover, firing rules associated with the SDF actors are not sup-
ported by the primitive FIFO channel. The SystemC kernel can activate a thread
process as soon as data is available in its input FIFO channel. Hence, the third
requirement of buffered communication with static scheduling can not be directly
implemented using a SystemC constructs.

Due to the reasons explained above, the three data-dominated blocks were imple-
mented as thread processes that communicate through sc_fifo channels using block-
ing reads and blocking writes (blocking writes are inevitable as sc_fifo channels
must be bounded). Thus the three signal processing blocks appear as a Kahn process
network in the SystemC specification rather than an SDF network.

5.1.3.2 Esterel

A FIFO buffer can be implemented as a separate process (C function) in Esterel. In this
way computation and communication would be separated, which may be a useful
feature if components need to be reused. However, the FIFO process would still be
synchronized to the tick signal. Thus the level of abstraction would be lower than in
asynchronous SDF buffers. Alternatively, buffers could be implemented as asynchro-

nous tasks, but this would lead to integration problems which will be discussed below.
It is clear that Esterel cannot efficiently capture the data-dominated (SDF) part of

the frequency relay. Therefore, the SDF blocks performing signal processing (aver-
aging filter, symmetry function and peak detection) must be reactive as all other
processes in the system. The event they react to is a sample coming from the analogue-
to-digital converter. The problem comes from the fact that all processes must be
aligned to a single tick signal, i.e. they have to read inputs and produce outputs at
the same time. The most efficient solution for the SDF processes is that the tick
signal coincides with the sampling frequency of the AC input signal. On the other
hand this would be too slow for the parameter settings block whose inputs may be

96 5 DFCharts in SystemC and Esterel

faster than the sampling frequency, especially in the scenario when it is connected
to a high-speed CDMA network. The ticks must be frequent enough to capture all
inputs in the system. Thus the rate of the tick signal is determined by the process
with the fastest inputs in the system, which is the parameter settings block. The
consequence is an implementation which is likely to be inefficient, since the data-
dominated blocks have to make their computations faster than they need to. A more
efficient implementation would be achieved if the data-dominated blocks were
specified as asynchronous tasks taking more than one tick to complete computa-
tions. The problem with asynchronous tasks is that they are not handled by Esterel
analysis tools. In Esterel Studio, the design environment based around Esterel, every
asynchronous task is seen as a black box and has to be simulated in another environ-
ment. Return times of asynchronous tasks and values they return have to be entered
in the same way as inputs in Esterel Studio simulations. For these reasons, in order
to be able to make a complete simulation in Esterel Studio, we had to make the data-
dominated blocks behave according to the synchrony hypothesis.

Multiclock Esterel [58] was proposed to alleviate some of the problems described
above. In this extension of Esterel, processes may run at different speeds, which
implies that there are multiple tick signals in the system. Processes that are triggered
by different ticks can use various mechanisms to synchronize, including sampling
and reclocking [94].

5.1.4 HCFSM with Synchronous/Reactive Communication

5.1.4.1 SystemC

In SystemC, an FSM can be described with a switch-case construct, which can be
nested to describe hierarchical FSMs. This involves using multiple state variables.
Figure 5.1 shows a section of the method process that describes the parameter set-
tings and threshold reception FSMs of the frequency relay. The protocol for receiv-
ing thresholds starts from state s2_0, which is nested inside state s2. Every time
state s2 is entered signals cancel and done are checked before the execution of the
threshold reception protocol. The description in Fig. 5.1 is essentially behavioural
level abstraction. It is also cycle-accurate, since the process is driven by a clock.

Simultaneous events, which are necessary for synchronous communication
between hierarchical FSMs, can be created in SystemC. However, instantaneous
communication is not handled in the same way as in synchronous languages. The
SystemC kernel operates according to the discrete event model where simultaneous
events are resolved with microsteps. In contrast, a fixed point solution is sought in
the semantics of synchronous languages.

Reactivity is supported by signal sensitivities and wait statement. In control-
dominated systems, a consequence of a reaction is often a pre-emption. SystemC
lacks powerful preemption constructs such as abort and trap. Therefore, it does not
fully satisfy the fourth requirement.

975.1 Analysis Based on Requirements

5.1.4.2 Esterel

Obviously, the synchronous reactive model is completely supported by Esterel.
Esterel contains plenty of statements that enable specifying control-dominated
behaviour in a natural way. For example, reactivity is supported by statements such
as await. Pre-emption can be naturally described by statements such as abort and
trap. This is illustrated in Fig. 5.2, which represents Esterel code for the timer in the
frequency relay. When the counting of 8,000 ticks is finished, the block emits signal
time_out. However, the operation can be preempted by signal start causing the
counter to reset.

All Esterel specifications, including those that contain pre-emption statements,
can be translated into an FSM. The benefit of using pre-emption statements such as

Fig. 5.1 Hierarchical FSMs in SystemC

Fig. 5.2 Esterel specification of timer in frequency relay

98 5 DFCharts in SystemC and Esterel

abort and trap are potentially many states and transitions that are implicit. As a
result the specification becomes compact and easily readable. However, there are
many situations when a designer wants all states of an FSM to be explicitly repre-
sented in the specification. This is where Synccharts, a Statecharts version based on
the Esterel semantics, complements Esterel.

5.1.5 Data Transformations

5.1.5.1 SystemC

As an imperative language, SystemC provides an excellent support for describing
sequential algorithms and thus it satisfies the fourth requirement quite well. To illus-
trate this point, a section of the code from the main loop of the averaging filter
(a thread process) is shown in Fig. 5.3. The main operation is contained inside the
else branch. The algorithm reads a sample, performs averaging inside the loop and
then the result is written. The control signal measure_off is checked at the beginning
of the loop. The reason for the presence of this signal will be explained when the
next requirement is discussed.

5.1.5.2 Esterel

C is available as a host language in Esterel and, hence, complex algorithms for data
transformations inside data-dominated blocks can be specified in a similar way as in
Fig. 5.3. As already discussed, the problem is the assumption of instantaneous com-
putation that has to be applied to time-consuming algorithms. Otherwise, they are out
of reach of analysis tools in Esterel Studio when modelled as asynchronous tasks.

Fig. 5.3 Section of SystemC code for averaging filter in frequency relay

995.1 Analysis Based on Requirements

5.1.6 Multiple Processes Inside a State

5.1.6.1 SystemC

Exception handling is a key component of the frequency relay behaviour as
modelled by the top level FSM in Fig. 3.6. When events off or reset occur, state S2
should be left and all processes in it instantly terminated. SystemC does not fulfil
this requirement, since there is no direct way to implement exceptions modelled by
exits from higher-level hierarchical states. It was indicated earlier that hierarchy in
an FSM could be modelled by nested switch-case statements; this type of model-
ling is not applicable here since it is not possible to instantiate processes inside a
case branch.

As the top level FSM in Fig. 3.6 cannot be directly implemented, the execution
of each process has to be controlled by one or more control signals. Due to this, a
separate FSM named “global state controller” was added to enable suspension and
reactivation of the FSMs and SDFG. It resides with other processes at the same
hierarchical level. The control signal measure_off in Fig. 5.3 comes from this FSM.
If measure_off is active, the process does not execute the main operation. It becomes
active only when measure_off is deactivated.

A modified model of the frequency relay was created to better suit SystemC and
this is shown in Fig. 5.4. As already mentioned, the three SDF actors are imple-
mented as threads and cannot be terminated instantaneously. Each of them can
change its state from active to inactive, or vice versa, only after reading a control
signal, which is done before the beginning of each iteration. This is in contrast to the
original model in Fig. 3.6, which assumes the SDFG and all FSMs in state S2 can
be terminated instantaneously.

averaging

filter

symmetry

function

peak

detection

1 1 1 1

FSM2

parameter

settings

FSM6

timer

FSM5

switch

control

FSM4

rate of change

calculation

FSM3

frequency

calculation

11

ch1

ch2

variable : float thr1=0, thr2=0, thr3=0, thr4=0, thr5=0, thr6=0;

SDF1 – find peaks

channel: ch2

FSM8

global state

controller

Fig. 5.4 Modified model to better suite the SystemC specification

100 5 DFCharts in SystemC and Esterel

5.1.6.2 Esterel

The sixth requirement is fully satisfied by Esterel. It supports behavioural hierarchy
and has several statements that enable preemption. For example, concurrent blocks
can be run inside the abort statement.

5.1.7 Comparison Between SystemC and Esterel

The requirements are listed again in Table 5.1 which also shows the level of support
(in a scale of 0–3 as indicated by the number of Xs) for a given feature in SystemC
and Esterel. Both languages fully support the requirements one and five. It is also
obvious from the previous discussion that SystemC has no support for the sixth
requirement while Esterel fully satisfies it. On the other hand, Esterel has no support
for dataflow. Although no direct support is available for rendezvous, it can be con-
structed in both languages. SystemC does not fully satisfy the third requirement
since only thread processes can be used with FIFO channels. As a result, only
dynamic scheduling is possible. Furthermore, there is no way to directly specify
firing rules in SystemC. The fourth requirement is also not fully supported by
SystemC due to the lack of pre-emption.

5.2 Numerical Results

The files that comprise the SystemC specification of the frequency relay are shown
in Table 5.2 with the number of lines of code for each file. Each file represents a
process from the model in Fig. 5.4. The exception is frequency_relay.cpp, the top
level file where all lower level processes are connected. In addition, this file also
contains the code that specifies the global state controller. At the bottom of the table
is the testbench file, which generates input stimuli for the frequency relay and
records outputs in a .vcd file.

The Esterel specification was created in Esterel Studio. Table 5.3 shows the list
of files and their sizes. This specification is a mixture of Esterel files whose

Table 5.1 Level of support
provided by SystemC and
Esterel

Requirement SystemC Esterel

1 Concurrent processes xxx xxx

2 Rendezvous communication xx xx

3 Dataflow xx

4 HCFSM xx xxx

5 Data transformations xxx xxx

6 Multiple processes in a state xxx

1015.2 Numerical Results

extension is .strl and C files whose extension is .c. In this case, the file structure does
not completely follow the model in Fig. 3.6 mainly because of the fact that two
languages had to be used. Dataflow.strl represents the three SDFG blocks. It invokes
averaging_filter.c and symmetry_function.c, while the peak detection algorithm is
described with Esterel statements. Most intensive computations appear inside these
two C files, not dataflow.strl. Measurement.strl implements the frequency calcula-
tion and rate of change calculation blocks. It uses two C files freq_average.c and
roc_average.c for minor computations. Switch_control.strl implements both the
switch control and timer blocks. Frequency_relay.strl is the top level file, which
connects all lower level blocks but it also implements the top level FSM. As we are
only concentrating on syntax for the moment, it is irrelevant whether the C files in
Table 5.3 represent instantaneous functions or asynchronous tasks.

The total code size for the SystemC specification excluding the testbench file is
1,102 lines while the total code size for the Esterel specification is 901 lines. This
difference is not significant taking into account that the SystemC specification had
more files and thus more declarations. It should also be noted that the declarations
of C functions used by the Esterel specification are contained in separate Esterel
Studio files not listed in the table.

Many different input patterns had to be specified in order to make a satisfactory
simulation for the frequency relay. It is no surprise that the testbench is the biggest

Table 5.2 SystemC files for frequency relay specification

System C files Code size (number of lines)

averaging_filter.cpp 85

symmetry_function.cpp 95

peak_detection.cpp 66

frequency_calculation.cpp 93

roc_calculation.cpp 100

parameter_settings.cpp 239

switch_control.cpp 135

timer.cpp 38

frequency_relay.cpp 251

testbench.cpp 412

Table 5.3 Esterel files for frequency relay specification

Esterel files Code size (number of lines)

Dataflow.strl 76

averaging_filter.c 34

symmetry_function.c 41

measurement.strl 77

freq_average.c 31

roc_average.c 43

parameter_settings.strl 251

switch_control.strl 139

frequency_relay.strl 209

102 5 DFCharts in SystemC and Esterel

file in Table 5.2. While both the testbench and system under test can be specified in
SystemC, only the actual system can be specified in Esterel. In Esterel Studio, it is
possible to run step-by-step interactive simulations. While this feature is useful for
quick checks, it would be inefficient for the complete simulation of a large system.
Instead all inputs have to be created in advance. For that purpose, Esterel Studio
offers scenario files. However, writing scenario files manually is tedious, since a
very simple language has to be used. It is probably faster to generate a scenario file
as an output of a program written in a high level programming language. All this
still takes more time than writing a testbench in SystemC.

While the time to prepare a simulation is important, a more important factor to
consider is the actual simulation time. It took close to 4 h for the simulation of the
Esterel specification versus just 5 min for the simulation of the SystemC specifica-
tion. Both simulations were done on the same computer. The SystemC simulation
was done in Microsoft Visual C++ version 6 with SystemC class library 2.0.1. The
Esterel simulation was done in Esterel Studio version 4, which supports Esterel v5.

There are probably several factors that caused such huge difference, but the most
interesting one is to do with the modelling in Esterel. The whole system has to run
on one clock since Esterel does not support multiple clocks. The speed of the system
is determined by the process with the fastest changing inputs, which is the parameter
setting block. This speed is unnecessarily high for data-dominated parts which need
to read inputs only when a sample arrives. As a consequence, there are many ticks
with absent inputs in this part of the system.

It should be noted that Esterel model is first converted into C code and then simu-
lated. It is quite possible that conversion into C code is still not as efficient as it
could be. This can also have a large impact on the simulation time.

Even though SystemC code can be simulated much faster than Esterel code, we
cannot state that in general SystemC has better validation capabilities than Esterel.
Although simulation is the most widely used method of validation, it is not the only
one. The other method is formal verification, which may be applied to Esterel speci-
fications (unlike SystemC). In the frequency relay case study, formal verification
has limited use since any useful properties that could be verified would be related to
data-dependant internal activities rather than inputs and outputs. It would be diffi-
cult to define such properties using Esterel observers that only check properties over
the control part.

5.3 Feature Extensions of SystemC and Esterel

According to the analysis presented in Sect. 5.1, SystemC could better support or
does not support at all requirements 2, 3, 4 and 6. A rendezvous channel can be
constructed by a designer using wait and notify statements to create request and
acknowledge lines that are necessary for the rendezvous protocol, although that
could take some effort. Ideally, a standard rendezvous channel should be added to
the library of channels that includes sc_fifo, sc_signal etc. Asynchronous thread

1035.3 Feature Extensions of SystemC and Esterel

processes that communicate through FIFO channels using blocking reads provide a
good foundation for dataflow models. On the other hand, it is still difficult to specify
firing rules and construct static scheduling orders. Improvements need to be made
in that direction. Synchronous processes can be created in SystemC, which is essen-
tial for the fourth requirement. Reactivity can also be modelled using signal sensi-
tivities. On the other hand, the non-existence of preemption is a serious disadvantage
when modelling control-dominated behaviour. Processes cannot be instantaneously
terminated or interrupted, which is necessary for the sixth requirement. This funda-
mental limitation can be overcome only by making deep changes in the simulation
semantics of SystemC.

SystemC-H [95] is an extension of SystemC, where some desired changes dis-
cussed above have already been implemented. The SystemC kernel was extended to
provide better support for SDF, CSP and FSM models. In SystemC-H it is possible
to construct static schedules for SDF models, which leads to increased simulation
efficiency compared to SystemC. Another important addition is hierarchical hetero-
geneity described in [96], which makes it possible to refine a state of an FSM with
an SDFG. In its current form, SystemC-H would probably not be able to support
DFCharts entirely since it adheres to purely hierarchical heterogeneity found in
Ptolemy. DFCharts represents a mix of hierarchical and parallel heterogeneity.

Like SystemC, Esterel does not directly support rendezvous, but it is possible to
construct it using await and emit statements. The main problem of Esterel is a com-
plete lack of support for requirement 3. The assumption made by the synchrony
hypothesis that all computations are instantaneous is often not valid for data-dominated
systems. Furthermore, Esterel syntax is not appropriate for dataflow. It would be
possible to design a dataflow network inside an asynchronous task. However, the
asynchronous task is currently just a black box in Esterel’s semantics. Describing
something in an asynchronous task requires going outside Esterel and its develop-
ment tools. In order to create a solid basis for an integrated environment, it is neces-
sary to define a model of computation for asynchronous tasks, which could be SDF,
and to interface it with the synchronous reactive model.

105I. Radojevic and Z. Salcic, Embedded Systems Design Based on Formal

Models of Computation, DOI 10.1007/978-94-007-1594-3_6,

© Springer Science+Business Media B.V. 2011

This chapter presents a Java environment for DFCharts based design. The specification

of finite state machines, synchronous dataflow graphs and communication mechanisms

used in DFCharts is supported by a Java class library. Besides the DFCharts library,

Ptolemy is needed for simulation of SDF graphs.

A DFCharts specification is created in Java by describing FSMs and SDFGs, and

then connecting them. All FSMs and SDFGs used in a specification have to be

defined as classes first, and then instantiated at the appropriate place in the specifi-

cation hierarchy. We will describe FSM and SDFG classes in Sects. 6.1 and 6.2

using examples from the frequency relay specification. Besides FSM and SDFG

classes, a DFCharts specification also needs a class that handles the top level of the

specification. This type of class will be described in Sect. 6.3. Section 6.4 describes

how DFCharts specifications are executed in Java. While the first four sections pres-

ent the designer’s perspective of specification and simulation in Java, Sect. 6.5

describes the class library that enables this process. The chapter is concluded in

Sect. 6.6 by looking at differences between the frequency relay specification in Java

and those in SystemC and Esterel.

The descriptions in the following sections can also be used as the basis for a

DFCharts graphical user interface, which would look exactly like one presented by the

figures in Chap. 3. Java provides a wide range of utilities for graphical programming

especially in the swing package. Graphical objects would need to be converted into

instances of FSM and SDFG classes, which should be a straightforward process.

6.1 FSM Classes

Figure 6.1 shows the structure of an FSM class. Each FSM class has to extend

BaseFSM, a library class. As seen from the figure, the constructor plays a major role

in the class definition since it contains several code sections. Each code section will

Chapter 6

Java Environment for DFCharts

106 6 Java Environment for DFCharts

Fig. 6.1 Structure of FSM classes

1076.1 FSM Classes

be described below. The modifier public is optional. It is not needed if the class does

not need to be seen outside its package.

6.1.1 Declaration of Reference Variables for I/O Signals,

States and Variables

DFCharts library classes InputSignal, OutputSignal, HierarchicalState, SimpleState

and, SharedVariable represent input signals, output signals, simple states, hierarchi-

cal states, and shared variables, respectively. Figure 6.2 shows the part of class

FSM4 (rate of change calculation) which declares variables for these data types.

In the frequency relay specification in Sect. 3.2, rd and start_roc appear as local

signals, but from the point of view of FSM4, they are seen as input and output sig-

nals. Their role as local signals becomes apparent when FSM1 is constructed. This

detail will be shown later in the section. While input and output signals are pure in

DFCharts, shared variables are associated with data types. Currently only primitive

data types are supported such as float, integer, and boolean. They have to be used in

the form of wrappers. For example, Float is written instead of float. On the other

hand, local variables can be of any data type. The local variables of FSM4, which

are declared after the states, all have primitive data types.

6.1.2 Inner Classes for Transition Inputs

and Transition Outputs

In the general transition form t[c]/O,P, the part before the slash is called transition

input while the part after the slash is called transition output. A transition input

consists of signals and variable conditions. In Java, it is defined as a class that

Fig. 6.2 Signals, variables and states in FSM4

108 6 Java Environment for DFCharts

extends the DFCharts library class called TransitionInput. TransitionInput is an

abstract class that contains the single abstract method called evaluateInput(). Thus,

a class that extends TransitionInput has to have a method that implements evalu-

ateInput(). Figure 6.3 shows the class that specifies the input for the transition that

leads from S41 to S42 in FSM4.

InputSignal has the read() method which returns true if the signal is present. The

return type of evaluateInput() is boolean, so either true or false must be returned.

A transition output can contain emitted signals and procedures. It is defined as a class

that extends the DFCharts library class called TransitionOutput. TransitionOutput is

an abstract class with the single abstract method called computeOutput(). All classes

that extend it must implement this method. Figure 6.4 shows the class that specifies

the output for the transition that leads from S43 to S41 in FSM4. Another example is

given in Fig. 6.5, which is the output of the transition from S42 to S43.

Emitting output signals and computing procedures are both done inside com-

puteOutput() method. In Fig. 6.4, just one output is emitted by passing true to write()

method of OutputSignal. The use of SharedVariable class is illustrated in Fig. 6.5.

Fig. 6.3 The input for

transition S41 → S42 in FSM4

Fig. 6.4 The output for

transition S43 → S41 in

FSM4

Fig. 6.5 The output for

transition S42 → S43 in

FSM4

1096.1 FSM Classes

It can be noticed that the value of a SharedVariable object is read using read()

method and written using write() method.

It may seem unnecessary that transition inputs and outputs have to be specified

as classes. It would be easier to simply create methods that are not inside classes.

However, BaseFSM class in the DFCharts library, from which all FSMs have to

inherit, would not be able to handle execution in that case. The reason is the fact that

a method in Java can only be invoked with its name. It is not possible to create a

variable that points to a method. On the other hand, BaseFSM is able to call tran-

sition inputs and outputs, which implement abstract classes.

6.1.3 Constructor Parameters

The parameters passed to the constructor of an FSM include references for input

signals, output signals, shared variables and internal channels. In addition, the name

is needed as well as the reference for the refined (parent) FSM. It is also possible for

an FSM to be instantiated at the top level. In that case the reference for the top level

class is passed to the constructor.

The base constructor has to be handled as well. It takes the reference to the object

that instantiates the FSM (another FSM or top level), the FSM name, the number of

states, and references to output signals.

