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Chapter 1

Introduction

1.1 Noise Reduction

Signal enhancement is a fundamental topic of signal processing in general and

of speech processing in particular [1]. In audio and speech applications such as

cell phones, teleconferencing systems, hearing aids, human–machine interfaces, and

many others, the microphones installed in these systems always pick up some inter-

ferences that contaminate the desired speech signal. Depending on the mechanism

that generates them, these interferences can be broadly classified into four basic

categories: additive noise originating from various ambient sound sources, interfer-

ence from concurrent competing speakers, filtering effects caused by room surface

reflections and spectral shaping of recording devices, and echo from coupling be-

tween loudspeakers and microphones. These four categories of distortions interfere

with the measurement, processing, recording, and communication of the desired

speech signal in very distinct ways and combating them has led to four im-

portant research areas: noise reduction (also called speech enhancement), source

separation, speech dereverberation, and echo cancellation and suppression. A broad

coverage of these research areas can be found in [2, 3]. This work is devoted to the

theoretical study of the problem of speech enhancement in the time domain.

Noise reduction consists of recovering a speech signal of interest from the micro-

phone signals, which are corrupted by unwanted additive noise. By additive noise

we mean that the signals picked up by the microphones are a superposition of the

convolved clean speech and noise. Schroeder at Bell Laboratories in 1960 was the

first to propose a single-channel algorithm for that purpose [4]. It was basically a

spectral subtraction method implemented with analog circuits.

Frequency-domain approaches are usually preferred in real-time applications as

they can be implemented efficiently thanks to the fast Fourier transform. However,

they come with some well-known problems such as the so-called “musical noise,”

which is very unpleasant to hear and difficult to get rid off. In the time domain, this

problem does not exist and, contrary to what some readers might believe, time-domain

algorithms are at least as flexible as their counterparts in the frequency domain as it

J. Benesty and J. Chen, Optimal Time-Domain Noise Reduction Filters, 1
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2 1 Introduction

will be shown throughout this work; but they can be computationally more complex

in terms of multiplications. However, with little effort, it is not hard to make them

more efficient by exploiting the Toeplitz or close-to-Toeplitz structure of the matrices

involved in these algorithms.

In this work, we propose a general framework for the time-domain noise reduction

problem. Thanks to this formulation, it is easy to derive, study, and analyze all kinds

of algorithms.

1.2 Organization of the Work

The material in this work is organized into five chapters, including this one. The

focus is on the time-domain algorithms for both the single and multiple microphone

cases. The work discussed in these chapters is as follows.

In Chap. 2, we study the noise reduction problem with a single microphone by

using a filtering vector for the estimation of the desired signal sample.

Chapter 3 generalizes the ideas of Chap. 2 with a rectangular filtering matrix for

the estimation of the desired signal vector.

In Chap. 4, we study the speech enhancement problem with a microphone array

by using a long filtering vector.

Finally, Chap. 5 extends the results of Chap. 4 with a rectangular filtering matrix.
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Chapter 2

Single-Channel Noise Reduction with

a Filtering Vector

There are different ways to perform noise reduction in the time domain. The simplest

way, perhaps, is to estimate a sample of the desired signal at a time by applying a

filtering vector to the observation signal vector. This approach is investigated in

this chapter and many well-known optimal filtering vectors are derived. We start by

explaining the single-channel signal model for noise reduction in the time domain.

2.1 Signal Model

The noise reduction problem considered in this chapter and Chap. 3 is one of recov-

ering the desired signal (or clean speech) x(k), k being the discrete-time index, of

zero mean from the noisy observation (microphone signal) [1–3]

y(k) = x(k) + v(k), (2.1)

where v(k), assumed to be a zero-mean random process, is the unwanted additive

noise that can be either white or colored but is uncorrelated with x(k). All signals

are considered to be real and broadband. To simplify the derivation of the optimal

filters, we further assume that the signals are Gaussian and stationary.

The signal model given in (2.1) can be put into a vector form by considering the

L most recent successive samples, i.e.,

y(k) = x(k) + v(k), (2.2)

where

y(k) = [y(k) y(k − 1) · · · y(k − L + 1)]T (2.3)

is a vector of length L, superscript T denotes transpose of a vector or a matrix,

and x(k) and v(k) are defined in a similar way to y(k). Since x(k) and v(k) are
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4 2 Single-Channel Filtering Vector

uncorrelated by assumption, the correlation matrix (of size L × L) of the noisy

signal can be written as

Ry = E
[
y(k)yT (k)

]

= Rx + Rv, (2.4)

where E[·] denotes mathematical expectation, and Rx = E
[
x(k)xT (k)

]
and Rv =

E
[
v(k)vT (k)

]
are the correlation matrices of x(k) and v(k), respectively. The objec-

tive of noise reduction in this chapter is then to find a “good” estimate of the sample

x(k) in the sense that the additive noise is significantly reduced while the desired

signal is not much distorted.

Since x(k) is the signal of interest, it is important to write the vector y(k) as an

explicit function of x(k). For that, we need first to decompose x(k) into two orthog-

onal components: one proportional to the desired signal, x(k), and the other one

corresponding to the interference. Indeed, it is easy to see that this decomposition is

x(k) = ρxx · x(k) + xi(k), (2.5)

where

ρxx = [1 ρx (1) · · · ρx (L − 1)]T

=
E [x(k)x(k)]

E
[
x2(k)

] (2.6)

is the normalized [with respect to x(k)] correlation vector (of length L) between

x(k) and x(k),

ρx (l) =
E [x(k − l)x(k)]

E
[
x2(k)

] , l = 0, 1, . . . , L − 1 (2.7)

is the correlation coefficient between x(k − l) and x(k),

xi(k) = x(k) − ρxx · x(k) (2.8)

is the interference signal vector, and

E [xi(k)x(k)] = 0L×1, (2.9)

where 0L×1 is a vector of length L containing only zeroes.

Substituting (2.5) into (2.2), the signal model for noise reduction can be expressed

as

y(k) = ρxx · x(k) + xi(k) + v(k). (2.10)

This formulation will be extensively used in the following sections.
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2.2 Linear Filtering with a Vector

In this chapter, we try to estimate the desired signal sample, x(k), by applying a

finite-impulse-response (FIR) filter to the observation signal vector y(k), i.e.,

z(k) =

L−1∑

l=0

hl y(k − l)

= hT y(k), (2.11)

where z(k) is supposed to be the estimate of x(k) and

h =
[
h0 h1 · · · hL−1

]T
(2.12)

is an FIR filter of length L. This procedure is called the single-channel noise reduction

in the time domain with a filtering vector.

Using (2.10), we can express (2.11) as

z(k) = hT
[
ρxx · x(k) + xi(k) + v(k)

]

= xfd(k) + xri(k) + vrn(k), (2.13)

where

xfd(k) = x(k)hT ρxx (2.14)

is the filtered desired signal,

xri(k) = hT xi(k) (2.15)

is the residual interference, and

vrn(k) = hT v(k) (2.16)

is the residual noise.

Since the estimate of the desired signal at time k is the sum of three terms that are

mutually uncorrelated, the variance of z(k) is

σ 2
z = hT Ryh

= σ 2
xfd

+ σ 2
xri

+ σ 2
vrn

, (2.17)

where

σ 2
xfd

= σ 2
x

(
hT ρxx

)2

= hT Rxd h, (2.18)
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σ 2
xri

= hT Rxi h

= hT Rxh − hT Rxd h, (2.19)

σ 2
vrn

= hT Rvh, (2.20)

σ 2
x = E

[
x2(k)

]
is the variance of the desired signal, Rxd = σ 2

x ρxxρ
T
xx is the

correlation matrix (whose rank is equal to 1) of xd(k) = ρxx · x(k), and Rxi =

E
[
xi(k)xT

i (k)
]

is the correlation matrix of xi(k). The variance of z(k)is useful in the

definitions of the performance measures.

2.3 Performance Measures

The first attempts to derive relevant and rigorous measures in the context of speech

enhancement can be found in [1, 4, 5]. These references are the main inspiration for

the derivation of measures in the studied context throughout this work.

In this section, we are going to define the most useful performance measures for

speech enhancement in the single-channel case with a filtering vector. We can divide

these measures into two categories. The first category evaluates the noise reduction

performance while the second one evaluates speech distortion. We are also going to

discuss the very convenient mean-square error (MSE) criterion and show how it is

related to the performance measures.

2.3.1 Noise Reduction

One of the most fundamental measures in all aspects of speech enhancement is

the signal-to-noise ratio (SNR). The input SNR is a second-order measure which

quantifies the level of noise present relative to the level of the desired signal. It is

defined as

iSNR =
σ 2

x

σ 2
v

, (2.21)

where σ 2
v = E

[
v2(k)

]
is the variance of the noise.

The output SNR1 helps quantify the level of noise remaining at the filter output

signal. The output SNR is obtained from (2.17):

1 In this work, we consider the uncorrelated interference as part of the noise in the definitions of

the performance measures.
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oSNR (h) =
σ 2

xfd

σ 2
xri

+ σ 2
vrn

=
σ 2

x

(
hT ρxx

)2

hT Rinh
, (2.22)

where

Rin = Rxi + Rv (2.23)

is the interference-plus-noise correlation matrix. Basically, (2.22) is the variance of

the first signal (filtered desired) from the right-hand side of (2.17) over the vari-

ance of the two other signals (filtered interference-plus-noise). The objective of the

speech enhancement filter is to make the output SNR greater than the input SNR.

Consequently, the quality of the noisy signal will be enhanced.

For the particular filtering vector

h = ii = [1 0 · · · 0]T (2.24)

of length L, we have

oSNR (ii) = iSNR. (2.25)

With the identity filtering vector ii, the SNR cannot be improved.

For any two vectors h and ρxx and a positive definite matrix Rin, we have

(
hT ρxx

)2
≤

(
hT Rinh

)(
ρT

xx R−1
in ρxx

)
, (2.26)

with equality if and only if h = ςR−1
in ρxx , where ς( �= 0) is a real number. Using

the previous inequality in (2.22), we deduce an upper bound for the output SNR:

oSNR (h) ≤ σ 2
x · ρT

xx R−1
in ρxx , ∀h (2.27)

and clearly

oSNR (ii) ≤ σ 2
x · ρT

xx R−1
in ρxx , (2.28)

which implies that

σ 2
v · ρT

xx R−1
in ρxx ≥ 1. (2.29)

The maximum output SNR is then

oSNRmax = σ 2
x · ρT

xx R−1
in ρxx (2.30)
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and

oSNRmax ≥ iSNR. (2.31)

The noise reduction factor quantifies the amount of noise being rejected by the

filter. This quantity is defined as the ratio of the power of the noise at the microphone

over the power of the interference-plus-noise remaining at the filter output, i.e.,

ξnr (h) =
σ 2

v

hT Rinh
. (2.32)

The noise reduction factor is expected to be lower bounded by 1; otherwise, the

filter amplifies the noise received at the microphone. The higher the value of the

noise reduction factor, the more the noise is rejected. While the output SNR is upper

bounded, the noise reduction factor is not.

2.3.2 Speech Distortion

Since the noise is reduced by the filtering operation, so is, in general, the desired

speech. This speech reduction (or cancellation) implies, in general, speech distortion.

The speech reduction factor, which is somewhat similar to the noise reduction factor,

is defined as the ratio of the variance of the desired signal at the microphone over

the variance of the filtered desired signal, i.e.,

ξsr (h) =
σ 2

x

σ 2
xfd

=
1

(
hT ρxx

)2
. (2.33)

A key observation is that the design of filters that do not cancel the desired signal

requires the constraint

hT ρxx = 1. (2.34)

Thus, the speech reduction factor is equal to 1 if there is no distortion and expected

to be greater than 1 when distortion happens.

Another way to measure the distortion of the desired speech signal due to the

filtering operation is the speech distortion index,2 which is defined as the mean-

square error between the desired signal and the filtered desired signal, normalized

by the variance of the desired signal, i.e.,

2 Very often in the literature, authors use 1/υsd (h) as a measure of the SNR improvement. This

is wrong! Obviously, we can define whatever we want, but in this is case we need to be careful to

compare “apples with apples.” For example, it is not appropriate to compare 1/υsd (h) to iSNR and

only oSNR (h) makes sense to compare to iSNR.
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υsd (h) =
E

{
[xfd(k) − x(k)]2

}

E
[
x2(k)

]

=
(
hT ρxx − 1

)2

=
[
ξ−1/2

sr (h) − 1
]2

. (2.35)

We also see from this measure that the design of filters that do not distort the desired

signal requires the constraint

υsd (h) = 0. (2.36)

Therefore, the speech distortion index is equal to 0 if there is no distortion and

expected to be greater than 0 when distortion occurs.

It is easy to verify that we have the following fundamental relation:

oSNR (h)

iSNR
=

ξnr (h)

ξsr (h)
. (2.37)

This expression indicates the equivalence between gain/loss in SNR and distortion.

2.3.3 Mean-Square Error (MSE) Criterion

Error criteria play a critical role in deriving optimal filters. The mean-square error

(MSE) [6] is, by far, the most practical one.

