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Preface

“The finest emotion of which we are capable is the mystic emotion”

(Albert Einstein, 1879–1955)

During the past years the “mystery” of emotions has increasingly attracted

interest in research on human–computer interaction. In this work we investigate

the problem of how to incorporate the user’s emotional state into a spoken language

dialogue system. The book describes the recognition and classification of emotions

and proposes models integrating emotions into adaptive dialogue management.

In computer and telecommunication technologies the way in how people

communicate with each other is changing significantly from a strictly structured

and formatted information transfer to a flexible and more natural communication.

Spoken language is the most natural way of communication between humans and it

also provides an easy and quick way to interact with a computer application. These

systems range from information kiosks where travelers can book flights or buy train

tickets to handheld devices which show tourists around cities while interactively

giving information about points of interest. Generally, spoken language dialogue

does not only mean simplicity, comfort and saving of time but moreover contributes

to safety aspects in critical environments like in cars, where hands-free operation is

indispensible in order to keep the driver’s distraction minimal. Within the context

of ubiquitous computing in intelligent environments dialogue systems facilitate ev-

eryday work, e.g., at home where lights or household appliances can be controlled

by voice commands, and provide the possibility, especially in assisted living, to

quickly summon help in emergency cases.

In parallel to the progress made in technical development the customer’s de-

mands concerning the products have increased. While car owners in the 1920s might

have been completely satisfied once they arrived at a destination without any major

complications, people in the 1970s would have already tended to become annoyed

once their engine refuses to start on the first turn of the ignition key. And nowadays

a navigation system showing the wrong way might even cause more anger. For ubiq-

uitous technology like cars this means on the one hand that the driver is literally at

the mercy of sophisticated technology on the other hand this does not hinder him/her

from building some kind of personal relation to the car, ranging from decorations

v
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like car fresheners or fuzzy dice to expensive tuning. Such a relation includes as well

the expression of emotions towards the car – just imagine drivers spurring on their

cars when climbing a steep hill and being glad having reached the top, or drivers

shouting at their non-functioning navigation system, hitting or kicking their cars...

A similar behavior can be observed among computer users. Having successfully

written a book using a word processing software might arouse happiness, however

a sudden hard disc crash destroying all documents will probably drive the author up

the wall.

Normally neither the car nor the computer is capable of replying to the user’s

affect. So why not enable devices to react accordingly? Think of a car that refuses

to start and the driver shouting angrily “Stupid car, I paid more than $40,000 and

now it’s only causing trouble!”. Here a car’s reply like “I am sorry that the engine

does not run properly. This is due to a defective spark-plug which needs to be re-

placed.” would certainly defuse the tense situation and it moreover provides useful

information on how to solve the problem. This again contributes to safety aspects

in the car as the driver can be calmed down, e.g., in the case of a delay due to a

traffic jam, whereupon the driver tries to make up the loss of time by speeding. Here

the car’s computer could try to rearrange the planned meeting and inform the user:

“Due to our delay I have rescheduled your meeting one hour later. So there is no

need to hurry.”

To implement a more flexible system, the typical architecture of a spoken lan-

guage dialogue system needs to be equipped with additional functionality. This

includes the recognition of emotions and the detection of situation-based param-

eters as well as user-state and situation managers which calculate models based on

these parameters and influence the course of the dialogue accordingly.

Constituting a hot topic of interest in current research there exist several ap-

proaches to classify the user’s emotions. These methods include the measurement

of physiological values using biosensors, the interpretation of gestures and facial

expressions using cameras, natural language processing spotting emotive keywords

and fillers in recognized utterances or classification of prosodic features extracted

from the speech signal. Concentrating on a monomodal system without video input

and trying to reduce inconveniences to the user, this work focuses on the recognition

of emotions from the speech signal using Hidden Markov Models (HMMs). Based

on a database of emotional speech, a set of prosodic features has been selected and

HMMs have been trained and tested for six emotions and ten speakers. Due to vari-

ations in model parameters multiple recognizers have been implemented.

According to the output of the emotion recognizer(s) the course of the dialogue

is influenced. With the help of a user-state model and a situation model the dialogue

strategy is adapted and an appropriate stylistic realization of its prompts is chosen.

I.e., if the user is in a neutral mood and speaks clearly, there are no confirmations

necessary and the dialogue can be kept relatively short. However if the user is angry

and speaks correspondingly unclearly, the system has to try to calm down the user

but it also has to ask often for confirmation, which again makes the user turn angry...

Principally there exist two methods to model the influence of these so-called con-

trol parameters like emotions: a rule-based approach where every eventuality in the
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user’s behavior is covered by a rule which contains a suitable reply, or a stochastic

approach which models the probability of a certain reply in dependence of the user’s

previous utterances and corresponding control parameters.

So how is this book organized? An introduction to the research topic is fol-

lowed by an overview on emotions – theories and emotions in speech. In the third

chapter, dialogue strategy concepts with regard to integrating emotions in spoken

dialogue are described. Signal processing and speech-based emotion recognition

are discussed in Chapter 4 and improvements to our proposed emotion recognizers

as well as the implementation of our adaptive dialogue manager are discussed in

Chapter 5. Chapter 6 presents evaluation results of the emotion recognition compo-

nent and of the end-to-end system with respect to existing spoken language dialogue

systems evaluation paradigms. The book concludes with a final discussion and an

outlook on future research directions.

Ulm, Johannes & Angela Pittermann

May 2009 Wolfgang Minker



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Spoken Language Dialogue Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Enhancing a Spoken Language Dialogue System . . . . . . . . . . . . . . . . . . . . . 6

1.3 Challenges in Dialogue Management Development .. . . . . . . . . . . . . . . . . . 8

1.4 Issues in User Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Evaluation of Dialogue Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6 Summary of Contributions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Human Emotions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1 Definition of Emotion .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Theories of Emotion and Categorization .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Emotional Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Emotional Speech Databases/Corpora . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Adaptive Human–Computer Dialogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1 Background and Related Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 User-State and Situation Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3 Dialogue Strategies and Control Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4 Integrating Speech Recognizer Confidence Measures

into Adaptive Dialogue Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5 Integrating Emotions into Adaptive Dialogue Management . . . . . . . . . . 72

3.6 A Semi-Stochastic Dialogue Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.7 A Semi-Stochastic Emotional Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.8 A Semi-Stochastic Combined Emotional Dialogue Model . . . . . . . . . . . 95

3.9 Extending the Semi-Stochastic Combined

Emotional Dialogue Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100

3.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104

4 Hybrid Approach to Speech–Emotion Recognition. . . . . . . . . . . . . . . . . . . . . . . .107

4.1 Signal Processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108

4.2 Classifiers for Emotion Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120

4.3 Existing Approaches to Emotion Recognition .. . . . . . . . . . . . . . . . . . . . . . . .127

ix



x Contents

4.4 HMM-Based Speech Recognition .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131

4.5 HMM-Based Emotion Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135

4.6 Combined Speech and Emotion Recognition .. . . . . . . . . . . . . . . . . . . . . . . . .142

4.7 Emotion Recognition by Linguistic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . .144

4.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149

5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151

5.1 Emotion Recognizer Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151

5.2 Using Multiple (Speech–)Emotion Recognizers . . . . . . . . . . . . . . . . . . . . . . .159

5.3 Implementation of Our Dialogue Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . .173

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185

6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187

6.1 Description of Dialogue System Evaluation Paradigms . . . . . . . . . . . . . . .187

6.2 Speech Data Used for the Emotion Recognizer Evaluation .. . . . . . . . . .190

6.3 Performance of Our Emotion Recognizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192

6.4 Evaluation of Our Dialogue Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .217

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223

7 Conclusion and Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227

A Emotional Speech Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .237

B Used Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .251

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .273



Chapter 1

Introduction

“How may I help you?” (cf. Gorin et al. 1997) – Imagine you are calling your

travel agency’s telephone hotline and you don’t even notice that you are talking to

a computer. Would you be surprised if your virtual dialogue partner recognized you

by means of your voice and if it asked you how you liked your previous trip?

The ongoing trend of computers becoming more powerful, smaller, cheaper and

more user-friendly leads to the effect that these devices increasingly gain in im-

portance in everyday life and become “invisible”. Within this so-called ubiquitous

computing there exist a large variety of applications and data structures ranging from

information retrieval systems to control tasks and emergency call functionality. In

order to handle these applications, a manageable user interface is required which

can be realized with the aid of a spoken language dialogue system (SLDS).

In this chapter, we give a brief overview on the functionality of SLDS and their

implementation in current dialogue applications. Some of the ideas presented here

already apply successfully in state-of-the-art dialogue applications, other ideas are

still part of ongoing research. Thus, certain challenges still exist in the develop-

ment of speech applications (see also Minker et al. 2006b). In this book, we address

the user-friendliness and the naturalness of an SLDS. This includes the adaptation

of the dialogue to the user’s emotional state and, to accomplish that, the recog-

nition of emotions from the speech signal. Therefore we describe the architecture

of an SLDS and refer to approaches where regular dialogue systems may be im-

proved and how these improvements can be realized. Here, in Sections 1.2–1.4

especially challenges in the development of adaptive dialogue management are ad-

dressed. In Chapters 3–5, we describe our strategies of integrating emotions into

adaptive dialogue management and our approach to speech-based emotion recogni-

tion and its derivatives like combined speech–emotion recognition and optimization

approaches. An evaluation of our methods as well as a summary and a discussion of

future perspectives is given in Chapters 6 and 7.

J. Pittermann et al., Handling Emotions in Human-Computer Dialogues,
DOI 10.1007/978-90-481-3129-7 1, c Springer Science+Business Media B.V. 2010
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2 1 Introduction

1.1 Spoken Language Dialogue Systems

SLDSs enable a user to access a computer application using spoken natural

language which is the most natural, convenient and inexpensive way of com-

munication (De Mori 1998; McTear 2004). The general structure of an SLDS is

depicted in Fig. 1.1: automatic speech recognition (ASR) for translating an audio

signal into sequences of words, natural language understanding (parsing) for ex-

tracting a meaning from these words, a dialogue manager for application access

and initiating system actions, text generation and speech synthesis for formulating

system prompts and transforming them into audio signals, respectively (Minker

et al. 2006a, b).

1.1.1 Automatic Speech Recognition

Speech recognition automatically extracts the string of words spoken from the

speech signal. Within the last decade of research a significant evolution could be

observed from systems supporting isolated word recognition for limited vocabulary

to large vocabulary continuous speech recognition (Lefèvre et al. 2001).

The goal of speech recognition can be formulated as a probabilistic problem to

find a sequence of words which is most probable given a sequence of acoustic obser-

vations (Rabiner 1989; Juang and Rabiner 1991). This problem can be subdivided

in two subproblems: finding words the pronunciation of which matches the acoustic

properties of the input signal best (acoustic model) and finding the appropriate order

of words (language model).

Before classifying the speech signal is preprocessed and relevant features are

extracted. The preprocessing includes quantization, preemphasis and windowing,

signal enhancement and noise reduction like spectral subtraction (Linhard and

Haulick 1999) as well as blind-source separation for use of ASR systems in noisy

environments (Bourgeois 2005; Bourgeois et al. 2005). In the short time analysis

mainly acoustic features (cepstrum, pitch, formants, energy, etc.) but also acoustic-

phonetic features like manner or place of articulation and auditory features like

Mel-frequency warping are considered. Temporal aspects are included by calcu-

lating delta and acceleration coefficients, i.e., the first and second derivative.

Speech recognition Parsing

Dialogue Manager

Text generationSpeech synthesis

Application

U
S
E

R

Fig. 1.1 Architecture of a typical SLDS
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Each word in the recognizer vocabulary is mapped onto one or multiple

sequences of phonemes (depending on how many pronunciations are associated

with the word) using a lexicon or dictionary. In simple monophone recognizers,

each single phoneme is modeled individually, however, current systems feature

more sophisticated sub-word levels such as tied-state triphones (Woodland and

Young 1993) which include aspects like co-articulation.

A language model represents the probability of a word sequence which typi-

cally includes the probability of a word wi given the preceding words wi � 1, . . . ,

w1 (see Young 2001). The simplest approach for a language model is a finite-state

network where the allowed word sequences are given explicitly. Other rule-based

approaches include context-sensitive grammars in order to approximate natural lan-

guage. As the complexity of a rule-based language model, and thus the effort to

manually create such a model, increases significantly with the vocabulary size, sta-

tistical language models are used in large-vocabulary continuous speech recognition

and dictation systems. Typically not all preceding words are included in the model

but only n-grams, i.e., a word and n � 1 preceding words are considered. A uni-

gram (n = 1) model only contains the frequency of occurrence of words without any

dependencies on adjacent words. A very basic dependency is modeled by bigrams

(n = 2) which take into account one preceding word (Lesher et al. 1999).

Speech recognition and HMMs constitute a key element in our work on speech-

based emotion recognition. Thus, we discuss further details and properties of these

models and methods in Chapter 4.

1.1.2 Natural Language Understanding

Having recognized a sequence of words from the speech signal the system now

needs to extract the actual meaning from these words (see also Allen 1995). One

approach to process a sentence is the syntactic analysis which assigns a certain

structure to the sentence describing its different syntactic elements like phrases,

verbs, nouns, prepositions, modifiers, etc. Based on this analysis the meanings of

the particular elements are derived and merged to an overall meaning. This, how-

ever, requires the whole sentence to be analyzed and to be syntactically correct.

Optimally, the parsing component should establish the semantic representation of an

input word sequence facing various spoken natural language effects (Minker et al.

1999), i.e., the goal of the semantic analysis is to extract the sentence meaning rather

than only to check whether the sentence is grammatically correct or incorrect.

The semantic representation is typically determined with the aid of rule-based

grammars. This can be semantic grammars (Burton 1976) or case grammars

(Fillmore 1968) which are especially suitable for spoken natural language input

as they also allow the processing of ungrammatical sentences. The major dis-

advantage of grammars which are implemented as a set of rules is their lack of

adaptability to different applications, domains and languages. Thus data-oriented

parsing methods such as grammar inference and stochastic grammars (Jelinek et al.
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1992, 1994) or connectionist models (Feldman and Ballard 1982) and hidden un-

derstanding models based on Hidden Markov Models (Miller et al. 1994; Levin

and Pieraccini 1995) are also employed in spoken language dialogue systems as

they are less constraining for modeling and parsing providing a higher coverage of

meanings.

Apart from pure semantic meanings, also emotional cues can be extracted from

the speech recognizer output with the aid of the semantic analysis. This approach

is further specified in Section 4.7, where we use an affective grammar to spot emo-

tional keywords in texts.

1.1.3 Dialogue Management

Being the central component of the dialogue system the dialogue manager handles

the user’s input in the form of labels provided by the semantic analysis. It interacts

with the application and generates a response to the input. By generating suitable

responses, the dialogue manager is also in charge of controlling the dialogue flow

(Androutsopoulos and Aretoulaki 2003; Cohen et al. 2004; McTear 2004). To ac-

complish that and to shape the dialogue flow in an appropriate manner the dialogue

manager can select between different types of dialogue initiative, employ certain

confirmation strategies and access various knowledge sources.

For example, in a simplified travel information system where the user is able to

book flights, the system needs to know the destination, the place of departure and

the travel date. Such a dialogue, e.g., proceeds as follows:

1 System: Good morning and welcome to Uta, your virtual travel agency.

How may I help you?

2 User: I would like to book a flight from Boston to Los Angeles.

After the user input departure =“Boston”, destination = “Los Angeles” is passed

from the parser unit to the dialogue manager, the dialogue manager checks if all

required fields are filled. As this is not the case, it checks if the missing data is

contained in the dialogue history. If, like in this case, the dialogue history is empty

or does not provide all of the missing data, the dialogue manager determines the

fields which are still missing and requests further details (i.e., the next field):

3 System: When would you like to depart?

4 User: On Wednesday.

Again the input date = “Wednesday” is received and converted to a more database-

friendly format like date = “2007-10-03”. Now that all required data is available

(departure and destination are obtained from the dialogue history), the dialogue

manager is able to access the application and pass the result to the user:

5 System: The following flights from Boston to Los Angeles are available

on Wednesday, October 3rd: . . .



1.1 Spoken Language Dialogue Systems 5

These aspects and further details on dialogue management, particularly with

regard to integrating emotions in the dialogue flow, will be addressed in Section 1.3

as well as in Chapter 3.

1.1.4 Text Generation

As soon as the dialogue manager has received a response from the application or ex-

ternal source this information needs to be communicated to the user. Basically there

exist two different types of responses: Either the user has not provided all parameters

required for a database or an application access, so that a prompt asking for further

details needs to be formulated, or the retrieved information, e.g., database records

like ‘‘Munich, Paris, 070226:0110’’, needs to be translated into a com-

prehensible natural language message like “There is a flight from Munich to Paris

on February 26, 2007 at 01:10 am”.

Depending on the complexity of the application interface current SLDSs employ

either a set of predefined (canned) sentences or text templates to generate natural

language text. Being the simplest approach to implement, the predefined sentences

can already be included in the database rendering the implementation highly in-

flexible. A higher degree of flexibility is provided by text templates which are used

in VoiceXML (cf. Larson 2001) and various other dialogue description languages.

Such a text template may be, e.g., “There are [number-of-flights] flights from [de-

parture] to [destination].” where the elements [number-of-flights], [departure] and

[destination] are determined by a database query or taken from the dialogue history.

Natural language generation can also be regarded as a planning process

transforming communicative goals into comprehensible messages. Such a content

planning approach is used in tutoring systems where the users are shown how to ac-

complish certain tasks with respect to different situations (cf. Wolz 1990). Here, text

generation can be subdivided into three processes: Document planning (including

content selection), microplanning and surface realization (Reiter and Dale 2000).

1.1.5 Text-to-Speech

Once a suitable response has been generated, it is translated into a speech signal.