All input and output signals are created at the top level. A reference to a

SharedVariable object may be passed to an FSM, but an FSM can also create a

shared variable inside its constructor, if it is needed for lower level FSMs. Figure 6.6

shows the parameters for the constructor of FSM4.

6.1.4 Signal and Shared Variable Connections,

Initialization of Local Variables

References to signals and shared variables that are passed to a constructor need to

be assigned to variables in an FSM class. Figure 6.7 shows how this is done for

FSM4. The initialization of local variables can also be seen in the figure.

Fig. 6.6 Parameters of FSM4

constructor

110 6 Java Environment for DFCharts

6.1.5 Linking States, Transition Inputs and Transition Outputs

In this part of the constructor, objects for states, transition inputs and transition outputs

are created and then linked. Figure 6.8 shows this for FSM4. The parameters of

SimpleState constructor are the reference to the FSM the state belongs to, the number

of outgoing transitions and the state name. HierarchicalState constructor has the same

parameters. States, transition inputs and transition outputs are linked to make com-

plete transitions by the method inherited from BaseFSM called connect(). The param-

eters of this method are source state, transition input, transition output, sink state and

transition priority. The last statement in Fig. 6.8 sets S41 as the initial state.

The remaining sections of the constructor are only present in FSMs that are

refined by other FSMs or SDFGs. Thus, we have to depart from FSM4. We will use

FSM1 from the frequency relay specification for illustrations.

6.1.6 Local Signals, Shared Variables and Channels

for Lower Level FSMs and SDFGs

Before lower level FSMs and SDFGs can be instantiated, the objects that enable com-

munication between them (local signals, shared variables and internal channels) have

to be created. Showing all local signals, shared variables and channels that are created

Fig. 6.7 Connections and

initializations in FSM4

Fig. 6.8 Creating transitions in

FSM4

1116.1 FSM Classes

within FSM1 would take too much space. Thus, we will only show, in Fig. 6.9, local

signal start_roc that is used by FSM3 and FSM4, shared variable ave_freq that is also

used by FSM3 and FSM4, and internal channel ch2 that connects FSM3 and SDF1.

6.1.6.1 Local Signal

A local signal is created as an instance of class LocalSignal. As we mentioned before,

lower level FSMs are never aware that they communicate through a local signal. They

see it either as an input signal or output signal. For that reason, besides an instance of

LocalSignal, instances of InputSignal and OutputSignal also need to be created and

passed to appropriate FSMs. Then, they are linked with the instance of LocalSignal.

For that purpose, both InputSignal and OutputSignal contain method setLocal(),

which accepts the reference to a local signal. In Fig. 6.9, start_roc_out and start_roc_

in are passed to FSM3 and FSM4, respectively, and linked with start_roc_local.

Only a string denoting the signal name has to be passed to the constructors of

InputSignal and OutputSignal. The constructor of LocalSignal also requires the ref-

erence to the object that instantiates it, which can be either an FSM or top level

specification.

In many applications, local signals are used for communication between FSMs

that are on different hierarchical levels. For the higher level FSM, a local signal is

always seen as an input signal. The reference for the InputSignal object has to be

declared outside the constructor. Suppose that in the frequency relay specification

FSM1 also has to read start_roc besides FSM4. This situation would be handled in

exactly the same way as in Fig. 6.9, except that start_roc_in would be declared

outside the constructor in the area where all input and output signals for FSM1 are

declared. In this way, start_roc_in is visible to FSM1 transition inputs.

6.1.6.2 Shared Variable

Creating a shared variable is easier. There are three parameters that have to be

passed to the constructor of SharedVariable: the name of the shared variable, the

initial value, and the hierarchical state in which the shared variable is active. This is

necessary to indicate when the shared variable has to be reinitialized. If a shared

Fig. 6.9 Signal start_roc, shared variable ave_freq and channel ch1 in FSM1

112 6 Java Environment for DFCharts

variable is created at the top level then it is always active. Instead of the reference to

a hierarchical state, the third parameter of the constructor would be the reference

to the top level class.

It can be seen in Fig. 6.9 that the initial value of ave_freq (average frequency)

is 0, and it is active in state S12. Whenever FSM1 enters S12, ave_freq is initialized

to 0. If FSM1 also needed to access ave_freq, this shared variable would not be created

in the constructor of FSM1. It would have to be created at the level above FSM1,

which is the top level in this case.

6.1.6.3 Channel

When an FSM class obtains the reference to a shared variable, it is allowed to read

and write the shared variable. It is up to the designer to ensure that in any tick only

one FSM can write. If multiple updates occur, the result becomes unpredictable.

Currently, the DFCharts library supports passing arrays of two data types, inte-

ger and double, between FSMs and SDFGs, in both directions. Thus, there are four

different types of channels: FSMSDFIntegerChannel, SDFFSMIntegerChannel,

FSMSDFDoubleChannel, SDFFSMDoubleChannel. The constructors of all four

classes take only the channel’s name. All four classes have receive() and send()

methods whose parameter is either integer or double array. In Fig. 6.9, an

SDFFSMIntegerChannel object is instantiated to enable communication between

FSM3 and SDF1. It appears in the input of the transition that leads from S31 to S32

in FSM3. The inner class that specifies the transition input is shown in Fig. 6.10.

Variable din is a reference to an integer array. Its single element contains the number

of samples between two consecutive peaks in the AC waveform. receive() and send()

methods return either true or false depending on whether the rendezvous is happening.

In Fig. 6.10, if the rendezvous is happening on ch1 in the current tick, receive() puts

data in din returns true. If not, receive() returns false while din remains unchanged.

6.1.7 Instantiation of Lower Level FSMs and SDFGs

When FSM and SDFG objects are instantiated, all required parameters have to be

passed to the constructors in the correct order. In HDL terminology, this would be

positional association. Named association is not available. Figures 6.11, 6.12 and

Fig. 6.10 The input for

transition S31 → S32 in FSM3

1136.2 SDFG Classes

6.13 show the instantiation of FSM3, FSM4 and SDF1 in the constructor of FSM1,

respectively. The parameters of SDFG constructors will be described in Sect. 6.2.

After an SDFG has been instantiated, its channels have to be linked with it using

method setGraph() as shown in Fig. 6.13.

6.1.8 State Refinement

After FSMs and SDFGs have been instantiated, the states they refine have to be

specified. Those that refine the same state are executed concurrently. HierarchicalState

class has method refine(), which is overloaded three times to support all three types

of state refinement in DFCharts. It can accept an array of BaseFSM objects, an array

of BaseSDF objects, or both at the same time. Figure 6.14 shows the refinement of

state S12 in FSM1.

6.2 SDFG Classes

Each SDFG class has to extend the DFCharts library class called BaseSDF. The

structure of an SDFG class is shown in Fig. 6.15.

As an example, we use the code for SDF1 listed in Fig. 6.16.

Fig. 6.11 Instantiation of FSM3

Fig. 6.12 Instantiation of FSM4

Fig. 6.13 Instantiation of SDF1

Fig. 6.14 Refinement of S2 in

FSM1

114 6 Java Environment for DFCharts

Fig. 6.15 Structure of SDF classes

Fig. 6.16 Class that specifies SDF1

1156.2 SDFG Classes

6.2.1 Constructor Parameters

The parameters of SDFG constructors are: the reference to the object that does the

instantiation (FSM or top level), SDFG name, references to internal channels, and

an integer array that indicates the length of SDF iterations in terms of FSM ticks. An

array allows a repeating pattern of SDF iteration lengths. If all iterations have the

same length, then the array only needs to have a single element as in Fig. 6.13. The

parameters that have to be passed to the constructor of BaseSDF are: the reference

to the object that does the instantiation, SDFG name, the number of internal channels

and the iteration length array.

6.2.2 Instantiation of Actors

Inside the try-catch statement, SDFG actors are instantiated and connected following

the rules of Ptolemy. When actors are constructed, various exceptions that can be

thrown have to be caught. Actor constructors can have various parameters. A com-

pulsory parameter that always has to be included is top, an instance of Ptolemy

class TypedCopmositeActor that is created in BaseSDF. An SDFG in a DFCharts

specification is in fact seen as a TypedCompositeActor in Ptolemy.

Design of Ptolemy actors is described in [97]. We briefly illustrate it here using

an example in Fig. 6.17., which lists the code for the averaging filter in SDF1.

AverageFilter extends Ptolemy class Transformer, which provides utilities for input-

output operations. Variables input and output that appear in the constructor are

inherited from this class. Their data type is set to DOUBLE, which is a replacement

for the primitive type double in Ptolemy.

During the execution of a Ptolemy actor, methods preinitialize(), initialize(),

prefire(), fire(), postfire() and wrapup() are invoked. These methods are not com-

pulsory and most of actors in Ptolemy libraries do not have all of them. However,

most have fire(), which is supposed to contain the main functionality of an actor. In

AverageFilter, initialize() sets all samples in the buffer (AveWindow) to zero while

fire() computes the average of all samples that are in the buffer.

SDFGs that communicate with FSMs, such as SDF1, have to include special inter-

face actors. There are four interface actors corresponding to four types of channels:

InputIntegerActor, InputDoubleActor, OutputIntegerActor and OutputDoubleActor.

InputIntegerActor matches FSMSDFIntegerChannel, for example. Besides top, the

constructor of an interface actor is passed the actor name, an integer showing the

number of tokens communicated on the channel in a single rendezvous, and an array

with initial token values if tokens flow from SDF to FSM. In Fig. 6.17, the peak detec-

tion actor sends data to FSM3 by placing it in the interface actor intOut. When an

interface actor is instantiated, the corresponding channel has to be linked with it

using method setActor() as shown in Fig. 6.16.

Sink and source actors, which are needed for testing, have to be attached to exter-

nal channels. The simple input/output facility described in Sect. 6.4 only handles

116 6 Java Environment for DFCharts

FSM inputs and outputs. There are no sink and source actors in the DFCharts library

since Ptolemy has plenty. It should be noted that the source actor used in SDF1

(class TestSamples) was not taken from a Ptolemy library.

6.2.3 Actor Connections

The actors that make up a TypedCompositeActor are connected with its method

connect(). While connecting outputs to inputs, it has to be ensured that data types

are compatible [97].

6.3 Top Level Classes

A top level class is needed to instantiate and connect top level FSMs and SDFGs. It

has to extend the DFCharts library class called DFChartsTop, which is in many ways

similar to HierarchicalState. The structure of a top level class is shown in Fig. 6.18.

The top level class for the frequency relay is shown in Fig. 6.19.

Fig. 6.17 Averaging filter actor in SDF1

1176.3 Top Level Classes

6.3.1 Constructor Parameters

The constructors of top level classes only have two parameters, the reference for the

file that contains input stimulus, and the reference for the file where the outputs will

be printed. The references for the two files are also passed to the base constructor.

6.3.2 Instantiation of Input and Output Signals

All input and output signals, except those that serve as local signals, have to be

instantiated at the top level and passed to FSMs. The constructors of InputSignal and

OutputSignal only need the signal name and the reference to the top level class.

6.3.3 Local Signals, Shared Variables and Channels

for Top Level FSMs and SDFGs

This section is the same as in FSM classes. The top level class of the frequency relay

does not have it, since there is only a single FSM at the top.

Fig. 6.18 Structure of top level classes

118 6 Java Environment for DFCharts

6.3.4 Instantiation of Top Level FSMs and SDFGs

This section is also the same as in FSM classes. In the frequency relay, FSM1

accepts the references for all input and output signals even though it only uses on,

off and reset. The rest is passed to lower level FSMs.

6.3.5 Top Level Refinement

The top level can be seen as always active hierarchical state that does not belong to

any FSM. Hence, it is “refined”. The topLevel() method in DFChartsTop is very

similar to refine() in Hierarrchical state. It is overloaded three times to support the

three refinement types. FSM and SDF objects have to be put into arrays before they

are passed to topLevel().

Fig. 6.19 Top level

of frequency relay

1196.5 Library Classes

6.4 Simulation

Finally, we need a class that runs the top level class. The top level class is executed

with runTopLevel(). The class that runs the frequency relay top level is shown in

Fig. 6.20.

The input and output files passed to the top level class only contain FSM inputs

signals and outputs signals. As mentioned before, SDFGs have separate source and

sink actors for testing.

In the input file, the status of each input signal has to be defined in each tick. The

name of an input signal and its status (present or absent) are written on separate

lines. Ticks are separated by blank lines. If the same inputs repeat over successive

ticks, the instruction ‘repeat’ can be used with the number of ticks that have identi-

cal inputs. The simulation is terminated by writing ‘end’. An input file for a system

with two inputs could look as in Fig. 6.21

In the output file, outputs are printed in the format that is used for inputs. In addi-

tion, the current state of each FSM is printed in every tick.

6.5 Library Classes

DFCharts library classes enable execution of FSM and SDF classes, described in the

previous sections, by providing synchronization and communication mechanisms.

It should be noted that the library does not yet include any classes that identify

Fig. 6.20 Execution of the top level class of the frequency relay

Fig. 6.21 Input file format

120 6 Java Environment for DFCharts

causality cycles in DFCharts specifications. Thus, it is currently the responsibility of

a designer to ensure that communication between FSMs is valid. If FSMs are incor-

rectly connected with instantaneous loops, a simulation will deadlock. On the other

hand, if any of SDF graphs in a specification is not constructed correctly, Ptolemy

software will throw an exception.

In total, there are 23 classes in DFCharts library. They can be divided in five

groups: base classes, FSM component classes, FSM communication classes,

FSM – SDF communication classes, and synchronization class. The base classes

include BaseFSM, BaseSDF, DFChartsTop; the FSM component classes include

SimpleState, HierarchicalState, TransitionInput, TransitionOutput, Transition; FSM

communication classes include InputSignal, OutputSignal, LocalSignal, SharedVariable;

FSM–SDF communication classes include FSMSDFChannel, SDFFSMChannel,

FSMSDFIntegerChannel, SDFFSMIntegerChannel, FSMSDFDoubleChannel,

SDFFSMDoubleChannel, InputIntegerActor, OutputIntegerActor, InputDoubleActor,

OutputDoubleActor. The single synchronization class is ThreadControl.

Most of these classes have already been described in the previous sections to

some extent. In the following sections, further details will be added for each group.

In addition, relations among different groups will be highlighted.

6.5.1 Base Classes

FSM and SDF objects, which inherit from BaseFSM and BaseSDF, need to be

able to run as separate threads. For this reason, both BaseFSM and BaseSDF

implement the Runnable interface. A DFCharts top object is attached to the main

thread. At any point in the execution of a DFCharts specification in Java, the num-

ber of active threads is equal to the sum of all active non-refined FSMs and all

active SDFGs, plus the main thread. Active FSMs that are refined do not consume

additional threads. The thread of a refined active FSM simply takes over one of

the refining FSMs.

BaseFSM provides connect() method for construction of an FSM, which links

states with transitions. It also has variables for current state and next state, which are

necessary for execution of an FSM.

The main purpose of BaseSDF is to provide an interface with Ptolemy software,

which is necessary for execution of SDF graphs. Therefore, when DFCharts library

is built, Ptolemy must be included in the build path. From the Ptolemy’s perspective,

each SDF graph is an instance of TypedCompositeActor, which is called top in the

DFCharts library. The execution of a TypedCompositeActor is handled by methods

provided by class Manager. Those methods are invoked from the run() method of

BaseSDF. When an SDFG is started, initialize() is invoked. For each iteration,

iterate() is invoked. Finally, when an SDFG is stopped, wrapup() is invoked.

A DFChartsTop object spawns the threads for top level FSMs and SDFGs when

runTopLevel() calls one of the three methods – runType1(), runType2() or runType3(),

depending on the contents of the top level.

1216.5 Library Classes

6.5.2 FSM Component Classes

All FSM component classes except Transition represent inputs for the connect() method

of BaseFSM. The Transition class is used in the data structure that is built inside

BaseFSM. It contains reference variables for TransitionInput and TransitionOutput.

The most important function of SimpleState is to determine which transition

should be taken and produce the outputs for the selected transition. For that purpose,

the method evaluateTransitions() is used. It evaluates transitions inputs in the order

of their priorities. When it finds a transition that is enabled, it produces the outputs

for that transition. The next state cannot be immediately set since it may be possible

that the FSM is pre-empted in the current tick. Consequently, the evaluateTransi-

tions() method of the refined state is called. This is a recursive process that leads to

a top level FSM. When it is finished, the next state variable in all surviving FSMs

can be updated.

HierarchicalState also has to evaluate transitions, but it has an important additional

task. It has to spawn threads for the refining FSMs and SDFs. In this respect, it is

very similar to DFChartsTop. If a state is refined only by FSMs, the method

runType1() is used. If it is refined by an SDFG, runType2() is used. It should be

noted that a state can also be refined by several disconnected, independently operat-

ing SDFGs, but this is not a usual situation. If a state is refined by both FSMs and

SDFGs, runType3() is used.

TransitionInput and TransitionOutput are abstract classes with no functionality,

which contain abstract methods evaluateInput() and computeOutput(), respectively.

Their purpose is to facilitate building the data structure that represents an FSM.

6.5.3 FSM Communication Classes

InputSignal and OutputSignal enable communication between FSMs and the external

environment. Both are relatively simple as they only contain two methods, read()

and write(). If the status of a signal is present, boolean true is written; otherwise,

boolean false is written.

LocalSignal is more complicated as it has three values: present, absent and

unresolved. When a new tick begins, the value of a local signal remains unresolved

until an FSM writes true or false. If another FSM attempts to read the local signal

while it is still unresolved, its thread will become blocked. It will be notified when

the value of the signal becomes true or false.

SharedVariable is simpler than LocalSignal, but more complicated than

InputSignal and OutputSignal. It has write() and read() methods which work with

all primitive data types. It also contains a flag that indicates when a shared variable

is active. A shared variable is reset to its initial value only in ticks in which it gets

activated. By comparison, LocalSignal does not need a similar flag, since it does not

have memory. At the beginning of each tick, all local signals are set to unresolved.

122 6 Java Environment for DFCharts

6.5.4 FSM-SDF Communication Classes

In this group FSMSDFChannel and SDFFSMChannel are base classes.

FSMSDFIntegerChannel and FSMSDFDoubleChannel extend FSMSDFChannel,

while SDFFSMIntegerChannel and SDFFSMDoubleChannel extend

SDFFSMChannel, Channel classes enable communication between FSMs and

SDFGs in both directions using arrays of two primitive data types, floats and inte-

gers. Arrays always have to be used. If there is only a single value flowing through a

channel, an array of size one is used. Communication is performed by receive() and

send() methods. The parameter of both methods is the reference to an array, which is

read from or written to depending on which method is used. Both methods return

true if rendezvous occurs, or false otherwise. Channel classes also contain control

variables, which ensure that data flows through a channel only once in a single

 rendezvous between an FSM and an SDFG.

Input interface actors are essentially source actors in an SDGF when commu-

nication is performed with an FSM. They are included in the iteration schedule of

an SDFG, just like other actors. The send() method of the channel classes places

tokens (floats or integers contained in an array) into an input interface actor.

During an iteration of an SDFG, these tokens are read out. It has to be ensured that

as many tokens are placed as needed. Otherwise, the input interface actor will

output some values multiple times, which would most likely lead to incorrect

behaviour.

Similarly, output interface actors can be thought of as sink actors in an SDFG.

During an iteration, tokens are placed inside an output interface actor. They are

brought to an FSM by the receive() method of the channel classes. As in the case of

input interface actors, it needs to be ensured that the right number of tokens is

placed in output interface actors.

6.5.5 Synchronization Class

The single class that falls under this category is called ThreadControl. Synchronizing

threads is its main purpose, but it additionally performs several other actions that

occur at the end of each tick. Among those actions is ensuring that each SDF

iteration lasts the specified number of ticks.

When an FSM completes a transition, its thread blocks as it encounters wait().

When all FSM threads block, the tick is completed. At this point, methods in

ThreadControl print output signals, read inputs for the next tick, clear local signals

and update shared variables. Then, if there are any SDFGs that are due to complete

an iteration, ThreadControl waits before starting a new tick. A new tick is started by

unblocking all threads using notify().

1236.6 Frequency Relay Revisited

6.6 Frequency Relay Revisited

When compared against its counterparts in SystemC and Esterel, the most important

feature of the frequency relay specification in Java is that it fully conforms to the

DFCharts model from Sect. 3.2. The specifications in SystemC and Esterel contain

alternative solutions and workarounds for the parts of the DFCharts model that the

two languages could not completely support.

The size of the Java specification is 1,479 lines. This appears to be significantly

longer than 1,102 lines of SystemC code and 901 lines of Esterel code. However, the

difference is entirely due to numerous class declarations that have to be made in

Java. As we explained in Sect. 6.1, inputs and outputs of transitions have to be

specified as classes. What really matters is that describing the actual behaviour does

not take more effort in Java than in SystemC and Esterel. Class declarations can be

easily handled with templates. Hence, they should have no impact on design time.