We define the error signal between the estimated and desired signals as

e(k) = z(k) − x(k)

= xfd(k) + xri(k) + vrn(k) − x(k), (2.38)

which can be written as the sum of two uncorrelated error signals:

e(k) = ed(k) + er(k), (2.39)

where

ed(k) = xfd(k) − x(k)

=
(
hT ρxx − 1

)
x(k) (2.40)

is the signal distortion due to the filtering vector and

er(k) = xri(k) + vrn(k)

= hT xi(k) + hT v(k) (2.41)

represents the residual interference-plus-noise.
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The mean-square error (MSE) criterion is then

J (h) = E
[
e2(k)

]

= σ 2
x + hT Ryh − 2hT E [x(k)x(k)]

= σ 2
x + hT Ryh − 2σ 2

x hT ρxx

= Jd (h) + Jr (h) , (2.42)

where

Jd (h) = E
[
e2

d(k)
]

= σ 2
x

(
hT ρxx − 1

)2
(2.43)

and

Jr (h) = E
[
e2

r (k)
]

= hT Rinh. (2.44)

Two particular filtering vectors are of great interest: h = ii and h = 0L×1. With

the first one (identity filtering vector), we have neither noise reduction nor speech

distortion and with the second one (zero filtering vector), we have maximum noise

reduction and maximum speech distortion (i.e., the desired speech signal is com-

pletely nulled out). For both filters, however, it can be verified that the output SNR

is equal to the input SNR. For these two particular filters, the MSEs are

J (ii) = Jr (ii) = σ 2
v , (2.45)

J (0L×1) = Jd (0L×1) = σ 2
x . (2.46)

As a result,

iSNR =
J (0L×1)

J (ii)
. (2.47)

We define the normalized MSE (NMSE) with respect to J (ii) as

J̃ (h) =
J (h)

J (ii)

= iSNR · υsd (h) +
1

ξnr (h)

= iSNR

[
υsd (h) +

1

oSNR (h) · ξsr (h)

]
, (2.48)
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where

υsd (h) =
Jd (h)

Jd (0L×1)
, (2.49)

iSNR · υsd (h) =
Jd (h)

Jr (ii)
, (2.50)

ξnr (h) =
Jr (ii)

Jr (h)
, (2.51)

oSNR (h) · ξsr (h) =
Jd (0L×1)

Jr (h)
. (2.52)

This shows how this NMSE and the different MSEs are related to the performance

measures.

We define the NMSE with respect to J (0L×1) as

J (h) =
J (h)

J (0L×1)

= υsd (h) +
1

oSNR (h) · ξsr (h)
(2.53)

and, obviously,

J̃ (h) = iSNR · J (h) . (2.54)

We are only interested in filters for which

Jd (ii) ≤ Jd (h) < Jd (0L×1) , (2.55)

Jr (0L×1) < Jr (h) < Jr (ii) . (2.56)

From the two previous expressions, we deduce that

0 ≤ υsd (h) < 1, (2.57)

1 < ξnr (h) < ∞. (2.58)

It is clear that the objective of noise reduction is to find optimal filtering vectors that

would either minimize J (h) or minimize Jd (h) or Jr (h) subject to some constraint.

2.4 Optimal Filtering Vectors

In this section, we are going to derive the most important filtering vectors that can

help mitigate the level of the noise picked up by the microphone signal.
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2.4.1 Maximum Signal-to-Noise Ratio (SNR)

The maximum SNR filter, hmax, is obtained by maximizing the output SNR as given

in (2.22) from which, we recognize the generalized Rayleigh quotient [7]. It is well

known that this quotient is maximized with the maximum eigenvector of the matrix

R−1
in Rxd . Let us denote by λmax the maximum eigenvalue corresponding to this

maximum eigenvector. Since the rank of the mentioned matrix is equal to 1, we have

λmax = tr
(
R−1

in Rxd

)

= σ 2
x · ρT

xx R−1
in ρxx , (2.59)

where tr (·) denotes the trace of a square matrix. As a result,

oSNR (hmax) = λmax

= σ 2
x · ρT

xx R−1
in ρxx , (2.60)

which corresponds to the maximum possible output SNR, i.e., oSNRmax.

Obviously, we also have

hmax = ςR−1
in ρxx , (2.61)

where ς is an arbitrary non-zero scaling factor. While this factor has no effect on

the output SNR, it may have on the speech distortion. In fact, all filters (except for

the LCMV) derived in the rest of this section are equivalent up to this scaling factor.

These filters also try to find the respective scaling factors depending on what we

optimize.

2.4.2 Wiener

The Wiener filter is easily derived by taking the gradient of the MSE, J (h)

[Eq. (2.42)], with respect to h and equating the result to zero:

hW = σ 2
x R−1

y ρxx .

The Wiener filter can also be expressed as

hW = R−1
y E [x(k)x(k)]

= R−1
y Rxii

=
(
IL − R−1

y Rv

)
ii, (2.62)

where IL is the identity matrix of size L × L . The above formulation depends on the

second-order statistics of the observation and noise signals. The correlation matrix
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Ry can be estimated from the observation signal while the other correlation matrix,

Rv, can be estimated during noise-only intervals assuming that the statistics of the

noise do not change much with time.

We now propose to write the general form of the Wiener filter in another way that

will make it easier to compare to other optimal filters. We can verify that

Ry = σ 2
x ρxxρ

T
xx + Rin. (2.63)

Determining the inverse of Ry from the previous expression with the Woodbury’s

identity, we get

R−1
y = R−1

in −
R−1

in ρxxρ
T
xx R−1

in

σ−2
x + ρT

xx R−1
in ρxx

. (2.64)

Substituting (2.64) into (2.62), leads to another interesting formulation of the Wiener

filter:

hW =
σ 2

x R−1
in ρxx

1 + σ 2
x ρT

xx R−1
in ρxx

, (2.65)

that we can rewrite as

hW =
σ 2

x R−1
in ρxxρ

T
xx

1 + λmax
ii

=
R−1

in

(
Ry − Rin

)

1 + tr
[
R−1

in

(
Ry − Rin

)] ii

=
R−1

in Ry − IL

1 − L + tr
(
R−1

in Ry

) ii. (2.66)

From (2.66), we deduce that the output SNR is

oSNR (hW) = λmax

= tr
(
R−1

in Ry

)
− L . (2.67)

We observe from (2.67) that the more the amount of noise, the smaller is the output

SNR.

The speech distortion index is an explicit function of the output SNR:

υsd (hW) =
1

[1 + oSNR (hW)]2
≤ 1. (2.68)

The higher the value of oSNR (hW) , the less the desired signal is distorted.
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Clearly,

oSNR (hW) ≥ iSNR, (2.69)

since the Wiener filter maximizes the output SNR.

It is of interest to observe that the two filters hmax and hW are equivalent up to a

scaling factor. Indeed, taking

ς =
σ 2

x

1 + λmax
(2.70)

in (2.61) (maximum SNR filter), we find (2.66) (Wiener filter).

With the Wiener filter, the noise and speech reduction factors are

ξnr (hW) =
(1 + λmax)

2

iSNR · λmax

≥

(
1 +

1

λmax

)2

, (2.71)

ξsr (hW) =

(
1 +

1

λmax

)2

. (2.72)

Finally, we give the minimum NMSEs (MNMSEs):

J̃ (hW) =
iSNR

1 + oSNR (hW)
≤ 1, (2.73)

J (hW) =
1

1 + oSNR (hW)
≤ 1. (2.74)

2.4.3 Minimum Variance Distortionless Response

(MVDR)

The celebrated minimum variance distortionless response (MVDR) filter proposed

by Capon [8, 9] is usually derived in a context where we have at least two sensors (or

microphones) available. Interestingly, with the linear model proposed in this chapter,

we can also derive the MVDR (with one sensor only) by minimizing the MSE of the

residual interference-plus-noise, Jr (h) , with the constraint that the desired signal is

not distorted. Mathematically, this is equivalent to

min
h

hT Rinh subject to hT ρxx = 1, (2.75)
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for which the solution is

hMVDR =
R−1

in ρxx

ρT
xx R−1

in ρxx

, (2.76)

that we can rewrite as

hMVDR =
R−1

in Ry − IL

tr
(
R−1

in Ry

)
− L

ii

=
σ 2

x R−1
in ρxx

λmax
. (2.77)

Alternatively, we can express the MVDR as

hMVDR =
R−1

y ρxx

ρT
xx R−1

y ρxx

. (2.78)

The Wiener and MVDR filters are simply related as follows:

hW = ς0hMVDR, (2.79)

where

ς0 = hT
Wρxx

=
λmax

1 + λmax
. (2.80)

So, the two filters hW and hMVDR are equivalent up to a scaling factor. From a

theoretical point of view, this scaling is not significant. But from a practical point

of view it can be important. Indeed, the signals are usually nonstationary and the

estimations are done frame by frame, so it is essential to have this scaling factor

right from one frame to another in order to avoid large distortions. Therefore, it

is recommended to use the MVDR filter rather than the Wiener filter in speech

enhancement applications.

It is clear that we always have

oSNR (hMVDR) = oSNR (hW) , (2.81)

υsd (hMVDR) = 0, (2.82)

ξsr (hMVDR) = 1, (2.83)

ξnr (hMVDR) =
oSNR (hMVDR)

iSNR
≤ ξnr (hW) , (2.84)
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and

1 ≥ J̃ (hMVDR) =
iSNR

oSNR (hMVDR)
≥ J̃ (hW) , (2.85)

J (hMVDR) =
1

oSNR (hMVDR)
≥ J (hW) . (2.86)

2.4.4 Prediction

Assume that we can find a simple prediction filter g of length L in such a way that

x(k) ≈ x(k)g. (2.87)

In this case, we can derive a distortionless filter for noise reduction as follows:

min
h

hT Ryh subject to hT g = 1. (2.88)

We deduce the solution

hP =
R−1

y g

gT R−1
y g

. (2.89)

Now, we can find the optimal g in the Wiener sense. For that, we need to define

the error signal vector

eP(k) = x(k) − x(k)g (2.90)

and form the MSE

J (g) = E
[
eT

P (k)eP(k)
]
. (2.91)

By minimizing J (g) with respect to g, we easily find the optimal filter

go = ρxx . (2.92)

It is interesting to observe that the error signal vector with the optimal filter, go,

corresponds to the interference signal, i.e.,

eP,o(k) = x(k) − x(k)ρxx

= xi(k). (2.93)

This result is obviously expected because of the orthogonality principle.
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Substituting (2.92) into (2.89), we find that

hP =
R−1

y ρxx

ρT
xx R−1

y ρxx

. (2.94)

Clearly, the two filters hMVDR and hP are identical. Therefore, the prediction approach

can be seen as another way to derive the MVDR. This approach is also an intuitive

manner to justify the decomposition given in (2.5).

Left multiplying both sides of (2.93) by hT
P results in

x(k) = hT
P x(k) − hT

P eP,o(k). (2.95)

Therefore, the filter hP can also be interpreted as a temporal prediction filter that is

less noisy than the one that can be obtained from the noisy signal, y(k), directly.

2.4.5 Tradeoff

In the tradeoff approach, we try to compromise between noise reduction and speech

distortion. Instead of minimizing the MSE to find the Wiener filter or minimizing the

filter output with a distortionless constraint to find the MVDR as we already did in

the preceding subsections, we could minimize the speech distortion index with the

constraint that the noise reduction factor is equal to a positive value that is greater

than 1. Mathematically, this is equivalent to

min
h

Jd (h) subject to Jr (h) = βσ 2
v , (2.96)

where 0 < β < 1 to insure that we get some noise reduction. By using a Lagrange

multiplier, µ > 0, to adjoin the constraint to the cost function and assuming that the

matrix Rxd + µRin is invertible, we easily deduce the tradeoff filter

hT,µ = σ 2
x

[
Rxd + µRin

]−1
ρxx

=
R−1

in ρxx

µσ−2
x + ρT

xx R−1
in ρxx

=
R−1

in Ry − IL

µ − L + tr
(
R−1

in Ry

) ii, (2.97)

where the Lagrange multiplier, µ, satisfies

Jr

(
hT,µ

)
= βσ 2

v . (2.98)

However, in practice it is not easy to determine the optimal µ. Therefore, when this

parameter is chosen in an ad hoc way, we can see that for
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• µ = 1, hT,1 = hW, which is the Wiener filter;

• µ = 0, hT,0 = hMVDR, which is the MVDR filter;

• µ > 1, results in a filter with low residual noise (compared with the Wiener filter)

at the expense of high speech distortion;

• µ < 1, results in a filter with high residual noise and low speech distortion.

Note that the MVDR cannot be derived from the first line of (2.97) since by taking

µ = 0, we have to invert a matrix that is not full rank.

Again, we observe here as well that the tradeoff, Wiener, and maximum SNR

filters are equivalent up to a scaling factor. As a result, the output SNR of the tradeoff

filter is independent of µ and is identical to the output SNR of the Wiener filter, i.e.,

oSNR
(
hT,µ

)
= oSNR (hW) , ∀µ ≥ 0. (2.99)

We have

υsd

(
hT,µ

)
=

(
µ

µ + λmax

)2

, (2.100)

ξsr

(
hT,µ

)
=

(
1 +

µ

λmax

)2

, (2.101)

ξnr

(
hT,µ

)
=

(µ + λmax)
2

iSNR · λmax
, (2.102)

and

J̃
(
hT,µ

)
= iSNR

µ2 + λmax

(µ + λmax)
2

≥ J (hW) , (2.103)

J
(
hT,µ

)
=

µ2 + λmax

(µ + λmax)
2

≥ J (hW) . (2.104)

2.4.6 Linearly Constrained Minimum Variance

(LCMV)

We can derive a linearly constrained minimum variance (LCMV) filter [10, 11],

which can handle more than one linear constraint, by exploiting the structure of the

noise signal.

In Sect. 2.1, we decomposed the vector x(k) into two orthogonal components to

extract the desired signal, x(k). We can also decompose (but for a different objective

as explained below) the noise signal vector, v(k), into two orthogonal vectors:
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v(k) = ρvv · v(k) + vu(k), (2.105)

where ρvv is defined in a similar way to ρxx and vu(k) is the noise signal vector that

is uncorrelated with v(k).