In analogy to the canned sentences approach for language generation, prerecorded

(canned) speech samples may be used. Depending on the complexity of the appli-

cation, these samples may either contain complete sentences or sentence fragments

which are concatenated dependent on the generated text like in voice mailbox user

interfaces. Whereas completely prerecorded texts feature a high degree of “natural-

ness”, the concatenation of fragment samples may often lead to a patchy and uneven

overall output.
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Thus, in order to get a constant output for variable texts typically text-to-speech

synthesis is employed (O’Malley 1990; Carlson and Granström 1977).

Text-to-speech conversion has evolved to a research field of its own including

aspects such as grapheme-to-phoneme conversion, prosodic modeling and speech

synthesis. Roughly speaking the text is converted to a sequence of phonemes or

diphones using a dictionary like in speech recognition and this sequence is then

synthesized to a speech signal. In this process there are certainly more aspects that

have to be considered. The analysis of the text does not only comprise the conver-

sion to phonemes but also includes a proper segmentation and interpretation of the

text as well as adjustments concerning coarticulation, stress and prosody (Sproat

et al. 1992; Sagisaka 2001; Werner and Hoffmann 2007).

The output of the text analysis, typically a phonetic string enriched with prosodic

marks denoting stress, pauses and pitch variations, is passed to the actual speech

generation component. Based on the prosodic marks synthesizer parameters like

pitch (fundamental frequency F0), speech rate (duration of the speech segments),

intensity, timbre, etc. are calculated. The pitch curve, i.e., the contour of the fun-

damental frequency, is computed with the aid of melody models (d’Alessandro and

Mertens 1995) and the speech rate is derived from durational models. These param-

eters finally serve as the input of the signal generator. In current speech synthesis

systems several types of speech generators are employed: Articulatory synthesiz-

ers use physical models with respect to the physiology of speech production and

the vocal tract (Teixeira et al. 2002). Formant synthesizers apply an acoustic model

including speech spectra, formants of the vocal tract and excitation by the glot-

tal flow or noise (Gutiérrez-Arriola et al. 2001). Concatenative synthesizers avail

themselves of speech databases containing coded speech segments, e.g., diphones

(Isard and Miller 1986), which are concatenated and processed to obtain a smooth

signal (O’Brien and Monaghan 2001).

1.2 Enhancing a Spoken Language Dialogue System

In order to provide more functionality and to increase the user-friendliness the ar-

chitecture of a typical SLDS as shown in Fig. 1.1 can be arbitrarily extended.

Multimodal human–computer interfaces involve the combination of multiple

modalities, like audio (speech, dial tone sounds, etc.), haptics (movement, touch,

gestures, etc.) or video (mimics, eye/head/body movement, gestures), not only for

input but also for output. These systems receive multiple input streams, one per

modality, that need to be combined on the recognition or at the parsing level. By

that, the dialogue manager is able to, e.g., provide the required information when

the user points on a map and says “show restaurants near this place” (Johnston et al.

2002). The output of such a system may also be presented multimodally by combin-

ing speech with graphics and tables or with the aid of animated presentation agents
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Fig. 1.2 Extended architecture of an SLDS

(André 2000). Integrating multiple input modalities does not only provide a more

flexible interaction allowing the users to interact with their preferred modalities

(cf. Oviatt 1997), it also helps to reduce recognition errors and misinterpretations

(cf. Oviatt 2000). The implementation and evaluation of SmartKom, a multimodal

dialogue system is extensively described in Wahlster (2006).

Apart from the involvement of additional modalities there exist numerous ap-

proaches to endow SLDSs with certain capabilities, which are provided by separate

modules. An exemplary SLDS is shown in Fig. 1.2. Its additional components in-

clude a reasoning module which renders the system more efficient by reasoning over

the user’s input and providing problem solving assistance (Minker et al. 2006b). Fur-

thermore it avails itself of a user-state and situation manager to adapt the dialogue

flow to a dynamically changing user model and to the situation in which the dia-

logue is taking place. An interaction manager enables the system to passively follow

a multiparty conversation (between multiple speakers) and to proactively contribute

to the conversation when required. Similar to multimodal systems, where the output

is communicated using multiple modalities, an extended SLDS may also adapt its

output to the current user-state or dialogue situation. Like human dialogue partners

who tend to speak louder, slower and more clearly when they have problems un-

derstanding each other, an SLDS may proceed accordingly in case of background

noise or speech recognition problems. When considering the user’s emotional state

the system can also apply emotional speech to react accordingly, e.g., to appease an

angry user more efficiently. A huge number of state-of-the-art text-to-speech syn-

thesis systems are able to integrate prosodic features like pitch, emphasis, etc., into

the output signal (cf., e.g., Nass and Lee 2001; Tesser et al. 2005).

In order to increase the user-friendliness and the efficiency of the dialogue system

we focus on rendering dialogue management more adaptive. This is supported by the

user-state manager and the situation manager (see also Chapter 3) which adapt the

user and situation models on the basis of sensor data, e.g., from emotion recognition.
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1.3 Challenges in Dialogue Management Development

Apart from being a data synchronization interface between a user and the appli-

cation, the dialogue manager is also responsible for maintaining an appropriate

dialogue flow so that the interaction ends successfully, i.e., as desired by the user.

There exist a variety of parameters and mechanisms to design and also adapt dia-

logues (cf. McTear 2004), the most important of which are described below.

In contrast to human–human interaction where the initiative shifts perpetually be-

tween the dialogue partners, human–computer dialogues are typically maintaining

one certain initiative strategy depending on the application area. In an information

retrieval or database query application, the dialogue system normally asks a set of

questions to obtain all parameters for the database query. Therefore, either system

initiative or mixed initiative are applied. In system-initiated dialogue the system

asks specific questions like “Where do you want to travel to?” restricting the user’s

input to a very small set of responses. This set may be even reduced by offering

options like “Where do you want to travel to? Paris, London or Frankfurt?” to in-

crease the speech recognition accuracy. Mixed-initiative dialogues do not only allow

the user to ask questions or to request further information but also to provide more

information than is asked by the system – here the reply to “Where do you want to

travel to?” may be “I want to travel to Munich by train on September 2nd”. Typi-

cally, such a system welcomes the user with, e.g., “How can I help you?”, the user

provides as much information as possible and the system takes control to ask for fur-

ther required information. In user-initiative dialogues it is the user who controls the

dialogue and who solely asks the questions which the system tries to answer appro-

priately. Such a natural language interface, however, needs to possess a very accurate

large-vocabulary continuous speech recognizer and an adequate parser. The selec-

tion of a suitable dialogue strategy is one important issue in dialogue development

(see, e.g., Levin et al., 2000a). It is typically defined beforehand and maintained dur-

ing the whole dialogue. However, in order to fashion the dialogue more natural and

user-friendly there also exist approaches to adapt the strategy during the dialogue

(Litman and Pan 2002).

Another important issue in dialogue development is how the user’s input is pro-

cessed. In the case of graphical user interfaces where the user needs to select from

a limited choice of buttons, list or menu items, the system may assume that the

received input is in total accordance with what the user actually intends. As op-

posed to that, the dialogue manager of an SLDS needs to provide for the possibility

that the user’s utterance has not been recognized or interpreted correctly by the

speech recognizer or the parser, respectively. Moreover, even if the utterance is

recognized correctly, it cannot be guaranteed that the user’s input can be handled

appropriately when accessing the application. This may occur, e.g., due to under-

or over-specification when a user just says “Los Angeles.”, the system is unable to

determine whether “Los Angeles” is the departure or the destination. Or when a user

says “I want to go to Los Angeles, no, to San Diego, er, San Francisco.”, the system

needs to clarify where the user actually wants to travel to.
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In order to cope with wrong input, misunderstandings, speech recognition errors

or parsing errors, the system either needs to inform the user that it could not under-

stand or needs to verify what it understood. For the cases of no input (silence) or

wrong input (the user’s input does not match the parser’s grammar), dialogue de-

velopment tools like VoiceXML (Larson 2002) or the CSLU Toolkit (Sutton et al.

1998) provide predefined prompts or subdialogues which may be adapted to the con-

text of the actual system as shown by means of the following exemplary dialogue

with our travel information retrieval system:

1 System: Good morning and welcome to Uta, your virtual travel agency.

How can I help you?

2 User: (silence)

3 System: Sorry, I did not hear what you said. Please speak loud and

clearly. How can I help you?

4 User: Can I buy subway tickets here?

5 System: Sorry, I did not understand what you said. This is an air travel

information and booking system. Where do you want to travel

to?

6 User: Err, Times Square

. . .

Repeating turns of no-input or not-matching input are also considered in VoiceXML.

Here the corresponding prompts and messages may be fashioned according to the

idea of incremental or expanded prompts (Yankelovich 1996). E.g., a “How can

I help you?” prompt is increasingly extended with further help such as “This is

an air travel information and booking system. You can book flights or search our

database for flights.” after the first event and “You can say, e.g., ‘show me all flights

to Miami’. Please say ‘help’ if you require further assistance.” after the second

event. By that, the understanding problems can be resolved after a certain number

of turns depending on the user’s experience with spoken language dialogue systems.

Further and even more severe problems may arise from misunderstandings which

can not be detected by the system. These may be caused by speech recognition errors

or by ambiguities in the parser’s grammar. In human–human conversations speakers

typically expect their listening partners to indicate whether they understood what

has been said. Instinctively being aware of that, listeners automatically conform

with that expectation (cf. Brennan and Hulteen 1995) by nodding, shaking their

heads or saying “hm”, “OK”, “what?”, “pardon?”, etc. In human–computer inter-

action neither user nor system can apply such an informal method of verification.

Especially the user can not expect the system to nod or to mumble “uh huh” as the

system itself does not actually “know” whether it has understood the user correctly.

Instead it is the system’s task to verify the recognized user input and to ask the user

for confirmation. I.e., it needs to inform the user what it understood and give the

user at least one chance to correct eventual errors.

This kind of verification may be accomplished applying an explicit or an implicit

confirmation strategy. Using explicit confirmation prompts, the system requires the

user to explicitly confirm the recognized input, like “I understood you wanted to
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travel to Los Alamos. Is that correct?”, “Is it correct that you want to depart on

Wednesday?”, etc., and the user typically replies with “yes” or “no”. In order to

still keep the number of turns at a reasonable level, so that the user does not get

bored or annoyed, the confirmation prompts for two or more items may be com-

bined, e.g., “I understood you wanted to travel to Los Alamos on Wednesday. Is

that correct?”. Especially in cases where understanding errors may have severe

consequences, like in monetary transactions or the purchase of expensive goods, the

system typically outputs a message summarizing all items and asks for confirmation

before it proceeds with the transaction:

1 System: Good morning and welcome to Uta, your virtual travel agency.

How can I help you?

2 User: I would like to book a flight from Boston to Los Angeles.

3 System: When would you like to depart?

4 User: On Wednesday.

5 System: OK, I understood you want to travel from Boston to Los Angeles

on Wednesday. Is that correct?

6 User: Yes.

7 System: The following flights from Boston to Los Angeles are available

on Wednesday, October 3rd: . . .

This procedure is similar to the dialogue boxes in graphical user interfaces which

ask the user for confirmation, e.g., before deleting data.

When applying an implicit confirmation strategy, the system integrates the con-

firmation into the question for the next item. Such an implicit confirmation may be

integrated into the above dialogue as follows:

3 System: When would you like to depart from Boston to Los Angeles?

4 User: On Wednesday.

In both above examples the user was lucky that the system recognized all utter-

ances correctly. In cases of recognition errors, it strongly depends on the dialogue

manager’s capabilities how quickly the misunderstanding is resolved. A very simple

approach for explicit confirmations is the reset of all items which need confirmation:

5 System: OK, I understood you want to travel from Boston to Los Alamos

on Wednesday. Is that correct?

6 User: No.

7 System: Where do you want to travel to?

8 User: Los Angeles.

9 System: Where do you want to depart from?

. . .

As it seems to be quite annoying for the user to go through all questions just because

one item was misinterpreted, the system may apply a more flexible grammar:
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5 System: OK, I understood you want to travel from Houston to Los Alamos

on Wednesday. Is that correct?

6 User: From Boston.

7 System: OK, I understood you want to travel from Boston to Los Alamos

on Wednesday. Is that correct?

8 User: To Los Angeles.

9 System: OK, I understood you want to travel from Boston to Los Angeles

on Wednesday. Is that correct?

10 User: Yes.

However, the use of a more flexible grammar typically involves a lower speech

recognition accuracy. Alternatively, the system may change to a subdialogue, first

asking which item needs to be corrected, resetting this item and then repeating only

the question for the respective item. If the system does not recognize the user’s input

after a certain number of turns, it should switch to a more robust input strategy, such

as asking the user to spell certain words. In cases where errors occur in implicit

confirmations, the system can be designed similarly:

3 System: When would you like to depart from Houston to Los Alamos?

4 User: From Boston to Los Angeles.

5 System: When would you like to depart from Boston to Los Angeles?

6 User: On Wednesday.

Alternatively, the system may then apply explicit confirmations or include subdia-

logues as described above.

For the inclusion of confirmations in a dialogue system, the developer needs to

find a compromise between an increased robustness (requires more confirmations)

and a decreased user annoyance level (requires fewer confirmations). E.g., an ap-

proach to dynamically include confirmations has been described in Litman and Pan

(2002).

1.4 Issues in User Modeling

As described above, robustness is an important issue in dialogue design. Applying

suitable confirmation strategies during the dialogue the dialogue success rate may

be increased significantly. The success rate is an objective evaluation metric approx-

imating the probability that the system accomplishes its task successfully according

to the user’s input. E.g., the virtual travel agent of the previous sections would

be successful if it returned all flights from Boston to Los Angeles on Wednesday,

whereas it would fail if it returned flights from Houston to Los Alamos. However,

both failure of the dialogue or an extremely large number of dialogue turns, even if

the system is successful then, typically lead to a lower user satisfaction or user ac-

ceptance. To avoid that and to keep the costs of a dialogue, i.e., the number of turns,

at a reasonable level, user models may be integrated into dialogue management.
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A very simple user-model, implemented as a database record, can contain the

user’s experience level. This strongly correlates with how often the user has inter-

acted with the system before. E.g., for mobile phone users who are setting up or

using their mailbox for the first time it is quite helpful when the mailbox system

provides detailed descriptions for all available options:

1 System: Welcome to your personal XYZ Wireless mailbox system. You

don’t have any new or saved messages. This is the main menu.

You can access existing messages by pressing ‘1’ or saying ‘mes-

sages’. In the messages submenu you can listen to new or saved

messages, delete them or archive these. If you want to configure

and personalize your mailbox, press ‘2’ or say ‘setup’. . .

However, more experienced users will rather prefer short prompts, especially when

they have to pay for the time calling their mailbox as higher dialogue costs result

in a higher phone bill then. For such a system our simple user model contains the

number of times that the user called the system. Once this number is above a certain

threshold, e.g., five, the system outputs a shorter message like:

1 System: You have got four new messages. Press ‘1’ or say ‘messages’ to

listen to the messages. Press ‘9’ or say ‘help’ if you need any

further assistance.

The duration of the call can then still be reduced if the system supports barge-in, i.e.,

if the user can press a button or say a command while the system is speaking. An in-

teractive technical help system implementing such a user-model has been described

in Peter and Rösner (1994).

Further approaches rendering user interfaces more effective comprise user mod-

els including personalization features and user preferences. This technique is com-

mon practice for graphical user interfaces like computer applications or websites

(Rossi et al. 2001; López-Jaquero et al. 2005) which allow the user to change the

interface’s appearance (using skins or themes) or behavior (inclusion of macros or

user functions) or to access information more easily. E.g., online shops ask their

users to create accounts so that they don’t need to re-enter their address and pay-

ment details every time they order something in the respective shops. Gradually

extending their user models, many web applications are walking a tightrope – on

the one hand, providing an efficient and powerful user interface by observing the

users where they click, which products they are buying or gazing at, etc. to offer

suitable products or to assist in information retrieval, on the other hand, however,

surpassing the limits of the users’ privacy.

SLDSs can avail themselves of similar user model concepts. To implement a very

convenient user model based dialogue, the system needs to be capable of recogniz-

ing the user. The simplest approach for a telephone-based dialogue would involve

assigning login number and personal identification number pairs to the users. When

calling the system each user enters the respective numbers using the telephone key-

pad and the system loads the user’s profile. Recognizing users without bothering

them to identify themselves could be accomplished by evaluating the caller ID.
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This, however, requires that each user can only call from one telephone and this

telephone cannot be shared by multiple users. Alternatively the system may extract

certain features from the speech signal and apply algorithms to recognize speakers

while they are talking to the system. An elaborate overview on speaker recogni-

tion involving speaker identification and speaker verification is given in Campbell

(1997). Apart from just being used to select the appropriate user model, speaker

recognition plays an important role in access control for computer systems. The hu-

man voice can not be “forgotten” as opposed to passwords, or lost, like keycards.

And state-of-the-art speaker recognition systems are even able to cope with different

types of noise and variations in the user’s voice. The identification and verifica-

tion process is comparable to ASR – the extracted features are matched with either

template models (e.g., dynamic time warping, cf. Sakoe and Chiba 1978) or stochas-

tic models (e.g. Hidden Markov Models, cf. Rabiner 1989) and a classification

is performed.

Having successfully identified the user, the system retrieves the data from the

user model and profile and can use that data to optimize the dialogue accordingly.

This may be a personal greeting like “Hello John, . . . ” or if a profile shows that the

user has booked flights from Boston to Los Angeles almost every week, a dialogue

could be as follows:

1 System: Good morning, John. Would you like to travel to Los Angeles

again next week?

2 User: Yes.

3 System: When would you like to depart?

. . .

