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Chapter 1

Introduction

Neuroscientists are increasingly engaging the integrated circuit (IC) community to

develop new tools for understanding the brain. Fundamental research performed on

small animal models, for example, requires miniaturized instrumentation for long

term freely behaving studies. Recording from non-human primates, rats, mice, and

even insects is of interest. This research, in turn, will lead to advanced neuroprosthet-

ics and brain-computer interfaces (BCI), which will demand even more functionality,

robustness, and miniaturization from the electronics. Overly conservative perfor-

mance goals lead to a loss of efficiency, while overly relaxed specifications lead

to an ineffective system. Since there are no established standards, close interaction

between IC designers and neuroscientists is critical. Our goal with this book is to

present several case studies of low power circuit architectures that were designed for

brain interface applications. Our chip specifications, design procedures, and mea-

sured results will be presented. Along the way, we hope to motivate the need for

additional research and collaborations between engineers and brain scientists.

These collaborations have already led to important fundamental scientific re-

search. For example, neural interfaces have facilitated discoveries in basic neu-

roscience research [4] by enabling previously impossible experiments. In the short

term, these technologies are instrumental in developing implantable wireless sensors

with a small form-factor and low weight. Wireless sensors will facilitate advanced

biomedical research, like untethered monitoring of freely-behaving insects and small

animals (Fig. 1.1a) [5]. These systems require wireless information transfer between

implanted electrodes and external devices. In the long term, brain-machine inter-

faces (BMI) may provide new augmentative technology to help people with severe

motor disabilities (Fig. 1.1b) [10]. BMIs acquire brain signals and extract specific

features from them, then translate them into device control signals (e.g., controlling

a mouse cursor). To people who lack any useful muscle control (e.g., due to cerebral

palsy), or locked-in (e.g., end-stage ALS), BMIs could give the ability to answer

simple questions quickly, control the environment, or even operate neuroprosthetic

devices.

Prototype systems have demonstrated the potential to profoundly improve the

quality of life for persons with severe impairments [13]. Medical applications have

begun to appear, starting with the cochlear implant over three decades ago [8].

J. Holleman et al., Ultra Low-Power Integrated Circuit Design for Wireless Neural Interfaces, 1

DOI 10.1007/978-1-4419-6727-5 1, c© Springer Science+Business Media, LLC 2011
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Fig. 1.1 a Short-term biomedical applications of microelectronics can enable advances in biology

and medical research. For example, the wired connection to study mice shown here can be replaced

with a wireless device, allowing the study of freely-behaving mice. b A typical neural recording

architecture illustrating the concept of Brain-Machine-Interfaces (BMI) and Long-term biomedical

applications of microelectronics

Currently, work is ongoing for neural interfaces to improve treatment for epilepsy

and Parkinson’s disease. Scientists and engineers are also investigating the possibility

of neurally-controlled prosthetics: devices which would allow persons paralyzed by

injury or disease to control a prosthetic through thoughts. Rudimentary neural control

has been demonstrated both in humans [7] and in monkeys [12].

Current neural interfaces are limited by physical size and power consumption.

One challenge in reducing power consumption is the noise requirement of the first

gain stage. The small amplitude of extracellular-sensed neural signals (<200 µV)
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necessitates low-noise amplification, which in turn requires relatively high bias cur-

rents. While some components of a neural interface, such as a wireless transceiver,

may operate with a low duty cycle, the amplifiers must operate continuously. The

combination of high duty cycle and low noise requirements frequently cause the

amplifiers to dominate overall system power, particularly in systems with many

channels.

An additional obstacle to reducing power consumption is the need for local, real-

time processing of neural signals [6]. One particularly difficult and important analysis

function for neural recording is spike sorting. Electrodes implanted in a brain can

often detect action potentials from multiple neurons. Spike sorting, the task of dis-

tinguishing between the different neurons contributing to activity in a recording, can

increase the information that a recording provides compared to simple thresholding

algorithms. This extra information can improve the performance of medical devices

such as neurally-controlled prosthetics, and improve the ability of neuroscientists to

infer the meaning of experiments.

Unfortunately, spike sorting is a difficult function to implement within the power

and area constraints of an implanted neural interface. Many spike sorting algorithms

require extensive memory to store ensembles of recorded spikes, which consumes

large amounts of chip area and power. For these reasons, a fully-integrated neural

recording IC with on-chip spike-sorting has not yet been developed.

Figure 1.2 shows three possible architectures for an implantable neural recording

system. In all cases, the first stage is a low-noise amplifier. One option, shown in

Fig. 1.2a is to fully digitize the signals and transmit them to an external computer

for processing. This strategy benefits from the flexibility and processing power of

general-purpose computers. Users can choose processing algorithms to suit their

needs and modify the algorithms at any time. Additionally, since no on-line spike

sorting is performed, the raw data is available and any questions about the accuracy of

the processing can be resolved. This architecture requires that analog-digital convert-

ers (ADC) run continuously for every channel. The illustration shows an independent

ADC for every channel. A typical implementation would have several channels mul-

tiplexed to share an ADC, but a large number of channels would still require multiple

area-intensive ADCs. While channel-multiplexing can reduce the area required for

ADCs, it increases power consumption due to the additional buffering required [2],

so that the power required for conversion can still be expected to scale at least linearly

with the number of channels. The power required for analog-digital conversion can

consume a significant portion of the system’s power budget. Even more problematic

is the wireless transmission. Because the full digitized waveform for every channel

is transmitted over the wireless link, the transmitter must operate continuously and

must also have very high throughput, resulting in prohibitively high power dissi-

pation. For example, two recently published transmitters operating in the Medical

Implant Communication Service (MICS) band, [1] and [9], achieved energy-per-

transmitted-bit of 2.9 and 4 nJ/b and data rates of 120 and 100 kb/s, respectively.

For a 100-channel system using 8-bit digitization and a 30 kS/s sample rate, similar

transmitter efficiency would require 70–95 mW for the transmitter alone. For ref-

erence, an implant with 1 cm2 of surface area can dissipate no more than 80 mW

without risking thermal damage to tissue [11].
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Fig. 1.2 Possible architectures for a wireless neural interface. a The signals are digitized and a

wireless transmitter (Tx) sends the waveforms for all channels to an external computer, where

they are processed in software. b All of the signals are digitized, then processed in software on a

local CPU which is part of the implant. The output of the spike processing, which includes spike

timestamps, sorting labels, and a channel index, are transmitted to an external computer, where they

are collected for analysis or used to actuate a prosthetic. c Each channel is processed locally using

dedicated analog circuits. As in (b), the processing results are transmitted to an external computer

A second possibility, depicted in Fig. 1.2b, is to digitize the signals and process

them locally. A local CPU or DSP would detect spikes, perform spike sorting, and

record the time and channel for each detected spike. The resulting spike data would

then be transmitted to an external computer, where it could be collected for further
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analysis in the context of neuroscience research, or used to actuate a prosthesis.

Such a strategy requires the same power and area for digitization as the previous

architecture. The demands on the wireless transmitter are dramatically reduced since

each full waveform is replaced with a set of spike descriptors. In exchange for reduced

transmission, this architecture requires substantial local processing power. The CPU

included in the implant must be capable of performing spike detection and sorting on

all channels simultaneously and in real time. The chip must also contain sufficient

memory to hold the processing software.

The processing can also be done locally using dedicated analog circuits, as shown

in Fig. 1.2c. Similarly to the design in Fig. 1.2b, the burden on the communication

link is relatively light because only spike descriptors are transmitted. Unlike either

of the other two architectures, there is no need for a continuously-running ADC,

since spikes are detected and sorted in the analog domain. In fact, the ADC could be

omitted entirely, although it may be desirable to include one which can be enabled

periodically to compare processing results with the raw waveform.

As noted in the above discussion, any architecture for an implantable neural in-

terface will require a low-noise amplifier for every active channel. One of the goals

of this book is the development of circuit techniques to reduce power dissipation

in such an amplifier. The other primary contribution is the design of circuits which

exploit the natural behavior of transistors to perform analog computation implement-

ing spike detection, feature extraction, and clustering. Among these circuits is the

first reported floating-gate memory cell using thin-oxide transistors for adaptation,

which enables floating-gate circuits for machine learning algorithms to operate from

supply voltages of 1.5V. These cells are used to store spike templates, enabling a

fully analog spike sorting circuit.

These circuits are the critical building blocks for an implantable neural interface

using the architecture shown in Fig. 1.2c. Because they operate with extremely low

power dissipation, they will enable improved implantable devices which can be used

in many demanding applications.

To emphasize the circuit design challenges presented by this vision, we will briefly

describe some of the specifications of the front-end neural recording amplifiers. Like

the other building blocks described above, several design procedures and case studies

of neural recording amplifiers will be presented in this book.

Bio-signals need to be first amplified before digitization or any signal processing.

Depending on the application, several design requirements should be satisfied for

the front-end amplifiers:

• Have sufficiently low input-referred noise to resolve microvolt-level spikes

(10 µV)

• Have sufficient dynamic range to convey or tolerate large local field potential

(LFP) or EMG (muscle) signals (1–10 mV)

• Have much higher input impedance than the electrode-tissue interface and

negligible DC input current;

• Amplify signals in the frequency band of interest (300–5 kHz for spikes, 10–

100 Hz for LFP, 0.5–40 Hz for EEG, 0.5–200 Hz for ECoG, and 0.5–20 Hz for

EMG).
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• Block (or cancel) DC offsets present at the electrode-tissue interface to prevent

saturation at the amplifier output.

• Consume as little silicon area as possible and use few or no off-chip components

to minimize size.

• Sufficient common-mode rejection ratio (CMRR) to minimize interference from

50/60 Hz power line noise, and sufficient power supply rejection ratio (PSRR) to

prevent coupling from power supply noise (more severe if inductive power link

is used).

• Dissipate no more than 10 mW of power.

The critical power limitation on the implantable recording electronics arises from the

need to limit the chronic heating of surrounding tissue to less than 1◦C. Preliminary

experiments have shown that an implanted cortical 100-electrode array with inte-

grated electronics can safely dissipate approximately 10 mW of power [3]. It follows

that each channel must consume less than 100 µW of power, excluding shared circuit

blocks such as analog-to-digital converter (ADC), power regulation and transmitter.

The first few chapters describe techniques for designing neural amplifiers with

low power consumption and low noise. Chapter 2 begins by describing the challenges

involved in neural amplifier design. Chapter 3 describes a simple open-loop topology

that achieves excellent noise/power performance, in part by sacrificing other metrics.

Chapters 4 and 5 describe the design and measurements of two amplifiers. One

combines a traditional architecture with low-voltage design techniques. The other

incorporates the insights from the open-loop design and the low-voltage design just

mentioned into a low-voltage closed-loop amplifier with very low noise and good

overall performance.

The next three chapters describe circuit techniques for processing neural signals.

Chapter 7 presents a chip which detects neural spikes, extracts descriptive features,

and digitizes the features. Chapter 8 describes the process of spike sorting and some

considerations for an analog implementation of a spike-sorting algorithm. Chapter 9

describes a circuit that uses thin-oxide floating-gate analog memories to realize an

unsupervised clustering algorithm, which is the primary component of a spike sorting

system.

Finally, the last two chapters examine system-level integration in the context of

two example systems. One is the NeuralWISP, a wirelessly-powered spike density

recorder designed to work with a commercial RFID reader. The other is a neural

streaming chip, which amplifies, digitizes and wirelessly transmits a neural signal.

These systems are described in Chaps. 10 and 11 respectively.
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Chapter 2

Bio-Signal Interface Amplifiers:
An Introduction

There are many design challenges involved in the circuit design of implantable neural

recording systems. A generic biopotential-recording system is illustrated in Fig. 2.1.

First, weak neural signals must be amplified, conditioned, and then digitized. The

information then needs to be wirelessly transmitted out of the body to avoid possible

infection from transcutaneous connectors. The power consumption increases with the

number of recording channels and the complexity of system. However, the power

dissipation of miniature implantable devices must be limited to prevent excessive

tissue heating.

In a typical multi-channel system, one distinct low-noise amplifier is used per

signal channel. Analog multiplexing theoretically would reduce the number of

front-end amplifiers. However, in order to capture details of ever-changing neural ac-

tivity across multiple electrodes, analog multiplexing requires switching times much

shorter than the time constants associated with the amplifier’s dynamics. Therefore,

multi-channel systems typically use a separate amplifier for each channel, severely

limiting the power available for each amplifier. As a result, power dissipation must

be minimized as much as possible.

The next few chapters of this book will go into detail on ultra-low power low

noise amplifier (LNA) design used in neural recording and other bio-signal acqui-

sition systems. We first begin with the signal and electrode characteristics of these

systems.

2.1 Characteristics of the Recording Electrodes

A signal/reference electrode configuration is typically used to record neural or mus-

cle activity. The potential difference between each signal electrode and a large

reference electrode is measured by the front-end differential amplifiers. The ref-

erence electrodes are usually low-impedance. However, in other applications, some

signal electrodes are paired with high-impedance reference electrodes. The con-

tact between metal electrode tip and extracellular fluid creates an electrical double

layer that acts like a capacitor. Depending on the electrode area and surface rough-

ness, the capacitance is estimated between 150 pF and 1.5 nF in common electrodes.

J. Holleman et al., Ultra Low-Power Integrated Circuit Design for Wireless Neural Interfaces, 9
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BPA VGA
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Digital Signal
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Fig. 2.1 A generic block diagram for a biopotential-recording system

Recent advances in MEMS technology have produced small (less than 4 mm in

each dimension) arrays of micro-electrodes containing as many as 100 recording

sites [11].

Below we illustrate electrodes commonly used in research laboratories. Figure 2.2

shows the neural electrodes from NeuroNexus Technology. There are a total of 128

Fig. 2.2 Typical invasive

neural electrodes often

used for in-vivo recording

on rats or monkeys
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sites with 200 µm electrode spacing. The electrodes used to acquire the measurements

in this book and in [6] are 50 µm tungsten wires insulated with teflon. Each electrode

is capacitive and has an equivalent impedance magnitude of 100 k–500 k� measured

at 1 kHz.

2.2 Characteristics of Bio-Signals

2.2.1 Brain Recordings

There are three main types of invasive signals that are of interest: action poten-

tials (spikes), local field potentials (LFP), and electrocorticography (ECoG) signals.

Spikes and LFPs can be obtained from single-unit recording. LFPs can be measured

on the scalp as EEG signals, but experience a significant amount of attenuation. ECoG

signals can be measured by invasive recording electrodes at the surface of the cortex.

Typical spikes have signals occupying the 100 Hz–7 kHz band with amplitudes up to

500 µV, while LFPs generally have energy below 100 Hz with amplitudes up to 5 mV

[10]. Related to LFPs, EEG recordings have signals much attenuated to 10–20 µV.

ECoG signals have energy in roughly the 0.5–200 Hz band with amplitudes up to

100 µV.

Neural spikes appear biphasic in in-vivo recordings with durations of 0.3–1.0 ms.

The spikes fire once every several milliseconds to tens of milliseconds depending on

the location of the electrode and the neuron’s inherent characteristics. Spikes from

different neurons usually have different shapes and firing rates, whereas spikes from

the same neuron have nearly identical amplitude and duration. Spikes provide high

spatial resolution at the cost of high power consumption in the recording electronics

and challenging chronic implanting issues at the electrode-tissue interface.

LFPs result from the collective activity of many neurons in one region of the

brain. Some neurons are too distant from the electrode to have their individual spikes

resolved. LFPs have much less spatial resolution compared to neural spikes; however,

it is more immune to attenuation (i.e., caused by scar tissue) and interference. Some

research has demonstrated close correlation between specific arm movement and the

energy of LFP signals in primates [3].

Another type of signal that is recently gaining popularity is categorized as elec-

trocorticography (ECoG). ECoG signals are generally recorded from the surface of

the cortex, and are thus less susceptible to chronic measurement issues such as tis-

sue encapsulation and micromotion [2]. As a result, they can provide more robust

measurement of signals. Although less spatially refined than spikes recorded from

single-cell recordings, they are more spatially refined comparing to EEG signals

(tenths of millimeters vs. centimeters [7]. Some recent research has demonstrated

the effective usage of spectral decomposition of ECoG signals in neuroprosthetic

applications [9, 13]. Ensemble neural firing is the biomarker for a number of clin-

ically relevant phenomena, such as epileptic seizures and basal ganglia rhythms in

Parkinson’s disease [8].
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Table 2.1 Characteristics of biosignals

Bandwidth Amplitude Spatial Resolution Invasiveness

Spikes 1–7 kHz <500 µV Highest Invasive

LFP <200 Hz <5 mV Low Invasive

EEG <100 Hz 10–20 µV Lowest Non-invasive

ECoG 0.5–200 Hz <100 µV Moderate Moderately invasive

EMG 7–500 Hz 50 µ–2 mV – Minimally or non-invasive

2.2.2 Muscle-Based Signals

Electromyography (EMG) is another kind of signal measured from muscle cells.

Measured EMG potentials range between 50 µV up to 30 mV in the band of 7–500 Hz,

depending on the particular muscle. EMG signals are measured either by surface

recording or needle (intramuscular) EMG. EMG signals are used in many types

of research laboratories, including bio-mechanics, motor control, neuromuscular

physiology, etc. Clinically, they are also used for the diagnosis of neurological and

neuromuscular problems.

Table 2.1 is a summary of the characteristics of biosignals.

2.3 Noise/Power Tradeoff

As explained previously, reducing the power consumption of the circuitry is imper-

ative to allow a practical multichannel implantable system. In order to understand

how to optimize the power and noise trade-off, we first investigate types of noise and

their relationship to bias current.

There are mainly two noise sources that circuit designers consider when designing

low-frequency low-noise amplifiers: flicker noise and thermal noise.

2.3.1 Flicker Noise, 1/f Noise

Flicker noise is thought to be caused by traps associated with contamination and

crystal defects [4]. These traps capture and release carriers randomly and give rise

to a noise signal with energy concentrated at low frequencies. Input-referred flicker

noise of a MOS can be represented by

v2
i =

(

Kf

WLCoxf

)

�f (2.1)
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2.3.2 Thermal Noise

In conventional resistors, thermal noise is due to the random thermal motion of the

electrons, thus is directly proportional to T. Input-referred thermal noise voltage

noise of a MOSFET can be represented by

v2
i = 4kT

(

2

3gm

)

�f (2.2)

A common dimensionless figure of merit that summarizes this power-noise trade-off

is the noise efficiency factor (NEF), first proposed in [14].

NEF = Vrms,in

√

2 · ITotal

π · UT · 4kT · BW
(2.3)

Where ITotal is the total amplifier supply current, UT is the thermal voltage kT /q,

BW is the amplifier bandwidth, and Vni,rms is the amplifier’s input-referred RMS

voltage noise. This FOM compares the power-noise trade-off with that of a single

ideal bipolar transistor.

2.4 Representative Prior Art

Micro-scale integrated circuits used for amplifying weak bioelectrical signals have

been reported for many years [10, 11, 14]. Since then, many papers on low-noise

amplifiers have been published [1, 10, 12, 14]. In 2003, [5] reported a fully integrated

amplifier consuming 80 µW of power while exhibiting an RMS input-referred noise

of 2.2 µV. Their impressive noise efficiency factor (4.0) has set the benchmark for

amplifier designers of that time.

The amplifier in [5] is based on a simple operational transconductance amplifier

(OTA) topology. A capacitive feedback network sets the midband gain of the am-

plifier. Any DC offset from the electrode-tissue interface is removed by capacitively

coupling the inputs through capacitors. Large pseudo-resistors are used to set the

low-frequency amplifier cutoff. The pseudo-resistors are used in place of bulky re-

sistors in order to save area. They are MOS-bipolar elements that create a small-signal

resistance of >1012 � for low-frequency operation. The noise optimization is accom-

plished by sizing the input stage transistors to operate in the sub-threshold region.

The topology in [5] is not optimal for a power-noise trade-off as 50% of the

current is consumed in a branch that contributes no gain. The design in [15] em-

ploys a modified folded-cascode topology where the currents between the input and

the folded branches are severely scaled (17:1) to save power and reduce the noise

contribution from the folded branches. In addition, source degeneration is used at

the input current sources to increase their output impedance and reduce their noise

contribution. However, a folded-cascode topology is not a power-efficient solution
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to achieve low noise because its extra branches consume more current and contribute

more noise. In addition, the amplifier in [5] uses a ±5V, and [15] uses 2.8V supply.

With the trend towards integrating analog and digital subsystems on a single die, it

has become increasingly important for analog circuitry to operate from the <1.2V

supply typical of modern digital CMOS.