125I. Radojevic and Z. Salcic, Embedded Systems Design Based on Formal

Models of Computation, DOI 10.1007/978-94-007-1594-3_7,

© Springer Science+Business Media B.V. 2011

7.1 Background and Trends

Long-term trend in semiconductor development has been integration of larger and

larger systems on a single chip. It has been governed by Moore’s law in terms of

integration capabilities and double increase of the number of transistors on a chip

every 12–24 months. At the same time this has also led to the increasing raw com-

putation power on a single chip. However, all those transistors can’t be used to

achieve faster and more powerful processors due to architectural and power limita-

tions. Rather, the development has taken another direction towards systems on chip

which consists of many processors or processing elements, sometimes tens or hun-

dreds of such elements, with a clear trend towards chips which will have thousands

of processors. One of the main reasons for this trend is that those processors are

simpler, easier to implement and work at lower frequencies than high performance

processors, thus they are less power and energy demanding. However, the new

approach, which is often referred to as multiple processor (or multiprocessor) sys-

tems on chip (MPSoC) faces many challenges. Among them most notable are

related to the selection of the type of processing elements (e.g. general purpose vs.

application-specific, uniform vs. heterogeneous), selection of interconnect struc-

tures and system architecture (e.g. networks on chip vs. circuit interconnect vs.

buses), life-time of the processing elements (static or dynamic or reconfigurable),

run-time support (operating systems or customized), design flow and tools support

(e.g. traditional programming languages vs. concurrent languages). Many new

architectures have emerged with a claim of their advantages over others in at least

specific application domains. The new approaches are mostly based on concentration

on certain features (e.g. architecture, run-time support or languages) but not many

of them look at the big picture and design flow that will ensure more consistency and

better linkages between those features.

Very often, the new proposed MPSoCs are driven by a single or very narrow

class of applications or just their most dominant part. For example, although

Chapter 7

Heterogeneous Reactive Architectures

of Embedded Systems

126 7 Heterogeneous Reactive Architectures of Embedded Systems

motivation for a new architecture is more general, justification for it is based on

relatively simple or restricted case studies such as computation kernels (digital

filters such as FIR and IIR, FFT, DCT etc.) or full applications (H.263/4, smart

cameras, baseband radio signal processing, OFDM, radar processing, large scale

database servers). However, they are typically oriented towards data-dominated sys-

tems and almost completely neglect the control-dominated parts of wider applica-

tions, multi-modal operations and the need for more complex communication

mechanisms when combining those individual parts into larger systems. On the

other hand those control-dominated parts, which are usually less computationally

demanding, are critical from the application point of view. Examples of such applica-

tions with the mixture of control-dominated and data-dominated computations are

cellphones and all sorts of portable computers (notably tablets) with the range of appli-

cations that can be executed simultaneously or at different times, multi-participant

gaming, automotive systems with the range of applications from hard real-time to

soft- or non-real-time, home automation, surveillance and tracking, robotics, building

automation, industrial automation, smart grid, just to name few.

Also, when addressing the dominant applications of today and of the foreseeable

future we have to identify that they typically diverge in two main directions. One is

the world of best effort systems, in which the highest performance with possible

trade-off with power requirements is the ultimate goal. The second direction is the

world of real-time systems, which do not need the highest performance but guaran-

teed timely response to the requirements of their environment and events generated

during system operation, sometimes absolutely uncompromising (hard real-time) or

sometimes little bit relaxed when the lack of timely response, from time to time,

will not be considered harmful for the system functionality (soft real-time). However,

in both types of systems, computations are governed by the interaction with their

environment, and the application parts communicate each with the other in ways

that can be, or sometimes cannot, specified and analyzed in advance.

The advanced current approaches usually do not consider separation and do not

distinguish between control-driven and data-driven components of computation,

which typically also have mutually opposing execution requirements: while control

usually cannot be reduced or simplified, data-processing can be done with different

variations (simpler and alternative algorithms, change of precisions etc.). Complex

relationships between control-driven and data-driven parts of applications are dealt

with by system designers and programmers in ad-hoc ways with a minimal use of

formal modeling and design techniques, if at all, on their individual parts. As the

result, complex system design flow is typically broken by a number of manual inter-

ventions with significant disconnect between the specification and the real system

execution (implementation). The reason for this is lack of formal models used to

describe complex systems that combine control-driven and data-driven computa-

tions, which was one of the major motivations for the work on DFCharts and then

also its extension to DDFCharts. Although not perfect, these MoCs can be used to

formally model much bigger class of applications than those used in practice, and at

the same time can serve as the central point of system design process and design

flow, which can be completely automated, from specification to implementation.

1277.2 Architecture Framework – HETRA

Schetches of this will be given in Chap. 8. While implementation of DFCharts and

DDFCharts on single processor computers is rather straightforward by, for example,

extending current programming languages with the specialized libraries, we also

demonstrate that they can be easily used to describe systems implemented as

MPSoCs and specifically target heterogeneous MPSoCs. In this chapter we first

describe some of the trends and state of the art in MPSoC development. Practically

all existing approaches are oriented towards data-driven (and dominated) applica-

tions, although they claim applicability and suitability, and are motivated, by con-

trol-driven and multi-mode processing. Then, we introduce a heterogeneous

platform that provides explicit processing elements for control-driven processing

and interaction with the environment, called heterogeneous reactive architecture

(HETRA), suitable to implement wide class of systems which combine control-

driven and data-driven processing, including multi-mode systems, in an organized

way and satisfy the requirements of complex model of computation such as DFCharts

on the execution level. HETRA, as will be seen, adds reactive processors, as new

processing elements, to the spectrum of possible processing elements in a heteroge-

neous execution platform. A typical reactive processor and its integration with other

types of processors are illustrated, as this type of architecture is used as a target of

mapping DFCharts described systems onto a subset of HETRA execution platform.

7.2 Architecture Framework – HETRA

Majority of MPSoCs are based on using a traditional processor core replicated many

times, organized in a network on chip (NoC) and some specific topology suitable for

supporting application requirements. The major motivation for NoC approach is

scalability, as the networked processors can operate on different and unrelated

clocks, which is opposite case to the traditional multiprocessors on chip (CMPs).

This naturally goes towards the architectures which are using different, mutually

asynchronous clocks and implementation of the architecture as a GALS (Globally

Asynchronous Locally Synchronous) system. This fact can be beneficial in address-

ing models of computation around which the applications are developed. NoCs

require specialized routers or switches, which are also replicated to enable connec-

tions of, typically, clusters of traditional processors. These clusters can be organized

around traditional buses or in some sort of CMP (Chip Multiprocessor). However,

NoCs can use circuit switching, packet switching or pipelined links [98] to address

varying needs of applications and to address scalability satisfactorily. Still, intelli-

gent use of resources is needed to achieve real scalability, especially at application

level [99]. This looks like Lego-like design approach, but the question has to be

asked what the bricks are? In order to achieve viable systems a number of accompa-

nying mechanisms are necessary, first of all communication protocols, which have

to be identical for the whole system and then result in large overheads. Contrary to

usual computer networks, NoC adapters (routers, switches) typically rely on hard-

ware implementation, not software, because of performance requirements and the

128 7 Heterogeneous Reactive Architectures of Embedded Systems

fact that data exchange happens within chip boundaries. This naturally leads toward

communication centric design approach, although very often the system design

approach has to be computation centric, too.

The survey [100] nicely summarizes the features of various topologies used for

implementation of complex systems on chip, from 2D-mesh technologies, which

dominate today’s NoCs and are considered most general, to usually more compli-

cated crossbars with non-blocking mechanisms, which may be expensive as the

number of communicating components increases; point-to-point connections, sin-

gle, multi-segment and hierarchical buses, ring crossbars, fat-trees, 2-D torus, and

other custom schemes. As the survey shows, some of the approaches are suitable or

have been prototyped in FPGAs, and practically all lack of concrete results from

real applications, typically only fragments of the applications are prototyped. This

clearly indicates that some things are missing, particularly the tools to specify and

then map real applications on the NoC as the execution platforms. One of the rea-

sons for this is the lack of tools to describe the applications on a high system level.

The designers rely on using existing tools that allow descriptions of only system

parts, and then painstaking process of specifying interconnections of these parts on

specification level and mapping each individual application, with its own specifics,

on the execution architecture manually. This means that the parallelisms, which are

very challenging [101], have to be identified and exploited on the application level

and then the application mapped on the execution platform. Some partial solutions

exist, which allow certain level of customization of the execution platform itself

[102], but they still require utilization of standard programming languages for spec-

ification. A solution can be to use standard, non-customizable platforms, such as

[103], but the question of how to use it with the existing tools remains. The prob-

lems emerge from the fact that these platforms offer certain number of processing

elements (processors), and the application can use the processor on (1) task (pro-

cess) level by parallelizing parts, such as typically loops and certain mathematical

operations, which again depend on loops, or (2) by using task level parallelism in

attempt to distribute execution on multiple cores and hope that it will result in

enhanced performance. Scheduling of operations and tasks is critical in this case,

and no obvious and general solutions exist. Analysis of designed systems becomes

the key, and it is very difficult, if not impossible, if the system is designed in ad-hoc

manner without using a systematic design flow based on formal model of computa-

tion. Some simple solutions have been proposed, such as allocation of each task to

separate (own) processor core [104], which alleviates use of complex scheduling,

and transfers the problem to scheduling accesses to memories rather than tasks or

operations on individual cores. However, these solutions result in low utilization of

processors, especially when their number increases over even moderate threshold

(e.g. four processors). Identification of parallelism and its use in embedded and real-

time systems context becomes even more difficult, because it may be connected

with very complex control and then also constrained with real-time requirements.

Furthermore, as analysis often shows, some of the resources in the underlying exe-

cution platform are underutilized to a very significant level and their better utiliza-

tion can be achieved by more customization, e.g. by customizing instruction set

1297.2 Architecture Framework – HETRA

of individual general purpose processor cores [103] and specialized processors

organized in tightly coupled coarse-grained processor arrays [105], or even more

radical by run-time dynamic reconfiguration of processor cores [106] and customi-

zation and dynamic reconfiguration of the overall platform [107]. There are many

other examples of execution architectures aimed at better fitting to the requirement

of fixed or more general applications. Aforementioned solutions are primarily aimed

at data-driven applications. There have been also attempts to use reactive processors

[108, 109] for control-dominated applications by inventing new multiple core exe-

cution platforms [109] for synchronous reactive applications, or even for simple

heterogeneous systems [110]. Customization of a processor typically results in low

power consumption execution, avoidance of painstaking RTL verification when

dealing with hardware implementations, proprietary solutions that protect the IP,

automated processes, increased security, avoidance of buses, better area/performance

trade-offs, and higher productivity.

It has been demonstrated that homogeneous solutions, which are based on

replication of the same computation and communication resources, are easier to

implement, but more difficult and less efficient to use for specific applications. The

heterogeneity of execution platform can bring many benefits, especially in the

domains such as low resource requirements and low power consumption. However,

current methods for the exploitation of advantages of heterogeneity are lacking

tools and formal mechanisms. The question is how the process from specification to

implementation (and execution platform) can become smooth and at each design

stage preserve semantics and properties of original specification, including the exe-

cution level, while still delivering efficient solutions, optimized for resource and

power usage, for example. While formal models of computation can be implemented

on any execution platform with the varying degree of design effort, we are seeking

for platforms that naturally implement certain model of computation and allow

straightforward and automatic mapping from the specification, which complies with

the same model, to the implementation. Some of the previously proposed execution

platforms have searched for such goals, particularly [110] with the support for syn-

chronous reactive model of computation, and [111] that actually supports asynchro-

nous reactive model. However, both of them were lacking support for data-driven

computations and some form of the data-flow model of computation. One concrete

example of the architecture that targets GALS model is given in [112, 113], with a

limitation that it is customized to the certain degree for GALS model and program-

ming language Systems [114, 115], in which data-driven computations are specified

in Java, and as such do not follow any formal model of computation. It demonstrates

that the approach of separating control on specialized processors and data-driven

processing on traditional processors has its merits and can be further extended to

any type of the GALS model regardless of the mechanism used for communication

between asynchronous parts of the designed system.

So, what are the options which make execution architecture suitable to support a

heterogeneous model of computation such as DFCharts and DDFCharts? First, we

need a range of processing elements which cover the needs of applications in terms

of both control-driven and data-driven processing. Obvious choices for the later

130 7 Heterogeneous Reactive Architectures of Embedded Systems

are traditional processors (e.g. RISC), their combinations into tightly coupled

 multiprocessor and multi-core clusters, general-purpose and application-specific

digital signal processors (e.g. DSP), and application-specific processors in the form

of ASICs and reconfigurable blocks, which can implement data-driven algorithms

in hardware (e.g. FPGAs). However, as the result of the need to cover control-dom-

inated part of the applications and efficient implementation of finite state machines

and reactivity, we propose inclusion of reactive processors as another processing

element for implementation of control part of complex models of computation.

Reactive processors also can be efficiently used to implement different scheduling

mechanisms and control other processing elements in such systems. As processing

elements implement computational functionalities that communicate each with the

other, there is a need for a range of communication facilities in the form of flexible

interconnect mechanisms, which can be structured and used as the applications

need. Then, heterogeneous system on chip (HSoC) is a system on chip that can

combine various processing elements and interconnect components to optimally

satisfy requirements of an application. A pool of resources from which a custom-

ized solution can be implemented is represented in Fig. 7.1. Besides the resources

of the heterogeneous platform, the figure shows that the HSoC interacts with the

environment and with that indicates the need for reactivity as the feature of the

execution platform, which will enable mapping of the reactivity of the heteroge-

neous model of computation and the specification language. By further narrowing

execution platform design options to those needed by the underlying MoC, complex

Flexible

Interconnect

(Bus, switch, router,

crossbar, shared memory)

DSP

RP

RISC FPGA

IO

ACC

IO

FPGA

HETRA

HSoC

Environment

HW accelerators

Application-

specific

Reconfigurable

Data-driven SW accelerators

On DSP and other specialized

Traditional

mixed control-

and data-driven

With and

without OS

Reactive control-driven

Fig. 7.1 Heterogeneous system on chip (HSoC) – HETRA

1317.3 Reactive Processors as the Elements of the Heterogeneous Architecture

design flow can be significantly simplified. Because the execution platform consists

of a number of programmable processors that execute programs, beneficial may be

adding of run-time support that helps bridging between model of computation,

execution platform and specification (design) language.

The HETRA (Heterogeneous Reactive Architecture) consists of different types

of processing elements and flexible interconnect resources which can be combined

in custom configurations and concrete architectures to satisfy application require-

ments. The role of interconnect elements is to provide for efficient message passing

and data exchange mechanisms, as fit to the application and processing require-

ments. Input-output elements have been added, since they are essential in for imple-

menting reactive features, enabling mapping of the real world (environment) onto

suitable abstractions of the architecture and the used MoC. Design exploration tools,

traditional and more advanced that take into account multi-modal nature of the

applications and reconfigurability, are needed to optimize the architecture to a spe-

cific one. The use of processing elements and flexible interconnect also takes into

account other system requirements and constraints, such as distances between

elements, required data bandwidths, reliability and dependability, power and energy,

to result in the system that optimally satisfies application requirements.

HETRA enables execution of single and multiple applications at the same time.

Applications can consist of multiple logical tasks or behaviors executed on process-

ing elements, which communicate each with the other as the application requires.

Those behaviors can be data-dominated or control-dominated, and as such may be

more suitable to run on specific processing elements. For example, data-driven tasks

are efficiently executed on DSP processors or FPGAs, although they also can be, if

less performance-critical, executed on traditional processors (RISC). Control-driven

and reactive tasks are primarily run on reactive processors (RP), or if less critical on

traditional processors (RISC). The overall reactive application is driven by control-

dominated code that naturally executes on reactive processors, while data-driven

tasks are primarily executed on specialized processors. The role of reactive proces-

sors is critical for the system operation as they are used for implementation of con-

trol part of application, which ensures overall system integrity and compliance with

the selected MoC. The role of the interconnect mechanism is critical, too, as it pro-

vides the necessary low level functionality and performance to the support the data

exchange in selected MoC.

7.3 Reactive Processors as the Elements

of the Heterogeneous Architecture

Reactive processors as the basic building block of the heterogeneous reactive archi-

tectures such as HETRA. Although there exists a number of such processors, e.g.

[108, 116–118], we illustrate the basic idea behind them in this section on the exam-

ple of ReMIC (Reactive MICroprocessor) [108]. We emphasize their capabilities that

have been used in mapping DFCharts on specific subset of HETRA architecture,

132 7 Heterogeneous Reactive Architectures of Embedded Systems

extended version of HiDRA (Hybrid Reactive Architecture) [111]. The ReMIC

processor is suitable for handling signals as the physical mechanism to communicate

with the external environment and implement reactive behaviors, as well as to deal

with preemptions in a structured way. It has special instructions for emission, check

of presence and immediate reaction on signal presence and quick transfer of control

from one to another behavior (described by FSMs). Also, a variant with power

considerations and additional power aware instructions is briefly introduced.

7.3.1 Reactive Microprocessor – ReMIC

ReMIC processor core has been designed to provide:

 1. Efficient mapping of control-dominated applications on processor ISA: This

approach leads to better performance and code density for control-dominated

applications.

 2. Support for direct execution of reactive language features: This ensures that

control-dominated models and languages can be supported more directly on a

processor without any intermediate code generation performed by conventional

compilers.

 3. Support for concurrency and multi-core configurations: The processor architec-

ture supports building multiple core systems that can simultaneously execute

multiple application (concurrent) behaviors and provide a mechanism for their

synchronization and communication.

ReMIC design [108] follows the main ideas of reactive model of computation.

This is achieved with a set of native instructions in addition to standard instructions

found in traditional RISC-type processors. These new native instructions provide

direct support for delay, signal emission, priority and preemption. Concurrency is

achieved by multiple ReMIC cores, where generic signal manipulation instructions

can be used to implement efficiently synchronization of concurrent tasks running on

separate processors. The key features of ReMIC that facilitate reactive applications

are summarized as follows:

One Signal Input Port (SIP) and one Signal Output Port (SOP) are implemented •

to enable direct mapping of pure (binary), effectively enabling processor to com-

municate with its environment by direct manipulation of values represented on

wires. Simultaneous emission of multiple signals in one clock cycle is also

supported.

A number of user programmable internal timers are implemented to generate the •

timeout signals, which can be fed back and used internally for synchronization

purpose or used to interact with the environment.

ABORT instruction is introduced to handle preemption in a structured way, typi-•

cal for reactive programming languages. Code can be wrapped up in the abort

1337.3 Reactive Processors as the Elements of the Heterogeneous Architecture

statement and immediately abandoned when an external event on the specified

SIP input occurs. A customizable number of levels of nested aborts is supported

with maximum one instruction cycle reaction time on external signal. Besides

the execution efficiency and determinism, this also leads to very structured

programming style when programming the reaction on external events.

Other instructions including EMIT, SUSTAIN, PRESENT, SAWAIT, TAWAIT, •

CAWAIT are added to support reactive behaviors (refer to Table 7.1 for a list and

meaning of these instructions).

Figure 7.2 illustrates the ReMIC partition of functionality and mechanism for

connection with external world. It consists of a traditional RISC-type pipelined

microprocessor datapath, reactive functional unit (RFU) for handling external

and internal signals, and processor control unit. ReMIC has Harvard architecture

with 32-bit wide program and 16-bit wide data memory, which both are also

parameterized in the design and can be changed. Although we will not concen-

trate on its customization features here, ReMIC is a parameterized soft-core that

can be instantiated in an application-required configuration and also easily

extended with the additional instructions and corresponding functional units for

their execution.

Generally, the hardware implementations of reactive instructions result in better

performance and much more efficient compilation of reactive programs [118]. All

ReMIC instructions have same length, 32 bits in default configuration. Instruction

formats of some reactive instructions are illustrated below.

Table 7.1 Reactive instruction set

Feature Instructions Semantics and descriptions

Signal manipulation

Signal emission EMIT signal(s) Signal(s) is/are set high for one tick.

Signal sustenance SUSTAIN signal(s) Signal(s) is/are set high forever.

Delay TAWAT delay Wait until delay (number of instruction

cycles) elapses.

Signal polling SAWAIT signal Wait until signal occurs in the

environment.

Conditional signal

polling

CAWAIT signal1,

signal2, address

Wait until either signal1 or signal2

occurs. If signal1 occurs, execute

instruction at the address immediately

followed, or else at the specified

address.

Signal presence PRESENT signal,

address

Instruction at the address immediately

followed will be executed if signal

is present, or else at the specified

address.

Preemption

Preemption ABORT signal,

address

Program finishes its current instruction

and jumps to address in the occurrence

of signal.

134 7 Heterogeneous Reactive Architectures of Embedded Systems

7.3.1.1 EMIT – Signal Emission

EMIT, with the format as shown below, is used to generate external output signals

through the signal output port (SOP). The signals last for one clock cycle. Bits 24–9

of the instruction are mapped to bits 15–0 of the SOP.

31–30 29–23 24–9 8–0

AM(2) OC(5) Signals(16) Unused(4)

7.3.1.2 SAWAIT – Signal Polling

SAWAIT, with the format as shown below, is used to poll for a specified signal from

the signal input port (SIP). ReMIC stays in a wait state until the signal occurs in the

environment.

31–30 29–23 24–9 8–5 4–0

AM(2) OC(5) Unused(16) SIG(4) Unused(4)

7.3.1.3 ABORT – Preemption

ABORT, with the format as shown below, is the most crucial reactive instruction

because it is introduced to support preemption with priorities. An ABORT instruc-

tion has a signal, which is sensitive to it and a continuation address. ABORT instruc-

tion becomes active from the instant it is executed until either (1) it reaches the

Control Unit

WR

PDIN(32)

PADR(16)

SIR(16)

SOR(16)

SIP(16)

SOP(16)

External RAM

Interface

External ROM

Interface

Memory Mapped IO

Interface

ReMiCORE

Reactive Signal

Input & Outputs

DIN(16)

DOUT(16)

ADDR(16)

PM_SEL

CLK

RST_L
Clock & Reset

inputs

Reactive

Functional Unit

CLK
RST_L

CLK

Data Path

Fig. 7.2 REMIC block diagram

1357.3 Reactive Processors as the Elements of the Heterogeneous Architecture

continuation address, or (2) an event on one of the SIP inputs occurs that preempts

all unexecuted instructions within the body. Bits 24–9 of the instruction specify the

abort continuation address and bits 8–5 specify the abort signal that is encoded to

one of the SIP inputs.

