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Preface

Everyday people need to make decisions, and the decision makers usually face mul-

tiple, conflicting objectives and uncertain environments. The research about uncer-

tain multi-objective decision making problems has been profolic. It mainly provides

decision makers with the help to find optimal solutions for many objectives under

uncertain environments, and has been a permanent focus for many years.

To trace the origins of the multi-objective decision making with certain parame-

ters, we have to go back over the eighteenth century. B. Franklin introduced how to

coordinate multiple objectives in 1772. A. A. Cournot proposed the multi-objective

decision making model from the standpoint of the economics in 1836. V. Pareto

firstly presented the optimal solution to the multi-objective decision making model

from the standpoint of the mathematics in 1896 and then K. J. Arrow et al. proposed

the concept of efficient points. Traditional multi-objective decision making is only

aimed at problems with certain parameters, but as we know, it is usual that many

decision making problems have uncertain factors. As people know more and more

about the uncertain event, the research about random multi-objective decision mak-

ing, fuzzy multi-objective decision making, rough multi-objective decision making

and two-fold uncertain multi-objective decision making problems were gradually

developed.

In the last 25 years, fuzzy set theory has been applied to many disciplines such as

operations research, management science, control theory, artificial intelligent/expert

systems, human behavior, etc. Growth of the applications of fuzzy set theory have

been accumulating. In 1978, H. Kwakernaak combined randomness with fuzziness

and initialized the concept of the fuzzy random variable, then introduced its basic

definition and properties. This viewpoint which combined two different uncertain

variables to describe complicated events received approval from many scholars and

move forward a further step to uncertain events. Then many papers and books about

the two-fold uncertain theory presented more and more, and therefore promoted

the development of two-fold uncertain theory. This monograph presents system-

atically state-of-art of fuzzy-like multiple objective mathematical programming in

both techniques and applications.
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In real life, input data is usually imprecise or uncertain because of incomplete

or non-obtainable information. So if we want to describe the uncertainty, especially

subjective uncertainty, fuzzy variables will be used. For instance, If we ask peo-

ple about the unit transport cost between two places, they say that the cost will be

around a value, and they cannot give an absolute certain value. Since the informa-

tion is described in linguistic terms, and not by the chance concept, conventional

probability may not be a correct way to model these imprecise nature, so it can be

derived that the unit transport cost could be a fuzzy variable rather than a constant.

It is appropriate for us to use a LR fuzzy variables (a,θ ,b)LR to describe, where

a,b are the left and right widths of the fuzzy variable, and θ is the middle value.

Further more, we consider about the middle value θ , due to the conditions of road,

traffic and weather, etc., this value may not be the constant either, but here may be a

random variable or fuzzy variable or rough variable, thus is regarded as a fuzzy-like

two-fold uncertain variable. This book mainly concentrates on one type of two-fold

uncertain theory, that is, the fuzzy-like two-fold uncertain variable including fuzzy

random variables, bifuzzy variables and fuzzy rough variables, and then deduces

their properties and the application to the real world.

In the classical multi-objective decision making model, all data and information

are assumed to be absolutely accurate, and the objectives and constraints are all

assumed to be well expressed by mathematical formations. However, it is difficult

to clearly describe the objective functions and constraints by mathematical equa-

tions for many realistic problems, thus, the multi-objective decision making model

with certain parameters cannot deal with all real-life problems. So uncertain multi-

objective decision making models are proposed. In 1965, after L.A. Zadeh proposed

the fuzzy set theory, it was rapidly and widely applied in the filed of operations, man-

agement science, control theory and so on. In 1970, R. E. Bellman and L. A. Zadeh

collaborated to propose the fuzzy decision making model based on multi-objective

programming. That’s the original work which is the basis of this monograph.

The multi-objective decision making model with fuzzy-like variables can be sum-

marized as follows:

where x is an n-dimensional decision variable, f is the objective function, ξ and η
are both fuzzy-like variables.

In this book, we take real-life problems as background and guidance, and present

the application of the fuzzy-like multi-objective decision making (FLMODM) model

to the real world, and finally construct a relative model. After that, basic the-

ories, models and algorithms are proposed and applied to solve realistic prob-

lems. This book consists of 6 chapters. Chapter 1 reviews some relative prelimi-

nary knowledge such as fuzzy set, fuzzy numbers, fuzzy arithmetic and member-

ship functions. Chapter 2 mainly introduces multi-objective decision making with

fuzzy parameters and its application to farm structure optimization problem. Three
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sections introduce the fuzzy expected value model (Fuzzy EVM), the fuzzy

chance-constrained model (Fuzzy CCM) and the fuzzy dependent-chance model

(Fuzzy DCM). In each section, the equivalent model of those problems which have

some special fuzzy variables are deduced and the traditional solution methods for

the crisp equivalent models are introduced the technique of fuzzy simulations-based

hybrid algorithms to deal with the general decision making problems under fuzzy

environments. Finally, in the next section, the proposed models and algorithms have

been applied to solve the realistic problems introduced in the first section. Chapters

3, 4 and 5 have the same structure as Chapter 2. Chapter 3 proposes a multi-objective

decision making model with fuzzy random parameters and introduces its applica-

tion to portfolio selection problems under a fuzzy random environment. The equiv-

alent models of the fuzzy random expected value model (Fu-Ra EVM), fuzzy ran-

dom chance-constrained model (Fu-Ra CCM) and fuzzy random dependent-chance

model (Fu-Ra DCM) are deduced. Chapter 4 proposes the multi-objective decision

making model with a bifuzzy parameters and introduces its application to mate-

rial purchasing problems under a bifuzzy environment. The equivalent models of

the bifuzzy expected value model (Fu-Fu EVM), bifuzzy chance-constrained model

(Fu-Fu CCM) and bifuzzy dependent-chance model (Fu-Fu DCM) are deduced.

Chapter 5 proposes a multi-objective decision making model with fuzzy rough pa-

rameters and introduces its application to logistics problems under a fuzzy rough

environment. The equivalence models of the fuzzy rough expected value model (Fu-

Ro EVM), fuzzy rough chance-constrained model (Fu-Ro CCM) and fuzzy rough

dependent-chance model (Fu-Ro DCM) are deduced. Finally in Chapter 6, the main

problems are concluded, models, methods and algorithms to obtain the organic sys-

tems are discussed, and a methodological system for the FLMODM is proposed.

The authors wish to thank the support from the National Science Foundation

for Distinguished Young Scholars, P. R. China (Grant No. 70425005) and the Na-

tional Natural Science Foundation of P. R. China (Grant No. 79760060, and No.

70171021). The authors also wish to acknowledge the assistance of Prof. Janusz

Kacprzyk for his helpful comments and recommendations to publish this book in

this series. This book benefited many literatures, and the authors also wish to take

this opportunity to thank these researchers here. For discussion and advice, the au-

thors are grateful to researchers from the Uncertainty Decision-Making Laboratory

of Sichuan University, J. Li, Y. Liu, Z. Tao, L. Yao and others, who have done a

lot of work in this field and have made a number of corrections. Finally the au-

thors express their deepest gratitude to the staff of Springer, especially, Dr. Thomas

Ditzinger and Renuka Devi for the wonderful cooperation.

Sichuan University, Jiuping Xu

June 2009 Xiaoyang Zhou
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Chapter 1

Fuzzy Set Theory

Fuzzy set theory has been developed to solve problems where the descriptions of

activities and observations are imprecise, vague, or uncertain. The term “fuzzy”

refers to a situation in where there are no well defined boundaries of the set of

activities or observations to which the descriptions apply. For example, one can

easily assign a person 180cm tall to the “class of tall men”. But it would be difficult

to justify the inclusion or exclusion of a 173cm tall person to that class, because

the term “tall” does not constitute a well defined boundary. This notion of fuzziness

exists almost everywhere in our daily life, such as a “class of red flowers,” a “class

of good shooters,” a “class of comfortable speeds for traveling, a “numbers close to

10,” etc. These classes of objects cannot be well represented by classical set theory.

In classical set theory, an object is either in a set or not in a set. An object cannot

partially belong to a set.

To cope with this difficulty, Zadeh [9] proposed the fuzzy set theory in 1965. A

fuzzy set is a class of objects with a continuum of membership grades. A member-

ship function, which assigns to each object a grade of membership, is associated

with each fuzzy set. Usually, the membership grades are in the interval [0, 1]. When

the grade of membership for an object in a set is one, this object is absolutely in that

set; when the grade of membership is zero, the object is absolutely not in that set.

Borderline cases are assigned numbers between zero and one. Precise membership

grades do not convey any absolute significance as they are context-dependent can

be subjectively assessed.

In the following sections, we will present some basic definitions of fuzzy set and

operations on fuzzy set from mathematical aspects. Subsequently, the decomposi-

tion theorem, the extension principle and fuzzy number operations, which are im-

portant to subsequent discussions, will be introduced. Special fuzzy numbers such

as LR fuzzy numbers, triangular numbers, and trapezoidal numbers and their arith-

metic operations are also presented. Numerical and graphical examples are used to

make the contents more understandable.

J. Xu and X. Zhou: Fuzzy-Like Multiple Objective Decision Making, STUDFUZZ 263, pp. 1–55.
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2 1 Fuzzy Set Theory

1.1 Fuzzy Sets

Precise mathematics are not sufficient to model a complex system because of the

incomplete knowledge and information.

Traditionally, the probability theory is the prevailing approach to handle this in-

completeness or uncertainty. One of the fundamentals in the probability theory is the

law of the exclude middle (p(A∪Ac) = 1) and contradiction (p(A∩Ac) = 0). For

instance, a fruit is either a banana or not a banana, an animal(normally speaking) is

either male or female. For this case, the probability is certainly a good approach to

represent some knowledge or information whose boundaries can be clearly defined.

Throwing coins into air, you can guess that either heads or tails will be up. Rotating

a dice, the result will be 1, 2, 3, 4, 5, or 6, but never be 3.5 or 2.8. So of course, there

are a lot of problems satisfying the laws of the excluded middle and contradiction.

However, intuitively and common sensibly, this is not true in other problems. An

evidence favoring a particular hypothesis to some degree does not simultaneously

disconfirm it to any degree, because it may not give any support to the contrary.

For example, a man may be smart, not smart, or a little smart. A color can be red,

no red, or reddish. Therefore, it is difficult to define the sets of smart men and red

colors with sharp/crisp boundaries. Similarly, how can we define the classify “good

shooter”, “beautiful lady”, “good personality” and so on? Obviously, the probability

theory can not model all the possible problems of incompleteness. The fuzzy set

theory is developed to define and solve these problems without sharp boundaries.

That is: fuzzy set theory considers the partial relationship or membership.

Examples of fuzzy sets

To clearly distinguish the fuzzy sets from the classically crisp sets, let us first con-

sider the following examples.

Example 1.1. In the classical set theory, an element may either “belong to” set A or

“not belong to” set A in the given universe. Suppose there is a rather large target and

shooters always hit inside the target U (see Figure 1.1). A circle is located in the

center of the target. If a shooter hits inside the circle, region A, he is given the title

“good shooter.” Otherwise, he is called a “poor shooter.”

It is clear that shooter s1 shoots inside region A, so he is a good shooter. On the

other hand, shooter s2, who shoots far away from region A, is a poor shooter. The

classical set theory with binary relationship shows some problems. For instance, if

there are three shooters, s3, s4 and s5, who hit the target within close range of one

another (see Figure 1.1), yet only s3 is within the target, then shooter s3 is a good

shooter, and shooter s4 and s5 are poor shooters. This is obviously unreasonable.

As a matter of fact, these three people should obtain some similar designation,

at least up to a certain degree. Therefore, a measure of degree to which the shooter

belongs to the set “good shooters” should be developed in order to discern how good

the shooter is. The set composed of good shooters is actually fuzzy because there is

no crisp boundary. It is rational to consider the distance from the boundary of the



1.1 Fuzzy Sets 3

Fig. 1.1 Graphic explanation for the fuzzy set of good shooter

region A as a measure for indicating the degree to which shooter si belongs to the

set of “good shooters”. In Figure 1.1, s1 and s3 are absolutely good shooters. On the

other hands, s4 and s5 are not absolutely good shooters or absolutely poor shooters.

They are, to some degree, good shooters. By giving a numerical measure which is

assumed linearly proportional to the distance, d, of each shooter from region A, one

can say that shooter s4 has 0.8 degree of membership in the set of good shooters

versus 0.2 for shooter s5. µ(s4) = 0.8 and µ(s5) = 0.2. Of course, the numerical

measure, µ , can be any number. A normalized measure which is [0, 1] is always

adapted. In the above example, the preference concept is implied while assigning

the numerical measures for each shooter to represent the degree of ” a good shooter

belonging to the set of good shooters.” The shorter the hit spot is from the center of

the target, the larger the grade assigned (small d is preferred to large d). The grade

values are actually preference values. The function µ (called membership function

in fuzzy set theory), constituted by these grades as shown in Figure 1.1, is then a

preference function.

Similarly, in practice, the decision maker may feel that: “Around $20,000 profit

is acceptable;” “The budget should be around $9,000;” “Dividends should be higher

than 6%;” “Overcome should be less than 5% of the regular man-hours;” and so on.

Obviously, these linguistic statements cannot be described by probability. The fuzzy

set theory, on the other hand, gives us a way to handle such linguistic situation.

Meanwhile, the preference concept is often assumed in building the membership

functions of the above linguistic statements.

In order to be able to more clearly understand the fuzzy sets concept, let us consider

two more examples.



4 1 Fuzzy Set Theory

Example 1.2. Consider a universe composed of 4 female students with the same

height of 165cm, Zhang, Wang, Li and Zhao. That is, U = {Smith, Johnson, Carson,

Williams}. The weights for the 4 female students are given as follows:

Smith : 55kg, Johnson : 75kg, Carson : 65kg, Williams : 50kg.

Now, let us consider the linguistic proposition “fat female students.” The students

who belong to “fat female students” then constitute a fuzzy set, A. Is Smith ∈ A,

Johnson ∈ A, Carson ∈ A or Williams ∈ A?

One plots the weights on a real line (see Figure 1.2) in order to present the rela-

tive differences. According to common sense, a female student weighting more than

75kg at 165cm in height is absolutely considered a fat female student (actually “fat”

depends on culture, race, etc., which are beyond or research). On the other hand, a

female student weighting less than 50kg is not fat at all. Therefore, it is obvious that

Johnson is absolutely fat and Williams is absolutely not fat. How about Smith and

Carson? Actually Smith approaches Williams with respect to weight and Carson is

close to Wang. It is true that heavier the female students is, the greater the degree to

which he belongs to fuzzy set A. Thus, a degree-scaled line (see Figure 1.2) can be

drawn corresponding to previous weight-scaled line in order to represent the degree

of membership indicating that a female student belongs to A. The scale on the degree-

scaled line is linearly proportional to the weight-scaled line when the weight belongs

to the interval [50, 75]. As a result, the following grades of membership are available:

degree(Smith∈ A) = µ(x = Smith) = 0.2,

degree(Johnson∈ A) = µ(x = Johnson) = 1,

degree(Carson∈ A) = µ(x = Carson) = 0.8,

degree(Williams∈ A) = µ(x = Williams) = 0

where µ(·) (detailed definition is given in the next section) is the membership func-

tion of the fuzzy subset A of the set U . Like the previous example, the preference

concept is used to elicit the membership function µ(·).

Fig. 1.2 Derived degree of membership for the fuzzy set A
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Example 1.3. Consider the statement of “the interest rate will be around 8% to

8.5%.” The most possible interest rate is between 6% (optimistic value) and 10%

(pessimistic value). It is not like that the interest rate will be less than 6% or larger

than 10% in the opinion of the decision maker. Thus, we give 8% - 8.5% interest

rate as 1 possibility, and 6% or less than and 10% or more a 0 possibility. Between

them, let us assume the grades are as shown in Figure 1.3. Here, we did not use the

preference concept to grade various interest rates, but used the possibility concept:

most possible, least possible, or in between. Therefore, we call this membership

function a possibility function or possibility distribution, denoted by π(·).

Fig. 1.3 The membership(possibility) function of the interest rate

Definition of a fuzzy set

Let U be the universe which is a classical set of object, and the generic elements are

denoted by x. The membership in a crisp subset of A is often viewed as characteristic

function πA from U to {0,1} such that:

πA(x) =

{
1 iff x ∈ A

0 otherwise
(1.1)

where {0,1} is called a valuation set.

If the valuation set is allowed to be the real interval [0,1], A is called a fuzzy set.

µA(x) is the degree of membership of x in fuzzy set A. The closer the value of µA(x)
is to 1, the more x belongs to A. Therefore, A is characterized by the set of ordered

pairs:

A = {(x,µA(x))|x ∈U}. (1.2)

It is worth noting that the characteristic function can be either a possibility distri-

bution function as shown in Example 1.1, or a membership function as shown in

Examples 1.2. If the possibility distribution is preferred, the characteristic function
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will be specified as π(x). On the other hand, if the membership function is preferred,

then the characteristic function will be denoted as µ(x).
Along with the expression of (1.2), the following notations are also proposed.

When U is a finite set {x1,x2, · · · ,xn}, a fuzzy set A is then expressed as:

A = µA(x1)/x1 + · · ·+ µA(xn)/xn = ∑
i

µA(xi)/xi. (1.3)

When U is not a finite set, A then can be written as:

A =
∫

U
µA(x)/x. (1.4)

Example 1.4. For Example 1.2 in section 1.1, A can be expressed as:

A = µA(Zhang)/Zhang+ µA(Wang)/Wang+ µA(Li)/Li+ µA(Zhao)/Zhao

= 0.2/Zhang+ 1/Wang+ 0.6/Li+ 0/Zhao.

Example 1.5. Let U = {10,20,30,40,50,60,70,80,90,100}, the possible speed

(mph) at which makes people feel comfortable in traveling a long distance. Then

the fuzzy set “comfortable speed for long distance travel” may be defined by an

individual as:

A = {(0.7,30),(0.75,40),(0.8,50),(0.8,60),(1,70),(0.8,80),(0.3,90)}.

Example 1.6. Let U = {Positive real numbers}, which is an infinite set. Then, the

fuzzy set A = “real numbers close to 10” (see Figure 1.4) may be defined as:

A = {(x,µA(x))},where µA(x) =
1

1 +[1/5(x−10)]2
.

Fig. 1.4 The fuzzy set “real numbers close to 10”
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1.2 Basic Concepts of Fuzzy Sets

The basic concepts presented here include complement, intersection, union, alge-

braic product, algebraic sum, difference, support, α-cut, convexity, normality, car-

dinality, and the mth power of a fuzzy set A.

Complement

The complement of fuzzy set A, denoted by Ā, is defined as:

µĀ(x) = 1− µA(x), ∀x ∈U. (1.5)

Example 1.7. Consider Example 1.5 in section 1.2. The complement of fuzzy set

A, “comfortable speed for long distance travel,” Ā, “uncomfortable speed for long

distance travel” is computed as:

Ā = {(1,10),(1,20),(0.3,30),(0.25,40),(0.2,50),(0.2,60),(0.2,80),(0.7,90)}.

For a case in this example, the membership grade µĀ(x) at x = 30 is computed as:

µĀ(30) = 1− µA(30) = 0.3.

Since one has the most comfortable feeling at 70 mph, i.e., µA(70) = 1, it is not

possible to include x = 70 in Ā.

Example 1.8. Consider the fuzzy set “real numbers close to 10” (see Figure 1.4). Its

complement set is represented by the dashed curve in Figure 1.4. This complement

set may be interpreted as “real numbers not close to 10.”

Intersection

The intersection of A and B denoted by A
⋂

B which is the largest fuzzy subset

contained in both fuzzy subsets A and B. When the min operator is used to express

the logic “and”, its corresponding membership is then characterized by:

µA
⋂

B = min(µA(x),µB(x)) ∀x ∈ X

= µA(x)
∧

µB(x),
(1.6)

where ∧ is conjunction here.

Example 1.9. Consider U = {Smith,Johnson, Carson,Williams}. Suppose A is the

fuzzy subset of “good looking students” and B is the fuzzy subset of “intelligent

students”. The following data are also assumed:

A = 0.2/Smith+ 0.3/Johnson+ 0.6/Carson+ 0.8/Williams,

B = 0.7/Smith+ 0.4/Johnson+ 0.1/Carson+ 0.5/Williams.
(1.7)
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Then, the intersection of A and B (if the min-operator is adopted) A
⋂

B = 0.2/Smith+
0.3/Johnson+0.1/Carson+0.5/Williams which is the fuzzy subset of “good look-

ing and intelligent student”. Besides,
∧

is considered as a hard “and”.

Union

The union of A and B which denoted by A
⋃

B is dual to the notation of intersection.

Thus, the union of A and B is defined as the smallest fuzzy set containing both A

and B. The membership function of A
⋃

B is given by:

µA
⋃

B = max(µA(x),µB(x)) ∀x ∈ X

= µA(x)
∨

µB(x),
(1.8)

where ∨ is disjunction.

For Example 1.9, the union of A and B (if the max-operator is adopted) A
⋃

B =
0.7/Smith+0.4/Johnson+0.6/Carson+0.8/Williams is the fuzzy subset of “good

looking or intelligent student”. Besides,
∨

is considered as a hard “or”.

Algebraic product

The algebraic product AB of A and B is characterized by the following membership

function:

µAB = µA(x)µB(x) ∀x ∈ X . (1.9)

This algebraic product is considered as a soft “and” .

For Example 1.9, AB = 0.14/Smith + 0.12/Johnson + 0.06/Carson + 0.4/
Williams is the fuzzy subset of “good looking and intelligent student”.

Algebraic sum

The algebraic sum A⊕B of A and B is defined by the following membership func-

tion:

µA⊕B = µA(x)+ µB(x)− µA(x)µB(x) ∀x ∈ X . (1.10)

This algebraic sum is considered as a soft “or”.

For Example 1.9, A⊕ B = 0.76/Smith + 0.58/Johnson + 0.64/Carson + 0.9/
Williams is the fuzzy subset of “good looking or intelligent student”.

Difference

The difference A−B of A and B is defined by:

µA
⋂

Bc(x) = min(µA(x),µBc(x)) ∀x ∈ X , (1.11)

where Bc is the complement of B.
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For Example 1.9, we have A−B as shown in the following Table 1.1:

Table 1.1 Solutions of example 1.9

x Smith Johnson Carson Williams

µA(x) 0.2 0.3 0.6 0.8

µB(x) 0.7 0.4 0.1 0.5

µA
⋂

B(x) 0.2 0.3 0.1 0.5

µA
⋃

B(x) 0.7 0.4 0.6 0.8

µAB(x) 0.14 0.12 0.06 0.4

µA⊕B(x) 0.76 0.58 0.64 0.9

µBc(x) 0.3 0.6 0.9 0.5

µA
⋂

Bc(x) 0.2 0.3 0.6 0.5

Support and α-cut

Sometimes, we might only need objects of a fuzzy set instead of its characteristic

function, that is, to transfer a fuzzy set into a crisp set. In order to do so, we need

two concepts, support and α-cut.

It is often necessary to consider those elements in a fuzzy set which have non-

zero membership grades. These element are the support of that fuzzy set.

Definition 1.1. (Zadeh [12]) Given a fuzzy set A, its support S(A) is an ordinary

crisp subset on U defined as

S(A) = {x|µA(x) > 0 and x ∈U}. (1.12)

Example 1.10. Consider Example 1.2 in section 1.1, supp A = {Zhang, Wang, Li},
where Zhao does not belong to supp A because of µ(Zhao) 
> 0.

Definition 1.2. (Zadeh [12]) Given a fuzzy set A, its α-cut Aα defined as

Aα = {x|µA(x)≥ α and x ∈U}, (1.13)

where α is the confidence level.

It is obviously that the α-cut of a fuzzy set A is an ordinary crisp subset whose

elements belongs to fuzzy set A - at least to the degree of α . That is, for fuzzy set A

its α-cut is defining as (1.13) and is denoted by (see Figure 1.5):

The α-cut is a more general case of the support of a fuzzy set, when α = 0,Aα =
supp(A).

Example 1.11. Consider the Example 1.2 in section 1.1,

A0.2 = {Smith, Johnson, Carson}

and

A0.5 = {Johnson, Carson}.
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Fig. 1.5 An α-set

Example 1.12. Consider the example 1.5 in section 1.2, the support of fuzzy set A,

“comfortable speed for long distance”, is given as:

S(A) = {30,40,50,60,70,80,90},

where all these x values have their corresponding µA(x) > 0.

By setting α = 0.5, we obtain

A0.5 = {30,40,50,60,70,80},

where x = 90 is discarded since µA(90) < 0.5. If we set α = 0.9, A0.9 = {70}.

Example 1.13. Consider the fuzzy set “real numbers close to 10” used in Example

1.8. Its support is any real number between [5,15]. And its α-cut at degree of 0.5 is

any real number between [6,14]. That is, the set of real numbers that have at least

0.5 membership value is between 6 and 14 (inclusive).

By definition 1.3, the α-cut Aα of the fuzzy number A is actually a close interval of

the real number field, that is,

Aα = {x ∈ R|µA(x)≥ α}= [AL
α ,AR

α ], α ∈ [0,1],

where AL
α and AR

α are the left and the right extreme points of the close interval.

Example 1.14. Given fuzzy number A with membership function

µ
Ã
(x) =

⎧
⎨
⎩

L( a−x
l ), if a− l ≤ x < a, l > 0

1 if x = a

R( x−a
r

), if a < x≤ a + r,r > 0,

and the basis functions L(x), R(x) are continuous un-increasing functions, and

L,R : [0,1]→ [0,1], L(0) = R(0) = 1, L(1) = R(1) = 0, then Ã is LR fuzzy number,

denoted by Ã = (a, l,r)LR,
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where a is the central value of Ã, l,r > 0 is the left and the right spread.

α-cut Aα of the LR fuzzy number Ã is

Aα = [AL
α ,AR

α ] = [a−L−1(α)l,a + R−1(α)r], α ∈ [0,1].

We use the Figure. 1.6 to explain.

Fig. 1.6 α-cut of LR fuzzy number

Example 1.15. Especially, when L(x) = R(x) = 1− x, this kind of LR-type fuzzy

number is called triangular fuzzy number, denoted as Ã = (a− l,a,a + r).

The α-cut Aα of Ã is

Aα = [AL
α ,AR

α ] = [a− (1−α)l,a +(1−α)r], α ∈ [0,1]. (1.14)

And we use the Figure. 1.7 to explain.

Fig. 1.7 α-cut of triangular fuzzy number

Although characteristic function can be assigned by any number, a normalized value

between 0 and 1 is always preferred. Thus let us introduce the normality as follows.
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Normality

A fuzzy set A is normal if and only if sup
x

µA(x) = 1, that is, the supreme is unity (see

Figure 1.5). A fuzzy set is subnormal if it is not normal. A non-empty subnormal

fuzzy set can be normalized by dividing each µA(x) by the factor sup
x

µA(x). (A fuzzy

set is empty if and only if µA(x) = 0, ∀ x ∈U).

It is noted that a characteristic function is always a normalized function through

this study.

Convexity

A fuzzy set A in U is convex if and only if for every pair point x1 and x2 in U , the

membership function of A satisfies the inequality:

µA(λ x1 +(1−λ )x2)≥min(µA(x1),µA(x2)), (1.15)

where λ ∈ [0,1] (see Figure 1.8). Alternatively, a fuzzy set is convex if all α-level

sets are convex.

Fig. 1.8 A convex fuzzy set

Dually, A is concave if its complement Ac is convex. It is easy to show that if A

and B are convex, so is A
⋂

B. Dually, if A and B are concave, so is A
⋃

B.

Cardinality of a fuzzy set

The cardinality of fuzzy set A evaluates the proportion of elements of U having the

property A. When U is finite, it is defined as:

|A|= ∑µA(x), x ∈U. (1.16)
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For infinite U the cardinality is defined as:

|A|=
∫

x
µA(x)dx. (1.17)

The relative cardinality of A is defined as:

||A||= |A|
|U | . (1.18)

The relative cardinality can be interpreted as the proportion of elements of U being

in A weighted by their degree of membership in A.

Example 1.16. For the fuzzy set A, “comfortable cruising speed for long distance

travel” in Example 1.5 in section 1.1, its cardinality |A| and relative cardinality ||A||
are computed as:

|A|= 0.7 + 0.75 + 0.8+0.8 +1+0.8+0.3 = 5.15,

||A||= 5.15
10 = 0.515.

The mth power of a fuzzy set

The mth power of fuzzy set A is defined as:

µAm = [µA]m. (1.19)

It is very useful in modelling linguistic modifiers into fuzzy sets. For example, the

second power of a fuzzy set, “good”, is interpreted as “very good” where “very” is

the linguistic modifier used to modify fuzzy set “good”.

Example 1.17. Let fuzzy set A be in Table 1.2.

Table 1.2 Fuzzy set A in Example 1.17

x 3 4 5 6 7 8 9 10

µA 0 0 0.2 0.4 0.6 0.8 1 0

The second power of A is computed as in Table 1.3.

For instance, µA2 = [µA(7)]2 = 0.36.

Table 1.3 Second power of A

x 3 4 5 6 7 8 9 10

µA2 0 0 0.04 0.16 0.36 0.64 1 0
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1.3 Fuzzy Number

Fuzzy arithmetics is a direct application of the Extension principle, and is used

on fuzzy numbers. Some works related to fuzzy number operations are from

Jain[300], Mizumoto and Tanaka[301, 302], Baas and Kwakernaak[303], Dubois

and Prade[71, 305], Dijkman, Haeringen, and Delange[307], Gupta[308], Kauf-

mann and Gupta[309] among others have been.

Definition of fuzzy numbers

The term fuzzy number is used to handle imprecise numerical quantities, such as

“close to 10,” “about 60,” “several,” etc. A general definition of a fuzzy number is

given by Dubois and Prade[71, 305]: any fuzzy subset M = {(x,µ(x))} where x

takes its number on the real line R and µM(x) ∈ [0,1].

Definition 1.3. (Dubois [71]) Let A be a fuzzy set, its membership function is µA :

R→ [0,1], if

(i) A is upper semi-continuous, i.e., α-cut Aα is close set, for 0 < α ≤ 1.

(ii) A is normal, i.e., A1 
= /0.

(iii) A is convex, i.e., Aα is a convex subset of R, for 0 < α ≤ 1.

(iv) The closed convex hull of A A0 = cl[co{x ∈ R,µA(x) > 0}] is cored.

then A is a fuzzy number.

A fuzzy number may be represented in discrete or continuous form. For example,

Let M be the fuzzy number “about 60” which may be given as either one of the

following:

(1) Discrete membership function: Given the universe

U = {10,20,30,40,50,60,70,80,90,100},

the fuzzy number M may be represented as shown in Figure 1.9.

(2) Continuous membership function: Given the universe U = {real numbers},
the continuous membership function for M may be represented as (see Figure 1.10):

µM(x) = (1 +(
x−60

10
)2)−1.

Special fuzzy numbers

Since special fuzzy numbers are proposed to reduce the amount of computational

effort, so let’s focus on the following cases. So far, triangular numbers (Laarhoven

and Pedrycz[310]), trapezoidal numbers (Buckley[311, 312]), LR fuzzy numbers

(Dubois and Prade[305], Bonissone [313, 314]) have been applied to various deci-

sion models. Figure 1.11 and Figure 1.12 present some special fuzzy numbers. We

can interpret the fuzzy number M with a unique peak as a fuzzy quantity “approx-

imately m”, and a trapezaoidal number may be seen as a fuzzy quantity “approxi-

mately in the interval of [m1,m2].”
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Fig. 1.9 A discrete fuzzy number M

Fig. 1.10 A continuous fuzzy number M

LR fuzzy number

Definition 1.4. (Dubois [305]) A function denoted by L or R is a reference function

of fuzzy numbers iff

(i) L(x) = L(−x);
(ii) L(0) = 1;

(iii) L(x) is nonincreasing on [0,+∞).

The following functions can be the reference function of LR fuzzy number:

(1) L(x) = max{0,1−|x|p}, p≥ 0.

(2) L(x) =

{
1, x ∈ [−1,1]
0, x /∈ [−1,1].

(3) L(x) = 1
1+|x|p , p≥ 0.

(4) L(x) = exp{−|x|p}, p≥ 0.
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Fig. 1.11 LR type fuzzy numbers.

Definition 1.5. (Dubois [305]) Let L(x),R(x) be the reference function of fuzzy

number M, A fuzzy number M is said to be LR type iff

µM(x) =

{
L(m−x

α ), x≤ m,α > 0

R( x−m
β ), x > m,β > 0,

(1.20)

where m is the “mean” of fuzzy number M and α , β are the left and right “spreads”,

respectively.

It is often written as (see Figure 1.11): M = (m,α,β ). When α = β = 0, M is

considered a crisp number m. And when α and β increase gradually, the fuzzy

number M turns to be fuzzier.

If the peak is not unique, the LR number M has a flat region. That is, the ker-

nel Ker(M) of LR fuzzy number is a close interval [m1,m2], and the membership

function has not only a peak value point (the point which make the value of the

membership function the biggest), but a curve with flat. It can be written as (see

Figure 1.11):

M′ = (m1,m2,α,β ).

Triangular and trapezoidal fuzzy number

Let x, l, m, n ∈ R. A triangular fuzzy number M is defined as (see Figure 1.12):

µM(x) =

⎧
⎪⎪⎨
⎪⎪⎩

0, x≤ l

(x− l)/(m− l), l < x≤ m

(n− x)/(n−m), m < x≤ n

0, x≥ n.

(1.21)

In Figure 1.12, M = (l,m,n) with l and n being the lower and upper bounds of fuzzy

number M.



1.4 Fuzzy Arithmetic 17

Fig. 1.12 Triangular and trapezoidal fuzzy numbers.

When there are multiple peaks, fuzzy number M is represented by

M′ = (a,b,c,d),

with the [b,c] interval being the most likely values for M′ and any value below a

and above d being totally impossible. The membership value decrease gradually (or

linearly) from b to a and from c to d.

It is clear that the triangular (or trapezoidal) number is a more restricted from

than the LR fuzzy number, in that all “legs” must be linear. Furthermore, we find

that

M = (l,m,u) = (m,α,β ),

where α = m− l and β = u−m. Similarly, we find that

M′ = (a,b,c,d) = (b,c,α,β ),

where α = b−a and β = d− c. The characteristics of M and M′ in Figure 1.11 and

Figure 1.12 remain the same.

We have four different formulas. Each has its own algebraic operation formula.

1.4 Fuzzy Arithmetic

After defining a fuzzy number, we now discuss the basic operations of two fuzzy

numbers, which are based on Zadeh’s Extension principle[22] as defined below.

Decomposition theorem and extension principle

Decomposition theorem and extension principle is the bridge to link the general sets

and the fuzzy sets. By α-cut and Decomposition theorem, we can transform the

fuzzy sets to general sets to tackle, its the basis of fuzzy arithmetics.
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Theorem 1.1. [19] (Decomposition theorem) Let A be the fuzzy set of the universe,

Aα is the α-cut of A, α ∈ [0,1], then

A =
⋃

α∈[0,1]

αAα ,

where αAα is the dot product of constant and a general set, it can be defines as a

special set in U.

µαAα (x) = αµAα (x) =

{
α, x ∈ Aα

0, x /∈ Aα .

We can get from the Decomposition theorem that any of the fuzzy sets can be

seemed as a group of general sets.

In 1965, Zadeh introduced the Extension principle to extend the analytical meth-

ods of general sets to the theories of fuzzy sets. Same as decomposition theorem,

extension principle is a basic theorem in fuzzy mathematics. As noted by Dubois

and Prade[23], the Extension principle introduce by Zadeh[12, 13, 19] and others is

one of the most basic ideas of fuzzy set theory. It is used to generalize non-fuzzy

(crisp) mathematical concepts into fuzzy quantities. An important field of applica-

tions for the extension principle is given by algebraic operations such as addition

and multiplication. We shall give the definition of the Extension principle first and

extend from it to fuzzy algebraic operations.

Before introducing the Extension principle, we have to define the concept of

cartesian product first.

Definition 1.6. (Zadeh [22]) Let U be a cartesian product of universe, U = U1×
·· · ×Un and A1, · · · ,An be n fuzzy sets in U1, · · · ,Un, respectively. The cartesian

product of A1, · · · ,An is defined as:

C = A1×·· ·×An =
∫

UA1
×···×UAn

(x1, · · · ,xn)/min(µA1
(x1), · · · ,µAn(xn)).

That is, the membership function of the cartesian product of A1, · · · ,An is

µA1×···×An(x1, · · · ,xn) = min(µA1
(x1), · · · ,µAn(xn)).

Example 1.18. Let fuzzy sets A and B be in Table 1.4

Table 1.4 Fuzzy set A and B in Example 1.18

x 3 4 5 6 7 8 9 10

µA 0 0 0.2 0.4 0.6 0.8 1 0

µB 0 0.5 0.7 1 0.7 0.5 0 0
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The cartesian product of A and B is:

A×B = {[(5;4),0.2], [(5;6),0.2], [(5;8),0.2], [(6;4),0.4], · · ·
[(8;8),0.8], [(9;4),0.5], [(9;6),0.7], [(9;8),1]}.

There is a total of 15 elements which are pairs of each element in A and each element

in B. As a demonstration, we derive

µA×B(6;4) = min[µA(6),µB(4)] = min[0.4,0.5] = 0.4.

It follows that the Extension principle can be defined as follows.

Theorem 1.2. [22](Extension principle) Let X be a Cartesian product of universes

Xi, i = 1,2, · · · ,r with X = X1×X2×·· ·×Xr. Ai, i = 1,2, · · · ,r are the corresponding

fuzzy subsets in Xi. f is a mapping from X to a universe Y defined by (x1, · · · ,xr)→
y = f (x1, · · · ,xr). Then

B̃ = {(y,µ
B̃
(y))|y = f (x1, · · · ,xr),and (x1, · · · ,xr) ∈ X},

with

µ
B̃

=

⎧
⎨
⎩

sup
(x1,··· ,xr)∈ f−1(y)

min{µ
Ã1

(x1), · · · ,µ
Ãr

(xr)}, if f−1(y) 
= /0

0, otherwise
(1.22)

is a fuzzy set in Y .

Note that Equation (1.22) is true only when the inverse of f is not zero, i.e., f−1(y) 
=
0. When f−1(y) = 0, µ

B̃
(y) = 0. µ

B̃
(y) is the greatest among the membership values

µA1×···×An(x1,

· · · ,xn) of the realization of y using n-tuples (x1, · · · ,xn).
The special case for n = 1 gives:

µ
B̃
(y) =

{
µA( f−1(y)), if f−1(y) 
= 0

0, otherwise.
(1.23)

Example 1.19. This example shows we can use the Extension principle to extend a

crisp algebraic operation into a fuzzy one. Let fuzzy set A1 and A2 be in Table 1.5:

Table 1.5 Fuzzy set A1 and A2 in Example 1.19

x1,x2 2 3 4 5 6 7

µA1
(x1) 0 0.4 1 0.7 0 0

µA2
(x2) 0 0.1 0.8 1 0.3 0

Based on the crisp algebraic function, f (x) = 2x1 + x2, the composition of A1 and

A2 is completed using the Extension principle as in Table 1.6:
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Fig. 1.13 Extension principle

Table 1.6 Composition of A1 and A2 in Example 1.19

y = 2x1 +x2 6 7 8 9 10 11 12 13 14 15 16 17

µB(y) 0 0 0.1 0.1 0.4 0.4 0.8 1 0.7 0.7 0.3 0

For instance, to get µB(12) we know the possible (x1,x2) pairs such that 12 =
2x1 + x2 are in Table 1.7:

Table 1.7 Possible (x1,x2) pairs in Example 1.19

x1 3 4 5

x2 6 4 2

The corresponding µA1
(x1) and µA2

(x2) and their minimums are in Table 1.8:

Table 1.8 µA1
(x1) and µA2

(x2) in Example 1.19

µA1
(x1) 0.4 1 0.7

µA2
(x2) 0.3 0.8 0

µA1
(x1)∧µA2

(x2) 0.3 0.8 0

Thus, µB(y = 12) = max[0.3,0.8,0] = 0.8.
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In general,

B̃ = f (Ã1×·· ·× Ãr).

Because

f−1(y) =
⋃

f (x1,··· ,xr)=y

(
r⋂

k=1

(Xk = xk)

)
,

we have

µ
B̃
(y) = maxmin

{
µÃ1(x1), · · · ,µÃr(xr)

}
.

Therefore, Extension Principle extends set operation from crisp set to fuzzy set when

algebra sum is replaced by sup(max) and algebra product is replaced by min.

When r = 1 in Theorem 1.2, then

B̃ =
{
(y,µ

B̃
(y))|y = f (x),x ∈ X

}
= f (Ã),

where

µ
B̃

=

{
sup

f (x)=y

µ
Ã
(x), if f−1(y) 
= /0

0, otherwise.

Example 1.20. Consider a fuzzy set Ã = {(−1,0.5),(0,0.8),(1,1),(2,0.4)} and

a function f (x) = x2 + 1 as shown in Figure 1.14. Then, B̃ = f (Ã) =
{(1,0.8),(2,1),(5,0.4)}.

Fig. 1.14 Extension principle with r = 1

Example 1.21. Consider the following fuzzy sets:

F(R) = {fuzzy numbers},
F(R+) = {positive fuzzy numbers},
F(R−) = {negative fuzzy numbers}.

For a unary operation F defined by F : R→ R and M̃ ∈ F(R), Extension principle

gives

µ
f (M̃)(Z) = sup

f (x)=z

µ
M̃

(x).
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Property 1.1. The Extension principle has the following properties:

(i) f (x) =−x, then µ−M̃
(x) = µ

M̃
(−x), ∀ M̃ ∈ F(R);

(ii) f (x) = 1
x
, then µ

M̃−1(x) = µ
M̃

(
1
x

)
, ∀ M̃ ∈ F(R+) or F(R−);

(iii) f (x) = λ · x(λ 
= 0), then µλ M̃
(x) = µ

M̃

(
f (x)
λ

)
, ∀ M̃ ∈ F(R).

Define a binary operation by ∗ : R×R→ R, then for M̃, Ñ ∈ F(R), M̃(∗)Ñ is a fuzzy

number defined by

µM̃(∗)Ñ = sup
z=x∗y

min{µM̃(x),µÑ(y)}.

Because, by Decomposition theory,

µ
M̃

(x) =
∨
α

α ·Mα =
∨
α

α · [a(L)
α ,a

(U)
α ],

µ
Ñ
(y) =

∨
α

α · [b(L)
α ,b

(U)
α ].

Therefore,
µ

M̃(∗)Ñ(Z) =
∨
α

α · (Mα ∗Nα)

= (
∨
α

α ·Mα)∗ (
∨
α

α ·Nα)

= µ
M̃(Z)(∗)µ

Ñ(Z).

Lemma 1.1. [19] (M̃(∗)Ñ)α = Mα ∗Nα .

This implies fuzzy number operations by interval-valued operations. Thus, if * is

commutative, (*) is commutative, and if * is associative, (*) is associative too.

Addition of fuzzy numbers

The addition of two fuzzy numbers M and N may be done in two different ways.

(1) Use of α-cut: Let’s define the α sets for M and N using the intervals of

confidence as:

Mα = [m1,m2] (1.24)

and

Nα = [n1,n2]. (1.25)

The addition of M and N may be rewritten as:

Mα(+)Nα = [m1 + n1,n1 + n2]. (1.26)

This is equivalent to adding two intervals of confidence level by Kaufmann and

Gupta[309].

(2) Use of max-min convolution: Let ∀x,y,z,∈ R. Then the addition of M and N

equals

µM(+)N(z) = max
z=x+y

(µM(x)+ µN(y)). (1.27)

One can see that equation 1.27 is an example of the Extension principle.
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For fuzzy numbers similar to the one in Figure 1.9, we would use max-min con-

volution to get the sum of their addition. For fuzzy numbers similar to the one in

Figure 1.10, we would use α-cut to get the sum of their addition. Note, however,

that different addition operations may be used interchangeably.

It has been proved by Kaufmann and Gupta[309] that equation (1.26) and (1.27)

describe the same operation. Let x,y,z ∈ R, then the addition of M and N can be

computed using

µMα (+)Nα
(z) = max

z=x+y
(µMα (x)+ µNα (y)). (1.28)

Assume that µM(x) = 1, if x∈ [m1,m2]. Otherwise, µM(x) = 0. Similarly, µN(y) = 1,

if y ∈ [n1,n2]. Otherwise µN(y) = 0. Thus, for all x and y such that µM(x) = 1 and

µN(y) = 1, the right side of equation (1.28) gives 1. If not, equation (1.28) gives 0.

And since z = x + y. We write

z = [m1 + n1,m2 + n2], (1.29)

equation (1.29) may be regarded as another form of equation (1.28).

Property 1.2. The properties of fuzzy addition can be summarized as follows:

(i) Commutative: M(+)N = N + M;

(ii) Associative: (M(+)N)(+)K = M(+)(N(+)K);
(iii) If a neutral exists at the left and the right, if is the real number 0. Thus M(+)0 =
0(+)M = M;

(iv) Nonsymmetric: M(+)(−N) = (−N)(+)M 
= 0 where −N is the image of N

with membership function µ−N(x) = µN(−x).

We shall use the following examples to show the computational procedure of each

fuzzy addition operation.

Example 1.22. (Discrete case) Let M represent “integers close to 3” and N represent

“integers close to 2”, as shown in Table 1.11.

Table 1.9 Fuzzy numbers M and N

x,y 0 1 2 3 4 5 6

µM(x) 0 0.3 0.8 1 0.5 0.1 0

µN(y) 0 0.6 1 0.9 0.4 0 −

Their addition is summarized below.

Table 1.10 Addition of fuzzy numbers M and N

z = x+y 1 2 3 4 5 6 7 8 9 10

µM(+)N(z) 0 0.3 0.6 0.8 1 0.9 0.5 0.4 0.1 0
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Table 1.11 Membership values, and µM(x)∧µN(y)

x 0 1 2 3 4 5 6

y 6 5 4 3 2 1 0

µM(x) 0 0.3 0.8 1 0.5 0.1 0

µN(y) − 0 0.4 0.9 1 0.6 0

µM(x)∧µN(y) 0 0 0.4 0.9 0.5 0.1 0

For instance, to get µM(+)N(z = 6), the possible (x,y) pairs, their corresponding

membership values, and µM(x)∧µN(y) are:

Thus, µM(+)N(z = 6) = max[0,0,0.4,0.9,0.5,0.1,0] = 0.9.

Example 1.23. (Continuous case) Let M represent “real numbers close to 2” and N

represent “real numbers close to 8” (see Figure 1.15), where

µM(x) =

⎧
⎪⎪⎨
⎪⎪⎩

0, x≤ 0

x/2, 0 < x≤ 2

(4− x)/2, 2 < x≤ 4

0, x > 4,

µN(y) =

⎧
⎪⎪⎨
⎪⎪⎩

0, y≤ 3

(y−3)/5, 3 < y≤ 8

(11− y)/2, 8 < y≤ 11

0, y > 11.

The addition of M and N is illustrated as follows. The α-cut of M and N are:

Mα = [m1,m2],Nα = [n1,n2].

That is, at some α level, the x can be either m1 or m2, and y can take either n1 or n2.

Thus, if we set α = 1/2 for µM(x), we have α = m1/2, i.e., m1 = 2α . Similarly, we

can obtain other α-cut values as:

The addition of M and N at α level is computed based on equation (1.27) as:

M + N = [2α +(5α + 3),(−2α + 4)+ (−3α + 11)] = [7α + 3,−5α + 15].

Fig. 1.15 The fuzzy numbers M, N, M(+)N, and M(−)N
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Table 1.12 α-cut values

m1 m2 m3 m4

2α −2α +4 5α +3 −3α +11

Let Zα = [z1,z2] = [7α + 3,−5α + 15], then

α = (z1−3)/7, and α = (−z2 + 15)/5.

Consequently, we have Z = {(z,µZ(z))} (see Figure 1.15) where

µZ(z) =

⎧
⎪⎪⎨
⎪⎪⎩

0, z≤ 3

(z−3)/7, 3 < z≤ 10

(−z+ 15)/5, 10 < z≤ 15

0, z > 15.

From the example shown above, monotonicity, convexity, and normality are well

preserved by addition. The proof can be seen in Kaufmann and Gupta[309].

Theorem 1.3. [305] Let M = (m,α,β )LR, N = (n,γ,δ )LR, then we have M(+)N =
(m+ n,α + γ,β + δ )LR.

Example 1.24. Let M̃ = (m,α,β )LR = (4,2,3)LR, Ñ = (n,γ,δ )LR = (8,3,5)LR, and

the left and right reference functions are

L(x) =

{
0, if x <−1

(1 + x)
1
2 , if −1≤ x≤ 0,

R(x) =

{
1− x2, if 0≤ x≤ 1

0, if x > 1.

The membership function of M̃ and Ñ are as follows respectively.

µ
M̃

(x) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if x < 2

(1 + x−4
2 )

1
2 , if 2≤ x≤ 4

1, if x = 4

1− ( x−4
3 )2, if 4 < x≤ 7

0, if x > 7,

µ
Ñ
(x) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if x < 5

(1 + x−8
3 )

1
2 , if 5≤ x≤ 8

1, if x = 8

1− ( x−8
5 )2, if 8 < x≤ 13

0, if x > 13.

By Theorem 1.3, we have

M̃(+)Ñ = (m+ n,α + γ,β + δ )LR = (12,5,8)LR,

and the membership function is

µ
M̃(+)Ñ(x) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if x < 7

(1 + x−12
5 )

1
2 , if 7≤ x≤ 12

1, if x = 12

1− ( x−12
8 )2, if 12 < x≤ 20

0, if x > 20.
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Substraction of fuzzy numbers

The definition of substraction can also be defined by either α-cut or max-min con-

volution.

(1) Use of α-cut:

Mα(−)Nα = [m1−n2,m2−n1]. (1.30)

(2) Use of max-min convolution:

µM(−)N(z) = max
z=x−y

(µM(x)∧µN(y)). (1.31)

Since the image of fuzzy number N is given by

µ−N(x) = µN(−x), ∀x. (1.32)

equation (1.31) may be rewritten as:

µM(−)N(z) = max
z=x+(−y)

(µM(x)∧µN(−y)) = max
z=x+y

(µM(x)∧µ−N(y)). (1.33)

The substraction, M(−)N, is equivalent to the addition of the image of N to M,

M(+)(−N).
Because a negative number may appear as a result of substraction, the commu-

tative and associative properties cannot be preserved. However, since M and N are

fuzzy numbers, M(−)N must be a fuzzy number (Dubois and Prada[71, 305]).

Example 1.25. Let M and N be fuzzy numbers presented in Table. 1.11. The result

of M(−)N, Z, is computed as:

Table 1.13 Result of M(−)N

z -5 -4 -3 -2 -1 0 1 2 3 4 5

µZ(z) 0 0 0.3 0.4 0.8 0.9 1 0.6 0.5 0.1 0

Note that (−5,0) may be dropped from the fuzzy set since, by the definition of a

fuzzy number, any number smaller than -4 must have a membership value of 0. The

computational procedure for substraction is the same as for addition. For example,

to get µM(−)N(z = −1), the possible (x,y) pairs, their corresponding membership

values, and (µM(x)∧µN(y)) are:

Thus, µM(−)N(−1) = max[0,0.3,0.8,0.4,0,0] = 0.8.

Example 1.26. Let M and N be fuzzy numbers presented in Figure 1.15. They are

the same fuzzy numbers we used for addition. The α-cut of M and N are:
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Table 1.14 Result of (µM(x)∧µN(y))

x 0 1 2 3 4 5

y 1 2 3 4 5 6

µM(x) 0 0.3 0.8 1 0.5 0.1

µN(y) 0.6 1 0.9 0.4 0 -

µM(x)∧µN(y) 0 0.3 0.8 0.1 0 -

Table 1.15 α-cut values

m1 m2 m3 m4

2α −2α +4 5α +3 −3α +11

Based on equation (1.30), we have

Mα (−)Nα = [m1−n2,m2−n1] = [5α−11,−7α + 1].

Consequently, the membership function µM(−)N(z) is (see Figure 1.15):

µM(−)N(z) =

⎧
⎪⎪⎨
⎪⎪⎩

0, z≤−11

(z+ 11)/5, −11 < z≤−6

(1− z)/7, −6 < z≤ 1

0, z > 15.

Theorem 1.4. [305] Let M = (m,α,β )LR, N = (n,γ,δ )LR, then we have M(−)N =
(m−n,α + δ ,β + γ)LR.

Example 1.27. Let M̃ = (m,α,β )LR = (4,2,3)LR, Ñ = (n,γ,δ )LR = (8,3,5)LR, and

the left and right reference functions are

L(x) =

{
0, if x <−1

(1 + x)
1
2 , if −1≤ x≤ 0,

R(x) =

{
1− x2, if 0≤ x≤ 1

0, if x > 1.

By Theorem 1.4, we have

M̃(−)Ñ = (m−n,α + δ ,β + γ)LR = (−4,7,6)LR,

and the membership function is

µ
M̃(−)Ñ(x) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if x <−11

(1 + x+4
7 )

1
2 , if −11≤ x≤−1

1, if x =−4

1− ( x+4
6 )2, if −4 < x≤ 2

0, if x > 2.
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Multiplication of fuzzy numbers

The multiplication of fuzzy numbers is a little complicated because the signs of

fuzzy numbers must be considered. We shall consider case in which both M and N

are positive fuzzy numbers, i.e.,

µM(x) = 0, ∀x < 0 and µN(y) = 0, ∀y < 0.

Let Z be the product of the multiplication of M and N. Since µZ(z) increase mono-

tonically to the left of the peak (µZ(z) = 1) and decreases monotonically to the

right of the peak, the multiplication is done in the following manner (Kaufmann and

Gupta[309]):

(1) At the left, we take into account all pairs (x,y) such that xy ≤ z. That is ,the

left leg of µZ(z) is defined as:

µM(·)N(z) = max
xy≤z

(µM(x)∧µN(y)). (1.34)

(2) At the right, we take into account all airs (x,y) such that xy≥ z. That is, the right

leg of µZ(z) is defined as:

µM(·)N(z) = max
xy≥z

(µM(x)∧µN(y)). (1.35)

(3) To simplify the process, omit from consideration any (x,y) pair where either

µM(x) or µN(y) is zero. Conversely, we compute z for which µM(·)N(z) = 1. This

will show what value of z occurs when we pass from the left to the right of the peak.

When both M and N are continuous membership functions, their multiplication

is defined as:

Mα (·)Nα = [m1n1,m2n2]. (1.36)

equations (1.34),(1.35), and (1.36) are equivalent. This can be easily proved (as in

the case of addition).

Property 1.3. The properties of fuzzy multiplication can be summarized as below:

(i) When both M and N have the same sign, M(·)N can also be a positive fuzzy

number.

(ii) Since (−M)(·)N = −(M(·)N), we know M and N can take different signs

(Dubois and Prada[71, 305]).

(iii) The multiplication of fuzzy numbers M and N is commutative and associative,

i.e.,

M(·)N = N(·)M,

and

(M(·)N)(·)K = M(·)(N(·)K)).

(iv) If a neutral exists at the left and at the right, it is the real number 1 (Kaufmann

and Gupta[309]), i.e., M(·)1 = 1(·)M = M.
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(v) The inverse of M is M−1 and M(·)M−1 
= 1 where

M−1
α = [

1

m2
,

1

m1
].

Example 1.28. (Discrete case) Let M and N be the fuzzy numbers shown in Table.

1.11. By applying equations (1.34) and (1.35), we can obtain Z = M(·)N:

Table 1.16 Membership value of z

z 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

µZ(z) 0 0.3 0.6 0.6 0.8 0.8 1 0.9 0.9 0.9 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0

For instance, µM(·)N(6) is calculated as:

µM(·)N(6) = max[(µM(3)∧µN(2)),(µM(2)∧µN(3))] = 1.

There are no other z values where µM(·)N(z) = 1. Thus, for a z value less than 6, say

4, the membership function µM(·)N(4) can be derived as follows. For the (x,y) pairs

where xy≤ 4, we have (µM(x)∧µN(y)) as:

µM(x)∧µN(y) =

x | y 1 2 3 4

1

2

3

4

⎡
⎢⎢⎣

0.3 0.3 0.3 0.3
0.6 0.8 − −
0.6 − − −
0.5 − − −

⎤
⎥⎥⎦

Thus, µM(·)N(4) = max[0.3,03,0.3,0.3,0.6,0.8,0.6,0.5] = 0.8. Note that

(µM(2),µN(2)), (µM(1),µN(4)), and (µM(4),µN(1)) are not the only pairs

being evaluated.

For a z greater than 6, say 14, the membership value µM(·)N(14) is derived as

follows. For the (x,y) pairs where xy≥ 14 we have (see Table 1.17):

Table 1.17 Membership value µM(·)N(14)

x 4 5 5

y 4 4 3

µM(x)∧µN(y) 0.4 0.1 0.1

Thus, µM(·)N(14)= max
14≤xy

[0.4,0.1,0.1]= 0.4. Note that the pairs such as (µM(3)∧
µN(5)) are dropped from evaluation because µN(5) = 0.
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Example 1.29. (Continuous case) Let M and N be presented as in Figure 1.15. The

α level sets for M and N are the same as in the addition case:

Mα = [2α,−2α + 4],and Nα = [5α + 3,−3α + 11].

According to equation (1.36), we can obtain

Zα = Mα(·)Nα = [(2α)(5α + 3),(−2α + 4)(−3α + 11)]
= [10α2 + 6α,6α2−34α + 44].

We now solve the following two equations,

10α2 + 6α− z = 0, (1.37)

and

6α2−34α + 44− z = 0. (1.38)

The roots for equations (1.37) and (1.38) are:

α = (−6 +(36 + 40z)0.5)/20,and α = (34− (100 + 24z)0.5)/12.

Thus, we have (see Figure 1.16),

µM(·)N(z) =

⎧
⎪⎪⎨
⎪⎪⎩

0, z≤ 0

(−6 +(36 + 40z)0.5)/20, 0 < z≤ 16

(34− (100 + 24z)0.5)/12, 16 < z≤ 44

0, z > 44.

Fig. 1.16 Fuzzy number M(·)N

Clearly, µM(·)N(z) is still a fuzzy number even though its left and right “legs” are no

longer linear.
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Division of fuzzy numbers

Division of two positive fuzzy numbers M and N can be defined as follows:

(1) For the left leg of M(:)N, we have

µM(:)N(z) = max
z≥x/y

(µM(x)∧µN(y)), ∀x,y,z. (1.39)

(2) For the right leg of M(:)N, we have

µM(:)N(z) = max
z≤x/y

(µM(x)∧µN(y)), ∀x,y,z. (1.40)

If M and N are continuous membership functions, we define

Mα(:)Nα = [m1/n2,m2/n1], n2 > 0 (1.41)

The division operation is an extension of multiplication, i.e., M(:)N = M(·)N−1

where N−1 is the inverse of N. Recall that N−1 can be written as (Dubois and Prada

[71, 305], Kaufmann and Gupta [309]):

µN−1(y) = µN(1/y) (1.42)

or

N−1
α = [

1

n2
,

1

n1
]. (1.43)

Thus, equations (1.39) and (1.40) can be easily revised to

µM(·)N−1(z) = max
z≥x(1/y)

(µM(x)∧µN(1/y)) = max
z≥xy

(µM(x)∧µN−1(y)) (1.44)

and

µM(·)N−1(z) = max
z≤x(1/y)

(µM(x)∧µN(1/y)) = max
z≤xy

(µM(x)∧µN−1(y)). (1.45)

And equation (1.42) can easily be written as equation (1.41):

Mα(·)N−1
α = [m1(

1

n2
),m2(

1

n1
)].

The computation of division is identical to that of multiplication. Because of this,

we shall omit numerical examples of division altogether.

Fuzzy max and fuzzy min

Dubois and Prada [71, 305] pointed out that the fuzzy max is the dual operation

with respect to union, while the fuzzy min is the dual operation with respect to
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intersection. It is easy to derive from foregoing statement the fuzzy max and the

fuzzy min as:

Mα(∨)Nα = [m1∨n1,m2∨n2], (1.46)

Mα(∧)Nα = [m1∧n1,m2∧n2], (1.47)

respectively, or

µM(∨)N(z) = max
z=x∨y

(µM(x)∧µN(y)), (1.48)

µM(∧)N(z) = max
z=x∧y

(µM(x)∧µN(y)), (1.49)

respectively. Graphically, the fuzzy max and the fuzzy min are presented in

Figs. 1.17 and 1.18.

Fig. 1.17 Example of the fuzzy max

Fig. 1.18 Example of the fuzzy min

The properties of the fuzzy max and the fuzzy min are summarized as follows:

(1) The fuzzy max and min are commutative and associative operations.

(2) Distributive: Let M,N and K be fuzzy numbers, then

min[M,max(N,K)] = max[min(M,N),min(M,K)]
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and

max[M,min(N,K)] = min[max(M,N),max(M,K)].

(3) Absorption: Given fuzzy numbers M and N,

max[M,max(M,N)] = M

and

min[M,max(M,N)] = M.

(4) De Morgan’s law: Given fuzzy numbers M and N, then

1−min(M,N) = max[1(−)M,1(−)N]

and

1−max(M,N) = min[1(−)M,1(−)N].

(5) Idempotence:

max(M,M) = M = min(M,M).

(6) Given fuzzy numbers M,N, and K,

M(+)max(N,K) = max[M(+)N,M(+)K].

The same property holds true for the fuzzy min.

(7) max(M,N)(+)min(M,N) = M(+)N.

Example 1.30. Let M and N be fuzzy numbers presented in Table 1.18.

Table 1.18 Fuzzy numbers M and N

x,y 1 2 3 4 5 6

µM(x) 0 0.7 1 0.4 0.2 0

µN(y) 0 0.3 1 0.6 0 −

The fuzzy max of M and N is computed as Table 1.19:

For instance, to obtain µmax(z = 3), the (x,y) pairs that satisfy 3 = x∨ y are:

Table 1.19 Fuzzy max of M and N

z = x∨ y 1 2 3 4 5 6

µmax 0 0.3 1 0.7 0.2 0

The corresponding µM and µN , and their minimum are in Table 1.20:

Thus, µmax(3) = max[0,0.7,1,0.3,0] = 1.

The fuzzy min of M and N is computed as in Table 1.21:

The computational procedure for µmin(z) is the same as that of µmax(z) expect

that the fuzzy min uses z = x∨ y but the fuzzy max uses z = x∧ y.
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Table 1.20 (x,y) pairs that satisfy 3 = x∨ y

x 1 2 3 3 3

y 3 3 3 2 1

Table 1.21 Minimum of M and N

µM(x) 0 0.7 1 1 1

µN(y) 1 1 1 0.3 0

µM(x)∧µN(y) 0 0.7 1 0.3 0

Table 1.22 Fuzzy min of M and N

z = x∧ y 1 2 3 4 5 6

µmin 0 0.7 1 0.4 0 −

Fig. 1.19 Example of the fuzzy min

Example 1.31. Let M and N be fuzzy numbers presenting in Figure 1.19. By taking

the α-cut, we have

Mα = [4α + 1,8−3α],and Nα = [α + 2,9−6α].

Based on equation (1.47), their maximum is defined as:

Mα(∨)Nα = [(4α + 1)∨ (α + 2),(8−3α)∨ (9−6α)].

By changing the α value, equation (1.47) may yield different results. That is, when

0≤ α ≤ 0.33, we get Mα(∨)Nα = [α + 2,9−6α].
similarly, when 0.33≤ α ≤ 1, we get Mα(∨)Nα = [4α + 1,8−3α].
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Thus, the computed membership function is

µM(∨)N(z) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, z≤ 2

(z−2)/1, 2 < z≤ 2.33

(z−1)/4, 2.33 < z≤ 5

(8− z)/3, 5 < z≤ 7

(9− z)/6, 7 < z≤ 9

0, z > 9.

This membership function is illustrated in Figure 1.19 by the dashed line. Similarly,

the fuzzy min can be obtained and illustrated as the dotted line in 1.19.

Table 1.23 Algebraic operation for M = (m,α,β ), N = (n,γ ,δ )

Image of N: −N = (−n,δ ,γ)

Inverse of N: N−1 = ( 1
n ,

δ
n2 ,

γ
n2 )

Addition: M(+)N = (m+n,α + γ ,β +δ )
Substraction: M(−)N = (m−n,α +δ ,β + γ)
Scalar Multiplication:

k > 0, k ∈ R: k(·)M = (km,kα,kβ )
k < 0, k ∈ R: k(·)M = (km,−kβ ,−kα)

Multiplication:

M > 0, N > 0: M(·)N = (mn,mγ +nα,mδ +nβ )
M < 0, N > 0: M(·)N = (mn,nα−mγ ,nβ −mδ )
M < 0, N < 0: M(·)N = (mn,−nβ −mδ ,−nα −nγ)

Division:

M > 0, N > 0: M(:)N = ( m
n ,

mδ+nα
n2 ,

mγ+nβ
n2 )

M < 0, N > 0: M(:)N = ( m
n ,

nα−mγ
n2 ,

nβ−mδ
n2 )

M < 0, N < 0: M(:)N = ( m
n ,
−nβ−mγ

n2 ,
−nα−mδ

n2 )

Table 1.24 Algebraic operation for M = (a,b,α,β ), N = (c,d,γ ,δ )

Image of N: −N = (−d,−c,δ ,γ)

Inverse of N: N−1 = ( 1
d ,

1
c ,

δ
d(d+δ )

,
γ

c(c−γ)
)

Addition: M(+)N = (a+c,b+d,α + γ ,β +δ )
Substraction: M(−)N = (a−d,b−c,α +δ ,β + γ)
Multiplication:

M > 0, N > 0: M(·)N = (ac,bd,aγ +cα −αγ ,bδ +dβ +βδ )
M < 0, N > 0: M(·)N = (ad,bc,dα −aδ +αδ ,−bγ +cβ −βγ)
M < 0, N < 0: M(·)N = (bd,ac,−bδ −dβ −βδ ,−aγ−cα +αγ)

Division:

M > 0, N > 0: M(:)N = ( a
d ,

b
c ,

aδ+dα
d(d+δ )

,
bγ+cβ
c(c−γ)

)

M < 0, N > 0: M(:)N = ( a
c ,

b
d ,

cα−aγ
c(c−γ) ,

dβ−bδ+
d(d+δ ) )

M < 0, N < 0: M(:)N = ( b
c ,

a
d ,
−bγ−cβ
c(c−γ) ,

−aδ−dα
d(d+δ ) )
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Table 1.25 Algebraic operation for M = (l,m,n), N = (a,b,c)

Image of N: −N = (−c,−b,−a)

Inverse of N: N−1 = ( 1
c ,

1
b ,

1
a )

Addition: M(+)N = (l +a,m+b,n+c)
Substraction: M(−)N = (l−a,m−b,n−c)
Scalar Multiplication:

k > 0, k ∈ R: k(·)M = (kl,km,kn)
k < 0, k ∈ R: k(·)M = (kn,−km,−kl)

Multiplication:

M > 0, N > 0: M(·)N = (la,mb,nc)
M < 0, N > 0: M(·)N = (lc,mb,na)
M < 0, N < 0: M(·)N = (nc,mb, la)

Division:

M > 0, N > 0: M(:)N = ( l
c ,

m
b ,

n
a )

M < 0, N > 0: M(:)N = ( n
c ,

m
b ,

l
a )

M < 0, N < 0: M(:)N = ( n
a ,

m
b ,

l
c )

Algebraic operation formulas for special fuzzy numbers

Table 1.23 summarizes the algebraic operations for LR triangular numbers.

Table 1.24 summarizes the algebraic operations for LR trapezoidal numbers. Table

1.25 and 1.26 summarizes the algebraic operations for triangular and trapezoidal

numbers, respectively.

Table 1.26 Algebraic operation for M = (a1,b1,c1,d1), N = (a2,b2,c2,d2)

Image of N: −N = (−d2,−c2,−b2,−a2)

Inverse of N: N−1 = ( 1
d2

,
1
c2

,
1
b2

,
1
a2

)

Addition: M(+)N = (a1 +a2,b1 +b2,c1 +c2,d1 +d2)
Substraction: M(−)N = (a1−d2,b1−c2,c1−b2,d1−a2)
Scalar Multiplication:

k > 0, k ∈ R: k(·)M = (ka1,kb1,kc1,kd1)
k < 0, k ∈ R: k(·)M = (kd1,kc1,kb1,ka1)

Multiplication:

M > 0, N > 0: M(·)N = (a1a2,b1b2,c1c2,d1d2)
M < 0, N > 0: M(·)N = (d1a2,c1b2,b1c2,a1d2)
M < 0, N < 0: M(·)N = (d1d2,c1c2,b1b2,a1a2)

Division:

M > 0, N > 0: M(:)N = ( a1
d2

,
b1
c2

,
c1
b2

,
d1
a2

)

M < 0, N > 0: M(:)N = ( d1
d2

,
c1
c2

,
b1
b2

,
a1
a2

)

M < 0, N < 0: M(:)N = ( d1
a2

,
c1
b2

,
b1
c2

,
a1
d2

)
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1.5 Membership Function

While classical (crisp) mathematics are dichotomous in character, fuzzy set theory

considers the situations involving the human factor with all its vagueness of percep-

tion, subjectivity, attitudes, goals and conceptions. By introducing vagueness and

linguistics into the crisp set theory, fuzzy set theory becomes more robust and flexi-

ble than the original dichotomous classical set theory.

There are two essential features of the fuzzy set theory[45]:

(i) Membership function of fuzzy set and operators play a crucial role in fuzzy set

theory.

(ii) Fuzzy set theory is essentially a very general, flexible, formal theory. If it is to be

applied to a real problem, it can and has to be adapted carefully. Neither the concept

of membership nor the operator has a unique semantic interpretation. The context-

dependent semantic interpretation will lead to different mathematical definitions and

appropriate operators.

Thus membership functions and operators are actually the cornerstones of the

fuzzy set theory. In this section , let us discuss some approaches to generate mem-

bership functions.

Membership function forms

In the following context, we will present a state-of-art survey of function forms of

membership. Based on Dombi [7] , we classify all existing membership functions

into the following four classed:

(1) Membership functions based on heuristic determination.

(a) Zadeh’s unimodal functions:

µyoung =

{
1/{1 +[(x−25)/5]2}, if x > 25

1, if x≤ 25,

µold =

{
1/{1 +[(x−50)/5]−2}, if x≥ 25

0, if x < 50.

(b) Dimitru and Luban’s power functions:

µ(x) = x2/a2 + 1, x ∈ [0,a],

µ(x) =−x2/a2−2x/a + 1, x ∈ [0,a].

(c) Svarowski’s sin function:

µ(x) = 1/2 +(1/2)[sin{π/(b−a)][x− (a+b)/2]}, x ∈ [a,b].

(2) Membership functions based on reliability concerns with respect to the particular

problem.
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(a) Zimmermannn’s linear function:

µ(x) = 1− x/a, x ∈ [0,a].

(b) Tanaka, Uejima and Asai’s symmetric triangular function:

µ(x) =

{
1− |b−x|

a , if b−a≤ x≤ b + a

0, otherwise.

(c) Hannan’s piecewise linear function:

µ(x) = ∑
j

α j|x−a j|+ β x + r, j = 1,2, · · · ,N,

α j = (t j+1− t j)/2,

β = (tN+1 + t1)/2,

r = (sN+1 + s1)/2,

where µ(x) = tix + si for each segment i, ai−1 ≤ x≤ ai, ∀i. Here, ti is the slope and

si is the y-intercept for the section of the curve initiated at ai−1 and terminated at ai.

(d) Dubois and Prada’s LR fuzzy number:

µ(x) =

⎧
⎨
⎩

L( a−x
α ), if x < a

R( x−b
β ), if x > b

1, if a≤ x≤ b,

where L(·) and R(·) are reference functions.

(e) Leberling’s hyperbolic function:

µ(x) = 1/2 +(1/2)tanh(a(x−b)), −∞≤ x≤ ∞,

where a is a parameter.

(f) Sakawa and Yumine’s exponential and hyperbolic inverse functions, respectively:

µ(x) = c(1− e(b−x)/(b−a)), x ∈ [a,b],
µ(x) = 1/2 + ctanh−1(d(x−b)),

where c and d are parameters.

(g) Dimitru and Luban’s function:

µ(x) = 1/(1 + x/a),

where a is a parameter.
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(3) Membership functions based on more theoretical demand.

(a) Civanlar and Trussel’s function:

µ(x) =

{
ap(x), if ap(x)≤ 1

0, otherwise,

where a ∈ [0,1] is a parameter and p(x) is the probability density function.

(b) Svarovski’s function:

µ(x) =

⎧
⎪⎪⎨
⎪⎪⎩

0, if x < a

K(x−a)2, if a≤ x≤ b

K2x2 + K1x + K0, if b < x≤ c

1, if x > c,

where K,k0,k1 and K2 are parameters.

(4) Membership functions as a model for human concepts.

(a) Hersh and Caramazze’s function (which was experimentally formed in order to

determine the nature of context effects upon the interpretation of a set of nature

language terms, such as short, very short, sort of short, etc.):

µ(x) = 1/2 + d(r/10),

where d(x) = 1 for “yes” responses and d(x) = −1 for “no” responses and r is a

confidence value.

(b) Zimmermann and Zysno’s function:

µ(x) = 1/2 +(1/d)[1/(1 + e−a(x−b))− c].

(c) Dombi’s function:

µ(x) = (1− s)x2/[(1− s)x2 + s(1− x)2},
where s (the characteristic value of the shape) is the intersection value of y = µ(x)
and y = x.

Membership functions can be distinguished into two classes of preference-based

membership functions and possibility distributions. The preference-based member-

ship function is constructed by eliciting the preference information from the deci-

sion makers. On the other hand, the possibility distribution, which is an analogous

of probability distribution, is constructed by considering the possible occurrence of

the events.

Approaches to generate membership functions

There are two approaches to generate membership functions: axiomatic and seman-

tic approaches[14]. The axiomatic approach, which is similar to the approaches

used in the utility theory[45], is centered ont the mathematical consideration. On

the other hand, the sematic approach is concentrated on the practical interpretation

of the terms but not the mathematical structure which is emphasized in the axiomatic
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concept. The semantic approach actually follows the perceptions of pragmatism in

its insistence that all conclusions should be firmly based on the practical meaning of

the concepts involved. The practical meaning and interpretation of membership and

interpretation are considered more important that mathematical terms.

(1) Distance approach

When eliciting membership functions, the determination of the lowest necessary

scale level of membership for a specific application is very important. Generally, the

required scale level should be a low as possible in order to facilitate data acquisition

which usually affords the participation of human beings. Besides, a suitable numer-

ical handling is desirable in order to insure mathematically appropriate operations.

Among the five classical scale levels (nominal, ordinal, interval, ratio, and absolute

scale), Zimmermann and Zysno proposed that the interval scale level seems to be

most adequate, since the intended mathematical operations require at least interval

scale quality.

The concept of using a distance d(x) from a reference as an evaluation criterion

has been popular in many fields, such as multiple attribute decision-making, multi-

ple objective decision-making, goal decision-making, et al. Zimmermann and Zysno

used this concept to derive membership functions. The rationality of this concept is

that if the object has all the ideal features, the distance should be zero. By contrast,

if no similarity between the object and the ideal exists, the distance then should be

∞. If this evaluation concept is formally represented by a fuzzy set A in X , then a

certain degree of membership µA(x) will be assigned to each element x. Member-

ship can then be defined as a function of the distance between a given object x and a

standard (ideal). Thus Zimmermann and Zysno proposed the following relation for

µ and d(x):

µ =
1

1 + d(x)
, (1.50)

where d(x) = 0⇒ µ = 1, and d(x) = ∞⇒ µ = 0. Obviously, Equation (1.50) is just

a transformation rule ( or a normalization process) which maps real number R into

the interval [0,1].

However, experience shows that ideals are very rarely ever fully realized and dis-

tance function is quite context dependent. The context-dependent parameters a and

b are then created to represent the evaluation unit and the reference/stansard, re-

spectively. For instance, a may be the unit of length such as feet, meter, yards, etc.,

and b may be a fast and rough pre-evaluation such as “rather positive,” “rather nega-

tive,” etc. Since the relationship between physical units and perceptions if generally

exponential, Zimmermann and Zysno proposed the following distance function as:

d(x) =
1

ea(x−b)
, (1.51)

and then:

µ =
1

1 + ea(x−b)
, (1.52)

where a,b can be considered as sematic parameters from a linguistic point of view.



1.5 Membership Function 41

Since concepts or categories, which are formally represented by sets, are nor-

mally linguistically described, the membership function is the formed representa-

tion of meaning. The vagueness of the concept os operated by the slope a and the

identification threshold by b. For managerial terms such as “appropriate dividend”

or “good utilization of capacities”, the parameter a models the slope of the mem-

bership function in the tolerance interval and b represents the point at which the

tendency of the subject’s attitude changes from rather positive into rather negative.

Equation (1.52), however, is still too general to fit subjective models of different

persons. Frequently, only a certain part of the logistic function is needed to represent

a perceived situation. In order to allow for such a calibration, it is assumed that only

a certain interval of the physical scale of mapped into the open interval (0,1). And,

the membership grades of the lower and upper bounds are assigned to be 0 and 1,

respectively.

Since an interval scale is requested, the interval of the degrees of membership

may be transformed linearly. On this scale level the ratios of two distances are in

variant. Let µU and µL be the upper and lower bounds of the normalized member-

ship scale, respectively, and µi is a degree of membership between these bounds,

µL < µ < µU , and let µL′ and µU ′ be the corresponding values on the transformed

scale. Then we have:
µi− µL

µU − µL
=

µ ′i − µL′

µU ′ − µL′ .

For the normalized membership function, one may have µL = 0 and µU = 1. Hence,

µ ′i = µi(µU ′ − µL′)+ µL′ . (1.53)

Generally, it is preferable to define the range of validity by specifying the interval d

with the center c (see Figure ) as follows:

µU ′ − µL′ = d and (µU ′ + µL′)/2 = c. (1.54)

The Equation (1.53) will become:

µ ′i = µi(d)+ µL′

= dµi−d/2 + d/2 + µL′

= dµi−d/2 +[(µU ′− µL′)/2 + µL′]
= d(µi−1/2)+ c,

(1.55)

which can be specified by two parameters, a and b, if µi is replaced by µ ′i .
Solving Equation (1.55) for µi will lead to the following complete membership

model:

µi =
∣∣(1/d)(

1

1 + e−a(x−b)
− c)+

1

2

∣∣, (1.56)

where µi ∈ [0,1], µi(x) = 1 for x > xU , and µi(x) = 0 for x < xL.
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Fig. 1.20 Calibration of the interval for measurement

The determination of the parameters from an empirical data base does not pose

any difficulties in the general model of Equation (1.52). That is:

µ = 1/[1 + ea(x−b)]⇒ ln[µ/(1− µ)] = a(x−b).

Now, suppose y = ln[µ/(1− µ)]. A linear relationship between x and y is obvious.

The straight line of the model is then defined by the least squares of deviations.

The estimation of the parameter c and d in the extended model still poses some

problems. There is no direct way for a numerically optimal estimation. Thus Zim-

mermann and Zyson supposed the following interactive procedure. First, they as-

sumed that a set of stimuli which is equally spread over the physical continuum

was chosen such that the distance between any two of the neighboring stimuli is

constant:

xi+1− xi = s,

where s is a constant distance. This condition serves as a criterion for precision.

If c and d are correctly estimated, then those scale values x′i are reproducible and

are invariant with respect to xi with the exception of the additive and multiplicative

constant. It is obvious that Equation (1.56) can be written as:

d(µi−1/2) = 1/[1 + e−a(x−b)]

or

ln

{
d(µi−1/2)+ c

1− [d(µi−1/2)+ c]

}
= x′i = a(xi−b). (1.57)

Let s′ be the distance between the pair x′i+1 and x′i, and M′ be their mean value. If the

estimated values de and ce are equal to their true values, then the estimated distance

se′ and the mean Me′ are equal to their respective true values and vice versa:

(de = d) and (ce = c) ⇔ (se′ = s) and (Me′ = M).

Our aim, therefore, is to research the equivalent of se′ and s as well as Me′ = M.



1.5 Membership Function 43

The algorithm is as following:

Step 0. Determine the initial appropriate values c1 and d1 by the following formula:

c1 = (∑
i

µi)/n, (1.58)

d1 = min(1−1/k,2(1− c),2c), (1.59)

where n is the member of stimuli and k is the number of different degree of mem-

bership. If only the values 0 and 1 occur, d1 = 1/2. Only the linear interval in the

middle of the logistic function is used. With increasing k,d converges to 1; the entire

range of the function is then used. In any case d must not exceed the minor part of

2c or 2(1− c).
Step 1. Determine the x′i which corresponds to the empirically determined µi:

Me′ = (∑
i

x′i)/n (1.60)

Se′ = [∑
i
(xi+1x′i)]/(n−1)

= (x′n− x′1)/(n−1).
(1.61)

Step 2. Calculate the absolute difference between two estimates. That is:

|Me′′ −Me′ | ≤ δM, (1.62)

|Se′′−Se′ | ≤ δS, (1.63)

where δM and δS are predetermined tolerances. If Equations (1.64) and (1.65) are

satisfied, the last estimate is accepted as sufficiently exact and then stop. Otherwise,

go to the next stop.

Step 3. Determine the interval of the base variable x′i which corresponds to the (0,1)

interval of the membership value. That is to compute:

xU ′ = Me′ +(n/2)Se′
, (1.64)

xL′ = Me′ − (n/2)Se′
, (1.65)

which is the upper and lower bounds, respectively.

Now, by Equation (1.57), the corresponding xU ′ and xL′ can be computed, and

then by Equation (1.54), new parameters ce and de are estimated. Then go to Step 1.

Example 1.32. From the empirical evidence that 64 subjects (16 for each set) from

21 t 25 years of age individually rated 52 different statements of age concern-

ing one of the four fuzzy sets: “very young man,” “young man,” “old man” and

“very old man,” Zimmermann and Zyson obtained monotonic membership func-

tions as shown in Figure. 1.21, and unimodal membership functions as shown in

Figure. 1.22.
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Fig. 1.21 Monotonic membership functions of ‘very young man,” “young man,” “old man”

and “very old man”

Fig. 1.22 Unimodal membership functions of “very young man” and “young man’

The monotonic membership functions of “old man” and “very old man” (see

Figure. 1.21) are rather similar. They differ only with respect to their inflection

points, indicating a difference of about five years between “old man” and “very

old man”. The same holds for the monotonic membership functions of “very young

man” and “young man”; their inflection points differ by nearly 15 years. It is inter-

esting to note that the modifier “very” has a greater effect on “young” than “old”,

but in both cases it can be formally represented by a constant.

Finally, the meaning of “young” is less vague than that of “old” if the slope is an

indicator for vagueness as shown in Figure. 1.21. On the other hand, the variabil-

ity of membership functions may be regarded as an indicator of ambiguity. Thus,

though being less vague, “young” seems to be more ambiguous.
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(2) True-valued approach

Smets and Magrez [8] provided a definition of what is meant by a proposition

with a truth value of 0.35 or any other intermediate value between True (or 1) and

False (or 0). A canonical scale for the truth values is defined, and sets of fuzzy

propositions are constructed for which the truth value had a unique numerical value

on the canonical scale. Such a set of propositions with well-defined intermediate

truth values is necessary to give meaning to the assertion “the truth P is 0.35”.

Fuzzy logic has two characteristics: the truth domain is the whole [0,1] interval,

and the truth value can be a fuzzy subset of [0,1]. Smets and Magrez considered the

first characteristic, that is to reduce fuzzy logic to its multi-valued logic components.

According to Zadeh[9], fuzzy sets are those for which one can define, for each

element, a grade of membership in [0,1]. Smets and Magrez then postulated the

relation between degree of truth and grade of membership so that the degree of

membership µA(x) of an element x to a fuzzy set A is numerically equal to the degree

of truth v(x is A′) that the fuzzy predicate A′ describing the fuzzy set A applies to

the element x:

µA(x) = a⇔ v(x is A) = a. (1.66)

For instance, if A is the fuzzy set of “tall man”, the degree of membership µA(John)
of John to the set A is numerically equal to the degree of truth of the proposition

“John is tall”. Therefore, the presentation could have been based on both approaches

when fuzzy logic is used. Whatever is deduced of truth can be applied to degree of

membership.

The semantical interpretation of “A→B is true” is that the consequent B is at least

as true as the antecedent A. The degree of truth of A⇒ B quantifies the degree by

which B is as least as true A. It will be Truth whenever B is truer that A. Otherwise,

it will be False whenever A is False and B is Truth. When A is somehow truer than

B, the degree by which B is at least as true as A might be intermediate between True

and False.

Now let ν(A) be the truth value of proposition A with A ∈ Ω , where Ω is a

Boolean algebra of propositions with T its tautology and F its contradiction. Then

ν : Ω → σ is a mapping from Ω to a truth domain σ , where σ is a bounded set

with its greatest element Truth = ν(T ), its least element False = ν(F) and the order

relation “at least as true as”. Thus Smets and Magrez defined a strictly increasing

transformation w from σ to [0,1] such that w ·ν : Ω → [0,1] with w ·ν(T ) = 1,w ·
ν(F) = 0 and ‘A us as true as B’ is equivalent to “w ·ν(A) ≥ w ·ν(B)”. v = w ·ν ,

then v will measure the degree of truth of propositions in Ω on the interval [0,1].

For simplicity, v(A) is the truth value of A (in fact the truth value is defined on σ
and v(A) is defined on [0,1]), because they are uniquely related.

In order to construct a logic with multi-value truth domain for generating the

degree of truth, the following axioms for the implication connective → should be

first be considered:
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(1) Truth-Functionality: v(A→ B) depends only on v(A) and v(B).
(2) Contrapositive Symmetry: v(A→ B) = v(¬B→¬A), where the Trillas’s strong

negation is defined: there exists a strictly decreasing continuous function n : [0,1]→
[0,1] such that (¬A) = n(v(A)), n(0) = 1 and n(n(a)) = a.

(3) Exchange Principle: v(A→ (B→C)) = v(B→ (A→C)).
(4) Monotony: v(A→ B)≥ v(C→D) if v(A)≤ v(C) and v(B)≤ v(D).
(5) Boundary Condition: v(A→ B) = 1 iff v(A)≤ v(B).
(6) Neutrality Principle: v(T → A) = v(A).
(7) Continuity: v(A→ B) is a continuous function of v(A).

With these axioms. Smets and Magrez have proved that the implication and the

negation operators are necessary such that:

v(A→ B) = f−1(min{ f (1)− f (a)+ f (b), f (1)}), (1.67)

v(¬A) = f−1( f (1)− f (a)), (1.68)

where a = v(A),b = v(B), and the generator f is any bounded, continuous, mono-

tonically increasing function from [0,1] to [0,∞) with f (0) = 0 and f (1) < ∞.

The f generator is defined up to any strictly monotonic transformation. As the

truth scale v(A) is also defined up to any strictly monotonic transformation, we can

then define the canonical scale for the truth value v(A) of a proposition by selecting

the f generator such that f (v(T ) = f (1) = 1) and f (v(A)) = f (a) = a. In that case,

we obtain the Lukasiewicz operator for the material implication connective:

v(A→ B) = min{1− v(A)+ v(B),1}, (1.69)

v(¬A) = 1− v(A). (1.70)

This conclusion is quite natural as f and v can always be adapted in order to obtain

such a scale, and it is obviously the simplest we can construct.

However, this canonical scale dose not explain what is meant by a truth value of

0.35. It must mean something more than just that it is between 0.34 and 0.36. Thus

we need a set of propositions for which the truth value is uniquely defined. These

propositions could be used later as a reference scale to measure the truth of other

propositions.

According to Gaines, Smets and Magrez constructed a reference scale which

defines the meaning of any truth value in [0,1] as follows:

(a) Let A = “Yao is tall” and ¬A = “Yao is not tall.” The truth of A and of ¬A

depends on the height h of Yao. If h = 110cm, A is false and¬A is true. If h = 190cm,

A is true and ¬A is false (see Table 1.27). Thus, when h increase from 110 to 190,

a = v(A) increases continuously from 0 = v(F) to 1 = v(T ) (where T and F are the

tautology and contradiction) and na = v(¬A) decreases continuously from 1 to 0.

There exists a value h′ such that a = na. In such a case, ¬A→ A is true, there-

fore (¬A→ A=1 becomes f−1( f (1)− f (na)+ f (a)) = 1. As f (ns) = f−1( f (1)−
f (a)) = f (1)− f (a), we have f−1(2 f (a)) = 1, thus 2 f (a) = f (1).
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Table 1.27 Heights and true values of A = “Yao is tall” and B = “Yi is tall”

height 110 cm k’ h’ 190 cm

v(A) 0 0.5 1

v(¬A) 1 0.5 0

v(B) 0 0.25 0.5 1

v(¬B) 1 0.75 0.5 0

v(¬B→ B) 0 0.5

As f (1) < ∞, we can use an f scale such that f (1 = 1), in which case f (a) =
f (na) = 0.5. It is noted that the result would have been directly obtained by consid-

ering the strong negation and the canonical scale as a = na is identical to a = 1−a.

(b) Let B = “Yi is tall” and ¬B = “Yi is not tall”. The truth of B and ¬B depend

on the height k of Yi. Let us further postulate that k = h′, thus b = v(B)≤ 0.5.

Consider the proposition ¬B→ B, i.e., ’B is at least as true as ¬B’. Its truth value

c = v(¬B → B) depends on k. If k = h′, c− 1 as v(B) = v(¬B). If k = 110cm, B

is false and ¬B is true, therefore c = 0. By increasing k from 110 cm to h′, c is

increasing from 0 to 1. Thus, there exists a k′ such that v(¬B → B) = v(A) = 0.5
implies f (1)− f (nb) = f (b) = 2 f (b) = f (a) = 0.5 ⇒ f (b) = 0.25 and f (nb) =
0.75.

(c) Let P0 = A, P1 = B, h0 = h′ and h1 = k′. The procedure is iterated with

the propositions Pi ≡ “Xi is tall” such that v(¬Pi → Pi) = v(Pi−1), i = 1,2, · · · , and

v(Pi) < v(Pi−1). The values of the heights hi of Xi, all i, are derived as above. For

such hi and with pi = v(Pi), we obtain f (pi) = 2−i−1 and f (npi) = 1−2−i−1.

(d) Other values of f can be obtained from expression based on the truth of

¬Pi → Pj, as it corresponds to f (pi)+ f (p j) = 2−i−1 + 2− j−1. Further values are

obtained from expressions like ((¬Pi → Pj)→ Pk)→ Ps whose true value is f (pi)+
f (p j)+ f (pk)+ f (ps), etc.

Appropriate sequences of implications based on propositions pi can be con-

structed on order to obtain any f value. For instance, let us construct the sequence

to obtain f = 0.65625. As 0.65625 = 0.5 + 0.125 + 0.03125, 0.65625 = f (p0)+
f (p2)+ f (p4), it corresponds to the true value of the implication ((¬P0→P2)→P4)
with Pi = “Xi is tall” and the height of Xi is hi; thus, 0.65625 is the degree of truth

of the proposition “P4 is at least as true as not ’P2 is at least as true as ¬P0”’ or “P4

is at least as true as ’P′2 is less true than P0”.

Finally, it is noted that f function is defined up to any strictly monotonic transfor-

mation such that f (0) = 0 and f (1) = 1. Thus we can state without loss of generality

that f (x) = x, for computational efficiency. By use of the previous canonical scale,

v(Pi) = 2−i−1, and all other truth values can be equated to some sequence of impli-

cation based on propositions Pi. We have derived a reference scale for the truth value

of any proposition Q by use of the relation “Q is as true as” where P is a sequence of

implication based on propositions Pj. Thus P and Q share the same numerical truth

value.
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(3) Payoff function

Giles[14] pointed out that the concepts of a set (fuzzy or not) are closely related

to that of a property: any set determines a property which belongs to the set, and any

property determines a set which contains all objects with the property. For example,

to the property “tall”, there corresponds the set of all tall people (objects). Then any

statement about sets can be translated into a corresponding statement about proper-

ties, and vice verse. The concepts of the set and property thus appear to be equiv-

alent. Nevertheless, the concept of a property is actually less abstract and closer to

common usage that that of a set. Thus the analogue of degree of membership in a

fuzzy set can be equivalent to that of the “degree of possession” of the correspond-

ing property. For instance, the degree of membership of Yao in the set of all tall

people may be identified with the degree of which Yao has the property, “tall”.

There is a third notion related to these two concepts. This is “degree of truth”-

for the previous example, the degree to which Yao is tall with the “degree of truth”

of the statement, “Yao is tall”. Every assignment of a degree of membership in

a set of of a degree of truth to a corresponding statement. Indeed, we can hardly

contemplate intermediate (other than 0 and 1) grades of membership in a set unless

we are also prepared to consider intermediate (other than true and false) degrees of

truth for a statement. Conversely, should we succeed in the task of attaching a well-

defined meaning to intermediate grades of membership and intermediate “degree of

possession” of a property.

Once we have attached a clear meaning to statement with other that classical truth

values, we can deduce how one should reason with such statements: the appropriate

logic is determined as soon as a clear understanding of the meaning of the statement

with which it has to operate has been reached. Thus the problem of the interpretation

of grades of membership cannot be considered independently of the problem of

fuzzy reasoning itself: it is part and parcel of the latter; a solution of one is a solution

of both.

Giles further pointed out that the “assertions” concept, instead of the statements

themselves, is fundamental, and the meaning of an assertion can be identified by its

payoff function in terms of the decision theory. For example, consider the assertion

“Yao is tall”. The meaning of the fuzzy statement “Yao is tall” is that informa-

tion specific to this fuzzy statement which in conjunction with one’s state of belief

regarding the relative possibility of different world states (here the relevant is the

height of Yao in these various possible states) will allow him to decide whether (and

how willingly) to assert “Yao is tall”.

Now, let us use this example, “Yao is tall”, to discuss how to construct the degree

of membership from the “assertions” via the payoff concept.

Usually, one who asserts “Yao is tall” will receive approval from his peers to an

extent dependent primarily on the height of John. In other words, the payoff of the

assertion in any world state is approximately a function f (h) of the height h of Yao

in that state. Insofar as this is the case, we can represent the payoff function of the

assertion by the graph of the function f . Clearly, the utility will crease with height

from some negative initial value to positive values. For example, the graph might be

as shown in Figure. 1.23. In this figure the payoff value f (h) may be described as
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the degree of willingness of an agent to assert “Yao is tall”. In particular, a positive

(negative) value for the payoff f (h) indicates that the agent will (won’t) choose to

assert “Yao is tall” when he knows Yao’s height h. So one can tell where the graph

crosses the axis just by asking for the least height at which Yao would be described

as tall.

We can then determine other points on the graph of f (h) by offering bribes. For

instance, the graph suggests that the agent would be willing to assert “Yao is tall”

even if h = 170, provided he was offered as a reward a prize worth 5 units of payoff.

Actually, this argument is not quiet correct, since then two events occur together

their payoffs do not necessarily increase. Fortunately, one can flip a fair coin. If it

shoes a head, he will get the reward. Otherwise, he will be obligated to assert “Yao

is tall”. Therefore, if he agrees to this proposal, provided that he was sure Yao’s

height was at least 170 cm, then f (170)→ 5 is obtained. By using a lottery instead

of the coin, one can similarly determine all other negative ordinates on the graph.

On the other hand, the positive ordinates are also found by using a penalty instead

of a reward.

It is noted that the previous discussion of the payoff function for the assertion

“Yao is tall” has been simplified in the following two respects:

(1) It is only approximately true that the payoff function of height, according to

the following two reasons:

(a) In a normal society he term “tall” does not solely represent geometrical height.

For instance, a child is more likely to be considered tall than an adult of the same

height.

(b) Even the assertion that the payoff depends only on the nature of John must be

qualified.

(2) The meaning of an assertion, as represented by its payoff function, is de-

termined by the society in which the assertion used, and does not depend on the

particular person who makes the assertion.

As a matter of fact, an assertion can be brought into standard form by a scaling

and a shift. Here let us call the payoff function of the resulting standardized assertion

“the truth function of the asserted fuzzy statement”. The function is then the truth

function of the sentence. Truth functions of fuzzy statements this coincide with pay-

off functions of payoff functions of standardized assertions except that the extreme

values 0 and 1 are necessarily attained in the latter case. Therefore, the graph of the

truth function of the asserted fuzzy statement may be obtained from the graph of the

payoff function of the assertion simply by changing the calibration on the y-axis.

From Figure. 1.23, the degree of the truth function for the fuzzy statement “Yao is

tall” can be obtained by reading the right hand scale. The degree of membership of

Yao in the fuzzy set of tall men is then identified with the truth of the fuzzy statement

“Yao is tall”.

For the payoff function, the following two significant points should be noted:

(a) It is clear that for any practical assertion, one value must be positive and the

other negative. Otherwise, the assertion would either always or never be made, so

that it would be useless for conveying the beliefs of a speaker.
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Fig. 1.23 Payoff function of the assertion “Yao is tall”

(b) A scaling of the payoff function (multiplying it by a positive scale factor) corre-

sponds to a change in emphasize of the assertion. For example, the payoff function

for “Yao is tall” may be taken to differ only by a scale factor (> 1) from that for the

less emphatic “Yao is tall”. Turing this observation around, one should regard any

assertions a and a’, whose payoff functions differ only by a positive scale factor, as

assertion of the same fuzzy sentence except more (or less) emphasized.

(4) Other examples

Besides the above three presented approaches, there are several other consider-

ations and approaches. Rapoport, Wallsten and Cox[18] dealt with the synthesis of

subjective data for deriving membership functions. They provided direct (magnitude

estimation) and indirect (grade pair-comparison) concepts to establish membership

for probability phrase such as probable, rather likely, very likely, very unlikely, and

so forth. Eliciting membership function is considered as eliciting utility function in

the decision theory.

Bandemer[17] developed a fuzzy counterpart to regression analysis methods ac-

counting for fuzzy observation. The fuzzy (functional) relations were then derived

either directly. or via families of parametrized functions.

Pedryca[16] solved an identification problem in terms of fuzzy relational equa-

tions from input/output fuzzy sets, Based on the clustering technique, Pedrycz ro-

posed a general methodological scheme which includes the following three steps:

(i) structure determination, (ii) parameter determination, and (iii) model valuation.

Bezdek and Hathaway[15] proposed the relational hard c-means (HCM) algo-

rithm for the classification of objects when information about pairwise relationship

between these objects is available. Their approach can be used to derive membership

functions.
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1.6 Possibility Distribution

What is a possibility distribution? It is convenient to answer this question in terms

of another concept, namely, that of a fuzzy restrictio [13, 19], to which the concept

of a possibility distribution bears a close relation.

Let X be a variable which takes values in a universe of discourse U , with the

generic element of U denoted by u and

X = u (1.71)

signifying that X is assigned the value u, u ∈U .

Let F be a fuzzy subset of U which is characterized by a membership function

µF . Then F is a fuzzy restriction on X (or associated with X) if F acts as an elastic

constraint on the values that may be assigned to X-in the sense that the assignment

of a value µ to X has the form

X = u : µF(u), (1.72)

where µF(u) is interpreted as the degree to which the constraint represented by F is

satisfied when µ is assigned to X . Equivalently, (1.72) implies that 1− µF(u) is the

degree to which the constraint in question must be stretched in order to allow the

assignment of u to X .

Let R(X) denote a fuzzy restriction associated with X . Then, to express that F

plays the role of a fuzzy restriction in relation to X , we write

R(X) = F. (1.73)

An equation of this form is called a relational assignment equation because it repre-

sents the assignment of a fuzzy set (or a fuzzy relation) to the restriction associated

with X .

To illustrate the concept of a fuzzy restriction, consider a proposition of the form

p△= X , where X is the name of an object, a variable or a proposition, and F is the

name of a fuzzy subset of U , as in “Miller is very intelligent,” “X is a small number,”

“Jeny is blonde is quite true,” etc. As shown in [13] and [24], the translation of such

a proposition may be expressed as

R(A(X)) = F, (1.74)

where A(X) is an implied attribute of X which takes values in U , and (1.74) signifies

that the proposition p△= X is F has the effect of assigning F to the fuzzy restriction

on the values of A(X).
As a simple example of (1.74), let p be the proposition “Brown is young,” in

which young is a fuzzy subset of U = [0,100] characterized by the membership

function

µyoung(u) = 1−S(u;20,30,40), (1.75)
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where u is the numerical age and the S-function is defined by [13].

S(u;α,β ,γ) = 0 for u≤ α
= 2( u−α

γ−α )2 for α ≤ u≤ β

= 1−2( u−γ
γ−α )2 for β ≤ u≤ γ

= 1 for u≥ γ,

(1.76)

in which the parameter β△ = (α + γ)/2 is the crossover point, that is,

S(β ;α,β ,γ) = 0.5. In this case, the implied attribute A(X) is Age(Brown) and the

translation of “Li is young” assumes the form:

Brown is young→ R(Age(Brown)) = young. (1.77)

To relate the concept of a fuzzy restriction to that of a possibility distribution, we

interpret the right-hand member of (1.76) in the following manner.

Consider a numerical age, say u = 28, whose grade of membership in the fuzzy

set young (as defined by (1.75)) is approximately 0.7. First, we interpret 0.7 as the

degree of compatibility of 28 with the concept labeled young. Then, we postulate

that the proposition “Li is young” converts the meaning of 0.7 from the degree of

compatibility of 28 with young to the degree of possibility that John is 28 given the

proposition “Li is young.” In short, the compatibility of a value of µ with young

becomes converted into the possibility of that value of u given “Li is young.”

Stated in more general terms, the concept of a possibility distribution may be

defined as follows. (For simplicity, we assume that A(X) = X .)

Definition 1.7. (Zadeh [13]) Let F be a fuzzy subset of a universe of discourse U

which is characterized by its membership function µF , with the grade of member-

ship, µF(u), interpreted as the compatibility of u with the concept labeled F .

Let X be a variable taking values in U , and let F act as a fuzzy restriction, R(X),
associated with X . Then the proposition “X is F ,” which translates into

R(X) = F (1.78)

associates a possibility distribution, ΠX , with X which is postulated to be equal to

R(X), i.e.,

ΠX = R(X). (1.79)

Correspondingly, the possibility distribution function associated with X (or the pos-

sibility distribution function of ΠX ,) is denoted by πX and is defined to be numeri-

cally equal to the membership function of F , i.e.,

πX△= µF . (1.80)

Thus, πX(u), the possibility that X = u, is postulated to be equal to µF(u).
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In view of (1.79), the relational assignment equation (1.78) may be expressed

equivalently in the form

ΠX = F (1.81)

placing in evidence that the proposition p△= X is F has the effect of associating X

with a possibility distribution ΠX , which, by (1.79), is equal to F . When expressed

in the form of (1.81), a relational assignment equation will be referred to as a possi-

bility assignment equation, with the understanding that ΠX is induced by p.

As a simple illustration, let U be the universe of positive integers and let F be the

fuzzy set of small integers defined by (+△= union)

small integer = 1/1 + 1/2 + 0.8/3+0.6/4+0.4/5 +0.2/6.

Then, the proposition “X is a small integer” associates with X the possibility

distribution

ΠX = 1/1 + 1/2 + 0.8/3+0.6/4 +0.4/5+0.2/6, (1.82)

in which a term such as 0.8/3 signifies that the possibility that X is 3, given that X

is a small integer, is 0.8.

There are several important points relating to the above definition which are in

need of comment.

First, (1.79) implies that the possibility distribution ΠX , may be regarded as an

interpretation of the concept of a fuzzy restriction and, consequently, that the math-

ematical apparatus of the theory of fuzzy sets-and, especially, the calculus of fuzzy

restrictions -provides a basis for the manipulation of possibility distributions by the

rules of this calculus.

Second, the definition implies the assumption that our intuitive perception of the

ways in which possibilities combine is in accord with the rules of combination of

fuzzy restrictions. Although the validity of this assumption cannot be proved at this

juncture, it appears that there is a fairly close agreement between such basic opera-

tions as the union and intersection of fuzzy sets, on the one hand, and the possibility

distributions associated with the disjunctions and conjunctions of propositions of

the form “X is F.” However, since our intuition concerning the behavior of possibil-

ities is not very reliable, a great deal of empirical work would have to be done to

provide us with a better understanding of the ways in which possibility distributions

are manipulated by humans. Such an understanding would be enhanced by the de-

velopment of an axiomatic approach to the definition of subjective possibilities-an

approach which might be in the spirit of the axiomatic approaches to the definition

of subjective probabilities [38, 39].

Third, the definition of πX(u) implies that the degree of possibility may be any

number in the interval [0, 1] rather than just 0 or 1. In this connection, it should

be noted that the existence of intermediate degrees of possibility is implicit in such

commonly encountered propositions as “There is a slight possibility that Wilson is

very rich,” “It is quite possible that Davis will be promoted,” etc.
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Difference between probability and possibility

It could be argued, of course, that a characterization of an intermediate degree of

possibility by a label such as “slight possibility” is commonly meant to be inter-

preted as “slight probability.” Unquestionably, this is frequently the case in everyday

discourse. Nevertheless, there is a fundamental difference between probability and

possibility which, once better understood, will lead to a more careful differentiation

between the characterizations of degrees of possibility vs. degrees of probability-

especially in legal discourse, medical diagnosis, synthetic languages and, more gen-

erally, those applications in which a high degree of precision of meaning is an

important desideratum.

To illustrate the difference between probability and possibility by a simple ex-

ample, consider the statement “Gan ate X eggs for breakfast,” with X taking values

in U = {1,2,3,4, · · ·}. We may associate a possibility distribution with X by inter-

preting πX(u) as the degree of ease with which Gan can eat u eggs. We may also

associate a probability distribution with X by interpreting pX(u) as the probability

of Gan eating u eggs for breakfast. Assuming that we employ some explicit or im-

plicit criterion for assessing the degree of ease with which Gan can eat u eggs for

breakfast, the values of πX(u) and pX(u) might be as shown in Table 1.28.

Table 1.28 The possibility and probability distributions associated with X

u 1 2 3 4 5 6 7 8

πX (u) 1 1 1 1 0.8 0.6 0.4 0.2

pX (u) 0.1 0.8 0.1 0 0 0 0 0

We observe that, whereas the possibility that Gan may eat 3 eggs for breakfast

is 1, the probability that he may do so might be quite small, e.g., 0.1. Thus, a high

degree of possibility does not imply a high degree of probability, nor does a low

degree of probability imply a low degree of possibility. However, if an event is

impossible, it is bound to be improbable. This heuristic connection between pos-

sibilities and probabilities may be stated in the form of what might be called the

possibility/probability consistency principle, namely:

If a variable X can take the values u1, · · · ,un, with respective possibilities Π =
(π1, · · · ,πn) and probabilities P = (p1, · · · , pn)), then the degree of consistency of

the probability distribution P with the possibility distribution Π is expressed by

(+△= arithmetic sum)

γ = π1 p1 + · · ·+ π2p2. (1.83)

It should be understood, of course, that the possibility/probability consistency

principle is not a precise law or a relationship that is intrinsic in the concepts of

possibility and probability. Rather it is an approximate formalization of the heuris-

tic observation that a lessening of the possibility of an event tends to lessen its

probability-but not vice-versa. In this sense, the principle is of use in situations in
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which what is known about a variable X is its possibility-rather than its probabil-

ity distribution. In such cases-which occur far more frequently than those in which

the reverse is true-the possibility/probability consistency principle provides a basis

for the computation of the possibility distribution of the probability distribution of

X . Such computations play a particularly important role in decision-making under

uncertainty and in the theories of evidence and belief[40, 43].

In the example discussed above, the possibility of X assuming a value u is inter-

preted as the degree of ease with which u may be assigned to X , e.g., the degree of

ease with which Gan may eat u eggs for breakfast. It should be understood, however,

that this “degree of ease” may or may not have physical reality. Thus, the proposi-

tion “Li is young” induces a possibility distribution whose possibility distribution

function is expressed by (1.75). In this case, the possibility that the variable Age(Li)

may take the value 28 is 0.7, with 0.7 representing the degree of ease with which

28 may be assigned to Age(Li) given the elasticity of the fuzzy restriction labeled

young. Thus, in this case “the degree of ease” has a figurative rather than physical

significance.



Chapter 2

Fuzzy Multiple Objective Decision Making

The fuzzy programming approach [194, 410, 412] is useful and efficient for treat-

ing a programming problem under uncertainty. While a classical and stochastic

programming approach may cost a lot to obtain the exact coefficient value or dis-

tribution, fuzzy programming approach does not [411]. From this fact, fuzzy pro-

gramming approach can be very advantageous when the coefficients are not known

exactly. Fuzzy programming offers a powerful means of handling optimization

problems with fuzzy parameters. Fuzzy programming has been used in different

ways in the past.

In this chapter, we introduce basic knowledge about the multi-objective decision

making model under fuzzy environments, and we use fuzzy variables to describe

these fuzzy coefficients. The first section is about fuzzy variable, we present a def-

inition of a fuzzy variable, some useful fuzzy variables with good properties, three

chances to measure the occurrence of fuzzy events: possibility, necessity and credi-

bility, chance distribution of a fuzzy variable, expected value using three measures

for fuzzy variables, and four ranking methods of fuzzy variables. We then introduce

the general fuzzy multi-objective model and the a group of models which can deal

with the fuzzy multi-objective model: fuzzy EVM, CCM and DCM. For each kind

of model, an equivalence model based on some special fuzzy variables with good

properties and the traditional method of the multi-objective decision making model

are given to solve the crisp models. For the general fuzzy decision making model,

it is usually hard to give the equivalent form, so three fuzzy simulations-based PSO

are presented to handle. In the final section, an application to farm structure opti-

mization problem is presented as illustration.

2.1 Farm Structure Optimization Problem under Fuzzy
Environment

Fuzziness uncertainty exists in many. Consider when we ask people the following

question: How far is it between two places? How long will it take to finish a job?

How much will it take to produce a product? How many products do you demand?

J. Xu and X. Zhou: Fuzzy-Like Multiple Objective Decision Making, STUDFUZZ 263, pp. 57–133.
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How many resources will you need? How many products can you supply? What

are the importance of different events? Because people have subjectivity, the answer

will usually include these words: “about, more or less, around, between a and b,” and

so on. Actually these words delegate the fuzziness, and when we have to describe

these words, we use fuzzy variables.

For the above multi-objective problems, we should use a fuzzy decision making

model to clarify. Assume that x is a decision vector, ξ is a fuzzy vector, fi(x,ξ ) is a

return function, and g j(x,ξ ) are constraint functions, i = 1,2, · · · ,m; j = 1,2, · · · , p.

The fuzzy decision making model is as follows:

⎧
⎨
⎩

max [ f1(x,ξ ), f2(x,ξ ), · · · , fm(x,ξ )]

s.t.

{
gr(x,ξ )≤ 0, r = 1,2, · · · , p

x ∈ X .
(2.1)

The model (2.1) is not well-defined because we cannot maximize the fuzzy quantity

fi(x,ξ ), i = 1,2, · · · ,m (just like that we cannot maximize a random quantity), and

the constraints gr(x,ξ ), r = 1,2, · · · , p do not produce a crisp feasible set.

Unfortunately, the form of fuzzy programming like (2.1) appears frequently in the

literature. Fuzzy programming is a class of mathematical models. Different from

fashion or building models, everyone should have the same understanding of the

same mathematical model. In other words, a mathematical model must have an un-

ambiguous explanation. The form (2.1) does not have mathematical meaning be-

cause it has different interpretations.

Let’s consider a real-life farm structure optimization problem with imprecise in-

put data, where the coefficients are fuzzy numbers. This problem is to search for

the best structure of a typical Polish private farm [425] having 2 hectares (ha) of

arable land and 4 ha of permanent grassland. The farmer possesses 6 sows and 4

cows. There are 26 considered activities which can be divided into the following six

groups:

(1) plant production for sale:

x1: winter wheat,

x2: winter barley,

x3: triticale,

x4: spring wheat,

x5: spring barley,

x6: rape,

x7: peas,

x8: potatoes,

x9: sugar beets.

(2) plant production for fodder consumed in the farm:

x10: winter barley,

x11: spring barley,

x12: triticale,

x13: spring wheat,
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x14: potatoes,

x15: fodder beet,

x16: lucerne,

x17: clover,

x18 corn;

(3) x19: permanent grassland cultivation;

(4) purchase of fertilizers:

x20: phosphorus,

x21: nitrogen,

x22: potassium;

(5) x23: purchase of a nutritive fodder;

(6) manpower hire:

x24: in the spring periods,

x25: in the summer periods,

x26: in the autumnal periods.

All these activities correspond to decision variables x1,x2, · · · ,x26, respectively, with

proper definition of their dimension, i.e., number of hectares of winter barley for

sale, number of kilograms of phosphorus to be bought, and number of manpower

hire in the spring period.

The problem here is how to decide in order to get the maximal gross profit, max-

imal structure-forming plants area and minimal manpower hire.

2.2 Fuzzy Variable

Let’s introduce basic knowledge about fuzzy variable, which includes the measure,

the definition and the properties of fuzzy variables.

2.2.1 Definition of Fuzzy Variable

Since its introduction in 1965 by Zadeh [9], fuzzy set theory has been well devel-

oped and applied in a wide variety of real problems. The term fuzzy variable was

first introduced by Kaufmann [210], then it appeared in Zadeh [19, 22] and Nah-

mias [291]. Possibility theory was proposed by Zadeh [22], and developed by many

researchers such as Dubois and Prade [71].

In order to provide an axiomatic theory to describe fuzziness, Nahmias [244]

suggested a theoretical framework. Let us give the definition of possibility space

(also called pattern space by Nahmias).

Definition 2.1. (Dubois and Prade [71]) Let Θ be a nonempty set, and P(Θ) be the

power set of Θ . For each A ⊆ P(Θ), there is a nonnegative number Pos{A}, called

its possibility, such that
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(i) Pos{ /0}= 0;

(ii) Pos{Θ}= 1;

(iii) Pos{⋃k Ak}= supk Pos{Ak} for any arbitrary collection {Ak} in P(Θ).
The triplet (Θ ,P(Θ),Pos) is called a possibility space, and the function Pos is

referred to as a possibility measure.

It is easy to obtain the the following properties of Pos from the axioms above.

Property 2.1. The properties of Pos measure:

(i) 0≤ Pos{A} ≤ 1,∀A ∈ P(Θ);
(ii) Pos{A} ≤ Pos{B}, if A⊆ B.

Several researchers have defined fuzzy variable in different ways, such as Kauf-

man [210], Zadah [19, 22] and Nahmias [291]. In this book we use the following

definition of fuzzy variable.

Definition 2.2. (Nahmias [291]) A fuzzy variable is defined as a function from the

possibility space (Θ ,P(Θ),Pos) to the real line R.

Definition 2.3. (Dubois and Prade [71]) Let ξ be a fuzzy variable on the possibility

space (Θ ,P(Θ),Pos). Then its membership function µ : R �→ [0,1] is derived from

the possibility measure Pos by

µ(x) = Pos{θ ∈Θ |ξ (θ ) = x}. (2.2)

Remark 2.1. For any fuzzy variable ξ with membership function µ , we have

supx µ(x) = supx Pos{θ ∈Θ |ξ (θ ) = x}= Pos{Θ}= 1. That is, any fuzzy variables

defined by Definition 2.2 are normalized.

Remark 2.2. Let ξ be a fuzzy variable with membership function µ . Then ξ may be

regarded as a function from the possibility space (Θ ,P(Θ),Pos) to R, provided that

Pos{A}= sup{µ(ξ (θ ))|θ ∈ A} for any A ∈ P(Θ).

Remark 2.3. Since Θ = A∪Ac, we have Pos{A}∨Pos{Ac} = Pos{Θ} = 1 which

implies that Pos{A}≤ 1. On the other hand, since A = A∪φ , we have Pos{A}∨0 =
Pos{A} which implies that Pos{A} ≥ 0. It follows that 0 ≤ Pos{A} ≤ 1 for any

A⊆ P.

Remark 2.4. Let A⊆ B. Then there exists a set C such that B = A∪C. Thus we have

Pos{A}∨Pos{C}= Pos{B} which gives that Pos{A} ≤ Pos{B}.

Theorem 2.1. Zadeh[9] Let ã1, ã2, · · · , ãn be fuzzy variables, and f : Rn → R be

continuous functions. Then the membership function µã of f (ã1, ã2, · · · , ãn) ≤ 0 is

derived from the membership functions µã1
,µã2

, · · · ,µãn by

µã = sup
x1,x2,··· ,xn∈R

{
min

1≤i≤n
µãi(xi)|x = f (x1,x2, · · · ,xn)

}
. (2.3)
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Now we introduce the LR fuzzy variable on which the fuzzy arithmetics have good

results.

Definition 2.4. (Dubois and Prade [305]) Let f be a function from real numbers set R
to [0,1]. If f satisfies (1) f (x)= f (−x),(2) f (0)=1,(3) f (x) is decreasing on [0,+∞),
then f (x) is called reference function of a fuzzy variable.

The following reference functions are used usually in practical application:

(1) f (x) = max{0,1−|x|p}(p≥ 0).
(2) f (x) = exp(−|x|p)(p ≥ 0).
(3) f (x) = 1

1+|x|p (p≥ 0).

(4) f (x) =

{
1, x ∈ [−1,1]
0, otherwise.

Definition 2.5. (Dubois and Prade [305]) Let L(·),R(·) be two reference functions.

If the membership function of fuzzy variable ξ has the following form

µξ (x) =

{
L(m−x

α ), x≤ m,α > 0

R( x−m
β ), x≥ m,β > 0,

(2.4)

then ξ is called LR fuzzy variable, L,R are called left and right branch of ξ respec-

tively, α,β are called left and right spread of ξ respectively, m is called the main

value of ξ . Denote ξ by (m,α,β )LR. In addition, we assume LR fuzzy variable de-

generate to a real number as α = β = 0, i.e. (m;0,0)LR = m.

Lemma 2.1. [305] Let ξ1 = (m1,α1,β1)LR,ξ2 = (m2,α2,β2)LR, k(
= 0) a real num-

ber, then

(1)ξ1 + ξ2 = (m1 + m2,α1 + α2,β1 + β2)LR;

(2)ξ1− ξ2 = (m1−m2,α1 + β2,β1 + α2)LR;

(3)kξ1 =

{
(km1,kα1,kβ1)LR,

(km1,−kα1,−kβ1)LR,
k > 0.

Actually, ξ1− ξ2 = ξ1 +(−1)ξ2.