In the next few chapters of this book, we will introduce several new amplifier

topologies and compare their measured results to the state-of-the-art.
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Chapter 3

A Low-Power, Low-Noise, Open-Loop Amplifier
for Neural Recording

The signal path in a neural recording system typically starts with an amplifier in

order to boost the signal levels and buffer the high source impedance. Because of

the small signal amplitudes, amplifier noise must be minimized in order to avoid

unnecessary degradation of the signal. Additionally, the high impedance of neural

electrodes necessitates a high impedance input.

For a fixed bandwidth, an amplifier’s input-referred noise scales inversely with

the square of its current consumption. In order to achieve acceptable noise levels,

the front-end amplifier often consumes a substantial fraction of the overall system

power [5]. Recently there has been a great deal of research into the design of low-

power amplifiers for neural recording [3, 4, 9]. The large majority of previous work

has focused on conventional closed-loop amplifiers built from operational amplifiers.

Op-amps in closed-loop configurations have been the work-horse of analog design

for decades, due to the flexibility, precise gain, and linearity that can be achieved.

Open-loop amplifiers have been used primarily in high-frequency applications, such

as wireless design, where the loop gain needed to realize the benefits of a closed-

loop architecture is difficult to attain. However, when power dissipation is a primary

consideration, an open-loop topology may become attractive even for low-frequency

applications.

Open-loop amplifiers can give superior noise performance for a given power

budget at the expense of linearity performance, imprecise gain control, and reduced

power-supply rejection. In this chapter, we will describe a simple open-loop amplifier

design which achieved the lowest NEF to date.

3.1 Open-Loop Amplifier Design

The design philosophy behind the use of an open-loop amplifier is the idea that the

unique nature of the of the neural recording problem justifies the acceptance of a

penalty in linearity and supply rejection in exchange for maximum noise efficiency.

The small signal levels of neural signals relax linearity requirements relative to

those for general purpose amplifiers. If the application is the detection of action

potentials, then precise signal reconstruction is not as important as preservation of

J. Holleman et al., Ultra Low-Power Integrated Circuit Design for Wireless Neural Interfaces, 15
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Fig. 3.1 Schematic of the open-loop amplifier

relative amplitudes, further relaxing both linearity requirements and the need for

precisely defined gain. Provision of a stable power supply should be possible with

careful system design. Implantation in the human body provides some shielding of the

power supply against interferers such as 50/60 Hz noise. Low current consumption

and low voltage requirements also ease the task of generating a stable supply.

A single-ended, open-loop amplifier designed for recording action potentials is

shown in Fig. 3.1 [6]. MOS-bipolar pseudo-resistors (PR) [4] are used to implement

the AC coupling necessary to reject large DC offsets due to contact potentials. Each

of the transistors in the pseudo-resistor is connected such that there is a MOS diode

and a parasitic source-bulk diode connected in anti-parallel. If the voltage across the

device is small, then neither diode will conduct strongly, and the effective resistance is

very large (>10 G�). The voltage across PR1 is limited to the magnitude of the input

signal, while the voltage across PR2 is a function of the output signal. In order to keep

the pseudo-resistor in the high-resistance region, two devices are connected in series.

Two strategies are utilized here to minimize the input-referred noise for a given

bias current. The first is to limit the number of current branches. There is only one

branch operating at full current. The reference current is ten times smaller than the

amplifier bias current, so it does not contribute significantly to the total power con-

sumption. The same RC network used to AC couple the PMOS input presents a low-

pass filter to the reference transistor MP0, so noise from the current reference is not

added to the signal, permitting the use of a relatively noisy low-power bias generator.

The second strategy is to drive the gates of both MP1 and MN1. A conventional

common-source amplifier has a current-source load which adds noise to the signal,

but performs no amplification. Because the input must be AC-coupled, it is possible

to decouple the DC levels of the gates of transistors MP1 and MN1 while keeping
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them connected in the frequency band of interest. The amplifier’s transconductance

is effectively doubled, while output noise remains constant, reducing the input-

referred noise voltage spectral density by a factor of two. Because the bandwidth is

determined by the load capacitor and is set based on the application requirements,

the input referred RMS noise voltage is also reduced by a factor of two.

The aspect ratios of MP1 and MN1 were chosen to place both transistors in the

weak inversion regime in order to maximize gm/ID . The lengths of the transistors

MP1 and MN1 were chosen to be large to obtain sufficient gain from a single stage

and to yield an acceptable level of 1/f noise, which is inversely proportional to gate

area [1]. The bias current is generated from an on-chip bias circuit based on [2]

and multiplied by a 3-bit digitally-controlled current mirror. The bias current in the

amplifier can be varied from 110 to 770 nA.

This amplifier includes a bank of digitally-enabled diode-connected transistors

M2–M4, which allow the user to control the gain through the gain-control word

G[0:2]. The aspect ratio of MN2 is 100 times smaller than that of MN1, and

VGS,1 =VGS,2, so the incremental conductance of MN2 is approximately 100 times

smaller than gm,MN1. In the absence of any channel-length modulation, and assum-

ing equal subthreshold slope factors (and thus equal gm) for MN1 and MP1, MN2

would limit the gain to 200. This scheme was used to mitigate the risk of uncon-

trolled gain due to the open-loop topology. Including the effect of channel-length

modulation, MN2 reduces the gain by about 6 dB, from 44.3 to 38.4 dB. With M3

and M4 enabled, the gain drops to 36.1 dB.

3.2 Results

This amplifier was fabricated in a 0.5 µm SOI-BiCMOS process, employing CMOS

devices exclusively. It occupies 0.033 mm2 and the current reference occupies an ad-

ditional 0.013 mm2 of die area. The entire circuit can operate from a supply between

1V and 5V, while the measurements presented here were taken with a 1.0V supply.

Figure 3.2 shows the frequency response over the entire range of gain settings.

The current reference is configured to provide the maximum bias current, yielding

IDS = 770 nA for MP1 and MN1. At the highest gain setting, the amplifier exhibits

a gain of 44 dB and bandwidth of 1.9 kHz. The intermediate gain setting provides

a gain of 38 dB and a 3-dB frequency of 3.6 kHz. With the lowest gain setting, the

gain is 36 dB, and the 3-dB frequency is extended to 4.7 kHz. The remainder of this

section will focus primarily on the low-gain setting, because it provides sufficient

bandwidth to record action potentials. However, it is possible to extend the bandwidth

at higher gain settings by increasing the bias current, either by overriding the internal

bias generator, or with a modified design.

The input-referred noise spectrum of the amplifier is shown in Fig. 3.3. Despite

the large transistor sizes, 1/f noise dominates. The total RMS noise at the input

is 3.5 µV. It is difficult to discern the white thermal noise region of the spectrum

because of the proximity of the 1/f noise corner to the output pole of the amplifier,

but analysis predicts an input-referred thermal noise density of about 20 nV/
√

Hz.
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Fig. 3.2 The frequency

response of the open-loop

amplifier with three different

gain settings. The gain

adjustment number refers to

the digital gain control word

G[0:2] in Fig. 3.1
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Fig. 3.4 a Output voltage waveforms for 100 Hz sinusoidal input. (Top) Low gain setting, peak-

to-peak amplitude of 1 mV. (Middle) Low gain setting peak-to-peak amplitude of 10 mV. (Bottom)

High gain setting, peak-to-peak amplitude of 1 mV. b The output power spectrum with the amplifier

input driven by a 100 Hz sinusoid. The amplitude and gain are the same as in (a)

which shows output waveforms corresponding to a 100 Hz input with various ampli-

tudes. In the top waveform, with peak-to-peak input amplitude of 1 mV, the distortion

is not visually noticeable. With a 10 mV input, the incremental resistance of the gain-

control transistors MN2-4 decreases at the upper end of the range, causing substantial

compression. For the third waveform, the amplifier is in the high-gain configuration,

and the input amplitude is 1 mVpp. Figure 3.4b shows the power spectra of the same

three waveforms shown in Fig. 3.4a. THD with the 10 mV input is quite high at

18.12%, but for a 1 mVpp input, THD is lower, at 7.06 and 6.63% for the low and

high gain settings, respectively.

In applications where a quiet power supply cannot be guaranteed, power-supply

rejection ratio must be examined. In the proposed amplifier, both MP1 and MN1 have

their sources connected to a power supply and their gates capacitively connected to

the input. Thus, the positive and negative supplies directly modulate the P- and

N-type transconductors, respectively. Therefore one would expect that the gain from

the positive power supply to the output will be approximately half the gain from

input to output, resulting in a minimal PSRR of 6 dB. Figure 3.5 shows the positive

power-supply rejection ratio from 20 Hz to 20 kHz, which is an average of 5.5 dB

between 1 and 100 Hz. Because of the weak supply rejection, the output will be

susceptible to supply noise existing in the frequency band of interest.

Table 3.1 compares the performance of this amplifier to other published biosignal

amplifiers. The noise efficiency factor (NEF), introduced in [7], is used to compare

the noise and power performance to other amplifiers:

NEF = Vrms,in

√

2 · ITotal

π · UT · 4kT · BW
(3.1)
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Fig. 3.5 Power-supply
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Table 3.1 Comparison of neural amplifiers

Gain IAmp NEF vni,RMS THD at Input PSRR Bandwidth

(dB) (µV) (mVpp) (dB)

Harrison and

Charles [4]

39.5 16 µA 4.0 2.2 1% at 16.7 ≥85 0.025 Hz–7.2 kHz

Denison

et al. [3]

45.5 1.2 µA 4.9 0.93 – – 0.5–250 Hz

Wu and Xu [9] 40.2 330 nA 3.8 0.94 0.053% at 5 62 3 mHz–245 Hz

Wattanapanitch

et al. [8]

40.2 330 nA 3.8 0.94 0.053% at 5 62 3 mHz–245 Hz

This work

Open-loop 36.1 805 nA 1.8 3.6 7.1% at 1 5.5 0.3 Hz–4.7 kHz

Closed-loop 38.3 12.5 µA 2.48 1.95 1% at 1 63 0.023 Hz–11.5 kHz

where ITotal is the total amplifier current, UT is the thermal voltage, BW is the

amplifier bandwidth, Vrms,in is the input-referred RMS noise voltage.

For consistency with other work, the current specified in Table 3.1 excludes the

current consumed by the bias generator, which consumes an additional 27 nA. This

amplifier demonstrates the lowest NEF of any amplifier reported to date. Including

the bias circuitry, the entire amplifier chip dissipates less than 1 µW.

3.3 Effect of Non-Linearity on Neural Recordings

As mentioned above, the open-loop amplifier achieves its noise efficiency at the

expense of linearity. Figure 3.6a shows the input-output voltage relationship. The

slope of this curve at any given point gives the amplifier’s small signal gain for a
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Fig. 3.6 a Voltage transfer

curve for the open-loop

amplifier. b Amplifier gain

versus input voltage
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signal centered at the corresponding input voltage, and is shown in Fig. 3.6b. Because

the amplifier isAC-coupled, these curves cannot be measured at DC and are therefore

constructed from sinusoidal input and output measurements.

To explore the effects of amplifier non-linearity on a variety of input signals, the

data in Fig. 3.6a was fit to a polynomial, then various hypothetical input signals were

amplified by the nonlinear gain represented by the polynomial fit.

Figure 3.7a shows a 150 µV spike amplified by the polynomial fit and imposed

on the same spike amplified with perfect linearity. The two traces are nearly indis-

tinguishable, suggesting that the effect of the amplifier’s non-linearity is negligible

for signals with the amplitude of a typical neural spike.

However, extracellular neural probes will also detect local field potentials (LFPs),

which occur in the frequency band below 1 kHz and can have amplitudes as high

as 5 mV [4]. Additionally, 50/60 Hz interference from wall power may corrupt the

signals. If LFPs are in the amplifier’s passband, they will shift any action potentials

to a different point in the amplifier’s input/output curve, effectively causing the

relevant part of the input signal (the action potentials) to experience time-varying
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Fig. 3.7 a A 150 µV spike
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gain. In Fig. 3.7b, three spikes are added to a 5 mV sinusoid before being applied to

the amplifier nonlinearity, to simulate the effect of a small spike being recorded in

the presence of a large LFP interferer. In this case, the amplifier’s nonlinearity does

introduce significant errors, essentially subjecting the desired action potential signal

to a time-varying gain.

A number of options are available to address this issue. A filter could be placed

before the amplifier or built into the amplifier. For example, if the pseudo-resistors,

with resistance of nearly 1 T�, were replaced with 16 M� resistances, the high-pass

corner frequency would move to about 1 kHz. Local field potentials at 100 Hz would

then be attenuated by 20 dB. If any large interferers are sufficiently attenuated by a

filter, then we return to the situation shown in Fig. 3.7a, where the non-linearity does

not have a noticeable effect. Another option is to compensate for the error in a later

processing stage. The inverse non-linearity could be applied in the digital domain to

recover the original signal, or spike detection and sorting algorithms which do not

rely on amplitude information could be used. Finally, one could modify the amplifier

to improve linearity. Chapter 4 describes an amplifier built with this strategy in mind.
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3.4 Conclusions

This chapter describes two novel amplifiers which achieve excellent power efficiency.

The open-loop amplifier exhibits the lowest NEF published to date, at the expense

of linearity, supply rejection, and gain accuracy. The low power and area provided

by this design would allow the realization of a 256-channel amplifier array with an

area of 8.4 mm2 and a power dissipation of 206 µW. While the noise efficiency of

the closed-loop amplifier falls short of that achieved by the open-loop amplifier, it is

still superior to that reported for any other closed-loop amplifier, demonstrating that

the complementary-input topology used in both amplifiers is a powerful technique

to improve noise-power efficiency.

The choice between a single-ended open-loop amplifier and a differential closed-

loop amplifier depends on system-level considerations. The primary drawbacks of

the open-loop LNA are gain inaccuracy, nonlinearity, and poor supply rejection.

Because absolute amplitude is not typically a salient feature of neural recordings

(due partially to other sources of amplitude uncertainty), the decision can be made

based on linearity, supply rejection and power consumption considerations.

The supply rejection burden can be removed from the amplifier by using a regulator

to provide a low-noise supply to all of the amplifiers in a system. In a multi-electrode

system with many channels, the additional power consumption of the regulator is

amortized across all of the channels. With only a small number of channels, the

additional power per channel for the regulator may be greater than the power saved

by using a single-ended topology. Thus, the single-ended topology becomes more

attractive for higher channel-count recording systems.

It should also be noted that the three strategies employed in this amplifier—

complementary input drive, open-loop topology, and single-ended input stage—are

essentially unrelated. Any amplifier can be operated in an open-loop configuration.

Conversely, the single-ended amplifier could be combined with an additional gain

stage and a capacitive feedback network to improve linearity. The complementary

input drive can also be applied to a closed-loop or differential design, as will be

demonstrated in Chap. 4.
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Chapter 4

Closed-Loop Neural Recording Amplifier
Design Techniques

As previously described, in order to accommodate weak neural signals, we need

sufficient amplification and signal conditioning at the front-end of a neural-recording

system. Specifically, the requirements on the front-end amplifier can be summarized

as below:

• Input-referred noise voltage <10 µV

• Midband gain ∼=40 dB

• Input impedance ≥ a few M�s at 1 kHz

• Pass-band compatible with the desired signals (see Table 2.1).

• AC-coupled input in order to block DC offsets.

• Small silicon area and no off-chip components.

• CMRR, PSRR ≥60 dB

• Power dissipation ≪100 µW/channel

In this chapter, the design methodologies of two new closed-loop amplifier architec-

tures are presented. The implementation details of these topologies are then compared

and contrasted. Afterward, we will discuss the design of a variable-gain amplifier

with six variable gain settings from 0 to 40 dB, making the amplifiers suitable to

process a variety of signals.

4.1 Design of a Closed-Loop Telescopic Amplifier

4.1.1 Closed-Loop Architecture

To increase the output signal swing with low supply voltages (as low as 1V), we

chose a fully-differential topology. We also chose a closed-loop topology in order

to improve the CMRR, PSRR, linearity, and gain precision. Figure 4.1 shows the

closed-loop architecture.

The input signals are AC-coupled into the amplifier to reject large DC offsets from

the electrode-tissue interface, preventing saturation at the output of the amplifier. The

sizing of the input capacitors, Cs , also need to be carefully chosen. They must be
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Fig. 4.1 Closed-loop

amplifier schematic
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Vin+

Vin – Vout +

Vout –

Cs

made small enough (the input impedance, 1
jωC

is large enough) to avoid attenuation

of the input signal from the electrode, but large enough to avoid attenuation from

the capacitive divider it forms with the parasitic capacitance of the input devices. As

shown in (4.1), the capacitive divider also increases the input-referred noise of the

LNA. Let vni,amp
2 and vni

2 represent the input-referred noise of the OTA and the

LNA, respectively. The mid-band gain is set by Cs /Cf .

vni,amp
2 =

(

Cs + Cf + Cin

Cs

)2

vni
2 (4.1)

4.1.2 Analysis of Pseudo-Resistors

Because signals are AC-coupled into the amplifier, the gates of the input transistors

need to be properly biased to ensure proper operation. At the same time, in order

to pass EEG and LFP signals in the sub-Hertz band, we need to form a sub-Hertz

high-pass frequency corner. To address both design concerns, we would need to use

large resistors that would normally take up significant chip area. Here, we chose to

use pseudo-resistors [2] to bias the gates to avoid large resistors. Pseudo-resistors

(Fig. 4.2) are MOS-bipolar devices which have equivalent resistance in the order of

Fig. 4.2 Two configura-

tions of pseudo-resistors



4.1 Design of a Closed-Loop Telescopic Amplifier 27

100 G� to 1 T� if the voltage drop across them is small enough (<0.2V, according

to [2]). When VGS > 0, the parasitic source-well-drain p-n-p junction acts as a diode-

connected BJT; when When VGS < 0, each device functions as a diode-connected

pMOS transistor.

We cascaded two long-channel (50 µm), minimum-width pMOS transistors to

increase the equivalent resistance of the pseudo-resistors and to ensure sufficiently

large resistance with reasonable voltage drop across them. The large incremental

resistance also takes into account the drop in resistance in the presence of large

input amplitudes. The low-frequency cutoff ωL of the amplifier is then 1
2rincCf

, with

rinc being the incremental resistance of the pseudo-resistor. However, this frequency

corner is difficult to know a-priori as the incremental resistance at the parasitic source-

well-drain p-n-p junction is poorly modeled. This sub-Hertz corner creates a large

time constant, resulting in slow start-up and settling time of the amplifier. There

are other possible replacement for pseudo-resistors. For instance, some bioamplifier

designs have used transistors biased in the subthreshold region to approximate large-

valued resistors [1]. This technique functions similarly while requiring additional

biasing circuitry.

4.1.3 Telescopic OTA Design Overview

In order to lower the power consumption and ease integration with complex digi-

tal subsystems, the amplifier, shown in Fig. 4.3, should operate from a supply as

low as 1V. Although neural-recording applications can tolerate gain error, linearity

requirements dictate high open-loop gain. A single-stage amplifier topology does

not provide sufficient gain or output swing with a 1V supply. Therefore, we chose

to employ a two-stage fully-differential design to simultaneously satisfy the gain
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and swing requirements. Common-mode feedback is included to stabilize the output

common-mode voltage.

The design of the first stage is crucial in achieving an optimal power-noise trade-

off while meeting gain specifications. Although the design in [2] optimized the

power-noise tradeoff nearly to the theoretical limit of its particular OTA topology,

the topology itself is not optimized for power because a large portion (50%) of current

is consumed in the biasing branch. Although [5] optimized the power-noise tradeoff

for a folded-cascode amplifier, there is no clear advantage to using a folded-cascode

topology in the first-stage. Although the folded-cascode topology increases the input

common-mode range, this is typically not a concern since the low-level input signal

is AC-coupled into the amplifier anyway. Furthermore, the folded-cascode topology

generally consumes more current and has worse noise performance because of the

extra current branches. Therefore, a telescopic-cascode topology is used in the first

stage to achieve sufficient gain while conserving current. To accommodate the low

supply voltage, we have omitted the pFET cascode transistors, but retained the nFET

cascodes to provide input-output isolation and sufficient first-stage gain.

The second-stage uses a standard common-source topology to implement a gain

stage. The tail current source in the second stage is eliminated to ensure sufficient

voltage swing under low supply voltages.

4.1.4 Design Optimization

Transistor sizing is critical for simultaneously achieving low noise and low power.

We chose 6 µA for the bias current Ibias , giving M1 − M8 3 µA.