Apart from objective measures like dialogue success rate, speech recognition ac-

curacy, parsing concept accuracy, duration, etc., the user’s subjective impression

is an important criterion concerning the acceptance of a dialogue system. This in-

volves short but robust dialogues, an increased user-friendliness and the acceptance

of a vast range of input possibilities, i.e., the user’s request for a flight to Boston may

vary from “Boston” or “to Boston” to “I was just wondering whether there are any

flights to Boston” and users tend to become rather disappointed when the system re-

jects some of their input utterances. Experiments conducted by Weizenbaum (1966)

with the ELIZA system or by Reeves and Nass (1996) have shown that users typi-

cally do not suppress their feelings towards machines or computers. For humans it is

not difficult to observe a dialogue partner’s emotional state and to react accordingly,

e.g., to appease the dialogue partner in case of anger or to ignore dialogue-irrelevant

emotions. However, integrating such a capability into (spoken) human–computer

interfaces requires (a) an accurate emotion detection which contributes to the user

model as well as (b) a flexible dialogue manager that is able to react on such a

dynamically changing user model. The underlying model for dialogue management

does not only determine how the system shall react to which emotional state but also

includes a pre-selection of “relevant” emotions, i.e., those emotions which actually

influence the dialogue flow.
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1.5 Evaluation of Dialogue Systems

The development and implementation of a (spoken) human–computer interface can

be briefly outlined as an iterative process starting with an idea and approximate

specifications what the system shall be capable of. Based on these requirements,

concepts and models, e.g., for the course of the dialogue, are developed and ap-

proaches to the solution of certain problems are identified, e.g., how to recognize

emotions or how to extract semantic meanings from the user input. In the next

phase, these methods and approaches are implemented (or purchased from exter-

nal suppliers) and then integrated into an end-to-end system. However, before the

newly developed system is ready to be put into operation, it needs to be evaluated

whether it complies with certain criteria and whether potential users are prepared to

accept and use such a system. A simplified illustration of this process is shown in

Fig. 1.3.

In this illustration, the process contains the development phases as described

before plus an evaluation phase in which weaknesses of the system or its compo-

nents shall be identified. Accordingly, the feedback provided by the evaluation can

be taken into account differently in the previous development phases. This is em-

phasized by the grey arrows – e.g., if the test users involved in the evaluation feel

misunderstood by the system, it is very likely that the speech recognizer and/or the

linguistic analysis are not working properly (which in turn can be verified in the

evaluation protocols). If, however, the test users state that they don’t feel comfort-

able using the system, there could be an integration problem, the concepts might be

unsuitable or, in the worst case, the whole idea might be nonsense.

When it comes to measuring the performance of technical systems, the evaluation

criteria are typically easy to identify. E.g., in information transmission systems like

internet connections, TV or mobile phones, it is desirable to achieve an error-free

transmission at maximum speed and at minimum costs (signal power, bandwidth).

These criteria can be measured in existing systems or can be simulated for future

systems providing a common basis for comparing different transmission schemes.

For human–computer interfaces like SLDSs, there also exist a large variety

of objective evaluation measures which, e.g., allow to compare different speech

Idea Concept Implementation

Integration

System

Evaluation

Fig. 1.3 Simplified illustration of the iterative development process of a (spoken) human–
computer interface. In the flowchart, black arrows represent the transitions between the develop-
ment phases and grey arrows represent the feedback from the evaluation triggering a new iteration
in the respective phase(s)
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recognizers or linguistic analyses. However, even if these measures attest that the

system performs “well”, the end user may still feel and decide that the system

is unusable, unappealing or behaves unacceptably based on this user’s subjective

impression. A list of typical objective measures for end-to-end SLDSs has been

compiled by Walker et al. (1998) Among the objective measures are

� The proportion of correct answers compared to reference answers (what did the

system actually reply when it was expected to provide certain information or to

ask for a certain field?)

� Task completion or transaction success rate (could the system comply with the

user’s goals?)

� Number of turns, dialogue time or task completion time (how effective is the

system in achieving the user’s goals?)

� User response time and system response time

� Percentage of diagnostic error messages (how often did the system have to

prompt for confirmation, e.g., when the speech recognizer performance was bad)

� Proportion of utterances containing more than one word and the length of these

utterances (this indicates how well the system can handle natural input and how

much flexibility the users expect from the system)

Concerning the subjective measures, there is no consensus about their application

in computer-based dialogue systems. E.g., Grice (1975) proposes four conversa-

tional maxims representing guidelines how to communicate successfully. These

comprise Quality (Truth: Do not say what you believe to be false or that for which

you lack evidence), Quantity (Information: make your contribution as informative

as required but not more informative than required), Manner (Clarity: avoid obscu-

rity of expression and ambiguity, be brief and orderly) and Relation (Relevance).

Regarding human–computer interaction, the adherence to these maxims can be con-

sidered as a measure for cooperativity (Walker et al. 1998) whereas Frederking

(1996) claims that these maxims are too vague to be implemented in computational

natural language systems.

Being based on human judgments according to qualitative criteria, subjective

measures face the problem that they might not be reliable across judges, e.g., in

the worst case a user might say that he is very satisfied with the system and on the

next day, the same user might reassess the same system as unsatisfactory. Thus, cal-

culating a ratio between different subjective categories, the measures can be made

quantitative to a certain degree. Being widely used among the spoken dialogue com-

munity, further subjective measures have been collected by Walker et al. (1998):

� Percentage of implicit and explicit recovery utterances where the system tries to

recover from errors of partial speech recognition or linguistic analysis

� Proportion of contextually appropriate system utterances

� Proportion of correct and/or partially correct system answers

� Ratio between appropriate and inappropriate system directive and diagnostic

utterances

� The whole concept of user satisfaction where a broad spectrum of potential users

are asked to assess the system’s usability, typically on the basis of questionnaires
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These measures are also included in the ITU-T P.supp24 recommendation

providing definitions for the above and further parameters which describe the

interaction with SLDSs (ITU-T P.supp24 2005).

Individually, each of the objective and subjective measures can be used to com-

pare the behavior or certain features of different dialogue systems within particular

limitations. E.g., considering the dialogue time or the number of utterances is only

reasonable when comparing systems offering the same features and/or operating in

the same domain – contrarily, one may not conclude that a simple train timetable

information system requiring approximately three user turns is more effective than

a more sophisticated air travel information and reservation system requiring more

turns. Also, the use of reference answers is strictly limited to comparing systems ap-

plying the same dialogue strategy as for different strategies, the number of “correct”

answers is virtually unlimited. Furthermore, on the one hand, there exist correla-

tions between the measures which are difficult to follow or understand, on the other

hand, it is not possible to combine different measures or trade off, e.g., whether it is

better to feature a large number of dialogue turns but a short system response time

or to feature a smaller number of dialogue turns but a longer system response time

(see also Walker et al. 1998).

There exist approaches to “replace” the human test persons by computer-based

assessment tools in order to reduce the time and effort involved in the user studies.

Ito et al. (2006) propose a VoiceXML-based user simulator which is able to eval-

uate some of the dialogue assessment criteria automatically. Here, it is presumed

that the simulator fully knows the structure of the, also VoiceXML-based, dialogue

system under test including form layout and task grammar. Based on this knowl-

edge, the system is bombarded with possible user utterances and in combination

with the respective system reactions, measures like task success, number of turns,

etc., are determined.

1.6 Summary of Contributions

Due to their significant impact on the natural interaction between human dialogue

partners, emotions have attracted great interest within the research on adaptive

human–computer interaction. This is substantiated by the large number of groups

conducting research in this field and reporting progress in the field of emotion recog-

nition from various modalities (speech, gestures, biosignals, etc.) as well as for the

integration of emotions in different aspects of human–computer interaction.

Despite the fact that a good emotion recognition performance is achievable with

all the other modalities as well, our decision to consider purely speech-based emo-

tion recognition is basically due to the fact that no extra equipment such as cameras

or sensors is required and that the user is not burdened with applying this extra

equipment. Instead, the speech signal is captured anyway, either by a microphone

like in an information kiosk or via telephone in a call center application. Thus,

limiting our considerations on spoken dialogue, our work described in this book
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subdivides into two major aspects: the efficient recognition of emotions from speech

signals with low complexity, on the one hand, and the integration of the recognized

emotional cues into adaptive dialogue management, on the other hand. Here, parti-

cular attention is paid to our following contributions:

� Implementation of a plain emotion recognizer using HMMs to classify different

emotional states from prosodic and acoustic features extracted from the speech

signal. To increase its robustness we use separate acoustic models for female

and male speakers. With a performance ranging around the average of existing

recognizers, our approach features a considerably lower complexity with respect

to state-of-the-art approaches dealing with emotion recognition.

� Development of a speech–emotion recognizer combining speech and emotion

recognition into one process by classifying “emophonemes” (phonemes with at-

tached emotional states). The feasibility of this new approach is substantiated in

our experiments.

� Optimization of our speech–emotion recognizer by extending it to a two-step

recognizer. In this approach, the speech–emotion recognizer takes advantage of

the utterances’ textual content provided by an extra speech recognizer. Con-

sidering speech and emotion accuracies individually, our system outperforms

most plain emotion recognizers while achieving a reasonable speech recognition

performance.

� Adaptation of the ROVER (recognizer output voting error reduction, Fiscus

1997) algorithm which combines the output of multiple speech recognizers to

achieve a better word accuracy. Despite the relatively low performance reported

for speech recognition, we modify the algorithm such that it processes the output

of multiple speech–emotion recognizers by what particularly the emotion recog-

nition performance increases.

� Development of a semi-stochastic dialogue model enabling a flexible adaptation

of the dialogue flow to the user’s emotional state without complex rule sets. In

the model, the dialogue designer predefines dialogue states (these may include

emotional states and/or other dialogue-influencing parameters) the transitions be-

tween which are determined by probabilities derived from training data. Due to

its small number of internal parameters, the model is less complex than com-

parable approaches while featuring a higher consistency by introducing tri-turn

transitions (from the penultimate state to the previous to the current state) in ad-

dition to the commonly used bi-turn transition (from the previous state to the

current state).

� Implementation of an adaptive dialogue manager which integrates the flexi-

bility of our dialogue model into the convenient programming interface of the

VoiceXML framework.

With respect to these contributions, the remainder of this book is structured in

the following manner: Constituting the focal point of our considerations, emotions

are extensively discussed in Chapter 2. This includes different approaches to de-

fine emotions, a variety of emotion theories, the annotation of emotions and an

overview on emotional speech databases. These aspects actually influence whether
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an automatic emotion recognizer performs satisfyingly or not. Especially the quality

of the speech samples and the annotation of these have an important impact on the

quality of the underlying recognizer models. In Chapter 3, we describe dialogue

strategy concepts and how emotions shall influence spoken dialogue. Beginning

with existing work on adaptive dialogue management, we advance from rule based

approaches to semi-stochastic dialogue and emotion models. We combine these

models into an emotional dialogue model and we explicate how such a model can

be extended to include further dialogue parameters.

Chapter 4 centers on the automatic recognition of emotions from speech signals.

Here, we discuss technical details including signal processing and classification.

Having outlined existing work in this field, we derive a plain emotion recognizer

from a simple speech recognizer and we describe our speech–emotion recognizer.

Furthermore we outline our approach to emotion recognition with the aid of linguis-

tic analysis. Implementation aspects such as improvements to our (speech–)emotion

recognizers as well as the realization of our dialogue manager are discussed in

Chapter 5, where we also adapt the ROVER idea of combining the results of mul-

tiple recognizers to achieve a higher recognition performance. We apply this idea

to both emotion and speech–emotion recognition. An evaluation of our proposed

concepts and components is given in Chapter 6.



Chapter 2

Human Emotions

Nowadays, computers are more than ever regarded as partners. Users tend to apply

social norms to their computer, i.e., typically, they become enraged if the computer

makes a mistake or they are delighted if the computer compliments them on a suc-

cessful work (Reeves and Nass 1996). Moreover, such a relationship is consolidated

when users are able to personalize the interface, e.g., by applying themes to their

desktops, and, thus, feel more comfortable interacting with the system. In SLDSs,

user profiles are employed to provide such a personalized environment relieving the

users of repeatedly supplying the same personal data. Complementarily, this feeling

or notion of “relationship” between computer and users is intensified when the com-

puter is able to respond to the users situation and/or (emotional) states (Schröder

and Cowie 2006; Peter and Beale 2008). In this chapter, we give an overview on

the definition of emotions and describe different aspects of emotion theories before

discussing the annotation of emotions and emotional speech corpora.

2.1 Definition of Emotion

In order to design adaptive SLDSs which are able to communicate with the user in

a more natural way and which are more responsive to the user compared to regular

systems, the consideration of social and especially emotional aspects is essential.

But what is actually an emotion?

From the etymological point of view, the word “emotion” is a composite built up

from the two Latin words “ex” in the meaning of “out” or “outward” and “motio”

in the meaning of “movement” or “action” referring to the spontaneity of emotions.

In this section, we discuss further approaches and theories to define and categorize

emotions with respect to their use in human–human or human–computer interaction.

Early approaches to the definition of the word “emotion” are described in the 19th

century by the Darwinian Perspective and the Jamesian Perspective (Darwin 1872;

James 1884). Both views describe emotions as “more or less automatic responses

to events in an organism’s environment that helped it to survive” (Cornelius 2000).

Whereas Darwin concentrates on emotional expression, James tries to explain the

nature of emotional experience by means of the perception of bodily changes.

J. Pittermann et al., Handling Emotions in Human-Computer Dialogues,
DOI 10.1007/978-90-481-3129-7 2, c Springer Science+Business Media B.V. 2010

19



20 2 Human Emotions

A further approach to explain emotions is the cognitive perspective stating that all

emotions imply the appraisal, i.e., the positive or negative judgment of events in

the environment (Arnold 1960). The Social Constructivist Perspective defines emo-

tions as products of culture or “social constructions” (Averill 1980), whereas the

understanding and the knowledge of social rules play a decisive role.

According to Kleinginna and Kleinginna (1981), emotion “is a complex set of

interactions among subjective and objective factors, mediated by neural/hormonal

systems, which may

� Give rise to affective experiences such as feelings and arousal, pleasure or dis-

pleasure.

� Generate cognitive processes such as emotionally relevant perceptual effects, ap-

praisals, labeling processes.

� Activate widespread physiological adjustments to the arousing conditions.

� Lead to a behavior that is often, but not always, expressive, goal directed, and

adaptive”.

This complexity concerning emotions is still challenging for computers. E.g., how

should a computer identify whether an utterance like “yes, of course” is only ironic

actually meaning “no” or a happy affirmation, which for human hearers is easy to

hear and interpret? Human dialogue partners benefit from the advantage that they are

able to combine visual and aural perceptions and they can rely on existing knowl-

edge and experience to determine their partner’s emotional state. In order to endow

dialogue systems with this kind of social intelligence it is necessary to classify, an-

alyze and recognize emotions.

Due to the subjective factors underlying the term emotion, there is no consistent

categorization of emotions forming a common basis for emotional research. Thus,

various approaches are made to differentiate emotions and to distinguish emotions

from other affective states. E.g., in Scherer (2000) the following affective states are

classified:

� Emotions (e.g., angry, sad, joyful, fearful, ashamed, proud, elated, desperate)

� Moods (e.g., cheerful, gloomy, irritable, listless, depressed, buoyant)

� Interpersonal stances (e.g., distant, cold, warm, supportive, contemptuous)

� Preferences/Attitudes (e.g., liking, loving, hating, valuing, desiring)

� Affect dispositions (e.g., nervous, anxious, reckless, morose, hostile)

These states differ from each other in the following design features:

� Intensity

� Duration

� Synchronization

� Event focus

� Appraisal elicitation

� Rapidity of change

� Behavior impact
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In contrast to the other affective states, emotions are very intense and shortly

lasting. Moreover, different reaction tendencies like physiological responses, mo-

tor expression and action tendencies are activated simultaneously. Emotions are

highly focused on prior events, elicit a high degree of appraisal, they may rapidly

change and have a high impact on the choices of different behaviors (Scherer

and Bänziger 2004). Similarly, Cowie (2000) presents the categories “emotions

proper/full-blown emotions” and “emotion-related states”. Here, however, these

emotion-related states, i.e., “arousal” and “attitude”, cannot be strictly separated

from emotions, as these terms are overlapping. Moreover, in the case of “arousal” it

is even questionable whether there is any distinction possible at all.

In order to differentiate among emotional states, a taxonomy of emotional states

(see Fig. 2.1) is described in Gmytrasiewicz and Lisetti (2000). As the purpose

of the taxonomy is the use in a multi-agent system, emotional states that are not

directly measurable are not included in this taxonomy. Furthermore there is uncer-

tainty about which attributes and values have to be used to distinguish between some

emotional states.

The aspects described in this taxonomy are, for the most part, also applicable

to our approaches to recognizing emotions and to integrating the recognized emo-

tional cues into adaptive SLDSs. On the one hand, for the automatic recognition

of emotions from speech signals, we require a set of clearly identifiable emotional

states to be classified. This includes differences in the aural perception (how do,
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Fig. 2.1 Taxonomy of emotions (Gmytrasiewicz and Lisetti 2000)
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e.g., the utterances of a bored person differ from those of a blissful person?) which

shall preferably be describable by aural features (e.g., if the speaker is in xy state,

the sound intensity increases). On the other hand, these (recognizable) emotional

states shall also be meaningful for the adaptation of the dialogue. I.e., we need

to cover a wide range of emotional states, but we can actually only include those

which require certain actions by the dialogue system (e.g., there exist appeasement

strategies to respond to an angry dialogue partner, whereas a blissful dialogue part-

ner typically does not need any special attention). Thus, in our considerations we

follow the positive-negative valence distinction described in Gmytrasiewicz and

Lisetti’s taxonomy but we also include different levels of arousal as represented

by the activation–evaluation space or valence-arousal space below.

2.2 Theories of Emotion and Categorization

Several psychological theories try to explain how emotions evolve. According to

the James–Lange theory illustrated in Fig. 2.2 actions precede emotions or feelings

(James and Lange equate emotions with feelings, see James 1884; Lange 1885;

Benyon et al. 2005). The brain interprets a particular situation that has occurred

and a corresponding physiological response, i.e., heart rate elevation, is caused by a

reflex. Then, as soon as the brain cognitively processes this physiological response,

the person becomes aware of the emotion. An example is given by James, one of

the theory’s two founders: “We are afraid, because we run away from a bear instead

of running away from a bear because of being afraid”. As for James and Lange, an

emotion is the consequence of peripheral physiological changes, this theory is also

called the “peripheral” theory.