Now let us introduce a kind of special LR fuzzy variables. By trapezoidal fuzzy

variable we mean the fuzzy variables fully determined by quadruples (r1,r2,r3,r4)
of crisp numbers with r1 < r2 ≤ r3 < r4, whose membership functions can be de-

noted by

µ(x) =

⎧
⎪⎪⎨
⎪⎪⎩

x−r1
r2−r1

, if r1 ≤ x≤ r2

1, if r2 ≤ x≤ r3
x−r3
r3−r4

, if r3 ≤ x≤ r4

0, otherwise.

The membership function curve of a trapezoidal fuzzy variable are shown by

Figure 2.1.
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Fig. 2.1 The membership function curve of trapezoidal fuzzy variable (r1,r2,r3,r4)

We note that the trapezoidal fuzzy variable is a triangular fuzzy variable if r2 = r3,

denoted by a triple (r1,r2,r3). That is , the membership function of triangular fuzzy

variable (r1,r2,r3) is

µ(x) =

⎧
⎨
⎩

x−r1
r2−r1

, if r1 ≤ x≤ r2
x−r3
r2−r3

, if r2 ≤ x≤ r3

0, otherwise.

The membership function curve of a triangular fuzzy variable are shown by

Figure 2.2.

Fig. 2.2 The membership function curve of triangular fuzzy variable (r1,r2,r3)

In some practical application, r2 was in the center of interval [r1,r3], i.e.

r2 = r1+r3
2 . In this case, ξ is called centeral triangular fuzzy variable, denoted by

(a,
a+b

2 ,b)(a < b). Its membership function is

µ(x) =

⎧
⎪⎨
⎪⎩

2(x−b)
b−a

, if a≤ x≤ a+b
2

2(x−b)
a−b

, if a+b
2 ≤ x≤ a

0, otherwise.

The membership function curve of a triangular fuzzy variable are shown by

Figure 2.3.
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Fig. 2.3 The membership function curve of centeral triangular fuzzy variable

(a,
a+b

2 ,b)(a < b)

From the fuzzy arithmetic, we can obtain the sum of trapezoidal fuzzy variables

ã = (a1,a2,a3,a4) and b̃ = (b1,b2,b3,b4) as

µã+b̃(z) = sup{min{µã(x),µb̃(y)}|z = x + y}

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

z−(a1+b1)
(a2+b2)−(a1+b1) , if a1 + b1 ≤ z≤ a2 + b2

1, if a2 + b2 ≤ z≤ a3 + b3
z−(a4+b4)

(a3+b3)−(a4+b4)
, if a3 + b3 ≤ z≤ a4 + b4

0, otherwise.

That is, the sum of two trapezoidal fuzzy variables is also a trapezoidal fuzzy vari-

able, and

ã+ b̃ = (a1 + b1,a2 + b2,a3 + b3,a4 + b4).

Next we consider the product of a trapezoidal fuzzy variable and a scalar number λ .

We have

µλ ·ã(z) = sup{µã(x)|z = λ x}
which yields that

λ · ã =

{
(λ ã1,λ ã2,λ ã3,λ ã4), if λ ≥ 0

(λ ã4,λ ã3,λ ã2,λ ã1), if λ < 0.

That is, the product of a trapezoidal fuzzy variable and a scalar number is also a

trapezoidal fuzzy variable. Thus a weighted sum of trapezoidal fuzzy variables is

also a trapezoidal fuzzy variable.

For example, we assume that ãi are trapezoidal fuzzy variables (ai1,ai2,ai3,ai4),
and λi are scalar numbers, i = 1,2, · · · ,n, respectively. If we define

λ +
i =

{
λi, if λi ≤ 0

0, otherswise,
λ−i =

{
0, if λi ≤ 0

−λi, otherswise.
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for i = 1,2, · · · ,n, then λ +
i and λ−i are all nonnegative and satisfy that λ =

i λ +
i −λ−i .

By the sum and product operations of trapezoidal fuzzy variables, we can obtain

ã =
n

∑
i=1

λiãi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n

∑
i=1

(λ +
i ai1−λ−i ai4)

n

∑
i=1

(λ +
i ai2−λ−i ai3)

n

∑
i=1

(λ +
i ai2−λ−i ai2)

n

∑
i=1

(λ +
i ai4−λ−i ai1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

.

As ãi degenerate into triangular variables, i.e. ãi = (ai1,ai2,ai3), we have

ã =
n

∑
i=1

λiãi =

⎛
⎜⎜⎜⎜⎜⎝

n

∑
i=1

(λ +
i ai1−λ−i ai3)

n

∑
i=1

(λ +
i ai2−λ−i ai2)

n

∑
i=1

(λ +
i ai3−λ−i ai1)

⎞
⎟⎟⎟⎟⎟⎠

T

.

2.2.2 Possibility, Necessity and General Fuzzy Measure

In order to measure the chances of occurrence of fuzzy events, three kinds of fuzzy

measures of fuzzy events are introduced in this section. If decision making is per-

formed optimistically, it is reasonable to use the possibility measure as follows:

More generally, we give the following theorem on possibility of fuzzy event.

Theorem 2.2. [31] Let ã1, ã2, · · · , ãn be fuzzy variables, and f : Rn → R be

continuous functions. Then the possibility of the fuzzy event characterized by

f (ã1, ã2, · · · , ãn) ≤ 0 is

Pos{ f (ã1, ã2, · · · , ãn)≤ 0}

= sup
x1,x2,··· ,xn∈R

{
min

1≤i≤n
µãi(xi)| f (x1,x2, · · · ,xn)≤ 0

}
. (2.5)

Example 2.1. Let ã and b̃ be fuzzy variables on the possibility spaces

(Θ1,P(Θ1),Pos1) and (Θ2,P(Θ2),Pos2), respectively. Then ã ≤ b̃ is a fuzzy event

defined on the product possibility space (Θ ,P(Θ),Pos), whose possibility is

Pos{ã≤ b̃}= sup
x,y∈R

{µã(x)∧µb̃(y)|x≤ y},

where the abbreviation Pos represents possibility. This means that the possibility of

ã ≤ b̃ is the largest possibility that there exists at least one pair of values x,y ∈ R
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such that x ≤ y, and the values of ã and b̃ are x and y, respectively. Similarly, the

possibility of ã = ã is given by

Pos{ã = b̃}= sup
x∈R
{µã(x)∧µb̃(x)}.

If the decision maker prefers a pessimistic decision in order to avoid risk, it may be

approximate to replace the possibility measure with the necessity measure.

A set function Nec defined on P(Θ) is said to be a necessity measure if it satisfies

the following conditions:

(1) Nec{ /0}= 0, and Nec{Θ}= 1;

(2) Nec{⋂
i∈I

Ai} = inf
i∈I
{Ai} for any subclass {Ai|i ∈ I} of P(Θ), where I is an index

set.

The necessity measure of a set A is defined as the impossibility of the opposite

set Ac.

Definition 2.6. (Dubois [31]) Let (Θ ,P(Θ),Pos) be a possibility space, and A be a

set in P(Θ). Then the necessity measure of A is

Nec{A}= 1−Pos{Ac}.

Thus the necessity measure is the dual of possibility measure, that is, Pos{A}+
Nec{Ac}= 1 for any A ∈ P(Θ).

Lemma 2.2. [31] Let ξ1 and ξ1 be two fuzzy variables. Then we have

Pos{ξ1 ≥ ξ2}= sup{µξ1
(u)∧µξ1

(v)|u > v}, (2.6)

Pos{ξ1 > ξ2}= sup{µξ1
(u)∧ inf

v
{1− µξ2

(v)|u≤ v}}. (2.7)

If the decision maker prefers a pessimistic decision in order to avoid risk, it may be

approximate to replace the possibility measure with the necessity measure.

Nec{ξ1 ≥ ξ2}= inf
u
{1− µξ (u)∨ sup

v
µξ2

(v)|u ≥ v}, (2.8)

Nec{ξ1 > ξ2}= inf{(1− µξ1
(u))∨ (1− µξ2

(v))|u ≤ v}. (2.9)

The conclusions of Lemma 2.2 can be shown by the following Figure 2.4.

By using the α−level sets of fuzzy variable ξ1 and ξ2, [m
L
α ,mR

α ] and [nL
α ,nR

α ],
Lemma 2.2 can be rewritten as

Pos{ξ1 ≥ ξ2} ≥ α ⇐⇒mR
α ≥ nL

α , (2.10)

Pos{ξ1 > ξ2} ≥ α ⇐⇒ mR
α ≥ nR

1−α , (2.11)

Nec{ξ1 ≥ ξ2} ≥ α ⇐⇒ mR
1−α ≥ nL

α , (2.12)

Nec{ξ1 > ξ2} ≥ α ⇐⇒mL
1−α ≥ nR

1−α . (2.13)

Sometimes, the basic measures Pos and Nec proposed by Dubois and Prade [305, 31]

can be limited in dealing with the realistic uncertain decision making problems, since
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Fig. 2.4 Conclusions of Theorem 2.2

these two measures reflect the extremely optimistic and pessimistic attitudes, so we

need a more general measure for fuzzy decision making problems. In fact, in realistic

uncertain decision making process, decision makers often have different optimistic-

pessimistic attitudes. They will decide the optimistic-pessimistic parameters accord-

ing to their own judgement. When they have good forecasts, they will be optimistic

about a fuzzy event and vice versa. This optimistic-pessimistic parameter of a fuzzy

event should be considered to avoid extreme attitudes. Therefore, it is necessary to

design a more flexible measure to measure fuzzy events in a decision making prob-

lem by introducing an optimistic-pessimistic parameter, and this measure should be

adjustable according to the varying attitudes of the decision makers. So if we set the

pessimistic measure Nec as the reference measure, and we can design a new mea-

sure Me by adding an optimistic-pessimistic adjusting factor λ (Pos{A}−Nec{A}),
where (Pos{A}−Nec{A}) is the range in which the value of the measure can change

from a pessimistic value to an optimistic value. Based on the above idea and discus-

sion, a fuzzy measure Me is suitable for the background of decision making under a

fuzzy environment and has practical significance.

Definition 2.7. (Xu and Zhou [402, 413]) Let (Θ ,P(Θ),Pos) be a possibility space,

and A be a set in P(Θ). Then the fuzzy measure of A is

Me{A}= Nec{A}+ λ (Pos{A}−Nec{A}),

where λ (0≤ λ ≤ 1) is the optimistic-pessimistic parameter to determine the com-

bined attitude of a decision maker.

Remark 2.5. Note that the fuzzy measure Me is to evaluate a degree that a fuzzy

variable takes values in an interval with different optimistic-pessimistic attitudes. It

is equal to the convex combination of Pos and Nec, i. e., Me{A}= λ Pos{A}+(1−
λ )Nec{A}.

When λ = 1, we have Me = Pos, it means the decision maker is optimistic, it’s

the measure of best case of that event, and it is the maximal chance of A holds;
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When λ = 0, we have Me = Nec, it means the decision maker is pessimistic,

it gives the measure of worst case of that event, and it is the minimal chance of A

holds;

When λ = 0.5, we have Me = Cr, where Cr is the credibility measure introduced

by Liu [220], it’s a special case of Me, it means the decision maker takes compro-

mise attitude. Cr and it is self dual, that is, Cr{A}+Cr{Ac}= 1 for any A ∈ P(Θ).

Theorem 2.3. Let (Θ ,P(Θ),Pos) be a possibility space, and A be a set in P(Θ).
(i) Me{Θ}= 1, and Me{Φ}= 0, where Θ is the collection and Φ is the empty set;

(ii) Since λ (Pos{A}−Nec{A})≥ 0, so Nec{A} ≤ Me{A} ≤ Pos{A} for any A ∈
P(Θ) and thus 0-1 boundedness holds for Me{·};
(iii) For any two sets which satisfy A ⊂ B, Me{A} ≤ Me{B}, which means that

monotonicity holds for Me{·};
(iv) For any A ∈ P(Θ), when the optimistic-pessimistic parameter λ ≥ 0.5, we have

1≤Me{A}+Me{Ac} ≤ 2, and when λ ≤ 0.5, we have 0≤Me{A}+Me{Ac} ≤ 1;

(v) For any A,B ∈ P(Θ) and λ ≥ 0.5, we have Me{A∪ B} ≤ Me{A}+ Me{B},
which means the restricted subadditivity holds for Me{·}.

Example 2.2. Let Θ = {θ1,θ2}, with Pos{θ1} = 1.0, and Pos{θ2} = 0.7. Then we

have
Nec{θ1}= 1−Pos{θ2}= 0.3,

Nec{θ2}= 0.

So based on the above results, we have

Me{θ1}= Nec{θ1}+ λ (Pos{θ1}−Nec{θ1}) = 0.3 + 0.7λ ,

Me{θ2}= 0.7λ ,

Me{θ1}+ Me{θ2}= 0.3 + 1.4λ .

If we want to make Me{θ1}+Me{θ2}= 1, we need to set the optimistic-pessimistic

parameter λ = 0.5.

If we set λ = 0.2, we have Me{θ1}+ Me{θ2}= 0.58.

If we set λ = 0.6, we have Me{θ1}+ Me{θ2}= 1.14.

Lemma 2.3. [402, 413] Let (Θ ,P(Θ),Pos) be a possibility space, and A be a set in

P(Θ). Then for any λ1 ≥ λ2, we have

Meλ1{A} ≥Meλ2{A}.

Proof. According to Definition 2.7, we have that

Meλ1{A}−Meλ2{A}
= (λ1Pos{A}+(1−λ1)Nec{A})− (λ2Pos{A}+(1−λ2)Nec{A})
= (λ1−λ2)Pos{A}− (λ1−λ2)Nec{A}
= (λ1−λ2)(Pos{A}−Nec{A}).

Because λ1−λ2 ≥ 0. So in order to prove Meλ1{A}−Meλ2{A} ≥ 0, we just need

to prove Pos{A} ≥ Nec{A}.
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If Pos{A} = 1, then it is obvious that Pos{A} ≥ Nec{A}. Otherwise, we must

have Pos{Ac}= 1, which implies that Nec{A}= 1−Pos{Ac}= 0. Thus Pos{A} ≥
Nec{A} always holds, so we have

(λ1−λ2)(Pos{A}−Nec{A})≥ 0⇒Meλ1{A} ≥Meλ2{A}.

The theorem is proved. ⊓⊔
Remark 2.6. A fuzzy event may fail even though its possibility achieves 1, and hold

even though its necessity is 0. However, the fuzzy event must hold if its credibility

is 1, and fail if its credibility is 0.

Example 2.3. By a triangular fuzzy variable we mean the fuzzy variable ξ fully de-

termined by the triplet (r1,r2,r3) of crisp numbers with r1 < r2 < r3, whose mem-

bership function is given by

µ(x) =

⎧
⎨
⎩

x−r1
r2−r1

, if r1 ≤ x≤ r2
x−r3
r2−r3

, if r2 ≤ x≤ r3

0, otherwise.

From the definition of (2.2),(2.6) and (2.7), the possibility, necessity, and the general

measure of ξ ≤ x are as follows respectively:

Pos{ξ ≤ x}=

⎧
⎨
⎩

0, if x≤ r1
x−r1
r2−r1

, if r1 ≤ x≤ r2

1, if x≥ r2,

Nec{ξ ≤ x}=

⎧
⎨
⎩

0, if x≤ r2
x−r2
r3−r2

, if r2 ≤ x≤ r3

1, if x≥ r3,

Me{ξ ≤ x}=

⎧
⎪⎪⎨
⎪⎪⎩

0, if x≤ r1

λ x−r1
r2−r1

, if r1 ≤ x≤ r2

λ +(1−λ ) x−r2
r3−r2

, if r2 ≤ x≤ r3

1, if x≥ r3,

Cr{ξ ≤ x}=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0, if x≤ r1
x−r1

2(r2−r1)
, if r1 ≤ x≤ r2

x−2r2+r3
2(r3−r2) , if r2 ≤ x≤ r3

1, if x≥ r3.

Example 2.4. By a trapezoidal fuzzy variable, we mean the fuzzy variable ξ fully

determined by quadruplet (r1,r2,r3,r4) of crisp numbers with r1 < r2 < r3 < r4,

whose membership function is given by Figure 2.5.

µ(x) =

⎧
⎪⎪⎨
⎪⎪⎩

x−r1
r2−r1

, if r1 ≤ x≤ r2

1, if r2 ≤ x≤ r3
x−r4
r3−r4

, if r3 ≤ x≤ r4

0, otherwise.
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Fig. 2.5 A trapezoidal fuzzy variable ξ = (r1,r2,r3,r4)

From the definition of (2.2),(2.6) and (2.7), the possibility, necessity, and credibility

of ξ ≤ x are as follows respectively:

Pos{ξ ≤ x}=

⎧
⎨
⎩

1, if x≥ r2
x−r1
r2−r1

, if r1 ≤ x≤ r2

0, otherwise,

Nec{ξ ≤ x}=

⎧
⎨
⎩

1, if x≥ r4
x−r3
r4−r3

, if r3 ≤ x≤ r4

0, otherwise,

Me{ξ ≤ x}=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if x≤ r1

λ x−r1
r2−r1

, if r1 ≤ x≤ r2

λ , if r2 ≤ x≤ r3

λ +(1−λ ) x−r3
r4−r3

, if r3 ≤ x≤ r4

1, if x≥ r4,

Cr{ξ ≤ x}=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if x≤ r1
x−r1

2(r2−r1)
, if r1 ≤ x≤ r2

1
2 , if r2 ≤ x≤ r3
x−2r3+r4
2(r4−r3) , if r3 ≤ x≤ r4

1, otherwise.

Lemma 2.4. [77] Let ξ = (r1,r2,r3,r4) be a trapezoidal fuzzy variable. Then for

any given confidence level α with 0 < α ≤ 1, we have

(1). Pos{ξ ≤ 0} if and only if (1−α)r1 + αr2 ≤ 0;

(2). Nec{ξ ≤ 0} if and only if (1−α1)r3 + αr4 ≤ 0;

(3). when α ≤ 0.5, Cr{ξ ≤ 0} if and only if (1−2α)r1 + 2α2 ≤ 0;

(4). when α > 0.5, Cr{ξ ≤ 0} if and only if (2−2α)r3 +(2α2−1)r4 ≤ 0.

2.2.3 Expected Value Operator of Fuzzy Variables

In order to measure the mean of a fuzzy variable, several researchers defined different

expected values for fuzzy variables, such as Dubois and Prade [30], Campos and

Verdegay [33], González [34] and Yager [35, 36]. In this book, we define three kinds

of expected values for fuzzy variables based on three kinds fuzzy measures:
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Definition 2.8. (Xu, Zhou[413]) Let ξ be a fuzzy variable on the possibility space

(Θ ,P(Θ),Pos). The expected value of ξ is defined by

EMe[ξ ] =

∫ +∞

0
Me{ξ ≥ r}dr−

∫ 0

−∞
Me{ξ ≤ r}dr, (2.14)

where integrals are defined through Lebesgue integral, i.e. , well defined in case

either of the two takes finite value.

Similarly, we can define the expected value based on the Pos,Nec,Cr measure,

which are the special case of fuzzy measure Me.

⎧
⎨
⎩

EPos[ξ ] =
∫ +∞

0 Pos{ξ ≥ r}dr− ∫ 0
−∞ Pos{ξ ≤ r}dr,

ENec[ξ ] =
∫ +∞

0 Nec{ξ ≥ r}dr−
∫ 0
−∞ Nec{ξ ≤ r}dr,

ECr[ξ ] =
∫ +∞

0 Cr{ξ ≥ r}dr− ∫ 0
−∞ Cr{ξ ≤ r}dr.

(2.15)

Obviously, EMe[ξ ] = λ EPos[ξ ] + (1 − λ )ENec[ξ ], and ECr[ξ ] = 1
2 (EPos[ξ ] +

ENec[ξ ]).

Remark 2.7. The Definition 2.8 is not only applicable to continuous fuzzy variable,

but also discrete fuzzy variable and a function of multiple fuzzy variables.

Proposition 2.1. Let ξ be a fuzzy variable with a membership function

µξ (x) =

{
1, if x ∈ [a,b]
0, otherwise.

Then the expected value of ξ is

EMe[ξ ] =

⎧
⎨
⎩

(1−λ )a + λ b, if 0≤ a≤ b

λ (a + b), if a≤ 0≤ b

λ a +(1−λ )b, if a≤ b≤ 0.

Proof. First, we calculate EPos[ξ ] and ENec[ξ ]. There are three cases. Let’s discuss

every case in turn.

Case 1: 0≤ a≤ b

EPos[ξ ] =
∫+∞

0 Pos{ξ ≥ r}dr− ∫ 0
−∞ Pos{ξ ≤ r}dr

=
∫ b

0 Pos{ξ ≥ r}dr

= b.

ENec[ξ ] =
∫+∞

0 Nec{ξ ≥ r}dr− ∫ 0
−∞ Nec{ξ ≤ r}dr

=
∫+∞

0 (1−Pos{ξ < r})dr− ∫ 0
−∞(1−Pos{ξ > r})dr

=
∫ 0
−∞ Pos{ξ > r}dr− ∫+∞

0 Pos{ξ < r}dr

=
∫ 0
−∞ 1dr− [

∫ a
0 Pos{ξ < r}dr +

∫ b
a Pos{ξ < r}dr +

∫+∞
b Pos{ξ < r}dr]

= a.
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Then we have

EMe[ξ ] = λ EPos[ξ ]+ (1−λ )ENec[ξ ]
= (1−λ )a + λ b.

Case 2: a≤ 0≤ b

EPos[ξ ] =
∫+∞

0 Pos{ξ ≥ r}dr− ∫ 0
−∞ Pos{ξ ≤ r}dr

=
∫ b

0 Pos{ξ ≥ r}dr− ∫ 0
a Pos{ξ ≤ r}dr

= b + a.

ENec[ξ ] =
∫+∞

0 Nec{ξ ≥ r}dr− ∫ 0
−∞ Nec{ξ ≤ r}dr

=
∫+∞

0 (1−Pos{ξ < r})dr− ∫ 0
−∞(1−Pos{ξ > r})dr

=
∫ 0
−∞ Pos{ξ > r}dr− ∫+∞

0 Pos{ξ < r}dr

=
∫ 0
−∞ 1dr− ∫+∞

0 1dr

= 0.

Then we have

EMe[ξ ] = λ (a + b).

Case 3: a≤ b≤ 0

EPos[ξ ] =
∫+∞

0 Pos{ξ ≥ r}dr− ∫ 0
−∞ Pos{ξ ≤ r}dr

=−∫ 0
a Pos{ξ ≤ r}dr

= a.

ENec[ξ ] =
∫+∞

0 Nec{ξ ≥ r}dr− ∫ 0
−∞ Nec{ξ ≤ r}dr

=
∫+∞

0 (1−Pos{ξ < r})dr− ∫ 0
−∞(1−Pos{ξ > r})dr

=
∫ 0
−∞ Pos{ξ > r}dr−

∫+∞
0 Pos{ξ < r}dr

=
∫ b
−∞ 1dr +

∫ 0
b 0dr− ∫+∞

0 1dr

= b.

Then we have

EMe[ξ ] = λ a +(1−λ )b.

Above all, for any cases we have

EMe[ξ ] =

⎧
⎨
⎩

(1−λ )a + λ b, if 0≤ a≤ b

λ (a + b), if a≤ 0≤ b

λ a +(1−λ )b, if a≤ b≤ 0.

This theorem is proved. ⊓⊔

Remark 2.8. If λ = 1
2 , i.e. Me is actually Cr, then ECr[ξ ] = a+b

2 .
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Proposition 2.2. Let ξ = (r1,r2,r3,r4) be a trapezoidal fuzzy variable. Then its ex-

pected value is

EMe[ξ ] =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λ
2 (r1 + r2)+ 1−λ

2 (r3 + r4), if r4 ≤ 0

λ
2 (r1 + r2)+

λ r2
4−(1−λ )r2

3
2(r4−r3) , if r3 ≤ 0≤ r4

λ
2 (r1 + r2 + r3 + r4), if r2 ≤ 0≤ r3

(1−λ )r2
2−λ r2

1
2(r2−r1)

+ λ
2 (r3 + r4), if r1 ≤ 0≤ r2

1−λ
2 (r1 + r2)+ λ

2 (r3 + r4), if 0≤ r1.

(2.16)

Proof. Since there 5 cases, let’s discuss every case in turn.

Case 1: r4 ≤ 0

EMe[ξ ] =
∫+∞

0 Me{ξ ≥ r}dr− ∫ 0
−∞ Me{ξ ≤ r}dr

=−(
∫ r1
−∞ Me{ξ ≤ r}dr +

∫ r2
r1

Me{ξ ≤ r}dr +
∫ r3

r2
Me{ξ ≤ r}dr

+
∫ r4

r3
Me{ξ ≤ r}dr +

∫ 0
r4

Me{ξ ≤ r}dr)

=−(
∫ r2

r1
λ r−r1

r2−r1
dr +

∫ r3
r2

λdr +
∫ r4

r3
(λ +(1−λ ) r−r3

r4−r3
)dr +

∫ 0
r4

1dr)

=−( λ r2

2(r2−r1)
|r2
r1
− λ r1r

r2−r1
|r2
r1

+λ r |r3
r2

+λ r |r4
r3

+
(1−λ )r2

2(r4−r3)
|r4
r3
− (1−λ )r3r

r4−r3
|r4
r3

+r |0r4
)

= λ
2 (r1 + r2)+ 1−λ

2 (r3 + r4).

Case 2: r3 ≤ 0≤ r4

EMe[ξ ] =
∫+∞

0 Me{ξ ≥ r}dr− ∫ 0
−∞ Me{ξ ≤ r}dr

=
∫ r4

0 Me{ξ ≥ r}dr +
∫ +∞

r4
λCr{ξ ≥ r}dr− (

∫ r1
−∞ Me{ξ ≤ r}dr

+
∫ r2

r1
Me{ξ ≤ r}dr +

∫ r3
r2

λCr{ξ ≤ r}dr +
∫ 0

r3
Me{ξ ≤ r}dr)

=
∫ r4

0 λ r4−r
r4−r3

dr− (
∫ r2

r1
λ r−r1

r2−r1
dr +

∫ r3
r2

λdr +
∫ 0

r3
(λ +(1−λ ) r−r3

r4−r3
)dr)

= λ r4r
r4−r3

|r4

0 − λ r2

2(r4−r3)
|r4

0 −( λ r2

2(r2−r1)
|r2
r1
− λ r1r

r2−r1
|r2
r1

+λ r |r3
r2

+λ r |0r3
+ (1−λ )r2

2(r4−r3)
|0r3

− (1−λ )r3r
r4−r3

|0r3
)

= λ
2 (r1 + r2)+

λ r2
4−(1−λ )r2

3

2(r4−r3)
.

Case 3: r2 ≤ 0≤ r3

EMe[ξ ] =
∫ +∞

0 Me{ξ ≥ r}dr−
∫ 0
−∞ Me{ξ ≤ r}dr

=
∫ r3

0 Me{ξ ≥ r}dr +
∫ r4

r3
Me{ξ ≥ r}dr +

∫+∞
r4

Me{ξ ≥ r}dr

−(
∫ r1
−∞ Me{ξ ≤ r}dr +

∫ r2
r1

Me{ξ ≤ r}dr +
∫ 0

r2
λCr{ξ ≤ r}dr)

=
∫ r3

0 λ dr +
∫ r4

r3
λ r4−r

r4−r3
dr− (

∫ r2
r1

λ r−r1
r2−r1

dr +
∫ 0

r2
λ dr)

= λ r |r3
0 + λ r4r

r4−r3
|r4
r3 − λ r2

2(r4−r3) |
r4
r3 −( λ r2

2(r2−r1) |
r2
r1 − λ r1r

r2−r1
|r2
r1 +λ r |0r2

)

= λ
2 (r1 + r2 + r3 + r4).
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Case 4: r1 ≤ 0≤ r2

EMe[ξ ] =
∫+∞

0 Me{ξ ≥ r}dr− ∫ 0
−∞ Me{ξ ≤ r}dr

=
∫ r2

0 Me{ξ ≥ r}dr +
∫ r3

r2
Me{ξ ≥ r}dr +

∫ r4
r3

Me{ξ ≥ r}dr

+
∫+∞

r4
Me{ξ ≥ r}dr− (

∫ r1
−∞ Me{ξ ≤ r}dr +

∫ 0
r1

Me{ξ ≤ r}dr)

=
∫ r2

0 (λ +(1−λ ) r2−r
r2−r1

)dr +
∫ r3

r2
λ dr +

∫ r4
r3

λ r4−r
r4−r3

dr− (
∫ 0

r1
λ r−r1

r2−r1
dr)

= λ r |r2
0 + (1−λ )r2r

r2−r1
|r2
0 −

(1−λ )r2

2(r2−r1)
|r2
0 +λ r |r3

r2
+ λ r4r

r4−r3
|r4
r3
− λ r2

2(r4−r3)
|r4
r3

−( λ r2

2(r2−r1)
|0r1
− λ r1r

r2−r1
|0r1

)

=
(1−λ )r2

2−λ r2
1

2(r2−r1)
+ λ

2 (r3 + r4).

Case 5: 0≤ r1

EMe[ξ ] =
∫ +∞

0 Me{ξ ≥ r}dr− ∫ 0
−∞ Me{ξ ≤ r}dr

=
∫ r1

0 Me{ξ ≥ r}dr +
∫ r2

r1
Me{ξ ≥ r}dr +

∫ r3
r2

Me{ξ ≥ r}dr

+
∫ r4

r3
Me{ξ ≥ r}dr +

∫+∞
r4

Me{ξ ≤ r}dr

=
∫ r1

0 1dr +
∫ r2

r1
(λ +(1−λ ) r2−r

r2−r1
)dr +

∫ r3
r2

λ dr +
∫ r4

r3
λ r4−r

r4−r3
dr + 0

= r |r1
0 +λ r |r2

r1 + (1−λ )r2r
r2−r1

|r2
r1 −

(1−λ )r2

2(r2−r1) |
r2
r1 +λ r |r3

r2 + λ r4r
r4−r3

|r4
r3 − λ r2

2(r4−r3) |
r4
r3

= 1−λ
2 (r1 + r2)+ λ

2 (r3 + r4).

Then we have

EMe[ξ ] =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λ
2 (r1 + r2)+ 1−λ

2 (r3 + r4), if r4 ≤ 0

λ
2 (r1 + r2)+

λ r2
4−(1−λ )r2

3
2(r4−r3)

, if r3 ≤ 0≤ r4

λ
2 (r1 + r2 + r3 + r4), if r2 ≤ 0≤ r3
(1−λ )r2

2−λ r2
1

2(r2−r1) + λ
2 (r3 + r4), if r1 ≤ 0≤ r2

1−λ
2 (r1 + r2)+ λ

2 (r3 + r4), if 0≤ r1.

This theorem is proved. ⊓⊔

Remark 2.9. If λ = 0.5, then

ECr[ξ ] =
r1 + r2 + r3 + r4

2
.

Remark 2.10. If r2 = r3, i.e. ξ degenerates to a triangular fuzzy variable, then

ECr[ξ ] =
1

4
(r1 + 2r2 + r4).

Remark 2.11. If LR fuzzy number ξ = (z,α,β )LR degenerates to a triangular fuzzy

number which means the reference function L(x) = R(x) = 1− x, then

ECr[ξ ] = z+
1

4
(α + β ).
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Proposition 2.3. Let ξ be a fuzzy variable with a membership function

µξ (x) = e−k(x−a)2
(k > 0)

Then the expected value of ξ is

EMe[ξ ] = a−
∫ a

0
e−k(x−a)2

dx.

Proof. There are five cases. Let’s discuss every case in turn.

Case 1: a≥ 0

EPos[ξ ] =
∫ +∞

0 Pos{ξ ≥ r}dx−
∫ 0
−∞ Pos{ξ ≤ x}dx

= (
∫ a

0 1dx +
∫+∞

a e−k(x−a)2
dx)− ∫ 0

−∞ e−k(x−a)2
dx

= a− ∫ a
0 e−k(x−a)2

dx.

ENec[ξ ] =
∫ +∞

0 Nec{ξ ≥ x}dx−
∫ 0
−∞ Nec{ξ ≤ x}dx

=
∫ 0
−∞ Pos{ξ > x}dx− ∫+∞

0 Pos{ξ < x}dx

=
∫ 0
−∞ 1dx− (

∫ a
0 e−k(x−a)2

dx +
∫+∞

a 1dr

= a− ∫ a
0 e−k(x−a)2

dx.

Then we have

EMe[ξ ] = λ EPos[ξ ]+ (1−λ )ENec[ξ ]

= λ (a−
∫ a

0 e−k(x−a)2
dx)+ (1−λ )(a−

∫ a
0 e−k(x−a)2

dx)

= a− ∫ a
0 e−k(x−a)2

dx.

Case 2: a < 0

EPos[ξ ] =
∫ +∞

0 Pos{ξ ≥ r}dx− ∫ 0
−∞ Pos{ξ ≤ x}dx

=
∫ +∞

0 e−k(x−a)2
dx− (

∫ a
−∞ e−k(x−a)2

dx +
∫ 0

a 1dx)

=
∫ 0

a e−k(x−a)2
dx + a.

ENec[ξ ] =
∫ +∞

0 Nec{ξ ≥ x}dx− ∫ 0
−∞ Nec{ξ ≤ x}dx

=
∫ 0
−∞ Pos{ξ > x}dx−

∫+∞
0 Pos{ξ < x}dx

= (
∫ a
−∞ 1dx +

∫ 0
a e−k(x−a)2

dx)− ∫+∞
0 1dr

= a +
∫ 0

a e−k(x−a)2
dx.

Then we have

EMe[ξ ] = λ EPos[ξ ]+ (1 + λ )ENec[ξ ]

= λ (
∫ 0

a e−k(x−a)2
dx + a)+ (1 + λ )(a +

∫0
a e−k(x−a)2

dx)

= a− ∫ a
0 e−k(x−a)2

dx.

So we always have EMe[ξ ] = a−
∫ a

0 e−k(x−a)2
dx. This theorem is proved. ⊓⊔
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Remark 2.12. As well known, it is hard to calculate integral like
∫ a

0 e−k(x−a)2
dx.

However, we can substitute
n

∑
i=0

∫ a
0

[−k(x−a)2]i

i! dx for
∫ a

0 e−k(x−a)2
dx to obtain the ap-

proximate results.

The definition of expected value operator is not only applicable to continuous case

but also discrete case.

Proposition 2.4. Assume that ξ is a discrete fuzzy variable whose membership func-

tion is given by

µξ (x) =

⎧
⎪⎪⎨
⎪⎪⎩

µ1, if x = a1

µ2, if x = a2

· · ·
µn, if x = an.

Without loss of generality, we also assume that a1≤ a2≤ ·· · ≤ an. Then the expected

value of ξ is

EMe[ξ ] =
n

∑
i=1

wiai, (2.17)

where the weights wi, i = 1,2, · · · ,m are given by

w1 = λ µ1 +(1−λ )( max
1≤ j≤n

µ j− max
1< j≤n

µ j),

wi = λ ( max
1≤ j≤i

µ j− max
1≤ j<n

µ j)+ (1−λ )(max
i≤ j≤n

µ j− max
i< j≤n

µ j), 2≤ i≤ n−1,

wn = λ µm +(1−λ )( max
1≤ j≤n

µ j− max
1≤ j<n

µ j).

Proof. It follows from Definition 2.8 that

EPos[ξ ] =
∫+∞

0 Pos{ξ ≥ r}dr− ∫ 0
−∞ Pos{ξ ≤ r}dr

= (
∫ xk+1

0 Pos{ξ ≥ r}dr +
∫ xk+2

xk+1
Pos{ξ ≥ r}dr + · · ·+

∫ xn
xn−1

Pos{ξ ≥ r}dr

+
∫+∞

xn
Pos{ξ ≥ r}dr)− (

∫ x1
−∞ Pos{ξ ≤ r}dr +

∫ x2
x1

Pos{ξ ≤ r}dr + · · ·
+
∫ xk

xk−1
Pos{ξ ≤ r}dr +

∫ 0
xk

Pos{ξ ≤ r}dr)

= ( max
k+1≤i≤n

µi · xk+1 + max
k+2≤i≤n

µi · (xk+2− xk+1)+ · · ·+ µn · (xn− xn−1))

−(µ1 · (x2− x1)+ max
1≤i≤2

µi · (x2− x1)+ · · ·+ max
1≤i≤k−1

µi · (xk− xk−1)

+ max
1≤i≤k

µi · (0− xk))

= µ1 · x1 +( max
1≤i≤2

µi− µ1)x2 + · · ·+( max
1≤i≤k−1

µi− max
1≤i≤k−2

µi)xk−1

+( max
1≤i≤k

µi− max
1≤i≤k−1

µi)xk +( max
k+1≤i≤n

µi− max
k+2≤i≤n

µi)xk+1 + · · ·
+( max

n−1≤i≤n
µi− µn)xn−1 + µnxn

= µ1 · x1 +
k

∑
j=2

( max
1≤i≤ j

µi− max
1≤i≤ j−1

µi)x j +
n−1

∑
j=k+1

( max
j≤i≤n

µi− max
j+1≤i≤n

µi)x j

+µn · xn.

If µ1 ≤ µ2 ≤ ·· · ≤ µk and µk+1 ≥ µk+2 ≥ ·· · ≥ µn, then E[ξ ] =
n

∑
i=1

µix1.
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It follows from Definition 2.8 that

ENec[ξ ] =
∫ +∞

0 Nec{ξ ≥ r}dr− ∫ 0
−∞ Nec{ξ ≤ r}dr

=−∫ +∞
0 Pos{ξ < r}dr +

∫ 0
−∞ Pos{ξ > r}dr

=−(
∫ xk+1

0 Pos{ξ < r}dr +
∫ xk+2

xk+1
Pos{ξ < r}dr + · · ·+ ∫ xn

xn−1
Pos{ξ < r}dr

+
∫ +∞

xn
Pos{ξ < r}dr)+ (

∫ x1
−∞ Pos{ξ > r}dr +

∫ x2
x1

Pos{ξ > r}dr + · · ·
+
∫ xk

xk−1
Pos{ξ > r}dr +

∫ 0
xk

Pos{ξ > r}dr)

=−( max
1≤i≤k

µi · xk+1 + max
1≤i≤k+1

µi · (xk+2− xk+1)+ · · ·+ max
1≤i≤n−1

µi · (xn

−xn−1)+
∫+∞

xn
1dr)+ (

∫ x1
−∞ 1dr + max

2≤i≤n
µi · (x2− x1)+ · · ·+ max

k≤i≤n
µi · (xk

−xk−1)+ max
k+1≤i≤n

µi · (0− xk))

= (− max
2≤i≤n

µi) · x1 +( max
2≤i≤n

µi− max
3≤i≤n

µi) · x2 + · · ·+( max
k−1≤i≤n

µi− max
k≤i≤n

µi)

+ · xk−1 +( max
k≤i≤n

µi− max
k+1≤i≤n

µi) · xk +( max
1≤i≤k+1

µi− max
1≤i≤k

µi) · xk+1

+( max
1≤i≤k+2

µi− max
1≤i≤k+1

µi) · xk+2 + · · ·+( max
1≤i≤n−1

µi− max
1≤i≤n−2

µi) · xn−1

+(− max
1≤i≤n−1

µi)xn +(
∫ x1
−∞ 1dr− ∫+∞

xn
1dr).

Since

∫ x1
−∞ 1dr− ∫+∞

xn
1dr =

∫ x1
−∞ 1dr +

∫ xn
−x1

1dr− (
∫ xn
−x1

1dr +
∫+∞

xn
1dr)

= (
∫ x1
−∞ 1dr− ∫+∞

−x1
1dr)+

∫ xn
−x1

1dr

= xn + x1,

we have

ENec(ξ ) =
k

∑
j=1

( max
j≤i≤n

µi− max
j+1≤i≤n

µi)x j +
n

∑
j=k+1

( max
1≤i≤ j

µi− max
1≤i≤ j−1

µi)x j.

if µ1 ≥ µ2 ≥ ·· · ≥ µk and µk+1 ≤ µk+2 ≤ ·· · ≤ µn, then ENec[ξ ] =
n

∑
i=1

µix1.

Thus we have

EMe[ξ ] = λ EPos[ξ ]+ (1−λ )ENec[ξ ] =
n

∑
i=1

wiai

where the weights wi, i = 1,2, · · · ,m are given by

w1 = λ µ1 +(1−λ )( max
1≤ j≤n

µ j− max
1< j≤n

µ j),

wi = λ ( max
1≤ j≤i

µ j− max
1≤ j<n

µ j)+ (1−λ )(max
i≤ j≤n

µ j− max
i< j≤n

µ j), 2≤ i≤ n−1,

wn = λ µm +(1−λ )( max
1≤ j≤n

µ j− max
1≤ j<n

µ j).

It is easy to verify that all wi ≥ 0 and
n

∑
i=1

wi = max
1≤n

µi = 1 since any fuzzy variables

defined on a possibility space are normalized. This theorem is completed. ⊓⊔
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Based on the Cr measure, we also have the linearity of fuzzy expected value operator

given by the following theorem.

Theorem 2.4. (Liu [220]) Assume that ξ and η are fuzzy variables with finite ex-

pected values. For any real numbers a and b, we have

ECr[aξ + bη ] = aECr[ξ ]+ bECr[η ]. (2.18)

Definition 2.9. Let ξ be a fuzzy variable with finite expected value E[ξ ]. The vari-

ance of ξ is defined as

V [ξ ] = E[(ξ −E[ξ ])2]. (2.19)

Definition 2.10. Let ξ and η be fuzzy variables such that E [ξ ] and ECr[η ] are finite.

Then the convariance of ξ and η is defined by

Cov[ξ ,η ] = E[(ξ −ECr[ξ ])(η−E[η ])]. (2.20)

2.3 Fuzzy EVM

We give the general form of the fuzzy multi-objective decision making model as

follows, and the discussion of this section is based on this model,

⎧
⎨
⎩

max [ f1(x,ξ ), f2(x,ξ ), · · · , fm(x,ξ )]

s.t.

{
gr(x,ξ )≤ 0, r = 1,2, · · · , p

x ∈ X ,

(2.21)

where ξ are fuzzy vectors.

It is necessary for us to know that the model (2.21) is a conceptual model rather

than a mathematical model, because we cannot maximize an uncertain quantity.

There does not exist a natural ordership in an uncertain world. So the fuzzy multi-

objective model needs to be transformed into some approximate certain models to

describe the uncertain model. In general, there are three kinds of models which

could deal with the fuzzy multi-objective model as follows.

2.3.1 General Model for Fuzzy EVM

From basic knowledge, we know that the expected value operator is a tool that can

transform fuzzy uncertainty into crisp. In this section, we use the expected value

operator based on the Cr measure. The spectrum of fuzzy expected value model is

as follows: ⎧
⎨
⎩

max E[ f1(x,ξ ), f2(x,ξ ), · · · , fm(x,ξ )]

s.t.

{
E[gr(x,ξ )]≤ 0, r = 1,2, · · · , p

x ∈ X .
(2.22)

Definition 2.11. A solution x∗ of problem (2.22) satisfies E[gr(x,ξ )] ≤ 0, r =
1,2, · · · , p is called a feasible solution.
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Definition 2.12. A feasible point, x∗ is said to be an efficient solution(non-

dominated solution, Pareto solution) for Problem (2.22) such that E[ fi(x,ξ )] ≥
E[ fi(x

∗,ξ )] for i = 1,2, · · · ,m with strict inequality holding for at least one i.

In order to balance the multiple conflicting objectives, we may employ the fol-

lowing fuzzy expected value goal programming model,

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min
l

∑
j=1

Pj

m

∑
i=1

(ui jd
+
i + vi jd

−
i )

s.t.

⎧
⎪⎪⎨
⎪⎪⎩

E[ fi(x,ξ )]+ d−i −d+
i = f i, i = 1,2, · · · ,m

E[gr(x,ξ )]≤ 0, r = 1,2, · · · , p

d+
i ,d−i ≥ 0, i = 1,2, · · · ,m

x ∈ X ,

(2.23)

where Pj is the preemptive priority factor which expresses the relative importance

of various goals, Pj ≫ Pj+1, for all j, ui j is the weighting factor corresponding to

positive deviation for goal i with priority j assigned, vi j is the weighting factor

corresponding to negative deviation for goal i with priority j assigned, d+
i is the

positive deviation from the target of goal i, defined as

d+
i = [E[ fi(x,ξ )]− f i]∨0, (2.24)

d−i is the negative deviation from the target of goal i, defined as

d−i = [ f i−E[ fi(x,ξ )]]∨0, (2.25)

fi is a function in goal constraints, g j is a function in real constraints, f i is the target

value according to goal i, l is the number of priorities, m is the number of goal

constraints, and p is the number of real constraints.

To help decision makers efficiently make the decision, the convexity of (2.22)

will be discussed in this section. As we know, for the multi-objective programming

problem, if the feasible set is convex and each objective function is convex func-

tion, then it is called convex multi-objective programming. For problem (2.22), we

prove a convexity theorem of fuzzy expected value model by adding some convexity

conditions on the objective and constraint functions.

Theorem 2.5. Let ξ be a fuzzy vector. Suppose that, for any fixed u, the functions

fi(x,u),( j = 1,2, · · · ,m) and gr(x,u), (r = 1,2, · · · , p) are convex in x. Then the

fuzzy multi-objective EVM

⎧
⎨
⎩

max E[ f1(x,ξ ), f2(x,ξ ), · · · , fm(x,ξ )]

s.t.

{
E[gr(x,ξ )]≤ 0, r = 1,2, · · · , p

x ∈ X

(2.26)

is a convex programming.
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Proof. Let x1 and x2 be two feasible solutions. Because gr(x,ξ ) is a convex contin-

uous function with respect to x, then

gr(ρx1 +(1−ρ)x2,ξ )≤ ρgr(x1,ξ )+ (1−ρ)gr(x2,ξ ),

where 0≤ ρ ≤ 1, r = 1,2, · · · , p. We can get that

E[gr(ρx1 +(1−ρ)x2,ξ )]≤ E[ρgr(x1,ξ )+ (1−ρ)gr(x2,ξ )].

Because for any θ ∈Θ , ξ (θ ) is a real variable. Then by the linearity of expected

value of random variable, we have

E[gr(x1,ξ (θ ))+(1−ρ)gr(x2,ξ (θ ))] = ρE[gr(x1,ξ (θ ))]+(1−ρ)E[gr(x2,ξ (θ ))].

Following the linearity of the expected value operator of a real variable, we can

obtain
E[ρgr(x1,ξ )+ (1−ρ)gr(x2,ξ )]
= E[ρE[gr(x1,ξ (θ ))]+ (1−ρ)E[gr(x2,ξ (θ )]]
= ρE[E[gr(x1,ξ (θ ))]]+ (1−ρ)E[E[gr(x2,ξ (θ ))]]
= ρE[gr(x1,ξ )]+ (1−ρ)E[gr(x2,ξ )].

Then E[gr(ρx1 + (1− ρ)x2,ξ )] ≤ ρE[gr(x1,ξ )] + (1− ρ)E[gr(x2,ξ )] ≤ 0. This

means that ρx1 + (1− ρ)x2 is also a feasible solution. Then it is a convex feasi-

ble set.

Similarly, For every i, fi(x,ξ ) is a convex continuous function with respect to x,

it follows that

fi(ρx1 +(1−ρ)x2,ξ )≤ ρ fi(x1,ξ )+ (1−ρ) fi(x2,ξ ),

then

E[ fi(ρx1 +(1−ρ)x2,ξ )]≤ ρE[ fi(x1,ξ )]+ (1−ρ)E[ fi(x2,ξ )],

then
E[ f (ρx1 +(1−ρ)x2,ξ )]
= ∑m

i=1 wiE[ fi(ρx1 +(1−ρ)x2,ξ )]
≤ ∑m

i=1 wi{ρE[ fi(x1,ξ )]+ (1−ρ)E[ fi(x2,ξ )]}
= ρ ∑m

i=1 wiE[ fi(x1,ξ )]+ (1−ρ)∑m
i=1 wiE[ fi(x2,ξ )]

= ρE[ f (x1,ξ )]+ (1−ρ)E[ f (x2,ξ )].

This means function E[ f (x,ξ )] is convex.

Above all, the expected value programming problem (2.22) is convex program-

ming. And the proof is completed. ⊓⊔

2.3.2 Linear Fuzzy EVM and Two-Stage Method

For regular linear programming problems with fuzzy coefficients, we can use the

expected value operator,
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⎧
⎪⎪⎨
⎪⎪⎩

max E[
n

∑
j=1

c̃i jx j, i = 1,2, · · · ,m]

s.t.

{
E[ãr jx j]≥ E[b̃r], r = 1,2, · · · , p

x j ≥ 0, j = 1,2, · · · ,n.

(2.27)

It is noted that for the linear fuzzy EVM, it is assumed that the combination of the

fuzzy variables is linear, but not the decision making variables. In this book, if all the

objective functions and constraints in a model are linear combinations of fuzzy-like

variables, we call it a linear fuzzy-like model.

Because of the introduction of the expected value operator, the model (2.27) is

crisp, and we can use the section 2.3.4 to obtain the expected value.

2.3.2.1 Crisp Equivalent Models

Theorem 2.6. If the the coefficients of fuzzy EVM for multi-objective decision-

making are trapezoidal fuzzy numbers, that is, c̃i j = (c1
i j,c

2
i j,c

3
i j,c

4
i j), with c1

i j > 0,

ãr j = (a1
r j,a

2
r j,a

3
r j,a

4
r j), with a1

r j > 0, b̃r j = (b1
r j,b

2
r j,b

3
r j,b

4
r j), with b1

r j > 0, then the

model (2.28)

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

max

[
E[

n

∑
j=1

(c1
1 j,c

2
1 j,c

3
1 j,c

4
1 j)x j], · · · ,E[

n

∑
j=1

(c1
m j,c

2
m j,c

3
m j,c

4
m j)x j]

]

s.t.

{
E[(a1

r j,a
2
r j,a

3
r j,a

4
r j)x j]≥ E[(b1

r j,b
2
r j,b

3
r j,b

4
r j)], r = 1,2, · · · , p

x j ≥ 0, j = 1,2, · · · ,n

(2.28)

is equivalent to (2.29) when the decision maker’s optimistic-pessimistic index λ =
1/2.

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

max

[
n

∑
j=1

(c1
1 j+c2

1 j+c3
1 j+c4

1 j)

4 x j, · · · ,
n

∑
j=1

(c1
m j+c2

m j+c3
m j+c4

m j)

4 x j

]

s.t.

{
(a1

r j + a2
r j + a3

r j + a4
r j)x j ≥ b1

r j + b2
r j + b3

r j + b4
r j, r = 1,2, · · · , p

x j ≥ 0, j = 1,2, · · · ,n.

(2.29)

Proof. By Theorem 2.18, we know that

E[
n

∑
j=1

(c1
1 j,c

2
1 j,c

3
1 j,c

4
1 j)x j] =

n

∑
j=1

E[(c1
1 j,c

2
1 j,c

3
1 j,c

4
1 j)]x j.

Since c1
i j,a

1
r j > 0,b1

r j > 0 and λ = 1/4, by Proposition 2.2, we have

E[(c1
1 j,c

2
1 j,c

3
1 j,c

4
1 j)] = (c1

1 j + c2
1 j + c3

1 j + c4
1 j)/4.

According to Theorem 2.4, we can get

E[
n

∑
j=1

(c1
1 j,c

2
1 j,c

3
1 j,c

4
1 j)x j] =

n

∑
j=1

(c1
1 j + c2

1 j + c3
1 j + c4

1 j)

4
x j.
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And similarly, we can get

E[(a1
r j,a

2
r j,a

3
r j,a

4
r j)x j]≥ E[(b1

r j,b
2
r j,b

3
r j,b

4
r j)]

⇔ (a1
r j + a2

r j + a3
r j + a4

r j)x j ≥ b1
r j + b2

r j + b3
r j + b4

r j.

For simplification, we have the following equivalent model of problem (2.28),

⎧
⎨
⎩

max {Ψ c
1 x,Ψ c

2 x, · · · ,Ψ c
mx}

s.t.

{
Ψ a

r x≤Ψb
r ,r = 1,2, · · · , p

x ∈ X ,

(2.30)

where

Ψ c
i = (c1

i j + c2
i j + c3

i j + c4
i j)/4, i = 1,2, · · · ,m.

Ψ a
r = (a1

r j + a2
r j + a3

r j + a4
r j)/4,Ψb

i = (b1
r j + b2

r j + b3
r j + b4

r j)/4, r = 1,2, · · · , p.

respectively denote the vectors.

Then the proof is completed. ⊓⊔

2.3.2.2 Two-Stage Method

If an uncertain problem can be transformed into its crisp equivalent model, then

we can solve it by classical multi-objective decision making. Many researchers

have studied this for decades, Nakayama [112], Luc [113], Szidarovszky [115],

Ijiri [114], Lee [126], Kendall [127], Teargny [125], Shimizu [121], Choo [120],

Wierzbicki [119], Zimmermann [44], Leberling [117], Werners [116], Sakawa

[128], Sakawa et al. [129, 130], Seo and Sakawa [131], Hu [110], Lin and Dong

[111], Chen and Lee [108], Youness [109], Chen and Lu [94]. Recently, Xu and

Li [92] summed up predecessors’ work. Readers who want to study multi-objective

decision making methods and theory systematically may refer to these researches.

In this section, we will use the two-stage method to seek an efficient solution

to the crisp multi-objective programming problem (2.31). The two-stage method is

proposed by Li and Lee [392] on the basis of the maximin method proposed by

Zimmermann [393].

{
max {H1(x), · · · ,Hk(x), · · · ,Hm(x)}
s.t. x ∈ X .

(2.31)

First stage: apply Zimmermann’s minimum operator to obtain the maximal satisfy-

ing degree α0 of the objective set and the related feasible solution x0, i.e.,

⎧
⎪⎪⎨
⎪⎪⎩

max α

s.t.

⎧
⎨
⎩

µk(x) =
Hk(x)−H

′
k

H∗k−H
′
k

≥ α,k = 1,2, · · · , ,m
x ∈ X .

(2.32)
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Assume that the optimal solution of problem (2.32) is (x0,α0), where α0 is the opti-

mal satisfying degree of the whole objective sets. If the optimal solution of problem

(2.32) is unique, x0 is the efficient of the problem (2.31). However, we cannot usu-

ally know if the optimal solution of problem (2.32) is unique, then the efficiency of

x0 must be checked by the following stage.

Second stage: check the efficiency of efficiency of x0 or seek the new effi-

cient solution x1. Construct a new model whose objective function is to maxi-

mize the average satisfying degree of all objects subject to the additional constraint

αk ≥ α0(k = 1,2, · · · ,m). Since the compensatory of the arithmetic mean operator,

the solution obtained in the second stage is efficient. The existence of the constraint

αk ≥ α0(k = 1,2, · · · ,m) guarantees the mutual equilibrium of every objective

functions.

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

max 1
m

m

∑
k=1

αk

s.t.

⎧
⎨
⎩

α0 ≤ αk ≤ µk(x),k = 1,2, · · · ,m
0≤ αk ≤ 1

x ∈ X .

(2.33)

Assume that the optimal solution of problem (2.33) is x1. It’s easy to prove that

x1 is also the solution of problem (2.32), thus we have x1 = x0 if the solution of

problem (2.32) is unique. But if the solution of problem (2.32) is not unique, x0 may

be efficient solution or not and we can guarantee x1 is definitely efficient. Thus in

any case, the two-stage method can provide an efficient solution in the second stage.

2.3.2.3 Numerical Example

Example 2.5. Let us consider the following example with fuzzy variables,

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max ξ1x1 + ξ2x2 + ξ3x3 + ξ4x4

min x1 + x2 + x3 + x4

s.t.

⎧
⎨
⎩

ξ5x1 + ξ6x2 + ξ7x3 + ξ8x4 ≤ ξ9

3x1 + 5x2 + 10x3 + 15x4 ≤ 100

x j ≥ 0, j = 1,2,3,4,

(2.34)

where, the coefficients are triangular fuzzy variables,

ξ1 = (3.5,4,4.5), ξ2 = (4.5,5,5.5), ξ3 = (8.5,9,9.5),
ξ4 = (10.5,11,11.5), ξ5 = (6.5,7,7.5), ξ6 = (4.5,5,5.5),
ξ7 = (2.5,3,3.5), ξ8 = (1.5,2,2.5), ξ9 = (110,120,130).

In order to solve it, we use the expected operator to deal with fuzzy objectives and

fuzzy constraints, then we can obtain the model,
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⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max E[ξ1x1 + ξ2x2 + ξ3x3 + ξ4x4]
min x1 + x2 + x3 + x4

s.t.

⎧
⎨
⎩

E[ξ5x1 + ξ6x2 + ξ7x3 + ξ8x4]≤ E[ξ9]
3x1 + 5x2 + 10x3 + 15x4 ≤ 100

x j ≥ 0, j = 1,2,3,4.

(2.35)

Here we suppose that λ = 1/2, and by Theorem 2.6, we know that the problem

(4.10) is equivalent to model (4.28),

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max F1 = 4x1 + 5x2 + 9x3 + 11x4

min F2 = x1 + x2 + x3 + x4

s.t.

⎧
⎨
⎩

7x1 + 5x2 + 3x3 + 2x4 ≤ 120

3x1 + 5x2 + 10x3 + 15x4 ≤ 100

x j ≥ 0, j = 1,2,3,4.

(2.36)

Of course, we can use fuzzy simulation to compute the expected value, and use the

genetic algorithm to solve it. But since the model (4.28) is crisp multi-objective

model, so we can use the regular ways to solve it. Here we use the most simple

weighted-sum method to transform the bi-objective model (4.28) into the single

objective model (4.29) by introducing the preference w1,w2 of the decision maker.

⎧
⎪⎪⎨
⎪⎪⎩

max w1(4x1 + 5x2 + 9x3 + 11x4)−w2(x1 + x2 + x3 + x4)

s.t.

⎧
⎨
⎩

7x1 + 5x2 + 3x3 + 2x4 ≤ 120

3x1 + 5x2 + 10x3 + 15x4 ≤ 100

x j ≥ 0, j = 1,2,3,4.

(2.37)

Suppose a decision maker give the weight w1 = 0.7,w2 = 0.3, and we solve this

single-objective crisp objective model and gets the results as follows:

x∗ = (14.7541,0,5.57377,0),F1 = 109.1803,F2 = 20.32787

Also, we can use the ideal point method in the last subsection to solve model 4.10,

before we use the interactive method, we give the standard formulation,

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max F1 = 4x1 + 5x2 + 9x3 + 11x4

max F2 =−x1− x2− x3− x4

s.t.

⎧
⎨
⎩

7x1 + 5x2 + 3x3 + 2x4 ≤ 120

3x1 + 5x2 + 10x3 + 15x4 ≤ 100

x j ≥ 0, j = 1,2,3,4.

F0
i ,F1

i (i = 1,2) are calculated as follows

F0
1 = 0, F1

1 = 109.1803, F0
2 =−22, F1

2 = 0

According to the two-stage method, we calculate the weight as follows:

w1 = 0.832,w1 = 0.168.
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By step 3, we obtain the following model

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
[
0.832× (4x1 + 5x2 + 9x3 + 11x4−109.1803)2

+0.168× (−x1− x2− x3− x4−22)2
] 1

2

s.t.

⎧
⎨
⎩

7x1 + 5x2 + 3x3 + 2x4 ≤ 120

3x1 + 5x2 + 10x3 + 15x4 ≤ 100

x j ≥ 0, j = 1,2,3,4.

After solving the above model, we can obtain the efficient solution as follows:

(x1,x2,x3,x4) = (11.41,0,6.58,0).

2.3.3 Non-linear Fuzzy EVM and Fuzzy Simulation-Based PSO

It is difficult to transform the non-linear fuzzy EVM into it’s equivalent form, so we

introduce the fuzzy simulation-based particle swarm optimization algorithm(PSO)

to solve.

2.3.3.1 Fuzzy Simulation 1 for Expected Value Operator

Let f be a real-valued function, and ξi be a fuzzy variables with membership func-

tions µi, i = 1,2, · · · ,n, respectively. We denote ξ = (ξ1,ξ2, · · · ,ξn). Then f (ξ ) is

also a fuzzy variable whose expected value is defined by

EMe[ f (ξ )] =
∫ ∞

0
Me{ f (ξ )≥ r}dr−

∫ 0

−∞
Me{ f (ξ )≤ r}dr. (2.38)

A fuzzy simulation will be designed to estimate EMe[ f (ξ )]. We randomly gen-

erate u1 j,u2 j, · · · ,un j from the ε-level sets of ξ1,ξ2, · · · ,ξn, j = 1,2, · · · ,m, re-

spectively, where ε is a sufficiently small number. Let u j = (u1 j,u2 j, · · · ,un j) and

µ j = µ1(u1 j)∧µ2(u2 j ∧·· ·∧µn(un j)) for j = 1,2, · · · ,m.

Then for any number r ≥ 0, the fuzzy measure Me{ f (ξ ) ≥ r} can be estimated

by

Me{ f (ξ )≥ r} = λ

(
max

j=1,2,··· ,m
{µ j| f (u j)≥ r}

)

+(1−λ )

(
1− max

j=1,2,···,m
{µ j| f (u j) < r}

) (2.39)

and for any number r < 0, Me{ f (ξ )≤ r} can be estimated by

Me{ f (ξ )≤ r} = λ

(
max

j=1,2,··· ,m
{µ j| f (u j)≤ r}

)

+(1−λ )

(
1− max

j=1,2,···,m
{µ j| f (u j) > r}

) (2.40)

provided that m is sufficiently large.
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The procedure is as follows:

Step 1. Set E = 0.

Step 2. Randomly generate u1 j,u2 j, · · · ,un j from the ε-level sets of ξ1,ξ2, · · · ,ξn,

and denote u j = (u1 j,u2 j, · · · ,un j), j = 1,2, · · · ,m, respectively, where ε is a suffi-

ciently small number.

Step 3. Set a = f (u1)∧ f (u2)∧·· ·∧ f (um), b = f (u1)∨ f (u2)∨·· ·∨ f (um).
Step 4. Randomly generate r from [a,b].
Step 5. If r ≥ 0, then E ← E + Me{ f (ξ )≥ r}.
Step 6. If r < 0, then E ← E−Me{ f (ξ )≤ r}.
Step 7. Repeat the fourth to sixth steps for N times.

Step 8. E[ f (ξ )] = a∨0 + b∧0 + E · (b−a)/N.

2.3.3.2 PSO

PSO which was first introduced by Kennedy and Eberhart [316, 315] is a population

based random search method that imitates the physical movements of individuals in

a swarm as a search mechanism. Within the swarm, the learning mechanisms are

based on the cognitive and social behavior of particles.

In the PSO algorithm, a solution of a specific problem is represented by an n-

dimensional position of a particle. A swarm of a fixed number of particles is gen-

erated and each particle is initialized with a random position in a multidimensional

search space. Each particle flies through the multidimensional search space with a

velocity. In each step of the iteration the velocity of each particle is adjusted based

on three components. The first component is the current velocity of the particle

which represents the inertia term or momentum of the particle, i.e. the tendency to

continue to move in the same direction. The second component is based on a posi-

tion corresponding to the best solution, usually referred to as the personal best. The

third component is based on a position corresponding to the best solution achieved

so far by all the particles, i.e. the global best. Once the velocity of each particle is

updated, the particles are then moved to new positions. The cycle is repeated until

the stopping criterion is met. The specific expressions used int the original particle

swarm optimization algorithm are discussed as follows.

Basic Form of PSO

The PSO algorithm consistes of a population of particle initialized with random

position and velocity. This population of particle is usually called a swarm. In one

iteration step, each particle is first evaluated to find it’s individual objective function

value. For each particle, if a position is reached which has a better objective function

than the previous best solution, the personal best position is updated. Also, if an

objective function is found that is better than the previous best objective function

of the swarm the global best position is updated. The velocity is then updated on

the particle’s personal best position and the global best position found so far by the

swarm. Every particle is then moved from the current position to the new position

based on its velocity. The precess repeats until the stopping criterion is met.
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In PSO, a swarm of L particles served as searching agent for a specific problem

solution. A particle’s position (Θl), which consists of H dimensions, is representing

(directly of indirectly) a solution of the problem. The ability of particle to search

for solution is represented by its velocity vector (Ω ), which drives the movement of

particle. In each PSO iteration, every particle moves from one position to the next

based on its velocity. By moving from one position to the next, a particle is reaching

different prospective solution of the problem. The basic particle movement equation

if presented below:

θlh(t + 1) = θlh(t)+ ωlh(t + 1), (2.41)

where:

θlh(t +1): position of the lth particle at the hth dimension in the (t +1)th iteration,

θlh(t): position of the lth particle at the hth dimension in the tth iteration,

ωlh(t +1): velocity of the lth particle at the hth dimension in the (t +1)th iteration.

PSO also imitated swarm’s cognitive and social behavior as local and global

search abilities. In the basic version of PSO, the particle’s personal best position

(Ψl) and the global best position (Ψg) are always updated and maintained. The per-

sonal best position of a particle, which expresses the cognitive or self-learning be-

havior, is defined as the position that gives the best objective function among the

positions that have been visited by that particle. Once a particle reaches a position

that has a better objective function than the previous best objective function for this

particle, i.e., Z(Θl) < Z(Ψl), the personal best position is updated, The global best

position, which expresses the social behavior, is the position that gives the best ob-

jective function among the positions that have been visited by all particles in the

swarm. Once a particle reaches a position that has a better objective function than

the previous best objective function for whole swarm, i.e., Z(Ψl) < Z(Ψg), the global

best position is also updated.

The personal best and global best position are used as the basis to update velocity

of particle. In each iteration step, the velocity Ω is updated based on three terms:

inertia, cognitive learning and social learning terms.

The inertia term forces particle to move in the same direction as in previous

iteration. This term is calculated as a product of current velocity with an inertia

weight (w).

The cognitive term forces particle to go back to its personal best position. This

term is calculated as a product of a random number (u), personal best accelera-

tion constant (cp), and the difference between personal best position Ψl and current

position Θl .

The social term forces particle to move toward the global best position. This term

is calculated as a product of random number (u), global best acceleration constant

(cg), and the difference between global best position Ψg and current position Θl .

Specifically, the equation for velocity updated is expressed as follow:

ωlh(t + 1) = wωlh(t)+ cpu(ψlh−θlh(t))+ cgu(ψgh−θlh(t)), (2.42)
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where:

ωlh(t + 1): velocity of the lth particle at the hth dimension in the tth iteration,

ψlh: personal best position of the lth particle at the hth dimension in the tth iteration,

ψgh: global best position at the hth dimension in the tth iteration.

In the velocity-updating formula, random numbers is incorporated in order to

randomize particle movement. Hence, two different particles may move to different

position in the subsequent iteration even though they have similar position, personal

best, and the global best.

Notation

The notation used in the algorithm is given as follows:

t: iteration index, t = 1 · · ·T .

l: particle index, l = 1 · · ·L.

h: dimension index, h = 1 · · ·H.

u: uniform random number in the interval [0,1].

w(t): inertia weight in the tth iteration.

ωlh(t + 1): velocity of the lth particle at the hth dimension in the tth iteration.

θlh(t): position of the lth particle at the hth dimension in the tth iteration.

ψlh: personal best position of the lth particle at the hth dimension in the tth iteration.

ψgh: global best position at the hth dimension in the tth iteration.

cp: personal best position acceleration constant.

cg: global best position acceleration constant.

θ max: maximum position value.

θ min: minimum position value.

Θi: vector position of the lth particle, [θl1,θl2, · · · ,θlH ].

Ωl: vector velocity of the lth particle, [ωl1,ωl2, · · · ,ωlH ].

Ψl: vector personal best position of the lth particle, [ψl1,ψl2, · · · ,ψlH ].
Ψg: vector global best position, [ψl1,ψl2, · · · ,ψlH ].

Rl: the lth set of solution.

Z(Θl): fitness value of Θl.

Procedure of PSO algorithm

Step 1. Initialize L particle as a swarm:

Generate the lth particle with random position Θl in the range [θ min,θ max], velocity

Ωl = 0 and personal best Ψl = Ωl for l = 1 · · ·L. Set iteration t = 1.

Step 2. Decode particles into solutions:

For l = 1 · · ·L, decode Θl(t) to a solution Rl . (This step is only needed if the particles

are not directly representing the solutions.)

Step 3. Evaluate the particles:

For l = 1 · · ·L, compute the performance measurement of Rl , and set this as the

fitness value of Θl , represent by Z(Θl).
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Step 4. Update pbest:

For l = 1 · · ·L, update Ψl = Θl , if Z(Θl) < Z(Ψl).
Step 5. Update pbest:

For l = 1 · · ·L, update Ψg = Ψl , if Z(Ψl) < Z(Ψg).

Step 6. update the velocity and the position of each lth particle:

w(t) = w(T )+
t−T

1−T
[w(1)−w(T )], (2.43)

ωlh(t + 1) = wωlh(t)+ cpu(ψlh−θlh(t))+ cgu(ψgh−θlh(t)), (2.44)

θlh(t + 1) = θlh(t)+ ωlh(t + 1). (2.45)

If θlh(t + 1) > θ max, then

θlh(t + 1) = θ max
, (2.46)

ωlh(t + 1) = 0. (2.47)

If θlh(t + 1) < θ max, then

θlh(t + 1) = θ min
, (2.48)

ωlh(t + 1) = 0. (2.49)

Step. 7 if the stopping criteria is met, i.e., t=T, stop; otherwise, t = t + 1 and return

to step 2.

The value θ max and θ min in equation (2.46) and (2.48) are the upper and lower

bounds on the position of particles.

Kay Parameters of PSO

Let’s discuss the possible qualifications and effects of each parameter on the perfor-

mance of PSO. The parameters consist of the population size (L), two acceleration

constants (cp and cg), and the inertia weight (w).

Population size (L): This parameter represents the number of particles in the sys-

tem. It is one of the important parameters of PSO, because it affects the fitness

value and computation time. Furthermore, increasing the size of the population al-

ways increases computation time, but might not improve the fitness value. Generally

speaking, too small a population size can lead to poor convergence while too large

a population size can yield good convergence at the expense of a long running time.

Acceleration constants (cp and cg): The constants cp and cg are the acceleration

constants of the personal best position and the global best position, respectively.

Each acceleration constant controls the maximum distance that a particle is allowed

to move from the current position to each best position. The new velocity can be

viewed as a vector which combines the current velocity, and the vectors of the best
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Fig. 2.6 Flow chart of PSO

positions. Each best positions’s vector consists of the direction which is pointed

from the particle’s current position to the best position, and the magnitude of the

movement can be between 0 to the acceleration constant of the best position times

the distance between the best position and the current position.

Inertia weight (w): The new velocity is produced from the combination of vectors.

One of these vectors is the current velocity. Inertia weight is a weight to control the

magnitude of the current velocity on updating the new velocity. For w = c, it means

that this vector has the same direction of the current velocity, and the parameters to

control the search behavior of the swarm.

Velocity boundary (Vmax) and position boundary (θmax): Some PSO algorithms

are implemented with a bound on velocity. For each dimension, the magnitude of

velocity cannot be greater than Vmax. This parameter is one of parameters that con-

trol the search behavior of the swarm. The smaller value of this parameter makes

the particles in the population less aggressive in the search.

In the PSO particle movement mechanism, it is also common to limit the search

space of particle location, i.e., the position value of particle dimension is bounded in

the interval [θ min,θ max]. The use of position boundary θ max is to force each particle

to move within the feasible region to avoid solution divergence. Hence, the position

value of certain particle dimension is being set at the minimum or maximum value
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whenever it moves beyond the boundary. In addition, the velocity of the correspond-

ing dimension is reset to zero to avoid further movement beyond the boundary.

PSO for Multi-objective Decision-Making Model

Multi-objective optimization (MO) problems represent an important class of real-

world problems. Typically such problems involve trade-offs. For example, a car

manufacturer may wish to maximize its profit, but meanwhile also minimize its

production costs. These objectives are typically conflicting. For example, a higher

profit could increase the production cost. Generally, there is no single optimal solu-

tion. Often the manufacturer needs to consider many possible “trade-off” solutions

before choosing the one that suits its need. The curve or surface (for more than two

objectives) describing the optimal trade-off solutions between objectives is known

as the Pareto front. A multi-objective optimization algorithm is required to find so-

lutions as close as possible to the Pareto front, while maintaining good solution

diversity along the Pareto front.

To apply PSO to multi-objective optimization problems, several issues have to be

taken into consideration:

1. How to choose pg (i.e., a leader) for each particle? The PSO needs to favor non-

dominated particles over dominated ones, and drive the population towards different

parts of the Pareto front, not just towards a single point. This requires that particles

be allocated to different leaders.

2. How to identify non-dominated particles with respect to all particles current

positions and personal best positions? And how to retain these solutions during the

search process? One strategy is to combine all particles personal best positions and

current positions, and then extract the non-dominated solutions from the combined

population.

3. How to maintain particle diversity so that a set of well-distributed solutions

can be found along the Pareto front? Some classic niching methods (e.g., crowding

or sharing) can be adopted for this purpose.

The first PSO for solving multi-objective optimization was proposed by Moore

and Chapman [317] in 1999. The main difference between single objective PSO

and MOPSO is how to choose the global best. An lbest PSO was used, and pg

was chosen from a local neighborhood using a ring topology. All personal best

positions were kept in an archive. At each particle update, the current position is

compared with solutions in this archive to see if the current position represents a

non-dominated solution. The archive is updated at each iteration to ensure it con-

tains only non-dominated solutions.

Interestingly it was not until 2002 that the next publication on PSO for multi-

objective optimization appeared. Coello and Lechuga [318] proposed MOPSO

(Multi-objective PSO) which uses an external archive to store nondominated solu-

tions. The diversity of solutions is maintained by keeping only one solution within

each hypercube which is predefined by a user in the objective space. Parsopoulos

and Vrahatis[319] adopted a more traditional weighted-sum approach. However, by

using gradually changing weights, their approach was able to find a diverse set of
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solutions along the Pareto front. Fieldsend and Singh [320] proposed a PSO using

a dominated tree structure to store non-dominated solutions found. The selection of

leaders was also based on this structure. To maintain a better diversity, a turbulence

operator was adopted to function as a ‘mutation’ operator in order to perturb the

velocity value of a particle.

With the aim of increasing the efficiency of extracting non-dominated solutions

from a swarm, Li [321] proposed NSPSO (Non-dominated Sorting PSO), which

follows the principal idea of the well-known NSGA II algorithm [249]. In NSPSO,

instead of comparing solely a particles personal best with its potential offspring, all

particles personal best positions and offspring are first combined to form a tempo-

rary population. After this, domination comparisons for all individuals in this tem-

porary population are carried out. This approach will ensure more non-dominated

solutions can be discovered through the domination comparison operations rather

than the above-mentioned multi-objective PSO algorithms.

Many more multi-objective PSO variants have been proposed in recent years. A

survey conducted by Sierra [322] and Coello in 2006 shows that there are currently

25 different PSO algorithms for handling multi-objective optimization problems. In-

terested readers should refer to these for more information on different approaches.

Finally, we present the flow chart for fuzzy simulation-based PSO as follows, see

Figure 2.7:

Fig. 2.7 Flow chart of Fu-Ra simulation-based GA
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2.3.3.3 Numerical Example

Example 2.6. Consider the following programming problem,

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max f1(x,ξ ) = ξ 2
1 x1 + ξ 2

2 x2

max f2(x,ξ ) = c1ξ 2
1 x1 + c2ξ 2

2 x2

s.t.

⎧
⎨
⎩

x1 + x2 ≤ 30

3x1−2x2 ≥ 8

x1 ≥ 0,x2 ≥ 0,

(2.50)

where c = (c1,c2) = (1.2,−0.5), ξ1 = (1.8,2,2.2) and ξ2 = (1,1.5,2).
According to the constraints, we can obtain the interval of the two decision vari-

ables, that is,

0≤ x1 ≤ 30,0≤ x2 ≤ 17.

Then we can initialize the particle by randomly generating the two dimensional

particles from the intervals [0,30] and [0,17].

After using the fuzzy simulation-based PSO, we can get the optimal solution as

follows:

f1 = 123.698, f2 = 121.4493,x1 = 13.694,x2 = 0.5551.

2.4 Fuzzy CCM

Besides the expected value operator which can be adopted to deal with the fuzzy

multi-objective decision making model, we can also use the chance operator to

transform the fuzzy uncertain into crisp, that we called fuzzy chance-constrained

model. For the single fold uncertain problem-fuzzy problem, the chance operator is

actually the Pos or Nec measure.

2.4.1 General Model for Fuzzy CCM

For the following fuzzy multi-objective model

⎧
⎨
⎩

max [ f1(x,ξ ), f2(x,ξ ), · · · , fm(x,ξ )]

s.t.

{
gr(x,ξ )≤ 0, r = 1,2, · · · , p

x ∈ X ,

(2.51)

where ξ is fuzzy variable.

The general CCM is as following,

⎧
⎪⎪⎨
⎪⎪⎩

max [ f̄1, f̄2, · · · , f̄m]

s.t.

⎧
⎨
⎩

Ch{ fi(x,ξ )≥ f̄i} ≥ δi, i = 1,2, · · · ,m
Ch{gr(x,ξ )≤ 0} ≥ θr, r = 1,2, · · · , p

x ∈ X ,

(2.52)

where δi,θr are the predetermined confidence levels.

We adopt Pos and Nec to measure the fuzzy event respectively, then we have two

kinds of fuzzy CCM.
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2.4.1.1 Fuzzy CCM Based on Pos Measure

The spectrum of chance-constrained model based on Pos measure is as follow:

⎧
⎪⎪⎨
⎪⎪⎩

max [ f̄1, f̄2, · · · , f̄m]

s.t.

⎧
⎨
⎩

Pos{ fi(x,ξ )≥ f̄i} ≥ δi, i = 1,2, · · · ,m
Pos{gr(x,ξ )≤ 0} ≥ θr, r = 1,2, · · · , p

x ∈ X ,

(2.53)

where δi,θr are the predetermined confidence levels.

Definition 2.13. A solution x∗ of problem (2.53) satisfies Pos{gr(x,ξ ) ≤ 0} ≥ θr,

r = 1,2, · · · , p is called a feasible solution at θr-possibility levels, r = 1,2, · · · , p.

Definition 2.14. A feasible solution at θr-possibility levels, x∗, is said to be a δi-

efficient solution for Problem (2.53) if and only if there exists no other feasible

solution at θr-possibility levels, such that Pos{ fi(x,ξ )} ≥ δi with fi(x)≥ f̄i(x
∗) for

all i and fi0(x) > f̄i0(x
∗) for at least one i0 ∈ {1,2, · · · ,m}.

The model (2.60) is called maxmax model since it is equivalent to

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

max
x

max
f̄i

[ f̄1, f̄2, · · · , f̄m]

s.t.

⎧
⎨
⎩

Pos{ fi(x,ξ )≥ f̄i} ≥ δi, i = 1,2, · · · ,m
Pos{gr(x,ξ )≤ 0} ≥ θr, r = 1,2, · · · , p

x ∈ X .

(2.54)

If we minimize objectives, the model may be formulated as follows,

⎧
⎪⎪⎨
⎪⎪⎩

min[ f̄1, f̄2, · · · , f̄m]

s.t.

⎧
⎨
⎩

Pos{ fi(x,ξ )≥ f̄i} ≥ δi, i = 1,2, · · · ,m
Pos{gr(x,ξ )≤ 0} ≥ θr, r = 1,2, · · · , p

x ∈ X .

(2.55)

In addition, we have maxmin model and minmax model presented by (2.56) and

(2.57) respectively,

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

max
x

min
f̄i

[ f̄1, f̄2, · · · , f̄m]

s.t.

⎧
⎨
⎩

Pos{ fi(x,ξ )≥ f̄i} ≥ δi, i = 1,2, · · · ,m
Pos{gr(x,ξ )≤ 0} ≥ θr, r = 1,2, · · · , p

x ∈ X ,

(2.56)

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

min
x

max
f̄i

[ f̄1, f̄2, · · · , f̄m]

s.t.

⎧
⎨
⎩

Pos{ fi(x,ξ )≥ f̄i} ≥ δi, i = 1,2, · · · ,m
Pos{gr(x,ξ )≤ 0} ≥ θr, r = 1,2, · · · , p

x ∈ X .

(2.57)
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2.4.1.2 Fuzzy CCM Based on Nec Measure

The measure “Pos” can be substituted by “Nec”. The spectrum of chance-

constrained model based on Nec measure is as follow:
⎧
⎪⎪⎨
⎪⎪⎩

max [ f̄1, f̄2, · · · , f̄m]

s.t.

⎧
⎨
⎩

Nec{ fi(x,ξ )≥ f̄i} ≥ δi, i = 1,2, · · · ,m
Nec{gr(x,ξ )≤ 0} ≥ θr, r = 1,2, · · · , p

x ∈ X ,

(2.58)

where δi,θr are the predetermined confidence levels.

Definition 2.15. A solution x∗ of problem (2.58) satisfies

Nec{gr(x,ξ )≤ 0} ≥ θr, r = 1,2, · · · , p

is called a feasible solution at θr-necessity levels, r = 1,2, · · · , p.

Definition 2.16. A feasible solution at θr-necessity levels, x∗, is said to be a δi-

efficient solution for Problem (2.58) if and only if there exists no other feasible

solution at θr-necessity levels x, such that Nec{ fi(x,ξ )} ≥ δi with fi(x)≥ f̄i(x
∗) for

all i and fi0(x) > f̄i0(x
∗) for at least one i0 ∈ {1,2, · · · ,m}.

2.4.1.3 Fuzzy CCM Based on Cr Measure

We can also adopted the credibility measure. The spectrum of chance-constrained

model based on Cr measure is as follow:
⎧
⎪⎪⎨
⎪⎪⎩

max [ f̄1, f̄2, · · · , f̄m]

s.t.

⎧
⎨
⎩

Cr{ fi(x,ξ )≥ f̄i} ≥ δi, i = 1,2, · · · ,m
Cr{gr(x,ξ )≤ 0} ≥ θr, r = 1,2, · · · , p

x ∈ X ,

(2.59)

where δi,θr are the predetermined confidence levels.

Definition 2.17. A solution x∗ of problem (2.59) satisfies

Cr{gr(x,ξ )≤ 0} ≥ θr, r = 1,2, · · · , p

is called a feasible solution at θr-credibility levels, r = 1,2, · · · , p.

Definition 2.18. A feasible solution at θr-credibility levels, x∗, is said to be a δi-

efficient solution for Problem (2.59) if and only if there exists no other feasible

solution x at θr-credibility levels, such that Cr{ fi(x,ξ )} ≥ δi with fi(x)≥ f̄i(x
∗) for

all i and fi0(x) > f̄i0(x
∗) for at least one i0 ∈ {1,2, · · · ,m}.
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2.4.2 Linear Fuzzy CCM and Goal Programming Method

We consider the linear programming with fuzzy parameters c̃i j, ãr j, b̃r, i =
1,2, · · · ,n, j = 1,2, · · · ,m,r = 1,2, · · · , p, fuzzy constraints can no longer give a

crisp feasible set. Naturally, decision maker requires constraints to hold at a pre-

determined confidence level. The chance constraints with fuzzy parameters are ex-

pressed as follows:

Pos{
n

∑
j=1

ãr jx j ≤ b̃r} ≥ θr, r = 1,2, · · · , p. (2.60)

where Pos{·} denotes the possibility of the event {·}.
If the decision maker hopes that the possibility of the objectives are not less than

δi, and that the possibility of the constraints being no greater than b̃r, is not less than

θr, then the chance-constrained linear programming model with fuzzy parameters is

formulated as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max [ f̄1, f̄2, · · · , f̄m]

s.t.

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Pos{
n

∑
j=1

c̃i jx j ≥ f̄i} ≥ δi, i = 1,2, · · · ,m

Pos{
n

∑
j=1

ãr jx j ≤ b̃r} ≥ θr, r = 1,2, · · · , p

xi ≥ 0, i = 1,2, · · · ,m,

(2.61)

where max f̄i is the δi-return defined as

max{ f̄i|Pos{
n

∑
j=1

c̃i jx j ≥ f̄i} ≥ δi}.

And similarly, we have

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max [ f̄1, f̄2, · · · , f̄m]

s.t.

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Nec{
n

∑
j=1

c̃i jx j ≥ f̄i} ≥ δi, i = 1,2, · · · ,m

Nec{
n

∑
j=1

ãr jx j ≤ b̃r} ≥ θr, r = 1,2, · · · , p

xi ≥ 0, i = 1,2, · · · ,m,

(2.62)

where max f̄i is the δi-return defined as

max{ f̄i|Nec{
n

∑
j=1

c̃i jx j ≥ f̄i} ≥ δi}.
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Also, we have
⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max [ f̄1, f̄2, · · · , f̄m]

s.t.

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Cr{
n

∑
j=1

c̃i jx j ≥ f̄i} ≥ δi, i = 1,2, · · · ,m

Cr{
n

∑
j=1

ãr jx j ≤ b̃r} ≥ θr, r = 1,2, · · · , p

xi ≥ 0, i = 1,2, · · · ,m,

(2.63)

where max f̄i is the δi-return defined as

max{ f̄i|Cr{
n

∑
j=1

c̃i jx j ≥ f̄i} ≥ δi}.

2.4.2.1 Crisp Equivalent Model

The mathematical traditional solution methods require conversion of the chance

constraints to their respective deterministic equivalents. However, this process is

usually hard to perform and only successful for only some special cases.

First we present some useful results.

Lemma 2.5. [77] Let ξ be the fuzzy variable with membership function µ , and the

function g(x,ξ ) has the form g(x,ξ ) = h(x)− ξ . Then we have:

(1). Pos{g(x,ξ )≤ 0} ≥ α if and only if h(x)≤ Kα , where

Kα = sup{K|K = µ−1(α)}, (2.64)

(2). Nec{g(x,ξ )≤ 0} ≥ α if and only if h(x)≤ Kα , where

Kα = inf{K|K = µ−1(1−α)}, (2.65)

(3). Cr{g(x,ξ )≤ 0} ≥ α if and only if h(x)≤ Kα , where

Kα =

{
sup{K|K = µ−1(2α)}, if α < 1/2

Kα = inf{K|K = µ−1(2(1−α))}, if α ≥ 1/2.
(2.66)

In the following content, we consider a special form, problem (2.61), in which

model, fi,gr, i = 1,2, · · · ,m,r = 1,2, · · · , p are linear functions, and the fuzzy vari-

ables are LR fuzzy variables.

Before we give the theorem, let us recall the operations on trapezoidal fuzzy

variables in advance.

Lemma 2.6. [22] Let ξ1,ξ2, · · · ,ξn be fuzzy variables, and f : Rn → R be a contin-

uous function. Then the membership function µξ of ξ = f (ξ1,ξ2, · · · ,ξn) is derived

from the membership functions µξ1
,µξ2

, · · · ,µξn
by

µξ (x) = sup
x1,x2,...,xn∈R

{
min

1≤i≤n
µξi

(xi)|x = f (x1,x2, · · · ,xn)

}
.
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Using Lemma 2.6, we can obtain the sum of trapezoidal fuzzy variables m̃ =
(m1,m2,m3,m4) and ñ = (n1,n2,n3,n4), that is,

µm̃+ñ(z) = sup{min{µm̃(x),µñ(y)}|z = x + y}

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

z−(m1+n1)
(m2+n2)−(m1+n1)

, if m1 + n1 ≤ z≤ m2 + n2

1, if m2 + n2 ≤ z≤ m3 + n3
z−(m4+n4)

(m3+n3)−(m4+n4)
, if m3 + n3 ≤ z≤ m4 + n4

0, otherwise.

That is, the sum of two trapezoidal fuzzy variables is also a trapezoidal fuzzy vari-

able, and

m̃+ ñ = (m1 + n1,m2 + n2,m3 + n3,m4 + n4). (2.67)

Next we consider the product of a trapezoidal fuzzy variable m̃ and a scalar number

λ . We have

µλ ·m̃(z) = sup{µm̃(x)|z = λ x},
which yields that

λ · m̃ =

{
(λ m1,λ m2,λ m3,λ m4), if λ ≥ 0

(λ m4,λ m3,λ m2,λ m1), if λ < 0.
(2.68)

That is, the product of a trapezoidal fuzzy variable and a scalar number is also a

trapezoidal fuzzy variable.

If the objective functions and the constraints are linear, the problem (2.61) can

be converted to its crisp equivalent. The result is given by the following several

theorems.

First, we give the crisp equivalent model for fuzzy CCM based on Pos measure.

Theorem 2.7. Assume that c̃i j is LR fuzzy variable, the membership function of c̃i j

is

µc̃i j (t) =

⎧
⎨
⎩

L(
ci j−t

αc
i j

), t ≤ ci j,αc
i j > 0

R(
t−ci j

β c
i j

), t ≥ ci j,β c
i j > 0,

(2.69)

where the vector (ci j)n×1 = (ci1,ci2, · · · ,cin)
T is real number, αc

i j and β c
i j are the left

and right spread of c̃i j, i = 1,2, · · · ,m, j = 1,2, · · · ,n, the reference function L,R :

[0,1]→ [0,1] satisfies that L(1) = R(1) = 0, L(0) = R(0) = 1, and it is monotone

function. Then Pos{c̃T
i x≥ fi} ≥ δi is equivalent to

fi ≤ cT
i x + R−1(δi)β

cT
i x, i = 1,2, · · · ,m, (2.70)

Proof. Because c̃i j is LR fuzzy number, its membership function is µc̃i j . By exten-

sion principle[22], the membership function of fuzzy number c̃T
i x is

µc̃T
i x(r) =

⎧
⎨
⎩

L(
cT

i x−r

αcT
i x

), r ≤ cT
i x

R(
r−cT

i x

β cT
i x

), r ≥ cT
i x

i = 1,2, · · · ,m. (2.71)
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For convenience, we denote c̃i j = (ci j,αc
i j,β

c
i j)LR, c̃T

i x = (cT
i x, αcT

i x, β cT
i x)LR.

According to Lemma 2.2 we can get

Pos{c̃T
i x≥ fi} ≥ δi ⇔ cT

i x + R−1(δi)β
cT
i x≥ fi, i = 1,2, · · · ,m.

The proof is completed. ⊓⊔

Remark 2.13. Especially, when the reference function of the variable c̃i j is L(x) =
R(x) = 1− x (x ∈ [0,1]), then the LR fuzzy variable is specified as the triangular

fuzzy variable, and R−1(δi) = 1− δi, so we have the following equivalent expres-

sions:

Pos{c̃T
i x≥ fi} ≥ δi ⇔ cT

i x +(1− δi)β
cT
i x≥ fi, i = 1,2, · · · ,m.

Theorem 2.8. Assume that ãr j, b̃r are LR fuzzy variables, the membership function

of ãr j and b̃r are

µãr j (t) =

⎧
⎨
⎩

L(
ar j−t

αa
r j

), t ≤ ar j,αa
r j > 0

R(
t−ar j

β a
r j

), t ≥ ar j,β a
r j > 0,

(2.72)

µb̃r
(t) =

{
L( br−t

αb
r

), t ≤ br,αb
r > 0

R( t−br

β b
r

), t ≥ br,β b
r > 0,

(2.73)

where the vector (ar j)n×1 = (ar1,ar2, · · · ,arn)
T is real number, αa

r j and β a
r j are

the left and right spread of ãr j, αb
r and β b

r is the left and right spread of b̃r,

r = 1,2, · · · , p, j = 1,2, · · · ,n, the reference function L,R : [0,1]→ [0,1] satisfies

that L(1) = R(1) = 0, L(0) = R(0) = 1, and it is monotone function. Suppose that

ar j and br are independent Then Pos{ãT
r x≤ b̃r} ≥ θr is equivalent to

br + R−1(θr)β
b
r ≥ eT

r x−L−1(θr)α
aT
r x, r = 1,2, · · · , p, (2.74)

Proof. Because ãr j are LR fuzzy number, its membership function is µãr j . By ex-

tension principle[22], the membership function of fuzzy number ãT
r x is

µãT
r x(r) =

⎧
⎨
⎩

L( aT
r x−r

αaT
r x

), r ≤ aT
r x

R( r−aT
r x

β aT
r x

), r ≥ aT
r x

i = 1,2, · · · ,m. (2.75)

And b̃r are also LR fuzzy number with membership function µãr j . According to

Lemma 2.2, we can get

Pos{ãT
r x≤ b̃r} ≥ θr

⇔ br + R−1(θr)β b
r ≥ aT

r x−L−1(θr)αaT
r x, r = 1,2, · · · , p.

(2.76)

The proof is completed. ⊓⊔
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Remark 2.14. Especially, when the reference function of the variables ãr j, b̃r are

all L(x) = R(x) = 1− x (x ∈ [0,1]), then the LR fuzzy variables are specified as the

triangular fuzzy variables, and R−1(δi) = 1−δi, so we have the following equivalent

expressions:

Pos{ãT
r x≤ b̃r} ≥ θr

⇔ br +(1−θr)β b
r ≥ aT

r x− (1−θr)αaT
r x, r = 1,2, · · · , p.

Then according to the Theorems 2.7 and 2.8, we derive the crisp equivalent model

(2.77) of the models (2.61),

⎧
⎪⎪⎨
⎪⎪⎩

max { f1, f2, · · · , fm}

s.t.

⎧
⎨
⎩

fi ≤ cT
i x + R−1(δi)β cT

i x, i = 1,2, · · · ,m
br + R−1(θr)β b

r −aT
r x + L−1(θr)αaT

r x≥ 0, r = 1,2, · · · , p

x≥ 0.

(2.77)

Then, we give the fuzzy CCM crisp equivalent model based on Nec measure.

Theorem 2.9. Assume that the fuzzy variables are as the same as that in Theorem

2.7. Then Nec{c̃T
i x≥ fi} ≥ δi is equivalent to

fi ≤ cT
i x−L−1(1− δi)α

cT
i x, i = 1,2, · · · ,m. (2.78)

Proof. The proof is similar as the proof of theorem 2.7. ⊓⊔

Remark 2.15. Especially, when the reference function of the variable c̃i j is L(x) =
R(x) = 1− x (x ∈ [0,1]), then the LR fuzzy variable is specified as the triangular

fuzzy variable, and R−1(δi) = 1− δi, so we have the following equivalent expres-

sions:

Nec{c̃T
i x≥ fi} ≥ δi ⇔ fi ≤ cT

i x− δiα
cT
i x, i = 1,2, · · · ,m.

Theorem 2.10. Assume that the fuzzy variables ãr j and b̃r are as the same as that

in Theorem 2.8. Then Nec{ãT
r x≤ b̃r} ≥ θr is equivalent to

br−L−1(1−θr)α
b
r ≥ aT

r x + R−1(θr)β
aT
r x, r = 1,2, · · · , p. (2.79)

Proof. The proof is similar as the proof of theorem 2.8. ⊓⊔

Remark 2.16. Especially, when the reference function of the variables ãr j, b̃r are

all L(x) = R(x) = 1− x (x ∈ [0,1]), then the LR fuzzy variables are specified as the

triangular fuzzy variables, and R−1(δi) = 1−δi, so we have the following equivalent

expressions:

Pos{ãT
r x≤ b̃r} ≥ θr

⇔ br−θrαb
r ≥ aT

r x +(1−θr)β aT
r x, r = 1,2, · · · , p.

(2.80)
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Then according to the Theorems 2.9 and 2.10,we derive the crisp equivalent model

(2.81) of the model (2.62),

⎧
⎪⎪⎨
⎪⎪⎩

max { f1, f2, · · · , fm}

s.t.

⎧
⎨
⎩

fi ≤ cT
i x−L−1(1− δi)αcT

i x, i = 1,2, · · · ,m
br−L−1(1−θr)αb

r −aT
r x−R−1(θr)β aT

r x≥ 0, r = 1,2, · · · , p

x≥ 0.

(2.81)

Finally, we give the fuzzy CCM crisp equivalent model based on Cr measure.

In this study, we only consider the situation δr > 0.5. Because in practice, the

confidence level δr of the chance constraints in Model (2.63) should be more than

0.5, that is, the credibility of the fuzzy constraint is more than a number δr, and this

number should be bigger than 0.5. If it is less than 0.5, the constraints cannot be

deemed to be satisfied, and the model is meaningless. So it is not to be considered

in this book when δr ≤ 0.5. We then propose the follow theorem which deals with

the chance constraints.

Theorem 2.11. For any given confidence level δr with 0.5 < δr ≤ 1, r = 1,2, · · · , p,

we have

Cr

{
n

∑
j=1

ẽr jx j ≤ b̃r

}
≥ δr⇔ (2−2δr)(

n

∑
j=1

e3
r jx j−b2

r )+(2δr−1)(
n

∑
j=1

e4
r jx j−b1

r)≤ 0,

where ẽr j and b̃r are trapezoidal fuzzy variables, and x j is a real number with x j > 0.

Proof. In Model (2.63), ẽr j is a trapezoidal fuzzy variable, and x j is a real

number with x j > 0. So by Equation (2.68) and (2.67), we know that ẽr jx j =
(e1

r jx j,e
2
r jx j,e

3
r jx j, e4

r jx j) is a trapezoidal fuzzy variable, and ∑n
j=1 ẽr jx j =

(∑n
j=1 e1

r jx j,∑
n
j=1 e2

r jx j,∑
n
j=1 e3

r jx j,∑
n
j=1 e4

r jx j) is also a trapezoidal fuzzy variable.

Similarly, by (2.68),−b̃r = (−b4
r ,−b3

r ,−b2
r ,−b1

r ) is a trapezoidal fuzzy variable.

Then we have

n

∑
j=1

ẽr jx j− b̃r = (
n

∑
j=1

e1
r jx j−b4

r ,

n

∑
j=1

e2
r jx j−b3

r ,

n

∑
j=1

e3
r jx j−b2

r ,

n

∑
j=1

e4
r jx j−b1

r ).

For convenience, we denote

g1 =
n

∑
j=1

e1
r jx j−b4

r , g2 =
n

∑
j=1

e2
r jx j−b3

r , g3 =
n

∑
j=1

e3
r jx j−b2

r , g4 =
n

∑
j=1

e4
r jx j−b1

r .
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From the definitions of credibility, it is easy to obtain

Cr

{
n

∑
j=1

ẽr jx j− b̃r ≤ 0

}
=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, if g4 ≤ 0
2g3−g4

2(g3−g4) , if g3 ≤ 0≤ g4

0.5, if g2 ≤ 0≤ g3
g1

2(g1−g2) , if g1 ≤ 0≤ g2

0, otherwise.

‘⇒’

If Cr
{

∑n
j=1 ẽr jx j− b̃r ≤ 0

}
≥ δr, then we have either g4 ≤ 0, 2g3−g4

2(g3−g4)
≥ δr or

g1
2(g1−g2) ≥ δr.

When g4 ≤ 0, then g3 ≤ g4 ≤ 0, so that (2−2δr)g3 +(2δr−1)g4 ≤ 0;

When
2g3−g4)
2(g3−g4)

≥ δr, then (2−2δr)g3 +(2δr−1)r4 ≤ 0 by the fact that g3 < g4;

When g1
2(g1−g2)

≥ δr, then g1 ≤ 2δr(g1− g2) by the fact that g1 < g2, so that (1−
2δr)g1 +2δrg2 ≤ 0. However, since (1−2δr) < 0, g1 ≤ 0, and g2 ≥ 0, it is obvious

that (1−2δr)g1 + 2αg2 ≥ 0. So that’s conflicted.

So we have

Cr

{
n

∑
j=1

ẽr jx j− b̃r ≤ 0

}
≥ δr ⇒ (2−2δr)g3 +(2δr−1)g4 ≤ 0,

for any cases.

‘⇐’

Conversely, if (2−2δr)g3 +(2δr−1)g4≤ 0, the argument breaks down into two

cases.

When g4 ≤ 0, we have Cr
{

∑n
j=1 ẽr jx j− b̃r ≤ 0

}
= 1, which implies that

Cr

{
n

∑
j=1

ẽr jx j− b̃r ≤ 0

}
≥ δr;

When g4 > 0, we have g3 < 0, we rearrange (2− 2δr)g3 + (2δr − 1)g4 ≤ 0 as
2g3−g4

2(g3−g4) ≥ δr. Thus Cr
{

∑n
j=1 ẽr jx j− b̃r ≤ 0

}
≥ δr.

So we also have

(2−2δr)g3 +(2δr−1)g4 ≤ 0⇒Cr

{
n

∑
j=1

ẽr jx j− b̃r ≤ 0

}
≥ α.

Above all,

Cr

{
n

∑
j=1

ẽr jx j− b̃r ≤ 0

}
≥ δr ⇔ (2−2δr)g3 +(2δr−1)g4 ≤ 0

or
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Cr

{
n

∑
j=1

ẽr jx j ≤ b̃r

}
≥ δr⇔ (2−2δr)(

n

∑
j=1

e3
r jx j−b2

r )+(2δr−1)(
n

∑
j=1

e4
r jx j−b1

r)≤ 0.

The proof is thus complete. ⊓⊔

Remark 2.17. If ẽr j degenerates to a crisp number er j, then we have

Cr

{
n

∑
j=1

er jx j ≤ b̃r

}
≥ δr⇔ (2−2δr)(

n

∑
j=1

er jx j−b2
r )+(2δr−1)(

n

∑
j=1

er jx j−b1
r)≤ 0.

And if b̃r degenerates to a crisp number br, then we have

Cr

{
n

∑
j=1

ẽr jx j ≤ br

}
≥ δr⇔ (2−2δr)(

n

∑
j=1

e3
r jx j−br)+(2δr−1)(

n

∑
j=1

e4
r jx j−br)≤ 0,

for 0.5 < δr ≤ 1, r = 1,2, · · · , p.

Theorem 2.12. For any given confidence level δr with 0.5 < δr ≤ 1, r = 1,2, · · · , p,

we have

Cr

{
n

∑
j=1

ẽr jx j ≥ b̃r

}
≥ δr⇔ (2−2δr)(

n

∑
j=1

e2
r jx j−b3

r )+(2δr−1)(
n

∑
j=1

e1
r jx j−b4

r)≥ 0.

Proof. The proof is similar to that of Theorem 2.11, and thus omitted. ⊓⊔

Remark 2.18. If ẽr j degenerates to a crisp number er j, then we have

Cr

{
n

∑
j=1

er jx j ≥ b̃r

}
≥ δr⇔ (2−2δr)(

n

∑
j=1

er jx j−b3
r )+(2δr−1)(

n

∑
j=1

er jx j−b4
r)≥ 0.

And if b̃r degenerates to a crisp number br, then we have

Cr

{
n

∑
j=1

ẽr jx j ≥ br

}
≥ δr⇔ (2−2δr)(

n

∑
j=1

e2
r jx j−br)+(2δr−1)(

n

∑
j=1

e1
r jx j−br)≥ 0,

for 0.5 < δr ≤ 1, r = 1,2, · · · , p.

2.4.2.2 Goal Programming Method

The goal programming method was first proposed by Charnes and Cooper [161]

in 1961. After that, Ijiri [394], Lee [126], Kendall and Lee [395], and Ignizio [396]

researched and developed it. When dealing with many multi-objective decision mak-

ing problems, it has been widely applied since it can provide a technique which is

accepted by many decision makers, that is, it can point out preferential information

and harmoniously inosculate it into the model.
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The basic idea of goal programming method is that, for the objective func-

tion f (x) = ( f1(x), f2(x), · · · , fm(x))T , decision makers give a goal value f o =
( f o

1 , f o
2 , · · · , f o

m)T such that every objective function fi(x) approximates the goal

value f o
i as closely as possible. Let dp( f (x), f o) ∈ Rm be the deviation between

f (x) and f o, then consider the following problem,

min
x∈X

dp( f (x), f o), (2.82)

where the goal value f o and the weight vector w is predetermined by the decision

maker. The weight wi expresses the importance factor that the objective function

fi(x) (i = 1,2, · · · ,m) approximates the goal value f o
i , 1≤ p≤ ∞.

When p = 1, it is recalled the simple goal programming method which is most

widely used. Then we have,

dp( f (x), f o) =
m

∑
i=1

wi| f (x)− f o|.

Since there is the notation | · | in dp( f (x), f o), it isn’t a differentiable function any

more. Therefore, denote that

d+
i =

1

2
(| fi(x)− f o

i |+( fi(x)− f o
i )),

d−i =
1

2
(| fi(x)− f o

i |− ( fi(x)− f o
i )).

where d+
i expresses the quantity that fi(x) exceeds f o

i and d−i expresses the quantity

that fi(x) is less than f o
i . It is easy to prove that, for any i = 1,2, · · · ,m,

d+
i + d−i = | fi(x)− f o

i |,
d+

i −d−i = fi(x)− f o
i ,

d+
i d−i = 0, d+

i ,d−i ≥ 0.
(2.83)

When p = 1, problem (2.82) can be rewritten as,

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

min
m

∑
i=1

wi(d
+
i + d−i )

s.t.

⎧
⎨
⎩

fi(x)+ d+
i −d−i = f o

i , i = 1,2, · · · ,m
d+

i d−i = 0,d+
i ,d−i ≥ 0, i = 1,2, · · · ,m

x ∈ X .

(2.84)

In order to easily solve the problem (2.84), abandon the constraint d+
i d−i = 0 (i =

1,2, · · · ,m) and we have

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

min
m

∑
i=1

wi(d
+
i + d−i )

s.t.

⎧
⎨
⎩

fi(x)+ d+
i −d−i = f o

i , i = 1,2, · · · ,m
d+

i ,d−i ≥ 0, i = 1,2, · · · ,m
x ∈ X .

(2.85)
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Theorem 2.13. If (x, d̄+, d̄−) is the optimal solution of problem (2.85), x̄ is

doubtlessly the optimal solution of problem (2.82), where d̄+ = (d̄+
1 , d̄+

2 , · · · , d̄+
m )

and d̄− = (d̄−1 , d̄−2 , · · · , d̄−m ).

Proof. Since (x, d̄+, d̄−) is the optimal solution of problem (2.85), we have x ∈ X ,

d̄+ ≥ 0, d̄− ≥ 0 and

fi(x)+ d̄+
i − d̄−i = f o

i , i = 1,2, · · · ,m. (2.86)

(1) If d̄+
i = d̄−i = 0, we have fi(x) = f o

i , which means x is the optimal solution

problem (2.82).

(2) If there exists i0 ∈ {1,2, · · · ,m} such that fi(x) 
= f o
i , d̄+

i d̄−i = 0 doubtlessly

holds. If not, we have d̄+
i > 0 and d̄−i > 0. We respectively discuss them as follows.

(i) If d̄+
i − d̄−i > 0, for i ∈ {1,2, · · · ,m}, let

d̃+
i =

{
d̄+

i − d̄−i , i = i0
d̄+

i , i 
= i0,
d̃−i =

{
0, i = i0
d̄−i , i 
= i0.

(2.87)

Thus, d̃+
i0

< d̄+
i0

and d̃−i0 < d̄−i0 both hold. It follows from equation (2.86) and (2.87)

that,

fi(x)+ d̃+
i − d̃−i =

{
fi(x)+ 0− (d̄+

i − d̄−i ) = f o
i , i = i0

fi(x)+ d̄+
i − d̄−i = f o

i , i 
= i0.

We also know x ∈ X , d̃+
i ≥ 0 and d̃−i ≥ 0. Denote d̃+ = (d̃+

1 , d̃+
2 , · · · , d̃+

m ) and d̃− =
(d̃−1 , d̃−2 , · · · , d̃−m ), then we have (x, d̃+, d̃−) is a feasible solution of problem (2.85).

If follows from d̃+
i0

< d̄+
i0

and d̃−i0 < d̄−i0 that,

m

∑
i=1

(d̃+
i0

+ d̃i0) <

m

∑
i=1

(d̄+
i0

+ d̄i0), (2.88)

this conflict with the assumption that (x, d̄+, d̄−) is the optimal solution of problem

(2.85).

(ii) If d̄+
i − d̄−i < 0, for i ∈ {1,2, · · · ,m}, let

d̃+
i =

{
0, i = i0
d̄+

i , i 
= i0,
d̃−i =

{
−(d̄+

i − d̄−i ), i = i0
d̄−i , i 
= i0.

(2.89)

We can similarly prove that it conflicts with the assumption that (x, d̄+, d̄−) is the

optimal solution of problem (2.85).

So far, we have proved that (x, d̄+, d̄−) is the optimal solution of problem

(2.84). Since the feasible region of problem (2.84) is included in the one of prob-

lem (2.85), (x, d̄+
, d̄−) is the optimal solution of problem (2.85). Next, we will prove
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that (x, d̄+, d̄−) is the optimal solution of problem (2.82). For any feasible solution

(x,d+,d−), it follows from (2.83) that,

| fi(x)− f o
i |= d+

i + d−i , | fi(x̄)− f o
i |= d̄+

i + d̄−i , i = 1,2, · · · ,m.

For any x ∈ X , since

m

∑
i=1

| fi(x̄)− f o
i |=

m

∑
i=1

(d̄+
i + d̄−i )≤

m

∑
i=1

(d+
i + d−i ) =

m

∑
i=1

| fi(x)− f o
i |,

this means that x̄ is the optimal solution of problem (2.82). ⊓⊔

2.4.2.3 Numerical Example

We also use the ideal point method to solve the equivalent model of fuzzy CCM.

Example 2.7. Let consider the following problem,

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max ξ1x1 + ξ2x2 + ξ3x3 + ξ4x4

min ξ5x1 + ξ6x2 + ξ7x3 + ξ8x4

s.t.

⎧
⎨
⎩

7x1 + 5x2 + 3x3 + 2x4 ≤ 120

ξ9x1 + ξ10x2 + ξ11x3 + ξ12x4 ≤ ξ13

xi ≥ 0, i = 1,2, · · · ,4,

(2.90)

where ξ j( j = 1,2, · · · ,13) are triangular LR fuzzy variables characterized as that in

Theorem. 2.7,

ξ1 = (4,0.5,0.5)LR, ξ2 = (5,0.5,0.5)LR,

ξ3 = (9,0.5,0.5)LR, ξ4 = (11,0.5,0.5)LR,

ξ5 = (1,0.1,0.1)LR, ξ6 = (1,0.1,0.1)LR,

ξ7 = (1,0.1,0.1)LR, ξ8 = (1,0.1,0.1)LR,

ξ9 = (3,0.5,0.5)LR, ξ10 = (5,0.5,0.5)LR,

ξ11 = (10,0.5,0.5)LR, ξ12 = (15,0.5,0.5)LR,

ξ13 = (100,5,5)LR.

We use the chance operator to deal with the fuzzy multi-objective model, and here

the decision maker is supposed to be comparatively optimistic, so we adopted the

Pos measure to measure the chance,

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max { f 1, f 2}

s.t.

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Pos{ξ1x1 + ξ2x2 + ξ3x3 + ξ4x4 ≥ f 1} ≥ δ1

Pos{−(ξ5x1 + ξ6x2 + ξ7x3 + ξ8x4)≥ f 2} ≥ δ2

7x1 + 5x2 + 3x3 + 2x4 ≤ 120

Pos{ξ9x1 + ξ10x2 + ξ11x3 + ξ12x4 ≤ ξ13} ≥ θ
xi ≥ 0, i = 1,2, · · · ,5.

(2.91)
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Since there are triangular LR fuzzy coefficients exist in the objective functions and

a constraint, by Remarks 2.13, 2.13, for confidence level δ1 = 0.9,δ2 = 0.9,θ = 0.9,

we have the following equivalent model 2.92,

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max { f 1, f 2}

s.t.

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4x1 +5x2 +9x3 +11x4 +0.1(0.5x1 +0.5x2 +0.5x3 +0.5x4)≥ f 1

−(x1 +x2 +x3 +x4)+0.1(0.1x1 +0.1x2 +0.1x3 +0.1x4)≥ f 2

7x1 +5x2 +3x3 +2x4 ≤ 120

3x1 +5x2 +10x3 +15x4−0.1(0.5x1 +0.5x2 +0.5x3 +0.5x4)≤ 100+0.1∗5

xi ≥ 0, i = 1,2, · · · ,5
(2.92)

or ⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max F1 = 4.05x1 + 5.05x2 + 9.05x3 + 11.05x4

max F2 =−0.99(x1 + x2 + x3 + x4)

s.t.

⎧
⎨
⎩

7x1 + 5x2 + 3x3 + 2x4 ≤ 120

2.95x1 + 4.95x2 + 9.95x3 + 14.95x4≤ 100.5
xi ≥ 0, i = 1,2, · · · ,5.

(2.93)

For this problem, we could use the interactive solution method to solve it, f
0
i , f

1
i (i =

1,2) are calculated as follows

f
0
1 = 0, f

1
1 = 111.4737, f

0
2 =−21.9392, f

1
2 = 0.

Then we have that
⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min λ

s.t.

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4.05x1 + 5.05x2 + 9.05x3 + 11.05x4≥ 111.4737(µ̄1−λ )
−0.99(x1 + x2 + x3 + x4)≥ 21.9392(µ̄2−λ )−21.9392

7x1 + 5x2 + 3x3 + 2x4 ≤ 120

2.95x1 + 4.95x2 + 9.95x3 + 14.95x4≤ 100.5
xi ≥ 0, i = 1,2, · · · ,5.

(2.94)

For the initial reference membership 1, each membership function value and the

solution x as well as the objective function Fi(x) are obtained (see the first row

in Table 2.1). If the decision maker wishes to increase f 1(x) by sacrificing f 2(x),
then the probability value (µ̄1, µ̄2) needs to be updated, such as (1,0.98). Or else

(µ̄1, µ̄2) needs to be updated, such as (0.98,1).The results are listed in the second

row. Suppose that the decision maker is satisfied with the solution when the proba-

bility is (1,0.90). Then the interactive process is stopped and the satisfactory solution

is x∗ = ((0,0,4.299,3.861) and (F∗1 ,F∗2 ) = (81.162,8.16). Moreover the decision

maker can modify f
0
i , f

1
i (i = 1,2) and build a new reference membership function

to obtain his or her satisfactory solution.
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Table 2.1 Results obtained from Interactive process

µ̄1 µ̄2 x = (x1, x2, x3, x4) λ F1(x) F2(x)

1 1 (0,0,0.999,6.057) 0.318 75.971 6.985

1 0.98 (0,0,1.659,5.618) 0.308 72.116 7.204

1 0.96 (0,0,2.319,5.178) 0.298 78.204 7.422

1 0.94 (0,0,2.979,4.739) 0.288 79.326 7.641

1 0.92 (0,0,3.639,4.300) 0.278 80.448 7.592

1 0.90 (0,0,4.299,3.861) 0.268 81.57 8.078

0.98 1 (0,0,0.339,6.497) 0.308 74.86 6.768

0.96 1 (0,0,0,6.655) 0.300 73.538 6.588

0.94 1 (0,0,0,6.516) 0.294 72.0018 6.451

0.92 1 (0,0,0,6.378) 0.288 70.477 6.314

0.90 1 (0,0,0,6.239) 0.282 68.941 6.177

Suppose the risk tolerance given by decision maker is F̌1 = 78, F̌2 = 7.5. Then we

can also use the goal programming method to handle the crisp linear model (2.93),

and we can get the following goal programming model (2.95),

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
2

∑
i=1

wi(d
+
i + d−i )

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

4.05x1 + 5.05x2 + 9.05x3 + 11.05x4 + d+
1 + d−1 = F̌1

−0.99(x1 + x2 + x3 + x4)+ d+
2 + d−2 = F̌2

7x1 + 5x2 + 3x3 + 2x4 ≤ 120

2.95x1 + 4.95x2 + 9.95x3 + 14.95x4≤ 100.5
xi ≥ 0, i = 1,2, · · · ,5.
d+

i d−i = 0,d+
i ,d−i ≥ 0, i = 1,2.

(2.95)

We take w1 = w2 = 0.5, and by solving the above model, we can obtain the efficient

solution as follows:

(x1,x2,x3,x4) = (0,0,2.19,5.26).

2.4.3 Non-linear Fuzzy CCM and Fuzzy Simulation-Based PSO

with Preference Order

It is difficult to transform the non-linear fuzzy CCM into it’s equivalent form, so

we introduce fuzzy simulation-based particle swarm optimization with a preference

order algorithm for solution.

2.4.3.1 Fuzzy Simulation 2 for Critical Value

Suppose that f is a real-valued function, and ξi are fuzzy variables with membership

functions µi, i = 1,2, · · · ,n, respectively. Let us find the maximal f̄ such that the

inequality

Pos{ f (ξ )≥ f̄ } ≥ β (2.96)
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holds, where ξ = (ξ1,ξ2, · · · ,ξn). First we set f = −∞. Then we randomly gen-

erate u1,u2, · · · ,un from the β -level sets of ξ1,ξ2, · · · ,ξn, respectively, and denote

u = (u1,u2, · · · ,un). We set f̄ = f (u) provided that f̄ < f (u). Repeat this process

for N times. The value f̄ is regarded as the estimation. We summarize this process

as follows:

Step 1. Set f =−∞.

Step 2. Randomly generate u1,u2, · · · ,un from the β -level sets of ξ1,ξ2, · · · ,ξn, re-

spectively, and denote u = (u1,u2, · · · ,un).
Step 3. If f̄ < f (u), then we set f̄ = f (u).
Step 4. Repeat the second and third steps N times.

Step 5. Return f̄ .

2.4.3.2 PSO with Preference Order

Preference order [389] is a generalization of Pareto optimality. It provides a way to

designate some Pareto solutions superior to others when the size of the nondomi-

nated solution set is very large.

Definition 2.19. A point x∗ ∈ Ω is considered efficiency of order k if f (x∗) is not

dominated by any of the k-element subsets of fΩ , where Ω is the feasible region

for an multi-objective optimization and fΩ is the image of the feasible region in the

objective space.

Remark 2.19. If x∗ is efficiency of order k, then it is efficiency of order k + 1.

This claim has been proven by Das [389]. It is clear that the efficiency of order m

is the ordinary concept of Pareto optimality, hence the efficiency of order k is an

extension of Pareto optimality.

Efficiency of order can be used to reduce the number of points in a nondominated

set by retaining only those regarded as the “best compromise” [390]. In order to ex-

plain the “best compromise”, consider a Pareto point P which has a near-minimum

value for one objective but fairly high values for all the rest. Such a point lies at

an extreme end of the Pareto surface and is not considered as a good compromise

among all objectives. The point P is not qualified when the efficiency of order is

m− 1, because it is not presented in one of the (m− 1)-element subsets of the ob-

jectives. For this subset, P is unlikely to be a Pareto optimal solution since it is

dominated by other points in the subset. Therefore, it is concluded that the fewer

extreme components a point has, the more likely it is to be efficiency of order.