Table 4.1 shows the parameters and operating conditions of each transistor in

the OTA. Neglecting the noise contribution of the second stage, the input-referred

thermal noise power can be simplified to

V 2
ni,th =

(

16kT

3gm1,2

(

1 +
gm5,6

gm1,2

))

�f (4.2)

From this equation, we want to have gm5,6 ≪ gm1,2 to minimize the thermal noise

contribution. This can be accomplished by sizing (W/L)5,6 ≪ (W/L)1,2. Thus,

the NMOS input pair M1,2 is pushed to weak inversion, where the gm/ID ratio is

maximized. By sizing the input pair M1,2 to 624/2 µm/µm, the input transistors

operate in the deep subthreshold region, and the gm/ID ratio is maximized. The large

Table 4.1 Device parameters of telescopic-cascode closed-loop biopotential amplifier

W/L (µm) Id (µA) Inv. Coeff gm/Id (V −1) |VGS − V t | (mV)

M1,2 616/2 3 0.023 27.56 154

M3,4 12/5 3 0.27 22 101

M5,6 12.2/13 3 11.3 6.9 257.7

M0 109.8/8 6 0.54 19.4 386

M7,8 12/4 2.2 0.96 16.82 32

M9,10 8.6/3 2.2 1.92 13.64 106
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gate area also reduces 1/f noise, as discussed in the next paragraph. At the same time,

by sizing PMOS load M5,6 to 12.2/26 µm/µm, the transistors are pushed to strong

inversion, where the gm/ID ratio is minimized. The sizing of cascode transistors M2

is not crucial because the noise of the cascode transistors negligibly contributes to

the output, especially at low frequencies [4]. Therefore, we have sized it to be in

moderate inversion. However, the total capacitance Cx at the source of the cascode

transistors gives rise to the contribution of the noise of the cascode transistors at high

frequency (specifically, higher than gm2/2πCx). In addition to the increase in the

noise, the gain is also decreased as Cx shunts the signal current produced by input

pair M1,2 to ground. However, since the frequency gm2/2πCx is farther out than the

bandwidth of the amplifier, we could ignore these secondary high frequency effect

on the noise and gain of the first-stage OTA.

The input devices should be large to reduce their flicker noise. However, large

input devices increase the input parasitic capacitance Cin, which attenuates the signal

at the OTA input via the capacitive divider (4.1). An optimization balancing these

tradeoffs led to a sizing of 616/2 µm/µm for the input devices.

4.1.5 Stability and Common-Mode Feedback

Two-stage amplifier design necessitates a compensation capacitor to split the poles at

the output of the first and second stage. In order to eliminate the feed-forward zero, we

added a nulling resistor with a value of approximately 1/gm of the input transistor of

the second stage. For this high gain fully-differential amplifier, an internal common-

mode feedback (CMFB) path must be added to establish a common mode output

voltage over the frequencies of interest. We chose to sense the common-mode output

voltage using two large resistors and generate a continuous-time CMFB control signal

back into the differential mode path.

The signal propagation of the common-mode feedback path consists of two parts:

from the average output Vcmout to the feedback control Vctrl , and from Vctrl to the

amplifier output. The first part of the CMFB path has a wide bandwidth and small DC

gain (≃ 1); the second part determines the CMFB frequency response as illustrated in

Fig. 4.4. Let gm1−4,6−8 denote the transconductance of the corresponding transistors,

Cc and CL denote the compensation and load capacitors, go1 and go2 denote the total

output conductances of stage 1 and 2. Then

Acmf b =
Vout,CM

Vctrl

=
−sgm5,6Cc + gm5,6gm7,8

s2CcCL + sCcgm7,8 + go1go2
(4.3)

Adm =
Vout,DM

Vin,dm

=
−s(gm1,2)Cc + (gm1,2)gm7,8

s2CcCL + sCcgm7,8 + go1go2
(4.4)

Both the differential and common-mode gains share the same compensation capacitor

Cc and gm7,8 stage. The similarity of the topologies leads to a stable CMFB path

if the differential-mode path is unity-gain stable. The CMFB gain and bandwidth

must be larger than those of the common-mode path. Although the requirement on
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Fig. 4.4 Top: Differential-

mode gain path. Bottom:

CMFB gain path
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CMFB gain and bandwidth is relaxed as the common-mode path has small gain and

bandwidth, a high CMFB gain is preferred to achieve more accurate common-mode

voltage, and a high CMFB bandwidth is preferred to improve the CMRR at high

frequencies. This CMFB topology achieves both high gain and bandwidth, while

saving power by sharing one CMFB circuit between both the first and second stages.

4.2 Design of a Closed-Loop Complementary-Input Amplifier

In the last section, we discussed in detail the design of a low-noise low-power

amplifier using conventional telescopic-cascode technique. In this section, we will

introduce a technique that eases the trade-off between power consumption and noise

performance by employing a complementary-input strategy. In the discussion be-

low, “LNA1” will refer to the closed-loop telescopic-cascode amplifier, and “LNA2”

refers to the closed-loop complementary-input amplifier.

4.2.1 Design of an Closed-Loop Fully-Differential

Complementary-Input Amplifier

AC coupling at the inputs using 20 pF capacitors and high-resistance MOS-bipolar

pseudoresistors prevent offset amplification, similar as the previous section. Thick-

oxide MOS transistors with large gate areas are used at the input to reduce gate

leakage while minimizing 1/f noise.
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Fig. 4.5 Complementary amplifier schematic [3]

As shown in Fig. 4.5, input capacitors Cs separate the signal from the bias path,

which allows the input to simultaneously drive the n- and pFET transistors of the

first stage. Similar to its open-loop counterpart, the input-referred noise voltage is

reduced by a factor of
√

2. The input-referred thermal noise power is twice that of

the single-ended design because differential branches double the output noise. If

gm1 = gm3, it can be expressed as:

V 2
ni,th =

(

16kT

3gm1 · 2

)

�f (4.5)

Similarly, (4.2) shows the input-referred noise for LNA1. If gm5 = 0, than (4.2)

reduces to

V 2
ni,th =

(

16kT

3gm1

)

�f (4.6)

A comparison between (4.5) and (4.6) reveals that the input-referred noise voltage

of LNA2 is approximately 1/
√

2 that of LNA1.

Determining the appropriate level of inversion is crucial in minimizing noise and

power. Similar to LNA1, 6 µA is chosen for the bias current in M0, giving M1 − M8

drain currents of 3 µA. Table 4.2 shows the parameters and operating conditions

of each transistor in the OTA. Common-centroid techniques are used for the input

transistors M1−4. By sizing both input pairs to 552/2 µm/µm, the input transistors

Table 4.2 Device parameters of complementary-input closed-loop biopotential amplifiers

W/L (µm) Id (µA) Inv. Coeff gm/Id (V −1) |VGS − V t | (mV)

M1,2 552/2 3 0.022 27.53 152

M3,4 552/2 3 0.12 24.23 106

M5 110.4/8 6 0.54 19.4 5

M6 73.2/8 6 1.98 13.5 103

M7,8 8.6/3 2.1 1.93 13.62 103

M9,10 12/4 2.1 0.93 16.96 30
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are operating in deep subthreshold region where gm/ID is maximized. The nFET

and pFET input transistors have the same aspect ratio so that both signal paths

experience the same attenuation through the input capacitive divider formed by Cs ,

Cf , and parasitic capacitance (4.1). The current source transistors have long lengths

(8 µm) to allow a high output impedance. The noise from the current source appears

as common-mode noise and is largely rejected by the differential operation.

Because we are driving both NMOS and PMOS inputs, we also need two capac-

itive feedback paths from the output to the gates of both NMOS and PMOS input

transistors. The closed-loop gain is also set to Cs /Cf . Similar to the previous am-

plifier, Cs is set to 20 pF, and Cf is set to 200 fF for a closed-loop gain of 40 dB. In

addition to the differential input stage, we also added common-source second stage

to increase the open-loop gain, decrease the noise contribution from the second stage,

as well as maximizing the output swing under low-supply-voltage conditions.

Because the input also drives the PMOS transistor pair M3,4, the transconduc-

tances of M3,4 not only contribute to the differential gain, but also the common-mode

gain. Without PMOS tail source M6, the common-mode gain would be approxi-

mately half of the differential gain, mainly contributed by the signal path through

the PMOS input. In order to ensure high CMRR, we use dual tail current sources in

the first stage to degenerate the common-mode transconductance, thus reducing the

common-mode gain. This configuration also improves the PSRR. Any variation in

the supply is attenuated by approximately
gm6

(gm3+gm4)
·(1− Vg6

Vdd
) before being amplified

by the gm mismatches in M3,4 (4.8). This power supply gain is lower than that of

a conventional telescopic-cascode amplifier, where any variation in the supply is

directly amplified by the gm mismatches in the PMOS load transistors. Let go1,2

denote the output conductance of the first and second stage, go5,6 denote the output

conductance of current source transistors M5,6, gm8 denote the transconductance of

the second stage, �gm denote the gm mismatch in M3,4, and Cc denote the com-

pensation capacitor. The common-mode gain (Acm) and the gain of power-supply

interference (Aps) can be expressed as

Acm =
Vout

Vin,cm

≃
(go5 + go6)gm8/(go1go2)

1 + sCc/(go5 + go6)
(4.7)

Aps =
Vout

Vin,supply

≃
�gmγgm8/(go1go2)

1 + sCc/�gm

∣

∣

∣
γ =

gm6

(gm3 + gm4)
·
(

1 −
Vg6

Vdd

)

(4.8)

Similar to LNA1, the fully-differential topology necessitates common-mode feed-

back to stabilize the output common-mode voltage. The output common-mode

voltage sensed by resistors is compared with a reference voltage in a single-stage

differential amplifier. The output of the CMFB amplifier is fed back to control the

gate voltage of M6, thus adjust the output of the first stage. Similarly, this feed-

back topology allows compensation capacitors and resistors to be shared between

the CMFB path and differential-mode path in order to ensure a high CMFB gain

and a large CMFB bandwidth. The common-mode gain expression is the same as in

LNA1.
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Fig. 4.6 Closed-loop amplifier start-up concern alleviated by adding a leakage path through a

diode-connected transistor at the first-stage output

In order to provide DC feedback and bias the input transistors, the outputs are fed

back through pseudoresistors to bias the gates of the NMOS input transistors M1,2.

However, this feedback inevitably forms a positive feedback loop at low frequencies.

As shown in Fig. 4.6, this is particularly problematic when output common-mode

voltage is initially low. In this case, the pull-down paths are turned off as the gates

of M1,2 are low. At the same time, the common-mode feedback control voltage

rises, which also turns off the pull-up paths, leaving the first stage output in a high-

impedance state. To ensure reliable start-up, we added a pair of diode-connected

transistors at the output of the first stage connecting to ground. This scheme provides

additional current paths through the diode-connected transistors when both the pull-

up and pull-down paths are initially turned off. The additional currents are small

enough that they do not affect the normal operation of the amplifier.

4.3 Design of a Variable-Gain Amplifier

In order to adapt to input signals of different amplitudes (500 µV–5 mV), a variable-

gain amplifier (VGA) is added after the front-end amplifier. Because this is the second

stage, its noise is attenuated by the first-stage amplifier gain (40 dB). Therefore, the

input-referred noise requirement on the VGA is not stringent. As such, we will not
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Fig. 4.7 VGA closed-loop

schematic [3]
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focus on the power-noise optimization for the VGA but will instead discuss the

necessary programmability of the VGA.

The VGA consists of a complementary rail-to-rail folded-cascode core to improve

the input signal swing. As shown in Fig. 4.7, a capacitor array consisting of six sets

of capacitors and switches is placed in the feedback path. The six variable gains

of the VGA are programmable by selecting any one of the six feedback capacitors.

The capacitors are selected so that the closed-loop gain logarithmically spans from

0–38 dB. In addition to the selectable gain settings, we have incorporated the ad-

justable low-frequency high-pass corner so that the corner can stay relatively constant

across the various gain settings. This high-pass corner not only prevents propagation

of DC offsets at the output of the LNA, but also rejects the low-frequency interfer-

ence (i.e., 60 Hz). The six variable low-frequency corners are set by programming

the feedback transconductor bias current. The feedback transconductors are standard

five-transistor gm cells, which current can be changed by mirroring over different

fractions of the bias current. The current in the gm cells can be as small as several

nanoamps. Alternately, pseudoresistor feedback can be selected to obtain a low-

frequency corner below 10 Hz. This is helpful in amplifying LFP, ECoG, or EMG

signals that have useful signals below 10 Hz. An on-chip shift register can shift in

the proper configuration bits to enable the different gain and frequency settings.
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Chapter 5

Closed-Loop Bio-Signal Amplifiers:
Experimental Results

In this chapter, we will present the measurement results of the telescopic-cascode and

complementary low-noise amplifiers discussed in the previous chapter. In order to

compare and contrast the performance of these two LNA designs, we fabricated both

LNAs in a 0.13 µm CMOS process. As the analog front-end of a neural-recording

channel, each LNA is followed with a variable-gain amplifier (VGA) to accommodate

signals of various amplitudes. Figure 5.1 illustrates one recording channel with the

complementary LNA followed by a VGA.

Figure 5.2 shows the layout of the analog front-end (AFE) section of the system.

Metal-Insulator-Metal (MIM) or dual MIM capacitors are mainly used for their small

area/capacitance, good linearity and low substrate capacitance. The conventional

amplifier design (top) uses 46,800 µm2 of silicon and, 57.8% of this area is taken

up by capacitors. The complementary amplifier design (bottom) uses 71,750 µm2 of

silicon and, 67.4% of this area is taken up by capacitors.

5.1 Amplifier Testing

In this section, we will compare and contrast the two different LNA designs: the

telescopic and complementary fully-differential amplifiers (referred to as LNA1 and

LNA2, respectively).

Figure 5.3a compares the frequency response of LNA1 and LNA2. The mid-band

gain of LNA1 is 40.5 dB, whereas that of LNA2 is 40 dB. The minute difference is

likely due to the different layout of the feedback capacitors. In the LNA2, we tied the

bottom plates of two feedback capacitors that connect to the same output, resulting

in a higher effective Cf b. The closed-loop gain is thus slightly lower than that of the

LNA1. The −3 dB low-pass corners occur at approximately 8 kHz for LNA1, and

10 kHz for LNA2. The difference can be attributed to the larger effective transcon-

ductance Gm of LNA2. The low-frequency high-pass corner of LNA2 (0.05 Hz) is

lower than that of LNA1 (0.4 Hz) because a longer length of pseudoresistor is used

for LNA2 design.

Figure 5.3b compares the input-referred noise spectrum of LNA1 and LNA2.

Consistent with theory, the input-referred noise of LNA1 is higher than that of LNA2

J. Holleman et al., Ultra Low-Power Integrated Circuit Design for Wireless Neural Interfaces, 37
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Fig. 5.1 One neural-recording channel with complementary amplifier design

Fig. 5.2 Layout of the

bio-signal interface circuit

because of the larger effective Gm in LNA2. We can also observe that the flicker noise

dominates the entire frequency range of interest. The measured input-referred noise

integrated from 0.1 Hz to 25 kHz are 3.1 µV, 3.5 µV, and 2 µV, respectively.

Figure 5.4a compares the PSRR of the two LNAs. The PSRR for LNA1 is ap-

proximately 20 dB lower than that of LNA2. This is consistent with the discussion

earlier, where the PSRR of LNA2 is improved by the ratio
gm6

(gm3+gm4)
· (1 − Vg6

Vdd
).

Superior PSRR performance can also be attributed to better transistor device match-

ing in LNA2 compared with LNA1. Figure 5.4b compares the CMRR of LNA1 and

LNA2. The CMRR for LNA1 has an average value of 60 dB, compared with 80 dB

for LNA2. The larger devices in LNA2 should result in smaller expected values of

CMRR due to reduced mismatch.
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Fig. 5.3 a Bode magnitude

and phase plots comparing

LNA1 with LNA2; b Noise

plot comparing LNA1 with

LNA2
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Finally, the linearity of the amplifiers is examined. Many papers use total har-

monic distortion (THD) to describe linearity. However, in our experience, the main

concern for spike-recording applications is gain compression due to interferers such

as electromagnetic interference or low frequency local field potentials that can result

in time-varying gain. Therefore, it is more useful to characterize the −1 dB gain

compression point (approximately 89% of voltage gain, or 80% of power gain) than

THD. We will evaluate the linearity performance by comparing their −1 dB gain

compression input voltage. As shown in Fig. 5.5, the −1 dB gain compression point

occurs at input level of 3 mV for LNA1, and 4 mV for LNA2. The difference can be

attributed to the complementary-input topology employed in LNA2.

The two amplifiers are compared with other neural amplifiers in Table 5.1.

5.2 Variable Gain Amplifier (VGA) Testing

The measured gain settings are varied from 3 to 38 dB by adjusting the gain-control

bits. Figure 5.6a shows the total gain of the LNA–VGA chain. In this plot, the high-

pass frequency corners are adjusted according to the gain setting so that the corner
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Fig. 5.4 a PSRR bode

magnitude comparison of

the two LNAs; b CMRR

magnitude comparison of

LNA1 and LNA2
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Table 5.1 Performance comparison of biopotential amplifiers

LNA1 [3] LNA2 [2] [1] [4] [5]

Vdd (V) 1 1 1 +/−2.5 1.8–3.3 2.8 0.8–1.5

IAmp (µA) 12.5 0.8 12.1 16 1.2 2.7 0.33

NEF 4.4 1.8 2.6 4.0 4.9 2.67 3.8

Gain (dB) 40.5 36 40 39.5 45.5 30.8 40.2

1 dB comp. at

Input (mV)

3 1.7 4 – – – –

vni,RMS (µV) 3.1 3.6 2 2.2 0.93 3.06 2.7

PSRR (dB) ≥60 5.5 ≥80 ≥85 – 75 62–63

Bandwidth (Hz) 0.4–8.5 k 0.3–4.7 k 0.05–10.5 k 0.025–7.2 k 0.5–180 45–5.3 k 3 m–245

Area (mm2) 0.047 0.046 0.072 0.16 – 0.16 1

Technology (µm) 0.13 0.5 0.13 1.5 0.8 0.5 0.35

frequencies stay relatively constant (∼300 Hz) across all gain settings. The dashed

lines are the corresponding simulated bode plots. The realized frequency corners are

higher because more current is sourced in the gm cells that set the VGA’s high-pass

corner. The measured high-pass corner varied from below 10 Hz (pseudoresistor

setting) to 400 Hz by shifting in different control values. Figure 5.6b is plotted at the

lowest VGA gain setting. Based on the input signal characteristics, we can choose

different VGA gain and high-pass corner frequency settings.

Figure 5.7 shows the measured input-referred voltage noise spectrum of the LNA

itself and the LNA–VGA chain. The thermal noise level for both is approximately

14 nV/
√

Hz; however, flicker noise dominates the entire frequency range of interest.

The 1/f noise corner is approximately 6 kHz, very close to the implemented band-

width. Although the complementary topology reduces the input-referred thermal

noise voltage by half, the flicker noise is still directly incurred at the input. Although

we used large area input transistors, the flicker noise still has a significant effect

on the overall noise performance. The integrated noise from 0.1 Hz to 25.6 kHz is

1.9 µVrms for LNA alone, and 1.8 µVrms for LNA–VGA chain. Notice that the ad-

dition of VGA does not increase the overall noise performance because its noise is

reduced by the gain of the first-stage LNA.

5.3 In-Vivo Testing

We used the closed-loop complementary-input low-noise amplifier (LNA2) in an

in-vivo neural-recording experiment to verify compatibility with the high source

impedance of a neural electrode. We first recorded from traditional rack-mounted

instrumentation to identify active spiking cells and then began recording from our

proposed circuit.

Because the variable-gain amplifier provided a high-pass corner further atten-

uating any remaining low-frequency interference, no significant interference was
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Fig. 5.6 a Measured and simulatedVGA gain settings with high-pass corners adjusted accordingly;

b Measured and simulated VGA high-pass corner for the gain setting of 3 dB

observed during the experiment. Our chip produced no noticeable loss of signal

to noise ratio (SNR) compared to results obtained using a commercially available

rack-mount bioamplifier system. Figure 5.8b shows sorted spikes recorded through

our prototype amplifiers. We conclude from these results that we can achieve ex-

tremely high fidelity neural recording from a 1V supply with less than 15 µW power

consumption per channel.
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Fig. 5.7 Measured input-

referred voltage noise

spectrum for LNA and

LNA–VGA chain
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Chapter 6

Design and Implementation of
Chopper-Stabilized Amplifiers

One observation from the two neural amplifiers described in the previous two chap-

ters is the dominance of flicker noise. Most of the existing power-noise optimization

techniques target thermal noise. However, flicker noise is a significant concern

for EMG/EEG/ECoG applications, where the bandwidth of interest is much lower

(<500 Hz) than that of neural applications (∼10 kHz). Therefore, we will devote this

chapter to discussing techniques to combat flicker noise.