Our problem this time is the following. We wish to perfectly recover our desired

signal, x(k), and completely remove the correlated components of the noise signal,

ρvv · v(k). Thus, the two constraints can be put together in a matrix form as

CT
xvh =

[
1

0

]
, (2.106)

where

Cxv =
[
ρxx ρvv

]
(2.107)

is our constraint matrix of size L × 2. Then, our optimal filter is obtained by min-

imizing the energy at the filter output, with the constraints that the correlated noise

components are cancelled and the desired speech is preserved, i.e.,

hLCMV = arg min
h

hT Ryh subject to CT
xvh =

[
1

0

]
. (2.108)

The solution to (2.108) is given by

hLCMV = R−1
y Cxv

(
CT

xvR−1
y Cxv

)−1
[

1

0

]
. (2.109)

By developing (2.109), it can easily be shown that the LCMV can be written as a

function of the MVDR:

hLCMV =
1

1 − γ 2
hMVDR −

γ 2

1 − γ 2
t, (2.110)

where

γ 2 =

(
ρT

xx R−1
y ρvv

)2

(
ρT

xx R−1
y ρxx

)(
ρT

vvR−1
y ρvv

) , (2.111)

with 0 ≤ γ 2 ≤ 1, hMVDR is defined in (2.78), and

t =
R−1

y ρvv

ρT
xx R−1

y ρvv

. (2.112)

We observe from (2.110) that when γ 2 = 0, the LCMV filter becomes the MVDR

filter; however, when γ 2 tends to 1, which happens if and only if ρxx = ρvv, we

have no solution since we have conflicting requirements.
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Obviously, we always have

oSNR (hLCMV) ≤ oSNR (hMVDR) , (2.113)

υsd (hLCMV) = 0, (2.114)

ξsr (hLCMV) = 1, (2.115)

and

ξnr (hLCMV) ≤ ξnr (hMVDR) ≤ ξnr (hW) . (2.116)

The LCMV filter is able to remove all the correlated noise; however, its overall noise

reduction is lower than that of the MVDR filter.

2.4.7 Practical Considerations

All the algorithms presented in the preceding subsections can be implemented from

the second-order statistics estimates of the noise and noisy signals. Let us take the

MVDR as an example. In this filter, we need the estimates of Ry and ρxx . The

correlation matrix, Ry, can be easily estimated from the observations. However, the

correlation vector, ρxx , cannot be estimated directly since x(k) is not accessible but

it can be rewritten as

ρxx =
E

[
y(k)y(k)

]
− E [v(k)v(k)]

σ 2
y − σ 2

v

=
σ 2

y ρyy − σ 2
v ρvv

σ 2
y − σ 2

v

, (2.117)

which now depends on the statistics of y(k) and v(k). However, a voice activity

detector (VAD) is required in order to be able to estimate the statistics of the noise

signal during silences [i.e., when x(k) = 0 ]. Nowadays, more and more sophisticated

VADs are developed [12] since a VAD is an integral part of most speech enhancement

algorithms. A good VAD will obviously improve the performance of a noise reduction

filter since the estimates of the signals statistics will be more reliable. A system

integrating an optimal filter and a VAD may not be easy to design but much progress

has been made recently in this area of research [13].

2.5 Summary

In this chapter, we revisited the single-channel noise reduction problem in the time

domain. We showed how to extract the desired signal sample from a vector containing
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its past samples. Thanks to the orthogonal decomposition that results from this, the

presentation of the problem is simplified. We defined several interesting performance

measures in this context and deduced optimal noise reduction filters: maximum

SNR, Wiener, MVDR, prediction, tradeoff, and LCMV. Interestingly, all these filters

(except for the LCMV) are equivalent up to a scaling factor. Consequently, their

performance in terms of SNR improvement is the same given the same statistics

estimates.
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Chapter 3

Single-Channel Noise Reduction with

a Rectangular Filtering Matrix

In the previous chapter, we tried to estimate one sample only at a time from the

observation signal vector. In this part, we are going to estimate more than one sample

at a time. As a result, we now deal with a rectangular filtering matrix instead of a

filtering vector. If M is the number of samples to be estimated and L is the length

of the observation signal vector, then the size of the filtering matrix is M × L . Also,

this approach is more general and all the results from Chap. 2 are particular cases

of the results derived in this chapter by just setting M = 1. The signal model is the

same as in Sect. 2.1; so we start by explaining the principle of linear filtering with a

rectangular matrix.

3.1 Linear Filtering with a Rectangular Matrix

Define the vector of length M:

xM (k) = [x(k) x(k − 1) · · · x(k − M + 1)]T , (3.1)

where M ≤ L . In the general linear filtering approach, we estimate the desired signal

vector, xM (k), by applying a linear transformation to y(k) [1–4], i.e.,

zM (k) = Hy(k)

= H [x(k) + v(k)]

= xM
f (k) + vM

rn (k), (3.2)

where zM (k) is the estimate of xM (k),

H =

⎡
⎢⎢⎢⎣

hT
1

hT
2
...

hT
M

⎤
⎥⎥⎥⎦ (3.3)
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is a rectangular filtering matrix of size M × L ,

hm =
[
hm,0 hm,1 · · · hm,L−1

]T
, m = 1, 2, . . . , M (3.4)

are FIR filters of length L ,

xM
f (k) = Hx(k) (3.5)

is the filtered speech, and

vM
rn (k) = Hv(k) (3.6)

is the residual noise.

Two important particular cases of (3.2) are immediate.

• M = 1. In this situation, z1(k) = z(k) is a scalar and H simplifies to an FIR filter

hT of length L . This case was well studied in Chap. 2.

• M = L . In this situation, zL(k) = z(k) is a vector of length L and H = HS is a

square matrix of size L × L . This scenario has been widely covered in [1–5] and

in many other papers. We will get back to this case a bit later in this chapter.

By definition, our desired signal is the vector xM (k). The filtered speech, xM
f (k),

depends on x(k) but our desired signal after noise reduction should explicitly depends

on xM (k). Therefore, we need to extract xM (k) from x(k). For that, we need to

decompose x(k) into two orthogonal components: one that is correlated with (or is a

linear transformation of) the desired signal xM (k) and the other one that is orthogonal

to xM (k) and, hence, will be considered as the interference signal. Specifically, the

vector x(k) is decomposed into the following form:

x(k) = RxxM R−1

xM xM (k) + xi(k)

= xd(k) + xi(k), (3.7)

where

xd(k) = RxxM R−1

xM xM (k)

= ŴxxM xM (k) (3.8)

is a linear transformation of the desired signal, RxM = E
[
xM (k)xMT (k)

]
is the

correlation matrix (of size M × M) of xM (k), RxxM = E
[
x(k)xMT (k)

]
is the cross-

correlation matrix (of size L × M) between x(k) and xM (k),ŴxxM = RxxM R−1

xM ,

and

xi(k) = x(k) − xd(k) (3.9)

http://dx.doi.org/10.1007/978-3-642-19601-0_2
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is the interference signal. It is easy to see that xd(k) and xi(k) are orthogonal, i.e.,

E
[
xd(k)xT

i (k)
]

= 0L×L . (3.10)

For the particular case M = L , we have Ŵxx = IL , which is the identity matrix

(of size L × L), and xd(k) coincides with x(k), which obviously makes sense. For

M = 1,Ŵxx1 simplifies to the normalized correlation vector (see Chap. 2)

ρxx =
E [x(k)x(k)]

E
[
x2(k)

] . (3.11)

Substituting (3.7) into (3.2), we get

zM (k) = H [xd(k) + xi(k) + v(k)]

= xM
fd (k) + xM

ri (k) + vM
rn (k), (3.12)

where

xM
fd (k) = Hxd(k) (3.13)

is the filtered desired signal,

xM
ri (k) = Hxi(k) (3.14)

is the residual interference, and vM
rn (k) = Hv(k), again, represents the residual

noise. It can be checked that the three terms xM
fd (k), xM

ri (k), and vM
rn (k) are mutually

orthogonal. Therefore, the correlation matrix of zM (k) is

RzM = E
[
zM (k)zMT (k)

]

= RxM
fd

+ RxM
ri

+ RvM
rn

, (3.15)

where

RxM
fd

= HRxd HT , (3.16)

RxM
ri

= HRxi H
T

= HRxHT − HRxd HT , (3.17)

RvM
rn

= HRvHT , (3.18)

Rxd = ŴxxM RxM ŴT
xxM is the correlation matrix (whose rank is equal to M) of xd(k),

and Rxi = E
[
xi(k)xT

i (k)
]

is the correlation matrix of xi(k). The correlation matrix

of zM (k) is helpful in defining meaningful performance measures.

http://dx.doi.org/10.1007/978-3-642-19601-0_2
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3.2 Joint Diagonalization

By exploiting the decomposition of x(k), we can decompose the correlation matrix

of y(k) as

Ry = Rxd + Rin

= ŴxxM RxM ŴT
xxM + Rin, (3.19)

where

Rin = Rxi + Rv (3.20)

is the interference-plus-noise correlation matrix. It is interesting to observe from

(3.19) that the noisy signal correlation matrix is the sum of two other correlation

matrices: the linear transformation of the desired signal correlation matrix of rank

M and the interference-plus-noise correlation matrix of rank L .

The two symmetric matrices Rxd and Rin can be jointly diagonalized as follows

[6, 7]:

BT Rxd B = �, (3.21)

BT RinB = IL , (3.22)

where B is a full-rank square matrix (of size L × L) and � is a diagonal matrix whose

main elements are real and nonnegative. Furthermore, � and B are the eigenvalue

and eigenvector matrices, respectively, of R−1
in Rxd , i.e.,

R−1
in Rxd B = B�. (3.23)

Since the rank of the matrix Rxd is equal to M, the eigenvalues of R−1
in Rxd can

be ordered as λM
1 ≥ λM

2 ≥ · · · ≥ λM
M > λM

M+1 = · · · = λM
L = 0. In other

words, the last L − M eigenvalues of R−1
in Rxd are exactly zero while its first M

eigenvalues are positive, with λM
1 being the maximum eigenvalue. We also denote

by bM
1 , bM

2 , . . . , bM
M , bM

M+1, . . . , bM
L , the corresponding eigenvectors. Therefore, the

noisy signal covariance matrix can also be diagonalized as

BT RyB = � + IL . (3.24)

Note that the same diagonalization was proposed in [8] but for the classical subspace

approach [2].

Now, we have all the necessary ingredients to define the performance measures

and derive the most well-known optimal filtering matrices.
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3.3 Performance Measures

In this section, the performance measures tailored for linear filtering with a rectan-

gular matrix are defined.

3.3.1 Noise Reduction

The input SNR was already defined in Chap. 2; but it can be rewritten as

iSNR =
σ 2

x

σ 2
v

=
tr (Rx)

tr (Rv)
. (3.25)

Taking the trace of the filtered desired signal correlation matrix from the right-

hand side of (3.15) over the trace of the two other correlation matrices gives the

output SNR:

oSNR (H) =

tr
(

RxM
fd

)

tr
(

RxM
ri

+ RvM
rn

)

=
tr
(
HŴxxM RxM ŴT

xxM HT
)

tr
(
HRinHT

) . (3.26)

The obvious objective is to find an appropriate H in such a way that oSNR (H) ≥

iSNR.

For the particular filtering matrix

H = Ii =
[
IM 0M×(L−M)

]
, (3.27)

called the identity filtering matrix, where IM is the M × M identity matrix, we have

oSNR (Ii) = iSNR. (3.28)

With Ii, the SNR cannot be improved.

The maximum output SNR cannot be derived from a simple inequality as it was

done in the previous chapter in the particular case of M = 1. We will see how to find

this value when we derive the maximum SNR filter.

The noise reduction factor is

ξnr (H) = M ·
σ 2

v

tr
(

RxM
ri

+ RvM
rn

)

= M ·
σ 2

v

tr
(
HRinHT

) . (3.29)

Any good choice of H should lead to ξnr (H) ≥ 1.

http://dx.doi.org/10.1007/978-3-642-19601-0_2
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3.3.2 Speech Distortion

The desired speech signal can be distorted by the rectangular filtering matrix. There-

fore, the speech reduction factor is defined as

ξsr (H) = M ·
σ 2

x

tr
(

RxM
fd

)

= M ·
σ 2

x

tr
(
HŴxxM RxM ŴT

xxM HT
) . (3.30)

A rectangular filtering matrix that does not affect the desired signal requires the

constraint

HŴxxM = IM . (3.31)

Hence, ξsr (H) = 1 in the absence of distortion and ξsr (H) > 1 in the presence of

distortion.

By making the appropriate substitutions, one can derive the relationship among

the measures defined so far:

oSNR (H)

iSNR
=

ξnr (H)

ξsr (H)
. (3.32)

When no distortion occurs, the gain in SNR coincides with the noise reduction factor.

We can also quantify the distortion with the speech distortion index:

υsd (H) =
1

M
·

E
{[

xM
fd (k) − xM (k)

]T [
xM

fd (k) − xM (k)
]}

σ 2
x

=
1

M
·

tr
[(

HŴxxM − IM

)
RxM

(
HŴxxM − IM

)T
]

σ 2
x

. (3.33)

The speech distortion index is always greater than or equal to 0 and should be upper

bounded by 1 for optimal filtering matrices; so the higher is the value of υsd (H) ,

the more the desired signal is distorted.

3.3.3 MSE Criterion

Since the desired signal is a vector of length M, so is the error signal. We define the

error signal vector between the estimated and desired signals as

eM (k) = zM (k) − xM (k)

= Hy(k) − xM (k),
(3.34)
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which can also be expressed as the sum of two orthogonal error signal vectors:

eM (k) = eM
d (k) + eM

r (k), (3.35)

where

eM
d (k) = xM

fd (k) − xM (k)

=
(
HŴxxM − IM

)
xM (k) (3.36)

is the signal distortion due to the rectangular filtering matrix and

eM
r (k) = xM

ri (k) + vM
rn (k)

= Hxi(k) + Hv(k) (3.37)

represents the residual interference-plus-noise.

Having defined the error signal, we can now write the MSE criterion:

J (H) =
1

M
· tr

{
E

[
eM (k)eMT (k)

]}
(3.38)

=
1

M

[
tr
(
RxM

)
+ tr

(
HRyHT

)
− 2tr

(
HRyxM

) ]

=
1

M

[
tr

(
RxM

)
+ tr

(
HRyHT

)
− 2tr

(
HŴxxM RxM

) ]
,

where

RyxM = E
[
y(k)xMT (k)

]

= ŴxxM RxM

is the cross-correlation matrix between y(k) and xM (k).

Using the fact that E
[
eM

d (k)eMT
r (k)

]
= 0M×M , J (H) can be expressed as the

sum of two other MSEs, i.e.,

J (H) =
1

M
· tr

{
E

[
eM

d (k)eMT
d (k)

]}
+

1

M
· tr

{
E

[
eM

r (k)eMT
r (k)

]}

= Jd (H) + Jr (H) . (3.39)

Two particular filtering matrices are of great importance: H = Ii and H = 0M×L .