Then we describe the proposed MOPSO algorithm with a preference order rank-

ing procedure. Firstly, PO ranking procedure is introduced, then the details of the

proposed algorithm are given. In this study, the positions of Pareto nondominated

particles are stored in the external archive. To find the “best compromise”, the non-

dominated solutions are ranked according to PO. The ranking procedure can be

summarized below:
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(1) Identify the combinations of all subsets to m objectives;

(2) Assign the order to all nondominated solutions for each combination of all

subsets based on PO;

(3) Identify the “best compromise” in all nondominated solutions according to

their order.

On the basis of the above ranking procedure, the steps of the proposed algorithm

are summarized as follows.

Step 1. Initialization. The population size, the archive size and the maximum number

of iterations are initialized according to the problem concerned. The velocities and

the positions are initialized randomly. The initial value of the personal best for each

particle is equal to its initial position.

Step 2. Update the velocities and the positions. In order to control the balance of

global and local search, a new updating equation for the velocity is adopted. Two

parameters, namely r1 and r2, are independently and randomly generated, so there

are cases in which two random parameters are both too large or too small. In the

former case, both the personal and the social experiences accumulated so far are

over used, and the result is that the particles are driven too far away from the local

optimum. For the latter case, both the personal and the social experiences are not

used fully, and the convergence speed of the algorithm is reduced. In the proposed

algorithm the velocity is updated as follows:

vt+1
id = wt+1vt

id +(1− r2)c1r1(pt
id− xt

id)+ (1− r2)c2(1− r1)(pt
gd− xt

id). (2.97)

The inertia weight xtt1 in equation (2.97) is adjusted dynamically as follows:

wt+1 = wt fw, (2.98)

where fw is a constant between 0 and 1.For the personal best, it is easily defined

by the concept of domination. But it is difficult to define the global best because

there is a set of compromise solutions in MOPs. In order to identify the best com-

promise, the PO scheme is used to classify the solutions in this study. Neither the

crowding distance[249] nor the density parameter[391] is needed to be computed.

The superior solutions in the nondominated set are identified via PO scheme men-

tioned above. Then the best compromise is used as the global best to update the

velocity according to equation (2.98). After updating the velocities of the particles,

the positions are updated.

Step 3. Update archive. In each generation, the archive is updated by the nondomi-

nated solutions from the population. If the archive size exceeds the maximum size,

the solutions in the archive are sorted in descending order according to their effi-

ciency order. The solutions with lower efficiency order are deleted from the end of

the archive.

Step 4. Termination. The algorithm is terminated if it reaches the maximum number

of iterations. The final nondominated solutions are contained in the external archive.

Based on the above discussions, the pseudocode of the proposed algorithm is

given as follows:
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/*N is the population size, Na is the external archive size, tmax is the maximum

number of iterations, d is the dimensions of the particles.*/

Step 1. t = 0.

(a) initialize x0
id , ∀i, i ∈ {1, · · · ,N} and ∀d,d ∈ {1, · · · ,D}.

(b) initialize v0
id , ∀i, i ∈ {1, · · · ,N} and ∀d,d ∈ {1, · · · ,D}.

(c) initialize p0
id for each particle, p0

id ← x0
id .

(d) initialize archive, A0 ← S0.

/*S0: the nondominated solutions in the population*/

Step 2. for t = 1 to tmax.

(a) Use PO scheme to identify the best compromise

(i) get combination.

/*returns the combination of all subsets for m objectives*/

(ii) get efficiency order.

/*compute the efficiency order for each nondominated solution from the archive on

each subset*/

(iii) sort nondominated solutions.

/*sort nondominated solutions in descending order according to their efficiency or-

der*/

(iv) get pt
gd .

/*the solution with maximum efficiency order is defined as global best*/

(b) update velocity of each particle according to Equation 2.97.

(c) update position of each particle.

(d) update pt
id of each particle.

(e) update wt according to Equation 2.98.

(f) update archive.

/*if the archive size Na is exceeded, the solutions with lower efficiency order are

deleted from the end of archive*/

Step 3. end.

2.4.3.3 Numerical Example

Example 2.8. Consider the following multi-objective programming problem with

fuzzy parameters,

⎧
⎪⎪⎨
⎪⎪⎩

min
√

(x1− ξ1)2 +(x2− ξ2)2 +(x3− ξ3)2

min
√

(x1 + ξ1)2 +(x2 + ξ2)2 +(x3 + ξ3)2

s.t.

{
x2

1 + x2
2 + x2

3 ≤ 10

x1 ≥ 0,x2 ≥ 0,x3 ≥ 0,

(2.99)

where ξi, i = 1,2,3 are triangular fuzzy numbers, that is,

ξ1 = (1,1.5,2),
ξ2 = (2.5,3,3.5),
ξ3 = (3.5,4,4.5).
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We use the fuzzy CCM to deal with the above nonlinear fuzzy multi-objective

model, and we can get

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min [ f̄1, f̄2]

s.t.

⎧
⎪⎪⎨
⎪⎪⎩

Pos{
√

(x1− ξ1)2 +(x2− ξ2)2 +(x3− ξ3)2 ≤ f̄1} ≥ β1

Pos{
√

(x1 + ξ1)2 +(x2 + ξ2)2 +(x3 + ξ3)2 ≤ f̄2} ≥ β2

x2
1 + x2

2 + x2
3 ≤ 10

x1 ≥ 0,x2 ≥ 0,x3 ≥ 0.

(2.100)

As we know, it’s difficult to convert the problem (2.100) into it’s crisp inequivalent

model. In order to solve this model, we have to make use of the fuzzy simulation-

based PSO with preference order to get the efficient solution.

f̄1 = 4.48, f̄2 = 5.95;

x1 = 0.226,x2 = 0.495,x3 = 0.499.

2.5 Fuzzy DCM

In this section, we will introduce two kinds of fuzzy dependent model based on two

types of measure Pos and Nec.

2.5.1 General Model for Fuzzy DCM

We propose the general model of Fuzzy DCM.

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max

⎡
⎢⎢⎣

Ch{ f1(x,ξ )≥ f̄1},
Ch{ f2(x,ξ )≥ f̄2},
· · ·
Ch{ fm(x,ξ )≥ f̄m},

⎤
⎥⎥⎦

s.t.

{
gr(x,ξ )≤ 0, r = 1,2, · · · , p

x ∈ X ,

(2.101)

where ξ = (ξ1,ξ2, · · · ,ξn) are fuzzy vector, Ch are the chance of the fuzzy event,

and we could use possibility measure or necessity measure, f̄i, i = 1,2, · · · ,m, are

the predetermined ideal objective values for each objective functions.

2.5.1.1 Fuzzy DCP Based on Pos Measure

A typical formulation of fuzzy dependent-chance multi-objective model is given as

follows,

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max

⎡
⎢⎢⎣

Pos{ f1(x,ξ )≥ f̄1},
Pos{ f2(x,ξ )≥ f̄2},
· · ·
Pos{ fm(x,ξ )≥ f̄m},

⎤
⎥⎥⎦

s.t.

{
gr(x,ξ )≤ 0, r = 1,2, · · · , p

x ∈ X ,

(2.102)
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where ξ = (ξ1,ξ2, · · · ,ξn) are fuzzy vector, Pos are the possibility measure of the

fuzzy events, f̄i, i = 1,2, · · · ,m, are the predetermined ideal objective values for each

objective functions.

Thus, for a each given decision vector, we cannot judge whether or not a decision

vector x is a feasible before the realization of the fuzzy vector ξ . Hence, the prob-

lem (2.102) is not well defined mathematically. Motivated by the ideas of EVM or

CCM, we may consider the expect value of gr(x,ξ ) or require the possibility mea-

sure of gr(x,ξ ) are not less than a predetermined confidence level, i.e. we have the

following models.

⎧
⎨
⎩

max [Pos{ f1(x,ξ )≤ 0},Pos{ f2(x,ξ )≤ 0}, · · · ,Pos{ fm(x,ξ )≤ 0}]
s.t.

{
E[gr(x,ξ )]≥ 0,r = 1,2, · · · , p

x ∈ X

(2.103)

and
⎧
⎨
⎩

max [Pos{ f1(x,ξ )≤ 0},Pos{ f2(x,ξ )≤ 0}, · · · ,Pos{ fm(x,ξ )≤ 0}]
s.t.

{
Pos{gr(x,ξ )≤ 0} ≥ θr, r = 1,2, · · · , p

x ∈ X ,

(2.104)

where θr ∈ [0,1], r = 1,2, · · · , p are the predetermined level value.

Obviously, Problem (2.103) and Problem (2.104) are mathematically meaningful

decision problem. In other word, we can judge whether or not a decision vector is

feasible. Thus, they can be formulated as

max
x∈X

[Pos{ f1(x,ξ )≤ 0},Pos{ f2(x,ξ )≤ 0}, · · · ,Pos{ fm(x,ξ )≤ 0}], (2.105)

where X is a fixed feasible set.

Definition 2.20. x∗ ∈ X is called a Pos fuzzy efficient solution of Problem (2.105)

if and only if there exists no other fuzzy feasible solution x such that

Pos{θ ∈Θ | fi(x,ξ )} ≥ Pos{θ ∈Θ | fi(x
∗
,ξ )}, i = 1,2, · · · ,m,

for all i, and

Pos{θ ∈Θ | fi0(x,ξ )} > Pos{θ ∈Θ | fi0(x
∗
,ξ )}, i = 1,2, · · · ,m,

for at least one i0 ∈ {1,2, · · · ,m}.

If the objective functions and the constraints are linear and with fuzzy coefficients,

we propose the following dependent chance constraints models (2.106) and (2.107),

⎧
⎨
⎩

max
[
Pos{c̃T

i x≥ f̄i, i = 1,2, · · · ,m}
]

s.t.

{
E[ãT

r ]x≤ E[b̃r], r = 1,2, · · · , p

x≥ 0

(2.106)
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and ⎧
⎨
⎩

max
[
Pos{c̃T

i x≥ f̄i, i = 1,2, · · · ,m}
]

s.t.

{
Pos{ãT

r x≤ b̃r} ≥ θr, r = 1,2, · · · , p

x≥ 0.
(2.107)

And the models (2.106) and (2.107) are equivalent to the following models (2.108)

and (2.109) respectively,

⎧
⎪⎪⎨
⎪⎪⎩

max [δ1, · · · ,δm]

s.t.

⎧
⎨
⎩

Pos{c̃T
i x≥ f̄i} ≥ δi, i = 1,2, · · · ,m

E[ãT
r ]x≤ E[b̃r], r = 1,2, · · · , p

x≥ 0

(2.108)

and ⎧
⎪⎪⎨
⎪⎪⎩

max [δ1, · · · ,δm]

s.t.

⎧
⎨
⎩

Pos{c̃T
i x≥ f̄i} ≥ δi, i = 1,2, · · · ,m

Pos{ãT
r x≤ b̃r} ≥ θr, r = 1,2, · · · , p

x≥ 0.

(2.109)

2.5.1.2 Fuzzy DCP Based on Nec Measure

Another type of fuzzy dependent-chance multi-objective programming is also given

as follows, ⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max

⎡
⎢⎢⎣

Nec{ f1(x,ξ )≥ f̄1},
Nec{ f2(x,ξ )≥ f̄2},
· · ·
Nec{ fm(x,ξ )≥ f̄m},

⎤
⎥⎥⎦

s.t.

{
Nec{g j(x,ξ )≤ 0} ≥ θr, r = 1,2, · · · , p

x ∈ X ,

(2.110)

where Nec are the possibility measure of the fuzzy events.

And similarly to the CCM defined by Pos measure, motivated by the ideas of

EVM or CCM, we have the following models.

⎧
⎨
⎩

max [Nec{ f1(x,ξ )≤ 0},Nec{ f2(x,ξ )≤ 0}, · · · ,Nec{ fm(x,ξ )≤ 0}]
s.t.

{
E[gr(x,ξ )]≥ 0,r = 1,2, · · · , p

x ∈ X

(2.111)

and
⎧
⎨
⎩

max [Nec{ f1(x,ξ )≤ 0},Nec{ f2(x,ξ )≤ 0}, · · · ,Nec{ fm(x,ξ )≤ 0}]
s.t.

{
Nec{gr(x,ξ )≤ 0} ≥ θr, r = 1,2, · · · , p

x ∈ X ,

(2.112)

where θr ∈ [0,1], r = 1,2, · · · , p are the predetermined levels.
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We can judge whether or not a decision vector is feasible for model (2.111) and

(2.112). Thus, they can be formulated as

max
x∈X

[Nec{ f1(x,ξ )≤ 0},Nec{ f2(x,ξ )≤ 0}, · · · ,Nec{ fm(x,ξ )≤ 0}] (2.113)

where X is a fixed feasible set.

Definition 2.21. x∗ ∈ X is called a Nec fuzzy efficient solution of Problem (2.113)

if and only if there exists no other fuzzy feasible solution x such that

Nec{θ ∈Θ | fi(x,ξ )} ≥ Nec{θ ∈Θ | fi(x
∗
,ξ )}, i = 1,2, · · · ,m,

for all i, and

Nec{θ ∈Θ | fi0(x,ξ )} > Nec{θ ∈Θ | fi0(x
∗
,ξ )}, i = 1,2, · · · ,m,

for at least one i0 ∈ {1,2, · · · ,m}.

2.5.2 Linear Fuzzy DCM and Ideal Point Method

If the objective functions and the constraints are linear with fuzzy coefficients, we

propose the following dependent chance models (2.114) and (2.115),

⎧
⎨
⎩

max
[
Nec{c̃T x≥ f̄i, i = 1,2, · · · ,m}

]

s.t.

{
E[ãT

r ]x≤ E[b̃r], r = 1,2, · · · , p

x≥ 0

(2.114)

and ⎧
⎨
⎩

max
[
Nec{c̃T x≥ f̄i, i = 1,2, · · · ,m}

]

s.t.

{
Nec{ãT

r x≤ b̃r} ≥ θr, r = 1,2, · · · , p

x≥ 0.
(2.115)

And the models (2.114) and (2.115) are equivalent to the following models (2.116)

and (2.117) respectively,

⎧
⎪⎪⎨
⎪⎪⎩

max [δ1, · · · ,δm]

s.t.

⎧
⎨
⎩

Nec{c̃T x≥ f̄i} ≥ δi, i = 1,2, · · · ,m
E[ãT

r ]x≤ E[b̃r], r = 1,2, · · · , p

x≥ 0

(2.116)

and ⎧
⎪⎪⎨
⎪⎪⎩

max [δ1, · · · ,δm]

s.t.

⎧
⎨
⎩

Nec{c̃T x≥ f̄i} ≥ δi, i = 1,2, · · · ,m
Nec{ãT

r x≤ b̃r} ≥ θr, r = 1,2, · · · , p

x≥ 0.

(2.117)
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2.5.2.1 Crisp Equivalent Models

When we use the expected value operator to deal with the fuzzy constraints, the

theorems in subsection 2.2 can be used to transform some multi-objective models

with special fuzzy variables into some certain type of models. So let’s concentrate

on the second form of CCM.

Fuzzy DCM Crisp Equivalent Model Based on Pos Measure

Theorem 2.14. Assume that c̃i j is LR fuzzy variable, the membership function of c̃i j

is

µc̃i j (t) =

⎧
⎨
⎩

L(
ci j−t

αc
i j

), t ≤ ci j,αc
i j > 0

R(
t−ci j

β c
i j

), t ≥ ci j,β c
i j > 0,

(2.118)

where the vector (ci j)n×1 = (ci1,ci2, · · · ,cin)
T is real number, αc

i j and β c
i j are the left

and right spread of c̃i j, i = 1,2, · · · ,m, j = 1,2, · · · ,n, the reference function L,R :

[0,1]→ [0,1] satisfies that L(1) = R(1) = 0, L(0) = R(0) = 1, and it is monotone

function. Then Pos{c̃T
i x≥ fi} ≥ δi is equivalent to

R−1(δi)≥
fi− cT

i x

β cT
i x

, i = 1,2, · · · ,m. (2.119)

Proof. The proof is the same as the proof of Theorem 2.7.

Since we assume that the function R(·) is a monotonically decreasing function, so

max δi is equivalent to min R−1(δi). By theorem 2.14, 2.8, it’s easy for us to derive

the crisp equivalent model (2.120) of the models (2.107,2.109),

⎧
⎪⎨
⎪⎩

max
{

cT
i x− fi

β cT
i x

, i = 1,2, · · · ,m
}

s.t.

{
br + R−1(θr)β

b
r −aT

r x + L−1(θr)α
aT
r x≥ 0, r = 1,2, · · · , p

x≥ 0.

(2.120)

Fuzzy DCM Crisp Equivalent Model Based on Nec Measure

Theorem 2.15. Assume that the fuzzy variable are as the same as that in Theorem

2.7. Then Nec{c̃T
i x≥ fi} ≥ δi is equivalent to

L−1(1− δi)≤
cT

i x− fi

αcT
i x

, i = 1,2, · · · ,m. (2.121)

Proof. The proof is similar as the proof of theorem 2.7.



116 2 Fuzzy Multiple Objective Decision Making

Since we assume that the reference function L(·) are monotonically decreasing func-

tion, so max δi is equivalent to max L−1(1− δi). By theorem 2.15, 2.10, it’s easy

for us to derive the crisp equivalent model (2.122) of the models (2.115,2.117),

⎧
⎪⎨
⎪⎩

max
{

cT
i x− fi

αcT
i x

, i = 1,2, · · · ,m
}

s.t.

{
br + R−1(θr)β b

r −aT
r x + L−1(θr)αaT

r x≥ 0, r = 1,2, · · · , p

x≥ 0.

(2.122)

2.5.2.2 Ideal Point Method

In this section, we make use of the ideal point method proposed in [92, 387, 388] to

resolve the multiobjective problem with crisp parameters. If the decision maker can

firstly propose an estimated value F̄i for each objective function Ψ c
i x such that

F̄i ≥max
x∈X ′

Ψ c
1 x, i = 1,2, · · · ,m, (2.123)

where X ′ = {x ∈ X |Ψ e
r x≤Ψb

r ,r = 1,2, · · · , p,x≥ 0}, then F̄i = (F̄1, F̄2, · · · , F̄m)T is

called the ideal point, especially, if F̄i ≥ maxx∈X ′Ψ
c

1 x for all i, we call F̄ the most

ideal point.

The basic theory of the ideal point method is to take a especial norm in the objec-

tive space Rm and obtain the feasible solution x that the objective value approaches

the ideal point F̄ = (F̄1, F̄2, · · · , F̄m)T under the norm distance, that is, to seek the

feasible solution x satisfying

min
x∈X ′

u(Ψ c(x)) = min
x∈X ′

||Ψ c(x)− F̄||.

Usually, the following norm functions are used to describe the distance:

(1) p-mode function

dp(Ψ
c(x), F̄ ;ω) =

[
m

∑
i=1

ωi|Ψ c
i x− F̄i|p

] 1
p

, 1≤ p < +∞. (2.124)

(2)The maximal deviation function

d+∞(Ψ c(x), F̄ ;ω) = max
1≤i≤m

ωi|Ψ c
i x− F̄i|. (2.125)

(3) Geometric mean function

d(Ψ c(x), F̄) =

[
m

∏
i=1

|Ψ c
i x− F̄i|p

] 1
m

. (2.126)

The weight parameter vector ω = (ω1,ω2, · · · ,ωm)T > 0 needs to be predetermined.
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Theorem 2.16. Assume that F̄i > maxx∈X ′Ψ
c

1 x(i = 1,2, · · · ,m). If x∗ is the optimal

solution of the following problem

min
x∈X ′

dp(Ψ
c(x), F̄ ;ω) =

[
m

∑
i=1

ωi|Ψ c
i x− F̄i|p

] 1
p

, (2.127)

then x∗ is an efficient solution of problem (2.128). On the contrary, if x∗ is an efficient

solution of problem (2.128), then there exists a weight vector ω such that x∗ is the

optimal solution of problem (2.127).

Proof. This result can be easily obtained, and we hereby don’t prove it. ⊓⊔

Next, we take the p-mode function to describe the procedure of solving the problem

(2.128).

{
max {Ψ c

1 x, · · ·Ψ c
i x, · · · ,Ψ c

mx}
s.t. x ∈ X .

(2.128)

Step 1. Find the ideal point. If the decision maker can give the ideal objective value

satisfying the condition (2.123), the value will be considered as the ideal point.

However, decision makers themselves don’t know how to give the objective value,

so we can get the ideal point by solving the following programming problem,

⎧
⎨
⎩

max Ψ c
i x

s.t.

{
Ψ e

r x≤Ψb
r ,r = 1,2, · · · , p

x ∈ X .
(2.129)

Then the ideal point F̄ = (F̄1, F̄2, · · · , F̄m)T can be fixed by F̄i = Ψ c
i x∗, where x∗ is

the optimal solution of problem (2.129).

Step 2. Fix the weight. The method of selecting the weight is referred in research pa-

pers and interested readers can consult them. We usually use the following function

to fix the weight,

ωi =
F̄i

∑m
i=1 F̄i

.

Step 3. Construct the minimal distance problem. Solve the following single objective

programming problem to obtain an efficient solution to problem (2.128),

⎧
⎪⎪⎨
⎪⎪⎩

min

[
m

∑
i=1

ωi|Ψ c
i x− F̄i|t

] 1
t

s.t.

{
Ψ e

r x≤Ψb
r ,r = 1,2, · · · , p

x ∈ X .

(2.130)

Usually, we take t = 2 to compute it.
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2.5.2.3 Numerical Example

Example 2.9. Let consider the following problem ,

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max ξ1x1 + ξ2x2 + ξ3x3 + ξ4x4

max ξ5x1 + ξ6x2 + ξ7x3 + ξ8x4

s.t.

⎧
⎨
⎩

7x1 + 5x2 + 3x3 + 2x4 ≤ 120

3x1 + 5x2 + 10x3 + 15x4 ≤ ξ13

xi ≥ 0, i = 1,2, · · · ,4,

(2.131)

where ξ j( j = 1,2, · · · ,8) are triangular LR fuzzy variables characterized as that in

Theorem. 2.7,

ξ1 = (4,0.5,0.5)LR, ξ2 = (5,0.5,0.5)LR,

ξ3 = (9,0.5,0.5)LR, ξ4 = (11,0.5,0.5)LR,

ξ5 = (1,0.1,0.1)LR, ξ6 = (1,0.1,0.1)LR,

ξ7 = (1,0.1,0.1)LR, ξ8 = (1,0.1,0.1)LR.

We use the chance operator and the expected value operator to deal with the objec-

tive functions and constraints of fuzzy multi-objective model respectively, and here

the decision maker is supposed to be comparatively optimistic, so we adopt the Pos

measure to measure the chance, so we can obtain the following DCM,

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max Pos{ξ1x1 + ξ2x2 + ξ3x3 + ξ4x4 ≥ f̄1}
max Pos{ξ5x1 + ξ6x2 + ξ7x3 + ξ8x4 ≥ f̄2}

s.t.

⎧
⎨
⎩

7x1 + 5x2 + 3x3 + 2x4 ≤ 120

3x1 + 5x2 + 10x3 + 15x4 ≤ 100

xi ≥ 0, i = 1,2, · · · ,5

(2.132)

or ⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max {δ1,δ2}

s.t.

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Pos{ξ1x1 + ξ2x2 + ξ3x3 + ξ4x4 ≥ f̄1} ≥ δ1

Pos{ξ5x1 + ξ6x2 + ξ7x3 + ξ8x4 ≥ f̄2} ≥ δ2

7x1 + 5x2 + 3x3 + 2x4 ≤ 120

3x1 + 5x2 + 10x3 + 15x4 ≤ 100

xi ≥ 0, i = 1,2, · · · ,5.

(2.133)

Since triangular LR fuzzy coefficients exist in the objective functions and a con-

straint, by Theorem 2.14, if the decision maker gives the ideal value of the objective

functions f̄1, f̄2, we have the following equivalent model 2.134,

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max

{
F1 = 4x1+5x2+9x3+11x4− f̄1

0.5x1+0.5x2+0.5x3+0.5x4
,

F2 = x1+x2+x3+x4− f̄2
0.1x1+0.1x2+0.1x3+0.1x4

}

s.t.

⎧
⎨
⎩

7x1 + 5x2 + 3x3 + 2x4 ≤ 120

3x1 + 5x2 + 10x3 + 15x4 ≤ 100

xi ≥ 0, i = 1,2, · · · ,5.

(2.134)
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Then we use the ideal point method to solve, and we first calculate the following

two single objective models (2.135) and (2.136),

⎧
⎪⎪⎨
⎪⎪⎩

max F1 = 4x1+5x2+9x3+11x4− f̄1
0.5x1+0.5x2+0.5x3+0.5x4

s.t.

⎧
⎨
⎩

7x1 + 5x2 + 3x3 + 2x4 ≤ 120

3x1 + 5x2 + 10x3 + 15x4 ≤ 100

xi ≥ 0, i = 1,2, · · · ,5

(2.135)

and ⎧
⎪⎪⎨
⎪⎪⎩

max F2 = x1+x2+x3+x4− f̄2
0.1x1+0.1x2+0.1x3+0.1x4

s.t.

⎧
⎨
⎩

7x1 + 5x2 + 3x3 + 2x4 ≤ 120

3x1 + 5x2 + 10x3 + 15x4 ≤ 100

xi ≥ 0, i = 1,2, · · · ,5.

(2.136)

We set f̄1 = 100, f̄2 = 20 and get the optimal solution as follows respectively:

(x1,x2,x3,x4) = (13.77,0,7.87,0),F1 = 2.394,

(x1,x2,x3,x4) = (0,24,0,0),F2 = 1.667.

Then we get the weights for each objective,

w1 = 2.394/(2.394 + 1.667)= 0.59,w2 = 0.41.

We can construct the model (2.137) according to the ideal point method,

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

max

√
0.59( 4x1+5x2+9x3+11x4− f̄1

0.5x1+0.5x2+0.5x3+0.5x4
)2 + 0.41( x1+x2+x3+x4− f̄2

0.1x1+0.1x2+0.1x3+0.1x4
)2

s.t.

⎧
⎨
⎩

7x1 + 5x2 + 3x3 + 2x4 ≤ 120

3x1 + 5x2 + 10x3 + 15x4 ≤ 100

xi ≥ 0, i = 1,2, · · · ,5.

(2.137)

By solving the above model, we could get a efficient solution of the original model

(2.132) as follows,

(x1,x2,x3,x4) = (13.77,0,7.87,0).

2.5.3 Non-linear Fuzzy DCM and Fuzzy Simulation-Based PSO

with Shrinkage Factor

It is difficult to transform the non-linear fuzzy DCM into it’s equivalent form, so we

introduce the fuzzy simulation 3-based PSO to solve.

2.5.3.1 Fuzzy Simulation 3 for Chance

Suppose that g1,g2, · · · ,gp are real-valued functions, and ξi are fuzzy variables with

membership functions µi, i = 1,2, · · · ,n, respectively. We design a fuzzy simulation

to compute the possibility

L = Pos{g j(ξ )≥ 0, j = 1,2, · · · , p}, (2.138)
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where ξ = (ξ1,ξ2, · · · ,ξn). In practice, we give a lower estimation of the possibility

L, denoted by α . Then we randomly generate u1,u2, · · · ,un from the α-level sets

of ξ1,ξ2, · · · ,ξn, respectively, and denote u = (u1,u2, · · · ,un). If the α-level set is

not easy for a computer to describe, we can give a larger region, for example, a

hypercube containing the α-level set. Certainly, the smaller the region, the more

effective the fuzzy simulation. Now we set

µ = µ1(u1)∧µ2(u2)∧·· ·µn(un).

If g j(u) ≤ 0, j = 1,2, · · · p and L < µ , then we set L = µ . Repeat this process N

times. The value L is regarded as an estimation of the possibility. We now summa-

rize it as follows:

Step 1. Set L = α as a lower estimation.

Step 2. Randomly generate ui from the α-level sets of fuzzy variables ξi, i =
1,2, . . . ,n, respectively, and denote u = (u1,u2, · · · ,un).
Step 3. Set µ = µ1(u1)∧µ2(u2)∧·· ·µn(un).
Step 4. If g j(u)≤ 0 and L < µ , then we set L = µ .

Step 5. Repeat the second to fourth steps N times.

Step 6. Return L.

2.5.3.2 PSO with Shrinkage Factor

Particle swarm optimization (PSO) is one of the newest techniques within the family

of evolutionary optimization algorithms. The algorithm is based on an analogy with

the choreography of the flight of a flock of birds. Due to its fast convergence, PSO

has been advocated to be especially suitable for multiobjective optimization. There

are many variants of the single objective PSO but in most of them the movement of

the particles towards the optimum is governed by equations similar to the following:

vi(t + 1) = wvi(t)+ c1 · r1(Pi(t)−xi(t))+ c2 · r2(Pg(t)−xi(t)), (2.139)

where w is an inertia coefficient that has an important role balancing the global (a

large value of w) and local search (a small value of w), c1 and c2 are constants (usu-

ally c1 = c2 = 2), r1 and r2 are uniform random numbers in [0,1], Pi is the best

position vector of particle i so far, Pg is the best position vector of all particles so far,

ξ (t) is the current position vector of particle i, and vi(t) is the current velocity of

particle i. Mendes et al. [128] suggests an inertia coefficient w of less than 1, while

other authors recommend starting with larger values and decrease them with time,

for example from a value of 1.4 to 0.5. Coello Coello et al. [130] highlighted the

sensitivity of the standard PSO algorithm to the value of w and proposed the intro-

duction of a mutation operator that assures an adequate global search while keeping

a small value of w (suggested 0.4) which favors a refined local search.

Step 1. Give proper parameter setting, e.g. population size N, study factors c1,c2,

part size M and the maximum generation Gen.

Step 2. Initialize all particle, k = 0.
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Step 3. Evaluate x(k).
Step 4. Judge whether the termination criterion is satisfied. If k > Gen, stop, oth-

erwise refresh variables according to the following method: refresh x(k) and v(k)
using the below formula:

{
vi(t + 1) = wvi(t)+ c1 · r1,

(Pi(t)−xi(t))+ c2 · r2(Pg(t)−xi(t)).

2.5.3.3 Numerical Example

Example 2.10. Let us consider a multi-objective programming with fuzzy coeffi-

cients.
⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

maxF1(x,ξ ) = 2ξ 2
1 x1 + 3ξ 2

2 x2− ξ3x3 +
√

ξ 2
4 +(3− ξ5x4)2

maxF2(x,ξ ) = ξ6x1 + ξ7x2 + ξ8x3

s.t.

⎧
⎪⎪⎨
⎪⎪⎩

5x1−3x2
2 + 6

√
x3 + x4 ≤ 80

4x1 + 35x2−4.5x3 ≤ 20

x1 + x2 + x3 + x4 ≤ 18

x1,x2,x3,x4 ≥ 0,

(2.140)

where ξi(i = 1,2, · · · ,8) are fuzzy variables as follows,

ξ1 = (0.4,0.45,0.5), ξ2 = (0.6,0.65,0.7),
ξ3 = (0.7,0.75,0.8), ξ4 = (0.8,1,1.2),
ξ5 = (3.8,4,4.2), ξ6 = (−1.2,−1,−0.5),
ξ7 = (2.5,3,3.5), ξ8 = (0.8,1,1.2).

(2.141)

From the mathematical view, the problem (2.140) is not well defined because of

the uncertain parameters. Then we apply Fuzzy DCM to deal with this uncertain

programming.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max {δ1,δ2}

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ch{2ξ 2
1 x1 + 3ξ 2

2 x2− ξ3x3 +
√

ξ 2
4 +(3− ξ5x4)2 ≥ f̄1}(γ1)≥ δ1,

Ch{ξ6x1 + ξ7x2 + ξ8x3 ≥ f̄2}(γ2)≥ δ2

5x1−3x2
2 + 6

√
x3 + x4 ≤ 80

4x1 + 35x2−4.5x3 ≤ 20

x1 + x2 + x3 + x4 ≤ 18

x1,x2,x3,x4 ≥ 0.

(2.142)

Since there exists non-linear objective functions, we cannot transform it into it’s

crisp equivalent model. In order to solve it, we use the fuzzy simulation based PSO

to deal with it. After running, we get a solution as follows:

x1 = 11.32,x2 = 3.44,x3 = 3.24,x4 = 0;

δ1 = 0.63,δ2 = 0.55.
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2.6 Application of Farm Structure Optimization Problem

If we consider the farm structure optimization problem in section 2.1, the mathe-

matical model as follows.

Constraints include:

(1) balance of arable land; since this farm has 20 hectares of arable land, so the land

for plant production for sale and for fodder consumed in this farm should be no

more than the total arable land;

18

∑
i=1

xi ≤ 20.

(2) two balances for crop succession for spring crops and rape;

−x4− x5 + x9− x11− x13 + x15 + x18 ≥ 0,

x5 + x6 + x11 ≥ 0.

(3) three constraints on the area of group of plants for crops, root crops and winter

crops;

x1 + x2 + x3 + x4 + x5 + x10 + x11 + x12 + x13 + x14 + x15 ≤ 14,

x9 + x10 + x15 ≤ 5,

x1 + x2 + x3 + x10 + x12 ≤ 10.

(4) three balances for manpower for spring, summer and autumnal periods of ex-

tended manpower demand;

ã7,1x1 + ã7,2x2 + · · ·+ ã7,19x19− x24 ≤ b̃7,

ã8,1x1 + ã8,2x2 + · · ·+ ã8,19x19− x25 ≤ b̃8,

ã9,1x1 + ã9,2x2 + · · ·+ ã9,19x19− x26 ≤ b̃9.

(5) three balances for artificial fertilizers for phosphorus, nitrogen and potassium;

160x1 + 140x2 + 120x3 + 120x4 + 120x5 + 180x6 + 20x7

+120x8 + 160x9 + 10x10 + 15x11 + 35x12 + 15x13 + 160x14 + 160x15

+30x16 + 30x17 + 200x18 + 200x19− x20 ≤ 0,

120x1 + 120x2 + 120x3 + 100x4 + 100x5 + 120x6 + 100x7

+120x8 + 120x9 + 120x10 + 100x11 + 120x12 + 100x13 + 120x14

+120x15 + 120x16 + 120x17 + 140x18 + 120x19− x21 ≤ 0,

100x1 + 100x2 + 90x3 + 80x4 + 80x5 + 180x6 + 80x7

+120x8 + 120x9 + 90x10 + 80x11 + 90x12 + 80x13 + 120x14 + 120x15

+100x16 + 100x17 + 120x18 + 100x19− x22 ≤ 0.
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(6) four balances of fodder for green fodder, potatoes, fodder beets and nutritive

fodder;
300x9 + 400x16 + 350x17 + 550x18 + 350x19≥ 3000,

250x14 ≥ 480,

900x15 ≥ 450,

45x10 + 40x11 + 43x12 + 40x13 + x23 ≥ 360.

(7) balance of permanent grassland.

x19 = 4.

The matrix of constraints is presented in Table 2.2, and a definition for imprecise

coefficients is given in Tables 2.3 and 2.4; the imprecise coefficients are treated as

triangular fuzzy numbers.

The following three objectives are used to evaluate the solutions/alternatives,

(1) gross profit:

f1(x) = c̃1x1 + c̃2x2 + · · ·+ c̃9x9− c̃10x10− c̃11x11−·· ·− c̃26x26 +C

where the fuzzy cost coefficients are presented in Table 2.4 and constant C is equal

to (22000,22000,22000).
(2) structure-forming plants area:

f2(x) = 0.5x6 + x7 + x16 + x17.

(3) manpower hire:

f3(x) = x24 + x25 + x26.

It is obvious that the first objective and the constraints 7-9 are imprecise, so we

need to transform them into a crisp to solve it. The simplest way is to transform the

uncertain objective functions into crisp by an expected value operator, as follows,

f1(x) = c̃1x1 + c̃2x2 + · · ·+ c̃9x9− c̃10x10− c̃11x11−·· ·− c̃26x26 + ∑s Tshs

⇒ E[ f1(x)] = E[c̃1x1 + c̃2x2 + · · ·+ c̃9x9− c̃10x10− c̃11x11−·· ·− c̃26x26 + ∑s Tshs]
⇒ E[ f1(x)] = E[c̃1]x1 + E[c̃2]x2 + · · ·+ E[c̃9]x9−E[c̃10]x10−E[c̃11]x11−·· ·
−E[c̃26]x26 + E[∑s Tshs]

⇒ E[ f1(x)] = 500x1 + 400x2 + 385x3 + 350x4 + 405x5 + 565x6 + 500x7 + 1400x8

+605x9−170x10−170x11−170x12−175x13−760x14−300x15−135x16

−145x17−245x18−95x19−0.1x20−0.65x21−0.03x22−12x23−0.75x24

−0.8x25−0.9x26 + 22000.
(2.143)
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Table 2.2 Constraints set

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

x1 1 1 1 ã7,1 ã8,1 ã9,1 160 120 100

x2 1 1 1 ã7,2 ã8,2 ã9,2 140 120 100

x3 1 1 1 ã7,3 ã8,3 ã9,3 120 120 90

x4 1 -1 1 ã7,4 ã8,4 ã9,4 120 100 80

x5 1 -1 1 1 ã7,5 ã8,5 ã9,5 120 100 80

x6 1 1 ã7,6 ã8,6 ã9,6 180 120 180

x7 1 ã7,7 ã8,7 ã9,7 20 100 80

x8 1 ã7,8 ã8,8 ã9,8 120 120 120

x9 1 1 1 ã7,9 ã8,9 ã9,9 160 120 120 300

x10 1 1 1 1 ã7,10 ã8,10 ã9,10 10 120 190 45

x11 1 -1 1 1 ã7,11 ã8,11 ã9,11 15 100 80 40

x12 1 1 1 ã7,12 ã8,12 ã9,12 35 120 90 43

x13 1 -1 1 ã7,13 ã8,13 ã9,13 15 100 80 40

x14 1 1 ã7,14 ã8,14 ã9,14 160 120 120 250

x15 1 1 1 1 ã7,15 ã8,15 ã9,15 160 120 120 900

x16 1 ã7,16 ã8,16 ã9,16 30 120 100 400

x17 1 ã7,17 ã8,17 ã9,17 30 120 100 350

x18 1 1 ã7,18 ã8,18 ã9,18 200 140 120 550

x19 ã7,19 ã8,19 ã9,19 200 120 100 350 1

x20 -1

x21 -1

x22 -1

x23 1

x24 -1

x25 -1

x26 -1

sg. = ≥ ≥ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≥ ≥ ≥ ≥ =

200 0 0 14 5 10 b̃7 b̃8 b̃9 0 0 0 3000480 450 360 4

b̃7=(600,615,630);b̃8=(550,580,610);b̃9=(895,955,1015).

Also we use the expected value operator to deal with the fuzzy constraints,

ã7,1x1 + ã7,2x2 + · · ·+ ã7,19x19− x24 ≤ b̃7

⇒ E[ã7,1x1 + ã7,2x2 + · · ·+ ã7,19x19− x24]≤ E[b̃7]
⇒ E[ã7,1]x1 + E[ã7,2]x2 + · · ·+ E[ã7,19]x19− x24 ≤ E[b̃7]
⇒ 15x1 + 15x2 + 15x3 + 25x4 + 25x5 + 30x6 + 30x7 + 110x8 + 80x9 + 30x10

+25x11 + 15x12 + 25x13 + 110x14 + 80x15 + 30x16 + 30x17 + 25x18

+10x19− x24 ≤ 615.
(2.144)
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Table 2.3 Fuzzy coefficients of constraints

j ã7, j ã8, j ã9, j

1 (14,15,16) (38,40,42) (32,35,38)

2 (14,15,16) (38,40,42) (9,10,11)

3 (14,15,16) (38,40,42) (32,35,38)

4 (22,25,28) (38,40,42) (14,15,16)

5 (22,25,28) (38,40,42) (14,15,16)

6 (27,30,33) (86,90,94) (9,10,11)

7 (27,30,33) (72,75,78) (17,20,23)

8 (107,110,113) (14,15,16) (116,120,124)

9 (76,80,84) (18,20,22) (155,160,165)

10 (27,30,33) (38,40,42) (9,10,11)

11 (23,25,27) (38,40,42) (13,15,17)

12 (14,15,16) (38,40,42) (32,35,38)

13 (22,25,28) (38,40,42) (14,15,16)

14 (105,110,115) (14,15,16) (116,120,124)

15 (78,80,82) (18,20,22) (155,160,165)

16 (28,30,32) (31,34,37) (9,10,11)

17 (28,30,32) (31,34,37) (9,10,11)

18 (23,25,27) (9,10,11) (57,60,63)

19 (9,10,11) (38,40,42) (38,40,42)

Table 2.4 Fuzzy cost coefficients

j c̃ j j c̃ j

1 (480,500,520) 14 (740,760,780)

2 (380,400,420) 15 (280,300,320)

3 (370,385,395) 16 (130,135,140)

4 (330,350,370) 17 (140,145,150)

5 (400,405,410) 18 (240,245,250)

6 (560,565,570) 19 (90,95,100)

7 (470,500,530) 20 (0.99,0.10,0.11)

8 (1350,1400,1450) 21 (0.55,0.65,0.75)

9 (585,605,625) 22 (0.02,0.03,0.04)

10 (160,170,180) 23 (11,12,13)

11 (160,170,180) 24 (0.7,0.75,0.8)

12 (180,170,180) 25 (0.7,0.8,0.9)

13 (165,175,185) 26 (0.8,0.9,1.0)
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And

40x1 + 40x2 + 40x3 + 40x4 + 40x5 + 90x6 + 75x7 + 15x8 + 20x9 + 40x10

+40x11 + 40x12 + 40x13 + 14x14 + 20x15 + 34x16 + 34x17 + 10x18

+40x19− x25 ≤ 580

35x1 + 10x2 + 35x3 + 15x4 + 15x5 + 10x6 + 20x7 + 120x8 + 160x9 + 10x10

+15x11 + 35x12 + 15x13 + 120x14 + 160x15 + 10x16 + 10x17 + 60x18

+40x19− x26 ≤ 955.
(2.145)

Also we could use Pos operator to turn the constraints (4) to chance constraints

(2.146-2.148). For the predetermined confidence level β1,β2,β3, the chance con-

straints are:

Pos
{

ã7,1x1 + ã7,2x2 + · · ·+ ã7,19x19− x24 ≤ b̃7

}
≥ β1, (2.146)

Pos
{

ã8,1x1 + ã8,2x2 + · · ·+ ã8,19x19− x25 ≤ b̃8

}
≥ β2, (2.147)

Pos
{

ã9,1x1 + ã9,2x2 + · · ·+ ã9,19x19− x26 ≤ b̃9

}
≥ β3. (2.148)

According to the CCM, we can transform each Pos-chance constraint into it’s crisp

equivalent constraint:

15x1 +15x2 +15x3 +25x4 +25x5 +30x6 +30x7 +110x8 +80x9 +30x10 +25x11

+15x12 +25x13 +110x14 +80x15 +30x16 +30x17 +25x18 +10x19

−(1−β1)(x1 +x2 +x3 +3x4 +3x5 +3x6 +3x7 +3x8 +4x9 +3x10 +2x11

+x12 +3x13 +5x14 +2x15 +2x16 +2x17 +2x18 +x19)−x24 ≤ 615+15(1−β1),
40x1 +40x2 +40x3 +40x4 +40x5 +90x6 +75x7 +15x8 +20x9 +40x10 +40x11

+40x12 +40x13 +14x14 +20x15 +34x16 +34x17 +10x18 +40x19

−(1−β2)(2x1 +2x2 +2x3 +2x4 +2x5 +4x6 +3x7 +x8 +2x9 +2x10 +2x11

+2x12 +2x13 +x14 +2x15 +3x16 +3x17 +x18 +2x19)−x25 ≤ 580+30(1−β2),
35x1 +10x2 +35x3 +15x4 +15x5 +10x6 +20x7 +120x8 +160x9 +10x10 +15x11

+35x12 +15x13 +120x14 +160x15 +10x16 +10x17 +60x18 +40x19

−(1−β3)(3x1 +x2 +3x3 +x4 +x5 +x6 +3x7 +4x8 +5x9 +x10 +2x11

+3x12 +x13 +4x14 +5x15 +x16 +x17 +3x18 +2x19)−x26 ≤ 955+60(1−β3).
(2.149)

If we adopt the expected value operator and the Pos-constraint method to deal with

the objective functions and the fuzzy constraints, respectively, then we give the crisp

equivalent model as follows:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max E[ f1(x)] = 500x1 +400x2 +385x3 +350x4 +405x5 +565x6 +500x7

+1400x8 +605x9−170x10−170x11−170x12−175x13−760x14−300x15

−135x16−145x17−245x18−95x19−0.1x20−0.65x21−0.03x22−12x23

−0.75x24−0.8x25−0.9x26 +22000

max f2(x) = 0.5x6 +x7 +x16 +x17

min f3(x) = x24 +x25 +x26

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑18
i=1 xi = 20

−x4−x5 +x9−x11−x13 +x15 +x18 ≥ 0

x5 +x6 +x11 ≥ 0

x1 +x2 +x3 +x4 +x5 +x10 +x11 +x12 +x13 +x14 +x15 ≤ 14

x9 +x10 +x15 ≤ 5

x1 +x2 +x3 +x10 +x12 ≤ 10

15x1 +15x2 +15x3 +25x4 +25x5 +30x6 +30x7 +110x8 +80x9 +30x10

+25x11 +15x12 +25x13 +110x14 +80x15 +30x16 +30x17 +25x18

+10x19− (1−β1)(x1 +x2 +x3 +3x4 +3x5 +3x6 +3x7 +3x8 +4x9

+3x10 +2x11 +x12 +3x13 +5x14 +2x15 +2x16 +2x17 +2x18 +x19)
−x24 ≤ 615+15(1−β1)

40x1 +40x2 +40x3 +40x4 +40x5 +90x6 +75x7 +15x8 +20x9 +40x10

+40x11 +40x12 +40x13 +14x14 +20x15 +34x16 +34x17 +10x18

+40x19− (1−β2)(2x1 +2x2 +2x3 +2x4 +2x5 +4x6 +3x7 +x8

+2x9 +2x10 +2x11 +2x12 +2x13 +x14 +2x15 +3x16 +3x17 +x18

+2x19)−x25 ≤ 580+30(1−β2)
35x1 +10x2 +35x3 +15x4 +15x5 +10x6 +20x7 +120x8 +160x9 +10x10

+15x11 +35x12 +15x13 +120x14 +160x15 +10x16 +10x17 +60x18

+40x19− (1−β3)(3x1 +x2 +3x3 +x4 +x5 +x6 +3x7 +4x8

+5x9 +x10 +2x11 +3x12 +x13 +4x14 +5x15 +x16 +x17 +3x18 +2x19)
−x26 ≤ 955+60(1−β3)

160x1 +140x2 +120x3 +120x4 +120x5 +180x6 +20x7

+120x8 +160x9 +10x10 +15x11 +35x12 +15x13 +160x14

+160x15 +30x16 +30x17 +200x18 +200x19−x20 ≤ 0

120x1 +120x2 +120x3 +100x4 +100x5 +120x6 +100x7

+120x8 +120x9 +120x10 +100x11 +120x12 +100x13 +120x14 +120x15

+120x16 +120x17 +140x18 +120x19−x21 ≤ 0

100x1 +100x2 +90x3 +80x4 +80x5 +180x6 +80x7 +120x8 +120x9 +90x10

+80x11 +90x12 +80x13 +120x14 +120x15 +100x16 +100x17 +120x18

+100x19−x22 ≤ 0

300x9 +400x16 +350x17 +550x18 +350x19 ≥ 3000

250x14 ≥ 480

900x15 ≥ 450

45x10 +40x11 +43x12 +40x13 +x23 ≥ 360

x19 = 4.
(2.150)

We set β1 = β2 = β3 = 1, and the weights for each objective functions w1 =
0.7,w2 = 0.2,w3 = 0.3. We use the fuzzy simulation-based PSO to solve the above

model (2.150), and the results are as follows:

f1(x) = 33502,

f2(x) = 43.574,

f3(x) = 2251.2.
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The results for the decision variables are:

x1 → x7

6.3 18 15.1 3.1 14.3 16.8 15.7
x8 → x14

20 11.7 7.2 7.5 19.7 17.7 5.3
x15 → x21

5.3 4.9 3.5 6.7 4 1624.9 1746.6
x22 → x26

3232.8 679.2 289.4 851.2 3095.8

If the decision maker can also change the values of the confidence levels and the

weights for each objective functions, they will get different solutions with different

parameters.

2.7 Multi-objective Decision Making with Fuzzy Relations

In this multi-objective decision making problems, the objectives and constraints in

an imprecise situation assume that they can be represented by fuzzy sets. A decision,

then, may be stated as the confluence of the fuzzy objectives and constraints, and

may be defined by a max-min operator. That is, assume that we are given a fuzzy

objective set F and a fuzzy constraints set C in a space of alternatives X . Then F and

C combine to form decision D which is a fuzzy set resulting from the intersection

of F and C, and corresponding µD = µF ∩µC. This relationship between F,C and D

is depicted in Figure 2.8.

Fig. 2.8 The relationship of fuzzy sets C, F and D

2.7.1 Multi-objective Decision Making with Fuzzy Constraints

For constraints, there are available resources with fuzziness which are characterized

by the membership function over a tolerance range (ambiguous range). The mem-

bership function of the optimal solution can then be constructed by the convolution

of the membership functions of constraints.
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The general model for this multi-objective decision making problem with fuzzy

resources available is formulated as:
⎧
⎨
⎩

max F = [ f1(x), f2(x), · · · , fn(x)]

s.t.

{
gr(x)≤ b̃r, r = 1,2, · · · , p

x ∈ X ,

(2.151)

where b̃r, ∀r are in [br,br + pr] with given tolerance level pr.

If the constraints are linear, we have the following model (2.152),

⎧
⎨
⎩

max F = [ f1(x), f2(x), · · · , fn(x)]

s.t.

{
(Ax)r ≤ b̃r, r = 1,2, · · · , p

x≥ 0.
(2.152)

We may also consider the following fuzzy inequality constraints (2.153),

⎧
⎨
⎩

max F = [ f1(x), f2(x), · · · , fn(x)]

s.t.

{
(Ax)r≤̃br, r = 1,2, · · · , p

x≥ 0,

(2.153)

where ≤̃ is called fuzzy less than or equal to. Assume that tolerance pi for each fuzzy

constraint is known. Then (Ax)r ≤ b̃r will be equivalent to (Ax)r ≤ (br + θ pr), ∀r,

where θ is in [0,1]. If the membership functions of both cases are the same, the

Equations (2.152) and (2.153) will be the same problem[25]. Thus we will consider

both problems as equivalent in this section.

Verdegay[26] first proved that the problems of (2.152) and (2.153) are equiva-

lent to crisp parametric programming problems and we introduce his nonsymmetric

method[27].

For Equation (2.152), let’s consider the membership functions (2.154) of the

constraints:

µr(x) =

⎧
⎨
⎩

1, if (Ax)r < br

1− (Ax)r−br

pr
, if br ≤ (Ax)r ≤ br + pr

0, if (Ax)r > br + pr.

(2.154)

If the membership functions are continuous and monotonic, and trade-off between

those fuzzy constraints are allowed, then Equation (2.152) will be equivalent to:

{
max F = [ f1(x), f2(x), · · · , fn(x)]
s.t. x ∈ Xα ,

(2.155)

where Xα = {xr|µr(x) ≥ α,∀r,x ≥ 0}, for each α ∈ [0,1]. The α-level cut concept

is based on the previous works of Tanaka et al.[275] and Orlovski[29].

The membership functions indicate that:

(1). If (Ax)r < br then the rth constraint is absolutely satisfied, νr(x) = 1;

(2). If (Ax)r ≥ br + pr where pr is the maximum tolerance from br and determined

by the decision maker in any systematic or nonsystematic way, then the ith con-

straint is absolutely violated, νr(x) = 0;
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(3). If (Ax)r ∈ (br,br + pr) then the membership functions are monotonically de-

creasing. That is, the less satisfaction the decision maker feels.

We can then substitute the membership functions of Equation (2.154) into Equa-

tion (2.155) and obtain the following problem (2.156):

⎧
⎨
⎩

max F = [ f1(x), f2(x), · · · , fn(x)]

s.t.

{
(Ax)r≤̃br +(1−α)pr, ∀r

x≥ 0 and α ∈ [0,1],
(2.156)

which is equivalent to a parametric programming, while α = 1−θ . Thus the fuzzy

linear programming problem given by Equations (2.152) and (2.153) can be equiv-

alent to a crisp parametric linear programming problem when some proper forms

of membership functions of the fuzzy constraints are assumed. It is noted that for

each α , we have an optimal solution, so the solution with α grade of membership

id actually fuzzy.

For illustrating this approach, let us consider the following example.

Example 2.11. Let us consider the transportation problem with cost and time objec-

tives and fuzzy supply and fuzzy demand constraints.

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min cx

min tx

s.t.

⎧
⎪⎪⎨
⎪⎪⎩

∑
i∈I

xi j ≥ d̃i, j ∈ J

∑
j∈J

xi j ≤ s̃i, i ∈ I

xi j ≥ 0 ∀i, j.

(2.157)

The membership functions of the fuzzy constraints, µ j(·), j ∈ J, and µi(·), i ∈ I,

are assumed to be continuous and strictly monotonic, respectively. Then it can be

proved that:

∑
i∈I

µ−1
i (α)≥ ∑

j∈J

µ−1
j (α), α ∈ [0,1]. (2.158)

Therefore, the fuzzy transportation problem can be solved by means of the crisp

transportation problem. That is:

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min cx

min tx

s.t.

⎧
⎪⎪⎨
⎪⎪⎩

∑
i∈I

xi j ≥ µ−1
j (α), j ∈ J

∑
j∈J

xi j ≤ µ−1
i (α), i ∈ I

xi j ≥ 0 ∀i, j, α ∈ [0,1].

(2.159)
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In order to get ∑i µ−1
i (α) = ∑ j µ−1

j (α), an n-th dummy destination is introduced.

Thus, the following parametric linear programming problem is obtained:

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min cx

min tx

s.t.

⎧
⎪⎪⎨
⎪⎪⎩

∑
i∈I

xi j = µ−1
j (α), j ∈ J

∑
j∈J

xi j = µ−1
i (α), i ∈ I

xi j ≥ 0 ∀i, j, α ∈ [0,1].

(2.160)

2.7.2 Multi-objective Decision Making with Fuzzy Objectives

For objectives, there are some fuzzy objectives in a multi-objective decision making

problem. The general model for this multi-objective decision making problem with

fuzzy objectives is formulated as:

{
max [ f1(x), f2(x), · · · , fk(x)]
s.t. x ∈ X = {x|gr(x){≥,=,≤}0,r = 1,2, · · · , p}, (2.161)

where fi(x), i ∈ I are the benefit (maximization) objectives, where f j(x), j ∈ J are

the cost (minimization) objectives, and I∪ J = {1,2, · · · ,K}.
Zimmermann[45] first used the max-min operator of Bellman and Zedeh to solve

the multi-objective problems, and consider the following Equation (2.162) as:

⎧
⎨
⎩

Find x

such that:

{
fk(x)≥ f 0

k , ∀k

x ∈ X ,

(2.162)

where f 0
k , ∀k are corresponding goals, and all objective functions are assumed to be

maximized. Here the objective functions of Equation (2.161) are considered as fuzzy

constraints. If the tolerances of fuzzy constraints are given, we could establish their

membership functions µk(x),∀k. Under the concept of min-operator, the feasible

solution set is defined by the interaction of the fuzzy objective set. This feasible

solution set is then characterized by its membership µD(x) which is:

µD(x) = min(µ1(x), · · · ,µk(x)).

Further more, a decision maker makes a decision with a maximum µD value in

the feasible decision set. The chosen solution can then be obtained by solving the

problem of “maximize µD(x).” That is:

{
max [mink µk(x)]
s.t. x ∈ X .

(2.163)
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Now, let α = mink µk(x) be the overall satisfactory level compromise. We obtain

the following equivalent model ():

⎧
⎨
⎩

max α

s.t.

{
α ≤ µk(x), ∀k

x ∈ X .
(2.164)

To establish the membership functions of objective functions, we could first obtain

the payoff table of positive ideal solutions (PIS) as shown in Table. 2.5 and assume

membership functions are linear and non-decreasing between f +
k and f−K , ∀k.

Table 2.5 Payoff table

f1 f2 f3 · · · fk x

max f1 f +
1 f2(x

1) f3(x
1) · · · fk(x

1) x1

max f2 f1(x
2) f +

2 f3(x
2) · · · fk(x

2) x2

· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
max fk f1(x

k) f2(x
k) f3(x

k) · · · f +
k xk

f−1 f−2 f−3 · · · f−k
Note: f−k is the minimum value in each column.

Then the membership functions would be (2.165), for ∀k,

µk(x) =

⎧
⎪⎨
⎪⎩

1, if fk(x) > f +
k

fk(x)− f−K
f +
k − f−k

, if f−k ≤ fk(x)≤ f +
k

0, if fk(x) < f−k .

(2.165)

These membership functions are essentially based on the concept of preference or

satisfaction. It is worth noting that the only feasible solution region of practical rel-

evance includes those elements in the critical area, {x| f−k ≤ fk(x)≤ f +
k ,∀k,and x ∈

X}. Finally we obtain the following problem (2.166):

⎧
⎪⎨
⎪⎩

max α

s.t.

{
µk(x) =

fk(x)− f−K
f +
k − f−k

≥ α

x ∈ X .

(2.166)

However, the membership functions might sometimes be modelled by other types

just as in chapter 1.

Let’s consider the following example to illustrate the approach.

Example 2.12. Let’s consider a trade balance problem. A company manufactures

two products of given capacities. Product 1 yields a profit of $2 per piece in foreign

countries, and product 2 needs imported raw materials of $1 per piece. Two objec-

tives are established:
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(i) maximum improvement of the balance of trade, that is, maximum difference of

exports minus imports;

(ii) profit maximization.

The problem can be formulated as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

max f1(x) =−x1 + 2x2 effect on the balance trade

max f2(x) = 2x1 + x2 profit

s.t.

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−x1 + 3x2 ≤ 21 management

x1 + 3x2 ≤ 27 space

4x1 + 3x2 ≤ 45 material

3x1 + x2 ≤ 21 labor hours

x1,x2 ≥ 0.

(2.167)

To solve this problem, we first obtain the payoff table which is in Table 2.6,

Table 2.6 Payoff table of example 2.12

f1 f2 x1 x2

max f1 14 7 0 7

max f2 -3 21 9 3

The membership functions for these two objectives are then obtained as follows:

µ1(x) =

⎧
⎨
⎩

1, if 14 <−x1 + 2x2
−x1+2x2−(−3)

17 , if −3≤−x1 + 2x2 ≤ 14

0, if − x1 + 2x2 <−3,

(2.168)

µ2(x) =

⎧
⎨
⎩

1, if 21 < 2x1 + x2
2x1+x2−7

14 , if 7≤ 2x1 + x2 ≤ 21

0, if 2x1 + x2 < 7.
(2.169)

Finally, we compute the following linear programming problem:

⎧
⎪⎪⎨
⎪⎪⎩

max α

s.t.

⎧
⎨
⎩

α ≤ −x1+2x2−(−3)
17

α ≤ 2x1+x2−7
14

α ∈ [0,1] and x ∈ X ,

(2.170)

where X is the original feasible capacity. The optimal solution is: x0 = (5.03,7.32)
with optimal effect of the balance of the balance of trade f 0

1 = $17.38 and optimal

profit f 0
2 = $4.58 where the overall satisfactory level is α0 = 0.74.



Chapter 3

Fuzzy Random Multiple Objective Decision
Making

Since the fuzzy set was initialized by Zadeh[9], the possibility theory has been de-

veloped Dubios and Prade[48], and it has been applied in many fields. Later, many

scholars proposed the concept of two-fold uncertain variables, combined fuzzy vari-

ables with fuzzy and random variables. The concept of the fuzzy random variable

was first defined by Kwakernaak [215]. There are further scholars who defined the

concept of the fuzzy random variable, Puri and Ralescu [139], Kruse and Meyer

[214], Wang and Qiao [281], López-Diaz and Gil [228],Colubi[166], Liu [226],

which was widely extended to many fields. Li and Xu [1, 2], Xu and Liu [3] discussed

the properties of fuzzy random variables, and introduced the fuzzy random(Fu-Ra)

multi-objective decision making models and a way to deal with them; some crisp

equivalent models are given and relative algorithms are proposed to solve the prob-

lem. Finally, these models and algorithms are applied to some realistic problems,

such as, portfolio selection problems, inventory problems, and so on.

In this chapter, we first introduce the fuzzy random variable, the arithmetic, and

the properties of the fuzzy random variable. Based on the expected value operator

and chance operator of the fuzzy random variable, the three parts are presented

respectively.

(1) Fuzzy random expected value decision-making model(Fu-Ra EVM). Usu-

ally, decision makers find it difficult to make a decision when they encounter fuzzy

random parameters. A clear criteria must be determined to assist in the decision.

The expected value operator of fuzzy random variables is introduced and the crisp

equivalent model is deduced when the distribution is clear.

(2) Fuzzy random chance constraint decision-making model(Fu-Ra CCM).

Sometimes, decision makers dont strictly require the objective value to be maximal

benefit but only need to obtain the maximum benefit under a predetermined confi-

dence level. Then the chance constrained model is proposed and the crisp equivalent

model is deduced when the distribution is clear.

(3) Fuzzy random dependent chance decision-making model(Fu-Ra DCM).

When decision makers predetermine an objective value and require the maximal

probability that objective values exceed the predetermined one.

J. Xu and X. Zhou: Fuzzy-Like Multiple Objective Decision Making, STUDFUZZ 263, pp. 135–225.
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Finally, an application to portfolio problems is presented to show the decision

making process under a fuzzy random environment.

3.1 Portfolio Selection Problem under a Fuzzy Random
Environment

Portfolio selection problem is that the investors strike a balance between maximiz-

ing returns and minimizing the risks of their investment. In order to deal with this

problem, the Mean-Variance model (3.1) was proposed by Markowitz [46, 47]. In

this model, the return is quantified by the mean, and the risk is characterized by

the variance of a portfolio of securities. After Markowitz’s work, many scholars

proposed different mathematical approaches to develop portfolio theory based on

probability theory. In these portfolio selection models, security returns are still as-

sumed to be random variables, and random uncertainty is considered the sole way

of modeling uncertainty.

⎧
⎪⎪⎨
⎪⎪⎩

min xTVx

s.t.

⎧
⎨
⎩

E(r)Tx≥ R0

∑n
j=1 x j = 1

x j ≥ 0, j = 1,2, · · · ,n
or

⎧
⎪⎪⎨
⎪⎪⎩

max E(r)Tx

s.t.

⎧
⎨
⎩

xTVx≤V0

∑n
i=1 x j = 1

x j ≥ 0, j = 1,2, · · · ,n,

(3.1)

where the future return r is random vector.

In 1952, Roy proposed the safety-first model for the portfolio selection problem.

The decision rule is to minimize the probability that the return of the portfolio is less

than the predetermined ‘disaster level’, then on the basis of the safety-first model,

Kataoka proposed a different form of safety-first model [208]:

⎧
⎪⎪⎨
⎪⎪⎩

max R

s.t.

⎧
⎨
⎩

Pr{∑n
j=1 r jx j ≤ R} ≤ α

∑n
j=1 x j = 1

x j ≥ 0, j = 1,2, · · · ,n,

(3.2)

where the future return r j is random variable, j = 1,2, · · · ,n, α is the probability

confidence level determined by the investor.

In the real world, there are many non-probabilistic factors that affect stock mar-

kets which should not be dealt with using probability approaches. With the intro-

duction of fuzzy set theory and possibility theory [9, 22, 48], several scholars began

to employ these theory to manage portfolios in a fuzzy environment. For exam-

ple, Tanaka et al. [49] and Inuiguchi and Tanino [50] assumed security returns to be

fuzzy variables with possibility distributions and proposed the possibilistic portfolio

selection models respectively, Parra et al. [51] proposed a fuzzy goal programming

approach for portfolio selection, and Zhang and Nie [52] proposed the admissible

efficient portfolio model. More research on fuzzy portfolio selection may be found

in [53, 54, 55, 56, 58] etc. More general reviews of the different portfolio models

are available as [59].
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The present portfolio selection models are based on either probability theory or

fuzzy set theory, therefore only one kind of uncertainty, randomness or fuzziness

is reflected. In fact, randomness and fuzziness are often mixed up together in real

settings which requires taking them into account simultaneously in he portfolio se-

lection process. Random uncertainty is the uncertainty of whether the event will

happen or not, that is, it’s hard to predict whether the event will happen or not,

but the states of the event are clear, it’s external uncertainty; Fuzzy uncertainty is

the uncertainty of the states of that event itself, that is, the problem does not rest

whether with the event will happen or not but rests with the fact that the states of

the event itself aren’t clear. Thus, different people will have different feelings when

they observe the same event, so they could educe different conclusions, so fuzzy

uncertainty is subjective uncertainty.

Let us explain the reasonableness of the state about fuzzy random security re-

turns. We know the basic assumption behind the Markowitz’s mean variance model

is that the situation of the stock market in the future can be correctly reflected by

securities data in the past, that is, the mean and covariance of a portfolio of securi-

ties in the future are similar to the past ones. However, there are so many uncertain

factors that this assumption cannot be guaranteed for the real ever-changing stock

markets, especially for new emerging stock markets without plenty of historical data

such as the stock market in China. Since stock experts possess enough information

and experience about the stock market, a good method is to let them provide their

rough estimation about the future returns of securities, and the certain mean value

could extend to a fuzzy number. In this case, the return rates of securities are fuzzy

random variables, i.e., random variables whose actual values are fuzzy sets. Also,

as Katagiri and Ishii proposed in [206], realistically random factors and fuzzy infor-

mation often influences the security market simultaneously, because it’s difficult for

people to separate the randomness and the fuzziness, the fuzzy random future return

is the assumption of his research.

When we use fuzzy random variables to describe the future return of the secu-

rities, and use the historical data and the advice about the historical returns from

the experts, it is reasonable for people to believe that the fuzzy random portfolio

selection problem is more realistic and proper.

Now, let’s focus on the portfolio selection problem with fuzzy random returns. It

is rational for people to consider that the future return of every security is a fuzzy

variable which is around a value with left and right spreads, but here the middle

value is usually not a certain number, but a random variable, so the future return is a

fuzzy random variable, and in this situation, the portfolio selection problem is under

a fuzzy random environment, see Figure 3.1.

And the general fuzzy random portfolio selection model is proposed as (3.3),

(3.5) and (3.4). ⎧
⎪⎪⎨
⎪⎪⎩

max E(∑n
j=1

˜̄r jx j)

minVar(∑n
j=1

˜̄r jx j)

s.t.

{
∑n

j=1 x j = 1

x j ≥ 0, j = 1,2, · · · ,n,

(3.3)
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Fig. 3.1 Fuzzy random portfolio selection problem

⎧
⎪⎪⎨
⎪⎪⎩

maxR

s.t.

⎧
⎨
⎩

Ch{∑n
j=1

˜̄r jx j ≥ R}(γ)≥ δ

∑n
j=1 x j = 1

x j ≥ 0, j = 1,2, · · · ,n,

(3.4)

⎧
⎨
⎩

maxCh{∑n
j=1

˜̄r jx j ≥ R}(γ)

s.t.

{
∑n

j=1 x j = 1

x j ≥ 0, j = 1,2, · · · ,n,

(3.5)

where ˜̄r j are the fuzzy random future return of security j.

3.2 Fu-Ra Variable

Roughly speaking, a fuzzy random variable (Fu-Ra variable) is a measurable func-

tion from a probability space to a collection of fuzzy variables. For the better under-

standing of this chapter, let us first briefly review some necessary knowledge about

fuzzy random variable.

3.2.1 Definition of Fu-Ra Variable

In order to describe the hybrid uncertainty which consists both of randomness and

fuzziness-fuzzy random uncertainty, Kwakernaak [215] first introduced the concept

of the fuzzy random variable in 1987. Then many scholars defined the fuzzy random

variables from different perspectives, for example, Colubi et al. [166], Kruse and

Meyer [214], López-Diaz and Gil [228], Puri and Ralescu [139], Wang and Qiao

[281], and Liu [226]. Readers can refer to [178] for more history of the development

of the fuzzy random variable.

We consider the fuzzy random variables which defined on the real number set,

and in this situation, the above definitions are equivalent. Here we adopted the defi-

nition proposed by Puri and Ralescu [139].
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In the following, we use R to denote the set of all real numbers, Fc(R) to denote

the set of all fuzzy variables, Kc(R) to denote all of the non-empty bounded close

interval.

Definition 3.1. (Puri and Ralescu [139]) In a given probability space (Ω ,F ,P), a

mapping ξ : Ω → Fc(R) is called a fuzzy random variable in (Ω ,F ,P), if for

∀ α ∈ (0,1], the set-valued function ξα : Ω →Kc(R)

ξα(ω) = (ξ (ω))α = {x|x ∈ R,µξ (ω)(x)≥ α}, ∀ ω ∈Ω ,

is F measurable.

The following Theorem 3.1 gives a sufficient and necessary condition of real number

fuzzy random variables.

Lemma 3.1. [230] If ξ is a fuzzy random variable defined in the probability space

(Ω ,F ,P), then for ω ∈Ω , ∀ α ∈ [0,1], ξα(ω)= [ξ−α (ω),ξ +
α (ω)] is a random inter-

val, that is, ξ−α (ω) and ξ +
α (ω) are real number random variable in the probability

space (Ω ,F ,P).

Example 3.1. Suppose that a boy tosses a coin, if it is tail, he will lost 10RMB, the

membership function could be

µ(x) =
[
1− (x + 10)2

4

]
∨0;

And if it is head, he will win some income which is between 100RMB and

1000RMB, the membership function could be

ν(x) =
[
1− (x−360)2

3802

]
∨0.

So, the income that this boy will get is a fuzzy random variable

ξ (ω) =

{
µ , if ω = tail

ν, if ω = head.

Example 3.2. ∀ ω ∈ Ω , if ξ (ω) is LR fuzzy numbers, then ξ is called LR

fuzzy random variable, denoted by ξ (ω) = (a(ω), l(ω),r(ω))LR , ω ∈ Ω , where

a(ω), l(ω),r(ω) is a random variable defined in the probability space (Ω ,F ,P).
Especially, if ∀ ω ∈ Ω , ξ (ω) is triangular fuzzy variable, then ξ is triangu-

lar fuzzy random variable, denoted by ξ (ω) = (a(ω)− l(ω),a(ω),a(ω)+ r(ω)),
ω ∈Ω . In this particular case, if l(ω),r(ω) are constants, then the triangular fuzzy

random variable ξ could be denoted by ξ (ω) = (a(ω)− l,a(ω),a(ω)+ r).

Definition 3.2. (Li and Xu [1]) If ξ1,ξ2, · · · ,ξm are fuzzy random variables defined

in the probability space (Ω ,F ,P), then ξ = (ξ1,ξ2, · · · ,ξn) is called fuzzy random

vector.
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3.2.2 Expected Value Operator of Fu-Ra Variables

The expected value of fuzzy random variables has been defined as a fuzzy number

in several ways. We introduce the following two kinds of expected value operators

of fuzzy variables by Puri and Ralescu [139] and Liu and Liu [220], respectively.

Puri and Ralescu used the Aumann integral based on the measurable set-

valued functions to define the expected value of fuzzy random variables as fuzzy

numbers[139]. The fuzzy expected value could describe the trend which the fuzzy

random variable closes with the middle value.

Definition 3.3. (Puri and Ralescu [139]) On given probability space (Ω ,F ,P), if

∀ω ∈Ω , α ∈ [0,1], the mappings ω �→ ξ−α (ω) and ω �→ ξ +
α (ω) are integrable, then

ξ is called the integrated bounded fuzzy random variable on the probability space

(Ω ,F ,P).

Definition 3.4. (Puri and Ralescu [139]) Let ξ be a integrated bounded fuzzy ran-

dom variable on the probability space (Ω ,F ,P), the expected value E(ξ ) of ξ is

defined as a only fuzzy set in R, ∀α ∈ (0,1], it satisfies

(E(ξ ))α =

∫

Ω
ξα dP =

{∫

Ω
f (ω)dP(ω) : f ∈ L1(P), f (ω) ∈ ξα(ω) a.s. [P]

}
,

where
∫

Ω ξα dP is the Aumann integral of ξα about P, L1(P) denote all of the inte-

grable function f : Ω → R about the probability measure P.

Lemma 3.2. [144] Let (Ω ,F ,P) be complete probability space, ξ : Ω →Fc(R) is

a integrated bounded fuzzy random variable. Then ∀α ∈ (0,1], the α-set of E(ξ ) is

the compact convex interval as follows,

(E(ξ ))α = [(E(ξ ))−α ,(E(ξ ))+α ] =

[∫

Ω
(ξ (ω))−α dP(ω),

∫

Ω
(ξ (ω))+α dP(ω)

]
.

Lemma 3.3. [144] Let (Ω ,F ,P) be complete probability space, ξ1,ξ2 are inte-

grated bounded fuzzy random variables on (Ω ,F ,P), λ ,γ ∈ R, then

E(λ ξ1 + γξ2) = λ E(ξ1)+ γE(ξ2).

The variance of a fuzzy random variable describes the spread that the fuzzy random

variable spreads from the expected value. The covariance between two fuzzy ran-

dom variables reflects the linear correlation degree between them. In [141], Feng

et al gave the definition of variance and covariance of fuzzy random as crisp val-

ues. Readers can refer to [142] for more general forms about the variance of fuzzy

random variables.

Definition 3.5. (Feng [141]) Let (Ω ,F ,P) be complete probability space, ξ1,ξ2

are square integrable fuzzy random variable on the probability space (Ω ,F ,P), the

covariance of ξ1 and ξ2 is defined by
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Cov(ξ1,ξ2) =
1

2

∫ 1

0

[
Cov((ξ1)

−
α ,(ξ2)

−
α )+Cov((ξ1)

+
α ,(ξ1)

+
α )
]

dα, (3.6)

the variance of ξ1 is defined by

Var(ξ1) = Cov(ξ1,ξ1) =
1

2

∫ 1

0
[Var((ξ1)

−
α )+Var(ξ1)

+
α )]dα. (3.7)

Lemma 3.4. [141, 142] Let (Ω ,F ,P) be complete probability space, ξ1,ξ2 are

square integrable fuzzy random variable on the probability space (Ω ,F ,P), λ ,γ ∈
R, then we have

(1) Var(λ ξ1 + u) = λ 2Var(ξ1);
(2) Var(ξ1 + ξ2) = Var(ξ1)+Var(ξ2)+ 2Cov(ξ1,ξ2);
(3) Cov(λ ξ1 + u,γξ2 + v) = λ γCov(ξ1,ξ2), here u,v are fuzzy numbers, λ γ ≥ 0.

Similar as the definition of the expected value of random variables, Liu and Liu[220]

give the following definition of the expected value of fuzzy random variables.

Definition 3.6. (Liu and Liu [220]) Let ξ be a fuzzy random variable defined on the

probability space (Ω ,F ,P). Then its expected value is defined by

E[ξ ] =

∫ +∞

0
Pr{ω ∈Ω |E[ξ (ω)]≥ r}dr−

∫ 0

−∞
Pr{ω ∈Ω |E[ξ (ω)]≤ r}dr. (3.8)

Definition 3.7. (Liu and Liu [220]) Let ξ be a fuzzy random variable with finite

expected value E[ξ ]. The variance of ξ is

V [ξ ] = E[(ξ −E[ξ ])2].

Remark 3.1. The expected value operator E appears in both sides of the definitions

of E[ξ ]. In fact, the symbol E represents different meanings-it is overloaded. That

is, the overloading allows us to use the same symbol E for different expected value

operators, because we can deduce the meaning from the type of argument.

Remark 3.2. If the fuzzy random variable degenerates to a random variable, then the

expected value operator degenerates to the form

E[ξ ] =

∫ +∞

0
Pr{ξ ≥ r}dr−

∫ 0

−∞
Pr{ξ ≤ r}dr,

which is just the conventional expected value of random variable.

Remark 3.3. If the fuzzy random variable degenerates to a fuzzy variable, then the

expected value operator degenerates to the form

E[ξ ] =
∫ +∞

0
Cr{ξ ≥ r}dr−

∫ 0

−∞
Cr{ξ ≤ r}dr,

which is just the conventional expected value of the fuzzy variable.
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Example 3.3. Assume that ξ is a fuzzy random variable defined as

ξ = (ρ ,ρ + 1,ρ + 2), with ρ ∼ N(0,1).

Then for each ω ∈Ω , we have

E[ξ (ω)] =
1

4
[ρ(ω)+ 2(ρ(ω)+ 1)+ (ρ(ω)+2)]= ρ(ω)+ 1.

Thus E[ξ (ω)] = E[ρ ]+ 1 = 1.

3.2.3 Chance Operator of Fu-Ra Variables

Now let us consider the chance of a fuzzy random event. Recall that the probability

of the random event and the possibility of the fuzzy event are defined as a real

number. However, for a fuzzy random event, the primitive chance is defined as a

function rather than a number.

Since there are three chance measures of the fuzzy variables, we introduce three

kinds of chance of fuzzy random variable, we give the three types of primitive

chance of fuzzy random event as follows.

Definition 3.8. Let ξ = (ξ1,ξ2, · · ·ξn) be a fuzzy random vector defined on

(Ω ,A ,Pr), and f : Rn → R is real-valued continuous function. Then the primi-

tive chance of a fuzzy random event characterized by f (ξ ) ≤ 0 is a function from

(0, 1] to [0, 1], defined as the following,

(1) Pr-Pos chance,

Ch{ f (ξ )≤ 0}(α) = sup
α∈[0,1]

{ω |Pr{ω ∈Ω |Pos
{

f (ξ (ω)) ≤ 0
}
≥ β} ≥ α}. (3.9)

(2) Pr-Nec chance,

Ch{ f (ξ )≤ 0}(α) = sup
α∈[0,1]

{ω |Pr{ω ∈Ω |Nec
{

f (ξ (ω))≤ 0
}
≥ β} ≥ α}.

(3.10)

(3) Pr-Cr chance,

Ch{ f (ξ )≤ 0}(α) = sup
α∈[0,1]

{ω |Pr{ω ∈Ω |Cr
{

f (ξ (ω))≤ 0
}
≥ β} ≥ α}. (3.11)

where α,β ∈ [0,1] are predetermined confidence level.

Remark 3.4. According to the primitive chance of a fuzzy random event character-

ized by f (ξ )≤ 0, we have the equivalent forms respectively

Ch{ f (ξ )≤ 0}(α)≥ β
⇔ Pr{ω ∈Ω |Pos{ f (ξ (ω))≤ 0} ≥ β} ≥ α

or⇔ Pr{ω ∈Ω |Nec{ f (ξ (ω))≤ 0} ≥ β} ≥ α
or⇔ Pr{ω ∈Ω |Cr{ f (ξ (ω))≤ 0} ≥ β} ≥ α,



3.2 Fu-Ra Variable 143

Remark 3.5. The primitive chance of a fuzzy random event characterized by f (ξ )≤
0 defined as (3.8) have the equivalent forms respectively.

Ch{ f (ξ )≤ 0}(α) = sup
Pos{A}≥α

inf
ω∈A

Pr{ f (ξ (ω))≤ 0}, (3.12)

Ch{ f (ξ )≤ 0}(α) = sup
Nec{A}≥α

inf
ω∈A

Pr{ f (ξ (ω))≤ 0}, (3.13)

Ch{ f (ξ )≤ 0}(α) = sup
Cr{A}≥α

inf
ω∈A

Pr{ f (ξ (ω))≤ 0}. (3.14)

Remark 3.6. The primitive chance represents that the fuzzy random event holds with

possibility Ch{ f j(ξ )≤ 0, j = 1,2, · · · ,m}(α) at probability α .

Remark 3.7. It is obvious that Ch{ f j(ξ ) ≤ 0, j = 1,2, · · · ,m}(α) is a decreasing

function of α (see Figure 3.2).

Fig. 3.2 Primitive chance curve Ch{ f j(ξ )≤ 0, j = 1,2, · · · ,m}

Remark 3.8. If the fuzzy random vector ξ degenerates to a random vector, then the

chance Ch{ f j(ξ )≤ 0, j = 1,2, · · · ,m}(α) takes values either 0 or 1. That is,

Ch{ f j(ξ )≤ 0, j = 1,2, · · · ,m}(α) =

{
1, Pr{ f j(ξ )≤ 0, j = 1,2, · · · ,m} ≥ α.
0, otherwise.

Remark 3.9. If the fuzzy random vector ξ degenerates to a fuzzy vector, then the

chance Ch{ f j(ξ ) ≤ 0, j = 1,2, · · · ,m}(α) (with (α) > 0) is exactly the possibility

of the event. That is,

Ch{ f j(ξ )≤ 0, j = 1,2, · · · ,m}(α) = Pos{ f j(ξ )≤ 0, j = 1,2, · · · ,m}.
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3.3 Fu-Ra EVM

In order to obtain the decision with optimizing the expected objective values subject

to expected constraints, we may employ the following Fu-Ra EVM.

3.3.1 General Model for Fu-Ra EVM

Consider the following multi-objective programming problem with Fu-Ra

coefficients ⎧
⎨
⎩

max [ f1(x,ξ ), f2(x,ξ ), · · · , fm(x,ξ )]

s.t.

{
gr(x,ξ )≤ 0,r = 1,2, · · · , p

x ∈ X ,

(3.15)

where x is a n-dimensional decision vector, ξ = (ξ1,ξ2, · · · ,ξn) is a Fu-Ra vector,

fi(x,ξ ) are objective functions, i = 1,2, · · · ,m. Because of the existence of Fu-Ra

vector ξ , problem (3.16) is not well-defined. That is, the meaning of maximizing

fi(x,ξ ), i = 1,2, · · · ,m is not clear and constraints gr(x,ξ ) ≤ 0,r = 1,2, · · · , p do

not define a deterministic feasible set. To deal with the fuzzy random events ξ ,

Fu-Ra EVM are brought forward.

Definition 3.9. If x is an efficient solution of problem (3.16), then it is called a fuzzy

random efficient solution.

We can also formulate a fuzzy random decision system as a fuzzy random goal

programming model according to the priority structure and target levels set by the

decision maker:

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
l

∑
j=1

Pj

m

∑
i=1

(ui jd
+
i + vi jd

−
i )

s.t.

⎧
⎨
⎩

fi(x,ξ )+ d−i −d+
i = bi, i = 1,2, · · · ,m

gr(x,ξ )≤ 0, r = 1,2, · · · , p

x ∈ X ,

(3.16)

where Pj is the preemptive priority factor which expresses the relative importance

of various goals, Pj ≫ Pj+1, for all j, ui j is the weighting factor corresponding to

positive deviation for goal i with priority j assigned, vi j is the weighting factor

corresponding to negative deviation for goal i with priority j assigned, d+
i is the

positive deviation from the target of goal i, defined as

d+
i = [ fi(x,ξ )−bi]∨0,

d−i is the negative deviation from the target of goal i, defined as

d−i = [bi− fi(x,ξ )]∨0, (3.17)

fi is a function in goal constraints, gr is a function in real constraints, bi is the target

value according to goal i, l is the number of priorities, m is the number of goal

constraints, and p is the number of real constraints.
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Based on the definition of the expected value of fuzzy random events fi and

g j, the maximum expected value multi-objective decision making model (EVM) is

proposed as follows,

⎧
⎨
⎩

max [E[ f1(x,ξ )], f2(x,ξ ), · · · , fm(x,ξ )]]

s.t.

{
E[gr(x,ξ )]≤ 0,r = 1,2, · · · , p

x ∈ X ,

(3.18)

where x is n-dimensional decision vector and ξ is n-dimensional Fu-Ra variable.

Definition 3.10. If x∗ is an efficient solution of problem (3.18), then it is called as a

fuzzy random expected efficient solution.

Clearly, the problem (3.18) is multi-objective with crisp parameters. Then we can

convert it into a single-objective programming by traditional weight sum method

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

max
m

∑
i=1

wiE[ fi(x,ξ )]

s.t.

⎧
⎨
⎩

E[gr(x,ξ )]≤ 0, r = 1,2, · · · , p

w1 + w2 + · · ·+ wm = 1

x ∈ X .

(3.19)

Theorem 3.1. Problem (3.19) is equivalent to problem (3.18), i.e., the efficient so-

lution of problem (3.18) is the optimal solution of problem (3.19) and the optimal

solution of problem (3.19) is the efficient solution of problem (3.18).

Proof. Apparently, the efficient solution of problem (3.18) is the optimal solution

of problem (3.19). Let ’s consider whether the optimal solution of problem (3.19) is

the efficient solution of problem (3.18).

Suppose x∗ is an optimal solution of problem (3.16). If x∗ is not an efficient solu-

tion of problem (3.18), then there exists x0 such that E[ fi(x0,ξ )]≥ E[ fi(x
∗
,ξ )](i =

1,2, · · · ,m), and there at least exists a k such that E[ fk(x0,ξ )] > E[ fk(x
∗,ξ )]. Then,

m

∑
i=1

wiE[ fi(x0,ξ )] >
m

∑
i=1

wiE[ fi(x
∗
,ξ )].

This conflicts with the assumption that x∗ is an optimal solution to problem (3.19).

This completes the proof. ⊓⊔

Theorem 3.2. Let ξ = (ξ1,ξ2, · · · ,ξn) be a Fu-Ra vector on the probability space

(Ω ,F ,P), and fi and gr : A n → A be convex continuous functions with respect

to x, i = 1,2, · · · ,m;r = 1,2, · · · , p. Then the expected value programming problem

(3.19) is a convex programming.

Proof. Let x1 and x2 be two feasible solutions. Because gr(x,ξ ) is a convex contin-

uous function with respect to x, then

gr(ρx1 +(1−ρ)x2,ξ )≤ ρgr(x1,ξ )+ (1−ρ)gr(x2,ξ ),
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where 0≤ ρ ≤ 1, r = 1,2, · · · , p. We can have

E[gr(ρx1 +(1−ρ)x2,ξ )]≤ E[ρgr(x1,ξ )+ (1−ρ)gr(x2,ξ )].

Because for any ω ∈Ω , ξ (ω) is a fuzzy variable. Then by the linearity of expected

value of fuzzy variable, we have

E[gr(x1,ξ (ω))+(1−ρ)gr(x2,ξ (ω))]=ρE[gr(x1,ξ (ω))]+(1−ρ)E[gr(x2,ξ (ω))].

Following the linearity of expected value operator of fuzzy variable, we can obtain

E[ρgr(x1,ξ )+ (1−ρ)gr(x2,ξ )]
= E[ρE[gr(x1,ξ (ω))]+ (1−ρ)E[gr(x2,ξ (ω)]]
= ρE[E[gr(x1,ξ (ω))]]+ 1−ρ)E[E[gr(x2,ξ (ω))]]
= E[gr(x1,ξ )]+ (1−ρ)E[gr(x2,ξ )].

(3.20)

Then E[gr(ρx1 + (1− ρ)x2,ξ )] ≤ ρE[gr(x1,ξ )] + (1− ρ)E[gr(x2,ξ )] ≤ 0. This

means that ρx1 +(1−ρ)x2 is also a feasible solution. Then X(x ∈ X) is a convex

feasible set.

For every i, fi(x,ξ ) is a convex continuous function with respect to x, it follows

that

fi(ρx1 +(1−ρ)x2,ξ )≤ ρ fi(x1,ξ )+ (1−ρ) fi(x2,ξ ),

then

E[ fi(ρx1 +(1−ρ)x2,ξ )]≤ ρE[ fi(x1,ξ )]+ (1−ρ)E[ fi(x2,ξ )],

then

m

∑
i=1

wiE[ fi(ρx1 +(1−ρ)x2,ξ )]≤ ρ
m

∑
i=1

wiE[ f j(x1,ξ )]+ (1−ρ)
r

∑
i=1

wiE[ f j(x2,ξ )].

This means function
m

∑
i=1

wiE[ fi(x,ξ )] is convex. Above all, we can conclude that the

expected value programming problem (3.19) is convex programming. ⊓⊔

This guarantees that problem (3.19) has at least one feasible solution. Then we can

also obtain the fuzzy random expected value goal of the programming model as

follows: ⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

min
m

∑
i=1

Pi(uid
+
i + vid

−
i )+

m

∑
r=1

Pr(urd+
r + vrd

−
r )

s.t.

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

E[ fi(x,ξ )]+ d−i −d+
i = qi i = 1,2, · · · ,m

E[gr(x,ξ )]+ d−r −d+
r = 0, r = 1,2, · · · , p

x ∈ X

d−i ,d+
i ,d−r ,d+

r ≥ 0

ui,vi,ur,vr = 0 or 1,

(3.21)

where Pi,Pr are the priority coefficients that express the importance of goals.



3.3 Fu-Ra EVM 147

Because of the introduction of the expected value operator, the model (3.18) is

crisp, and we can use the regular way of solving the multi-objective model to deal

with the Fu-Ra EVM.

3.3.2 Linear Fu-Ra EVM and Fuzzy Satisfied Method

In this section, we focus on the linear Fu-Ra EVM, we give the crisp equivalent

model, and the interactive method which will be used to solve the crisp multi-

objective model. Then a numerical example is given to illustrate the equivalent

model and the solving method.

3.3.2.1 Crisp Equivalent Model

In order to solve the multi-objective decision making problem (3.18), we must com-

pute the crisp expected value of ξ . However, as we know, this process is usually

hard work most of the time. In this section, we will consider a special case-linear

Fu-Ra EVM and present their results.

⎧
⎨
⎩

max
[
E[ ˜̄cT

1 x],E[ ˜̄cT
2 x], · · · ,E[ ˜̄cT

mx]
]

s.t.

{
E[ ˜̄aT

r x]≤ E[ ˜̄br],r = 1,2, · · · , p

x≥ 0,

(3.22)

where ˜̄ci = ( ˜̄ci1, ˜̄ci1, · · · , ˜̄cin)
T , ˜̄ar = ( ˜̄ar1, ˜̄ar1, · · · , ˜̄arn)

T are Fu-Ra vectors, ˜̄br are Fu-

Ra variables, i = 1,2, · · · ,m,r = 1,2, · · · , p. If these Fu-Ra vectors, as well as Fu-Ra

variables have special forms, we have the following theorem.

Theorem 3.3. If Fu-Ra variable ˜̄ci j(ω) = (c̄i j1(ω), c̄i j2(ω), c̄i j3(ω), c̄i j4(ω)) with

c̄i jt(ω) ∼N (µi jt ,δ 2
i jt), i = 1,2, · · · ,m, j = 1,2, · · · ,n,t = 1,2,3,4 are trapezoidal

Fu-Ra variables, then the objective functions

E[ ˜̄cT
1 x], · · · ,E[ ˜̄cT

mx]

are equivalent to

1

4

4

∑
t=1

n

∑
j=1

∑µ1 jtx j, · · · ,
1

4

4

∑
t=1

n

∑
j=1

∑µm jtx j.

Proof. For any i ∈ 1,2, · · · ,m, ω ∈ Ω , ˜̄ci j(ω) = (c̄i j1(ω), c̄i j2(ω), c̄i j3(ω), c̄i j4(ω))
is a trapezoidal fuzzy variable. It follows from Lemma 3.3 that

E[
n

∑
j=1

˜̄ci j(ω)x j] =
1

4

n

∑
j=1

(c̄i j1(ω)+ c̄i j2(ω)+ c̄i j3(ω)+ c̄i j4(ω))x j.
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It follows from Definition (3.6) that

E[ ˜̄cT
i x] = E[E[ ˜̄cT (ω)ix]]

= E[ 1
4

n

∑
j=1

(c̄i j1(ω)+ c̄i j2(ω)+ c̄i j3(ω)+ c̄i j4(ω))x j ]

= 1
4 (

n

∑
j=1

E[c̄i j1(ω)]x j +
n

∑
j=1

E[c̄i j2(ω)]x j +
n

∑
j=1

E[c̄i j3(ω)]x j +
n

∑
j=1

E[c̄i j4(ω)]x j)

= 1
4 (

n

∑
j=1

µi j1x j +
n

∑
j=1

µi j2x j +
n

∑
j=1

µi j3x j +
n

∑
j=1

µi j4x j)

= 1
4

4

∑
t=1

n

∑
j=1

∑ µi jt x j.

Then this theorem is proved. ⊓⊔

Theorem 3.4. If Fu-Ra variable ˜̄ar j,
˜̄br are trapezoidal Fu-Ra variables and defined

as follows,

˜̄ar j(ω) = (ār j1(ω), c̄r j2(ω), ār j3(ω), ār j4(ω)) with āi jt(ω)∼N (µi jt ,δ 2
i jt),

˜̄br(ω) = (b̄r1(ω), b̄r2(ω), b̄r3(ω), c̄r4(ω)) with b̄rt(ω)∼N (µrt ,δ
2
rt),

for r = 1,2, · · · , p,t = 1,2,3,4, then the constraints

E[ ˜̄aT
r x]≤ E[ ˜̄br],r = 1,2, · · · , p

is equivalent to
4

∑
t=1

n

∑
j=1

µr jtx j ≤
4

∑
t=1

µrt ,r = 1,2, · · · , p.

Proof. Similarly to the proof of Theorem 3.3, for any r ∈ 1,2, · · · , p, we have

E[ ˜̄aT
r x] =

4

∑
t=1

n

∑
j=1

µr jtx j

and

E[ ˜̄bT
r ] =

4

∑
t=1

µrt .

Then this theorem is proved. ⊓⊔

According to Theorem 3.3-3.4, we can get the crisp equivalent model for Model

(3.22) as follows:

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max

[
1
4

4

∑
t=1

n

∑
j=1

∑ µ1 jtx j,
1
4

4

∑
t=1

n

∑
j=1

∑ µ2 jtx j, · · · , 1
4

4

∑
t=1

n

∑
j=1

∑ µm jtx j

]

s.t.

⎧
⎨
⎩

4

∑
t=1

n

∑
j=1

µr jtx j ≤
4

∑
t=1

µrt ,r = 1,2, · · · , p

x j ≥ 0, j = 1,2, · · · ,n.

(3.23)
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Here we give numerical examples to show the effectiveness of the algorithms we

proposed for the fuzzy random expected value multi-objective decision making

model problem.

3.3.2.2 Fuzzy Satisfied Method

In this subsection, we introduce the interactive fuzzy satisfied method proposed by

Sakawa [257]. We consider the following multi-objective decision-making model,

{
max[Hi(x), i = 1,2, · · · ,m]
s.t. x ∈ X .

(3.24)

The objective function of model (3.24) is to maximize Hi(x), so for each objective

we introduce the fuzzy objective “Hi(x) approximately more than some value”, and

the membership function is

µi(Hi(x)) =

⎧
⎪⎨
⎪⎩

1, Hi(x) > H1
i

Hi(x)−H0
i

H1
i −H0

i

, H0
i ≤ Hi(x)≤ H1

i

0, Hi(x) < H0
i .

(3.25)

In equation (3.25), the membership are 1 and 0 respectively when value of Hi(x) are

H1
i and H0

i ,

H1
i = max

x∈X
Hi(x), H0

i = min
x∈X

Hi(x), i = 1,2, · · · ,m. (3.26)

For model minx∈X Hi(x), its optimal solution should be get at the boundary of the

convex set X . If there exists no solution of maxx∈X Hi(x) or minx∈X Hi(x), or H1
i =

∞, H0
i =−∞, the decision maker may set the value of H1

i , H0
i subjectively.

Hence, the model (3.24) could be transformed into the following form:

{
max [µ1(H1(x)),µ2(H2(x)), · · · ,µm(Hm(x))]
s.t. x ∈ X .

(3.27)

For each objective function µi(Hi(x)), let the decision maker give the reference

value of membership function µ̄i to reflect the ideal value of membership function.

Through solving the minmax problem (3.28) can get a efficient solution of model

(3.24): {
minmaxi=1,2,··· ,m{µ̄i− µi(Hi(x))}
s.t. x ∈ X .

(3.28)

By introducing the assistant variable λ , model (3.28) is equivalent to

⎧
⎨
⎩

min λ

s.t.

{
µ̄i− µi(Hi(x))≤ λ , i = 1,2, · · · ,m
0≤ λ ≤ 1, x ∈ X .

(3.29)
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The following Theorem 3.5 present the relationship between the optimal solution of

model (3.29) and the efficient model (3.24).

Theorem 3.5. (i) For given µ̄i, i = 1,2, · · · ,m, if x∗ ∈ X is the single optimal

solution of model (3.29), then x∗ is the efficient solution of model (3.24).

(ii) If x∗ is the efficient solution of model (3.24), and for any i, we have 0 <

µi(Hi(x
∗)) < 1, then exists µ̄i, i = 1,2, · · · ,m make x∗ the optimal solution of model

(3.29).

Proof. (i) Suppose that x∗ is the single optimal solution of model (3.29) but not the

efficient solution of model (3.24), then there exists x̄ ∈ X , such that ∀i = 1,2, · · · ,m,

we have Hi(x̄) ≥ Hi(x
∗), and at least there exists some i0, Hi0(x̄) > Hi0(x

∗) holds.

Since µi(Hi(x)) is monotone increasing function, then we have

µi(Hi(x))≥ µi(Hi(x
∗)), µi0(Hi(x)) > µi0(Hi(x

∗)), ∀i = 1,2, · · · ,m.

So ,∀i = 1,2, · · · ,m,

µ̄i− µi(Hi(x))≤ µ̄i− µi(Hi(x
∗)), µ̄i0 − µi0(Hi(x)) < µ̄i0 − µi0(Hi(x

∗)).

Because

λ ∗ ≥ max
i=1,2,··· ,m

{µ̄i− µi(Hi(x
∗))} ≥ max

i=1,2,··· ,m
{µ̄i− µi(Hi(x̄))} = λ̄ .

It is conflict with the assumption, then x∗ is the efficient solution of model (3.24).

(ii) If for at least one ε̄i ≥ 0 and x̄ is not the efficient solution of model (3.24), then

there exists x ∈ X such that for any i = 1,2, · · · ,m, µi(Hi(x))≥ µi(Hi(x̄)), and there

exists some i0 such that µi0(Hi0(x)) ≥ µi0(Hi0(x̄)). So there exists ε ′ ≥ 0 such that

µi(Hi(x))+ ε ′i = µi(Hi(x̄)), i = 1,2, · · · ,m. It is conflict with the optimization.

The proof is completed. ⊓⊔

According to Theorem 3.5, the optimal solution of model (3.29) is an efficient solu-

tion of model (3.27), thereby, it is a fuzzy random efficient solution of model (3.24).

In a word, we can get a satisfactory solution of model (4.41) for decision maker

by employing the interactive fuzzy satisfied method. The steps are as follows:

Step 1. The decision maker set the reference value µ̄i, i = 1,2, · · · ,m of membership

function.

Step 2. Solve the model (3.29) and get the optimal solution x∗, and obtain a efficient

solution of model (3.24).

Step 3. If the decision make is satisfied with the µi(Hi(x
∗)), then stops; Otherwise,

the decision maker reset the reference value µ̄i of membership function, then turn to

step 2.
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3.3.2.3 Numerical Example

We will use the interactive fuzzy satisfied method to solve the crisp equivalent model

of linear Fa-Ra EVM.

Example 3.4. Let us consider the following problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max

[
E[

6

∑
j=1

ξ jx j],E[
12

∑
j=7

ξ jx j]

]

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

E[10ξ1x1 + 8ξ2x2 + 6ξ3x3 + 4ξ4x4 + 2ξ5x5 + ξ6x6]≤ E[100ξ6]
E[9ξ7x1 + 7ξ8x2 + 5ξ9x3 + 3ξ10x4 + ξ11x5 + 2ξ12x6]≤ E[120ξ12]
x1 + x2 + x3 + x4 + x5 + x6 ≤ 50

x1 + x2 + x3 + x4 + x5 + x6 ≥ 30

2x1 + 3x2 + 4x3 + 5x4 + 6x5 + 7x6 ≤ 150

11x1 + 9x2 + 7x3 + 5x4 + 3x5 + x6 ≥ 100

x j ≥ 0, i = 1,2,3,4,5,6,

(3.30)

where ξ j( j = 1,2, · · · ,12) are fuzzy random variable characterized as

ξ1 = (ρ1−3,ρ1−1,ρ1 + 1,ρ1 + 3), with ρ1 ∼N (5,5),
ξ2 = (ρ2−3,ρ2−1,ρ2 + 1,ρ2 + 3), with ρ2 ∼N (8,6),
ξ3 = (ρ3−3,ρ3−1,ρ3 + 1,ρ3 + 3), with ρ3 ∼N (12,5),
ξ4 = (ρ4−3,ρ4−1,ρ4 + 1,ρ4 + 3), with ρ4 ∼N (18,6),
ξ5 = (ρ5−3,ρ5−1,ρ5 + 1,ρ5 + 3), with ρ5 ∼N (15,2),
ξ6 = (ρ6−3,ρ6−1,ρ6 + 1,ρ6 + 3), with ρ6 ∼N (28,3),
ξ7 = (ρ7−3,ρ7−1,ρ7 + 1,ρ7 + 3), with ρ7 ∼N (20,4),
ξ8 = (ρ8−3,ρ8−1,ρ8 + 1,ρ8 + 3), with ρ8 ∼N (15,6),
ξ9 = (ρ9−3,ρ9−1,ρ9 + 1,ρ9 + 3), with ρ9 ∼N (25,2),
ξ10 = (ρ10−3,ρ10−1,ρ10 + 1,ρ10 + 3), with ρ10 ∼N (8,1),
ξ11 = (ρ11−3,ρ11−1,ρ11 + 1,ρ11 + 3), with ρ11 ∼N (10,2),
ξ12 = (ρ12−3,ρ12−1,ρ12 + 1,ρ12 + 3), with ρ12 ∼N (30,6).

It follows from 3.4 that the problem is equivalent to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max F1(x) = 5x1 + 8x2 + 12x3 + 18x4 + 15x5 + 28x6

max F2(x) = 20x1 + 15x2 + 25x3 + 8x4 + 10x5 + 30x6

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

50x1 + 642x2 + 72x3 + 72x4 + 30x5 + 28x6 ≤ 2800

180x1 + 105x2 + 125x3 + 24x4 + 10x5 + 60x6 ≤ 3600

x1 + x2 + x3 + x4 + x5 + x6 ≤ 50

x1 + x2 + x3 + x4 + x5 + x6 ≥ 30

2x1 + 3x2 + 4x3 + 5x4 + 6x5 + 7x6 ≤ 150

11x1 + 9x2 + 7x3 + 5x4 + 3x5 + x6 ≥ 100

x j ≥ 0, i = 1,2,3,4,5,6.

(3.31)
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F0
i ,F1

i (i = 1,2) are calculated as follows

F0
1 = 222, F1

1 = 564, F0
2 = 240, F1

2 = 843.3.

By the model , we have that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min λ

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5x1 + 8x2 + 12x3 + 18x4 + 15x5 + 28x6 ≥ 222 + 342(µ̄1−λ )
20x1 + 15x2 + 25x3 + 8x4 + 10x5 + 30x6 ≥ 240 + 603.3(µ̄2−λ )
50x1 + 642x2 + 72x3 + 72x4 + 30x5 + 28x6 ≤ 2800

180x1 + 105x2 + 125x3 + 24x4 + 10x5 + 60x6 ≤ 3600

x1 + x2 + x3 + x4 + x5 + x6 ≤ 50

x1 + x2 + x3 + x4 + x5 + x6 ≥ 30

2x1 + 3x2 + 4x3 + 5x4 + 6x5 + 7x6 ≤ 150

11x1 + 9x2 + 7x3 + 5x4 + 3x5 + x6 ≥ 100

x j ≥ 0, i = 1,2,3,4,5,6.

(3.32)

For the initial reference membership 1, each membership function value and the

solution x as well as the objective function Fi(x) are obtained (see the first row

in Table 3.1). If the decision maker wishes to increase F1(x) by sacrificing F2(x),
then the membership value (µ̄1, µ̄2) needs to be updated, such as (1,0.98). Or else

(µ̄1, µ̄2) needs to be updated, such as (0.98,1).The results are listed in the second

row. Suppose that the decision maker is satisfied with the solution when the proba-

bility is (1,0.90). Then the interactive process is stopped and the satisfactory solution

is x∗ = (12.18,0,0,0,0,17.95) and (F∗1 ,F∗2 ) = (563.50,782.10).
Moreover the decision maker can modify F0

i ,F1
i (i = 1,2) and build a new refer-

ence membership function to obtain his or her satisfactory solution.

Table 3.1 Results obtained from interactive process

µ̄1 µ̄2 x = (x1,x2,x3,x4,x5,x6) λ F1(x) F2(x)

1 1 (11.59,0,4.7,0,0,15.43) 0.051 546.39 812.20

1 0.98 (12.79,0,2.55,0,0,16.32) 0.037 551.51 809.15

1 0.96 (171.11,0,0,0,0,208.17,80,0,0,0,0,191.83) 0.413 4454.37 5036.60

1 0.94 (171.11,0,0,0,0,212.79,80,0,0,0,0,187.21) 0.403 4519.05 4944.20

1 0.92 (171.11,0,0,0,0,217.42,80,0,0,0,0,182.58) 0.393 4583.87 4851.60

1 0.90 (171.11,0,0,0,0,222.04,80,0,0,0,0,177.96) 0.383 4508.55 4759.20

0.98 1 (12.79,0,6.86,0,0,14.54) 0.046 541.39 815.50

0.96 1 (13.99,0,0.39,0,0,17.20) 0.022 556.45 805.85

0.94 1 (13.62,0,0,0,0,17.54) 0.014 559.22 798.60

0.92 1 (12.90,0,0,0,0,17.74) 0.007 561.22 790.20

0.90 1 (12.18,0,0,0,0,17.95) 0.002 563.50 782.10



3.3 Fu-Ra EVM 153

3.3.3 Non-linear Fu-Ra EVM and Fu-Ra Simulation-Based GA

For the non-linear Fu-Ra EVM, it is usually difficult to transform them into their

equivalent forms, and it’s is unnecessary to do this. In this case, simulation and an

intelligent algorithm are the best way. So we introduce the Fu-Ra simulation-based

weighted-sum GA first, and then we give a numerical example.

3.3.3.1 Fu-Ra Simulation 1 for Expected Value

In Fu-Ra EVM (3.18), one problem is to calculate the expected value E[ f (ξ )]. Note

that, for each ω ∈ Ω , we may calculate the expected value E[ f (ξ (ω))] by fuzzy

simulation. Since E[ f (ξ )] is essentially the expected value of stochastic variable

E[ f (ξ (ω))], we may combine stochastic simulation and fuzzy simulation to produce

a fuzzy random simulation.

Firstly, we sample ω1,ω2, · · · ,ωN from Ω according to Pr. For each ωn(n =
1,2, · · · ,N), ξ (ωn) are all fuzzy variables, and f (ξ (ωn)) are also fuzzy variables.

Then we can apply the fuzzy simulation 1 to get their expected values E[ f (ξ (ωn))],
respectively.

In order to calculate the expected value E[ f (ξ )], we use the strong law of large

numbers:
N

∑
n=1

E[ f (ξ (ωn))]

N
→ E[ f (ξ )], (3.33)

as N → ∞. Therefore, the value E[ f (ξ )] can be estimated by 1
N

N

∑
k=1

E[ f (ξ (ωn))]

provided that N is sufficiently large.

The procedure is as follows,

Step 1. Set E = 0.

Step 2. Sample ω from Ω according to the probability measure Pr.

Step 3. E ← e + E[ f (ξ (ω))], where E[ f (ξ (ω))] may be calculated by the fuzzy

simulation.

Step 4. Repeat the second to fourth steps N times.

Step 5. E[ f (ξ )] = e/N.

Example 3.5. We employ the fuzzy random simulation to calculate the expected

value of ξ1ξ2, where ξ1 and ξ2 are Fu-Ra variables defined as

ξ1 = (ρ1,ρ1 + 1,ρ1 + 2), with ρ1 ∼ EXP(1),
ξ2 = (ρ2,ρ2 + 1,ρ2 + 2), with ρ2 ∼ EXP(2).

After a run of the Fu-Ra simulation 1 with 5000 cycles shows that

E[ξ1ξ2] = 6.34.
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3.3.3.2 GA

Genetic algorithm (GA) is a stochastic search method for optimization problems

based on the mechanics of natural selection and natural genetics-survival of the

fittest. GAs have demonstrated considerable success in providing good solutions to

many complex optimization problems and received more and more attentions dur-

ing the past three decades. When the objective functions to be optimized in the

optimization problems are multi-modal or the search spaces are particularly irreg-

ular, algorithms need to be highly robust in order to avoid getting stuck at a local

optimal solution. The advantage of GAs is just able to obtain the global optimal

solution fairly. In addition, GAs do not require the specific mathematical analysis

of optimization problems, which makes GAs easily coded by users who are not

necessarily good at mathematics on algorithms. GAs have been well-documented

in the literature, such as in Holland, Goldberg, Michalewicz, and Fogel, etc., and

have been applied to a wide variety of problems, such as optimal control problems,

transportation problems, traveling salesman problems, scheduling, facility layout

problems and network optimization and so on.

One of the important technical terms in GAs is chromosome, which is usually a

string of symbols or numbers. A chromosome is a coding of a solution of an opti-

mization problem, not necessarily the solution itself. GAs start with an initial set of

random-generated chromosomes called population size. All chromosomes are eval-

uated by the so-called evaluation function, which is some measure of fitness. A new

population will be formed by a selection process using a sampling mechanism based

on the fitness values. The cycle from one population to the next one is called a gen-

eration. In each new generation, all chromosomes will be updated by the crossover

and mutation operations. The revised chromosomes are also called offspring. The

selection process enters a new generation. After performing the genetic system a

given number of cycles, we decode the best chromosome into a solution which is

regarded as the optimal solution of the optimization problem.

(1) Coding

How to encode a solution of the problem into a chromosome is a key issue when

using GAs. The issue has been investigated from many aspects, such as mapping

characters from genotype space to phenotype space when individuals are decoded

into solutions, and metamorphosis properties when individuals are manipulated by

genetic operators.

During the last 15 years, various encoding methods have been created for partic-

ular problems to provide effective implementation of GAs. According to what kind

of symbol is used as the alleles of a gene, the encoding methods can be classified as

follows:

(i) Binary encoding,

(ii) Real-number encoding,

(iii) Integer or literal permutation encoding,

(iv) General data structure encoding.

In holland’ work, encoding is carried out using binary strings. Binary encoding

for function optimization problems is known to have severe drawbacks due to the
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existence of Hamming cliffs, pairs of encodings having a large Hamming distance

while belonging to points of minimal distance in phenotype space. For example,

the pair 01111111111 and 1000000000 belong to neighboring points in phenotype

space (points of minimal Euclidean distance) but have maximum Hamming distance

simultaneously. The probability that crossover and mutation will occur can be very

small. In this sense, the binary code does not preserve the locality of points in the

phenotype space. Real-number encoding is best used for function optimization prob-

lems. It has been widely confirmed that real-number encoding performs better than

binary of Gray encoding for function optimizations and constrained optimizations.

Since the topological structure of the genotype space for real-number encoding is

identical to that of the phenotype space, it is easy to form effective genetic operators

by borrowing useful techniques from conventional methods. Integer of literal per-

mutation encoding is best used for combinatorial optimization problems. Since the

essence of combinatorial optimization problems is the search for a best permutation

of combination of items subject to constraints, literal permutation encoding can be

the best way to this type of problem. For more complex real-world problems, an ap-

propriate data structure is suggested as the allele of a gene, to capture the nature of

the problem. In such case, a gene may be an n-ary or more complex data structure.

According to the structure of encodings, the encoding methods can also be classi-

fied into the following two types: one-dimensional encoding and multi-dimensional

encoding. In most practices, one-dimensional encoding is used. However, many

real-world problems require solutions for multi-dimensional structures. It is nature

to use a multi-dimensional encoding method to represent those solutions. For exam-

ple, Vignaus and Michalewicz used an allocation matrix as encoding for the trans-

portation problem. Cohoon and Paris used two-dimensional encoding for the VLSI

circuit placement problem. Ono, Yamamura, and Kobayashi used a job-sequence

matrix as encoding for job-shop scheduling peoblem. And a general discussion of

multi-dimensional encoding and crossover was given by Bui and Moon.

According to the contents encoded, the following encoding methods can also

be used: solution only and solution + parameters. In genetic algorithm practice,

the first method is widely used to develop suitable encoding for a given problem.

The second method is used in evolution strategies of Rechenberg and Schwefel. An

individual consists of two pair: the first is the solution to a given problem, and the

second, the strategy parameters, comprise variances and covariances of the normal

distribution for mutation. The purpose of incorporating strategy parameters into the

representation of individuals is to facilitate the evolutionary self-adaptation of these

parameters by applying evolutionary operators to them. The search will then be

performed in the space of solutions and strategy parameters together. In this way a

suitable adjustment and diversity of mutation parameters should be provided under

arbitrary circumstances.

Genetic algorithms work on two types of spaces alternatively: coding spaces and

solution spaces, or in other words, genotype spaces and phenotype spaces. Genetic

operators work on genotype space, and evaluation and selection work on the pheno-

type space. Natural selection is the link between chromosomes and the performance

of decoded solutions. The mapping from genotype space to phenotype space has a
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considerable influence on the performance of genetic algorithms. One outstanding

problem associated with mapping is that some individuals correspond to infeasible

solutions to a given problem. This problem may become very severe for constrained

optimization problems and combinatorial optimization problems.

We should distinguish between two basic concepts: infeasibility and illegality. In-

feasibility refers to the phenomenon that a solution decoded from a chromosome lies

outside the feasible region of a given problem; illegality refers to the phenomenon

that a solution decoded from chromosome does not represent a solution to a given

problem.

The infeasibility of chromosomes originates from the nature of the constrained

optimization problem. Whichever technique is used, conventional methods or ge-

netic algorithms, it must handle the constraints. For many optimization problems,

the feasible region can be represented as a system of equalities or inequalities. For

such cases, penalty methods can be used to handle infeasible chromosomes. In con-

strained optimization problems, the optimum typically occurs at the boundary be-

tween the feasible and infeasible areas. The penalty approach will force the genetic

search to approach the optimum from both sides of the feasible and infeasible re-

gions.

The illegality of chromosomes originates from the nature of encoding techniques.

For many combinatorial optimization problems. problem -specific encodings are

used, and such encodings usually yield illegal offsprings by simple one-cut point

crossover operation. Because an illegal chromosome can not be decoded to a solu-

tion. Repair techniques are usually adopted to convert an illegal chromosome to a

legal one. For example, the well-known PMX operator is essentially a two-cut point

crossover for permutation representation, together with a repair procedure to resolve

the illegitimacy caused by simple two-cut point crossover. Orvosh and Davis have

shown that for many combinatorial optimization problems, it is relatively easy to re-

pair an infeasible or illegal chromosome, and the repair strategy does indeed surpass

other strategies, such as the rejecting or the penalizing strategy.

When a new encoding method is given, it is usually necessary to examine whether

we can set up an effective genetic search using the encoding. Several principles have

been proposed to evaluate an encoding as follows.

(i) Non-redundancy: The mapping between encodings and solutions must be 1 to 1.

The most desired case, 1 to 1 mapping, ensures that no trivial operations will

occur when creating offspring. If n to 1 mapping occurs, genetic algorithms will

waste time while searching. Because two individuals are duplicated in the phenotype

space but not in the genotype space, distance measures in the genotype space cannot

treat individuals as identical. It then becomes one reason for genetic algorithms to

converge prematurely. The most undesirable case is 1 to n mapping, because we

need another procedure performed on the phenotype space to determine the one

solution among many possible solutions.

(ii) Legality: Any permutation of en encoding corresponds to a solution.

This principle guarantees that most existing genetic operators can easily be applied

to the encoding.
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(iii) Completeness: Any solution has a corresponding encoding.

This principle guarantees that any point in solution space is accessible for a genetic

search.

(iv) Lamarckian property: The meaning of alleles for a gene is not context

dependent.

The Lamarckian property for encoding concerns the issue of whether or not chro-

mosome can pass on its merits to future populations through common genetic

operations.

(v) Causality: Small variations on the genotype space due to mutation imply small

variations in the phenotype space.

The principle suggested by Rechenberg in relation to evolution strategies. If focus

on the conservation of neighborhood structures; that is, for the successful intro-

duction of new information by mutation, the mutation operator should preserve the

neighborhood structure in the corresponding phenotype space. The perspective is

common among practitioners of genetic optimizations. Search processes that do not

destroy the neighborhood structure are said to exhibit strong causality. The opposite

extreme is no causality. Weak causality describes the case where small changes in

the genotype space correspond to large changes in the phenotype space, and vice

versa. Sendhoff, Kreuts, and Seelen suggested a condition to measure the causality

associated with mapping from genotype to phenotype in combination with a muta-

tion operator.

(2) Genetic operators

Search is one of the more universal problem-solving methods for problems in which

one cannot determine a priori the sequence of steps leading to a solution. Typically,

there are two types of search behaviors: random search and local search. Random

search explores the entire solution and is capable of achieving escape from a local

optimum. Local search exploits the best solution and is capable of climbing upward

toward a local search optimum. The two types of search abilities from the mutual

complementary components of a search. An ideal search should possess both types

simultaneously. It is nearly impossible to design such a search method with conven-

tional techniques. Genetic algorithms are a class of general-purpose search methods

combining elements of directed and stochastic searches which can make a good

balance between exploration and exploitation of the search space. In genetic al-

gorithms, accumulated information is exploited by the selection mechanism, while

mew regions of the search space are explored by means of genetic operators.

In conventional genetic algorithms, the crossover operator is used as the princi-

ple operator and the performance of a genetic system is heavily dependent on it. The

mutation operator which produces spontaneous random changes in various chromo-

somes, is used as a background operator. In essence, genetic operators perform a

random search and cannot guarantee to yield improved offspring. It has been dis-

covered that the speed of convergence problems. There are many empirical studies

on a comparison between crossover and mutation. It is confirmed that mutation can

sometimes play a more important role than crossover.
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There are two hypotheses for the explantation of how genetic algorithms ex-

ploit the distributed information to generate good solutions: the building-block hy-

pothesis and the convergence-controlled variation hypothesis. The building-block

hypothesis was proposed by Holland and refined by Goldberg. According to the

hypothesis, crossover recombines features from two parents to produce offspring.