31–30 29–23 24–9 8–5 4–0

AM(2) OC(5) Continuation Address(16) SIG(4) Unused(5)

The idea behind practically all reactive processors [108, 116–119] is inspired by

Esterel [15], a synchronous reactive language specifically designed for reactive pro-

grams. Esterel provides a set of constructs for modeling, verification and synthesis

of reactive systems.

7.3.2 Power Aware ReMIC-PA

While most research related to reactive processors focus on improving the

performance, not enough attention have been made in analyzing power consumption,

which is obviously very important in many embedded applications and then also on

MPSoCs and HSoCs in which they will be used. ReMIC has been analyzed and then

empowered with mechanisms that reduce its power consumption and enable power

aware applications. Power aware ReMIC, or ReMIC-PA [120], is implemented

through power-aware optimizations applied to ReMIC. The modifications target

reducing dynamic power dissipation by minimizing switching activity of the design.

The optimizations included modifications that can be classified into two parts,

targeting data-dominated and control-dominated applications, respectively.

There are two optimization techniques which can be effective for data-dominated

parts of applications: (1) Precise Read Control (PRC) and (2) LiVeness Gating (LVG)

[121]. The PRC is used to eliminate the register file reads based on instruction types.

In the original ReMIC design, every instruction automatically reads two operands

from register file in the decode stage no matter what instruction it is. This mechanism

facilitates the proper pipeline operation at the cost of unnecessary reads. For exam-

ple, instructions that operate on immediate values do not need to read the second

operand from the register file. The LVG is responsible for elimination of the register

file reads and pipeline registers updates when the pipeline is stalled or a taken branch

instruction is executed. It is obvious that in above two situations, both register file

reads and pipeline registers update are worthless and should be eliminated. To sup-

port PRC and LVG, the extra circuitry used to control the register file access and

pipeline register update is inserted into the original ReMIC control unit. The opera-

tion codes of instructions are also reordered according to the instruction types.

The optimizations for control-dominated applications are focused on minimizing

the switching activity of the clock signal. ReMIC-PA provides a mechanism, which

suspends the system clock when the core is idle and restores it when the designated

input signals fed by the environment occur, to reduce power dissipated by the clock

136 7 Heterogeneous Reactive Architectures of Embedded Systems

signal. To support this mechanism, a phased locked loop (PLL) and a functional

unit, called power control functional unit (PCFU) have been added to the original

ReMIC. Figure 7.3 illustrates the modified architecture of ReMIC-PA.

ReMIC -PA provides three architectural supports for power optimizations:

 1. Two execution modes, called the normal mode and the sleep mode. In the normal

mode, the PCFU enables the PLL to produce the system clock so that ReMIC-PA

operates similar to ReMIC. In the sleep mode, on the other hand, the PLL is

turned off by the PCFU so that the system clock is gated and ReMIC-PA is sus-

pended. The transition from the normal mode to the sleep mode is carried out by

the execution of sleep mode related instructions. The restoration from the sleep

mode to the normal mode is activated by the designated external input signals.

 2. The PCFU runs at the lower frequency than the processor core does. As shown

in Fig. 7.3, the clock fed to the PCFU is the same as the reference input clock of

the PLL. Although the input clock frequency of the PLL can be an arbitrary value

allowed by the FPGA device used in prototyping, in this case it is lower than the

output clock frequency to reduce power dissipated by the PCFU itself.

Sleep Functional Unit

TIMER1_START

TIMER2_START

TIMER1_DONE

TIMER1_DONE

PAEF

SWE1

Phased

locked

Loop

ReMIC II

Control

Unit
ReMIC II Reactive Functional

Unit

ReMIC II Data Path

P
IR

[2
4
.0

]

C
A

[1
5
..
0
]

S
le

e
p

W
U

I_
R

S
T

B
U

S
W

E
1
 t
o
 2

B
P

P
A

E
1
 t
o
 4

A
S

W
L
R

[1
..
0
]

A
A

L
R

[3
..
0
]

S
W

R
1
 t
o
 2

A
A

S
R

1
 t
o
 4

l_
c
lk

P
lle

n
a

P
ll_

L
o

c
k
e

d

P
C

P
C

[1
5
..
0
]

ADDR[15..0

PH_SEL

PADR[15. .0

PDIN[31. .0]

SIR[15. .0]

SOP [15. .0]

SIP[15. .0]

clk

SOR[15. .0]

DIN[15. .0]

DOUT[15. .0]

SWE2

LD SOP

LD_SW1

SPF
ABORT_FULL

CHK_HPA

LD_AA

LD_SW2

LD_SW2

Ctr_SLV2

Ctr_SLV1

set_SLV1

set_SLV2

CLR_ SOP

Fig. 7.3 ReMIC-PA block diagram

1377.4 Example of Heterogeneous Reactive Architecture – HiDRA

 3. A set of power-efficient reactive instructions is provided by ReMIC-PA to

support power management and optimizations explicitly by the system designer.

ReMIC-PA has four power-efficient instructions that facilitate the mode transi-

tion. All instructions are presented in Table 7.2. They are 32-bit long and follow the

standard ReMIC instruction format.

Operations performed by the power-efficient instructions are almost the same as

that of the corresponding reactive instructions, except that the reactive instructions

bring the processor in a wait state while the power-efficient instructions cause the

processor to be suspended. These new instructions can be mixed with the other reac-

tive instructions. When external input signals with shorter response deadlines are

considered, the reactive instructions are used; otherwise, the power-efficient instruc-

tions are preferred.

7.4 Example of Heterogeneous Reactive

Architecture – HiDRA

In this section we introduce an architecture that has been used to implement HSoCs,

in this particular case application with DFCharts as an underlying MoC. HiDRA

(Hybrid Reactive Architecture) [111] is proposed and made for rapid prototyping

and implementation of heterogeneous embedded systems based on a set of reactive

processor cores, ReMICs, but also allows mixing with traditional microprocessors

Table 7.2 ReMIC-PA additional power control instruction set

Features Instruction syntax

Corresponding reactive

instruction Function/description

Power-efficient

signal

sustenance

LSUSTAIN signal(s) SUSTAIN Bring the processor to the

sleep mode and set

signal(s) high forever.

Power-efficient

signal polling

LSAWAIT signal SAWAIT Bring the processor to the

sleep mode and wait unit

the specified signal

occurs in the

environment.

Power-efficient

conditional

polling

LCAWAIT signal1,

signal2, address

CAWAIT Bring the processor to the

sleep mode and wait

until either signal1

or signal2 occurs.

If signal1 occurs, the

processor is restored to

the normal mode and

executes instruction

from consecutive

address; or else from

the specified address.

Suspend AWAIT NONE Bring the processor to the

sleep mode.

138 7 Heterogeneous Reactive Architectures of Embedded Systems

and application specific hardware implemented algorithms and behaviors. As such

HiDRA can be considered as an example of HETRA approach.

7.4.1 An Overview of HiDRA

HiDRA is a heterogeneous system that consists of multiple reactive processor cores

for control-dominated software-implemented behaviors and functional units and

traditional processors data-driven hardware-implemented and software imple-

mented behaviors, respectively. It allows interconnecting hardware- and software-

implemented behaviors in almost arbitrary way, where they synchronize and

communicate each with the other using signals (essentially wires) and for exchange

of data use distributed, shared and multi-port memory blocks. The architecture is

suitable for FPGA prototyping as it uses some of the features of current FPGA

devices like distributed SRAM memory blocks, but easily fits to the HSoC approach

and ASICs. The architecture has the following major features:

 1. It allows execution of concurrent behaviors that can be software-implemented

and run on a number of physical ReMIC processor cores, traditional processors

and/or hardware-implemented in the functional units.

 2. It can be run in two types of implementations, one with a master processor and

another without any master. Here we will describe the case where one reactive

processor assumes the role of a master processor. A master processor (MP)

performs system initialization and coordination of concurrent activities, but also

can implement application behaviors.

 3. Other processor cores, called application processors (AP), are used to implement

only concurrent application behaviors.

 4. Behaviors implemented on reactive processor cores directly support reactive,

FSM-type model of computation, in addition to declarative-type computation

used in data-driven applications in traditional processors.

 5. Concurrent processes implemented in hardware functional units and traditional

processors are primarily aimed at data-driven behaviors.

 6. Communication between behaviors, whether they are implemented using pro-

grams that run on processor cores or hardware-implemented functional units, is

achieved by means of a layer of shared memories (sometimes just registers),

which connect processor cores and functional units as illustrated in Fig. 7.4 and

can be considered an implementation of flexible interconnect of HETRA

approach shown in Fig. 7.1.

It should be noted and will be obvious from the following presentation that in

principle there need not to be any processor declared as the master processor and it

is not requirement of HiDRA approach. However, in the examples of use of HiDRA

in DFCharts implementation shown in Chap. 8 we assume this type of HiDRA

configuration.

Figure 7.4 illustrates the major HiDRA concepts and shows an example of pos-

sible mappings of an application represented by the dependence graph of behaviors

1397.4 Example of Heterogeneous Reactive Architecture – HiDRA

(B
1
,…,B

5
), which can be also considered as application tasks or processes, on the

architecture. HiDRA in Fig. 7.4 has a hierarchical topology that contains one master

processor (MP) which implements main system behavior in software and has

capability to control all other units (processors and functional units, FU, called with

a single name application processors) that implement other behaviors. Application

processor (AP) behaviors can activate hardware-implemented behaviors on their

local functional units (e.g. RP2 and FU2). Synchronization between behaviors is

accomplished via signal manipulation statements that are explained in the further

text (which emit a signal or poll a signal for the presence of an event). Communication

primitives are implemented using shared memories and signal manipulation state-

ments that perform low-level handshaking. A range of communication primitives

such as bounded FIFO and rendezvous are also supported.

7.4.2 An Implementation of HiDRA

Here we present an implementation of HiDRA in ALtera FPGA device. While

ReMIC microprocessors are implemented using logic elements, shared memory

(SM) is implemented using a triple-port SRAM module from the Altera megafunc-

tion library, which has two read ports (Qa, Qb) and one write port (Din). The MP is

configured with read-and-write access to one SM and read-only access to the other,

as shown in Fig. 7.5, while the AP is configured the other way around. The data

memory maps of the MP and APs are configured as shown in Fig. 7.6. The control

signals between the MP and APs are configured as shown in Fig. 7.7. The MP uses

four SOP signals and four SIP signals for each AP and spares the same number for

connection with external environment.

B1 B2

B3B4

B5 RP1

RP2RISC

FU1

FU2

Flexible

Interconnect

Shared memory

block

HiDRA

Fig. 7.4 Mapping of an application to HiDRA architecture

140 7 Heterogeneous Reactive Architectures of Embedded Systems

Figure 7.8 illustrates a complete HiDRA implementation with one MP and two

AP reactive processors using the above configurations. Shaded area in the middle

actually represents the implemented flexible interconnect.

HiDRA gives a number of mechanisms that can be used to implement blocking

and non-blocking read and write when necessary. As signal lines are used for

3-Port 128x16 RAM AP

(ReMIC)

D

E

C

MUX

MUX

D

E

C

3-Port 128x16 RAM

Qa

RD_AD DR_a

WR_ADDR

Din

WE

RD_ADDR_b

Qb

RD_ADDR_b

Qb

Qa

RD_ADDR_a

WR_ADDR

Din

WE

MP

(ReMiC)

WR

DOUT

ADDR

DIN ADDR

DOUT

DIN

WR

Fig. 7.5 SM configuration between MP and AP

SOP[3..0]

SIP[3..0]

SOP[7..4]

SIP[7..4]

SOP[15..12]

SIP[15..12]

SOP[11..8]

SIP[11..8]

1

AP2

AP3

ReMIC

spare signals for connections

with external environment

SIP[3..0]

SOP[3..0] ReMIC

SIP[3..0]

SOP[3..0] ReMIC

SIP[3..0]

SOP[3..0] ReMIC

Fig. 7.7 Signal connections between MP and APs

Fig. 7.6 Data memory address spaces of MP and SPs

Internal RAM

SM
mp_ap1

 (R+W)

SM
ap1_mp

 (R)

SM
mp_ap2

 (R+W)

SM
ap2_mp

 (R)

Internal RAM Internal RAM

SM
mp_sp1

 (R)

SM
sp1_mp

(R+W)

SM
mp_sp2

(R)

SM
sp2_mp

 (R+W)

...

...

MP AP1 AP2
Data Memory

Address Space

Notes:
(1) R + W = Read and Write
(2) R = Read only
(3) SM

mp_spn
 = Shared Memory between MP and SPn, where 0 < n < 256

(4) SM
spn_mp

 = Shared Memory between SPn and MP, where 0 < n < 256

Data Memory

Address Space

1417.4 Example of Heterogeneous Reactive Architecture – HiDRA

synchronization between processors, they can be manipulated directly from the

corresponding ReMIC reactive instructions, which all perform in a single instruc-

tion cycle. To emit a signal and notify another processor on the event requires single

instruction cycle, while the notification is received in either a single cycle (if using

ABORT as non-blocking mechanism) or in a number of cycles depending on incom-

ing event (when using AWAIT instructions as blocking mechanism).

Similar approach is used when connecting standard microprocessors to HiDRA.

Shared memories are typical interconnect mechanism for data exchange. Instead of

shared memories sometimes registers are sufficient to implement required commu-

nication bandwidth.

SMsp1_mp

3-Port 128 x 16 RAM

SMmp_sp1

3-Port 128 x 16 RAM

SMsp2_mp

3-Port 128 x 16 RAM

SMmp_sp2

3-Port 128 x 16 RAM

DIN

Din

DIN

MP_ADDR

AP1_ADDR AP2_ADDR

DOUT

DOUT DOUT

Qa

Qb

Qa

Qb

Qa

Qb

Qa

Qb

RD_ADDRa

RD_ADDRb

RD_ADDRa

RD_ADDRb

Din

DIN

RD_ADDRa

RD_ADDRb

RD_ADDRa

RD_ADDRb

Din

Din

DEC

WR

WE

WE

WE

WE

WR WR D
E
C

D
E
C

MP_ADDR

AP2_ADDRAP1_ADDR

MP_SIP[3..0] MP_SIP[7..4]

MP_SOP[3..0] MP_SOP[7..4]

AP2_SOP[3..0]AP1_SOP[3..0] AP2_SIP[3..0]AP1_SIP[3..0]

MUX MUX

AP2

(ReMIC)

MP
(ReMIC)

AP1

(ReMIC)

WR_ADDR

WR_ADDR

WR_ADDR

WR_ADDR

MUX

Fig. 7.8 HiDRA implementation with one MP and two APs

143I. Radojevic and Z. Salcic, Embedded Systems Design Based on Formal

Models of Computation, DOI 10.1007/978-94-007-1594-3_8,

© Springer Science+Business Media B.V. 2011

Previous chapters deal with system level by exploring issues such as specification,

simulation and formal semantics of DFCharts without any reference to implemen-

tation. The focus of this chapter is implementation of DFCharts specifications. The

target architecture for implementation is HiDRA, which was described in Chap. 7.

HiDRA is capable of implementing both control-dominated and data-dominated

types of behaviour that are found in DFCharts. It has special features supporting

reactivity while data-dominated operations are supported using traditional solu-

tions. In principle, any multiprocessor architecture may be used for implementation

of DFCharts. However, because of special features that support reactivity, HiDRA

is likely to provide more efficient implementations. This is the main reason for

selecting HiDRA. In Sect. 8.1, we present a design methodology for implementing

DFCharts on HiDRA. It consists of five steps: specification, FSM compositions,

allocation and partitioning, synthesis and performance evaluation. We are mainly

concerned with the synthesis step, which is separately treated in Sect. 8.2 where

details regarding the execution of DFCharts on HiDRA are presented. In Sect. 8.3

we show how the methodology is applied on the frequency relay case study.

8.1 DFCharts Design Methodology

The design methodology is presented by the design flow that consists of five steps

shown in Fig. 8.1. The first step is to make the DFCharts-based specification of a

system without any reference to HW/SW implementation. Before the specification

is mapped onto the implementation architecture, the designer has an opportunity to

merge multiple FSMs into a single equivalent FSM by parallel and hierarchical

compositions.

Chapter 8

Implementation of DFCharts on HiDRA

144 8 Implementation of DFCharts on HiDRA

In the third step, an instance of HiDRA is created by connecting ReMICs and

functional units. Then, FSMs and SDFGs are partitioned among the processing

elements. As this step is difficult to automate, the designer can freely explore different

implementation options. A complete implementation is created by automatically

synthesizing FSMs and SDFGs into ReMIC instructions and RTL in the fourth step.

Its performance is evaluated in the fifth step. If the implementation is not satisfactory,

the designer can return to any of the first three steps.

A key feature of the methodology is that functionality and implementation are

completely separated. Functionality is only verified at the specification level, using

simulation and formal verification.

Specification

Java,SystemC,Esterel,graphical

FSMcompositions

Parallel,hierarchicalcompositions

Allocationandpartitioning

FSM →ReMIC,HW

SDF →ReMIC,RISC,HW,(ASP,DSP)

Synthesis

Processorinstructions,RTL

End

Start

Simulation

Performanceevaluation

Fig. 8.1 DFCharts based design flow

1458.1 DFCharts Design Methodology

8.1.1 Specification

Specifications are created in Java environment described in Chap. 6. Currently, textual

design entry is only supported, but a graphical user interface can be added later,

which would enable specifications to appear as in Chap. 3. It is also possible to

employ SystemC or Esterel for creating specifications after modifying them accord-

ing to the guidelines given in Chap. 5. It is important to note that when an SDFG is

created, its relative speed is specified by indicating how many ticks of the FSM

clock each iteration takes, as pointed out in Sect. 6.1.2.

As indicated in Fig. 8.1, validation can be done using simulation. Simulation of

DFCharts-based designs in Java has been described in detail in Chap. 6. While

simulation is the most widely used means of validation, formal verification has been

gaining importance. Formal verification of DFCharts has not been discussed in this

book. An efficient method for formal verification of DFCharts can be developed

using the MCFSM model. This will be an important future research direction.

8.1.2 FSM Compositions

There is overhead associated with running an FSM on a processor or functional unit.

For example, variables must be used to remember the current state of an FSM and

indicate if it has made a transition in the current tick. Local signals that are used for

communication between FSMs always consume resources even if the FSMs are

mapped onto a single processing element. When an FSM composition is applied on

two FSMs, they will be executed as a single equivalent FSM. Two important effects

are produced as a result. The overhead is reduced, since there is now one FSM

instead of two, and local signals are removed. Thus, FSM compositions give the

designer an opportunity to trade concurrency for more efficient execution. Two

types of FSM compositions are used: parallel and hierarchical. The two composi-

tions and their relation to the synchronous parallel and hierarchical operators will be

discussed in more detail in Sect. 8.2.3. At this point it is important to stress that the

parallel composition produces an exponential increase in the number of states, while

the hierarchical composition produces a linear increase in the number of states. For

example, looking at the frequency relay specification, if FSM5 (four states) and

FSM6 (two states) from Fig. 3.8 are merged by the parallel composition, the result-

ing FSM has eight states. If FSM2 (three states) from Fig. 3.9 is merged with FSM7

(seven states) from Fig. 3.10 by the hierarchical composition, the number of states

in the resulting FSM increases linearly to 9.

8.1.3 Allocation and Partitioning

An instance of HiDRA is created by connecting ReMICs and hardware-implemented

functional units. Communication between processing elements is performed through

146 8 Implementation of DFCharts on HiDRA

shared memories and ReMIC signal lines. How many processing elements are

allocated depends on the desired performance. A higher number of elements may

provide better performance, but the cost increases at the same time.

An SDFG can be mapped on a ReMIC or functional unit. Traditional proces-

sors, digital signal processors (DSP) or application specific processors could also

be included in the architecture for SDFG implementation as long as they satisfy

some simple interface requirements. Multiprocessor implementation of a single

SDFG is possible [23]. Even mixed HW/SW implementation for SDF has been

demonstrated [53]. We could easily incorporate those techniques in our methodology.

However, we will assume that each SDFG is executed by a single processing

element in order to simplify the discussion. FSM can also be mapped on a ReMIC

or functional unit implemented as a pure digital hardware. Although, performance

boost provided by hardware is more likely to be needed for computationally inten-

sive SDFGs, FSMs and SDFGs cannot be mapped on the same element. The reason

for this restriction is due to different implementation requirements posed by FSMs

and SDFGs. FSMs react to events and perform minor computations. Reactivity is

not important for SDFGs, but computations are intensive. By executing only one

type of behaviour, processing elements can be customized to do their tasks efficiently

with minimum resources.

ReMIC consists of three parts: reactive functional unit (RFU), control unit and

datapath. If it executes an SDFG, RFU becomes unnecessary. When RFU is removed,

ReMIC becomes a Harvard-type microprocessor with RISC-type pipelined datapath,

suitable for transformational operations performed by SDFGs. On the other hand,

an FSM needs RFU but the datapath does not need to be as powerful. ReMIC has a

customizable register file with up to 16 registers. If it implements an SDFG it may

need all 16 registers. In the case of FSM implementation, just two might be enough.

Furthermore, pipelining, which is useful for predictable SDF data transformations,

could be redundant for FSMs.

When FSMs are partitioned among multiple processors, the key consideration is

how to maximize the utilization of the processors. We say that a global tick is com-

pleted when each FSM in the system makes a transition (completes its local tick) by

computing outputs and setting the next state. Because of the lock-step execution

assumed at the specification level, it must not happen that an FSM executes two

transitions in a sequence while another one executes none. When all FSMs on a

single processor have finished their local ticks, the processor tick has been com-

pleted. At this point the processor suspends execution and waits for the remaining

processors to complete their ticks, and a new global tick can begin. In the ideal case,

all processor ticks take equal time which means that all processors are fully utilized,

which is rather difficult to achieve.