6.1 Chopper-Stabilization Technique

The chopper-stabilization technique is widely used to suppress offsets and 1/f noise.

It can be used in applications such as biomedical measurements and human health

monitoring. When the signals of interest fall below a few hundred Hertz, the noise that

plagues the circuit design shifts away from the thermal noise to 1/f and popcorn noise

in transistors [1]. Excess low-frequency noise can undermine the systems signal-to-

noise ratio (SNR) and cause errors to the measurement. As a result, chopper-stabilized

amplifiers can be effectively used at the front-end of these low-bandwidth signal

acquisition applications.

6.1.1 Open-Loop Operation Principle

During open-loop operation, the input signal Vin is up-converted by a CMOS switch

modulator to chopper frequency (above the low-frequency noise corner) before

entering the amplifier. After amplification, a second modulator downconverts the sig-

nal back to baseband while simultaneously upconverting the low-frequency flicker

noise/offset to the chopper frequency. A low-pass filter restores the desired signal

and suppresses the low-frequency noise/offset at the output.

The open-loop architecture contains several limitations. First, transients at the

output of the amplifier caused by the finite bandwidth of the amplifiers result in even

harmonics at the chop frequency, which in turn create distortion and sensitivity error.
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Fig. 6.1 Closed-loop

chopper-stabilization

technique [1]
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Excessive power required to ensure sufficient bandwidth increases power overhead.

Secondly, saturation of the amplified offset at the amplifier output limit the first-stage

gain, which in turn undermines the input-referred noise from the second stage.

6.1.2 Closed-Loop Operation Principle

Closed-loop feedback techniques can be used to relax the issues mentioned above

(Fig. 6.1). A few implementations were published earlier [2, 3], among which [1] has

provided the best figure-of-merit to date. In [1], AC feedback paths were employed

to ensure all signals entering the amplifier to be well above 1/f noise corner. This

technique allowed the use of low-noise on-chip capacitors instead of resistors in the

input and feedback signal chains. In addition, he also performed fast modulation

within the transconductance stage prior to integration so that the switching dynam-

ics of the chopper is much faster than the chopping frequency. He demonstrated

the advantage of the closed-loop technique, in which the gain error and sensitivity

are suppressed without further compensation. In addition, he could run the ampli-

fier with low supply overhead to aid in minimizing power without sacrificing noise

performance.

6.2 Design of a Chopper-Stabilized Amplifier

We chose a chopper-stabilized topology to suppress 1/f noise and offsets that plague

submicron CMOS processes. In order to reduce the signal errors created by ampli-

fier’s finite bandwidth, and to relax the headroom constraint on the amplified offsets

under low-supply conditions, we adopted a closed-loop feedback technique previ-

ously proposed by Denison et al. [1]. We will compare and contrast with [1] in the

remainder of this discussion on our prototype chopper-stabilized amplifier.

As shown in Fig. 6.2, a fully-differential closed-loop architecture is used to ensure

sufficient linearity and supply rejection. A telescopic-cascode op-amp topology was

used. Input transistors are biased in weak inversion to maximize the transconduc-

tance efficiency. Dual feedback paths set the mid-band gain of the amplifier through

Cfb; while another pair biases the amplifier’s input node through high-resistance
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Fig. 6.2 Schematic of the proposed custom chopper-stabilized amplifier

(>10 G�) MOS-bipolar pseudo-resistors. Signal up-conversion occurs at the gate of

the input transistors. We introduce a technique that uses chopper switches in both the

signal and biasing paths to not only guarantee negative feedback around the amplifier,

but also avoid additional input-biasing circuitry as in [1]. We realized the chopper

modulator with minimally sized CMOS switches to minimize charge injection. The

input capacitance (Cin) is 15 pF. When modulated with a 10 kHz chopper clock,

the input impedance (1.06 M�) is high enough to avoid loading the electrodes for

biomedical applications. The ratio of Cin and Cfb establishes a 40 dB mid-band gain.

Cfb is sized slightly smaller (140 fF) to take into account the addition of parasitic and

switch capacitances. In [1], the total first-stage 100× gain is partitioned into 20×
and 5× in order to realize a well-defined high-pass corner with reasonably sized on-

chip capacitors. In our implementation, because the precise high-pass corner does

not necessarily need to be realized in the first amplifier stage, we achieved 40 dB

total gain in one stage. As a result, the input-referred noise from the stages (Gm-C

filters) following the chopper-stabilized amplifier could be reduced further by a larger

first-stage gain.

The input signal is modulated to the chopper frequency prior to entering the

amplifier by a set of chopper switches. Two additional sets of chopper switches are

added in the first stage of the amplifier: one set of switches is placed at the drains

of the input transistors to demodulate the AC signal down to baseband and modulate

the input offsets up to the chopper frequency; another pair is placed at the drains of

the PMOS current source to modulate their flicker noise up to high frequency. At the

output of the amplifier, the signal returns to baseband while the offsets and flicker

noise are modulated up to high frequency and then filtered by the amplifiers 2nd-

stage integrator. The 2nd-stage is implemented as common-source topology without

tail current source to increase the output swing. The output is then fed back to the

summing node at the input of the amplifier after being modulated up to the chopper

frequency. In order to avoid large passive devices like the ones in [1], we implemented

continuous-time tunable Gm-C filters to attenuate chopper switch ripple at the output

of the amplifier. The six bandwidth settings of the Gm-C filters are logarithmically

spread between 150 and 400 Hz. The tunability of the Gm-C filters is realized by

changing the current in the biasing of the transconductor.
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6.3 Hardware Implementation

The prototype was fabricated in 0.13 µm CMOS technology. Everything required

for the chopper-stabilized amplifier and filters are on-chip (crystal oscillators, clock

generation, etc).

6.3.1 Transfer Function

The measurement result of transfer function (bode plot) matches closely with simu-

lation. Figure 6.3a plots the normalized transfer function of the cases when chopper

is on and off (the clock that drives the gates of the chopper switches is turned on and

off) for comparison. The mid-band gain for both cases is approximately 38.5 dB. The

minute difference with the design (40 dB) is likely caused by parasitic fringe mis-

match between the two feedback capacitors. The difference between the two cases

lies in the low-frequency high-pass corner. The chopper-off setting demonstrates a

high-pass corner at around 0.2 Hz, whereas the chopper-on setting exhibits a passband

that extends to DC. The low-pass corner resides around 230 Hz. This corner could be

changed by adjusting the current in the post Gm-C filters.Along with the two cascaded

Gm-C filters, the overall transfer function exhibits a combined 60-dB roll-off.

Fig. 6.3 Measured transfer

function and noise plot of

the chopper-stabilized

bio-signal amplifier.

a Chopper-Amplifier Bode

Plot, b Chopper-Amplifier

Noise Plot
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Table 6.1 Comparison of custom chopper amplifier and OPA349

GBW (kHz) IAmp (µA) VDD (V) vni,RMS(0.1–10 Hz) CMRR

OPA349 70 1 1.8–5.5 5.7 µVrms >52

SocWISP chopper amp 20 1.21 1.2 0.4 µVrms >70

The fully-differential architecture is used to increase the output signal swings and

to improve PSRR and CMRR under low-supply condition. CMRR is measured by

tying the two differential inputs together and apply a small signal at the common

input; PSRR is measured by AC-grounding the input, and apply a small signal at the

supply rail. The CMRR and PSRR are not affected by the chopping operation. All

results are measured with an HP Dynamic Signal Analyzer (DSA).

6.3.2 Amplifier Noise

The input-referred noise of the amplifier is also recorded as in Fig. 6.3b when chop-

per switches are turned on and off. The low frequency spot noise is approximately a

decade or more lower with chopping enabled. This result corresponds with the op-

eration principle and motivation of chopper-stabilization technique where 1/f flicker

noise is reduced by frequency translation and filtering. The 1/f noise corner is found

to be approximately 10 Hz, higher than the simulation result (1 Hz). The integrated

noise from 0.05 to 100 Hz is measured to be 1.25 µV when the chopper switches are

on, compared to 4.46 µV when the chopper switches are off. They come very close

to simulated result: 1.1 µV when the chopper switches are on, and 4.75 µV when the

switches are off.

Table 6.1 compares the key performance of a commercially-available op-amp and

the described custom chopper-stabilized amplifier. Our chopper-stabilized amplifier

has much lower noise performance with lower power consumption.
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Chapter 7

Spike Detection and Characterization

In neural recording applications focused on action potentials, one of the first sig-

nal processing tasks is to distinguish the spikes from noise and interference. In this

chapter we will discuss the requirements for a spike detector, review several imple-

mentations, and describe in detail a low-power spike detector utilizing the non-linear

energy operator and operating in the analog domain. Once a spike is detected, it may

be necessary to extract a quantitative description of its shape for subsequent pro-

cessing stages, such as spike sorting or the detection and rejection of artifacts from

electrical stimulation. To this end, the spike detector is combined with feature ex-

traction circuitry, which measures the maximum and minimum of detected spikes,

and an ADC, which digitizes the detected values.

In this chapter we describe a circuit to perform spike detection in the analog do-

main, precluding the need to digitize the entire waveform. After a spike is detected,

the maximum and minimum values are digitized with an 8-bit successive approxi-

mation ADC. By extracting the most important features of the signal in the analog

domain, the power required to digitize the entire waveform is saved. Compared to

a simple thresholding scheme, this architecture provides additional information by

capturing the maximum and minimum values of the action potentials, which can be

used for further processing, including spike sorting or artifact rejection. Additionally,

the nonlinear energy operator (NEO), which is used to implement the spike detector,

has superior discriminatory ability to a threshold-based detector when the signal is

noisy.

7.1 The Spike Detection Task

Spike detection is the task of distinguishing neural action potentials, or spikes, from

background noise and interference. An example of spikes with background noise

is shown in Fig. 7.1 Noise and interference comes from a variety of sources, both

within and outside of the spike frequency range.

Interference from 50/60 Hz line power can be significantly larger than the spikes

themselves—often in the tens of millivolts. Because the line power frequency is

separated in frequency from most of the energy in the spike signal, its effect can be
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Fig. 7.1 Neural data
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greatly reduced by high-pass filtering. However, a number of factors limit the extent

to which filtering can improve the situation. Power-constraints in implantable devices

will typically preclude the use of high-order filters. Therefore, it may be helpful to

place the high-pass corner fairly high when spike detection is the primary goal.

For example, a 3rd-order high-pass filter with a cutoff frequency of 250 Hz could

be expected to attenuate a 60 Hz tone by 37 dB, meaning that a 50 mV interferer is

reduced to an amplitude of about 700 µV, still several times larger than typical spikes.

By increasing the cutoff frequency to 1 kHz, the attenuation at 60 Hz is improved

to 73 dB, reducing a 50 mV interferer to about 11 µV. Thus the effective ratio of

signal to noise and interference may be improved, even though the 1 kHz cutoff

also attenuates some of the desired spiking signal. Adding to the difficulty are the

harmonics of the line power frequency, which may extend well into the desired band.

Harmonics may be due to amplifier non-linearity or to specific electrical equipment,

such as flourescent lighting.

Electronic noise from the amplifier and electrode typically consist of components

with white and 1/f α spectra, with a great deal of the noise falling in the same

frequency range as the desired spikes. With appropriate amplifier design, the RMS

noise level can be held to 5–10 µV, resulting in minimal degradation of spike detection

accuracy.

The aggregate activity of neurons too distant from the electrode to yield distinct

spikes [2] contributes yet another interfering signal. Background neural activity is

outside the control of the device designer and naturally occupies the same frequency

range as desired neural activity, leaving very few options for reducing its effects.
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7.2 Spike Detection Techniques

Over the last few decades, neuroscience researchers have developed several algo-

rithms for detecting spikes in noisy signals, and for classifying the spikes from a

single waveform according to the neuron that generated them. Most of this work has

focused on software implementations which can be used with recorded neural data.

Some research has investigated algorithms suitable for implementation in a space-

and power-constrained implantable processor.

The simplest and probably most popular spike detection algorithm is a simple

amplitude thresholding operation, where a spike is defined as any point in the wave-

form with a magnitude exceeding the threshold value [11, 22, 23]. Variations on this

algorithm use a function to emphasize the difference between spikes and noise. One

such function is the non-linear energy operator (NEO), defined as

NEO(x) = ẋ2 − ẍx.

The NEO provides a measure of instantaneous energy in the input signal x. For a

sinusoid, it is positive and constant, and reduces to the squared product of amplitude

and frequency. It has been found to discriminate between spikes and noise better

than a simple thresholding detector, particularly when the signal-noise ratio (SNR) is

low [17]. Figure 7.2 illustrates how the NEO can emphasize spikes in a neural signal.

In [20] Mukhopadhyay found that the NEO provided more accurate spike detection

than detectors using prediction error and had lower computational requirements.

Other studies have found a magnitude-thresholding detector with no emphasizing

function to perform well. Obeid and Wolf [21] found that a simple threshold detec-

tor performed nearly as well as the NEO or a matched filter, and to reform better
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Fig. 7.2 A neural signal (a), and the result of applying the NEO to the original signal (b)
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according to an application-specific cost function accounting for computational costs.

In the application studied there, detected spikes were transmitted to a more power-

ful external computer for verification, so the impact of a false positive was simply

wasted transmission power, allowing the cost and benefit of sophisticated detection

algorithms to be compared directly. In cases where the entire spike shape is not

transmitted, more computational power is justified to reduce the false positive rate.

Whether or not an emphasizing function is used, a threshold-based detector should

be capable of adjusting to different signal levels. This can be accomplished by setting

the threshold as a multiple of the standard deviation of the noise [9]. A sufficiently

high multiple can guarantee a very low false positive rate. For example, assuming

white Gaussian noise, threshold levels of 3σ or 5σ would result in probabilities of

about 3e-3 or 6e-7, respectively, of a sample being falsely classified as belonging

to a spike. Because spikes are only present a small fraction of the time, they do not

contribute significantly to the signal standard deviation. Thus the standard deviation

of the noise can be safely approximated by that of the signal. Setting the threshold

too high can cause valid spikes to be missed.

Spike detection has also been implemented using more sophisticated algorithms.

Vogelstein used a support vector machine (SVM) for detection [28] and found the

performance to be superior to a magnitude thresholding when the SNR is between

0 and 14 dB. With noisier signals, both techniques failed to provide useful discrimi-

nation and with very clean signals both techniques performed well. An SVM-based

detector requires training on labeled data, which is undesirable for an autonomous

implanted system. SVMs are also computationally expensive, limiting their use in

power-constrained implanted devices.

Since action potentials occupy the frequency range roughly between 100 Hz and

5 kHz, adequate digitization would require a neural signal to be sampled at 10 kS/s.

With a spiking rate up to about 100/s and a spike width of about 1 ms, around 90%

of the digitized samples would not be part of an action potential. These “empty”

samples must be digitized and processed using local computer cycles or transmitted

via a wireless link for off-chip processing. Either choice results in unnecessary power

dissipation. This observation suggests that efficiency may be improved by performing

the detection in the analog domain, taking advantage of low-power sub-threshold

circuits for the computation. This strategy also reduces the power consumption of

the ADC by eliminating the need to digitize the entire waveform.

7.3 Analog and Mixed-Mode Computation

Previous work has shown that for certain applications, analog or mixed-mode signal

processing can be more power efficient than fully digital implementations [3, 19].

Specifically, analog circuits have an advantage in power efficiency when the re-

quired resolution is low [27]. In [6] Coggins et al. presents a mixed-mode circuit

for recognizing cardiac arrhythmias, consuming 200 nW of power. In comparison, a
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contemporary digital algorithm would have required approximately 375 nW for the

analog-digital conversion alone.

Analog circuits are also well suited to spectral analysis. Haddad and Serdijn have

demonstrated a continuous time analog implementation of the wavelet transform [8].

The field of continuous-time and discrete-time analog filter design is well established

[1, 26]. Harrison et al. reported a circuit for measuring the energy in the 20–40 Hz

band of local field potentials in a neural recording. Operating in the analog domain,

their circuit consumed 5 nW of power from a 5V supply.

Two simple circuits which have been proven useful for classification tasks are the

bump circuit and the winner-take-all circuit. The bump circuit [7] produces a current

which is a function of the similarity between its two input voltages:

IOut ∝ sech2(κ�V/2), (7.1)

where �V is the difference between the two input voltages, and κ is the gate-channel

coupling coefficient, a constant for the fabrication process used. The relationship be-

tween differential voltage input and current output of the bump circuit is similar to a

Gaussian probability density function (PDF), so the current output can be interpreted

as a measure of the probability that one of the inputs came from a distribution centered

at the other input. The winner-take-all (WTA) circuit [18, 25] takes a number of cur-

rent inputs, and provides a one-hot encoded binary output indicating the largest input.

A non-volatile analog memory element complementary to analog signal process-

ing techniques can be fabricated using floating gates. In [14], Hsu et al. utilized

floating gates to implement an auto-maximizing bump circuit, which continuously

adapted a stored value to minimize the difference between the presented inputs and

the stored value. The circuit was demonstrated in a simple clustering task. In [16]

and [15] the theory of bump circuits for competitive learning is further developed

and applied to the task of adaptive vector quantization of handwritten digits.

In [5], Chakrabartty and Cauwenberghs present a pattern classification circuit

using floating-gate circuits. During training, a set of templates are learned and stored

in floating-gate memories with the chip and a supervising computer in a feedback

loop to compensate for circuit imperfections such as mismatch. The circuit classifies

14-dimensional inputs into one of 24 classes and consumes 840 nW of power from

a 4V supply.

In [12], a low-power hardware random number generator utilizing floating gates

and mixed-mode signal processing for improved randomness was demonstrated. It

included adaptive bias cancellation to improve the random bit distribution, and a

programmable mixed-signal FIR filter to remove correlated interference.

7.4 System Design

Based on the considerations discussed in the previous sections, the design discussed

here carries out the bulk of the computation in the analog domain. The feature ex-

traction circuit [13], shown in Fig. 7.3, comprises a spike detector for distinguishing
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action potentials from noise, positive and negative peak detectors to characterize

the detected spike, and a successive approximation register analog-digital converter

(SAR ADC) to digitize the spike maximum and minimum. The spike detector is the

first component in the signal chain. When a spike is detected, a counter is triggered

to provide a delay equal to twice the width of the spike. The delay ensures that the

maximum and minimum occur and are captured before the ADC is triggered. Af-

ter the delay has elapsed, the “Ready” signal is asserted, which causes the ADC to

digitize the captured minimum and maximum values. The digitized values are then

read through a serial interface. After both conversions are complete, the ADC asserts

the “Done” signal, which triggers a reset of the peak detectors and control logic,

preparing the system for the next spike detection.

7.4.1 Spike Detector

A schematic of the spike detector is shown in Fig. 7.4. An analog implementation

of the nonlinear energy operator (NEO) provides a differential output current which

indicates the amount of activity in the input signal.

The two differentiations are performed by gm-C differentiators. The multipli-

cations are performed by Gilbert multipliers. The differential current outputs are

connected to perform the subtraction. The multiplier inputs are differential, with the

positive inputs taken from the single-ended outputs of the differentiators. The DC

levels of the positive multiplier inputs are computed by low-pass filters (not shown)

using a pseudo-resistor realized from anti-parallel diodes [10] and connected to the

negative multiplier inputs. This arrangement, made possible because there is no use-

ful DC information in any of the signals, prevents offsets in the differentiators from

corrupting the NEO output.
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An adaptive thresholding circuit converts the NEO output into a binary spike

detection signal. Any activity in the input signal, including noise will result in a

positive NEO output. In order to minimize false detections, the threshold must be

set above the background noise level. The feedback loop formed by A1 and MN3

set ID,MN3 equal to the differential NEO input current. This quantity is then low-pass

filtered and doubled through the current mirror formed by MN3 and MN4. The low-

pass corner frequency is set to around 1–2 Hz by realizing PR1 as a pseudo-resistor

formed from anti-parallel diodes. Thus the NEO input required to cause a detection

is set at twice the average background activity. The current source in parallel with

MN1 ensures that current is flowing through MN3 even when the differential input

is zero. A threshold adjustment current can be injected to vary the sensitivity of the

spike detector.

7.4.2 Feature Extraction

Positive and negative peak detectors capture the extreme values of the signal. The

positive peak detector is shown in Fig. 7.5, and the negative detector is implemented
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with a similar circuit. The use of a differential pair to charge the storage capacitor

allows VSG,MP1 to be made less than 0V, minimizing sub-threshold current in MP1,

which could cause the peak detector output to drift to VDD during periods with

little activity. When the Ready signal is issued to the ADC, Hold is simultaneously

asserted in the peak detector. The peak detector input is forced to 0V, preventing the

output from changing during the analog-digital conversion. After the conversion is

complete, Hold is released, and Reset briefly forces the output to 0V.