Sometimes crossover will combines the best features form two parents, resulting in

superior offspring. Since the fitness of an individual will often depend on complex

patterns of simple features, it is important that the operator be able to propagate

to offspring those patterns of features that contribute to the fitness of the parents.

The concept of epistasis refers to strong interaction among genes in an encoding.

In other words, epistasis measures the extent to which the contribution to fitness of

one gene depends on the values of other genes. For a given problem, a high degree

of epistasis means that building blocks cannot form.

The convergence-controlled variation hypothesis was given by Eshelman, Math-

ias and Schaffer. The hypothesis suggests using the convergence of a population to

constrain the search. New points are sampled from a distribution that is a function

of the population distribution at any point in time. As the population converges, the

variation becomes more focused. Whereas the building-block hypothesis stresses

recombining, and hence propagating, features that have survived in the parent popu-

lation, the convergence-controlled variation hypothesis stresses randomly sampling

from a distribution that is a function of the current population distribution.

How we conceptualize the genetic search will affect how we design genetic oper-

ators. From the point of view of search abilities, it is expected that a search provided

by a method can possess the abilities of random search and directed search simul-

taneously. Cheng and Gen suggest the following approach for designing genetic

operators. For the two genetic operators, crossover and mutation, one is used to per-

form a random search to try to explore the area beyond a local optimum, and the

other is used to perform a local search to try to find an improved solution, The ge-

netic search then possesses two types of the search abilities. With this approach, the

mutation operator will play the same important role as that of the crossover operator

in a genetic search.

(i) Selection

The principle behind genetic algorithms is essentially Darwinian natural selection.

Selection provides the driving force in a genetic algorithm. With too much force,

the genetic search will terminate prematurely; with too little force, the evolutionary

progress will be slower than necessary. Typically, a lower selection pressure is in-

dicated at the start of a genetic search in favor of a wide exploration of the search

space, while a higher selection pressure is recommended at the end to narrow the

search space. The selection directs the genetic search toward promising regions in

the search space. During the past two decades, many selection methods have been

proposed, examined, and compared. There are the following types.

(a) Roulette wheel selection: Proposed by Holland, is the best known selection

type. The basic idea is to determine selection probability or survival probability for

each chromosome proportional to the fitness value. Then a model roulette wheel can
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be made displaying these probabilities. The selection process is based on spinning

the wheel the number of times equal to population size, each time selecting a single

chromosome for the new population, The wheel features the selection method as a

stochastic sampling method that uses a single wheel spin. The wheel is constructed

in the same way as a standard roulette wheel, with a number of equally spaced

markers equal to the population size. The basic strategy underlying this approach is

to keep the expected number of copies of each chromosome in the next generation.

(b) (µ + λ )-selection: In contrast with proportional selection, (µ + λ )-selection

and (µ ,λ )-selection as proposed by Bäck are deterministic procedures that select

the best chromosomes from parents and offspring. Note that both methods prohibit

selection of duplicate chromosomes from the population, so many researchers pre-

fer to use this method to deal with combinational optimization problems. Truncation

selection and block selection are also deterministic procedures that rank all individ-

uals according to their fitness and select the best as parents.

(c) Tournament selection: This type of selection contains random and determinis-

tic features simultaneously. A special example is the tournament selection of Gold-

berg, Krob, and Deb. This method randomly chooses a set of chromosomes and

picks out the best chromosome for reproduction. The number of chromosomes in

the set is called the tournament size. A common tournament size is 2; this is called a

binary tournament, Stochastic tournament selection was suggested by Wetzel. In this

method, selection probabilities are calculated normally and successive pairs of chro-

mosome are drawn using roulette wheel selection. After drawing a pair, the chro-

mosome with higher fitness is inserted in the new population. The process continues

until the population is full. Reminder stochastic sampling, proposed by Brindle, is

a modified version of his deterministic sampling. In this method, each chromosome

is allocated samples according to the fractional parts of the number expected.

(d) Steady-state reproduction: Generational replacement, replacing an entire set

of parents by their offspring, can be viewed as another version of the deterministic

approach. The steady-state reproduction of Whitely and Syswerdra belongs to this

class, in which the n worst parents are replaced by offspring (n is the number of

offspring).

(e) Ranking and scaling: The ranking and scaling mechanisms are proposed to

mitigate these problems. The scaling method maps raw objective function values

to positive real values, and the survival probability for each chromosome is deter-

mined according to these values. Fitness scaling has a twofold intention: to maintain

a reasonable differential between the relative fitness ratings of chromosomes, and to

prevent too-rapid a takeover by some superchromosomes to meet the requirement

to limit competition early but to stimulate it later. Since De Jong’s work, use of

scaling objective functions has become widely accepted, and several scaling mech-

anisms have been proposed. According to the type of function used to transform the

raw fitness into scaled fitness, scaling methods can be classified as linear scaling,

sigma truncation, power law scaling, logarithmic scaling, an so on. If the transfor-

mation relation between scaled fitness and raw fitness is constant, it is called a static

scaling method; if the transformation is variable with respect to some factors, it is

called a dynamic scaling method. The windowing technique introduces a moving
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baseline into the fitness proposition selection to maintain a more constant selection

pressure. The normalizing technique is also one type of dynamic scaling proposed

by Cheng and Gen[69]. For most scaling methods, scaling parameters are prob-

lem dependent. Fitness ranking has an effect similar to that of fitness scaling but

avoids the need for extra scaling parameters. Baker introduced the notion of rank-

ing selection with genetic algorithms to overcome the scaling problems of the direct

fitness-based approach. The ranking method ignores the actual object function val-

ues; instead, it uses a ranking of chromosomes to determine survival probability. The

idea is straightforward: Sort the population according to the ranking but not its raw

fitness, Two methods are in common use: linear ranking and exponential ranking.

(f) Sharing: The sharing techniques, introduced by Goldberg and Richardson[64]

for multi-model function optimization, are used to maintain the diversity of popula-

tion. A sharing function is a way of determining the degradation of an individual’s

fitness due to a neighbor at some distance. With the degradation, the reproduction

probability of individuals in a crowd peak is restrained while other individuals are

encouraged to give offspring.

(3) Procedure of genetic algorithm

We list the procedure of genetic algorithm as follows:

Step 1. Generate the input-output data for uncertain functions like

U1 : x→ E[ f (x,ξ )],
U2 : x→Ch{g j(x,ξ )≤ 0, j = 1,2, · · · , p},
U3 : x→max{ f̄ |Ch{ f (x,ξ )≥ f̄} ≥ α},

by the fuzzy simulation.

Step 2. Initialize popsize feasible chromosome.

Step 3. Update the chromosome by crossover and mutation operations, in which we

may use the fuzzy random simulation.

Step 4. Calculate the objective values for all chromosome in which we may use the

fuzzy random simulation.

Step 5. Compute the fitness of each chromosome according to the objective values.

Step 7. Select the chromosomes by spinning the roulette wheel.

Step 8. Repeat the fourth to seventh steps for a given number of cycles.

Step 9. Report the best chromosome as the optimal solution.

Weighted-Sum Approach

Conceptually, the weighted-sum approach can be viewed as an extension methods

used in multi-objective optimization to genetic algorithms. It assigns weights to

each objective function and combines the weighted objectives into a single objective

function. In fact, the weighted-sum approaches used in the genetic algorithm are
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very different in nature from that in conventional multi-objective optimizations. In

the multi-objective optimization, the weighted-sum approach is used to obtain a

compromise solution. To make the method work, all that is needed a good weighting

vector. It is usually very difficult to determine a set of appropriate weights for a

given problem. In the genetic algorithms, the weighted-sum approach is used to

primarily to adjust genetic search toward the Pareto frontier. Weights are readjusted

adaptively along with the evolutionary process. Therefore, a good weighting vector

is not a mandatory precondition to making genetic algorithms work. In addition, the

drawbacks exhibited in the multi-objective optimization can be compensated by the

powers of population-based search and evolutionary search.

Three weight-setting mechanisms have been proposed:

(1) fixed-weight approach;

(2) random-weight approach;

(3) adaptive weight approach.

The fixed-weight approach can be viewed as analogous to conventional scalariza-

tion techniques, it gives the genetic algorithms a tendency to sample the area toward

a fixed point in the criterion space, while the random-weight and adaptive weight

approaches are designed for genetic algorithms to fully utilize the power of ge-

netic search which can only work due to the nature of population-based evolutionary

search of genetic algorithms.

Random-Weight Approach

Murata, Ishibuchi, and Tanaka[65] proposed a random-weighted approach to obtain-

ing a variable search direction toward the Pareto frontier. Typically, there are two

types of search behavior in the objective space: fixed-direction search and multiple-

direction search, as demonstrated in Figures 3.3 and 3.4. The random-weight ap-

proach gives the genetic algorithms a tendency to demonstrate a variable search

direction, therefore, the ability to sample the area uniformly over the entire frontier.

Fig. 3.3 Search in a fixed direction in criterion space
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Fig. 3.4 Search in multiple directions in criterion space

Suppose that we are going to maximize q objective functions. The weighted-sum

objective is given as follows:

z =
q

∑
k=1

wk fk(x). (3.34)

The random weights wk are calculated by the equation

wk =
rk

∑
q
j=1 r j

,k = 1,2, · · · ,q, (3.35)

where ri are nonnegative random numbers.

Before selecting a pair of parents for crossover operation, a new set of random

weights is specified by (3.35), and the fitness values for each individual are calcu-

lated by (3.34). The selection probability pi for individual i is then defined by the

following linear scaling function:

pi =
zi− zmin

∑
pop−size
j=1 (zi− zmin)

, (3.36)

where zmin is the worst fitness value in the current population.

A tentative set of Pareto solutions is stored and updated at each generation. For a

problem with q objectives, there are q extreme points int he Pareto solutions, each

of which maximizes one objective. An elite preserving strategy is suggested for

putting the n extreme points plus some randomly selected Pareto solutions into the

next population. Let Npop denote the population size and Nelite denote the number of

elite solutions to preserve. The overall structure of their implementation of genetic

algorithms is given as follows:

Step 1. Initialization. Randomly generate an initial population containing Npop

individuals.

Step 2. Evaluation. Calculation the values of q objective functions for each individ-

ual. Update a tentative set of Pareto solutions.
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Step 3. Selection. Repeat the following steps to select (Npop−Nelite) pairs of parent:

Specify random weighted by (3.35), calculate fitness function by (3.34), calculate

selection probability by (3.36), and select a pair of parent individuals for a crossover

operation.

Step 4. Crossover. For each pair selected, apply a crossover operation to generate

offspring.

Step 5. Mutation. Apply a mutation operation to each offspring generated by the

crossover operation.

Step 6. Elitist strategy. Randomly select Npop individuals from the tentative set of

Pareto solutions. Add the selected solutions Nelite to (Npop−Nelite) individuals gen-

erated in the foregoing steps to construct a population of Npop of individuals.

Step 7. Termination test. If a prespecified stopping condition is satisfied, stop the

run; otherwise return stop 1.

Random Weight GA

For the multi-objective optimization problems, more and more scholars have done

some significant work and made some progress . Among them, Pareto [60] is widely

regarded as one pioneer in this field. Because it is difficult to find a solution such that

every objective get the optimization, Pareto introduced the non-dominated solutions

or Pareto optimal solutions to obtain optimal objectives without sacrificing other

objective functions. However, for a complex multi-objective optimization problem,

it is also difficult to obtain its Pareto optimal solution. Recently, some scholars con-

sider genetic algorithms as an efficient method to find its Pareto optimal solution.

Such as, J. Xu, Q. Liu and R. Wang [61] apply spanning tree based on genetic al-

gorithm to solve a class multi-objective programming problems with random fuzzy

coefficients.

Since evolutionary computation was proposed, ingrowing researchers has been

interested in simulating evolution to solve complex optimization problems. Among

them, genetic algorithm introduced by Holland [62] is paid more and more atten-

tion to. As a kind of meta-heuristics, it could search the optimal solution without

regard to the specific inner connections of the problem. Especially, the application

of GA to multi-objective optimization problems has caused a theoretical and prac-

tical challenge to the mathematical community. In the past two decades, there are

many approaches on GA developed by the scholars in all kinds of field. Goldberg

[426, 427] firstly suggested the Pareto ranking based fitness assignment method to

find the next set of non-dominated individuals. Then the multi-objective genetic

algorithm in which the rank of individual corresponds to the number of current par-

ent population was proposed by Fonseca and Fleming [174]. There are still two

weighted sum genetic algorithms to solve multiobjective optimization problems.

One is the random-weight genetic algorithm proposed by Ishibuchi et al. [63], the

other is adaptive-weight genetic algorithm proposed by Gen and Cheng [70].
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This section attempts to apply fuzzy random simulation to convert the uncertain

multi-objective problem into deterministic one and make use of random-weight ge-

netic algorithm to solve this multi-objective problem. For the following model,

⎧
⎨
⎩

max [E[ f1(x,ξ )],E[ f2(x,ξ )], · · · ,E[ fm(x,ξ )]]

s.t.

{
E[gr(x,ξ )]≤ 0, r = 1,2, · · · , p

x ∈ X .

No matter that the random rough variable is discrete or continuous, we can firstly

simulate its expected value by random rough simulation and apply genetic algorithm

to solve the multi-objective programming problem. It can be summarized as follows:

(1) Representation: A vector x ∈ X is chosen as a chromosome to represent a

solution to the optimization problem.

(2) Handling the objective and constraint function: To obtain a determined multi-

objective programming problem, we can apply the technique of fuzzy random sim-

ulation to deal with them.

(3) Initializing process: Suppose that the decision maker is able to predetermine a

region which contains the feasible set. Generate a random vector x from this region

until a feasible one is accepted as a chromosome. Repeat the above process Npop−size

times, then we have Nprop−size initial feasible chromosomes x1,x2, · · · ,xNpop−size .

(4) Evaluation function: Decision maker’s aim is to obtain the maximum expected

value of every goal. Suppose E[ f (x,ξ )] =
r

∑
i=1

wiE[ fi(x,ξ )], where the weight coef-

ficient wi expresses the importance of E[ fi(x,ξ )] to the decision-maker. Then the

evaluation function could be given as follows:

eval(x) =
r

∑
i=1

wiE[ fi(x,ξ )],

where the random weight is generated as following formula,

wk =
rk

∑r
j=1 r j

,k = 1,2, · · · ,r,

where ri is a nonnegative random number.

(5) Selection process: We can apply the roulette wheel method to develop the

selection process. Each time a single chromosome for a new population is selected

in the following way: Compute the total probability q,

q =
Npop−size

∑
j=1

eval(x j).

Then compute the probability of the ith chromosome qi, qi =
eval(xi)

q
. Generate a ran-

dom number r in [0,1] and select the ith chromosome xi such that qi−1 < r≤ qi,1≤
i ≤ Npop−size. Repeat the above process Npop−size times and we obtain Npop−size
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copies of chromosomes. The selection probability can be computed by the follow-

ing function,

pi =
eval(xi)− eval(x)min

∑
pop−size
j=1 eval(xi)− eval(x)min

,

where eval(x)min is the minimum fitness value of current population.

(6) Crossover operation: Generate two random numbers λ1,λ2 from the open

interval (0, 1) satisfying λ1 + λ2 = 1 and the chromosome xi is selected as a parent

provided that λi < Pλi
, where parameter Pλi

is the probability of crossover operation.

Repeat this process Npop−size times and Pλi
·Npr−size chromosomes are expected to

be selected to undergo the crossover operation. The crossover operator on x1 and x2

will produce two children y1 and y2 as follows:

y1 = λ1x1 + λ2x2
, y2 = λ1x2 + λ2x1.

If both children are feasible, then we replace the parents with them, or else we keep

the feasible one if it exists. Repeat the above operation until two feasible children

are obtained or a given number of cycles is finished.

(7) Mutation operation: Similar to the crossover process, the chromosome xi is

selected as a parent to undergo the mutation operation provided that random number

m < Pm, where parameter Pm as the probability of mutation operation. Pλi
·Npr−size

are expected to be selected after repeating the process Npr−size times. Suppose that

x1 is chosen as a parent. Choose a mutation direction d ∈ Rn randomly. Replace x

with x+M ·d if x+M ·d is feasible, otherwise we set M as a random between 0 and

M until it is feasible or a given number of cycle is finished. Here, M is a sufficiently

large positive number.

We illustrate the fuzzy random simulation-based genetic algorithm procedure as

follows:

Step 0. Input the parameters Npop−size,Pλi
and Pm.

Step 1. Initialize Npop−size chromosomes whose feasibility may be checked by fuzzy

random simulation.

Step 2. Update the chromosomes by crossover and mutation operations and random

rough simulation is used to check the feasibility of offspring. Compute the fitness

of each chromosome based on weight-sum objective.

Step 3. Select the chromosomes by spinning the roulette wheel.

Step 4. Make the crossover operation.

Step 5. Make the mutation operation for the chromosomes generated by crossover

operation.

Step 6. Repeat the second to fourth steps for a given number of cycles.

Step 7. Report the best chromosome as the optimal solution.
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Above all, we combine the Fu-Ra simulations and GA to obtain the Fu-Ra simula-

tion based GA, see Figure 3.5.

Fig. 3.5 Flow chart of Fu-Ra simulation-based GA

3.3.3.3 Numerical Example

We will use the Fu-Ra simulation 1 based random weight GA to deal with the non-

linear Fu-Ra EVM.

Example 3.6. Let us consider a multi-objective programming with fuzzy random

coefficients.
⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max F1(x,ξ ) = 2ξ1x2
1 + 3ξ2x2− ξ3x3 +

√
(1− ξ4)2x4 +(3− ξ5)2

max F2(x) =−x1 + 2.5x2 + 1.5x3

s.t.

⎧
⎪⎪⎨
⎪⎪⎩

5x1−3x2
2 + 6

√
x3 + x4 ≤ 50

ξ6
√

x1 + ξ7x2− ξ8x3 ≤ ξ9

x1 + x2 + x3 + x4 ≤ 18

x1,x2,x3,x4 ≥ 0,

(3.37)
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where ξi(i = 1,2, · · · ,9) are fuzzy random variables as follows,

ξ1 = (ρ1−0.1,ρ1,ρ1 + 0.2), with ρ1 ∼U(0.4,0.5),
ξ2 = (ρ2−0.2,ρ2,ρ2 + 0.2), with ρ2 ∼U(0.6,0.7),
ξ3 = (ρ3−0.2,ρ3,ρ3 + 0.2), with ρ3 ∼U(0.7,0.8),
ξ4 = (ρ4−0.2,ρ4,ρ4 + 0.2), with ρ4 ∼ N(2,0.1),
ξ5 = (ρ5−0.2,ρ5,ρ5 + 0.2), with ρ5 ∼ N(4,0.1),
ξ6 = (ρ6−0.5,ρ6,ρ6 + 0.5), with ρ6 ∼ N(4,0.1),
ξ7 = (ρ7−0.5,ρ7,ρ7 + 0.5), with ρ7 ∼ N(6,0.1),
ξ8 = (ρ8−0.5,ρ8,ρ8 + 0.5), with ρ8 ∼ N(4.5,0.1),
ξ9 = (ρ9−2,ρ9,ρ9 + 2), with ρ9 ∼ N(20,4).

(3.38)

From the mathematical view, the problem (3.37) is not well defined because of the

uncertain parameters. Then we apply the expected value technique to deal with this

uncertain programming.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

max F1(x,ξ ) = E
[
2ξ1x2

1 + 3ξ2x2− ξ3x3 +
√

(1− ξ4)2x4 +(3− ξ5)2
]

max F2(x) =−x1 + 2.5x2 + 1.5x3

s.t.

⎧
⎪⎪⎨
⎪⎪⎩

5x1−3x2
2 + 6

√
x3 + x4 ≤ 50

E
[
ξ6
√

x1 + ξ7x2− ξ8x3

]
≤ E [ξ9]

x1 + x2 + x3 + x4 ≤ 18

x1,x2,x3,x4 ≥ 0.

(3.39)

Since there exists non-linear objective function and constraint, we cannot transform

it into it’s crisp equivalent model. In order to solve it, we use the Fu-Ra simulation

based random weight GA to deal with it.

Step 1. For this model, we use real number encoding, so we initialize the chromo-

some, randomly generate a real number between 0 and 18.

Step 2. Then we check the constraints, in which, the fuzzy random simulation will

be used to check the constraint E
[
ξ6
√

x1 + ξ7x2− ξ8x3

]
≤ E [ξ9].

Step 3. For the feasible chromosomes, which is through the constraints checking,

we compute the objectives value F1 and F2, in which the computation of the objec-

tive function will use the fuzzy random simulation, and according to the objectives

values in one generation, we can obtain the weight for each chromosome.

Step 4. We use the weight to evaluate the fitness value of each chromosome, and the

chromosome which has larger fitness value, the possibility which the chromosome

be chosen is higher.

Step 5. Then we use the crossover and mutation operator for real number parent

chromosomes, obtain the children chromosomes, then update a generation.

Step 6. When the results reach the determinant standard of convergence, stop.

After 3780 iterations, the results converged, and we could get the solutions, see

Table 3.2. We can see that the solutions are stable. And we get the Figure 3.6 to see

the process of convergency.
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Table 3.2 Results obtained from Fu-Ra simulation based-random weight GA

w1 w2 x = (x1,x2,x3,x4) F1(x) F2(x)

0.6 0.4 (13.40,2.48,2.12,0) 165.85 -4.02

0.5 0.5 (13.39,2.48,2.11,0.03) 165.63 -4.03

0.4 0.6 (13.40,2.48,2.12,2.41) 166.71 -4.02

Fig. 3.6 Convergency curve

3.4 Fu-Ra CCM

For uncertain models, the chance operator is a useful tool to deal with it, so let’s

focus on this in this section.

3.4.1 General Model for Fu-Ra CCM

Let’s introduce the general fuzzy random chance-constrained decision making

model as follows.
⎧
⎪⎪⎨
⎪⎪⎩

max [ f̄1, f̄2, · · · , f̄m]

s.t.

⎧
⎨
⎩

Ch{ fi(x,ξ )≥ f̄i}(γi)≥ δi, i = 1,2, · · · ,m
Ch{gr(x,ξ )≤ 0}(ηr)≥ θr, r = 1,2, · · · , p

x ∈ X ,

(3.40)

where Ch is the chace measure of the Fu-Ra events, γi,δi,ηr,θr are the predeter-

mined confidence levels, fi and xi are the decision variables, i = 1,2, · · · ,m.
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Definition 3.11. If x∗ is an efficient solution of problem (3.40), then it is called as a

fuzzy random chance efficient solution.

According to the Definition 3.8 of the primitive chance measure:

Ch{ fi(x,ξ )≥ f̄i}(γi)≥ δi ⇔ Pr{ω |Pos{{ fi(x,ξ )≥ f̄i} ≥ δi} ≥ γi, (3.41)

Ch{gr(x,ξ )≤ 0}(ηr)≥ θr ⇔ Pr{ω |Pos{gr(x,ξ )≤ 0} ≥ θr} ≥ ηr. (3.42)

So we can get Fu-Ra CCM based on Pr-Pos,

⎧
⎪⎪⎨
⎪⎪⎩

max [ f̄1, f̄2, · · · , f̄n]

s.t.

⎧
⎨
⎩

Pr{ω |Pos{{ fi(x,ξ )≥ f̄i} ≥ δi} ≥ γi, i = 1,2, · · · ,m
Pr{ω |Pos{gr(x,ξ )≤ 0} ≥ θr} ≥ ηr, r = 1,2, · · · , p

x ∈ X ,

(3.43)

where δi,γi,θr,ηr ∈ [0,1] are the predetermined confidence levels, Pos{·} denotes

the possibility of the fuzzy events in {·}, and Pr{·} denotes the probability of the

random events in {·}.
Or we could also get Fu-Ra CCM based on Pr-Nec,

⎧
⎪⎪⎨
⎪⎪⎩

max [ f̄1, f̄2, · · · , f̄n]

s.t.

⎧
⎨
⎩

Pr{ω |Nec{{ fi(x,ξ )≥ f̄i} ≥ δi} ≥ γi, i = 1,2, · · · ,m
Pr{ω |Nec{gr(x,ξ )≤ 0} ≥ θr} ≥ ηr, r = 1,2, · · · , p

x ∈ X ,

(3.44)

where Nec{·} denotes the necessity of the fuzzy events in {·}.
For simpleness, the parameters δ ,γ,θ ,η can be the same confidence level, i.e.

δi = δ ,γi = γ , θr = θ ,ηr = η , i = 1,2, · · · ,m, r = 1,2, · · · , p.

Remark 3.10. If the fuzzy random vector ξ delegates to random vector, then

fi(x,ξ )≥ f̄i is a random event. For ω ∈Ω , Pos{ fi(x,ξ )≥ f̄i}≥ δi means fi(x,ξ )≥
f̄i. So,

Pr{ω |Pos{ fi(x,ξ )≥ f̄i} ≥ δi} ≥ γi

is equivalent to Pr{ω | fi(x,ξ )≥ f̄i} ≥ γi, i = 1,2, · · · ,m.

And similarly, the constraint

Pr{ω |Pos{gr(x,ξ )≤ 0} ≥ θr} ≥ ηr

is equivalent to Pr{ω |gr(x,ξ ) ≤ 0} ≥ ηr, r = 1,2, · · · , p. So, the model (3.46) can

be rewritten as
⎧
⎪⎪⎨
⎪⎪⎩

max [ f̄1, f̄2, · · · , f̄m]

s.t.

⎧
⎨
⎩

Pr{ω | fi(x,ξ )≥ f̄i} ≥ γi, i = 1,2, · · · ,m
Pr{ω |gr(x,ξ )≤ 0} ≥ ηr, r = 1,2, · · · , p

x ∈ X .

This is coincident to the random CCM.
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Remark 3.11. If the fuzzy random vector ξ delegates to fuzzy vector, then

Pos{ fi(x,ξ )≥ f̄i}≥ δi is a crisp event. In order to satisfy pi := Pr{ω |Pos{ fi(x,ξ )≥
f̄i} ≥ δi} ≥ γi, the probability pi should be 1.

So the constraint

Pr{ω |Pos{ fi(x,ξ )≥ f̄i} ≥ δi}= 1≥ γi,

is equivalent to Pos{ fi(x,ξ )≥ f̄i} ≥ δi, i = 1,2, · · · ,m.

And similarly, the constraint

Pr{ω |Pos{gr(x,ξ )≤ 0} ≥ θr} ≥ ηr

is equivalent to Pos{gr(x,ξ )≤ 0}≥ θr, r = 1,2, · · · , p. So the model (3.46) is equiv-

alent to ⎧
⎪⎪⎨
⎪⎪⎩

max [ f̄1, f̄2, · · · , f̄m]

s.t.

⎧
⎨
⎩

Pos{ fi(x,ξ ≥ f̄i} ≥ δi, i = 1,2, · · · ,m
Pos{gr(x,ξ )≤ 0} ≥ θr, r = 1,2, · · · , p

x ∈ X .

This is coincident to the fuzzy CCM introduced in Chapter 2.

3.4.2 Linear Fu-Ra CCM and Surrogate Worth Trade-Off

Method

Let’s consider the linear Fu-Ra CCM:

⎧
⎪⎪⎨
⎪⎪⎩

max { fi, i = 1,2, · · · ,m}

s.t.

⎧
⎨
⎩

Ch{ ˜̄cT
i x≥ fi}(γi)≥ δi, i = 1,2, · · · ,m

Ch{ ˜̄eT
r x≤ ˜̄br}(ηr)≥ θr, r = 1,2, · · · , p

x≥ 0,

(3.45)

where ˜̄ci, ˜̄er,
˜̄br are fuzzy random variables.

3.4.2.1 Crisp Equivalent Model

In order to solve the model (3.45), one feasible method is that we turn the chance-

constraints to crisp equivalents.

Pr-Pos Constrained Multi-objective Linearity Model

Let’s consider the linear Fu-Ra CCM based on Pr-Pos,

⎧
⎪⎪⎨
⎪⎪⎩

max { f1, f2, · · · , fm}

s.t.

⎧
⎨
⎩

Pr{ω |Pos{ ˜̄ci(ω)Tx≥ fi} ≥ δi} ≥ γi, i = 1,2, · · · ,m
Pr{ω |Pos{ ˜̄er(ω)Tx≤ ˜̄br(ω)} ≥ θr} ≥ ηr, r = 1,2, · · · , p

x≥ 0,

(3.46)
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where δi,γi,θr,ηr ∈ [0,1] are the predetermined confidence level, Pos{·} denotes

the possibility of the fuzzy events in {·}, and Pr{·} denotes the probability of the

random events in {·}.
Assume that ˜̄ci j, ˜̄er j and ˜̄b are LR fuzzy random variables, we give the fol-

lowing two theorems to transform the chance-constrained model into its crisp

model.

Theorem 3.6. Assume that ˜̄ci j is LR fuzzy random variable, for any ω ∈ Ω , the

membership function of ˜̄ci j(ω) is

µ ˜̄ci j(ω)(t) =

⎧
⎨
⎩

L(
ci j(ω)−t

αc
i j

), t ≤ ci j(ω),αc
i j > 0

R(
t−ci j(ω)

β c
i j

), t ≥ ci j(ω),β c
i j > 0

ω ∈Ω , (3.47)

where the random vector (ci j(ω))n×1 = (ci1(ω),ci2(ω), · · · ,cin(ω))T is normally

distributed, the mean vector is dc
i , the covariance matrix is V c

i , denoted by

(ci j(ω))n×1 ∼ N(dc
i ,V

c
i ), αc

i j and β c
i j are the left and right spread of ˜̄ci j(ω),

i = 1,2, · · · ,m, j = 1,2, · · · ,n, the reference function L,R : [0,1] → [0,1] satis-

fies that L(1) = R(1) = 0, L(0) = R(0) = 1, and it is monotone function. Then

Pr{ω |Pos{ ˜̄ci(ω)Tx≥ fi} ≥ δi} ≥ γi is equivalent to

fi ≤ R−1(δi)β
cT
i x + dcT

i x + Φ−1(1− γi)
√

xTV c
i x, i = 1,2, · · · ,m, (3.48)

where Φ are standard normally distributed, δi,γi ∈ [0,1] are predetermined confi-

dence level.

Proof. For certain w ∈ Ω , ˜̄ci j(ω) are fuzzy number, its membership function

is µ ˜̄ci j(ω)(t). By extension principle, the membership function of fuzzy number

˜̄ci(ω)Tx is

µ ˜̄ci(ω)Tx(r) =

⎧
⎨
⎩

L( ci(ω)Tx−r

αcT
i x

), r ≤ ci(ω)Tx

R( r−ci(ω)Tx

β cT
i x

), r ≥ ci(ω)Tx
i = 1,2, · · · ,m. (3.49)

For convenience, denote ˜̄ci j(ω) = (ci j(ω),αc
i j,β

c
i j)LR, ˜̄ci(ω)Tx = (ci(ω)Tx, αcT

i x,

β cT
i x)LR.

Since (ci j(ω))n×1 ∼ N(dc
i ,V

c
i ), so ci(ω)Tx ∼ N(dcT

i x,xTV c
i x). According to

Lemma 2.2 we can get

Pos{ ˜̄ci(ω)Tx≥ fi} ≥ δi ⇔ ci(ω)Tx + R−1(δi)β
cT
i x≥ fi, i = 1,2, · · · ,m.
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So for predetermined level δi,γi ∈ [0,1],

Pr{ω |Pos{ ˜̄ci(ω)Tx≥ fi} ≥ δi} ≥ γi

⇔ Pr{ω |ci(ω)Tx≥ fi−R−1(δi)β cT
i x} ≥ γi

⇔ Pr{ω | ci(ω)Tx−dcT
i x√

xTV c
i x

≥ fi−R−1(δi)β
cT
i x−dcT

i x√
xTV c

i x
} ≥ γi

⇔Φ
(

fi−R−1(δi)β
cT
i x−dcT

i x√
xTV c

i x

)
≤ 1− γi

⇔ fi ≤ R−1(δi)β cT
i x + dcT

i x + Φ−1(1− γi)
√

xTV c
i x.

The proof is completed. ⊓⊔

Similarly, the chance-constraint Pr{ω |Pos{ ˜̄er(ω)Tx ≤ ˜̄br(ω)} ≥ θr} ≥ ηr can also

be transformed into crisp equivalent constraint.

Theorem 3.7. Assume that ˜̄er j and ˜̄br are LR fuzzy random variables, for ω ∈ Ω ,

the membership function of ˜̄er j(ω) are ˜̄br(ω) are

µ ˜̄er j(ω)(t) =

⎧
⎨
⎩

L(
er j(ω)−t

αe
r j

), t ≤ er j(ω),αe
r j > 0

R(
t−er j(ω)

β e
r j

), t ≥ er j(ω),β e
r j > 0,

(3.50)

µ ˜̄br(ω)
(t) =

⎧
⎨
⎩

L( br(ω)−t

αb
r

), t ≤ br(ω),αb
r > 0

R( t−br(ω)

β b
r

), t ≥ br(ω),β b
r > 0,

(3.51)

where (er j(ω))n×1 = (er1(ω),er2(ω), · · · ,ern(ω))T ∼ N(de
r ,V

e
r ), br(ω) ∼

N(db
r ,(σb

r )2), αe
r j and β e

r j are left and right spread of ˜̄er j(ω), αb
r and β b

r are

the left and right spread of ˜̄br(ω), r = 1,2, · · · , p, j = 1,2, · · · ,n, the reference

function L,R : [0,1]→ [0,1] are monotone decreasing continuous function, and it

satisfies L(1) = R(1) = 0, L(0) = R(0) = 1.

For any j = 1,2, · · · ,n, If er j(ω) and br(ω) are independent random variables.

Then Pr{ω |Pos{ ˜̄er(ω)Tx≤ ˜̄br(ω)} ≥ θr} ≥ ηr is equivalent to

R−1(θr)β
b
r + L−1(θr)α

eT
r x− (deT

r x−db
r )−Φ−1(ηr)

√
xTV e

r x +(σb
r )2 ≥ 0.

When ηr ≥ 0.5,

X := {x ∈ Rn|r{ω |Pos{ ˜̄er(ω)Tx≤ ˜̄br(ω)} ≥ θr} ≥ ηr,r = 1,2, · · · , p; x≥ 0}

is a convex set.

Proof. According to Lemma 2.2, we have

Pos{ ˜̄er(ω)Tx≤ ˜̄br(ω)} ≥ θr ⇔ br(ω)+ R−1(θr)β
b
r ≥ er(ω)Tx−L−1(θr)α

eT
r x.
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Since (er j(ω))n×1 ∼ N(de
r ,V

e
r ), br(ω)∼ N(db

r ,(σb
r )2), so

Pr{ω |Pos{ ˜̄er(ω)Tx≤ ˜̄br(ω)} ≥ θr} ≥ ηr

⇔ Pr{ω |er(ω)Tx−br(ω)≤ R−1(θr)β b
r + L−1(θr)αeT

r x} ≥ ηr

⇔Φ
(

R−1(θr)β b
r +L−1(θr)αeT

r x−(deT
r x−db

r )√
xTV e

r x+(σ b
r )2

)
≥ ηr

⇔ gr(x)≥ 0,

Where

gr(x) = R−1(θr)β
b
r + L−1(θr)α

eT
r x− (deT

r x−db
r )−Φ−1(ηr)

√
xTV e

r x +(σb
r )2.

If ηr ≥ 0.5, it is clear that Φ−1(ηr) ≥ 0, gr(x) is a concave function. So X is a

convex set.

The proof is completed. ⊓⊔

By Theorems 3.6 and 3.7, the model (3.46) is equivalent to the following multi-

objective model,

⎧
⎨
⎩

max{ f1, f2, · · · , fm}
s.t.

{
fi ≤ R−1(δi)β cT

i x + dcT
i x + Φ−1(1− γi)

√
xTV c

i x, i = 1,2, · · · ,m
x ∈ X

(3.52)

or {
max {H1(x),H2(x), · · · ,Hm(x)}
s.t. x ∈ X ,

(3.53)

where

Hi(x) := R−1(δi)β
cT
i x + dcT

i x + Φ−1(1− γi)
√

xTV c
i x, i = 1,2, · · · ,m. (3.54)

Pr-Nec Constrained Multi-objective Linearity Model

Also, let’s consider the linear Fu-Ra CCM based on Pr-Nec,

⎧
⎪⎪⎨
⎪⎪⎩

max [ f1, f2, · · · , fm]

s.t.

⎧
⎨
⎩

Pr{ω |Nec{ ˜̄ci(ω)Tx≥ fi} ≥ δi} ≥ γi, i = 1,2, · · · ,m
Pr{ω |Nec{ ˜̄er(ω)Tx≤ ˜̄br(ω)} ≥ θr} ≥ ηr, r = 1,2, · · · , p

x≥ 0,

(3.55)

where δi,γi,θr,ηr ∈ [0,1] are the predetermined confidence level, Nec{·} denotes

the necessity of the fuzzy events in {·}, and Pr{·} denotes the probability of the

random events in {·}.
Similar to Theorems 3.6 and 3.7, The following theorems 3.8 and 3.9 presents

the crisp equivalents of the chance constraints of model (3.55).
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Theorem 3.8. Assume that the fuzzy random variable ˜̄ci j is as same as the assump-

tion in Theorem 3.6, i = 1,2, · · · ,m, j = 1,2, · · · ,n. For confidence level δi,γi ∈ [0,1],
i = 1,2, · · · ,m, we have

Pr{ω |Nec{ ˜̄ci(ω)Tx≥ fi} ≥ δi} ≥ γi

⇔ fi ≤ dcT
i x−L−1(1− δi)αcT

i x + Φ−1(1− γi)
√

xTV c
i x.

Proof. Fr certain ω ∈Ω , by Lemma 2.2 we have

Nec{ ˜̄ci(ω)Tx≥ fi} ≥ δi ⇔ ci(w)Tx−L−1(1− δi)α
cT
i x≥ fi, i = 1,2, · · · ,m.

Since ci(ω)∼ N(dc
i ,V

c
i ), so ci(w)Tx∼ N(dcT

i x,xTV c
i x).

Pr{ω |Nec{ ˜̄ci(ω)Tx≥ fi} ≥ δi} ≥ γi

⇔ Pr{ω |ci(ω)Tx≥ fi + L−1(1− δi)αcT
i x} ≥ γi

⇔ Pr
{

w
∣∣∣ ci(ω)Tx−dcT

i x√
xTV c

i x
≥ fi+L−1(1−δi)α

cT
i x−dcT

i x√
xTV c

i x

}
≥ γi

⇔Φ
(

fi+L−1(1−δi)α
cT
i x−dcT

i x√
xTV c

i x

)
≤ 1− γi

⇔ fi ≤ dcT
i x−L−1(1− δi)αcT

i x + Φ−1(1− γi)
√

xTV c
i x.

The proof is completed. ⊓⊔

Theorem 3.9. Assume that the fuzzy random variables ˜̄er j and ˜̄br are as same as the
assumption in Theorem 3.7, j = 1,2, · · · ,n, r = 1,2, · · · , p. Then for certain confi-
dence level θr,ηr ∈ [0,1], r = 1,2, · · · , p, we have

Pr{ω|Nec{ ˜̄er(ω)Tx≤ ˜̄br(ω)} ≥ θr} ≥ ηr

⇔Φ−1(1−ηr)
√

xTV e
r x+(σb

r )2−L−1(1−θr)αb
r −R−1(θr)β eT

r x+(db
r −deT

r x)≥ 0.

When ηr ≥ 0.5,

X ′ := {x ∈Rn|Pr{ω |Nec{ ˜̄er(ω)Tx≤ ˜̄br(ω)} ≥ θr} ≥ ηr,r = 1,2, · · · , p;x≥ 0}

is a convex set.

The proof is similar to Theorem 3.7, so here we skip the proof of Theorem 3.9 over.

By Theorems 3.8 and 3.9, the model (3.55) is equivalent to the following multi-

objective problem,

⎧
⎨
⎩

max [ f1, f2, · · · , fm]

s.t.

{
fi ≤ dcT

i x−L−1(1− δi)αcT
i x + Φ−1(1− γi)

√
xTV c

i x, i = 1,2, · · · ,m,

x ∈ X ′

(3.56)

or {
max [G1(x),G2(x), · · · ,Gm(x)]
s.t. x ∈ X ′,

(3.57)

where Gi(x) := dcT
i x−L−1(1− δi)α

cT
i x + Φ−1(1− γi)

√
xTV c

i x, i = 1,2, · · · ,m.
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3.4.2.2 Surrogate Worth Trade-Off Method

The surrogate worth trade-off method, which is called SWT method for short, was

proposed by Haimes et al. [399] in 1974 to solve the multi-objective programming

problem. It can be applied to continuous variables, objective functions and con-

straints which can be differentiated twice.

In its original version, SWT is, in principle, noninteractive and assumes continu-

ous variables and twice differentiable objective functions and constraints. It consists

of four steps: (1) generate a representative subset of efficient solutions, (2) obtain

relevant trade-off information for each generated solution, (3) interact with DM t

obtain information about preference expressed in terms of worth, and (4) retrieve

the best-compromise solution from the information obtained.

Take the problem (3.53) as an example and list the detailed steps according to

[400] as follows:

Step 1: Generation of a Representative Subset of Efficient Solutions. The ε-

constraint method is recommended to obtain the representative subset of efficient

solutions. Without loss of generality, we choose a reference objective H1 and for-

mulate the ε-constraint problem:

⎧
⎨
⎩

maxH1(x)

s.t.

{
Hi(x)≥ εi, i = 2,3, · · · ,m
x ∈ X .

(3.58)

Although there is no rule to specify which objective should be chosen as a reference,

the most important objective is recommended. To guarantee that the ε-constraint

problem has feasible solution, a reasonable εi should be selected, usually, in the

range [ai,bi], where ai = minx∈X Hi(x) and bi = maxx∈X Hi(x).

Step 2: Obtaining Trade-off Information. In the process of solving the problem

(3.58), the trade-off information can easily be obtained merely by observing the op-

timal Kuhn-Tucker multipliers corresponding to the ε-constraints. Let these mul-

tipliers be denoted by λ1i(x(ε)). If λ1k(x(ε)) > 0(k = 1,2, · · · ,m), then the effi-

cient surface in the objective function space around the neighborhood of Hε =
(H1(x(ε)),H2(x(ε)), · · · ,Hm(x(ε)))T can be represented by H1 = (H1,H2, · · · ,Hm)
and

λ1k(x(ε)) =− ∂H1

∂Hk

∣∣∣∣
H

= Hε
, k = 2,3, · · · ,m. (3.59)

Thus each λ1k(x(ε)) represents the efficient partial trade-off rate between H1 and Hk

at Hε when all other objective are held fixed at their respective values at x(ε). The

adjective “efficient” is used to signify that after the trade-off is made the resulting

point remains on the efficient surface. The detail can be referred to [400].
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Step 3: Interacting with the Decision Maker to Elicit Preference. DM is supplied

with trade-off information from Step 2 and the levels of all criteria. He then ex-

presses his ordinal preference on whether or not (and by how much) he would like

to make such a trade at that level. Haimes et al. [400] constructed the following

surrogate worth function: DM is asked “How much would you like to improve H1

by λ1k(x(ε)) units per one-unit degradation of Hk while all other objective remain

fixed at Hl(x(ε)), l 
= 1,k? Indicate your preference on a scale of -10 to 10, where

the values have the following meaning:

(1). +10 means you have the greatest desire to improve improve H1 by λ1k(x(ε))
units per one-unit degradation of Hk,

(2). 0 means you are indifferent about the trade,

(3). -10 means you have the greatest desire to degrade improve H1 by λ1k(x(ε))
units per one-unit improvement in Hk,

Values between -10 and 0, and 0 and 10 show proportional desire to make the trade.”

DM’s response is recorded as w1k(x(ε)), called the surrogate worth of the trade-

off between H1 and Hk at the efficient solution x(ε). At a particular efficient solution,

there will be m−1 questions to obtain w1k(x(ε)),k = 2,3, · · · ,m.

Step 4: Retrieving the Best-Compromise Solution. If there exists an efficient solu-

tion x(ε0) such that

w1k(x(ε0)) = 0, k = 2,3, · · · ,m, (3.60)

the DM has obtained a best-compromise solution. Thus equation (3.60) is the best-

compromise condition of x(ε0). If there is such x(ε0) in the representative set, then

stop and output x(ε0). Otherwise we use multiple regression to construct the surro-

gate worth function as follows,

w1k = w1k(H1,H2, · · · ,Hm), k = 2,3, · · · ,m.

Then the system of equations

w1k(H1,H2, · · · ,Hm) = 0, k = 2,3, · · · ,m,

is solved to determine (H∗
2 , · · · ,H∗

m).
Let ε0k = H∗

k (k = 2, · · · ,m), ε0 = (ε02, · · · ,ε0m)T . The best-compromise solution

x(ε0) is then found by solving the problem (3.58).

3.4.2.3 Numerical Example

We use the Interactive fuzzy satisfied method to solve the equivalent form (4.59) of

the linear Fu-Ra CCM.

Usually, people will require that the value confidence level γi is no less than 0.5,

so we will not consider the situation of γi < 0.5, and we only consider the situation of

γi ≥ 0.5. If γi ≥ 0.5, then Φ−1(1− γi)≤ 0. By equation (3.54), Hi(x), i = 1,2, · · · ,m
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are concave function. So maxx∈X Hi(x) is a convex programming, it’s easy to find

the maximal value point. For model minx∈X Hi(x), its optimal solution should be

get at the boundary of the convex set X . If there exists no solution of maxx∈X Hi(x)
or minx∈X Hi(x), or H1

i = ∞, H0
i =−∞, the decision maker may set the value of H1

i ,

H0
i subjectively.

For model (3.53), by model (3.29) in Interactive fuzzy satisfied method, we get

⎧
⎪⎪⎨
⎪⎪⎩

min λ

s.t.

⎧
⎨
⎩

R−1(δi)β cT
i x + dcT

i x + Φ−1(1− γi)
√

xTV c
i x≥ H0

i +
(µ̄i−λ )(H1

i −H0
i ), i = 1,2, · · · ,m

0≤ λ ≤ 1,x ∈ X .

(3.61)

When γi ≥ 0.5, i = 1,2, · · · ,m, model (3.29) is convex programming, so it’s easy to

get the global optimal solution.

According to Theorem 3.5, the optimal solution of model (3.61) is a efficient

solution of model (3.53), thereby, it is a γi − Pr δi − Pos fuzzy random efficient

solution of model (3.46).

For model (3.57), by model (3.29) in Interactive fuzzy satisfied method, we get

⎧
⎪⎪⎨
⎪⎪⎩

min λ

s.t.

⎧
⎨
⎩

dcT
i x−L−1(1− δi)αcT

i x + Φ−1(1− γi)
√

xTV c
i x≥ G0

i +
(µ̄i−λ )(G1

i −G0
i ), i = 1,2, · · · ,m

x ∈ X ′.

(3.62)

When γi ≥ 0.5, Φ−1(1− γi)
√

xTV c
i x is a concave function,

According to Theorem 3.5, the optimal solution of model (3.62) is a efficient

solution of model (3.57), thereby, it is a γi−Pr δi −Nec fuzzy random efficient

solution of model (3.55).

Example 3.7. We use the following example to illustrate this interactive fuzzy sat-

isfied method. Consider the following Pr-Pos constrained multi-objective linear

model:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max [ f1, f2]

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pr{ω |Pos{ ˜̄ξ1x1 + ˜̄ξ2x2 + ˜̄ξ3x3 + ˜̄ξ4x4 + ˜̄ξ5x5 ≥ f1} ≥ δ1} ≥ γ1

Pr{ω |Pos{c1
˜̄ξ6x1 + c2

˜̄ξ7x2 + c3
˜̄ξ8x3 + c4

˜̄ξ9x4 + c5
˜̄ξ10x5 ≥ f2} ≥ δ2}≥γ2

x1 + x2 + x3 + x4 + x5 ≤ 350

x1 + x2 + x3 + x4 + x5 ≥ 300

4x1 + 2x2 + 1.5x3 + x4 + 2x5 ≤ 1085

x1 + 4x2 + 2x3 + 5x4 + 3x5 ≤ 660

x1 ≥ 20,x2 ≥ 20,x3 ≥ 20,x4 ≥ 20,x5 ≥ 20,

(3.63)
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where c = (c1,c2,c3,c4,c5) = (1.2,0.5,1.3,0.8,0.9),

˜̄ξ1 = (ρ1,3,3)LR,with ρ1 ∼ N(113,1),
˜̄ξ2 = (ρ2,8,8)LR,with ρ2 ∼ N(241,4),
˜̄ξ3 = (ρ3,3,3)LR,with ρ3 ∼ N(87,1),
˜̄ξ4 = (ρ4,7,7)LR,with ρ4 ∼ N(56,2),
˜̄ξ5 = (ρ5,5,5)LR,with ρ5 ∼ N(92,1),
˜̄ξ6 = (ρ6,10,10)LR,with ρ6 ∼ N(628,1),
˜̄ξ7 = (ρ7,7,7)LR,with ρ7 ∼ N(143,2),
˜̄ξ8 = (ρ8,12,12)LR,with ρ8 ∼ N(476,2),
˜̄ξ9 = (ρ9,5,5)LR,with ρ9 ∼ N(324,2),
˜̄ξ10 = (ρ10,8,8)LR,with ρ10 ∼ N(539,2),

where ρi (i = 1,2, · · · ,10) are independent random variables.

Let δi = γi = 0.9, then R−1(δi) = 0.1, Φ−1(1− γi) =−1.28, i = 1,2. According

to (3.53), we can get model (3.63) is equivalent to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max H1(x) = 0.1(3x1 + 8x2 + 3x3 + 7x4 + 5x5)+ (113x1 + 241x2 + 87x3 + 56x4

+92x5)−1.28
√

x2
1 + 4x2

2 + x2
3 + 2x2

4 + x2
5

max H2(x)=0.1(12x1 + 3.5x2 + 15.6x3 + 4x4 + 7.2x5)+ (753.6x1 + 71.5x2+

618.8x3 + 259.2x4 + 485.1x5)−1.28
√

x2
1 + 2x2

2 + 2x2
3 + 2x2

4 + 2x2
5

s.t.

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1 + x2 + x3 + x4 + x5 ≤ 350

x1 + x2 + x3 + x4 + x5 ≥ 300

4x1 + 2x2 + 1.5x3 + x4 + 2x5 ≤ 1085

x1 + 4x2 + 2x3 + 5x4 + 3x5 ≤ 660

x1 ≥ 20,x2 ≥ 20,x3 ≥ 20,x4 ≥ 20,x5 ≥ 20.
(3.64)

The computation of H0
i and H1

i (i = 1,2) is as follows:

H1
1 = 43764.82, H0

1 = 30079.87, H1
2 = 225511.5, H0

2 = 158125.6.

So we can get the membership function of H1 and H2 as follows,

µ1(H1(x)) =

⎧
⎨
⎩

1, H1(x) > 43764.82
H1(x)−30079.87

13684.95 , 30079.87≤ H1(x)≤ 43764.82

0, H1(x) < 30079.87,

µ2(H2(x)) =

⎧
⎨
⎩

1, H2(x) > 225511.5
H2(x)−158125.6

67385.9 , 158125.6≤ H2(x)≤ 225511.5
0, H2(x) < 158125.6.
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Then we compute the following model to get the interactive satisfied solution,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min λ

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.1(3x1 +8x2 +3x3 +7x4 +5x5)+(113x1 +241x2 +87x3 +56x4

+92x5)−1.28
√

x2
1 +4x2

2 +x2
3 +2x2

4 +x2
5 ≥ H0

1 +(µ̄1−λ )(H1
1 −H0

1 )

0.1(12x1 +3.5x2 +15.6x3 +4x4 +7.2x5)+(753.6x1 +71.5x2

+618.8x3 +259.2x4 +485.1x5)−1.28
√

x2
1 +2x2

2 +2x2
3 +2x2

4 +2x2
5

≥ H0
2 +(µ̄2−λ )(H1

2 −H0
2 )

x1 +x2 +x3 +x4 +x5 ≤ 350

x1 +x2 +x3 +x4 +x5 ≥ 300

4x1 +2x2 +1.5x3 +x4 +2x5 ≤ 1085

x1 +4x2 +2x3 +5x4 +3x5 ≤ 660

x1 ≥ 20,x2 ≥ 20,x3 ≥ 20,x4 ≥ 20,x5 ≥ 20

0≤ λ ≤ 1.

(3.65)

After solving the model (3.65), we can get the satisfied solution of model (3.63),

which are listed in Table 3.3.

Table 3.3 Employ the interactive fuzzy satisfied method based on possibility(γi = 0.9,δi =
0.9)

µ̄1 µ̄2 H1 H2 µ1(H1) µ2(H2) x1 x2 x3 x4 x5 λ

1 1 41476.7 214244.8 0.833 0.833 216.1 39.6 54.3 20.0 20.0 0.167

0.95 1 41093.2 215725.6 0.805 0.855 216.6 37.0 56.4 20.0 20.0 0.145

1 0.95 41860.2 212763.6 0.861 0.811 215.6 42.2 52.3 20.0 20.0 0.139

0.90 1 40709.6 217206.0 0.777 0.877 217.1 34.4 58.4 20.0 20.0 0.123

0.85 1 40325.9 218686.0 0.749 0.899 217.6 31.9 60.5 20.0 20.0 0.101

0.80 1 39942.1 220165.5 0.721 0.921 218.1 29.3 62.5 20.0 20.0 0.079

The first line of Table 3.3 lists each reference value value of membership

function µi(H1), when the initialized membership function is 1, the value of ob-

jective function Hi(x), and its corresponding solution x. If the decision maker

hopes that improve H2(x) on the basis of sacrifice H1(x). We may consider re-

set the reference value of membership function (µ̄1, µ̄2), e.g., we set (µ̄1, µ̄2) =
(0.95,1), or (µ̄1, µ̄2) = (1,0.95). The corresponding result are listed in the sec-

ond and third lines. Suppose that when the reference value of membership func-

tion is (µ̄1, µ̄2) = (0.80,1), the decision maker is satisfied, then the interactive

process is stopped, so we obtain the 0.9-Pr 0.9-Pos satisfied solution is x∗ =
(218.1,29.3,62.5,20.0,20.0)T, and the corresponding value of objective function

is ( f ∗1 , f ∗2 ) = (39942.1,220165.5).
Furthermore, the decision maker can also verify the value of H1

i and H0
i (i = 1,2),

and built new membership function and obtain other satisfied solution.

If the decision maker is comparatively pessimistic, we use Nec measure to sub-

stitute the Pos.
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Let δi = γi = 0.9, then L−1(1−δi) = 0.9, Φ−1(1− γi) =−1.28, i = 1,2. Accord-

ing to (3.57), we can get model (3.63) is equivalent to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max G1(x) = (113x1 + 241x2 + 87x3 + 56x4 + 92x5)−0.9(3x1 + 8x2 + 3x3

+7x4 + 5x5)−1.28
√

x2
1 + 4x2

2 + x2
3 + 2x2

4 + x2
5

max G2(x) = +(753.6x1 + 71.5x2618.8x3 + 259.2x4 + 485.1x5)−0.9(12x1

+3.5x2 + 15.6x3 + 4x4 + 7.2x5)

−1.28
√

x2
1 + 2x2

2 + 2x2
3 + 2x2

4 + 2x2
5

s.t.

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1 + x2 + x3 + x4 + x5 ≤ 350

x1 + x2 + x3 + x4 + x5 ≥ 300

4x1 + 2x2 + 1.5x3 + x4 + 2x5 ≤ 1085

x1 + 4x2 + 2x3 + 5x4 + 3x5 ≤ 660

x1 ≥ 20,x2 ≥ 20,x3 ≥ 20,x4 ≥ 20,x5 ≥ 20.
(3.66)

And suppose the value of G1
i and G0

i (i = 1,2) are

G1
1 = 43477.1, G0

1 = 29855.9, G1
2 = 224706.3, G0

2 = 157567.1.

The corresponding satisfied results list in Table 3.4.

Table 3.4 Employ the interactive fuzzy satisfied method based on necessity(γi = 0.9,δi = 0.9)

µ̄1 µ̄2 G1 G2 µ1(G1) µ2(G2) x1 x2 x3 x4 x5 λ
1 1 41201.6 213490.2 0.833 0.833 216.1 39.6 54.3 20.0 20.0 0.167

0.95 1 40820.2 214967.1 0.805 0.855 216.6 37.0 56.4 20.0 20.0 0.145

1 0.95 41582.9 212013.0 0.861 0.811 215.6 42.2 52.3 20.0 20.0 0.139

0.90 1 40438.6 216443.5 0.777 0.877 217.1 34.4 58.5 20.0 20.0 0.123

0.85 1 40057.0 217919.5 0.749 0.899 217.6 31.9 60.5 20.0 20.0 0.101

0.80 1 39675.3 219395.1 0.721 0.921 218.1 29.3 62.6 20.0 20.0 0.079

3.4.3 Non-linear Fu-Ra CCM and Fu-Ra Simulation-Based

Adaptive Weight GA

For Fu-Ra CCM, we use Fu-Ra simulation-based adaptive weight GA to deal with.

3.4.3.1 Fu-Ra Simulation 2 for Critical Value

Let’s introduce the simulation for Fu-Ra CCM, that is, we need to find the critical

value f̄ under the predetermined confidence levels. In the following, we explain how

to find the maximal value f̄ for any given confidence levels γ and δ ,

Ch{ f (ξ )≥ f̄} ≥ β .
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If we use the Pr-Pos based chance, then the critical value f̄ should satisfy

Pr{ω |Pos{{ f (ξ )≥ f̄ } ≥ δ} ≥ γ, (3.67)

which means

f̄ = max{ f̄ |Pr{ω |Pos{{ f (ξ )≥ f̄ } ≥ δ} ≥ γ}.

If ξ ia s continuous Fu-Ra vector, then the maximal value f̄ must be achieved at the

equality case

Pr{ω |Pos{{ f (ξ )≥ f̄ } ≥ δ}= γ.

First, we sample N independent random vector ω1,ω2, · · · ,ωN from Ω according to

the probability measure Pr, and define

h(ωn) =

{
1, if Pos{ f (ξ (ωn))≥ f̄ } ≥ δ
0, otherwise,

(3.68)

for n = 1,2, · · · ,N, which are a sequence of random variables. And if for all n, f̄

meets (3.67), then we have E[h(ωn)] = γ .

By the strong law of large numbers, we have

∑N
n=1 h(ωn)

N
→ γ (3.69)

as N → ∞. Note that the sum ∑N
n=1 h(ωn) is just the number of ωn satisfying

Pos{ f (ξ (ωn))≥ f̄} ≥ δ .

Let N′ be the integer part of γN. Then the value f̄ is equal to the N′i th largest

element in the sequence { f̄1, f̄2, · · · , f̄N}, with

f̄n = sup{ fn|Pos{ f (ξ (ωn))≥ fn} ≥ β}, (3.70)

for n = 1,2, · · · ,N, which can be obtained by fuzzy simulations.

We conclude the procedure as follows:

Step 1. Let f̄ =−∞.

Step 2. Generate ω from Ω according to the probability measure Pr.

Step 3. Generate a determined vector f (ξ (ω)) uniformly from the δ -cut of fuzzy

vector f (ξ (ω)).

Step 4. If f (ξ (ω))≥ f̄ , then let f̄ = f (ξ (ω)).

Step 5. Return step 3, and repeat M times.

Step 6. Return step 2, and repeat N times.

Step 7. Set N′ = γiN.

Step 8. Return the N′th largest element in { f̄1, f̄2, · · · , fN}.
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If we use the Pr-Nec based chance, then we have

Pr{ω |Nec{{ f (ξ )≥ f̄ } ≥ δ} ≥ γ. (3.71)

We could adopted the above procedure similarly to estimate f̄ , because that

Nec{ f (ξ )≥ f̄ } ≥ δ ⇔ Pos{ f (ξ ) < f̄ } ≤ (1− δ ).

We make the changes to step 3 and step 4 respectively:

Step 3’. Generate a determined vector f (ξ (ω)) uniformly from the (1− δ )-cut of

fuzzy vector f (ξ (ω)).

Step 4’. If f (x,ξ (ω)) < f̄ , then let f̄ = f (ξ (ω)).

Example 3.8. We employ the Fu-Ra simulation 2 to find the maximal value f̄ such

that Ch{ξ 2
1 + ξ 2

2 ≥ f̄ }(0.9)≥ 0.9, where ξ1 and ξ2 are Fu-Ra variables defined as

ξ1 = (ρ1,ρ1 + 1,ρ1 + 2), with ρ1 ∼U(0,1),
ξ2 = (ρ2,ρ2 + 1,ρ2 + 2), with ρ1 ∼U(1,2).

After a run of Fu-Ra simulation 2 with 5000 cycles, we get that f̄ = 16.39.

3.4.3.2 Adaptive Weight GA

Gen and Cheng [66] proposed an adaptive weight approach which utilizes some use-

ful information from the current population to readjust weights to obtain a search

pressure toward a positive ideal point. Without loss of generality, consider the max-

imization problem with q objectives. For the solutions examined in each generation,

we define two extreme points: the maximum extreme point z+ and the minimum

point z− in criteria space as follows:

z+ = {zmax
1 ,zmax

2 , · · · ,zmax
q },

z− = {zmin
1 ,zmin

2 , · · · ,zmin
q },

where zmin
k and zmax

k are the maximal value and minimal value for objective k in

the current population. Let P denote the set of the current population. For a given

individual x, the maximal value and minimal value for each objective are defined as

follows:
zmax

k = max{ fk(x)|x ∈ P},k = 1,2, · · · ,q,

zmin
k = min{ fk(x)|x ∈ P},k = 1,2, · · · ,q.

The hyperparallelogram defined by the two extreme points is a minimal hyperpar-

allelogram containing all current solutions. The two extreme points are renewed at

each generation. The maximum extreme point will gradually approximate the pos-

itive ideal point. The adaptive weight for objective k is calculated by the following

equation:
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wk =
1

zmax
k − zmin

k

,k = 1,2, · · · ,q.

For a given individual x, the weighted-sum objective function is given by the fol-

lowing equation:

z(x) =
q

∑
k=1

wk(zk− zmin
k )

=
q

∑
k=1

zk−zmin
k

zmax
k −zmin

k

=
q

∑
k=1

fk(x)−zmin
k

zmax
k −zmin

k

.

(3.72)

As the extreme points are renewed at each generation, the weights are renewed

accordingly. Equation (3.72) is hyperplane defined by the following extreme point

in current solutions:
(zmax

1 ,zmin
2 , · · · ,zmin

k , · · · ,zmin
q )

(zmin
1 ,zmax

2 , · · · ,zmin
k , · · · ,zmin

q )
· · ·
(zmin

1 ,zmin
2 , · · · ,zmax

k , · · · ,zmin
q )

· · ·
(zmin

1 ,zmin
2 , · · · ,zmin

k , · · · ,zmax
q ).

The hyperplane divides the criteria space Z into two half-space: One half-space

contains the positive ideal point, denoted as Z+, and the other half-space contains the

negative ideal point, denoted as Z−. All Pareto solutions examined lie in the space

Z+, and all points lying in Z+ have larger fitness values than those in the points in

the space Z−. As the maximum extreme point approximates the positive ideal point

along with the evolutionary progress, the hyperplane will gradually approach the

positive ideal point. Therefore, the adaptive weight method can readjust its weights

according to the current population to obtain a search pressure toward the positive

ideal point.

For the minimization case, we just need to transform the original problem into its

equivalent maximization problem and then apply (3.72). For a maximization prob-

lem, (3.72) can be simplified as follows:

z(x) =
q

∑
k=1

wkzk

=
q

∑
k=1

zk

zmax
k −zmin

k

=
q

∑
k=1

fk(x)

zmax
k −zmin

k

.

Let us look at an example of a bicriteria maximization problem:

{
max{z1 = f1(x),z2 = f2(x)}
s.t. gi(x)≤ 0, i = 1,2, · · · ,m.
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For a given generation, two extreme points are identified as

zmax
1 = max{z1(x

j), j = 1,2, · · · , pop− size},
zmax

2 = max{z2(x
j), j = 1,2, · · · , pop− size},

zmin
1 = min{z1(x

j), j = 1,2, · · · , pop− size},
zmin

2 = min{z2(x
j), j = 1,2, · · · , pop− size},

and the adaptive weights are calculated as

w1 =
1

zmax
1 − zmin

1

, w2 =
1

zmax
2 − zmin

2

.

The weighted-sum objective function is then given by

z(x) = w1z1 + w2z2 = w1 f1(x)+ w2 f2(x).

It is an adaptive moving line defined by the extreme points (zmax
1 ,zmin

2 ) and

(zmin
1 ,zmax

2 ), as shown in Figure 3.7. The rectangle defined by the extreme point

(zmax
1 ,zmax

2 ) and (zmin
1 ,zmin

2 ) is the minimal rectangle containing all current solutions.

Fig. 3.7 Adaptive weights and adaptive hyperplane

One of important issues in the genetic multi-objective optimization is how to

handle constraints because genetic operators used to manipulate chromosomes often

yield infeasible offspring. Gen and Cheng[68] suggested an adaptive penalty method

to deal with infeasible individuals. Given an individual x in current population P(t),
the adaptive penalty function is constructed as follows:
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p(x) = 1− 1

m

m

∑
i=1

(
Δbi(x)

Δbmax
i

)a

.

where Δbi(x) = max{0,gi(x)−bi}, Δbmax
i = max{ε,Δbi(x)|x ∈ P(t)}.

Where Δbi(x) is the value of violation for constraint i for the ith chromosome,

Δbmax
i the maximum of violation for constraint i among current population, and ε

a small positive number used to have penalty avoid from zero division. For highly

constrained optimization problems, the infeasible solutions take a relative big por-

tion among population at each generation. The penalty approach adjusts the ratio of

penalties adaptively at each generation to make a balance between the preservation

of information and the pressure for infeasibility and avoid overpenalty. With the

penalty function, the fitness function then takes the following form:

eval(x) = z(x)p(x).

The overall procedure of adaptive weight approach is summarized as follows:

Step 1. Initialization. Generate the initial population randomly.

Step 2. Evaluation. Calculate the objective value, penalty value, and fitness value for

each individual.

Step 3. Pareto set. Update the set of Pareto solutions.

Step 4. Selection. Select the next generation using the roulette wheel method.

Step 5. Production. Produce offspring with crossover and mutation.

Step 6. Termination. If the maximal generation is reached, stop; otherwise, go to

step 2.

3.4.3.3 Numerical Example

We will use the Fu-Ra simulation-based adaptive weight GA to deal with the non-

linear Fa-Ra CCM.

Example 3.9. Let us consider a multi-objective programming with fuzzy random

coefficients.
⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

max F1(x,ξ ) = 2ξ 2
1 x1 + 3ξ 2

2 x2− ξ3x3 +
√

ξ 2
4 +(3− ξ5x4)2

max F2(x) =−x1 + 2.5x2 + 1.5x3

s.t.

⎧
⎪⎪⎨
⎪⎪⎩

5x1−3x2
2 + 6

√
x3 + x4 ≤ 80

ξ6x1 + ξ 2
7 x2− ξ8x3 ≤ ξ9

x1 + x2 + x3 + x4 ≤ 18

x1,x2,x3,x4 ≥ 0,

(3.73)
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where ξi(i = 1,2, · · · ,9) are fuzzy random variables as follows,

ξ1 = (ρ1−0.1,ρ1,ρ1 + 0.2), with ρ1 ∼U(0.4,0.5),
ξ2 = (ρ2−0.2,ρ2,ρ2 + 0.2), with ρ2 ∼U(0.6,0.7),
ξ3 = (ρ3−0.2,ρ3,ρ3 + 0.2), with ρ3 ∼U(0.7,0.8),
ξ4 = (ρ4−0.2,ρ4,ρ4 + 0.2), with ρ4 ∼ N(1,0.1),
ξ5 = (ρ5−0.2,ρ5,ρ5 + 0.2), with ρ5 ∼ N(4,0.1),
ξ6 = (ρ6−0.5,ρ6,ρ6 + 0.5), with ρ6 ∼ N(4,0.1),
ξ7 = (ρ7−0.5,ρ7,ρ7 + 0.5), with ρ7 ∼ N(6,0.1),
ξ8 = (ρ8−0.5,ρ8,ρ8 + 0.5), with ρ8 ∼ N(4.5,0.1),
ξ9 = (ρ9−2,ρ9,ρ9 + 2), with ρ9 ∼ N(20,4).

(3.74)

From the mathematical view, the problem (3.73) is not well defined because of the

uncertain parameters. Then we apply the chance operator to deal with this uncertain

programming.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max { f1, f2}

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ch{2ξ1x1 + 3ξ 2
2 x2− ξ3x3 +

√
ξ 2

4 +(3− ξ5x4)2 ≥ f1}(0.9)≥ 0.9

−x1 + 2.5x2 + 1.5x3 ≥ f2

5x1−3x2
2 + 6

√
x3 + x4 ≤ 80

Ch{ξ6x1 + ξ7x2− ξ8x3 ≤ ξ9}(0.9)≥ 0.9
x1 + x2 + x3 + x4 ≤ 18

x1,x2,x3,x4 ≥ 0.

(3.75)

Since there exists non-linear objective function and constraint, we cannot transform

it into it’s crisp equivalent model. In order to solve it, we use the Fu-Ra simulation

based adaptive weight GA to deal with it.

After running, we get a solution as follows:

x1 = 11.32,x2 = 3.44,x3 = 3.24,x4 = 0;

f1 = 120.64, f2 = 2.14.

3.5 Fu-Ra DCM

Fu-Ra DCM is based on selecting the decision with maximize the chance to meet

the event.

Uncertain environment, event, and chance function are key elements in

dependent-chance model. So let define them first.

By uncertain environment (in this case the fuzzy random environment), we mean

the fuzzy random constraints represented by

gr(x,ξ )≤ 0, r = 1,2, · · · , p, (3.76)

where x is a decision vector, and ξ is a fuzzy random vector.
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By event we mean the system of inequalities

hk(x,ξ )≤ 0, k = 1,2, · · · ,q. (3.77)

The chance function of an event ε is characterized by (3.77) is defined as the chance

measure of the event ε ,

f (x) = Ch{hk(x,ξ )≤ 0,k = 1,2, · · · ,q} (3.78)

subject to the uncertain environment (3.76).

3.5.1 General Model for Fu-Ra DCM

The decision maker determine the ideal objective values f̄i for each objective

fi(x,ξ ), and maximize the chance measure of the fuzzy random events fi(x,ξ )≥ f̄i

under a confidence level γi.

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max

⎡
⎢⎢⎣

Ch{ f1(x,ξ )≥ f̄1(γ1)}
Ch{ f2(x,ξ )≥ f̄2(γ2)}
· · ·
Ch{ fm(x,ξ )≥ f̄m(γm)}

⎤
⎥⎥⎦

s.t.

{
gr(x,ξ )≤ 0, r = 1,2, · · · , p

x ∈ X ,

(3.79)

where ξ = (ξ1,ξ2, · · · ,ξn) is fuzzy random vector, Ch{·} denotes the chance mea-

sure of the fuzzy random event in {·}, γi,ηr,θr ∈ [0,1] are the predetermined confi-

dence level, i = 1,2, · · · ,m,r = 1,2, · · · , p.

If we introduce the new variables δi, i = 1,2, · · · ,m, then the model (3.86) can be

written as the following equivalent form,

⎧
⎪⎪⎨
⎪⎪⎩

max [δ1,δ2, · · · ,δm]

s.t.

⎧
⎨
⎩

Ch{ fi(x,ξ )≥ f̄i}(γi)≥ δi, i = 1,2, · · · ,m
Ch{gr(x,ξ )≤ 0}(ηr)≥ θr, r = 1,2, · · · , p

x ∈ X .

(3.80)

Definition 3.12. If x∗ is an efficient solution of problem (3.80), we call it as a fuzzy

random dependent chance efficient solution.

According to the definition of the chance measure, model (3.80) is also can be writ-

ten as:
⎧
⎪⎪⎨
⎪⎪⎩

max [δ1,δ2, · · · ,δm]

s.t.

⎧
⎨
⎩

Pr{ω |Pos{ fi(x,ξ )≥ f̄i} ≥ δi} ≥ γi, i = 1,2, · · · ,m
Pr{ω |Pos{gr(x,ξ )≤ 0} ≥ θr} ≥ ηr, r = 1,2, · · · , p

x ∈ X .

(3.81)
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Let x∈ Rn, for determined confidence level ηr,θr, if x≥ 0 and Pr{w|Pos{gr(x,ξ )≤
0} ≥ θr} ≥ ηr are tenable, then x is a feasible solution of model (3.80) or (3.81).

And let X be these set of the whole feasible solution of model (3.86) or (3.81).

Remark 3.12. IF the fuzzy random vector ξ delegates to random vector, then we

have

Ch{ fi(x,ξ )≥ f̄i}(γi) =

{
1, if Pr{ω | fi(x,ξ )≥ f̄i} ≥ γi

0, if Pr{ω | fi(x,ξ )≥ f̄i}< γi
i = 1,2, · · · ,m.

So maxCh{ fi(x,ξ )≥ f̄i}(γi) is equivalent to maxPr{ fi(x,ξ )≥ f̄i}, i = 1,2, · · · ,m.

Similarly, for ∀ r = 1,2, · · · , p, we have

Pr{ω |Pos{gr(x,ξ )≤ 0} ≥ θr} ≥ ηr ⇔ Pr{ω |gr(x,ξ )≤ 0} ≥ ηr.

So model (3.86) is equivalent to:

⎧
⎨
⎩

max [Pr{ fi(x,ξ )≥ f̄i}, i = 1,2, · · · ,m]

s.t.

{
Pr{ω |gr(x,ξ )≤ 0} ≥ ηr, r = 1,2, · · · , p

x ∈ X .
(3.82)

The model (3.82) is the extension of the CCM in random programming. When there

is not constraint in model (3.82), then it is coincident to the CCM in random pro-

gramming.

Remark 3.13. If the fuzzy random vectors ξ delegate to fuzzy vectors, then we have

Pr{ω |Pos{ fi(x,ξ )≥ f̄i} ≥ δi} ≥ γi ⇔ Pos{ fi(x,ξ )≥ f̄i} ≥ δi, i = 1,2, · · · ,m
Pr{ω |Pos{gr(x,ξ )≤ 0} ≥ θr} ≥ ηr ⇔ Pos{gr(x,ξ )≤ 0} ≥ θr, r = 1,2, · · · , p.

So the model(3.86)is equivalent to

⎧
⎨
⎩

max [Pos{ fi(x,ξ )≥ f̄i}, i = 1,2, · · · ,m]

s.t.

{
Pos{gr(x,ξ )≤ 0} ≥ θr, r = 1,2, · · · , p

x ∈ X .
(3.83)

The model (4.80) is the extension of the Modality model proposed by

Inuiguchi[188], If there is no possibility constraint in (4.80), it is coincident to the

Modality model.

In models (3.86) or (3.81), We can also use the chance measure based on the

necessary measure, then we have the following model

⎧
⎪⎪⎨
⎪⎪⎩

max [δ1,δ2, · · · ,δm]

s.t.

⎧
⎨
⎩

Pr{ω |Nec{ fi(x,ξ )≥ f̄i} ≥ δi} ≥ γi, i = 1,2, · · · ,m
Pr{ω |Nec{gr(x,ξ )≤ 0} ≥ θr} ≥ ηr, r = 1,2, · · · , p

x ∈ X .

(3.84)
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Denote the feasible region of (3.84) as,

XN := {x ∈ Rn|Pr{ω |Nec{gr(x,ξ )≤ 0} ≥ θr} ≥ ηr,r = 1,2, · · · , p}. (3.85)

3.5.2 Linear Fu-Ra DCM and Satisfying Trade-Off Method

In the following content we discuss how to transform the models (3.81) and (3.84) to

crisp equivalent model when the fuzzy random coefficients are some special fuzzy

variables, and we give the method to obtain the weak efficient solution.

We consider when the objective function and constraints function are linear, let

fi(x,ξ ) = ˜̄cT
i x, gr(x,ξ ) = ˜̄eT

r x− ˜̄br, then the model (3.79)can be written as,

⎧
⎨
⎩

max [Ch{ ˜̄cT
1 x≥ f̄1}(γ1), · · · ,Ch{ ˜̄cT

mx≥ f̄m}(γm)]

s.t.

{
Ch{ ˜̄eT

r x≤ ˜̄br}(ηr)≥ θr, r = 1,2, · · · , p

x≥ 0.

(3.86)

3.5.2.1 Crisp Equivalent Model

We introduce the crisp model of linear Fu-Ra DCM based on Pr-Pos and Pr-Nec,

respectively.

Crisp Equivalent Model Based on Pr-Pos

First we assume that for x ∈ X , ∀ i = 1,2, · · · ,m, β cT
i x > 0 holds. Here X denote the

feasible region of problem (3.86) and (3.81).

Theorem 3.10. Assume that ˜̄ci j is LR fuzzy random variable, for certain ω ∈Ω , the

membership function of ˜̄ci j(ω) is,

µ ˜̄ci j(ω)(t) =

⎧
⎨
⎩

L(
ci j(ω)−t

αc
i j

), t ≤ ci j(ω),αc
i j > 0

R(
t−ci j(ω)

β c
i j

), t ≥ ci j(ω),β c
i j > 0

ω ∈Ω , (3.87)

where the random vector (ci j(ω))n×1 = (ci1(ω),ci2(ω), · · · ,cin(ω))T obeys multi-

ple dimensional normally distribution, mean vector is dc
i , covariance matrix is V c

i ,

denoted by (ci j(ω))n×1 ∼ N(dc
i ,V

c
i ), αc

i j and β c
i j are the left and right spread of

˜̄ci j(ω), i = 1,2, · · · ,m, j = 1,2, · · · ,n, Suppose that the reference function L,R :

[0,1]→ [0,1] satisfy L(1) = R(1) = 0, L(0) = R(0) = 1, and it is monotone decreas-

ing function. Then Pr{ω |Pos{ ˜̄ci(ω)Tx≥ f̄i} ≥ δi} ≥ γi is equivalent to

R−1(δi)≥
f̄i−dcT

i x−Φ−1(1− γi)
√

xTV c
i x

β cT
i x

, i = 1,2, · · · ,m,
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Here Φ is standard normally distributed function, γi ∈ [0,1] are predetermined con-

fidence level.

Proof. The proof is as the same as the proof of Theorem 3.6. ⊓⊔

Because the reference function R(·) is monotone decreasing function, maxδi is

equivalent to minR−1(δi). By Theorem 3.10 and Theorem 3.7, we can transform

the model (3.81) to its crisp equivalent model (3.88),

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max

[
Φ−1(1−γi)

√
xTV c

i x+dcT
i x− f̄i

β cT
i x

, i = 1,2, · · · ,m
]

s.t.

⎧
⎨
⎩

R−1(θr)β
b
r + L−1(θr)α

eT
r x− (deT

r x−db
r )

−Φ−1(ηr)
√

xTV e
r x +(σb

r )2 ≥ 0, r = 1,2, · · · , p

x≥ 0.
(3.88)

For convenience, we denote the objective function as

Fi(x) :=
Φ−1(1− γi)

√
xTV c

i x + dcT
i x− f̄i

β cT
i x

, i = 1,2, · · · ,m. (3.89)

Actually, the decision maker usually require ηr,γi ≥ 0.5, So we suppose ηr ≥
0.5,γi ≥ 0.5 holds. By theorem 3.7, when ηr ≥ 0.5, r = 1,2, · · · , p, the feasible re-

gion X of the model (3.88) is a convex set. So the model (3.88) is a multi-objective

nonlinear fractional programming with convex set feasible region.

In order to solve (3.88), we adopt the reference point produced by

Wierzbicki[283, 284] to transform the model (3.88) to the following nonlinear pro-

gramming problem:

⎧
⎨
⎩

min D

s.t.

{
D≥ bi(ri−Fi(x)), i = 1,2, · · · ,m
x ∈ X ,

(3.90)

where ri is the reference point of each objective decided by the decision maker,

bi > 0, different value of bi will not influence the final optimal solution of model

(3.90), i = 1,2, · · · ,m.

Theorem 3.11. The optimal solution of model (3.90) is a weak efficient solution of

model (3.88).

Proof. (proof in contrapositive form) Suppose that (x∗,D∗) is the optimal solution

of model (3.90), but not the weak efficient solution of model (3.88), then there exists

x′ ∈ X , such that Fi(x
∗) < Fi(x

′), ∀ i = 1,2, · · · ,m.

So, since bi > 0, we have

bi(ri−Fi(x
∗)) > bi(ri−Fi(x

′)), i = 1,2, · · · ,m.

Set D′ = maxi bi(ri−Fi(x
′)), It is clear that (x′,D′) is the feasible solution of model

(3.90), However,
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D′ < bi(ri−Fi(x
∗))≤ D∗.

It is conflict with that (x∗,D∗) is the optimal solution of model (3.90), so (x∗,D∗) is

a weak efficient solution of model (3.88).

The prof is completed. ⊓⊔

According to Theorem 3.11, we can obtain a weak efficient solution of model (3.88)

by solving the nonlinear programming model (3.90). For regular nonlinear program-

ming problem, the existed method can only obtain the local optimal solution, unless

this nonlinear programming problem has some convexity, like quasiconvexity. In the

following text we proof that the model (3.90) has this quasiconvexity.

Definition 3.13. (Bazaraa and Shetty [132]) Set function f : S→R1, S is a nonempty

set in Rn. If for any x1,x2 ∈ R, f (x1) 
= f (x2), and λ ∈ (0,1), we have

f (λ x1 +(1−λ )x2) < max{ f (x1), f (x2)},

then f (x) is called strictly quasiconvex function.

If − f (x) is strictly quasiconvex function, then f (x) is called strictly quasicon-

cave.

Theorem 3.12. For any i = 1,2, · · · ,m, when γi ≥ 0.5, Fi(x) is strictly quasiconcave

function, ri−Fi(x) is strictly quasiconvex function, x ∈ X.

Proof. For any x1,x2 ∈ X , Fi(x
1) 
= Fi(x

2) and λ ∈ (0,1), We will prove that for any

i = 1,2, · · · ,m,

Fi(λ x1 +(1−λ )x2) > min{Fi(x
1),Fi(x

2)}, ∀i = 1,2, · · · ,m. (3.91)

We may suppose Fi(x
1) < Fi(x

2), i.e.,

Φ−1(1− γi)
√

x1TV c
i x1 + dcT

i x1− f̄i

β cT
i x1

<
Φ−1(1− γi)

√
x2TV c

i x2 + dcT
i x2− f̄i

β cT
i x2

.

Since β cT
i x1,β cT

i x2 > 0, we have

Pi(x) : = β cT
i x1

[
Φ−1(1− γi)

√
x2TV c

i x2 + dcT
i x2− f̄i

]

−β cT
i x2

[
Φ−1(1− γi)

√
x1TV c

i x1 + dcT
i x1− f̄i

]
> 0.

Denote Fi(λ x1 +(1−λ )x2)−Fi(x
1) = FP1

i (x)/FP2
i (x), it’s easy to compute that

FP2
i (x) = β cT

i x1(λ β cT
i x1 +(1−λ )β cT

i x2) > 0,

FP1
i (x) = (1−λ )β cT

i x1(dcT
i x2− f̄i)− (1−λ )β cT

i x2(dcT
i x1− f̄i)

+Φ−1(1− γi)β
cT
i x1

√
λ 2x1TV c

i x1 +(1−λ )2x2TV c
i x2 + 2λ (1−λ )x1TV c

i x2

−Φ−1(1− γi)β cT
i x1λ

√
x1TV c

i x1−Φ−1(1− γi)β cT
i x2(1−λ )

√
x1TV c

i x1.

Let ψi(x) =
√

xTV c
i x, it is easy to prove that ψi(x) is convex function, So, for certain

λ ∈ (0,1), x1 and x2, we have
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√
λ 2x1TV c

i x1 +(1−λ )2x2TV c
i x2 + 2λ (1−λ )x1TV c

i x2 = ψ(λ x1 +(1−λ )x2)

≤ λ ψ(x1)+ (1−λ )ψ(x2) = λ
√

x1TV c
i x1 +(1−λ )

√
x2TV c

i x2.

And because when γi ≥ 0.5, we have Φ−1(1− γi)≤ 0, so

1
1−λ FP1

i (x)≥ β cT
i x1(dcT

i x2− f̄i)−β cT
i x2(dcT

i x1− f̄i)

+ β cT
i x1Φ−1(1− γi)

√
x2TV c

i x2−β cT
i x2Φ−1(1− γi)

√
x1TV c

i x1

= β cT
i x1

[
Φ−1(1− γi)

√
x2TV c

i x2 + dcT
i x2− f̄i]

−β cT
i x2

[
Φ−1(1− γi)

√
x1TV c

i x1 + dcT
i x1− f̄i

]
= Pi(x) > 0.

Hence we have FP1
i (x) > 0, Fi(λ x1 +(1−λ )x2)−Fi(x

1) > 0, i.e., equation (3.91)

holds, Fi(x) is strictly quasiconcave function, bi(ri−Fi(x)) is strictly quasiconvex

function.

The proof is completed. ⊓⊔

Actually, the objective function of model (3.90) that need to minimize is,

ϕ(x) := max
1≤i≤m

bi(ri−Fi(x)).

So model (3.90) can rewrite as the following forms:

min
x∈X

max
1≤i≤m

bi(ri−Fi(x)) = min
x∈X

ϕ(x). (3.92)

We will prove that the function ϕ(x) is strictly quasiconvex function in Theorem

3.13.

Theorem 3.13. For any x ∈ X, the function ϕ(x) = max
1≤i≤m

bi(ri −Fi(x)) is strictly

quasiconvex function.

Proof. For any i = 1,2, · · · ,m, Let qi(x) = bi(ri−Fi(x)). By Theorem 3.12, function

qi(x) is strictly quasiconvex function.

Set λ ∈ (0,1), for any x1,x2 ∈ X , since X is a convex set, so λ x1 +(1−λ )x2 ∈ X ,

ϕ(λ x1 +(1−λ )x2) = max
1≤i≤m

qi(λ x1 +(1−λ )x2)

< max
1≤i≤m

[
max(gi(x

1),gi(x
2))
]

= max
[

max
1≤i≤m

gi(x
1), max

1≤i≤m
gi(x

2)
]

= max
[
ϕ(x1),ϕ(x2)

]
.

By Definition 3.13, we can get that ϕ(x) is strictly quasiconvex function.

The proof is completed. ⊓⊔

Lemma 3.5. (Bazaraa and Shetty [132]) Set S is a convex set, f (x) is strictly qua-

siconvex function, then any of the local optimal solution of model minx∈S f (x) is

global optimal solution.
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Since the feasible region X of model (3.92) is a convex set, the objective function

ϕ(x) is strictly quasiconvex function, So by Lemma 3.5, any of the local optimal

solution of model (3.90) or (3.92) is global optimal solution, it means that we can

use the existed nonlinear programming algorithm to get the global solution of model

(3.90) or (3.92), By Theorem 3.11, we know that if we obtain a weak efficient solu-

tion of model (3.88), then we also get the fuzzy random weak efficient solution of

model (3.86) and (3.81) which make the chance maximal on the confidence level γ .

Further more, when we set different reference points ri, i = 1,2, · · · ,m, we can

get different weak efficient solutions of model (3.88).

Crisp Equivalent Model Based on Pr-Nec

In the following we talk about the crisp equivalent model of model(3.84) when the

fuzzy random coefficients are some special fuzzy random variables. Assume that

∀ x ∈ XN , αcT
i x > 0 holds, i = 1,2, · · · ,m.

Theorem 3.14. Let the fuzzy random variable ˜̄ci j is as the same as the assumption in

Theorem 3.10, i = 1,2, · · · ,m, j = 1,2, · · · ,n. For certain confidence level γi ∈ [0,1]
and certain risk tolerance level f̄i, Pr{ω |Nec{ ˜̄ci(ω)Tx≥ f̄i}≥ δi}≥ γi is equivalent

to

L−1(1− δi)≤
Φ−1(1− γi)

√
xTV c

i x− f̄i + dcT
i x

αcT
i x

, i = 1,2, · · · ,m,

where Φ is standard normally distributed.

Proof. Similar to the proof of Theorem 3.6, For certain ω ∈ Ω , ˜̄ci(ω)Tx is L-

R fuzzy number, denoted by ˜̄ci(ω)Tx = (ci(ω)Tx, αcT
i x, β cT

i x)LR, and ci(ω)Tx ∼
N(dcT

i x,xTV c
i x).

For given confidence level γi ∈ [0,1] and predetermined risk tolerance level f̄i,

we have
Pr{ω |Nec{ ˜̄ci(ω)Tx≥ f̄i} ≥ δi} ≥ γi

⇔ Pr{ω |ci(ω)Tx≥ f̄i + L−1(1− δi)αcT
i x} ≥ γi

⇔ Pr{ω | ci(ω)Tx−dcT
i x√

xTV c
i x

≥ f̄i+L−1(1−δi)α
cT
i x−dcT

i x√
xTV c

i x
} ≥ γi

⇔Φ
(

f̄i+L−1(1−δi)α
cT
i x−dcT

i x√
xTV c

i x

)
≤ 1− γi

⇔ L−1(1− δi)αcT
i x≤Φ−1(1− γi)

√
xTV c

i x− f̄i + dcT
i x

⇔ L−1(1− δi)≤ Φ−1(1−γi)
√

xTV c
i x− f̄i+dcT

i x

αcT
i x

.

The proof is completed. ⊓⊔

Because the reference function L(·) is monotone decreasing function, maxδi is

equivalent to maxL−1(1−δi), so, by theorem 3.14 and theorem 3.9, the crisp equiv-

alent model of model (3.84)is
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⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max

[
Φ−1(1−γi)

√
xTV c

i x− f̄i+dcT
i x

αcT
i x

, i = 1,2, · · · ,m
]

s.t.

⎧
⎨
⎩

Φ−1(1−ηr)
√

xTV e
r x +(σb

r )2−L−1(1−θr)αb
r −R−1(θr)β eT

r x

+(db
r −deT

r x)≥ 0, r = 1,2, · · · , p

x≥ 0.
(3.93)

When ηr ≥ 0.5, Through Theorem 3.9 we know that the feasible region XN of model

(3.93) is a convex set, r = 1,2, · · · , p. Denote the objective function of model (3.93)

by

Gi(x) :=
Φ−1(1− γi)

√
xTV c

i x− f̄i + dcT
i x

αcT
i x

, i = 1,2, · · · ,m. (3.94)

Since the difference between function Gi(x) and Fi(x) in equation (3.89) is the dif-

ference of denominator αcT
i x and β cT

i x. So the following discussion is as similar as

the above “Crisp equivalent model based on Pr-Pos”.

Still we adopt the reference point method to transform the multi-objective frac-

tional programming problem(3.93) to nonlinear programming problem,

⎧
⎨
⎩

min D

s.t.

{
D≥ bi(ri−Gi(x)), i = 1,2, · · · ,m
x ∈ XN .

(3.95)

Similar to the proof of Theorem 3.11, 3.12 and 3.13, we have the following

conclusion:

Theorem 3.15. The optimal solution of model (3.95 is a weak efficient solution of

model (3.93).

Proof. The proof is as the same as the proof of Theorem 3.11 and Theorem 3.13. ⊓⊔

Theorem 3.16. (i) For any i = 1,2, · · · ,m, when γi ≥ 0.5, Gi(x) is strictly quasicon-

cave function, ri−Gi(x) is strictly quasiconvex function, x ∈ XN .

(ii) ψ(x) := max1≤i≤m bi(ri−Gi(x)) is strictly quasiconvex function, x ∈ XN .

Proof. The proof is as the same as the proof of Theorem 3.12 and Theorem. ⊓⊔

After introducing ψ(x) = maxi=1,2,··· ,m bi(ri−Gi(x)), model (3.95) can be written

as the following form,

min
x∈XN

max
i=1,2,··· ,m

bi(ri−Gi(x)) = min
x∈XN

ψ(x). (3.96)

Because of the feasible region XN of model (3.96) is a convex set, the objective

function ψ(x) is strictly quasiconvex function, by Lemma 3.5, any of the local op-

timal solution of (3.96) is the global optimal solution, so we can directly use the

nonlinear programming algorithm to get the global optimal solution of model (3.96)

or (3.95), thereby, we get a weak efficient solution of model (3.93).



3.5 Fu-Ra DCM 195

3.5.2.2 Satisfying Trade-Off Method

The satisfying trade-off method for multi-objective programming problems was pro-

posed by Nakayama [368, 397]. It is an interactive method combining the satisfying

level method with the ideal point method. This method can be applied to not only

the linear multi-objective but also the nonlinear multi-objective programming.

{
max {H1(x,ξ ),H2(x,ξ ), · · · ,Hm(x,ξ )}
s.t. x ∈ X .

(3.97)

In the beginning, let’s briefly introduce the simple satisfying level method which

in mainly referred in [398]. In some real decision making problems, DM usually

provides a reference objective values H̄ = (H̄1,H̄2, · · · ,H̄m)T . If the solution satisfies

the reference value, take it. The simple satisfying level method can be summarized

as follows:

Step 1. DM gives the reference objective values H̄.

Step 2. Solve the following programming problem,

⎧
⎪⎨
⎪⎩

max
m

∑
i=1

Hi(x)

s.t.

{
Hi(x)≥ H̄i, i = 1,2, · · · ,m
x ∈ X .

(3.98)

Step 3. If the problem (3.98) doesn’t have the feasible solution, turn to Step 4. If the

problem (3.98) has the optimal solution x̄, output x̄.

Step 4. DM re-gives the reference objective values H̄ and turn to Step 2.

The satisfying trade-off method can be summarized as follows:

Step 1. Take the ideal point H∗ = (H∗
1 ,H∗

2 , · · · ,H∗
m)T such that H∗

i > maxx∈X fi(x)
(i = 1,2, · · · ,m).

Step 2. DM gives the objective level H̄k = (H̄k
1 ,H̄k

2 , · · · ,H̄k
m)T and H̄k

i < H̄∗
i (i =

1,2, · · · ,m). Let k = 1.

Step 3. Compute the weight and solve the following problem to get the efficient

solution.

wk
i =

1

H∗
i − H̄k

i

, i = 1,2, · · · ,m. (3.99)

max
x∈X

max
1≤i≤m

wk
i |H∗

i −Hi(x)|, (3.100)
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or the equivalent problem,

⎧
⎨
⎩

minλ

s.t.

{
wk

i (H
∗
i −Hi(x))≤ λ , i = 1,2, · · · ,m

x ∈ X .
(3.101)

Suppose that the optimal solution is xk.

Step 4. According to the objective value H(xk) = (H1(x
k),H2(x

k), · · · ,Hm(xk))T ,

DM divide them into three classes: (1) which needs to improve, denote the related

subscript set Ik
I , (2) which is permitted to release, denote the related subscript set

Ik
R, (3) which is accepted, denote the related subscript set Ik

A. If Ik
I = Φ , stop the it-

eration and output xk. Otherwise, DM gives the new reference objective values H̃k
i ,

i ∈ Ik
I ∪ Ik

R and let H̃k
i = Hi(x

k), i ∈ Ik
A.

Step 5. Let ui(i = 1,2, · · · ,m) be the optimal Kuhn-Tucker operator of the first con-

straints. If there exists a minimal nonnegative number ε such that

m

∑
i=1

uiw
k
i (H̃

k
i −Hi(x

k))≥−ε,

then we deem that H̃k
i passes the check for feasibility. Let H̃i+1 = H̃k

i (i =
1,2, · · · ,m), turn to Step 3. Otherwise, H̃k

i isn’t feasible. The detail can be referred

in [368]. DM should re-give H̃k
i , i ∈ Ik

I ∪ Ik
R and recheck it.

3.5.2.3 Numerical Example

We use the following example to illustrate the crisp equivalent model of linear Fu-

Ra DCM.

Example 3.10. Suppose that the fuzzy random variable ξ1,ξ2, · · · ,ξ10 and constant

c1,c2, · · · ,c5 are as the same as the assumption in Example 3.7.

Consider the following linear Fu-Ra DCM:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max [δ1,δ2]

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ch{ ˜̄ξ1x1 + ˜̄ξ2x2 + ˜̄ξ3x3 + ˜̄ξ4x4 + ˜̄ξ5x5 ≥ f̄1}(0.9)≥ δ1

Ch{c1
˜̄ξ6x1 + c2

˜̄ξ7x2 + c3
˜̄ξ8x3 + c4

˜̄ξ9x4 + c5
˜̄ξ10x5 ≥ f̄2}(0.9)≥ δ2

x1 + x2 + x3 + x4 + x5 ≤ 350

x1 + x2 + x3 + x4 + x5 ≥ 300

4x1 + 2x2 + 1.5x3 + x4 + 2x5 ≤ 1085

x1 + 4x2 + 2x3 + 5x4 + 3x5 ≤ 660

x1 ≥ 20,x2 ≥ 20,x3 ≥ 20,x4 ≥ 20,x5 ≥ 20,

(3.102)

where the risk tolerance given by decision maker is f̄1 = 35000, f̄2 = 170000. De-

note the feasible region of model (3.102) is X .
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We adopt the Pr-Pos measure. By (3.88), model (3.102) ia equivalent to the fol-

lowing two objective model:

max
x∈X
{F1(x),F2(x)}, (3.103)

where

Fi(x) =
Φ−1(1− γi)

√
xTV c

i x + dcT
i x− f̄i

β cT
i x

, i = 1,2,

where β c
1 = (3,8,3,7,5), β c

2 = (12,3.5,15.6,4,7.2), dc
1 = (113,241,87,56,92),

dc
2 = (753.6, 71.5,618.8,259.2,485.1), V c

1 = diag{1,4,1,2,2}, V c
2 =

diag{1,2,2,2,2}, Φ−1(0.1) =−1.28.

Let δi = γi = 0.9, then R−1(δi) = 0.1, Φ−1(1− γi) =−1.28, i = 1,2. In order to

help the decision maker to determine the reference point ri of fractional objective

function Fi(x), first we figure out the maximal and minimal value of function Fi(x),
i.e., maxx∈X Fi(x) and minx∈X Fi(x), i = 1,2. Since Fi(x) is strictly quasiconcave

function, the local optimal solution of model maxx∈X Fi(x) is global optimal solu-

tion. It is easy (We can use the software, like LINGO, MATLAB, et,al.) to obtain

the global maximal value of Fi(x) as,

Fmax
1 (x) =−14.87454, Fmax

2 (x) = 4.144418.

when we solve the model minx∈X Fi(x), we need to use the Theorem 7.3.2 in lit-

erature [79]: when − f (x) is continuous strictly quasiconvex function and the set

of constrains is X = {x|Ax ≤ b,x ≥ 0} then the optimal solution of maxx∈X − f (x)
is obtained at the vertex. The feasible region of model (3.102) is convex Polyhe-

dra, −Fi(x) is strictly quasiconvex function, so we can directly use the algorithm

proposed in literature [79] to get the minimal value of Fi(x),

Fmin
1 (x) =−26.43929, Fmin

2 (x) =−13.64001.

Assume that the decision maker decide the reference points as F̄k(F̄k
1 , F̄k

2 ) =
(−18,1.5),k = 1. Then according to the satisfying trade-off method, we calculate

the weight as follows when k = 1,

wk
1 = 1

Fmax
1 (x)−F̄k

1

= 1
−14.87454+18 = 0.32,

wk
2 = 1

Fmax
2 (x)−F̄k

2

= 1
4.144418−1.5 = 0.378.

Follow Equation (3.101), we construct the following model (3.104),

⎧
⎪⎪⎨
⎪⎪⎩

min λ

s.t.

⎧
⎨
⎩

wk
1(−14.87454−F1(x))≤ λ

wk
2(4.144418−F2(x))≤ λ

x ∈ X

(3.104)
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or

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min λ

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.32(−14.87454−
−1.28

√
x2

1+4x2
2+x2

3+2x2
4+x2

5+(113x1+241x2+87x3+56x4+92x5)−35000

3x1+8x2+3x3+7x4+5x5
)≤ λ

0.378(4.144418−
−1.28

√
x2

1+2x2
2+2x2

3+2x2
4+2x2

5+(753.6x1+71.5x2+618.8x3+259.2x4+485.1x5)−170000

12x1+3.5x2+15.6x3+4x4+7.2x5
)≤λ

x1 + x2 + x3 + x4 + x5 ≤ 350

x1 + x2 + x3 + x4 + x5 ≥ 300

4x1 + 2x2 + 1.5x3 + x4 + 2x5 ≤ 1085

x1 + 4x2 + 2x3 + 5x4 + 3x5 ≤ 660

x1 ≥ 20,x2 ≥ 20,x3 ≥ 20,x4 ≥ 20,x5 ≥ 20.
(3.105)

Though solving the nonlinear model (3.106) we can get a weak efficient solution of

model (3.104).

xw = (169.9160,23.36279,76.50380,20.00000,47.87508),

If the decision maker is not satisfied with the current value of Fw
i , we can set a group

of new reference points to figure out the new weak efficient solution and new value

of Fw
i , we will stop until the decision maker is satisfied.

Similarly, if wo adopt the Pr-Nec measure to consider the model (3.104),

by(3.93), model (3.102) is equivalent to the following two objective model:

max
x∈X

[G1(x),G2(x)]. (3.106)

The definition of Gi(x) can refer to equation (3.94). Since αc
i = β c

i , then Fi(x) =
Gi(x), i = 1,2. So the crisp model of (3.102), (3.104) and (3.106) are coincident.

3.5.3 Non-linear Fu-Ra DCM and Fu-Ra Simulation-Based

Compromise GA

Let’s introduce the simulation for the a-chance which is critical in Fu-Ra DCM and

the compromise approach in GA.

3.5.3.1 Fu-Ra Simulation 3 for Chance

In order to solve the Fu-Ra DCM, we use the Fu-Ra simulation to compute the

objective function of Fu-Ra DCM Ch{ f (ξ )≥ f̄}(γ), the confidence level γ is pre-

determined.

According to the definition of the Pr-Pos chance of fuzzy random variable which

is,

Ch{ f (ξ )≥ f̄ }(γ) = sup{δ |Pr{ω ∈Ω |Pos{ f (ξ (ω))≥ f̄ } ≥ δ} ≥ γ}, (3.107)

where ω = (ω1,ω2, · · · ,ωn), ξ (ω) = (ξ1(ω),ξ2(ω), · · · ,ξn(ω)).
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Since the supremum is definitely reached when the confidence level is equal to γ ,

that is,

Pr{ω ∈Ω |Pos{ f (ξ (ω))≥ f̄ } ≥ δ}= γ,

so we can employ the following way to estimate Ch{ f (ξ )≥ f̄ }(γ).
First of all, according to the probability measure Pr, we generate N independent

random vector ωk = (ωk1,ωk2, · · · ,ωkn)
T, k = 1,2, · · · ,N. Then for given sample

ωk ∈ Ω , we use the Fu simulation to compute the possibility of the fuzzy event

Pos{ f (ξ (ω))≥ f̄ }. The details are as follows: Generate an achieve value of fuzzy

vector ξ (ωk), and obtain the value of f (ξ (ωk)). If f (ξ (ωk))≥ f̄ , then let the min-

imal value of membership function of each component be δ . Repeat the above pro-

cess many times, keep the largest value of membership function and consider it as

the possibility Pos{ f (ξ (ωk))≥ f̄ }.
For any k = 1,2, · · · ,N, we define

h(ωk) =

{
1, if Pos{ f (ξ (ωk))≥ f̄ } ≥ δ
0, otherwise.

(3.108)

According to the Large Number Law, when N → ∞, we have that

∑N
k=1 h(ωk)

N
→ γ. (3.109)

Here we can see that ∑N
k=1 h(ωk) denote the time when Pos{ f (ξ (ωk)) ≥ f̄i} ≥ δ .

Let N′i be the integer part of γN, then δ is the N′i th largest element in the sequence

{δ1,δ2, · · · ,δN}.
We conclude the procedure as follows,

Step 1. Generate vector ωk = (ωk1,ωk2, · · · ,ωkn)
T randomly from Ω according to

the probability measure Pr, k = 1,2, · · · ,N.

Step 2. Compute the possibilities of fuzzy events δk = Pos{ f (ξ (ωk)) ≥ f̄ } for k =
1,2, · · · ,N by fuzzy simulation.

Step 3. Set N′ be the integer part of γN.

Step 4. Return the N′th largest element in the sequence {δ1,δ2, · · · ,δN}.
If we want to adopt the Pr-Nec chance of fuzzy random variable which is,

Ch{ f (ξ )≥ f̄ }(γ) = sup{δ |Pr{ω ∈Ω |Nec{ f (ξ (ω))≥ f̄} ≥ δ} ≥ γ}.

The simulation procedure is similar as the above, expect that the following change:

Step 2’. Compute the possibilities of fuzzy events δk = Nec{ f (ξ (ωk)) ≥ f̄ } for

k = 1,2, · · · ,N by fuzzy simulation.

Example 3.11. We employ the Fu-Ra simulation 3 to estimate the chance of the

event ξ1 +ξ2≥ 2 under the confidence level 0.9, and ξ1,ξ2 are described as follows:
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ξ1 = (ρ1,ρ1 + 1,ρ1 + 2), with ρ1 ∼ N(0,1),
ξ2 = (ρ2,ρ2 + 1,ρ2 + 2), with ρ1 ∼ N(1,2).

After a run of Fu-Ra simulation 3 with 5000 cycles, we can get that

Ch{ξ1 + ξ2 ≥ 2}(0.9) = 0.365.

3.5.3.2 Compromise GA

Compromise solution-based fitness assignment has been proposed by Cheng and

Gen [67] as a means to obtain a compromised solution instead of generating all

Pareto solutions. For many real-world problems, the set of Pareto solutions may be

very large, possibly exponential in size. Thus the computational effort required to

solve it can increase exponentially with problem size in the worst case. Having to

evaluate a large set of Pareto solutions in order to select the best one poses a consid-

erable cognitive burden on the decision maker. Therefore, in such cases, obtaining

the entire set of Pareto solutions is of little interest to decision makers. In contrast to

generating methods, the compromise approach searches for compromised solutions

to overcome such difficulty.

The compromise approach identifies solutions that are closest to the ideal solution

as determined by some measure of distance. The weighted Lp-norm is useful as a

distance measure.

r(z; p,w) = ||z− z∗||p,w =

(
q

∑
j=1

w
p
j |z j− z∗j |p

)1/p

,

where (z∗1,z
∗
2, · · · ,z∗q) is the positive ideal point in the criterion space Z and wights

(w1,w2, · · · ,wq) are assigned to objectives to emphasize different degrees of im-

portance. As we know, the ideal solution is not usually attainable. However, it can

serve as a good standard for evaluation of the nondominated solutions attainable. For

many complex problems, to find an ideal point is also a difficult task. To overcome

the difficulty, the concept of a proxy ideal point is suggested to replace the ideal

point. The proxy ideal point is the ideal point corresponding to the current genera-

tion but not to a given problem. Let P denote the set of the current population, then

the proxy ideal point (zmin
1 ,zmin

2 , · · · ,zmin
q ) is calculated as follows:

zmin
1 = min{z1(x)|x ∈ P},

zmin
2 = min{z2(x)|x ∈ P},
· · ·
zmin

q = min{zq(x)|x ∈ P}.

The proxy ideal point is easy to obtain at each generation. Along evolutionary

progress, the proxy ideal point will gradually approximate the real ideal point.

Consider a minimization problem. Since the smaller the regret value, the better

the individual, we have to convert the regret value into a fitness value to ensure
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that a fitter individual has a larger fitness value. Let r(x) denote the regret value of

individual x, rmax the biggest regret value, and rmin the smallest regret value in the

current generation. The transformation is given as follows:

eval(x) =
rmax− r(x)+ γ

rmax− rmin + γ
, (3.110)

where γ is a positive real number usually restricted within the open interval (0,1).
Its purpose is twofold:

(1) to present equation (3.110) from zero division;

(2) to make it possible to adjust the selection behavior from fitness proportional

selection to pure random selection.

3.5.3.3 Numerical Example

We will use the Fu-Ra simulation-based compromise GA to deal with the non-linear

Fu-Ra DCM.

Example 3.12. Let us consider a multi-objective programming with fuzzy random

coefficients.
⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

max F1(x,ξ ) = 2ξ 2
1 x1 + 3ξ 2

2 x2− ξ3x3 +
√

ξ 2
4 +(3− ξ5x4)2

max F2(x,ξ ) = ξ6x1 + ξ7x2 + ξ8x3

s.t.

⎧
⎪⎪⎨
⎪⎪⎩

5x1−3x2
2 + 6

√
x3 + x4 ≤ 80

4x1 + 35x2−4.5x3 ≤ 20

x1 + x2 + x3 + x4 ≤ 18

x1,x2,x3,x4 ≥ 0,

(3.111)

where ξi(i = 1,2, · · · ,8) are fuzzy random variables as follows,

ξ1 = (ρ1−0.1,ρ1,ρ1 + 0.2), with ρ1 ∼U(0.4,0.5),
ξ2 = (ρ2−0.2,ρ2,ρ2 + 0.2), with ρ2 ∼U(0.6,0.7),
ξ3 = (ρ3−0.2,ρ3,ρ3 + 0.2), with ρ3 ∼U(0.7,0.8),
ξ4 = (ρ4−0.2,ρ4,ρ4 + 0.2), with ρ4 ∼ N(1,0.1),
ξ5 = (ρ5−0.2,ρ5,ρ5 + 0.2), with ρ5 ∼ N(4,0.1),
ξ6 = (ρ6−0.1,ρ6,ρ6 + 0.1), with ρ6 ∼ N(−1,0.1),
ξ7 = (ρ7−0.5,ρ7,ρ7 + 0.1), with ρ7 ∼ N(3,0.1),
ξ8 = (ρ8−0.1,ρ8,ρ8 + 0.5), with ρ8 ∼ N(1,0.1).

(3.112)

From the mathematical view, the problem (3.111) is not well defined because of the

uncertain parameters. Then we apply the chance operator to deal with this uncertain

programming.



202 3 Fuzzy Random Multiple Objective Decision Making

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max [δ1,δ2]

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ch{2ξ 2
1 x1 + 3ξ 2

2 x2− ξ3x3 +
√

ξ 2
4 +(3− ξ5x4)2 ≥ f̄1}(γ1)≥ δ1

Ch{ξ6x1 + ξ7x2 + ξ8x3 ≥ f̄2}(γ2)≥ δ2

5x1−3x2
2 + 6

√
x3 + x4 ≤ 80

4x1 + 35x2−4.5x3 ≤ 20

x1 + x2 + x3 + x4 ≤ 18

x1,x2,x3,x4 ≥ 0.

(3.113)

Since there exists non-linear objective functions, we cannot transform it into it’s

crisp equivalent model. In order to solve it, we use the Fu-Ra simulation based

compromise GA to deal with it.

After running, we get a solution as follows:

x1 = 11.32,x2 = 3.44,x3 = 3.24,x4 = 0,δ1 = 0.63,δ2 = 0.55.

3.6 Application to the Portfolio Selection Problem

In this section, the future return is regarded as a fuzzy random variable, and we

apply the Fu-Ra CCM and Fu-Ra EVM to the portfolio selection problem as an

illustration.

3.6.1 Assumptions

In this section, we list the assumptions for portfolio selection problems under fuzzy

random environments, then we use the λ -mean and the variance of the fuzzy random

variable to measure the return and the risk of a portfolio respectively, that is we

called λ -mean variance portfolio selection model.

First we explain the reasonableness of the assumption about fuzzy random se-

curity returns. We know a basic assumption behind the Markowitz’s mean variance

model is that the situation of the stock market in the future can be correctly reflected

by securities data in the past, that is, the mean and covariance of a portfolio of secu-

rities in the future are similar to the past ones. However, there are so many uncertain

factors that this assumption cannot be guaranteed for the real ever-changing stock

markets, especially for new emerging stock markets without plenty of historical data

such as the stock market in China. Since stock experts possess enough information

and experience about the stock market, a good method is to let them provide their

rough estimation about the future returns of securities. In this case, the return rates

of securities are fuzzy random variables, i.e., random variables whose actual values

are fuzzy sets. In this paper, following the idea of the mean variance model, we pro-

pose a new portfolio selection model which combines the statistical techniques with

the experts’ judgement based on fuzzy random theory. Moreover, we also notice

that the assumption called homogeneous expectations in Markowitz’s mean vari-

ance model that all investors share the same expected returns, predicted variances,

and predicted covariances about the future is unrealistic in the real world. In fact, it
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is almost the hallmark of investors to specialize in different prognostications [251].

In our proposed fuzzy random portfolio selection model, the investors’ subjective

opinions as to the estimation of the return rates of each of the securities are also

reflected by introducing a parameter vector λ .

Let r j denote the return of the jth stock, x j denote the investment scale of the jth

stock, j = 1,2, · · · ,n. Suppose that the return of the jth stock is L-R fuzzy random

variable, denoted by ˜̄r j , and described by the following membership function, for

w ∈Ω ,

µ ˜̄r j(ω)(x) =

⎧
⎪⎪⎨
⎪⎪⎩

L
( a j(ω)−x

α j

)
, if a j(ω)−α j < x j < a j(ω)

1, if x = a j(ω)

R
( x−a j(ω)

β j

)
, if a j(ω) < x j < a j(ω)+ β j,

(3.114)

where the benchmark function L(·) and R(·) are monotonously decreasing left con-

tinuous function, and L,R : [0,1]→ [0,1] satisfy that R(0)= L(0)= 1, R(1)= L(1)=
0. a j is the normally distributed random variable, the mean is E(a j), and the variance

is σ2
j , denoted as a j ∼N(E(a j),σ2

j ), the covariance of ai and a j is Cov(ai,a j) = σi j,

we denote the covariance matrix as V = (Cov(ai,a j))n×n, α j,β j (> 0) are the left

and the right spread of the LR fuzzy random variable ˜̄r j(ω). For convenience, in

the following we denote the fuzzy random variable ˜̄r j as ˜̄r j(ω) = (a j(ω),α j,β j)LR,

∀ ω ∈Ω (see Figure 3.8).

Fig. 3.8 LR-type fuzzy random return ˜̄r j

The parameters of the fuzzy random variable ˜̄r j needs to determine are α j,β j,

E(a j) and σi j. The left spread α j and the right spread β j, j = 1,2, · · · ,n can be

determined by the experts’ experience. For instance, choose a group of experts, let

them give the left and the right spread, αk
j , β k

j , usually the left and the right spreads

given by each expert are not the same, we use the arithmetical mean to determine

the α j and β j, i.e., α j = ∑K
k=1 αk

j /K, β j = ∑K
k=1 β k

j /K. How to determine E(a j) and

σi j? we can use the traditional method, that is, we collet the historical return and

historical covariance to compute E(a j) and σi j, i, j = 1,2, · · · ,n.
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3.6.2 Chance Constrained Portfolio Selection Model

Similar to the safety-first model and the Fractile model proposed by Kataoka[208]

and Inuiguchi&Tanino[50]. In this chapter, we assume the future returns as fuzzy

random variables, like the ideas of the above two models, we can get the fuzzy

random chance-constrained portfolio selection model.

Suppose the future return of every stock are triangular fuzzy random variables,

denoted by ˜̄r j(ω) = (a j(ω)−α j,a j(ω),a j(ω)+β j), ω ∈Ω , a j is the random vari-

ables which obeys normal distribution, a j ∼ N(E(a j),σ2
j ), The covariance between

ai and a j is V = (σi j)n×n, α j and β j(> 0) are the left and the right width of the

triangular fuzzy number ˜̄r j(ω), ω ∈Ω .

The fuzzy random chance-constrained model for the portfolio selection problem

is as follow, ⎧
⎪⎪⎨
⎪⎪⎩

max R

s.t.

⎧
⎨
⎩

Ch{∑n
j=1

˜̄r jx j ≥ R}(γ)≥ δ

∑n
j=1 x j = 1

x j ≥ 0, j = 1,2, · · · ,n.

(3.115)

The parameters γ,δ ∈ [0,1] are the predetermined confidence level, R and x j are

the decision variables, γ,δ ∈ [0,1] are the predetermined confidence level, j =
1,2, · · · ,n.

X = {x ∈ R|∑n
j=1 x j = 1,x j ≥ 0, j = 1,2, · · · ,n}. Ch denote the chance measure,

If the decision maker is comparatively optimistic, we can adopt the chance measure

defined by the possibility measure Pos; If the decision maker is comparatively pes-

simistic, we can adopt the chance measure defined by the necessary measure Nec.

If we adopt the chance measure defined by Pos, by Theorem 3.6, Ch{∑n
j=1

˜̄r jx j ≥
R}(γ)≥ δ is equivalent to

R≤
n

∑
j=1

E(a j)x j +(1− δ )
n

∑
j=1

β jx j + Φ−1(1− γ)

√
n

∑
i=1

n

∑
j=1

σi jxix j.

So the model (3.115) is equivalent to

⎧
⎪⎨
⎪⎩

max ∑n
j=1[E(a j)+ (1− δ )β j]x j + Φ−1(1− γ)

√
∑n

i=1 ∑n
j=1 σi jxix j

s.t.

{
∑n

j=1 x j = 1

x j ≥ 0, j = 1,2, · · · ,n.

(3.116)

Because the decision maker determine the confidence level γ ≥ 0.5, then Φ−1(1−
γ) ≤ 0. It is easily proved that the function

√
∑n

i=1 ∑n
j=1 σi jxix j = xTV x is convex

function, so the modle (3.116) is convex programming.

Similarly, if we adopt the chance measure defined by Nec, by Theorem 3.8, model

(3.115) is equivalent to
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⎧
⎪⎨
⎪⎩

max ∑n
j=1[E(a j)− δα j]x j + Φ−1(1− γ)

√
∑n

i=1 ∑n
j=1 σi jxix j,

s.t.

{
∑n

j=1 x j = 1

x j ≥ 0, j = 1,2, · · · ,n.

(3.117)

When γ ≥ 0.5, it’s easily know that the model (3.117) is also a convex programming.

Let’s compare the two equivalent model (3.116) and (3.117) of the chance con-

straint model (3.115),

F1(x) :=
n

∑
j=1

[E(a j)+ (1− δ )β j]x j + Φ−1(1− γ)

√
n

∑
i=1

n

∑
j=1

σi jxix j

and

F2(x) :=
n

∑
j=1

[E(a j)− δα j]x j + Φ−1(1− γ)

√
n

∑
i=1

n

∑
j=1

σi jxix j.