Two factors are important for maximizing processor utilization: distribution or

balancing of loads and inter-processor communication. By loads, we mean execu-

tion times of FSM transitions. Loads should be distributed as evenly as possible. In

any state of the system, the sum of execution times of FSM transitions should not

differ largely across the processors. This may be a difficult task considering that the

system may have a large state space resulting in many combinations that have to be

explored. However, the designer can be assisted by profiling tools that indicate the

1478.1 DFCharts Design Methodology

amount of time consumed by various execution paths. At this stage, before the

synthesis has been completed, only approximate times can be provided. Cycle-

accurate performance results are examined in the fifth step.

Balancing of loads is additionally complicated by communication dependencies

between FSMs that are executed by different processors. It may happen that a tran-

sition of an FSM cannot be completed because it depends on a transition of another

FSM that is executed on another processor. Therefore, it is desirable to locate FSMs

that communicate by signals on a single processor.

Among the processors executing FSMs, one must be designated as master pro-

cessor. The others are called slave processors. Apart from running its FSMs, the

master processor has the additional tasks of transferring data across rendezvous

channels, controlling the execution of SDFGs, and managing global ticks.

Mapping SDFGs takes less effort. SDFG inputs usually arrive in regular intervals

from the external environment. The main issue is whether a processor executing an

SDFG is fast enough to complete an iteration before next inputs arrive. Also, it is

possible to map multiple SDFGs on a single processor, if it is fast enough to service

all of them.

8.1.4 Synthesis

A complete implementation is obtained by synthesizing ReMIC instructions, RTL

for functional units, and communication between processors which is realized by

ReMIC signal lines and shared memories. The program memory of a ReMIC exe-

cuting FSMs consists of three sections: FSM threads (FT), FSM scheduler, and tick

handler. If SDFGs are executed, the program memory consists of two sections:

SDF threads (ST) and SDF scheduler. An FSM thread implements the functionality

specified by an FSM. An SDF thread implements the functionality specified by an

SDFG. It simply consists of the code that implements SDF actors. SDF scheduler,

FSM scheduler and tick handler can be considered as ‘middleware’ that enables

threads to run. An SDF scheduler invokes SDF actors according to a static schedule.

It also has to implement a simple interface with the master processor. In Sect. 8.2

we will not deal with the SDF scheduler, since it is described in detail in [23] and

many other publications that followed. An FSM scheduler runs FTs in a round

robin fashion according to a statically determined schedule. It is possible that an

FSM thread is not ready to make a transition when picked by the scheduler due to

unresolved local signals. When the scheduler encounters such FSM thread, it

selects the next FT, but it will come back in the next cycle. A signal is unresolved

if the thread that writes it has not decided yet whether it is present or absent in the

current tick. Obviously, a thread attempting to read an unresolved signal cannot

proceed. The scheduler has to repeat the schedule until all FSM threads have made

a transition. The control then goes to the tick handler. Section 8.2 shows the gen-

eral flow of control between FTs, FSM scheduler and tick handler. In hardware-

implemented functional units, concurrent executions are possible without the need

for schedulers (Fig. 8.2).

148 8 Implementation of DFCharts on HiDRA

The scheduler and FSM threads appear exactly the same on both the master and

slave processors. However, tick handlers are different. When a slave tick handler

gets control, it informs the master processor that all of its FSM threads have com-

pleted a transition. When the master tick handler receives this message from all

slave processors the global tick is completed. The master tick handler instructs all

slave tick handlers to update shared variables and clear written signals before the

next global tick begins.

8.1.5 Performance Evaluation

Although estimations in step 3 could provide useful feedback about a particular

implementation, cycle accurate results obtained after synthesis are needed to show

precisely whether various constraints are satisfied. A typical requirement in a

DFCharts-based specification is to ensure that an SDFG does not miss any input

samples from the external environment. According to the DFCharts semantics, the

communication on external SDF channels is performed by rendezvous as on the

internal channels. However, due to the nature of embedded systems, the external

environment will not really wait. If an SDFG is not ready to receive a sample when

it arrives, the sample will be inevitably lost unless it is buffered. For many applica-

tions, though, buffering on input channels is not a satisfactory solution since it may

result in unacceptable delays.

8.2 Execution of DFCharts Specifications on HiDRA

8.2.1 Signals and Variables

Signals and variables enable synchronization and communication among code

sections. The most important difference between signals and variables is in

their physical implementation. Variables are always implemented with memory.

FT1

FT2

FT3

tick handlerFSM scheduler

Fig. 8.2 Flow of control between FTs, FSM scheduler and tick handler

1498.2 Execution of DFCharts Specifications on HiDRA

Signals can be implemented with memory or ReMIC signal lines that are linked

with special instructions supporting reactivity.

Signals can either be visible in the specification or inserted during synthesis. The

former will be called specification-visible signals, while the latter will be called

specification-invisible signals. The specification-visible signals can be input, output

or local. Furthermore, we distinguish between external and internal signals. An

external signal is used for communication between a processing element and the

external environment. An internal signal is used for communication between two

processing elements. External signals include specification-visible input and output

signals. Internal signals include specification-visible local signals and specification-

invisible signals. Specification-invisible signals are listed below. Some signals that

are involved in the same type of operation are grouped together and only briefly

described. Their use will become obvious in later sections.

 1. FT_start: Written by an FT upon entering a hierarchical state. Read by FTs that

refine the hierarchical state. May be written and read any time during the tick

execution.

 2. FT_stop: Written by an FT upon leaving a hierarchical state. Read by FTs that

refine the hierarchical state. May be written and read any time during the tick

execution.

 3. ST_start_request: Written by an FT upon entering a hierarchical state any time

during the tick execution. Read by the master processor’s tick handler at the end

the global tick.

 4. ST_stop_request: Written by an FT upon exiting a hierarchical state any time

during the tick execution. Read by the master processor’s tick handler at the end

of the global tick.

 5. ST_start: Written by the master processor’s tick handler at the end of the global

tick. Read by an ST. Unlike the signals described above, this type of signal is

held high briefly, just long enough for the ST to respond.

 6. ST_stop: Written by the master processor’s tick handler at the end of the

global tick. Read by an ST. Like the ST_start signals, this type of signal is a

short pulse.

 7. FT_rendezvous_ready: Written by an FT upon entering a rendezvous state any

time during the tick execution. Read by the master processor’s tick handler at

the end of the global tick.

 8. ST_rendezvous_ready: Written by an ST at the end of an iteration. Read by the

master processor’s tick handler at the end of the global tick.

 9. Rendezvous_done: Written by the master processor’s tick handler at the end of the

global tick when a data transfer between shared memories has been done. Read by

an FT any time during the tick execution and by an ST between two iterations.

 10. Tick_finished, Start_tick_end_actions, Tick_end_actions_completed, Start_

tick: Read and written by tick handlers at the end of the global tick. The purpose

of these signals is to synchronize tick handlers so that certain actions are done

in the right order before the next global tick begins.

 11. Update_shared_variable: Written by the thread that writes the shared variable.

Read by the master processor’s tick handler at the end of the global tick.

150 8 Implementation of DFCharts on HiDRA

Two bits are needed to implement every internal signal that can be written and

read any time during the tick execution. Signals that need two bits are specification-

visible local signals. Among specification-invisible signals, FT_start and FT_stop

signals need two bits. In each case, one bit is needed to indicate whether the signal

has been resolved while the other one shows the status of the signal. If writing and

reading threads are on the same processor the bits are contained inside the local

memory. If they are distributed on multiple processors then the bits must be imple-

mented by input/output registers. Both solutions may be needed depending on how

threads are allocated. Currently memory mapped registers sir and sor are used. With

minor modifications of ReMIC, the registers sip and sop that implement reactive

signals can be employed. The modifications would ensure that an emitted signal is

held high for the duration of the whole tick instead of just one processor cycle. In the

current form, reactive signals can be used just for external input and output signals.

If ReMIC’s reactive signals were used for implementation of internal signals, the

code size would be reduced significantly since fewer statements are needed for

reading and writing by using emit and present instead of ordinary instructions. The

difference between using reactive signals and memory is shown in Fig. 8.3. Part (a)

shows that five instructions are needed for testing a bit in memory m. The test is

performed by ANDing the memory contents loaded in register R0 with the bit pat-

tern b loaded in register R1. If the result is zero then the bit under test is zero. Part

(b) shows that only one instruction is needed for testing reactive signal r.

We can divide variables into specification-visible and specification-invisible, as

we did for signals. A specification-visible variable can be a shared variable that is

used by multiple FSMs, or local variable that is used by a single FSM. The main

specification invisible variables are listed below:

 1. next_thread: It points to a code section in the FSM scheduler. It indicates which

FT the FSM scheduler will attempt to run next.

 2. next_state: Each FT has this variable. It indicates which state the FT will take in

the next tick.

 3. pc: (program counter). Each FT has this variable. It points to a section of code in

an FT.

 4. threads_done: Each bit in this variable is used to indicate whether an FT has

completed its local tick in the current global tick.

Fig. 8.3 Comparing memory and reactive signals

1518.2 Execution of DFCharts Specifications on HiDRA

For each specification-visible shared variable, two locations in memory are

needed. One location is needed for the current value of the shared variable while the

other is needed for storing the value that the shared variable will take in the next

tick. If the writing thread and the reading threads are all executed on a single proces-

sor, the locations needed for the shared variable will be in the processor’s local data

memory. Otherwise the shared memory which is accessible by the master processor

must be used. When transferring data from one shared memory to another, the mas-

ter processor reads a value from one shared memory into a register, and then writes

the value to the other shared memory using the same register.

The flow of data together with signals connections for a configuration of five

ReMICs that implement six FSMs and two SDFGs is shown in Fig. 8.4. When

large amounts of data are involved in transfers between shared memories, a DMA

controller may be a useful addition to the architecture, which would enable data

to flow directly between shared memories instead of going through the master

processor.

Before describing FSM thread, we explain the notation and terminology that

we will use. In figures that present implementation templates, variable names are

in italics. Signal names are not italicized, but they always begin with an upper

case letter. Constant always begins with an underscore as in _number_of_slave_

processors. We use brackets when we want to relate a signal to a particular object

like FT, state, channel etc. For example, FT_stop(ft1) means that an FT_stop sig-

nal is used by the FSM thread ft1. Labels for code sections are underlined. For

internal signals that are implemented by two bits, we use “emit” and “resolve” to

denote setting high the status and resolution bits respectively. For internal signals

Remic4

SDF1

SM

SM

SM

SM

specification-visible signals

specification-invisible signals

data flow

Remic1

(master)

FSM3

FSM4

Remic5

SDF2

Remic3

(slave)

FSM5

FSM6

Remic2

(slave)

FSM1

FSM2

Fig. 8.4 Architecture for DFCharts implementation

152 8 Implementation of DFCharts on HiDRA

implemented with a single bit, we simply use “set high”. If a signal has been set

high in the current tick, “cancel” can be used to set it low.

8.2.2 FSM Thread

An FSM thread (FT) implements an FSM. It has a section of code for each FSM

state visible in the specification, although the number of FSM states may be

reduced by optimization techniques, such as bisimulation, before implementation.

Additionally, three sections of code appear: entry, exit and tick end. Only FTs that

implement preemptable FSMs contain the entry and exit code. On the other hand,

every thread must have the code for tick end. The template for an FT called

ft implementing an FSM with m states is given in Fig. 8.5.

8.2.2.1 Thread Entry

A preemptable FSM thread ft is initially in ft entry. The signal FT_start(ft) determines

whether ft will start by entering the initial state s
1
. FT_start(ft) is written by the FT

which has a state refined by ft. If FT_start(ft) is not resolved the control will jump to

a location in the scheduler which is pointed by the next_thread variable. pc will still

be set to ft entry. However, ft has not finished its local tick which means that the sched-

uler will have to return to ft before the next global tick can begin. If FT_start(ft) is

present, the next state will be the initial state. If the initial state is hierarchical, FT_start

signals are emitted and resolved for all FTs that refine the initial state, and ST_start_

request signals are set high for all STs that refine the initial state. If FT_start(ft) is

absent, ft will remain in ft entry. When FT_start(ft) is resolved the local tick is com-

pleted after executing the necessary instructions, so the control jumps to ft tick end. It

does not go to ft exit since an FT cannot be entered and exited in the same tick. The

other way around is possible though. An FT can be exited and entered in the same tick

when the hierarchical state that is refined by it makes a transition back to itself.

It is important to notice here that ft has to complete its local tick even though it

has not yet entered the initial state that is visible in the specification. From the point

of view of the tick handler, each thread is always active. If a preemptable thread is

waiting to enter the initial state it may be said that it is in the “pre-initial” state and

hence it has a tick to complete. In this way there is no need for a data structure

which has to distinguish between active and inactive threads.

8.2.2.2 States Visible in Specification

The code for each state in ft consists of one or more outgoing transitions. In Chap.

4, a state had to have an outgoing transition for every input combination for the

purpose of analysing reactivity and determinism. Many of those transitions looped

1538.2 Execution of DFCharts Specifications on HiDRA

Fig. 8.5 FSM thread

154 8 Implementation of DFCharts on HiDRA

back to the source state without producing any outputs. Such transitions are not

implemented. If a transition does not leave a state, it is implemented only if it pro-

duces outputs i.e. it emits signals or calls procedures. In Fig. 8.5 state s
1
 has n1

transitions; state s
m
 has nm transitions. Each transition is realized with a two branch

if-else construct. The if-else constructs are arranged in the order of transition priori-

ties. The transition with the highest priority is listed first. In each transition, it is

first checked whether the local signals in the transition trigger are resolved. A

Rendezvous_done signal may also be a part of the trigger but, as for input signals,

the resolution is not an issue. If not all signals are resolved, the next FT is selected

by the scheduler but the current state of ft will have to be visited again since the

local tick has not been completed. If all signals are resolved, the trigger and variable

conditions are evaluated to determine whether the transition should be executed. If

it is false the next transition is executed. Otherwise the transition outputs are pro-

duced. Specification-visible signals are emitted. Local signals have to be resolved in

addition. It is possible to immediately resolve local signals due to the absence of

strong abort in DFCharts. Procedures are also executed. If a shared variable is

updated inside a procedure the corresponding Update_shared_variable signal must

be set high. The next state is determined, but pc is not immediately set to the next

state because it has to be checked in ft exit if ft has been pre-empted. If the next state

is hierarchical, FT_start signals for FTs that refine it are emitted but they cannot be

resolved immediately since they may be cancelled in ft1 exit if it turns out that ft has

been pre-empted. FT_stop signals are emitted and resolved immediately for FTs

Fig. 8.5 (continued)

1558.2 Execution of DFCharts Specifications on HiDRA

that refine the current state. Start request signals are set high for STs that refine the

next state while stop request signals are set high for STs that refine the current state.

If the current state makes a transition back to itself, FT_stop and FT_start signals

are emitted for the same FTs. The same applies for STs. The FT_rendezvous_ready

signals are also handled if the current or next states are rendezvous. After all the

outputs have been created the control jumps to ft exit.

8.2.2.3 Thread Exit

In ft exit it is checked by reading signal FT_stop(ft) whether ft has been pre-empted

by the higher level thread. If the preemption has taken place the FT_stop signals for

lower level FSM threads are emitted and resolved. This is necessary in case the cur-

rent state is hierarchical and no transitions have been taken out of it. The same is

done for lower level STs. Furthermore all emitted FT_start signals and ST_start_

request signals are cancelled. The control jumps to ft entry, not to ft tick end, since

ft may be restarted in the current tick. If the preemption has not taken place pc is

simply set to the next state and ft tick end is executed next.

8.2.2.4 Local Tick End

In ft tick end, ft acknowledges that it has completed its local tick by asserting its bit

in threads_done variable. Also, all signals that have not been resolved previously

are resolved here. This is necessary since only emitted signals are resolved in code

sections for transitions, not ones that are absent.

8.2.3 Hierarchical and Parallel Compositions

Figure 8.6 shows a DFCharts specification consisting of three FSMs. Without any

FSM compositions, three FTs are needed for implementation. Figure 8.7 shows the

flow of control among FTs, scheduler and tick handler for a single processor imple-

mentation. ft1, ft2 and ft3 implement FSM1, FSM2 and FSM3 respectively. Since

ft3 is a preemptable FSM thread, it has to have thread entry and thread exit sections

where it reads FT_start and FT_stop signals that are written by ft1. In general, these

signals can be unresolved when they are read. For this reason, when the control

reaches ft3 entry or ft3 exit it may immediately flow back to the scheduler. Similarly,

local signal b can be unresolved when read by ft1. Thus the control may flow from

ft1 s12 t1 to the scheduler. A schedule can take into account communication depen-

dencies between FTs so that FT_start, FT_stop and b are always resolved when they

are read. If ft1 is executed before ft3 in each global tick, FT_start and FT_stop will

always be resolved when read. The same can be achieved for specification-visible

signal b if ft2 is executed before ft1.

156 8 Implementation of DFCharts on HiDRA

The hierarchical composition of two FSMs follows the semantics of the refinement

operator from Sect. 4.1.5. Figure 8.8 shows the implementation of the specification

from Fig. 8.6, where ft1 implements the hierarchical composition of FSM1 and

FSM3 while ft2 implements FSM2 as in Fig. 8.7. The FSM that represents the hier-

archical composition of FSM1 and FSM3 has three states: S11S31, S11S32 and

S12. FT_start and FT_stop signals are no longer needed. Thread entry and thread

exit section from Fig. 8.7 also disappear. However, FSM1 and FSM3 cannot be

executed concurrently by different processors. The potential benefit of executing

proc1 and proc3 simultaneously would no longer be available.

The parallel composition of two FSMs follows the semantics of the synchro-

nous parallel operator from Sect. 4.1.2. The states of the resulting FSM are created

by taking the cross product of the states that belong to the input FSM threads. As

with the hierarchical composition, internal signals are removed, but concurrency

disappears as well. The additional concern with the parallel combination is the

potential state explosion that results from the cross product. For example, if

FSM1 and FSM2 from Fig. 8.6 are merged, local signal b is no longer needed

and the resulting FSM has six states: S11S21, S11S22, S11S23, S12S21, S12S22

and S12S23.

In the DFCharts automata semantics the operators are applied to create a sin-

gle FSM, which represents the behaviour of a whole specification. The equiva-

lent FSM is constructed bottom-up, by starting from the lowest hierarchical

levels and moving upwards to the top level. For example, in Fig. 8.6, FSM1 and

FSM3 would have to be merged first. The result is then combined with FSM2.

This restriction does not apply here. FSM1 and FSM2 can be merged by the par-

allel composition while leaving FSM3. Before the parallel composition, FSM3

refines state S11. After the parallel composition, FSM3 refines states S11S21,

S11S22 and S11S23.

S11 S12

b

c/proc1

S21 S22

d/proc2

2

d

S31 S32

c/q

FSM1

FSM3

FSM2

a/r
1

2

S23

d/b

e/p

1

signal: b;

c/proc3

Fig. 8.6 A DFCharts specification consisting of three FSMs

1578.2 Execution of DFCharts Specifications on HiDRA

8.2.4 FSM Scheduler

The template for the FSM scheduler is shown in Fig. 8.9. It specifies the order

in which threads are run. The schedule is static; threads are run in the same

order in every processor tick. After the system’s start-up the processor begins

execution at run_ft
1
. In each processor tick, the schedule is repeated until all

ft3_s31_t1

ft3_s32_t1

ft1_s11_t1

ft1_s11_t2

 ft2_s21_t1

ft2_s22_t1

ft2_s22_t2

ft2_s23_t1

ft2_tick_end

ft1_tick_end

scheduler tick handler

ft1_s12_t1

ft3_tick_end

ft3_entry

ft3_exit

Fig. 8.7 Implementation of specification from Fig. 8.6 without any FSM compositions

158 8 Implementation of DFCharts on HiDRA

Fig. 8.9 FSM scheduler

ft1_s11s32_t1

ft1_s11s32_t2

 ft2_s21_t1

 ft2_s22_t1

ft2_s22_t2

ft2_s23_t1

ft2_tick_end

ft1_tick_end

scheduler tick handler

ft1_s12_t1

ft1_s11s31_t1

ft1_s11s31_t2

Fig. 8.8 Implementation of specification from Fig. 8.6 with hierarchical composition of FSM1

and FSM3

1598.2 Execution of DFCharts Specifications on HiDRA

threads have completed their local ticks. If a thread has already completed its

local tick, it is skipped.

The order in which threads are executed can have a large impact on the system

performance. A fixed execution order in every global tick will not be ideal for many

applications, since data dependencies among threads may not be static. On the other

hand, finding an optimal schedule could be greatly complicated by a distribution of

threads on multiple processors. This could be a topic for further investigation.

8.2.5 Master Tick Handler

The tick handler is different for master and slave processors. We first consider the tick

handler for the master processor. The template describing its function is shown in

Fig. 8.10. The point in the code marked by tick handler is arrived at when an FT fin-

ishes its local tick. thread_done variable indicates by its individual bits which threads

have finished their local ticks. If all bits in thread_done are not high, the processor tick

end has not yet been reached. The control moves to the scheduler which runs the next

thread. Otherwise, the next task is to perform actions at the tick end.

The master processor first has to wait for all slave processors to complete their

ticks. When the Tick_finished signal has been set high by every slave processor, the

global tick is completed. At this point the master tick handler can deal with signals

related to rendezvous channels and STs. However, it may have to wait first for one

or more STs to complete their iterations. This is discussed later in this section. All

Rendezvous_done signals from the previous tick are cleared. Then, the Rendezvous_

ready signals from both sides (FT and ST) are checked for each rendezvous channel.