A digital counter is used in conjunction with the differentiators from the NEO to

measure the width of the spike. The first differentiator has an auxiliary sign output.

A change in the sign of the first derivative indicates a minimum or maximum in the

input signal. After a spike is detected, the next change in the derivative sign starts

the counter. The second change in the sign output causes the counter value to be

registered for readout and the counter to count back down to zero. The additional

delay allows time for the extreme values of the spike to occur and be sampled by the

peak detectors. When the counter returns to 0, the Ready signal is asserted to initiate

conversions of the maximum and minimum voltages. The counter is also intended to

provide a measurement of the spike width, defined as the time between the maximum

and minimum of the spike.

7.4.3 Analog-Digital Converter

The 8-bit analog-to-digital converter (ADC) was designed to operate at 10–100 kS/s.

A successive approximation register (SAR) architecture was chosen for the ADC to

minimize power consumption [1, 24]. The digital ADC output is read serially from
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the comparator output. A special sync signal, which is used internally to purge the

capacitor array and SAR logic once per conversion, also serves to synchronize the

serial output.

7.5 Results

The system was implemented in a 0.13 µm CMOS process. The spike detector and

feature extractor occupy a die area of 200 × 220 µm2. The ADC occupies 295 ×
430 µm2, of which about 85% is consumed by the DAC capacitors.

To test the sensitivity of the spike detector, an artificial neural recording [28]

was used. An artificial recording allowed variation of the noise level and spike rate,

and provided a reference against which to compare spike detector accuracy. With an

actual recording, there is no guaranteed correct reference, since the interpretation

of a neural recording is subject to differences in interpretation, even among expert

neurophysiologists [29].

Spike detections from the circuit were compared with labels from the generating

software to determine the sensitivity and selectivity. For comparison, we also applied

a threshold-based software spike detector to the same signal. The software detector

indicated a spike whenever the absolute value of the input exceeded a specified

threshold. We tested both detectors with several different values for the threshold to

build the curves shown in Fig. 7.6. The y-axis shows the false positive rate (FPR),

the fraction of detections determined to be false. The x-axis shows the false negative

rate (FNR), the fraction of true spikes that were not detected. With a 10 dB SNR,

shown in Fig. 7.6a, the threshold-based software detector has good discriminative

abilities. Figure 7.6b shows the same curves measured with an SNR of 6 dB. With

the noisier signal, the discriminative power of the NEO yields a superior detector at

most threshold levels.

To test the accuracy of the digitization, we simultaneously recorded the digital

output of the ADC, the timing signals, and the input waveform. We then compared

the ADC output to the actual minimum or maximum value that should have been

digitized. The comparisons are shown in Fig. 7.7a,b for the maximum and minimum

values, respectively. At the end of each pair of conversions, the ADC handshaking

signal resets the two peak detectors to allow a new peak to be captured. The true value,

plotted on the x-axis, is computed from the recorded input signal as the maximum or

minimum value in the time interval between the beginning of a given digitization and

the end of the last digitization. The results shown in Fig. 7.7 are for spikes detected

when at least 2 ms has occurred since the most recent conversion-reset cycle. The

positive and negative peak detectors are reset to 0V and VDD, respectively, so

they become slew-rate limited immediately after a reset signal, causing inaccurate

values to be digitized when one spike occurs very shortly after another. Fortunately,

neurons have a refractory period of about 3 ms following a spike during which they

are unable to generate another action potential, so this is only a significant limitation

when multiple cells are being observed on the same channel.
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Fig. 7.6 False positive rate

(FPR) versus false negative

rate (FNR) for the threshold-

based software spike detector

and the proposed analog NEO

detector. a SNR = 10 dB.

b SNR = 6 dB.
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Figure 7.8 demonstrates operation of the complete system. The captured min/max

can be seen to track the spike signal. The sign (dV/dt) signal marks the time when

the two extreme values occur. The ready signal is asserted when the extreme values

are acquired and a delay has passed and reset after the values have been digitized.

On reset of the ready signal, the minimum and maximum values are reset.

A performance summary of the spike detection and characterization circuit is

shown in Table 7.1. By performing all of the computation using sub-threshold analog

circuits, the total power consumption is kept to below 1 µW. Previous work which

has implemented similar processing entirely in the digital domain [4], consumed

approximately 1 µW/channel to perform spike detection and calculate the maximum,

minimum, and width of detected spikes, in addition to the power required for the
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Fig. 7.7 Accuracy for
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Table 7.1 Performance

summary
Process 0.13 µm CMOS

Area 0.17 mm2

VDD 1.0V

Power 0.95 µW

ADC. This strategy can be used to reduce the power consumption required for the

combined digitization/processing task. Additionally, because the effective sampling

rate of the ADC is so low, a single ADC could be shared amongst a larger number of

channels than would be possible with full-waveform digitization, potentially offering

a substantial savings in die area.
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Chapter 8

Spike Sorting

An electrode in neural tissue can often detect action potentials from multiple neurons.

Spike sorting is the task of distinguishing which spikes came from which neurons. It is

made feasible by the fact that spikes from a single neuron tend to have a characteristic

shape [5].

Early investigations such as [11] focused on finding a minimal set of easily com-

puted features because computational resources were limited. As computation be-

came essentially free on desktop computers, later researchers found that more

sophisticated algorithms could achieve more accurate classification. With the power

constraints imposed by implantable neural interfaces, it becomes worthwhile to

revisit the tradeoff between computational complexity and accuracy.

8.1 Overview

The problem of spike sorting can be roughly broken into three stages: feature

extraction, cluster analysis, and classification.

Feature extraction is the process of calculating a small number of parameters

to compactly represent a spike, so that the clustering and classification stages can

function effectively. Pertinent features can be determined manually at design time

and extracted explicitly, or they can be determined automatically using an algorithm

like principle components analysis (PCA) [8]. Some researchers have reported good

results using only two or three simple features. Zviagintsev et al. developed the

Integral Transform [12], which takes advantage of the biphasic shape of most spikes.

The integrals of the positive and negative sections of the spike are taken as the two

features. They report that sorting based on these two features achieves 98% accuracy

on a test data set where sorting based on the first two principle components found

by PCA results in 100% accuracy. While the accuracy is somewhat degraded, the

computational cost of the Integral Transform is about 2.5% that of PCA. Also, Vibert

showed in [11] that a feature vector comprising the positive peak voltage, negative

peak voltage, and time between the two peaks is sufficient for accurate sorting.
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Clustering is the partitioning of the space spanned by the features into regions

such that the points in one region correspond to spikes generated by one neuron.

Classification is the process of assigning each spike to one cluster.

Template matching is often used for classification, but requires that the template

be known before classification can be performed. In principle it should be possible to

devise an automated method for calculating the template, but this adds an additional

element of complexity to an autonomous system.

Another category of classifiers is known as time-amplitude window discrimina-

tors [1]. In these classifiers an ensemble of spikes is aligned and displayed. The

user manually chooses a window in time-amplitude space, corresponding to the

waveform having a value in some amplitude range at a given time relative to a

threshold-crossing. A spike which passes through a given window is assigned to the

corresponding class. Multiple windows can be used to improve discrimination. These

discriminators gained early acceptance among neuroscience researchers because of

their intuitive operation and because they could be implemented using simple analog

circuits, providing real-time classification. Because they require human intervention,

time-amplitude discriminators are not suitable for a fully autonomous recording sys-

tem. Their utility is also limited in systems recording simultaneously from more

channels than an individual can monitor. However, they have been used successfully

with the window parameters defined at the beginning of the experiment, allowing

for autonomous operation thereafter [6].

In recent years, more sophisticated algorithms have been developed for spike

sorting. The WaveClus algorithm [7] uses an amplitude threshold for spike detec-

tion, and computes a wavelet transform to obtain 64 wavelet coefficients. To choose

among the wavelet coefficients, the Kolmogorov–Smirnov test is used to choose the

coefficients that have distributions least similar to a gaussian distribution. The ra-

tionale is that features useful for sorting will have a multimodal distribution, which

will be identified by a high dissimilarity to a gaussian distribution. Clusters are then

found using superparamagnetic clustering. Superparamagnetic clustering uses an

analogy to statistical mechanics wherein particles are more likely to change state

together when they are close together and when the temperature is low. Thus lower

temperatures will yield fewer, larger clusters, and at higher temperatures there are

many smaller clusters. The temperature can then be chosen based on a minimum

cluster size criterion, which for a fixed recording time would lead to a requirement

that clusters correspond to a neuron with a minimum firing rate. A more detailed

description of superparamagnetic clustering can be found in [7] or [2].

The clustering algorithm developed by Sahani [9], Relaxation Expectation-Maxi-

mization, also uses an analogy with statistical mechanics where the number of

clusters varies with temperature. Sahani’s clustering algorithm is similar to the well-

known expectation-maximization algorithm [4] with modifications to automatically

choose the number of clusters and to improve convergence. The feature vector in Sa-

hani’s spike-sorting algorithm is derived from the waveform using a linear projection

similar to that found by PCA.

While the WaveClus and Sahani algorithms both achieve good performance, they

are both computationally intensive. They require many iterations over a data set to
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find the optimal partitioning of feature space. Because of their iterative nature, it is

necessary to store a large number of spike waveforms on chip. For a compact low-

power implementation, it is desirable to limit the amount of storage and computation

required.

8.2 K-Means Clustering Algorithm

K-means is a simple but popular algorithm for finding clusters in data [4]. The “k”

refers to the number of clusters, which is chosen before the algorithm begins. Each

cluster is represented by its center value, or mean. All of the cluster means are

initialized before clustering begins, typically with randomly chosen points from the

data to be clustered. K-means is an iterative algorithm, with each iteration consisting

of two steps. First, every data point is assigned to the cluster whose mean is closest

to it. Then each cluster mean is recalculated as the mean of all of its member points.

The process is repeated, and because the means may have shifted, some points may

be reassigned to a different cluster. The process is repeated until the means and the

assignments do not change.

The standard k-means algorithm requires storage for the entire data set (or some

sufficiently large subset) and the computational power to iterate through the data set

multiple times. In a system constrained by power consumption and silicon area, it

may be desirable to eliminate these requirements. The “on-line” k-means algorithm,

illustrated for k = 2 and one dimension in Fig. 8.1a, provides an alternative. As with

the other versions of k-means, the cluster centers are initialized before clustering

begins, but now the data are presented sequentially. As each point is presented, it is

assigned to a cluster, and that cluster center is updated to move slightly towards the

new data point, according to the equation

Cnew = Cold(1 − λ) + xλ, (8.1)

where C is the cluster center, x is the new data point, and λ is a learning rate,

which determines how quickly the cluster centers move. With the on-line k-means

algorithm, the storage requirement is reduced to that required for the cluster centers

themselves. The on-line algorithm is also continuously adaptive, so that if the un-

derlying statistics of the data are gradually changing, the centers can move to track

those changes. This also implies that if the centers are moving, then the classification

of a given data point may be dependent on when it is received. In the case of spike

sorting, it has been shown that the spike shapes do change over time [3, 10], so

clustering algorithms should either adapt continuously or periodically re-train.

A similar algorithm is referred to as “fuzzy” k-means in [4], but is equivalent

to the Expectation–Maximization (E–M) algorithm with an assumption of identity

covariance matrices. In each iteration of this version, data points are assigned with

some probability to each of the clusters. That is, for each point, one calculates the

probability that the point could have come from a distribution centered at each of

the cluster centers, respectively. Then each center is recomputed with an average
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Fig. 8.1 Simulations of clustering the same data with different initial conditions and algorithms.

All three simulations use the same data, with two clusters and two centroids in one dimension. The

heavy lines with large symbols show the motion of the centroids. The smaller symbols show how

each data point is labeled. a With both centroids initialized to a point between the two clusters,

the k-means algorithm successfully learns the two clusters. b With one centroid initialized far

from the data, the other centroid incorrectly claims all of the data. c With a soft update rule, the

E–M algorithm with unity variances is able to recover from the same initial conditions that were

problematic for k-means in (b)
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of all data points weighted by their probability of membership in that class. The

process is repeated until the centers and the class assignments change by an amount

less than some predetermined threshold. The E–M algorithm is also compatible with

on-line implementations. One advantage of this algorithm is that convergence is less

dependent on the initial conditions than in the standard k-means algorithm. Consider

the case depicted in Fig. 8.1b, with k = 2. Center A is initialized far from any of

the actual data points, and center B is initialized in the midst of all the data. In the

hard k-means algorithm, none of the points will be assigned to A, so A will never be

updated. Thus it will sit in its initial position while B will converge to the center of

the complete data set. In the simplified E–M algorithm, illustrated in Fig. 8.1c, center

A will be assigned all of the points with some small probability, and will gradually

migrate towards the data.

One difficulty of the k-means algorithm is that the number of clusters must be

determined before the clustering process begins. In some cases, this may require

that the number of clusters be determined before the data is even seen. Fortunately,

reasonable results can often be attained by simply setting k to the upper limit of

the number of clusters that can be reasonably expected. This will result in one

underlying spike shape being given multiple labels, but for many applications, this

can be addressed in later processing stages.

8.3 Hardware Considerations for Analog

On-Line Clustering

Analog circuits can implement a wide variety of computations with very low power

dissipation, but typically introduce non-idealities. Such non-idealities may come

from device offsets, noise, or the saturating behavior that is an inherent result of a

finite supply voltage. Additionally, complexity and power dissipation considerations

may encourage approximations to be made in an analog implementation relative to

the canonical form of an algorithm, typically intended for software implementation.

This section examines the effect of some approximations used and non-idealities

expected in the implementation of an analog clustering circuit.

8.3.1 On-Line Median Learning

In the on-line k-means algorithm, centroids are moved with an update that is propor-

tional to the distance between the new input point and the centroid’s current location.

Applying a proportional update adds complexity and could be sensitive to offsets.

One alternative is to apply a fixed-magnitude update, where the sign of the update

is determined to move a centroid towards the new input. In this section, it is shown

that in one dimension, a fixed-magnitude update will cause a centroid to converge to

the median of the distribution of the input data.
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Assume that a sequence of i.i.d. data xi ∈ R for i = 1, 2, . . . is drawn from an

arbitrary probability distribution PX(x). A quantity c is initialized to an arbitrary

value c0 ∈ R and then updated as each datum xi is received according to the formula

ci+1 = ci + λ sign(xi − ci), (8.2)

where λ is the learning rate.

Assuming a continuous distribution, the probability that Xi = ci can be neglected,

so the expected value of the update is given by

E{ci+1 − ci} = λ(P (Xi > ci) − P(Xi < ci)).

In the steady state, E{ci+1 − ci} = 0, so

P(Xi > ci) = P(Xi < ci). (8.3)

Next, recall that the median of a probability distribution is defined as

MX = argmin
m

∫ ∞

−∞
PX(x)|m − x|dx. (8.4)

Then we can find MX by setting the derivative to 0:

∂

∂m

(∫ ∞

−∞
PX(x)|x − m|

)

dx = 0

∫ ∞

−∞
PX(x)

∂

∂m
(|x − m|)dx = 0

−
∫ MX

−∞
PX(x)dx +

∫ ∞

MX

PX(x)dx = 0

P(X > MX) = P(X < MX). (8.5)

Since PX(x) ≥ 0 ∀ x, the two terms in (8.5) will be monotonically non-increasing

and monotonically non-decreasing with respect to x, respectively. Therefore the set

of values of MX that satisfy (8.5) will either be one unique value or a contiguous

interval (in the case where PX = 0 over an interval surrounding the median). In either

case, any value for c that satisfies the steady-state equation (8.3) also minimizes the

total distance cost function in (8.4).

Let QN
X (x) be the type of the realized sequence after N draws. The centroid is

updated based on the sign of the difference between the input x and the centroid c, so

the relevant information in QN
X (x) and PX(x) is contained in the binomial distribution

PY (y) and the type of its realization QN
Y (y), where y = sign(x − MX) indicates the

direction of the update. By the law of large numbers, as N → ∞, the sample mean ȳ

of the binomial distribution will asymptotically approach the expected value E[Y ].

If samples are drawn from below and above MX with equal likelihood, as is required

by (8.5), then E[Y ] = 0, indicating that as N → ∞, ȳ → 0, so the centroid will

converge to its steady state where c = MX.
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Fig. 8.2 A matlab simulation shows that a learning rule with a fixed update converges to the median,

while a learning rule with a proportional update converges to the mean

In practice, c will fluctuate about the median because it is updated at every step.

With a sufficiently small learning rate λ, the fluctuations can be made arbitrarily

small, at the expense of a longer convergence time.

Figure 8.2 shows simulation results of a single centroid learning a single cluster

to compare the results of a fixed-update rule (8.2) and the proportional update rule

used in the standard online k-means algorithm (8.1). The data are taken from a

two-dimensional Gaussian distribution (μ = 0, � = I ) and squared, so that the

mean differs from the median. The diamond and square mark the median and mean

calculated from the data. The fixed-update rule converged to the point marked by

the ‘×’, which is very close to the calculated median. The proportional-update rule

converged to the ‘+’, approximating the mean.

8.3.2 Non-Ideal Computational Elements

When an algorithm is implemented using analog circuits, there will be discrepancies

between the ideal computation and the actual computation realized. These non-

idealities may come from sources including mismatch between elements, noise,

asymmetry or non-linearity in the elements’ electrical properties.
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8.3.3 Asymmetric Updates

If the updates are asymmetric, the centroid will not converge to the center of the

distribution. If increments are larger than decrements, the centroid will be pushed

upwards as long as the number of increments and decrements are equal. As the

centroid moves upwards, the proportion of increments will decrease because there

will be fewer data points above the centroid. The centroid location will stabilize when

the sum of increments and the sum of decrements are balanced. Figure 8.3 shows

the effect of asymmetric updates in two dimensions for one centroid adapting to a

zero-mean unity-variance Gaussian distribution.

The dependence of the steady-state centroid location on update asymmetry can be

determined by noting that if the updates sum to zero, the product of the probability

and the magnitude of an increment must be equal to that of a decrement.

λuP(X > c) = λdP(X < c),

where c is the centroid location (in one dimension) and X is a sample from the

distribution being learned.
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Fig. 8.3 As the ratio between up and down adaptation changes, the learned median moves across

the dataset. Here the converged value for 1 centroid is shown for 6 up/down ratios from 1/10 to 100
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Fig. 8.4 Adaptation was simulated for multiple λu/λd ratios. The presented data was draws from

a 1D Gaussian (μ = 0, σ = 1). The value to which the centroid converged is plotted against the

ratio and compared to the value predicted by (8.6)

Noting that P(X > c) = 1 − P(X ≤ c) and rearranging, we get

P(X < c)/(1 − P(X ≤ c)) = λu/λd .

Assuming that X is distributed continuously, so that P(X = c) = 0, then the two

probability terms on the left correspond to the cumulative distribution function (CDF)

of X FX(c). Define α to be the ratio of increment rate to decrement rate λu/λd , so

FX(c)/(1 − FX(c)) = α

FX(c) =
α

1 + α
.

If the distribution is Gaussian, the CDF can be expressed in terms of the comple-

mentary error function erfc (·), yielding

1

2
erfc

(

μ − c

σ
√

2

)

=
α

α + 1

μ − c

σ
√

2
= erfc−1

(

2α

α + 1

)

.
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Solving for c shows that the offset of the centroid’s steady-state value c relative to the

actual center of the distribution can be expressed in terms of the standard deviation

σ and the adaptation rate ratio α:

c = μ − σ
√

2erfc−1

(

2α

α + 1

)

. (8.6)

To verify this relationship, Fig. 8.4 shows the results of several simulations, with the

adaptation rate ratios varied across four decades. The converged value of the centroid

is compared to the value predicted by (8.6).

Our review of spike sorting algorithms reveals that k-medians is a promising

choice for an analog implementation. Our analysis shows that the increment/decre-

ment values must be well matched to achieve an acceptable error. Techniques for

achieving this will be described in the next chapter.
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Chapter 9

Analog Clustering Circuit

This chapter describes the mapping of a clustering algorithm into analog circuits

and the design of the constituent circuit blocks. The experimental characterization

of the individual blocks and of the clustering system are described. The clustering

algorithm implemented is based on the K-Means algorithm, but differs in that the

magnitude of the updates is independent of the input.

9.1 Floating-Gate Memories

Floating-gate memories store a value as charge on an isolated poly-silicon node, and

convert the charge to a voltage for read-out. Figure 9.1a shows a simple memory cell

in which an op-amp A1 is used to buffer the floating-gate voltage VFG to the output.