Since the difference between the adopted definition of the chance measure. ∀x ∈ X ,

F1(x) ≥ F2(x) always holds. Let’s use x1∗ and x2∗ to denote the optimal solution of

the model (3.116) and (3.117), use F∗1 (x1∗) and F∗2 (x2∗) to denote the best value of

model (3.116) and (3.117). So we have

F∗1 (x1∗)≥ F∗2 (x2∗).

The analytical result shows that, when the investors face the completely same set of

investment scenarios, the return level of the portfolio adopted by the comparatively

optimistic investors is higher than the return level of the portfolio adopted by the

comparatively pessimistic investors.

3.6.2.1 Application to the Chinese Stock Market

30 different stocks are selected from the Shanghai Stock 180 Index for his/her in-

vestment. We assume that the return rate of each of the securities is a triangular

fuzzy random variable, denoted by r j = (a j −α j,a j,a j + β j), where a j is a nor-

mally distributed random variable, α j and β j are the left and right spread respec-

tively, j = 1,2, · · · ,30.

First, we collect the historical data of the 30 stocks from January 2003 to January

2006, and use one month as a period to obtain the historical rates of returns for 36

periods. With the historical data, the expected return rates of the stocks and the co-

variance matrix V = (Cov(ai,a j))n×n are estimated. Then we select K stock experts

and let them give their estimation of α j and β j. Denote the estimation of the left

and right spreads as αk
j and β k

j respectively, k = 1,2, · · · ,K. We let α j = ∑K
k=1 αk

j

and β j = ∑K
k=1 β k

j , j = 1,2, · · · ,n. The expected return rates of stocks and the left

and right spreads are listed in Table 3.5. The covariance matrix V is omit here. From

Table 3.5 we know that the fuzzy expected value of fuzzy random return rates of

stocks, i.e. E(r j) = (E(a j)−α j,E(a j),E(a j)+ β j) are obtained.
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Table 3.5 The expected return rates, left and right spreads of 30 stocks (%)

Code 600000 600030 600026 600050 600036 600717 600642 600688 600104 600009

E(a j) 0.45 1.42 1.73 0.61 1.39 1.16 1.01 1.87 0.44 2.35

α j 0.15 0.22 0.23 0.1 0.19 0.16 0.21 0.17 0.04 0.35

β j 0.15 0.08 0.27 0.39 0.71 0.64 0.09 0.53 0.36 0.25

Code 600008 600016 600808 600795 600033 600832 600011 600018 600019 600519

E(a j) 0.68 1.41 0.46 1.38 1.03 1.65 0.71 1.96 2.07 3.6
α j 0.08 0.11 0.06 0.18 0.13 0.15 0.11 0.16 0.07 0.1
β j 0.22 0.39 0.14 0.12 0.37 0.1 0.19 0.54 0.33 0.3

Code 600660 600879 600277 600188 600270 600205 600177 600309 600428 600320

E(a j) 1.66 2.14 2.09 0.91 2.32 2.51 0.41 3.61 2.42 3.19

α j 0.26 0.14 0.39 0.21 0.22 0.51 0.11 0.61 0.42 0.19

β j 0.24 0.26 0.11 0.09 0.28 0.09 0.39 0.29 0.58 0.61

Suppose that an investor determined that the confidence level is γ = 0.6, and he

want to maximize the return when the possibility of that the return of portfolio is

more than R is not less than δ = 0.8 under the confidence level γ .

⎧
⎪⎪⎨
⎪⎪⎩

max R

s.t.

⎧
⎨
⎩

Ch{∑30
j=1

˜̄r jx j ≥ R}(0.6)≥ 0.8

∑30
j=1 x j = 1

x j ≥ 0, j = 1,2, · · · ,30.

(3.118)

We can get two concretely convex programming according to model (3.118) using

the data. Since the model (3.116) and (3.117) are the crisp equivalent model of

(3.118), we can use mathematical software to solve them, like LINGO, MATLAB,

and so on. Also we can use the genetic algorithm to solve them.

Table 3.6 lists the optimal solution according to model (3.116) in which the

chance is defined by Pos, that is, the investor should choose the best proportion

as that x19 = 0.2133, x20 = 0.4717, x28 = 0.2277, x30 = 0.0873, the optimal return

is 0.0149.

Table 3.6 Investment scale for optimistic investor (γ = 0.6,δ = 0.6)

Code 600000 600030 600026 600050 600036 600717 600642 600688 600104 600009

Scale 0 0 0 0 0 0 0 0 0 0

Code 600008 600016 600808 600795 600033 600832 600011 600018 600019 600519

Scale 0 0 0 0 0 0 0 0 0.2133 0.4717

Code 600660 600879 600277 600188 600270 600205 600177 600309 600428 600320

Scale 0 0 0 0 0 0 0 0.2277 0 0.0873

Table 3.7 lists the optimal solution according to model (3.117) in which the

chance is defined by Nec, the optimal solution for the investor is that x19 = 0.2437,
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x20 = 0.6309, x28 = 0.0429, x30 = 0.0824, and he could get the optimal return

0.0126.

Table 3.7 Investment scale for pessimistic investor (γ = 0.6,δ = 0.6)

Code 600000 600030 600026 600050 600036 600717 600642 600688 600104 600009

Scale 0 0 0 0 0 0 0 0 0 0

Code 600008 600016 600808 600795 600033 600832 600011 600018 600019 600519

Scale 0 0 0 0 0 0 0 0 0.2437 0.6309

Code 600660 600879 600277 600188 600270 600205 600177 600309 600428 600320

Scale 0 0 0 0 0 0 0 0.0429 0 0.0824

Also, the investor can determine a different confidence level γ,δ to obtain the

corresponding optimal solution.

3.6.3 λmean-Variance Portfolio Selection Model

Let recall the traditional mean variance model first, which can be described by the

following bi-objective mathematical programming problem:

⎧
⎪⎪⎨
⎪⎪⎩

max E
(

∑n
j=1 r jx j

)

min Var
(

∑n
j=1 r jx j

)

s.t.

{
∑n

j=1 x j = 1

x j ≥ 0, j = 1,2, · · · ,n,

where r j are assumed to be random variables.

It is not the most ideal method to estimate the future returns of securities by

merely utilizing historical data for real ever-changing stock markets especially in a

small sample situation. Therefore, it may be a good choice to incorporate experts’

experience and judgements about the stock market into the estimations of security

returns.

3.6.3.1 Expected Return and Variance Risk for Portfolio

We assume the jth security return r j to be a fuzzy random variable which is charac-

terized by the following membership function

µr j(ω)(x) =

⎧
⎪⎪⎨
⎪⎪⎩

L
( a j(ω)−x

α j

)
, if a j(ω)−α j < x j < a j(w)

1, if x = a j(ω)

R
( x−a j(ω)

β j

)
, if a j(ω) < x j < a j(ω)+ β j

∀ ω ∈Ω ,

where L(·) and R(·) are left-continuous and non-increasing functions, L,R : [0,1]→
[0,1] with R(0)= L(0) = 1 and R(1)= L(1) = 0, a j is a normally distributed random
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variable, denoted by a j ∼ N(E(a j),σ2
j ), the covariance of ai and a j is denoted by

Cov(ai,a j) = σi j , the covariance matrix is denoted by V = (Cov(ai,a j))n×n, and

α j,β j(> 0) are the left and right spreads of LR fuzzy number r j(w), respectively.

For simplicity, we denote r j = (a j(w),α j ,β j)LR, ∀ w ∈Ω .

With the given historical data on the stocks over m period, the expected return

rates vector and the covariance matrix of the stocks can be obtained. Spreads α j and

β j are provided by stock experts according to their experience and judgements.

For given ω ∈Ω , it can be easily shown that (r j(ω))−α = a j(ω)−L−1(α)α j and

(r j(ω))+α = a j(ω)+ R−1(α)β j for any α ∈ [0,1]. From (3.4) we have that

(E(r j))α = [E((r j(ω))−α ),E((r j(ω))+α )] = [E(a j)−L−1(α)α j,E(a j)+R−1(α)β j].

The expectation of fuzzy random variable r j , E(r j) is also a LR fuzzy number de-

noted by E(r j) = (E(a j),α j,β j)LR. From (3.5) we have that

Var((r j)
−
α ) = Var((r j)

+
α ) = Var(a j), j = 1,2, · · · ,n,

which implies that the variance of fuzzy random variable r j is Var(r j) = Var(a j).
It is easy to know that the total return rate of portfolio ∑n

j=1 r jx j is also a fuzzy

random variable. From property (i), we obtain that the expectation of fuzzy random

variable. ∑n
j=1 r jx j is given by

E(
n

∑
j=1

r jx j) =
n

∑
j=1

E(r j)x j = (
n

∑
j=1

E(a j)x j,

n

∑
j=1

α jx j,

n

∑
j=1

β jx j)LR.

Because

Cov(ri,r j) =
1

2

∫ 1

0

[
Cov

(
(ri)

−
α ,(r j)

−
α

)
+Cov

(
(ri)

+
α ,(r j)

+
α

)]
dα

=
1

2

∫ 1

0

[
Cov

(
ai−L−1(α)αi,a j−L−1(α)α j

)

+Cov
(
ai + R−1(α)βi,a j + R−1(α)β j

)]
dα

= Cov(ai,a j),

from property (iii) we obtain that the variance of ∑n
j=1 r jx j is given by

Var(
n

∑
j=1

r jx j) =
n

∑
j=1

Var(r jx j)+
n

∑
i=1

n

∑
j=1, j 
=i

Cov(rixi,r jx j)

=
n

∑
j=1

σ2
j x2

j +
n

∑
i=1

n

∑
j=1, j 
=i

Cov(ai,a j)xix j = xTV x. (3.119)
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3.6.3.2 λ -Mean Ranking Method for Fuzzy Expected Value

Note that the expected value of the fuzzy random variable ∑n
j=1 r jx j is defined as

a fuzzy number. Before introducing the fuzzy random portfolio selection model we

need to employ a fuzzy ranking method to convert the fuzzy number E(∑n
j=1 r jx j)

into a crisp number.

Up to now many fuzzy ranking methods have been proposed to rank fuzzy num-

bers. However, a optimal fuzzy ranking method which does not exist, nor does there

exist a simple comparison principle for fuzzy numbers which can be accepted by all

decision makers. In practice, the choice of a fuzzy ranking method depends on the

properties of the problem and the decision makers’ attitudes. As discussed in the in-

troduction, homogeneous expectation is not a realistic assumption for the portfolio

selection problem, and investors can be expected to hold differing forecasts about

the future returns of securities. This is important because if everyone has different

forecasts, everyone will have different feasible regions and hence different efficient

frontiers.

Campos and Gonzalez [143] proposed the λ -average ranking method which is

very useful especially in decision making, since it is able to incorporate the decision

maker’s subjective attitude into the decision making process. In this paper we adopt

the λ -average ranking method to incorporate the investors’ different forecasts about

the future returns of securities into the portfolio selection model.

Let M be a fuzzy number with α-level sets [M−
α ,M+

α ]. The λ -average value of M

is defined by [143]

V λ
S (M) =

∫ 1

0

[
λ M+

α +(1−λ )M−
α

]
dS(α), (3.120)

where parameter λ ∈ [0,1] is a subjective degree of investor’s optimism-pessimism,

and S is an additive measure on (0,1] which determines the weight or importance

associated with different α-level sets. In the following all α-level sets are assumed

to have the same importance. In the case of continuous membership functions the

integral in (3.120) is calculated with respect to dα .

By (3.120) the crisp λ -average value of the expectation of the total return rate of

portfolio is represented by

V λ (E(
n

∑
j=1

r jx j)) =
n

∑
j=1

[
E(a j)+ λ jR

∗β j− (1−λ j)L
∗α j

]
x j, (3.121)

where R∗ =
∫ 1

0 R−1(α)dα , L∗ =
∫ 1

0 L−1(α)dα . The experts’ judgement as well as

the investors’ subjective attitudes of optimism are reflected in (3.121). In this study,

we use V λ (E(∑n
j=1 r jx j)) to denote the expected return rate of portfolio.
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3.6.3.3 λ -Mean Variance Portfolio Selection Model

Assume an investor wants to maximize the λ -mean of expectation and minimize the

risk of the portfolio. Based on the above discussion, a new portfolio selection model

is proposed as follows:

⎧
⎪⎪⎨
⎪⎪⎩

max V λ (E(∑n
j=1 r jx j))

min Var(∑n
j=1 r jx j)

s.t.

{
∑n

j=1 x j = 1

x j ≥ 0, j = 1,2, · · · ,n

(3.122)

or equivalently

⎧
⎪⎪⎨
⎪⎪⎩

max ∑n
j=1

[
E(a j)+ λ jR

∗β j− (1−λ j)L
∗α j

]
x j

min ∑n
i=1 ∑n

j=1 σi jxix j

s.t.

{
∑n

j=1 x j = 1

x j ≥ 0, j = 1,2, · · · ,n.

In this paper (3.122) is called as λ -mean variance portfolio selection model.

In model (3.122), parameter λ j reflects the investor’s subjective degree of op-

timism for the return rates of securities j, j = 1,2, · · · ,n. For an aggressive and

completely optimistic investor, λ j should be chosen as 1, while for a conservative

and completely pessimistic investor, λ j may be chosen as 0. By varying the value

of λ j, the investor’s optimism-pessimism opinion which may arise e.g. from having

some additional information can be reflected in model (3.122).

We introduce the concepts of λ -mean variance efficient portfolios and λ -efficient

frontiers.

Definition 3.14. (λ -mean variance efficient portfolio) For given parameter vector

λ = (λ1,λ2, · · · ,λn), feasible solution (x∗1, x∗2, · · · , x∗n) is a λ -mean variance efficient

portfolio if there does not exist a feasible solution (x1,x2, · · · ,xn) such that

V λ (E(
n

∑
j=1

r jx j))≥V λ (E(
n

∑
j=1

r jx
∗
j)), Var(

n

∑
j=1

r jx j)≤Var(
n

∑
j=1

r jx
∗
j)

with at least one strict inequality holding.

Definition 3.15. (λ -efficient frontier) The curve obtained from the bi-objective pro-

gramming problem (3.122) is called a λ -efficient frontier.

When λ = (1,1, · · · ,1)1×n, the λ -efficient frontier is called as an optimistic effi-

cient frontier.

When λ = (0,0, · · · ,0)1×n, the λ -efficient frontier is called as a pessimistic effi-

cient frontier.

When λ = (0.5,0.5, · · · ,0.5)1×n, the λ -efficient frontier is called as a neutral

efficient frontier.
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Remark 3.14. If α j = β j = 0, j = 1,2, · · · ,n, then the λ -efficient frontier is the tradi-

tional mean variance efficient frontier. It is obvious that the proposed model (3.122)

is an extension of Markowitz’s mean variance portfolio selection model.

The λ -mean variance efficient portfolios of model (3.122) can be obtained by

solving the following parametric programming

⎧
⎨
⎩

max V λ (E(∑n
j=1 r jx j))

s.t.

{
Var(∑n

j=1 r jx j)≤ pV

∑n
j=1 x j = 1, x j ≥ 0, j = 1,2, · · · ,n

(3.123)

or ⎧
⎨
⎩

min Var(∑n
j=1 r jx j)

s.t.

{
V λ (E(∑n

j=1 r jx j))≥ pE

∑n
j=1 x j = 1, x j ≥ 0, j = 1,2, · · · ,n,

(3.124)

where pV and pE are the prescribed return rate value and risk level respectively.

Consider the following two mathematical programming problems:

min
x∈X

Var(
n

∑
j=1

r jx j) (3.125)

and

max
x∈X

V λ (E(
n

∑
j=1

r jx j)), (3.126)

where X = {x ∈ Rn|∑n
j=1 x j = 1,x j ≥ 0, j = 1,2, · · · ,n}. Denote the optimistic val-

ues of problem (3.125) and problem (3.126) are Vmin and Emax respectively. De-

note the optimal solution of problem (3.123) is xmin with optimal value Emin when

pV = Vmin. Denote the optimal solution of problem (3.124) is xmax with optimal

value Vmax when pE = Emax. If pV ranges over [Vmin,Vmax], all optimal solutions

of problem (3.123) compose the λ -mean variance efficient portfolios of problem

(3.122). Similarly, if pE ranges over [Emin,Emax], all optimal solutions of problem

(3.124) also compose the λ -mean variance efficient portfolios of problem (3.122).

For given parameter vector λ i = (λ i
1,λ

i
2, · · · ,λ i

n), we denote the optimal solutions

of problem (3.123) and (3.124) by xi∗ and xi∗∗ respectively, i = 1,2.

The relationship of the λ -mean variance efficient portfolios located on different

λ -efficient frontiers is presented in the following theorem.

Theorem 3.17. Suppose that λ 1 ≤ λ 2, i.e. λ 1
j ≤ λ 2

j for all j = 1,2, · · · ,n. The opti-

mal values of problem (3.123) and problem (3.124) satisfy

(1) V λ 1
(E(∑n

j=1 r jx
1∗
j ))≤V λ 2

(E(∑n
j=1 r jx

2∗
j )).

(2) Var(∑n
j=1 r jx

1∗∗
j )≥Var(∑n

j=1 r jx
2∗∗
j ).

Proof. (1) Since λ 1
j ≤ λ 2

j for all j = 1,2, · · · ,n, it follows from (3.121) that

V λ 1
(E(∑n

j=1 r jx j)) ≤ V λ 2
(E(∑n

j=1 r jx j)), where x = (x j) is feasible solution of

problem (3.123). Therefore,
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V λ 2
(E(

n

∑
j=1

r jx
2∗
j ))≥V λ 2

(E(
n

∑
j=1

r jx j))≥V λ 1
(E(

n

∑
j=1

r jx j)),

which implies that V λ 2
(E(∑n

j=1 r jx
2∗
j ))≥V λ 1

(E(∑n
j=1 r jx

1∗
j )).

(2) Since λ 1
j ≤ λ 2

j for all j = 1,2, · · · ,n, we have that

V λ 1
(E(

n

∑
j=1

r jx j))≥ pE ⇒V λ 2
(E(

n

∑
j=1

r jx j))≥V λ 1
(E(

n

∑
j=1

r jx j))≥ pE ,

where ∑n
j=1 x j = 1,x j ≥ 0. That is, the feasible solution of (3.124) for λ = λ 1 is also

feasible for λ = λ 2. This implies that Var(∑n
j=1 r jx

1∗∗
j )≥Var(∑n

j=1 r jx
2∗∗
j ). ⊓⊔

The result of Theorem 3.17 is illustrated by Fig. 3.9. Different investors have dif-

ferent expectations for the future return of securities, therefore they may choose in-

vestment strategies from different λ -man variance efficient frontiers. Consider three

mean variance efficient portfolios A, B and C, where A is located on the λ 2-mean

variance efficient frontier, B and C are located on the λ 1-mean variance efficient

frontier. From Fig. 3.9 we know that the return rate of portfolio A is better than

that of B when the risk levels of the two portfolios are pV ; On the other hand, to

reach the same return rate value pE the risk level at portfolio A is less than that of B.

For investment strategies B and C located on the same λ 1-mean variance efficient

frontier, the risk level and the expected return rate of portfolio C are larger than

those of portfolio B. In conclusion, if λ 2 > λ 1, the λ 2-efficient frontier is above the

λ 1-efficient frontier.

Fig. 3.9 The relationship of different λ -mean variance efficient portfolios

3.6.3.4 Application to the Chinese Stock Market

The data in the above subsection are also used to illustrate the proposed λ -mean

variance portfolio selection model. Also we assume that the return rate of each se-

curity is a triangular fuzzy random variable, denoted by r j = (a j−α j,a j,a j + β j),
where a j is a normally distributed random variable, α j and β j are the left and right

spread respectively, j = 1,2, · · · ,30.



3.6 Application to the Portfolio Selection Problem 213

To facilitate the determination of parameter λ j for stock j, we propose to di-

vide the investor into the following five classes according to his degree of opti-

mism: (1) very optimistic: λ j ∈ (0.8,1]; (2) optimistic: λ j ∈ (0.6,0.8]; (3) neutral:

λ j ∈ (0.4,0.6]; (4) pessimistic: λ j ∈ (0.2,0.4]; (5) very pessimistic: λ j ∈ [0,0.2]. For

example, if an investor has an optimistic attitude for the future return rate of stock j,

they can choose λ j as the average value of 0.6 and 0.8, i.e. λ j = (0.6+0.8)/2 = 0.7.

Suppose that an investor determines the parameter λ j for all stocks (seen in

Table 3.8). The corresponding λ -efficient frontier and the traditional mean variance

efficient frontier are presented in Fig. 3.10.

From Fig. 3.10 we know that the λ -efficient frontier is above the traditional mean

variance efficient frontier. Actually, the relationship between the λ -efficient frontier

and the traditional mean variance efficient frontier depends on the choice of pa-

rameter vector λ = (λ j)1×n. If an investor chooses a different subjective degree of

optimism λ j (seen in Table 3.9), then the corresponding λ -efficient frontier is under

the mean variance efficient frontier (see Fig. 3.11); If an investor chooses differ-

ent subjective degrees of optimism λ j (seen in Table 3.10), then the two efficient

frontiers intersect each other (see Fig. 3.12).

Moreover, three special λ -efficient frontiers are also presented in Fig. 3.13. If an

investor has a conservative and pessimistic mind for the return rates of all stocks,

the optimistic parameter vector λ should be set (0,0, · · · ,0)1×30. If an investor has

an aggressive and optimistic mind, the optimistic parameter λ should be set as

Table 3.8 Investor’s subjective optimistic degrees for the returns of 30 stocks (I)

Stock Code 600000 600030 600026 600050 600036 600717 600642 600688 600104 600009

λ j 0.4 0.4 0.6 0.7 0.8 0.4 0.6 0.3 0.5 0.6

Stock Code 600008 600016 600808 600795 600033 600832 600011 600018 600019 600519

λ j 0.5 0.3 0.8 0.9 0.5 0.4 0.6 0.5 0.7 0.3

Stock Code 600660 600879 600277 600188 600270 600205 600177 600309 600428 600320

λ j 0.4 0.5 0.6 0.5 0.4 0.7 0.7 0.8 0.7 0.4

Fig. 3.10 λ efficient frontier and mean-variance efficient frontier (I)
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Table 3.9 Investor’s subjective optimistic degrees for the returns of 30 stocks (II)

Stock Code 600000 600030 600026 600050 600036 600717 600642 600688 600104 600009

λ j 0.1 0.4 0.1 0.2 0.4 0.1 0.3 0.3 0.1 0.2

Stock Code 600008 600016 600808 600795 600033 600832 600011 600018 600019 600519

λ j 0.2 0.3 0.4 0.3 0.2 0.4 0.3 0.2 0.5 0.3

Stock Code 600660 600879 600277 600188 600270 600205 600177 600309 600428 600320

λ j 0.3 0.4 0.2 0.3 0.3 0.2 0.5 0.5 0.4 0.2

Fig. 3.11 λ efficient frontier and mean-variance efficient frontier (II)

Table 3.10 Investor’s subjective optimistic degrees for the returns of 30 stocks (III)

Stock Code 600000 600030 600026 600050 600036 600717 600642 600688 600104 600009

λ j 0.1 0.3 0.1 0.5 0.4 0.7 0.2 0.6 0.4 0.1

Stock Code 600008 600016 600808 600795 600033 600832 600011 600018 600019 600519

λ j 0.2 0.3 0.8 0.2 0.1 0.1 0.4 0.2 0.1 0.3

Stock Code 600660 600879 600277 600188 600270 600205 600177 600309 600428 600320

λ j 0.3 0.4 0.2 0.5 0.3 0.7 0.6 0.8 0.4 0.1

Fig. 3.12 λ efficient frontier and mean-variance efficient frontier (III)
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(1,1, · · · ,1)1×30. If an investor has a neutral mind, the optimistic parameter λ should

be set (0.5,0.5, · · · ,0.5)1×30. The pessimistic, optimistic and neutral efficient fron-

tiers are given in Fig. 3.13.

Fig. 3.13 λ efficient frontiers

From Theorem 3.17 we know that, if λ 2 > λ 1, the λ 2-efficient frontier is above

the λ 1-efficient frontier. Because

λ 1 = (1,1, · · · ,1)1×30 > λ 2 = (0.5,0.5, · · · ,0.5)1×30 > λ 3 = (0,0, · · · ,0)1×30,

the optimistic efficient frontier should be above the neutral efficient frontier and

the neutral efficient frontier should be above the pessimistic efficient frontier. From

Fig. 3.13 we know that the position relationships of the three efficient frontiers are

accorded with the results of Theorem 3.17.

3.7 Another Way to Deal with Fuzzy Random Multi-objective
Decision Making Model

In this section, we introduce another way to deal with the fuzzy random multi-

objective decision making model, that is, we transform the fuzzy random variable

into fuzzy variable. Here, we consider that fuzzy random multi-objective problem,

i.e., {
max [̃c̄1x,˜̄c2x, · · · ,˜̄cmx]

s.t. x ∈ X = {x ∈ Rn|˜̄Ax≤ b,x≥ 0}.
(3.127)

where ˜̄ci(i = 1,2, · · · ,m) and ˜̄A = ( ˜̄A1
˜̄A2, · · · , ˜̄Ar, · · · , ˜̄Ap)

T are fuzzy random vectors,

and b = (b1,b2, · · · ,bp)
T .
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3.7.1 (α,β )-Satisfied Solution for Fu-Ra Multi-objective

Decision Making Model

Definition 3.16. (Xu and Liu [76]) Let β = (β1,β2, · · · ,βp)
T be possibility level

vector, β ∈ [0,1],x ∈ RRRn, and if

Pos( ˜̄Arx≤ br, ˜̄cix)≥ βr, r = 1,2, · · · , p, i = 1,2, · · · ,m,

then x is called β -possible feasible solution to the model (3.127). All β -possible

feasible solutions are called β -possible feasible set Xβ of the model (3.127).

Consider the problem with the following multiple objectives:

max
x∈D

[ ˜̄c1x, ˜̄c2x, · · · , ˜̄cmx, ˜̄Arx], r = 1,2, · · · , p. (3.128)

Definition 3.17. (Xu and Liu [76]) Let α be a possibility level, α ∈ [0,1], D ∈ RRRn

and x0 ∈ D. if do not exist x ∈ D and k ∈ {1,2, · · · ,K}, x satisfy

Pos( ˜̄c1x≥ ˜̄c1x0, · · · , ˜̄ci−1x≥ ˜̄ci−1x0, ˜̄cix > ˜̄cix0, ˜̄ci+1x≥ ˜̄ci+1x0, · · · , ˜̄cmx≥ ˜̄cmx0,

˜̄Am+rx≥ ˜̄Am+rx0)≥ α, r = 1,2, · · · , p, i = 1,2, · · · ,m,

(3.129)

then x0 is called α-possible efficient solution of the model (3.128).

Definition 3.18. (Xu and Liu [76]) Let x0 ∈ X , if x0 be the α-possible efficient so-

lution of problem {
max [ ˜̄c1x, ˜̄c2x, · · · , ˜̄cmx, ˜̄Arx]
s.t. x ∈ Xβ ,

(3.130)

then x0 is called (α,β )-satisfied solution of the model (3.127).

In fact, to solve the model (3.127) and find its (α,β )-satisfied solution, we may

consider the multi-objective problem as follows:

{
max [( ˜̄c1)α x,( ˜̄c2)α x, · · · ,( ˜̄cm)α x,( ˜̄Ar)α x]
s.t. x ∈ Xβ ,

(3.131)

where ( ˜̄ci)α ,( ˜̄Ar)α is α-level set of fuzzy random variables ˜̄ci,
˜̄Ar ( r =

1,2, · · · , p, i = 1,2, · · · ,m ) respectively.

Theorem 3.18. [76] x0 is the (α,β )-satisfied solution of the model (3.127) if and

only if x0 is the efficient solution of the model (3.131).

Proof. Let x0 be the (α,β )-satisfied solution of the model (3.127). Following

from the Definition 3.18, x0 is the β -possible feasible solution and α-possible

efficient solution to the model (3.130). If x0 is not the efficient solution of the model
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(3.131), then exist x1 ∈ Xβ and row-vector qi,qi ∈ ( ˜̄ck,
˜̄Am+r)α (i = 1,2, · · · ,m,r =

1,2, · · · , p, and i0 ∈ {m+ 1, · · · ,m+ p}), we can derive that

qix
1 ≥ qix

0
,and qi0x1 > qi0x0

,when ∀i ∈ {1,2, · · · ,m,m+ r}\{i0}.

Due to qi ∈ ( ˜̄ci,
˜̃Am+r)α , then min{π ˜̄c1

(q1),π ˜̄c2
(q2), · · · ,π ˜̄cm

(qm),π ˜̄Am+r
(qm+r)} ≥

α,(r = 1,2, · · · , p ). Following from the Definition 3.16, based on the expand prin-

ciple, we have

sup
(t1,t2,··· ,tm,tm+r)∈Ti0

min[π ˜̄c1
(t1), · · · ,π ˜̄ci0−1

(ti0−1),π ˜̄ci0
(ti0),

π ˜̄ci0+1
(ti0+1), · · · ,π ˜̄cm

(tm),π ˜̃Am+r
(tm+r)]

= Pos( ˜̄c1x1 ≥ ˜̄c1x0, · · · , ˜̄ci0−1x1 ≥ ˜̄ci0−1x0, ˜̄ci0 x1 > ˜̄ci0x0, ˜̄ci0+1x1 ≥ ˜̄ci0+1x0, · · · ,
˜̄cmx1 ≥ ˜̄cmx0,

˜̃Am+rx
1 ≥ ˜̃Am+rx

0)≥ α,

where Ti0 = {(t1,t2, · · · ,tm, tm+r)|t1x1 ≥ t1x0, · · · ,ti0−1x1 ≥ ti0−1x0,ti0x1 > ti0x0,

ti0+1x1 ≥ ti0+1x0, · · · ,tmx1 ≥ tmx0,tm+rx
1 ≥ tm+rx

0},( r = 1,2, · · · , p ).
It is contrary that x0 is not the efficient solution of the model (3.131).

Contrarily, let x0 is the efficient solution of the model (3.131) and is not the

(α,β )-satisfied solution of the model (3.127), then exist x2 ∈ Xβ and

s ∈ {1,2, · · · ,m,m+ r},(r = 1,2, · · · , p),

Pos( ˜̄c1x2 ≥ ˜̄c1x0, · · · , ˜̄cs−1x2 ≥ ˜̄cs−1x0, ˜̄csx
2 > ˜̄csx

0,

˜̄cs+1x2 ≥ ˜̄cs+1x0, · · · , ˜̄cmx2 ≥ ˜̄cmx0,
˜̄Am+rx2 ≥ ˜̄Am+rx

0)≥ α.

Following from the Definition 3.16, based on the expand principle, there

is a row-vector ps ∈ Rn(s = 1,2, · · · ,m, · · · ,m + r;r = 1,2, · · · , p) which sat-

isfy p1x2 ≥ p1x0, · · · , ps−1x2 ≥ ps−1x0, psx
2 > psx

0, ps+1x2 ≥ ps+1x0, · · · , pmx2 ≥
pmx0

, pm+rx2 ≥ pm+rx0 and π
( ˜̄ci,

˜̄Am+r)
≥ α, pi ∈ ( ˜̄ci,

˜̄Am+r)α . It is contrary that x0 is

the efficient solution of the model (3.131).

The proof is thus completed. ⊓⊔

Theorem 3.19. [76] Let ˜̄ξ be a fuzzy random variable. α1 is any given possibility

level of fuzzy variable, σ is any given probability level of random variable, then the

fuzzy random variable can be transformed a (α1,σ)-level trapezoidal fuzzy vari-

able.

Proof. Let
˜̄ξ = (aL,ρ ,aR), here, ρ be a random variable which has a normal dis-

tribution with the probability density function ϕ(x) = 1√
2πσ0

e
− (x−µ0)2

2σ2
0 . Then ˜̄ξ is a

fuzzy random variable. See Figure 3.15. By the concept of random variable σ -level

sets, denote the σ -level sets (or σ -cuts) of the random variable ρ as follows

ρσ = [ρL
σ ,ρR

σ ] = {x ∈U |ϕ(x)≥ σ},
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where ρL
σ = µ0−

√
−2σ2

0 ln(
√

2πσσ0) and ρR
σ = µ0 +

√
−2σ2

0 ln(
√

2πσσ0), here

µ0 = ρ0. The parameter σ ∈ [0,1] here reflects decision-maker’s degree of opti-

mism. These intervals indicate where the group arrival rate and service rate lie at

probability level σ . Note that ρσ are crisp sets.

Fig. 3.14 The probability density function of fuzzy random variable ρ

Let X = {x j ∈ X |µ(x j) ≥ σ , j = 1,2, · · · ,n}, so the fuzzy random variable ˜̄ξ =

(aL,ρσ ,aR) can be denoted as ˜̄ξ = (aL,X ,aR) or denoted as follows:

˜̄ξ =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ξ̄1(aL,x1,aR)

ξ̄2(aL,x2,aR)
...

ξ̄n(aL,xn,aR),

where x1 ≤ x2 ≤ ·· · ≤ xn, X = [x1,xn] = [ρL
σ ,ρR

σ ], j = 1,2, · · · ,n and ξ̄ j is fuzzy

variable. It is easy to reach that x1 = ρL
σ ,xn = ρR

σ . In other words, ρL
σ is the minimum

value that ρ achieves with probability σ , ρR
σ is the maximum value that ρ achieves

with probability σ . The variable ˜̄ξ can be expressed in another form as ˜̄ξ = ξ̃1 ∪
ξ̃2∪·· ·∪ ξ̃n, here ξ̃ j is fuzzy variable. So the fuzzy variable ˜̄ξ are transformed into

some fuzzy variables with membership function µξ̄ (X). On the basis of the concept

of fuzzy variable α-level sets (or α-cuts), denote the α1-level sets (or α1-cuts) of ξ̄
as follows

ξ̄α1
(X) = [ξ L

α1
,ξ R

α1
] = {X ∈U |µξ̃ (X)≥ α1}

or

ξ̄α1
(X) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ξ̄1 = (aL,ρL
σ ,aR)

ξ̄2 = (aL,x2,aR)
...

ξ̄n−1 = (aL,xn−1,aR)

ξ̄n = (aL,ρR
σ ,aR).
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By the convexity of a fuzzy number, the bounds of these intervals are function of

α1. In order to make the method to be effective, we get 0 ≤ α1 ≤ aR−aL

aR−aL+ρR
σ−ρL

σ
and

can be obtained as ξ̄α1
= [ξ L

α1
,ξ R

α1
]. ξ L

α1
= max ξ L

jα1
, ξ R

α1
= min ξ R

jα1
, and ξ L

jα1
=

min µ−1

ξ̄ j
(α1), ξ R

jα1
= max µ−1

ξ̄ j
(α1), j = 1,2, · · · ,n, respectively. Obviously,

ξ L
α1

= maxmin µ−1

ξ̄ j
(α1) = min µ−1

ξ̄n
(α1),

ξ R
α1

= minmax µ−1

ξ̄ j
(α1) = max µ−1

ξ̄1
(α1).

Consequently, we can use its α1-cuts to construct the corresponding membership

function. Let ξ L
α1

= a,ξ R
α1

= a, viz. ˜̄ξ = (aL,a,a,aR). Thus, the fuzzy random vari-

able ˜̄ξ is transformed into a fuzzy variable which is a similar trapezoidal fuzzy

number with the membership function µξ̄ (U). The value of µξ̄ (U) at x ∈ [a,a] is

considered subjectively to be 1 approximately. See Figure 3.15.

¯̄ξ = ω̄ ¯̄ξ
= (aL,a,a,aR). (3.132)

Fig. 3.15 The membership function of ω̃ ˜̄ξ

The Theorem 3.19 is proved. ⊓⊔

Definition 3.19. (Xu and Liu [76]) Let a domain U . ˜̄ξ be a fuzzy random variable

defined on U . α1 ∈ [0,1] be any given possibility level of fuzzy variable, σ ∈ [0,1]
be any given probability level of random variable. Basis on the Lemma 3.19. If

ϕ(x)≥ σ and µ(x)≥ α1 the fuzzy random variable ˜̄ξ can be transformed a (α1,σ)-
level trapezoidal fuzzy variable B̃. So Bα consist of all elements whose degrees of

membership in B̃ are greater than or equal to α ,

Bα = {x ∈U |µ
B̃
(x)≥ α,ϕ(x)≥ σ ,µ(x)≥ α1},

then Bα is called the α-level sets of fuzzy random variable ˜̄ξ with ϕ(x) ≥
σ and µ(x)≥ α1, viz. ˜̄ξα(α1,σ)

.
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Definition 3.20. (Xu and Liu [76]) Let Lα ( ˜̄a,
˜̄b, ˜̃c) be the α-level set of fuzzy random

variables ˜̄ar j,
˜̄br, ˜̄ci j . α be any given possibility level of fuzzy variable, σ be any

given probability level of random variable. Then we have

Lα( ˜̄a,
˜̄b, ˜̄c) = {(a,b,c)|π( ˜̄ar j)(α1 ,σ)

( ˜̄ar j)(α1,σ) ≥ α,π
( ˜̄br)(α1 ,σ)

( ˜̄br)(α1,σ) ≥ α,

π( ˜̄ci j)(α1 ,σ)
( ˜̄ci j)(α1,σ) ≥ α, i = 1,2, · · · ,m, j = 1,2, · · · ,n,r = 1,2, · · · , p},

viz.

Lα( ˜̄a,
˜̄b, ˜̄c) = Lα( ˜̄a(α1,σ),

˜̄b(α1,σ),
˜̄c(α1,σ)).

Theorem 3.20. [76] Let ˜̄a,
˜̄b, ˜̄c be fuzzy random variables, (α1,σ) be any given pos-

sibility level and probability level respectively, Lα( ˜̄a,
˜̄b, ˜̄c) be the α-level set of fuzzy

random numbers ( ˜̄a,
˜̄b, ˜̄c). For different (α1,σ)-level it is clear that

(a) if σ1 ≤ σ2
,α1

1 ≥ α2
1 , then L1

α( ˜̄a,
˜̄b, ˜̄c)⊆ L2

α( ˜̄a,
˜̄b, ˜̄c),

(b) if σ1 ≥ σ2,α1
1 ≤ α2

1 , then L1
α( ˜̄a,

˜̄b, ˜̄c)⊇ L2
α( ˜̄a,

˜̄b,˜̄c).

Proof. It follows from the Lemma 3.19 that a fuzzy random variable ˜̄ξ can be

transformed into a fuzzy variable, viz. ˜̄ξ ⇒ (aL,a,a,aR). Let ˜̄ξ = ( ˜̄a,
˜̄b, ˜̄c) and

depending on the Definition 3.20, we can derive Lα ( ˜̄ξ ) = {a|π( ˜̄a)(α1,σ)
( ˜̄a)(α1,σ) ≥

α} = [ξ L
α ,ξ R

α ]. ξ L
α = aL + (a− aL)α , a = ξ L

α1
, ξ L

α1
= aL + (ρR

σ − aL)α1 and ρR
σ =

µ0 +
√
−2σ2

0 ln(
√

2πσσ0).

Finally, we have ξ L
α = aL + {aL + [µ0 +

√
−2σ2

0 ln(
√

2πσσ0)− aL]α1− aL}α .

Then ξ L
α is a decreasing function about σ and a increasing function about α1. For

any given 0 ≤ σ ≤ 1,0 ≤ α1 ≤ 1, if σ1 ≤ σ2 and α1
1 ≥ α2

1 , we have ξ L1
α ≥ ξ L2

α .

Similarly, we may prove ξ R1
α ≤ ξ R2

α . Thus [ξ L1
α ,ξ R1

α ] ⊆ [ξ L2
α ,ξ R2

α ], then we obtain

L1
α( ˜̄ξ )⊆ L2

α ( ˜̄ξ ), viz. L1
α( ˜̄a,

˜̄b, ˜̄c)⊆ L2
α ( ˜̄a,

˜̄b, ˜̄c).

Similarly, we may prove that if σ1 ≥ σ2,α1
1 ≤ α2

1 , then L1
α( ˜̄a,

˜̄b, ˜̄c)⊇ L2
α( ˜̄a,

˜̄b,˜̄c).
The proof is thus completed. ⊓⊔

Thus, the fuzzy random multi-objective model (3.127) is transformed into a fuzzy

multi-objective model.

{
max [C̃1x,C̃2x, · · · ,C̃mx]

s.t. x ∈ X = {x ∈ Rn|Ã′x≤ b,x≥ 0}, (3.133)

where C̃i = ω̃ ˜̄ci(α1 ,σ)
,(i = 1,2, · · · ,m) and Ã

′
= (ω̃ ˜̄A1

, ω̃ ˜̄A2
, · · · , ω̃ ˜̄Ap

)T are fuzzy

vectors.

3.7.2 Application to Inventory Problems

For inventory problems, lots of work has been done. Chih Hsun Hsieh [200] gave

the optimization of fuzzy production inventory models. In this section, we consider
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a multi-item inventory system of deteriorating items with an infinite rate of replen-

ishment, no shortages, stock-dependent demand and limited storage space [201].

Here, we consider the selling price, purchase price, holding cost, set-up cost and

available total budgetary cost as fuzzy random variables.

3.7.2.1 Denotation and Modelling

In this system, see Figure. 3.16, there are n products in the warehouse. the demand

Di(t) of products of an item are influenced by inventory level qi(t). The following

notations are used in the formulation of the model, For ith (i = 1, ...,n) item, it is

assumed that

n: number of items

A: available floor/storage space

B: available total budgetary cost

si: selling price of each product

pi: purchase price of each product

hi: holding cost per unit quantity per unit time

ui: set-up cost per cycle

ai: constant rate of deterioration, 0 < ai < 1

Ai: required storage area per unit quantity

Ti: time period for each cycle

qi(t): inventory level at time t

Qi: order quantity

Zi(Qi): average profit of the ith item

Di(qi): quantity of demand at time t, Di(qi) = bi +ciqi(t) ( where bi and ci being

constant, 0 < ci < 1 )

TCi(Qi): Total average cost of the ith item

PF(Qi): total average profit PF(Qi) =
n

∑
i=1

Zi(Qi)

WC(Qi): total wastage cost of the ith item

Fig. 3.16 A multi-item inventory system
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Here, D = (D1,D2, . . . ,Dn)
T ,Q = (Q1,Q2, ...,Qn)

T . If qi(t) is the inventory level at

time t of the ith, then dqi
dt =−Di(qi)−aiqi. So, the length of the cycle of the ith item

is

Ti =

∫ Qi

0

dqi

Di(qi)+ aiqi
=

∫ Qi

0

dqi

bi + ciqi + aiqi
=

1

ai + ci
ln

(
bi +(ai + ci)Qi

bi

)
.

The holding cost in each cycle for the ith item is higi(Qi), where

gi(Qi) = qiTi =

∫ Qi

0

qidqi

bi + ciqi + aiqi
=

Qi

(ai + ci)
− bi

(ai + ci)2
ln

(
bi +(ai + ci)Qi

bi

)
.

The total number of deteriorating units of ith item is θi(Qi) = aigi(Qi). The net

revenue of the ith item is N(Qi) = (si− pi)Qi− siθi(Qi). Hence, total average profit

of the ith item is

PF(Qi) = [N(Q
i
)−higi(Qi)−ui]/Ti.

Total wastage cost of the ith item

WC(Qi) =
n

∑
i=1

θi(Qi)pi/Ti.

Total average cost of the ith item is

TCi(Qi) = [piQi + higi(Qi)+ ui]/Ti.

Because the above selling price, purchase price, holding cost, set-up cost and avail-

able total budgetary cost are all positive, when they are fuzzy random variables,

the random variables part has a log-normal distribution and its probability density

function is

ϕ(x) =
1√

2πσ0x
e
− (lnx−µ0)2

2σ2
0 . (3.134)

If the decision maker wants to maximize total average profit and minimize total

wastage cost, then the problem can be formulated by the following model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max PF(Qi) =
n

∑
i=1

[ ˜̄N(Q
i
)− ˜̄higi(Qi)− ˜̄ui]/Ti

min WC(Qi) =
n

∑
i=1

θi(Qi) ˜̄pi/Ti

s.t.

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

n

∑
i=1

˜̄TCi(Qi)≤ B

n

∑
i=1

AiQi ≤ A

Qi > 0, i = 1,2,3, ...,n,

(3.135)

where ˜̄N(Qi) = ( ˜̄si− ˜̄pi)Qi− ˜̄siθi(Qi),
˜̄TCi(Qi) = [ ˜̄piQi +

˜̄higi(Qi)+ ˜̄ui]/Ti.
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3.7.2.2 Solving Process of the Proposed Inventory Model

In fuzzy set theory, the coefficients of the fuzzy objectives and fuzzy constraints

are taken as fuzzy numbers, namely trapezoidal fuzzy numbers, triangular fuzzy

numbers, LR fuzzy numbers, etc. Here, we assume that all coefficients to be fuzzy

random variables. To solve the fuzzy multi-objective inventory model described in

equations (3.137), we use the (α,β ) satisfied method based on Zimmermann[107].

The step-by-step procedure of the (α,β ) satisfied approach can be described as

follows:

Step 1. Decision-makers give the value of α1 and σ depending on their experiences

or former dates.

Step 2. On the basis of the above discussions about Lemma 4.17, the fuzzy random

variable
˜̄ξ is transformed into a fuzzy variable which is a similar trapezoidal fuzzy

number. We consider the above multi-objective inventory model (3.135), where the

selling price ˜̄si, purchase price ˜̄pi, holding cost ˜̄hi and set-up cost ˜̄ui are fuzzy ran-

dom variables. For each α1 and σ is given by decision-maker. we can derive that

˜̄si = ω̃ ˜̄si
= (sL,s,s,sR),

˜̄pi = ω̃ ˜̄pi
= (pL, p, p, pR),

˜̄hi = ω̃ ˜̄hi
= (hL,h,h,hR),

˜̄ui = ω̃ ˜̄ui
= (uL,u,u,uR).

which can be specified by the ω̃ ˜̄ξ
= (aL,a,a,aR) with membership function:

µω̃ ˜̄ξ
(t) =

⎧
⎪⎪⎨
⎪⎪⎩

t−aL
a−aL

, if aL ≤ t ≤ a

1, if a≤ t ≤ a
aR−t
aR−a

, if a≤ t ≤ aR

0, if t < aL,t > aR.

(3.136)

And then, the fuzzy random multi-objective model (3.135) is transformed into a

fuzzy multi-objective model.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max PF(Qi) =
n

∑
i=1

[Ñ(Qi)− h̃igi(Qi)− ũi]/Ti

min WC(Qi) =
n

∑
i=1

θi(Qi)p̃i/Ti

s.t.

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

n

∑
i=1

˜TCi(Qi)≤ B

n

∑
i=1

AiQi ≤ A

Qi > 0, i = 1,2,3, · · · ,n,

(3.137)

where Ñ(Qi) = (ω̃˜̄si
− ω̃˜̄pi

)Qi− ω̃˜̄si
θi(Qi), T̃Ci(Qi) = [ω̃˜̄pi

Qi + ω̃˜̄hi
gi(Qi)+ ω̃˜̄ui

]/Ti,

˜̄pi = ω̃˜̄pi
, ˜̄hi = ω̃˜̄hi

, ˜̄ui = ω̃˜̄ui
.
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Step 3. Give the α-cut of ω̃ and be expressed by the following interval

ω̃α = [aL +(a−aL)α,a,a,aR− (aR−a)α].

Step 4. Based on the (α,β ) satisfied approach. Let (Qi)
β
α be a solution of the fuzzy

non-linear programming model in equation (3.137), where α ∈ [0,1] denotes the

level of possibility at which all fuzzy inventory costs and prices are feasible and

β ∈ [0,1] denotes the grade of compromise to which the solution satisfies all of

the fuzzy objectives and constraints keeping the coefficients at a feasible level α .

Hence, based on the Theorem 3.18, equation (3.137) is reduced to

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

maxmin [α,β ]

s.t.

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

µP̄F(Qi,α)≥ β
µW̄C(Qi,α)≥ β
µ ¯TC(Qi,α)≥ β
n

∑
i=1

AiQi ≤ A

0≤ α ≤ 1,β ,λ ≤ 1.

(3.138)

Step 5. Give the concrete forms of the linear membership functions µP̄F(Qi,α),
µW̄C(Qi,α) and µ ¯TC(Qi,α) for two objectives and constraints, respectively, as

follows:

µP̄F(Qi,α) =

⎧
⎨
⎩

0, if PF(Qi,α) < UPF −PPF

1 + PF(Qi,α)−UPF

PPF
, if UPF −PPF ≤ PF(Qi,α)≤UPF

1, if PF(Qi,α) > UPF ,

(3.139)

µW̄C(Qi,α) =

⎧
⎨
⎩

0, if WC(Qi,α) > LWC + PWC

1− WC(Qi ,α)−LWC
PWC

, if LWC ≤WC(Qi,α)≤ LWC + PWC

1, if WC(Qi,α) < LWC,

(3.140)

µ ¯TC(Qi,α) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if
n

∑
i=1

TCi(Qi,α) > C + PTC

1−
n

∑
i=1

TCi(Qi,α)−C

PTC
, if C ≤

n

∑
i=1

TCi(Qi,α)≤C + PTC

1, if
n

∑
i=1

TCi(Qi,α) < C.

(3.141)

Here, PPF is the maximum and PWC,PTC are the minimum acceptable violation of

the aspiration levels UPF ,LWC and C, respectively.

Step 6. Depending on Definition 3.19 and Theorem 3.20, equation (4.143) can be

calculated as
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maxmin {α,β}

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 +
PF(Qi,α)−UPF

PPF
≥ β

1− WC(Qi,α)−LWC
PWC

≥ β

1−
n

∑
i=1

TCi(Qi,α)−C

PTC
≥ β

n

∑
i=1

AiQi ≤ A

0≤ α ≤ 1,β ,λ ≤ 1,

(3.142)

where

PF(Qi,α) =
n

∑
i=1

[ω̃R
˜̄si(α1,σ)

(α)Qi− ω̃L
˜̃pi(α1,σ)

(α)Qi− ω̃L
˜̄si(α1,σ)

(α)θi(Qi)

−ω̃L
˜̄hi(α1,σ)

(α)gi(Qi)− ω̃L
˜̄ui(α1,σ)

(α)]/Ti,

WC(Qi,α) =
n

∑
i=1

θi(Qi)ω̃L
˜̄pi(α1 ,σ)

(α)/Ti,

n

∑
i=1

TCi(Qi,α) =
n

∑
i=1

[ω̃L
˜barpi(α1 ,σ)

Qi + ω̃L
˜̄hi(α1,σ)

gi(Qi)+ ω̃L
˜̄ui(α1,σ)

]/Ti.

Step 7. Solve and calculate the above certain programming model (3.142).

If the decision maker is satisfied with the current values or results, otherwise, ask

the decision maker to the update reference membership levels or the (α1,σ) values

by taking account of the current results and the membership function values, then

return to step 1.



Chapter 4

Bifuzzy Multiple Objective Decision Making

When we dig into the uncertainty of a fuzzy set, there are two cases: the member-

ships are also fuzzy, and the elements are also fuzzy. So there exists a level-2 fuzzy

set and type-2 fuzzy set which originally proposed by Zadeh. Then some scholars

elaborated these two concepts, respectively.

Based on the type-2 fuzzy set, Liu defined bifuzzy variables and related prop-

erties. Similar to the framework of chapter 2, in this chapter, we also discusse the

following three models:

(1) Bifuzzy expected value model (Fu-Fu EVM).

(2) Bifuzzy chance constrained model (Fu-Fu EVM).

(3) Bifuzzy dependent chance model (Fu-Fu EVM).

Finally, an application to a purchasing problem under a bifuzzy environment is

presented as an illustration.

4.1 Raw Material Purchasing Problem under Bifuzzy
Environment

Since the late 1960s, the raw materials purchasing issues have been tackled well by

enterprises, and is regarded as a strategic management decision as well as a competi-

tive weapon [345, 346, 347]. Essentially, this is due to the importance of the purchase

of raw materials; it is not only the beginning of production operation activities and

linked to the connection between production operation activities, but is also the major

part of the production costs for an enterprise, accounting for 60%-80% [348]. The

question as to how to make effective purchasing policies, i.e. ‘optimal purchasing

policies’ has come to have many new characteristics in the recent 10 years because

of that the trend of globalization of market s and development of supply chains.This

important research area now is based on mathematical models and is using quanti-

tative methods [349, 350, 351, 352].

Fig. 4.1 is the raw material supply system of a certain large-scale integrated steel

plant in China. In this plant, approximately 10 million tons of steel-iron products are

produced per year; slabs, hot rolled coils, wire, cold rolled plates, sheets, etc.. Con-

sequently, large quantities of raw materials are required in this plant every year. The

bulk of the raw materials has over 100 items, with total quantity reaching 30 million

J. Xu and X. Zhou: Fuzzy-Like Multiple Objective Decision Making, STUDFUZZ 263, pp. 227–294.
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Fig. 4.1 Raw materials supply system

tons per year. Its requisite raw materials are mainly used to supply coking, sinter-

ing, power plants, iron production, steel production, and so on. These raw materials

can be divided into four classes: basic raw materials, heavy oil, scrap iron-steel, and

ferroalloy. The basic raw materials include primary raw materials, secondary raw

materials, and fuels. The primary raw materials include iron ores (e.g., crude ore,

size preparation ore, fine ore, ore screenings, pellet ore, sinter ore, etc.) and man-

ganese ore. The secondary raw materials include limestone, light-burned dolomite,

primary lime, etc. Fuels includes coal, coke, etc. Facing such a large requirement

for raw materials in item and quantity, the question as to how to rationally organize

purchasing in order to make it not only meet the production requirements, but also

to obtain maximum benefit from purchasing policies is important to an enterprise.

The main problem the purchasing of raw materials faces is how to make purchas-

ing decisions, in order to obtain required raw materials at a lower price and at the

sametime meet production demand in terms of item, quality, quantity, due date, and

so on. However, in general, this is not easy to achieve, because these criteria are

often in conflict with each other. For example, the better the quality of the product,

the higher the price, while the lower the price, the poorer the quality. Therefore, one

of the main objectives of optimizing purchasing decisions is often a trade-off. These

factors decide the complexity the purchasing decisions. On the other hand, we can

see that the criteria mentioned above are in connection with three kinds of decisions,

i.e., item decision, quantity decision and vendor selection decision. The details are

in the following.

The first is to decide items. In the iron-steel industry, the bulk raw materials are

chiefly are of iron ores, secondary raw materials and fuels. There are approximately

100 items, and the meaning of item is based on the classification to which it belongs.

Iron ores, secondary raw materials, and fuels can be divided further into a number

of classes, and each class can then be subdivided into a number of sub-classes, e.g.
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the same kind of iron ore can be divided into a number of grades. Consequently, the

number of items is very large. In addition, considering various items combination

situations because the steel-iron making process is a very complex metallurgical

process, influenced by used raw material items, operation conditions, and working

sequence, different items or items combination may produce the same molten iron or

molten steel, but different items combination cost varies significantly. Consequently,

how to select appropriate items is the key to reduce the production cost.

The second is to decide quantities. The iron-steel production not only requires

more items, but also a higher quantity of raw materials compared to other industries.

To meet customers requirement and guarantee product quality in the iron-steel pro-

duction process, different items are required in different quantities and they must sat-

isfy definied proportionality relations. For example, in traditional iron making tech-

nology, iron ore, secondary raw materials and fuels are in the proportion 2:0.5:1.

Therefore, to make a purchasing decision quantity proportion relations among items

needs to be considered. We call such decision the proportionality relation in the pro-

cess as selecting ‘assigning ore and assigning coal schemes’. This decision needs

strong professional knowledge of iron-steel metallurgy.

The third phase is to select vendors. To keep the stability and quality of the supply

of raw materials, a plant must consider the influence of external suppliers. Actually,

this integrated steel plant has about 30 vendors distributed over the world, and every

vendor supplies 1-4 kinds of bulk raw materials. Each raw material item differs from

vendor to vendor in terms of quality, price, service and so on. Thus selecting-vendor

decision will positively affect item, quality, price decisions, etc.. Within the model,

we regard the vendor selection as an important consideration. Selecting vendors and

deciding the order quantity of a selected vendor is also part of the vendor selection

problem. The vendor selection problem has already been discussed in many papers

in the past 30 years [353, 354, 355, 356, 357]. We focus on studying a special kind

of ‘the vendor selection problem’ under satisfying ‘assigning ore and assigning coal

schemes’ to the purchase of raw materials of a steel plant.

4.2 Fu-Fu Variable

Generally speaking, a level-2 fuzzy set is a fuzzy set in which the elements are also

fuzzy sets, and the Fu-Fu variable is a fuzzy variable with fuzzy parameters.

4.2.1 Level-2 Fuzzy Set, Type-2 Fuzzy Sets and Fu-Fu Variable

Let fuzzy sets, as described above, be called ordinary fuzzy sets. With the appropri-

ate interpretation of their membership function [32], ordinary fuzzy sets can success-

fully be used to handle imperfect information from one single source, which is either

uncertain, imprecise, vague or incomplete. A survey of existing fuzzy modelling ap-

proaches is presented in [422]. For handling imperfect information whereby two or

more sources of imperfection appear simultaneously, the modelling facilities with or-

dinary fuzzy sets are limited. Two types of advanced fuzzy sets have been previously

discussed by researchers, which are level-2 fuzzy set and type-2 fuzzy set.
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Level-2 fuzzy sets were originally presented by Zadeh [11] in 1971 and were fur-

ther elaborately by Gottwald [21]. Such sets are fuzzy sets whose elements themselves

are ordinary fuzzy sets. They are very useful in circumstances where it is difficult to

determine some elements for a fuzzy set.

Definition 4.1. (Gottwald [21]) A level-2 fuzzy set ˜̃V defined over a universal set U

is defined by
˜̃V = {(Ṽ ,µ ˜̃V

(Ṽ ))|∀ Ṽ ∈ F̃ (U) : µ ˜̃V
> 0}, (4.1)

where each ordinary fuzzy set Ṽ is defined by

Ṽ = {(x,µṼ (x))|∀x ∈U : µṼ > 0}. (4.2)

For convenience, the membership grades µ ˜̃V
(Ṽ )of the fuzzy setsṼ ∈ F̃ (U)are called

‘outer-layer’ membership grades, whereas the membership grades µṼ (x) of the ele-

ments x ∈U are called ‘inner-layer’ membership grades. Since level-2 fuzzy sets are

still fuzzy sets, their mathematical behavior is defined by the fuzzy set operators [21].

Type-2 fuzzy sets were introduced by Zadeh [19] in 1975 as another extension of

the concept of an ordinary fuzzy set, and it was elaborated by Mendel, Karnik and

John [419, 420]. Such sets are fuzzy sets whose membership grades them as ordinary

fuzzy sets. They are very useful in circumstances where it is difficult to determine an

exact membership function for a fuzzy set.

Definition 4.2. (Mendel [420]) A type-2 fuzzy set, denoted Ã, is characterized by a

type-2 membership function µÃ(x,u), where x ∈ X and u ∈ Jx ⊆ [0,1], i.e.,

Ã = {((x,u),µÃ(x,u))|∀x ∈ X ,∀u ∈ Jx ⊆ [0,1]}, (4.3)

in which 0≤ µÃ(x,u)≤ 1. Ã can also be expressed as

Ã =
∫

x∈X

∫

u∈Jx

µÃ(x,u)/(x,u),Jx ⊆ [0,1]. (4.4)

In the above definition, there are two grades of membership, Jx is the primary mem-

bership of x, where Jx⊆ [0,1] for ∀x∈X . And µÃ(x,u)(x∈ X ,u∈ Jx) is the secondary

grade.

Normally speaking, a Fu-Fu variable ξ is a fuzzy variable under fuzzy

environment.

Definition 4.3. A Fu-Fu variable ξ is a fuzzy variable with fuzzy parameters.
Example 4.1. Let ρ̃1, ρ̃2, · · · , ρ̃n be fuzzy numbers and pos1, pos2, · · · , posn be real

numbers in [0,1] such that pos1∨ pos2∨·· ·∨ posn = 1. Then

ξ =

⎧
⎪⎪⎨
⎪⎪⎩

ρ̃1 with possibility pos1

ρ̃2 with possibility pos2

· · ·
ρ̃n with possibility posn

is a Fu-Fu variable.
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Example 4.2.
˜̃ξ = (sL, ρ̃,sR) with ρ̃ = (ρL,ρM,ρR) is called Fu-Fu varaible, see Fig.

4.2, if the outer-layer and inner-layer membership functions are as follows:

µ ˜̃ξ
(x) =

⎧
⎨
⎩

(x− sL)/(ρ̃− sL), if sL ≤ x≤ ρ̃
(sR− x)/(sR− ρ̃), if ρ̃ ≤ x≤ sR

0, otherwise

and

µρ̃(x′) =

⎧
⎨
⎩

(x′−ρL)/(ρM−ρL), if ρL ≤ x′ ≤ ρM

(ρR− x′)/(ρR−ρM), if ρM ≤ x′ ≤ ρR

0, otherwise,

where ρ̃ is the center of
˜̃ξ , which is a triangular fuzzy variable, sL ∈ R and sR ∈ R are

the smallest possible value and the largest possible value of
˜̃ξ . ρL ∈ R, ρM ∈ R and

ρR ∈ R are the the smallest possible value, the most promising value and the largest

possible value of ρ̃ , respectively.

Fig. 4.2 Triangular Fu-Fu variable

4.2.2 Expected Value Operator of Fu-Fu Variables

Definition 4.4. (Liu [220]) The expected value a Fu-Fu variable is defined by

E[ξ ] =

∫ +∞

0
Cr{θ ∈Θ |E[ξ (θ )]≥ r}dr−

∫ 0

−∞
Cr{θ ∈Θ |E[ξ (θ )]≤ r}dr

provided that at least one of the two integrals is finite.

Theorem 4.1. Assume that ξ and η are Fu-Fu variables with finite expected values.

If (i) for each θ ∈Θ , the fuzzy variables ξ (θ ) and η(θ ) are independent, and (ii)

E[ξ (θ )] and E[η(θ )] are independent fuzzy variables, then for any real numbers a

and b, we have

E[aξ + bη ] = aE[ξ ]+ bE[η ]. (4.5)

Proof. For any θ ∈ Θ since the fuzzy variables ξ (θ ) and η(θ ) are independent,

we have E[aξ (θ ) + bη(θ )] = aE[ξ (θ )] + bE[η(θ )]. In addition, since E[ξ (θ )]
and E[η(θ )] are independent fuzzy variables, we have E[aξ + bη ] = E[aξ (θ ) +
bη(θ )] = aE[ξ (θ )]+ bE[η(θ )] = aE[ξ ]+ bE[η ]. The theorem is proved. ⊓⊔
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4.2.3 Chance Operator of Fu-Fu Variables

Definition 4.5 ([220]). Let ξ be a Fu-Fu variable, and B a Borel set of R. Then the

primitive chance of Fu-Fu event ξ ∈ B is a function from (0,1] to [0,1], defined as

Ch{ξ ∈ B}(α) = sup
Me{A}≥α

inf
θ∈A

Me{ξ (θ ) ∈ B}. (4.6)

Usually, we use Pos or Nec to measure the chance of bifuzzy events. So the following

equations will be used frequently.

Definition 4.6. Let ξ = (ξ1,ξ2, · · ·ξn) be a Fu-Fu vector defined on (Θ ,P(Θ),Pos),
and f : Rn → R is real-valued continuous function. Then the primitive chance of a

Fu-Fu event characterized by f (ξ )≤ 0 is a function from (0, 1] to [0, 1], defined as

the following,

(1) Pos-Pos chance,

Ch{ f (ξ )≤ 0}(α) = sup
α∈[0,1]

{θ |Pos{θ ∈Θ |Pos
{

f (ξ (θ ))≤ 0
}
≥ β} ≥ α}. (4.7)

(2) Nec-Nec chance,

Ch{ f (ξ )≤ 0}(α) = sup
α∈[0,1]

{θ |Nec{θ ∈Θ |Nec
{

f (ξ (θ ))≤ 0
}
≥ β}≥α}. (4.8)

where α,β ∈ [0,1] are predetermined confidence level.

Remark 4.1. According Definition 4.6, we have the following three equivalent forms

respectively

Ch{ f (ξ )≤ 0}(α)≥ β
⇔ Pos{θ ∈Θ |Pos{ f (ξ (θ )) ≤ 0} ≥ β} ≥ α

or⇔ Nec{θ ∈Θ |Nec{ f (ξ (θ ))≤ 0} ≥ β} ≥ α.

Remark 4.2. The primitive chance of a Fu-Fu event characterized by f (ξ )≤ 0 defined

as (4.5) have the equivalent forms respectively.

Ch{ f (ξ )≤ 0}(α) = sup
Pos{A}≥α

inf
θ∈A

Pos{ f (ξ (θ ))≤ 0}, (4.9)

Ch{ f (ξ )≤ 0}(α) = sup
Nec{A}≥α

inf
θ∈A

Nec{ f (ξ (θ ))≤ 0}. (4.10)

Remark 4.3. The primitive chance represents that the Fu-Fu event holds with possi-

bility Ch{ f (ξ )≤ 0}(α) at possibility α .

Remark 4.4. It is obvious that Ch{ f (ξ )≤ 0}(α) is a decreasing function of α .

Remark 4.5. If the Fu-Fu vector ξ becomes a fuzzy vector, then the chance

Ch{ f j(ξ ) ≤ 0, j = 1,2, · · · ,m}(α) (with (α) > 0) is exactly the possibility or the

necessity of the event.
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4.3 Fu-Fu EVM

In order to obtain the decision with optimizing the expected objective values subject

to expected constraints, we may employ the following Fu-Fu EVM.

4.3.1 General Model for Fu-Fu EVM

First we give the general model of Fu-Fu multi-objective decision making model as

follows, ⎧
⎨
⎩

max [ f1(x,ξ ), f2(x,ξ ), · · · , fm(x,ξ )]

s.t.

{
gr(x,ξ )≤ 0, r = 1,2, · · · , p

x ∈ X .

If ξ is a Fu-Fu vector, x = (x1,x2, · · · ,xn) is decision vector, then the objective

function fi(x,ξ ) and constraint functions gr(x,ξ ) are also Fu-Fu variables, i =
1,2, · · · ,m,r = 1,2, · · · , p. In order to rank Fu-Fu objective fi(x,ξ ), we may em-

ploy the expected value operator to deal with the objective functions and constraints,

and we can get the following model (4.11). For the expected value of the objective

E[ fi(x,ξ )], i = 1,2, · · · ,m, it means that the larger the expected returns E[ fi(x,ξ )],
the better the decision x. The first type of Fu-Fu decision-making model is expected

value multi-objective decision-making model in which the underlying philosophy is

based on selecting the decision with maximum expected objective values.

⎧
⎨
⎩

max [E[ f1(x,ξ )],E[ f2(x,ξ )], · · · ,E[ fm(x,ξ )]]

s.t.

{
E[gr(x,ξ )]≤ 0, r = 1,2, · · · , p

x ∈ X .
(4.11)

Definition 4.7. A solution is called a Fu-Fu expected feasible solution of model

(4.11) if it satisfies

E[gr(x,ξ )]≤ 0,

for r = 1,2, · · · , p.

Definition 4.8. A feasible point, x∗, is said to be a Fu-Fu expected efficient

solution(nondominated solution, Pareto solution) for Problem (4.11) such that

E[ fi(x,ξ )]≥ E[ fi(x
∗,ξ )] for i = 1,2, · · · ,m with strict inequality holding for at least

one i.

We can also formulate a Fu-Fu decision system as an expected value goal pro-

gramming (EVGP) model according to the priority structure and target levels set by

the decision-maker:

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min
l

∑
j=1

Pj

m

∑
i=1

(ui jd
+
i + vi jd

−
i )

s.t.

⎧
⎪⎪⎨
⎪⎪⎩

E[ fi(x,ξ )]+ d−i −d+
i = bi, i = 1,2, · · · ,m

E[gr(x,ξ )]≤ 0, r = 1,2, · · · , p

d−i ,d+
i ≥ 0, i = 1,2, · · · ,m

x ∈ X .

(4.12)
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where Pj is the preemptive priority factor which expresses the relative importance

of various goals, Pj >> Pj+1, for all j, ui j is the weighting factor corresponding to

positive deviation for goal i with priority j assigned, vi j is the weighting factor cor-

responding to negative deviation for goal i with priority j assigned, d+
i is the positive

deviation from the target of goal i, defined as

d+
i = [E[ fi(x,ξ )]−bi]∨0,

d−i is the negative deviation from the target of goal i, defined as

d−i = [bi−E[ fi(x,ξ )]]∨0,

fi is a function in goal constraints, gr is a function in real constraints, bi is the tar-

get value according to goal i, l is the number of priorities, m is the number of goal

constraints, and p is the number of real constraints.

4.3.2 Linear Fu-Fu EVM and Step Method

For the regular linear multi-objective decision making problem with Fu-Fu coeffi-

cients, we can give the Fu-Fu EVM (4.13),

⎧
⎪⎪⎨
⎪⎪⎩

max E[
n

∑
j=1

˜̃ci jx j]

s.t.

{
E[ ˜̃ar jx j]≥ E[ ˜̃br], r = 1,2, · · · , p

x j ≥ 0, j = 1,2, · · · ,n.

(4.13)

Because of the introduction of the expected value operator, the model (4.13) is crisp,

then we can use the section 4.4.1 to obtain the expected value.

4.3.2.1 Crisp Equivalent

In order to solve the multi-objective decision making problem (4.13), we must com-

pute the crisp expected value of ξ . However, as we know, this process is usually a

hard work at most of time. In this section, we will consider some special

⎧
⎨
⎩

max E[ ˜̃cT
1 x, ˜̃cT

2 x, · · · , ˜̃cT
mx]

s.t.

{
E[ ˜̃aT

r x]≤ E[ ˜̃br],r = 1,2, · · · , p

x j ≥ 0, j = 1,2, · · · ,n,

(4.14)

where ˜̃ci = ( ˜̃ci1, ˜̃ci1, · · · , ˜̃cin)
T
, ˜̃ar = ( ˜̃ar1, ˜̃ar1, · · · , ˜̃arn)

T are Fu-Fu vectors, ˜̃br are Fu-

Fu variables, i= 1,2, · · · ,m,r = 1,2, · · · , p. If these Fu-Fu vectors have special forms,

we have the following theorems. In this section, we use theCr to compute the expected

value.
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Theorem 4.2. If Fu-Fu variable ˜̃ci j is characterized as follows:

˜̃ci j(θ ) = (c̃i j1(θ ), c̃i j2(θ ), c̃i j3(θ ), c̃i j4(θ )),

with µc̃i jt(θ)(x) =

{
1, if x ∈ [ci jt1,ci jt2]
0, otherwise,

for i = 1,2, · · · ,m, j = 1,2, · · · ,n,t = 1,2,3,4, then

E[ ˜̃cT
1 x],E[ ˜̃cT

2 x], · · · ,E[ ˜̃cT
mx]

is equivalent to

1

8

n

∑
j=1

4

∑
t=1

2

∑
k=1

c1 jtkx j,
1

8

n

∑
j=1

4

∑
t=1

2

∑
k=1

c2 jtkx j, · · · ,
1

8

n

∑
j=1

4

∑
t=1

2

∑
k=1

cm jtkx j.

Proof. For any i ∈ 1,2, · · · ,m,θ ∈Θ , ˜̃ci j(θ ) = (c̃i j1(θ ), c̃i j2(θ ), c̃i j3(θ ), c̃i j4(θ )) is a

trapezoidal fuzzy variable. It follows from Theorem 2.4 we have

E[
n

∑
j=1

˜̃ci j(θ )x j] =
1

4

n

∑
j=1

(c̃i j1(θ )+ c̃i j2(θ )+ c̃i j3(θ )+ c̃i j4(θ ))x j.

It follows from Definition 4.4 and Theorem 4.1 that

E[ ˜̃cT
i x] = E[E[ ˜̃cT (θ )ix]]

= E[ 1
4

n

∑
j=1

(c̃i j1(θ )+ c̃i j2(θ )+ c̃i j3(θ )+ c̃i j4(θ ))x j]

= 1
4 (

n

∑
j=1

E[c̃i j1(θ )]x j+
n

∑
j=1

E[c̃i j2(θ )]x j +
n

∑
j=1

Ec̃i j3(θ )]x j +
n

∑
j=1

E[c̃i j4(θ )]x j)

= 1
4(

n

∑
j=1

1
2 (ci j11 + ci j12)x j +

n

∑
j=1

1
2 (ci j21 + ci j22)x j

+
n

∑
j=1

1
2 (ci j31 + ci j32)x j +

n

∑
j=1

1
2 (ci j41 + ci j42)x j)

= 1
8

n

∑
j=1

4

∑
t=1

2

∑
k=1

ci jtkx j,

for any i ∈ 1,2, · · · ,m.

Thus this theorem is proved. ⊓⊔

Theorem 4.3. If Fu-Fu variables ˜̃ar j,
˜̃br are characterized as follows:

˜̃ar j(θ ) = (ãr j1(θ ), ãr j2(θ ), ãr j3(θ ), ãr j4(θ )),

with µãr jt (θ)(x) =

{
1, if x ∈ [ar jt1,ar jt2]
0, otherwise,

˜̃br(θ ) = (ãr1(θ ), ãr2(θ ), ãr3(θ ), ãr4(θ )),

with µãrt(θ)(x) =

{
1, if x ∈ [brt1,brt2]
0, otherwise,
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for i = 1,2, · · · ,m,r = 1,2, · · · , p, j = 1,2, · · · ,n,t = 1,2,3,4, then

E[ ˜̃aT
r x]≤ E[ ˜̃br],r = 1,2, · · · , p

is equivalent to

n

∑
j=1

4

∑
t=1

2

∑
k=1

ar jtkx j ≤
4

∑
t=1

2

∑
k=1

brtk,r = 1,2, · · · , p.

Proof. Similar to the proof of the Theorem 4.2, we have

E[ ˜̃aT
r x] =

1

8

n

∑
j=1

4

∑
t=1

2

∑
k=1

ar jtkx j

and

E[ ˜̃bT
r ] =

1

8

4

∑
t=1

2

∑
k=1

brtk,

for any r ∈ 1,2, · · · , p.

The theorem is proved. ⊓⊔

According to the above Theorem 4.2-4.3, the linear Fu-Fu multi-objective model

(4.14) with the coefficients describe in Theorem 4.2 and 4.3 can be transformed into

the following crisp equivalent model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max [ 1
8

n

∑
j=1

4

∑
t=1

2

∑
k=1

c1 jtkx j,
1
8

n

∑
j=1

4

∑
t=1

2

∑
k=1

c2 jtkx j, · · · ,

1
8

n

∑
j=1

4

∑
t=1

2

∑
k=1

cm jtkx j ]

s.t.

⎧
⎨
⎩

n

∑
j=1

4

∑
t=1

2

∑
k=1

ar jtkx j ≤
4

∑
t=1

2

∑
k=1

brtk,r = 1,2, · · · , p

x j ≥ 0, j = 1,2, · · · ,n.

(4.15)

Theorem 4.4. If Fu-Fu variables ˜̃ci j, ˜̃ar j,
˜̃br are characterized as follows:

˜̃ci j(θ ) = (c̃i j1(θ ), c̃i j2(θ ), c̃i j3(θ ), c̃i j4(θ )), c̃i jt(θ ) = (ci jt1,ci jt2,ci jt3,ci jt4);
˜̃ar j(θ ) = (ãr j1(θ ), ãr j2(θ ), ãr j3(θ ), ãr j4(θ )), ār jt(θ ) = (ai jt1,ai jt2,ai jt3,ai jt4);
˜̃br(θ ) = (b̃r1(θ ), b̃r2(θ ), b̃r3(θ ), b̃r4(θ )), b̃rt(θ ) = (brt1,brt2,brt3,brt4),

for i = 1,2, · · · ,m,r = 1,2, · · · , p, j = 1,2, · · · ,n,t = 1,2,3,4, then problem (4.14) is

equivalent to the conventional multi-objective linear programming
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max [ 1
16

n

∑
j=1

4

∑
t=1

4

∑
k=1

c1 jtkx j,
1
16

n

∑
j=1

4

∑
t=1

4

∑
k=1

c2 jtkx j, · · · ,

1
16

n

∑
j=1

4

∑
t=1

4

∑
k=1

cm jtkx j ]

s.t.

⎧
⎨
⎩

n

∑
j=1

4

∑
t=1

4

∑
k=1

ar jtkx j ≤
4

∑
t=1

4

∑
k=1

brtk,r = 1,2, · · · , p

x j ≥ 0, j = 1,2, · · · ,n.

(4.16)

Proof. For any i ∈ 1,2, · · · ,m,θ ∈Θ , ˜̃ci j(θ ) = (c̃i j1(θ ), c̃i j2(θ ), c̃i j3(θ ), c̃i j4(θ )) is a

fuzzy variable. According to Proposition 2.2 and Theorem 2.4, we have

E[
n

∑
j=1

˜̃ci j(θ )x j] =
1

4

n

∑
j=1

(c̃i j1(θ )+ c̃i j2(θ )+ c̃i j3(θ )+ c̃i j4(θ ))x j.

It follows from Definition 4.4 and Theorem 4.1 that

E[ ˜̃cT
i x] = E[E[ ˜̃cT (θ )ix]]

= E[ 1
4

n

∑
j=1

(c̃i j1(θ )+ c̄i j2(θ )+ c̃i j3(θ )+ c̃i j4(θ ))x j]

= 1
4 (

n

∑
j=1

E[c̃i j1(θ )]x j +
n

∑
j=1

E[c̃i j2(θ )]x j

+
n

∑
j=1

E[c̃i j3(θ )]x j +
n

∑
j=1

E[c̃i j4(θ )]x j)

= 1
4 (

n

∑
j=1

( 1
4

4

∑
j=k

ci j1k)x j +
n

∑
j=1

(
n

∑
j=1

( 1
4

4

∑
k=1

ci j2k)x j

+
n

∑
j=1

(
n

∑
j=1

( 1
4

4

∑
k=1

ci j3k)x j +
n

∑
j=1

(
n

∑
j=1

( 1
4

4

∑
k=1

ci j4k)x j)

= 1
16

4

∑
t=1

n

∑
j=1

4

∑
k=1

∑ci jtkx j.

Similarly, we have

E[ ˜̃aT
r x] =

1

16

4

∑
t=1

n

∑
j=1

4

∑
k=1

ar jtkx j

and

E[ ˜̃bT
r ] =

1

16

4

∑
t=1

4

∑
k=1

brtk,

for any r ∈ 1,2, · · · , p. Then this theorem is proved. ⊓⊔

Remark 4.6. If the fuzzy variables in Theorem 4.4 are specified as triangular fuzzy

variables, then the result (4.17) of Theorem 4.4 can be rewritten as
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max [ 1
16

n

∑
j=1

4

∑
t=1

(c1 jt1 + 2c1 jt2+c1 jt3
)x j,

1
16

n

∑
j=1

4

∑
t=1

(c2 jt1 + 2c2 jt2+c2 jt3
)x j, · · · ,

1
16

n

∑
j=1

4

∑
t=1

(cm jt1 + 2cm jt2+cm jt3
)x j ]

s.t.

⎧
⎨
⎩

n

∑
j=1

4

∑
t=1

(a1 jt1 + 2a1 jt2 + a1 jt3)x j ≤
4

∑
t=1

(brt1 + 2brt2 + brt3),r = 1,2, · · · , p

x j ≥ 0, j = 1,2, · · · ,n.
(4.17)

Theorem 4.5. If Fu-Fu variables ˜̃ci j, ˜̃ar j,
˜̃br are characterized as follows:

˜̃ci j(θ ) = (c̃i j1(θ ), c̃i j2(θ ), c̃i j3(θ ), c̃i j4(θ )),

µc̃i jt(θ)(x) =

⎧
⎪⎪⎨
⎪⎪⎩

µi jt1, if x = ci jt1

µi jt2, if x = ci jt2

· · · · · ·
µi jts, if x = ci jts,

˜̃ar j(θ ) = (ãr j1(θ ), ãr j2(θ ), ãr j3(θ ), ãr j4(θ )),

µãr jt(θ) =

⎧
⎪⎪⎨
⎪⎪⎩

µr jt1, if x = ar jt1

µr jt2, if x = ar jt2

· · · · · ·
µr jts, if x = ar jts,

˜̃br(θ ) = (b̃r1(θ ), b̃r2(θ ), b̃r3(θ ), b̃r4(θ )),

µb̃rt(θ) =

⎧
⎪⎪⎨
⎪⎪⎩

µrt1, if x = brt1

µrt2, if x = brt2

· · · · · ·
µrts, if x = brts,

for i = 1,2, · · · ,m,r = 1,2, · · · , p, j = 1,2, · · · ,n,t = 1,2,3,4,s ∈ N, then problem

(4.14) is equivalent to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max [ 1
4

n

∑
j=1

4

∑
t=1

s

∑
k=1

w1 jtkc1 jtkx j,
1
4

n

∑
j=1

4

∑
t=1

s

∑
k=1

w2 jtkc2 jtkx j, · · · ,

1
8

n

∑
j=1

4

∑
t=1

s

∑
k=1

wm jtkcm jtkx j ]

s.t.

⎧
⎨
⎩

n

∑
j=1

4

∑
t=1

s

∑
k=1

wr jtkar jtkx j ≤
4

∑
t=1

s

∑
k=1

wrtkbrtk,r = 1,2, · · · , p

x j ≥ 0, j = 1,2, · · · ,n,

(4.18)

where the weights wi jtk,wr jtk,wrtk, i = 1,2, · · · ,m, j = 1,2, · · · ,n,r = 1,2, · · · , p, t =
1,2,3,4,k = 1,2, · · · ,s are given by
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wi jt1 = 1
2(µi jt1 + max

1≤l≤s
µi jtl− max

1<l≤s
µi jtl),

wi jtk = 1
2 ( max

1≤l≤k
µi jtl− max

1≤l<s
µi jtl + max

k≤l≤s
µi jtl− max

k<l≤s
µi jtl), 2≤k≤s−1,

wi jts = 1
2( max

1≤l≤s
µi jtl − max

1≤l<s
µi jtl + µi jts),

wr jt1 = 1
2 (µr jt1 + max

1≤l≤s
µr jtl − max

1<l≤s
µr jtl),

wr jtk = 1
2 ( max

1≤l≤k
µr jtl − max

1≤l<s
µr jtl + max

k≤l≤s
µr jtl − max

k<l≤s
µr jtl), 2≤k≤s−1,

wr jts = 1
2 ( max

1≤l≤s
µr jtl − max

1≤l<s
µr jtl + µr jts),

wrt1 = 1
2 (µrt1 + max

1≤l≤s
µrtl − max

1<l≤s
µrtl),

wrtk = 1
2( max

1≤l≤k
µrtl − max

1≤l<s
µrtl + max

k≤l≤s
µrtl − max

k<l≤s
µrtl), 2≤ k≤ s−1,

wrts = 1
2 ( max

1≤l≤s
µrtl− max

1≤l<s
µrtl + µrts).

(4.19)

Proof. For any i ∈ 1,2, · · · ,m,θ ∈Θ , ˜̃ci j(θ ) = (c̃i j1(θ ), c̃i j2(θ ), c̃i j3(θ ), c̃i j4(θ )) is a

fuzzy variable. It follows from Proposition 2.2 and Theorem 2.4 we have

E[
n

∑
j=1

˜̃ci j(θ )x j] =
1

4

n

∑
j=1

(c̃i j1(θ )+ c̃i j2(θ )+ c̃i j3(θ )+ c̃i j4(θ ))x j.

It follows from Definition 4.4 and Theorem 4.1 that

E[ ˜̃cT
i x] = E[E[ ˜̃cT (θ )ix]]

= E[ 1
4

n

∑
j=1

(c̃i j1(θ )+ c̃i j2(θ )+ c̃i j3(θ )+ c̃i j4(θ ))x j]

= 1
4 (

n

∑
j=1

E[c̄i j1(θ )]x j+
n

∑
j=1

E[c̄i j2(θ )]x j +
n

∑
j=1

E[c̄i j3(θ )]x j +
n

∑
j=1

E[c̄i j4(θ )]x j)

= 1
4 (

n

∑
j=1

s

∑
k=1

wi j1kci j1sx j +
n

∑
j=1

s

∑
k=1

wi j2kci j2sx j

+
n

∑
j=1

s

∑
k=1

wi j3kci j3sx j +
n

∑
j=1

s

∑
k=1

wi j4kci j4sx j)

= 1
4

n

∑
j=1

4

∑
t=1

s

∑
k=1

wi jtkci jtkx j,

for any i ∈ 1,2, · · · ,m.

Similarly, we have

E[ ˜̃aT
r x] =

n

∑
j=1

4

∑
t=1

s

∑
k=1

wr jtkar jtkx j

and

E[ ˜̃bT
r ] =

4

∑
t=1

s

∑
k=1

wrtkbrtk,
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for any r ∈ 1,2, · · · , p, where the weights wi jtk,wr jtk,wrtk , i = 1,2, · · · ,m, j =
1,2, · · · ,n, r = 1,2, · · · , p, t = 1,2,3,4, k = 1,2, · · · ,s are given by (4.19 ). Then this

theorem is proved. ⊓⊔

4.3.2.2 Step Method

In this section, we use the step method, which is also called STEM method to deal

with the crisp linear multi-objective programming problem [367].

The STEM method is based on the norm ideal point method and its resolving pro-

cess includes the analysis and decision stage. In the analysis stage, an analyzer re-

solves the problem by the norm ideal point method and provides the decision makers

with the solutions and the related objective values and the ideal objective values. In

the decision stage, the decision maker gives the tolerance level of the satisfied ob-

ject to the dissatisfied object to make its objective value better after comparing the

objective values obtained in the analysis stage with the ideal point, then provides the

analyzer with the information to go on resolving. Done repeatedly and a decision

maker will get a final satisfactory solution.

Shimizu once extent the STEM method to deal with a general nonlinear multi-

objective programming problem. Interested readers can refer to the literature [368,

369] and others [370, 371, 372] regarding further development.

Consider the following multi-objective programming problem,

{
min f (x) = ( f1(x), f2(x), · · · , fm(x))
s.t. x ∈ X ,

(4.20)

where x = (x1,x2, · · · ,xn) and X = {x ∈ Rn|Ax = b,x ≥ 0}. Let xi be the optimal

solution of the problem minx∈X fi(x) and compute each objective function fi(x) at

xk, then we get m2 objective function value,

fik = fi(x
k), i,k = 1,2, · · · ,m.

Denote f ∗i = fi(x
i), f ∗ = ( f ∗1 , f ∗2 , · · · , f ∗m)T and f ∗i is a ideal point of the problem

(4.20). Compute the maximum value of the objective function fi(x) at every minimum

point xk

f max
i = max

1≤k≤m
fik, i = 1,2, · · · ,m.

To make it more clearly, we list it in Table 4.1.

According to Table 4.1, we only look for the solution x such that the distance be-

tween f (x) and f ∗ is minimum, that is, the solution such that each objective is close

to the ideal point. Consider the following problem,

min
x∈X

max
1≤i≤m

wi | fi(x)− f ∗i |= min
x∈X

max
1≤i≤m

wi|
n

∑
j=1

ci jx j− f ∗i |, (4.21)
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Table 4.1 Payoff table

f x1 · · · xi · · · xm max

f1 f11 = f ∗1 · · · f1i · · · f1m f max
1

...
...

...
...

...

fi fi1 · · · fii = f ∗i · · · fim f max
i

...
...

...
...

...

fm fm1 · · · fmi · · · fmm = f ∗m f max
m

where w = (w1,w2, · · · ,wm)T is the weight vector and wi is the ith weight which can

be decided as follows,

αi =

⎧
⎪⎨
⎪⎩

fmax
i − f ∗i

fmax
i

1
||ci|| , f max

i > 0

f ∗i − fmax
i

fmax
i

1
||ci|| , f max

i ≤ 0
i = 1,2, · · · ,m, (4.22)

wi = αi/
m

∑
i=1

αi, i = 1,2, · · · ,m, (4.23)

where ||ci||=
√

∑n
j=1 c2

i j. Then the problem (4.20) is equivalent to

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

minλ

s.t.

⎧
⎪⎨
⎪⎩

wi

(
n

∑
j=1

ci jx j− f ∗i

)
≤ λ , i = 1,2, · · · ,m

λ ≥ 0,x ∈ X .

(4.24)

Assume that the optimal solution of the problem (4.24) is (x̃, λ̃ )T . It is obvious that

(x̃, λ̃ )T is a weak efficient solution of the problem (4.1). In order to check if x̃ is

satisfied, the decision maker needs to compare fi(x̃) with the ideal objective value

f ∗i , i = 1,2, · · · ,m. If the decision maker has been satisfied with fs(x̃), but dissatisfied

with ft(x̃), we add the following constraint in the next step in order to improve the

objective value ft ,

ft(x)≤ ft (x̃).

For the satisfied object fs, we add one tolerance level δs,

fs(x)≤ fs(x̃)+ δs.

Thus, in the problem (4.24), we replace X with the following constraint set,

X1 = {x ∈ X | fs(x)≤ fs(x̃)+ δs, ft(x)≤ ft (x̃)},
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and delete the objective fs (do it by letting ws = 0), then resolve the new problem to

get better solutions.

In a word, the STEM method can be summarized as follows:

Step 1. Compute every single objective programming problem,

fi(x
i) = min

x∈X
fi(x), i = 1,2, · · · ,m.

If x1 = · · ·= xm, we obtain the optimal solution x∗ = x1 = · · ·= xm and stop.

Step 2. Compute the objective value of fi(x) at every minimum point xk, then get m2

objective values fik = fi(x
k)(i,k = 1,2, · · · ,m). List Table 4.1 and we have

f ∗i = fii, f max
i = max

1≤k≤m
fik, i = 1,2, · · · ,m.

Step 3. Give the initial constraint set and let X1 = X .

Step 4. Compute the weight coefficients w1,w2, · · · ,wm by equation (4.22) and (4.23).

Step 5. Solve the auxiliary problem,

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

minλ

s.t.

⎧
⎪⎨
⎪⎩

wi

(
n

∑
j=1

ci jx j− f ∗i

)
≤ λ , i = 1,2, · · · ,m

λ ≥ 0,x ∈ X k.

(4.25)

Let the optimal of problem (4.25) be (xk,λ k)T .

Step 6. The decision maker compare the reference value fi(x
k)(i = 1,2, · · · ,m) with

the ideal objective value f ∗i . (1) If the decision maker is satisfied with all objective

values, output x̃ = xk. (2) If the decision maker is dissatisfied with all objective values,

there doesn’t exists any satisfied solutions and stop the process. (3) If the decision

maker is satisfied with the object fsk
(1 ≤ sk ≤ m,k < m), turn to Step 7.

Step 7. The decision maker gives the tolerance level δsk
> 0 to the object fsk

and

construct the new constraint set as follows,

X k+1 = {x ∈ X k| fsk
(x)≤ fsk

(xk)+ δsk
, fi(x)≤ fi(x

k), i 
= sk}.

Let δsk
= 0, k = k + 1 and turn to Step 4.

4.3.2.3 Numerical Example

Example 4.3. Let us consider the following example with Fu-Fu variables,
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⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min ξ1x1 + ξ2x2

min −3x1− x2

s.t.

⎧
⎪⎪⎨
⎪⎪⎩

x1 + x2 ≤ 6

ξ3x1 + ξ4x2 ≤ ξ5

0≤ x1 ≤ 4

0≤ x2 ≤ 5,

(4.26)

where the coefficients are as follows,

ξ1 = (µ1,0.2,0.2)LR,with µ1 = (−1.1,−1,−0.9),
ξ2 = (µ2,0.2,0.2)LR,with µ2 = (−2.5,−2,−1.5),
ξ3 = (µ3,0.2,0.2)LR,with µ3 = (1.5,2,2.5),
ξ4 = (µ4,0.2,0.2)LR,with µ4 = (0.5,1,1.5),
ξ5 = (µ5,0.2,0.2)LR,with µ5 = (8.5,9,9.5).

In order to solve it, we use the expected operator to deal with bifuzzy objectives and

constraints, then we can obtain the model,

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min E[ξ1x1 + ξ2x2]
min −3x1− x2

s.t.

⎧
⎪⎪⎨
⎪⎪⎩

x1 + x2 ≤ 6

E[ξ3x1 + ξ4x2]≤ E[ξ5]
0≤ x1 ≤ 4

0≤ x2 ≤ 5.

(4.27)

By theorem 4.4, we know that the problem (4.10) is equivalent to model (4.28),

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min F1 =−x1−2x2

min F2 =−3x1− x2

s.t.

⎧
⎪⎪⎨
⎪⎪⎩

x1 + x2 ≤ 6

2x1 + x2 ≤ 9

0≤ x1 ≤ 4

0≤ x2 ≤ 5.

(4.28)

Since the model (4.28) is crisp multi-objective model, so we can use the step method to

handle it. According to the step method, we need to compute the two single objective

models (4.29) and (4.30),

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min F1 =−x1−2x2

s.t.

⎧
⎪⎪⎨
⎪⎪⎩

x1 + x2 ≤ 6

2x1 + x2 ≤ 9

0≤ x1 ≤ 4

0≤ x2 ≤ 5

(4.29)
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and ⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min F2 =−3x1− x2

s.t.

⎧
⎪⎪⎨
⎪⎪⎩

x1 + x2 ≤ 6

2x1 + x2 ≤ 9

0≤ x1 ≤ 4

0≤ x2 ≤ 5.

(4.30)

First we let q = 1 and can get the solution for these two single objective model as

follows,
(x1,x2) = (1,5),F∗1 =−11,F12 =−8,

(x1,x2) = (4,1),F∗1 =−13,F21 =−6.

Then according to Equations (4.22) and (4.23), we can calculate the weights as

follows,

α1 = 3/11
√

5 = 0.122,α2 = 7/13
√

10 = 0.17,w1 = 0.418,w2 = 0.582;

We let X1 = {x ∈ R2|x1 + x2 ≤ 6,2x1 + x2 ≤ 9,0≤ x1 ≤ 4,0≤ x2 ≤ 5}, and we can

construct the following model (4.31) and get the solution as follows,

⎧
⎪⎪⎨
⎪⎪⎩

min λ

s.t.

⎧
⎨
⎩

λ ≥−0.418x1−0.836x2−4.598

λ ≥−1.746x1−0.582x2−7.566

x ∈ X1.

(4.31)

We obtain that x1 = (2.8,3.2), f1(x
1) =−9.2, f2(x

1) =−11.6.

We can provide this result to the decision maker, he will compare this result

(−9.2,−11.6) with the ideal point (−11,−13), and decide that which objective value

is too high and which is too bad.

Here we suppose that the decision maker consider to improve F1, and reduce F2 for

one unit, then we let X2 = {x∈ R2|−3x1−x2≤−10.6,−x1−2x2≤−9.2, and x1 +
x2 ≤ 6,2x1 +x2≤ 9,0≤ x1 ≤ 4,0≤ x2 ≤ 5} and w1 = 1,w2 = 0,q = 2. We construct

the model (4.32) for the second iteration as follows,

⎧
⎨
⎩

min λ

s.t.

{
λ ≥−x1−2x2 + 11

x ∈ X2.
(4.32)

And we obtain x2 = (2.3,2.7), F1(x
2) =−9.7, F2(x

2) =−10.6.

Then we provide this solution to the decision maker, if he is satisfied with it, then

the solution x2 is the best compromise solution. However, if the decision maker is

not satisfied, then we need to adjust the value of the objective function to compute

another iteration.

4.3.3 Nonlinear Fu-Fu EVM and Fu-Fu Simulation Based SA

For the Fu-Fu EVM, we use the Fu-Fu simulation based simulated annealing algo-

rithm (SA, for short) to solve.
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4.3.3.1 Fu-Fu Simulation 1 for Expected Value

First we present the simulation for the expected value of Fu-Fu variables as follows:

Assume that ξ is an n-dimensional Fu-Fu vector on the possibility space

(Θ ,P(Θ),Pos). Then f (ξ ) is a Fu-Fu variable whose expected value E[ f (ξ )] is

E[ξ ] =

∫ +∞

0
Cr{θ ∈Θ |E[ξ (θ )]≥ r}dr−

∫ 0

−∞
Cr{θ ∈Θ |E[ξ (θ )]≤ r}dr.

A Fu-Fu simulation will be introduced to compute the expected value E[ f (ξ )]. We

randomly sample θk from Θ such that Pos{θk} ≥ ε , and denote νk = Pos{θk},k =
1,2, · · ·N, respectively, where ε is a sufficiently small number. Then for any number

r ≥ 0, the credibility Cr{θ ∈Θ |E[ξ (θ )]≥ r} can be estimated by

1

2

(
max

1≤k≤N
{νk|E[ f (ξ (θk))]≥ r}+ min

1≤k≤N
{1−νk|E[ f (ξ (θk))] < r}

)
. (4.33)

And for any number r < 0, the credibility Cr{θ ∈Θ |E[ξ (θ )]≤ r} can be estimated

by

1

2

(
max

1≤k≤N
{νk|E[ f (ξ (θk))]≤ r}+ min

1≤k≤N
{1−νk|E[ f (ξ (θk))] > r}

)
. (4.34)

provided that N is sufficiently large, where E[ f (ξ (θk))],k = 1,2, · · · ,N may be esti-

mated by the fuzzy simulation.

Step 1. Set e = 0.

Step 2. Randomly sample θk from Θ such that Pos{θk} ≥ ε for k = 1,2, · · · ,N, where

ε is a sufficiently small number.

Step 3. Let a = min1≤k≤N E[ f (ξ (θk))] and b = max1≤k≤N E[ f (ξ (θk))].

Step 4. Randomly generate r from [a, b].

Step 5. If r ≥ 0, then e← e +Cr{θ ∈Θ |E[ f (ξ (θk))]≥ r}.
Step 6. If r < 0, then e← e−Cr{θ ∈Θ |E[ f (ξ (θk))]≤ r}.
Step 7. Repeat the fourth to sixth steps for N times.

Step 8. E[ f (ξ )] = a∨0 + b∧0 + e(b−a)/N.

Example 4.4. Suppose that the fuzzy variables ξ1,ξ2,ξ3,ξ4 are defined as

ξ1 = (ρ1−1,ρ1,ρ1 + 1), with ρ1 = (1,2,3),
ξ2 = (ρ2−1,ρ2,ρ2 + 1), with ρ2 = (2,3,4),
ξ3 = (ρ3−1,ρ3,ρ3 + 1), with ρ3 = (3,4,5),
ξ4 = (ρ4−1,ρ4,ρ4 + 1), with ρ4 = (4,5,6).
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After a run of Fu-Fu simulation 1 with 1000 cycles to get the expected value

E[
√

ξ1 + ξ2 + ξ3 + ξ4] = 3.7.

4.3.3.2 SA

Simulated annealing algorithm (SA) is the method proposed for the problem of find-

ing, numerically, a point of the global minimum of a function defined on a subset of

a k-dimensional Euclidean space. The motivation of the methods lies in the physical

process of annealing, in which a solid is heated to a liquid state and, when cooled

sufficiently slowly, takes up the configuration with minimal inner energy. Metropo-

lis, Rosenbluth, and Teller [358] described this process mathematically. Simulating

annealing uses this mathematical description for the minimization of other functions

than the energy. The first results have been published by C̆erný [359], Kirpatrick,

Gelatt Jr., and Vecchi [360], and Geman and Geman [361].

SA is a step-by-step method which could be considered an improvement of the

local optimization algorithm. The local optimization algorithm proceeds by gener-

ating, at each iteration, a solution in the neighbourhood of the previous one. If the

value of the criterion corresponding to the new solution is better than the previous

one, the new solution is selected, otherwise it is rejected. In both cases, we restart

the process by choosing a solution in the neighbourhood of the solution at hand. The

algorithm stops either when it is no longer possible to improve the solution or the

maximal number of trials decided by the user has been reached. The drawback of the

local optimization algorithm is that it terminates at a local minimum which depends

on the initial solution and which may be far from a global minimum.

The SA algorithm avoids entrapment in a local optimum. The difference with the

local optimization algorithm is that a solution S j derived from a solution S0 is not

only accepted if S j is better than S0 according to the criterion, but it may also be

accepted with a given probability if B is worse than S0. This probability is equal to

exp(−d f/T ), where T is a given parameter called temperature which decreases with

the number of trials, and d f = f (S j)− f (S0) > 0, where f (·) is the criterion. This

is called the Metropolis acceptance rule. This acceptance rule implies that: (i) the

smaller the increase of the criterion value, the more likely the new solution is selected,

and (ii) the lower the value of T (i.e. the greater the number of trials), the less likely

the new solution is selected.

The SA algorithm starts with an initial solution and a relatively high value of T to

avoid being prematurely entrapped in a local optimum. At each iteration the algorithm

generates several solutions in the neighbourhood of the previous one and decreases

the temperature. A new solution is chosen at random among the ones which have been

previously generated. This new solution is selected or not according to the Metropolis

acceptance rule. The process restarts with the new solution (if accepted) or with the

previous one (if the new solution has been rejected). Several tests can be applied to

stop the process, for instance: number of trials, minimal value of T , minimal mean

value of the improvement of the criterion during the last n trials.
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In the general SA algorithm illustrated hereafter we have two nested loops: the

outer loop controls the temperature decreasing process and the inner loop controls

the number of feasible solutions generated at a given temperature, called the epoch

length. The general steps of simulated annealing algorithm are presented in Fig. 4.3.

Fig. 4.3 Basic steps for simulated annealing

In the simulated annealing algorithm, weather a new solution S j is be accepted is

the key, so we elaborate this by the following Fig. 4.4.

Fig. 4.4 Detailed partial figure

In the temperature update process of the simulated annealing algorithm, there are

usually two kinds of formulations to lower the temperature:
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(1) Tk+1 = αTk, k≥ 0, 0 < α < 1, where α is the temperature decrement parameter.

(2) Tk+1 = K−k
K

T0, where T0 is the initial temperature, K is the total times that the

temperature decreases in the algorithm.

The stopping criterion of the simulated annealing algorithm is as follows:

(1) Set the threshold of termination temperature.

(2) Set the time of iteration cycle.

(3) The optimal value that the algorithm searched do not change in several continuous

times.

According to the above statement, we conclude the Fu-Fu simulation based simulated

annealing algorithm as the following steps:

Step 1. Initialize the parameters of simulated annealing algorithm, including the ini-

tial temperature T , the temperature decrement parameter α .

Step 2. Generate a solution S0 randomly in the range.

Step 3. Checking every chance constraints by employing the Fu-Fu simulation, if the

the solution Si satisfy all of the constraints, return 1, the solution S0 turn into the ini-

tial solution and continue step 4, otherwise return 0 and go back to step 2.

Step 4. Generate solution S j in the neighbourhood of S0. We can use S j = S +
RandomDisturb to generate a new neighbour solution.

Step 5. We compute the value F of objective function with these two solutions S0 and

S j respectively by using the Fu-Fu simulation.

Step 6. Compute their difference d f = f (S j)− f (S0).

Step 7. We judge these two objective values to decide the solution S j is be accepted

or not. Here we use the Metropolis rule: If d f < 0, then S0 := S j; Otherwise, we

generate a random number r in interval [0,1] and compare it with exp(−d f/Tk), if

r < exp(−d f/Tk), then S0 := S j, otherwise, go to step 4.

Step 8. Judge the temperature should be dropped or not.

Step 9. Use the formula Tk+1 = αTk to lower the temperature.

Step 10. If the stopping criterion is satisfied, then go to step 11; otherwise, go to step 4.

Step 11. Output the results.

4.3.3.3 Numerical Example

Example 4.5. Let’s consider the another multi-objective programming problem with

Fu-Fu coefficients as follows, and we will apply the Fu-Fu simulation-based SA to

resolve it.
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⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max f1(x,ξ ) = 3 ˜̄ξ 2
1 x1−2 ˜̄ξ1

˜̄ξ2x2
2 + 1.3 ˜̄ξ 2

2 x3

max f2(x,ξ ) = 2.5 ˜̄ξ 2
3 x1 + 3 ˜̄ξ3

˜̄ξ4x2
2 + 5 ˜̄ξ 2

4 x3

s.t.

⎧
⎨
⎩

x1 + x2 + x3 ≤ 10

3x1 + 5x2 + 3x3 ≥ 4

x1,x2,x3 ≥ 0,

(4.35)

where ξi(i = 1, · · · ,4) are all independently triangular LR Fu-Fu variables as

follows,

˜̃ξ1 = (µ̃1,1,1), with µ̃1 = (5,6,7),
˜̃ξ2 = (µ̃2,0.5,0.5), with µ̃2 = (6.5,8,10),
˜̃ξ3 = (µ̃3,0.7,0.7), with µ̃3 = (4,5,6),
˜̃ξ4 = (µ̃4,1,1), with µ̃4 = (5,7,8),

where µ̃i are all triangular fuzzy numbers, i= 1, · · · ,4. By the expected value operator

of Fu-Fu variables, we have the following expected model of problem (4.35),

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

maxH1(x) = E[3 ˜̄ξ 2
1 x1−2 ˜̄ξ1

˜̄ξ2x2
2 + 1.3 ˜̄ξ 2

2 x3]

maxH2(x) = E[2.5 ˜̄ξ 2
3 x1 + 3 ˜̄ξ3

˜̄ξ4x2
2 + 5 ˜̄ξ 2

4 x3]

s.t.

⎧
⎨
⎩

x1 + x2 + x3 ≤ 10

3x1 + 5x2 + 3x3 ≥ 4

x1,x2,x3 ≥ 0.

(4.36)

Then we use the Fu-Fu simulation 1 based SA to solve this problem, we set the weights

for each objective as w1 = w2 = 0.5, and we can get the solutions as follows:

x1 = 0.014,x2 = 0.032,x3 = 9.954.

And when we set the weights as w1 = 0.8,w2 = 0.2, we can get the following

solutions:

x1 = 0.01,x2 = 0,x3 = 9.99.

4.4 Fu-Fu CCM

In order to obtain the decision with optimize the critical values subject to chance

constraints, we may employ the following Fu-Fu CCM.

4.4.1 General Model for Fu-Fu CCM

Let’s introduce the general Fu-Fu CCM as follows.

⎧
⎪⎪⎨
⎪⎪⎩

max [ f1, f2, · · · , fm]

s.t.

⎧
⎨
⎩

Ch{ fi(x,ξ )≥ fi}(γi)≥ δi, i = 1,2, · · · ,m
Ch{gr(x,ξ )≤ 0}(ηr)≥ θr, r = 1,2, · · · , p

x ∈ X ,
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whereCh is the chace measure of the Fu-Fu events, γi,δi,ηr,θr are the predetermined

confidence level, fi and xi are the decision variables, i = 1,2, · · · ,m.

According to the Definition 4.5, we have

Ch{ ˜̃eT
r x≤ ˜̃br}(ηr)≥ θr ⇔Me{θ |Me{ ˜̃er(θ )Tx≤ ˜̃br(θ )} ≥ θr} ≥ ηr, (4.37)

Ch{ ˜̃cT
i x≥ fi}(γi)≥ δi ⇔Me{θ |Me{ ˜̃ci(θ )Tx≥ fi} ≥ δi} ≥ γi. (4.38)

Theorem 4.6. Let ξ be a Fu-Fu variable, and B a Borel set of R. For any given α∗ >
0.5, we write β ∗ = Ch{ξ ∈ B}(α∗). Then we have

Cr{θ ∈Θ |Cr{ξ (θ ) ∈ B} ≥ β ∗} ≥ α∗. (4.39)

Proof. Since β ∗ is the supremum of β satisfying

Cr{θ ∈Θ |Cr{ξ (θ ) ∈ B} ≥ β ∗} ≥ α∗,

there exists an increasing sequence {βi} such that

Cr{θ ∈Θ |Cr{ξ (θ ) ∈ B} ≥ βi} ≥ α∗ > 0.5. (4.40)

and βi ↑ β ∗ as i→ ∞. It is also easy to verify that

{θ ∈Θ |Cr{ξ (θ ) ∈ B} ≥ βi} ↓ {θ ∈Θ |Cr{ξ (θ ) ∈ B} ≥ β ∗}

as i→ ∞. It follows from definition (4.6) and the credibility semicontinuity law that

Cr{θ ∈Θ |Cr{ξ (θ ) ∈ B} ≥ β ∗}
= lim

i→∞
Cr{θ ∈Θ |Cr{ξ (θ ) ∈ B} ≥ βi}

≥ α∗.

The proof is complete. ⊓⊔

Example 4.6. When α∗ ≤ 0.5, generally speaking, the inequality

Cr{θ ∈Θ |Cr{ξ (θ ) ∈ B} ≥ β ∗} ≥ α∗

does not hold. For example, let Θ = {θ1,θ2, · · · } and Pos{θi}= 1 for i = 1,2 · · · . A

Fu-Fu variable is defined on (Θ ,P(Θ),Pos) as

ξ (θi) =

{
1 with possibility 1

0 with possibility (i−1)/i,

for i = 1,2, · · · Then we have

β ∗ = Ch{ξ ≤ 0}(0.5) = sup
1≤i≤∞

i−1

2i
=

1

2
.
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However,

Cr{θ ∈Θ |Cr{ξ (θ ) ∈ B} ≥ β ∗}= Cr{ /0}= 0 < 0.5.

4.4.2 Linear Fu-Fu CCM and Lexicographic Method

Let’s consider the multi-objective linear programming problem with Fu-Fu

coefficients: ⎧
⎨
⎩

max [ ˜̃cT
1 x, ˜̃cT

2 x, · · · , ˜̃cT
mx]

s.t.

{
˜̃eT
r x≤ ˜̃br, r = 1,2, · · · , p

x≥ 0.

(4.41)

So we can get the Fu-Fu multi-objective chance-constrained linear decision making

model,

⎧
⎪⎪⎨
⎪⎪⎩

max [ f1, f2, · · · , fm]

s.t.

⎧
⎨
⎩

Cr{θ |Cr{ ˜̃ci(θ )Tx≥ fi} ≥ δi} ≥ γi, i = 1,2, · · · ,m
Cr{θ |Cr{ ˜̃er(θ )Tx≤ ˜̄br(θ )} ≥ θr} ≥ ηr, r = 1,2, · · · , p

x≥ 0,

(4.42)

where δi,γi,θr,ηr ∈ [0,1] are the predetermined confidence level, Cr{·} denotes the

credibility of the fuzzy events in {·}.
For simpleness, the parameters δ ,γ,θ ,η can be the same confidence level, i.e.

δi = δ ,γi = γ , θr = θ ,ηr = η , i = 1,2, · · · ,m, r = 1,2, · · · , p.

Remark 4.7. If the Fu-Fu vector ˜̃ci delegates to fuzzy vector c̃i, then c̃T
i x≥ fi is a fuzzy

event. For θ ∈Θ , Pos{c̃i(θ )Tx≥ fi} ≥ δi means c̃i(θ )Tx≥ fi. So,

Cr{θ |Cr{c̃i(θ )Tx≥ fi} ≥ δi} ≥ γi

is equivalent to Cr{θ |c̃i(θ )Tx≥ fi} ≥ γi, i = 1,2, · · · ,m.

And similarly, If the Fu-Fu vector ˜̄er and ˜̃br delegate to fuzzy vector ẽr and b̃r

respectively, then the constraint

Pos{θ |Cr{ẽr(θ )Tx≤ b̃r(θ )} ≥ θr} ≥ ηr

is equivalent toCr{θ |ẽr(θ )Tx≤ b̃r(θ )}≥ηr, r = 1,2, · · · , p. So, the model (4.43)can

be rewritten as
⎧
⎪⎪⎨
⎪⎪⎩

max [ f1, f2, · · · , fm]

s.t.

⎧
⎨
⎩

Cr{θ |c̃i(θ )Tx≥ fi} ≥ γi, i = 1,2, · · · ,m
Cr{θ |ẽr(θ )Tx≤ b̃r(θ )} ≥ ηr, r = 1,2, · · · , p

x≥ 0.

This is coincident to the fuzzy chance-constrained multi-objective programming in

the chapter 2 of the book.
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4.4.2.1 Crisp Equivalent Model

In this book, we concentrate on the problem (4.41). One way of solving the problem

(4.41) is to convert it into its crisp equivalent. As we know the process is usually hard

work and only successful in some cases, so let us consider the following situations.

(1). Pos-Pos constrained multi-objective linearity model

Assume that ˜̃ci j, ˜̃er j and ˜̃br are Fu-Fu variables, we give the following two theorems

to transform the chance-constrained model (4.43) into its crisp model based on Pos−
Pos measure.

⎧
⎪⎪⎨
⎪⎪⎩

max [ f1, f2, · · · , fm]

s.t.

⎧
⎨
⎩

Pos{θ |Pos{ ˜̃ci(θ )Tx≥ fi} ≥ δi} ≥ γi, i = 1,2, · · · ,m
Pos{θ |Pos{ ˜̃er(θ )Tx≤ ˜̄br(θ )} ≥ θr} ≥ ηr, r = 1,2, · · · , p

x≥ 0.

(4.43)

Theorem 4.7. Assume that ˜̃ci j is LR Fu-Fu variable with the membership function

as follows, for any θ ∈Θ ,

µ ˜̃ci j(θ)(t) =

⎧
⎨
⎩

L(
ci j(θ)−t

αc
i j1

), t ≤ ci j(θ ),αc
i j1 > 0

R(
t−ci j(w)

β c
i j1

), t ≥ ci j(w),β c
i j1 > 0

θ ∈Θ , (4.44)

where the fuzzy vector (ci(θ ))n×1 = (ci1(θ ),ci2(θ ), · · · ,cin(θ ))T is also LR fuzzy

variable with the membership functions as follows,

µci j(θ)(t) =

⎧
⎨
⎩

L(
ci j−t

αc
i j2

), t ≤ ci j,αc
i j2 > 0

R(
t−ci j

β c
i j2

), t ≥ ci j,β c
i j2 > 0

θ ∈Θ , (4.45)

And αc
i j1, αc

i j2, β c
i j1 and β c

i j2 are the left and right spread of ˜̃ci j(θ ) and ci j(θ ), i =

1,2, · · · ,m, j = 1,2, · · · ,n, the basis function L,R : [0,1]→ [0,1] satisfies that L(1) =
R(1) = 0, L(0) = R(0) = 1, and it is monotone function. Then Pos{θ |Pos{ ˜̃ci(θ )Tx≥
fi} ≥ δi} ≥ γi is equivalent to

cT
i x + R−1(δi)β

cT
i1 x + R−1(γi)β

cT
i2 x≥ fi, i = 1,2, · · · ,m, (4.46)

Where δi,γi ∈ [0,1] are predetermined confidence level.

Proof. For certain θ ∈ Θ , ˜̃ci j(θ ) are fuzzy number, its membership function is

µ ˜̃ci j(θ)(t). By extension principle[22], the membership function of fuzzy number

˜̃ci(θ )Tx is

µ ˜̃ci(θ)Tx(r) =

⎧
⎨
⎩

L( ci(θ)Tx−r

αcT
i1 x

), r ≤ ci(θ )Tx

R( r−ci(θ)Tx

β cT
i1 x

), r ≥ ci(θ )Tx
i = 1,2, · · · ,m. (4.47)



4.4 Fu-Fu CCM 253

For convenience, denote ˜̃ci j(θ ) = (ci j(θ ),αc
i j1,β

c
i j1)LR, ˜̃ci(θ )Tx =

(ci(θ )Tx,αcT
i1 x,β cT

i1 x)LR.

Since (ci j(θ ))n×1 is also a LR fuzzy vector with the left and right spread αc
i j2 and

β c
i j2, so ci(θ )Tx = (cT

i x,αcT
i2 x,β cT

i2 x)LR.

According to Lemma 2.2 we can get

Pos{ ˜̃ci(θ )Tx≥ fi} ≥ δi ⇔ ci(θ )Tx + R−1(δi)β
cT
i1 x≥ fi, i = 1,2, · · · ,m.

So for predetermined level δi,γi ∈ [0,1],

Pos{θ |Pos{ ˜̃ci(θ )Tx≥ fi} ≥ δi1} ≥ γi

⇔ Pos{θ |ci(θ )Tx≥ fi−R−1(δi)β cT
i1 x} ≥ γi

⇔ cT
i x + R−1(δi)β cT

i1 x + R−1(γi)β cT
i2 x≥ fi.

The proof is completed. ⊓⊔

Remark 4.8. Especially, when the basis function of the variables ˜̃ci j(θ ) and ci j(θ )
are both L(x) = R(x) = 1− x (x ∈ [0,1]), then the LR fuzzy variable is specified as

the triangular fuzzy variable, and R−1(δi) = 1−δi, and R−1(γi) = 1− γi, so we have

the following equivalent expressions:

Pos{θ |Pos{ ˜̃ci(θ )Tx≥ fi} ≥ δi} ≥ γi

⇔ cT
i x +(1− δi)β cT

i1 x +(1− γi)β cT
i2 x≥ fi, i = 1,2, · · · ,m.

Similarly, the chance-constraint Pos{θ |Pos{ ˜̃er(θ )Tx ≤ ˜̃br(θ )} ≥ θr} ≥ ηr can also

be transformed into crisp equivalent constraint by Theorem 4.9.

Before the Theorem 4.9, we give Theorem 4.8 which will be used in Theorem 4.9

first.

Theorem 4.8. Let M = (m,α,β )LR, N = (n,γ,δ )LR, then we have the following

conclusions:

M(+)N = (m+ n,α + γ,β + δ )LR, M(−)N = (m−n,α + δ ,β + γ)LR.

Proof. Let ω ∈ [0,1], Let L(m−x
α ) = ω = L( n−y

γ ), then

x = m−αL−1(ω), y = n− γL−1(ω).

It follows that, z = x + y = m + n− (α + γ)L−1(ω). So we have L(m+n−z
α+γ ) = ω .

Similarly, we can prove R( z−(m+n)
β+δ ) = ω .