In contrast, the Cannon–Bard theory (see Fig. 2.3) suggests that after perceiving

an emotion-arousing stimulus the action follows from cognitive appraisal (Cannon

1927; Bard 1934; Benyon et al. 2005), i.e., the brain’s thalamus simultaneously

Experience / Perception

of a stimulus

Physiological events

Visceral reaction

Feelings of

emotion

Fig. 2.2 James–Lange emotion theory

Experience / Perception

of a stimulus

Physiological events

Visceral reaction
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Brain processing

Fig. 2.3 Cannon–Bard emotion theory
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Fig. 2.4 Schachter–Singer emotion theory

sends signals to the autonomic nervous system (ANS), which then regulates bodily

functions like heart rate, and to the cerebral cortex, which interprets the situation

cognitively.

Similar to the James–Lange theory is the Schachter–Singer theory (see Fig. 2.4),

also called “Two Factor” theory (Schachter and Singer 1962; Benyon et al. 2005).

The experience of emotions is a consequence of the cognitive labeling of physio-

logical responses to emotion-arousing stimuli. In addition, information is gathered

from the situation in order to use it to modify the label of the physiological

sensation.

In further cognitive labeling theories it is generally believed that cognitive eval-

uation is included in the experience of emotion, however, different opinions exist

on whether any evaluation precedes the affective reaction like in Lazarus (1982) or

whether emotional responses precede any cognitive processing (Zajonc 1984).

In order to categorize and specify emotions themselves, Wundt (1924) pro-

poses three dimensions of emotions taking into consideration all differences among

emotional states: pleasure/lust-displeasure/non-lust, strain/tension-relaxation and

excitement-calmless. Another widespread and popular representation is the

activation–evaluation space integrating possible emotional states into only two

dimensions, namely activation and valence. Activation, also called arousal, corre-

sponds to the degree of the emotional intensity, i.e., how intense the emotion is

brought out, valence, also called pleasure, refers to the emotional value, i.e., if the

emotion is negative like anger or positive like happy. Table 2.1 shows the inte-

gration of several exemplary emotional words into the activation–evaluation space

according to a study by Whissel (1989) (see also Cowie et al. 2001).

Looking at the values for activation in Table 2.1, a low level of activation is

represented by a low number and a high number corresponds to high activation,

e.g., terrified (at 6) is a highly active emotional word and disinterested (at 2.1) is

an emotional word with low activation. Similar to activation is the classification of

the values for evaluation, i.e., guilty (at 1.1) and unfriendly (at 1.6) represented with

low numbers of evaluation are negative emotional words and positive emotions like

joyful (at 6.1) and delighted (at 6.4) are high-numbered.

Another approach to categorize emotions is the “emotion wheel” by

Plutchik (1980b) (see also Cowie et al. 2001): Emotional words are arranged

on a circle and their characteristics are reflected by angular measures. The basis for

the circle is built by two axes ranging from acceptance with the angular measure

of 0ı to disgust at 180ı and from apathetic at 90ı to curious at 270ı. On this basis,
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Table 2.1 Emotion words (Whissel 1989)

Emotion Activ. eval. Emotion Activ. eval. Emotion Activ. eval.

Adventurous 4.2 5.9 Affectionate 4.7 5.4 Afraid 4.9 3.4

Aggressive 5.9 2.9 Agreeable 4.3 5.2 Amazed 5.9 5.5

Ambivalent 3.2 4.2 Amused 4.9 5 Angry 4.2 2.7

Annoyed 4.4 2.5 Antagonistic 5.3 2.5 Anticipatory 3.9 4.7

Anxious 6 2.3 Apathetic 3 4.3 Ashamed 3.2 2.3

Astonished 5.9 4.7 Attentive 5.3 4.3 Bashful 2 2.7

Bewildered 3.1 2.3 Bitter 6.6 4 Boastful 3.7 3

Bored 2.7 3.2 Calm 2.5 5.5 Cautious 3.3 4.9

Cheerful 5.2 5 Confused 4.8 3 Contemptuous 3.8 2.4

Content 4.8 5.5 Contrary 2.9 3.7 Cooperative 3.1 5.1

Critical 4.9 2.8 Curious 5.2 4.2 Daring 5.3 4.4

Defiant 4.4 2.8 Delighted 4.2 6.4 Demanding 5.3 4

Depressed 4.2 3.1 Despairing 4.1 2 Disagreeable 5 3.7

Disappointed 5.2 2.4 Discouraged 4.2 2.9 Disgusted 5 3.2

Disinterested 2.1 2.4 Dissatisfied 4.6 2.7 Distrustful 3.8 2.8

Eager 5 5.1 Ecstatic 5.2 5.5 Embarrassed 4.4 3.1

Empty 3.1 3.8 Enthusiastic 5.1 4.8 Envious 5.3 2

Furious 5.6 3.7 Gleeful 5.3 4.8 Gloomy 2.4 3.2

Greedy 4.9 3.4 Grouchy 4.4 2.9 Guilty 4 1.1

Happy 5.3 5.3 Helpless 3.5 2.8 Hopeful 4.7 5.2

Hopeless 4 3.1 Hostile 4 1.7 Impatient 3.4 3.2

Impulsive 3.1 4.8 Indecisive 3.4 2.7 Intolerant 3.1 2.7

Irritated 5.5 3.3 Jealous 6.1 3.4 Joyful 5.4 6.1

Loathful 3.5 2.9 Lonely 3.9 3.3 Meek 3 4.3

Nervous 5.9 3.1 Obedient 3.1 4.7 Obliging 2.7 3

Outraged 4.3 3.2 Panicky 5.4 3.6 Patient 3.3 3.8

Pensive 3.2 5 Pleased 5.3 5.1 Possessive 4.7 2.8

Proud 4.7 5.3 Puzzled 2.6 3.8 Quarrelsome 4.6 2.6

Rebellious 5.2 4 Rejected 5 2.9 Remorseful 3.1 2.2

Resentful 5.1 3 Sad 3.8 2.4 Sarcastic 4.8 2.7

Satisfied 4.1 4.9 Scornful 5.4 4.9 Self-controlled 4.4 5.5

Serene 4.3 4.4 Sociable 4.8 5.3 Sorrowful 4.5 3.1

Stubborn 4.9 3.1 Submissive 3.4 3.1 Surprised 6.5 5.2

Suspicious 4.4 3 Sympathetic 3.6 3.2 Terrified 6.3 3.4

Trusting 3.4 5.2 Unaffectionate 3.6 2.1 Unfriendly 4.3 1.6

Wondering 3.3 5.2 Worried 3.9 2.9

each emotional word is assigned a certain angular measure. The simplified circle

(see Fig. 2.5) only includes the so-called primary or basic emotions.

For the implementation of an emotion recognition system, it is often easier

and more convenient to only recognize a limited number of emotions, i.e., a set

of primary or basic emotions. Several approaches have been made to define and

to determine primary or basic emotions (see Table 2.2). Descartes proposes the

idea to distinguish primary and secondary emotions (Anscombe and Geach 1970;
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Fig. 2.5 Emotion wheel (Plutchik 1980b; Cowie et al. 2001)

Cowie 2000). First of all, a list of primary emotions has to be set up in order to then

analyze how these emotions are expressed in speech. It is assumed that secondary

emotions will emanate from this study afterwards. On the one hand, secondary

emotions can be derived by mixing the primary ones like colors, which is called the

palette theory of emotion. On the other hand, the terms “primary” and “secondary”

convey the meaning that there exist a few elementary, primitive and pure emotions

as opposed to the secondary emotions. This, however, also implicates that primary

emotions are more important than secondary ones. Therefore, in the study by Cowie

(2000), the term “second order emotions” is used instead of “secondary emotions”

in order to underline that second order emotions are more complex, but not less

important.

In the study by Cornelius (2000), primary, basic or fundamental emotions in

general “represent survival-related patterns of responses to events in the world that

have been selected for over the course of our evolutional history” and all other

emotions in some way are derived from them. He proposes the “Big Six” as funda-

mental, primary or basic emotions, namely happiness, sadness, fear, disgust, anger

and surprise, whereas Plutchik (1994) differentiates eight primitive emotions, i.e.,

fear, anger, joy, sadness, acceptance, disgust, anticipation and surprise. In Nisimura

et al. (2006) even 16 basic emotions (including the neutral state) are determined

taking into account the basic emotions given in Schlosberg (1954); Russell (1980);

and Ekman (1992) and collected in Table 2.3.

Generally, the four primary emotions anger, fear, joy/happiness and sadness

mostly appear in literature when characterizing emotional behavior (Devillers et al.

2002). These emotions correspond to relevant problems in life, i.e., anger may be

considered as a reaction to competition, fear to danger, happiness to cooperation

and sadness to loss (Power and Dalgleish 1997). In Cowie et al. (2001), emo-

tions emerging in almost every list of basic/primary emotions furthermore are called

“archetypal” emotions. These are happiness, sadness, fear, anger, surprise and dis-
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Table 2.2 A Selection of Lists of “Basic” Emotions (Ortony and Turner 1990)

Reference Fundamental emotion Basis for inclusion

Arnold (1960) Anger, aversion, courage, dejection,
desire, despair, fear, hate, hope,
love, sadness

Relation to action tendencies

Cornelius (2000) Happiness, sadness, fear, disgust, anger,
surprise

Relation to survival,
Responses to events in
the world

Descartes (1649) Admiration, love, hatred, desire, joy,
sadness

Derivation of all other
emotions from primary
emotions

Ekman et al.
(1982)

Anger, disgust, fear, joy, sadness,
surprise

Universal facial expressions

Frijda (1986) Desire, happiness, interest, surprise,
wonder, sorrow

Forms of action readiness

Gray (1982) Rage and terror, anxiety, joy Hardwired

Izard (1971) Anger, contempt, disgust, distress, fear,
guilt, interest, joy, shame, surprise

Hardwired

James (1884) Fear, grief, love, rage Bodily involvement

McDougall (1926) Anger, disgust, elation, fear, subjection,
tender-emotion, wonder

Relation to instincts

Mowrer (1960) Pain, pleasure Unlearned emotional states

Oatley and
Johnson-Laird
(1987)

Anger, disgust, anxiety, happiness,
sadness

Do not require propositional
content

Ortony and Turner
(1990)

No “Basic” Emotions Existence of only basic
elements building
different emotions

Panksepp (1982) Expectancy, fear, rage, panic Hardwired

Plutchik (1980a) Acceptance, anger, anticipation,
disgust, joy, fear, sadness, surprise

Relation to adaptive
biological processes

Tomkins (1984) Anger, interest, contempt, disgust,
distress, fear, joy, shame, surprise

Density of neural firing

Watson (1930) Fear, love, rage Hardwired

Weiner and
Graham (1984)

Happiness, sadness Attribution independent

Table 2.3 The 16 basic emotions in Nisimura et al. (2006)

Anger Contempt Contentment Depression

Excitement Fear Joy Mirth

Neutral Pleasure Pressure Sadness

Surprise Tension Tiredness Displeasure

gust. Contrariwise, Ortony and Turner (1990) conclude that there do not exist basic

emotions at all. Instead, emotions are composed of basic elements, i.e., components

of cognitions, feeling states, etc. In this aspect, emotions behave like languages con-

sisting of basic constituents, e.g., phonological properties building up languages but

not being languages themselves.
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Similarly, Schröder (2004) and Burkhardt et al. (2006b) outline the problem of

using so-called “basic” or “fundamental” emotions as these pure emotions rarely

appear in natural data. Therefore they propose to encode “emotion-related states” in

phrases with strong emotional semantic content, e.g., “Congratulations, you’ve just

won the lottery!” as a correspondence to a joyful emotional state. In their experi-

ments, participants had to listen to these sentences and to determine if a sentence

was uttered in an appropriate way according to the semantic content or not.

Another possibility to categorize emotions is the subsegmentation of certain emo-

tions as done with anger in Pereira (2000), i.e., anger is segmented in “hot anger”

and “cold anger”. Moreover, each emotion is gradated on the basis of a six-point

Likert scale, e.g., 1 for very unhappy, 2 for unhappy, 3 for slightly unhappy, 4 for

slightly happy, 5 for happy and 6 for very happy. The idea of a further categoriza-

tion of emotions is also picked up in Okada et al. (1999), where 123 subcategories

have been defined for Plutchik’s eight primitive emotions. E.g., gladness is subdi-

vided into 17 subcategories, i.e., physiological pleasure and psychological pleasure,

whereas psychological pleasure in turn consists of 16 subcategories.

A rather simple approach is grouping emotions only with respect to evaluation

as follows (Fujisawa and Cook 2004):

� Positive affect (joy, satisfaction, pleasantness)

� Negative affect (sadness, anger, unpleasantness)

� Ambivalence (uncertainty, tension, anxiety)

On the one hand, in this manner, emotions can easily be categorized; on the other

hand, emotions like sadness and anger are grouped into the same class even if they

are highly different. Similarly, Miwa et al. (2000) defines six emotions assigning

them to four major emotion groups:

� Joy (happiness)

� Sadness (disgust, sadness)

� Anger (anger, fear)

� Neutrality (neutrality)

According to Kim et al. (2005), even an infinite number of emotions may be

categorized on the basis of these groups, however, this model also faces the problem

of regarding highly different emotions as the same group.

In Clavel et al. (2004), the activation–evaluation space is extended by a third

dimension named “reactivity” in order to distinguish between different types of

a certain emotion. The aim of their study is to detect emotions in abnormal sit-

uations like in kidnapping or hostages. Thus, a rather unusual categorization is

chosen in particular consideration of fear constituting the predominant emotion in

these situations. The exemplary emotion “fear in abnormal situations” is given, i.e.,

the categories for fear are ranging from a very passive reaction to fear (like in-

hibition) to a very active reaction (such as anger). In order to depict activation,

evaluation and reactivity three axes are defined, two for evaluation and reactiv-

ity ranging from wholly negative (–3) to wholly positive (+3) and one axis for

intensity providing four levels from neutral (0) to high intensity (3). In total the
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emotion categories “neutral”, “other emotions in normal situations”, “fear” and

“other negative emotions” are regarded with their activation, evaluation and inten-

sity values.

A further three-dimensional approach by Miwa et al. (2000) defines three levels

of the emotional space, namely the activation level, the pleasant level and the cer-

tainty level, which is mainly used to describe the mental space of humanoid robots.

A modified version of this model is presented in (Kim et al. 2005) removing the

certainty level as this level has to be assigned to the cognition category in contrast

to the activation and the pleasant level being physiological indices. The result is a

model similar to the activation–evaluation space.

A new dimension of emotion research is described by Batliner et al. (2005). The

traditional dimensions of valence and arousal are changed to the dimensions of va-

lence and interaction as emotions normally are more private and social interaction

should be modeled more intensively. Interaction determines whether the emotion is

addressing oneself, e.g., angry and joyful, or the communication partner like moth-

erese or reprimanding. The choice of the suitable dimensions of course depends on

the basis of the used data and its emotions.

Similar to this approach is the distinction between cause-type and effect-type

description of emotion in Cowie (2000), where the cause-type description refers to

the speaker’s internal state in opposite to the effect-type description characterizing

the effect on the listener.

As negative emotions like fear and anger both are unpleasant and highly active

on the basis of the two dimensional activation–evaluation space a third dimen-

sion called “potency”, “dominance”, “power” or “control” is suggested in literature

(Osgood et al. 1957; Russell and Mehrabian 1977; Lazarus and Smith 1988) in or-

der to better distinguish between negative emotions. This dimension includes the

potential of a person to cope with a particular situation. In Frijda (1970), an addi-

tional fourth dimension of certainty, i.e., self assured $ insecure, is defined. Even

five dimensions are suggested in Roseman (1979), these are need, occurrence of a

certain state, probability, type of cause and legitimacy (it should be noted that some

corrections to these dimensions have been applied between 1979 and 1996). On

the basis of these five dimensions, 48 combinations can be formed, and these com-

binations in turn correspond with 13 emotions. Another possibility to categorize

emotions is described in Abelin and Allwood (2000), where the three dimensions

lust $ non-lust, active $ passive and secure $ insecure are used, but not necessar-

ily requiring the use of all dimensions for an emotional term. E.g., happiness may

be categorized into only two dimensions, namely +lust and +activity, whereas anger

is “three-dimensional” with –lust, +activity and +security.

According to Scherer (1988), five functionally defined subsystems are involved

in emotional processes. One of these subsystems, the information-processing sub-

system, in turn is based on so-called stimulus evaluation checks. Four out of five

predominant evaluation checks even possess subchecks. A table detailing which

emotion is determined by which combination of these checks and subchecks is given

in Scherer (1988).
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The approach of the FEELTRACE system proposed by Cowie et al. (2000) fol-

lows the idea of Plutchik’s emotion wheel as illustrated in Fig. 2.5 (Plutchik 1980b;

Cowie et al. 2001). In this system, the activation–evaluation space is transformed

into a circle also defined by transversal axes which are ranging from very negative

to very positive concerning the evaluation and from very active to very passive re-

garding activation. Within this circle (on the computer screen) a cursor can be moved

with the aid of a mouse, so that a person is able to indicate the current emotional

state of a speech sample according to the visual and/or aural impression. Accord-

ing to its position within the circle the cursor in the form of a disc takes different

colors ranging from pure red for the most negative evaluation to pure green for the

most positive one and from pure yellow for the most active emotional state to pure

blue for the most passive state. Furthermore the sizes of the discs of previous cur-

sor positions are decreasing gradually over time (with the current disc featuring the

biggest diameter) in order to reconstruct (“trace”) how the emotional state or its

interpretations (“feel”) change over time.