With the first one (identity filtering matrix), we have neither noise reduction nor

speech distortion and with the second one (zero filtering matrix), we have maximum

noise reduction and maximum speech distortion (i.e., the desired speech signal is

completely nulled out). For both filtering matrices, however, it can be verified that



30 3 Single-Channel Filtering Matrix

the output SNR is equal to the input SNR. For these two particular filtering matrices,

the MSEs are

J (Ii) = Jr (Ii) = σ 2
v , (3.40)

J (0M×L) = Jd (0M×L) = σ 2
x . (3.41)

As a result,

iSNR =
J (0M×L)

J (Ii)
. (3.42)

We define the NMSE with respect to J (Ii) as

J̃ (H) =
J (H)

J (Ii)

= iSNR · υsd (H) +
1

ξnr (H)

= iSNR

[
υsd (H) +

1

oSNR (H) · ξsr (H)

]
, (3.43)

where

υsd (H) =
Jd (H)

Jd (0M×L)
, (3.44)

iSNR · υsd (H) =
Jd (H)

Jr (Ii)
, (3.45)

ξnr (H) =
Jr (Ii)

Jr (H)
, (3.46)

oSNR (H) · ξsr (H) =
Jd (0M×L)

Jr (H)
. (3.47)

This shows how this NMSE and the different MSEs are related to the performance

measures.

We define the NMSE with respect to J (0M×L) as

J (H) =
J (H)

J (0M×L)

= υsd (H) +
1

oSNR (H) · ξsr (H)
(3.48)

and, obviously,

J̃ (H) = iSNR · J (H) . (3.49)
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We are only interested in filtering matrices for which

Jd (Ii) ≤ Jd (H) < Jd (0M×L) , (3.50)

Jr (0M×L) < Jr (H) < Jr (Ii) . (3.51)

From the two previous expressions, we deduce that

0 ≤ υsd (H) < 1, (3.52)

1 < ξnr (H) < ∞. (3.53)

The optimal filtering matrices are obtained by minimizing J (H) or minimizing

Jr (H) or Jd (H) subject to some constraint.

3.4 Optimal Rectangular Filtering Matrices

In this section, we are going to derive the most important filtering matrices that can

help reduce the noise picked up by the microphone signal.

3.4.1 Maximum SNR

Our first optimal filtering matrix is not derived from the MSE criterion but from the

output SNR defined in (3.26) that we can rewrite as

oSNR (H) =

∑M
m=1 hT

mRxd hm∑M
m=1 hT

mRinhm

. (3.54)

It is then natural to try to maximize this SNR with respect to H. Let us first give the

following lemma.

Lemma 3.1 We have

oSNR (H) ≤ max
m

hT
mRxd hm

hT
mRinhm

= χ. (3.55)

Proof Let us define the positive reals am = hT
mRxd hm and bm = hT

mRinhm . We

have

∑M
m=1 am∑M
m=1 bm

=

M∑

m=1

(
am

bm

·
bm∑M
i=1 bi

)
. (3.56)
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Now, define the following two vectors:

u =

[
a1

b1

a2

b2
· · ·

aM

bM

]T

, (3.57)

u′ =

[
b1∑M
i=1 bi

b2∑M
i=1 bi

· · ·
bM∑M
i=1 bi

]T

. (3.58)

Using the Holder’s inequality, we see that

∑M
m=1 am∑M
m=1 bm

= uT u′

≤ ‖u‖∞

∥∥u′
∥∥

1
= max

m

am

bm

, (3.59)

which ends the proof. ⊓⊔

Theorem 3.1 The maximum SNR filtering matrix is given by

Hmax =

⎡
⎢⎢⎢⎣

β1bMT
1

β2bMT
1
...

βmbMT
1

⎤
⎥⎥⎥⎦ , (3.60)

where βm, m = 1, 2, . . . , M are real numbers with at least one of them different

from 0. The corresponding output SNR is

oSNR (Hmax) = λM
1 . (3.61)

We recall that λM
1 is the maximum eigenvalue of the matrix R−1

in Rxd and its corre-

sponding eigenvector is bM
1 .

Proof From Lemma 3.1, we know that the output SNR is upper bounded by χ whose

maximum value is clearly λM
1 . On the other hand, it can be checked from (3.54)

that oSNR (Hmax) = λM
1 . Since this output SNR is maximal, Hmax is indeed the

maximum SNR filtering matrix. ⊓⊔

Property 3.1 The output SNR with the maximum SNR filtering matrix is always

greater than or equal to the input SNR, i.e., oSNR (Hmax) ≥ iSNR.

It is interesting to see that we have these bounds:

0 ≤ oSNR (H) ≤ λM
1 ,∀H, (3.62)

but, obviously, we are only interested in filtering matrices that can improve the output

SNR, i.e., oSNR (H) ≥ iSNR.

For a fixed L , increasing the value of M (from 1 to L) will, in principle, increase the

output SNR of the maximum SNR filtering matrix since more and more information is

taken into account. The distortion should also increase significantly as M is increased.
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3.4.2 Wiener

If we differentiate the MSE criterion, J (H) , with respect to H and equate the result

to zero, we find the Wiener filtering matrix

HW = RxM ŴT
xxM R−1

y

= IiRxR−1
y

= Ii

(
IL − RvR−1

y

)
. (3.63)

This matrix depends only on the second-order statistics of the noise and observation

signals. Note that the first line of HW is exactly hT
W.

Lemma 3.2 We can rewrite the Wiener filtering matrix as

HW =
(
IM + RxM ŴT

xxM R−1
in ŴxxM

)−1
RxM ŴT

xxM R−1
in

=
(
R−1

xM + ŴT
xxM R−1

in ŴxxM

)−1
ŴT

xxM R−1
in . (3.64)

Proof This expression is easy to show by applying the Woodbury’s identity in (3.19)

and then substituting the result in (3.63). ⊓⊔

The form of the Wiener filtering matrix presented in (3.64) is interesting because

it shows an obvious link with some other optimal filtering matrices as it will be

verified later.

Another way to express Wiener is

HW = IiŴxxM RxM ŴT
xxM R−1

y

= Ii

(
IL − RinR−1

y

)
. (3.65)

Using the joint diagonalization, we can rewrite Wiener as a subspace-type approach:

HW = IiB
−T � (� + IL)−1 BT

= IiB
−T

[
� 0M×(L−M)

0(L−M)×M 0(L−M)×(L−M)

]
BT

= T

[
� 0M×(L−M)

0(L−M)×M 0(L−M)×(L−M)

]
BT , (3.66)

where

T =

⎡
⎢⎢⎢⎣

tT
1

tT
2
...

tT
M

⎤
⎥⎥⎥⎦ = IiB

−T (3.67)
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and

� = diag

(
λM

1

λM
1 + 1

,
λM

2

λM
2 + 1

, . . . ,
λM

M

λM
M + 1

)
(3.68)

is an M × M diagonal matrix. Expression (3.66) is also

HW = IiMW, (3.69)

where

MW = B−T

[
� 0M×(L−M)

0(L−M)×M 0(L−M)×(L−M)

]
BT . (3.70)

We see that HW is the product of two other matrices: the rectangular identity filtering

matrix and a square matrix of size L × L whose rank is equal to M.

For M = 1, (3.66) degenerates to

hW = B

[
λmax 01×(L−1)

0(L−1)×1 0(L−1)×(L−1)

]
B−1ii. (3.71)

With the joint diagonalization, the input SNR and the output SNR with Wiener

can be expressed as

iSNR =
tr

(
T�TT

)

tr
(
TTT

) , (3.72)

oSNR (HW) =
tr

[
T�3 (� + IL)−2 TT

]

tr
[
T�2 (� + IL)−2 TT

] . (3.73)

Property 3.2 The output SNR with the Wiener filtering matrix is always greater

than or equal to the input SNR, i.e., oSNR (HW) ≥ iSNR.

Proof This property can be proven by induction, exactly as in [9]. ⊓⊔

Obviously, we have

oSNR (HW) ≤ oSNR (Hmax) . (3.74)

Same as for the maximum SNR filtering matrix, for a fixed L , a higher value of M

in the Wiener filtering matrix should give a higher value of the output SNR.

We can easily deduce that

ξnr (HW) =
tr

(
TTT

)

tr
[
T�2 (� + IL)−2 TT

] , (3.75)
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ξsr (HW) =
tr

(
T�TT

)

tr
[
T�3 (� + IL)−2 TT

] , (3.76)

υsd (HW) =

tr
[
T� (� + IL)−1 TT R−1

xM T� (� + IL)−1 TT
]

tr
(
T�TT

) . (3.77)

3.4.3 MVDR

We recall that the MVDR approach requires no distortion to the desired signal.

Therefore, the corresponding rectangular filtering matrix is obtained by minimizing

the MSE of the residual interference-plus-noise, Jr (H) , with the constraint that the

desired signal is not distorted. Mathematically, this is equivalent to

min
H

1

M
· tr

(
HRinHT

)
subject to HŴxxM = IM . (3.78)

The solution to the above optimization problem is

HMVDR =
(
ŴT

xxM R−1
in ŴxxM

)−1
ŴT

xxM R−1
in , (3.79)

which is interesting to compare to HW (Eq. 3.64).

Obviously, with the MVDR filtering matrix, we have no distortion, i.e.,

ξsr (HMVDR) = 1, (3.80)

υsd (HMVDR) = 0. (3.81)

Lemma 3.3 We can rewrite the MVDR filtering matrix as

HMVDR =
(
ŴT

xxM R−1
y ŴxxM

)−1
ŴT

xxM R−1
y . (3.82)

Proof This expression is easy to show by using the Woodbury’s identity in R−1
y . ⊓⊔

From (3.82), we deduce the relationship between the MVDR and Wiener filtering

matrices:

HMVDR =
(
HWŴxxM

)−1
HW. (3.83)

Property 3.3 The output SNR with the MVDR filtering matrix is always greater than

or equal to the input SNR, i.e., oSNR (HMVDR) ≥ iSNR.

Proof We can prove this property by induction. ⊓⊔
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We should have

oSNR (HMVDR) ≤ oSNR (HW) ≤ oSNR (Hmax) . (3.84)

Contrary to Hmax and HW, for a fixed L , a higher value of M in the MVDR filtering

matrix implies a lower value of the output SNR.

3.4.4 Prediction

Let G be a temporal prediction matrix of size M × L so that

x(k) ≈ GT xM (k). (3.85)

The distortionless filtering matrix for noise reduction is derived by

min
H

tr
(
HRyHT

)
subject to HGT = IM , (3.86)

from which we deduce the solution

HP =
(
GR−1

y GT
)−1

GR−1
y . (3.87)

The best way to find G is in the Wiener sense. Indeed, define the error signal

vector

eP(k) = x(k) − GT xM (k) (3.88)

and form the MSE

J (G) = E
[
eT

P (k)eP(k)
]
. (3.89)

The minimization of J (G) with respect to G leads to

Go = ŴT
xxM (3.90)

and substituting this result into (3.87) gives

HP =
(
ŴT

xxM R−1
y ŴxxM

)−1
ŴT

xxM R−1
y , (3.91)

which corresponds to the MVDR.

It is interesting to observe that the error signal vector with the optimal matrix,

Go, corresponds to the interference signal vector, i.e.,

eP,o(k) = x(k) − ŴxxM xM (k)

= xi(k). (3.92)

This result is a consequence of the orthogonality principle.
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3.4.5 Tradeoff

In the tradeoff approach, we minimize the speech distortion index with the constraint

that the noise reduction factor is equal to a positive value that is greater than 1.

Mathematically, this is equivalent to

min
H

Jd (H) subject to Jr (H) = β Jr (Ii) , (3.93)

where 0 < β < 1 to insure that we get some noise reduction. By using a Lagrange

multiplier, µ > 0, to adjoin the constraint to the cost function and assuming that the

matrix ŴxxM RxM ŴT
xxM + µRin is invertible, we easily deduce the tradeoff filtering

matrix

HT,µ = RxM ŴT
xxM

(
ŴxxM RxM ŴT

xxM + µRin

)−1
, (3.94)

which can be rewritten, thanks to the Woodbury’s identity, as

HT,µ =
(
µR−1

xM + ŴT
xxM R−1

in ŴxxM

)−1
ŴT

xxM R−1
in , (3.95)

where µ satisfies Jr

(
HT,µ

)
= β Jr (Ii) . Usually, µ is chosen in an ad-hoc way, so

that for

• µ = 1, HT,1 = HW, which is the Wiener filtering matrix;

• µ = 0 [from (3.95)], HT,0 = HMVDR, which is the MVDR filtering matrix;

• µ > 1, results in a filter with low residual noise (compared with the Wiener filter)

at the expense of high speech distortion;

• µ < 1, results in a filter with high residual noise and low speech distortion.

Property 3.4 The output SNR with the tradeoff filtering matrix is always greater

than or equal to the input SNR, i.e., oSNR
(
HT,µ

)
≥ iSNR, ∀µ ≥ 0.

Proof We can prove this property by induction. ⊓⊔

We should have for µ ≥ 1,

oSNR (HMVDR) ≤ oSNR (HW) ≤ oSNR
(
HT,µ

)
≤ oSNR (Hmax) (3.96)

and for µ ≤ 1,

oSNR (HMVDR) ≤ oSNR
(
HT,µ

)
≤ oSNR (HW) ≤ oSNR (Hmax) . (3.97)

We can write the tradeoff filtering matrix as a subspace-type approach. Indeed,

from (3.94), we get

HT,µ = T

[
�µ 0M×(L−M)

0(L−M)×M 0(L−M)×(L−M)

]
BT , (3.98)
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where

�µ = diag

(
λM

1

λM
1 + µ

,
λM

2

λM
2 + µ

, . . . ,
λM

M

λM
M + µ

)
(3.99)

is an M × M diagonal matrix. Expression (3.98) is also

HT,µ = IiMT,µ, (3.100)

where

MT,µ = B−T

[
�µ 0M×(L−M)

0(L−M)×M 0(L−M)×(L−M)

]
BT . (3.101)

We see that HT,µ is the product of two other matrices: the rectangular identity filtering

matrix and an adjustable square matrix of size L × L whose rank is equal to M. Note

that HT,µ as presented in (3.98) is not, in principle, defined for µ = 0 as this

expression was derived from (3.94), which is clearly not defined for this particular

case. Although it is possible to have µ = 0 in (3.98), this does not lead to the MVDR.