The other conclusion can be proved in the similar way. ⊓⊔

Theorem 4.9. Assume that ˜̄er j and ˜̄br are LR Fu-Fu variables, for w ∈Ω , the mem-

bership function of ˜̄er j(w) are ˜̄br(w) are
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µ ˜̃er j(θ)(t) =

⎧
⎨
⎩

L(
er j(θ)−t

αe
r j1

), t ≤ er j(θ ),αe
r j1 > 0

R(
t−er j(θ)

β e
r j1

), t ≥ er j(θ ),β e
r j1 > 0,

(4.48)

µ ˜̃br(θ)
(t) =

⎧
⎨
⎩

L( br(θ)−t

αb
r1

), t ≤ br(θ ),αb
r1 > 0

R( t−br(θ)

β b
r1

), t ≥ br(θ ),β b
r1 > 0,

(4.49)

where (er j(θ ))n×1 = (er1(θ ),er2(θ ), · · · ,ern(θ ))T, br(w) are also fuzzy variables

which the membership functions are

µer j(θ)(t) =

⎧
⎨
⎩

L(
er j−t

αe
r j2

), t ≤ er j,αe
r j2 > 0

R(
t−er j

β e
r j2

), t ≥ er j,β e
r j2 > 0,

(4.50)

µbr(θ)(t) =

⎧
⎨
⎩

L( br−t

αb
r2

), t ≤ br,αb
r2 > 0

R( t−br

β b
r2

), t ≥ br,β b
r2 > 0,

(4.51)

and αe
r j1, αe

r j2, β e
r j1, and β e

r j2 are left and right spreads of ˜̄er j(θ ) and er j(θ ), αb
r1,

αb
r2, β b

r1 and β b
r2 are the left and right spread of ˜̃br(θ ) and br(θ ), r = 1,2, · · · , p, j =

1,2, · · · ,n, the basis function L,R : [0,1]→ [0,1]are monotone decreasing continuous

function, and it satisfies L(1) = R(1) = 0, L(0) = R(0) = 1. For any j = 1,2, · · · ,n,

If er j(θ ) and br(θ ) are independent fuzzy variables. Then

Pos{θ |Pos{ ˜̄er(θ )Tx≤ ˜̄br(θ )} ≥ θr} ≥ ηr

is equivalent to

R−1(θr)β
b
r1 + L−1(θr)α

eT
r1 x− eT

r x + br + L−1(ηr)(α
e
r2

Tx + β b
r2)≥ 0.

Proof. By extension principle, the membership function of fuzzy number ˜̃er(θ )Tx is

µ ˜̃er(θ)Tx(r) =

⎧
⎪⎨
⎪⎩

L( er(θ)Tx−t

αeT
r1 x

), r ≤ er(θ )Tx,αe
r j1 > 0

R(
r−er j(θ)Tx

β eT
r1 x

), r ≥ er(θ )Tx,β e
r1 > 0

i = 1,2, · · · ,m. (4.52)

For convenience, denote ˜̃er(θ )Tx = (er(θ )Tx,αeT
r1 x,β eT

r1 x)LR.

According to Lemma 2.2, we have

Pos{ ˜̃er(θ )Tx≤ ˜̃br(θ )} ≥ θr ⇔ br(θ )+ R−1(θr)β
b
1r ≥ er(θ )Tx−L−1(θr)α

eT
1r x.
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Since
(er j(θ )) = (er j,αe

r j2,β
e
r j2)LR,

(er(θ )Tx) = (eT
r x,αeT

r2 x,β eT
r2 x)LR,

(br(θ )) = (br,αb
r2,β

b
r2)LR.

so
Pos{θ |Pos{ ˜̃er(θ )Tx≤ ˜̃br(θ )} ≥ θr} ≥ ηr

⇔ Pos{θ |er(θ )Tx−br(θ )≤ R−1(θr)β b
r1 + L−1(θr)αeT

r1 x} ≥ ηr.

By Theorem 4.8, we can derive that

er(θ )Tx−br(θ ) = (eT
r x−br,α

eT
r2 x + β b

r2,β
eT

r2 x + αb
r2).

It follows that

Pos{θ |er(θ )Tx−br(θ )≤ R−1(θr)β b
r1 + L−1(θr)αeT

r1 x} ≥ ηr

⇔ eT
r x−br−L−1(ηr)(αeT

r2 x + β b
r2)≤ R−1(θr)β b

r1 + L−1(θr)αeT
r1 x

⇔ gr(x)≥ 0

where

gr(x) = R−1(θr)β
b
r1 + L−1(θr)α

eT
r1 x− eT

r x + br + L−1(ηr)(α
eT

r2 x + β b
r2).

The proof is completed. ⊓⊔

We denote X := {x ∈ Rn|R−1(θr)β b
r1 + L−1(θr)αeT

r1 x− eT
r x + br + L−1(ηr)(αeT

r2 x +
β b

r2)≥ 0,r = 1,2, · · · , p;x≥ 0}.
By Theorems 4.7 and 4.9, the model (4.43) is equivalent to the following multi-

objective model,

⎧
⎨
⎩

max [ f1, f2, · · · , fm]

s.t.

{
fi ≤ cT

i x + R−1(δi)β cT
i1 x + R−1(γi)β cT

i2 x, i = 1,2, · · · ,m
x ∈ X

(4.53)

or {
max [H1(x),H2(x), · · · ,Hm(x)]
s.t. x ∈ X ,

(4.54)

where Hi(x) := cT
i x + R−1(δi)β cT

i1 x + R−1(γi)β cT
i2 x, i = 1,2, · · · ,m.

(2). Nec-Nec constrained multi-objective linearity model

Similar to the Pos−Pos constrained multi-objective linearity model, we assume that

˜̃ci j, ˜̃er j and ˜̃br are Fu-Fu variables, we give the following two theorems to transform

the chance-constrained model (4.55) into its crisp model based on Nec−Nec if the

decision maker is comparatively pessimistic.

⎧
⎪⎪⎨
⎪⎪⎩

max [ f1, f2, · · · , fm]

s.t.

⎧
⎨
⎩

Nec{θ |Nec{ ˜̃ci(θ )Tx≥ fi} ≥ δi} ≥ γi, i = 1,2, · · · ,m
Nec{θ |Nec{ ˜̃er(θ )Tx≤ ˜̄br(θ )} ≥ θr} ≥ ηr, r = 1,2, · · · , p

x≥ 0.

(4.55)
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Theorem 4.10. Assume that the Fu-Fu variable ˜̄ci j is as same as the assumption in

Theorem 4.7, i = 1,2, · · · ,m, j = 1,2, · · · ,n. For confidence level δi,γi ∈ [0,1], i =
1,2, · · · ,m, then we have

Nec{θ |Nec{ ˜̃ci(θ )Tx≥ fi} ≥ δi} ≥ γi

is equivalent to

cT
i x + L−1(1− δi)α

cT
i1 x + L−1(1− γi)α

cT
i2 x≥ fi, i = 1,2, · · · ,m, (4.56)

where δi,γi ∈ [0,1] are predetermined confidence level.

Proof. For certain θ ∈ Θ , ˜̃ci j(θ ) is a fuzzy number, its membership function is

µ ˜̃ci j(θ)(t). By extension principle[22], the membership function of fuzzy number

˜̃ci(θ )Tx is

µ ˜̃ci(θ)Tx(r) =

⎧
⎨
⎩

L( ci(θ)Tx−r

αcT
i x

), r ≤ ci(θ )Tx

R(
r−ci(θ)Tx

β cT
i x

), r ≥ ci(θ )Tx
i = 1,2, · · · ,m. (4.57)

For convenience, denote ˜̃ci j(θ ) = (ci j(θ ),αc
i j1,β

c
i j2)LR, ˜̃ci(w)Tx = (ci(θ )Tx,

αcT
i1 x,β cT

i1 x)LR.

Since (ci j(θ ))n×1 is also a LR fuzzy vector with the left and right spread αc
i j2 and

β c
i j2, so ci(θ )Tx = (cT

i x,αcT
i2 x,β cT

i2 x)LR.

According to Lemma 2.2 we can get

Nec{ ˜̃ci(θ )Tx≥ fi} ≥ δi ⇔ ci(θ )Tx + L−1(1− δi)α
cT
i1 x≥ fi, i = 1,2, · · · ,m.

So for predetermined level δi,γi ∈ [0,1],

Nec{θ |Nec{ ˜̃ci(θ )Tx≥ fi} ≥ δi1} ≥ γi

⇔ Nec{θ |ci(θ )Tx≥ fi + L−1(1− δi)α
cT
i1 x} ≥ γi

⇔ cT
i x−L−1(1− δi)αcT

i1 x−L−1(1− γi)αcT
i2 x≥ fi.

The proof is completed. ⊓⊔

Remark 4.9. Especially, when the basis function of the variables ˜̃ci j(θ ) and ci j(θ )
are both L(x) = R(x) = 1− x (x ∈ [0,1]), then the LR fuzzy variable is specified as

the triangular fuzzy variable, and L−1(1−δi) = δi, and L−1(1− γi) = γi, so we have

the following equivalent expressions:

Nec{θ |Nec{ ˜̃ci(θ )Tx≥ fi} ≥ δi} ≥ γi

⇔ cT
i x− δiαcT

i1 x− γiαcT
i2 x≥ fi, i = 1,2, · · · ,m.

Similarly, the chance constraints Nec{θ |Nec{ ˜̃er(θ )Tx≤ ˜̃br(θ )} ≥ θr} ≥ ηr can also

be transformed into crisp equivalent constraint.
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Theorem 4.11. Assume that the Fu-Fu variable ˜̄ci j is as same as the assumption in

Theorem 4.9, i = 1,2, · · · ,m, j = 1,2, · · · ,n. For confidence level δi,γi ∈ [0,1], i =

1,2, · · · ,m, then we have Nec{θ |Nec{ ˜̄er(θ )Tx≤ ˜̄br(θ )} ≥ θr} ≥ ηr is equivalent

br− eT
r x−L−1(1−ηr)(α

b
r2 + β e

r2
Tx)−L−1(1−θr)α

b
1r−R−1(θr)β

e
r1

Tx≥ 0.

Proof. By Theorem 4.9 we know that ˜̃er(θ )Tx = (er(θ )Tx,αe
r1

Tx,β e
r1

Tx)LR.

According to Lemma 2.2, we have

Nec{ ˜̃er(θ )Tx≤ ˜̃br(θ )} ≥ θr ⇔ br(θ )−L−1(1−θr)α
b
1r ≥ er(θ )Tx + R−1(θr)β

eT
1r x.

Since
(er j(θ )) = (er j,αe

r j2,β
e
r j2)LR,

(er(θ )Tx) = (eT
r x,αe

r2
Tx,β e

r2
Tx)LR,

(br(θ )) = (br,αb
r2,β

b
r2)LR.

so

Nec{θ |Nec{ ˜̃er(θ )Tx≤ ˜̃br(θ )} ≥ θr} ≥ ηr

⇔ Nec{θ |br(θ )− er(θ )Tx≥ L−1(1−θr)αb
1r + R−1(θr)β e

r1
Tx} ≥ ηr.

By Theorem 4.8, we can derive that

br(θ )− er(θ )Tx = (br− eT
r x,αb

r2 + β e
r2

Tx,β b
r2 + αe

r2
Tx)LR.

It follows that

Nec{θ |br(θ )− er(θ )Tx≥ L−1(1−θr)αb
1r + R−1(θr)β e

r1
Tx} ≥ ηr

⇔ br− eT
r x−L−1(1−ηr)(α

b
r2 + β e

r2
T
x)≥ L−1(1−θr)α

b
1r + R−1(θr)β

e
r1

T
x

⇔ gr(x)≥ 0,

where

gr(x) = br− eT
r x−L−1(1−ηr)(α

b
r2 + β e

r2
Tx)−L−1(1−θr)α

b
1r−R−1(θr)β

e
r1

Tx.

The proof is completed. ⊓⊔

We denote X ′ := {x ∈ Rn|br− eT
r x−L−1(1−ηr)(αb

r2 + β e
r2

Tx)−L−1(1− θr)αb
1r−

R−1(θr)β
e
r1

Tx≥ 0,r = 1,2, · · · , p;x≥ 0}.
By Theorems 4.10 and 4.11, the model (4.55) is equivalent to the following multi-

objective problem,

⎧
⎨
⎩

max [ f1, f2, · · · , fm]

s.t.

{
fi ≤ cT

i x + L−1(1− δi)αcT
i1 x + L−1(1− γi)αcT

i2 x, i = 1,2, · · · ,m
x ∈ X ′

(4.58)

or {
max [G1(x),G2(x), · · · ,Gm(x)]
s.t. x ∈ X ′,

(4.59)

where Gi(x) := cT
i x + L−1(1− δi)αcT

i1 x + L−1(1− γi)αcT
i2 x, i = 1,2, · · · ,m.
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Theorem 4.12. Assume that the Fu-Fu variable ˜̄ci j is as the same as the assumption

in Theorem 4.9, i = 1,2, · · · ,m, j = 1,2, · · · ,n. For confidence levels δi,γi ∈ [0,1],

i = 1,2, · · · ,m, then we have Nec{θ |Nec{ ˜̄er(θ )Tx≥ ˜̄br(θ )}≥ θr}≥ ηr is equivalent

to

eT
r x−br−L−1(1−ηr)(α

e
r2

Tx + αb
r2)−L−1(1−θr)α

e
r1

Tx−R−1(θr)β
b
1r ≥ 0.

4.4.2.2 Lexicographic Method

The basic idea of lexicographic method is to rank the objective function by its impor-

tance to decision makers and then resolve the next objective function after resolving

the above one. We take the solution of the last programming problem as the final

solution.

Consider the following multi-objective programming problem,

{
min [ f1(x), f2(x), · · · , fm(x)]
s.t. x ∈ X .

(4.60)

Without loss of generality, assume the rank as f1(x), f2(x), · · · , fm(x) according to

different importance. Solve the following single objective problem in turn,

min
x∈X

f1(x) (4.61)

⎧
⎨
⎩

min fi(x)

s.t.

{
fk(x) = fk(x

k),k = 1,2, · · · , i−1

x ∈ X ,

(4.62)

where i = 1,2, · · · ,m, X is the feasible area and denote the feasible area of problem

(4.62) as X i.

Theorem 4.13. Let X ⊂Rn, f : X →Rm. If xm be the optimal solution by the lexico-

graphic method, then xm is an efficient solution of problem (4.60).

Proof. If xm is not an efficient solution of problem (4.60), there exists x̄∈ X such that

f (x̄)≤ f (xm). Since f1(x
m) = f ∗1 = f1(x

1), f1(x̄) < f1(x
m) cannot hold. It necessarily

follows that f1(x̄) = f1(x
m).

If we have proved fk(x̄) = fk(x
m)(k = 1,2, · · · , i− 1), but fi(x̄) < fi(x

m). It fol-

lows that x̄ is a feasible solution of problem (4.62). Since fi(x̄) < fi(x
m) = fi(x

i),
this results in the conflict with that xi the the optimal solution of problem (4.62).

Thus, fk(x̄) = fk(x
m)(k = 1,2, · · · , i) necessarily holds. Then we can prove fk(x̄) =

fk(x
m)(k = 1,2, · · · ,m) by the mathematical induction. This conflicts with f (x̄) ≤

f (xm). This completes the proof. ⊓⊔

4.4.2.3 Numerical Example

Example 4.7. We use the following example to illustrate this interactive fuzzy sat-

isfied method. Consider the following Pos−Pos constrained multi-objective linear

model.
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Let us consider the following example with fuzzy variables,

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min ξ1x1 + ξ2x2

min −3x1− x2

s.t.

⎧
⎪⎪⎨
⎪⎪⎩

x1 + x2 ≤ 6

ξ3x1 + ξ4x2 ≤ ξ5

0≤ x1 ≤ 4

0≤ x2 ≤ 5,

(4.63)

where the coefficients are triangular LR Fu-Fu variables,

ξ1 = (θ1,0.2,0.2)LR,with θ1 = (−1.1,−1,−0.9),
ξ2 = (θ2,0.2,0.2)LR,with θ2 = (−2.1,−2,−1.9),
ξ3 = (θ3,0.2,0.2)LR,with θ3 = (1.9,2,2.1),
ξ4 = (θ4,0.2,0.2)LR,with θ4 = (0.9,1,1.1),
ξ5 = (θ5,0.4,0.4)LR,with θ5 = (8.5,9,9.5).

In order to solve it, we use the expected operator to deal with fuzzy objectives and

fuzzy constraints, then we can obtain the model,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

min [F1,F2]

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Pos{θ |Pos{ξ1x1 + ξ2x2 ≤ F1} ≥ δ} ≥ γ
−3x1− x2 ≤ F2

x1 + x2 ≤ 6

Pos{θ |Pos{ξ3x1 + ξ4x2 ≤ ξ5} ≥ θ} ≥ η
0≤ x1 ≤ 4

0≤ x2 ≤ 5.

(4.64)

Then we use the lexicographic method to solve it. Here we suppose that the objec-

tive H1(x) is more important that the second. So wo solve the first important single

objective first.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min [F1,F2]

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−x1−2x2 +(1− δ )(0.2x1 + 0.2x2)+ (1− γ)(0.1x1 + 0.1x2)≤ F1

−3x1− x2 ≤ F2

x1 + x2 ≤ 6

(1−θ )(0.2x1 + 0.2x2 + 0.4)−2x1− x2 + 9

+(1−η)(0.1x1 + 0.1x2 + 0.5)≥ 0

0≤ x1 ≤ 4

0≤ x2 ≤ 5.
(4.65)
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We set δ = γ = θ = η = 0.95, and we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

min [F1,F2]

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−0.85x1−1.85x2 ≤ F1

−3x1− x2 ≤ F2

x1 + x2 ≤ 6

1.85x1 + 0.85x2 ≤ 9.45

0≤ x1 ≤ 4

0≤ x2 ≤ 5

(4.66)

or ⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min H1(x
∗) =−0.85x1−1.85x2

min H2(x
∗) =−3x1− x2

s.t.

⎧
⎪⎪⎨
⎪⎪⎩

x1 + x2 ≤ 6

1.85x1 + 0.85x2 ≤ 9.45

0≤ x1 ≤ 4

0≤ x2 ≤ 5.

(4.67)

Then we get the optimal soliton x∗ = (1,5) and the corresponding objective value

H1(x
∗) =−10.1.

According to the lexicographic method, we construct the second model (4.68),

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min H2(x
∗) =−3x1− x2

s.t.

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−0.85x1−1.85x2 =−10.1
x1 + x2 ≤ 6

1.85x1 + 0.85x2 ≤ 9.45

0≤ x1 ≤ 4

0≤ x2 ≤ 5.

(4.68)

Finally we get the final optimal solution x∗ = (1,5) and the corresponding objective

values H1(x
∗) =−10.1,H2(x

∗) =−8.

4.4.3 Nonlinear Fu-Fu CCM and Fu-Fu Simulation Based

Parallel SA

For the Fu-Fu CCM, we use the Fu-Fu simulation 2 based parallel SA to solve.

4.4.3.1 Fu-Fu Simulation 2 for Critical Value

We introduce the simulation for critical value of Fu-Fu variables as follows:

Assume that ξ is an n-dimensional Fu-Fu vector on the possibility space

(Θ ,P(Θ),Pos), and f : Rn →R is a measurable function. For any given confidence

levels α and β the problem is to find the maximal value f̄ such that

Ch{ f (ξ )≥ f̄ }(α)≥ β
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holds. That is, we should compute the maximal value f̄ such that

Cr{θ ∈Θ |Cr{ f (ξ (ω))≥ f̄ } ≥ β} ≥ α.

We randomly generate θk from Θ such that Pos{θk} ≥ ε , and write νkPos{θk},k =
1,2, · · ·N, respectively, where ε is a sufficiently small number. For any number θk,

we search for the maximal value f̄ (θk) such that

Cr{ f (ξ (θk))≥ f̄ (θk)} ≥ β . (4.69)

For any number r, we have

L(r) =
1

2

(
max

1≤k≤N
{νk| f̄ (θk)≥ r}+ min

1≤k≤N
{1−νk| f̄ (θk) < r}

)
. (4.70)

It follows from monotonicity that we may employ bisection search to find the max-

imal value r such that

L(r)≥ α. (4.71)

This value is an estimation of L. We summarize this process as follows.

Step 1. Generate θk from Θ such that Pos{θk} ≥ ε for k = 1,2, · · · ,N, where ε is a

sufficiently small number.

Step 2. Find the maximal value r such that L(r) ≥ α holds.

Step 3. Return r.

Example 4.8. In order to find the maximal value f̄ such that Ch{ξ 2
1 + ξ 2

2 + ξ 2
3 ≥

f̄ }(0.9)≥ 0.8, where ξ1,ξ2,ξ3 are defined as

µξ1
(x) = exp(−|x−ρ1|), with µρ1

(x) = [1− (x−1)2]∨0,

µξ2
(x) = exp(−|x−ρ2|), with µρ2

(x) = [1− (x−2)2]∨0,

µξ3
(x) = exp(−|x−ρ3|), with µρ3

(x) = [1− (x−3)2]∨0.

We perform the Fu-Fu simulation 2 with 10000 cycles and obtain that f̄ = 1.89.

4.4.3.2 Parallel SA

Some Parallel SA schemes, which share the feature that Multiple PEs follow a Sin-

gle Markov Chain, have an inherent drawback. A very high overhead is to be paid

due to too frequent communication and too much idle time of PEs. Only one search

path during the whole calculation process leads to that only one move can be accept/

reject in the same step. In other words, the scheme allows only one PE to operate a

move while other PEs are idle. Even though some schemes allow more than one PE

to operate a perturbation at the same time and choose a best move for next step, the

frequent communication between PEs still causes efficiency problems.

In order to improve the performance of SMC parallel SA, aMMC Parallel

SA-based layout algorithm is proposed, being able to solve multiple objective and

complex constraints in 3D engineering layout designs. The perturbation (move),
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Fig. 4.5 Time line of the MMC parallel SA

evaluation and decision are performed by each PE individually, and all PEs trace mul-

tiple search paths at the same time. As a timing diagram, Fig. 4.5shows how PEs work

independently and communicate with each other according to the time line. The PEs

are organized in a master-slaves structure, including one master PE and some slave

PEs. The duties of the master PE are not only to start and initialize the parallel SA,

but also to collect, choose and send intermediate solutions during the synchronization

process. As shown in Fig. 4.6, during the whole solution process, the search path of a

PE is not completely independent, and PEs exchange local information including the

intermediate solutions within a fixed period. The periodic exchange scheme, which

introduces flexibility to our MMC parallel SA, becomes the key to solving the 3D

engineering layout problem efficiently.

Figure 4.6 illustrates the detailed flow of our parallel SA and shows the interaction

between the master PE and slave PEs. According to this flow chart, the synchroniza-

tion condition plays an important role in communication, and the communication

overhead depends on a suitable synchronization condition. So as the synchroniza-

tion condition may influence the performance of MMCPSA algorithm, it should be

selected carefully as a part of the annealing schedule.

Due to the different computing abilities of the different PEs and the stochastic

nature of SA, idle time almost cannot be avoided in a synchronous parallel comput-

ing process, as shown in Figure 4.5. Therefore it is necessary to carefully choose the

control parameters in a parallel cooling schedule to balance the idle time and com-

munication overhead.

Early in the annealing process, nearly all design state perturbations are accepted

as new design states. A long independent computing time should be set on each PE

to encourage search the path to escape from the local optima. But later in the process,

a low acceptance probability causes a mass of inferior solutions to be rejected, and

frequent synchronization will lead the search path rapidly to the optimum points.

Furthermore, the number of slave PEs is still an important measure which influ-

ences the efficiency of our algorithm. Unfortunately, because of the heavy commu-

nication and idle overhead, the increase in processors does not guarantee a better

speedup.
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Fig. 4.6 Flow chart of the MMC parallel SA

So making reasonable choices of the control parameters in a cooling schedule,

especially for terminal conditions and the number of PEs, is a big challenge for al-

gorithm designers.

A general procedure for parallel SA for MODM is stated as follows.

Step 1. Start with a randomly generated initial solution vector, X , (a k1 vector whose

elements are decision variables) and evaluate all objective functions and put them

into a Pareto set of solutions.

Step 2. Give a random perturbation and generate a new solution vector,Y, in the neigh-

borhood of the current solution vector, X , revaluate the objective functions and apply

a penalty function approach to the corresponding objective functions, if necessary.

Step 3. Compare the generated solution vector with all solutions in the Pareto set and

update the Pareto set, if necessary.
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Step 4. If the generated solution vector is archived, make it the current solution vector

by X = Y and go to step 7.

Step 5. Accept the generated solution vector as the current solution vector, if it is not

archived with the probability. If the generated solution is accepted, make it the current

solution vector by X = Y and go to step 7.

Step 6. If the generated solution vector is not accepted, retain the earlier solution

vector as current solution vector by X = X and go to step 7.

Step 7. Periodically, restart with a randomly selected solution from the Pareto set.

While periodically restarting with the archived solutions, We recommended biasing

towards the extreme ends of the trade-off surface.

Step 8. Periodically reduce the temperature using a problem dependent annealing

schedule.

Step 9. Repeat steps 2-8, until a predefined number of iterations is carried out.

4.4.3.3 Numerical Example

Example 4.9. Consider the following nonlinear multi-objective problem with Fu-Fu

coefficients and use the Fu-Fu simulation-based simulated annealing algorithm to

solve it.
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max 3 ˜̄ξ 2
1 x2

1−2 ˜̄ξ1
˜̄ξ2x1x2 + 1.3 ˜̄ξ 2

2 x2
2

max 2.5 ˜̄ξ 2
3 x2

1 + 3 ˜̄ξ3
˜̄ξ4x1x2 + 5 ˜̄ξ 2

4 x2
2

s.t.

⎧
⎨
⎩

x1 + x2 ≤ 10

5x1−2x2 ≥ 2

x1,x2 ≥ 0,

(4.72)

where ξi(i = 1, · · · ,4) are all independently Fu-Fu variables as follows,

˜̃ξ1 ∼ (µ̃1,1,1),with µ̃1 = (5,6,7),
˜̃ξ2 ∼ (µ̃2,0.5,0.5),with µ̃2 = (6.5,8,10),
˜̃ξ3 ∼ (µ̃3,0.7,0.7),with µ̃3 = (4,5,6),
˜̃ξ4 ∼ (µ̃4,1,1),with µ̃4 = (5,7,8),

where µ̃i are all triangular fuzzy numbers, i = 1, · · · ,4.

We use the Fu-Fu CCM to deal with the above multi-objective model, and we can

get the following model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

max[ f̄1, f̄2]

s.t.

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Pos{θ |Pos{3 ˜̄ξ 2
1 x2

1−2 ˜̄ξ1
˜̄ξ2x1x2 + 1.3 ˜̄ξ 2

2 x2
2 ≥ f̄1} ≥ 0.9} ≥ 0.8

Pos{θ |Pos{2.5 ˜̄ξ 2
3 x2

1 + 3 ˜̄ξ3
˜̄ξ4x1x2 + 5 ˜̄ξ 2

4 x2
2 ≥ f̄2} ≥ 0.9} ≥ 0.8

x1 + x2 ≤ 10

5x1−2x2 ≥ 2

x1,x2 ≥ 0.

(4.73)
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We employ the Fu-Fu simulation based SA and we can get the following solutions:

x1 = 3.151,x2 = 6.849;

f̄1 = 2903.04, f̄2 = 14378.24.

4.5 Fu-Fu DCM

This section provides Fu-Fu DCM in which the underling philosophy is based on

selecting the decision with the maximum chance of meeting the event.

4.5.1 General Model for Fu-Fu DCM

A generally Fu-Fu DCM has the following form,

⎧
⎨
⎩

max Ch{hi(x,ξ )≤ 0, i = 1,2, · · · ,m}
s.t.

{
gr(x,ξ )≤ 0, r = 1,2, · · · , p

x ∈ X ,

(4.74)

where x is an n-dimensional decision vector, ξ is a Fu-Fu vector, the event ξ is char-

acterized by hi(x,ξ ) ≤ 0, i = 1,2, . . .m, and the Fu-Fu environment is described by

the uncertain constraints gr(x,ξ )≤ 0,r = 1,2, . . . p.

If there are multiple events in the Fu-Fu environment, a typical formulation of

Fu-Fu DCM ois given as follows,

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max

⎡
⎢⎢⎣

Ch{h1k(x,ξ )≤ 0, k = 1,2, · · · ,q1}
Ch{h2k(x,ξ )≤ 0, k = 1,2, · · · ,q2}
· · ·
Ch{hmk(x,ξ )≤ 0, k = 1,2, · · · ,qm}

⎤
⎥⎥⎦

s.t.

{
gr(x,ξ )≤ 0, r = 1,2, · · · , p

x ∈ X ,

(4.75)

where hik(x,ξ ) ≤ 0, k = 1,2, · · · ,qi represent events εi for i = 1,2, · · · ,m,

respectively.

Fu-Fu dependent-chance goal programming is employed to formulate Fu-Fu deci-

sion systems according to the priority structure and target levels set by the decision-

maker,

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max
l

∑
j=1

Pj

m

∑
i=1

(ui jd
+
i ∨0 + vi jd

−
i ∨0)

s.t.

⎧
⎪⎪⎨
⎪⎪⎩

Ch{h1k(x,ξ )≤ 0, k = 1,2, · · · ,qi}−bi = d+
i , i = 1,2, · · · ,m

bi−Ch{h1k(x,ξ )≤ 0, k = 1,2, · · · ,qi}= d−i , i = 1,2, · · · ,m
gr(x,ξ )≤ 0, r = 1,2, · · · , p,

x ∈ X ,

(4.76)

where Pj is the preemptive priority factor which expresses the relative importance of

various goals, Pj≫Pj+1, for all j, ui j is the weighting factor corresponding to positive
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deviation for goal i with priority j assigned, vi j is the weighting factor corresponding

to negative deviation for goal i with priority jassigned, d+
i ∨0 is the positive deviation

from the target of goal i, d−i ∨0 is the negative deviation from the target of goal i, g j

is a function in system constraints, bi is the target value according to goal i, l is the

number of priorities, m is the number of goal constraints, and p is the number of

system constraints.

4.5.2 Linear Fu-Fu DCM and Weight Sum Method

We consider when the objective function and constraints function are linear, let

fi(x,ξ ) = ˜̃cT
i x, gr(x,ξ ) = ˜̃eT

r x− ˜̃br, then the model (4.74) can be written as,

⎧
⎨
⎩

max
[
Ch{ ˜̃cT

1 x≥ f̄1}(γ1), · · · ,Ch{ ˜̃cT
mx≥ f̄m}(γm)

]

s.t.

{
Ch{ ˜̃eT

r x≤ ˜̃br}(ηr)≥ θr, r = 1,2, · · · , p

x≥ 0.

(4.77)

If we introduce the new variables δi, i = 1,2, · · · ,m, then the model (4.77) can be

written as the following equivalent form,

⎧
⎪⎪⎨
⎪⎪⎩

max [δ1,δ2, · · · ,δm]

s.t.

⎧
⎨
⎩

Ch{ ˜̃cT
i x≥ f̄i}(γi)≥ δi, i = 1,2, · · · ,m

Ch{ ˜̃eT
r x≤ ˜̃br}(ηr)≥ θr, r = 1,2, · · · , p

x≥ 0.

(4.78)

According to the definition of the chance measure, model (4.78) is also can be written

as:

⎧
⎪⎪⎨
⎪⎪⎩

max [δ1,δ2, · · · ,δm]

s.t.

⎧
⎨
⎩

Pos{θ |Pos{ ˜̃ci(θ )Tx≥ fi} ≥ δi} ≥ γi, i = 1,2, · · · ,m
Pos{θ |Pos{ ˜̃er(θ )Tx≤ ˜̃br(θ )} ≥ θr} ≥ ηr, r = 1,2, · · · , p

x≥ 0.

(4.79)

Let x∈Rn, for determined confidence level ηr,θr, if x≥ 0 and Pos{θ |Pos{ ˜̃er(θ )Tx≤
˜̃br(θ )} ≥ θr} ≥ ηr comes into existence, then x is a feasible solution of model (4.78)

or (4.79). And let X be these set of the whole feasible solution of model (4.77) or

(4.79).

Remark 4.10. If the Fu-Fu vectors ˜̃ci, ˜̃er and ˜̃br delegate to fuzzy vectors c̃i, ẽr and b̃r,

then we have

Pos{θ |Pos{c̃T
i x≥ f̄i} ≥ δi} ≥ γi ⇔ Pos{c̃T

i x≥ f̄i} ≥ δi, i = 1,2, · · · ,m,

Pos{θ |Pos{ẽT
r x≤ b̃r} ≥ θr} ≥ ηr ⇔ Pos{ẽT

r x≤ b̃r} ≥ θr, r = 1,2, · · · , p.
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So the model(4.77)is equivalent to

⎧
⎨
⎩

max [Pos{c̃T
i x≥ f̄i}, i = 1,2, · · · ,m]

s.t.

{
Pos{ẽT

r x≤ b̃r} ≥ θr, r = 1,2, · · · , p

x≥ 0.
(4.80)

The model (4.80) is the extension of the Modality model proposed by Inuiguchi[188],

If there is no possibility constraint in (4.80), it is coincident to the Modality model.

In the models (4.77)or (4.79), We can also use the chance measure based on the

necessary measure, then we have the following model

⎧
⎪⎪⎨
⎪⎪⎩

max [δ1,δ2, · · · ,δm]

s.t.

⎧
⎨
⎩

Nec{θ |Nec{ ˜̃ci(θ )Tx≥ fi} ≥ δi} ≥ γi, i = 1,2, · · · ,m
Nec{θ |Nec{ ˜̃er(θ )Tx≤ ˜̄br(θ )} ≥ θr} ≥ ηr, r = 1,2, · · · , p

x≥ 0.

(4.81)

Denote the feasible region of (4.81) as,

XN := {x ∈ Rn|Nec{θ |Nec{ ˜̃er(θ )Tx≤ ˜̃br(θ )} ≥ θr} ≥ ηr,r = 1,2, · · · , p;x≥ 0}.
(4.82)

4.5.2.1 Crisp Equivalent Model

In the following content we discuss how to transform the models (4.79) and (4.81)

to their crisp equivalent models when the Fu-Fu coefficients are some special Fu-Fu

variables, then we give the method to obtain the weak efficient solution.

(1) Crisp equivalent model based on Pos-Pos

First we assume that for x ∈ X , ∀ i = 1,2, · · · ,m, β cT
i x > 0 holds. Here X denote the

feasible region of problem (4.77) and (4.79).

Theorem 4.14. Assume that ˜̃ci j is LR Fu-Fu variable with the membership function

as follows, for any θ ∈Θ ,

µ ˜̃ci j(θ)(t) =

⎧
⎨
⎩

L(
ci j(θ)−t

αc
i j1

), t ≤ ci j(θ ),αc
i j1 > 0

R(
t−ci j(θ)

β c
i j1

), t ≥ ci j(θ ),β c
i j1 > 0

θ ∈Θ , (4.83)

where the fuzzy vector (ci(θ ))n×1 = (ci1(θ ),ci2(θ ), · · · ,cin(θ ))T is also LR fuzzy

variable with the membership functions as follows,

µci j(θ)(t) =

⎧
⎨
⎩

L(
ci j−t

αc
i j2

), t ≤ ci j,αc
i j2 > 0

R(
t−ci j

β c
i j2

), t ≥ ci j,β c
i j2 > 0

θ ∈Θ , (4.84)

and αc
i j1, αc

i j2, β c
i j1 and β c

i j2 are the left and right spread of ˜̃ci j(θ ) and ci j(θ ), i =

1,2, · · · ,m, j = 1,2, · · · ,n, the reference function L,R : [0,1]→ [0,1] satisfies that
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L(1) = R(1) = 0, L(0) = R(0) = 1, and it is decreasing, monotone function. Then

Pos{θ |Pos{ ˜̃ci(θ )Tx≥ fi} ≥ δi} ≥ γi is equivalent to

R−1(δi)≥
fi− cT

i x−R−1(γi)β cT
i2 x

β cT
i1 x

, i = 1,2, · · · ,m, (4.85)

where δi,γi ∈ [0,1] are predetermined confidence level.

Proof. We can easily prove this by Theorem 4.7.

Because the reference function R(·) is decreasing monotone function, so maxδi is

equivalent to minR−1(δi), by Theorem 4.14 and Theorem 4.9, model 4.79 is equiv-

alent to the following model 4.86,

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

max
[

fi−cT
i x−R−1(γi)β

cT
i2 x

β cT
i1 x

, i = 1,2, · · · ,m
]

s.t.

⎧
⎨
⎩

R−1(θr)β b
r1 + L−1(θr)αeT

r1 x− eT
r x + br + L−1(ηr)(αeT

r2 x + β b
r2)≥ 0,

r = 1,2, · · · , p

x≥ 0.
(4.86)

(2) Crisp equivalent model based on Nec-Nec

Theorem 4.15. Assume that ˜̃ci j is LR Fu-Fu variable with the membership function

as follows, for any θ ∈Θ ,

µ ˜̃ci j(θ)(t) =

⎧
⎨
⎩

L(
ci j(θ)−t

αc
i j1

), t ≤ ci j(θ ),αc
i j1 > 0

R(
t−ci j(θ)

β c
i j1

), t ≥ ci j(θ ),β c
i j1 > 0

θ ∈Θ , (4.87)

where the fuzzy vector (ci(θ ))n×1 = (ci1(θ ),ci2(θ ), · · · ,cin(θ ))T is also L-R fuzzy

variable with the membership functions as follows,

µci j(θ)(t) =

⎧
⎨
⎩

L(
ci j−t

αc
i j2

), t ≤ ci j,αc
i j2 > 0

R(
t−ci j

β c
i j2

), t ≥ ci j,β
c
i j2 > 0

θ ∈Θ , (4.88)

and αc
i j1, αc

i j2, β c
i j1 and β c

i j2 are the left and right spread of ˜̃ci j(θ ) and ci j(θ ), i =

1,2, · · · ,m, j = 1,2, · · · ,n, the reference function L,R : [0,1]→ [0,1] satisfies that

L(1) = R(1) = 0, L(0) = R(0) = 1, and it is decreasing, monotone function. Then

Nec{θ |Nec{ ˜̃ci(θ )Tx≥ fi} ≥ δi} ≥ γi is equivalent to

L−1(1− δi)≤
cT

i x−L−1(1− γi)αcT
i2 x− fi

αcT
i1 x

i = 1,2, · · · ,m, (4.89)

where δi,γi ∈ [0,1] are predetermined confidence levels.
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Proof. We can easily prove this by Theorem 4.10.

Because the reference function L(·) is decreasing monotone function, so maxδi is

equivalent to maxL−1(1− δi), by Theorem 4.15 and Theorem 4.11, model 4.79 is

equivalent to the following model 4.90,

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

max
[

cT
i x−L−1(1−γi)α

cT
i2 x− fi

αcT
i1 x

i = 1,2, · · · ,m
]

s.t.

⎧
⎨
⎩

br− eT
r x−L−1(1−ηr)(α

b
r2 + β eT

r2x)−L−1(1−θr)α
b
1r−R−1(θr)β

eT
1r x≥ 0,

r = 1,2, · · · , p

x≥ 0.
(4.90)

4.5.2.2 Weight Sum Method

The weight sum method is one of the techniques which are broadly applied to solve

the multi-objective programming problem (4.91).

{
max{H1(x), · · · ,Hi(x), · · · ,Hm(x)}
s.t. x ∈ X .

(4.91)

Assume that the related weight of the objective function Hi(x) is wi such that

∑m
i=1 wi = 1 and wi ≥ 0. Construct the evaluation function as follows,

u(H(x)) =
m

∑
i=1

wiHi(x) = wT H(x),

where wi expresses the importance of the object Hi(x) for DM. Then we get the fol-

lowing weight problem,

max
x∈X

u(H(x)) = max
x∈X

m

∑
i=1

wiHi(x) = max
x∈X

wT H(x). (4.92)

Let x̄ be an optimal solution of the problem (4.92), we can easily deduce that if w > 0,

x̄ is an efficient solution of the problem (4.91). By changing w, we can obtain a set

composed of the efficient solutions of the problem (4.91) by solving the problem

(4.92).

4.5.2.3 Numerical Example

Example 4.10. We use this example to explain the linear Fu-Fu DCM and the the most

easy weight sum method.
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Let us consider the following example with fuzzy variables,

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max ξ1x1 + ξ2x2

max ξ3x1 + ξ4x2

s.t.

⎧
⎪⎪⎨
⎪⎪⎩

x1 + x2 ≤ 6

2x1 + x2 ≤ 9

0≤ x1 ≤ 4

0≤ x2 ≤ 5,

(4.93)

where the coefficients are triangular LR Fu-Fu variables,

ξ1 = (θ1,0.2,0.2)LR,with θ1 = (0.9,1,1.1),
ξ2 = (θ2,0.2,0.2)LR,with θ2 = (1.9,2,2.1),
ξ3 = (θ3,0.2,0.2)LR,with θ3 = (2.0,3,3.1),
ξ4 = (θ4,0.2,0.2)LR,with θ4 = (0.9,1,1.1).

In order to solve it, we use the expected operator to deal with fuzzy objectives and

fuzzy constraints, then we can obtain the model,

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max Ch{ξ1x1 + ξ2x2 ≥ F1}
max Ch{ξ3x1 + ξ4x2 ≥ F2}

s.t.

⎧
⎪⎪⎨
⎪⎪⎩

x1 + x2 ≤ 6

2x1 + x2 ≤ 9

0≤ x1 ≤ 4

0≤ x2 ≤ 5.

(4.94)

If we adopted the Nec-Nec DCM, and we get

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max Nec{θ |Nec{ξ1x1 + ξ2x2 ≥ F1} ≥ δ}
max Nec{θ |Nec{ξ3x1 + ξ4x2 ≥ F2} ≥ δ}

s.t.

⎧
⎪⎪⎨
⎪⎪⎩

x1 + x2 ≤ 6

2x1 + x2 ≤ 9

0≤ x1 ≤ 4

0≤ x2 ≤ 5.

(4.95)

We use the crisp equivalent to transform the model (4.95) into the following model,

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max Nec{θ |Nec{ξ1x1 + ξ2x2 ≥ F1} ≥ δ}
max Nec{θ |Nec{ξ3x1 + ξ4x2 ≥ F2} ≥ δ}

s.t.

⎧
⎪⎪⎨
⎪⎪⎩

x1 + x2 ≤ 6

2x1 + x2 ≤ 9

0≤ x1 ≤ 4

0≤ x2 ≤ 5.

(4.96)

Then we use the lexicographic method to solve it. Here we suppose that the objec-

tive H1(x) is more important that the second. So wo solve the first important single

objective first.
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

max G1(x) = x1+2x2−0.9(0.1x1+0.1x2)−F1
0.2x1+0.2x2

max G2(x) = 3x1+x2−0.9(0.1x1+0.1x2)−F2
0.2x1+0.2x2

s.t.

⎧
⎪⎪⎨
⎪⎪⎩

x1 + x2 ≤ 6

2x1 + x2 ≤ 9

0≤ x1 ≤ 4

0≤ x2 ≤ 5.

(4.97)

We set F1 = 8,F2 = 5 and compute the two single objective model respectively,

G1(x
∗) = 2.05,x∗ = (1,5),

G2(x
∗) = 8.3,x∗ = (4,0).

Then we set w1 = 0.3,w2 = 0.7, and we construct the following model,

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max w1
x1+2x2−0.9(0.1x1+0.1x2)−F1

0.2x1+0.2x2
+ w2

3x1+x2−0.9(0.1x1+0.1x2)−F2
0.2x1+0.2x2

s.t.

⎧
⎪⎪⎨
⎪⎪⎩

x1 + x2 ≤ 6

2x1 + x2 ≤ 9

0≤ x1 ≤ 4

0≤ x2 ≤ 5.

(4.98)

After computing, we can get the following solution,

(x1,x2) = (4,1.45).

4.5.3 Nonlinear Fu-Fu DCM and Fu-Fu Simulation Based

Adaptive SA

Consider the following model,

⎧
⎨
⎩

max
[
Pos{θ |Pos{ fi(x,ξ )≥ f̄i} ≥ γi}, i = 1,2, · · · ,m

]

s.t.

{
Pos{θ |Pos{gr(x,ξ )≤ 0} ≥ θr} ≥ ηr,r = 1,2, · · · , p

x ∈ X ,

where γi ηr and θr are predetermined confidence levels, i= 1,2, · · · ,m,r = 1,2, · · · , p.

If fi or gr or even both of them are nonlinear functions, we cannot directly convert it

into crisp model, then another method is introduced to solve it.

For the nonlinear Fu-Fu DCM, we use the Fu-Fu simulation based adaptive sim-

ulated annealing algorithm (ASA, for short) to solve.

4.5.3.1 Fu-Fu Simulation 3 for Chance

Assume that ξ is an n-dimensional Fu-Fu vector defined on the possibility space

(Θ ,P(Θ),Pos), and f : Rn → R is a function. For any confidence level α . we de-

sign a Fu-Fu simulation to compute the α-chance Ch{ f (ξ ) ≤ 0}(α). Equivalently,

we should find the supremum β̄ such that
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Cr{θ ∈Θ |Cr{ f (ξ (θ ))≤ 0} ≥ β̄} ≥ α. (4.99)

We randomly generate θk from Θ such that Pos{θk} ≥ ε , and write νkPos{θk},k =
1,2, · · ·N, respectively, where ε is a sufficiently small number. For any number θk,

by using fuzzy simulation, we can estimate the credibility

g(θk) = Cr{ f (ξ (θk))≤ 0}. (4.100)

For any number r, we have

L(r) =
1

2

(
max

1≤k≤N
{νk|g(θk)≥ r}+ min

1≤k≤N
{1−νk|g(θk) < r}

)
. (4.101)

It follows from monotonicity that we may employ bisection search to find the maximal

value r such that L(r)≥α . This value is an estimation of L. We summarize this process

as follows.

Step 1. Generate θk from Θ such that Pos{θk} ≥ ε for k = 1,2, · · · ,N, where ε is a

sufficiently small number.

Step 2. Find the maximal value r such that L(r) ≥ α holds.

Step 3. Return r.

Example 4.11. Suppose that the Fu-Fu variables ξ1,ξ2,ξ3 are defined as

ξ1 = (ρ1−1,ρ1,ρ1 + 1), with ρ1 = (0,1,2),
ξ2 = (ρ2−1,ρ2,ρ2 + 1), with ρ2 = (1,2,3),
ξ3 = (ρ3−1,ρ3,ρ3 + 1), with ρ3 = (2,3,4).

After a run of Fu-Fu simulation 3 with 10000 cycles, we get that

Ch{ξ1 + ξ2 + ξ3 ≥ 2}(0.9) = 0.61.

4.5.3.2 Adaptive SA

The adaptive SA, also known as the very fast simulated reannealing, is a very efficient

version of SA. Detailed analysis of the algorithm can be found in[365, 362, 363,

364]. Many signal processing applications pose the following general optimization

problem:

min
w∈W

J(w), (4.102)

where w = [w1, · · · ,wn]
T is the n-dimensional parameter vector to be optimized,

W := {w : (Li ≤ wi ≤Ui,1≤ i≤ n)∩ (α j ≤ g j(w) ≤ β j,1≤ j ≤ m)} (4.103)

is the feasible set of w, Li andUi are the lower and upper bounds of wi, respectively, and

α j ≤ g j(w)≤ β j,1≤ j ≤m, are the m inequality constraints. The cost function J(w)
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can be multi-modal and non-smooth. Adaptive SA is a global optimization scheme

for solving this kind of constrained optimization problems.

Fig. 4.7 Flow chart of the adaptive simulated annealing.

Let us briefly introduce the search guiding mechanisms. Adaptive SA evolves from

a single point w in the parameter or state space W . The seemingly random search is

guided by certain underlying probability distributions. An elegant discussion on how

the general SA algorithm works can be found in [366]. Specifically, the general SA

algorithm is described by three functions.

(1). Generating probability density function

G(wold
i ,wnew

i ,Ti,gen;1≤ i≤ n). (4.104)

This determines how a new state wnew is created, and from what neighbourhood and

probability distributions it is generated, given the current state wold. The generating

“temperatures” a 1i, Ti,gen describe the widths or scales of the generating distribution

along each dimension wi of the state space.

Often a cost function has different sensitivities along different dimensions of the

state space. Ideally, the generating distribution used to search a steeper and more sen-

sitive dimension should have a narrower width than that of the distribution used in
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searching a dimension less sensitive to change. Adaptive SA adopts a so-called re-

annealing scheme to periodically re-scale Ti,gen, so that they optimally adapt to the

current status of the cost function. This is an important mechanism, which not only

speeds up the search process but also makes the optimization process robust to dif-

ferent problems.

(2). Acceptance function

Paccept(J(wold),J(wnew),Taccept). (4.105)

This gives the probability of wnew being accepted. The acceptance temperature de-

termines the frequency of accepting new states of poorer quality. Probability of ac-

ceptance is very high at very high temperature Taccept, and it becomes smaller as

Taccept is reduced. At every acceptance temperature, there is a finite probability of

accepting the new state. This produces an occasional uphill move, enables the algo-

rithm to escape from local minima, and allows a more effective search of the state

space to find a global minimum. Adaptive SA also periodically adapts Taccept to

best suit the status of the cost function. This helps to improve convergence speed and

robustness.

(3). Reduce temperatures or annealing schedule

Taccept(ka)→ Taccept(ka + 1),

Ti,gen(ki)→ Ti,gen(ki + 1),1≤ i≤ n,
(4.106)

where ka and ki are some annealing time indexes. The reduction of temperatures

should be sufficiently gradual in order to ensure that the algorithm finds a global min-

imum.

This mechanism is based on the observations of the physical annealing process.

When the metal is cooled from a high temperature, if the cooling is sufficiently slow,

the atoms line themselves up and form a crystal, which is the state of minimum energy

in the system. The slow convergence of many SA algorithms is rooted in this slow

annealing process. Adaptive SA, however, can employ a very fast annealing schedule,

as it has self adaptation ability to re-scale temperatures.

We state adaptive SA implementation. Although there are many possible realiza-

tions of adaptive SA, an implementation is illustrated in Figure 1, and this algorithm

is detailed here. How adaptive SA realizes the above three functions will also become

clear during the description.

Step 1. In the initialization, an initial w∈W is randomly generated, the initial temper-

ature of the acceptance probability function, Taccept(0), is set to J(w), and the initial

temperatures of the parameter generating probability functions, Ti,gen(0),1 ≤ i≤ n,

are set to 1.0. A user-defined control parameter c in annealing is given, and the an-

nealing times, ki for 1≤ i≤ n and ka, are all set to 0.
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Step 2. The algorithm generates a new point in the parameter space with

wnew
i = wold

i + qi(Ui−Li),1≤ i≤ n (4.107)

and

wnew ∈W, (4.108)

where qi is calculated as

qi = sgn(υi−
1

2
)Ti,gen(ki)×

((
1 +

1

Ti,gen(ki)

)|2υi−1|
−1

)
, (4.109)

and υi a uniformly distributed random variable in [0,1]. Notice that if a generated

wnew is not inW , it is simply discarded and a new point is tried again until wnew∈W .

The value of the cost function J(wnew) is then evaluated and the acceptance prob-

ability function of wnew is given by

Paccept =
1

1 + exp((J(wnew)− J(wold))/Taccept(Ka))
. (4.110)

A uniform random variable Punif is generated in [0,1]. If Puni f ≤ Paccept, wnew is

accepted; otherwise it is rejected.

Step 3. After every Naccept acceptance points, reannealing takes place by first cal-

culating the sensitivies

si =
∣∣J(wbest + eiδ )− J(wbest)

δ

∣∣,1≤ i≤ n, (4.111)

where wbest is the best point found so far, δ is a small step size, the n-dimensional

vector ei has unit ith element and the rest of elements of ei are all zeros. Let smax =
max{si,1≤ i≤ n}. Each parameter generating temperature Ti,gen is scaled by a factor

smax/si and the annealing time ki is reset,

Ti,gen(ki) =
smax

si
Ti,gen(ki), ki =

(
−1

c
log

(
Ti,gen(ki)

Ti,gen(0)

))n

. (4.112)

Similarly, Taccept(0) is reset to the value of the last accepted cost function,

Taccept(ka) is reset to J(wbest) and the annealing time ka is rescaled accordingly,

ka =

(
−1

c
log

(
Ti,gen(ka)

Ti,gen(0)

))n

. (4.113)
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Step 4. After every Ngenera generated points, annealing takes place with

ki = ki + 1,

Ti,gen(ki) = Ti,gen(0)exp(−ck
1/n
i ),1 ≤ i≤ n;

(4.114)

and
ka = ka + 1,

Taccept(ka) = Taccept(0)exp(−ck
1/n
a );

(4.115)

otherwise, go to step (2).

Step 5. The algorithm is terminated if the parameters have remained unchanged for

a few successive reannealings or a preset maximum number of cost function evalua-

tions has been reached; otherwise, go to step (2).

As in a standard SA algorithm, this adaptive SA contains two loops. The inner

loop ensures that the parameter space is searched sufficiently at a given temperature,

which is necessary to guarantee that the algorithm finds a global optimum. Adaptive

SA also uses only the value of the cost function in the optimization process and is

very simple to program.

Last, we discuss algorithm parameter tuning. For the above adaptive SA, most of

the algorithm parameters are automatically set and “tuneda”, and the user only needs

to assign a control parameter c and set two values Naccept and Ngen. Obviously,

the optimal values of Naccept and Ngen are problem dependent, but our experience

suggests that an adequate choice for Naccept is in the range of tens to hundreds and

an appropriate value for Ngen is in the range of hundreds to thousands. The annealing

rate control parameter c can be determined from the chosen initial temperature, final

temperature and the predetermined number of annealing steps. We have found out

that a choice of c in the range 1.0 to 10.0 is often adequate.

It should be emphasized that, as adaptive SA has excellent self adaptation abilities,

the performance of the algorithm is not critically influenced by the specific chosen

values of c, Naccept and Ngen.

4.5.3.3 Numerical Example

Example 4.12. Let’s consider the following non-linear multi-objective programming

with Fu-Fu coefficients,

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max f1 = 3
˜̃ξ 2
1 x2

1−2
˜̃ξ1

˜̃ξ2x1x2 + 1.3 ˜̃ξ 2
2 x2

2

max f2 = 2.5 ˜̃ξ 2
3 x2

1 + 3
˜̃ξ3

˜̃ξ4x1x2 + 5
˜̃ξ 2
4 x2

2

s.t.

⎧
⎨
⎩

x1 + x2 ≤ 10

5x1−2x2 ≥ 2

x1,x2 ≥ 0,

(4.116)



4.6 Application to Purchasing Problem in a Large-Scale Integrated Steel Plant 277

where ξi(i = 1, · · · ,4) are all independently Fu-Fu variables as follows,

˜̃ξ1 ∼ (µ̃1,1,1),with µ̃1 = (5,6,7),
˜̃ξ2 ∼ (µ̃2,0.5,0.5),with µ̃2 = (6.5,8,10),
˜̃ξ3 ∼ (µ̃3,0.7,0.7),with µ̃3 = (4,5,6),
˜̃ξ4 ∼ (µ̃4,1,1),with µ̃4 = (5,7,8),

where µ̃i are all triangular fuzzy numbers, i = 1, · · · ,4.

When we set f̄1 = 2900, f̄2 = 14000 and δ1 = δ2 = 0.9, and use the Fu-Fu DCM

to deal with the above multi-objective model under bifuzzy environment.

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max f1(x,ξ ) = Ch
{

3
˜̃ξ 2
1 x2

1−2
˜̃ξ1

˜̃ξ2x1x2 + 1.3 ˜̃ξ 2
2 x2

2 ≥ 5
}

(0.9)

max f2(x,ξ ) = Ch
{

2.5 ˜̃ξ 2
3 x2

1 + 3
˜̃ξ3

˜̃ξ4x1x2 + 5
˜̃ξ 2
4 x2

2 ≥ 12
}

(0.9)

s.t.

⎧
⎨
⎩

x1 + x2 ≤ 10

5x1−2x2 ≥ 2

x1,x2 ≥ 0,

(4.117)

which is equivalent to

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max f1(x,ξ ) = Pos{θ |Pos{3 ˜̃ξ 2
1 x2

1−2
˜̃ξ1

˜̃ξ2x1x2 + 1.3 ˜̃ξ 2
2 x2

2 ≥ 5} ≥ 0.9}
max f2(x,ξ ) = Pos{θ |Pos{2.5 ˜̃ξ 2

3 x2
1 + 3

˜̃ξ3
˜̃ξ4x1x2 + 5

˜̃ξ 2
4 x2

2 ≥ 12} ≥ 0.9}

s.t.

⎧
⎨
⎩

x1 + x2 ≤ 10

5x1−2x2 ≥ 2

x1,x2 ≥ 0.

(4.118)

We use the Fu-Fu simulation 3 based SA to solve this problem, and we can get the

following solutions:
x1 = 3.143,x2 = 6.857;

f1 = 0.81, f2 = 0.86.

4.6 Application to Purchasing Problem in a Large-Scale
Integrated Steel Plant

In this section, for the problem proposed in section 4.1, we propose a model which

is a single time phase with the unit of time measure being 1 month. The demand and

inventory level are given for the required raw materials.

Usually, there are many objectives for the purchasing decision, but the most impor-

tant three factors for the decision maker are quality, price, and due date[353]. The unit

of measure of quality is the scrap ratio of raw materials, and the unit of measurement

for the due date is a tardy-delivery fraction. Therefore, we proposed a multi-objective

linear programming model with three objectives.
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4.6.1 Modelling

Our aims of proposing the model is to decide which raw material items should be

purchased and how big a quantity order ought to be placed with each selected vendor.

Therefore, we use the two-dimensional vector xi j denoting the order quantity of the

jth item of raw materials from the ith vendor.

4.6.1.1 Objective Functions

We selected the minimization objectives for all factors because of to its ready-to-use

linear programming solving techniques. In addition, a multi-objective approach has

several advantages over a single-objective; firstly, it allows various criteria to be eval-

uated in their natural units of measurement and, therefore, eliminates the necessity

of transforming them into a common unit of measurement such as dollars; secondly,

multi-objective techniques permit the decision maker to incorporate personal expe-

rience and insight in the decision process; thirdly, the multi-objective approach pro-

vides the decision maker with a method to systematically analyze the effects of policy

decisions on the relevant criteria space when making decisions. This very important

feature makes the decision maker see the potential effects of different decisions. The

formulations are as follows:

The first objective is minimum cost,

min

{
F1 =

m

∑
i=1

n

∑
j=1

˜̃ci jxi j

}
, (4.119)

the second is lowest scrap ratio,

min

{
F2 =

m

∑
i=1

n

∑
j=1

˜̃ri jxi j

}
, (4.120)

the last is least tardy-delivery fraction

min

{
F3 =

m

∑
i=1

n

∑
j=1

˜̃si jxi j

}
, (4.121)

where ˜̃ci j is the one unit purchasing cost of the jth item from the ith vendor, ˜̃ri j the

tardy-delivery ratio of the jth item from the ith vendor, ˜̃si j the scrap fraction of the

jth item from the ith vendor, m the number of vendors, and n the number of items.

4.6.1.2 Constraints

There are several constraints we need to consider.
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Purchasing budget
The purchasing capital budget depends on purchase supply planning and price fluctu-

ation situation if considerable. Raw materials are classified into a number of classes,

such as iron-ores, secondary raw materials, fuels, etc. They ought to satisfy their own

the purchasing budget and at the same time, satisfy total quantity control. Thus, the

following relations exist:

m

∑
i=1

˜̃ci jxi j ≤ c j, j = 1,2, · · · ,n, (4.122)

where m is the number of vendors, n the number of items, ˜̃ci j the one unit purchasing

cost of the jth item of raw materials from the ith vendor, c j the purchasing budget of

the jth item of raw materials, and c the total budget for purchasing of raw materials.

Production demand
The raw materials purchased must satisfy the demands in terms of items, quality, and

quantities in a given time period. Therefore, we have

m

∑
i=1

˜̃di jxi j ≤ ˜̃d j, j = 1,2, · · · ,n, (4.123)

where ˜̃di j is the unit converting rate to the requisite from the jth item of raw materials

from the ith vendor, and ˜̃d j the total demand for the jth item of raw materials.

Inventory capacity constraints
Holding safe-stock at a certain level is necessary. In general, safe-stock held in the

integrated steel plant is between 15 and 50 days quantity required by the production

and market supply situation, and changes as this is usually small. Here, the inventory

considers quantity as well as volume. So, the relation is as follows:

m

∑
i=1

xi j ≥ 1.5 ˜̃d j− I j0, j = 1,2, · · · ,n, (4.124)

m

∑
i=1

xi j ≤ 2.5 ˜̃d j− I j0, j = 1,2, · · · ,n, (4.125)

where ˜̃d j is the demand of the jth item of raw materials (1 month), and I j0 the initial

stock for the jth item of raw materials.

The formulations of (4.124), (4.125) are given by the following deductive relation:

Since, I j = I j0 +Pj− ˜̃d j; but exists: 0.5d j≤ I j ≤ 1.5 ˜̃d j (by given), (4.124), (4.125) are

rational, where I j is the denoting the end inventory for the jth item of raw materials,

Pj denotes the purchasing amount for the jth item of raw materials.

Technology constraints
In the purchasing process, we need to consider proportionality relations among

a variety of items. For example, in iron-making technology, making 1 unit molten-iron
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needs 2 units of iron ore, 0.5 unit lime and 1 unit coal, etc. So, the following relations

hold:
m

∑
i=1

xik = akl

m

∑
i=1

xil, k, l ∈ {1,2, · · · ,n},k 
= l, (4.126)

where akl are proportional constants.

Vendor resource constraints
Due to different geographical places, resource situations, transportation conditions,

etc., the plant can get the ordering quantity from each vendor in different ways. So,

we have

xil ≤Uil, l ∈ L, (4.127)

where Uil is the maximum ordering quantity for the lth item of raw materials from

the ith vendor, and L the given special set.

4.6.1.3 Multi-objective Linear Programming Model

We list the multi-objective model for the purchase of bulk raw materials of a large-

scale integrated steel plant as follows,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min F1 =
m

∑
i=1

n

∑
j=1

˜̃ci jxi j

min F2 =
m

∑
i=1

n

∑
j=1

˜̃ri jxi j

min F3 =
m

∑
i=1

n

∑
j=1

˜̃si jxi j

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m

∑
i=1

˜̃ci jxi j ≤ c j, j = 1,2, · · · ,n
m

∑
i=1

˜̃di jxi j ≤ ˜̃d j, j = 1,2, · · · ,n
m

∑
i=1

xi j ≥ 1.5 ˜̃d j− I j0, j = 1,2, · · · ,n
m

∑
i=1

xi j ≤ 2.5 ˜̃d j− I j0, j = 1,2, · · · ,n
m

∑
i=1

xik = akl

m

∑
i=1

xil, k, l ∈ {1,2, · · · ,n},k 
= l

xil ≤Uil, l ∈ L.

(4.128)

Then according to the Fu-Fu EVM and Fu-Fu CCM, we get the expectation model

with chance constraints (ECM, for short) as follows:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min F1 = E[
m

∑
i=1

n

∑
j=1

˜̃ci jxi j]

min F2 = E[
m

∑
i=1

n

∑
j=1

˜̃ri jxi j]

min F3 = E[
m

∑
i=1

n

∑
j=1

˜̃si jxi j]

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ch{
m

∑
i=1

˜̃ci jxi j ≤ c j}(α1)≥ β1, j = 1,2, · · · ,n

Ch{
m

∑
i=1

˜̃di jxi j ≤ ˜̃d j}(α1)≥ β1, j = 1,2, · · · ,n
m

∑
i=1

xi j ≥ 1.5 ˜̃d j− I j0, j = 1,2, · · · ,n
m

∑
i=1

xi j ≤ 2.5 ˜̃d j− I j0, j = 1,2, · · · ,n
m

∑
i=1

xik = akl

m

∑
i=1

xil, k, l ∈ {1,2, · · · ,n},k 
= l

xil ≤Uil, l ∈ L.

(4.129)

4.6.2 Data Collection

The data resource for this concrete model comes from a certain large-scale steel plant.

This plant has 30 vendors and 100 items. We selected the 3 months data from real

purchasing business and shrunk this real problem model to have only 7 vendors and 13

items that belong to four kinds of large bulk raw materialsł F, L, P and C, respectively.

F, L, P, and C denote fine ore, lump ore, pellet, and coal, respectively. In addition, due

to the point estimate weighted-sums method to our problem, we often have need to

scale the objective functions for normalization; we used this kind of scaling method

on our model. The coordinated model is as follows:

These four kinds of materials need to satisfy the production demand constraints,

and the data are in Table 4.5.

4.6.3 Model Processing Specification

When we use the expected value of Fu-Fu variable to substitute the Fu-Fu variable,

and we get the specific model as follows,
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Table 4.2 Unit purchasing cost of the jth item from the ith vendor

˜̃ci j 1 2

1 (0.01,c11,0.01) with (0.002,c12,0.002) with

c11=(0.002,0.112,0.002) c12=(0.004,0.0654,0.004)

2 - (0.002,µ22,0.002) with

c22=(0.0003,0.0621,0.0003)

3 (0.02,c31,0.01) with (0.002,c32,0.002) with

c31=(0.002,0.127,0.002) c32=(0.0003,0.0586,0.0003)

4 (0.01,c41,0.01) with -

c41=(0.002,0.122,0.002) -

5 (0.01,c51,0.01) with -

c51=(0.002,0.115,0.002) -

6 - (0.005,c62,0.005) with

- c62=(0.001,0.0602,0.001)

7 (0.01,c71,0.01) with -

c71=(0.001,0.119,0.001) -

˜̃ci j 3 4

1 - (0.004,c14,0.004) with

- c14=(0.0001,0.09521,0.0001)

2 - -

3 (0.02,c33,0.01) with (0.003,c34,0.003) with

c33=(0.002,0.195,0.002) c34=(0.0002,0.0975,0.0002)

4 - -

5 (0.02,c53,0.02) with -

c53=(0.003,0.185,0.003) -

6 - -

7 - -

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min F1 = ˜̃c11x11 + ˜̃c31x31 + ˜̃c41x41 + ˜̃c51x51 + ˜̃c71x71

+ ˜̃c12x12 + ˜̃c22x22 + ˜̃c32x32 + ˜̃c62x62

+ ˜̃c33x33 + ˜̃c53x53 + ˜̃c14x14 + ˜̃c34x34

min F2 = ˜̃r11x11 + ˜̃r31x31 + ˜̃r41x41 + ˜̃r51x51 + ˜̃r71x71 + ˜̃r12x12 + ˜̃r22x22

+ ˜̃r32x32 + ˜̃r62x62 + ˜̃r33x33 + ˜̃r53x53 + ˜̃r14x14 + ˜̃r34x34

min F3 = ˜̃s11x11 + ˜̃s31x31 + ˜̃s41x41 + ˜̃s51x51 + ˜̃s71x71 + ˜̃s12x12 + ˜̃s22x22

+ ˜̃s32x32 + ˜̃s62x62 + ˜̃s33x33 + ˜̃s53x53 + ˜̃s14x14 + ˜̃s34x34

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˜̃c11x11 + ˜̃c31x31 + ˜̃c41x41 + ˜̃c51x51 + ˜̃c71x71

+ ˜̃c12x12 + ˜̃c22x22 + ˜̃c32x32 + ˜̃c62x62

+ ˜̃c33x33 + ˜̃c53x53 + ˜̃c14x14 + ˜̃c34x34 ≤ 16.373
˜̃d11x11 + ˜̃d31x31 + ˜̃d41x41 + ˜̃d51x51 + ˜̃d71x71 ≥ ˜̃d1
˜̃d12x12 + ˜̃d32x22 + ˜̃d32x32 + ˜̃d62x62 ≥ ˜̃d2
˜̃d33x33 + ˜̃d53x53 ≥ ˜̃d3
˜̃d14x14 + ˜̃d34x34 ≥ ˜̃d4

2x12 + 2x22 + 2x32 + 2x62 + 3x33 + 3x53 = x11 + x31 + x41 + x51

+x71 + x14 + x34

xi j ≥ 0, i = 1,2, · · · ,7; j = 1,2,3,4.

(4.130)



4.6 Application to Purchasing Problem in a Large-Scale Integrated Steel Plant 283

Table 4.3 Tardy-delivery ratio of the jth item from the ith vendor

˜̃ri j 1 2

1 (0.02,r11,0.02) with (0.02,r12,0.02) with

r11=(0.01,0.1,0.01) r12=(0.01,0.1,0.01)

2 - (0.03,r22,0.03) with

r22=(0.02,0.25,0.02)

3 (0.02,r31,0.01) with (0.02,r32,0.02) with

r31=(0.003,0.155,0.003) r32=(0.003,0.15,0.003)

4 (0.01,r41,0.01) with -

r41=(0.003,0.17,0.003) -

5 (0.01,r51,0.01) with -

r51=(0.003,0.12,0.003) -

6 - (0.05,r62,0.05) with

- r62=(0.003,0.3,0.003)

7 (0.01,r71,0.01) with -

r71=(0.01,0.2,0.01) -

˜̃ri j 3 4

1 - (0.02,r14,0.02) with

- r14=(0.01,0.1,0.01)

2 - -

3 (0.02,r33,0.01) with (0.02,r34,0.02) with

r33=(0.002,0.155,0.002) r34=(0.002,0.15,0.002)

4 - -

5 (0.01,r53,0.01) with -

r53=(0.002,0.12,0.002) -

6 - -

7 - -

Since there are Fu-Fu variables in Model (4.130), so we need to employ the expected

value operator or the chance constrained operator to handle the above Fu-Fu multi-

objective model. In this section, we use the expected value operator and the chance

constrained operator to deal with the objective functions and the constraints, respec-

tively.
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Table 4.4 Scrap fraction of the jth item from the ith vendor

˜̃si j 1 2

1 (0.02,s11,0.02) with (0.02,s12,0.02) with

s11=(0.01,0.2,0.01) s12=(0.01,0.2,0.01)

2 - (0.01,s22,0.01) with

s22=(0.01,0.1,0.01)

3 (0.02,s31,0.01) with (0.02,s32,0.02) with

µ31=(0.01,0.1,0.01) s32=(0.005,0.15,0.005)

4 (0.01,s41,0.01) with -

s41=(0.003,0.15,0.003) -

5 (0.01,s51,0.01) with -

s51=(0.003,0.17,0.003) -

6 - (0.05,s62,0.05) with

- s62=(0.003,0.22,0.003)

7 (0.01,s71,0.01) with -

s71=(0.003,0.13,0.003) -

˜̃si j 3 4

1 - (0.02,s14,0.02) with

- s14=(0.01,0.2,0.01)

2 - -

3 (0.02,s33,0.01) with (0.02,s34,0.02) with

s33=(0.001,0.15,0.001) s34=(0.002,0.15,0.002)

4 - -

5 (0.01,s53,0.01) with -

s53=(0.003,0.17,0.002) -

6 - -

7 - -

⎧
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min F1 = E[ ˜̃c11]x11 +E[ ˜̃c31]x31 +E[ ˜̃c41]x41 +E[ ˜̃c51]x51 +E[ ˜̃c71]x71

+E[ ˜̃c12]x12 +E[ ˜̃c22]x22 +E[ ˜̃c32]x32 +E[ ˜̃c62]x62

+E[ ˜̃c33]x33 +E[ ˜̃c53]x53 +E[ ˜̃c14]x14 +E[ ˜̃c34]x34

min F2 = E[ ˜̃r11]x11 +E[ ˜̃r31]x31 +E[ ˜̃r41]x41 +E[ ˜̃r51]x51 +E[ ˜̃r71]x71 +E[ ˜̃r12]x12

+E[ ˜̃r22]x22 +E[ ˜̃r32]x32 +E[ ˜̃r62]x62 +E[ ˜̃r33]x33 +E[ ˜̃r53]x53 +E[ ˜̃r14]x14

+E[ ˜̃r34]x34

min F3 = E[ ˜̃s11]x11 +E[ ˜̃s31]x31 +E[ ˜̃s41]x41 +E[ ˜̃s51]x51 +E[ ˜̃s71]x71 +E[ ˜̃s12]x12

+E[ ˜̃s22]x22 +E[ ˜̃s32]x32 +E[ ˜̃s62]x62 +E[ ˜̃s33]x33 +E[ ˜̃s53]x53 +E[ ˜̃s14]x14

+E[ ˜̃s34]x34

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E[ ˜̃c11x11 + ˜̃c31x31 + ˜̃c41x41 + ˜̃c51x51 + ˜̃c71x71

+ ˜̃c12x12 + ˜̃c22x22 + ˜̃c32x32 + ˜̃c62x62

+ ˜̃c33x33 + ˜̃c53x53 + ˜̃c14x14 + ˜̃c34x34]≤ 16.373

Ch{ ˜̃d11x11 + ˜̃d31x31 + ˜̃d41x41 + ˜̃d51x51 + ˜̃d71x71 ≥ ˜̃d1}(α1)≥ β1

Ch{ ˜̃d12x12 + ˜̃d32x22 + ˜̃d32x32 + ˜̃d62x62 ≥ ˜̃d2}(α2)≥ β2

Ch{ ˜̃d33x33 + ˜̃d53x53 ≥ ˜̃d3}(α3)≥ β3

Ch{ ˜̃d14x14 + ˜̃d34x34 ≥ ˜̃d4}(α4)≥ β5

2x12 +2x22 +2x32 +2x62 +3x33 +3x53 = x11 +x31 +x41 +x51

+x71 +x14 +x34

xi j ≥ 0, i = 1,2, · · · ,7; j = 1,2,3,4.
(4.131)
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Table 4.5 Scrap fraction of the jth item from the ith vendor

˜̃di j 1 2

1 (0.02,d11,0.02) with (0.02,d12,0.02) with

d11=(0.005,1.2,0.005) d12=(0.005,1.25,0.005)

2 - (0.01,d22,0.01) with

µ22=(0.005,0.95,0.005)

3 (0.02,d31,0.01) with (0.02,d32,0.02) with

d31=(0.005,0.9,0.005) d32=(0.005,1.15,0.005)

4 (0.01,d41,0.01) with -

µ41=(0.02,1,0.02) -

5 (0.01,d51,0.01) with -

µ51=(0.02,1.1,0.02) -

6 - (0.05,d62,0.05) with

- d62=(0.02,1.05,0.02)

7 (0.01,d71,0.01) with -

µ71=(0.02,0.95,0.02) -
˜̃d j (3,d1,3) with (2,d2,2) with

d1=(1,60,1) d2=(0.5,30,0.5)

˜̃di j 3 4

1 - (0.02,d14,0.02) with

- d14=(0.02,1.12,0.02)

2 - -

3 (0.02,d33,0.01) with (0.02,d34,0.02) with

d33=(0.02,1.3,0.02) d34=(0.02,1.24,0.02)

4 - -

5 (0.05,d53,0.05) with -

d53=(0.02,1.1,0.02) -

6 - -

7 - -
˜̃d j (1,d3,1) with (3,d4,3) with

d3=(0.5,10,0.5) d4=(2,70,2)

Following Theorem 4.4, the expected value for the Fu-Fu variable ˜̃c = (l1, c̃,r1) with

c̃ = (l2,c,r2) we obtain that

E[ ˜̃c] = c +
(r1 + r2)− (l1 + l2)

4
.

By Theorem 4.12, we use the expected value operator and Nec−Nec chance defini-

tion, so we get the following crisp specific model.
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⎧
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min F1 = 0.112x11 + 0.127x31 + 0.122x41 + 0.115x51 + 0.119x71

+0.0654x12 + 0.0621x22 + 0.0586x32 + 0.0602x62

+0.195x33 + 0.185x53 + 0.09521x14 + 0.0975x34

min F2 = 0.1x11 + 0.155x31 + 0.17x41 + 0.12x51 + 0.2x71 + 0.1x12 + 0.25x22

+0.15x32 + 0.3x62 + 0.15x33 + 0.12x53 + 0.1x14 + 0.15x34

min F3 = 0.2x11 + 0.1x31 + 0.15x41 + 0.17x51 + 0.13x71 + 0.2x12 + 0.1x22

+0.15x32 + 0.22x62 + 0.15x33 + 0.17x53 + 0.2x14 + 0.15x34

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.112x11 + 0.127x31 + 0.122x41 + 0.115x51 + 0.119x71 + 0.0654x12

+0.0621x22 + 0.0586x32 + 0.0602x62 + 0.195x33 + 0.185x53

+0.09521x14 + 0.0975x34≤ 16.373

1.2x11 + 0.9x31 + x41 + 1.1x51 + 0.95x71

−β1(0.005x11 + 0.005x31 + 0.02x41 + 0.02x51 + 0.02x71)
−α1(0.02x11 + 0.02x31 + 0.01x41 + 0.02x51 + 0.01x71)
≥ 60 + β1 + 3(1−α1)

1.25x12 + 0.95x22 + 1.15x32 + 1.05x62

−β2(0.005x12 + 0.005x22 + 0.005x32 + 0.02x62)
−α2(0.02x12 + 0.01x22 + 0.02x32 + 0.05x62)≥ 30 + 0.5β2 + 2(1−α2)

1.3x33 + 1.1x53−β3(0.02x33 + 0.02x53)−α3(0.02x33 + 0.05x53)
≥ 10 + 0.5β3 +(1−α3)

1.12x14 + 1.24x34−β4(0.02x14 + 0.02x34)−α4(0.02x14 + 0.02x34)
≥ 70 + 2β4 + 3(1−α4)

2x12 + 2x22 + 2x32 + 2x62 + 3x33 + 3x53 = x11 + x31 + x41 + x51

+x71 + x14 + x34

xi j ≥ 0, i = 1,2, · · · ,7; j = 1,2,3,4.
(4.132)

We set the α1 = α2 = α3 = α4 = 0.8, β1 = β2 = β3 = β4 = 0.7. We employ the SA

algorithm to solve the above model and get the following results.

x11 = 53.33,x22 = 31.58,x33 = 5.93,x53 = 9.62,x34 = 56.45.

The values of the three objective functions are

F1 = 1.6373,F2 = 2.3739,F3 = 2.4816.

The purchasing of raw materials is a very important problem in today’s companies.

This application is not only valuable to the steel industry, but also valuable to other

production and manufacturing industries. Using a mathematical model to study pur-

chasing issues is very necessary, as it supplies helpful information to the purchasing

decision maker.

4.7 Another Way to Deal with Fu-Fu Multi-objective Decision
Making Model

The multi-objective model with Fu-Fu variables:
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⎧
⎨
⎩

min [ f1(x, ˜̃a1), f2(x, ˜̃a2), · · · , fm(x, ˜̃am)]

s.t.

{
gi(x,

˜̃bi)≤ 0, i = 1,2, · · · , p

hr(x, ˜̃cr) = 0,r = 1,2, · · · ,q,

(4.133)

where ˜̃ak(k = 1,2, · · · ,m),
˜̃
bi(i = 1,2, · · · , p) and ˜̃cr(r = 1,2, · · · ,q) are Fu-Fu

variables.

In order to study conveniently, we consider the multi-objective model with Fu-Fu

coefficients as follow:
{

max [ ˜̃c1x, ˜̃c2x, · · · , ˜̃cKx]

s.t. x ∈ X = {x ∈ Rn|˜̃Ax≤ b,x≥ 0},
(4.134)

where ˜̃ck = ( ˜̃ck1, ˜̃ck2, · · · , ˜̃ckn) (k = 1,2, · · · ,K), ˜̃A = ( ˜̃A1,
˜̃A2, · · · , ˜̃Am)T , Ãi =

(ãi1, ãi2, · · · , ãin) are Fu-Fu vectors, and b = (b1,b2, · · · ,bm)T .

Definition 4.9. Let β = (β1,β2, · · · ,βm)T be possibility level vector, βi ∈ [0,1],x ∈
ℜn, and if

pos( ˜̃Aix≤ bi, ˜̃ckx)≥ βi, i = 1,2, · · · ,m,k = 1,2, · · · ,K,

then x is called β -possible feasible solution to (4.134). All β -possible feasible solu-

tions are called β -possible feasible set Xβ of the model (4.134).

Consider the form of a multi-objective problem written as follows:

max
x∈X
{ ˜̃c1x, ˜̃c2x, · · · , ˜̃cKx, ˜̃Aix}, i = 1,2, · · · ,m. (4.135)

Definition 4.10. Let α be a possibility level, α ∈ [0,1], D ∈Rn and x0 ∈D. if do not

exist x ∈ D and k ∈ {1,2, · · · ,K}, x satisfy

pos( ˜̃c1x≥ ˜̃c1x0, · · · , ˜̃ck−1x≥ ˜̃ck−1x0, ˜̃ckx > ˜̃ckx0, ˜̃ck+1x≥ ˜̃ck+1x0, · · · , ˜̃cKx≥ ˜̃cKx0,

˜̃AK+ix≥ ˜̃AK+ix0)≥ α, i = 1,2, · · · ,m,k = 1,2, · · · ,K,

then x0 is called α-possible efficient solution of the model (4.135).

Definition 4.11. Let x0 ∈ X , if x0 is the

{
max [ ˜̃c1x, ˜̃c2x, · · · , ˜̃cKx, ˜̃Aix]
s.t. x ∈ Xβ ,

(4.136)

α-possible efficient solution of Problem (4.135), and then x0 is called (α,β )-satisfied

solution of the model (4.134).

In fact, to solve the model (4.134) and find its (α,β )-satisfied solution, we may con-

sider the multi-objective problem as follows:

{
max [( ˜̃c1)α x,( ˜̃c2)α x, · · · ,( ˜̃cK)α x,( ˜̃Ai)α x]
s.t. x ∈ Xβ ,

(4.137)
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where ( ˜̃ck)α ,( ˜̃Ai)α is α-level set of Fu-Fu variables ˜̃ck,
˜̃Ai ( i = 1,2, · · · ,m,k =

1,2, · · · ,K ) respectively.

Theorem 4.16. x0 is the (α,β )-satisfied solution of the model (4.134) if and only if

x0 is the efficient solution of the model (4.137).

Proof. Let x0 be the (α,β )-satisfied solution of the model (4.134). Following from

the Definition 4.11, x0 is the β -possible feasible solution and α-possible efficient so-

lution to the model (4.136). If x0 is not the efficient solution of the model (4.137), then

exist x1 ∈ Xβ and row-vector qk,qk ∈ (̃c̃k,
˜̃
AK+i)α(k = 1,2, · · · ,K, i = 1,2, · · · ,m ),

and k0 ∈ {1,2, · · · ,K,K + i}, we can derive that

qkx1 ≥ qkx0
,and qk0

x1 > qk0
x0

,when ∀k ∈ {1,2, · · · ,K,K + i}\{k0}.

Due to qk ∈ (̃c̃k,
˜̃AK+i)α , then min{π ˜̃c1

(q1),π ˜̃c2
(q2), · · · ,π ˜̃cK

(qK),π ˜̃AK+i
(qK+i)} ≥

α,(i = 1,2, · · · ,m ). Following from the Definition 4.9, basis on the expand prin-

ciple, we have

sup
(t1,t2,··· ,tK ,tK+i)∈Tk0

min{π ˜̃c1
(t1), · · · ,π ˜̃ck0−1

(tk0−1),π ˜̃ck0
(tk0

),

π ˜̃ck0+1
(tk0+1), · · · ,π ˜̃cK

(tK),π ˜̃AK+i
(tK+i)}

= pos( ˜̃c1x1 ≥ ˜̃c1x0, · · · , ˜̃ck0−1x1 ≥ ˜̃ck0−1x0, ˜̃ck0
x1 > ˜̃ck0

x0, ˜̃ck0+1x1 ≥ ˜̃ck0+1x0,

· · · , ˜̃cKx1 ≥ ˜̃cKx0,
˜̃AK+ix

1 ≥ ˜̃AK+ix
0)≥ α,

where

Tk0
= {(t1,t2, · · · , tK ,tK+i)|t1x1 ≥ t1x0, · · · ,tk0−1x1 ≥ tk0−1x0,tk0

x1 > tk0
x0,

tk0+1x1 ≥ tk0+1x0
, · · · ,tKx1 ≥ tKx0

,tK+ix
1 ≥ tK+ix

0},( i = 1,2, · · · ,m ).

It is contrary that x0 is not the efficient solution of the model (4.137).

Contrarily, let x0 is the efficient solution of the model (4.137) and is not the (α,β )-
satisfied solution of the model (4.134), then exist x2 ∈ Xβ and

s ∈ {1,2, · · · ,K,K + i}, i = ( 1,2, · · · ,m ),

Pos( ˜̃c1x2 ≥ ˜̃c1x0, · · · , ˜̃cs−1x2 ≥ ˜̃cs−1x0, ˜̃csx
2 > ˜̃csx

0, ˜̃cs+1x2 ≥ ˜̃cs+1x0,

· · · , ˜̃cKx2 ≥ ˜̃cKx0,
˜̃AK+ix

2 ≥ ˜̃AK+ix
0)≥ α.

Following from the Definition 4.9, basis on the expand principle, there is a

row-vector pk ∈ Rn(k = 1,2, · · · ,K, · · · ,K + i; i = 1,2, · · · ,m) which satisfy

p1x2 ≥ p1x0, · · · , ps−1x2 ≥ ps−1x0, psx
2 > psx

0, ps+1x2 ≥ ps+1x0, · · · , pKx2 ≥
pKx0

, pK+ix
2 ≥ pK+ix

0 and π
( ˜̃ck,

˜̃AK+i)
≥ α, pk ∈ ( ˜̃ck,

˜̃AK+i)α . It is contrary that x0

is the efficient solution of the model 4.137. The proof is thus completed. ⊓⊔

In the following, we introduce how to transform the Fu-Fu variables into their

corresponding fuzzy variables.
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Theorem 4.17. (Zhou and Xu [402]) Let
˜̃ξ be a triangular LR Fu-Fu variable, that is,

˜̃ξ = (aL, ρ̃ ,aR)LR with ρ̃ = (ρL,ρM,ρR), α1,α2 are any given possibility of the outer-

layer and the inner-layer fuzzy variables, respectively. Then the Fu-Fu variable can

be transformed into a (α1,α2)-level trapezoidal fuzzy variable.

Proof. Since ρ̃ = (ρL,ρM,ρR) is the inner-layer fuzzy variable, based on Definition

1.2, we get the α2-cut of ρ̃ as follows:

ρ̃β = [ρL
α2

,ρR
α2

] = {x ∈U |µρ̃(x)≥ α2},

where ρL
α2

= ρL + α2(ρM−ρL), ρR
α2

= ρR−α2(ρR−ρM), and U is the universe.

Note that ρ̃α2
are crisp sets. The parameter β ∈ (0,1) reflects the decision maker’s

degree of optimism. These intervals indicate the range at the possibility level α2. In

other words, ρL
α2

is the minimum value that ρ̃ achieves with probability α2, and ρR
α2

is the maximum value that ρ̃ achieves with probability α2.

So the α2-level Fu-Fu variable
˜̃ξ(α2) can be defined as

˜̃ξ(α2) = (aL, ρ̃α2
,aR). Let

X = {x j ∈U |µρ̃(x j) ≥ α2, j = 1,2, · · · ,n}, so the Fu-Fu variable
˜̃ξ(α2) can be also

denoted as
˜̃ξ(α2) = (aL,X ,aR) or denoted as follows:

˜̃ξ(α2) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ξ̃ 1
(α2) = (aL,x1,aR)

ξ̃ 2
(α2) = (aL,x2,aR)

...

ξ̃ n
(α2) = (aL,xn,aR),

where x1 ≤ x2 ≤ ·· · ≤ xn, X = [x1,xn] = [ρL
α2

,ρR
α2

] and ξ̃ j

(α2)
, j = 1,2, · · · ,n is a fuzzy

variable.

Thus the Fu-Fu variable
˜̃ξ(α2) is transformed into a group of fuzzy variables

ξ̃ j

(α2)
, j = 1,2, · · · ,n, see Figure 4.8. We have the following two special extreme points

as follows:

ξ̃ 1
(α2) = (aL,ρR

α2
,aR) = (aL,ρR−α2(ρR−ρM),aR),

ξ̃ n
(α2) = (aL,ρL

α2
,aR) = (aL,ρL + α2(ρM−ρL),aR).

Again, on the basis of the concept of α1-cut, denote the α1-cut of ξ̃(α2) as follows

ξ̃(α1,α2) = [ξ(α2)
L

α1
,ξ(α2)

R

α1
], where

ξ(α2)
L

α1
= maxξ j

(α2)α1

L
, and ξ j

(α2)α1

L
= min µ−1

ξ j
(α2)

(α1),

ξ(α2)
R

α1
= minξ j

(α2)α1

R
, and ξ j

(α2)α1

R
= max µ−1

ξ
j
(α2)

(α1).

Obviously, we have that
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ξ(α2)
L

α1
= maxmin µ−1

ξ̃ i
(α2)

(α1) = min µ−1

ξ̃ n
(α2)

(α1),

ξ(α2)
R

α1
= minmax µ−1

ξ̃ i
(α2)

(α1) = min µ−1

ξ̃ 1
(α2)

(α1).

By the convexity of a fuzzy variable, the bounds of these intervals are function of α1.

In order to make the method to be effective, the level α1 should satisfy that

0≤ α1 ≤
aR−aL

(aR−aL)+ (ρR
α2
−ρL

α2
)

=
aR−aL

aR−aL +(1−α2)(ρR−ρL)
.

Consequently, we can use its α1 cut to construct the corresponding membership func-

tion. Let ξ L
α1

= a,ξ R
α1

= a, then the Fu-Fu variable
˜̃ξ = (aL, ρ̃,aR) can be transformed

in the (α,α2)-level trapezoidal fuzzy variable ξ̃(α1,α2) as shown in Figure 3.10, that

is,
˜̃ξ → ξ̃(α1,α2) = (aL,a,a,aR),

where the parameter α and β both reflect the decision-maker’s degree of optimism.

And the values of a and a can be obtained by the follow equation (4.138).

a = aL + α{[ρR−α2(ρR−ρM)]−aL},
a = aR−α{aR− [ρL + α2(ρM−ρL)]}. (4.138)

Fig. 4.8 Transformation process from the Fu-Fu variable to the (α1,α2)-level fuzzy variable

The value of µξ̃(α1 ,α2)
(x) at x∈ [a,a] is considered subjectively to be 1 approximately,

and thus the membership function of the fuzzy variable ξ̃(α1,α2) is

µξ̃(α1 ,α2)
(x) =

⎧
⎪⎪⎨
⎪⎪⎩

0, if x < aL,x > aR
x−aL
s−aL

, if aL ≤ x < a

1, if a≤ x≤ a
aR−x
aR−a , if s≤ x < aR.

Thus Theorem 4.17 is proved. ⊓⊔
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Thus, base on the Theorem 4.17, the Fu-Fu multi-objective model (4.133) is trans-

formed into a fuzzy multi-objective model as follow:

⎧
⎨
⎩

min [ f1(x, Ã1), f2(x, Ã2), · · · , fk(x, Ãm)]

s.t.

{
gi(x, B̃i)≤ 0, i = 1,2, · · · , p

hr(x,C̃r) = 0,r = 1,2, · · · ,q,

(4.139)

where Ãk = ω̃˜̃ak(α1 ,α2)

(k = 1,2, · · · ,m), B̃i = ω̃˜̃
bi(α1 ,α2)

(i = 1,2, · · · , p) and

C̃r = ω̃˜̃cr(α1 ,α2)

(r = 1,2, · · · ,q) are fuzzy trapezoidal numbers.

Definition 4.12. Let a domain U ,
˜̃
ξ be a Fu-Fu variable defined on U . α1,α2 ∈ [0,1]

be any given possibility level of fuzzy variable. Basis on the Theorem 4.17. If µ1(x)≥
α1 and µ2(x) ≥ α2 the Fu-Fu variable

˜̃
ξ can be transformed a (α1,α2)-level trape-

zoidal fuzzy variable B̃. So Bα consist of all elements whose degrees of membership

in B̃ are greater than or equal to α ,

Bα = {x ∈U |µ
B̃
(x)≥ α,µ1(x)≥ α1,µ2(x)≥ α2},

then Bα is called the α-level sets of Fu-Fu variable
˜̃
ξ with µ1(x)≥α1 and µ2(x)≥α2,

viz.
˜̃
ξ α(α1,α2)

.

Theorem 4.18. Let ˜̃a,
˜̃
b,˜̃c be Fu-Fu variables on the possibility space (Θ ,P(Θ),Pos),

(α1,α2) are any given possibility level respectively, Lα(˜̃a,
˜̃
b,˜̃c) is the α-level set of

Fu-Fu numbers (˜̃a,
˜̃
b,˜̃c). For different (α1,α2)-level it is clear that

(a) if α1
1 ≤ α2

1 ,α1
2 ≥ α2

2 , then L1
α (˜̃a,

˜̃
b,˜̃c)⊆ L2

α(˜̃a,
˜̃
b,˜̃c),

(b) if α1
1 ≥ α2

1 ,α1
2 ≤ α2

2 , then L1
α (˜̃a,

˜̃
b,˜̃c)⊇ L2

α(˜̃a,
˜̃
b,˜̃c).

Proof. It follows from the theorem 4.17 that a Fu-Fu variable
˜̃
ξ can be transformed

into a fuzzy variable, viz.
˜̃
ξ ⇒ (aL,a,a,aR). Let

˜̃
ξ = (˜̃a,

˜̃
b,˜̃c) and depending on the

Definition 4.14, we can derive Lα(
˜̃
ξ )= {a|π

(˜̃a)(α1,α2)
(˜̃a)(α1,α2)≥α}= [ξ L

α ,ξ R
α ]. ξ L

α =

aL +(a−aL)α , a = ξ L
α2

, ξ L
α2

= aL +(ρR
α1
−aL)α2 and ρR

α1
= ρR− (ρR−ρ0)α1.

Finally we have ξ L
α = aL + {aL + [ρR − (ρR − ρ0)α1− aL]α2− aL}α . Then ξ L

α

is a decreasing function about α1 and a increasing function about α2. For any given

0≤ α1 ≤ 1,0≤ α2 ≤ 1, if α1
1 ≤ α2

1 and α1
2 ≥ α2

2 , we have ξ L1
α ≥ ξ L2

α .

Similarly, we may prove ξ R1
α ≤ ξ R2

α . Thus [ξ L1
α ,ξ R1

α ]⊆ [ξ L2
α ,ξ R2

α ], then we obtain

L1
α(
˜̃
ξ )⊆ L2

α(
˜̃
ξ ), viz. L1

α(˜̃a,
˜̃
b,˜̃c)⊆ L2

α(˜̃a,
˜̃
b,˜̃c). Similarly, we may prove that if α1

1 ≥
α2

1 ,α1
2 ≤ α2

2 , then L1
α(˜̃a,

˜̃
b,˜̃c)⊇ L2

α(˜̃a,
˜̃
b,˜̃c).

The proof is thus completed. ⊓⊔
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Definition 4.13. [57] Let Lα (ã, b̃, c̃) be the α-level set of fuzzy numbers ãi j, b̃i, c̃ki.

Then we have Lα(ã, b̃, c̃) = {(a,b,c)|πãi j
(ãi j) ≥ α,π

b̃i
(b̃i) ≥ α,πc̃k j

(c̃k j) ≥ α, i =

1,2, · · · ,m, j = 1,2, · · · ,n,k = 1,2, · · · ,K}.

Definition 4.14. Let Lα (˜̃a,
˜̃
b,˜̃c) be the α-level set of Fu-Fu numbers ˜̃ai j,

˜̃
bi,
˜̃cki.

(α1,α2) are any given possibility level of Fu-Fu numbers ˜̃ai j,
˜̃
bi,
˜̃cki respectively. Then

we have

Lα(˜̃a,
˜̃
b,˜̃c) = {(a,b,c)|π

(˜̃ai j)(α1 ,α2)
(˜̃ai j)(α1,α2) ≥ α,

π
(
˜̃
bi)(α1 ,α2)

(
˜̃
bi)(α1,α2) ≥ α,

π
(˜̃ck j)(α1,α2)

(̃c̃k j)(α1,α2) ≥ α, i = 1,2, · · · ,m, j = 1,2, · · · ,n,k = 1,2, · · · ,K}.

Thus, base on the Theorem 4.17, the Fu-Fu multi-objective model (4.133) is trans-

formed into a fuzzy multi-objective model as follow:

⎧
⎨
⎩

min [ f1(x, Ã1), f2(x, Ã2), · · · , fk(x, Ãm)]

s.t.

{
gi(x, B̃i)≤ 0, i = 1,2, · · · , p

hr(x,C̃r) = 0,r = 1,2, · · · ,q,

(4.140)

where Ãk = ω̃˜̃ak(α1 ,α2)

(k = 1,2, · · · ,m), B̃i = ω̃˜̃
bi(α1 ,α2)

(i = 1,2, · · · , p) and

C̃r = ω̃˜̃cr(α1 ,α2)

(r = 1,2, · · · ,q) are fuzzy trapezoidal numbers.

Solving procedure

In order to solve the above Fu-Fu multi-objective decision making models, we may

integrate Fu-Fu simulation, NN and (α,β )-satisfied method[107] to produce a hybrid

intelligent algorithm for solving Fu-Fu programming models. And then analyze the

sensitivity of the Fu-Fu model about possibility level α . By transforming Fu-Fu

variables into trapezoidal fuzzy numbers, we can derive the fuzzy model (4.140).

The step-by-step procedure of the hybrid intelligent algorithm can be described as

follows:

Step 1. Generate training input-output coefficients for uncertain functions α1 and α2

by the fuzzy simulation.

U1 : α1 −→ φ(x),

U2 : α2 −→ ϕ(x).

Step 2. Train a neural network to approximate the uncertain functions according to

the generated training input-output coefficients α1 and α2.

Step 3. On the basis of the above discussions about Theorem 4.17, the Fu-Fu variables

are transformed into fuzzy variables which are similar trapezoidal fuzzy number. We
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consider the above multi-objective model (4.133) where ˜̃ak(k = 1,2, · · · ,m),
˜̃
bi(i =

1,2, · · · , p) and ˜̃cr(r = 1,2, · · · ,q) are Fu-Fu variables. For each α1 and α2 are given

by decision-maker. we can derive that

˜̃ak = ω̃˜̃ak(α1 ,α2)

= (aL,a,a,aR) (k = 1,2, · · · ,m),

˜̃
bi = ω̃˜̃

bi(α1 ,α2)

= (bL,b,b,bR) (i = 1,2, · · · , p),

˜̃cr = ω̃˜̃cr(α1 ,α2)

= (cL,c,c,cR) (r = 1,2, · · · ,q),

which can be specified by the ω̃˜̃
ξ

= (aL,a,a,aR) with membership function:

µω̃˜̃
ξ

(t) =

⎧
⎪⎪⎨
⎪⎪⎩

t−aL
a−aL

, if aL ≤ t ≤ a

1, if a≤ t ≤ a
aR−t
aR−a

, if a≤ t ≤ aR

0, if t < aL,t > aR.

(4.141)

And then, the Fu-Fu multi-objective model (4.133) is transformed into a fuzzy multi-

objective model (4.140), viz.

⎧
⎨
⎩

min { f1(x, Ã1), f2(x, Ã2), · · · , fk(x, Ãm)}

s.t.

{
gi(x, B̃i)≤ 0, i = 1,2, · · · , p

hr(x,C̃r) = 0,r = 1,2, · · · ,q,

(4.142)

where Ãk = ω̃˜̃ak(α1 ,α2)

(k = 1,2, · · · ,m), B̃i = ω̃˜̃
bi(α1 ,α2)

(i = 1,2, · · · , p) and

C̃r = ω̃˜̃cr(α1 ,α2)

(r = 1,2, · · · ,q) are fuzzy trapezoidal numbers.

Step 4. Give the α-cut of ω̃ and be expressed by the following interval

ω̃α = [aL +(a−aL)α,a,a,aR− (aR−a)α].

Step 5. Based on the (α,β )-satisfied approach. Let (Qi)
β
α be a solution of the fuzzy

non-linear programming model in equation (4.142), where α ∈ [0,1] denotes the level

of possibility at which all trapezoidal fuzzy numbers Ãk, B̃i,C̃r and β ∈ [0,1] denotes

the grade of compromise to which the solution satisfies all of the fuzzy objectives

and constraints keeping the coefficients at a feasible level α . Hence, based on the

Theorem 4.16, equation (4.142) is reduced to

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

maxmin {α,β}

s.t.

⎧
⎪⎪⎨
⎪⎪⎩

µ
f̃k
(x,α)≥ β (k = 1,2, · · · ,m)

µg̃i
(x,α) ≥ β (i = 1,2, · · · , p)

hr(x,C̃r) = 0 (r = 1,2, · · · ,q)
0≤ α,β ≤ 1.

(4.143)
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Step 6. Give the concrete forms of the linear membership functions

µ
f̃k
(x,α),µg̃i

(x,α) for objectives and constraints, respectively, as follows:

µ
f̃k
(x,α) =

⎧
⎪⎨
⎪⎩

0, if fk(x,α) < f0k
−Δ fk

1 +
fk(x,α)− f0k

Δ fk
, if f0k

−Δ fk ≤ fk(x,α) ≤ f0k

1, if fk(x,α) > f0k
,

(4.144)

µg̃i
(x,α) =

⎧
⎪⎨
⎪⎩

0, if gi(x,α) > g0i
+ Δgi

1− gi(x,α)−g0i
Δgi

, if g0i
≤ gi(x,α)≤ g0i

+ Δgi

1, if gi(x,α) < g0i
.

(4.145)

Here, Δ fk is the maximum and Δgi is the minimum acceptable violation of the aspi-

ration levels f0k
,g0i

respectively.

Step 7. Depending on the Definition 4.12 and the Theorem 4.18, equation (4.143) can

be calculated as ⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

maxmin {α,β}

s.t.

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 +
fk(x,α)− f0k

Δ fk
≥ β

1− gi(x,α)−g0i
Δgi

≥ β

hr(x,C̃r) = 0

0≤ α,β ≤ 1,

where (k = 1,2, · · · ,m),(i = 1,2, · · · , p) and (r = 1,2, · · · ,q)
Step 8. Calculate the above certain programming model (4.146) and solve the (α,β )-
satisfied solution x∗. Finally, we analyze the sensitivity of Fu-Fu model about the

coefficients α1,α2, respectively. By comparing the ratio Δh, viz.

Δh =

α1−α2
α1

x∗1−x∗2
x∗1

=
Δα1x∗1
Δx∗α1

.

We can derive the sensitivity of Fu-Fu model about α1,α2.

If the decision maker is not satisfied with the current values or results, ask the

decision maker to update reference membership levels or the (α1,α2)values by taking

account of the current results and the values of membership functions, then repeat the

first to eighth steps.



Chapter 5

Fuzzy Rough Multiple Objective Decision Making

The concept of a rough set was first raised by Pawlak [340]. Then Liu [226] proposed

the fuzzy rough (Fu-Ro) variable by combining the fuzzy variable and rough variable.

Xu and Zhao [343] discussed the properties of Fu-Ro variable, and introduced the Fu-

Ro multi-objective decision making models and the ways to deal with them, some

crisp equivalent models are given and relative algorithms are proposed to solve the

problems.

In this chapter, we first introduce the Fu-Ro variable, then the arithmetic and the

properties of the Fu-Ro variable. Based on the expected value operator and chance

operator of the Fu-Ro variable, three parts are presented respectively:

(1) Fuzzy rough expected value decision-making model(Fu-Ro EVM).

(2) Fuzzy rough chance constraint decision-making model(Fu-Ro CCM).

(3) Fuzzy rough dependent chance decision-making model(Fu-Ro DCM).

Finally, an application to reuse an integrated logistics network design problem

under fuzzy rough environment is presented to show the effectiveness of the above

three models.

5.1 Integrated Logistics Problem under Fuzzy Rough
Environment

In recent years, the logistics system has been gaining importance due to the increasing

market globalization competitiveness. At first, most of the scholars just researched

forward logistics, and there are many papers on this subject. Then scholars realized

a growth of interest in transporting items that could be recycled or reused, and the

possible commercial returns and saw that reverse logistics is an important problem

requiring careful consideration.

Reverse logistics was first mentioned in the early 1990s. Two papers about re-

verse logistics from the American GLM (Council of Logistics Management) mark

the start of research into reverse logistics [81, 82]. The first paper represents the re-

search results of Stock (1992), who proposed the relevance among the fields of reverse

J. Xu and X. Zhou: Fuzzy-Like Multiple Objective Decision Making, STUDFUZZ 263, pp. 295–374.
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logistics, business and social. A year later, Kopicki and other scholars researched the

actual operation and rules of reverse logistics, including the factors of re-use and recy-

cling. Kostecki (1998) discussed reverse logistics as the way to extend the life cycle

of products. The same year, Stock reported in detail how to set up a reverse logis-

tics and implementation plan. Roger (1999) and Tibber-Lembke collected extensive

data on reverse logistics business operation examples, especially in the United States,

where the two researchers wrote a lot of logistics optimization management articles.

After that, many problems regarding reverse logistics were discussed. Some papers

under assumed a crisp environment, like [83, 84, 85, 86, 87], but many uncertainties

were found to exist in a reverse logistics system, so the research of uncertain reverse

logistics began, as in [88, 89].

In more recent years, forward and reverse logistics were integrated to build the inte-

grated logistics system. In 1997, Fleischmann and Jacqueline first did some research

on integrated logistics[90], wherein they integrated forward logistics and reverse lo-

gistics to construct a close-loop integrated logistics system. Hyun Jeung Ko[91] pre-

sented a mixed integer nonlinear programming model from the perspective of the third

party for the design of a dynamic integrated distribution network to account for the

integrated goals of simultaneously optimizing the forward and return network. There

was very little literature about integrated logistics. The integrated logistics system is

often applied in practice, but the theoretical study of integrated logistics has lagged

behind. It is therefore necessary for scholars to research and develop this field.

The integrated logistics system is composed of the forward logistics system and

the reverse logistics system. Forward logistics systems are usually the same, they

all deliver the new product from the first producers to the last customers. However,

there are different reverse logistics networks structures according to different kinds

of reverse goods, such as reuse, remanufacturing, recycling and commercial return.

If the purpose of the reverse logistics system is for reusing items, then the integrated

logistics can be called a reuse integrated logistics system.

In every day life, re-usable packages and containers such as glass bottles, plastic

bottles, cans, boxes and pallets are widely used in the food and chemical industries.

As more and more people realize the importance of environmental protection, more

and more producers want to reuse the recycled items to reduce resource waste. So in

this paper, we concentrate on the reuse reverse logistics system.

The process of the reuse integrated logistics network is that the re-usable packages

are gathered by collectors and processed by recyclers to then be sent to the producers

to reuse. New products which use the recycled packages are produced and again get

into the forward logistics and are finally consumed by the customers. After that, the

same process recurs. Thus, the whole integrated logistics system operates in cycles

like this and forms a closed loop system.

There are three main establishments in an integrated logistics network:

(1) Collectors: have the responsibility of collecting reusable packages that are scat-

tered around.
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(2) Recyclers or expanded distributors: receive the items from collectors, and their

work concentrates on detecting, cleaning and processing the used items to such a state

that they are undifferentiated from new items, and then these items will be delivered

to enterprises again.

(3) Disposal places: process the waste items that can no longer be used. The integrated

logistics system also can be described as in the following Figure. 5.1.

Fig. 5.1 Integrated logistics system

The integrated logistics network also includes the forward logistics network and

the reverse logistics network. In forward logistics, there are producers, distributors

and main wholesalers, and in reuse reverse logistics network there are collectors, re-

cyclers/ expanded distributors, final disposal places and producers, and the associated

transport routes.

Unfortunately, the integrated logistics network design problem is subject to many

sources of uncertainty. In a practical decision-making process, we often face a hy-

brid uncertain environment. To deal with this twofold uncertainty, the concept of the

fuzzy rough variable was proposed to depict the phenomena in which fuzziness and

roughness appear simultaneously.

In this next section, we consider the reuse integrated logistics system, items which

can be re-used after simple treatment, mainly package containers and auxiliary ma-

terials such as trays. In the integrated logistics network problem, it is hard to de-

scribe these problem parameters as known variables. For instance, since people usu-

ally drink more beer in summer and autumn, and less beer in winter and spring, that

is, the demand of beer is seasonal. When we forecast the demand in a period, we may

use the fuzzy variable to estimate, for example, we give a middle value µ , two spread

α and β . Further more, the middle value µ is usually not a certain number, because

when we design the network of the network of a reuse integrated logistics network,

the period we consider will definitely cover the whole season, so the it is appropriate

to use a rough variable to describe the middle value µ . So until now, in this situation,

we can use fuzzy rough variables to describe the demand of the beer. Because the

amount of the used packages is relevant to the consumption of the product, so it is
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natural to consider that the quantity of used packages is also a fuzzy rough variable,

just as is that of the demand for the products.

The following Figure. 5.2 describes this kind of reuse integrated logistics network.

Fig. 5.2 Conceptual model of reuse integrated logistics network

However, there is no attempt to research another mixed environment, where fuzzi-

ness and roughness both appear simultaneously. For some seasonal items (Ice cream,

Christmas trees, woolen materials), the demand may vary year to year. According

to the historical data or abundance of information or the experiences of experts, we

can know the demand in one year is a certain fuzzy variable. However, the middle

value of the fuzzy variable is vague and varies year to year. The result is that decision

makers are unable to achieve a better decision. Hence, we have to consider it as an

uncertain variable. A rough variable can be applied to depict it well if the average

sold amount is clear according to the statistical data of every year. Thus, the demand

of some seasonal items can be described as a fuzzy rough variable to help decision

makers develop better strategies.

5.2 Fu-Ro Variable

Let’s introduce the basic knowledge of Fu-Ro variables, which include the definition,

the chance measure, the expected value, and the optimistic and pessimistic value.

5.2.1 Definition of Fu-Ro Variable

Before the introduction of the concept of fuzzy rough variables, let’s recall some

definitions and properties of rough sets.

The rough sets theory introduced by Pawlak [340, 377] has often proved to be an

excellent mathematical tool for the analysis of a vague description of objects (called
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actions in decision problems). The adjective vague, referring to the quality of infor-

mation, means inconsistency or ambiguity which follows from information granula-

tion. The rough sets philosophy is based on the assumption that with every object of

the universe there is associated a certain amount of information (data, knowledge),

expressed by means of some attributes used for object description. Objects having

the same description are indiscernible (similar) with respect to the available infor-

mation. The indiscernibility relation thus generated constitutes a mathematical basis

for the rough sets theory; it induces a partition of the universe into blocks of indis-

cernible objects, called elementary sets, that can be used to build knowledge about a

real or abstract world. The use of the indiscernibility relation results in information

granulation. The rough sets theory, dealing with the representation and processing of

vague information, presents a series of intersections and complements with respect

to many other theories and mathematical techniques handling imperfect information,

like probability theory, evidence theory of DempsterShafer, fuzzy sets theory, dis-

criminant analysis and mereology [373, 374, 375, 376, 341, 378, 379, 380].

For algorithmic reasons, the information regarding the objects is supplied in the

form of a data table, whose separate rows refer to distinct objects (actions), and whose

columns refer to di.erent attributes considered. Each cell of this table indicates an

evaluation (quantitative or qualitative) of the object placed in that row by means of

the attribute in the corresponding column.

Formally, a data table is the 4-tuple S = (U,Q,V, f ), where U is a finite set of

objects (universe), Q = q1,q2, · · · ,qnis a finite set of attributes, Vq is the domain of

the attribute,V =
⋃

q∈QVq and f : U×Q→V is a total function such that f (x,q)∈Vq

for each x ∈U,q ∈Q, called information function.

Therefore, each object x of U is described by a vector (string) DesQ(x) =
( f (x,q1), f (x,q2), · · · , f (x,qm), called description of x in terms of the evaluations of

the attributes from Q; it represents the available information about x.

To every (non-empty) subset of attributes P is associated an indiscernibility rela-

tion on U , denoted by IP:

Ip = {(x,y)| ∈U×U : f (x,q) = f (y,q)∀q¶}.

If (x,y) ∈ Ip, it is said that the objects x and y are P-indiscernible. Clearly, the indis-

cernibility relation thus de.ned is an equivalence relation (reflexive, symmetric and

transitive). The family of all the equivalence classes of the relation IP is denoted by

U |IP and the equivalence class containing an element x∈U by Ip(x). The equivalence

classes of the relation IP are called P-elementary sets. If P = Q, the Q-elementary sets

are called atoms.

Let S be a data table, X a non-empty subset of U and Φ 
= P ⊆ Q. The P-lower

approximation and the P-upper approximation of X in S are defined, respectively, by:

P(X) = {x ∈U : Ip(x)⊆ X},

P̄(X) =
⋃

x∈X

IP(X).
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The elements of P(X) are all and only those objects x∈U which belong to the equiv-

alence classes generated by the indiscernibility relation IP, contained in X ; the el-

ements of P̄(X) are all and only those objects x ∈ U which belong to the equiva-

lence classes generated by the indiscernibility relation IP, containing at least one ob-

ject x belonging to X . In other words, PX is the largest union of the P-elementary

sets included in X , while P̄(X) is the smallest union of the P-elementary sets

containing X .

(1) The P-boundary of X in S, denoted by BnP(X), is BnP(X) = P̄(X)−P(X).
(2) The following relation holds: P(X)⊆ X ⊆ P̄(X).
Therefore, if an object xbelongs to P(X) , it is certainly also an element of X , while

if x belongs to P̄(X), it may belong to the set X . BnP(X) constitutes the “doubtful

region” of X : nothing can be said with certainty about the belonging of its elements

to the set X .

The following relation, called complementarity property, is satisfied: P(X) =U−
P̄(U−X).

If the P-boundary of X is empty, BnP(X) = Φ , then the set X is an ordinary (exact)

set with respect to P, that is, it may be expressed as the union of a certain number of

P-elementary sets; otherwise, if BnP(X) 
= Φ , the set X is an approximate (rough)

set with respect to P and may be characterized by means of the approximations P(X)
and P̄(X). The family of all the sets X ⊆ U having the same P-lower and P-upper

approximations is called a rough set.

The following ratio defines an accuracy of the approximation of X , X 
= Φ by

means of the attributes from P:

αP(X) =
|P(X)|
|P̄(X)| ,

where |Y | indicates the cardinality of a (finite) set Y. Obviously, 0 ≤ αP(X) ≤ 1; if

αP(X) = 1, X is an ordinary (exact) set with respect to P; if αP(X) = 1, X is a rough

(vague) set with respect to P.

Another ratio defines a quality of the approximation of X by means of the attributes

from P:

γP(X) =
|P(X)|
|X | .

The quality γP(X) represents the relative frequency of the objects correctly classified

by means of the attributes from P. Moreover, 0≤αP(X)≤ γP(X)≤ 1, and γP(X) = 0

iff αP(X) = 0, while γP(X) = 1 iff αP(X) = 1.

The definition of approximations of a subset X ⊆ U can be extended to a

classi.cation, i.e. a partition Y = {Y1,Y2, · · · ,Yn} of U . Subsets Yi, i = 1,2, · · · ,n are

disjunctive classes of Y . By P-lower (P-upper) approximation of Y in S, we mean

sets P(Y ) = {P(Y1),P(Y2), · · · ,P(Yn)} and P̄(Y ) = {P̄(Y1), P̄(Y2), · · · , P̄(Yn)}, re-

spectively. The coefficient

γP(X) =

|
n

∑
1=1

P(X)|

|U |
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is called quality of the approximation of classication Y by set of attributes P, or in

short, quality of classification. It expresses the ratio of all P-correctly classified ob-

jects to all objects in the system.

The main preoccupation of the rough sets theory is approximation of subsets or

partitions of U, representing a knowledge about U , with other sets or partitions built

up using available information about U . From the viewpoint of a particular object

x ∈U , it may be interesting, however, to use the available information to assess the

degree of its membership to a subset X of U . The subset X can be identified with

a concept of knowledge to be approximated. Using the rough set approach one can

calculate the membership function µP
X (x) (rough membership function) as

µP
X (x) =

X ∩ Ip(x)

Ip(x)
.

The value of µP
X (x) may be interpreted analogously to conditional probability and

may be understood as the degree of certainty (credibility) to which x belongs to X .

Observe that the value of the membership function is calculated from the available

data, and not subjectively assumed, as it is the case of membership functions of fuzzy

sets.

Between the rough membership function and the approximations of X the follow-

ing relationships hold (Pawlak [340]):

P(X) = {x ∈U : µP
X (x) = 1}, P̄(X) = {x ∈U : µP

X (x) > 0},

BnP(X) = {x ∈U : 0 < µP
X (x) < 1},P(U−X) = {x ∈U : µP

X (x) = 0}.
In the rough sets theory there is, therefore, a close link between vagueness (granu-

larity) connected with rough approximation of sets and uncertainty connected with

rough membership of objects to sets.

Trust theory [145] is the branch of mathematics that studies the behavior of rough

events. It is the foundation for rough programming as the probability theory for

stochastic programming as well as the possibility theory for fuzzy programming. Liu

[145] also combined trust measure with probability measure and possibility measure

to describe the two-fold uncertain events, such as random rough variable, fuzzy rough

variable, rough random variable and rough fuzzy variable. In this section, we will de-

fine the fuzzy rough variable from another perspective, i.e. the rough approximation.

After the rough set was initialized by Pawlak [340], it has been applied to many

fields to deal with the vague description of objectives. He asserted that any vague

information can be approximated by other crisp information. In this section, we will

recall these fundamental concepts and introduce its application to the statistical field

and programming problem.

Definition 5.1. (Slowinski and Vanderpooten [381]) Let U be a universe, and X a set

representing a concept. Then its lower approximation is defined by

X = {x ∈U |R−1(x)⊂ X}, (5.1)
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and the upper approximation is defined by

X =
⋃

x∈X

R(x), (5.2)

where R is the similarity relationship on U . Obviously, we have X ⊆ X ⊆ X .

Definition 5.2. (Pawlak [340]) The collection of all sets having the same lower and

upper approximations is called a rough set, denoted by (X ,X). Its boundary is defined

as follows,

BnR(X) = X −X. (5.3)

In order to know the degree of the upper and lower approximation describing the set

X , the concept of the accuracy of approximation is proposed by Greco et al. [382],

αR(X) =
|X |
|X | , (5.4)

where X 
= Φ , |X | expresses the cardinal number of the set X when X is a finite set,

otherwise it expresses the Lebesgue measure.

Another ratio defines a quality of the approximation of X by means of the attributes

from R according to Greco et al. [382],

γR(X) =
|X |
|X | . (5.5)

The quality γR(X) represents the relative frequency of the objects correctly classified

by means of the attributes from R.

Remark 5.1. For any set A we can represents its frequency of the objects correctly

approximated by (X ,X) as follows,

βR(A) =
|X ∩A|
|X ∩A| .

If X ⊆ A⊆ X , namely, A has the upper approximation X and the lower approximation

X , we have that βR(A) degenerates to the quality γR(A) of the approximation.