In order to achieve a more realistic model the axes of the activation–evaluation

space may also be expanded with action tendencies and appraisals. According to

cognitive theories described in Ekman (1977, 1999) and Lazarus (1991), there exist

certain mechanisms which attend to certain key elements of a situation and which

trigger the respective emotions. These mechanisms called appraisals can be consid-

ered as a model identifying these key elements as positive or negative. Ekman and

Lazarus distinguish between automatic appraisal quickly attending to some stim-

uli and deliberate and conscious appraisal slowly adapting to complex events or

situations. In Roseman et al. (1990) and Ortony et al. (1988), the correspondence

between appraisals and emotions is defined by certain distinctions, e.g., the intrin-

sic (positive or negative evaluation) and contextual (goals may be achieved or not)

value of key elements.

Oatley and Johnson-Laird (1995) consider emotions as an important factor de-

termining how cognitive processes are organized. Their “communicative theory of

emotions” assumes that emotion signals control quasi-autonomous processes in the

nervous system. Here, certain milestones of a plan or task are communicated and

interpreted. E.g., a system is happy when a subgoal is achieved but it is sad when a

plan fails (see also Oatley and Jenkins 1996).

Frijda (1986) assumes that an emotion cannot refer to a certain class of phe-

nomena that can be distinguished from other events. Instead, there exist concerns

which produce preferences and goals for a system. As soon as these emerging goals

may not be achieved, the system develops emotions. In order to obtain a functioning

emotional system, it needs to include six substantial characteristics:

� Ability to obtain and interpret information/stimuli from itself and the environ-

ment (concern relevance detection)

� Appraisal of the influence of the stimulus on the system’s concerns

� Change of the system’s behavior and priorities according to the intensity of the

relevance stimulus

� Changes of the action readiness, i.e., the system tends to certain preferred actions

and adapts its attention and processing of events
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Table 2.4 Basic Action
Tendencies (Frijda 1986;
Cowie et al. 2001)

Action tendency Emotion

Approach Desire

Avoidance Fear

Being-with Enjoyment, confidence

Attending Interest

Rejecting Disgust

Nonattending Indifference

Agonistic (attack/threat) Anger

Interrupting Shock, surprise

Dominating Arrogance

Submitting Humility, resignation

� Monitoring of all processes concerning the action readiness

� Adjustment to the social nature of the environment

In order to expand the activation axis in the activation–evaluation space, action

tendencies which are linked to certain emotions (see Table 2.4) have been defined

(Frijda 1986; Cowie et al. 2001). However, looking at further emotions like pity or

remorse corresponding action tendencies are difficult to explore. Fox (1992) and

Cowie et al. (2001) describe a further way to expand the activation axis, where

the action tendencies are differentiated on levels according to the development of

emotions. The two broad action tendencies “approach” and “withdraw” representing

the first level are seen as origin of all emotions. These two action tendencies are

subdivided on the second level into, e.g., approach in order to possibly gain pleasure

(joy), approach in order to possibly get information (interest) or approach in order

to provoke confrontation (anger).

The idea of mixed emotions is picked up in Carofiglio et al. (2002, 2003). The

four goal-based emotion categories “Fortune-of-others” (e.g., sorry-for, happy-for,

envy, gloating), “Prospect-based” (e.g., fear, hope), “Well being” (e.g., distress, joy)

and “Confirmation” (e.g., disappointment, relief) are modeled on the basis of dy-

namic belief networks taking into consideration the “generative mechanism” (Picard

2000b). Two ways of mixing up emotions are possible according to the generative

mechanism: emotions that coexist (i.e., emotions mixed like a “tub of water”) and

emotions rapidly switching from each other and not having overlapping generative

mechanisms (i.e., emotions mixing according to the “microwave oven” metaphor).

The generative mechanism of emotions including the intensity with which they are

activated and the development of this intensity with time can be represented by dy-

namic belief networks (DBNs), i.e., beliefs about the achievement or threatening of

goals of an agent A during the time instants (T, T + 1, T + 2...).

A DBN tailored to the monitoring of emotions is depicted in Fig. 2.6 compris-

ing the following elements (the arrows denote the influence of one element on the

following element):

� A’s Mind at time T with its beliefs about the world and its goals (D M(T))

� the event occurred in the time interval (T, T + 1) with its causes and consequences

(D Ev(T, T C 1)
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Personality
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between T and T+1

Ev(T,T+1)

Mind at time T

M(T) 
Mind at time T+1

M(T+1)

Emotion triggered at

time T+1

Em(T+1)

Fig. 2.6 Monitoring emotions with a dynamic belief network (Carofiglio et al. 2002, 2003)

� A’s Mind at Time T C 1 (D M(T C 1)) which is dependent on M(T) and Ev(T,

T C 1)

� a particular emotion activated in A at time T C 1 (D Em-feel(T C 1)) which is

dependent on M(T) and M(T C 1)

As soon as an event occurs, the probability of the belief that a goal in the DBN

will be achieved or threatened increases. The variation of this probability influences

the intensity of the triggered emotion. Thus the variation of intensity in an emotion

�Ie can be calculated as follows:

�Ie D
�

P ?.Bel A AchfGig/ � P.Bel A AchfGig/
�

� WA.AchfGi g/; (2.1)

where P.Bel A AchfGig/ and P ?.Bel A AchfGig/ are the probabilities that an

agent A attaches to the belief that the goal Gi will be achieved, before and after

an event. Here, WA.AchfGig/ is the weight that A allocates to achieving Gi . The

achievement of a goal (AchfGig) is replaced by the threat of a goal (ThrfGig) if

the valence of the emotion is negative. With the aid of DBNs, also emotionally ori-

ented communication of agents involving sensing, thinking, feeling and acting can

be modeled (Carofiglio and de Rosis 2005). In the domain of natural argumentation,

the interaction between cognitive and emotional modes constitutes a relevant issue.

For agents typically arguing on a rational basis, the emotional persuasion may also

be instantiated in the framework of a belief network as described in Miceli et al.

(2006).

A specific emotional model with the aim of using it in an artificial intelligence

system has been developed by Ortony et al. (1988), also called OCC model (named

after Ortony, Clore and Collins, see Fig. 2.7). Emotions appear as reaction to three

aspects: consequences of events, actions of agents and aspects of objects, i.e., a per-

son may be pleased or displeased about consequences of events. Actions to agents

may be approved or disapproved or a person likes or dislikes certain aspects of
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Fig. 2.7 OCC model of emotions (Ortony et al. 1988)

objects. The consequences of events furthermore are subdivided in consequences

for others, which may be desirable or undesirable and consequences for oneself,

which may be relevant and confirmed, relevant and disconfirmed or irrelevant expec-

tations. Furthermore global and local intensity variables are differentiated, whereas

the four global intensity variables are sense of reality, proximity, unexpectedness

and arousal. The local intensity values are linked to the reactions according to the

following three aspects:

� Events: desirability, desirability for others, deservingness, liking, likelihood,

effort, realization

� Agents: praiseworthiness, strength of cognitive unit, expectation deviation

� Objects: appealingness, familiarity

To each of these variables a value and a weight are assigned. Moreover, a thresh-

old for each emotion is defined, above which a certain emotion is consciously felt

and determined and below which the value “zero”, i.e., no emotion, is given. Even

if a computer does not and will not have a subjective experience, a computer should

be able to analyze these values and give a statement to a person’s emotional state.

These 22 emotional states are listed in Table 2.5. Surprise and disgust – two impor-

tant human emotions are not included in this original emotion list, they are therefore
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Table 2.5 The 22 emotions
defined in the OCC model
(Ortony et al. 1988)

Positive Emotions Negative Emotions

Happy-for Resentment

Gloating Pity

Joy Distress

Pride Shame

Admiration Reproach

Love Hate

Hope Fear

Satisfaction Fear-confirmed

Relief Disappointment

Gratification Remorse

Gratitude Anger

added by Kshirsagar and Magnenat-Thalmann (2002). In Andersson et al. (2002),

the following emotion attributes furthermore describe the 22 emotions in accordance

to the OCC model:

� Class

� Valence

� Subject

� Target

� Intensity

� Time-stamp

� Origin

The class corresponds to the emotion type representing related forms, i.e., con-

cern, fright and petrified are assigned to fear differing from fear in various degrees

of intensity. Valence refers to whether the value of the reaction is positive or nega-

tive. The agent undergoing the emotion is defined by the subject, whereas the event,

the agent or the action eliciting the emotion is determined by the target. The inten-

sity is reflected by a scale reaching from zero to ten, whereas zero corresponds to

“no emotional feeling”. The duration of the emotion-generation is determined by

the attribute time-stamp. Whether an emotion originates from a physical component

or from an affective user modeling component is constituted by the origin attribute.

As opposed to most of the existing emotion models which involve a high com-

plexity for their implementation (Picard 2000a) and, thus, are not practical in

computer applications, the essential features of the OCC model can be captured

with the DETT (disposition, emotion, trigger, tendency) model as used for situated

agents (Parunak et al. 2006). This model combines the theoretical richness of the

emotional model proposed by Gratch and Marcella (2004) and the efficiency of

emotional combat models used in artificial war scenarios. These models implement

parts of a combined believe-desire-intention model (cf. Rao and Georgeff 1991) and

the OCC model including disposition as illustrated in Fig. 2.8. Assuming the desires

remain constant during our considerations, these and the beliefs (influenced by the

environment via perception) affect the analysis which produces intentions. These,

in turn, elicit actions which have an influence on the environment. This BDI model
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OCC  Extension

Environment Perception

BeliefsAction

Intention Analysis

Desires

Appraisal Emotion

Disposition

BDI Core 

Fig. 2.8 BDI and OCC models of emotions incorporating disposition (Parunak et al. 2006). The
rectangular boxes denote states, the boxes with round corners denote processes

is enhanced with an OCC extension where appraisal (driven by beliefs and disposi-

tion) generates emotions which also have an effect on the analysis and perception.

With disposition modulating appraisal to determine how much the belief influences

an emotion and the emotion modulating the analysis to indicate a tendency on the

intention, the four key elements of the DETT model are quickly identified.

A comprehensive taxonomy of how to build up and structure an affective lexicon

is presented in Ortony et al. (1987). According to this study the best emotion terms

for an affective lexicon match the following criteria:

� Reference to internal, mental conditions

� Clear state description

� Focus on affect

If one of these constraints is neglected, more but poorer emotion terms may be

added. Furthermore it is pointed out that every term has to be seen in its linguistic

context as “being abandoned” is less emotional than “feeling abandoned”.

In order to provide a general basis for the categorization of emotions a basic

English emotion vocabulary (BEEV) is presented in Cowie et al. (2001). Naive

persons are asked to choose 16 words from a list with emotional words that shall

form a basic English emotional vocabulary. They furthermore define the positions

of these emotional words in the activation–evaluation space and describe the emo-

tional words with respect to appraisal and action tendencies. Table 2.6 contains an

excerpt of the BEEV including the emotional words which are chosen by at least

50% of the persons.

The emotional words chosen for the inclusion in a basic English emotional vo-

cabulary (as shown in the first column of Table 2.6) also represent (among others)

the so-called basic, primary or fundamental emotions. Nevertheless some other “less

common” emotions like “affectionate” or “relaxed” are included. The second col-

umn shows the location in the activation–emotion/evaluation Space. In the third

column, the emotional strength is given in a scale ranging from zero as minimum
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Table 2.6 Excerpt of the basic English emotion vocabulary (Cowie et al. 2001)
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Bored –166 0.46 +Withdr. ++Closed –Power +Surr. –Past
–Future

Disappointed –133 0.49 Withdr. +Past

Sad –101 0.78 Withdr. –Power +Surr.

Worried –80 0.65 Unpred. +Open –Power +Future

Afraid –52 0.84 +Withdr. +Closed –Power +Future

Angry –48 0.95 +Unpred. +Surr.

Interested 17 0.70 Eng. +Open

Excited 24 0.95 Eng. +Open Future

Loving 25 0.84 +Eng.

Affectionate 43 0.72 Eng.

Pleased 44 0.52 Eng.

Confident 44 0.75 Eng. Power

Happy 47 0.71 Eng.

Amused 53 0.71 Eng. +Surr. –Past

–Future

Content 136 0.66 Eng. +Else.

Relaxed 153 0.68 Eng. +Open –Past +Else.

to one as maximum. Furthermore, negative oriented emotions are more likely to be

regarded as withdrawing. Analogously, positive oriented emotions are more likely

to be seen as engaging (see fourth column). The fifth column presents whether the

emotions are judged as seeking for information, i.e., open-minded, or not. The last

columns specify the individual’s own perceived power in the present situation, the

orientation to situations in the present, past and future, and elsewhere.

Another type of emotion dictionary for Japanese is proposed by Matsumoto et al.

(2005). Emotion-related nouns are extracted from a Japanese lexicon (Ikehara et al.

1999). These nouns are mapped to one or multiple emotion attributes building an

emotion dictionary with nouns and their attribute(s). Nineteen emotion attributes

are defined (see Table 2.7). Having assigned the emotion attributes to the nouns

in the speaker’s sentences one out of 12 emotions is derived from these attributes.

However, for classifying emotions cultural differences also have to be taken into

consideration, i.e., emotions are differently expressed and categorized in Japanese

and in English as well as in other languages. This cultural difference is extensively

discussed in Abelin and Allwood (2000), where Swedish, Englishmen, Finns and

Spaniards had to categorize utterances from a Swedish speaker expressing different

emotions according to their aural perception. Whereas 89% of the Swedish classified

happy utterances as happiness, only 22% of the Spaniards had the impression that

these utterances were happy. By contrast, these utterances were considered as sad by



36 2 Human Emotions

Table 2.7 The 19 emotion
attributes (Matsumoto et al.
2005)

Anger Appreciation Approbation

Contempt Dislike Excitement

Equilibrium Fear Hope

Joy Like Pride

Reception Regret Relief

Respect Sadness Shame

Surprise

35% of the Spaniards. The emotional categorization is further complicated as, se-

mantically seen, there often are no one-to-one correspondences of emotional words

in different languages. E.g., no Swedish word out of “förvånad”, “överraskad” and

“häpen” is exactly equivalent to the Spanish word “espantado” expressing both

meanings “surprise” and “fear”. Moreover, specific emotional words from other cul-

tures, e.g., “chagrin”, “ennui” or “hubris” are hard to verbalize and accordingly the

classification of these emotional words is difficult (Cowie 2000).

In our work, particularly in the field of automatic emotion recognition, we limit

our considerations to a set of six emotions resembling the fundamental emotions de-

scribed by Cornelius (2000): anger, boredom, disgust, fear, happiness and sadness

plus neutral. Our choice of emotions is also based on practical considerations such

as how to make further use of these cues in adaptive dialogue management, where

pain and pleasure as propose by Mowrer (1960) or fear, love and rage (Watson 1930)

are rather unpractical. From this point of view, we furthermore consider the use of

smaller emotion sets, e.g., without boredom and disgust, reducing the quantization

steps of the emotional scale. For the further use of emotional cues in adaptive dia-

logue management, we aim at a numerical representation of emotional states based

on their position in the activation–evaluation space as proposed by, e.g., André et al.

(2004).

Our approach to adaptive dialogue modeling claims to be straightforward and

quickly implementable. Thus, we set complex underlying models such as the OCC

model aside and we rather incorporate temporal dependencies as described by dy-

namic belief networks (Carofiglio et al. 2003). We argue that the emotional state at

time T is strongly dependent on the previous state(s) at T � 1, T � 2, . . . . This is

particularly taken into account in the semi-stochastic model which we propose in

Chapter 3.

2.3 Emotional Labeling

The emotion-related signs of the utterances in a corpus have to be assigned to valid

labels that identify the emotions (Cowie and Schröder 2004). As systematic evalu-

ations and generally applicable regulations are lacking, a subjective evaluation has

to be carried out. The difficulty in annotating emotions is the uncertainty factor,

i.e., emotions are difficult to be rated for sure (Rigoll et al. 2005). A reasonable
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criterion therefore is an annotation by human performance. However, an annotation

will never be able to reflect the exact emotional state of a speaker, but it should

be adapted to the corresponding application such that a recognizer can be trained

appropriately and a kind of empathy with the user can be elicited. An overview

on existing approaches to emotional labeling and to known problems is given in

Craggs (2004).

Emotions are either labeled by persons who are not involved in the process of

the recordings, or, in case of acted data, by the actors themselves as done in Rigoll

et al. (2005). E.g., the actors of the recordings described there label both their own

utterances and the utterances from the other actors, so that a human reclassification

error rate can be calculated. Alternatively, in Razak et al. (2003), a confusion ma-

trix table shows which emotions are confused most often and, consequently, which

data needs to be recollected again. In Navas et al. (2006), two different groups of

persons who are not involved in the recordings, are selected to evaluate two acted

databases in Basque, i.e., one database with semantically neutral texts and another

database containing texts with emotional content: The first group consists of Basque

speaking persons who are also able to understand the emotional content of the texts

of the second database, the second group is made up of Spanish speaking peo-

ple not understanding Basque so that their decisions (based on a list with seven

given emotions) are not influenced by semantic information. By labeling these cor-

pora containing artificial data the actor’s ability to simulate emotions furthermore is

proved. In Alexandris and Fotinea (2004), the actor’s ability is validated even with

separate labels like “naturally-sounding” or “not naturally-sounding”.