3.4.6 Particular Case: M = L

For M = L , the rectangular matrix H becomes a square matrix HS of size L×L . It can

be verified that xi(k) = 0L×1; as a result, Rin = Rv, Rxi = 0L×L , and Rxd = Rx.

Therefore, the optimal filtering matrices are

HS,max =

⎡
⎢⎢⎢⎣

β1bLT
1

β2bLT
1

...

βLbLT
1

⎤
⎥⎥⎥⎦ , (3.102)

HS,W = RxR−1
y

= IL − RvR−1
y ,

(3.103)

HS,MVDR = IL , (3.104)

HS,T,µ = Rx (Rx + µRv)
−1

=
(
Ry − Rv

) [
Ry + (µ − 1)Rv

]−1
, (3.105)

where bL
1 is the eigenvector corresponding to the maximum eigenvalue of the matrix

R−1
v Rx. In this case, all filtering matrices are very much different and the MVDR is

the identity matrix.
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Applying the joint diagonalization in (3.105), we get

HS,T,µ = B−T � (� + IL)−1 BT . (3.106)

It is believed that a speech signal can be modelled as a linear combination of a

number of some (linearly independent) basis vectors smaller than the dimension of

these vectors [2, 4, 10–13]. As a result, the vector space of the noisy signal can

be decomposed in two subspaces: the signal-plus-noise subspace of length Ls and

the null subspace of length Ln, with L = Ls + Ln. This implies that the last Ln

eigenvalues of the matrix R−1
v Rx are equal to zero. Therefore, we can rewrite (3.106)

to obtain the subspace-type filter:

HS,T,µ = B−T

[
�µ 0Ls×Ln

0Ln×Ls 0Ln×Ln

]
BT , (3.107)

where now

�µ = diag

(
λL

1

λL
1 + µ

,
λL

2

λL
2 + µ

, . . . ,
λL

Ls

λL
Ls

+ µ

)
(3.108)

is an Ls × Ls diagonal matrix. This algorithm is often referred to as the generalized

subspace approach. One should note, however, that there is no noise-only subspace

with this formulation. Therefore, noise reduction can only be achieved by modifying

the speech-plus-noise subspace by setting µ to a positive number.

It can be shown that for µ ≥ 1,

iSNR =oSNR
(
HS,MVDR

)
≤ oSNR

(
HS,W

)
≤

oSNR
(
HS,T,µ

)
≤ oSNR

(
HS,max

)
= λL

1 (3.109)

and for 0 ≤ µ ≤ 1,

iSNR =oSNR
(
HS,MVDR

)
≤ oSNR

(
HS,T,µ

)
≤

oSNR
(
HS,W

)
≤ oSNR

(
HS,max

)
= λL

1 , (3.110)

where λL
1 is the maximum eigenvalue of the matrix R−1

v Rx.

The results derived in the preceding subsections are not surprising because the

optimal filtering matrices derived so far in this chapter are related as follows:

Ho = AoŴ
T
xxM R−1

in , (3.111)

where Ao is a square matrix of size M × M. Therefore, depending on how we choose

Ao, we obtain the different optimal filtering matrices. In other words, these optimal

filtering matrices are equivalent up to the matrix Ao. For M = 1, the matrix Ao

degenerates to a scalar and the filters derived in Chap. 2 are obtained, which are

basically equivalent.

http://dx.doi.org/10.1007/978-3-642-19601-0_2
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3.4.7 LCMV

The LCMV beamformer is able to handle other constraints than the distortionless

ones.

We can exploit the structure of the noise signal in the same manner as we did it

in Chap. 2. Indeed, in the proposed LCMV, we will not only perfectly recover the

desired signal vector, xM (k), but we will also completely remove the coherent noise

signal. Therefore, our constraints are

HCxM v =
[

IM 0M×1

]
, (3.112)

where

CxM v =
[
ŴxxM ρvv

]
(3.113)

is our constraint matrix of size L × (M + 1).

Our optimization problem is now

min
H

tr
(
HRyHT

)
subject to HCxM v =

[
IM 0M×1

]
, (3.114)

from which we find the LCMV filtering matrix

HLCMV =
[

IM 0M×1

] (
CT

xM v
R−1

y CxM v

)−1
CT

xM v
R−1

y . (3.115)

If the coherent noise is the main issue, then the LCMV is perhaps the most

interesting solution.

3.5 Summary

The ideas of single-channel noise reduction in the time domain of Chap. 2 were gen-

eralized in this chapter. In particular, we were able to derive the same noise reduction

algorithms but for the estimation of M samples at a time with a rectangular filtering

matrix. This can lead to a potential better performance in terms of noise reduction for

most of the optimization criteria. However, this time, the optimal filtering matrices

are very much different from one to another since the corresponding output SNRs

are not equal.
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Chapter 4

Multichannel Noise Reduction with a

Filtering Vector

In the previous two chapters, we exploited the temporal correlation information from

a single microphone signal to derive different filtering vectors and matrices for noise

reduction. In this chapter and the next one, we will exploit both the temporal and

spatial information available from signals picked up by a determined number of

microphones at different positions in the acoustics space in order to mitigate the

noise effect. The focus of this chapter is on optimal filtering vectors.

4.1 Signal Model

We consider the conventional signal model in which a microphone array with N

sensors captures a convolved source signal in some noise field. The received signals

are expressed as [1, 2]

yn(k) = gn(k) ∗ s(k) + vn(k)

= xn(k) + vn(k), n = 1, 2, . . . , N , (4.1)

where gn(k) is the acoustic impulse response from the unknown speech source, s(k),

location to the nth microphone, ∗ stands for linear convolution, and vn(k) is the

additive noise at microphone n. We assume that the signals xn(k) = gn(k) ∗ s(k)

and vn(k) are uncorrelated, zero mean, real, and broadband. By definition, xn(k)

is coherent across the array. The noise signals, vn(k), are typically only partially

coherent across the array. To simplify the development and analysis of the main

ideas of this work, we further assume that the signals are Gaussian and stationary.

By processing the data by blocks of L samples, the signal model given in (4.1)

can be put into a vector form as

yn(k) = xn(k) + vn(k), n = 1, 2, . . . , N , (4.2)

J. Benesty and J. Chen, Optimal Time-Domain Noise Reduction Filters, 43
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where

yn(k) = [yn(k) yn(k − 1) · · · yn(k − L + 1)]T (4.3)

is a vector of length L, and xn(k) and vn(k) are defined similarly to yn(k). It is more

convenient to concatenate the N vectors yn(k) together as

y(k) =
[
yT

1 (k) yT
2 (k) · · · yT

N (k)
]T

= x(k) + v(k), (4.4)

where vectors x(k) and v(k) of length NL are defined in a similar way to y(k).

Since xn(k) and vn(k) are uncorrelated by assumption, the correlation matrix (of

size N L × N L) of the microphone signals is

Ry = E
[
y(k)yT (k)

]

= Rx + Rv, (4.5)

where Rx = E
[
x(k)xT (k)

]
and Rv = E

[
v(k)vT (k)

]
are the correlation matrices

of x(k) and v(k), respectively.

In this work, our desired signal is designated by the clean (but convolved) speech

signal received at microphone 1, namely x1(k). Obviously, any signal xn(k) could

be taken as the reference. Our problem then may be stated as follows [3]: given N

mixtures of two uncorrelated signals xn(k) and vn(k), our aim is to preserve x1(k)

while minimizing the contribution of the noise terms, vn(k), at the array output.

Since x1(k) is the signal of interest, it is important to write the vector y(k) as a

function of x1(k). For that, we need first to decompose x(k) into two orthogonal com-

ponents: one proportional to the desired signal, x1(k), and the other corresponding

to the interference. Indeed, it is easy to see that this decomposition is

x(k) = ρxx1
· x1(k) + xi(k), (4.6)

where

ρxx1
=

[
ρT

x1x1
ρT

x2x1
· · · ρT

xN x1

]T

=
E

[
x(k)x1(k)

]

E
[
x2

1 (k)
] (4.7)

is the partially normalized [with respect to x1(k)] cross-correlation vector

(of length NL) between x(k) and x1(k),

ρxn x1
=

[
ρxn x1(0) ρxn x1(1) · · · ρxn x1(L − 1)

]T

=
E[xn(k)x1(k)]

E[x2
1 (k)]

, n = 1, 2, . . . , N (4.8)
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is the partially normalized [with respect to x1(k)] cross-correlation vector

(of length L) between xn(k) and x1(k),

ρxn x1(l) =
E [xn(k − l)x1(k)]

E
[
x2

1 (k)
] , n = 1, 2, . . . , N , l = 0, 1, . . . , L − 1 (4.9)

is the partially normalized [with respect to x1(k)] cross-correlation coefficient

between xn(k − l) and x1(k),

xi(k) = x(k) − ρxx1
· x1(k) (4.10)

is the interference signal vector, and

E
[
xi(k)x1(k)

]
= 0N L×1. (4.11)

Substituting (4.6) into (4.4), we get the signal model for noise reduction in the

time domain:

y(k) = ρxx1
· x1(k) + xi(k) + v(k)

= xd(k) + xi(k) + v(k), (4.12)

where xd(k) = ρxx1
· x1(k) is the desired signal vector. The vector ρxx1

is clearly a

general definition in the time domain of the steering vector [4, 5] for noise reduction

since it determines the direction of the desired signal, x1(k).

4.2 Linear Filtering with a Vector

The array processing, beamforming, or multichannel noise reduction is performed

by applying a temporal filter to each microphone signal and summing the filtered

signals. Thus, the clear objective is to estimate the sample x1(k) from the vector y(k)

of length NL. Let us denote by z(k) this estimate. We have

z(k) =

N∑

n=1

hT
n yn(k)

= hT y(k), (4.13)

where hn, n = 1, 2, . . . , N are N FIR filters of length L and

h =
[
hT

1 hT
2 · · · hT

N

]T
(4.14)

is a long filtering vector of length NL.

Using the formulation of y(k) that is explicitly a function of the steering vector,

we can rewrite (4.13) as
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z(k) = hT
[
ρxx1

· x1(k) + xi(k) + v(k)
]

= xfd(k) + xri(k) + vrn(k), (4.15)

where

xfd(k) = x1(k)hT ρxx1
(4.16)

is the filtered desired signal,

xri(k) = hT xi(k) (4.17)

is the residual interference, and

vrn(k) = hT v(k) (4.18)

is the residual noise.

Since the estimate of the desired signal at time k is the sum of three terms that are

mutually uncorrelated, the variance of z(k) is

σ 2
z = hT Ryh

= σ 2
xfd

+ σ 2
xri

+ σ 2
vrn

, (4.19)

where

σ 2
xfd

= σ 2
x1

(
hT ρxx1

)2
, (4.20)

σ 2
xri

= hT Rxi
h

= hT Rxh − σ 2
x1

(
hT ρxx1

)2
, (4.21)

σ 2
vrn

= hT Rvh, (4.22)

σ 2
x1

= E
[
x2

1 (k)
]

and Rxi
= E

[
xi(k)xT

i (k)
]
. The variance of z(k) will be extensively

used in the coming sections.

4.3 Performance Measures

In this section, we define some fundamental measures that fit well in the multiple

microphone case and with a linear filtering vector. We recall that microphone 1 is

the reference; therefore, all measures are derived with respect to this microphone.
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4.3.1 Noise Reduction

The input SNR is

iSNR =
σ 2

x1

σ 2
v1

, (4.23)

where σ 2
v1

= E
[
v2

1(k)
]

is the variance of the noise at microphone 1.

The output SNR is obtained from (4.19):

oSNR
(
h
)

=
σ 2

xfd

σ 2
xri

+ σ 2
vrn

=
σ 2

x1

(
hT ρxx1

)2

hT Rinh
, (4.24)

where

Rin = Rxi
+ Rv (4.25)

is the interference-plus-noise covariance matrix. We observe from (4.24) that the

output SNR is defined as the variance of the first signal (filtered desired) from

the right-hand side of (4.19) over the variance of the two other signals (filtered

interference-plus-noise).

For the particular filtering vector

h = ii = [1 0 · · · 0]T (4.26)

of length NL, we have

oSNR
(
ii
)

= iSNR. (4.27)

With the identity filtering vector ii, the SNR cannot be improved.

For any two vectors h and ρxx1
and a positive definite matrix Rin, we have

(
hT ρxx1

)2
≤

(
hT Rinh

)(
ρT

xx1
R−1

in ρxx1

)
, (4.28)

with equality if and only if h = ςR−1
in ρxx , where ς( �= 0) is a real number. Using

the previous inequality in (4.24), we deduce an upper bound for the output SNR:

oSNR
(
h
)

≤ σ 2
x1

· ρT
xx1

R−1
in ρxx1

, ∀h (4.29)

and clearly,

oSNR
(
ii
)

≤ σ 2
x1

· ρT
xx1

R−1
in ρxx1

, (4.30)
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which implies that

ρT
xx1

R−1
in ρxx1

≥
1

σ 2
v1

. (4.31)

The role of the beamformer is to produce a signal whose SNR is higher than that

of the received signal. This is measured by the array gain:

A
(
h
)

=
oSNR(h)

iSNR
. (4.32)

From (4.29), we deduce that the maximum array gain is

Amax = σ 2
v1

· ρT
xx1

R−1
in ρxx1

≥ 1. (4.33)

Taking the ratio of the power of the noise at the reference microphone over the

power of the interference-plus-noise remaining at the beamformer output, we get the

noise reduction factor:

ξnr

(
h
)

=
σ 2

v1

hT Rinh
, (4.34)

which should be lower bounded by 1 for optimal filtering vectors.

4.3.2 Speech Distortion

The speech reduction factor defined as

ξsr

(
h
)

=
σ 2

x1

σ 2
xfd

=
1

(
hT ρxx1

)2
, (4.35)

measures the distortion of the desired speech signal. It is supposed to be equal to 1

if there is no distortion and expected to be greater than 1 when distortion happens.