As we know, the quality γR(A) of the approximation describes the frequency of A,

and when γR(A) = 1, we only have |A|= |X |, namely, the set A is well approximated

by the lower approximation. If we we want to make A be a definable set, there must

be γR(A) = 1 and αR(X) = 1 both holds. Then we could make use the following

definition to combine them into together.

Definition 5.3. Let (X ,X) be a rough set under the similarity relationship R and A

be any set satisfying X ⊆ A ⊆ X . Then we define the approximation function as
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follows expressing the relative frequency of the objects of A correctly classified into

(X ,X),

ApprR(A) = 1−η(1− |A||X | ), (5.6)

where η is a predetermined by the decision maker’s preference.

From Definition 5.3, we know that
|A|
|X | which keeps accord with γR(A) describes the

relative frequency of the objects correctly classified by R from the view of the up-

per approximation X . Obviously, ApprR(A) is a number between 0 and 1, and is in-

creasing along with the increase of |A|. The extreme case ApprR(A) = 1 means that

|A|= |X |, namely, A is completely described by X .

Lemma 5.1. Let (X ,X) be a rough set under the similarity relationship R and A be

any set satisfying X ⊆ A⊆ X. Then we have

ApprR(A) =
ηαR(A)+ (1−η)γR(A)

γR(A)
.

Proof. Since X ⊆A⊆X , it means that A has the lower approximation X and the upper

approximation X , and it follows from Greco et al. [382] that

αR(A) =
|X |
|X | , γR(A) =

|X |
|A| .

Thus,
|A|
|X | =

αR(A)

γR(A)
.

It follows that

ApprR(A) = 1−η(1− |A|
|X |)

= 1−η(1− αR(A)
γR(A) )

= ηαR(A)+(1−η)γR(A)
γR(A) .

This completes the proof. ⊓⊔
Lemma 5.2. Let (X ,X) be a rough set on the finite universe under the equivalence

relationship R, A be any set satisfying X ⊆ A⊆ X and η ∈ (0,1). Then ApprR(A) = 1

holds if and only if X = A = X.

Proof. If X = A = X holds, it is obvious that ApprR(A) = 1 according to Definition

5.4. Let’s proved the necessity of the condition.

If ApprR(A) = 1 holds for any A satisfying X ⊆ A ⊆ X , it follows from Lemma

5.1 that, for 0 < η ≤ 1,

ηαR(A)+ (1−η)γR(A)

γR(A)
= 1⇒ αR(A) = γR(A)⇒ |X |= |A|.
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Since A ⊆ X and the universe is finite, we have that A = X . Because A is any set

satisfying X ⊆ A⊆ X , let A = X , then we have X = X . It follows from the property

proposed by Pawlak [340] that X = X = X . Thus, we have X = A = X . ⊓⊔

Lemma 5.1 shows that the approximation function Appr inherits the accuracy and

quality of the approximation, and extends it to the relationship between any set A

and the rough set (X ,X). Lemma 5.2 shows that the approximation function is com-

plete and well describes the property in traditional rough set theory, and describe the

property only by one index.

Lemma 5.3. Let (X ,X) be a rough set on the infinite universe under the similarity

relationship R, A be any set satisfying X ⊆ A ⊆ X and η ∈ (0,1). If ApprR(A) = 1

holds, then there exist the similarity relationship R∗ such that |X |= |A|= |X |, where

| · | expresses the Lebesgue measure.

Proof. According to Lemma 5.2, we know that |A|= |X |must hold. Let X = X/∂X

under the similarity relationship R∗, where ∂X is composed by all the elements such

that |∂X |= 0, namely, the measure of ∂X is 0. Next, we will prove that X/∂X ⊆ A.

(1) If |X |= 0, then X/∂X = Φ . Thus, |X |= |A|= |X |= 0.

(2) If |X | 
= 0, we only need to prove that for any x0 ∈ X/∂X , x0 ∈ A. In fact, when

x0 ∈ X/∂X , then x0 ∈ int(X) holds, where int(X) is the internal part of X . It follows

that there exists r > 0 such that N(x0
,r)⊂ int(X) and |N(x0

,r)|> 0. There exist four

cases describing the relationship between A and N(x0,r).

Case 1. A∩N(x0,r) = Φ (see Figure 5.3) . Since N(x0,r)⊂ int(X)⊂ X and A⊆ X ,

we have that

|X | ≥ |N(x0
,r)∪A|= |N(x0

,r)|+ |A|.
This conflicts with |A|= |X |.

A N(        )
0x r

Fig. 5.3 Apartment

Case 2. A∩N(x0,r) = P, where the set P includes countable points (see Figure 5.4).

Obviously, we have |P|= 0, thus |N(x0,r)/P|= |N(x0,r)|> 0. Then we have

|X | ≥ |N(x0
,r)∪A|= |N(x0

,r)/P|+ |A|.

This also conflicts with |A|= |X |.
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A N(        )
0x r

Fig. 5.4 Tangent

Case 3. A∩N(x0,r) = P′, where P′ ⊂ N(x0,r)/{x0}. As Figure 5.5 shows, we can

divide it into three parts, namely, (N(x0,r)/P) = P′∪{x0}∪T , where P′, T and {x0}
don’t have the same element with each other. Then |T |> 0, it follows that

|X | ≥ |N(x0
,r)∪A|= |T |+ |A|.

This also conflicts with |A|= |X |.

A

N(        )
0x r

. 0x

Fig. 5.5 Intersection

Case 4. A⊃ (N(x0
,r)/x0) (see Figure 5.6). This means that for any x0∈ int(A), x0 
∈A.

It follows that A∩ int(A) = Φ , then we have

|X | ≥ |int(A)∪A|= |int(A)|+ |A|.

This also conflicts with |A| = |X |. In above, we can get X/∂X ⊆ A. Thus, there ex-

ists the lower approximation X = X/∂X such that X ⊆ A ⊆ X under the similarity

relationship R∗. ⊓⊔

A

),( 0 rxN

0x

Fig. 5.6 Inclusion



306 5 Fuzzy Rough Multiple Objective Decision Making

Remark 5.2. In fact, we can extend Definition 5.3 to more general set. when X ⊆ A⊆
X , we have the following equivalent formula,

ApprR(A) = 1−η(1− |A|
|X | )

=
|A∩X |
|X |

(
1−η

(
1− |A∩X |

|X |

))

= |A∩X |
|X | + η

(
|A∩X |
|X | −

|A∩X|
|X |

)
.

Furthermore, we get the definition of the approximation function for any set A.

Definition 5.4. Let (X ,X) be the rough set generated by X under the similarity rela-

tionship R, for any set A, the approximation function of event A by (X ,X) is defined

as follows

ApprR(A) =
|A∩X |
|X | + η

( |A∩X |
|X | − |A∩X|

|X |

)
,

where η is a given parameter predetermined by the decision maker’s preference.

From Definition 5.4, we know that ApprR(A) expresses the relationship between the

set A and the set (X ,X) generated by X , that is, the frequency of A correctly classified

into (X ,X) according to the similarity relationship R. It has the internal link with the

accuracy αR of the approximation and the quality γR of the approximation in some

extent. αR expresses the degree of the upper and lower approximation describing the

set X . γR(X) represents the relative frequency of the objects correctly classified by

means of the attributes from R. Then ApprR combines both of them together and

considers the level which A has the attributes correctly classified by (X ,X) for any

A.

Lemma 5.4. Let (X ,X) be a rough set, for any set A, we have the following

conclusion,

ApprR =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, if A⊇ X

1−η(1− αR(A)
γR(A)

), if X ⊂ A⊂ X
1−η(1−αR(A))

γR(A)
, if A⊆ X

0, if A∩X = Φ
|A∩X|
|X |

(
βR(A)
αR(A) + η(1− βR(A)

αR(A))
)

, otherwise.

(5.7)

Proof. (1) If A⊇ X , we have that A∩X = X and A∩X = X . Then ApprR = 1.

(2) If X ⊆ A⊆ X , we have that A∩X = X and A∩X = A. It follows that ApprR =

1−η(1− |A|
|X | ).

(3) If A ⊂ X , we have that A∩X = A and A∩ X = A. It follows that ApprR =
1−η(1−αR(A))

γR(A) .

(4) If A∩X = Φ , we have that A∩X = Φ and A∩X = Φ . It follows that ApprR = 0.
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(5) For the others, we have

ApprR(A) = |A∩X|
|X | + η

(
|A∩X|
|X | −

|A∩X |
|X |

)

= |A∩X|
|X |

(
|A∩X |
|X | ·

|X |
|A∩X | + η

(
1− |A∩X |

|X | ·
|X |
|A∩X |

))

= |A∩X|
|X |

(
βR(A)
αR(A) + η(1− βR(A)

αR(A))
)

.

This completes the proof. ⊓⊔

For the different purposes, we can respectively discuss the extreme case as follows.

Remark 5.3. When η = 1, we have ApprR(A) = |A⋂X |
|X | . It means that the decision

maker only consider the level that A includes the frequency of A correctly classified

into X according to the similarity relationship R.

Remark 5.4. When η = 0, we have ApprR(A) = |A⋂X |
|X | . It means that the decision

maker only consider the level that A includes the frequency of A correctly classified

into X according to the similarity relationship R.

In fact, the rough set theory is increasingly developed by many scholars and applied

to many fields, for example, data mining, decision reduction, system analysis and so

on. Figure 5.7 shows that the rough approximation. The curves including the internal

points is X . The two thick curves including their internal points are the upper and

lower approximation.

Fig. 5.7 Rough approximation

Let’s focus on the continuous set in the one dimension real space R. There are still

some vague sets which cannot be directly fixed and need to be described by the rough

approximation. For example, set R be the universe, a similarity relation≃ is defined as

a≃ b if and only if |a−b| ≤ 10. We have that for the set [20,50], its lower approxima-

tion [20,50] = [30,40] and its upper approximation [20,50] = [10,60]. Then the up-

per and lower approximation of the set [20,50] make up a rough set ([30,40],[10,60])

which is the collection of all sets having the same lower approximation [30,40] and

upper approximation [10,60].
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Definition 5.5. A fuzzy rough variable ξ is a fuzzy variable with uncertain parameter

ρ ∈ X , where X is approximated by (X ,X) according to the similarity relation R,

namely, X ⊆ X ⊆ X .

For convenience, we usually denote ρ ⊢ (X ,X)R expressing that ρ is in some set

A which is approximated by (X ,X) according to the similarity relation R, namely,

X ⊆ A⊆ X .

Example 5.1. Let’s consider the LR fuzzy variable ξ with the following membership

function,

µξ (x) =

⎧
⎨
⎩

L
(ρ−x

α

)
, if ρ−α < x < ρ

1, if x = ρ
R
( x−ρ

β

)
, if ρ < x j < ρ + β ,

(5.8)

where ρ ⊢ ([1,2], [0,3])R. Then ξ is a fuzzy rough variable.

5.2.2 Expected Value Operator of Fu-Ro Variables

Definition 5.6. Let ξ be a Fu-Ro variable with the uncertain parameter λ , where λ ⊢
(X ,X)R, then its expected value is defined by

E[ξ ] =
∫ ∞

0
Appr{E[ξ (λ )]≥ r}dr−

∫ 0

−∞
Appr{E[ξ (λ )]≤ r}dr (5.9)

Lemma 5.5 ([220]). Assume that ξ and η are the introduction of variables with

finite expected values. Then for any real numbers a and b, we have

E[aξ + bη ] = aE[ξ ]+ bE[η ]. (5.10)

Proposition 5.1. Let ξ be a Fu-Ro variable with the membership function

µξ (x) =

{
1, if x ∈ [ā, b̄]
0, otherwise,

where ā, b̄ are rough variables defined on (Λ ,Θ ,A ,π), and ā = ([m2,m3], [m1,m4]),
0 < m1 ≤ m2 < m3 ≤ m4, b̄ = ([n2,n3], [n1,n4]),0 < n1 ≤ n2 < n3 ≤ n4.

Then the expected value of ξ is

E[ξ ] =
1

8

4

∑
i=1

(mi + ni).

Proof. Since ξ (λ ) = [ā, b̄], and according to proposition 2.1, we have

ECr[ξ (λ )] =
1

2
(ā+ b̄).
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By the rough arithmetic operators, it follows that,

ā+ b̄

2
=

1

2
{([m2,m3], [m1,m4])+ ([n2,n3], [n1,n4])}

=

(
[
m2 + n2

2
,

m3 + n3

2
], [

m1 + n1

2
,

m4 + n4

2
]

)
. (5.11)

From the definition of trust measure, we have

Appr{ξ ≥ r}=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, if m4+n4
2 ≤ r

m4+n4
2 −r

m4+n4−m1−n1
, if m3+n3

2 ≤ r ≤ m4+n4
2

1
2(

m4+n4
2 −r

m4+n4−m1−n1
+

n3+m3
2 −r

m3+n3−m2−n2
), if m2+n2

2 ≤ r ≤ m3+n3
2

m4+n4
2 −r

m4+n4−m1−n1
+ 1

2 , if m1+n1
2 ≤ r ≤ m2+n2

2

1, if r ≤ m1+n1
2 .

It follows that,

E[ξ ] =
∫+∞

0 Appr{ ā+b̄
2 ≥ r}dr− ∫ 0

−∞ Appr{ ā+b̄
2 ≤ r}dr

=
∫ m1+n1

2
0 1dr +

∫ m2+n2
2

m1+n1
2

(
m4+n4

2 −r

m4+n4−m1−n1
+ 1

2 )dr

+
∫ m3+n3

2
m2+n2

2

1
2 (

m4+n4
2 −r

m4+t4−m1−n1
+

m3+n3
2 −r

m3+n3−m2−n2
)dr +

∫ m4+n4
2

m3+n3
2

m4+n4
2 −r

m4+n4−m1−n1
dr

= 1
8

4

∑
i=1

(mi + ni).

The proof is complete. ⊓⊔

Proposition 5.2. Let ξ be a trapezoidal Fu-Ro variable ξ = (r̄1, r̄2, r̄3, r̄4), where

r̄1, r̄2, r̄3, r̄4 are rough variables defined on (Λ ,Θ ,A ,π), and

r̄1 = ([m2,m3], [m1,m4]),0 < m1 ≤ m2 < m3 ≤ m4,

r̄2 = ([n2,n3], [n1,n4]),0 < n1 ≤ n2 < n3 ≤ n4,

r̄3 = ([s2,s3], [s1,s4]),0 < s1 ≤ s2 < s3 ≤ s4,

r̄4 = ([t2,t3], [t1,t4]),0 < t1 ≤ t2 < t3 ≤ t4.

Then the expected value of ξ is

E[ξ ] =
1

16

4

∑
i=1

(mi + ni + si + ti).

Proof. Since ξ (λ ) = [r̄1, r̄2, r̄3, r̄4], and according to proposition 2.2, we have

ECr[ξ (λ )] =
1

4
(r̄1 + r̄2 + r̄3 + r̄4).
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By the rough arithmetic operators, it follows that,

r̄1+r̄2+r̄3+r̄4
4

= 1
4{([m2,m3], [m1,m4])+ ([n2,n3], [n1,n4])+ ([s2,s3], [s1,s4])+ ([t2,t3], [t1,t4])}

=
(
[m2+n2+s2+t2

4 ,
m3+n3+s3+t3

4 ], [m1+n1+s1+t1
4 ,

m4+n4+s4+t4
4 ]

)
.

From the definition of trust measure, we have

Appr{ξ ≥ r}=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if m4+n4+s4+t4
4 ≤ r

m4+n4+s4+t4
2 −2r

m4+n4+s4+t4−(m1+n1+s1+t1) , if m3+n3+s3+t3
4 ≤ r ≤ m4+n4+s4+t4

4

1
2 (

m4+n4+s4+t4
2 −2r

m4+n4+s4+t4−(m1+n1+s1+t1)

+
m3+n3+s3+t3

2 −2r

m3+n3+s3+t3−(m2+n2+s2+t2) ) ,

if m2+n2+s2+t2
4 ≤ r ≤ m3+n3+s3+t3

4
m4+n4+s4+t4

2 −2r

m4+n4+s4+t4−(m1+n1+s1+t1)
+ 1

2 , if m1+n1+s1+t1
4 ≤ r ≤ m2+n2+s2+t2

4

1, if r ≤ m1+n1+s1+t1
4 .

It follows that,

E[ξ ] =
∫ +∞

0 Appr{ r̄1+r̄2+r̄3+r̄4
4 ≥ r}dr− ∫ 0

−∞ Appr{ r̄1+r̄2+r̄3+r̄4
4 ≤ r}dr

=
∫ m1+n1+s1+t1

4
0 1dr +

∫ m2+n2+s2+t2
4

m1+n1+s1+t1
2

(
m4+n4+s4+t4

2 −2r

m4+n4+s4+t4−(m1+n1+s1+t1) + 1
2 )dr

+
∫ m3+n3+s3+t3

2
m2+n2+s2+t2

2

1
2(

m4+n4+s4+t4
2 −2r

m4+t4+s4+t4−(m1+n1+s1+t1) +
m3+n3+s3+t3

2 −2r

m3+n3+s3+t3−(m2+n2+s2+t2) )dr

+
∫ m4+n4+s4+t4

2
m3+n3+s3+t3

2

m4+n4+s4+t4
2 −2r

m4+n4+s4+t4−(m1+n1+s1+t1)dr

= 1
16

4

∑
i=1

(mi + ni + si + ti).

The proof is complete. ⊓⊔

Proposition 5.3. Let ξ be a LR Fu-Ro variable with the membership function of fuzzy

variable ξ has the following form

µξ (x) =

⎧
⎨
⎩

L( z̄−x
α ), z̄−α < x≤ z̄

1, x = z̄

R( x−z̄
β ), z̄ < x < z̄+ β ,

(5.12)

where z̄ is a rough variable and z̄ = ([z2,z3], [z1,z4]),α < z1 < z2 < z3 < z4. And here

we just consider the situation when the reference function L(x) = R(x) = 1− x, then

this LR fuzzy rough variable is triangular type, and the left and right spread α,β > 0.
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Then the expected value of ξ is

E[ξ ] =
1

4
(z1 + z2 + z3 + z4 + α + β ).

Proof. Since ξ (λ ) = (z̄,α,β )LR is triangular LR Fu-Ro variable, which means the

reference functions L(x) = R(x) = 1− x, according to remark 2.11, we have

ECr[ξ (λ )] = z̄+
1

4
(α + β ).

Then we have
E[ξ ] = E[z̄+ 1

4 (α + β )]
= E[z̄]+ E[ 1

4(α + β )].

It follows that
E[ξ ] = 1

4 (z1 + z2 + z3 + z4)+ 1
4 (α + β )

= z1+z2+z3+z4+α+β
4 .

The proof is complete. ⊓⊔

5.2.3 Chance Operator of Fu-Ro Variables

To begin with, we give the three types of primitive chance of Fu-Ro event as follows.

Definition 5.7. Let ξ = (ξ1,ξ2, · · ·ξn) be a Fu-Ro vector defined on (Λ ,Δ ,A ,π),
and f : Rn → R is Borel measurable function. Then the primitive chance of a Fu-Ro

event characterized by f (ξ )≤ 0 is a function from (0, 1] to [0, 1], defined as

(1). Appr−Pos chance,

Ch{ f (ξ )≤ 0}(α) = sup
α∈[0,1]

{β |Appr{λ ∈Λ |Pos
{

f (ξ (λ ))≤ 0
}
≥ β} ≥ α}.

(5.13)

(2). Appr−Nec Chance,

Ch{ f (ξ )≤ 0}(α) = sup
α∈[0,1]

{β |Appr{λ ∈Λ |Nec
{

f (ξ (λ ))≤ 0
}
≥ β} ≥ α}.

(5.14)

(3). Appr−Cr Chance,

Ch{ f (ξ )≤ 0}(α) = sup
α∈[0,1]

{β |Appr{λ ∈Λ |Cr
{

f (ξ (λ ))≤ 0
}
≥ β} ≥ α}.

(5.15)

Remark 5.5. The primitive chance of a Fu-Ro event characterized by f (ξ ) ≤ 0 de-

fined as (5.13), (5.14), (5.15) have the equivalent forms respectively.

Ch{ f (ξ )≤ 0}(α) = sup
Appr{A}≥α

inf
λ∈A

Pos{ f (ξ (λ ))≤ 0}, (5.16)

Ch{ f (ξ )≤ 0}(α) = sup
Appr{A}≥α

inf
λ∈A

Nec{ f (ξ (λ ))≤ 0}, (5.17)
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Ch{ f (ξ )≤ 0}(α) = sup
Appr{A}≥α

inf
λ∈A

Cr{ f (ξ (λ ))≤ 0}. (5.18)

Lemma 5.6. For any confidence levels α,β .

(1). Appr-Pos Chance Ch{ f (ξ )≤ 0}(α)≥ β holds if and only if

Appr{λ ∈Λ |Pos{ f (ξ (λ ))≤ 0} ≥ β} ≥ α.

(2). Appr-Nec Chance Ch{ f (ξ )≤ 0}(α)≥ β holds if and only if

Appr{λ ∈Λ |Nec{ f (ξ (λ ))≤ 0} ≥ β} ≥ α.

(3). Appr-Cr Chance Ch{ f (ξ )≤ 0}(α)≥ β holds if and only if

Appr{λ ∈Λ |Cr{ f (ξ (λ )) ≤ 0} ≥ β} ≥ α.

5.3 Fu-Ro EVM

For the multi-objective model (5.19) with Fu-Ro parameters, we cannot deal with it

directly, we should use some tools to make it have mathematical meaning, we then

can solve it. In this section, we employ the expected value operator to transform the

fuzzy rough model into Fu-Ro EVM. Consider the following multi-objective decision

making model (5.19) with fuzzy rough coefficients:

⎧
⎨
⎩

max { f1(x,ξ ), f2(x,ξ ), · · · , fm(x,ξ )}
s.t.

{
gr(x,ξ )≤ 0, r = 1,2, · · · , p

x ∈ X ,

(5.19)

where x is a n-dimensional decision vector, ξ = (ξ1,ξ2, · · · ,ξn) is a Fu-Ro vector,

fi(x,ξ ) are objective functions, i = 1,2, · · · ,m. Because of the existence of Fu-Ro

vector ξ , problem (5.19) is not well-defined. That is, the meaning of maximizing

fi(x,ξ ), i = 1,2, · · · ,m is not clear and constraints gr(x,ξ )≤ 0,r = 1,2, · · · , p do not

define a deterministic feasible set. In the following, we use Fu-Ro EVM to deal with

the meaningless model.

5.3.1 General Model for Fu-Ro EVM

Based on the definition of the expected value of fuzzy rough events fi and gr, the

general model for Fu-Ro EVM is proposed as follows,

⎧
⎨
⎩

max E[ f1(x,ξ ), f2(x,ξ ), · · · , fm(x,ξ )]

s.t.

{
E[gr(x,ξ )]≤ 0, r = 1,2, · · · , p

x ∈ X ,

(5.20)

where x is n-dimensional decision vector and ξ is n-dimensional fuzzy rough variable.

Definition 5.8. If x∗ is an efficient solution of problem (5.20), we call it as a fuzzy

rough expected efficient solution.
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Clearly, the problem (5.20) is a multi-objective with crisp parameters. Then we can

convert it into a single-objective programming by traditional method of weight sum.

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

max
m

∑
i=1

wiE[ fi(x,ξ )]

s.t.

⎧
⎨
⎩

E[gr(x,ξ )]≤ 0, r = 1,2, · · · , p

x ∈ X

w1 + w2 + · · ·+ wm = 1.

(5.21)

Theorem 5.1. Problem (5.21) is equivalent to problem (5.20), i.e., the efficient so-

lution of problem (5.20) is the optimal solution of problem (5.21) and the optimal

solution of problem (5.21) is the efficient solution of problem (5.20).

Proof. The proof is the same as the proof of Theorem 3.1.

Theorem 5.2. Let ξ = (ξ1,ξ2, · · · ,ξn) be a fuzzy rough vector on the rough space

(Λ ,Δ ,A ,π), and fi and gr : A n →A be convex continuous functions with respect

to x, i = 1,2, · · · ,m;r = 1,2, · · · , p. Then the expected value programming problem

(5.21) is a convex programming.

Proof. It is similar to the proof of Theorem 3.2, and thus omit. ⊓⊔

We can also formulate a fuzzy rough decision system as an expected value goal pro-

gramming (EVGP) model according to the priority structure and target levels set by

the decision-maker:

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min
l

∑
j=1

Pj

m

∑
i=1

(ui jd
+
i + vi jd

−
i )

s.t.

⎧
⎪⎪⎨
⎪⎪⎩

E[ fi(x,ξ )]+ d−i −d+
i = bi, i = 1,2, · · · ,m

E[gr(x,ξ )]≤ 0, r = 1,2, · · · , p

d−i ,d+
i ≥ 0, i = 1,2, · · · ,m

x ∈ X ,

(5.22)

where Pj is the preemptive priority factor which expresses the relative importance

of various goals, Pj >> Pj+1, for all j, ui j is the weighting factor corresponding to

positive deviation for goal i with priority j assigned, vi j is the weighting factor cor-

responding to negative deviation for goal i with priority j assigned, d+
i is the positive

deviation from the target of goal i, defined as

d+
i = [E[ fi(x,ξ )]−bi]∨0,

d−i is the negative deviation from the target of goal i, defined as

d−i = [bi−E[ fi(x,ξ )]]∨0,

fi is a function in goal constraints, g j is a function in real constraints, bi is the tar-

get value according to goal i, l is the number of priorities, m is the number of goal

constraints, and p is the number of real constraints.
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5.3.2 Linear Fu-Ro EVM and Minimax Point Method

For the regular fuzzy rough linear programming problem, we can use the expected

value operator to handle it,

⎧
⎪⎪⎨
⎪⎪⎩

max E[
n

∑
j=1

˜̄ci jx j, i = 1,2, · · · ,m]

s.t.

{
E[ ˜̄ar jx j]≥ E[ ˜̄br], r = 1,2, . . . , p

x j ≥ 0, j = 1,2, . . . ,n,

(5.23)

where ˜̄c, ˜̄a,
˜̄b are fuzzy rough variables.

5.3.2.1 Crisp Equivalent Model

In order to solve the model (5.23), we must compute the crisp expected value of ξ .

However, as we know, this process is usually a hard work at most of time. In this

section, we will consider a special cases and present their results.

⎧
⎨
⎩

max [E[ ˜̄cT
1 x],E[ ˜̄cT

2 x], · · · ,E[ ˜̄cT
mx]]

s.t.

{
E[ ˜̄aT

r x]≤ E[ ˜̄br],r = 1,2, · · · , p

x≥ 0,

(5.24)

where ˜̄ci = ( ˜̄ci1, ˜̄ci1, · · · , ˜̄cin)
T , ˜̄ar = ( ˜̄ar1, ˜̄ar1, · · · , ˜̄arn)

T are fuzzy rough vectors, ˜̄br are

fuzzy rough variables, i = 1,2, · · · ,m,r = 1,2, · · · , p. If these fuzzy vectors, as well

as rough variables have special forms, we have the following theorem.

Theorem 5.3. If fuzzy rough variables ˜̄ci j are defined as

˜̄ci j(λ ) = (c̄i j1, c̄i j2, c̄i j3, c̄i j4), with c̄i jt ⊢ ([ci jt1,ci jt2], [ci jt3,ci jt4])

for i = 1,2, · · · ,m, j = 1,2, · · · ,n,t = 1,2,3,4, then

E[ ˜̄cT
1 x],E[ ˜̄cT

2 x], · · · ,E[ ˜̄cT
mx]

is equivalent to

1

16

n

∑
j=1

4

∑
t=1

4

∑
k=1

c1 jtkx j,
1

16

n

∑
j=1

4

∑
t=1

4

∑
k=1

c2 jtkx j, · · · ,
1

16

n

∑
j=1

4

∑
t=1

4

∑
k=1

cm jtkx j.

Proof. First, we verify that E[ ˜̄ci j] = 1
16

4

∑
t=1

4

∑
k=1

ci jtk, i = 1,2, · · · ,m. In fact ∀ λ ∈Λ ,

E[ ˜̄ci j(λ )] = 1
4 (c̄i j1 + c̄i j2 + c̄i j3 + c̄i j4)

= ([ 1
4

4

∑
t=1

ci jt1,
1
4

4

∑
t=1

ci jt2], [
1
4

4

∑
t=1

ci jt3,
1
4

4

∑
t=1

ci jt4]).
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Suppose A = 1
4

4

∑
t=1

ci jt1,B = 1
4

4

∑
t=1

ci jt2,C = 1
4

4

∑
t=1

ci jt3,D =
4

∑
t=1

ci jt4, then we have

Appr{E[ ˜̄ci j(λ )]≥ r}=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, i f D≤ r
D−r

2(D−C)
, i f B≤ r ≤ D

1
2 ( D−r

D−C + B−r
B−A), i f A≤ r ≤ B

1
2 ( D−r

D−C
+ 1), i f C ≤ r ≤ A

1, i f r ≤C

and

Appr{E[ ˜̄ci j(λ )]≤ r}=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, i f r ≤C
r−C

2(D−C) , i f C ≤ r ≤ A
1
2 ( r−C

D−C
+ r−A

B−A
), i f A≤ r ≤ B

1
2 ( r−C

D−C
+ 1), i f B≤ r ≤ D

1, i f D≤ r.

There are five cases when we compute the expected value of ξ . Let’s discuss every

case in turn.

Case 1: 0≤C ≤ A≤ B≤ D.

E[ ˜̄ci j] =
∫ +∞

0 Appr{λ ∈Λ |E[ ˜̄ci j(λ )]≥ r}dr− ∫ 0
−∞ Appr{λ ∈Λ |E[ ˜̄ci j]≤ r}dr

=
∫C

0 1dr +
∫ A

C
1
2 ( D−r

D−C
+ 1)dr

+
∫ B

A
1
2( D−r

D−C + B−r
B−A)dr +

∫ D
B

D−r
2(D−C)dr

= 1
4 (A + B +C+ D).

Case 2: C ≤ 0≤ A≤ B≤ D.

E[ ˜̄ci j] =
∫ +∞

0 Appr{λ ∈Λ |E[ ˜̄ci j(λ )]≥ r}dr− ∫ 0
−∞ Appr{λ ∈Λ |E[ ˜̄ci j]≤ r}dr

=
∫ A

0
1
2( D−r

D−C + 1)dr +
∫ B

A
1
2 ( D−r

D−C + B−r
B−A)dr

+
∫ D

B
D−r

2(D−C)dr− ∫ 0
C

r−C
2(D−C)dr

= 1
4 (A + B +C+ D).

Case 3: C ≤ A≤ 0≤ B≤ D.

E[ ˜̄ci j] =
∫ +∞

0 Appr{λ ∈Λ |E[ ˜̄ci j(λ )]≥ r}dr− ∫ 0
−∞ Appr{λ ∈Λ |E[ ˜̄ci j(λ )]≤ r}dr

=
∫ B

0
1
2( D−r

D−C + B−r
B−A)dr +

∫ D
B

D−r
2(D−C)dr

−∫ A
C

r−C
2(D−C)dr− ∫ 0

A
1
2 ( r−C

D−C
+ r−A

B−A
)dr

= 1
4 (A + B +C+ D).

Case 4: C ≤ A≤ B≤ 0≤ D.

E[ ˜̄ci j] =
∫ +∞

0 Appr{λ ∈Λ |E[ ˜̄ci j(λ )]≥ r}dr− ∫ 0
−∞ Appr{λ ∈Λ |E[ ˜̄ci j(λ )]≤ r}dr

=
∫ D

0
D−r

2(D−C)dr− ∫ A
C

r−C
2(D−C)dr

−∫ B
A

1
2 ( r−C

D−C
+ r−A

B−A
)dr− ∫ 0

B
1
2 ( r−C

D−C
+ 1)dr

= 1
4 (A + B +C+ D).
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Case 5: C ≤ A≤ B≤ D≤ 0.

E[ ˜̄ci j] =
∫ +∞

0 Appr{λ ∈Λ |E[ ˜̄ci j(λ )]≥ r}dr−
∫ 0
−∞ Appr{λ ∈Λ |E[ ˜̄ci j(λ )]≤ r}dr

=−∫ A
C

r−C
2(D−C)

dr− ∫ B
A

1
2 ( r−C

D−C
+ r−A

B−A
)dr

−
∫ D

B
1
2 ( r−C

D−C + 1)−dr
∫ 0

D 1dr

= 1
4 (A + B +C+ D).

So we always have E[ ˜̄ci j] =
1
16

4

∑
t=1

4

∑
k=1

ci jtk, i = 1,2, · · · ,m.

It follows from the nonnegativity of x j( j = 1,2, · · · ,n) and linearity of expected

value operator that

E[ ˜̄cT
i x] = E[

n

∑
j=1

˜̄ci jx j]

=
n

∑
j=1

E[ ˜̄ci j]x j

= 1
16

n

∑
j=1

4

∑
t=1

4

∑
k=1

cr jtkx j.

Thus the theorem is proved. ⊓⊔

Theorem 5.4. If fuzzy rough variables ˜̄ar j,
˜̄br are defined as follows,

˜̄ar j(λ ) = (ār j1, c̄r j2, ār j3, ār j4), with ār jt ⊢ ([ar jt1,ar jt2], [ar jt3,ar jt4]),
˜̄br(λ ) = (b̄r1, b̄r2, b̄r3, c̄r4), with b̄rt ⊢ ([brt1,brt2], [brt3,brt4]),

for r = 1,2, · · · , p, j = 1,2, · · · ,n,t = 1,2,3,4, then

E[ ˜̄aT
r x]≤ E[ ˜̄br],r = 1,2, · · · , p

is equivalent to

n

∑
j=1

4

∑
t=1

4

∑
k=1

ar jtkx j ≤
4

∑
t=1

4

∑
k=1

brtk,r = 1,2, · · · , p.

Proof. Similar to Theorem 5.4, we have

E[ ˜̄aT
i x] =

1

16

n

∑
j=1

4

∑
t=1

4

∑
k=1

ar jtkx j

and

E[ ˜̄br] =
1

16

4

∑
t=1

4

∑
k=1

brtk,

for i = 1,2, · · · ,m,r = 1,2, · · · , p.
Thus the theorem holds. ⊓⊔
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According to Theorems 5.3-5.4, Model (5.24) with the Fu-Ro coefficients described

as Theorem 5.3 and Theorem 5.4 is equivalent to the conventional multi-objective

linear programming

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max

[
1
16

n

∑
j=1

4

∑
t=1

4

∑
k=1

c1 jtkx j,
1
16

n

∑
j=1

4

∑
t=1

4

∑
k=1

c2 jtkx j, · · · , 1
16

n

∑
j=1

4

∑
t=1

4

∑
k=1

cm jtkx j

]

s.t.

⎧
⎨
⎩

n

∑
j=1

4

∑
t=1

4

∑
k=1

ar jtkx j ≤
4

∑
t=1

4

∑
k=1

brtk,r = 1,2, · · · , p

x j ≥ 0, j = 1,2, · · · ,n.
(5.25)

5.3.2.2 Minimax Point Method

In this section, we use the minimax point method proposed in [92] to deal with the

crisp multiobjective problem (5.26).

{
max [H1(x),H2(x), · · · ,Hm(x)]
s.t. x ∈ X .

(5.26)

To maximize the objectives, the minimax point method firstly constructing an eval-

uation function by seeking the minimal objective value after respectively com-

puting all objective functions, that is, u(H(x)) = min1≤i≤m Hi(x), where H(x) =
(H1(x),H2(x), · · · ,Hm(x))T . Then the objective function of problem (5.26) is came

down to solve the maximization problem as follows,

max
x∈X ′

u(H(x)) = max
x∈X ′

min
1≤i≤m

Hi(x). (5.27)

Sometimes, decision makers need considering the relative importance of various

goals, then the weight can be combined into the evaluation function as follows,

max
x∈X ′

u(H(x)) = max
x∈X ′

min
1≤i≤m

{ωiHi(x)}, (5.28)

where the weight ∑m
i=1 ωi = 1(ωi > 0) and is predetermined by decision makers.

Theorem 5.5. The optimal solution x∗ of problem (5.28) is the weak efficient solution

of problem (5.26).

Proof. Assume that x∗ ∈ X ′ is the optimal solution of the problem (5.28). If there

exists an x such that Hi(x)≥ Hi(x
∗)(i = 1,2, · · · ,m), we have

min
1≤i≤m

{ωiHi(x
∗)} ≤ ωiHi(x

∗)≤ ωiHi(x), 0 < ωi < 1.

Denote δ = min1≤i≤m{ωiHi(x)}, then δ ≥ min1≤i≤m{ωiHi(x
∗)}. This means that

x∗ isn’t the optimal solution of the problem (5.28). This conflict with the condition.
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Thus, there doesn’t exist x∈X ′ such that Hi(x)≥Hi(x
∗), namely, x∗ is a weak efficient

solution of the problem (5.26). ⊓⊔

By introducing an auxiliary variable, the minimax problem (5.28) can be converted

into a single objective problem. Let

λ = min
1≤i≤m

{ωiHi(x)},

then the problem (5.28) is converted into

⎧
⎨
⎩

maxλ

s.t.

{
ωiHi(x)≥ λ , i = 1,2, · · · ,m
x ∈ X ′.

(5.29)

Theorem 5.6. The problem (5.28) is equivalent to the problem (5.29).

Proof. Assume that x∗ ∈X ′ is the optimal solution of the problem (5.28) and let λ ∗ =
min1≤i≤m{ωiHi(x

∗)}, then it is apparent that Hi(x
∗)≥ λ ∗. This means that (x∗,λ ∗) is

a feasible solution of the problem (5.29). Assume that (x,λ ) is any feasible solution

of the problem (5.29). Since x∗ is the optimal solution of the problem (5.28), wa have

λ ∗ = min
1≤i≤m

{ωiHi(x
∗)} ≥ min

1≤i≤m
{ωiHi(x)} ≥ λ ,

namely, (x∗,λ ∗) is the optimal solution of the problem (5.29).

On the contrary, assume that (x∗,λ ∗) is an optimal solution of the problem (5.29).

Then ωiHi(x
∗)≥ λ ∗ holds for any i, this means min1≤i≤m{ωiHi(x

∗)}≥ λ ∗. It follows

that for any any feasible x ∈ X ′,

min
1≤i≤m

{ωiHi(x)} = λ ≤ λ ∗ ≤ min
1≤i≤m

{ωiHi(x
∗)}

holds, namely, x∗ is the optimal solution of the problem (5.28). ⊓⊔

In a word, the minimax point method can be summarized as follows:

Step 1. Compute the weight for each objective function by solving the two problems,

maxx∈X ′ Hi(x) and ωi = Hi(x
∗)/∑m

i=1 Hi(x
∗).

Step 2. Construct the auxiliary problem as follows,

⎧
⎨
⎩

max λ

s.t.

{
ωiHi(x)≥ λ , i = 1,2, · · · ,m
x ∈ X ′.

Step 3. Solve the above problem to obtain the optimal solution.
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5.3.2.3 Numerical Example

Example 5.2. Let us consider the following problem.

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max 0.375x1 + 0.625x2 + 0.875x3

max E[c1ξ1x1 + c2ξ2x2 + c3ξ3x3]

s.t.

⎧
⎪⎪⎨
⎪⎪⎩

x1 + x2 + x3 ≤ 250

x1 + x2 + x3 ≥ 200

ξ4x1 + ξ5x2 + ξ6x3 ≤ 600

x1 ≥ 20,x2 ≥ 20,x3 ≥ 20.

(5.30)

The following is the relevant data, ξ is fuzzy rough variable,

(c1,c2,c3) = (1.2,0.8,1.5),
ξ1 = (ρ1−2,ρ1−1,ρ1 + 1,ρ1 + 2), with ρ1 ⊢ ([0,1], [0,3]),
ξ2 = (ρ2−2,ρ2−1,ρ2 + 1,ρ2 + 2), with ρ2 ⊢ ([1,2], [0,3]),
ξ3 = (ρ3−2,ρ3−1,ρ3 + 1,ρ3 + 2), with ρ3 ⊢ ([2,3], [0,3]).
ξ4 = (ρ4−2,ρ4−1,ρ4 + 1,ρ4 + 2), with ρ1 ⊢ ([2,5], [0,9]),
ξ5 = (ρ5−2,ρ5−1,ρ5 + 1,ρ5 + 2), with ρ2 ⊢ ([10,20], [4,30]),
ξ6 = (ρ6−2,ρ6−1,ρ6 + 1,ρ6 + 2), with ρ3 ⊢ ([6,10], [4,12]).

It follows from Proposition 5.4 that problem (5.30) is equivalent to

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max F1(x) = 0.375x1 + 0.625x2 + 0.875x3

max F2(x) = 0.3x1 + 0.3x2 + 0.75x3

s.t.

⎧
⎪⎪⎨
⎪⎪⎩

x1 + x2 + x3 ≤ 250

x1 + x2 + x3 ≥ 200

x1 + 2x2 + 4x3 ≤ 600

x1 ≥ 20,x2 ≥ 20,x3 ≥ 20.

(5.31)

According to the minimax point method, first we compute the weight by solving the

two single objective models,

w1 = F∗1 /(F∗1 + F∗2 ) = 166.25/(166.25 + 124.5)= 0.572,

w2 = F∗2 /(F∗1 + F∗2 ) = 0.428.

Then according to Equation (5.29) we construct the following mode (5.32),

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max λ

s.t.

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w1 ∗ (0.375x1 + 0.625x2 + 0.875x3)+ w2 ∗ (0.3x1 + 0.3x2 + 0.75x3)≥ λ
x1 + x2 + x3 ≤ 250

x1 + x2 + x3 ≥ 200

x1 + 2x2 + 4x3 ≤ 600

x1 ≥ 20,x2 ≥ 20,x3 ≥ 20.
(5.32)

After solving the model (5.32), we can get a efficient solution as follows,

(x1,x2,x3) = (120,20,110).
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5.3.3 Non-linear Fu-Ro EVM and Fu-Ro Simulation-Based TS

For the non-linear Fu-Ro EVM, we use the Fu-Ro simulation 1 based TS to solve.

5.3.3.1 Fu-Ro Simulation 1 for Expected Valie

First, we introduce the procedure to simulate the expected value of a Fu-Ro variable.

Assume that ξ is an n-dimensional Fu-Ro vector defined on the rough space

(Λ ,Δ ,A ,π), and f : Rn → Rm is a measurable function. In order to calculate the

expected value E[ f (ξ )], we sample λ 1,λ 2, · · · ,λ N from Δ and λ 1,λ 2, · · · ,λ N from

Λ . For each λ n and λ n, n = 1,2, · · · ,N, ξ (λ n) and ξ (λ n) are both fuzzy variables,

and f (ξ (λ n)) and F(ξ (λ n)) are both fuzzy variables. Then we can apply the fuzzy

simulation 1 to get their expected values E[ f (ξ (λ n))] and E[ f (ξ (λ n))].
Since E[ f (ξ )] is essentially the expected value of rough variable E[ f (ξ (λ ))], and

the following (5.33) will be used to get the expected value of the rough variables.

E[ f (ξ )] =
∑N

n=1(ηE[ f (ξ (λ n))]+ (1−η)E[ f (ξ (λn))])

2N
. (5.33)

So we may combine rough simulation and fuzzy simulation to produce a fuzzy rough

simulation as follows.

Step 1. Set L = 0.

Step 2. Generate λ from Δ according to the measure.

Step 3. Generate λ from Λ according to the measure π .

Step 4. L← L+ E[ f (ξ (λ))]+ E[ f (ξ (λ ))].
Step 5. Repeat the second to fourth steps N times.

Step 6. Return L/(2N).

Example 5.3. We employ the Fu-Ro simulation 1 to calculate the expected value of

ξ1ξ2, where ξ1 and ξ2 are Fu-Ro variables defined as

ξ1 = (ρ1,ρ1 + 1,ρ1 + 2), with ρ1 = ([1,2], [0,3]),
ξ2 = (ρ2,ρ2 + 1,ρ2 + 2), with ρ1 = ([2,3], [1,4]).

After a run of Fu-Ro simulation 1 with 5000 cycles, and we get E[ξ1ξ2] = 8.93.

5.3.3.2 TS

In the following, let’s introduce the Tabu search algorithm (TS) algorithm.

Local search employs the idea that a given solution x may be improved by making

small changes. Those solutions obtained by modifying solution x are called neigh-

bors of x. The local search algorithm starts with some initial solution and moves

from neighbor to neighbor as long as possible while decreasing the objective func-

tion value. The main problem with this strategy is to escape from local minima where

the search cannot find any further neighborhood solution that decreases the objec-

tive function value. Different strategies have been proposed to solve this problem.

One of the most efficient strategies is tabu search. Tabu search allows the search to
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explore solutions that do not decrease the objective function value only in those cases

where these solutions are not forbidden. This is usually obtained by keeping track of

the last solutions in term of the action used to transform one solution to the next.

When an action is performed it is considered tabu for the next T iterations, where

T is the tabu status length. A solution is forbidden if it is obtained by applying a

tabu action to the current solution. The Tabu Search metaheuristic has been defined

by Fred Glover [385]. The basic ideas of TS have also been sketched by P. Hansen

[386]. After that, TS has achieved widespread success in solving practical optimiza-

tion problems in different domains(such as resource management, process design,

logistics and telecommunications).

A tabu list is a set of solutions determined by historical information from the last

t iterations of the algorithm, where t is fixed or is a variable that depends on the state

of the search, or a particular problem. At each iteration, given the current solution x

and its corresponding neighborhood N(x), the procedure moves to the solution in the

neighborhood N(x) that most improves the objective function. However, moves that

lead to solutions on the tabu list are forbidden, or are tabu . If there are no improving

moves, TS chooses the move which least changes the objective function value. The

tabu list avoids returning to the local optimum from which the procedure has recently

escaped. A basic element of tabu search is the aspiration criterion, which determines

when a move is admissible despite being on the tabu list. One termination criterion

for the tabu procedure is a limit in the number of consecutive moves for which no

improvement occurs. Given an objective function f (x) over a feasible domain D, a

generic tabu search for finding an approximation of the global minimum of f (x) is

given in Figure 5.8.

We introduce the detailed steps on how to apply a special TS algorithm–Enhanced

Continuous Tabu Search(ECTS) proposed by R. Chelouah and P. Siarry [323] based

on fuzzy rough simulation to solve a multi-objective expected value model with fuzzy

rough parameters.

Setting of parameters. Two of the parameters must be set before any execution of

ECTS:

(1) initialization,

(2) control parameters.

For each of these categories, some parameter values must be chosen by the user

and some parameter values must be calculated. These four subsets of parameters are

listed in Table 5.1.

Initialization. In this stage, we will list the representation of the solution. We have

resumed and adapted the method described in detail in [324]. Randomly gener-

ate a solution x and check its feasibility by the fuzzy rough simulation such that

E[gr(x,ξ )] ≤ 0(r = 1,2, · · · , p). Then generate its neighborhood by the concept of

‘ball’ defined in [324]. A ball B(x,r) is centered on x with radius r, which contains

all points x′ such that ||x′− x|| ≤ 4(the symbol || · || denotes the Euclidean norm). To

obtain a homogeneous exploration of the space, we consider a set of balls centered

on the current solution x, with h0,h1, · · · ,hη . Hence the space is partitioned into con-

centric ’crowns’ Ci(x,hi−1,hi), such that
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Fig. 5.8 Layout of tabu search

Ci(x,hi−1,hi) = {x′|hi−1 ≤ ||x′− x|| ≤ hi}.

The η neighbors of s are obtained by random selection of one point inside each crown

Ci, for i varying from 1 to η . Finally, we select the best neighbor of x among these η
neighbors, even if it is worse than x. In ECTS, we replace the balls by hyperrectangles

for the partition of the current solution neighborhood (see Figure 5.9), and we gener-

*

0x
*

3x

*

2x
*

1x

*

1x '

1x '

3x'

2x

Fig. 5.9 Partition of current solution neighborhood
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Table 5.1 Listing of the ECTS parameters

A. Initialization parameters chosen by the user

Search domain of each function variable

Starting point

Content of the tabu list

Content of the promising list

B. Initialization parameters calculated

Length δ of the smallest edge of the initial hyperrectangular search domain

Initial threshold for the acceptance of a promising area

Initial best point

Number η of neighbors of the current solution investigated at each iteration

Maximum number of successive iterations without any detection of a promising area

Maximum number of successive iterations without any improvement of the objective

function value

Maximum number of successive reductions of the hyperrectangular neighborhood and of the

radius of tabu balls with out any improvement

Maximum number of iterations

C. Control parameters chosen by the user

Length Nt of the tabu list

Length Np of the promising list

Parameter ρt allowing to calculate the initial radius of tabu balls

Parameter ρneigh allowing to calculate the initial size of the hyperrectangular neighborhood

D. Control parameters calculated

Initial radius εt of tabu balls

Initial radius εp of promising balls

Initial size of the hyperrectangular neighborhood

ate neighbors in the same way. The reason for using a hyperrectangularneighborhood

instead of crown ’balls’ is the following: it is mathematically much easier to select a

point inside a specified hyperrectangular zone than to select a point inside a specified

crown ball. Therefore in the first case, we only have to compare the coordinates of

the randomly selected points with the bounds that define the hyperrectangular zone

at hand.

Next, we will describe the initialization of some parameters and the tuning of the

control parameters. In other words, we give the ’definition’ of all the parameters of

ECTS. The parameters in part A of Table 5.1 are automatically built by using the

parameters fixed at the beginning. The parameters in part B of Table 5.1 are valued

in the following way:

(1) the search domain of analytical test functions is set as prescribed in the liter-

ature, the initial solution x∗ is randomly chosen and checked if it is feasible by the

fuzzy rough simulation,

(2) the tabu list is initially empty,
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(3) to complete the promising list, the algorithm randomly draws a point. This

point is accepted as the center of an initial promising ball, if it does not belong to an

already generated ball. In this way the algorithm generates Np sample points which

are uniformly dispersed in the whole space solution S,

(4) the initial threshold for the acceptance of a promising area is taken equal to the

average of the objective function values over the previous Np sample points,

(5) the best point found is taken equal to the best point among the previous Np,

(6) the number η of neighbors of the current solution investigated at each iteration

is set to twice the number of variables, if this number is equal or smaller than five,

otherwise η is set to 10;

(7) the maximum number of successive iterations without any detection of a new

promising area is equal to twice the number of variables,

(8) the maximum number of successive iterations without any improvement of the

objective function value is equal to five times the number of variables,

(9) the maximum number of successive reductions of the hyperrectangular neigh-

borhood and of the radius of tabu balls without any improvement of the objective

function value is set to twice the number of variables,

(10) the maximum number of iterations is equal to 50 times the number of

variables.

There exist two types of control parameters. Some parameters are chosen by the

user. Other ones are deduced from the chosen parameters. The fixed parameters are

the length of the tabu list (set to 7, which is the usual tuning advocated by Glover),

the length of the promising list (set to 10, like in [325]) and the parameters ρt , ρp and

ρneigh (set to 100, 50, and 5, respectively). The expressions of εt and εp are δ/ρt and

δ/ρp respectively, and the initial size of the hyperrectangular neighborhood of the

current solution (the more external hyperrectangle) is obtained by dividing δ by the

factor ρneigh.

Diversification. At this stage, the process starts with the initial solution, used as the

current one. ECTS generates a specified number of neighbors: one point is selected

inside each hyperrectangular zone around the current solution. Each neighbor is ac-

cepted only if it does not belong to the tabu list. The best of these neighbors becomes

the new current solution, even if it is worse than the previous one. A new promising

solution is detected and generated according to the procedure described above. This

promising solution defines a new promising area if it does not already belong to a

promising ball. If a new promising area is accepted, the worst area of the promis-

ing list is replaced by the newly accepted promising area. The use of the promising

and tabu lists stimulates the search for solutions far from the starting one and the

identified promising areas. The diversification process stops after a given number of

successive iterations without any detection of a new promising area. Then the algo-

rithm determines the most promising area among those present in the promising list.

Search for the most promising area. In order to determine the most promis-

ing area, we proceed in three steps. First, we calculate the average value of the
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objective function over all the solutions present in the promising list. Secondly, we

eliminate all the solutions for which the function value is higher than this average

value. Thirdly, we deal with the thus reduced list in the following way. We halve the

radius of the tabu balls and the size of the hyperrectangular neighborhood. For each re-

maining promising solution, we perform the generation of the neighbors and selection

of the best. We replace the promising solution by the best neighbor located, yet only

if this neighbor is better than that solution. After having scanned the whole promis-

ing list, the algorithm removes the least promising solution. This process is reiterated

after halving again the above two parameters. It stops when just one promising area

remains.
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5.3.3.3 Numerical Example

Example 5.4. Let us consider a multi-objective programming with Fu-Ro coeffi-
cients.

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

maxF1(x,ξ ) = 2ξ1x2
1 +3ξ2x2−ξ3x3 +

√
(1−ξ7)2 +(3−ξ8)2 +(2−ξ9)2

maxF2(x,ξ ) = 5ξ4x2−2ξ5x1 +2ξ6x3 +
√

(5−ξ10)2 +(2−ξ11)2 +(1−ξ12)2

s.t.

⎧
⎪⎪⎨
⎪⎪⎩

5x1−3x2
2 +6

√
x3 ≤ 50

4
√

x1 +6x2−4.5x3 ≤ 20

x1 +x2 +x3 ≤ 15

x1,x2,x3 ≥ 0,

(5.34)

where ξi(i = 1,2, · · · ,12) are Fu-Ro variables subject to follows,

ξ1 = (1,λ1,1)LR,with λ1 ⊢ ([0.2,0.5], [0,1]),
ξ2 = (1,λ2,1)LR,with λ2 ⊢ ([0.6,0.8], [0,1]),
ξ3 = (1,λ3,1)LR,with λ3 ⊢ ([0.45,0.95], [0,1]),
ξ4 = (1,λ4,1)LR,with λ4 ⊢ ([0.4,0.5], [0,1]),
ξ5 = (1,λ5,1)LR,with λ5 ⊢ ([0.36,0.64], [0,1]),
ξ6 = (1,λ6,1)LR,with λ6 ⊢ ([0.55,0.65], [0,1]),
ξ7 = (1,λ7,1)LR,with λ7 ⊢ ([1,2], [0,4]),
ξ8 = (1,λ8,1)LR,with λ8 ⊢ ([3,4], [2,8]),
ξ9 = (1,λ9,1)LR,with λ9 ⊢ ([1,2], [0,2]),
ξ10 = (1,λ10,1)LR,with λ10 ⊢ ([2,3], [1,5]),
ξ11 = (1,λ11,1)LR,with λ11 ⊢ ([1,3], [0,4]),
ξ12 = (1,λ12,1)LR,with λ12 ⊢ ([2,4], [2,8]).

By Fu-Ro simulation, after 3000 cycles, we firstly have

E[
√

(1− ξ7)2 +(3− ξ8)2 +(2− ξ9)2] = 16.3514,

E[
√

(5− ξ10)2 +(2− ξ11)2 +(1− ξ12)2] = 7.0568.

Next, we apply the tabu search algorithm based on the Fu-Ro simulation to solve the

nonlinear programming problem (5.34) with the Fu-Ro parameters.

Step 1. Set the move step h = 0.5 and the h neighbor N(x,h) for the present point x

is defined as follows,

N(x,h) =

{
y|
√

(x1− y1)2 +(x2− y2)2 +(x3− y3)2 ≤ h

}
.

The random move of point x to point y in its h neighbor along direction s is given by

ys = xs + rh,

where r is a random number that belongs to [0,1], s = 1,2,3.
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Step 2. Denote X = {(x1,x2,x3)|5x1−3x2
2 +6

√
x3 ≤ 50;x1 +x2 +x3≤ 15;xi≥ 0, i =

1,2,3}. Give the step set H = {h1,h2, · · · ,hr} and randomly generate a feasible point

x0 ∈ X . One should empty the Tabu list T (the list of inactive steps) at the beginning.

Step 3. For each active neighbor N(x,h) of the present point x, where h ∈ H − T ,

a feasible random move that satisfies all the constraints in problem (5.34) is to be

generated.

Step 4. Construct the single objective function as follows,

f (x,ξ ) = w1

(
2ξ1x2

1 + 3ξ2x2− ξ3x3 +
√

(1− ξ7)2 +(3− ξ8)2 +(2− ξ9)2
)

+w2

(
5ξ4x2−2ξ5x1 + 2ξ6x3 +

√
(5− ξ10)2 +(2− ξ11)2 +(1− ξ12)2

)
,

where w1 + w2 = 1. Compare the f (x,ξ ) of the feasible moves with that of the cur-

rent solution by the fuzzy rough simulation. If an augmenter in new objective function

of the feasible moves exists, one should save this feasible move as the updated cur-

rent one by adding the corresponding step to the Tabu list T and go to the next step;

otherwise, go to the next step directly.

Step 5. Stop if the termination criteria are satisfied; other wise, empty T if it is full;

then go to Step 3. Here, we set the computation is determined if the better solution

doesn’t change again.

Table 5.2 Another taxonomy dimension for parallel TS algorithms

w1 w2 x1 x2 x3 f1(x) f2(x) f (x) Gen

0.1 0.9 0.217 7.861 6.721 219.496 523.976 493.528 1568

0.2 0.8 0.336 7.648 6.712 213.055 511.281 451.638 1470

0.3 0.7 11.356 2.173 1.471 2269.226 -84.484 621.629 1760

0.4 0.6 11.157 2.258 1.573 2194.900 -74.222 833.427 1633

0.5 0.5 11.257 2.151 1.444 2230.700 -84.1427 1073.279 2010

0.6 0.4 11.151 2.244 1.519 2192.769 -75.955 1285.279 1807

0.7 0.3 11.268 2.155 1.532 2234.000 -82.237 1539.189 1834

0.8 0.2 11.205 2.148 1.444 2210.736 -83.245 1752.061 2762

0.9 0.1 11.075 2.288 1.579 2164.917 -71.025 1941.315 1792

5.4 Fu-Ro CCM

Another way to tackle the multi-objective model with Fu-Ro parameters is that we

use the chance to measure the uncertainty of fuzzy rough event. In order to compare

the degree of occurrence of fuzzy rough events, several kinds of chance measure are

introduced.
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5.4.1 General Model for Fu-Ro CCM

It has been increasingly recognized that many real-world decision-making problems

involve multiple and conflicting objectives which should be considered simultane-

ously. Fuzzy programming of the multi-objective has been well developed, and as

an extension of the fuzzy multi-objective decision-making case, the Fu-Ro multi-

objective linear decision-making model is defined as a means for optimizing multiple

different objective functions subject to a number of constrains.

Let’s introduce the general Fu-Ro CCM to deal with the uncertain model (5.40)

as follows.
⎧
⎪⎪⎨
⎪⎪⎩

max [ f1, f2, · · · , fm]

s.t.

⎧
⎨
⎩

Ch{ fi(x,ξ )≥ fi}(γi)≥ δi, i = 1,2, · · · ,m
Ch{gr(x,ξ )≤ 0}(ηr)≥ θr, r = 1,2, · · · , p,

x ∈ X ,

where Ch is the chace measure of the fuzzy rough events, γi,δi,ηr,θr are the prede-

termined confidence level, fi and xi are the decision variables, i = 1,2, · · · ,m.

According to the definition 5.7 of the primitive chance measure:

Ch{ ˜̄eT
r x≤ ˜̄br}(ηr)≥ θr ⇔ Appr{λ |Pos{ ˜̄er(λ )Tx≤ ˜̄br(λ )} ≥ θr} ≥ ηr, (5.35)

Ch{ ˜̄cT
i x≥ fi}(γi)≥ δi ⇔ Appr{λ |Pos{ ˜̄ci(λ )Tx≥ fi} ≥ δi} ≥ γi. (5.36)

So we can get the general Fu-Ro CCM,

⎧
⎪⎪⎨
⎪⎪⎩

max [ f1, f2, · · · , fm]

s.t.

⎧
⎨
⎩

Appr{λ |Pos{ ˜̄ci(λ )Tx≥ fi} ≥ δi} ≥ γi, i = 1,2, · · · ,m
Appr{λ |Pos{ ˜̄er(λ )Tx≤ ˜̄br(λ )} ≥ θr} ≥ ηr, r = 1,2, · · · , p

x≥ 0,

(5.37)

where δi,γi,θr,ηr ∈ [0,1] are the predetermined confidence level, Pos{·} denotes the

possibility of the fuzzy events in {·}, and Appr{·} denotes the approximation degree

of the rough events in {·}.

Definition 5.9. Suppose a feasible solution x∗ of the problem (5.43) satisfies

Appr{λ |Pos{ ˜̄ci(λ )Tx∗ ≥ fi(x
∗)} ≥ δi} ≥ γi, i = 1,2, · · · ,m,

where confidence levels δi,γi ∈ [0,1]. x∗ is a fuzzy rough efficient solution at δi−
Appr γi−Pos levels to the problem (5.40) if and only if there exists no other feasible

solution x such that

Appr{λ |Pos{ ˜̄ci(λ )Tx≥ fi(x)} ≥ δi} ≥ γi, i = 1,2, · · · ,m,

fi(x)≥ fi(x
∗) for all i and fi0(x)≥ fi0(x

∗) for at least one i0 ∈ {1,2, · · · ,m}.
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From Definition (5.9), we know that x∗ is a fuzzy rough efficient solution at δi−Appr

γi−Pos levels to the problem (5.40) if x∗ is a Pareto optimal solution of the problem

(5.43).

Remark 5.6. If the fuzzy rough vector ˜̄ci delegates to rough vector c̃i, then c̃T
i x ≥ fi

is a rough event. For λ ∈Λ , Pos{c̃i(λ )Tx≥ fi} ≥ δi means c̃i(λ )Tx≥ fi. So,

Appr{λ |Pos{c̃i(λ )Tx≥ fi} ≥ δi} ≥ γi

is equivalent to Appr{λ |c̃i(λ )Tx≥ fi} ≥ γi, i = 1,2, · · · ,m.

If the fuzzy rough vectors ˜̄er and ˜̄br delegate to rough vectors ẽr and b̃r respectively,

then the constraint

Appr{λ |Pos{ẽr(λ )Tx≤ b̃r(λ )} ≥ θr} ≥ ηr

is equivalent to Appr{w|ẽr(λ )Tx≤ b̃r(λ )}≥ ηr, r = 1,2, · · · , p. So, the model (5.43)

can be rewritten as
⎧
⎪⎪⎨
⎪⎪⎩

max [ f1, f2, · · · , fm]

s.t.

⎧
⎨
⎩

Appr{λ |c̃i(λ )Tx≥ fi} ≥ γi, i = 1,2, · · · ,m
Appr{λ |ẽr(λ )Tx≤ b̃r(λ )} ≥ ηr, r = 1,2, · · · , p

x≥ 0.

Remark 5.7. If the fuzzy rough vector ˜̄ci delegates to fuzzy vector c̄i, then Pos{c̄T
i x≥

fi} ≥ δi is a crisp event. In order to satisfy ti := Appr{w|Pos{c̄T
i x ≥ fi} ≥ δi} ≥ γi,

the trust ti should be 1.

So the constraint

Appr{w|Pos{c̄T
i x≥ fi} ≥ δi}= 1≥ γi,

is equivalent to Pos{c̄T
i x≥ fi} ≥ δi, i = 1,2, · · · ,m.

And similarly, When the fuzzy rough vectors ˜̄er and ˜̄br delegate to the fuzzy vector

ēr and b̄r respectively, the constraint

Appr{w|Pos{ēT
r x≤ b̄ j} ≥ θr} ≥ ηr

is equivalent to Pos{ēT
r x≤ b̄r}≥ θr, r = 1,2, · · · , p. So the model (5.43) is equivalent

to ⎧
⎪⎪⎨
⎪⎪⎩

max [ f1, f2, · · · , fm]

s.t.

⎧
⎨
⎩

Pos{c̄T
i x≥ fi} ≥ δi, i = 1,2, · · · ,m

Pos{ēT
r x≤ b̄r} ≥ θr, r = 1,2, · · · , p

x≥ 0.

This is coincident to the fuzzy programming introduced in section 2.
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Also by the definition 5.7, there are two other kinds of fuzzy rough multi-objective

chance-constrained linear decision making models (5.38, 5.38),

⎧
⎪⎪⎨
⎪⎪⎩

max [ f1, f2, · · · , fm]

s.t.

⎧
⎨
⎩

Appr{λ |Nec{ ˜̄ci(λ )Tx≥ fi} ≥ δi} ≥ γi, i = 1,2, · · · ,m
Appr{λ |Nec{ ˜̄er(λ )Tx≤ ˜̄br(λ )} ≥ θr} ≥ ηr, r = 1,2, · · · , p

x≥ 0,

(5.38)

⎧
⎪⎪⎨
⎪⎪⎩

max [ f1, f2, · · · , fm]

s.t.

⎧
⎨
⎩

Appr{λ |Cr{ ˜̄ci(λ )Tx≥ fi} ≥ δi} ≥ γi, i = 1,2, · · · ,m
Appr{λ |Cr{ ˜̄er(λ )Tx≤ ˜̄br(λ )} ≥ θr} ≥ ηr, r = 1,2, · · · , p

x≥ 0,

(5.39)

where δi,γi,θr,ηr ∈ [0,1] are the predetermined confidence levels, Nec{·} and Cr{·}
denote the necessary and the credibility of the fuzzy events in {·} respectively, and

Appr{·} denotes the approximations of the rough events in {·}.
For simpleness, the parameters δ ,γ,θ ,η can be the same confidence level, i.e.

δi = δ ,γi = γ , θr = θ ,ηr = η , i = 1,2, · · · ,m, r = 1,2, · · · , p.

5.4.2 Linear Fu-Ro CCM and Fuzzy Goal Method

So let’s consider the multi-objective linear programming problem with Fu-Ro

coefficients: ⎧
⎨
⎩

max [ ˜̄cT
1 x, ˜̄cT

2 x, · · · , ˜̄cT
mx]

s.t.

{
˜̄eT
r x≤ ˜̄br, r = 1,2, · · · , p

x≥ 0.

(5.40)

According to the definition 5.7 of the primitive chance measure:

Ch{ ˜̄eT
r x≤ ˜̄br}(ηr)≥ θr ⇔ Appr{λ |Pos{ ˜̄er(λ )Tx≤ ˜̄br(λ )} ≥ θr} ≥ ηr, (5.41)

Ch{ ˜̄cT
i x≥ fi}(γi)≥ δi ⇔ Appr{λ |Pos{ ˜̄ci(λ )Tx≥ fi} ≥ δi} ≥ γi. (5.42)

So we can get linear Fu-Ro CCM,

⎧
⎪⎪⎨
⎪⎪⎩

max [ f1, f2, · · · , fm]

s.t.

⎧
⎨
⎩

Appr{λ |Pos{ ˜̄ci(λ )Tx≥ fi} ≥ δi} ≥ γi, i = 1,2, · · · ,m
Appr{λ |Pos{ ˜̄er(λ )Tx≤ ˜̄br(λ )} ≥ θr} ≥ ηr, r = 1,2, · · · , p

x≥ 0,

(5.43)

where δi,γi,θr,ηr ∈ [0,1] are the predetermined confidence levels, Pos{·} denotes

the possibility of the fuzzy events in {·}, and Appr{·} denotes the approximation

degree of the rough events in {·}.

5.4.2.1 Crisp Equivalent Model

We introduce the Appr−Pos and Appr−Nec crisp equivalent models for the chance-

constrained model, respectively.
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Appr-Pos constrained multi-objective linearity model

One way of solving the problem (5.43) is to convert it into its crisp equivalent.

Theorem 5.7. Assume that ˜̄ci j is a Fu-Ro variable, for any λ ∈Λ , the fuzzy variable
˜̄ci j(λ ) is characterized by the following membership function

µ ˜̄ci j(λ )(t) =

⎧
⎨
⎩

L
(

ci j(λ )−t

αc
i j

)
, t ≤ ci j(λ ),αc

i j > 0

R
(

t−ci j(λ )

β c
i j

)
, t ≥ ci j(λ ),β c

i j > 0
λ ∈Λ , (5.44)

where αc
i j,β

c
i j are positive numbers expressing the left and right spread of

˜̄ci j(λ ), reference function L,R : [0,1] → [0,1] with L(1) = R(1) = 0, and

L(0) = R(0) = 1 are non-increasing, continuous function. And (ci j(λ ))n×1 =
(ci1(λ ),ci2(λ ), · · · ,cin(λ ))T is a rough vector. It follows that ci(λ )T x = ([a,b], [c,d])
(where c ≤ a < b ≤ d) is a rough variable and characterized by the following trust

measure function,

Appr{ci(λ )T x≥ t}=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if d ≤ t
d−t

2(d−c) , if b≤ t ≤ d
1
2 ( d−t

d−c + b−t
b−a), if a≤ t < b

1
2 ( d−t

d−c
+ 1), if c≤ t ≤ a

1, if t ≤ c.

(5.45)

Then we have Appr{λ |Pos{ ˜̄ci(λ )Tx≥ fi} ≥ δi} ≥ γi if and only if

⎧
⎪⎪⎨
⎪⎪⎩

fi ≤ d−2γi(d− c)+ R−1(δi)β cT
i x, if b≤ fi−R−1(δi)β cT

i x≤ d

fi ≤ d(b−a)+b(d−c)−2γi(d−c)(b−a)
d−c+b−a + R−1(δi)β cT

i x, if a≤ fi−R−1(δi)β cT
i x < b

fi ≤ d− (d− c)(2γi−1)+ R−1(δi)β cT
i x, if c≤ fi−R−1(δi)β cT

i x≤ a

fi ≤ c + R−1(δi)β cT
i x, if fi−R−1(δi)β cT

i x≤ c,
(5.46)

where γi,δi ∈ [0,1] are predetermined confidence levels.

Proof. From the assumption we know that ci(λ ) = (ci1(λ ),ci2(λ ), · · · ,cin(λ ))T and

ci j(λ ) is a rough variable . Let ci j(λ ) = ([ai j,bi j], [ci j,di j]) and x = (x1,x2, · · · ,xn)
T

then

x jci j(λ ) = ([x jai j,x jbi j], [x jci j,x jdi j]),

ci(λ )T x = ∑n
j=1 ci j(λ )x j = ∑n

j=1([x jai j,x jbi j], [x jci j,x jdi j])

= ([∑n
j=1 ai jx j,∑

n
j=1 ai jx j], [∑

n
j=1 ci jx j,∑

n
j=1 di jx j]).

Therefore, ci(λ )T x is also a rough variable. Now we can assume that

a = ∑n
j=1 ai jx j, b = ∑n

j=1 ai jx j,

c = ∑n
j=1 ci jx j, d = ∑n

j=1 di jx j.

then ci(λ )T x = ([a,b], [c,d]).
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Moreover, we know that ˜̄ci j(λ ) is a fuzzy number with the membership function

µ ˜̄ci j(λ )(t) for given λ ∈Λ . It follows from the extension principle [22] that the fuzzy

number ĉi(λ )T x is characterized by the membership function in the following

µ ˜̄ci(λ )T x(r) =

⎧
⎨
⎩

L(
ci(λ )T−r

αcT
i x

), r ≤ ci(λ )T x

R( r−ci(λ )T x

β cT
i x

), r ≥ ci(λ )T x
i = 1,2, . . . ,m.

By Lemma 2.2, we have that

Pos{ ˜̄ci(λ )T x≥ fi} ≥ δi ⇔ ci(λ )T x + R−1(δi)β
cT
i x≥ fi, i = 1,2, . . . ,m.

For the given confidence level δi ∈ [0,1], we have

Appr{λ |Pos{ ˜̄ci(λ )T x≥ fi} ≥ δi} ≥ γi

⇔ Appr{λ |ci(λ )T x≥ fi−R−1(δi)β cT
i x} ≥ γi

⇔ γi ≤

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d− fi+R−1(δi)β
cT
i x

2(d−c) , if b≤ fi−R−1(δi)β
cT
i x≤ d

1
2 (

d− fi+R−1(δi)β
cT
i x

d−c +
b− fi+R−1(δi)β

cT
i x

b−a ), if a≤ fi−R−1(δi)β
cT
i x < b

1
2 (

d− fi+R−1(δi)β
cT
i x

d−c + 1), if c≤ fi−R−1(δi)β
cT
i x≤ a

1, if fi−R−1(δi)β
cT
i x≤ c

⇔

⎧
⎪⎪⎨
⎪⎪⎩

fi ≤ d−2γi(d− c)+ R−1(δi)β cT
i x, if b≤ fi−R−1(δi)β cT

i x≤ d

fi ≤ d(b−a)+b(d−c)−2γi(d−c)(b−a)
d−c+b−a

+ R−1(δi)β cT
i x, if a≤ fi−R−1(δi)β cT

i x < b

fi ≤ d− (d− c)(2γi−1)+ R−1(δi)β cT
i x, if c≤ fi−R−1(δi)β cT

i x≤ a

fi ≤ c + R−1(δi)β cT
i x, if fi−R−1(δi)β cT

i x≤ c.

This completes the proof. ⊓⊔

Theorem 5.8. Suppose that ˜̄er j,
˜̄br are fuzzy rough variables, for any λ ∈ Λ ,

fuzzy variables ˜̄er j(λ ), ˜̄br(λ ) are characterized by the membership function in the

following

µ ˜̄er j(λ )(t) =

⎧
⎨
⎩

L(
er j (λ )−t

αe
r j

), t ≤ er j(λ ),αe
r j > 0

R(
t−er j(λ )

β m
r j

), t ≥ er j(λ ),β e
r j > 0

λ ∈Λ (5.47)

and

µ ˜̄br(λ )
(t) =

⎧
⎨
⎩

L( br(λ )−t

αb
r

), t ≤ br(λ ), αb
r > 0

R( t−br(λ )

β b
r

), t ≥ br(λ ), β b
r > 0

λ ∈Λ , (5.48)

where αe
r j,β

e
r j are positive numbers expressing the left and right spread of ˜̄er j(λ ),

αb
r ,β b

r are the left and right spread of ˜̄br(λ ), and reference functions L,R :

[0,1] → [0,1] with L(1) = R(1) = 0, and L(0) = R(0) = 1 are non-increasing,

continuous functions. And (er j(λ ))n×1 = (er1(λ ),er2(λ ), · · · ,ern(λ ))T is a rough
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vector, er j(λ ),br(λ ) are rough variables, r = 1,2, · · · , p, j = 1,2, · · · ,n. By

Proposition 5.7, we have er(λ )T x,br(λ ) are rough variables, then er(λ )T x−br(λ )=
[(a,b),(c,d)](c ≤ a < b ≤ d) is also a rough variable. We assume that it is charac-

terized by the following trust measure function

Appr{er(λ )T x−br(λ )≤ t}=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if t ≤ c
t−c

2(d−c)
, if c≤ t ≤ a

1
2 ( t−c

d−c
+ t−a

b−a
), if a≤ t < b

1
2 ( t−c

d−c + 1), if b≤ t ≤ d

1, i f d ≤ t.

(5.49)

Then, we have that Appr{λ |Pos{ ˜̄er(λ )T x≤ ˜̄br(λ )} ≥ θr} ≥ ηr if and only if

⎧
⎪⎪⎨
⎪⎪⎩

W ≥ c + 2(d− c)ηr, if c≤W ≤ a

W ≥ 2ηr(d−c)(b−a)+c(b−a)+a(d−c)
b−a+d−c , if a≤W < b

W ≥ (2ηr−1)(d− c)+ c, if b≤W ≤ d

W ≥ d, if d ≤W,

(5.50)

where W = R−1(θr)β
b
r + L−1(θk)α

eT
r x.

Proof. From the assumption, we know

Pos{ ˜̄er(λ )T x≤ ˜̄br(λ )} ≥ θr ⇔ br(λ )+ R−1(θr)β
b
r ≥ er(λ )T x−L−1(θr)α

eT
r x.

Since er(λ )T x−br(λ ) = [(a,b),(c,d)], for given confidence levels θr,ηr ∈ [0,1], we

have that,

Appr{λ |Pos{ ˜̄er(λ )T x≤ ˜̄br(λ )} ≥ θr} ≥ ηr

⇔ Appr{λ |er(λ )T x−br(λ )≤ R−1(θr)β b
r + L−1(θr)αeT

r x} ≥ ηr

⇔ ηr ≤

⎧
⎪⎪⎨
⎪⎪⎩

W−c
2(d−c) , if c≤W ≤ a.
1
2 (W−c

d−c
+ W−a

b−a
), if a≤W < b

1
2 (W−c

d−c + 1), if b≤W ≤ d

1, if W ≥ d

⇔

⎧
⎪⎪⎨
⎪⎪⎩

W ≥ c + 2(d− c)ηr, if c≤W ≤ a

W ≥ 2ηr(d−c)(b−a)+c(b−a)+a(d−c)
b−a+d−c , if a≤W < b

W ≥ (2ηr−1)(d− c)+ c, if b≤W ≤ d

W ≥ d, if d ≤W,

where W = R−1(θr)β
b
r + L−1(θr)α

eT
r x.

This completes the proof. ⊓⊔

From Propositions 5.7 and 5.8, we know that the problem (5.8) is equivalent to the

following multi-objective programming problems,
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max [ f1, f2, · · · , fm]

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fi ≤ d−2γi(d− c)+ R−1(δi)β
cT
i x,

if b≤ fi−R−1(δi)β cT
i x≤ d

fi ≤ d(b−a)+b(d−c)−2αi(d−c)(b−a)
d−c+b−a + R−1(δi)β cT

i x,

if a≤ fi−R−1(δi)β cT
i x < b

fi ≤ d− (d− c)(2γi−1)+ R−1(δi)β cT
i x,

if c≤ fi−R−1(δi)β cT
i x≤ a

fi ≤ c + R−1(δi)β cT
i x,

if fi−R−1(δi)β cT
i x≤ c

W ≥ c + 2(d− c)ηr, if c≤W ≤ a

W ≥ 2ηr(d−c)(b−a)+c(b−a)+a(d−c)
b−a+d−c

, if a≤W < b

W ≥ (2ηr−1)(d− c)+ c, if b≤W ≤ d

W ≥ d, if d ≤W

x≥ 0,

(5.51)

where W = R−1(θr)β b
r + L−1(θr)αeT

r x.

Appr-Nec constrained multi-objective linearity model

Similar to the Appr−Pos constrained multi-objective linearity model, we assume

that ˜̄ci j, ˜̄er j and ˜̄br are fuzzy rough variables, we give the following two theorems to

transform the chance-constrained model (5.43) into its crisp model based on Appr−
Nec if the decision maker is comparatively pessimistic.

Theorem 5.9. Assume that ˜̄ci j is a fuzzy rough variable, for any λ ∈ Λ , the fuzzy

variable ˜̄ci j(λ ) is characterized by the following membership function

µ ˜̄ci j(λ )(t) =

⎧
⎨
⎩

L
(

ci j(λ )−t

αc
i j

)
, t ≤ ci j(λ ),αc

i j > 0

R
(

t−ci j(λ )

β c
i j

)
, t ≥ ci j(λ ),β c

i j > 0
λ ∈Λ , (5.52)

where αc
i j,β

c
i j are positive numbers expressing the left and right spread of

˜̄ci j(λ ), reference function L,R : [0,1] → [0,1] with L(1) = R(1) = 0, and

L(0) = R(0) = 1 are non-increasing, continuous function. And (ci j(λ ))n×1 =
(ci1(λ ),ci2(λ ), · · · ,cin(λ ))T is a rough vector. It follows that ci(λ )T x = ([a,b], [c,d])
(where c ≤ a < b ≤ d) is a rough variable and characterized by the following trust

measure function,

Appr{ci(λ )T x≥ t}=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if d ≤ t
d−t

2(d−c) , if b≤ t ≤ d
1
2 ( d−t

d−c + b−t
b−a), if a≤ t < b

1
2 ( d−t

d−c
+ 1), if c≤ t ≤ a

1, if t ≤ c.

(5.53)
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Then we have Appr{λ |Nec{ ˜̄ci(λ )Tx≥ fi} ≥ δi} ≥ γi if and only if

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fi ≤ d−2γi(d− c)−L−1(1− δi)αcT
i x,

if b≤ fi + L−1(1− δi)αcT
i x≤ d

fi ≤ d(b−a)+b(d−c)−2γi(d−c)(b−a)
d−c+b−a

−L−1(1− δi)αcT
i x,

if a≤ fi + L−1(1− δi)αcT
i x < b

fi ≤ d− (d− c)(2γi−1)−L−1(1− δi)αcT
i x,

if c≤ fi + L−1(1− δi)α
cT
i x≤ a

fi ≤ c−L−1(1− δi)α
cT
i x,

if fi + L−1(1− δi)αcT
i x≤ c,

(5.54)

where γi,δi ∈ [0,1] are predetermined confidence levels.

Proof. From the assumption we know that ci(λ ) = (ci1(λ ),ci2(λ ), · · · ,cin(λ ))T and

ci j(λ ) is a rough variable . Let ci j(λ ) = ([ai j,bi j], [ci j,di j]) and x = (x1,x2, · · · ,xn)
T

then

x jci j(λ ) = ([x jai j,x jbi j], [x jci j,x jdi j]),

ci(λ )T x = ∑n
j=1 ci j(λ )x j = ∑n

j=1([x jai j,x jbi j], [x jci j,x jdi j])

= ([∑n
j=1 ai jx j,∑

n
j=1 ai jx j], [∑

n
j=1 ci jx j,∑

n
j=1 di jx j]).

Therefore, ci(λ )T x is also a rough variable. Now we can assume that

a = ∑n
j=1 ai jx j, b = ∑n

j=1 ai jx j,

c = ∑n
j=1 ci jx j, d = ∑n

j=1 di jx j.

then ci(λ )T x = ([a,b], [c,d]).
Moreover, we know that ˜̄ci j(λ ) is a fuzzy number with the membership function

µ ˜̄ci j(λ )(t) for given λ ∈Λ . It follows from the extension principle that the fuzzy num-

ber ĉi(λ )T x is characterized by the membership function in the following

µ ˜̄ci(λ )T x(r) =

⎧
⎨
⎩

L( ci(λ )T−r

αcT
i x

), r ≤ ci(λ )T x

R( r−ci(λ )T x

β cT
i x

), r ≥ ci(λ )T x
i = 1,2, . . . ,m.

By Lemma 2.2, we have that

Nec{ ˜̄ci(λ )T x≥ fi} ≥ δi ⇔ ci(λ )T x−L−1(1− δi)α
cT
i x≥ fi, i = 1,2, . . . ,m.
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For the given confidence level δi ∈ [0,1], we have

Appr{λ |Nec{ ˜̄ci(λ )T x≥ fi} ≥ δi} ≥ γi

⇔ Appr{λ |ci(λ )T x≥ fi + L−1(1− δi)αcT
i x} ≥ γi

⇔ γi ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d− fi−L−1(1−δi)α
cT
i x

2(d−c) ,

if b≤ fi + L−1(1− δi)αcT
i x≤ d

1
2 (

d− fi−L−1(1−δi)α
cT
i x

d−c
+

b− fi−L−1(1−δi)α
cT
i x

b−a
),

if a≤ fi + L−1(1− δi)αcT
i x < b

1
2 (

d− fi−L−1(1−δi)α
cT
i x

d−c
+ 1),

if c≤ fi + L−1(1− δi)αcT
i x≤ a

1,

if fi + L−1(1− δi)αcT
i x≤ c

⇔

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fi ≤ d−2γi(d− c)−L−1(1− δi)αcT
i x,

if b≤ fi + L−1(1− δi)αcT
i x≤ d

fi ≤ d(b−a)+b(d−c)−2γi(d−c)(b−a)
d−c+b−a

−L−1(1− δi)αcT
i x,

if a≤ fi + L−1(1− δi)αcT
i x < b

fi ≤ d− (d− c)(2γi−1)−L−1(1− δi)αcT
i x,

if c≤ fi + L−1(1− δi)αcT
i x≤ a

fi ≤ c−L−1(1− δi)αcT
i x,

if fi + L−1(1− δi)α
cT
i x≤ c.

This completes the proof. ⊓⊔

Theorem 5.10. Suppose that ˜̄er j,
˜̄br are fuzzy rough variables, for any λ ∈ Λ ,

fuzzy variables ˜̄er j(λ ), ˜̄br(λ ) are characterized by the membership function in the

following

µ ˜̄er j(λ )(t) =

⎧
⎨
⎩

L(
er j (λ )−t

αe
r j

), t ≤ er j(λ ),αe
r j > 0

R(
t−er j(λ )

β m
r j

), t ≥ er j(λ ),β e
r j > 0

λ ∈Λ (5.55)

and

µ ˜̄br(λ )
(t) =

⎧
⎨
⎩

L( br(λ )−t

αb
r

), t ≤ br(λ ),αb
r > 0

R( t−br(λ )

β b
r

), t ≥ br(λ ),β b
r > 0

λ ∈Λ , (5.56)

where αe
r j,β

e
r j are positive numbers expressing the left and right spread of

˜̄er j(λ ), αb
r ,β b

r are the left and right spread of ˜̄br(λ ), and reference functions

L,R : [0,1] → [0,1] with L(1) = R(1) = 0, and L(0) = R(0) = 1 are non-

increasing, continuous functions. And (er j(λ ))n×1 = (er1(λ ),er2(λ ), · · · ,ern(λ ))T

is a rough vector, er j(λ ),br(λ ) are rough variables, r = 1,2, · · · , p, j = 1,2, · · · ,n.
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By Theorem 5.7, we have er(λ )T x,br(λ )are rough variables, then er(λ )T x−br(λ )=
[(a,b),(c,d)](c ≤ a < b ≤ d) is also a rough variable. We assume that it is charac-

terized by the following trust measure function

Appr{er(λ )T x−br(λ )≤ t}=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if t ≤ c
t−c

2(d−c) , if c≤ t ≤ a
1
2 ( t−c

d−c
+ t−a

b−a
), if a≤ t < b

1
2 ( t−c

d−c
+ 1), if b≤ t ≤ d

1, i f d ≤ t.

(5.57)

Then, we have that Appr{λ |Nec{ ˜̄er(λ )T x≤ ˜̄br(λ )} ≥ θr} ≥ ηr if and only if

⎧
⎪⎪⎨
⎪⎪⎩

W ≥ c + 2(d− c)ηr, if c≤W ≤ a

W ≥ 2ηr(d−c)(b−a)+c(b−a)+a(d−c)
b−a+d−c

, if a≤W < b

W ≥ (2ηr−1)(d− c)+ c, if b≤W ≤ d

W ≥ d, if d ≤W,

(5.58)

where W =−R−1(θr)β eT
r x−L−1(1−θr)αb

r .

Proof. From the assumption, we know

Nec{ ˜̄er(λ )T x≤ ˜̄br(λ )} ≥ θr ⇔ br(λ )−L−1(1−θr)α
b
r ≥ er(λ )T x + R−1(θr)β

eT
r x.

Since er(λ )T x−br(λ ) = [(a,b),(c,d)], for given confidence levels θr,ηr ∈ [0,1], we

have that,

Appr{λ |Nec{ ˜̄er(λ )T x≤ ˜̄br(λ )} ≥ θr} ≥ ηr

⇔ Appr{λ |er(λ )T x−br(λ )≤−R−1(θr)β
eT
r x−L−1(1−θr)α

b
r } ≥ ηr

⇔ ηr ≤

⎧
⎪⎪⎨
⎪⎪⎩

W−c
2(d−c) , if c≤W ≤ a
1
2 (W−c

d−c
+ W−a

b−a
), if a≤W < b

1
2 (W−c

d−c
+ 1), if b≤W ≤ d

1, if W ≥ d

⇔

⎧
⎪⎪⎨
⎪⎪⎩

W ≥ c + 2(d− c)ηr, if c≤W ≤ a

W ≥ 2ηr(d−c)(b−a)+c(b−a)+a(d−c)
b−a+d−c

, if a≤W < b

W ≥ (2ηr−1)(d− c)+ c, if b≤W ≤ d

W ≥ d, if d ≤W,

where W =−R−1(θr)β eT
r x−L−1(1−θr)αb

r .

This proof is completed. ⊓⊔

From Propositions 5.7 and 5.8, we know that the problem (5.8) is equivalent to the

following multi-objective programming problems,
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⎧
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max [ f1, f2, · · · , fm]

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fi ≤ d−2γi(d− c)−L−1(1− δi)α
cT
i x,

if b≤ fi + L−1(1− δi)αcT
i x≤ d

fi ≤ d(b−a)+b(d−c)−2γi(d−c)(b−a)
d−c+b−a −L−1(1− δi)αcT

i x,

if a≤ fi + L−1(1− δi)αcT
i x < b

fi ≤ d− (d− c)(2γi−1)−L−1(1− δi)αcT
i x,

if c≤ fi + L−1(1− δi)αcT
i x≤ a

fi ≤ c−L−1(1− δi)αcT
i x,

if fi + L−1(1− δi)αcT
i x≤ c

W ≥ c + 2(d− c)ηr, if c≤W ≤ a

W ≥ 2ηr(d−c)(b−a)+c(b−a)+a(d−c)
b−a+d−c

, if a≤W < b

W ≥ (2ηr−1)(d− c)+ c, if b≤W ≤ d

W ≥ d, if d ≤W

x≥ 0,

(5.59)

where W =−R−1(θr)β eT
r x−L−1(1−θr)αb

r .

5.4.2.2 Fuzzy Goal Method

In this section, we introduce how to use the fuzzy goal method to solve multi-objective

programming problems. As we know, the standard distribution function Φ(x) is a

nonlinear function, so it is difficult to solve using the usual technique. Here we intro-

duce the fuzzy goal method proposed by Sakawa [128] to solve this kind of nonlinear

multi-objective programming problems (5.60),

{
max[H1(x),H2(x), · · · ,Hm(x)]
s.t. x ∈ X .

(5.60)

Assume that decision makers have fixed the membership function µk(Hk(x)) and

given the goal membership function value µ̄k (k = 1,2, · · · ,m). Let’s consider the

following programming problem,

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

max
m

∑
k=1

d−k

s.t.

⎧
⎨
⎩

µk(Hk(x))+ d+
k −d−k = µ̄k,k = 1,2, · · · ,m

x ∈ X

d+
k d−k = 0,d+

k ,d−k ≥ 0,k = 1,2, · · · ,m,

(5.61)

where d+
k ,d−k is the positive and negative deviation. Then we have the following result

between the optimal solution of the problem (5.61) and the efficient solution of the

problem (5.60).

Theorem 5.11. (Sakawa [128]) (1) If x∗ is the optimal solution of the problem (5.61),

and 0 < µk(Hk(x
∗))< 1, d+

k = 0(k = 1,2, · · · ,m) holds, then x∗ is an efficient solution

of the problem (5.60).
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(2) If x∗ is an efficient solution of the problem (5.60), and 0 < µk(Hk(x
∗)) < 1(k =

1,2, · · · ,m), then x∗ is an efficient solution of the problem (5.61) and d+
k = 0(k =

1,2, · · · ,m) holds.

5.4.2.3 Numerical Example

Example 5.5. An industry will produce three kinds of products which are seasonal.

Because the demand amount is seasonal, the profits are fuzzy rough variables, i.e.,

the profits are fuzzy variables, but the excepted values of these fuzzy variables are

rough variables. When producing every product, the efficiency of the machinery is

also a fuzzy rough variable, but the coefficient is different. Each product is no less

than 20, and the gross amount is no less than 200 but no more than 250. The other

coefficients can be seen in Table 5.3. The problem is how many products to produce

in order to get the predetermined levels.

Table 5.3 The resource demand in producing process

product 1 2 3 possible using amount

workman amount 1 1 1 250

storage capacity 1 4 2 600

using efficiency c1
˜̄ξ4 c2

˜̄ξ5 c3
˜̄ξ6

profit ˜̄ξ1
˜̄ξ2

˜̄ξ3

Then we can get the following Appr-pos constrained multi-objective programming

problem

max{ f1, f2}

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Appr{λ |Pos{ ˜̄ξ1x1 + ˜̄ξ2x2 + ˜̄ξ3x3 ≥ f1} ≥ δ1} ≥ γ1

Appr{λ |Pos{c1
˜̄ξ4x1 + c2

˜̄ξ5x2 + c3
˜̄ξ6x3 ≥ f2} ≥ δ2} ≥ γ2

x1 + x2 + x3 ≤ 250

x1 + x2 + x3 ≥ 200

x1 + 4x2 + 2x3 ≤ 600

x1,x2,x3 ≥ 20,

where c = (c1,c2,c3) = (1.2,0.8,1.5),

˜̄ξ1 = (ρ1,0.5,0.5)LR, with ρ1 ⊢ ([1,2], [0,3]),
˜̄ξ2 = (ρ2,2,2)LR, with ρ2 ⊢ ([2,3], [1,4]),
˜̄ξ3 = (ρ3,1,1)LR, with ρ3 ⊢ ([3,4], [2,5]),
˜̄ξ4 = (ρ4,1,1)LR, with ρ4 ⊢ ([0,1], [0,3]),
˜̄ξ5 = (ρ5,0.5,0.5)LR, with ρ5 ⊢ ([1,2], [0,3]),
˜̄ξ6 = (ρ6,0.5,0.5)LR, with ρ6 ⊢ ([2,3], [0,3]).
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According to the knowledge of fuzzy variable and rough variable, we have that

˜̄ξ1x1 + ˜̄ξ2x2 + ˜̄ξ3x3

= (ρ1x1 + ρ2x2 + ρ3x3,0.5x1 + 2x2 + x3,0.5x1 + 2x2 + x3)LR,

c1
˜̄ξ4x1 + c2

˜̄ξ5x2 + c3
˜̄ξ6x3

= (ρ4c1x1 + ρ5c2x2 + ρ6c3x3,1.2x1 + 0.4x2 + 0.75x3,

1.2x1 + 0.4x2 + 0.75x3)LR.

(5.62)

and

ρ1x1 = ([x1,2x1], [0,3x1])
ρ2x2 = ([2x2,3x2], [x2,4x2])
ρ3x3 = ([3x3,4x3], [2x3,5x3])
ρ4c1x1 = ([0,c1x1], [0,3c1x1])
ρ5c2x2 = ([c2x2,2c2x2], [0,3c2x2])
ρ6c3x3 = ([2c3x3,3c3x3], [0,3c3x3]),

and

ρ1x1 + ρ2x2 + ρ3x3

= ([x1 + 2x2 + 3x3,2x1 + 3x2 + 4x3], [x2 + 2x3,3x1 + 4x2 + 5x3])
ρ4c1x1 + ρ5c2x2 + ρ6c3x3

= ([0.8x2 + 3x3,1.2x1 + 1.6x2 + 4.5x3], [0,3.6x1 + 2.4x2 + 4.5x3]).

Here we consider the case when b≤ fi−R−1(δi)β cT
i x≤ d, and readers can try another

three cases through the following method.

According to Propositions 5.7 and 5.8, the problem (5.63) is equivalent to the fol-

lowing multi-objective programming problem,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max [ f1, f2]

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1 ≤ 3x1 + 4x2 + 5x3−2γ1(3x1 + 3x2 + 3x3)
+R−1(δ1)(0.5x1 + 2x2 + x3)

f2 ≤ 3.6x1 + 2.4x2 + 4.5x3−2γ2(3.6x1 + 2.4x2 + 4.5x3)
+R−1(δ2)(1.2x1 + 0.4x2 + 0.75x3)

x1 + x2 + x3 ≤ 250

x1 + x2 + x3 ≥ 200

x1 + 4x2 + 2x3 ≤ 600

x1,x2,x3 ≥ 20

(5.63)

or equivalently ⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max [H1(x),H2(x)]

s.t.

⎧
⎪⎪⎨
⎪⎪⎩

x1 + x2 + x3 ≤ 250

x1 + x2 + x3 ≥ 200

x1 + 4x2 + 2x3 ≤ 600

x1,x2,x3 ≥ 20,

(5.64)



5.4 Fu-Ro CCM 341

where

H1(x) := 3x1 + 4x2 + 5x3−2γ1(3x1 + 3x2 + 3x3)+ R−1(δ1)(0.5x1 + 2x2 + x3),
H2(x) := 3.6x1 + 2.4x2 + 4.5x3−2γ2(3.6x1 + 2.4x2 + 4.5x3)

+R−1(δ2)(1.2x1 + 0.4x2 + 0.75x3).

When γ1 = γ2 = δ1 = δ2 = 0.9, H0
i and H1

i (i = 1,2) are calculated by solving the

two single objective model as follows:

H1
1 =−119,(x1,x2,x3) = (20,20,160),H0

2 =−656.9,

H1
2 =−455.83,(x1,x2,x3) = (53.33,126.67,20),H0

1 =−283.33.

We give the membership functions as follows,

µ1(H1(x)) =
H1(x)−H0

1

H1
1−H0

1

= H1(x)+283.33
164.33 ,

µ2(H2(x)) =
H2(x)−H0

2

H1
2−H0

2

=
H2(x)+656.9

200.97 .

According to the fuzzy goal method, we construct the fuzzy goal programming model

(5.65) as follows, ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max d−1 + d−2

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H1(x)+283.33
164.33 + d+

1 + d−1 = µ̄1
H2(x)+656.9

200.97 + d+
2 + d−2 = µ̄2

x1 + x2 + x3 ≤ 250

x1 + x2 + x3 ≥ 200

x1 + 4x2 + 2x3 ≤ 600

x1,x2,x3 ≥ 20

d+
1 d−1 = 0,d+

1 ,d−1 ≥ 0

d+
2 d−2 = 0,d+

2 ,d−2 ≥ 0.

(5.65)

Set µ̄1 = µ̄2 = 0.9, and we obtain the best solution of model (5.65), this solution is

also the efficient solution of model (5.63),

(x1,x2,x3) = (210,20,20).

5.4.3 Non-linear Fu-Ro CCM and Fu-Ro Simulation-Based

Parametric TS

For the Fu-Ro CCM, we use the Fu-Ro simulation 2 based parametric TS algorithm

to solve.

5.4.3.1 Fu-Ro Simulation 2 for Critical Value

First, we use the Fu-Ro simulation 2 to obtain the critical value which is important

in CCM.
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Assume that ξ is an n-dimensional fuzzy rough vector defined on the rough space

(Λ ,Δ ,A ,π), and f : Rn → Rm is a measurable function. For any real number α ∈
(0,1], we find the maximal value f such that

Ch{ f (ξ )≥ f }(α)≥ β (5.66)

holds. That is we should compute the maximal value f such that

Appr{λ ∈Λ |Cr{ f (ξ (λ )) ≥ f} ≥ β} ≥ α. (5.67)

We sample λ 1,λ 2, · · · ,λ N from △ and λ 1,λ 2, · · · ,λ N from Λ according to the

measure π . For any number v, let N(v) denote the number of λ k satisfying

Cr{ f (ξ (λ k)) ≤ v} ≥ β for k = 1,2, · · · ,N, and N(v) denote the number of λ k

satisfying

Cr{ f (ξ (λ k))≤ v} ≥ β , (5.68)

for k = 1,2, · · · ,N, whereCr{·}may be estimated by fuzzy simulation. Then we may

find the maximal value v such that

N(v)+ N(v)

2N
≥ α. (5.69)

This value is an estimation of f . The procedure is as follows:

Step 1. Generate λ 1,λ 2, · · · ,λ N from△ according to the measure π .

Step 2. Generate λ 1,λ 2, · · · ,λ N from Λ according to the measure π .

Step 3. Find the maximal value v such that (5.69) holds.

Step 4. Return v.

Example 5.6. We employ Fu-Ro simulation 2 to find the maximal value f̄ such that

Ch{ξ 2
1 + ξ 2

2 ≥ f̄}(0.9)≥ 0.9, where xi1 and ξ2 are Fu-Ro variables defined as

ξ1 = (ρ1,ρ1 + 1,ρ1 + 2), with ρ1 = ([1,2], [0,3]),
ξ2 = (ρ2,ρ2 + 1,ρ2 + 2), with ρ2 = ([2,3], [1,4]).

A run of Fu-Ro simulation with 5000 cycles shows that f̄ = 6.39.

5.4.3.2 Parametric TS

Let’s recall the detail of the parametric TS introduced by F. Glover [335]. The solution

approach consists of a parametric form of tabu-search utilizing moves based on the

approach of parametric branch and bound [336]. Various levels of tabu-search can be

used to guide the foregoing processes. We begin by sketching the elements of a basic

approach and illustrate its application.

Tabu conditions. At an initial rudimentary level, we attach a tabu restriction to

an (R-DN) or (R-UP) response for a particular variable x j , thereby forbidding

the response from being executed, if the opposing response ((R-UP) or (R-DN),
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respectively) was executed for x j within the most recent TabuTenure iterations. (That

is, we forbid a move in a direction that is contrary to the direction of a move made

within the selected span of TabuTenure iterations.) To simplify the discussion, we

allow (R-DN) and (R-UP) to refer also to the responses (R-DNo) and (R-UPo). The

value of TabuTenure varies according to the variable x j concerned and the history of

the search. We represent this value as TabuTenure j(UP) and TabuTenure j(DN) ac-

cording to whether the tabu condition was launched by an (R-UP) or an (R-DN) re-

sponse. When such a response is made we use TabuTenurej(UP) or TabuTenure j(DN)

and knowledge of the current iteration, which we denote by Iter, to identify the iter-

ation TabuTenure j(UP) or TabuTenure j(DN) that marks the end of x js tabu tenure.

Specifically, when an (R-UP) response occurs, we set

TabuEnd j(DN) = Iter+ TabuTenure j(DN)

to forbid the opposing (R-DN) response from being made for the period of

TabuTenure j(DN) iterations in the future. Similarly, when an (R-DN) response oc-

curs, we set

TabuEnd j(UP) = Iter+ TabuTenure j(UP)

to forbid the opposing (R-UP) response from being made for the period of

TabuTenure j (UP) iterations in the future.

By this means, an (R-DN) response is tabu for x j as long as the (updated) current

iteration satisfies

Iter≤ TabuEnd j(DN)

and an (R-UP) response is tabu for x j as long as the current iteration satisfies

Iter≤ TabuEnd j(UP)

Initially, before any responses have been made and before associated tabu conditions

have been created, TabuEnd j(UP) and TabuEnd j(DN) are set equal to -1, causing this

value to be smaller than every value of Iter and hence assuring that no tabu restrictions

will be in effect.

We refer to the values TabuEnd j(UP)-Iter and TabuEnd j(DN)-Iter as residual tabu

tenures. Hence, a response will be tabu as long as its residual tabu tenure is non-

negative. (A negative residual tabu tenure accordingly indicates the response is free

from a tabu restriction.) By convention, we refer to the residual tabu tenure of a vari-

able x j by taking it to be the residual tabu tenure of the response that is selected

for this variable. We refer to the variable itself as being tabu when its associated re-

sponse is tabu. (This reference is unambiguous since each goal infeasible and poten-

tially goal infeasible variable has a single associated response.) Rules for generating

the TabuTenure j(DN) and TabuTenurej(UP) values used to determine TabuEndj(UP)

and TabuEnd j(DN) are given in the next section.
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In the application of the tabu tenures, a simple form of probabilistic tabu search

can be used that replaces TabuTenure j(DN) and TabuTenure j(UP) in the formulas

TabuEnd j(DN)=Iter

+TabuTenure j(DN) and TabuEnd j(DN)=Iter +TabuTenure j(UP) by values that are

randomly selected from an interval around the respective tabu tenure values. A fuller

use of this type of randomizing effect occurs by making such a replacement each time

the inequalities Iter-TabuEnd j(DN) and Iter-TabuEnd j(UP) are checked.

By design, tabu restrictions are prohibitions against returning to a state previously

occupied. We only create these restrictions for states that seek to enforce a goal con-

dition, hence that involve the responses (R-UP) and (R-DN) (understanding these to

include reference to the responses (R-UPo) and (R-DNo)). Moreover, we only check

tabu conditions when at least one variable is goal infeasible. In the case where no

explicit goal infeasibility exists, and hence the only responses to consider are those

applicable to unrestricted free variables, then no attention is paid to tabu restrictions.

The situation where all goal conditions are satisfied (no goal infeasibility exists) may

be viewed as meeting the requirements of a special type of aspiration criterion, which

overrules all tabu conditions. We now examine the use of criteria that operate when

goal infeasibility is present.

Aspiration criteria. As is customary in tabu-search, we allow a tabu response to

be released from a tabu restriction if the response satisfies an auxiliary aspiration

criterion that indicates the response has special merit or novelty (i.e., exhibits a fea-

ture not often encountered). A common instance of such a criterion, called aspiration

by objective, permits the response to be made if it yields a better objective function

evaluation than any response previously executed. In the present setting, we find it

convenient to additionally consider an aspiration by resistance, based on the greatest

resistance a particular response has generated in the past.

Specifically, let Aspire j(DN) and Aspire j(UP) denote the largest goal resistance

values GR j(DN) and GR j(UP) that have occurred for x j on any iteration, where x j was

selected to execute an (R-DN) or (R-UP) response, respectively. Then we disregard

the tabu restriction for an (R-DN) response (identified by Iter≤TabuEnd j(DN)) if

GR j(DN) > Aspire j(UP)

and disregard tabu restriction for an (R-UP) response (identified by

Iter≤TabuEnd j(UP)) if

GR j(UP) > Aspire j(DN)

The rationale for these aspiration criteria is that a move can be allowed if its current

resistance value, measured by GR j(DN) or GR j(UP), exceeds the greatest resistance

value previously identified for moving in the opposite direction (Aspire j(UP)

or Aspire j(DN), respectively). We initially set Aspire j(UP) and Aspire j(DN) to a



5.4 Fu-Ro CCM 345

large negative number, so that the first time a variable x j is evaluated for a poten-

tial response (R-UP) or (R-DN), the response will automatically be allowed, and it

will continue to be allowed until the opposing response is made, which establishes a

resistance to be exceeded.

We call a response admissible if it is either not tabu or else satisfies the aspira-

tion criterion, and call it inadmissible otherwise. If the unique available response

for a goal infeasible variable is inadmissible, then the variable is not permitted

to enter the sets GP and GS, even if this makes it impossible for one or both of

these sets to attain its targeted size gP or gS. The only exception to this rule is

that GP is not permitted to be empty in the case of goal infeasibility. Hence in the

extreme case where no variables would enter GP the typical aspiration by default

rule is invoked that allows GP to contain a variable with a smallest residual tabu

tenure. (Probabilistic variations of the aspiration by default rule can also be applied,

by assigning larger probabilities to selecting variables with smaller residual tabu

tenures.)

As observed earlier, GR j = GR j(DN) or GR j(UP) may be treated as a 2-element

vector, with a dominant component for an overt goal infeasibility and a secondary

GRo
j component for potential goal infeasibility. The Aspire j values are treated in the

same way, as 2-element vectors that include a secondary component Aspireo
j for po-

tential goal infeasibility. Since overt and potential goal infeasibility for a given vari-

able x j never occur simultaneously, and since overt goal infeasibility is the dominant

component, only a single component of the vector is relevant to considerłthe overt

component if it exists, and the potential component otherwise.

It is to be emphasized that Aspire j(UP) and Aspire j(DN) do not record the greatest

values of GR j(UP) and GR j(DN) encountered over the history of the search, but only

the greatest values that occurred in the instances where x j was selected as a variable

to be assigned a goal condition, and only in response to overt or potential goal infea-

sibility (i.e., not in response to integer infeasibility, which occurs only when x j is an

unrestricted fractional variable).

5.4.3.3 Numerical Example

Example 5.7. Let us consider the following problem,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max [ f1, f2]

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Appr{λ |Pos{ ˜̄ξ1x1 + ˜̄ξ2x2 + ˜̄ξ3x3 ≥ f1} ≥ δ1} ≥ γ1

Appr{λ |Pos{c1
˜̄ξ4x1 + c2

˜̄ξ5x2 + c3
˜̄ξ6x3 ≥ f2} ≥ δ2} ≥ γ2

x1 + x2 + x3 ≤ 250

x1 + x2 + x3 ≥ 200

x1 + 4x2 + 2x3 ≤ 600

x1 ≥ 20,x2 ≥ 20,x3 ≥ 20,

(5.70)
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where c = (c1,c2,c3) = (1.2,0.8,1.5),

˜̄ξ1 = (1,ρ1,1)LR, with ρ1 ⊢ ([1,2], [0,3]),
˜̄ξ2 = (1,ρ2,1)LR, with ρ2 ⊢ ([2,3], [1,4]),
˜̄ξ3 = (1,ρ3,1)LR, with ρ3 ⊢ ([3,4], [2,5]),
˜̄ξ4 = (1,ρ4,1)LR, with ρ4 ⊢ ([0,1], [0,3]),
˜̄ξ5 = (1,ρ5,1)LR, with ρ5 ⊢ ([1,2], [0,3]),
˜̄ξ6 = (1,ρ6,1)LR, with ρ6 ⊢ ([2,3], [0,3]),

and ρi(i = 1,2, · · · ,6) are rough variables. We set δi = γi = 0.9, then Φ−1(1−δi) =
−1.28, i = 1,2.

Next, we apply the parallel tabu search algorithm based on the Fu-Ro simulation

to solve the nonlinear programming problem (5.70) with the fuzzy rough parameters.

Step 1. Set the move step h = 0.5 and the h neighbor N(x,h) for the present point x

is defined as follows,

N(x,h) =

{
y|
√

(x1− y1)2 +(x2− y2)2 +(x3− y3)2 ≤ h

}
.

The random move of point x to point y in its h neighbor along direction s is given by

ys = xs + rh,

where r is a random number that belongs to [0,1], s = 1,2,3.

Step 2. Give the step set H = {h1,h2, · · · ,hr} and randomly generate a feasible point

x0 checked by the fuzzy rough simulation. One should empty the Tabu list T (the list

of inactive steps) at the beginning.

Step 3. For each active neighbor N(x,h) of the present point x, where h ∈ H − T ,

a feasible random move that satisfies all the constraints in problem (5.70) is to be

generated.

Step 4. Construct the single objective function as follows,

f (x) = w1 f1 + w2 f2

where w1 +w2 = 1 and wi(i = 1,2) is predetermined by the decision maker. Compare

the f (x) of the feasible moves with that of the current solution by the fuzzy rough

simulation. If an augmenter in new objective function of the feasible moves exists, one

should save this feasible move as the updated current one by adding the corresponding

step to the Tabu list T and go to the next step; otherwise, go to the next step directly.

Step 5. Stop if the termination criteria are satisfied; other wise, empty T if it is full;

then go to Step 3. Here, we set the computation is determined if the better solution

doesn’t change again.
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We apply compute the programming problem (5.70) by the parallel tabu search

algorithm. The table 5.4 shows the results.

Table 5.4 The result computed by parallel TS algorithm at different weights

w1 w2 x1 x2 x3 H Gen

0.1 0.9 90.68 25.19 84.13 -2304.55 270

0.2 0.8 90.25 25.08 84.66 -2287.08 240

0.3 0.7 89.82 24.99 85.19 -2269.57 256

0.4 0.6 89.39 24.89 85.72 -2252.01 269

0.5 0.5 88.99 24.79 86.25 -2234.40 294

0.6 0.4 88.53 24.70 86.78 -2216.74 291

0.7 0.3 88.10 24.60 87.30 -2199.03 268

0.8 0.2 87.67 24.50 87.83 -2181.29 281

0.9 0.1 87.24 24.40 88.36 -2163.48 276

5.5 Fu-Ro DCM

This section provides Fu-Ro DCM in which the underling philosophy is based on

selecting the decision with the maximum chance to meet the event.

5.5.1 General Model for Fu-Ro DCM

A generally uncertain dependent chance model has the following form,

⎧
⎨
⎩

max [Ch{ fi(x,ξ )≤ fi}(αi), i = 1,2, · · · ,m]

s.t.

{
gr(x,ξ )≤ 0,r = 1,2, · · · , p

x ∈ X ,

(5.71)

where x is an n-dimensional decision vector, ξ is a fuzzy rough vector, the event ξ
is characterized by hk(x,ξ ) ≤ 0,k = 1,2, . . .q, and the fuzzy rough environment is

described by the fuzzy rough constraints gr(x,ξ ) ≤ 0,r = 1,2, . . . p. Here, the con-

straints are all certain. For uncertain constraints, we can deal with them by the tech-

nique of chance-constrained programming.

When the fuzzy rough variable degenerates to the single uncertain variable, we

obtain the following results.

Remark 5.8. If the fuzzy rough variable ξ degenerates to a fuzzy variable, for any

given αi,

Ch{ fi(x,ξ )≤ fi}(αi) = Cr{ fi(x,ξ )≤ fi}(αi), i = 1,2, · · · ,m.
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Thus, the problem (5.71) is equivalent to

⎧
⎨
⎩

max [Cr{ fi(x,ξ )≤ fi}(αi), i = 1,2, · · · ,m]

s.t.

{
gr(x,ξ )≤ 0,r = 1,2, · · · , p

x ∈ X ,

(5.72)

where ξ is a fuzzy variable, and this model is a standard fuzzy DCM.

Remark 5.9. If the fuzzy rough variable ξ degenerates to a rough variable, for any

given αi. This means

Ch{ fi(x,ξ )≤ fi}(αi) = Appr{ fi(x,ξ )≤ fi}(αi), i = 1,2, · · · ,m.

Thus, the problem (5.71) is converted into

⎧
⎨
⎩

max [Appr{ fi(x,ξ )≤ fi}(αi), i = 1,2, · · · ,m]

s.t.

{
gr(x,ξ )≤ 0,r = 1,2, · · · , p

x ∈ X ,

(5.73)

where ξ is a rough variable, and this model is a standard rough DCM.

If there are multiple events in the fuzzy rough environment, a typical formulation of

Fu-Ro DCM is given as follows,

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max

⎡
⎢⎢⎣

Ch{h1k(x,ξ )≤ 0, k = 1,2, · · · ,q1}
Ch{h2k(x,ξ )≤ 0, k = 1,2, · · · ,q2}
· · ·
Ch{hmk(x,ξ )≤ 0, k = 1,2, · · · ,qm}

⎤
⎥⎥⎦

s.t.

{
gr(x,ξ )≤ 0, r = 1,2, · · · , p

x ∈ X ,

(5.74)

where hik(x,ξ ) ≤ 0, k = 1,2, · · · ,qi represent events εi for i = 1,2, · · · ,m,

respectively.

Fuzzy rough dependent-chancegoal programming is employed to formulate fuzzy

rough decision systems according to the priority structure and target levels set by the

decision-maker,
⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max
l

∑
j=1

Pj

m

∑
i=1

(ui jd
+
i ∨0 + vi jd

−
i ∨0)

s.t.

⎧
⎪⎪⎨
⎪⎪⎩

Ch{h1k(x,ξ )≤ 0, k = 1,2, · · · ,qi}−bi = d+
i , i = 1,2, · · · ,m

bi−Ch{h1k(x,ξ )≤ 0, k = 1,2, · · · ,qi}= d−i , i = 1,2, · · · ,m
gr(x,ξ )≤ 0, r = 1,2, · · · , p

x ∈ X ,

(5.75)

where Pj is the preemptive priority factor which expresses the relative importance

of various goals, Pj ≫ Pj+1, for all j, ui j is the weighting factor corresponding

to positive deviation for goal i with priority j assigned, vi j is the weighting fac-

tor corresponding to negative deviation for goal i with priority jassigned, d+
i ∨0 is the



5.5 Fu-Ro DCM 349

positive deviation from the target of goal i, d−i ∨0 is the negative deviation from the

target of goal i, g j is a function in system constraints, bi is the target value according

to goal i, l is the number of priorities, m is the number of goal constraints, and p is

the number of system constraints.

5.5.2 Linear Fu-Ro DCM and ε-Constraint Method

Let’s still consider the linear model with Fu-Ro coefficients as follows,

⎧
⎨
⎩

max [ ˜̄cT
1 x, ˜̄cT

2 x, · · · , ˜̄cT
mx]

s.t.

{
eT

r x≤ br, r = 1,2, · · · , p

x ∈ X ,

(5.76)

where ˜̄ci is Fu-Ro vector, i = 1,2, · · · ,m.

5.5.2.1 Crisp Equivalent Model

Appr−Pos constrained multi-objective linearity model

Because there are Fu-Ro variables in the model (5.76), so the model doesn’t have

mathematical meaning. We can use its DCM on Appr−Pos to deal with it as follows

⎧
⎪⎪⎨
⎪⎪⎩

max [δ1,δ2, · · · ,δm]

s.t.

⎧
⎨
⎩

Appr{λ |Pos{ ˜̄cT
i (λ )x≤ fi} ≥ δi} ≥ γi, i = 1,2, · · · ,m

eT
r x≤ br, r = 1,2, · · · , p

x ∈ X ,

(5.77)

where ξ = (ξ1,ξ2, · · · ,ξn)
T is a fuzzy rough vector, γi is the given confidence level

and fi is the predetermined value.

We can use the following theorem to obtain the equivalent form of the crisp

dependent-chance model (5.77).

Theorem 5.12. Assume that ˜̄ci j is a Fu-Ro variable, for any λ ∈Λ , the fuzzy variable
˜̄ci j(λ ) is characterized by the following membership function

µ ˜̄ci j(λ )(t) =

⎧
⎨
⎩

L
(

ci j(λ )−t

αc
i j

)
, t ≤ ci j(λ ),αc

i j > 0

R
(

t−ci j(λ )

β c
i j

)
, t ≥ ci j(λ ),β c

i j > 0
λ ∈Λ (5.78)

where αc
i j,β

c
i j are positive numbers expressing the left and right spread of

˜̄ci j(λ ), reference function L,R : [0,1] → [0,1] with L(1) = R(1) = 0, and

L(0) = R(0) = 1 are non-increasing, continuous function. And (ci j(λ ))n×1 =
(ci1(λ ),ci2(λ ), · · · ,cin(λ ))T is a rough vector. It follows that ci(λ )T x = ([a,b], [c,d])
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(where c ≤ a < b ≤ d) is a rough variable and characterized by the following trust

measure function,

Appr{ci(λ )T x≥ t}=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if d ≤ t
d−t

2(d−c) , if b≤ t ≤ d
1
2 ( d−t

d−c
+ b−t

b−a
), if a≤ t < b

1
2 ( d−t

d−c
+ 1), if c≤ t ≤ a

1, if t ≤ c.

(5.79)

Then we have Appr{λ |Pos{ ˜̄ci(λ )Tx≥ fi} ≥ δi} ≥ γi if and only if

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

R−1(δi)≥ fi−d+2(d−c)γi

β cT
i x

, if b≤ fi−R−1(δi)β cT
i x≤ d

R−1(δi)≥ (d−c+b−a) fi−d(b−a)−b(d−c)+2(d−c)(b−a)γi

β cT
i x

, if a≤ fi−R−1(δi)β cT
i x < b

R−1(δi)≥ fi−d+2(d−c)(2γi−1)

β cT
i x

, if c≤ fi−R−1(δi)β cT
i x≤ a

R−1(δi)≥ fi−c

β cT
i x

, if fi−R−1(δi)β cT
i x≤ c,

(5.80)

where γi,δi ∈ [0,1] are predetermined confidence levels.