A corpus should generally present an association that is accepted as valid, there-

fore appropriate labels and methods have to be used. The following two approaches

to emotion annotation by human performance can be differentiated (Stibbard 2001):

� Free choice, i.e., the labels for the utterances are freely chosen by the annotators

� Forced choice, i.e., a predefined set of labels is given, among which the annota-

tors have to choose from

The free choice normally results in a large number of categories, which are difficult

to handle in emotion recognition as due to a lot of similar labels certain emotions

cannot be differentiated and recognized clearly. Usually the label set therefore has

to be reduced, e.g. similar labels are put together, even if information gets lost. As

described in Batliner et al. (2004b) for the SYMPAFLY database, it may be advan-

tageous to let the labelers decide on which user states to annotate and then find a

consensus with a limited number of emotions. The consensus labeling approach is

typically applied when the agreement between different labelers is too low to be

used for a reliable emotion database (Ang et al. 2002). Such a kind of consensus

may also be found by majority voting, considering only a certain number of most

common emotions (Batliner et al. 2005). Predefined labels enable a better and eas-

ier emotion recognition, however, the annotators are forced to assign a label to an

utterance even if a label does not exactly match the utterance, i.e., the transition of

the emotions are blurred. The predefined label set should be adapted to the applica-

tion and to the context, in order to keep the label set as small and clear as possible
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and to omit emotions which do not occur in the application anyway as done in

Devillers et al. (2002). A very small label set has been used in Swerts and Krahmer

(2000) as a selection of the word “no” had to be annotated with either the label

“positive” or “negative”. According to Craggs and McGee Wood (2003), a special

differentiation has to be made in a database containing dialogue acts: Not only the

emotional state of the speakers should be indicated, but also the emotional state of

the dialogue itself, i.e., if a serious dialogue is interrupted by a joke the emotional

state of the dialogue remains serious whereas the speakers’ emotional states may

change.

In Douglas-Cowie et al. (2000), two types of annotation are described similar to

the two systems for emotion annotation:

� Dimensional: Each utterance is given an emotional content, i.e., an activation as

well as an evaluation. The activation indicates the intensity of an emotion and

the evaluation describes the emotional value by indicating if the utterance has

a positive emotional content like happiness or a negative one like despair see

Section 2.2.

� Categorical: Predefined labels are provided, i.e., a forced choice or logical de-

scriptions are given.

Dimensional labeling is, e.g., accomplished with the aid of a computer program

called FEELTRACE as described in Section 2.2. The utterances are annotated con-

tinuously and changes of the emotional content can be reconstructed with regard to

time. However, emotions cannot be distinguished clearly from each other (Cowie

and Schröder 2004). In Douglas-Cowie et al. (2000), the dimensional labeling fur-

thermore is combined with a categorical labeling where annotators had to choose

between labels on a list. If a label does not match exactly to the emotional con-

tent in the annotator’s opinion he may select more labels from either the first list

or a second list. The annotation is completed by an indication of the intensity on

a scale from one to three. If ambiguous labels are assigned to sentences a further

annotator may be brought in to judge the respective sentences as done in Devillers

et al. (2002). Various conditions furthermore may influence the emotion annotation,

e.g., if the annotator is allowed to change his decision afterwards or not or if the

annotator is allowed to hear the utterance only once or several times. According

to Navas et al. (2004b), even more than one label may be assigned to an utterance.

Phonemes may be labeled instead of a whole utterance or words (Campbell 2000), if

the appropriate phonemes are provided, e.g., by a speech recognizer. However, high

annotation error rates may occur because of too small labeling units, so that emo-

tions cannot be differentiated clearly. A rather simple approach to one-dimensional

labeling is described in Forbes-Riley and Litman (2004) where the evaluation (va-

lence) axis is quantized into three levels – positive, neutral and negative. To assess

how speech recognition problems elicit user emotions, only two states (emotional

and non-emotional/neutral) are considered in Rotaru et al. (2005).

In the approach by Campbell et al. (2006) different kinds of resolution are sug-

gested in the form of a three phased annotation:
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� Global emotion labeling

� Trace labeling

� Quantal labeling

Global emotion labeling in the first stage represents the coarsest approach in which

a whole utterance or passage is assigned one common label chosen from a limited

set of attributes. In the following stages, i.e., trace labeling and quantal labeling, the

annotation is improved by finer time resolution and more accurate labels are chosen

from a larger set of attributes. Moreover, different kinds of labels may be assigned to

the utterances, which indicate everyday emotion words, authenticity of the emotion,

core affect dimensions like intensity, valence, activation, etc.

A similar approach with a flexible tree-structured three-level hierarchical label-

ing scheme, is proposed by Fék et al. (2004), where the first level consists of only

three labels (positive, negative, neutral) and the following two levels contain more

labels refining the labels of the first level. Laskowski and Burger (2006) describe a

decision tree for the annotation of emotionally relevant behavior. Based on questions

like “does the speaker express disagreement?” or “is there any attempt to amuse

the listener?” in the branches, the annotators reach leaf nodes, each representing a

certain state.

In case of a visual database, facial expression or gestures may be annotated in

addition. Each annotation furthermore is depending on the annotator, e.g., a female

annotator might perceive emotions stronger than a male annotator (Alexandris and

Fotinea 2004; Wardhaugh 1992). According to Campbell et al. (2006), the anno-

tator, on the one hand, should be trained to be able to label like an expert, on the

other hand, the annotator should give labels in a normal “naı̈ve” manner, which

might be difficult for him or her after a long training. Therefore multiple experts

should be included in the annotation process and the coherence should be verified in

the form of an inter-labeler agreement and annotation label confidences. Depending

on the number of labelers, the inter-labeler agreement can be measured with either

Cohen’s kappa statistics (see Cohen (1960), two labelers) or Fleiss’ kappa statistics

(see Fleiss (1971), any number of labelers). Both statistics include considerations on

the relationship between the actual agreement between the labelers and the agree-

ment that would occur if all labelers labeled the data randomly. Cohen’s kappa �C

is calculated as

�C D pA � pR

1 � pR

; (2.2)

where pA is the actual agreement portion and pR is the agreement which is expected

if both annotators labeled the data on a random basis. The values for �C range from

�1 (very poor agreement) to 1 (full agreement), and there exist different opinions

about the interpretation of the values in between. Typically, �C � 0:75 is considered

as good agreement. Analogously, Fleiss’ kappa �F is calculated as

�F D
NP � NPd

1 � NPd

; (2.3)
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where NP is the average value of the extent to which the annotators agree on the

subjects (in this case utterances) and NPd is the sum of all squared probabilities for

each labeling category. For the interpretation of Fleiss’ kappa values hold the same

assumptions as for Cohen’s kappa.

Similarly, confusion ratios for certain emotion pairs can be calculated as done in

Yuan et al. (2002):

CR.joy > anger/ D N.joy; anger/

N.joy; anger/
; (2.4)

where CR.joy > anger/ is the ratio that joy is confused with anger, N.joy; anger/

is the number of utterances that have been annotated at least with one label for

joy and one label for anger and N.joy; anger/ is the number of utterances that are

identified with at least one label for joy, but no label for anger. As opposed to the

kappa statistics a higher value indicates a lower agreement.

Furthermore, in practice three annotation techniques can be differentiated:

� Manual labeling

� Semi-automatic labeling

� Automatic labeling

The most time-consuming technique is to label manually, as to each utterance or

part of the utterance, a label has to be assigned by the annotator. For the annotation

of plain speech there exist numerous software tools which allow to mark certain

regions in the waveform and to assign labels to these regions – these tools are typi-

cally also used for the transcription of data for speech recognition. For multimodal

annotation, e.g., the ANVIL tool allowing a task-dependent annotation strategy

may be used (Kipp 2001; Clavel et al. 2004). In multimodal labeling, apart from

a holistic view considering all modalities, also “blind” annotation, audio-oriented,

video-oriented, context-oriented, etc., is used to mask out influences from the other

modalities (Clavel et al. 2006). A task-oriented labeling tool for video sequences in

augmented multiparty interaction similar to the FEELTRACE tool is described in

Reidsma et al. (2006).

A certain level of facilitation is provided by a semi-automatic labeling technique

with the aid of the bootstrapping method. Using a small part of the database which

is labeled manually, a preliminary (acoustic) model is trained and used to recog-

nize, i.e., to label new unlabeled utterances. These labels are manually corrected

and are included in the training of a new model which is used to label further utter-

ances until the whole corpus is labeled (see also Section 4.5). Automatic labeling

using a speech–pause detector may apply in cases where the utterances’ emotional

content is already known and just one emotion shall be assigned to an utterance.

Nevertheless a manual correction may be needed in cases, where the assignment

is ambiguous. Alternatively a database can be annotated with an already existing

functioning emotion recognizer, if available. In Stibbard (2000), the Reading/Leeds

Emotional Speech Corpus is automatically annotated using the standard for labeling

English prosody called ToBI (Tones and Break Indices). Experts in speech tech-

nology and prosodic analysis developed ToBI in order to provide a standard for
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prosodic transcription which conforms to the IPA (International Phonetic Alphabet)

for phonetic segments (Silverman et al. 1992). As several aspects of prosody have to

be included, parallel tiers are used in the system, namely a tonal tier and a break in-

dex tier. The tiers indicate prosodic events with the aid of symbols as well as the time

slots of the prosodic events in the utterance. Pitch events on the basis of Pierrehum-

bert’s intonational phonology (Pierrehumbert and Hirschberg 1990) are transcribed

on the tonal tier. Also local maxima in the pitch contour are specified. The break

index tier is transcribed by a seven point scale ranging from 0 to 6, whereas no

boundary between two orthographic words is represented by 0 and a full boundary

of an intonation phrase is indicated by 6. A further tier, namely the miscellaneous

tier, specifies spontaneous speech effects like laughs, breaths, etc. E.g., Stibbard

(2000) annotate the Reading/Leeds Emotional Speech Corpus with ToBI elements

of the tonal tier, so that six emotions can be classified by considering the differences

in the occurrence of the elements.

Another phonetic transcription for the annotation of the Berlin Database of Emo-

tional Speech is applied in Burkhardt et al. (2005). Two label files are created, the

first file for a phonetic transcription and the second file for indicating stress includ-

ing a segmentation into syllables. Beside using symbols of the machine-readable

SAMPA phonetic alphabet for the phonetic transcription in the first label file, seg-

ment and pause boundaries were annotated in this file, too, as well as settings and

diacritics by using German abbreviations. Moreover, additional labels like “whis-

pery voice” specify further (emotional) characteristics of voice. In contrast to the

Reading/Leeds Emotional Speech Corpus, the Berlin Database of Emotional Speech

is labeled manually by aural perception as well as by visual analysis of the os-

cillograms, spectrograms and electro-glottograms. The transcriptions of stress are

furthermore evaluated by eight trained phoneticians.

In addition to acoustic information as basis for labeling emotional corpora, three

characteristics for emotion annotation and recognition are presented in Devillers

et al. (2002):

� Acoustic characteristics (extraction of prosodic features, e.g., pitch, energy,

speaking rate)

� Linguistic characteristics (extraction of linguistic cues identifying emotions, e.g.,

on lexical, semantic, dialogic basis)

� Combination of acoustic and linguistic characteristics

A combination of acoustic and linguistic information allows a significant

error reduction in emotion recognition. An integration of further parameters,

e.g., by including labels for nonverbal events like laughter or throat, enables an

additional improvement of recognition results. Similarly, in Batliner et al. (2000), a

combination of several indicators like key word spotting or annotation and recog-

nition of meta communication, etc. is proposed in order to receive a better emotion

recognition rate. Also in Devillers et al. (2003), emotions are labeled on the auditory

and lexical level independent of each other. Here, it shows that depending on the

level, the utterances may be assigned different emotions.
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The annotation of the speech data used in our plain emotion recognition

experiments is accomplished on the word and word group level where the relevant

sections are automatically determined with the aid of a speech–pause detector. These

sections’ labels are then selected from a list of seven emotional states according to

the annotators’ aural impression. The utterances which we also use for the training

and testing of our hybrid speech–emotion recognizer are furthermore labeled on

the phoneme level. I.e., for each word in the utterance the appropriate emotion

is determined and the word is labeled accordingly, e.g., “PLEASE-NEUTRAL”.

With the aid of our adapted dictionary, this word–emotion is refined into what we

refer to as emophonemes such as “pn ln iyn zn” (derived from “p l iy z” for the

non-emotional word “PLEASE”). For our considerations we set aside further labels

such as those on the prosodic level. Whereas the data in the Berlin Database of

Emotional Speech is labeled according to a forced choice limiting the annotators’

input to seven possible emotions, we allow a free choice annotation for our sponta-

neous speech database described in Section 6.2. In the latter case, however, in order

to keep a certain degree of consistency, we include a post-processing limiting the

number of possible emotions.

For the integration of emotional cues in adaptive dialogue management, we con-

sider that textual representations are somewhat unhandy for both rule bases or

stochastic models. Thus, we also employ a numerical representation of emotional

states as described in Section 3.7. The respective numbers are derived from the

emotion’s position in the valence-arousal space taking into account how the user’s

emotional state influences the perception of a message (good news vs. bad news).

Such a numerical representation also allows a flexible quantization of emotions, e.g.,

depending on their use in a dialogue model as discussed in Section 3.8.

2.4 Emotional Speech Databases/Corpora

Campbell et al. (2006) in general distinguish two kinds of corpora:

� Artificial data (acted data or induced data)

� Real-life spontaneous data (authentic speech methods)

The emotions acted in the artificial data normally are only full-blown emotions as

the context, i.e., internal events such as “headache” influencing the emotional state

as well as external events such as “someone helping the sick person”, are missing.

Consequently emotions or affective states are not mixed like in real-life data, in

which also multiple events simultaneously may influence the affective state. There-

fore the lacking naturalness of the affective states in artificial data is often criticized

in literature. A corpus of spontaneous emotions, i.e., authentic speech, may be built

by either recording real-life situations such as call center dialogues or TV inter-

views, i.e., found speech (Campbell 2000), or by inducing certain situations with

expected emotions in an interaction between a speaker and a machine or in a Wizard-

of-Oz (WOZ) scenario. The induced data may also be regarded as a third separate
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category including corpora of elicited or induced speech as done in Navas et al.

(2004b) and Campbell (2000). While human–machine interaction is restricted to

certain words or commands and often does not enable the speaker to express record-

able (spontaneous) emotions, the WOZ scenario provides authentic data of multiple

speakers on the same conditions in various languages in a laboratory (Aubergé et al.

2003). In this scenario, the speaker communicates with a human via a machine in

order to accomplish a task. As the computer’s utterances and behavior are only imi-

tated and remote-controlled by a human (typically referred to as wizard), the speaker

believes that he is interacting with a computer. The goal of the wizard is to imitate

the machine’s behavior such that certain emotions of the speaker are elicited. Fur-

thermore, the phonetic and linguistic content of the speaker’s utterances is controlled

by the wizard’s command language. However, the problems of legality, anonymity

and privacy, the ethical acceptance of real-life spontaneous data as well as the copy-

right of data from TV or radio are often discussed (Campbell 2000; Stibbard 2001).

Corpora furthermore can be characterized according to the following criteria:

� Control of the speech characteristic through the observer (i.e., the person collect-

ing the speech material) or no control

� In vitro method (laboratory corpus) or in vivo method

� Professional actors or non-professional speakers

� Utterances linguistically and phonetically predefined or undefined

� Utterances with emotional content or semantically neutral

A very common method to build a corpus is to collect authentic data without any

control, e.g., to record everyday speech or talk-shows. Even in such real situa-

tions, the speech characteristic may be controlled with the aid of (anonymous)

partner or non professional actors who participate in the interactions. A corpus

furthermore can be produced in a laboratory or in vivo. The challenge in the ap-

plication of in vivo methods such as recordings of talk shows or everyday speech is

to achieve a corpus of good technical quality especially without background noise

outside a laboratory. In special applications where emotions have to be recognized

in a noisy environment, corpora with certain types of background noise may be

useful.

A common method is to employ actors in a laboratory environment, where

the utterances are linguistically and phonetically predefined as done in the Berlin

Database of Emotional Speech (Burkhardt et al. 2005). In this corpus the actors

are asked to utter semantically neutral sentences in different emotions enabling a

good comparability between the emotions and their acoustic features and further-

more providing a phonetic balance. As the utterances of actors generally should

sound as natural as possible the actors are often confronted with stimuli like pictures

before actually starting the recording in order to get them in the appropriate emo-

tion or mood. On the one hand, corpora composed of acted utterances are criticized

for exaggerating and for not representing natural emotions as already mentioned

with respect to artificial data, on the other hand, even in real situations, e.g., in

social interaction, certain emotions are expressed which are not really felt, i.e., per-

ceived and expressed emotion has to be differentiated (Campbell 2000). Another
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method to build corpora is to use non-professional speakers reading predefined texts

with emotional content or telling a story with emotional background as done in the

emotional speech corpus by Amir et al. (2000). Ideally, female and male speakers

are equally distributed among both actors and non-professional speakers to obtain

more representative data. Different age groups and different ethical background of

the speakers additionally increase the representativeness of the data (Rigoll et al.

2005). A mixture of semantically neutral texts and texts with emotional content

has been used in the Audiovisual Database of Emotional Speech in Basque (Navas

et al. 2004a) to ensure a phonetic balance with the aid of the semantically neutral

texts and to make it easier for the speakers to express the emotions by using texts

with emotional content. Furthermore different lengths and contents of the texts are

included for representative reasons. As it is impossible to include all emotions in

a corpus most of the corpora contain only few emotions. As the primary or basic

emotions are strongly colored and mostly serve as reference for emotional studies,

they are also frequently chosen for corpora (Cowie and Schröder 2004).

In Appendix A, several emotional corpora are listed. The list is sorted in alpha-

betical order of the language or languages, in which the corpora are developed and

by the year of the development or accomplishment of the corpora (starting with

the oldest corpus in the appropriate language). In cases where several corpora are

produced in the same year and in the same language the corpora are sorted in alpha-

betical order according to the first author’s name of the respective publication. Due

to the enormous number of different emotional corpora that have been developed un-

til now, not all existing corpora are included in this list and some restrictions apply:

As our work concentrates on unimodal SLDSs, only databases including speech or

optionally video are considered. As opposed to speech data which may be used for

the training of emotional text-to-speech synthesizers, corpora of synthesized speech

are not included as these are not suitable for the use in emotion recognition systems

for human speech.

The application of reliable and representative emotional speech data is particu-

larly vital for the development and assessment of speech-based emotion recognizers.