A high voltage (≥7V) on the TUN input induces Fowler-Nordheim tunneling [8]

across the gate oxide of the tunneling junction TJ1, which is simply a pFET with

bulk, source, and drain terminals connected. The tunneling process removes electrons

from the floating gate, increasing VFG. A high value for DEC will cause the inverter

to drive the drain of M1 to 0V. The channel current in M1 results in the injection of

impact-ionized electrons onto the floating gate, lowering VFG. Because the tunneling

and injection processes are both extremely sensitive to voltage, the update rates for

this structure may vary by orders of magnitude across the output range. For one-time

calibration applications, such as offset compensation in amplifiers or comparators,

such update rate variation may be an inconvenience. However, for machine learning

applications, the update is part of the on-going computation and such update rate

variation can lead to large errors or failure of the algorithm to converge.

Figure 9.1b shows a memory cell that uses feedback to hold the floating gate

at a constant voltage, in order to remove the dependence of update rate on output

voltage [4]. In this memory the op-amp will drive the output to the voltage neces-

sary to keep VFG equal to VRef . Updates work similarly to the open-loop memory

in Fig. 9.1a, except the update operations are reversed because the floating gate is

now connected to the amplifiers inverting terminal, so tunneling and injection now

decrement and increment the output voltage, respectively.
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Fig. 9.1 Thick-oxide mem-

ory cells. a Open-loop

memory cell with op-amp

buffer. b Closed-loop mem-

ory cell maintains a constant

voltage on the floating gate,

stabilizing update rates
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9.2 Device Characterization

Until recently tunneling current could be neglected in typical circuits and was there-

fore not typically modeled by foundry-provided simulation models. As oxides shrink

and tunneling current becomes a concern for the larger IC design community, tun-

neling models are improving, but they may still not have the accuracy needed for

reliable circuit design.

In order to guide the design of the floating-gate clustering circuit, floating-gate

structures in a 0.13 µm CMOS process were characterized. The memory cell, shown

in Fig. 9.2a, has one thin-oxide tunneling device (1 × 0.24 µm2), a thick-oxide control

gate (4 × 20 µm2), a thick-oxide feedback capacitor (4 × 20 µm2), and an opamp

constructed of thick-oxide devices. The tests were conducted with VDD = 2V and the

amp biased with 0.5 µA. The low supply voltage prevented significant current due to

Fig. 9.2 Schematic

of the memory cell

used for floating-gate

characterization
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–
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TUN
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Control
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tunneling through the thick-oxide devices or due to hot-electron injection, allowing

the tunneling current through the thin-oxide tunneling junction to be measured.

The characterization cell functions similarly to the thick-oxide memory cell in

Fig. 9.1b. An ideal op-amp would hold the floating gate at a voltage equal to the

reference voltage. Mismatch in the op-amp will shift the floating-gate voltage rela-

tive to the reference by the op-amp’s input-referred offset voltage. Additionally, finite

gain in the op-amp will introduce a slight dependence of the floating-gate voltage

on the output voltage. By setting the tunneling voltage (TUN) higher or lower than

the reference, current will flow through the tunneling device (TJ1), onto the floating

inverting terminal of the op-amp, causing the output voltage to decrease or increase,

respectively. Assuming that the only current onto or off of the floating gate is due

to tunneling in TJ1, and neglecting effects due to finite op-amp gain, the tunneling

current can be estimated as

IT un =
dVOut

dt
C1. (9.1)

Thus the memory cell allows one to characterize I–V curves involving very small

currents (<10−15 A) without high-precision instrumentation. It also avoids the need

to bring the currents off of the chip, where they would be corrupted by several sources

of leakage, interference from AC line power, etc. The measurements presented here

were taken by settingTUN to a specific voltage, estimating the gate current from (9.1),

and repeating the procedure across a range of voltages.

Here is a quick summary of the interesting results:

• There is an offset in the I–V curves. With apparently 0V across the tunneling junc-

tion, the output voltage drifted by 10–50 µV/s. To hold the output constant required

a voltage of about −10 mV across the tunneling device (VTun = VRef − 10 mV).

This offset is consistent with the expected amplifier input-referred offset voltage.

• The I–V curves are asymmetric, see Fig. 9.3. This is likely due to the changing

density of carriers under the oxide as the device moves through accumulation,

depletion and inversion.

In Fig. 9.3 dV
dt

is plotted against VTun for multiple chips. The curves have a significant

asymmetry; charge can be tunneled onto the floating gate much more quickly than

it can be tunneled off of the floating gate. As discussed in Sect. 8.3, asymmetry can

degrade accuracy in learning systems. The asymmetry is most likely due to changes

in carrier concentrations on one or both sides of the oxide as the gate-body voltage

changes. Also shown is a close-up view of the zero-crossings of the current curves.

The reference voltage is 0.8 V, so with an ideal op-amp we would expect a a tunneling

voltage of 0.8 V to result in 0V across the gate oxide, no gate current, and a constant

output voltage. The measured zero crossings are at voltages between 5 and 15 mV

less than VRef , which is consistent with the expected magnitude of input-referred

offset voltage for the op-amps.

In Fig. 9.4, the time-derivative of the output voltage is used to calculate the gate

current. The relationship corresponds to the feedback capacitor being about 7 fF,

estimated from simulations.
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Fig. 9.3 a Rate of change of output voltage as a function of the applied tunneling voltage for

multiple chips. VOut,Init = VRef = 0.8V. b A closer view of the same data right around the origin,

highlighting the offset voltages

Table 9.1 summarizes the data from Fig. 9.3. VHold is the interpolated voltage

difference across the tunneling junction required to hold the output voltage constant

(assumming the opamp to be ideal, so that VFG =VRef ). VHold is the best estimate

of the amplifier’s offset voltage. Drift (0V) and Gate Current (0V) are the rate of

change of output voltage, and inferred current onto the floating gate, respectively,

when VTun = VRef .

Fig. 9.4 Estimated gate

current as a function of VTun

measured across six chips
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Table 9.1 Chip variation Chip VHold (mV) Drift (0V) (µV/s) Gate current (0V)

A −9.19 −27.13 1.96e–019A

B −5.51 −27.33 1.98e–019A

C −15.44 −26.64 1.93e–019A

D −11.12 −17.75 1.28e–019A

E −10.96 −43.92 3.18e–019A

F −9.47 −57.90 4.19e–019A

9.3 Circuit Design

9.3.1 Clustering Circuit

Figure 9.5a shows the clustering circuit, for two clusters and two-dimensional in-

puts. Each cluster center is stored in one column of the analog memory cells, and

each dimension (each feature) is represented by one row. Every cell in the array

has a floating-gate memory cell and a difference circuit. The difference circuit is

a Gilbert multiplier connected as in Fig. 9.5b to compute the squared difference

between two input voltages. When a new input vector is presented, the difference

circuits in each cell output a current representing the distance between the stored and

presented values. For small differences, the distance current is proportional to the

squared difference between the two values. For each cluster center, the current out-

puts corresponding to each dimension are added to provide a current proportional to

the Euclidean distance between the stored vector and the input vector. This distance

current in turn provides a measure of the probability that the input vector came from

a probability distribution centered at the stored cluster center.

The differential currents from the difference circuits are converted to single-ended

current and fed into a loser-take-all (LTA) circuit. The LTA circuit [9] takes multiple

current inputs, and provides a one-hot encoded binary output indicating the smallest

input. The smallest input current corresponds to the smallest distance and indicates

the class to which the input vector is most likely to belong. Each binary output is

connected to all of the memory cells in the corresponding cluster center. When the

LTA output for a given cluster is high, indicating that it is closest to the presented

input, the memory cells adapt towards the input. Thus, each center will converge to

the median of all of the inputs that have been assigned to it.

The on-line expectation-maximization (E–M) algorithm has been shown to have

convergence properties superior to the K-means algorithm, because in the E–M algo-

rithm every center is updated at every step. The K-means algorithm can be modified

to implement E–M with uniform variances by making the updates proportional to

probability of class membership.

In order to approximate the behavior of a uniform variances E–M algorithm with

minimal circuit complexity, the circuit described here allows for two-level discrete

updates. That is, the “winner” (the center to which the input has been assigned)

is updated by one amount, and all of the other cells are updated by a much smaller

amount. This is conceptually similar to quantizing the class membership probabilities



80 9 Analog Clustering Circuit

Dimension
0

Dimension
1

Cluster 0 Cluster 1

Loser
Take All

Analog
Memory

Analog
Memory

Analog
Memory

Analog
Memory

Update from input

Input[0]

Input[1]

+

a

+

b

VBVA VA

VB VA

Bias

I
Out

+
I
Out

–

Fig. 9.5 a Block diagram of the clustering circuit. The actual clustering circuit implemented has

four clusters and three input dimensions. For simplicity, the figure shows two clusters with two

dimensions. b A Gilbert cell connected to compute the squared difference between two voltage

inputs
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in the E–M algorithm to two levels. Using the fixed-update memory cell described

above, the magnitude of the update is controlled by varying the duration of the update

pulse. The update pulses are driven by two external signals, one for the winner and

one for the losers.

An alternative topology for a clustering circuit based on floating gate memo-

ries [7] uses a bump circuit [3, 6] to compute the one-dimensional (1D) distance

between the stored value and the input. The bump circuit generates a current which

can be interpreted as the probability that the input voltage is a member of a proba-

bility distribution centered at the stored voltage. The disadvantage of this topology

is that aggregating the 1D probability into a class membership likelihood requires

all of the 1D probabilities to be multiplied. A multiple-input multiplication can be

realized with analog circuits, but adds complexity, consumes extra power, and intro-

duces additional offsets. In the topology described here, the 1D squared difference

currents can be added by simply connecting the corresponding wires, avoiding the

disadvantages of the multiplication circuit.

9.3.2 Floating-Gate Memory Cell

Floating-gate memory cells are used to store the centroid locations. The memory

stores a value as charge on an isolated piece of polysilicon, the floating gate. The

charge is then converted to an output voltage by an op-amp in a negative feedback

configuration.

Figure 9.6 shows two versions of a floating-gate memory cell with different update

dynamics. The memory cell is based on the circuit presented in [4], with modifications

to allow the use of a thinner tunneling oxide. The tunneling junction TJ1 is simply a

PMOS transistor with its source, drain, and well connected together. Voltage between

the source/drain/well terminal and the gate terminal causes a current to flow through

the gate oxide due to quantum tunneling. Both operate in a hold mode, where the

output voltage is held constant, when the Adjust input is low, and in an update mode,

where the output is adjusted to be closer to the Target voltage, when the Adjust input

is asserted.

Hold mode operation is the same in both cells. The output of amplifier A1 is

coupled back to its inverting input through a feedback capacitor. The amplifier drives

the output to the voltage necessary (within the limits of supply voltage and output

range) to keep the floating-gate and reference voltages equal. This keeps the voltage

difference across the tunneling junction equal to the input-referred offset voltage of

the amplifier, on the order of 5–10 mV. By minimizing the voltage across the tunneling

junction, this structure allows for the use of thin gate oxides (2–3 nm) for tunneling,

which can leak even with voltage differences of less than 0.5V. In contrast, thicker

oxides (7–8 nm) experience negligible tunneling current with voltage differences of

less than 5V.

The output voltage is adjusted by varying the charge on the floating gate. This

is accomplished by inducing a potential difference across the tunneling junction,

which causes a small tunneling current to flow through the oxide. In Fig. 9.6a the

target voltage is connected to the feedback capacitor, changing the floating-gate
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Fig. 9.6 Two floating-gate

memory cells which update

towards the Target input

when the Adapt signal is

asserted. a The magnitude of

the update is approximately

exponential with respect to

the difference between the

stored value and the Target

input. b The magnitude of

the update is independent of

the difference between the

stored value and the Target
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voltage. If the target voltage is higher than the current output voltage, the floating

gate will be forced up, causing current to flow off of the floating gate through the

tunneling junction. When the Adjust signal is deasserted and the feedback loop is

re-established, the output will now be forced higher to keep the floating gate at the

reference voltage. One benefit of this topology is that the output will asymptotically

approach the target voltage. If theAdjust signal is asserted for a sufficiently long time,

the floating gate will eventually reach the reference voltage with the target voltage

connected to the feedback capacitor. When the output is re-connected to the feedback

capacitor, the voltage it needs in order to equalize the reference and floating-gate

voltages is equal to the target voltage, plus the product of the input-referred offset of

the amplifier and the coupling loss from output to floating gate. The coupling loss

is determined by capacitive division between the feedback capacitor and parasitic

capacitance on the floating gate node.

The disadvantage of the above memory cell is that as the output approaches the

target value, the update rate becomes extremely small, potentially leading to unrea-

sonably long settling times for machine learning algorithms. The memory cell in

Fig. 9.6b achieves a larger update rate by applying a larger voltage difference across

the tunneling junction. A comparator C1 determines whether the output voltage

should be adjusted up or down to move closer to the target voltage. If the target vol-

tage is higher than the current output voltage, the Up signal is equal to the supply

voltage VDD and the Down signal is 0V, so the feedback capacitor is connected

to the positive supply, raising the floating-gate voltage. At the same time, the
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well/drain/source terminal of the tunneling junction is connected to 0V. Because

the floating gate is at a much higher voltage than the opposite terminal of the tunnel-

ing junction, current flows off of the floating gate, reducing its voltage, and requiring

the output to settle to a higher voltage after the memory is returned to hold mode.

The update magnitude is independent of the target voltage for this topology.

9.3.3 Decision Circuit

The classification decision is made based on a vector of distance currents by a loser-

take-all (LTA) circuit, shown in Fig. 9.7. The LTA circuit operates as follows: M1

and M2 form a current mirror which converts the input currents to the correct polarity

and isolates the input current sources (in this case, the Gilbert cells) from voltage

changes in the LTA circuit. Initially, the Adapt input is off, disabling the tri-state

inverter I1. Transistors M3,4 form a self-biased cascode current mirror. A low-power

device with a higher threshold voltage is used for M3 (marked “hvt”) so that the same

gate voltage can be used to bias M4 and M3. A negative feedback loop formed by the

M3,4 current source and the PMOS source follower M5 ensures that the sum of M5,i

currents across all LTA cells will equal the bias current sourced onto the Common

Bias

LTA Unit Cell

a

b

Common
IIn VOut

IIn,1

VOut,1

LTA Unit Cell

Common
IIn VOut

VOut,2

LTA Unit Cell

Common
IIn VOut

VOut,3

LTA Unit Cell
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IIn VOut

VOut,4

IIn,2

IIn,3

IIn,4

M0

M4

M3

+ –

EN

VOut

IIn

M1 M2

M5

Adapt

(hvt)

Common

A1 I1
X

Fig. 9.7 a The loser-take-all circuit for finding the smallest distance current. b Schematic of the

LTA cell, the unit element of the loser-take-all circuit
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node by M0. Because the M3,4 current sources in each cell are all controlled by the

Common node, they will all sink the same current (assuming they are all operating in

the saturation region, and neglecting channel-length modulation). Suppose that all of

the input currents are equal and that the IM0 is evenly distributed amongst all cells.

Then VCommon will rise to the voltage required to sink IIn = IM1 = IM2 through

M3,4. The negative feedback loop formed by M3,4,5 will drive VX to approximately

one threshold voltage of M5 below VCommon. The use of a higher threshold for M3

and the choice of a lower aspect ratio for M3 (W/L = 3 µm/3 µm) than for M5 (W/L =
12 µm/1 µm) keep VX high enough for the M3,4 current source to remain operational.

If IIn,i decreases, then VX,i will also decrease, bringing VCommon down with it.

In the other cells, this will cause VX,j �=i to increase, because IM3,j has decreased,

while IM2,j has not changed. Thus cell i with the lowest input current will sink the

majority of the bias current IM0, and VX,i will be very low. For the other cells j �= i,

VX,j will be high. A1 acts as a comparator to convert VX to a level compatible with

logic inputs.

At each step of the clustering algorithm, when the memory cells adapt, the adap-

tation mechanism of the memory cells cause their output voltages to be temporarily

driven to the supply rails. To prevent these changes from translating to a change in the

LTA output, the LTA cells latch their output using a positive feedback loop formed

by A1 and I1.

Figure 9.8 shows the operation of the LTA circuit. Initially, IDiff,1, the differential

input current to cell 1, is the smallest of the input currents, so Winner1 is high while all
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Fig. 9.8 Simulation of the loser-take-all decision circuit. The class 3 input IDiff,3 current starts out

as the largest and decreases, becoming the smallest at t = 4 ns. When the IDiff,3 drops below IDiff,1

there is a brief interval, denoted by the tick marks, where the indicator outputs for classes 1 and 3

are both high, corresponding to a current range of about 0.5 nA.
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of the other WinnerX outputs are low. IDiff,3 decreases, dropping below IDiff,1 at 4 ms.

Immediately after that, Winner3 becomes high at 3.964 ms, marked with the first

cross-hair. For a brief interval, both Winner3 and Winner1 are high, until IDiff,3 drops

to more than 0.4 nA below IDiff,1 and leaves Winner3 as the only high Winner output.

The multiple-winner region is a result of the finite output impedance of the current

sources formed by M2 and M3,4. To see this, remember that VCommon will be at the

voltage required to sink IM2,min. If M3,4 and M2 have infinite output impedance,

then for any cell j where IM2,j > IM2,min, VX,j will be driven to near VDD. Because

M2 and M3,4 have finite output impedance, IM2,j may be slightly larger than IM3−4,j

without forcing VX,j to VDD.

9.4 Experimental Results

The clustering circuit occupies 0.11 mm2 in a 0.13 µm CMOS process. The results

discussed here were obtained with a supply voltage of 1.5V, and the circuit biased

to consume 3.5 µA.

9.4.1 Update Rates

The update rate of the memory cell depends on the direction of the update, the stored

value, the supply voltage, and the reference voltage. In the design proposed here,

the reference voltage is accessible and can be used to vary the relative magnitude of

increment and decrement magnitudes.

Referring back to Fig. 9.6b, when an increment is initiated, the well (left) terminal

of TJ1 is switched to 0V from VRef. An increase in VRef increases the magnitude of

the voltage applied across TJ1 as a result of the switching on TJ1’s well terminal,

increasing the rate of voltage change. Conversely, a decrement results in TJ1’s well

terminal switching from VRef to VDD, so an increase in VRef decreases the magnitude

of the voltage applied across TJ1, reducing the decrement rate.

Figure 9.9 shows the increment and decrement rates for three different reference

voltages for 1 memory cell. It can be seen that as VRef increases, the increment rate

(dashed lines) increases, and the decrement rate (solid lines) decreases. As described

in Chap. 8.3, asymmetry in the update rates leads to an offset in the learned value

relative to the actual center of a distribution. The reference voltage can be used to

adjust the the ratio of increments and decrements.

The update rate also depends on the value stored in a memory cell. This is a result

of the switching on the driven (non-floating, right side) terminal of the feedback

capacitor. Before an update is initiated, the voltage of the driven terminal is Vstore,

because it is connected to the amplifier output. When an increment is initiated, that

terminal is driven to VDD. As the stored value increases, the step applied to the

capacitor, and coupled onto the floating gate decreases in magnitude, causing the

increment rate to decrease. For a decrement, the driven terminal of the capacitor

is driven down to 0V, so as the stored voltage increases, the step size and thus the

update rate increases.
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Fig. 9.9 a Adaptation rates plotted for three different reference voltages versus stored voltage

for programming up (solid line) and down (dashed line). b The relative position in a gaussian

distribution to which the memory cell can be expected to converge, as a function of stored voltage.

The position is expressed as on offset relative to the mean in terms of standard deviations. It is based

on the values in (a) and the relationship defined in (8.6)

Figure 9.9a shows that for all three reference voltages, the increment rate decreases

as the stored voltage increases, while the decrement rate increases. The ratio of the

increment and decrement magnitudes can be used to predict the error in a learning

application, using (8.6). In Fig. 9.9b, the predicted offset is shown as a function of

stored tap value and reference voltage. Because the learned value depends on the

inputs, the offset is relative to the center of the distribution, and is proportional to

the standard deviation (σ ) of the distribution. The tap will be stable when its value

in σ relative to the mean is equal to the steady-state value shown in Fig. 9.9b for its

value and reference voltage.
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Fig. 9.10 One hour retention of 12 memory cells. a Cells initially programmed to voltages ranging

from 0.1 to 0.9V. b All cells programmed to approximately 0.5V. The worst drift measured in these

two cases is 124 mV (approximately 2 mV/min) for tap 9, which was initialized to 0.72V

9.4.2 Memory Cell Retention

In order to test the retention of the analog memory cell, each of the 12 cells on one

chip were programmed to voltages evenly spaced from 0.08 to 0.96V and monitored

over the course of 1 h. The results are shown in Fig. 9.10a. The voltage drift varied

from −1.7 to −124.0 mV, corresponding to a worst case droop rate of −34 µV/s. In

another experiment, the cells were all programmed to approximately 0.5V, and again

monitored over the course of an hour. In this case, the drift ranged −1.7 to −85 mV.