And accordingly we can get the crisp equivalent models in every cases.

Proof. By theorem 5.7, we have

⎧
⎪⎪⎨
⎪⎪⎩

fi ≤ d−2γi(d− c)+ R−1(δi)β
cT
i x, if b≤ fi−R−1(δi)β

cT
i x≤ d

fi ≤ d(b−a)+b(d−c)−2γi(d−c)(b−a)
d−c+b−a + R−1(δi)β cT

i x, if a≤ fi−R−1(δi)β cT
i x < b

fi ≤ d− (d− c)(2γi−1)+ R−1(δi)β
cT
i x, if c≤ fi−R−1(δi)β

cT
i x≤ a

fi ≤ c + R−1(δi)β cT
i x, if fi−R−1(δi)β cT

i x≤ c.

Because γi is a given confidence level between 0 and 1, this is no optimal solution for

L≥ d. We can discuss the following four cases.

Case 1: b≤ fi−R−1(δi)β cT
i x≤ d.

From the assumption we know that (d− c) > 0, so we have

fi ≤ d−2γi(d− c)+ R−1(δi)β cT
i x

⇔ R−1(δi)≥ fi−d+2(d−c)γi

β cT
i x

.

From the assumption, the reference function R(·) is non-increasing continuous func-

tion, so max δi is equivalent to min R−1(δi), so the problem (5.77) can be transformed

into ⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

max [ fi−d+2(d−c)γi

β cT
i x

]

s.t.

⎧
⎨
⎩

eT
r x≤ br, r = 1,2, · · · , p

x ∈ X

x≥ 0.
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Case 2: a≤ fi−R−1(δi)β cT
i x < b. We have

fi ≤ d(b−a)+b(d−c)−2γi(d−c)(b−a)
d−c+b−a + R−1(δi)β cT

i x

⇔ R−1(δi)≥ (d−c+b−a) fi−d(b−a)−b(d−c)+2(d−c)(b−a)γi

β cT
i x

,

so the problem (5.77) can be transformed into

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

max [ (d−c+b−a) fi−d(b−a)−b(d−c)+2(d−c)(b−a)γi

β cT
i x

]

s.t.

⎧
⎨
⎩

eT
r x≤ br, r = 1,2, · · · , p

x ∈ X

x≥ 0.

Case 3: c≤ fi−R−1(δi)β cT
i x≤ a. We have

fi ≤ d− (d− c)(2γi−1)+ R−1(δi)β cT
i x

⇔ R−1(δi)≥ fi−d+2(d−c)(2γi−1)

β cT
i x

,

so the problem (5.77) can be transformed into

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

max [ fi−d+2(d−c)(2γi−1)

β cT
i x

]

s.t.

⎧
⎨
⎩

eT
r x≤ br, r = 1,2, · · · , p

x ∈ X

x≥ 0.

Case 4: fi−R−1(δi)β cT
i x≤ c. We have

fi ≤ c + R−1(δi)β
cT
i x⇔ R−1(δi)≥

fi− c

β cT
i x

,

so the problem (5.77) can be transformed into

⎧
⎪⎪⎨
⎪⎪⎩

max [ fi−c

β cT
i x

]

s.t.

⎧
⎨
⎩

eT
r x≤ br, r = 1,2, · · · , p

x ∈ X

x≥ 0.

This completes the proof. ⊓⊔

Appr-Nec constrained multi-objective linearity model

Also we can use the DCM based on Appr−Nec to deal with model (5.76) as follows
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⎧
⎪⎪⎨
⎪⎪⎩

max [δ1,δ2, · · · ,δm]

s.t.

⎧
⎨
⎩

Appr{λ |Nec{ ˜̄cT
i (λ )x≤ fi} ≥ δi} ≥ γi, i = 1,2, · · · ,m

eT
r x≤ br, r = 1,2, · · · , p

x ∈ X ,

(5.81)

where ξ = (ξ1,ξ2, · · · ,ξn)
T is a fuzzy rough vector, γi is the given confidence level

and fi is the predetermined value.

We can use the following theorem to obtain the equivalent form of the crisp DCM

(5.81).

Theorem 5.13. Assume that ˜̄ci j is a fuzzy rough variable, for any λ ∈ Λ , the fuzzy

variable ˜̄ci j(λ ) is characterized by the following membership function

µ ˜̄ci j(λ )(t) =

⎧
⎨
⎩

L
(

ci j(λ )−t

αc
i j

)
, t ≤ ci j(λ ),αc

i j > 0

R
(

t−ci j(λ )

β c
i j

)
, t ≥ ci j(λ ),β c

i j > 0
λ ∈Λ , (5.82)

where αc
i j,β

c
i j are positive numbers expressing the left and right spread of

˜̄ci j(λ ), reference function L,R : [0,1] → [0,1] with L(1) = R(1) = 0, and

L(0) = R(0) = 1 are non-increasing, continuous function. And (ci j(λ ))n×1 =
(ci1(λ ),ci2(λ ), · · · ,cin(λ ))T is a rough vector. It follows that ci(λ )T x = ([a,b], [c,d])
(where c ≤ a < b ≤ d) is a rough variable and characterized by the following trust

measure function,

Appr{ci(λ )T x≥ t}=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if d ≤ t
d−t

2(d−c) , if b≤ t ≤ d
1
2 ( d−t

d−c
+ b−t

b−a
), if a≤ t < b

1
2 ( d−t

d−c
+ 1), if c≤ t ≤ a

1, if t ≤ c.

(5.83)

Then we have Appr{λ |Nec{ ˜̄ci(λ )Tx≥ fi} ≥ δi} ≥ γi if and only if

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L−1(1− δi)≤ − fi+d−2(d−c)γi

αcT
i x

,

if b≤ fi + L−1(1− δi)αcT
i x≤ d

L−1(1− δi)≤ −(d−c+b−a) fi+d(b−a)−b(d−c)−2(d−c)(b−a)γi

αcT
i x

,

if a≤ fi + L−1(1− δi)α
cT
i x < b

L−1(1− δi)≤ − fi+d−2(d−c)(2γi−1)

αcT
i x

,

if c≤ fi + L−1(1− δi)α
cT
i x≤ a

L−1(1− δi)≥ − fi+c

αcT
i x

,

if fi + L−1(1− δi)αcT
i x≤ c,

(5.84)

where γi,δi ∈ [0,1] are predetermined confidence levels.

And accordingly we can get the crisp equivalent models in every cases.
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Proof. By theorem 5.9, we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fi ≤ d−2γi(d− c)−L−1(1− δi)αcT
i x,

if b≤ fi + L−1(1− δi)αcT
i x≤ d

fi ≤ d(b−a)+b(d−c)−2γi(d−c)(b−a)
d−c+b−a

−L−1(1− δi)αcT
i x,

if a≤ fi + L−1(1− δi)αcT
i x < b

fi ≤ d− (d− c)(2γi−1)−L−1(1− δi)α
cT
i x,

if c≤ fi + L−1(1− δi)αcT
i x≤ a

fi ≤ c−L−1(1− δi)αcT
i x,

if fi + L−1(1− δi)αcT
i x≤ c.

Because γi is a given confidence level between 0 and 1, this is no optimal solution for

L≥ d. We can discuss the following four cases.

Case 1: b≤ fi + L−1(1− δi)αcT
i x≤ d.

From the assumption we know that αcT
i x > 0, so we have

fi ≤ d−2γi(d− c)−L−1(1− δi)α
cT
i x

⇔ L−1(1− δi)≤ − fi+d−2(d−c)γi

αcT
i x

.

From the assumption, the reference function L(·) is non-increasing continuous func-

tion, so max δi is equivalent to max L−1(1−δi), so the problem (5.77) can be trans-

formed into ⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

max { fi−d+2(d−c)γi

β cT
i x

}

s.t.

⎧
⎨
⎩

eT
r x≤ br, r = 1,2, · · · , p

x ∈ X

x≥ 0.

Case 2: a≤ fi + L−1(1− δi)αcT
i x < b. We have

fi ≤ d(b−a)+b(d−c)−2γi(d−c)(b−a)
d−c+b−a

−L−1(1− δi)αcT
i x

⇔ L−1(1− δi)≤ −(d−c+b−a) fi+d(b−a)−b(d−c)−2(d−c)(b−a)γi

αcT
i x

,

so the problem (5.81) can be transformed into

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

max [−(d−c+b−a) fi+d(b−a)−b(d−c)−2(d−c)(b−a)γi

αcT
i x

]

s.t.

⎧
⎨
⎩

eT
r x≤ br, r = 1,2, · · · , p

x ∈ X

x≥ 0.

Case 3: c≤ fi + L−1(1− δi)αcT
i x≤ a. We have

fi ≤ d− (d− c)(2γi−1)−L−1(1− δi)αcT
i x

⇔ L−1(1− δi)≤ − fi+d−2(d−c)(2γi−1)

αcT
i x

,
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so the problem (5.77) can be transformed into

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

max [− fi+d−2(d−c)(2γi−1)

αcT
i x

]

s.t.

⎧
⎨
⎩

eT
r x≤ br, r = 1,2, · · · , p

x ∈ X

x≥ 0.

Case 4: fi + L−1(1− δi)αcT
i x≤ c. We have

fi ≤ c−L−1(1− δi)α
cT
i x⇔ L−1(1− δi)≥

− fi + c

αcT
i x

,

so the problem (5.77) can be transformed into

⎧
⎪⎪⎨
⎪⎪⎩

max [− fi+c

αcT
i x

]

s.t.

⎧
⎨
⎩

eT
r x≤ br, r = 1,2, · · · , p

x ∈ X

x≥ 0.

This completes the proof. ⊓⊔

5.5.2.2 ε-Constraint Method

ε-constraint method was proposed by Haimes[5, 6] in 1971. The idea of this method

is that we choose a main referenced objective fi0, put the other objective functions

into the constraints.

Let’s consider the following multi-objective model:

{
min [ fi(x), i = 1,2, · · · ,m]
s.t. x ∈ X .

(5.85)

So we use the ε-constraint method, we can get the single objective model (5.86):

⎧
⎨
⎩

min fi0(x)

s.t.

{
fi(x)≤ εi, i = 1,2, · · · ,m, i 
= i0
c ∈ X ,

(5.86)

where the parameter εi is predetermined by the decision maker, it denote the threshold

value that the decision maker will accept, we denote the feasible domain of model

(5.86) as X1.

Theorem 5.14. If x̄ is the optimal solution of model (5.86), then x̄ is a weak efficient

solution of model (5.85).
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Proof. Let x̄ be the optimal solution of model (5.86), but it is not a weak efficient

solution of model (5.85), then there exists x′ ∈ X , such that for ∀ i ∈ {1,2, · · · ,m},
fi(x

′) < fi(x̄) holds. Since x̄ ∈ X1, fi(x̄)≤ εi (i = 1,2, · · · ,m, i 
= i0), So we have

fi(x
′) < fi(x̄)≤ εi, i = 1,2, · · · ,m, i 
= i0. (5.87)

We can obtain from (5.87) that x′ ∈ X1, and fi0(x
′) < fi0(x̄). This conflicts with that

x̄ is the optimal solution. ⊓⊔

Theorem 5.15. Let x̄ be a efficient solution of model (5.85), then there exists a pa-

rameter εi(i = 1,2, · · · ,m, i 
= i0), such that x̄ is the optimal solution of model (5.86).

Proof. Take εi = fi(x̄) (i = 1,2, · · · ,m, i 
= i0), by the definition of efficient solution,

x̄ is a optimal solution of model (5.86).

So the advantage of the ε-constraint method is that:

(1). Every efficient solution of model (5.85) can be get by properly choosing param-

eter εi(i = 1,2, · · · ,m, i 
= i0).
(2). The i0th objective are mainly guaranteed, and the other objectives are considered

meanwhile.

It is worth for us noticing that the parameter εi is important, we should carefully

choose it. If the value of every εi is too small, then it is possible that the model (5.86)

will have no solutions; otherwise, is the value of εi is too large, then besides the main

objective, the other objective will lose more with higher possibility. Commonly, we

can offer the decision maker f 0
i = min

x∈X
fi(x) (i = 1,2, · · · ,m) and the objective value

( f1(x), f2(x), · · · , fm(x))T of a certain feasible solution x. And then the decision maker

can decide εi. For more details, the readers can refer to Chankong [4].

5.5.2.3 Numerical Example

Example 5.8. Let’s still consider the Example 5.5. This time we use fuzzy rough de-

pendent chance constrained model to deal with.

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max
[
Ch{ f1(x,

˜̄ξ )≥ f̄1}(γ1),Ch{ f2(x,
˜̄ξ )≥ f̄2}(γ2)

]

s.t.

⎧
⎪⎪⎨
⎪⎪⎩

x1 + x2 + x3 ≤ 250

x1 + x2 + x3 ≥ 200

x1 + 4x2 + 2x3 ≤ 600

x1 ≥ 20,x2 ≥ 20,x3 ≥ 20,

f1 = ˜̄ξ1x1 + ˜̄ξ2x2 + ˜̄ξ3x3 and f2 = c1
˜̄ξ4x1 + c2

˜̄ξ5x2 + c3
˜̄ξ6x3,

where ˜̄ξ are Fu-Ro vectors, Ch{·} is the chance of the Fu-Ro event, γi, i = 1,2 is the

predetermined confidence level, f̄i, i = 1,2 are the ideal levels of every objectives.

Model (5.88) can be written as the following equivalent form (5.88) by introducing

δi, i = 1,2.
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max [δ1,δ2]

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ch{ ˜̄ξ1x1 + ˜̄ξ2x2 + ˜̄ξ3x3 ≥ f̄1}(γ1)≥ δ1

Ch{c1
˜̄ξ4x1 + c2

˜̄ξ5x2 + c3
˜̄ξ6x3 ≥ f̄2}(γ2)≥ δ2

x1 + x2 + x3 ≤ 250

x1 + x2 + x3 ≥ 200

x1 + 4x2 + 2x3 ≤ 600

x1 ≥ 20,x2 ≥ 20,x3 ≥ 20.

When we use the Appr− pos chance measure, model (5.88) and (5.88) can also be

written as (5.88).

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max [δ1,δ2]

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

App{λ |Pos{ ˜̄ξ1x1 + ˜̄ξ2x2 + ˜̄ξ3x3 ≥ f̄1} ≥ δ1} ≥ γ1

Appr{λ |Pos{c1
˜̄ξ4x1 + c2

˜̄ξ5x2 + c3
˜̄ξ6x3 ≥ f̄2} ≥ δ2} ≥ γ2

x1 + x2 + x3 ≤ 250

x1 + x2 + x3 ≥ 200

x1 + 4x2 + 2x3 ≤ 600

x1 ≥ 20,x2 ≥ 20,x3 ≥ 20.

The following is the relevant data:

c = (c1,c2,c3) = (1.2,0.8,1.5),
˜̄ξ1 = (ρ1,0.5,0.5)LR, with ρ1 ⊢ ([1,2], [0,3]),
˜̄ξ2 = (ρ2,2,2)LR, with ρ2 ⊢ ([2,3], [1,4]),
˜̄ξ3 = (ρ3,1,1)LR, with ρ3 ⊢ ([3,4], [2,5]),
˜̄ξ4 = (ρ4,1,1)LR, with ρ4 ⊢ ([0,1], [0,3]),
˜̄ξ5 = (ρ5,0.5,0.5)LR, with ρ5 ⊢ ([1,2], [0,3]),
˜̄ξ6 = (ρ6,0.5,0.5)LR, with ρ6 ⊢ ([2,3], [0,3]).

According to the knowledge of fuzzy variable and rough variable, we have that

˜̄ξ1x1 + ˜̄ξ2x2 + ˜̄ξ3x3

= (ρ1x1 + ρ2x2 + ρ3x3,0.5x1 + 2x2 + x3,0.5x1 + 2x2 + x3)LR,

c1
˜̄ξ4x1 + c2

˜̄ξ5x2 + c3
˜̄ξ6x3

= (ρ4c1x1 + ρ5c2x2 + ρ6c3x3,1.2x1 + 0.4x2 + 0.75x3,

1.2x1 + 0.4x2 + 0.75x3)LR.

(5.88)
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and

ρ1x1 = ([x1,2x1], [0,3x1]),
ρ2x2 = ([2x2,3x2], [x2,4x2]),
ρ3x3 = ([3x3,4x3], [2x3,5x3]),
ρ4c1x1 = ([0,c1x1], [0,3c1x1]),
ρ5c2x2 = ([c2x2,2c2x2], [0,3c2x2]),
ρ6c3x3 = ([2c3x3,3c3x3], [0,3c3x3]),

and

ρ1x1 + ρ2x2 + ρ3x3

= ([x1 + 2x2 + 3x3,2x1 + 3x2 + 4x3], [x2 + 2x3,3x1 + 4x2 + 5x3])
ρ4c1x1 + ρ5c2x2 + ρ6c3x3

= ([0.8x2 + 3x3,1.2x1 + 1.6x2 + 4.5x3], [0,3.6x1 + 2.4x2 + 4.5x3]).

Here we consider the case when b≤ fi−R−1(δi)β cT
i x≤ d, and readers can try another

three cases through the following method.

According to Propositions 5.7 and 5.8, the problem (5.63) is equivalent to the fol-

lowing multi-objective programming problem,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max [δ1,δ2]

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

R−1(δ1)≤ − f̄1+3x1+4x2+5x3−2γ1(3x1+3x2+3x3)
0.5x1+2x2+x3

R−1(δ2)≤ − f̄2+3.6x1+2.4x2+4.5x3−2γ2(3.6x1+2.4x2+4.5x3)
1.2x1+0.4x2+0.75x3

x1 + x2 + x3 ≤ 250

x1 + x2 + x3 ≥ 200

x1 + 4x2 + 2x3 ≤ 600

x1,x2,x3 ≥ 0.

(5.89)

Since reference function R(·) is non-increasing continuous function, so maxδi is

equal to minR−1(δi), and it is equal to min−R−1(δi) or model (5.90),

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max [F1(x),F2(x)]

s.t.

⎧
⎪⎪⎨
⎪⎪⎩

x1 + x2 + x3 ≤ 250

x1 + x2 + x3 ≥ 200

x1 + 4x2 + 2x3 ≤ 600

x1,x2,x3 ≥ 0,

(5.90)

where

F1(x) := − f̄1+3x1+4x2+5x3−2γ1(3x1+3x2+3x3)
0.5x1+2x2+x3

,

F2(x) := − f̄2+3.6x1+2.4x2+4.5x3−2γ2(3.6x1+2.4x2+4.5x3)
1.2x1+0.4x2+0.75x3

.

H0
i and H1

i (i = 1,2) are calculated as follows:

H1
1 =−599.91, H0

1 =−850.83, H1
2 =−751.47, H0

2 =−1126.83.



358 5 Fuzzy Rough Multiple Objective Decision Making

Then we can use the ε-constraint method to solve it. We suppose that the first objective

F1 is the main objective, and we set ε2 = 4, f̄1 =−800, f̄2 =−1000, and γ1 = γ2 = 0.9.

We can get the following model (5.91),

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max F1(x)

s.t.

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F2(x)≥ ε2

x1 + x2 + x3 ≤ 250

x1 + x2 + x3 ≥ 200

x1 + 4x2 + 2x3 ≤ 600

x1,x2,x3 ≥ 0.

(5.91)

After calculating the model (5.91), we obtain the follow efficient solution

(x1,x2,x3) = (26.09,113.04,60.87).

5.5.3 Non-linear Fu-Ro DCM and Fu-Ro Simulation Based

Parallel TS

For the Fu-Ro DCM, we adopted the Fu-Ro simulation 3 based parallel TS to solve.

5.5.3.1 Fu-Ro Simulation 3 for Chance

First we introduce the simulation for α-chance of Fu-Ro variables which is very im-

portant in Fu-Ro DCM.

Suppose that ξ is an n-dimensional fuzzy rough vector defined on the rough

space (Λ ,Δ ,A ,π), and f : Rn →Rm is a measurable function. For any real number

α ∈ (0,1], we design a fuzzy rough simulation to compute the α-chance Ch{ f (ξ )≤
0}(α). That is, we should find the supremum β̄ such that

Appr{λ ∈Λ |Cr{ f (ξ (λ )) ≤ 0} ≥ β̄} ≥ α. (5.92)

We sample λ 1,λ 2, · · · ,λ N from△ and λ 1,λ 2, · · · ,λ N from Λ according to the mea-

sure π . For any number v, let N(v) denote the number of λk satisfyingCr{ f (ξ (λ k))≤
0} ≥ v for k = 1,2, · · · ,N, and N(v) denote the number of λ k satisfying

Cr{ f (ξ (λ k))≤ 0} ≥ v, (5.93)

for k = 1,2, · · · ,N, whereCr{·}may be estimated by fuzzy simulation. Then we may

find the maximal value v such that

N(v)+ N(v)

2N
≥ α. (5.94)

This value is an estimation of β̄ .
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The procedure is as follows:

Step 1. Generate λ 1,λ 2, · · · ,λ N from△ according to the measure π .

Step 2. Generate λ 1,λ 2, · · · ,λ N from Λ according to the measure π .

Step 3. Find the maximal value v such that (5.94) holds.

Step 4. Return v.

Example 5.9. Suppose the Fu-Ro variables ξ1 and ξ2 are defined as follows:

ξ1 = (ρ1,ρ1 + 1,ρ1 + 2), with ρ1 = ([1,2], [0,3]),
ξ1 = (ρ2,ρ2 + 1,ρ2 + 2), with ρ1 = ([2,3], [1,4]).

After a run of Fu-Ro simulation 3 with 5000 cycles, we get that

Ch{ξ1 + ξ2}(0.9) = 0.72.

5.5.3.2 Parallel TS

We introduce the parallel tabu search algorithm to solve the multi-objective

problem.

TS is an efficient tool to solve the multi-objective problems. However, as the prob-

lem size gets larger, TS has some drawbacks:

(a) TS needs to compute the objective function for solution candidates in the neigh-

borhood around a solution at each iteration. The calculation is very time consuming in

large-scale problems. The large size problem often gives a large neighborhood even

though the neighborhood is defined as a set of solution candidates with the Hamming

distance equal to 1.

(b) The complicated non-linear optimal problem has many local minima in large

scale problems. That implies that one-point search does not give satisfactory solu-

tions due to the huge search space. Complicated optimal problems require solution

diversity.

In this section, the decomposition of the neighborhood accommodates drawback.

The neighborhood is decomposed into several sub-neighborhoods. A processor may

be assigned to each sub-neighborhood so that the best solution candidate is selected

independently in each sub-neighborhood. After selecting the best solution in each

sub-neighborhood, the best solution is eventually selected from the best solutions in

the sub-neighborhood. Also, the multiple Tabu lengths is proposed to deal with the

multi-objective problem with fuzzy rough parameters. TS itself has only one Tabu

length. Moreover, it is important to find out better solutions from different directions

rather than from only one direction for a longer period. Namely it is effective to make

the solution search process more diverse.

Many classifications of parallel TS algorithms have been proposed [326, 327].

They are based on many criteria: number of initial solutions, identical or different

parameter settings, control and communications strategies. We have identified two

main categories (Figure 5.12).
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Parallel TS algorithms

Domain decomposition Multiple TS tasks

Decomposition of the
search space

Decomposition of the
neighborhood

Independent Cooperative

same or different parameter setting

(initial solution, tabu list size, ...)

Fig. 5.12 Hierarchical classification of parallel TS strategies.

Domain decomposition: Parallelism in this class of algorithms relies exclusively on:

(1) The decomposition of the search space: the main problem is decomposed into

a number of smaller subproblems, each subproblem being solved by a different TS

algorithm [328].

(2)The decomposition of the neighborhood: the search for the best neighbor at each

iteration is performed in parallel, and each task evaluates a different subset of the

partitioned neighborhood [329, 330].

A high degree of synchronisation is required to implement this class of

algorithms.

Multiple tabu search tasks: This class of algorithms consists in executing multiple TS

algorithms in parallel. The di.erent TS tasks start with the same or di.erent parameter

values (initial solution, tabu list size, maximum number of iterations, etc.). Tabu tasks

may be independent (without communication)[331, 332] or cooperative. A coopera-

tive algorithm has been proposed in [327], where each task performs a given number

of iterations, then broadcasts the best solution. The best of all solutions becomes the

initial solution for the next phase.

Parallelizing the exploration of the search space or the neighborhood is problem-

dependent. This assumption is strong and is met only for few problems. The second

class of algorithms is less restrictive and then more general. A parallel algorithm that

combines the two approaches (two-level parallel organization) has been proposed in

[333].

We can extend this classification by introducing a new taxonomy dimension: the

way scheduling of tasks over processors is done. Parallel TS algorithms fall into three

categories depending on whether the number and/or the location of work (tasks, data)

depend or not on the load state of the parallel machine (Table 5.5):

Non-adaptive: This category represents parallel TS in which both the number of

tasks of the application and the location of work (tasks or data) are generated at

compile time (static scheduling). The allocation of processors to tasks (or data)
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Table 5.5 Another taxonomy dimension for parallel TS algorithms

Tasks or Data

Number Location

Non-adaptive Static Static

Semi-adaptive Static Dynamic

Adaptive Dynamic Dynamic

remains unchanged during the execution of the application regardless of the current

state of the parallel machine. Most of the proposed algorithms belong to this class.

An example of such an approach is presented in [334]. The neighborhood is parti-

tioned in equal size partitions depending on the number of workers, which is equal to

the number of processors of the parallel machine. In [330], the number of tasks gen-

erated depends on the size of the problem and is equal to n2, where n is the problem

size.

When there are noticeable load or power differences between processors, the

search time of the non-adaptive approach presented is derived by the maximum exe-

cution time over all processors (highly loaded processor or the least powerful proces-

sor). A significant number of tasks are often idle waiting for other tasks to complete

their work.

Semi-adaptive: To improve the performance of the parallel non adaptive TS algo-

rithms, dynamic load balancing must be introduced [333, 334]. This class represents

applications for which the number of tasks is fixed at compile-time, but the locations

of work (tasks, data) are determined and/or changed at run-time (as seen in Table 5.5).

Load balancing requirements are met in [334] by a dynamic redistribution of work

between processors. During the search, each time a task finishes its work, it proceeds

to a work-demand. Dynamic load balancing through partition of the neighborhood is

done by migrating data.

However, the parallelism degree in this class of algorithms is not related to load

variation in the parallel system: when the number of tasks exceeds the number of idle

nodes, multiple tasks are assigned to the same node. Moreover, when there are more

idle nodes than tasks, some of them will not be used.

Adaptive: A parallel adaptive program refers to a parallel computation with a dynam-

ically changing set of tasks. Tasks may be created or killed function of the load state

of the parallel machine. Di.erent types of load state dessimination schemes may be

used [337]. A task is created automatically when a processor becomes idle. When a

processor becomes busy, the task is killed. Next, let’s introduce the design about the

parallel adaptive TS introduced by Talbi [338].

The programming style used is the master/workers paradigm. The master task gen-

erates work to be processed by the workers. Each worker task receives a work from

the master, computes a result and sends it back to the master. The master/ workers

paradigm works well in adaptive dynamic environments because:
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(1) when a new node becomes available, a worker task can be started there,

(2) when a node becomes busy, the master task gets back the pending work which

was being computed on this node, to be computed on the next available node.

The master implements a central memory through which passes all communica-

tion, and that captures the global knowledge acquired during the search. The number

of workers created initially by the master is equal to the number of idle nodes in the

parallel platform. Each worker implements a sequential TS task. The initial solution

is generated randomly and the tabu list is empty. The parallel adaptive TS algorithm

reacts to two events (Figure 5.13):

Worker task 1
Worker task i Transition of the load state:

Idle to Busy

Fold

Master

Central memory

Best global solution

Intermediate solutions

(Short and long term

memory + iterations)

Central memory

Intermediate solution

Short-term and long-term memory + number of iterations

Best local solution

Worker task j

Local memory

Initial solution (randomly generated or intermediate solution)

Eventually (Short-term and long-term memory + number of iterations)

Best global solution

Unfold

Transition of the load

state: Busy to Idle

Local memory

Best local solution

Short and long memories

Number + Iterations

Flow of information

Event (load state transition)

Fig. 5.13 Architecture of the parallel adaptive TS.

Appransition of the load state of a node from idle to busy: If a node hosting a worker

becomes loaded, the master folds up the application by withdrawing the worker. The

concerned worker puts back all pending work to the master and dies. The pending

work is composed of the current solution, the best local solution found, the short-term

memory, the long-term memory and the number of iterations done without improving

the best solution. The master updates the best global solution if it’s worst than the best

local solution received.

Appransition of the load state of a node from busy to idle: When a node becomes

available, the master unfolds the application by starting a new worker on it. Before

starting a sequential TS, the worker task gets the values of the different parameters

from the master: the best global solution and an initial solution which may be an

intermediate solution found by a folded TS task, which constitutes a “good” initial

solution. In this case, the worker receives also the state of the short-term memory,
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the long-term memory and the number of iterations done without improving the best

solution.

The local memory of each TS task which defines the pending work is composed of

(Figure 5.13): the best solution found by the task, the number of iterations applied, the

intermediate solution and the adaptive memory of the search (short-term and long-

term memories). The central memory in the master is then composed of (Figure 5.13):

the best global solution found by all TS tasks, the dierent intermediate solutions with

the associated number of iterations and adaptive memory.

5.5.3.3 Numerical Example

Example 5.10. Consider the following problem,

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

max f1(x) = Ch{ ˜̄ξ1x1 + ˜̄ξ2x2 + ˜̄ξ3x3 ≥ f1}(α)

max f2(x) = Ch{
√

c1
˜̄ξ4x1 + c2

˜̄ξ5x2 + c3
˜̄ξ6x3 ≥ f2}(β )

s.t.

⎧
⎪⎪⎨
⎪⎪⎩

x1 + x2 + x3 ≤ 250

x1 + x2 + x3 ≥ 200

x1 + 4x2 + 2x3 ≤ 600

x1 ≥ 20,x2 ≥ 20,x3 ≥ 20,

where c = (c1,c2,c3) = (1.2,0.8,1.5),

˜̄ξ1 = (ρ1,1,1), with ρ1 ⊢ ([1,2], [0,3]),
˜̄ξ2 = (ρ2,1,1), with ρ2 ⊢ ([2,3], [1,4]),
˜̄ξ3 = (ρ3,1,1), with ρ3 ⊢ ([3,4], [2,5]),
˜̄ξ4 = (ρ4,1,1), with ρ4 ⊢ ([0,1], [0,3]),
˜̄ξ5 = (ρ5,1,1), with ρ5 ⊢ ([1,2], [0,3]),
˜̄ξ6 = (ρ6,1,1), with ρ6 ⊢ ([2,3], [0,3]),

and ˜̄ξi(i = 1,2, · · · ,6) are Fu-Ro variables. We set α = β = 0.9, f1 = 1500, and

f2 = 1300.

Next, we apply the tabu search algorithm based on the fuzzy rough simulation to

solve the nonlinear programming problem (5.10) with the fuzzy rough parameters.

Step 1. Set the move step h = 0.5 and the h neighbor N(x,h) for the present point x

is defined as follows,

N(x,h) =

{
y|
√

(x1− y1)2 +(x2− y2)2 +(x3− y3)2 ≤ h

}
.

The random move of point x to point y in its h neighbor along direction s is given by

ys = xs + rh,

where r is a random number that belongs to [0,1], s = 1,2,3.
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Step 2. Give the step set H = {h1,h2, · · · ,hr} and randomly generate a feasible point

x0 ∈ X . One should empty the Tabu list T (the list of inactive steps) at the beginning.

Step 3. For each active neighbor N(x,h) of the present point x, where h ∈ H − T ,

a feasible random move that satisfies all the constraints in problem (5.10) is to be

generated.

Step 4. Construct the single objective function as follows,

f (x,ξ ) = w1Ch{ ˜̄ξ1x1 + ˜̄ξ2x2 + ˜̄ξ3x3 ≥ f1}(α)

+w2Ch{c1
˜̄ξ4x1 + c2

˜̄ξ5x2 + c3
˜̄ξ6x3 ≥ f2}(β ),

where w1 + w2 = 1. Compare the f (x,ξ ) of the feasible moves with that of the cur-

rent solution by the fuzzy rough simulation. If an augmenter in new objective function

of the feasible moves exists, one should save this feasible move as the updated cur-

rent one by adding the corresponding step to the Tabu list T and go to the next step;

otherwise, go to the next step directly.

Step 5. Stop if the termination criteria are satisfied; other wise, empty T if it is full;

then go to Step 3. Here, we set the computation is determined if the better solution

doesn’t change again.

Table 5.6 The result computed by parametric TS algorithm

ω1 ω2 ω3 ω4 ω5 x1 x2 x3 x4 x5

0.40 0.15 0.15 0.15 0.15 50.48 59.14 80.17 50.12 60.00

0.15 0.40 0.15 0.15 0.15 50.47 59.15 80.17 50.12 60.00

0.15 0.15 0.40 0.15 0.15 50.47 59.14 80.18 50.12 60.00

0.15 0.15 0.15 0.40 0.15 50.47 59.14 80.17 50.13 60.00

0.15 0.15 0.15 0.15 0.40 50.48 59.14 80.17 50.12 60.00

5.6 Application to Integrated Logistics Network Design Problem

Here we consider the problem proposed in section 5.1, and we consider the demand

and the amount of the collected recycling packages as triangular fuzzy variables (ξ−
l,ξ ,ξ + r) from the view point of credibility theory, in which the value of ξ is a

rough variable ([a,b], [c,d]), and l,r are the left spread and the right spread of the

triangular fuzzy variable. Therefore, a logistics network design problem with fuzzy

rough parameters appears. In this case, a fuzzy rough variable can be used to deal with

this kind of combined uncertainty of fuzziness and roughness. Building the model and

solving the problem of logistics network design in a fuzzy rough environment is a new

area of research interest.
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5.6.1 Modelling for Integrated Reuse Logistics Network under

Fuzzy Rough Environment

In the following text of this section, we present the details of modelling for the reuse

integrated logistics network.

5.6.1.1 Notation

The symbols of the proposed model are defined as follows:

(1) Indices:

i: the location of producers (i = 1,2, · · · , I),

j: the location of distributors (i = 1,2, · · · , I),

k: the location of collectors/wholesalers (i = 1,2, · · · , I),

t: the alternative place of recyclers (i = 1,2, · · · , I).

(2) Variables:

xPD
i j : the quantity of products from producer i to distributor j,

xDC
jk : the quantity of products from distributor j to wholesaler k,

xCR
kt : the quantity of packages from collector k to recycler t,

xCD
k j : the quantity of packages from collector k to distributor j,

xRP
ti : the quantity of packages from recycler t to producer i,

xDP
ji : the quantity of packages from distributor j to producer i,

xi: the quantity of new packages bought by producer i,

yR
t : 0-1 variable, whether the alternative recycler t will be chosen or not, 0 denotes

we don’t choose, 1 denotes we choose it,

yD
j : 0-1 variable, whether the distributor j will be expanded or not, 0 denotes we don’t

expand, 1 denotes we expand it,

yDC
jk : 0-1 variable, whether the distributor j will send products to wholesaler k, 0 de-

notes will not send, 1 denotes will send.

(3) Fu-Ro parameters:
¯̃Dk denote the demand of wholesaler K,
¯̃Rk denote the quantity of the recycling packages collected by collector k,
¯̃T Lim
k : the time limit of wholesaler k.

(4) Certain parameters:

Cab: the unit transport cost from a to b (a and b could denote producer, distributor,

recycling center or wholesaler),

Tab: the transport time from a to b,

V R
t : the variable cost of recycler t processing unit package,

V D
j : the variable cost of expanded distributor j processing unit package,

T R
t : the time of recycler t processing unit package,

T D
j : the time of expanded distributor j processing unit package. FR

t : the fixed cost of

building a recycler t,

FD
j : the fixed cost of expanding a distributor j,

QR
t : the capacity of recycler t processing packages,

QD
j : the capacity of expanded distributor j processing packages,
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αR
t : the discard proportion after recycler t processing packages,

αD
j : the discard proportion after expanded distributor j processing packages,

NR: the ceiling number of recyclers,

ND: the ceiling number of expanded distributors,

U l
k: the unit default cost when the demand of wholesaler k are not met,

Ue
k : the processing cost when the supply to wholesaler k are excessive,

Pi: the variable cost of producer i buying unit package,

UD
k : the disposal cost when the time limits are not satisfied.

5.6.1.2 Modelling

We built the following mathematical model according to the conceptual model.

The first objective is minimizing total costs. After analysis, we conclude that there

are six parts which should be included in this objective, as follows: The first part of

the objective is the total transportation cost,

[∑
i∈I

∑
j∈J

xPD
i j

¯̃Ci j + ∑
j∈J

∑
k∈K

xDC
jk

¯̃C jk + ∑
k∈K

∑
t∈T

xCR
kt

¯̃Ckt

+ ∑
t∈T

∑
i∈I

xRP
ti

¯̃Cti + ∑
k∈K

∑
j∈J

xCD
k j

¯̃Ck j + ∑
j∈J

∑
i∈I

xDP
ji

¯̃C ji]1.

The second part is the total fixed cost of building recycling centers and expanding the

distribution centers,

[∑
t∈T

yR
t FR

t + ∑
j∈J

yD
j FD

j ]2.

The third part is the total variable cost of processing packages,

[∑
k∈K

∑
t∈T

xCR
kt V R

t + ∑
k∈K

∑
j∈J

xCD
k j V D

j ]3.

The fourth part is the cost of buying new packages,

[∑
j∈J

xiPi]4.

The fifth part is the cost when there exists an imbalance between supply and demand,

when the supply is less than the demand, there will occur default costs, or when the

supply is more than the demand, the redundant products will be processed at a cost,

[∑
k∈K

U l
k max( ¯̃Dk−∑

j∈J

xDC
jk ,0)+ ∑

k∈K

Ue
k max(∑

j∈J

xDC
jk − ¯̃Dk,0)]5.

The sixth part is the cost of disposing of the un-useable packages,

[ ∑
k∈K

∑
t∈T

xCR
kt αR

t UP + ∑
k∈K

∑
j∈J

xCD
k j αD

j UP]6.
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However, minimizing total costs is not the only objective of a logistics company.

Shortening the time taken in the distribution and recycling is also required. Hence

the second objective is to minimize total time.

TotalTime = ∑
t∈T

∑
k∈K

¯̃Tkty
R
t + ∑

t∈T
(T R

t ∑
k∈K

xCR
kt )+ ∑

i∈I
∑

t∈T

¯̃Ttiy
R
t

∑
j∈J

∑
k∈K

¯̃Tk jy
D
j + ∑

j∈J
(T D

j ∑
k∈K

xCD
k j )+ ∑

i∈I
∑
j∈J

¯̃Tjiy
D
j .

Now we can obtain the objectives function as shown in (5.95):

minC =

∑
i∈I

∑
j∈J

xPD
i j

¯̃Ci j + ∑
j∈J

∑
k∈K

xDC
jk

¯̃C jk + ∑
k∈K

∑
t∈T

xCR
kt

¯̃Ckt + ∑
t∈T

∑
i∈I

xRP
ti

¯̃Cti

+ ∑
k∈K

∑
j∈J

xCD
k j

¯̃Ck j + ∑
j∈J

∑
i∈I

xDP
ji

¯̃C ji + ∑
t∈T

yR
t FR

t + ∑
j∈J

yD
j FD

j + ∑
k∈K

∑
t∈T

xCR
kt V R

t

+ ∑
k∈K

∑
j∈J

xCD
k j V D

j + ∑
j∈J

xiPi + ∑
k∈K

U l
k max( ¯̃Dk− ∑

j∈J
xDC

jk ,0)

+ ∑
k∈K

Ue
k max( ∑

j∈J
xDC

jk − ¯̃Dk,0)+ ∑
k∈K

∑
t∈T

xCR
kt αR

t UP + ∑
k∈K

∑
j∈J

xCD
k j αD

j UP,

minT =

∑
t∈T

∑
k∈K

¯̃Tkty
R
t + ∑

t∈T
(T R

t ∑
k∈K

xCR
kt )+ ∑

i∈I
∑

t∈T

¯̃Ttiy
R
t

∑
j∈J

∑
k∈K

¯̃Tk jy
D
j + ∑

j∈J
(T D

j ∑
k∈K

xCD
k j )+ ∑

i∈I
∑
j∈J

¯̃Tjiy
D
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(5.95)

These two objectives are subject to the following constraints.

(1) Balance constraints:

For every node in Figure 2, the inflow and the outflow must be balanced, such that

the total recycling quantity of the recycling centers and expanded distribution centers

should be less than or equal to the quantity of used package collected by the collec-

tors. Also the quantity discarded from the recycling center (expanded distribution

center) to the disposal place should be less than or equal to the quantity discarded of

the recycling center (expanded distribution center), and the total quantity of bottles

including recycled bottles and new bottles should be used to produce new products.

For one distribution center, the inflow should be equal to the outflow, so we have the

following (5.96-5.100) constraints,

∑
t∈T

xCR
kt + ∑

j∈J

xCD
k j ≤ ¯̃Rk,k ∈ K, (5.96)

∑
i∈I

xRP
ti ≤ (1−αR

t ) ∑
k∈K

xCR
kt , t ∈ T, (5.97)

∑
i∈I

xDP
ji ≤ (1−αD

j ) ∑
k∈K

xCD
k j , j ∈ J, (5.98)

∑
t∈T

xRP
ti + ∑

j∈J

xDP
ji + xi = ∑

j∈J

xPD
i j , i ∈ I, (5.99)
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∑
j∈J

xPD
i j = ∑

k∈K

xDC
jk , j ∈ J. (5.100)

(2) Capacity constraints:

There are some limits on capacity of the recycling centers and the expanded distri-

bution centers, so we have constraint (5.101) and (5.102),

∑
k∈K

xCR
kt ≤ yR

t QR
t ,t ∈ T, (5.101)

∑
k∈K

xCD
k j ≤ yD

j QD
j , j ∈ J. (5.102)

(3) Number constraints:

Before setting up a network, because of capital or other reasons, the decision maker

will give the numbers of recycling centers and expanded distribution centers, so we

have the following (5.103) and (5.104) constraints,

∑
t∈T

yR
t ≤ NR

, (5.103)

∑
j∈J

yD
j ≤ ND. (5.104)

(4) Time constraints:

For every wholesaler, the total transport time is required to be under a time limit, so

we have constraint (5.105),

∑
j∈J

¯̃TjkyDC
jk ≤ T Lim

k ,k ∈ K. (5.105)

(5) Logical constraints:

In order to describe some non-negative variables and 0-1 variables in the model, we

present constraint (5.106) and (5.107),

xPD
i j ,xDC

jk ,xCR
kt ,xCD

k j ,xRP
ti ,xDP

ji ,xi ≥ 0, i ∈ I, j ∈ J,k ∈ K, t ∈ T, (5.106)

yR
t ,yD

j ,yDC
jk = {0,1}, j ∈ J,k ∈ K,t ∈ T. (5.107)

5.6.2 Uncertain Linear Multi-objective Model

It’s obvious that the above model is non-linear, because the fifth and the seventh part

exist in the first objective function. In order to simplify it, we changed it to an uncertain

linear multi-objective model by adding the constraints (5.108)-(5.110).

e−k = ¯̃Dk−∑
j∈J

xDC
jk ,k ∈ K, (5.108)
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e+
k = ∑

j∈J

xDC
jk − ¯̃Dk,k ∈ K, (5.109)

e−k ,e+
k ≥ 0. (5.110)

We proposed the Fu-Ro linear multi-objective model for integrated logistics as

follows:

minC =
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s.t.
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ti ,xDP
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(5.111)

The model we proposed is actually a Fu-Ro two-objective linear model, and both

of the two objectives are needed for optimization. These two objectives are un-

comparable, and there exists inconsistency between them. When we want to re-

duce the transportation time, but have a large number of recycling centers, we could
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reduce the number of recycling centers, so it will reduce the cost of building these

centers, but the transportation time will inevitably rise.

Since the model (5.111) is including Fu-Ro variables, we need to use the Fu-Ro ex-

pected value operator to handle the objective functions and Fu-Ro chance-constrained

operator to deal with the constraints.

5.6.3 Application to Beer Company

The beer company Lan Ma was set up in the year 2000 and is located in Xi’an in

China’s Shanxi province and it has developed successfully for the years of its opera-

tion. This enterprise has 2 production plants in Xian Yang and 3 distribution centers,

each with the responsibility for a section of Shanxi - Guan Zhong, Shan Bei and Shan

Nan. There are 5 main wholesalers and they are located in Wei Nan, Shang Luo, Han

Zhong, An Kang and Yan An.

This company wants to establish integrated logistics through building up

recycling centers or expanding the existing distribution centers, and integrate the for-

ward logistics and reverse logistics to a loop logistics network which has the abilities

of production, distribution, recycle and reuse. So we used this model to help the com-

pany to program an integrated logistics network.

At present, according to the survey results, there are four options which could

be used to establish new recycling centers, and all three existing distribution cen-

ters could be expanded. The alternative locations are Zhou Zhi, Pu Cheng, Zha

Shui and Hua Xian. The largest processing capacities of these 4 places are 20000,

23000, 15000, and 27000. The fixed construction costs are 12.5, 16.5, 10 and

19.5(*10000RMB). We suppose the discard proportions are all 0.2 and they want to

build 3 recycling centers at the most. We also could expand the 3 distribution centers to

process the recycled packages, the expanding costs are 6.6, 5.4 and 7(*10000RMB),

their capacities are 11000, 9000, and 12000, the discard proportions are all 0.2. The

company has requested that we expand 2 at the most. The price of a new bottle is

0.7(RMB). The other data are as follows.

Table 5.7 Amount of recycling and demand

Wholesaler Recycling amount Demand

Wein (ξ1,100,100)LR , (ξ6,100,100)LR ,

ξ1 ⊢([8000,10000],[8500,9500]) ξ6 ⊢([10000,12000],[10500,11500])

Shangl (ξ2,50,50)LR, (ξ7,100,100)LR ,

ξ2 ⊢([6000,7000],[6250,6750]) ξ7 ⊢([7000,8000],[7250,7750])

Hanzh (ξ3,100,100)LR , (ξ8,100,100)LR ,

ξ3 ⊢([12000,14000],[12500,13500]) ξ8 ⊢([14000,16000],[14500,15500])

Ank (ξ4,50,50)LR, (ξ9,100,100)LR ,

ξ4 ⊢([10000,11000],[10250,10750]) ξ9 ⊢([11000,13000],[11500,12500])

Yan an (ξ5,100,100)LR , (ξ10,100,100)LR ,

ξ5 ⊢([16000,18000],[16500,17500]) ξ10 ⊢([18000,20000],[18500,19500])
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Transport cost, and time are triangular fuzzy numbers with the left and the right

spread 0.02 and 0.1, the middle value of the triangular fuzzy variable are rough vari-

ables which shown in following Table. 5.9

We introduced the above data of the company into the proposed model, and got

the integrated logistics network model for this Lan Ma beer company. After solv-

ing it, we can provide some advice to help the leader make strategic decisions about

constructing the integrated logistics network system.

Table 5.8 Default processing cost and time limit (h) of every wholesaler

Wholesaler Wein Shangl Hanzh Ank Yan an

Cost of short supply 1.2 1 1.1 1 1.5

Cost of excessive supply 1.8 1.9 1.6 1.3 1.5

Time limit 4 4 3.5 4 3.5

Default cost 3000 3500 4000 3000 4500

Table 5.9 The expected value of transport cost, and time (h) from collectors to recyclers

Wein Shangl Hanzh Ank Yan an

Zhouzh 0.1 0.12 0.1 0.05 0.12

2.2 3.8 4.2 2.7 2.9

Puch 0.13 0.15 0.06 0.11 .08

2.9 3.0 4.0 4.5 3.3

Zhash 0.11 0.15 0.08 0.13 0.2

3.5 4.5 2.5 5.0 2.9

Huax 0.12 0.1 0.19 0.1 0.11

2.8 3.2 4.5 4.0 3.0

Table 5.10 The expected value of transport cost, and time (h) from collectors to distributors

(recycled bottles)

Wein Shangl Hanzh Ank Yan an

Guanzh 0.08 0.15 0.06 0.12 0.10

3.5 4.0 2.5 2.0 4.5

Shanb 0.10 0.08 0.10 0.12 0.08

2.5 2.0 4.5 3.5 5.0

Shann 0.11 0.10 0.08 0.13 0.11

4.0 2.5 3.0 3.5 3
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Table 5.11 The expected value of transport cost, and time (h) from distributors to wholesalers

(products)

Wein Shangl Hanzh Ank Yan an

Guanzh 0.23 0.31 0.15 0.17 0.3

3.5 4.0 2.5 2.0 4.5

Shanb 0.17 0.2 0.15 0.18 0.27

2.5 2.0 4.5 3.5 5.0

Shann 0.13 0.25 0.22 0.18 0.26

4.0 2.5 3.0 3.5 3

Table 5.12 Transport cost and time from producers to distributors (recycled bottles)

Guanzh Shanb Shann

Plant 1 0.1 0.08 0.15

2.5 1.0 2.0

Plant 2 0.15 0.2 0.08

2.0 2.5 1.5

Table 5.13 Transport cost and time from distributors to producers (products)

Guanzh Shanb Shann

Plant 1 0.3 0.25 0.35

2.5 1.0 2.0

Plant 2 0.35 0.4 0.2

2.0 2.5 1.5

Table 5.14 The expected value of transport cost from recyclers to producers

Zhouzh Puch Zhash Huax

Plant 1 0.17 0.13 0.12 0.15

1.5 2.0 2.5 1.5

Plant 2 0.1 0.16 0.11 0.08

2.5 1.0 2.0 2.5
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Table 5.15 Processing cost, processing time (s) and disposal cost of recyclers

Zhouzh Puch Zhash Huax

Processing cost 0.25 0.2 0.23 0.18

Processing time 3.0 2.5 3.5 2.0

Disposal cost 0.2 0.15 0.18 0.13

Table 5.16 The expected value of processing cost, time (s) and disposal cost of distributors

Guanzh Shanb Shann

Processing cost 0.28 0.22 0.25

Processing time 5.0 6.0 4.0

Disposal cost 0.2 0.15 0.18

We use the expected value operator and the chance operator to tackle the fuzzy

rough objectives and the fuzzy rough constraint, and used the Fu-Ro simulation-

based GA to solve this problem under the predetermined confidence level (0.8, 0.8);

the corresponding parameters are 100 genetic generation iteration, the population of

every generation is 10, the crossover rate 0.3 and the mutation rate is 0.2.

After a run of a genetic algorithm computer program, we obtained the follow-

ing satisfactory solution: the optimal value of the objective function is Z*=456253

(RMB), T*=2200.3 (hour) and the value of the corresponding location variables are

in Table. 5.17.

Table 5.17 Location decision

Zhouzh Puch Zhash Huax Guanzh Shanb Shann

0 1 1 0 1 1 0

Then we could do some sensitivity analysis: we adjusted the weights of these two

objectives, and the solutions of the integrated logistics network problem are shown

in Table. 5.18.

It shows that small changes in the weights do not significantly influence the lo-

cation results, and the result is satisfactory to the decision maker of this company.

On all accounts, we offered this strategy for Lan Ma beer company - establish the

recycling centers in Pu Cheng and Zha Shui, and expand the Guan Zhong and Shan

Bei distribution centers. If we consider a given budget, with regard to the number of

recycling centers built and the distribution centers expanded, we make the following

observations. First, when the location cost factor increases, i.e., the recycling center
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Table 5.18 The results of TS (Appr=0.8, Pos=0.8)

wC wT C∗ T ∗ Zhouzh Puch Zhash Huax Guanzh Shanb Shann

0.7 0.3 455353 2289.5 0 1 1 0 1 1 0

0.6 0.4 456253 2200.3 0 1 1 0 1 1 0

0.5 0.5 456696 2186.3 0 1 1 0 1 1 0

location costs increase relative to other costs, the number of opened recycling cen-

ters decreases. Second, when the transportation costs between facilities increase, the

number of opened recycling centers also decreases. However, since the total cost and

time are often conflicting, the handling of multi-objective programming is dependent

on the decision-maker’s objective. Generally, the solution to this problem often is a

balance of multiple objectives.



Chapter 6

Methodological System for FLMODM

Fuzzy-like multiple objective decision making (FLMODM) considers multiple ob-

jective decision making under fuzzy-like environments. In this book, we focus on

fuzzy-like uncertainty, and develop a series of multiple objective decision making

problems:

- Multiple objective decision making under a fuzzy random environment;

- Multiple objective decision making under a bifuzzy environment;

- Multiple objective decision making under a fuzzy rough environment.

In FLMODM, we use the following fuzzy-like variables to describe the coeffi-

cients, and consider the fuzzy-like environments:

- Fu-Ra variable;

- Fu-Fu variable;

- Fu-Ro variable.

For the general MODM models with fuzzy-like variables, the meaning is not clear,

we have to adopt some philosophy to deal with them, and the following six kinds of

fuzzy-like models are proposed:

- Expected value model (EVM);

- Chance constrained model (CCM);

- Dependent chance model (DCM);

- Expectation model with chance constraints (ECM);

- Chance constrained model with expectation constraints (CEM);

- Dependent chance model with expectation constraints (DEM).

The above fuzzy-like model can not be solved directly. So in some special situ-

ations, we can use mathematical tools to transform the FLMODM model into crisp

equivalent models. For the above fuzzy-like models, we can design a hybrid algorithm

to get approximate solutions.

FLMODM has been applied to optimization problems with fuzzy-like variables,

for example, the portfolio selection problem [415, 403], supply chain management

problem, inventory problem [343, 3], project selection [184], allocation problem

[413], the supplier selection problem [402], scheduling problem [404, 405], trans-

portation problem [406], vehicle routing problem [407], location-allocation [408] and

so on.

J. Xu and X. Zhou: Fuzzy-Like Multiple Objective Decision Making, STUDFUZZ 263, pp. 375–395.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2011



376 6 Methodological System for FLMODM

6.1 Motivation of Researching FLMODM

Why should we research the FLMODM? Let us recall the two foundations: multiple

objective decision making(MODM) and fuzzy set theory, see Figure 6.1.

Fig. 6.1 Development of FLMODM

MODM is to find an optimal decision while considering the constraints of limited

resources. The research of the certain MODM can be traced back in the 18th century.

Franklin introduced how to coordinate the multiple objective problems in 1772. Then

Cournot proposed the multiple objective model from an economic point of view in

1836. Pareto [423] first introduced multiple objective decision making models from

the mathematical point of view in 1896. Later, Arrow [424] proposed the concept of

efficient points in 1953. MODM has gradually been developed since this time.

Generally speaking, there are five elements in a MODM problem:

(1) Decision variable: x = (x1,x2, · · · ,xn)
T.

(2) Objective function: f (x) = ( f1(x), f2(x), · · · , fm(x)), m≥ 2.

(3) Feasible solution set: X = {x ∈ Rn|gi(x) ≤ 0, i = 1,2, · · · , p,hr(x) = 0,r =
1,2, · · · ,q}.
(4) Preference relation: In the image set f (X) = { f (x)|x ∈ X}, there is a certain bi-

nary relation which could reflect the preference of the decision maker.

(5) Definition of the solution. Define the optimal solution of f in X based on the

known preference relation.

So a MODM problem can be described as follows:

⎧
⎨
⎩

min f (x) = [ f1(x), f2(x), · · · , fm(x)]

s.t.

{
gi(x)≤ 0, i = 1,2, · · · , p

hr(x) = 0,r = 1,2, · · · ,q.

The fuzzy set was introduced by L. A. Zadeh [9] in 1965, which is a class of

objects with a continuum of grades of membership ranging from 0 to 1. Fuzzy set

theory has been applied to operations research, management science, control theory,

artificial intelligent expert system and so on. In 1970, Bellman and Zadeh proposed
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the basic model for fuzzy decision making based on the MODM [416]. A general

fuzzy MODM model can be written as follows:

⎧
⎨
⎩

min f (x, ã) = [ f1(x, ã1), f2(x, ã2), · · · , fm(x, ãm)]

s.t.

{
gi(x, b̃i)≤ 0, i = 1,2, · · · , p

hr(x, c̃r) = 0,r = 1,2, · · · ,q,

where ãk(k = 1,2, · · · ,m), b̃i(i = 1,2, · · · , p), c̃r(r = 1,2, · · · ,q) are the vectors of

fuzzy coefficients. And it should be noted that “≤” denote “basically less than or

equal to”, “=” denote “basically equal to”, and “min” denote “minimize the value of

the objective functions as much as possible”.

Actually, in order to make a satisfactory decision in practice, an important prob-

lem is to determine the type and accuracy of information. If complete information

is required in the decision making process, it will mean the expenditure of some ex-

tra time and money. If incomplete information is used to make a decision quickly,

then it is possible to take nonoptimal action. In fact, we cannot have complete ac-

curacy in both information and decision because the total cost is the sum of the cost

spent for running the target system and the cost spent for getting decision information.

Since we have to balance the advantage of making better decisions against the disad-

vantages of getting more accurate information, incomplete information will almost

surely be used in the real-life decision process, and uncertain programming is an im-

portant tool in dealing with the decision making with imperfect information. Among

all of the uncertain programming, the fuzzy programming approach [194, 410, 412]

is useful and efficient in handling a programming problem with uncertainty. While

classical and random/stochastic programming approaches may require a lot of cost

to obtain the exact coefficient value or distribution, the fuzzy programming approach

does not [411]. From this aspect, fuzzy programming is more advantageous when the

coefficients cannot be specified, but vaguely estimated by human experiences.

In 1978, H. Kwakernaak [215] combined randomness with fuzziness and initial-

ized the concept of the Fu-Ra variable. If the value of a fuzzy variable ξ is a random

variable, then ξ is called Fu-Ra variable. In 1971, Zadeh [11] proposed the level-2

fuzzy set which is the basis of the Fu-Fu variable, and Gottwald, Dubois [21, 32]

developed it. If the value of a fuzzy variable ξ is also a fuzzy variable, then ξ is

called the Fu-Fu variable. Similarly, if the value of fuzzy variable ξ is a rough vari-

able, then ξ is called the Fu-Ro variable. In realistic problems, the information may

be described as the Fu-Ra variable, Fu-Fu variable or Fu-Ro variable. For example,

we already know that some information is the random variable, fuzzy variable and

rough variable, and when we want to integrate the experiences and the knowledge of

human beings, it’s a good way to add some tolerance interval to the former random

variable, fuzzy variable or rough variable, and thus Fu-Ra variable, Fu-Fu variable

or Fu-Ro variable will exist. So how to deal with the MODM with those fuzzy-like

coefficients? It is very necessary and important for us to research fuzzy-like multiple

objective decision making.
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6.2 Physics-Based Model System

Fuzzy-like multiple objective decision making deals with the multiple objective de-

cision making problems under fuzzy-like environments. In other words, when some

parameters or the coefficients for a multiple objective decision making problem are

some fuzzy-like variables, then this multiple objective decision making problem

is called a fuzzy-like multiple objective decision making problem, which includes

problems under Fu-Ra, Fu-Fu, and Fu-Ro environments. In this book, we use three

typical problems-selection problems, the purchasing problem and logistic problem to

illustrate the Fu-Ra, Fu-Fu and Fu-Ro multiple objective decision making, re-

spectively. Among all kinds of typical problems, we chose the portfolio selec-

tion problem, raw material purchasing problem, and integrated logistic problem to

clarify corresponding fuzzy-like multiple objective decision making in detail, see

Figure 6.2.

Fig. 6.2 Problem under fuzzy-like environment

In the portfolio selection problem, We know the basic assumption behind

Markowitz’s mean variance model is that the situation of the stock market in the fu-

ture can be correctly reflected by securities data from the past, that is, the mean and

covariance of a portfolio of securities in the future are similar to the past ones. How-

ever, there are so many uncertain factors that this assumption cannot be guaranteed for

real stock markets. Since stock experts possess enough information and experience

about the stock market, it is a good method to let them provide their rough estima-

tion about the future returns of securities, and the certain mean value could extend
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to a fuzzy number. In this case, the return of securities are fuzzy random variables.

When we use fuzzy random variables to describe the future return of the securities,

we can use the historical data and advice about the historical returns of the experts.

And it is rational for people to consider that the future return of every security is a

fuzzy variable which is around a value with left and right spreads, but here the middle

value is usually not a certain number, but a random variable, so the future return is a

fuzzy random variable. So it is reasonable for people to believe that the fuzzy random

portfolio selection problem is more realistic and proper.

In the raw material purchasing problem, the cost, scrap ratio, tardy-delivery frac-

tion and the demand are some coefficients in the future. According to the anticipative

data, we can get the initial data with the expression of a fuzzy variable for the above

information, then people can estimate the situation and make a forecast. The former

fuzzy variable can be deemed as middle value of a new fuzzy variable, that is, the

initial fuzzy variable is extended to Fu-Fu variable. In this situation, in order to deal

with the raw material purchasing problem using these data, we have to solve a Fu-Fu

multiple objective decision making model.

In the integrated logistics problem, both the forward logistics system and the re-

verse logistics system are considered. We focus on the integrated logistics problem in

a very special beer company. People usually drink more beer in summer and autumn,

and less beer in winter and spring, that is, the demand for beer is seasonal. When we

forecast the demand in a period, we can use the fuzzy variable to estimate, for exam-

ple, we give a middle value µ , two spread α and β . Further more, the middle value µ
is usually not a certain number, because when we design the network of the network

of a reuse integrated logistics network, the period we consider will definitely cover

the whole season, so it is appropriate to use a rough variable to describe the mid-

dle value µ . So until now, in this situation, we can use Fu-Ro variables to describe

the demand of the beer. Because the amount of used packages is relevant to the con-

sumtion of the product, so it is natural to consider the amount of used packages as a

fuzzy rough variable also, just as that of the demand of the products. Thus the Fu-Ro

multiple objective model should be built for the integrated logistic decision making

problem under a Fu-Ro environment.

It is noted that the problems introduced in this book are just some example of

typical problems, so readers can extend the application into other areas.

6.3 Mathematical Model System

The initial fuzzy-like multiple objective decision making model is as follows:

⎧
⎨
⎩

max [ f1(x,ξ ), f2(x,ξ ), · · · , fm(x,ξ )]

s.t.

{
gr(x,ξ )≤ 0, r = 1,2, · · · , p

x ∈ X

or ⎧
⎨
⎩

min [ f1(x,ξ ), f2(x,ξ ), · · · , fm(x,ξ )]

s.t.

{
gr(x,ξ )≤ 0, r = 1,2, · · · , p

x ∈ X ,
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where ξ are fuzzy-like variables, that is, the Fu-Ra variables, Fu-Fu variables and

Fu-Ro variables.

It is necessary for us to know that the above models are conceptual mod-

els rather than mathematical models, because we cannot maximize an uncertain

quantity. There does not exist a natural order in an uncertain world. Since fuzzy-

like variables exist, the above models are ambiguous. The meaning of maximiz-

ing/minizing f1(x,ξ ), f2(x,ξ ), · · · , fm(x,ξ ) is unclear, and the constraints gr(x,ξ )≤
0, r = 1,2, · · · , p do not define a deterministic feasible set. So we need to adopt some

philosophies to deal with and make the above model solvable. Philosophies 1-5 are

used to deal with decision making models under a fuzzy-like environment.

First, let us consider the objective functions

max [ f1(x,ξ ), f2(x,ξ ), · · · , fm(x,ξ )].

where ξ is the fuzzy-like variables.

There are three types of philosophy to handle the objectives.

Philosophy 1: Making the decision by optimizing the expected value of the objec-

tives. That is, maximizing the expected values of the objective functions for the Max

problem, or minimizing the expected values of the objective functions for the Min

problem.

max E[ f1(x,ξ ), f2(x,ξ ), · · · , fm(x,ξ )].

or

min E[ f1(x,ξ ), f2(x,ξ ), · · · , fm(x,ξ )].

Philosophy 2: Making the decision which provides the best optimal objective values

with a given confidence level. That is, maximizing the referenced objective values

f̄i subjects to fi(x,ξ ) ≥ f̄i with a confidence level αi, or minimizing the referenced

objective values f̄i subjects to fi(x,ξ )≤ f̄i with a confidence level αi.

max [ f̄1, f̄2, · · · , f̄m]
s.t. Ch{ fi(x,ξ )≥ f̄i} ≥ αi, i = 1,2, · · · ,m.

or
min [ f̄1, f̄2, · · · , f̄m]
s.t. Ch{ fi(x,ξ )≤ f̄i} ≥ αi, i = 1,2, · · · ,m.

where αi should be predetermined, f̄1, f̄2, · · · , f̄m are called critical values.

Philosophy 3: Making the decision by maximizing the chance of the events. That is,

maximizing the chance of the events fi(x,ξ )≥ f̄i or fi(x,ξ )≤ f̄i.

max

⎡
⎢⎢⎣

Ch{ f1(x,ξ )≥ f̄1},
Ch{ f2(x,ξ )≥ f̄2},
· · ·
Ch{ fm(x,ξ )≥ f̄m},

⎤
⎥⎥⎦
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or

max

⎡
⎢⎢⎣

Ch{ f1(x,ξ )≤ f̄1},
Ch{ f2(x,ξ )≤ f̄2},
· · ·
Ch{ fm(x,ξ )≤ f̄m},

⎤
⎥⎥⎦

where f̄i should be predetermined.

Then, let us consider the constraints

s.t.

{
gr(x,ξ )≤ 0, r = 1,2, · · · , p

x ∈ X ,

where ξ is the fuzzy-like variables.

There are two types of philosophy to handle the constraints.

Philosophy 4: Making the optimal decision subjects to the expected constraints. That

is,

E[gr(x,ξ )≤ 0], r = 1,2, · · · , p.

Philosophy 5: Making the optimal decision subjects to the chance constraints.

Ch{gr(x,ξ )≤ 0} ≥ βr, r = 1,2, · · · , p.

where βr is predetermined.

Fig. 6.3 Fuzzy-like model system

By combining the 3 philosophies for the objective functions and 2 philosophies for

the constraints, we can get six types of models which can deal with the initial fuzzy-

like multiple objective decision making models: EVM, CCM, DCM, ECM, CEM and

DEM, see Figure 6.3.
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EVM ⎧
⎨
⎩

max E[ f1(x,ξ ), f2(x,ξ ), · · · , fm(x,ξ )]

s.t.

{
E[gr(x,ξ )]≤ 0, r = 1,2, · · · , p

x ∈ X .

CCM ⎧
⎪⎪⎨
⎪⎪⎩

max
[

f̄1, f̄2, · · · , f̄m

]

s.t.

⎧
⎨
⎩

Ch{ fi(x,ξ )≥ f̄i} ≥ αi, i = 1,2, · · · ,m
Ch{gr(x,ξ )≤ 0} ≥ βr, r = 1,2, · · · , p

x ∈ X ,

where αi(i = 1,2, · · · ,m),βr(r = 1,2, · · · , p) are the predetermined confidence

levels.

DCM ⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max

⎡
⎢⎢⎣

Ch{ f1(x,ξ )≥ f̄1},
Ch{ f2(x,ξ )≥ f̄2},
· · ·
Ch{ fn(x,ξ )≥ f̄m},

⎤
⎥⎥⎦

s.t.

{
Ch{gr(x,ξ )≤ 0} ≥ βr, r = 1,2, · · · , p

x ∈ X ,

where f̄i(i = 1,2, · · · ,m),βr(r = 1,2, · · · , p) are the predetermined referenced objec-

tive values and confidence levels.

ECM ⎧
⎨
⎩

max E[ f1(x,ξ ), f2(x,ξ ), · · · , fm(x,ξ )]

s.t.

{
Ch{gr(x,ξ )≤ 0} ≥ βr, r = 1,2, · · · , p

x ∈ X ,

where βr(r = 1,2, · · · , p) are the predetermined confidence levels.

CEM ⎧
⎪⎪⎨
⎪⎪⎩

max
[

f̄1, f̄2, · · · , f̄m

]

s.t.

⎧
⎨
⎩

Ch{ fi(x,ξ )≥ f̄i} ≥ αi, i = 1,2, · · · ,m
E[gr(x,ξ )]≤ 0, r = 1,2, · · · , p.
x ∈ X ,

where αi(i = 1,2, · · · ,m) are the predetermined confidence levels.

DEM ⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max

⎡
⎢⎢⎣

Ch{ f1(x,ξ )≥ f̄1},
Ch{ f2(x,ξ )≥ f̄2},
· · ·
Ch{ fn(x,ξ )≥ f̄m},

⎤
⎥⎥⎦

s.t.

{
E[gr(x,ξ )]≤ 0, r = 1,2, · · · , p.
x ∈ X ,

where f̄i(i = 1,2, · · · ,m) are the predetermined referenced objective values and con-

fidence levels.
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In this book, we mainly discuss the first three models, and the techniques are all

incorporated when we deal with EVM, CCM and DCM. The rest of the models, ECM,

CEM and DEM, can be handled in the same way. The reader can use the model when

they use different philosophies, and it is possible to use every model.

6.4 Model Analysis System

For linear fuzzy-like multiple objective decision making models,

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

max

[
n

∑
j=1

c̃1 jx j, · · · ,
m

∑
j=1

c̃m jx j

]

s.t.

{
ãr jx j ≤ b̃r, r = 1,2, · · · , p

x ∈ X ,

where c̃i j, ãr j, b̃r,(i = 1,2, · · · ,m;r = 1,2, · · · , p) are special fuzzy-like coefficients,

that is, the Fu-Ra variables, Fu-Fu variables and Fu-Ro variables. We introduced how

to transform the 3 types of objective functions and the 2 types of constraints into their

crisp equivalent formulas in detail. In this book, we introduced the equivalent models

for EVM, CCM and DCM in detail, and we simplified them as EEVM, ECCM and

EDCM. See Figure 6.4.

For the Fu-Ra linear multi-objective models, there are 5 basic theorems for han-

dling the objective functions and the constraints: Theorem 3.3, Theorem 3.4, Theorem

3.6 (Theorem 3.8), Theorem 3.7 (Theorem 3.9) and Theorem 3.10 (Theorem 3.14).

And according to these 5 theorems, we can get the crisp equivalent models for Fu-Ra

EVM, CCM and DCM.

Fu-Ra EEVM

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max

[
1
4

4

∑
t=1

n

∑
j=1

∑ µ1 jtx j,
1
4

4

∑
t=1

n

∑
j=1

∑ µ2 jtx j, · · · , 1
4

4

∑
t=1

n

∑
j=1

∑ µm jtx j

]

s.t.

⎧
⎨
⎩

4

∑
t=1

n

∑
j=1

µr jtx j ≤
4

∑
t=1

µrt ,r = 1,2, · · · , p

x ∈ X .

Fu-Ra ECCM 1 based on Pr-Pos

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max [ f1, f2, · · · , fm]

s.t.

⎧
⎪⎪⎨
⎪⎪⎩

fi ≤ R−1(δi)β cT
i x + dcT

i x + Φ−1(1− γi)
√

xTV c
i x, i = 1,2, · · · ,m

R−1(θr)β
b
r + L−1(θr)α

eT
r x− (deT

r x−db
r )

−Φ−1(ηr)
√

xTV e
r x +(σb

r )2 ≥ 0,r = 1,2, · · · , p

x ∈ X .
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Fig. 6.4 Transformation to crisp equivalent models

Fu-Ra ECCM 2 based on Pr-Nec

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max [ f1, f2, · · · , fm]

s.t.

⎧
⎪⎪⎨
⎪⎪⎩

fi ≤ dcT
i x−L−1(1− δi)αcT

i x + Φ−1(1− γi)
√

xTV c
i x, i = 1,2, · · · ,m

Φ−1(1−ηr)
√

xTV e
r x +(σb

r )2−L−1(1−θr)αb
r

−R−1(θr)β
eT
r x +(db

r −deT
r x)≥ 0,r = 1,2, · · · , p

x ∈ X .
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Fu-Ra EDCM 1 based on Pr-Pos

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max

[
Φ−1(1−γi)

√
xTV c

i x+dcT
i x− f̄i

β cT
i x

, i = 1,2, · · · ,m
]

s.t.

⎧
⎨
⎩

R−1(θr)β b
r + L−1(θr)αeT

r x− (deT
r x−db

r )

−Φ−1(ηr)
√

xTV e
r x +(σb

r )2 ≥ 0, r = 1,2, · · · , p

x ∈ X .

Fu-Ra EDCM 2 based on Pr-Nec

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max

[
Φ−1(1−γi)

√
xTV c

i x− f̄i+dcT
i x

αcT
i x

, i = 1,2, · · · ,m
]

s.t.

⎧
⎨
⎩

Φ−1(1−ηr)
√

xTV e
r x +(σb

r )2−L−1(1−θr)αb
r −R−1(θr)β eT

r x

+(db
r −deT

r x)≥ 0, r = 1,2, · · · , p

x ∈ X .

For the Fu-Fu linear multi-objective models, there are 5 important theorems for han-

dling the objective functions and the constraints: Theorem 4.2, Theorem 4.3, Theo-

rem 4.7 (Theorem 4.10), Theorem 4.9 (Theorem 4.11) and Theorem 4.14 (Theorem

4.15). And according to these 5 theorems, we can get the crisp equivalent models for

Fu-Fu EVM, CCM and DCM.

Fu-Fu EEVM

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max

[
1
8

n

∑
j=1

4

∑
t=1

2

∑
k=1

c1 jtkx j,
1
8

n

∑
j=1

4

∑
t=1

2

∑
k=1

c2 jtkx j, · · · , 1
8

n

∑
j=1

4

∑
t=1

2

∑
k=1

cm jtkx j

]

s.t.

⎧
⎨
⎩

n

∑
j=1

4

∑
t=1

2

∑
k=1

ar jtkx j ≤
4

∑
t=1

2

∑
k=1

brtk,r = 1,2, · · · , p

x ∈ X .

Fu-Fu ECCM 1 based on Pos-Pos

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max [ f1, f2, · · · , fm]

s.t.

⎧
⎪⎪⎨
⎪⎪⎩

fi ≤ cT
i x + R−1(δi)β cT

i1 x + R−1(γi)β cT
i2 x, i = 1,2, · · · ,m

R−1(θr)β b
r1 + L−1(θr)αeT

r1 x− eT
r x + br

+ L−1(ηr)(αeT
r2 x + β b

r2)≥ 0,r = 1,2, · · · , p

x ∈ X .

Fu-Fu ECCM 2 based on Nec-Nec

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max { f1, f2, · · · , fm}

s.t.

⎧
⎪⎪⎨
⎪⎪⎩

fi ≤ cT
i x + L−1(1− δi)αcT

i1 x + L−1(1− γi)αcT
i2 x, i = 1,2, · · · ,m

br− eT
r x−L−1(1−ηr)(αb

r2 + β e
r2

Tx)−L−1(1−θr)αb
1r

−R−1(θr)β e
r1

Tx≥ 0,r = 1,2, · · · , p

x ∈ X .
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Fu-Fu EDCM 1 based on Pos-Pos

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

max
[

fi−cT
i x−R−1(γi)β

cT
i2 x

β cT
i1 x

, i = 1,2, · · · ,m
]

s.t.

⎧
⎨
⎩

R−1(θr)β b
r1 + L−1(θr)αeT

r1 x− eT
r x + br + L−1(ηr)(αeT

r2 x + β b
r2)≥ 0

r = 1,2, · · · , p

x ∈ X .

Fu-Fu EDCM 2 based on Nec-Nec

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

max
[

cT
i x−L−1(1−γi)α

cT
i2 x− fi

αcT
i1 x

, i = 1,2, · · · ,m
]

s.t.

⎧
⎨
⎩

br− eT
r x−L−1(1−ηr)(αb

r2 + β eT
r2x)−L−1(1−θr)αb

1r−R−1(θr)β eT
1r x≥ 0,

r = 1,2, · · · , p

x ∈ X .

For the Fu-Ro linear multi-objective models, there are 5 important theorems for

handling the objective functions and the constraints: Theorem5.3, Theorem5.4,

Theorem5.7 (Theorem5.9), Theorem5.8 (Theorem5.10) and Theorem5.12 (Theorem

5.13). And according to these 5 theorems, we can get the crisp equivalent models for

Fu-Ro EVM, CCM and DCM.

Fu-Ro EEVM

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max

[
1
16

n

∑
j=1

4

∑
t=1

4

∑
k=1

c1 jtkx j,
1
16

n

∑
j=1

4

∑
t=1

4

∑
k=1

c2 jtkx j, · · · , 1
16

n

∑
j=1

4

∑
t=1

4

∑
k=1

cm jtkx j

]

s.t.

⎧
⎨
⎩

n

∑
j=1

4

∑
t=1

4

∑
k=1

ar jtkx j ≤
4

∑
t=1

4

∑
k=1

brtk,r = 1,2, · · · , p

x ∈ X .

Fu-Ro ECCM 1 based on Appr-Pos

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max [ f1, f2, · · · , fm]

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fi ≤ d−2γi(d− c)+ R−1(δi)β cT
i x,

if b≤ fi−R−1(δi)β cT
i x≤ d

fi ≤ d(b−a)+b(d−c)−2αi(d−c)(b−a)
d−c+b−a + R−1(δi)β cT

i x,

if a≤ fi−R−1(δi)β cT
i x < b

fi ≤ d− (d− c)(2γi−1)+ R−1(δi)β cT
i x,

if c≤ fi−R−1(δi)β cT
i x≤ a

fi ≤ c + R−1(δi)β cT
i x,

if fi−R−1(δi)β cT
i x≤ c

W ≥ c + 2(d− c)ηr, if c≤W ≤ a

W ≥ 2ηr(d−c)(b−a)+c(b−a)+a(d−c)
b−a+d−c

, if a≤W < b

W ≥ (2ηr−1)(d− c)+ c, if b≤W ≤ d

W ≥ d, if d ≤W

x ∈ X .
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Fu-Ro ECCM 2 based on Appr-Nec

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max [ f1, f2, · · · , fm]

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fi ≤ d−2γi(d− c)−L−1(1− δi)αcT
i x,

if b≤ fi + L−1(1− δi)αcT
i x≤ d

fi ≤ d(b−a)+b(d−c)−2γi(d−c)(b−a)
d−c+b−a

−L−1(1− δi)αcT
i x,

if a≤ fi + L−1(1− δi)αcT
i x < b

fi ≤ d− (d− c)(2γi−1)−L−1(1− δi)αcT
i x,

if c≤ fi + L−1(1− δi)α
cT
i x≤ a

fi ≤ c−L−1(1− δi)αcT
i x,

if fi + L−1(1− δi)αcT
i x≤ c

W ′ ≥ c + 2(d− c)ηr if c≤W ′ ≤ a

W ′ ≥ 2ηr(d−c)(b−a)+c(b−a)+a(d−c)
b−a+d−c

if a≤W ′ < b

W ′ ≥ (2ηr−1)(d− c)+ c if b≤W ′ ≤ d

W ′ ≥ d if d ≤W ′

x ∈ X ,

where W = R−1(θr)β b
r + L−1(θr)αeT

r x, and W ′ =−R−1(θr)β eT
r x−L−1(1−θr)αb

r .

Fu-Ro EDCM 1 based on Appr-Pos

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max
[

fi−d+2(d−c)γi

β cT
i x

, i = 1,2, · · · ,m
]

s.t.

⎧
⎪⎪⎨
⎪⎪⎩

eT
r x≤ br, r = 1,2, · · · , p

b≤ fi−R−1(δi)β
cT
i x≤ d

x ∈ X

x≥ 0.

Fu-Ro EDCM 2 based on Appr-Pos

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

max
[

(d−c+b−a) fi−d(b−a)−b(d−c)+2(d−c)(b−a)γi

β cT
i x

, i = 1,2, · · · ,m
]

s.t.

⎧
⎨
⎩

eT
r x≤ br, r = 1,2, · · · , p

a≤ fi−R−1(δi)β cT
i x < b

x ∈ X .

Fu-Ro EDCM 3 based on Appr-Pos

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

max
[

fi−d+2(d−c)(2γi−1)

β cT
i x

, i = 1,2, · · · ,m
]

s.t.

⎧
⎨
⎩

eT
r x≤ br, r = 1,2, · · · , p

c≤ fi−R−1(δi)β cT
i x≤ a

x ∈ X .
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Fu-Ro EDCM 4 based on Appr-Pos

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

max
[

fi−c

β cT
i x

, i = 1,2, · · · ,m
]

s.t.

⎧
⎨
⎩

eT
r x≤ br, r = 1,2, · · · , p

fi−R−1(δi)β
cT
i x≤ c

x ∈ X .

Fu-Ro EDCM 5 based on Appr-Nec

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

max
[

fi−d+2(d−c)γi

β cT
i x

, i = 1,2, · · · ,m
]

s.t.

⎧
⎨
⎩

eT
r x≤ br, r = 1,2, · · · , p

b≤ fi + L−1(1− δi)αcT
i x≤ d

x ∈ X .

Fu-Ro EDCM 6 based on Appr-Nec

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

max
[
−(d−c+b−a) fi+d(b−a)−b(d−c)−2(d−c)(b−a)γi

αcT
i x

, i = 1,2, · · · ,m
]

s.t.

⎧
⎨
⎩

eT
r x≤ br, r = 1,2, · · · , p

a≤ fi + L−1(1− δi)α
cT
i x < b

x ∈ X .

Fu-Ro EDCM 7 based on Appr-Nec

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

max
[
− fi+d−2(d−c)(2γi−1)

αcT
i x

, i = 1,2, · · · ,m
]

s.t.

⎧
⎨
⎩

eT
r x≤ br, r = 1,2, · · · , p

c≤ fi + L−1(1− δi)αcT
i x≤ a

x ∈ X .

Fu-Ro EDCM 8 based on Appr-Nec

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

max
[
− fi+c

αcT
i x

, i = 1,2, · · · ,m
]

s.t.

⎧
⎨
⎩

eT
r x≤ br, r = 1,2, · · · , p

fi + L−1(1− δi)α
cT
i x≤ c

x ∈ X .

6.5 Algorithm System

After we get the crisp equivalent models, we can employ the basic solution methods

to get the solution. There are 12 solution methods introduced indetail in the book,

which include:

- two-stage method,

- goal programming method,
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- ideal point method,

- fuzzy satisfied method,

- surrogate worth trade-off method,

- satisfying trade-off method,

- step method,

- lexicographic method,

- weight sum method,

- minimax point method,

- fuzzy goal method,

- ε-constraint method.

The above 12 solution methods are the most popular methods for multiple objec-

tive decision making. The decision maker can choose different methods when they

have different requests or are under different conditions.

Fig. 6.5 Fuzzy-like hybrid algorithm system

For the nonlinear fuzzy-like multiple objective decision making models, it is very

difficult to transform the 3 types of objective functions and 2 types of constraints into

their crisp equivalences. So we propose several fuzzy-like simulations to simulate

the objective functions and constraints. There are three kinds of simulations for each
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kind of fuzzy-like uncertainty. Based on the fuzzy simulations and Equations (3.33),

(3.68), (3.70), (3.107), (3.108), we could propose Fu-Ra simulation 1 for expected

value, Fu-Ra simulation 2 for critical value and Fu-Ra simulation 3 for chance. Based

on fuzzy simulations and Equations (4.33), (4.34), (4.69), (4.70), (4.71), (4.100),

(4.101), we can propose Fu-Fu simulation 1 for expected value, Fu-Fu simulation

2 for critical value, and Fu-Fu simulation 3 for chance. Based on fuzzy simulations

and Equations (5.33), (5.68), (5.69), (5.93), (5.94), we can propose Fu-Ro simulation

1 for expected value, Fu-Ro simulation 2 for critical value, and Fu-Ro simulation 3

for chance. By combining fuzzy-like simulations and intelligent algorithms, we can

create some hybrid algorithms. Then for the six kinds of models: EVM, CCM, DCM,

ECM, CEM, DEM, we can obtain several kinds of fuzzy-like hybrid algorithms, see

Figure 6.5.

These fuzzy-like simulations can be embedded into 4 types of basic intelligent

algorithms, which includes

- particle swarm optimization algorithm (PSO)

- genetic algorithm (GA)

- simulated annealing algorithm (SA)

- tabu search algorithm (TS).

So for the general fuzzy-like MODM, we present the following ideas to design the

algorithm. For the linear fuzzy-like multiple decision making model with some par-

ticular fuzzy-like variables, we can transform them into some crisp equivalent models

and use the above 12 traditional solution methods to solve them directly. For the nor-

mal fuzzy-like multiple decision making model, especially the nonlinear model, we

can embed the corresponding fuzzy-like simulations into the intelligent algorithm to

find the solutions.

Application domains for each intelligent algorithm are as follows [418].

Some example areas of application of PSO are:

·Machine Learning

· Function Optimization

· Geometry and Physics

· Operations Research

· Chemistry, Chemical Engineering

· Electrical Engineering and Circuit Design.

Some example areas of application of GA are:

· Scheduling

· Chemistry, Chemical Engineering

·Medicine

· Data Mining and Data Analysis

· Geometry and Physics

· Economics and Finance

· Networking and Communication
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Fig. 6.6 Algorithm design

· Electrical Engineering and Circuit Design

· Image Processing

· Combinatorial Optimization.

Some example areas of application of Simulated Annealing are:

· Combinatorial Optimization

· Function Optimization

· Chemistry, Chemical Engineering

· Image Processing

· Economics and Finance

· Electrical Engineering and Circuit Design

·Machine Learning

· Geometry and Physics

· Networking and Communication.

Some example areas of application of TS are:

· Combinatorial Optimization

·Machine Learning

· Biochemistry

· Operations Research

· Networking and Communication .

Although we used these 4 algorithms in the book, there are some other excellent

intelligent algorithms, like the ant colony optimization algorithm (ACO), artificial

neural network (ANN), immune algorithms (IA) and so on. We expect more advanced

intelligent algorithms, and we are willing to use them if it is appropriate in our future

research.
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6.6 Research Ideas and Paradigm: 5MRP

In the field of decision making, excellent research should integrate the background

of the problem, a mathematical model, and an effective solution method with a sig-

nificant application. But doing all these together is very difficult. How do we know

a problem is meaningful? How can we describe this problem in scientific language?

How can we design an efficient algorithm to solve a practical problem? Finally how

can we apply this integrated method to engineering fields? All these questions must be

answered under a new paradigm following a certain methodology. This new paradigm

will enable researchers to get scientific results and draw conclusions under the guid-

ance of science, and will play a significant guiding role in conducting scientific

research.

The research ideal of 5RMP expresses the initial relationship between the

Research, the Model and the Problem. R stands for the research system that in-

cludes research specifics, research background, research base, research reality, re-

search framework, and applied research; M refers to the model system that includes

concept model, physical model, physical and mathematical model, mathematical and

physical model, designed model for algorithms, and describing the specific model. P

represents a problem system that includes a particular problem, a class of problems,

abstract problems, problem restoration, problem solution, and problem settlement.

Let us summarize the research ideas and the framework of our research work, see

Figure 6.7.

Fig. 6.7 Ideal route
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Then we use the following Figure 6.8-6.10 to describe the relationship among be-

tween the problem system, the model system and the research system. Figure 6.8

emphasizes the problem system, and presents the train of thought in dealing with the

problem.

Figure 6.9 emphasizes the model system, and present a series of models which are

used in dealing with the corresponding problems.

Figure 6.10 emphasizes the research system, and presents the technological pro-

cess when we confront a problem and conduct research work.

Let us propose the steps for 5MRP. When we start research, we usually study a

particular problem, which has research value and can be described as a concept model.

This is the introduction to the research; After studying the particular problem or a

Fig. 6.8 Problem system

Fig. 6.9 Model system
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Fig. 6.10 Research system

problem with the same essence as the particular problem, then we can obtain a typical

problem which has universality and can be abstracted to a physical model. This is the

background to the research; Then we can generalize the typical problem to a class of

problems which can be abstracted to a common mathematical problem, from which

we can propose a mathematical model. This is the foundation of the research; Then

we can design an algorithm and obtain a model for the procedure of the algorithm.

This is the framework of the research; Finally, we can apply the above models to a

practical problem and establish a numerical model for a specific problem, and employ

the algorithm to get the solution to illustrate the efficiency and validity. This is the

application of the research.

We employ the following Figure 6.11 to illustrate how we can use the 5MPR re-

search ideal to do our research: fuzzy random, bifuzzy and fuzzy rough multiple ob-

jective decision making.

In conclusion, 5RMP is an effective paradigm that can be widely used in various

fields of scientific research and can contribute to research in all areas in a standardized

and efficient manner. In the area of decision making, 5RMP is well reflected because

of its rigorous logical and effective applicability, and it plays a dominant guiding role

in the practical side of research.

FLMODM is a growing subject. Here we provide some further research problems

in this area.

For mathematical properties, we should consider sensitivity analysis, dual theo-

rems, optimality conditions, and so on. We can also research the crisp equivalent con-

ditions for other special types of FLMODM models in the light of their mathematical

properties.

From the viewpoint of solution methods, we can design more effective and power-

ful algorithms. We have integrated fuzzy-like simulations, genetic algorithms, sim-

ulated annealing, particle swarm optimization and tabu search to produce a series of

hybrid intelligent algorithms to derive the solution to a FLMODM problem.
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Fig. 6.11 Methodological system for FLMODM

In the perspective of applications, FLMODM can be applied to any decision mak-

ing problems with fuzzy-like factors, for example, finance, supply chain manage-

ment, manufacturing system, engineering management and so on.

We expect more development in every aspect of FLMODM.
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Appendix A

Procedures

A.1 Procedures for Example 2.6

There are 1 main procedure and 6 sub-procedures.

main

tic global popsize exetime N pos v pbest gbest t
c_i c_p c_g w1 w2 gen v_max best_fitness
best_in_history pos_max pos_min

gen=1000;
popsize=10;
N=2;
pos=zeros(popsize,N);
v=zeros(popsize,N);
pbest=zeros(popsize,N+2);
gbest=zeros(1,N);
c_i=1;
c_p=2;
c_g=2;
w1=0.7;
w2=0.3;
v_max=0.5;
pos_max=[30 17];
pos_min=[0 0];
initialization;
for exetime=1:gen
fitness;
update;

end
toc
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initialization

i=0;
k=1;
while (k<=popsize+1)
while (i<1)
x1=random(’uniform’,0,30);
x2=random(’uniform’,0,17);
t=constraint_check(x1,x2);
if(t==1)
i=i+1;

end
end
pos(k,:)=[x1 x2];
v(k,1:N)=random(’uniform’,1,5);
pbest(k,1:N)=pos(k,1:N);
pbest(k,N+1:N+2)=inf;
k=k+1;

end
gbest(1,1:N)=pos(1,1:N);

fitness

global exetime
for i=1:popsize
pbest(i,4)=w1*Obj1(pos(i,1),pos(i,2))

+w2*Obj2(pos(i,1),pos(i,2));
if (pbest(i,3)<pbest(i,4))
pbest(i,3)=pbest(i,4);
pbest(i,1:N)=pos(i,1:N);

end
end

if (best_fitness<max(pbest(:,3)))
best_fitness=max(pbest(:,3));
for j=1:N
gbest(1,j)=pbest(find(pbest(:,3)==max(pbest
(:,3))),j);

end
end
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Obj1

function [Obj1]=Obj1(x1,x2)
N=10;
Obj1=0;
F1=[];
for i=1:N
T=0;
%˜˜˜˜˜˜˜˜˜initial value˜˜˜˜˜˜˜˜˜˜
r1=unifrnd(1.8,2.2);
if 1.8<r1&&r1<2
mu1=(r1-1.8)/0.2;

end
if 2<=r1&&r1<2.2
mu1=(2.2-r1)/0.2;

end

r2=unifrnd(1,2);
if 1<=r2&&r2<1.5
mu2=(r2-1)/0.5;

end
if 1.5<=r2&&r2<=2
mu2=(2-r2)/0.5;

end
F1(i)=r1ˆ2*x1+r2ˆ2*x2;
mu=[mu1,mu2];
MU(i)=min(mu);

end

MIN=F1(1);
MAX=F1(1);
for j=2:N
if MIN>F1(i)
MIN=F1(i);

end
if MAX<F1(i)
MAX=F1(i);

end
end

for k=1:N
r=unifrnd(MIN,MAX);
b1=0;
b2=0;
if r>=0
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for i=1:N
if F1(i)>=r&&b1<=MU(i)
b1=MU(i);

end
if F1(i)<r&&b2<=MU(i)
b2=MU(i);

end
end
Obj1=Obj1+(b1+1-b2)/2;

else
for i=1:N
if F1(i)<=r&&b1<=MU(i)
b1=MU(i);

end
if F1(i)>r&&b2<=MU(i)
b2=MU(i);

end
end
Obj1=Obj1-(b1+1-b2)/2;

end
end

if MIN<=0
a=0;

else
a=MIN;

end if MAX<=0
b=0;

else
b=MAX;

end
Obj1=Obj1*(MAX-MIN)/N+a+b;

Obj2

function [Obj2]=Obj2(x1,x2)
N=10;
Obj2=0;
F2=[];
for i=1:N
T=0;
r1=unifrnd(1.8,2.2);
if 1.8<r1&&r1<2
mu1=(r1-1.8)/0.2;
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end
if 2<=r1&&r1<2.2
mu1=(2.2-r1)/0.2;

end

r2=unifrnd(1,2);
if 1<=r2&&r2<1.5
mu2=2*(r2-1)/0.5;

end
if 1.5<=r2&&r2<=2
mu2=(2-r2)/0.5;

end
F2(i)=1.2*r1ˆ2*x1-0.5*r2ˆ2*x2;
mu=[mu1,mu2];
MU(i)=min(mu);

end

MIN=F2(1);
MAX=F2(1);
for j=2:N
if MIN>F2(i)
MIN=F2(i);

end
if MAX<F2(i)
MAX=F2(i);

end
end

for k=1:N
r=unifrnd(MIN,MAX);
b1=0;
b2=0;
if r>=0
for i=1:N
if F2(i)>=r&&b1<=MU(i)
b1=MU(i);

end
if F2(i)<r&&b2<=MU(i)
b2=MU(i);

end
end
Obj2=Obj2+(b1+1-b2)/2;

else
for i=1:N
if F2(i)<=r&&b1<=MU(i)
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b1=MU(i);
end
if F2(i)>r&&b2<=MU(i)
b2=MU(i);

end
end
Obj2=Obj2-(b1+1-b2)/2;

end
end

if MIN<=0
a=0;

else
a=MIN;

end if MAX<=0
b=0;

else
b=MAX;

end
Obj2=Obj2*(MAX-MIN)/N+a+b;

constraint check

function [t]=constraint_check(x1,x2)
t=1;
if ((x1<0)&(x2<0))
t=0;

end
if (x1+x2>=30)
t=0;

end
if (3*x1-2*x2<=8)
t=0;

end

update

c_i=0.4+0.5*(gen-exetime)/gen;
for i=1:popsize
for j=1:N
v(i,j)=c_i*rand()*v(i,j)+c_p*rand()

*(pbest(i,j)-pos(i,j))+c_g*rand()*
(gbest(1,j)-pos(i,j));

end
end
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for i=1:popsize
for j=1:N
pos(i,j)=pos(i,j)+v(i,j);
if pos(i,j)>pos_max(1,j)
pos(i,j)=pos_max(1,j);

elseif pos(i,j)<pos_min(1,j)
pos(i,j)=pos_min(1,j);

else
end

end
end

A.2 Procedures for Fu-Ra Portfolio Selection Problem

The procedures for fuzzy random portfolio selection problem are programmed in

MATLAB language.

Creating the optimistic, pessimistic and neutral efficient frontier function lambda

efficient

% FuzzyReturn1 Denote the left endpoint of fuzzy
expected value of fuzzy random return
% FuzzyReturn2 Denote the right endpoint of fuzzy
expected value of fuzzy random return
% parapess, paraoptim and paraneutral denote the
optimistic, pessimistic and neutral attitude,

FuzzyReturn1=load(’FuzzyReturn1.txt’);
FuzzyReturn2=load(’FuzzyReturn2.txt’);
ExpCovariance=load(’ExpCovariance.txt’);
parapess=0;
paraoptim=1;
paraneutral=0.5;

ExpReturnwgt(:,1)=parapess*FuzzyReturn2
+(1-parapess)*FuzzyReturn1;

ExpReturnwgt(:,2)=paraoptim*FuzzyReturn2
+(1-paraoptim)*FuzzyReturn1;

ExpReturnwgt(:,3)=paraneutral*FuzzyReturn2
+(1-paraneutral)*FuzzyReturn1;
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for numplot=1:3
ExpReturn=ExpReturnwgt(:,numplot);
NASSETS=length(ExpReturn);
W0=ones(NASSETS, 1)/NASSETS;
Aeq=ones(1,NASSETS);
Beq=1;
LB=zeros(NASSETS,1);
UB=ones(NASSETS,1);
Aineq=ones(1,NASSETS);
Bineq=1000;
options=optimset(’display’, ’off’, ’largescale’,

’off’);
[MaxReturnWeights, Fval, ErrorFlag]=linprog(
-ExpReturn, Aineq, Bineq, Aeq, Beq, LB, UB,
W0, options);

if ErrorFlag˜=1
error(’No portfolios satisfy all the

input constraints’);
end
MaxReturn=transpose(MaxReturnWeights)*ExpReturn;

% Find the minimum variance return.
F=zeros(NASSETS, 1);
[MinVarWeights,Fval,ErrorFlag]=quadprog
(ExpCovariance, F, Aineq, Bineq, Aeq, Beq, LB,
UB, W0, options);

if ErrorFlag˜=1
error(’A solution was not feasible for the

minimum variance portfolio.’);
end
MinVarReturn=transpose(MinVarWeights)*ExpReturn;
NumFrontPoints=50;
MinVarStd=sqrt(transpose(MinVarWeights)

*ExpCovariance *MinVarWeights);
PortReturn=linspace(MinVarReturn,MaxReturn,

NumFrontPoints);
PortfOptResults=zeros(NumFrontPoints,2+NASSETS);
PortfOptResults(1,:)=[MinVarReturnMinVarStd

transpose(MinVarWeights(:))];
%PortfOptResults(1, :)include the minimal return,
the minimal standard deviation,
and the coefficients for every stock
StartPoint=2;
EndPoint=NumFrontPoints;
FrontPointConstraint=-ExpReturn’;
Aeq=[FrontPointConstraint; Aeq];
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%Add a new equality constraint
Beq=[0; Beq];

%Add a new equality constraint
W0=MaxReturnWeights;

% Set the options:
options=optimset(options,’largescale’,’off’);
for Point=StartPoint:EndPoint
Beq(1)=-PortReturn(Point);
[Weights, Fval, ErrorFlag]=quadprog(
ExpCovariance,F,Aineq, Bineq, Aeq,
Beq, LB, UB, W0, options);
if ErrorFlag˜=1
PortfOptResults(Point, :)=[Beq(2)
nan*ones(1, NASSETS+1)];

else
Return=dot(Weights, ExpReturn);
Std=sqrt(Weights’*ExpCovariance*Weights)
PortfOptResults(Point,:)=[ReturnStd Weights(:)’];
end
end
PortReturn=PortfOptResults(:,1);
PortRisk=PortfOptResults(:,2);
PortWts=PortfOptResults(:,3:size(PortfOptResults,2));
hold on
if nargout==0
if numplot==1
outcolor=’-+k’;

elseif numplot==2
outcolor=’-k’;

else
outcolor=’--k’;
end
plot(PortRisk, PortReturn,outcolor);

end
title(’\lambda Efficient Frontier’, ’Color’, ’k’);
xlabel(’Risk(Standard Deviation)’);
ylabel(’\lambda Average Value of Expected Return’);
grid on;
hold off
end

Creating λ mean-variance efficient frontier

It is similar to the above program, we just skip it over.
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Creating histogram of historical exchange rate

function PSbarfigure
x=0:0.2:4;
data=load(’data.txt’);
y=zeros(1,21);
for j=1:719
for k=1:21
if (data(j)>0.2*(k-1))&(data(j)<=0.2*k)
y(k)=y(k)+1;

end
end
end bar(x,y)

Genetic algorithm for Fu-Ra multi-objective portfolio selection model

(1) Checking constraints

function [feas_chromosome_row]=check_constraint
(chromosome_row)

Knum=20;
nvars=30;
low=0.01;
roundlot=0.0001;
epsilon=0.0000000001;
[temp_chromosome_row,cindex]=sort(chromosome_row,
’descend’);

chromosome_row(cindex(Knum+1:nvars))=zeros(1,
nvars-Knum);

chromosome_row=chromosome_row/sum(chromosome_row);
for ii=1:Knum
tt=Knum+1-ii;
if (chromosome_row(cindex(tt))<low)
chromosome_row(cindex(tt))=0;
chromosome_row=chromosome_row/sum

(chromosome_row);
end

end

bb= mod(chromosome_row,roundlot);
chromosome_row=chromosome_row-mod(chromosome_row,
roundlot);

dd=sum(bb);
[out,idx]=sort(bb,’descend’);
nn=1;
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while ((dd>epsilon)&(nn<nvars))
chromosome_row(idx(nn))=chromosome_row(idx(nn))

+floor((dd+roundlot/10)/roundlot)*roundlot;
dd=dd-floor((dd+roundlot/10)/roundlot)*roundlot;
nn=nn+1;

end
feas_chromosome_row=chromosome_row;

(2) Creating initialized solution

function parents=create_conMOPS() P
OP_SIZE=100;
nvars=30;
limit=0.2;
range=zeros(2,nvars);
range(2,:)=ones(1,nvars)*limit;
lowerBound=range(1,:);
span=range(2,:)-lowerBound;
parents=repmat(lowerBound,POP_SIZE,1)

+repmat(span,POP_SIZE,1).*rand(POP_SIZE,nvars);
for m=1:POP_SIZE
parents(m,:)=check_constraint_conMOPS(parents(m,:));
end

(3) Computing the fitness

function [fitness]=FitnessFcn(pareto_x,obj_x)
weight=[0.4 0.4 0.2];
fitness=sqrt(weight(1)ˆ2*abs(pareto_x(1)-obj_x(1))ˆ2
+weight(2)ˆ2*abs(pareto_x(2)-obj_x(2))ˆ2+weight(3)ˆ2

*abs(pareto_x(3)-obj_x(3))ˆ2);

(4) Crossover

function parents=crossover_permutation_PS(parents)
POP_SIZE=100;
P_CROSSOVER=0.3;
fixn=fix(POP_SIZE/2);

for j=1:fixn
r1=rand;
if (r1<P_CROSSOVER)
k=fix(rand*POP_SIZE)+1;
kk=fix(rand*POP_SIZE)+1;
r2=rand;
child1=r2*parents(k,:)+(1-r2)*parents(kk,:);
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child2=(1-r2)*parents(k,:)+r2*parents(kk,:);
parents(k,:)=check_constraint_conMOPS(child1);
parents(kk,:)=check_constraint_conMOPS(child2);

else
continue;
end
end

(5) Mutation

function parents=mutate_permutation_PS(parents)
POP_SIZE=100;
P_MUTATION=0.2;
nvars=30;
INFTY=0.001;
for j=1:POP_SIZE
rmut=rand;
if (rmut<P_MUTATION)
mutx=parents(j,:);
direction=unifrnd(-1,1,1,nvars);
infty=rand*INFTY;
muty=mutx+infty*direction;
zz=1;
for zz=1:nvars
if (muty(zz)<0)
muty(zz)=0;

end
end
parents(j,:)=check_constraint_conMOPS(muty);

else
continue;
end

end

(6) Evaluation

function [optim_parents,optim_objective,expect,regr]=
evaluatation_conMOPS(parents)

nvars=30;
optim_objective=1000;
POP_SIZE=100;
centReturn=load(’centReturn.txt’);
leftReturn=load(’leftReturn.txt’);
rightReturn=load(’rightReturn.txt’);
lambda=ones(1,nvars).*1;
covmatrix=load(’covmatrix.txt’);
centliquidity1=load(’centliquidity1.txt’);
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centliquidity2=load(’centliquidity2.txt’);
leftwidth=load(’leftwidth.txt’);
rightwidth=load(’rightwidth.txt’);
for m=1:POP_SIZE
objresu(m,2)=-parents(m,:)*covmatrix

*transpose(parents(m,:));
obj_mean=0;
obj_liqu=0;
for t=1:nvars
F1=@(x)(((1-x).*centReturn(t)+x.*rightReturn(t))

*lambda(t)+((1-x).*centReturn(t)’
+x.*leftReturn(t))*(1-lambda(t)))*parents(m,t);
obj_mean=obj_mean+quad(F1,0,1);
F3=@(x)x.*((centliquidity1(t)-(1-x)*leftwidth(t))+
(centliquidity2(t)+(1-x)
.*rightwidth(t)))*parents(m,t);

obj_liqu=obj_liqu+quad(F3,0,1);
end
objresu(m,1)=obj_mean;
objresu(m,3)=obj_liqu;
end
[gg,idxgg]=sort(objresu);
paretoff=gg(POP_SIZE,:);

for r=1:POP_SIZE
regr(r)=FitnessFcn_conMOPS(paretoff,objresu(r,:));
end [regr,idx]=sort(regr);
parents=parents(idx,:);
objresu=objresu(idx,:);
if (regr(1)<optim_objective)
optim_parents=[parents(1,:) objresu(1,:)] ;
optim_objective=regr(1);

end
maxregr=max(regr);
minregr=min(regr);
for tt=1:POP_SIZE
rr=rand;
eval(tt)=(maxregr-regr(tt)+rr)/(maxregr-minregr+rr);
end
expect(1)=eval(1);
for j=2:POP_SIZE
expect(j)=expect(j-1)+eval(j);

end
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(7) Selection

function parents=selection_conMOPS(expect,parents)
POP_SIZE=100;

for j=1:POP_SIZE
r=rand*expect(POP_SIZE);
for uu=1:POP_SIZE
if (r<=expect(uu))
temp(j,:)=parents(uu,:);
break;

end
end

end
parents=temp;

(8). Main file

function conMOPS_1
GEN=200;
nvars=30;
chromosome=create_conMOPS();
figure;
for i=1:GEN
[bestchromosome, bestobjective, expectation, regret]
=evaluatation_conMOPS(chromosome);

chromosome=selection_conMOPS(expectation,chromosome);
chromosome=crossover_permutation_conMOPS(chromosome);
chromosome=mutate_permutation_conMOPS(chromosome);
disp(’Generation=’);
disp(i);
disp(’f(x)=’);
disp(bestobjective);
disp(’x=’);
disp(bestchromosome);
disp(’sum(x)=’);
disp(sum(bestchromosome(1:nvars)));
hold on
set(gca,’xlim’,[0,GEN]);
xlabel(’Generation’,’interp’,’none’);
ylabel(’Fitness value’,’interp’,’none’);
plotbest=plot(i,bestobjective,’+r’);
plotmean=plot(i,mean(regret),’+black’);
end
hold off;
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Program for Fu-Ra CCM of portfolio selection problem

function possprobCCP
nvars=5;
GEN=20;
POP_SIZE=10;
P_MUTATION=0.2;
P_CROSSOVER=0.3;
INFTY=0.005;
objnum=2;
probabnum=4;
possnum=4;
LARGENUMBER=-100000000;
precision=0.000001;
constrposs=0.90;
checkposs=0.75;
constrprob=0.9;
range=[20 35 45 19 19;300 100 80 80
25];
mu=[113 241 87 56 92; 1.2*628 0.5*143 1.3*476
0.8*324 0.9*539];

stddelta=[1 4 1 2 1 ;1 2 2 2 2];
spread=[3 8 3 7 5; 1.2*10 0.5*7
1.3*12 0.8*5 0.9*8];
weight=[0.9 0.1];
constraintmatrix=[1 1 1 1 1;
1 1 1 1 1; 4 2 1.5 1 2 ;
1 4 2 5 3; 1 0 0 0 0;
0 1 0 0 0; 0 0 1 0 0;
0 0 0 1 0; 0 0 0 0 1];
Rconst=[350; 300; 1085; 660; 20; 20; 20; 20;
20];
testposs=0.10;
lowerBound=range(1,:);
span=range(2,:)-lowerBound;
chromosome=repmat(lowerBound,POP_SIZE,1)+

repmat(span,POP_SIZE,1).

*rand(POP_SIZE,nvars);

for m=1:POP_SIZE
ww=constraintmatrix*transpose(chromosome(m,:))
-Rconst;

while ((chromosome(m,1)<=0)|(chromosome(m,2)<=0)|
(chromosome(m,3)<=0)|(chromosome(m,4)<=0)|
(chromosome(m,5)<=0)|(ww(1)>0)|(ww(2)<0)|



432 A Procedures

(ww(3)>0)|(ww(4)>0)|(ww(5)<0)|(ww(6)<0)|
(ww(7)<0)|(ww(8)<0)|(ww(9)<0))
chromosome(m,:)=repmat(lowerBound,1,1)

+repmat(span,1,1).*rand(1,nvars);
ww=constraintmatrix*transpose(chromosome(m,:))
-Rconst;

end
end

for r=1:POP_SIZE
progoalf=zeros(probabnum,objnum);
for i=1:probabnum
outx=normrnd(mu,stddelta,objnum,nvars);
goalf=LARGENUMBER.*ones(1,objnum);
for k=1:possnum
fcrisp=(outx-(1-constrposs)*spread)

+2*(1-constrposs).*spread
.*rand(objnum,nvars);

objresu=chromosome(r,:)*transpose(fcrisp);
for ss=1:objnum
if (objresu(1,ss)>=goalf(1,ss));
goalf(1,ss)=objresu(1,ss);

end
end

end
progoalf(i,:)=goalf;

end
[gg,idxgg]=sort(progoalf);
ix=fix(probabnum.* constrprob);
for w=1:objnum
keepff(r,w)=gg(ix,w);

end
end

[pare,iid]=sort(keepff);
paretoff=pare(POP_SIZE,:);
for r=1:POP_SIZE
regr(r)=weight(1)*abs(paretoff(1)-keepff(r,1))

+weight(2)*abs(paretoff(2)-keepff(r,2));
end
[regr,idx]=sort(regr);
chromosome=chromosome(idx,:);
keepff=keepff(idx,:);
bestchromosome=[chromosome(1,:)
keepff(1,:)];
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bestobjective=regr(1);
constraintvalues=constraintmatrix*
transpose(bestchromosome(1,1:nvars))-Rconst;

maxregr=max(regr);
minregr=min(regr);
for j=1:POP_SIZE
rr=rand;
eval(j)=(maxregr-regr(j)+rr)/(maxregr-minregr+rr);
end
expectation(1)=eval(1);
for j=2:POP_SIZE
expectation(j)=expectation(j-1)+eval(j);

end
figure;
for i=1:GEN
for j=1:POP_SIZE
r=rand*expectation(POP_SIZE);
for k=1:POP_SIZE
if (r<=expectation(k))
temp(j,:)=chromosome(k,:);
break;

end
end

end
chromosome=temp;
fixn=fix(POP_SIZE/2);
for j=1:fixn
r1=rand;
if (r1>P_CROSSOVER)
k=fix(rand*POP_SIZE)+1;
kk=fix(rand*POP_SIZE)+1;
r2=rand;
temp1=zeros(1,nvars);
temp2=zeros(1,nvars);
temp1=r2*chromosome(k,:)+(1-r2)*chromosome(kk,:);
temp2=(1-r2)*chromosome(k,:)+r2*chromosome(kk,:);
ww=constraintmatrix*transpose(temp1(1,:))-Rconst;
if ((temp1(1)>0)&(temp1(2)>0)&(temp1(3)>0)&

(temp1(4)>0)&(temp1(5)>0)&(ww(1)<=0)&
(ww(2)>=0)&(ww(3)<=0)&(ww(4)<=0)&
(ww(5)>=0)&(ww(6)>=0)&(ww(7)>=0)&
(ww(8)>=0)&(ww(9)>=0))

chromosome(k,:)=temp1;
end
ww=constraintmatrix*transpose(temp2(1,:))-Rconst;
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if ((temp2(1)>0)&(temp2(2)>0)&(temp2(3)>0)&
(temp2(4)>0)&(temp2(5)>0)&(ww(1)<=0)&
(ww(2)>=0)&(ww(3)<=0)&(ww(4)<=0)&
(ww(5)>=0)&(ww(6)>=0)&(ww(7)>=0)
&(ww(8)>=0)&(ww(9)>=0))

chromosome(kk,:)=temp2;
end
else
continue;

end
end
for j=1:POP_SIZE
r1=rand;
if (r1>P_MUTATION)
mutx=chromosome(j,:);
direction=unifrnd(-1,1,1,nvars);
infty=rand*INFTY;
muty=mutx+infty*direction;
ww=constraintmatrix*transpose(muty(1,:))
-Rconst;

if ((muty(1)>0)&(muty(2)>0)&(muty(3)>0)&
(muty(4)>0)&(muty(5)>0)&(ww(1)<=0)&
(ww(2)>=0)&(ww(3)<=0)&(ww(4)<=0)&
w(5)>=0)&(ww(6)>=0)&(ww(7)>=0)
&(ww(8)>=0)&(ww(9)>=0))
chromosome(j,:)=muty;

end
else
continue;

end
end
for r=1:POP_SIZE
progoalf=zeros(probabnum,objnum);
for q=1:probabnum
outx=normrnd(mu,stddelta,objnum,nvars);
goalf=LARGENUMBER.*ones(1,objnum);
for k=1:possnum
fcrisp=(outx-(1-constrposs)*spread)

+2*(1-constrposs)
.*spread.*rand(objnum,nvars);

objresu=chromosome(r,:)*transpose(fcrisp);
for ss=1:objnum
if (objresu(1,ss)>=goalf(1,ss))
goalf(1,ss)=objresu(1,ss) ;
end
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end
end
progoalf(q,:)=goalf;

end
[gg,idxgg]=sort(progoalf);
ix=fix(probabnum*constrprob );
for w=1:objnum
keepff(r,w)=gg(ix,w);

end
end
[pare,iid]=sort(keepff);
paretoff=pare(POP_SIZE,:);

for r=1:POP_SIZE
regr(r)=weight(1)*abs(paretoff(1)-keepff(r,1))

+weight(2)*abs(paretoff(2)-keepff(r,2));
end
[regr,idx]=sort(regr);
chromosome=chromosome(idx,:);
keepff=keepff(idx,:);
if (regr(1)<bestobjective)
bestchromosome=[chromosome(1,:)keepff(1,:)];
bestobjective=regr(1);
end
constraintvalues=constraintmatrix

*transpose(bestchromosome(1,1:nvars))
-Rconst;

maxregr=max(regr);
minregr=min(regr);
for j=1:POP_SIZE
rr=rand;
eval(j)=(maxregr-regr(j)+rr)/(maxregr-minregr+rr);
end
expectation(1)=eval(1);
for j=2:POP_SIZE
expectation(j)=expectation(j-1)+eval(j);

end

M=2000;
MM=2000;
number=zeros(1,objnum);
for kk=1:M
test=normrnd(mu,stddelta,objnum,nvars);
tempmembership=zeros(MM,objnum);
for qq=1:MM
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realization=(test-(1-testposs)*spread)
+2*(1-testposs).*spread
.*rand(objnum,nvars);

realizeff=realization*transpose
(bestchromosome(1,1:nvars));

if (realizeff(1)>=bestchromosome(1,nvars+1))
for bb=1:nvars
if (realization(1,bb)>test(1,bb))
membershipvalue(1,bb)=(test(1,bb)
+spread(1,bb)-realization(1,bb))
/spread(1,bb);

else
membershipvalue(1,bb)=(realization(1,bb)
-(test(1,bb)-spread(1,bb)))
/spread(1,bb);

end
end
tempmembership(qq,1)=min(membershipvalue(1,:));

end
if (realizeff(2)>=bestchromosome(1,nvars+2))
for bb=1:nvars
if (realization(2,bb)>test(2,bb))
membershipvalue(2,bb)=(test(2,bb)
+spread(2,bb)-realization(2,bb))
/spread(2,bb);

else
membershipvalue(2,bb)=(realization(2,bb)
-(test(2,bb)-spread(2,bb)))
/spread(2,bb);

end
end
tempmembership(qq,2)=min(membershipvalue(2,:));

end
testmembership=max(tempmembership);
if (testmembership(1)>=checkposs)
number(1)=number(1)+1;

end
if (testmembership(2)>=checkposs)
number(2)=number(2)+1;

end
outmembership(kk,:)=testmembership;
end
probability(1)=number(1)/M;
probability(2)=number(2)/M;
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disp(’Generation=’);
disp(i);
disp(’averagemembership=’);
disp(mean(outmembership));
disp(’probability =’);
disp(probability);
disp(’f(x)=’);
disp(bestobjective);
disp(’x=’);
disp(bestchromosome);
disp(’ww=’);
disp(constraintvalues);
hold on
set(gca,’xlim’,[0,GEN]);
xlabel(’Generation’,’interp’,’none’);
ylabel(’Fitness value’,’interp’,’none’);
title([’Best: ’,’ Mean: ’],’interp’,’none’)
plotbest=plot(i,bestobjective,’+red’);
plotmean=plot(i,mean(regr),’+black’);
end
LegnD=legend(’Best fitness’,’Mean fitness’,4);
set(LegnD,’FontSize’,8);
hold off;

Program for Fu-Ra DCM

It’s similar to the program for Fu-Ra CCM, so we skip over.
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Fuzzy simulation 2 107

Fuzzy simulation 3 119

Fuzzy variable 59

GA 154

Goal programming method 102

Ideal point method 116

Integrated logistics problem 295

Intersection 7

Inventory model 223

Level-2 fuzzy set 229

Lexicographic method 258

LR fuzzy number 15

Membership function 37

Methodological system 375

Minimax point method 317

MODM 376

Multiplication of fuzzy numbers 28

Necessity 64

Normality 12

Parallel SA 261

Parallel TS 359

Parametric TS 342

Portfolio selection problem 136

Possibility 64

Possibility distribution 51

PSO 85

PSO with preference order 108

PSO with shrinkage factor 120

Random weight GA 163

Raw material purchasing problem 227

Rough sets theory 298

SA 246

Satisfying trade-off method 195

Simulation 2 260

Step method 240

Substraction of fuzzy numbers 26

Support and α-cut 9

Surrogate worth trade-off method 175

Trapezoidal fuzzy number 16

Trapezoidal fuzzy variable 68

Triangular fuzzy number 16

Triangular fuzzy variable 68
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Two-stage method 81

Type-2 fuzzy sets 229

Union 8

Weight sum method 269
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