With respect to the training of the statistical acoustic models, large amounts of accu-

rate data are required to achieve a robust classification. Moreover, our interpretation

of representative data includes the assessment how emotional the speech of a cor-

pus actually is: What is the ratio of emotional utterances to neutral utterances? Are

the emotional utterances actually recognizable for human interpreters? How many

emotions are included? Some of the corpora listed above unfortunately are not doc-

umented comprehensively enough to assess their applicability, other corpora such as

the SmartKom or SYMPAFLY databases possess a high proportion (80% or more)

of neutral utterances. Furthermore, in some corpora, emotional utterances do not

differ significantly to neutral utterances regarding the aural perception. A further

aspect is the availability and costs of the data. Whereas most of the corpora from

the list are not offered on the open market, other corpora are sold at relatively high

prices.

For our experiments, we use the Berlin Database of Emotional Speech (see

Burkhardt et al. 2005) which is made publicly (and freely) available by the Technical
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University of Berlin and which enjoys an overwhelming popularity among the

emotion recognition community. Keeping in mind that the emotions are acted and

not spontaneous, we use the data for a comparable performance assessment of our

approaches described in Chapter 4. A more detailed description of this corpus as

well as of our self-recorded material with spontaneous emotional speech is given in

Section 6.2.

2.5 Discussion

Emotion constitute an important share in a human person’s everyday life. E.g., in a

conversation which is strongly influenced by each participant’s emotional state, or

in environments like a car where the driver’s emotional state is influenced by the

situation (e.g., traffic jam) and where the emotional state, in turn, has an impact on

the driving behavior. In the latter case, emotions even relate to safety aspects.

Due to the problem that emotions cannot be measured by objective means, the

actual handling of emotions poses a great challenge for humans as well as for

computers. E.g., Cowie and Schröder (2004) point out that it is not possible to

distinguish different emotions clearly from each other. This involves ambiguities al-

ready in the development phase of a emotion recognition system, where an utterance

of the training data may be labeled with different emotions due to the different anno-

tators’ perception. By that, from the first, such a system cannot perform better than

the annotators of the underlying training data. Moreover, the exact emotional state

of a speaker cannot be reflected by such an annotation – it is rather a maximum-

likelihood decision which label (from a predefined set of emotions) matches the

user’s state best. Predefining such a set emotions, in turn, is also not trivial as

the developer here is required to determine which emotions actually influence the

dialogue.

A large amount of work has already been accomplished in the field of emo-

tion theories, collection of emotional data, signal processing and classification of

emotions. This includes the selection of appropriate features and useful classifiers

for speech-based emotion recognition. There exists a large variety of speech-based

emotion recognizers, each of which has its own kind of unique feature and performs

“best” according to a certain criterion. Keeping in mind the problems mentioned

above, the recognizers’ actual capabilities are difficult to compare.



Chapter 3

Adaptive Human–Computer Dialogue

When two or more persons are talking to each other, there exists a large variety of

parameters and stylistic devices that may influence such a dialogue. This can be

situation-related parameters, e.g., a person is in a hurry, the environment is noisy, it

is raining, etc., or speaker-related parameters, e.g., a person is sad because a close

relative has died, a person is nervous because of an upcoming examination, etc. Fur-

thermore, humans tend to use certain stylistic devices to emphasize what they want

to express in the interaction, e.g., irony, gestures, facial expressions, etc. Human

dialogue partners are typically able to correctly construe the meaning of the par-

alinguistic parameters and the interrelation between situation and the behavior of

dialogue partners. Moreover, humans are able to account for this context in the di-

alogue. This adaptation typically occurs subliminally, i.e., the speaker doesn’t even

notice.

In human–computer interaction, computers, however, face the challenge not only

to recognize these paralinguistic or only linguistic cues but also to process these

appropriately and to adapt the interaction accordingly. This does not only include

situation and user-state parameters but also the fact that humans tend to interact

differently with computers than with human dialogue partners. In this book, we

address these challenges focusing on the user’s emotional state in SLDSs. The idea

and the implementation of a speech-based emotion recognition system is described

in Chapter 4. In this chapter, we present several approaches how the information

provided by such an emotion recognizer can be processed to adapt the dialogue

flow.

For the handling of emotions in the adaptive dialogue manager we propose an

integrated approach combining user-state management and dialogue management

in the SLDS as illustrated in Fig. 3.1. For the adaptation of the dialogue flow there

exists a large variety of approaches focusing on different parameters individually,

e.g., the dialogue system proposed by Litman and Pan (2002) adapts its confirmation

strategy to the confidence measures of the speech recognizer or Yankelovich (1996)

describes the adaptation of prompts according to the user’s experience level.

Having outlined existing approaches to adaptive dialogue management with par-

ticular respect to emotions in the following section, we describe the purpose and

the functioning of the user-state and situation managers in Section 3.2. In the re-

mainder of this chapter, we propose an approach considering the entirety of all

J. Pittermann et al., Handling Emotions in Human-Computer Dialogues,
DOI 10.1007/978-90-481-3129-7 3, c Springer Science+Business Media B.V. 2010

47



48 3 Adaptive Human–Computer Dialogue
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Fig. 3.1 Spoken language dialogue system integrating user-state management into adaptive dia-
logue management (Pittermann et al. 2007b)

possible dialogue parameters en bloc. As an exemplary situation control parameter

we choose noise represented by the speech recognizer’s confidence measures based

on which we describe the adaptation process in Section 3.4. In Sections 3.6 and 3.7,

we introduce semi-stochastic dialogue and emotion models before merging these

models into an emotional dialogue model as described in Section 3.8. A perspec-

tive on extending the emotional dialogue for multiple dialogue control parameters

is then given in Section 3.8.

3.1 Background and Related Research

A comprehensive overview on adaptive dialogue systems in general, also address-

ing dialogue management, is given in McTear (2004). As for the actual defi-

nition and implementation of adaptivity and flexibility, the views and opinions

are quite divergent. Whereas flexibility is commonly associated with enhancing a

standard system-initiative dialogue system by extending the speech recognizer vo-

cabulary and integrating mixed initiative, adaptivity typically implies the existence

of dialogue-influencing parameters based on which the flow and style of the dia-

logue is adapted.

3.1.1 Adaptive Dialogue Management

The idea of rendering human–computer interaction more efficient by adapting the

dialogue flow is actually not new and is not restricted to SLDSs. Ukelson and Rodeh

(1989) propose a dialogue manager for screen-based interaction which aims at ef-

ficient interaction in terms of a minimum number of questions. Their approach

includes the appropriate selection of items to be shown on the screen, exploitation
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of relations between the dialogue fields and the handling of incorrect user input. In

the representation, the dialogue fields are structured in a tree-like graph taking into

account their interdependencies (e.g., if an employee’s ID number is known, it is

not necessary to ask for the name). Apart from simple constraint checks (e.g., the

start date must be before the end date), the actual adaptivity of the dialogue is based

on rules which allow to infer dialogue field values from other known field values by

what the tree structure is simplified and the field selection is adapted.

In order to improve the quality of a spoken dialogue in general, Krahmer et al.

(1997) propose what they refer to as seven commandments for spoken language di-

alogues constituting guidelines for dialogue development. Among these guidelines

are the demand for consistency, comprehensibility, error proofness, adaptability and

translucency as well as the plea to the developer not to underestimate the design

phase and to choose sensible prompts which should be well formulated and which

should fit in the ongoing dialogue. They present an SLDS for car-drivers the dia-

logue manager of which implements these commandments as well as possible.

A step towards adaptivity is presented by Duff et al. (1996) who describe the

architecture of a task-based human–computer SLDS. In addition to the five standard

components, a discourse processing module is included between linguistic analysis

and dialogue management as illustrated in Fig. 3.2. This discourse processor avails

itself of the current user input as well as a discourse state and knowledge base con-

taining a static domain model, a dynamic backend model and a user model. Based

on a military battlefield simulation environment, the authors propose a four-step al-

gorithm which the discourse processor applies to recover from miscommunication

problems such as interpretation failures.

The same problem is addressed in Martinovski and Traum (2003) from the as-

pect of how strong the dialogue deviates from the user’s expectations if too many

interpretation errors occur or if certain dialogue strategies inhibit a fluent dialogue.

They propose a dialogue system model of conversational partners based on com-

petence and conventions that potential users have learned from their interactions

Knowledge Base

Speech recognition Parsing

Text generationSpeech synthesis

Discourse Proc.

User Model

Backend Model

Domain Model

Discourse State

Dialogue Manager Application

U
S
E

R

Fig. 3.2 Architecture of an SLDS discourse processing (Duff et al. 1996)
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with other humans. Based on the example of another military dialogue applica-

tion and the TOOT train timetable information system (see also Kamm et al. 1997;

Litman and Pan 2002), the authors analyze aspects such as fluency and coopera-

tion as well as causes of communication breakdown. They observe that, apart from

speech recognition problems, also the systems’ inability to adapt to the users’ state

and the inappropriateness of repair requests such as confirmation prompts may lead

to a breakdown. Signals which indicate such a breakdown can be found in the

intonation, articulation, extra-linguistic sounds, attention calls or elliptic speech.

They conclude that, as it is not possible to eradicate all errors, a dialogue system

shall be either able to handle possible non-fluencies or to respond sensitively to the

users’ emotional state. Veldhuijzen van Zanten (1999) proposes a user model for the

use in adaptive mixed-initiative dialogue management as described in Veldhuijzen

van Zanten (1998). The user model is designed for the prevention and handling of

misunderstandings in the dialogue and consists of flags which are maintained in a

hierarchical slot structure.

For a dialogue system, concepts need to be defined about what the system is ca-

pable to understand and to process. A formal description of the concepts and rules

defining the relationship between these concepts can be summarized in ontologies.

Such ontologies allow the description of generic dialogue models as well as con-

cepts for domain-specific applications.

In order to render dialogue systems in automotive environments more efficient,

Hassel and Hagen (2005) adapt the dialogue to the user’s experience level. They

propose a user model which is updated after each turn containing parameters such

as the number of help or option requests, the mean response time and speech rec-

ognizer confidence measures. Based on heuristics including a forgetting curve, the

user is classified as either expert or novice. Accordingly, the system prompts are

adapted, e.g., “Pardon me?” for experts or “Sorry, I could not understand you.

Please repeat.” for novice users.

One approach to adaptive dialogue strategies with respect to recovering from

speech recognition and interpretation errors is proposed by Litman and Pan (2002).

They describe an adaptive version of the TOOT system which is able to consec-

utively restrict the initiative and the confirmation strategy with decreasing speech

recognizer performance. The system is initialized with user initiative without con-

firmations and, if necessary, the algorithm switches to more conservative strategies

using mixed initiative with implicit confirmations and even system initiative with

explicit confirmations. The adaptation occurs with respect to the expected mis-

recognition rate calculated from the confidence measures provided by the speech

recognizer. A usability study is also conducted to verify improvements in the sys-

tem performance compared to a non-adaptive version of TOOT. Maintaining mixed

initiative during the whole dialogues, Komatani and Kawahara (2000) present a dia-

logue strategy involving two levels of confidence measures to achieve a more robust

but still flexible dialogue flow. In their approach, confidence measures are calculated

for each content word. Two thresholds define whether a word is accepted or rejected

or whether confirmation is required. If the word is rejected or if the confirmation

is denied also semantic-attribute confidence measures are determined to estimate
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which (semantic) category the user refers to. Depending on these measures, the

system decides whether the user needs guidance (e.g., in a travel information sys-

tem, if the system asks for a destination and the user replies with information about

the travel date) or whether the user shall just rephrase or repeat the previous input.

Hagen and Popowich (2000) propose a flexible approach to dialogue manage-

ment based on speech acts. Their dialogue engine calculates dialogue primitives to

determine system and user utterances allowing simple question–answer dialogues,

overanswering as well as complex mixed-initiative dialogues including different

confirmation strategies if required. The engine includes a reasoning module and

a knowledge base with application description, grammar, dialogue history, etc. In

their approach, the reasoner is mainly used to determine the appropriate system re-

action to the primitives determined from the user input. E.g., if the system requests

a certain information, the reasoner allocates the user’s informative answer accord-

ingly. A different use of reasoning is presented in Bühler and Riegler (2005), where

a domain reasoning component is operating outside the dialogue manager. Based

on atoms received from the user or given by the situation it provides inferences or

solutions which are then integrated into mixed-initiative planning dialogues, in this

case in the TRAINS-93 domain where different combinations of engines and box-

cars are used to transport items between five cities. To transform the solutions into

dialogue acts, the dialogue manager is extended by a solution evaluation module

filtering the reasoner’s output and an interface communicating new information to

the reasoner. The interaction manager ensures the collaboration between user and

reasoner deciding in which direction information shall be communicated and which

information shall be passed to the user. Reasoning is also involved in intelligent tu-

toring systems which need to infer the students’ knowledge and proficiency from

their actions as described by Conati et al. (2002). To overcome the uncertainty in

modeling the students’ learning and reasoning, the authors propose the integration

of Bayesian models into these systems. A flexible framework for dialogue man-

agement modeling domain knowledge and planning is presented in Delorme and

Lehuen (2003) where tasks and methods from problem-solving are used on the dia-

logue control and the domain level.

The general terms of adaptivity and flexibility can also be limited to a sin-

gle dialogue scenario or domain which requires a specific behavior or a certain

degree of intelligence. For the medical domain, Azzini et al. (2001) propose a

telemedicine framework which shall be able to render the (multimodal) human–

computer dialogues as “natural” as possible by dynamically changing the content

to be presented and adapting to misunderstandings or argumentation. To accom-

plish that, their proposed architecture includes a large knowledge base consisting

of domain knowledge, dialogue history, patient record and a medical unit which

are controlled by a system manager passing relevant information to the dialogue

engine. A flexible dialogue system in the travel information and booking domain

is presented in Stallard (2002). The system includes a tree-shape dialogue control

model where the leaf nodes represent system actions and the interior nodes order the

relevant actions depending on the goals. As opposed to, e.g., VoiceXML, their ap-

proach is asynchronous (by using separate threads) and event-driven minimizing the
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system response time after user input. Seneff et al. (2004) propose a mixed-initiative

SLDS for restaurant information retrieval based on the ideas presented in Glass and

Seneff (2003). Their system’s flexibility is improved by a statistical language model

which is trained with the aid of a user simulator generating multiple paraphrases

of a sentence, a generic dialogue model, an automatically updating vocabulary and

more flexible response generation.

Generic dialogue strategies for domain-independent dialogue management are

described by Polifroni and Chung (2002). Their approach enables a dialogue de-

veloper to use self-contained dialogue flow functions and to adapt these to the

required domain. The top-level strategy coincides with the VoiceXML idea of fill-

ing the fields of a form, the implementation, however, differs significantly from the

VoiceXML form interpretation algorithm. Its dialogue control is constituted by a

set of rules like, e.g., in the air travel domain if destination known and depar-
ture city unknown ! ask for departure city or if all fields filled ! retrieve
flight information from database. On the basis of these rules, input and output

are canonicalized with the aid of semantic frames. A different approach to dia-

logue management for the use in multi-purpose dialogue systems like intelligent

secretary agents is proposed in Sugimoto et al. (2002). They describe a linguistic

resource database called semiotic base following the systemic functional linguistic

theory which is included in the linguistic analysis of the user input. Using the anal-

ysis’ results the dialogue manager maintains a tree-like plan structure with domain

and interaction plans which are accordingly selected. The interaction plans range

from simple action plans where “I want to write a report.” opens a word proces-

sor program to more complex plans in which the system requests information from

the user. A plan-based structure also including trees is the topic forest approach de-

scribed by Wu et al. (2001). This structure consists of topic trees as shown in Fig. 3.3

which involve a topic node indicating the type, mid nodes describing logical rela-

tions between their sub nodes and leaf nodes relating to a dialogue field storing

[PP] OR

Destination

Flight No.

Dep. City AND

OR

[PP] AND [SP] OR [AP] AND

Flight Information

...Flight No. Dep. City Destination

...

Flight No.

Date

Dep. City Destination

Dep. Time Arr. Time Airline
...

Ticket Price

AND

Fig. 3.3 Topic forest structure for plan-based dialogue management (Wu et al. 2001)
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the respective information. Moreover, mid nodes may be labeled as either primary,

secondary or additional property, depending on their importance within the topic.

These nodes are traversed by the dialogue engine to fill the leaf nodes with semantic

slots extracted from the user input where appending (storing multiple values for one

field) and replacing operations are possible in a mixed-initiative dialogue.

A hybrid approach combining this topic forest with finite-state dialogue control

is proposed in Wu et al. (2002). Each topic tree is appended a leaf node storing the

current dialogue state. These dialogue states are organized in a state transition net-

work the transitions in which are dependent on database operations or user input.

The application of tree-based dialogue management is also described in Macherey

and Ney (2003) where the dialogue manager integrates the user input into a knowl-

edge tree based on the filling level of which the next dialogue action is determined.

To accomplish that, the authors describe relevant features such as speech recognizer

confidence measures, concept filling degrees, application/database feedback, etc.

Jokinen et al. (2002) define the adaptivity of a dialogue system by four ba-

sic system properties: an agent-based architecture supporting flexible component

communication, natural language capabilities for linguistic analysis as well as for

language generation, topic recognition and conversational abilities provided by the

dialogue manager. Their dialogue manager consists of agents and evaluators. Each

agent corresponds to possible system actions such as asking, informing or request-

ing confirmation and the evaluators select the agent which best suits the current

(dialogue) situation (see also the Jaspis architecture presented by Turunen and

Hakulinen 2001). Similarly, task management (interface to database and applica-

tion) and presentation management (language generation) also consist of agents and

evaluators. The whole architecture is illustrated in Fig. 3.4: the interaction manager

constitutes the central component surrounded by and cooperating with input/output,

dialogue, task and presentation management. On top of all, the information manager

serves as a knowledge base to all other components.

Evaluators

Presentation Management

...

Evaluators

Dialogue

Agent

Dialogue

Agent

Dialogue Management

...

Evaluators

Task

Agent
Task

Agent

Task Management

...