The speech distortion index is

υsd

(
h
)

=
E

{[
xfd(k) − x1(k)

]2
}

E
[
x2

1 (k)
]

=

(
hT ρxx1

− 1
)2

=
[
ξ−1/2

sr

(
h
)
− 1

]2
. (4.36)
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For optimal beamformers, we should have 0 ≤ υsd

(
h
)

≤ 1.

It is easy to verify that we have the following fundamental relation:

A
(
h
)

=
ξnr(h)

ξsr

(
h
) . (4.37)

This expression indicates the equivalence between array gain/loss and distortion.

4.3.3 MSE Criterion

In the multichannel case, we define the error signal between the estimated and desired

signals as

e(k) = z(k) − x1(k)

= xfd(k) + xri(k) + vrn(k) − x1(k). (4.38)

This error can be expressed as the sum of two other uncorrelated errors:

e(k) = ed(k) + er(k), (4.39)

where

ed(k) = xfd(k) − x1(k)

=

(
hT ρxx1

− 1
)

x1(k) (4.40)

is the signal distortion due to the filtering vector and

er(k) = xri(k) + vrn(k)

= hT xi(k) + hT v(k) (4.41)

represents the residual interference-plus-noise.

The MSE criterion, which is formed from the error (4.38), is given by

J
(
h
)

= E
[
e2(k)

]

= σ 2
x1

+ hT Ryh − 2hT E
[
x(k)x1(k)

]

= σ 2
x1

+ hT Ryh − 2σ 2
x1

hT ρxx

= Jd

(
h
)
+ Jr

(
h
)
, (4.42)

where

Jd

(
h
)

= E
[
e2

d(k)
]

= σ 2
x1

(
hT ρxx1

− 1
)2

(4.43)
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and

Jr

(
h
)

= E
[
e2

r (k)
]

= hT Rinh. (4.44)

We are interested in two particular filtering vectors: h = ii and h = 0N L×1. With

the first one (identity filtering vector), we have neither noise reduction nor speech

distortion and with the second one (zero filtering vector), we have maximum noise

reduction and maximum speech distortion. For both filters, however, it can be verified

that the output SNR is equal to the input SNR. For these two particular filters, the

MSEs are

J
(
ii
)

= Jr

(
ii
)

= σ 2
v1

, (4.45)

J (0N L×1) = Jd (0N L×1) = σ 2
x1

. (4.46)

As a result,

iSNR =
J (0N L×1)

J
(
ii
) . (4.47)

We define the NMSE with respect to J
(
ii
)

as

J̃
(
h
)

=
J

(
h
)

J
(
ii
)

= iSNR · υsd

(
h
)
+

1

ξnr

(
h
)

= iSNR

[
υsd

(
h
)
+

1

oSNR
(
h
)
· ξsr

(
h
)
]

, (4.48)

where

υsd

(
h
)

=
Jd

(
h
)

Jd (0N L×1)
, (4.49)

iSNR · υsd

(
h
)

=
Jd

(
h
)

Jr

(
ii
) , (4.50)

ξnr

(
h
)

=
Jr

(
ii
)

Jr

(
h
) , (4.51)

oSNR
(
h
)
· ξsr

(
h
)

=
Jd (0N L×1)

Jr

(
h
) . (4.52)
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This shows how this NMSE and the different MSEs are related to the performance

measures.

We define the NMSE with respect to J (0N L×1) as

J
(
h
)

=
J

(
h
)

J (0N L×1)

= υsd

(
h
)
+

1

oSNR
(
h
)
· ξsr

(
h
) (4.53)

and, obviously,

J̃
(
h
)

= iSNR · J
(
h
)
. (4.54)

We are only interested in beamformers for which

Jd

(
ii
)

≤ Jd

(
h
)

< Jd (0N L×1) , (4.55)

Jr (0N L×1) < Jr

(
h
)

< Jr

(
ii
)
. (4.56)

From the two previous expressions, we deduce that

0 ≤ υsd

(
h
)

< 1, (4.57)

1 < ξnr

(
h
)

< ∞. (4.58)

It is clear that the objective of multichannel noise reduction in the time domain is

to find optimal beamformers that would either minimize J
(
h
)

or minimize Jd

(
h
)

or Jr

(
h
)

subject to some constraint.

4.4 Optimal Filtering Vectors

In this section, we derive many well-known time-domain beamformers. Obviously,

taking N = 1 (single-channel case), we find all the optimal filtering vectors derived

in Chap. 2.

4.4.1 Maximum SNR

Let us rewrite the output SNR:

oSNR
(
h
)

=
σ 2

x1
hT ρxx1

ρT
xx1

h

hT Rinh
. (4.59)

http://dx.doi.org/10.1007/978-3-642-19601-0_2
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The maximum SNR filter, hmax, is obtained by maximizing the output SNR as

given above. In (4.59), we recognize the generalized Rayleigh quotient [6]. It is

well known that this quotient is maximized with the maximum eigenvector of the

matrix σ 2
x1

R−1
in ρxx1

ρT
xx1

. Let us denote by λmax the maximum eigenvalue corre-

sponding to this maximum eigenvector. Since the rank of the mentioned matrix is

equal to 1, we have

λmax = tr
(
σ 2

x1
R−1

in ρxx1
ρT

xx1

)

= σ 2
x1

ρT
xx1

R−1
in ρxx1

. (4.60)

As a result,

oSNR
(
hmax

)
= σ 2

x1
ρT

xx1
R−1

in ρxx1
, (4.61)

which corresponds to the maximum possible SNR and

A
(
hmax

)
= Amax. (4.62)

Let us denote by A
(n)
max the maximum array gain of a microphone array with n

sensors. By virtue of the inclusion principle [6] for the matrix σ 2
x1

R−1
in ρxx1

ρT
xx1

, we

have

A
(N )
max ≥ A

(N−1)
max ≥ · · · ≥ A

(2)
max ≥ A

(1)
max ≥ 1. (4.63)

This shows that by increasing the number of microphones, we necessarily increase

the gain.

Obviously, we also have

hmax = ςR−1
in ρxx1

, (4.64)

where ς is an arbitrary scaling factor different from zero. While this factor has no

effect on the output SNR, it may have on the speech distortion. In fact, all filters

(except for the LCMV) derived in the rest of this section are equivalent up to this

scaling factor. These filters also try to find the respective scaling factors depending

on what we optimize.

4.4.2 Wiener

By minimizing J
(
h
)

with respect to h, we find the Wiener filter

hW = σ 2
x1

R−1
y ρxx1

.
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The Wiener filter can also be expressed as

hW = R−1
y E

[
x(k)x1(k)

]

= R−1
y Rxii

=

(
IN L − R−1

y Rv

)
ii, (4.65)

where IN L is the identity matrix of size N L×N L . The above formulation depends on

the second-order statistics of the observation and noise signals. The correlation matrix

Ry can be estimated during speech-and-noise periods while the other correlation

matrix, Rv, can be estimated during noise-only intervals assuming that the statistics

of the noise do not change much with time.

Determining the inverse of Ry from

Ry = σ 2
x1

ρxx1
ρT

xx1
+ Rin (4.66)

with the Woodbury’s identity, we get

R−1
y = R−1

in −
R−1

in ρxx1
ρT

xx1
R−1

in

σ−2
x1

+ ρT
xx1

R−1
in ρxx1

. (4.67)

Substituting (4.67) into (4.65) leads to another interesting formulation of the Wiener

filter:

hW =
σ 2

x1
R−1

in ρxx1

1 + σ 2
x1

ρT
xx1

R−1
in ρxx1

, (4.68)

that we can rewrite as

hW =
σ 2

x1
R−1

in ρxx1
ρT

xx1

1 + λmax

ii

=
R−1

in

(
Ry − Rin

)

1 + tr
[
R−1

in

(
Ry − Rin

)] ii

=
R−1

in Ry − IN L

1 − N L + tr
(

R−1
in Ry

) ii. (4.69)

From (4.69), we deduce that the output SNR is

oSNR
(
hW

)
= λmax

= tr
(

R−1
in Ry

)
− N L . (4.70)
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We observe from (4.70) that the more noise, the smaller is the output SNR. However,

the more the number of sensors, the higher is the value of oSNR
(
hW

)
.

The speech distortion index is an explicit function of the output SNR:

υsd

(
hW

)
=

1
[
1 + oSNR

(
hW

)]2
≤ 1. (4.71)

The higher the value of oSNR
(
hW

)
or the number of microphones, the less the

desired signal is distorted.

Clearly,

oSNR
(
hW

)
≥ iSNR, (4.72)

since the Wiener filter maximizes the output SNR.

It is of interest to observe that the two filters hmax and hW are equivalent up to a

scaling factor. Indeed, taking

ς =
σ 2

x1

1 + λmax

(4.73)

in (4.64) (maximum SNR filter), we find (4.69) (Wiener filter).

With the Wiener filter, the noise and speech reduction factors are

ξnr

(
hW

)
=

(
1 + λmax

)2

iSNR · λmax

≥

(
1 +

1

λmax

)2

, (4.74)

ξsr

(
hW

)
=

(
1 +

1

λmax

)2

. (4.75)

Finally, we give the minimum NMSEs (MNMSEs):

J̃
(
hW

)
=

iSNR

1 + oSNR
(
hW

) ≤ 1, (4.76)

J
(
hW

)
=

1

1 + oSNR
(
hW

) ≤ 1. (4.77)

As the number of microphones increases, the values of these MNMSEs decrease.
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4.4.3 MVDR

By minimizing the MSE of the residual interference-plus-noise, Jr

(
h
)
, with the

constraint that the desired signal is not distorted, i.e.,

min
h

hT Rinh subject to hT ρxx1
= 1, (4.78)

we find the MVDR filter

hMVDR =
R−1

in ρxx1

ρT
xx1

R−1
in ρxx1

, (4.79)

that we can rewrite as

hMVDR =
R−1

in Ry − IN L

tr
(

R−1
in Ry

)
− N L

ii

=
σ 2

x1
R−1

in ρxx1

λmax

. (4.80)

Alternatively, we can express the MVDR as

hMVDR =
R−1

y ρxx1

ρT
xx1

R−1
y ρxx1

. (4.81)

The Wiener and MVDR filters are simply related as follows:

hW = ς0hMVDR, (4.82)

where

ς0 = hT
Wρxx1

=
λmax

1 + λmax

. (4.83)

So, the two filters hW and hMVDR are equivalent up to a scaling factor. However,

as explained in Chap. 2, in real-time applications, it is more appropriate to use the

MVDR beamformer than the Wiener one.

It is clear that we always have

oSNR
(
hMVDR

)
= oSNR

(
hW

)
, (4.84)

υsd

(
hMVDR

)
= 0, (4.85)

http://dx.doi.org/10.1007/978-3-642-19601-0_2
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ξsr

(
hMVDR

)
= 1, (4.86)

ξnr

(
hMVDR

)
= A

(
hMVDR

)
≤ ξnr

(
hW

)
, (4.87)

and

1 ≥ J̃
(
hMVDR

)
=

1

A
(
hMVDR

) ≥ J̃
(
hW

)
, (4.88)

J
(
hMVDR

)
=

1

oSNR
(
hMVDR

) ≥ J
(
hW

)
. (4.89)

4.4.4 Space–Time Prediction

In the space–time (ST) prediction approach, we find a distortionless filter in two

steps [1, 7, 8].

Assume that we can find a simple ST prediction filter g of length NL in such a

way that

x(k) ≈ x1(k)g. (4.90)

The distortionless filter with the ST approach is then obtained by

min
h

hT Rvh subject to hT g = 1. (4.91)

We deduce the solution

hST =
R−1

v g

gT R−1
v g

. (4.92)

The second step consist of finding the optimal g in the Wiener sense. For that, we

need to define the error signal vector

eST(k) = x(k) − x1(k)g (4.93)

and form the MSE

J
(

g
)

= E
[
eT

ST(k)eST(k)
]
. (4.94)

By minimizing J
(

g
)

with respect to g, we easily find the optimal filter

g
o

= ρxx1
. (4.95)
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It is interesting to observe that the error signal vector with the optimal filter, g
o
,

corresponds to the interference signal, i.e.,

eST,o(k) = x(k) − x1(k)ρxx1

= xi(k). (4.96)

This result is obviously expected because of the orthogonality principle.

Substituting (4.95) into (4.92), we find that

hST =
R−1

v ρxx1

ρT
xx1

R−1
v ρxx1

. (4.97)

Comparing hMVDR with hST, we see that the latter is an approximation of the former.

Indeed, in the ST approach, the interference signal is neglected: instead of using the

correlation matrix of the interference-plus-noise, i.e., Rin, only the correlation matrix

of the noise is used, i.e., Rv. However, identical expressions of the MVDR and ST-

prediction filters can be obtained if we consider minimizing the overall mixture

energy subject to the no distortion constraint.

4.4.5 Tradeoff

Following the ideas from Chap. 2, we can derive the multichannel tradeoff beam-

former, which is given by

hT,µ =
R−1

in ρxx1

µσ−2
x1

+ ρT
xx1

R−1
in ρxx1

=
R−1

in Ry − IN L

µ − N L + tr
(

R−1
in Ry

) ii, (4.98)

where µ ≥ 0.

We have

oSNR
(
hT,µ

)
= oSNR

(
hW

)
, ∀µ ≥ 0, (4.99)

υsd

(
hT,µ

)
=

(
µ

µ + λmax

)2

, (4.100)

ξsr

(
hT,µ

)
=

(
1 +

µ

λmax

)2

, (4.101)

ξnr

(
hT,µ

)
=

(
µ + λmax

)2

iSNR · λmax

, (4.102)

http://dx.doi.org/10.1007/978-3-642-19601-0_2
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and

J̃
(
hT,µ

)
= iSNR

µ2 + λmax(
µ + λmax

)2
≥ J

(
hW

)
, (4.103)

J
(
hT,µ

)
=

µ2 + λmax(
µ + λmax

)2
≥ J

(
hW

)
. (4.104)

4.4.6 LCMV

We can decompose the noise signal vector, v(k), into two orthogonal vectors:

v(k) = ρvv1
· v1(k) + vu(k), (4.105)

where ρvv1
is defined in a similar way to ρxx1

and vu(k) is the noise signal vector

that is uncorrelated with v1(k).