Voltage drift was also measured at 25◦C and 75◦C to get a rudimentary indication

of the temperature dependence of the memory cells’ retention. Twelve taps on one

chip (a different chip than was tested for Fig. 9.10) were programmed to voltages

ranging from 0.25 to 0.75V and monitored for an hour. The drift rates are shown in

Table 9.2 and indicate minimal dependence of retention on temperature.

The other common way to store an analog voltage is with a switched-capacitor

(SC) sample and hold circuit. Even using large capacitors, SC sample and hold

circuits tend to experience far more rapid voltage droop than the floating-gate memory

Table 9.2 Effect of temperature changes on retention

Tap Drift (µV/s) at 25◦C Drift at 75◦C Tap Drift (µV/s) at 25◦C Drift at 75◦C

1 0.763 −0.058 7 −1.509 −1.022

2 −4.035 −3.109 8 0.000 −1.737

3 −9.103 −7.095 9 −2.339 −2.715

4 −0.661 −0.876 10 −5.153 −5.299

5 −1.949 −2.000 11 1.577 1.066

6 −2.967 −2.073 12 −5.374 −4.642
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cell described here. For example, the circuit in [5] uses a 100 pF capacitor and has a

droop rate of 10V/s.

On the other hand, floating-gate memory cells using thick-oxide devices achieve

extremely good retention, with droop rates below 1 mV in 10 years [1]. For an

application where the memory cells are part of a continuously adapting system,

the retention demonstrated here is sufficient. To avoid degradation of clustering

performance due to memory cell leakage, the voltage change due to leakage should

be much smaller than that due to intentional updates. The data in Fig. 9.9a shows a

minimum update rate of 20 mV/s with VReF = 0.8V. If we use a 2 ms update pulse,

and spikes occur at a rate of 10 spikes/s, then a centroid receiving all of its updates in

the same direction (i.e., one that had not yet converged), would accumulate updates

at a rate of about 400 µV/s, or slightly more than ten times the worst case drift seen

in Fig. 9.10.

9.4.3 Classification

Every point presented to the clustering circuit is classified based on its proximity to

the four centroids. Classification depends on the distance measurement performed

by the Gilbert cell squared difference circuit and loser-take-all decision circuit.

Figure 9.11 shows the output current from 12 cells. The current output saturates

for input differences larger than about 150 mV. Additionally, a significant variation

in the maximum output current can be seen in the figure. As a result, classification

decisions involving two centroids that are both far from the received data point will be

resolved based on the maximum output currents of the respective multipliers rather

than on the actual distance between the centroids and the input.

There is also variation in the input voltage that elicits the minimum current from

the difference circuits, due to threshold variation in the input transistors of the Gilbert

cell. For classification purposes, the centroids can be considered to be located at the

sum of the memory cell values and the difference circuit offsets. Tables 9.3 and 9.4

Fig. 9.11 Output current

(top) from the squared-

difference circuits for 12

cells on a single chip as a

function of input voltage, for

cells programmed to 0.5V
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Table 9.3 Input offset voltage, maximum current, minimum current for distance circuit

Class 1 Class 2 Class 3 Class 4

29.6 mV 17.4 mV 45.3 mV 71.2 mV

Dim 1 7.73 nA 4.94 nA 5.29 nA 5.61 nA

2.74 nA 1.18 nA 0.79 nA −0.08 nA

−57.9 mV −67.1 mV −3.0 mV −4.2 mV

Dim 2 7.45 nA 5.01 nA 8.35 nA 4.83 nA

2.76 nA 1.19 nA 0.76 nA −0.13 nA

−71.4 mV −36.3 mV 21.8 mV 45.2 mV

Dim 3 8.81 nA 4.75 nA 5.41 nA 6.13 nA

2.62 nA 1.11 nA 0.73 nA −0.06 nA

Table 9.4 Comparator

offset voltage
Class 1 Class 2 Class 3 Class 4

(mV) (mV) (mV) (mV)

Dim. 1 −24.5 14.1 −26.3 −2.9

Dim. 2 42.7 36.0 50.3 84.2

Dim. 3 13.5 −16.6 −40.1 0.7

summarize parameter variation across the difference circuits and memory cell

comparators, respectively.

Finally, the conversion from a differential current to a single-ended current creates

variation in the minimum output current. Because the differential-single-ended con-

version occurs after the 1D distance currents are summed for each class, the current

minimum is common to each of the three cells in each class. Close inspection of

Fig. 9.9a reveals that there are four groups of three curves, with each group having a

common minimum.

After the one-dimensional difference currents are summed across dimensions

for each class, the loser-take-all determines which class is nearest to the input and

outputs a binary vector with one bit for each class. Figure 9.12 shows the result of

sweeping the three input voltages together while the stored voltages remain constant.

The binary indicator outputs for each of the four classes are shown in the top four

traces (labeled W1–W4). The bottom plot shows the difference currents for the four

classes. For large differences between the distance currents, only one indicator is

high. For inputs where the smallest currents are similar, more than one indicator may

be high, effectively classifying an input as belonging to multiple classes. In the case

shown here, there is an overlap between W1 and W2 when the difference between

the respective currents IDiff,1 − IDiff,2 is between −1.9 and 2.9 nA.

The distance current and loser-take-all circuits combine to provide a classification

label for every input during clustering. Figure 9.13 shows the classification results

for a two-dimensional slice of the input space for one set of centroid locations. The

centroid locations are represented by the diamonds. The centroids’ third dimensions

are programmed to 0.5V plus the input-referred offset of their respective distance

circuits to minimize the contribution of the third dimension to the output distance

current for a constant input of 0.5V. Each diamond is accompanied by a short line
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Fig. 9.12 The three input

voltages are swept together

while the stored voltages

remain constant. The binary

indicator outputs for each of

the four classes are shown

in the top four traces. The

bottom plot shows the four

difference currents. For

large differences between

the difference currents, i.e.,

when current is clearly

smaller than the others, only

one indicator is high. For

inputs where the smallest

currents are similar, more

than one indicator can high
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indicating the movement due to leakage of the centroid during the experiment. Cen-

troids 2–4 did not move a noticeable amount, and class 1 moved only slightly (about

20 mV). The areas labeled by each class are outlined. Points labeled with multiple

classes result in an overlap of the class boundaries.

The distance currents for each of the four classes were measured at the same time

as the classification results and are shown in the four surface plots in Fig. 9.14.

9.4.4 Clustering Convergence

To demonstrate the functionality of the memory cell and classification circuits work-

ing together, different data were presented to the clustering circuit under various

conditions.

Figure 9.15 shows measured data demonstrating the convergence of the clustering

circuit for the trivial case of a single cluster centered at 0.5V in all three dimensions.

In this test, the winner and loser pulse widths were both set to 25 ms, so all of

the centroids adapted based on the presented data, irrespective of the classification

results. This demonstrates that the memory cells successfully converge to the location

of a cluster of input data.

Figure 9.16 shows the results of learning two clusters of data with four centroids.

All four centroids were initialized to approximately (0.5 V, 0.5 V, 0.5 V) in their

three dimensions. It can be seen that the clustering circuit is able to separate the two

classes, with data in the bottom left assigned to classes 1 and 3 and the top right

assigned to classes 2 and 4. While a few points in the far upper-right include a blue
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Fig. 9.13 Classification results for a 2D slice of the input space. Classes one through four are

represented by the diamonds in the bottom left, top left, bottom right, and top right respectively.

Each classified data point contains a circle for each class that output a ‘1’for that point, so points that

were labeled as belonging to multiple classes have multiple concentric circles, colored according

to the classes

(class 3) label, none in the bottom-left include a label of class 2 or 4. With a few

known samples and the corresponding classification results, it should be possible

for the multiple labels to be interpreted correctly with fairly simple post-processing.

Figure 9.16b–d shows each dimension separately.

Here the interaction of classification and centroid adaptation can be seen. For

example, class 2 (x), initially labels some of the lower cluster (centered around 0.3

in all three dimensions) and begins adapting downwards. However, class 3 adapts

more quickly, and soon begins labeling the lower clusters exclusively around iteration

200. At this point, class 2 is also labeling some points in the upper cluster and reverses

direction, heading upwards. After about 750 points, class 2 is exclusively labeling

most of the upper cluster.

One important performance metric for clustering implementations is the abil-

ity to separate closely spaced clusters of data. Figure 9.17 shows the results of three

experiments designed to evaluate the resolution of the clustering circuit. In Fig. 9.17a,

two clusters separated by 200 mV are successfully resolved. In Fig. 9.17b, the
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Fig. 9.14 Surfaces showing the distance current as a function of two input variables. The distance

currents shown here correspond to the classification results shown in Fig. 9.13. Note that the orien-

tation of the z-axis (distance current) is reversed, so that the highest points on the surface correspond

to the points nearest the centroid. Also note that the x and y-axes are rotated to best show the surface,

and are not all shown from the same angle

separation is reduced to 100 mV, and the circuit is unable to distinguish the two

clusters.

This limitation comes about through the interaction of the saturating nature of

the distance measurement performed by the Gilbert cells, the finite gain in the LTA

circuit, which allows multiple classes to equally claim a single data point, and the

adaptation asymmetry. Because of the multiple-labeling behavior of the LTA, the

two centroids near the data are both claiming every point. As a result, they are both

attempting to learn the center of the entire data set, rather than the center of just one

cluster. Because of the update asymmetry, the two centroids actually converge to a

point on the periphery of the data set rather than the actual center, as explained in the

previous chapter. The centroid’s location on the periphery of the data set causes most
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square, circle, and triangle, respectively. Dimensions one and two are shown in (a), while dimensions

two and three are shown in (b)

of the inputs to land in the saturated, low-gain, region of the Gilbert cells, preventing

either centroid from exclusively labeling many points, and thus preventing the natural

positive feedback of the clustering algorithm from taking effect.

In Fig. 9.17c, the reference voltage is increased from 0.8 to 0.9V, improving the

symmetry for high-valued inputs. This improved symmetry allows the two centroids

to get closer to the actual center of the data, bringing the inputs into the effective

range of the distance circuits, and allowing the classes to begin exclusively claiming

inputs. The two clusters are successfully resolved. It should be noted that the increase

in VRef would actually cause the situation to become worse for lower-valued inputs.

Figure 9.18 shows classification results for spikes from a synthesized neural

recording. In this experiment, adaptation was disabled, and the centers were pre-

programmed to the desired locations in order distinguish two different spike shapes.

Because the classification output is a 4-bit vector, there are 16 possible labels, of

which 5 are present in the results from this experiment. The bottom-left cluster was

labeled exclusively by class 3, while the top-right cluster was labeled primarily by

class 2, but had some points with multiple labels. Despite the multiple labelings,

there is clearly sufficient information in the classification results to distinguish the

two clusters. The corresponding spike waveforms, shaded according to the label

combinations are shown in Fig. 9.18b.

9.5 Discussion

This chapter described a floating-gate memory cell and its application in a cluster-

ing circuit. The circuit was able to successfully cluster well-separated data. Circuit

non-idealities limit the resolving power of the circuit to the extent that the realized im-

plementation is not suitable for autonomous general-purpose spike sorting. However,
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Fig. 9.16 Clustering of a data set with two clusters in three dimensions. a The first two dimensions.

The diamonds show the four centers, with tracks indicating movement from the initial positions.

Each point is marked with a circle for each class in which it is included. b–d Dimensions 1–3

respectively, with inputs and centroid locations plotted against time. Class 1 = black +, Class 2 =
dark gray x, Class 3 = medium gray square, Class 4 = light gray triangle. Points labeled by multiple

classes have corresponding multiple markers, so a point labeled by classes 2 and 4 has a dark gray
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the performance of the classification component was demonstrated to successfully

resolve spike shapes in a non-adaptive setting.

Previous implementations of learning algorithms with floating-gate circuits have

used thicker oxides to enable long-term retention. The work described here is the first

work use of such thin gate oxides (2.2 nm physical thickness) in floating-gate-based

learning circuits. The use of thin oxides allows the circuit to operate with a supply

voltage of about 1.5V, enabling very low power dissipation, and operation from a

small battery.
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Additionally, the results shown here point to potential circuit modifications that

should yield significantly improved clustering performance. Because the limited gain

of the LTA decision circuit and the resulting multiple-labels undermined clustering

performance, the LTA circuit should be designed to guarantee that only one output

can be high. It is likely that positive feedback could be triggered when the inputs

are sampled to increase the effective gain. The dependence of adaptation rates on

the stored value prevented update symmetry from being simultaneously achieved

across the input range. This could easily be addressed in future versions by leaving

feedback intact during adaptation, which would keep the floating gate at VRef during

tunneling. Circuit techniques to automatically balance the update rates should also

be investigated.

Beyond performance improvements to the circuit, analog machine learning al-

gorithms would also benefit from more flexible architectures. The clustering circuit

described here can only operate with three input dimensions and four classes. Rel-

atively simple changes could allow the number of classes and dimensions to be

adjusted as needed. Flexible architectures, similar to those described in [2] would

also make analog computation more attractive for deployment in real systems.
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Chapter 10

NeuralWISP: A Wirelessly Powered Spike
Density Recording System

Having discussed the critical components of implantable neural interfaces, we may

now move on to system integration issues. After reviewing some previous system-

level efforts, this chapter and the next will describe two example systems, both

including signal acquisition circuitry and a wireless communication link.

10.1 Previous Neural Recording Systems

Most successfully deployed neural interfaces to date have used discrete commer-

cial ICs on a custom printed-circuit board. The NeuroChip [10, 11] developed by

Mavoori et al. has been successfully used to enable novel neuroscience experiments

in primates [9]. It includes amplification, digitization, storage in on-board flash

memory, local processing using a microcontroller, and an infra-red interface. Lo-

cal spike discrimination is performed using user-defined time-amplitude window

discriminators.

Santhanam et al. developed HermesB, a recording system featuring amplifica-

tion, digitization, processing with an ARM microprocessor, motion measurement

by an on-board accelerometer, and local storage in flash memory. Spike sorting is

performed locally using the Sahani algorithm [13].

The advantages of this type of architecture include relatively fast prototyping

(compared to custom IC design), and flexibility due to the ability of the microcon-

troller to run arbitrary software. The disadvantage is the large size and high power

consumption. The neurochip is 1.2 × 5.4 cm2 and consumes 20–60 mW, depending

on configuration. Including batteries, the total implant size is 5.5 × 5 × 3 cm3 and

weighs 56 g. HermesB is 6 × 7 × 4.5 cm3, and weighs 220 g including the aluminum

enclosure, batteries, and hardware associated with the electrode array. It consumes

70–320 mW from its batteries depending on operating mode.

The size of such devices precludes implantation under the skull. The development

of highly integrated neural signal processors should enable a reduction in the physical

size of neural interfaces both by reducing the number of components needed and by

reducing the battery requirements.

J. Holleman et al., Ultra Low-Power Integrated Circuit Design for Wireless Neural Interfaces, 97
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In an effort to reduce the physical size and power requirements for neural inter-

faces, researchers have developed custom integrated circuits. In [5], Harrison et al.

describe an Integrated Neural Interface (INI) for a 100-electrode recording system,

which includes amplifiers, threshold-based spike detection, a single user-selected

channel of full-waveform digitization, and a wireless transceiver. It utilizes 4.7 ×
5.9 mm2 of chip area and consumes 13 mW from 3.5V, supplied by an inductive link.

Because the INI is powered from an external source, and does not include storage or

local processing, it is not fair to directly compare area and power to more complete

systems such as the NeuroChip or HermesB. However, it does provide a hint of the

potential advantages of aggressive integration. In [2], a subsequent generation of

the INI chip is integrated with an electrode array, a battery and and antenna to per-

form recording and wireless transmission of spiking activity. The integrated system

consumes 46.8 mW from a 4V supply.

In [1] Chae et al. reported a 128-channel neural recording IC including amplifi-

cation, integrated spike detection and feature extraction implemented with on-chip

DSP circuitry, and a wireless transmitter. Their recording IC consumes 6 mW from a

3.3V supply. The detection and feature extraction blocks consumed approximately

1 µW/channel. The extracted features are the maximum and minimum of each de-

tected spike. Features are transmitted off-chip through the wireless interface for spike

sorting or other analysis.

Most previous implantable neural recorders have used a simple threshold for spike

detection and have included no spike sorting facility at all. One exception is [12],

which transmitted spike amplitude off-chip for use in off-line sorting. However,

Olsson and Wise’s system digitized the entire waveform, thus incurring the cost

of constant analog-digital conversion. We are not aware of any implantable system

designed to date that includes local spike sorting, or of any analog spike-sorting

system.

Because transcutaneous wiring poses a significant infection risk, it is desirable

that a neural interface communicate and receive power wirelessly. Previous systems

[6, 12] have achieved wireless operation by using a near-field inductive link to trans-

mit power and data. However, these systems require that the external coil be located

within a few centimeters of the internal coil. A wireless neural interface with a range

of 1 m or more will enable the removal of the interrogator from the head and would

allow wireless interfaces to be placed on small animals incapable of carrying the

interrogator hardware, such as mice.

This chapter describes a wireless neural interface [8] which harvests power from

the radio-frequency (RF) energy provided by a standard commercial UHF RFID

reader. Figure 10.1 illustrates the use of the NeuralWISP. The system operates at a

distance of up to 1 m from the reader. It records the number of spikes that occurs in a

programmable window (typically 1–10 s) and subsequently transmits the spike count

to the reader as part of the tag identification number that the reader is designed to

acquire. This allows the neuroscientist a wireless, battery-free method of recording

spike density (
spikes
second

) as various tasks are performed or stimuli are presented.
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Fig. 10.1 Usage model of the NeuralWISP

10.2 System Design

The NeuralWISP is an extension of the Wireless Identification and Sensing Platform

(WISP) [14, 16]. The WISP is a fully-passive UHF RFID tag that uses an low power,

16-bit, general-purpose microcontroller (µC) for sensing, computation and RFID

communication. The use of a programmable µC allows WISP to be easily configured

for different applications including measurement of temperature, light level, strain,

and acceleration [16]. In monitoring applications, analog sensor outputs change

slowly and thus permit periodic, low-frequency (1–50 Hz) measurement. However,

a much faster sampling rate (at least 8 kHz) is necessary to detect neural spikes.

Achieving this sampling rate under the constraints of the limited power budget of an

RFID tag is not possible with general purpose microcontrollers available today.

In order to minimize the average current consumption, a continuous-time analog

spike detector was designed to generate a µC interrupt when a spike occurs. This

allows the µC to remain in a low-power sleep mode during periods of inactivity

and only wake up to process spikes or communicate with the RFID reader. The µC

counts spikes during a programmable window and is reset after the spike count is

transmitted to the reader.

The architecture of the NeuralWISP is shown in Fig. 10.2. Like a typical RFID

tag, power is received at the antenna, voltage-multiplied, rectified, and regulated to

provide a stable system power supply. The amount of power received is a strong

function of wireless range as modeled by Friis’ Transmission Equation. To illustrate

the extremely limited power budget, a graph of available power (after rectifier losses

and quiescent current draw) is shown in Fig. 10.3. The design and performance of this

energy harvesting circuitry is described in detail in [14, 16]. The neural input signal

is amplified and applied to an analog spike detector in addition to an analog-digital

converter (ADC) integrated in the µC. The µC performs the control and timing tasks,

and implements the RFID communication protocol.
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10.2.1 Analog Signal Path

The extremely low signal levels recorded from neural probes place severe constraints

on the analog front-end. Input-referred noise levels must be <10 µVRMS while pro-

viding good linearity and high gain. These requirements frequently result in the low

noise neural amplifier consuming a majority of the system power. In the NeuralWISP,

the power dissipation limits the wireless range, so power must be minimized. A cus-

tom low-noise amplifier (LNA) was designed in a 0.5 µm SOI BiCMOS process to

meet these requirements. The amplifier is designed to provide a gain of 40 dB. A

schematic is shown in Fig. 10.4.