If both sides are ready data is transferred between the shared memories and

Rendezvous_done is set high. ST_stop_request and ST_start_request signals are

checked for each ST. If ST_stop_request is high, ST_stop signal is set high. ST_

start_request causes the same action on ST_start signal. It should be emphasized

that, when both ST_stop_request and ST_starts_request signals are high, the ST

must first be issued a stop command by ST_stop and then a start command by

ST_start. The opposite order is never valid.

While the master processor was doing rendezvous and ST related operations in the

tick handler section, slave processors were waiting for the Start_tick_end_actions

signal. The master processor sends this command once it has finished with rendezvous

channels and STs. The command tells each slave processor to update shared variables

that are shared by its FTs. When updating is done, a slave processor has to clear all

signals that were written in the previous tick. The master processor also has to update

shared variables that are shared by its FTs, but , in addition, it also has to update shared

variables that are shared by FTs executed on different processors. A slave processor

acknowledges that it has finished updating shared variables and clearing signals by

setting high Tick_end_actions_completed. When the master processor receives the

acknowledgment from all slave processors, it clears all its signals except for Rendezvous_

done signals. Then, it starts a new global tick by making a short pulse Start_tick signal.

160 8 Implementation of DFCharts on HiDRA

Before dealing with rendezvous channels and other tick-end activities, the

master tick handler may have to ensure that the current iteration of an SDF graph

completes the specified number of ticks. The influence of SDFG speeds on the sys-

tem behaviour was discussed in Sect. 4.3. Only SDF graphs that communicate with

FSMs have to be taken care of.

Fig. 8.10 Master tick handler

1618.2 Execution of DFCharts Specifications on HiDRA

Figure 8.11 illustrates the action of the master tick handler needed to control the

length of SDF iterations. In this example, we assume that it has been specified that

each iteration of an SDF graph takes four ticks to complete. At the end of the fourth

tick the master tick handler finds that the SDF thread has still not finished the cur-

rent iteration. Consequently, it has to wait for the end of the iteration before starting

tick end actions. Thus, the first iteration effectively stretches the fourth tick. The

other form of control is seen in the next four ticks that are longer than the first four.

The ST completes its iteration during the seventh tick and becomes blocked waiting

for rendezvous. At the end of the seventh tick, the master tick handler ignores the

rendezvous ready signal of the ST since the iteration was completed too early with

respect to the number of ticks elapsed in the FSM domain. The rendezvous will hap-

pen at the end of the eighth tick.

The actions performed by the master tick handler in Fig. 8.11 are necessary to

guarantee that the system will have exactly single and unique behaviour. When the

speed of an SDFG is not controlled, the system behaviour may be sensitive to the rela-

tive speeds of the processing elements, as discussed in Sect. 4.3. In that case, it may

be necessary to perform HW/SW co-simulation to ensure that the implementation

behaves as intended. This is shown in Fig. 8.12. At this level of abstraction, verifica-

tion is much more difficult. For safety critical applications, where the correctness of

the final implementation is extremely important, controlling SDFG speeds is prefer-

able. It should be emphasized, though, that the operations that control SDFG speeds

create significant overhead, which results in higher implementation cost. For this rea-

son, the design flow in Fig. 8.12 could be more suitable for applications that are highly

cost-sensitive and not safety-critical such as various consumer electronics products.

When each SDF iteration takes a certain and fixed number of ticks of the FSM

clock, the implementation resembles a multirate synchronous system. Distributed

implementation of synchronous specifications created in Esterel [15], Lustre [16]

and Signal [17] has been researched extensively. Unlike DFCharts, synchronous

languages do not provide an easy trade-off between implementation efficiency and

verification effort. In DFCharts design flow, an SDFG may be forced to follow the

FSM clock, but this is not compulsory. Communication between SDFGs and FSMs

can be asynchronous, which is likely to result in lower implementation cost. On the

tick1 tick2 tick3 tick4 tick5 tick6 tick7 tick8

iteration2iteration1

FTs

ST

Global tick end actions

Threads executing

Threads waiting

Fig. 8.11 Control of SDF iteration length

162 8 Implementation of DFCharts on HiDRA

other hand, synchronous languages do not support asynchronous communication

mechanisms. Signal [17] offers some support for asynchrony, since it allows unre-

lated clocks, but creating asynchronous communication mechanisms like rendez-

vous and FIFO buffer is very difficult in Signal.

8.2.6 Slave Tick Handler

The slave tick handler is simpler than the master tick handler as can be seen from

the template in Fig. 8.13.

The previous section has showed that the master tick handler has five functions:

controlling the length of SDF iterations, moving data across rendezvous channels,

starting and stopping STs, updating shared variables and clearing signals. The slave

tick handler only has to update local shared variables and clear signals.

8.3 Frequency Relay Implementation

The specification for the frequency relay consisting of seven FSMs and one SDFG

was presented in Sect. 3.2. Each iteration of SDF1 is set to take five FSM ticks,

since FSM3 takes five ticks on its path that leads back to the initial state S31, where

it is ready again to receive data from SDF1.

Specification

Start

Simulation

Threadformation

Allocationandpartitioning

Synthesis

(without SDF iteration control)

End

HW/SW

Co-simulation

Performanceevaluation

Fig. 8.12 DFCharts design flow without SDF iteration control

1638.3 Frequency Relay Implementation

Among various ways in which FSMs from the frequency relay can be merged,

the hierarchical composition of FSM2 (Fig. 3.9) and FSM7 (Fig. 3.10) is the most

useful one. When a single thread is used for implementation of FSM2 and FSM7

instead of two threads, specification-visible signal alld, specification-invisible sig-

nals FT_start and FT_stop, and code sections tick exit and tick entry all disappear.

At the same time, there is no significant loss of concurrency. update(), which is the

longest procedure in FSM2, cannot be invoked while FSM7 is active. The outgoing

transitions of S22, which is refined by FSM7, do not call any procedures. Therefore,

there would not be any performance gain if FSM2 and FSM7 were implemented

with two threads running on different processors. Other FSM compositions are less

attractive, since they offer both advantages and disadvantages that have to be

weighted carefully. For example, if FSM5 and FSM6 (Fig. 3.8) are merged, specifi-

cation-visible signal st disappears but the resulting FSM has eight states (4 × 2)

which is more than the total of six states for FSM5 and FSM6. In the following

steps, we will only use the hierarchical composition of FSM2 and FSM7. Thus,

there will be six FSMs to partition and allocate: FSM1, FSM27, FSM3, FSM4,

FSM5 and FSM6.

There are many allocation and partitioning options for the frequency relay. We

limit our attention to two, so that we can describe them in more detail. SDF1 has

to perform intensive calculations involving long loops, which could not be done

with a software implementation within the sampling period of the AC signal (125

msec). Thus, SDF1 is implemented with a hardware functional unit in both options.

FSMs are implemented with one ReMIC in the first option, and two ReMICs in

the second option. The partitioning for the second option is shown in Fig. 8.14.

Although the master processor runs a smaller number of FSMs, its execution load

is usually not smaller than that of the slave processor, since FSM27 often invokes

the lengthy procedure for updating the thresholds. The other reason for this parti-

tioning is that the two groups of FSMs do not communicate by any specification-

visible local signals.

Fig. 8.13 Slave tick handler

164 8 Implementation of DFCharts on HiDRA

Figures 8.15 and 8.16 show the two implementation options after the synthesis

step. Note that only the logical flow of data is showed between shared memories.

Address and data buses will depend on the implementation technology. The signals

labelled n1, n2 and n3 are the switches for controlling the network load. In Fig. 8.16

the resolve lines are marked with r as in FT_stop_r. Schedules were made taking

into account data dependencies between the FTs. The schedule for the master pro-

cessor in the first implementation is ft1, ft27, ft3, ft4, ft5, ft6. The schedule for the

master processor in the second implementation is ft1, ft27 while the schedule for the

slave processor is ft3, ft4, ft5, ft6.

The lengths of the threads for the first implementation in terms of the number of

ReMIC instructions are given in Table 8.1. The numbers are identical for the second

implementation except for ft1 which has 20 more instructions due to additional

synchronization in the system.

The program and data memory requirements are shown in Table 8.2. For the

second solution, the numbers from individual processors (seen in the brackets where

Remic1

(master)

FSM scheduler

ft1, ft27, ft3,

ft4, ft5, ft6

tick handler inth

cancel

done

skip

thresh0

thresh1

reset

on

off

Rendezvous_done

ST_start

ST_stop

Rendezvous_ready

SDF1-RTL

HW

SW

n1

n2

n3

SM
sample

Fig. 8.15 Frequency relay implementation with one ReMIC processor

ReMIC2

(slave)

SM

ReMIC1

(master)

functional

FSM3

FSM4

FSM5

FSM6

FSM1

FSM27

SDF1

SM
unit

Fig. 8.14 Partitioning for the second implementation option

1658.3 Frequency Relay Implementation

the first number represents the master processor) are added up. The combined data

memory is slightly larger for the second solution due to duplication of variables

threads_done and next_thread. The program memory is also larger due to increased

code size for tick handlers.

Table 8.3 presents a performance comparison between the two implementation

options. Four rows represent four global ticks. FSM transitions are shown by giving

source and sink states. The source state is omitted if the FSM has just become active

Remic1

(master)

FSM scheduler

ft1, ft27

tick handler

inth

cancel

done

skip

thresh0

thresh1

reset

on

off

Start_tick_end_actions

Start_tick

FT_rendezvous_ready

Rendezvous_done

FT_start

FT_stop_r

FT_stop

FT_start_r

Tick_end_actions_completed

ST_start

ST_stop

ST_rendezvous_ready

Remic2

(slave)

FSM scheduler

ft3, ft4, ft5, ft6

tick handler

SDF1-RTL

SW

HW

SW

n1 n2 n3

SM SM

sample

Tick_finished

Fig. 8.16 Frequency relay implementation with two ReMIC processors

Table 8.1 Thread lengths in the first solution

Thread ft1 ft27 ft3 ft4 ft5 ft6

Instructions 73 208 131 119 278 88

Table 8.2 Program and data memories

Program memory (bytes) Data memory (bytes)

1p 4,296 118

2p 4,584 (1,776 + 2,808) 122 (42 + 80)

166 8 Implementation of DFCharts on HiDRA

T
a
b

le
 8

.3

P
er

fo
rm

an
ce

 c
o
m

p
ar

is
o
n
s

b
et

w
ee

n
 t

w
o
 i

m
p

le
m

en
ta

ti
o
n
s

F
S

M
1

F
S

M
2

F
S

M
3

F
S

M
4

F
S

M
5

F
S

M
6

F
S

M
7

1
p

2
p

sp
ee

d
 u

p

S
1
1

→
S

1
2

→
S

2
1

→
S

3
1

→
S

4
1

→
S

5
1

→
S

6
1

→
S

7
1

9
3
3

6
6
6

2
9
%

S
1
2

→
S

1
2

S
2
3

→
S

2
1

a
S

3
3

→
S

3
4

b
S

4
1

→
S

4
2

S
5
1

→
S

5
1

S
6
1

→
S

6
1

X
1
,3

0
2

8
8
5

3
2
%

S
1
2

→
S

1
2

S
2
2

→
S

2
2

S
3
2

→
S

3
3

S
4
1

→
S

4
1

S
5
1
→

S
5
1

S
6
1

→
S

6
1

S
7
4

→
S

7
5

c
1
,0

4
7

8
0
1

2
3
%

S
1
2

→
S

1
2

S
2
3

→
S

2
1

d
S

3
4

→
S

3
1

S
4
3

→
S

4
1

S
5
1

→
S

5
4

S
6
1

→
S

6
2

x
1
,1

4
6

7
9
8

3
0
%

a
S

ix
 t

h
re

sh
o
ld

s
u
p
d
at

ed
b
 T

h
e

v
al

u
e

o
f

fs
 i

s
ze

ro
c

T
ra

n
si

ti
o
n
 3

 t
ak

en
d
 F

o
u
r

th
re

sh
o
ld

s
u
p
d
at

e

1678.3 Frequency Relay Implementation

in the current tick. Additional notes are included where applicable. They indicate

exactly which transition is taken when there are multiple transitions between two

states, or the value of a variable, since that can also influence the amount of time

consumed. Columns 8 and 9 show the time taken by the first and the second imple-

mentation, respectively, measured in ReMIC cycles. The last column shows the

percentage difference. Clearly, there is a performance/cost trade-off between the

two implementations.

As mentioned previously FSM3 takes five ticks on its path from S31 to S31.

There are four transitions on the path from S31 to S31, but FSM3 has to spend two

ticks in S34 as it waits for FSM4 to make the transition from S42 to S43. Calculating

exactly the maximum number of ReMIC instruction cycles that these five ticks can

take is required to show whether SDF1 will always be ready to receive the input on

ch1 in time. However, this task is quite intensive since there are many possible

execution paths in the system. The result does not only depend on FSM3 and FSM4

but on the other FSMs as well, since they all execute in lock-step and hence influ-

ence the tick duration. Currently, all FSMs in a DFCharts specification must use the

same clock, but this could change in a future development. Apart from the states of

the FSMs, values of variables can also have an effect, since they can influence com-

putation time inside procedures.

A tool would be needed to provide an accurate, automated analysis. However, a

designer can still produce quick, conservative estimates of the initial performance

requirements. The longest tick in the system is shown in row 2 of Table 8.3. In that

tick, FSM2 updates all six thresholds, FSM3 calculates the frequency status, and

FSM4 calculates the average rate of change. For the single processor implementa-

tion, the tick lasts 1302 ReMIC instructions. Multiplying this number by five gives

6,510. With two processors, this would be reduced to 5 · 885 = 4,425. Finally, the

sampling frequency needs to be taken into account. All instructions that comprise

the five ticks must be completed within the period of the sampling clock. Otherwise,

SDF1 would miss the input on ch1 while waiting for FSM3 to reach S1. For the

sampling frequency of 8 kHz, the minimum clock frequency of the single ReMIC is

8 kHz · 6,510 = 52.08 MHz. For the two processor implementation the minimum

clock frequency is 8 kHz · 4,425 = 35.4 MHz.

Of course, these numbers are largely overestimated. The five ticks under consid-

eration could not all be of the maximum duration. However, the results above do

provide a useful initial boundary on the processor performance. As for the hardware

that implements SDF1, it needs to be able to complete an iteration is slightly less

then 1/fs, where fs is the sampling frequency.

169I. Radojevic and Z. Salcic, Embedded Systems Design Based on Formal

Models of Computation, DOI 10.1007/978-94-007-1594-3_9,

© Springer Science+Business Media B.V. 2011

9.1 Summary and Overview

Design of embedded systems based on formal models of computation has been

gaining acceptance as a sound method for dealing with increasing system complexities.

While models of computation have been successfully used individually for control-

dominated systems and data-dominated systems, modelling of heterogeneous sys-

tems still poses a challenge. We presented DFCharts, a model of computation for

heterogeneous embedded systems that combine control-dominated and data-

dominated parts. We demonstrated how DFCharts could be used in embedded sys-

tems design by linking it to system level design languages and implementation

architecture. We used a realistic heterogeneous embedded system called frequency

relay, in order to illustrate the concepts.

DFCharts integrates the hierarchical concurrent finite state machines (HCFSM)

model with synchronous dataflow (SDF). As in Argos, FSMs are composed using

synchronous parallel, hiding, and refinement operators. The fourth operator called

asynchronous parallel is used to connect FSMs with SDFGs. The refinement operator

also allows the state of an FSM to be refined by an SDFG. The SDFG becomes active

when the state is entered, and it gets instantly terminated when the state is left. Due to

the application of the asynchronous parallel and refinement operators, behavioural

heterogeneity is addressed using both hierarchical and parallel compositions. This

contributes to modelling flexibility, which is important for capturing the behaviour of

a system accurately and producing efficient implementations. The asynchronous par-

allel operator has been designed so that FSM and SDF, two vastly different models,

retain their original characteristics as much as possible. Towards this aim, it allows an

SDFG to operate at its own speed. An SDFG only has to synchronize with FSMs

between two iterations when it is receiving inputs for the next iteration and sending

outputs produced during the previous iteration. Besides SDF, any dataflow model with

clearly defined iterations and bounded memory can easily be incorporated. Thus,

DFCharts is expressive enough to cover a wide range of embedded systems.

Chapter 9

Conclusions

170 9 Conclusions

The formal semantics of DFCharts was presented in Chap. 4. We described the

ordering of events on a single hierarchical level of DFCharts using the tagged signal

model (TSM) framework. The TSM semantics of DFCharts closely focuses on data

transfer between FSMs and SDGFs. It shows how values in an FSM array variable

appear as multiple tokens in an SDFG buffer, when data is transferred across a ren-

dezvous channel. The automata based semantics, which resembles the semantics of

Argos, can be used for the global analysis of a DFCharts specification. It expresses

the behaviour of a DFCharts specification in terms of a single, flat FSM. This is

achieved by representing the operation of each SDFG as an FSM. The abstract ‘SDF

FSMs’ can then be merged with the ‘real FSMs’. ‘SDF FSMs’ are significant in the

automata semantics, since they allow a single formalism to embrace both FSMs and

SDFGs. When a single FSM is obtained, determinism and reactivity can be analysed.

Only specifications that satisfy these two properties are correct. In the automata

semantics, data transfer across rendezvous channels is not analysed. All that matters

is the event that is generated when a rendezvous occurs. Thus, the automata seman-

tics and TSM semantics complement each other – the former looks at the behaviour

of a complete system, the latter focuses on communication through rendezvous

channels. An important feature of the automata semantics is the use of multiclock

FSMs. In a multiclock FSM, transitions are triggered by different clocks. Apart

from DFCharts, this concept can be used for describing the semantics of other

models where multiple clocks appear.

DFCharts was used in Chap. 5 to analyse the ability of SystemC and Esterel to

specify heterogeneous embedded systems. We examined the level of support that

the two languages provide for features necessary to capture the behaviour of hetero-

geneous embedded systems and are found in DFCharts, such as synchronous events,

rendezvous channels, FIFO channels, hierarchy, preemption etc. Some features are

completely supported, others are more difficult to describe. Possible modifications

were suggested for both languages in their weak areas. For SystemC, it is mainly

control-dominated behaviour. For Esterel, the focus is on data-dominated behaviour,

as could have been expected.

In general, it takes a lot of effort to verify the correctness of a multi-threaded Java

design [8] due to deadlocks that are difficult to detect. It may happen that a design

performs correctly before it suddenly crashes for no apparent reason. The Java class

library described in Chap. 6 provides an opportunity for a more reliable design in

Java. It contains classes that enable making specifications according to the DFCharts

model. Instead of using threads with mutexes, locks, and other mechanisms com-

monly employed in Java that often lead to unpredictable behaviour, the designer

specifies FSMs and SDFGs first, and , then, connects them with synchronous sig-

nals and rendezvous channels. The result is a design with clear semantics.

Chapter 7 reviewed contemporary trends in multiprocessing architectures and

then proposed HETRA, a multiprocessor architecture that has special features for

both control-dominated and data-dominated behaviours unlike most other archi-

tectures which mainly concentrate on data processing and achieving high through-

put. HETRA’s specific implementation, called HiDRA, based on multiple reactive

processor cores, is particularly suitable for DFCharts implementation.

1719.2 Future Research

In Chap. 8, we presented a design methodology with a complete design flow

from specification to implementation. DFCharts is used for specification, while

HiDRA (a subset of HETRA) is used for implementation. An important strength of

the methodology is that it starts by capturing the behaviour of a system without any

reference to implementation. Besides fast verification, this also allows the designer

to easily explore various mapping options before the SW/HW synthesis. We laid a

foundation for automated synthesis of heterogeneous embedded systems by speci-

fying in detail how DFCharts is executed on HiDRA. Automated synthesis is a key

feature that is missing from most system-level design methodologies. It provides a

much bigger improvement in design productivity than just raising the initial level

of abstraction above the SW/HW boundary and then using manual refinement to

obtain a final implementation. A necessary condition for automated synthesis is to

use a model of computation with precisely defined semantics. For this reason the

design methodology in Chap. 8 is based around DFCharts. The frequency relay

case study was used to show the practical application of the methodology. Two

implementation options were presented, which demonstrated the trade-off between

performance and cost.

9.2 Future Research

9.2.1 DDFCharts Design Flow

Since DDFCharts is based on DFCharts, the DDFCharts design flow would have

many similarities to that of DFCharts. However, it would be significantly more com-

plex in some aspects. The implementation architecture of DDFCharts would likely

consist of many more parallel processors. This would make design space explora-

tion more difficult. One area in particular that deserves special attention is the esti-

mation of worst case execution time (WCET). For hard real-time embedded systems

WCET is essential. However, WCET estimation in massively parallel systems is a

very difficult task.

9.2.2 Hardware Implementation

The current DFCharts based design flow finishes with software implementation on

a multiprocessor architecture. Hardware synthesis of DFCharts models would be a

useful implementation option. Apart from rendezvous, which appears in asynchro-

nous parallel operators, all other computation and communication mechanisms in

DFCharts would have more or less straightforward implementation in hardware.

According to DFCharts semantics, when rendezvous occurs, the ticks of the two

clocks involved coincide. This is achievable in DFCharts software implementation,

172 9 Conclusions

where a clock is just a logical concept and clock ticks are not related to physical

time. In digital hardware circuits, clock ticks are clearly defined as clock periods

whose timing is controlled by an oscillator. It would be very difficult to synchronize

two different oscillators at certain points in time. Hence, the DFCharts semantics

could not be literally followed in hardware and would have to be reinterpreted

somewhat. For example, each clock tick in a DFCharts model could be translated

into multiple ticks of the physical clock. This would allow more flexibility in the

implementation of rendezvous.