In the LCMV beamformer that will be derived in this subsection, we wish to

perfectly recover our desired signal, x1(k), and completely remove the correlated

components of the noise signal at the reference microphone, ρvv1
· v1(k). Thus, the

two constraints can be put together in a matrix form as

CT
x1v1

h =

[
1

0

]
, (4.106)

where

Cx1v1 =
[
ρxx1

ρvv1

]
(4.107)

is our constraint matrix of size N L × 2. Then, our optimal filter is obtained by

minimizing the energy at the filter output, with the constraints that the correlated

noise components are cancelled and the desired speech is preserved, i.e.,

hLCMV = arg min
h

hT Ryh subject to CT
x1v1

h =

[
1

0

]
. (4.108)

The solution to (4.108) is given by

hLCMV = R−1
y Cx1v1

(
CT

x1v1
R−1

y Cx1v1

)−1
[

1

0

]
. (4.109)

The LCMV beamformer can be useful when the noise is mostly coherent.

All beamformers presented in this section can be implemented by estimating the

second-order statistics of the noise and observation signals, as in the single-channel

case. The statistics of the noise can be estimated during silences with the help of a

VAD (see Chap. 2).

http://dx.doi.org/10.1007/978-3-642-19601-0_2
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4.5 Summary

We started this chapter by explaining the signal model for multichannel noise reduc-

tion with an array of N microphones. With this model, we showed how to achieve

noise reduction (or beamforming) with a long filtering vector of length NL in order to

recover the desired signal sample, which is defined as the convolved speech at micro-

phone 1. We then gave all important performance measures in this context. Finally,

we derived the most useful beamforming algorithms. With the proposed framework,

we see that the single- and multichannel cases look very similar. This approach sim-

plifies the understanding and analysis of the time-domain noise reduction problem.
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Chapter 5

Multichannel Noise Reduction with a

Rectangular Filtering Matrix

In this last chapter, we are going to estimate L samples of the desired signal from NL

observations, where N is the number of microphones and L is the number of samples

from each microphone signal. This time, a rectangular filtering matrix of size L×N L

is required for the estimation of the desired signal vector. The signal model is the

same as in Sect. 4.1; so we start by explaining the principle of multichannel linear

filtering with a rectangular matrix.

5.1 Linear Filtering with a Rectangular Matrix

In this chapter, the desired signal is the whole vector x1(k) of length L. Therefore,

multichannel noise reduction or beamforming is performed by applying a linear

transformation to each microphone signal and summing the transformed signals

[1, 2]. We have

z(k) =

N∑

n=1

Hnyn(k)

= Hy(k)

= H[x(k) + v(k)], (5.1)

where z(k) is the estimate of x1(k), Hn, n = 1, 2, . . . , N are N filtering matrices of

size L × L , and

H =
[
H1 H2 · · · HN

]
(5.2)

is a rectangular filtering matrix of size L × N L .

Since x1(k) is the desired signal vector, we need to extract it from x(k). Specifi-

cally, the vector x(k) is decomposed into the following form:
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x(k) = Rxx1R−1
x1

x1(k) + xi(k)

= Ŵxx1 · x1(k) + xi(k), (5.3)

where

Ŵxx1 = Rxx1R−1
x1

(5.4)

is the time-domain steering matrix, Rxx1 = E
[
x(k)xT

1 (k)
]

is the cross-correlation

matrix of size N L × L between x(k) and x1(k), Rx1 = E
[
x1(k)xT

1 (k)
]

is the corre-

lation matrix of x1(k), and xi(k) is the interference signal vector. It is easy to check

that xd(k) = Ŵxx1 · x1(k) and xi(k) are orthogonal, i.e.,

E
[
xd(k)xT

i (k)
]

= 0N L×N L . (5.5)

Using (5.3), we can rewrite y(k) as

y(k) = Ŵxx1 · x1(k) + xi(k) + v(k)

= xd(k) + xi(k) + v(k). (5.6)

Substituting (5.3) into (5.1), we get

z(k) = H
[
Ŵxx1 · x1(k) + xi(k) + v(k)

]

= xfd(k) + xri(k) + vrn(k), (5.7)

where

xfd(k) = HŴxx1 · x1(k) (5.8)

is the filtered desired signal vector,

xri(k) = H xi(k) (5.9)

is the residual interference vector, and

vrn(k) = H v(k) (5.10)

is the residual noise vector.

The three terms xfd(k), xri(k), and vrn(k) are mutually orthogonal; therefore, the

correlation matrix of z(k) is

Rz = E
[
z(k)zT (k)

]

= Rxfd + Rxri + Rvrn , (5.11)
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where

Rxfd = HŴxx1Rx1Ŵ
T
xx1

HT , (5.12)

Rxri = HRxi
HT

= HRxHT − HŴxx1Rx1Ŵ
T
xx1

HT , (5.13)

Rvrn = HRvHT . (5.14)

The correlation matrix of z(k) is useful in the definitions of the performance

measures.

5.2 Joint Diagonalization

The correlation matrix of y(k) is

Ry = Rxd
+ Rin

= Ŵxx1Rx1Ŵ
T
xx1

+ Rin, (5.15)

where

Rin = Rxi
+ Rv (5.16)

is the interference-plus-noise correlation matrix. It is interesting to observe from

(5.15) that the noisy signal correlation matrix is the sum of two other correlation

matrices: the linear transformation of the desired signal correlation matrix of rank L

and the interference-plus-noise correlation matrix of rank NL.

The two symmetric matrices Rxd
and Rin can be jointly diagonalized as follows

[3, 4]:

BT Rxd
B = �, (5.17)

BT RinB = IN L , (5.18)

where B is a full-rank square matrix (of size N L × N L) and � is a diagonal

matrix whose main elements are real and nonnegative. Furthermore, � and B are

the eigenvalue and eigenvector matrices, respectively, of R−1
in Rxd

, i.e.,

R−1
in Rxd

B = B �. (5.19)

Since the rank of the matrix Rxd
is equal to L, the eigenvalues of R−1

in Rxd
can be

ordered as λ1 ≥ λ2 ≥ · · · ≥ λL > λL+1 = · · · = λN L = 0. In other words, the

last N L − L eigenvalues of R−1
in Rxd

are exactly zero while its first L eigenvalues are

positive, with λ1 being the maximum eigenvalue. We also denote by b1, b2, . . . , bN L ,
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the corresponding eigenvectors. Therefore, the noisy signal covariance matrix can

also be diagonalized as

BT RyB = � + IN L . (5.20)

This joint diagonalization is very helpful in the analysis of the beamformers for

noise reduction.

5.3 Performance Measures

We derive the performance measures in the context of a multichannel linear filtering

matrix with microphone 1 as the reference.

5.3.1 Noise Reduction

The input SNR was already defined in Chap. 4 but we can also express it as

iSNR =
tr

(
Rx1

)

tr
(
Rv1

) , (5.21)

where Rv1 = E
[
v1(k)vT

1 (k)
]
.

We define the output SNR as

oSNR
(
H

)
=

tr
(
Rxfd

)

tr
(
Rxri + Rvrn

)

=
tr

(
HŴxx1 Rx1Ŵ

T
xx1

HT
)

tr
(
HRinHT

) . (5.22)

This definition is obtained from (5.11). Consequently, the array gain is

A
(
H

)
=

oSNR
(
H

)

iSNR
. (5.23)

For the particular filtering matrix

H = Ii =
[
IL 0L×(N−1)L

]
(5.24)

of size L × N L , called the identity filtering matrix, we have

A
(
Ii

)
= 1 (5.25)

and no improvement in gain is possible in this scenario.

http://dx.doi.org/10.1007/978-3-642-19601-0_4
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The noise reduction factor is

ξnr

(
H

)
=

tr
(
Rv1

)

tr
(
HRinHT

) . (5.26)

Any good choice of H should lead to ξnr

(
H

)
≥ 1.

5.3.2 Speech Distortion

We can quantify speech distortion with the speech reduction factor

ξsr

(
H

)
=

tr
(
Rx1

)

tr
(

HŴxx1Rx1Ŵ
T
xx1

HT
) (5.27)

or with the speech distortion index

υsd

(
H

)
=

tr
[(

HŴxx1 − IL

)
Rx1

(
HŴxx1 − IL

)T
]

tr
(
Rx1

) . (5.28)

We observe from the two previous expressions that the design of beamformers

that do not cancel the desired signal requires the constraint

HŴxx1 = IL . (5.29)

In this case ξsr

(
H

)
= 1 and υsd

(
H

)
= 0.

It is easy to verify that we have the following fundamental relation:

A
(
H

)
=

ξnr

(
H

)

ξsr

(
H

) . (5.30)

This expression indicates the equivalence between array gain/loss and distortion.

5.3.3 MSE Criterion

The error signal vector between the estimated and desired signals is

e(k) = z(k) − x1(k)

= xfd(k) + xri(k) + vrn(k) − x1(k), (5.31)
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which can also be written as the sum of two orthogonal error signal vectors:

e(k) = ed(k) + er(k), (5.32)

where

ed(k) = xfd(k) − x1(k)

=
(
HŴxx1 − IL

)
x1(k) (5.33)

is the signal distortion due to the linear transformation and

er(k) = xri(k) + vrn(k)

= H xi(k) + H v(k) (5.34)

represents the residual interference-plus-noise.

Having defined the error signal, we can now write the MSE criterion as

J
(
H

)
= tr

{
E

[
e(k)eT (k)

]}

= tr
(
Rx1

)
+ tr

(
HRyHT

)
− 2tr

(
HRxx1

)

= Jd

(
H

)
+ Jr

(
H

)
, (5.35)

where

Jd

(
H

)
= tr

{
E

[
ed(k)eT

d (k)
]}

= tr
[ (

HŴxx1 − IL

)
Rx1

(
HŴxx1 − IL

)T ]
(5.36)

and

Jr

(
H

)
= tr

{
E

[
er(k)eT

r (k)
]}

= tr
(

HRinHT
)

. (5.37)

For the particular filtering matrices H = Ii and H = 0L×N L , the MSEs are

J
(
Ii

)
= Jr

(
Ii

)
= tr

(
Rv1

)
, (5.38)

J (0L×N L) = Jd (0L×N L) = tr
(
Rx1

)
. (5.39)

As a result,

iSNR =
J (0L×N L)

J
(
Ii

) (5.40)
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and the NMSEs are

J̃
(
H

)
=

J
(
H

)

J
(
Ii

)

= iSNR · υsd

(
H

)
+

1

ξnr

(
H

) , (5.41)

J
(
H

)
=

J
(
H

)

J (0L×N L)

= υsd

(
H

)
+

1

oSNR
(
H

)
· ξsr

(
H

) , (5.42)

where

υsd

(
H

)
=

Jd

(
H

)

J (0L×N L)
, (5.43)

ξnr

(
H

)
=

J
(
Ii

)

Jr

(
H

) , (5.44)

oSNR
(
H

)
· ξsr

(
H

)
=

J (0L×N L)

Jr

(
H

) , (5.45)

and

J̃
(
H

)
= iSNR · J

(
H

)
. (5.46)

We obtain again fundamental relations between the NMSEs, speech distortion index,

noise reduction factor, speech reduction factor, and output SNR.

5.4 Optimal Filtering Matrices

In this section, we derive all obvious time-domain beamformers with a rectangular

filtering matrix.

5.4.1 Maximum SNR

We can write the filtering matrix as

H =

⎡
⎢⎢⎢⎣

hT
1

hT
2
...

hT
L

⎤
⎥⎥⎥⎦ , (5.47)
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where hl , l = 1, 2, . . . , L are FIR filters of length NL. As a result, the output SNR

can be expressed as a function of the hl , l = 1, 2, . . . , L , i.e.,

oSNR
(
H

)
=

tr
(

HŴxx1Rx1Ŵ
T
xx1

HT
)

tr
(
HRinHT

)

=

∑L
l=1 hT

l Ŵxx1Rx1Ŵ
T
xx1

hl∑L
l=1 hT

l Rinhl

. (5.48)

It is then natural to try to maximize this SNR with respect to H. Let us first give the

following lemma.

Lemma 5.1 We have

oSNR
(
H

)
≤ max

l

hT
l Ŵxx1Rx1Ŵ

T
xx1

hl

hT
l Rinhl

= χ. (5.49)

Proof This proof is similar to the one given in Chap. 3

Theorem 5.1 The maximum SNR filtering matrix is given by

Hmax =

⎡
⎢⎢⎢⎣

β1bT
1

β2bT
1

...

βLbT
1

⎤
⎥⎥⎥⎦ , (5.50)

where βl , l = 1, 2, . . . , L are real numbers with at least one of them different from 0.

The corresponding output SNR is

oSNR
(
Hmax

)
= λ1. (5.51)

We recall that λ1 is the maximum eigenvalue of the matrix R−1
in Ŵxx1 Rx1Ŵ

T
xx1

and its

corresponding eigenvector is b1.

Proof From Lemma 5.1, we know that the output SNR is upper bounded by χ whose

maximum value is clearly λ1. On the other hand, it can be checked from (5.48) that

oSNR
(
Hmax

)
= λ1. Since this output SNR is maximal, Hmax is indeed the maximum

SNR filter.

Property 5.1 The output SNR with the maximum SNR filtering matrix is always

greater than or equal to the input SNR, i.e., oSNR
(
Hmax

)
≥ iSNR.

It is interesting to observe that we have these bounds:

0 ≤ oSNR
(
H

)
≤ λ1, ∀ H, (5.52)

but, obviously, we are only interested in filtering matrices that can improve the output

SNR, i.e., oSNR
(
H

)
≥ iSNR.

http://dx.doi.org/10.1007/978-3-642-19601-0_3
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5.4.2 Wiener

If we differentiate the MSE criterion, J
(
H

)
, with respect to H and equate the result

to zero, we find the Wiener filtering matrix

HW = RT
xx1

R−1
y

= Rx1Ŵ
T
xx1

R−1
y . (5.53)

It is easy to verify that hT
W (see Chap. 4) corresponds to the first line of HW.