The amplifier is built using a two-stage op-amp with capacitive feedback. A

closed-loop configuration was chosen for this system because open-loop amplifiers,

while demonstrating superior noise efficiency factors (NEF), typically suffer from

inferior power-supply rejection [7]. MOS-bipolar pseudo-resistors [4] (PR) were

Fig. 10.3 Rectifier out-
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Fig. 10.4 Schematic of

custom 8 µA low noise

neural amplifier fabricated

in a 0.5 µm SOI CMOS

process
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used to set a sub-Hz low frequency pole for DC rejection. For small signals, the PRs

have an incremental resistance of about 1012 �, resulting in a time constant of several

seconds. In order to avoid long settling times on power up, a power-on-reset circuit

is included on chip which temporarily shorts out the pseudo-resistors. Reset can be

driven from an external pin, so it could also be used to speed recovery from stimu-

lation artifacts. The high-pass corner frequency set by the pseudo-resistors is much

lower than is necessary for the extra-cellular recording task being demonstrated

here. However, transconductor implementations of high-valued resistors consume

additional power and contribute noise.

A source-follower output stage was chosen for its flexibility with respect to load

conditions. A resistive load to ground will increase the current in the NMOS source

follower transistor, allowing the amplifier to automatically adapt to resistive loads

without consuming extra static bias current under lightly loaded conditions or using

a complicated class AB output stage. The chip is completely self-contained, and

includes a supply-independent bias current generator allowing consistent operation

over a range of 1–5V.

An additional gain of 20 dB is provided by a second amplifier built from two

OPA349 op-amps, shown in Fig. 10.5. The first opamp is used to establish a 0.6V

reference for AC coupling the amplifier stages, and the second opamp is used in a

non-inverting gain configuration. The gain of the first stage allows relatively noisy

micro-power op-amps to be used for the second gain stage. Consequently, the second

stage consumes only 1.9 µA from a 1.8V supply, including the reference.

Figure 10.6 shows the noise spectra at the output of both the LNA and the post-

amp. Even with the use of the micro-power commercial op-amps, it can be seen that

the gain of the LNA suppresses the noise contribution of the post-amp. Additionally,

some very low-frequency noise is filtered by the AC coupling between the LNA and

post-amp.

The output of the second amplifier is connected to the ADC input of the MSP430

microcontroller to allow for direct digitization of the neural signal. Additionally, the

amplified signal is applied to an analog spike detector. The signal is low-pass filtered

with a time constant of 0.1 s to generate the detection threshold. The signal is also
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Fig. 10.5 Analog front end circuitry, including custom LNA, 20 dB post-amp, and spike detector

with programmable threshold

attenuated and shifted towards 0V by up to 15% via a variable-ratio resistive divider.

A digitally-controlled resistor, variable from 0 �–50 k�, determines the attenuation

of the divider and thus the sensitivity of the spike detector. The spike detector’s

programmable threshold is set by the µC, allowing adjustment for dynamic neural

signals and noise levels.

Fig. 10.6 Noise spectra at

the output of both the LNA

and the post-amp
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Fig. 10.7 Software state

diagram. The µC is in

the low-power Spike State

for the majority of the time,

awakening only to increment

the spike counter after a

detection or to communicate

with the reader
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10.2.2 Digital Control

An MSP430F2274 microcontroller (µC) is used to implement control, timing, and

communication tasks. Figure 10.7 shows the software architecture. On boot-up, the

µC configures the adjustable resistor in the spike detector. During the primary mode

of operation, the µC will count spikes during a user-specified time interval (typically

1–10 s) and transmit the number of spikes detected at the end of the interval. During

the counting interval, the µC is in a low-power sleep state for the majority of the time.

The spike detector triggers an interrupt, which causes the µC to wake up, increment

the spike count, and return to sleep. A timer drives another interrupt, which signals the

end of the counting interval, causing the µC to exit the spike-counting mode and await

a communication session with the reader. After communicating with the reader, the

µC pauses for 1 s to allow the analog circuits to recover from RF interference that oc-

curred during the read, then returns to the spike counting phase and repeats the cycle.

10.3 Test Results

The fabricated board is shown in Fig. 10.8. The populated board alone weighs 1.0 g,

and a 900 MHz wire dipole antenna (not shown) weighs approximately 0.6 g. During

spike counting, the system draws an average of about 20 µA of current from its

unregulated supply, of which 8 µA is consumed by the neural LNA. A commercial

RFID reader with +30 dBm transmitted power was used to wirelessly supply power

and communicate with the NeuralWISP.

The input-referred noise of the low-noise amplifier is 4.4 µVRMS, measured from

0.25 Hz to 25 kHz. Operating from a supply between 1 and 5V, the LNA provides a

measured gain of 39 dB with a bandwidth spanning 0.5 Hz to 5.9 kHz. Current con-

sumption at 1.8V is 8 µA, including the bias generator and output buffer. Figure 10.9

shows the frequency response of the first stage and the combined response of both

gain stages. The LNA combined with the second amplifier provides a mid-band gain

of 56 dB with a bandwidth from 2 Hz to 4.9 kHz.
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Fig. 10.8 System pho-

tograph. Inset shows

chip-on-board mounting

of the custom low-noise

amplifier IC

To characterize the spike detector, we applied a synthesized neural recording [15]

to the NeuralWISP input. This technique allowed us to vary the SNR and spike rate

in the recording and provided a reference against which to compare our measured

spike detection results in order to characterize the detector accuracy. Figure 10.10

shows the operation of the detector on a single spike, with an 800 µVP−P input

signal. Software debouncing in the interrupt handler prevents any glitches in the

spike detection signal from causing errors in the spike count.

Fig. 10.9 Gain versus

frequency for both low-noise

amplifier (LNA, bottom),

and the combined gain of

the LNA and 2nd amplifier
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Fig. 10.10 Operation of the spike detector. The input signal (top) has been amplified by ×1000 for

oscilloscope viewing. The amplitude at the input to the NeuralWISP is approximately 800 µVpp

Figure 10.11 shows the spike detector accuracy. Spikes were detected using the

hardware analog spike detector (circle tick) and also using a PC-based threshold-

crossing detector (square tick) for comparison. Both detectors were run on synthetic

recordings with an amplitude of approximately 400 µVP−P and SNR of 10 dB (left)
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Fig. 10.11 Accuracy of the spike detector compared to a software spike detector for SNR = 10 dB

(left) and SNR = 6 dB (right). The x-axis is the false negative rate (FNR = Number of missed

spikes / Number of total true spikes). The y-axis is the false positive rate (FPR = Number of false

detections / Number of total detections)
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Fig. 10.12 Two read cycles of wireless operation, showing the spike detector output (top), the

unregulated stored voltage (middle), and a microcontroller output (bottom) pulsed to show operation.

The data was taken at a distance of approximately 1 m from the reader

and 6 dB (right). The results were compared with the known spike times provided

by the signal synthesis software. The analog detector demonstrates comparable dis-

criminative abilities to the software detector, indicating that noise contributions from

the analog front end do not limit spike detection performance.

Figure 10.12 demonstrates the operation of the NeuralWISP. The middle trace

is the unregulated voltage stored on a 100 µF capacitor, which begins at 0V, since

the WISP starts out with no stored energy. As the reader begins to interrogate the

NeuralWISP, it operates with the following sequence:

• Initially, the reader is configured to transmit power in continuous-wave (CW)

mode, which charges the storage capacitor to 5.5V where it is clamped by a zener

diode.

• (A) As the stored voltage rises, the µC boots up.

• (B) Continuous-wave transmission stops and the RFID reader reads data from the

WISP. The first read following bootup will contain empty data.

• (C) Following the read, the µC enters a 3 s waiting state in order to allow the

analog circuits to recover from RF interference which occurred during the read.

• (D) After 3 s, the WISP begins counting spikes for 5 s.

• (E) After the spike-counting phase, the reader again transmits CW power to

recharge the storage capacitor,

• Another read is executed, which retrieves data from the previous spike-counting

phase (D). The cycle is repeated indefinitely.
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Fig. 10.13 A single spike

digitized by the on-board

ADC. The µC began sam-

pling and converting in

response to an interrupt

from the spike detector
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The NeuralWISP could also be configured to sample spike waveforms after a spike

is detected, and transmit the digitized data. An appropriate duty cycle would need to

be chosen in order to meet the constraints imposed by the data rate allowed by the

tag/reader interface. Figure 10.13 shows a spike captured and digitized by the Neural-

WISP. The digitized spike waveform is superimposed on the original spike waveform.

This experiment demonstrates that accurate reconstruction of the spike can be ac-

complished by waking the µC and ADC from low-power sleep after spike detec-

tion, dramatically reducing average system power.

10.4 Experimental Results

To validate the NeuralWISP’s ability to detect spikes in vivo, measurements of wing

muscle activity from a Manduca Sexta moth were taken. While the prototype Neu-

ralWISP is too heavy to be carried by a moth, integration of NeuralWISP onto an

IC could allow in-flight measurements to be performed. Because the recording de-

vice is wirelessly powered, no batteries or wires are required. Because the battery

consumes a large fraction of the weight budget of flying-insect-mounted electron-

ics [3], a wirelessly-powered interface would permit significant weight reduction

compared to traditional sensing schemes. The setup is shown in Fig. 10.14, and a

wirelessly-powered recording captured by an oscilloscope is shown in Fig. 10.15.

NeuralWISP relies on extremely low-power custom analog front end circuitry to

allow operation from a wireless power source. In order to test the compatibility of

the analog front end with extra-cellular neural recording, we performed in vivo mea-

surements on a macaque monkey (macaca nemestrina). Figure 10.16 shows spikes

recorded with the NeuralWISP LNA and post-amp. Standard rack-mounted acqui-

sition equipment was used to digitize the signal and perform spike detection. The

signal was filtered with a 4th-order butterworth bandpass filter with bandwidth of

750 Hz–7.5 kHz for spike detection, but the unfiltered signal was stored for offline
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Fig. 10.14 In vivo ex-

periment setup showing

Manduca Sexta moth with

tungsten wire electrodes

in wing muscle tissue. The

electrodes are connected

to the NeuralWISP via a

resistive attenuator. Spike

density measurements

are wirelessly recorded

and communicated to the

RFID reader

Fig. 10.15 Wirelessly-

powered data from wing

muscle tissue captured

by an oscilloscope.

The top trace shows

the post-amplifier output;

the bottom trace shows

NeuralWISP spike

detections

processing. Figure 10.16a shows the spikes taken from the raw signals based on times-

tamps from the acquisition system’s detector. Because of low-frequency noise and

local field potentials, the spikes are spread widely across the y-axis. In Fig. 10.16b,

the same spikes are displayed after filtering with a 750-Hz 2nd-order butterworth

high-pass filter.

10.5 Conclusions

Using harvested RF power, the NeuralWISP transmits spike counts to a commercial

RFID reader at user-programmable intervals over a range of up to 1 m. In addition to

testing with simulation data, in vivo measurements with Manduca Sexta moth and

macaque monkey validated the feasibility of this system in real-world conditions.
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Fig. 10.16 Spikes recorded

through the NeuralWISP’s

amplifiers
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By operating from a wireless power source, the NeuralWISP allows indefinite

operation without the need to change batteries, a critical need for implanted neural

interfaces. The platform is also flexible and can be programmed to operate in different

modes, such as spike time-stamp recording, or continuous recording on a duty-cycled

basis. Future work reducing the size and weight of NeuralWISP will help lead to the

practical deployment of wireless, battery-free neural recording systems.
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Chapter 11

A 500 µW Wireles Neural Streaming System

This chapter describes a fully integrated neural interface which wirelessly streams a

digitized neural waveform over 15 m [2]. In contrast to the NeuralWISP described

in the previous chapter, this system is designed to operate from a small battery.

The battery allows the system to operate at a greater range from the receiver and

to transmit more data. Because of the low power consumption in the analog front

end and the wireless transmitter, the system can operate from a very small battery,

resulting in an extremely lightweight system with a small form-factor.

In order to function with a single battery, the circuits are designed to operate

from supply voltages below 1.5V, and consume a total of 500 µW. The architecture

is shown in Fig. 11.1a. The system includes a low-noise analog front end (AFE), an

8B ADC, and a 100 kb/s wireless transmitter.

11.1 Analog Front End

The AFE provides gain variable from 42 to 78 dB. It uses the closed-loop amplifier

described in Chap. 4 as its first stage to achieve low noise. The second stage is a

variable-gain amplifier (VGA).

The variable gain amplifier (VGA) is built from a folded-cascode op-amp with a

rail-to-rail input-stage and digitally programmable capacitive feedback. Bits in the

configuration shift register select one of six feedback capacitors to set the gain. Be-

cause the gain settings are logarithmically spaced, it was not possible to use a binary-

scaled array to reduce the number of capacitors. While the low-noise amplifier uses

pseudo-resistors to set the DC bias point, the VGA uses transconductance (Gm) cells.

The Gm cells consume a small amount of additional current, and add noise to the

VGA output. The additional current is negligible compared to the current required

by the op-amps used in the LNA and VGA. The increased noise is the reason why the

pseudo-resistors are chosen for the LNA. Because the gain of the LNA attenuates the

input-referred noise contribution of the VGA, a noisier feedback element can be tol-

erated in exchange for improved control over the low-frequency cutoff. Six Gm cells

correponding to the six gain settings are included in the VGA. Because the high-pass

frequency corner fHP is Gm/2πCF , the six Gm cells are needed to keep fHP corner
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Fig. 11.1 a Block diagram

of the wireless streaming

chip. b The neural signal

is amplified by the LNA

and VGA, digitized, and

wirelessly transmitted to a

base station
Control
Logic

RF Tx

ADC

LNA

a

VGA

b

constant over different gain settings. They also allow some tuning of the corner

frequency, which can be helpful in balancing the need to reject low-frequency inter-

ferers (e.g., 60 Hz wall power, instrumentation noise, local field potentials) with the

need to pass the entire band of interest. Alternately, high impedance pseudoresistor

feedback can be selected to obtain a high-pass corner below 10 Hz.

The integrated noise from 0.1 Hz to 25.6 kHz is 1.9 µVrms. The power dissipation

of the entire analog front-end, including ADC and biasing, is 75 µW, operating from

a 1V supply.

11.2 Conversion and Control

The VGA output is sampled by an 8-bit successive approximation register (SAR)

ADC, designed to operate at sample rates from 10 to 100 kS/s. On-chip control logic

enables the ADC clock, muxes one of AFE channels to the ADC, and routes the

digitized data to the transmitter. The logic block also interleaves alignment data

between ADC words to aid in clock/data recovery at the receiver. The alignment

header is a “010” string, to ensure that there is at least one transition for every

digitized value, simplifying clock recovery. While the header successfully enables

reconstruction of the the addition of three bits of overhead for every eight bits of

data is inefficient. With the transmitter’s data rate of 100 kb/s, the sampling rate

is 9.1 kS/s, whereas a sampling rate of 12.5 kS/s would have been possible with no

synchronization bits added. Future systems would benefit from using a more efficient

coding scheme.
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11.3 MICS-band Wireless Transmitter

The transmitter uses binary frequency shift keying (FSK) modulation and is designed

to transmit in the Medical Implant Communication Service (MICS) band at 402–

405 MHz or the ISM band at 433 MHz. Frequency modulation is accomplished by

pulling a crystal reference oscillator using an on-chip capacitor. The crystal oscillator

output is then multiplied 9× using a delay-locked loop (DLL) and edge combiner.

The edge combiner also drives the antenna through an off-chip impedance matching

network, obviating the need for a dedicated power amplifier. The transmitter is

described in more detail in [2].

11.4 Results

The recording system was implemented in a 2.5 × 1 mm2 die, shown in Fig. 11.1b, us-

ing a 0.13 µm CMOS process. The only necessary external components are two quartz

crystals for RF carrier generation and system timing, respectively, one inductor for

impedance matching, and 6 capacitors for impedance matching, DLL loop filtering,

and system clock generation.
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Fig. 11.2 Wirelessly transmitted data. A 160 µVPP artificial neural signal (thin blue trace) was

applied to the AFE input, digitized, and transmitted. The signal was received with a commercial

FSK receiver located 15 m away. Clock and data were then recovered in software, and compared to

the original signal
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To verify system functionality, we applied an artificial neural signal with 160 µVPP

amplitude to the LNA input. The signal was amplified using the second highest

gain setting, digitized, and transmitted over a 15 m wireless link. The RF signal

was received using a commercial FSK receiver board [3] and recorded using an

oscilloscope. Clock and data recovery and reconstruction of the sampled signal were

performed offline in software. Figure 11.2 shows the original input signal and the

signal reconstructed from the transmitted data.

We also tested the analog front end in an in vivo recording experiment to verify the

compatibility of the amplifiers with the impedance of the recording electrodes. The

signal was amplified by the analog front end at the 2nd highest gain setting (72 dB)

and digitized with rack-mounted recording equipment. Figure 11.3a shows a 10-s

clip of the recorded waveform. Figure 11.3b shows 85 spikes found by a software

spike-sorting algorithm [1].

This system can be used for single-channel recording experiments. It demonstrates

the suitability of the low-power low-noise amplifier design for neural recording

Fig. 11.3 Neural signals

recorded in vivo from the

motor cortex of a rat. a In

the 10 s of the signal shown

here, many spikes can be

seen. b Spikes discriminated

by a software spike sorting

algorithm and overlaid,

showing a well-defined

characteristic shape
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applications. Additionally, it highlights the bottleneck imposed by the wireless trans-

mitter for neural streaming applications. While faster transmitters can improve the

situation somewhat, future systems with the ability to record from many channels

will require local processing to reduce the required transmitter data rate.
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Chapter 12

Conclusions

Implantable neural interfaces have the potential to revolutionize medicine and neu-

roscience research. One of the key challenges to realization of this potential is

reduction of power consumption. This book has described micro-power circuit

implementations for several key building blocks of a neural interface.

A neural recording system of any architecture will require pre-amplifiers with low

noise. The amplifiers described in Chaps. 3, 4, and 6 illustrate a variety of approaches

to the power-performance tradeoff. Because neural interfaces are typically power-

constrained and because the amplifiers can contribute a large fraction of the power

dissipation, the power savings provided by these amplifiers can enable improved

noise performance, an increased number of channels, or additional functionality.

Hopefully the ideas described here will help spur further improvements in amplifier

design.

Although the amplifier designs discussed in this book are optimized for power

and noise, there is still room for improvement. As most of the work focused on

optimizing the power-noise trade-off, we could see the inverse relationship between

noise performance and power consumption in the amplifiers. A natural question is

whether a given level of noise performance is necessary. The answer, of course,

depends on the application. The required noise performance depends on the noise

floor of observed signal, the nature of the spiking activity, and the application. In

the future designs, the current should be made adjustable depending on the noise

requirement of the system to conserve power.

The work presented in this book also represents novel structures for analog com-

putation. Circuits were demonstrated to detect and characterize spikes with power

consumption below 1 µW. A floating-gate memory cell utilizing tunneling through

thin oxides was demonstrated for the first time. The memory cell was utilized in an

analog clustering circuit, which is a key component of a spike sorting system. Sim-

ilar memory cells could also be used in other neural network applications to allow

extremely low-power machine learning.

The results shown in Chap. 7 and 9 demonstrate the feasibility of performing

computation in low-power circuits fabricated in modern CMOS processes while

highlighting challenges to be addressed in future work. While the analog circuits de-

scribed here operate with very low power consumption, their functionality cannot be
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easily modified after chip fabrication. The design of analog computational structures

is also more difficult and risky than digital design.

Architectures to add flexibility to the computation performed will make analog

computation more competitive with digital solutions. Work in this area has begun

[1, 2] and with continued work we can hope to see powerful, flexible, low-power

computational engines in the near future.

Improved design methodology can help mitigate the risk and reduce design

time for analog computational systems, much as they already have for digital de-

signs. Specifically, the integration of tools to combine of behavioral modeling and

transistor-level circuit simulation will make it easier to predict system-level ramifi-

cations of circuit-level non-idealities. Improved prediction of device variation and

variation-tolerant circuit techniques will also enable improved performance from

extremely low-power circuits.

The final two chapters represent initial efforts at integrating some of the ideas

presented here into functional neural interfaces. The NeuralWISP project demon-

strates how analog signal processing, specifically spike detection, can reduce the

computational burden on a digital processor and reduce overall system power. The

streaming system demonstrates the practical feasibility of using a complementary

input stage to improve noise/power performance in neural recording amplifiers. It

also provides an example of how circuit techniques in both the analog front end and

communications link can enable a wireless recording system to operate with very

low power dissipation.

Although neural recording is the application for which the circuits described here

were developed, the techniques should be applicable to the power-constrained signal

processing problems encountered in other sensor applications as well. As the need

for ultra-low-power operation becomes more widely acknowledged and efficient

systems-on-chip become available for sensing tasks, we can expect to see sensing

electronics utilized in an ever-growing number of disciplines.

A great deal of work remains to make autonomous neural interfaces practical, and

it will be necessary to explore every avenue to find strategies that can provide the

needed functionality with the available power and an acceptable form factor. It is our

hope that the work described here can contribute to the realization of that potential.
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