9.2.3 Strong Abort

As in Argos, only weak abort is available in DFCharts. Strong abort, where an

FSM is not allowed to produce outputs in the instant of preemption, would be a

useful addition for modelling control-dominated behaviour. However, it would

make handling of rendezvous more difficult. In the current semantics, when two

rendezvous states associated with the same channel are reached, the rendezvous

has to happen. With strong abort, this assumption would have to be lifted leading

to more complicated semantics and implementation.

9.2.4 Including More Expressive Dataflow Models

Inputs arrive periodically in most signal process applications. Consequently, data

rates are static on all internal and external channels. For such applications, SDF and

related static dataflow models can produce very efficient implementations. On the

other hand, there are a significant number of applications with variable data rates,

especially in the multimedia domain. In DFCharts, variability in data rates can be

handled to some extent by using several different SDF graphs at run time. However,

it would certainly be useful to include a model with dynamic dataflow like Kahn

process networks (KPN). Unlike SDF, KPN does not have an iteration. The main

issue would be when to exchange data between a KPN and FSMs.

9.2.5 Program State

Imperative statements inside a state that can be compiled into an FSM would be a

useful addition to the graphical syntax of DFCharts. This could be done in a similar

fashion as in Synccharts where Esterel programs can be inserted in states. Instead of

Esterel, DFCharts could use SystemJ [114], which is built on top of Java. A DFCharts

state could be refined by a SystemJ reaction, which is comparable to a module in

Esterel. Only reactions that can be compiled into an FSM with datapath should be

1739.2 Future Research

placed in a DFCharts specification. Dynamic memory creation should not be

allowed. This requirement stems from the semantics of DFCharts. Further research

on how to describe SDF and related dataflow models in SystemJ would open up a

possibility of having the complete DFCharts model captured in SystemJ.

9.2.6 Formal Verification

While formal verification for DFCharts has not yet been developed, the formal

semantics of DFCharts based on MCFSM represents a large step towards this goal.

MCFSM can be used as an efficient input model for formal verification. We demon-

strated in Chap. 4 that the MCFSM model captures a mixed synchronous/asynchro-

nous system with fewer transitions than the common approach of using a fictictitious

base clock to read real clocks. However, parallel products in MCFSM can create

state explosion as in other models. State explosion may adversely impact the scal-

ability of DFCharts, since it makes verification of complex systems increasingly

difficult. Therefore, this issue requires a careful investigation.

9.2.7 Proof of Correctness for DFCharts Implementation

Chapter 8 provides detailed description of how an implementation is produced from

a DFCharts specification. The methodology would be further strengthened by pro-

viding a proof of equivalence between specification and implementation levels.

175I. Radojevic and Z. Salcic, Embedded Systems Design Based on Formal

Models of Computation, DOI 10.1007/978-94-007-1594-3,

© Springer Science+Business Media B.V. 2011

 1. D. Edenfeld, A.B. Kahng, M. Rodgers, Y. Zorian, 2003 technology roadmap for semiconductors.

IEEE Comput. 37(1), 47–56 (2004)

 2. S. Edwards, L. Lavagno, E.A. Lee, A. Sangiovanni-Vincentelli, Design of embedded systems:

formal methods, validation and synthesis. Proc. IEEE 85(3), 366–390 (1997)

 3. S. Edwards, Languages for Digital Embedded Systems (Kluwer, Dordrecht/Boston, 2000)

 4. E. Clarke, O. Grumberg, D. Peled, Model Checking (MIT Press, Cambridge, 1999)

 5. A. Jantsch, I. Sander, Models of computation and languages for embedded system design.

IEE Proc. Comput. Digit. Technol. 152(2), 114–129 (2005)

 6. E.A. Lee, S. Neuendorffer, Concurrent models of computation for embedded software.

IEE Proc. Comput. Digit. Technol. 152(2), 239–250 (2005)

 7. J. Hopcroft, J. Ullman, Introduction to Automata Theory, Languages, and Computation

(Addison-Wesley Publishing Company, Reading, 1979)

 8. E.A. Lee, The problem with threads. IEEE Comput. 39(5), 33–42 (2006)

 9. C.G. Cassandras, Introduction to Discrete Event Systems (Kluwer, Dordrecht/Boston, 1999)

 10. E.A. Lee, T.M. Parks, Dataflow process networks. Proc. IEEE 83, 773–801 (1995)

 11. A. Benveniste, G. Berry, The synchronous approach to reactive and real-time systems. Proc.

IEEE 79(9), 1270–1282 (1991)

 12. T. Murata, Petri nets: properties, analysis, and applications. Proc. IEEE 77(4), 541–580 (1989)

 13. C.A.R. Hoare, Communicating sequential processes. Commun. ACM 21(8), 666–677

(1978)

 14. R. Milner, Communication and Concurrency (Prentice-Hall, Englewood Cliffs, 1989)

 15. G. Berry, G. Gonthier, The Esterel synchronous programming language: design, semantics,

implementation. Sci. Comput. Program. 19(2), 87–152 (1992)

 16. N. Halbwachs, P. Caspi, P. Raymond, D. Pilaud, The synchronous data flow programming

language LUSTRE. Proc. IEEE 79(9), 1305–1320 (1991)

 17. P. Le Guernic, T. Gautier, M. Le Borgne, C. Le Maire, Programming real-time applications

with SIGNAL. Proc. IEEE 79(9), 1321–1336 (1991)

 18. www.esterel-tecnologies.com

 19. F. Balarin et al., Hardware-Software Co-Design of Embedded Systems: The Polis Approach

(Kluwer, Boston/Dordrecht, 1997)

 20. J. Eker et al., Taming heterogeneity – the ptolemy approach. Proc. IEEE 91(1), 127–144 (2003)

 21. www.mathworks.com

 22. D. Harel, Statecharts: a visual formalism for complex systems. Sci. Comput. Program. 8(3),

231–274 (1987)

 23. E.A. Lee, D.G. Messerschmitt, Synchronous data flow. Proc. IEEE 75(9), 1235–1245 (1987)

References

176 References

 24. F. Maraninchi, Y. Remond, Argos: an automaton-based synchronous language. Comput.

Lang. 27(1–3), 61–92 (2001)

 25. E.A. Lee, A. Sangiovanni-Vincentelli, A framework for comparing models of computation.

IEEE Trans. Comput. Aided Des. Circ. Syst. 17(12), 1217–1229 (1998)

 26. G. Bilsen, M. Engels, R. Lauwereins, J.A. Peperstraete, Cyclo-static dataflow. IEEE Trans.

Signal Process. 44(2), 397–408 (1996)

 27. G. Kahn, The semantics of a simple language for parallel programming, in P r o c e e d i n g s o f

I F I P C o n g r e s s 1 9 7 4 , Stockholm, Aug 1974, pp. 471–475

 28. I. Radojevic, Z. Salcic, P. Roop, A new model foe heterogeneous embedded systems: what

Esterel and SyncCharts need to become a suitable specification platform. Int. J. Softw. Eng.

Knowl. Eng. 15(2) (2005)

 29. B.A. Davey, H.A. Priestley, I n t r o d u c t i o n t o L a t t i c e s a n d O r d e r (Cambridge University Press,

Cambridge, 1990)

 30. T.M. Parks, Bounded scheduling of process networks. Ph.D. dissertation, Technical Report

UCB/ERL 95/105, Department of EECS, University of California, Berkeley, 1995

 31. G. Kahn, D.B. MacQueen, Coroutines and networks of parallel processes, in P r o c e e d i n g s o f

t h e I F I P C o n g r e s s 1 9 7 7 , North-Holland, Aug 1977, pp. 993–998

 32. E.A. Lee, D.G. Messerschmitt, Static scheduling of synchronous data flow programs for

 digital signal processing. IEEE Trans. Comput. 36(1), 24–35 (1987)

 33. E.A. Lee, Consistency in dataflow graphs. IEEE Trans. Parallel Distrib. Syst. 2(2), 223–235

(1991)

 34. J.T. Buck, Scheduling dynamic dataflow graphs with bounded memory using the token flow

model. Ph.D. dissertation, Technical Report UCB/ERL 93/69, Department of EECS,

University of California, Berkeley 1993

 35. B. Bhattacharya, S. Bhattacharyya, Parameterized dataflow modeling for DSP systems. IEEE

Trans. Signal Process. 49(10), 2408–2421 (2001)

 36. P.K. Murthy, E.A. Lee, Multidimensional synchronous dataflow. IEEE Trans. Signal Process.

50(8), 3306–3309 (2002)

 37. C. Park, J.W. Chung, S. Ha, Extended synchronous dataflow for efficient DSP system proto-

typing, in P r o c e e d i n g s o n W orkshop in Rapid System Prototyping, Clearwater, June 1999

 38. H. Oh, N. Dutt, S. Ha, Memory optimal single appearance schedule with dynamic loop count

for synchronous dataflow graphs, in Proceedings of Asia and South Pacific Design Automation

Conference (ASP-DAC’06), Yokohama City, Jan 2006

 39. S. Stuijk, M. Geilen, T. Basten, Exploring trade-offs in buffer requirements and throughput

constraints for synchronous dataflow graphs, in Proceedings of Design Automation Conference

(DAC ’06), San Francisco, July 2006

 40. S. Stuijk, M. Geilen, T. Basten, Minimising buffer requirements of synchronous dataflow

graphs with model checking, in Proceedings of Design Automation Conference (DAC’05),

New York, June 2005

 41. D. Bjorklund, Efficient code synthesis from synchronous dataflow graphs, in Proceedings of

Formal Methods and Models for Co-Design (MEMOCODE’04), June 2004

 42. P.K. Murthy, S.S. Bhattacharyya, Shared buffer implementations of signal processing systems

using lifetime analysis techniques. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.

20(2), 3306–3309 (2001)

 43. M. Ade, R. Lauwereins, J.A. Peperstraete, Data memory minimisation for synchronous data

flow graphs emulated on DSP-FPGA targets, in Proceedings of Design Automation Conference

(DAC’97), Anaheim, June 1997

 44. R. Govindarajan, G.R. Gao, P. Desai, Minimizing buffer requirements under rate-optimal

schedule in regular dataflow networks, J. VLSI Sig. Proc. 31(3), 207–229 (2002)

 45. J. S. Kin, J.L Pino, Multithreaded synchronous data flow simulation, in Proceedings of

Design, Automation and Test in Europe Conference (DATE’03), Mar 2003

 46. C. Hsu, S. Ramasubbu, M. Ko, J.L. Pino, S.S. Bhattacharyya, Efficient simulation of critical

synchronous dataflow graphs, in Proceedings of Design Automation Conference (DAC ’06),

July 2006

177References

 47. E. Zitzler, J. Teich, S.S. Bhattclcharyya, Evolutionary algorithms for the synthesis of embedded

software. IEEE Trans. Very Large Scale Integr. Syst. 8(4) (2000)

 48. W. Sung, S. Ha, Memory efficient software synthesis with mixed coding style from dataflow

graphs. IEEE Trans. Very Large Scale Integr. Syst. 8(5), 522–526 (2000)

 49. M. Sen, S.S. Bhattacharyya, Systematic exploitation of data parallelism in hardware synthesis

of DSP applications, in Proceedings of International Conference on Acoustics, Speech, and

Signal Processing (ICASSP ’04), May 2004

 50. H. Jung, K. Lee, S. Ha, Efficient hardware controller synthesis for synchronous dataflow graph

in system level design. IEEE Trans. Very Large Scale Integr. Syst. 10(2), 672–679 (2002)

 51. M.C. Williamson, E.A. Lee, Synthesis of parallel hardware implementations from synchro-

nous dataflow graph specifications, in Proceedings of Conference on Signals, Systems and

Computers, Nov 1996

 52. A. Kalavade, P.A. Subrahmanyam, Hardware/software partitioning for multifunction sys-

tems. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 17(9), 819–837 (1998)

 53. A. Kalavade, E.A. Lee, A hardware-software codesign methodology for DSP applications.

IEEE Des. Test Comput. 10(3), 16–28 (1993)

 54. T. Wiangtong, P. Cheung, L. Luk, Hardware/software codesign: a systematic approach target-

ing data-intensive applications. IEEE Signal Process Mag. 22(3), 14–22 (2005)

 55. N. Halbwachs, Synchronous Programming of Reactive Systems (Kluwer, Dordrecht/Boston,

1993)

 56. R. Budde, G.M. Pinna, A. Poigne, Coordination of synchronous programs, in Proceedings of

International Conference on Coordination Languages and Models, LNCS 1594, Apr 1999

 57. J. Colaco, B. Pagano, M. Pouzet, Specification and semantics: a conservative extension of

synchronous data-flow with state machines, in Proceedings of the 5th ACM International

Conference on Embedded Software (EMSOFT ’05), Sept 2005

 58. Esterel v7 reference manual, available from www.esterel-technologies.com

 59. G. Berry, Esterel on hardware. Philos. Trans. R. Soc. Lond. A 339, 87–104 (1992)

 60. S. Edwards, An Esterel compiler for large control-dominated systems. IEEE Trans. Comput.

Aided Des. Integr. Circuits Syst. 21(2), 169–183 (2002)

 61. E. Closse, M. Poize, J. Pulou, P. Vernier, D. Weil, SAXO-RT: interpreting Esterel semantic on

a sequential execution structure, in Proceedings of International Workshop on Synchronous

Languages, Applications, and Programming (SLAP’02), Electronic notes in theoretical com-

puter science 65, Apr 2002

 62. D. Potop-Butucaru, R. de Simone, Optimizations for faster execution of Esterel programs, in

Proceedings of Formal Methods and Models for Co-Design (MEMOCODE’03), June 2003

 63. C. Passerone, C. Sansoe, L. Lavagno, P.C. McGeer, J. Martin, R. Passerone, A.L. Sangiovanni-

Vincentelli, Modeling reactive systems in Java. ACM Trans. Des. Autom. Electron. Syst.

3(4), 515–523 (1998)

 64. L. Lavagno, E. Sentovich, ECL: a specification environment for system-level design, in

Proceedings of Design Automation Conference (DAC ’99), June 1999

 65. M. Antonotti, A. Ferrari, A. Flesca, A.L. Sangiovanni-Vincentelli, JESTER: an esterel-based

reactive java extension for reactive embedded system development, in Proceedings of Forum

on Specification and Design Languages (FDL’00), Sept 2000

 66. F. Boussinot, R. de Simone, The SL synchronous language. IEEE Trans. Softw. Eng. 22(4),

256–266 (1996)

 67. J.S. Young, J. MacDonald, M. Shilman, A. Tabbara, P. Hilfinger, A.R. Newton, Design and

specification of embedded systems in Java using successive, formal refinement, in Proceedings

of Design Automation Conference (DAC ’98), June1998

 68. M. von der Beeck, A comparison of statecharts variants, in Proceedings of Formal Techniques

in Real Time and Fault Tolerant Systems, LNCS 863, Sept 1994

 69. F. Maraninchi, Operational and compositional semantics of synchronous automaton composi-

tions, in Proceedings of International Conference on Concurrency Theory (CONCUR’92),

LNCS 630, Aug 1992

 70. Open SystemC Initiative, SystemC Version 2.0 User’s Guide, available at www.systemc.org

178 References

 71. T. Grotker, S. Liao, G. Martin, S. Swan, System Design with SystemC (Kluwer, Boston/

Dordrecht, 2002)

 72. J. Bhasker, A SystemC Primer (Star Galaxy Publishing, Allentown, 2002)

 73. J.G. Lee, C.M. Kyung, PrePack: predictive packetizing scheme for reducing channel traffic in

transaction-level hardware/software co-emulation. IEEE Trans. Comput. Aided Des. Integr.

Circuits Syst. 25(10), 1935–1949 (2006)

 74. W. Klingauf, R. Gunzel, O. Bringmann, P. Parfuntseu, M. Burton, GreenBus – a generic

interconnect fabric for transaction level modelling, in Proceedings of Design Automation

Conference (DAC ’06), July 2006

 75. E. Viaud, F. Pecheux, A. Greiner, An efficient TLM/T modeling and simulation environment

based on conservative parallel discrete event principles, in Proceedings of Design, Automation

and Test in Europe Conference (DATE’06), Mar2006

 76. T. Wild, A. Herkersdorf, R. Ohlendorf, Performance evaluation for system-on-chip architec-

tures using trace-based transaction level simulation, in Proceedings of Design, Automation

and Test in Europe Conference (DATE’06), Mar 2006

 77. A. Habibi, S. Tahar, A. Samarah, D. Li, O. Mohamed, Efficient assertion based verification

using TLM, in Proceedings of Design, Automation and Test in Europe Conference (DATE’06),

Mar 2006

 78. G. Beltrame, D. Sciuto, C. Silvano, D. Lyonnard, C. Pilkington, Exploiting TLM and object

introspection for system-level simulation, in Proceedings of Design, Automation and Test in

Europe Conference (DATE’06), Mar 2006

 79. D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, S. Zhao, SpecC: Specification Language and

Methodology (Kluwer, Dordrecht/Boston, 2000)

 80. D. Ku, G. De Micheli, HardwareC – a language for hardware design (version 2.0) CSL

Technical Report CSL-TR-90-419, Stanford University, Stanford, Apr 1990

 81. Handel-C Language Reference Manual, available at www.celoxica.com

 82. D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-Trauring,

M. Trakhtenbrot, Statemate: a working environment for the development of complex reactive

systems. IEEE Trans. Softw. Eng. 16, 403–414 (1990)

 83. J. Buck, S. Ha, E.A. Lee, D. Messerschmitt, Ptolemy: a framework for simulating and

 prototyping heterogeneous systems. Int. J. Comput. Simul. 4(2), 155–182 (1994)

 84. C. Hylands, E.A. Lee, J. Liu, X. Liu, S. Neuendorffer, Y. Xiong, H. Zheng, Heterogeneous

concurrent modeling and design in Java, Technical Memorandum UCB/ERL M02/23,

University of California, Berkeley, 2002

 85. A. Girault, B. Lee, E.A. Lee, Hierarchical finite state machines with multiple concurrency

models. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 18(6), 742–760 (1999)

 86. Z. Salcic, R. Mikhael, A new method for instantaneous power system frequency measurement

using reference points detection. Electr. Power Syst. Res. 55(2), 97–102 (2000)

 87. J.S. Lee, L.E. Miller, CDMA Systems Engineering Handbook (Artech House, Boston, 1998)

 88. I. Radojevic, Z. Salcic, P. Roop, Design of heterogeneous embedded systems using DFCharts

model of computation, in Proceedings of VLSI Design, Hyderabad, 3–7 Jan 2006

 89. I. Radojevic, Z. Salcic, P. Roop, Modeling heterogeneous embedded systems in DFCharts, in

Proceedings of Forum on Design and Specification Languages (FDL), Lausanne, 27–30 Sept

2005

 90. M. Hennessy, H. Lin, Symbolic bisimulations. Theor. Comput. Sci. 138(2), 353–389 (1995)

 91. R. Alur, D. Dill, A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)

 92. S. Ramesh, Communicating reactive state machines: design, model and implementation, in

IFAC Workshop on Distributed Computer Control Systems (Pergamon Press, Oxford, 1998)

 93. S. Ramesh, Implementation of communicating reactive processes. Parallel Comput. 25(6),

703–727 (1999)

 94. G. Berry, E. Sentovich, Multiclock Esterel, in Proceedings of Correct Hardware Design and

Verification Methods (CHARME), LNCS 2144, Sept 2001

 95. H. Patel, S. Shukla, SystemC Kernel Extensions for Heterogeneous System Modeling:

A Framework for Multi-MoC Modeling & Simulation (Kluwer, Boston/Dordrecht, 2004)

179References

 96. H.D. Patel, S.K. Shukla, R. Bergamaschi, Heterogeneous behavioral hierarchy for system

level design, in Proceedings of Design Automation and Test in Europe, Munich, Mar 2006

 97. C. Brooks, E.A. Lee, X. Liu, S. Neuendorffer, Y. Zhao, H. Zheng (eds.), Heterogeneous

Concurrent Modeling and Design in Java (Volume 1: Introduction to Ptolemy II), Technical

Memorandum UCB/ERL M05/21, University of California, Berkeley, 15 July 2005

 98. D. Atienza et al., Network-on-Chip design and synthesis outlook. Integr. VLSI J. 41, 340–359

(2008)

 99. T. Bjerregaard, S. Mahadevan, A survey of research and practices of Network-on-Chip. ACM

Comput. Surv. 38, 1–51 (2006)

 100. E. Salminen, A. Kulmala, T.D. Hamalainen, Survey of network-on-chip proposals, White

paper, OCP-IP, Mar 2008

 101. W. Hwu, Many-core computing: can compilers and tools do the heavy lifting?, in

9th International Forum on Embedded MPSoC and Multicore, MPSoC’09, 2009

 102. Tensilica Xtensa processor, www.tensilica.com

 103. Intel, Single-chip Cloud Computer Overview, Intel Corporation (2010)

 104. M. Schoeberl, Schedule memory access, not threads, in 10th International Forum on

Embedded MPSoC and Multicore, MPSoC’10, 2010

 105. H. Dutta et.al, Massively parallel processor architectures: a co-design approach, in Proceedings

of the 3rd International Workshop on Reconfigurable Communication Centric System-on-

Chips (ReCoSoC), Montpellier, 18–20 June 2007, pp. 61–68

 106. L. Bauer et. al., KAHRISMA: a multi-grained reconfigurable multicore architecture, in

10th International Forum on Embedded MPSoC and Multicore, MPSoC’10, 2010

 107. D. Göhringer, M. Hübner, V. Schatz, J. Becker, Runtime adaptive multi-processor system-on-

chip: RAMPSoC, in IEEE International Symposium on Parallel and Distributed Processing,

2008, pp. 1–7

 108. Z. Salcic, D. Hui, P. Roop, M. Biglari-Abhari, REMIC – design of a reactive embedded micro-

processor core, in Asia-South Pacific Design Automation Conference, Shanghai, Jan 2005

 109. M.W.S. Dayaratne, P. Roop, Z. Salcic, Direct execution of Esterel using reactive micro-

processors, synchronous languages, in Applications and Programming, SLAP 05, Edinburgh,

Apr 2005

 110. L.H. Yoon, P. Roop, Z. Salcic, F. Gruian, Compiling Esterel for direct execution, in Proceedings

of the Conference on Synchronous Languages, Applications and Programming, SLAP 2006,

Vienna, Mar 2006

 111. Z. Salcic, D. Hui, P. Roop, M. Biglari-Abhari, HiDRA – a reactive multiprocessor architec-

ture for heterogeneous embedded systems. Elsevier J. Microprocess. Microsyst. 30(2), 72–85

(2006)

 112. A. Malik, Z. Salcic, P. Roop, SystemJ compilation using the tandem virtual machine approach,

in ACM Transactions on Design Automation of Electronic Systems (2009)

 113. A. Malik, Z. Salcic, A. Girault, A. Walker, S.C. Lee, A customizable multiprocessor for glob-

ally asynchronous locally synchronous execution, in Proceedings of Java Technologies for

Real-time and Embedded Systems, JTRES’09, Madrid, 2009, ACM

 114. F. Gruian, P. Roop, Z. Salcic, I. Radojevic, SystemJ approach to system-level design, in

Proceedings of Methods and Models for Co-Design Conference, Memocode 2006,

Napa Valley, 2006, Piscataway, (IEEE Cat. No. 06EX1398). IEEE. 2006, pp. 149–58

 115. A. Malik, Z. Salcic, P. Roop, A. Girault, SystemJ: a GALS language for system level design.

Elsevier J. Comput. Lang. Syst. Struct. 36(4), 317–344 (2010). doi:10.1016/j.cl.2010.