The Wiener filtering matrix can be rewritten as

HW = Rx1xR−1
y

= IiRxR−1
y

= Ii

(
IN L − RvR−1

y

)
. (5.54)

This matrix depends only on the second-order statistics of the noise and observation

signals.

Using the Woodbury’s identity, it can be shown that Wiener is also

HW =

(
IN L + Rx1Ŵ

T
xx1

R−1
in Ŵxx1

)−1
Rx1Ŵ

T
xx1

R−1
in

=

(
R−1

x1
+ ŴT

xx1
R−1

in Ŵxx1

)−1
ŴT

xx1
R−1

in . (5.55)

Another way to express Wiener is

HW = IiŴxx1 Rx1Ŵ
T
xx1

R−1
y

= Ii − IiRinR−1
y . (5.56)

Using the joint diagonalization, we can rewrite Wiener as a subspace-type approach:

HW = IiB
−T �

(
� + IN L

)−1
BT

= IiB
−T

[
� 0L×(N L−L)

0(N L−L)×L 0(N L−L)×(N L−L)

]
BT

= T

[
� 0L×(N L−L)

0(N L−L)×L 0(N L−L)×(N L−L)

]
BT ,

(5.57)

where

T =

⎡
⎢⎢⎢⎣

tT
1

tT
2
...

tT
L

⎤
⎥⎥⎥⎦ = IiB

−T (5.58)

http://dx.doi.org/10.1007/978-3-642-19601-0_4
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and

� = diag

(
λ1

λ1 + 1
,

λ2

λ2 + 1
, . . . ,

λL

λL + 1

)
(5.59)

is an L × L diagonal matrix. We recall that Ii is the identity filtering matrix (which

replicates the reference microphone signal). Expression (5.57) is also

HW = IiMW, (5.60)

where

MW = B−T

[
� 0L×(N L−L)

0(N L−L)×L 0(N L−L)×(N L−L)

]
BT . (5.61)

We see that HW is the product of two other matrices: the rectangular identity filtering

matrix and a square matrix of size N L × N L whose rank is equal to L.

With the joint diagonalization, the input SNR and output SNR with Wiener are

iSNR =
tr

(
T � TT

)

tr
(
T TT

) , (5.62)

oSNR
(
HW

)
=

tr
[
T �3

(
� + IN L

)−2
TT

]

tr
[
T �2

(
� + IN L

)−2
TT

] . (5.63)

Property 5.2 The output SNR with the Wiener filtering matrix is always greater than

or equal to the input SNR, i.e., oSNR
(
HW

)
≥ iSNR.

Proof This property can be shown by induction.

Obviously, we have

oSNR
(
HW

)
≤ oSNR

(
Hmax

)
. (5.64)

We can easily deduce that

ξnr

(
HW

)
=

tr
(
T TT

)

tr
[
T �2

(
� + IN L

)−2
TT

] , (5.65)

ξsr

(
HW

)
=

tr
(
T � TT

)

tr
[
T �3

(
� + IN L

)−2
TT

] , (5.66)

υsd

(
HW

)
=

tr
[
T �

(
� + IN L

)−1
TT R−1

x1
T �

(
� + IN L

)−1
TT

]

tr
(
T � TT

) . (5.67)
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5.4.3 MVDR

The MVDR beamformer is derived from the constrained minimization problem:

min
H

tr
(

HRinHT
)

subject to HŴxx1 = IL . (5.68)

The solution to this optimization is

HMVDR =

(
ŴT

xx1
R−1

in Ŵxx1

)−1
ŴT

xx1
R−1

in . (5.69)

Obviously, with the MVDR filtering matrix, we have no distortion, i.e.,

ξsr

(
HMVDR

)
= 1, (5.70)

υsd

(
HMVDR

)
= 0. (5.71)

Using the Woodbury’s identity, it can be shown that the MVDR is also

HMVDR =

(
ŴT

xx1
R−1

y Ŵxx1

)−1
ŴT

xx1
R−1

y . (5.72)

From (5.72), it is easy to deduce the relationship between the MVDR and Wiener

beamformers:

HMVDR =
(
HWŴxx1

)−1
HW. (5.73)

The two are equivalent up to an L × L filtering matrix.

Property 5.3 The output SNR with the MVDR filtering matrix is always greater than

or equal to the input SNR, i.e., oSNR
(
HMVDR

)
≥ iSNR.

Proof We can prove this property by induction.

We should have

oSNR
(
HMVDR

)
≤ oSNR

(
HW

)
≤ oSNR

(
Hmax

)
. (5.74)

5.4.4 Space–Time Prediction

The ST approach tries to find a distortionless filtering matrix (different from Ii) in

two steps.

First, we assume that we can find an ST filtering matrix G of size L × N L in such

a way that

x(k) ≈ GT x1(k). (5.75)
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This filtering matrix extracts from x(k) the correlated components to x1(k).

The distortionless filter with the ST approach is then obtained by

min
H

tr
(

HRyHT
)

subject to H GT = IL . (5.76)

We deduce the solution

HST =

(
GR−1

y GT
)−1

GR−1
y . (5.77)

The second step consists of finding the optimal G in the Wiener sense. For that,

we need to define the error signal vector

eST(k) = x(k) − GT x1(k) (5.78)

and form the MSE

J
(
G

)
= E

[
eT

ST(k)eST(k)

]
. (5.79)

By minimizing J
(
G

)
with respect to G, we easily find the optimal ST filtering matrix

Go = ŴT
xx1

. (5.80)

It is interesting to observe that the error signal vector with the optimal ST filtering

matrix corresponds to the interference signal, i.e.,

eST,o(k) = x(k) − Ŵxx1x1(k)

= xi(k). (5.81)

This result is obviously expected because of the orthogonality principle.

Substituting (5.80) into (5.77), we finally find that

HST =

(
ŴT

xx1
R−1

y Ŵxx1

)−1
ŴT

xx1
R−1

y . (5.82)

Obviously, the two filters HMVDR and HST are strictly equivalent.

5.4.5 Tradeoff

In the tradeoff approach, we minimize the speech distortion index with the constraint

that the noise reduction factor is equal to a positive value that is greater than 1, i.e.,

min
H

Jd

(
H

)
subject to Jr

(
H

)
= β Jr

(
Ii

)
, (5.83)
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where 0 < β < 1 to insure that we get some noise reduction. By using a Lagrange

multiplier, µ > 0, to adjoin the constraint to the cost function, we easily deduce the

tradeoff filter:

HT,µ = Rx1Ŵ
T
xx1

(
Ŵxx1 Rx1Ŵ

T
xx1

+ µRin

)−1
, (5.84)

which can be rewritten, thanks to the Woodbury’s identity, as

HT,µ =

(
µR−1

x1
+ ŴT

xx1
R−1

in Ŵxx1

)−1
ŴT

xx1
R−1

in , (5.85)

where µ satisfies Jr

(
HT,µ

)
= β Jr

(
Ii

)
. Usually, µ is chosen in an ad hoc way, so

that for

• µ = 1, HT,1 = HW, which is the Wiener filtering matrix;

• µ = 0 [from (5.85)], HT,0 = HMVDR, which is the MVDR beamformer;

• µ > 1, results in a filtering matrix with low residual noise at the expense of high

speech distortion;

• µ < 1, results in a filtering matrix with high residual noise and low speech distor-

tion.

Property 5.4 The output SNR with the tradeoff filtering matrix as given in (5.85) is

always greater than or equal to the input SNR, i.e., oSNR
(
HT,µ

)
≥ iSNR, ∀µ ≥ 0.

Proof This property can be shown by induction.

We should have for µ ≥ 1,

oSNR
(
HMVDR

)
≤ oSNR

(
HW

)
≤ oSNR

(
HT,µ

)
≤ oSNR

(
Hmax

)
(5.86)

and for 0 ≤ µ ≤ 1,

oSNR
(
HMVDR

)
≤ oSNR

(
HT,µ

)
≤ oSNR

(
HW

)
≤ oSNR

(
Hmax

)
. (5.87)

We can write the tradeoff beamformer as a subspace-type approach. Indeed, from

(5.84), we get

HT,µ = T

[
�µ 0L×(N L−L)

0(N L−L)×L 0(N L−L)×(N L−L)

]
BT , (5.88)

where

�µ = diag

(
λ1

λ1 + µ
,

λ2

λ2 + µ
, . . . ,

λL

λL + µ

)
(5.89)

is an L × L diagonal matrix. Expression (5.88) is also

HT,µ = IiMT,µ, (5.90)
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where

MT,µ = B−T

[
�µ 0L×(N L−L)

0(N L−L)×L 0(N L−L)×(N L−L)

]
BT . (5.91)

We see that HT,µ is the product of two other matrices: the rectangular identity filtering

matrix and an adjustable square matrix of size N L × N L whose rank is equal to L.

Note that HT,µ as presented in (5.88) is not, in principle, defined for µ = 0 as this

expression was derived from (5.84), which is clearly not defined for this particular

case. Although it is possible to have µ = 0 in (5.88), this does not lead to the MVDR.

5.4.6 LCMV

The LCMV beamformer is able to handle as many constraints as we desire.

We can exploit the structure of the noise signal. Indeed, in the proposed LCMV,

we will not only perfectly recover the desired signal vector, x1(k), but we will

also completely remove the noise components at microphones i = 2, 3, . . . , N that

are correlated with the noise signal at microphone 1 [i.e., v1(k)]. Therefore, our

constraints are

HCx1v1 =
[
IL 0L×1

]
, (5.92)

where

Cx1v1 =

[
Ŵxx1 ρvv1

]
(5.93)

is our constraint matrix of size N L × (L + 1).

Our optimization problem is now

min
H

tr
(

HRyHT
)

subject to HCx1v1 =
[
IL 0L×1

]
, (5.94)

from which we find the LCMV beamformer

HLCMV =
[
IL 0L×1

] (
CT

x1v1
R−1

y Cx1v1

)−1
CT

x1v1
R−1

y . (5.95)

Clearly, we always have

oSNR
(
HLCMV

)
≤ oSNR

(
HMVDR

)
, (5.96)

υsd

(
HLCMV

)
= 0, (5.97)

ξsr

(
HLCMV

)
= 1, (5.98)

and

ξnr

(
HLCMV

)
≤ ξnr

(
HMVDR

)
≤ ξnr

(
HW

)
. (5.99)
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5.5 Summary

In this chapter, we showed how to derive different noise reduction (or beamforming)

algorithms in the time domain with a rectangular filtering matrix. This approach

is very general and encompasses all the cases studied in the previous chapters and

in the literature. It can be quite powerful and the same ideas can be generalized to

dereverberation as well.
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filtered speech

single channel, 24

finite-impulse-response (FIR) filter, 5, 24, 45

G

generalized Rayleigh quotient

multichannel, 52

single channel, 12

I

identity filtering matrix

multichannel, 64

single channel, 27

identity filtering vector

multichannel, 47

single channel, 7

inclusion principle, 52

input SNR

multichannel, 47, 64

single channel, 6, 27

interference, 1

multichannel, 45

single channel, 4

J

joint diagonalization, 26, 63

L

LCMV filtering matrix

multichannel, 74

single channel, 40

LCMV filtering vector

multichannel, 59
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L (cont.)
single channel, 18

linear convolution, 43

linear filtering matrix

multichannel, 61

single channel, 23

linear filtering vector

multichannel, 45

single channel, 5

M

maximum array gain, 48

maximum eigenvalue

multichannel, 52

single channel, 12, 32

maximum eigenvector

multichannel, 52

single channel, 12, 32

maximum output SNR

single channel, 7

maximum SNR filtering matrix

multichannel, 67

single channel, 31

maximum SNR filtering vector

multichannel, 51

single channel, 12

mean-square error (MSE) criterion

multichannel, 49, 65

single channel, 9, 29

multichannel noise reduction, 45, 61

matrix, 61

vector, 43

musical noise, 1

MVDR filtering matrix

multichannel, 71

single channel, 35

MVDR filtering vector

multichannel, 55

single channel, 14

N

noise reduction, 1

multichannel, 47, 64

single channel, 6, 27

noise reduction factor

multichannel, 48, 65

single channel, 8, 28

normalized correlation vector, 4

normalized MSE

multichannel, 50, 51, 66

single channel, 10, 11, 30

null subspace, 39

O

optimal filtering matrix

multichannel, 67

single channel, 31

optimal filtering vector

multichannel, 51

single channel, 11

orthogonality principle, 16, 36, 57

output SNR

multichannel, 47, 64

single channel, 6, 27

P

partially normalized cross-correlation

coefficient, 45

partially normalized cross-correlation

vector, 44, 45

performance measure

multichannel, 46, 64

single channel, 6, 27

prediction filtering matrix

multichannel, 71

single channel, 36

prediction filtering vector

multichannel, 56

single channel, 16

R

residual interference

multichannel, 46, 62

single channel, 5, 25

residual interference-plus-noise

multichannel, 49, 66

single channel, 9, 29

residual noise

multichannel, 46, 62

single channel, 5, 24

reverberation, 1

S

signal enhancement, 1

signal model

multichannel, 43

single channel, 3

signal-plus-noise subspace, 39

signal-to-noise ratio (SNR), 6

single-channel noise reduction, 5, 23

matrix, 23

vector, 3

source separation, 1

space-time prediction filter, 56
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space-time prediction filtering matrix, 71

spectral subtraction, 1

speech dereverberation, 1

speech distortion

multichannel, 48, 49, 66, 65

single channel, 8, 9, 28, 29

speech distortion index

multichannel, 48, 65

single channel, 8, 28

speech enhancement, 1

speech reduction factor

multichannel, 48, 65

single channel, 8, 28

steering matrix, 62

steering vector, 45

subspace-type approach, 33, 69

T

tradeoff filtering matrix

multichannel, 72

single channel, 37

tradeoff filtering vector

multichannel, 57

single channel, 17

V

voice activity detector (VAD), 20

W

Wiener filtering matrix

multichannel, 68

single channel, 33

Wiener filtering vector

multichannel, 52

single channel, 12

Woodbury’s identity, 13, 53
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