01.001

 116. Z. Salcic, P. Roop, M. Biglari-Abhari, A. Bigdeli, REFLIX: a framework of a novel processor

core for reactive embedded applications. Elsevier J. Microprocess. Microsyst. 28, 13–25

(2004)

 117. X. Li, R. von Hanxleden, The Kiel Esterel Processor – a semi-custom, configurable reactive

processor, in Synchronous Programming – SYNCHRON’04, ser. Dagstuhl Seminar

Proceedings, no. 04491, ed. by S.A. Edwards, N. Halbwachs, R.v. Hanxleden, T. Stauner

(Schloss Dagstuhl, Germany, 2005)

180 References

 118. S. Yuan, S. Andalam, L.H. Yoong, P. Roop, Z. Salcic, STARPro – a new multithreaded direct

execution platform for Esterel. EURASIP J. Embed. Syst. in press (accepted 5 Feb 2009)

 119. P. Roop, Z. Salcic,S. Dayaratne, Towards direct execution of Esterel programs on reactive

processors, in Embedded Software Conference, EMSOFT’04, Pisa, 27–29 Sept 2004

 120. L. Yang, M. Biglari-Abhari, Z. Salcic, A power-efficient processor core for reactive embedded

applications, in Proceedings of Asia-South Pacific Computer Architecture Conference,

ASCAC, 2006

 121. P. Petrov, A. Orailogulu, Low-power instruction bus encoding for embedded processors.

IEEE Trans. Very Large Scale Integr. Syst. 12(8), 812–826 (2004)

 122. C. Zebelein, J. Falk, C. Haubelt, J. Teich ,Efficient high level modelling in the networking

domain, in Proceedings of Design, Automation and Test in Europe Conference (DATE),

Mar 2010

 123. J. Keinert, M. Streubuhr, T. Schlichter, J. Falk, J. Gladigau, C. Haubelt, J. Teich,

SystemCoDesigner - an automatic ESL synthesis approach by design space exploration and

behavioural synthesis for streaming applications. ACM Trans. Des. Autom. Electron. Syst.

14, 1–23 (2009)

181

A

AND states, 25–27, 31, 107, 127

Argos, 4, 5, 13, 14, 28–29, 43, 45, 62, 71, 78,

169, 170, 172

B

Balance equations, 12

C

Calculus of communicating systems (CCS), 2,

20, 68, 75

Communicating sequential processes (CSP), 2,

16–20, 45, 75, 103

Control-dominated systems, 3, 14

D

Data-dominated systems, 3, 14, 103, 126

DDFCharts

asymmetric asynchronous

parallel operator, 57

distributed systems, 4, 6, 55, 56

DFCharts

data transfer between FSM and SDFG,

112–113

finite state machine with datapath

(FSMD), 47

local variable, 47, 107

operators, 43–46, 56, 57, 62, 65, 71, 75,

78, 156, 169, 171

rendezvous state, 45, 47, 57, 65, 172

shared variable, 47, 49, 107, 110–112,

117–118, 154

transition priorities, 46–47, 154

DFCharts implementation

design flow, 4, 6, 92, 126, 143, 161, 171

frequency relay implementation results,

162–167

FSM scheduler, 157–159

FSM thread (FT), 147, 152–155

global tick, 146–150, 152, 155, 159,

161, 165

local tick, 146, 150, 152, 154, 155, 159

master processor, 138, 139, 147–149, 151,

159, 163–165

master tick handler, 159–162

processor tick, 146, 157, 159

SDF scheduler, 147

SDF thread (ST), 147, 161

slave processor, 147, 148, 151, 159,

163, 164

slave tick handler, 162, 163

DFCharts in systemC and esterel

buffers and firing rules

for dataflow, 95–96

concurrent processes, 93, 94, 100

data transformations, 98–99

HCFSM with synchronous reactive

communication, 96–98

multiple processes inside a state,

99–100

numerical results, 100–102

rendezvous communication, 94–95, 100

Discrete event model, 14–16, 96

E

Embedded computing system, 1

Esterel, 3–6, 13, 14, 28–33, 65, 68, 92–103,

105, 123, 135, 145, 161, 170, 172

Index

182 Index

F

Finite state machine (FSM), 2, 4–9, 14, 25, 26,

28, 32, 38–41, 43–51, 57, 62–91,

96–99, 101, 103, 105–113, 115–122,

130, 138, 143, 145–148, 150–159,

161–163, 165, 169, 170, 172

Firing rule in synchronous dataflow graph,

12–13, 95, 103

Formal definitions

asynchronous parallel operator, 57, 73–77

deterministic FSM, 46, 68–69

finite state machine with variables, 66–70

FSM transitions, 67–68

hiding function, 70

hiding operator, 77–78

reactive FSM, 73, 77, 81

refinement operator, 78–82

rendezvous mapping function, 67

synchronous parallel operator, 70–73

syntax to semantics mapping, 82–84

Frequency relay

frequency and rate of change calculations,

52–53

peak detection, 51–52, 95, 101

switch control, 53–54, 99, 101

threshold modification, 54–55

top level, 51, 57, 99–101, 116–119

G

Global clock, 15, 62, 94

Globally asynchronous locally synchronous

system (GALS), 4, 127, 129

H

Heterochronous dataflow (HDF), 41

Heterogeneous reactive architecture (HETRA),

6, 125–141, 170, 171

Heterogeneous system on chip (HSoC), 130,

135, 137, 138

Hybrid reactive architecture (HiDRA)

application to architecture mapping, 139

functional unit, 138, 139, 144, 145

master processor, 138, 139

slave processor, 148, 159

J

Java DFCharts classes

FSM classes, 105–113

library classes, 199–122

SDFG classes, 113–116

top level classes, 116–118

K

Kahn process networks (KPN), 5, 9–15, 34,

39, 84, 86, 92, 95, 172

L

Lustre, 3, 4, 13, 14, 33–34, 161

M

Marking in Petri nets, 21, 22

Mealy machine, 9

Model of computation, 2–5, 13, 16, 29,

37–39, 41, 94, 103, 127–132, 138,

169, 171

Monotonicity, 11

Moore machine, 9

Moore’s law, 2, 125

Multiclock Esterel, 65, 92, 96

Multiclock FSM, 6, 61, 63–65, 67,

75, 170

Multiple clocked recurrent systems

(MCRSs), 14

Multiprocessor systems on chip (MPSoC),

125, 127, 135

N

Network on chip (NoC),

127, 128

O

OR states, 25–27, 73, 76, 110

P

Petri nets, 2, 20–24

Power aware ReMIC

block diagram, 136

power control instruction set, 137

Productivity gap, 2

Ptolemy, 4, 6, 16, 37–41, 103, 115,

116, 120

R

ReMIC

block diagram, 134, 136

reactive functional unit (RFU),

133, 146

reactive instruction set, 133

Rendezvous communication, 56,

94–95, 100

183Index

S

Signal, 1, 3, 5, 6, 13, 15, 28–36, 39, 44, 46–48,

50–54, 58, 62, 64–68, 70, 73–78, 80,

83, 86–91, 94–99, 102, 103, 107–111,

117–122, 126, 130, 132–141, 145–152,

154–156, 159, 161–164, 170, 172

Star charts, 38

State based formalisms (SBF), 14

Statecharts, 4, 9, 24–28, 98

State transition diagram, 7, 8

Synchronous dataflow (SDF), 2–5, 9, 12–14,

33, 34, 37–41, 43, 49–50, 62, 64,

84–91, 94, 95, 99, 103, 114, 115,

118–120, 122, 146–148, 160–162, 169,

170, 172, 173

Synchronous/reactive model,

3, 13–14, 19, 29, 97, 103,

129, 132

Synchrony hypothesis, 13, 29,

96, 103

SystemC, 4, 6, 34–37, 93–103, 123,

145, 170

SystemJ, 172, 173

T

Tagged signal model semantics of DFCharts,

61, 170

Transaction level modelling

(TLM), 37

	Embedded Systems Design Based on Formal Models of Computation
	Preface
	Contents
	List of Figures
	List of Tables

	Chapter 1: Introduction
	1.1 Embedded Systems Design
	1.2 DFCharts
	1.3 Book Organization

	Chapter 2: Models of Computation and Languages
	2.1 Finite State Machine
	2.2 Kahn Process Networks
	2.3 Synchronous Dataflow
	2.4 Synchronous/Reactive Model
	2.5 Discrete Event Model
	2.6 Communicating Sequential Processes
	2.7 Petri Nets
	2.8 Statecharts/Statemate
	2.9 Argos
	2.10 Esterel
	2.11 Lustre and Signal
	2.12 SystemC
	2.13 Ptolemy

	Chapter 3: Specification in DFCharts
	3.1 Introduction to DFCharts
	3.1.1 Operators
	3.1.2 Transition Priorities
	3.1.3 Variables
	3.1.4 Data Transfer Between FSM and SDF

	3.2 Case Study: Frequency Relay
	3.2.1 Peak Detection
	3.2.2 Frequency and Rate of Change Calculations
	3.2.3 Switch Control
	3.2.4 Threshold Modification

	3.3 DDFCharts
	3.4 Frequency Relay Extension

	Chapter 4: Semantics of DFCharts
	4.1 Automata Semantics
	4.1.1 FSM with Variables
	4.1.2 Synchronous Parallel Operator
	4.1.3 Asynchronous Parallel Operator
	4.1.4 Hiding Operator
	4.1.5 Refinement Operator
	4.1.6 Mapping Syntax to Automata
	4.1.7 Integrating SDF Graphs into Automata Semantics

	4.2 TSM Semantics
	4.2.1 Data Transfer from SDF to FSM
	4.2.2 Data Transfer from FSM to SDF

	4.3 The Impact of Clock Speeds

	DFCharts in SystemC and Esterel
	5.1 Analysis Based on Requirements
	5.1.1 Concurrent Processes
	5.1.1.1 SystemC
	5.1.1.2 Esterel

	5.1.2 Rendezvous Communication
	5.1.2.1 SystemC
	5.1.2.2 Esterel

	5.1.3 Buffers and Firing Rules for Dataflow
	5.1.3.1 SystemC
	5.1.3.2 Esterel

	5.1.4 HCFSM with Synchronous/Reactive Communication
	5.1.4.1 SystemC
	5.1.4.2 Esterel

	5.1.5 Data Transformations
	5.1.5.1 SystemC
	5.1.5.2 Esterel

	5.1.6 Multiple Processes Inside a State
	5.1.6.1 SystemC
	5.1.6.2 Esterel

	5.1.7 Comparison Between SystemC and Esterel

	5.2 Numerical Results
	5.3 Feature Extensions of SystemC and Esterel

	Chapter 6: Java Environment for DFCharts
	6.1 FSM Classes
	6.1.1 Declaration of Reference Variables for I/O Signals, States and Variables
	6.1.2 Inner Classes for Transition Inputs and Transition Outputs
	6.1.3 Constructor Parameters
	6.1.4 Signal and Shared Variable Connections, Initialization of Local Variables
	6.1.5 Linking States, Transition Inputs and Transition Outputs
	6.1.6 Local Signals, Shared Variables and Channels for Lower Level FSMs and SDFGs
	6.1.6.1 Local Signal
	6.1.6.2 Shared Variable
	6.1.6.3 Channel

	6.1.7 Instantiation of Lower Level FSMs and SDFGs
	6.1.8 State Refinement

	6.2 SDFG Classes
	6.2.1 Constructor Parameters
	6.2.2 Instantiation of Actors
	6.2.3 Actor Connections

	6.3 Top Level Classes
	6.3.1 Constructor Parameters
	6.3.2 Instantiation of Input and Output Signals
	6.3.3 Local Signals, Shared Variables and Channels for Top Level FSMs and SDFGs
	6.3.4 Instantiation of Top Level FSMs and SDFGs
	6.3.5 Top Level Refinement

	6.4 Simulation
	6.5 Library Classes
	6.5.1 Base Classes
	6.5.2 FSM Component Classes
	6.5.3 FSM Communication Classes
	6.5.4 FSM-SDF Communication Classes
	6.5.5 Synchronization Class

	6.6 Frequency Relay Revisited

	Chapter 7: Heterogeneous Reactive Architectures of Embedded Systems
	7.1 Background and Trends
	7.2 Architecture Framework – HETRA
	7.3 Reactive Processors as the Elements of the Heterogeneous Architecture
	7.3.1 Reactive Microprocessor – ReMIC
	7.3.1.1 EMIT – Signal Emission
	7.3.1.2 SAWAIT – Signal Polling
	7.3.1.3 ABORT – Preemption

	7.3.2 Power Aware ReMIC-PA

	7.4 Example of Heterogeneous Reactive Architecture – HiDRA
	7.4.1 An Overview of HiDRA
	7.4.2 An Implementation of HiDRA

	Chapter 8: Implementation of DFCharts on HiDRA
	8.1 DFCharts Design Methodology
	8.1.1 Specification
	8.1.2 FSM Compositions
	8.1.3 Allocation and Partitioning
	8.1.4 Synthesis
	8.1.5 Performance Evaluation

	8.2 Execution of DFCharts Specifications on HiDRA
	8.2.1 Signals and Variables
	8.2.2 FSM Thread
	8.2.2.1 Thread Entry
	8.2.2.2 States Visible in Specification
	8.2.2.3 Thread Exit
	8.2.2.4 Local Tick End

	8.2.3 Hierarchical and Parallel Compositions
	8.2.4 FSM Scheduler
	8.2.5 Master Tick Handler
	8.2.6 Slave Tick Handler

	8.3 Frequency Relay Implementation

	Chapter 9: Conclusions
	9.1 Summary and Overview
	9.2 Future Research
	9.2.1 DDFCharts Design Flow
	9.2.2 Hardware Implementation
	9.2.3 Strong Abort
	9.2.4 Including More Expressive Dataflow Models
	9.2.5 Program State
	9.2.6 Formal Verification
	9.2.7 Proof of Correctness for DFCharts Implementation

	References
	Index
	Cover
	Embedded Systems Design Based on Formal Models of Computation
	Preface
	Contents
	List of Figures
	List of Tables

	Chapter 1: Introduction
	1.1 Embedded Systems Design
	1.2 DFCharts
	1.3 Book Organization

	Chapter 2: Models of Computation and Languages
	2.1 Finite State Machine
	2.2 Kahn Process Networks
	2.3 Synchronous Dataflow
	2.4 Synchronous/Reactive Model
	2.5 Discrete Event Model
	2.6 Communicating Sequential Processes
	2.7 Petri Nets
	2.8 Statecharts/Statemate
	2.9 Argos
	2.10 Esterel
	2.11 Lustre and Signal
	2.12 SystemC
	2.13 Ptolemy

	Chapter 3: Specification in DFCharts
	3.1 Introduction to DFCharts
	3.1.1 Operators
	3.1.2 Transition Priorities
	3.1.3 Variables
	3.1.4 Data Transfer Between FSM and SDF

	3.2 Case Study: Frequency Relay
	3.2.1 Peak Detection
	3.2.2 Frequency and Rate of Change Calculations
	3.2.3 Switch Control
	3.2.4 Threshold Modification

	3.3 DDFCharts
	3.4 Frequency Relay Extension

	Chapter 4: Semantics of DFCharts
	4.1 Automata Semantics
	4.1.1 FSM with Variables
	4.1.2 Synchronous Parallel Operator
	4.1.3 Asynchronous Parallel Operator
	4.1.4 Hiding Operator
	4.1.5 Refinement Operator
	4.1.6 Mapping Syntax to Automata
	4.1.7 Integrating SDF Graphs into Automata Semantics

	4.2 TSM Semantics
	4.2.1 Data Transfer from SDF to FSM
	4.2.2 Data Transfer from FSM to SDF

	4.3 The Impact of Clock Speeds

	DFCharts in SystemC and Esterel
	5.1 Analysis Based on Requirements
	5.1.1 Concurrent Processes
	5.1.2 Rendezvous Communication
	5.1.1.2 Esterel
	5.1.2.1 SystemC
	5.1.1.1 SystemC

	5.1.3 Buffers and Firing Rules for Dataflow
	5.1.3.2 Esterel
	5.1.2.2 Esterel
	5.1.3.1 SystemC

	5.1.4 HCFSM with Synchronous/Reactive Communication
	5.1.4.1 SystemC
	5.1.4.2 Esterel

	5.1.5 Data Transformations
	5.1.5.2 Esterel
	5.1.5.1 SystemC

	5.1.6 Multiple Processes Inside a State
	5.1.6.1 SystemC

	5.2 Numerical Results
	5.1.7 Comparison Between SystemC and Esterel
	5.1.6.2 Esterel

	5.3 Feature Extensions of SystemC and Esterel

	Chapter 6: Java Environment for DFCharts
	6.1 FSM Classes
	6.1.1 Declaration of Reference Variables for I/O Signals, States and Variables
	6.1.2 Inner Classes for Transition Inputs and Transition Outputs
	6.1.4 Signal and Shared Variable Connections, Initialization of Local Variables
	6.1.3 Constructor Parameters
	6.1.5 Linking States, Transition Inputs and Transition Outputs
	6.1.6 Local Signals, Shared Variables and Channels for Lower Level FSMs and SDFGs
	6.1.6.2 Shared Variable
	6.1.6.1 Local Signal

	6.1.7 Instantiation of Lower Level FSMs and SDFGs
	6.1.6.3 Channel

	6.2 SDFG Classes
	6.1.8 State Refinement
	6.2.1 Constructor Parameters
	6.2.2 Instantiation of Actors

	6.3 Top Level Classes
	6.2.3 Actor Connections
	6.3.2 Instantiation of Input and Output Signals
	6.3.1 Constructor Parameters
	6.3.3 Local Signals, Shared Variables and Channels for Top Level FSMs and SDFGs
	6.3.4 Instantiation of Top Level FSMs and SDFGs
	6.3.5 Top Level Refinement

	6.5 Library Classes
	6.4 Simulation
	6.5.1 Base Classes
	6.5.2 FSM Component Classes
	6.5.3 FSM Communication Classes
	6.5.4 FSM-SDF Communication Classes
	6.5.5 Synchronization Class

	6.6 Frequency Relay Revisited

	Chapter 7: Heterogeneous Reactive Architectures of Embedded Systems
	7.1 Background and Trends
	7.2 Architecture Framework – HETRA
	7.3 Reactive Processors as the Elements of the Heterogeneous Architecture
	7.3.1 Reactive Microprocessor – ReMIC
	7.3.1.1 EMIT – Signal Emission
	7.3.1.3 ABORT – Preemption
	7.3.1.2 SAWAIT – Signal Polling

	7.3.2 Power Aware ReMIC-PA

	7.4 Example of Heterogeneous Reactive Architecture – HiDRA
	7.4.1 An Overview of HiDRA
	7.4.2 An Implementation of HiDRA

	Chapter 8: Implementation of DFCharts on HiDRA
	8.1 DFCharts Design Methodology
	8.1.2 FSM Compositions
	8.1.3 Allocation and Partitioning
	8.1.1 Specification
	8.1.4 Synthesis

	8.2 Execution of DFCharts Specifications on HiDRA
	8.2.1 Signals and Variables
	8.1.5 Performance Evaluation
	8.2.2 FSM Thread
	8.2.2.2 States Visible in Specification
	8.2.2.1 Thread Entry

	8.2.3 Hierarchical and Parallel Compositions
	8.2.2.4 Local Tick End
	8.2.2.3 Thread Exit

	8.2.4 FSM Scheduler
	8.2.5 Master Tick Handler

	8.3 Frequency Relay Implementation
	8.2.6 Slave Tick Handler

	Chapter 9: Conclusions
	9.1 Summary and Overview
	9.2 Future Research
	9.2.1 DDFCharts Design Flow
	9.2.2 Hardware Implementation
	9.2.3 Strong Abort
	9.2.5 Program State
	9.2.4 Including More Expressive Dataflow Models
	9.2.6 Formal Verification
	9.2.7 Proof of Correctness for DFCharts Implementation

	References
	Index