Information Management

Information Manager

Information Storage

ASR DTMF TTS

Input/Output Management

Input Manager

Input Evaluators

Input Agents

Interaction

Manager

Generator

Agent

Generator

Agent

Fig. 3.4 Agent-based dialogue system architecture (Jokinen et al. 2002)
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An expanded architecture of a natural multimodal SLDS for information retrieval

is proposed by González-Bernal et al. (2002). As an alternative to the task manage-

ment, they use an information and knowledge manager which handles the database

queries by verifying the query’s correctness, enriches the query based on domain

knowledge or dialogue observations and selects the adequate database or search en-

gine for information access.

An SLDS architecture integrating context tracking and pragmatic adaptation is

presented in LuperFoy et al. (1998). Their architecture is star-shaped with the dia-

logue manager being the central component organizing the information flow from

speech recognition via linguistic analysis, context tracking, pragmatic adaptation,

application interface, etc., to speech synthesis. Their context tracking module keeps

track of the dialogue context to support the interpretation of, e.g., “this” or “the

second one”. The pragmatic adaptation module reasons over the user input and

translates the input into application-conform commands. Both modules also op-

erate on the output side translating application responses and bringing the output

into a logical form. O’Neill et al. (2003) propose a Java-based dialogue manager

which also distinguishes generic and domain-specific behavior in all components.

In the center of the object-oriented Queen’s Communicator architecture involving 17

classes is the dialogue manager which contains multiple expert classes for generic

and domain knowledge and rules as well as a dialogue history class and a domain

spotter maintaining the inquiry focus and selecting the appropriate expert class for

the current dialogue state. A dialogue server provides an interface to the Galaxy hub

which controls the interaction between dialogue system modules. As an add-on to

the Queen’s Communicator, a dialogue manager integrating dialogue strategy and

problem-solving managers is presented in Chu et al. (2005). Their multi-strategy

approach allows the selection among finite-state, frame-based and free-form strate-

gies. A frame-based strategy is used to retrieve sets of data. If this strategy fails, or

if the system needs to restrict the user’s input the finite-state strategy is used. As

long as no dialogue objective is established or when the user input is not relevant to

the objective, the free-form strategy applies.

An information state approach to dialogue modeling is introduced by Larsson

and Traum (2000) in conjunction with the description of the TRINDI (task oriented

instructional dialogue) Dialogue Move Engine Toolkit (TrindiKit). They define an

information state of a dialogue as the information which is necessary to distin-

guish this dialogue from other dialogues. Being described by previous actions,

this information state motivates future action in the dialogue. Their dialogue model

includes informational components and their formal representations as well as dia-

logue moves triggering updates of the information state on the basis of update rules

selected by an update strategy. They propose an information state containing private

information such as beliefs, an agenda of actions and long-term plans and shared

information like shared beliefs, the latest dialogue move and questions under dis-

cussion. Such an information state is represented as a record structure where private

and shared information form separate sub-records (Larsson et al. 2002). The fields

in the sub-records contain values, sets or stacks together with the type of informa-

tion like proposition, action, question or move. Dialogue moves are, e.g., “ask”,
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1 System: Welcome to your virtual travel agency. How can I help you?

2 User: I’d like to book a flight to Munich.

3 System: Where would you like to depart from?

Private =

Agenda =  < >

Raise(D^(date=D))

Raise(T^(time=T))

Respond(A^(availability=A))

Plan =

Belief = {  (dest.=Munich),(how=plane)}  

QUD = <  X^(departure=X)  >  

Last_move = Ask(sys,Y^(departure=Y))

Shared =

Fig. 3.5 Compact information state representation of a dialogue situation (Larsson and Traum
2000)

“answer”, “repeat”, “request repeat”, “greet”, “goodbye”, “quit”, etc. The TrindiKit

engine’s main purpose is the updating of information states with respect to (pre-

vious) observed moves and the selection of appropriate moves to be performed. A

dialogue example and the according information state are illustrated in Fig. 3.5.

This compact representation captures the information state after turn 3, where D,

T, A, X and Y represent local variables: according to the user’s statement, the sys-

tem knows (believes) that the destination (Munich) shall be reached by plane. The

question under discussion (QUD) is about the departure city which coincides with

the last move as this question has already been asked in turn 3. Furthermore, the

plan foresees to ask for the travel date and time as well as to provide the user with

availability information after all slots are filled.

The strengths and weaknesses of finite-state vs. form-filling (frame-based) vs. the

augmented form-filling approach implemented in VoiceXML are described by Zinn

(2004). For the use in an intelligent tutoring system, a three-layer structure for re-

sponse generation in combination with an information state managed by TrindiKit is

proposed. The information state avails itself of a knowledge base including domain

knowledge, student model, curriculum and tutorial strategies and it controls the de-

liberative planning component, a sequencer for refinement of the plans, a controller

for input (perception) and output (action) for the response generator.

A variety of aspects how and to which extent (spoken) dialogue systems can be

adapted is covered by the above approaches. For the implementation of our dialogue

manager as discussed in Section 5.3, we adopt the question under discussion idea

as used in the TrindiKit architecture (Larsson et al. 2002). Our implementation en-

visages a hybrid framework adapting TrindiKit ideas while maintaining a simple

and understandable dialogue description as provided by VoiceXML. In excess of

these rule-based approaches, we focus on the integration of a stochastic component

in our dialogue model to increase its flexibility to adapt to different applications or

conditions.
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3.1.2 Stochastic Approaches to Dialogue Modeling

Originally rather used in automatic speech recognition or linguistic analysis,

statistical models meanwhile enjoy great popularity in dialogue management as

well. As opposed to rule-based systems which need to be tailored manually to the

application requirements, one major advantage of the stochastic approaches lies in

their flexibility as the development of new or different applications only involves the

collection of suitable training data. This, in turn, implies that the actual performance

of these approaches, however, strongly depends on the quantity and quality of the

collected training material.

Levin et al. (2000b) describe dialogue design as an optimization problem for

achieving an application goal as efficiently as possible, i.e., minimizing the dia-

logue costs. They define the costs by the number of iterations (dialogue turns), the

expected number of errors and the distance from the dialogue goal (i.e., how many

fields are not filled in the end). Based on dialogue states st and actions at at time

t , they describe the state change by a Markov Decision Process (MDP) the prob-

ability of which is given by P.stC1jst ; at / and analogously, respective cost ct is

distributed according to P.ct jst ; at /. The optimal strategy is then obtained by su-

pervised learning (to create a user simulator) and reinforcement learning to estimate

the optimal strategy on the basis of a sufficiently large number of dialogues between

the dialogue system and the user simulator as illustrated in Fig. 3.6. An experiment

conducted with the ATIS corpus (see also Glass et al. 1995) shows that the obtained

strategies show a strong resemblance with manually created strategies for the same

tasks.

Similarly, Litman et al. (2000) propose a method using reinforcement learning

to build a dialogue system from a dialogue corpus without such a user simulator.

Their approach includes the construction of MDPs from training data and an opti-

mization of a reward function taking into account the state transition probabilities

P.stC1jst ; at / and the associated reward R.st ; at / similar to the dialogue cost. The

underlying NJFun dialogue system, implementing an information system for recre-

ational activities in New Jersey, is used to collect dialogue data and is evaluated

while implementing the newly learned dialogue strategies.

Fig. 3.6 Dialogue strategy
learning paradigm as
described in Levin et al.

(2000b)

reinforcement

Dialogue

System

Strategy
Dialogue

Corpus

supervised

learning learning

User

Simulator
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state st+1

reward rt+1 reward rt+2

action at action at+1

state st

observation ot observation ot+1
observation ot+2

state st+2

Fig. 3.7 Partially Observable Markov Decision Processes for adaptive dialogue management
(Bui et al. 2006)

With respect to the fact that Markov Decision Processes have difficulties with

noisy or ambiguous input, the use of Partially Observable Markov Decision Pro-

cesses (POMDPs, see Fig. 3.7) is proposed in Roy et al. (2000). With this approach,

the dialogue state is considered as the state of the user which is not known exactly

but which can be inferred by the system on the basis of partial observations from

the user input (keywords in utterances). The POMDP consists of an unobservable

MDP characterized by states st , actions at , transition probabilities P.stC1jst ; at /,

a set of rewards/costs rt /ct and an initial state s0. Furthermore, a set of observa-

tions ot plus the respective observation probabilities P.ot jst ; at / are added by what

the rewards/costs also include the observations and the initial state is replaced by

an initial belief P.s0/. Beliefs include probability distributions over all states indi-

cating the probability that the user is in each of these states. The planning occurs

in the belief space where an optimal mapping of actions and belief is determined

and where the selected action maximizes the expected reward. Instead of an optimal

strategy, the search for which may be rather difficult, a near-optimal (in terms of per-

formance) strategy can be computed faster. The POMDP problem can be simplified

by the augmented MDP approach where domain-specific structures of belief states

are exploited and a belief state’s statistics are approximated by the belief state’s

entropy (approximated POMDP). Based on a prototype nursing home robot, the au-

thors conduct experiments comparing conventional MDP, approximated POMDP

and exact POMDP algorithms which show that for a restricted state space all three

algorithms perform well whereat the POMDPs perform better than the MDP and

the approximated POMDP is slightly better than the exact POMDP. Considering the

full state space, no solution is found for the exact POMDP and the solution of the

approximated POMDP outperforms the conventional MDP solution significantly.

A detailed description of POMDPs is given in Williams et al. (2005) and

Williams (2006). Their POMDP approach consists of sets of states, actions, tran-

sition probabilities, reward observations and their probabilities differing from the

above definition by discrete states but continuous observations. To integrate (con-

tinuous) speech recognizer confidence measures into the model, the observation

is decomposed into a discrete component (words) and a continuous component
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(confidence measures). Experiments with a testbed dialogue management problem

show that their proposed model shows a significant improvement compared to stan-

dard MDP approaches.

The reusability and adaptivity potential of strategies determined with reinforce-

ment learning is challenged in Lecœuche (2001). Instead of reinforcement learning,

the author proposes inductive logic programming to learn rule sets expressing and

generalizing an optimal strategy. The resulting rules are more explicit and compre-

hensible in contrast to the decision tables generated by reinforcement learning and

may be reused in different dialogue situations without having to learn a new strategy

from scratch.

An alternative approach is described by Torres et al. (2003) who propose a

semantic-driven approach including a bigram model using previous system and user

dialogue acts to predict the following dialogue acts. Their system shows an average

success rate of 80% despite the lack of sufficient training material.

The selection of the system answer can be also considered as a classification

process based on the user input and the previous system turn. Hurtado et al. (2006)

use neural networks which are trained on transcribed dialogue data. They consider

a dialogue as a sequence of pairs st of system answer at and user turn ut at the

respective time t . To reduce the complexity, they introduce a what they refer to as

dialogue register dt which captures the current cumulated state (summarizing all

previous at s and ut s) regardless of how and in which chronological order this state

has been reached. With this, they describe the selection of the following system

answer atC1 by maximizing the probability P.ai jdt ; st / over all possible system

answers ai . This search is accomplished with the aid of a multi-layer perceptron

which classifies the previous user input and, thus, determines the associated system

output.

Stochastic models typically involve a trade-off between complexity and accuracy.

On the one hand, a high level of accuracy requires a higher complexity. On the other

hand, a higher complexity requires more training data and involves a higher compu-

tational effort. For dialogue models like those discussed above, the complexity is not

only dependent on the number of model parameters but also on the number of pre-

vious dialogue turns. Whereas (PO)MDPs only consider the previous dialogue turn,

a more accurate model would include the whole dialogue history in the determina-

tion of the next dialogue state. One approach to solve this problem is the cumulative

dialogue register by Hurtado et al. (2006) which, however, does not capture the

exact order of turns and the cumulation process of which requires further effort.

Our approach follows the observations in automatic speech recognition where bi-

grams and trigrams are commonly used for accurate stochastic language modeling.

Accordingly, we use bi-turns and tri-turns involving the previous and the penulti-

mate state to increase the model accuracy while maintaining a justifiably low model

complexity.

Three key aspects of the dialogue system behavior adaptation with respect to

the user’s emotional state are summarized in Polzin and Waibel (2000), namely

addressing prompting, feedback and dialogue flow adaptations. Their approach

to emotion-sensitive dialogue management is able to change the prompting and
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feedback style (e.g., apologetic prompts for annoyed users, succinct prompts for

users in a hurry, explicit feedback for frustrated users) as well as the assignment of

different dialogue flows (specified beforehand) to cater for special needs in conjunc-

tion with the user’s emotional state.

3.1.3 Emotions in Dialogue Systems

Holzapfel et al. (2002) propose the integration of emotions into multidimensional

typed feature structures, which do not only contain semantic information but also

additional information describing the speaker and situation. Accordingly, their dia-

logue state is characterized by seven variables including emotion type, speech act

type, user’s intention and confidence measures. They discretize the valence-arousal

space into four categories plus a no-emotion residue class and bring together these

types according to the OCC model. For the handling of emotions in, e.g., robot in-

teraction, they propose a strategy operating in the seven-dimensional value space

of the state variables. This strategy also decides how to interpret emotions, e.g.,

considering anger as a reaction to system failure.

Brown and Levinson (1987) discuss the influence of affect and politeness on lin-

guistic style which is picked up by Walker et al. (1997a) to endow artificial agents

with personality. They propose linguistic style improvisation to render these agents

socially oriented and, thus, more credible. Their theory bases on speech acts for the

abstract representation of utterances and plans for the improvisation. Variations are

possible in the semantic content, the syntactic form and the acoustical realization.

The strategy to realize a certain intention is chosen with respect to three parame-

ters: social distance between user and system D.S; U /, power of the user over the

system P.U; S/ and a ranking of imposition R (low for good news like acceptance,

high for bad news like rejection) of the current speech act. These social variables

are summed to determine the face threat � to the user given by the speech act. De-

pending on the value of the threat, the agent chooses among four strategies: doing

the speech act directly, orienting the act to the user’s desire for approval, orienting

the act to the user’s desire for autonomy or pursuing an off-record strategy including

hints or ambiguities. The option of not executing the speech act if the face threat is

too high is overridden in conjunction with spoken language dialogue systems. This

approach allows the inclusion of emotions as an orthogonal dimension to social

variables.

Apart from the problem of retracing and verifying solutions proposed by the

users, intelligent tutoring systems used for computer aided instruction of, e.g.,

students also need to be able to motivate their users to pursue taking part in

and learning from the tutorial. An emotional model incorporating motivational

cues for these systems is presented in Lopes Rodrigues and Carvalho (2004).

Their emotional structure distinguishes primary, secondary and tertiary behaviors

which all influence the temperament but which particularly influence the envi-

ronment (primary behavior), teaching strategy (secondary) and the instant action
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Fig. 3.8 Partially Observable Markov Decision Processes for affective dialogue modeling (Bui
et al. 2006)

(tertiary). These also determine what to adapt to keep a user motivated whereas

the temperament controls how this adaptation takes place. The actual strategies

are defined by rule sets integrated into a tailored teaching strategy description

language.

A stochastic dialogue model taking into account the user’s emotional state is

proposed by Bui et al. (2006). They extend the POMDP approach with an affective

component. Thereby, a state st is broken down in the user’s goal gt , the user’s emo-

tional state et , the user’s action ut and the user’s dialogue state dt . An observation

now consists of the observed user’s action oa;t and the observed user’s emotion oe;t

and the reward rt is omitted in their generalized model. These sub-state features

and observations are integrated with the aid of a two time-slice Dynamic Bayesian

Network as illustrated in Fig. 3.8. According to their model, the users’ actions are

influenced by their goals, their emotional states and the system’s actions.

In our approach to adaptive dialogue management, we act on the ideas proposed

by Polzin and Waibel (2000) which include prompting, feedback and dialogue flow

adaptations. To accomplish that, we follow two ideas – a rule-based adaptation as

described, e.g., in André et al. (2004) and a semi-stochastic dialogue model involv-

ing the MDP idea by Levin et al. (2000b) and, to some extent, the affective POMDP

approach by Bui et al. (2006). However, we argue that although the whole affec-

tive POMDP idea seems quite suitable for emotion-based dialogue adaptation, it is

too complex as measured by the actual purpose and does not seem to be scalable

at first glance. Thus, in the remainder of this chapter we propose a semi-stochastic

dialogue model consisting of states which represent fields, emotional characteris-

tics and optionally further parameters in all possible combinations. The states in

this predefined (rule-based) scaffolding are then related by transition probabilities

which are determined on the basis of training dialogue data. Extending the tran-

sitions from plain (bi-turn) state-to-state transitions to what we refer to as tri-turn

transitions, the model becomes more robust. E.g., assuming appropriate training
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material and applying plausibility checks on the chronological sequence of events,

user input and detected emotional states in the dialogue history, the model is able to

handle noisy (error-prone) emotion recognizer output (see also Sections 3.6–3.9).

3.2 User-State and Situation Management

In principle, we distinguish two basically different types of parameters based on

which the dialogue manager adapts the interaction: user-state parameters which are

closely connected with the current user on the one hand, and situation-based param-

eters which, independently of the user, influence the dialogue on the other hand.

An overview on user-state parameters is given in Fig. 3.9. Within the user-state

parameters, we differentiate between three sub-categories:

� A user profile contains general information about the respective user. These de-

tails like name, address, etc., are typically stored in a central database. As soon

as the user is identified in or before the dialogue, relevant information is re-

trieved from this database. I.e., if the user can not be identified, the appropriate

data is queried from the user during the dialogue. Otherwise, the system uses

the values from the database and does not query the user, except for an optional

confirmation prompt like “Would you like us to send the train tickets to ‘Albert-

Einstein-Allee 43, 89081 Ulm, Germany’?”.

During the dialogue, these parameters remain to greater or lesser extent un-

touched, e.g., it is not very likely that users change their names during the

interaction. By that, the data in the user profile is mainly employed to accelerate

the dialogue.

Fig. 3.9 Allocation of
user-state parameters and
overview on the handling of
the different parameter types
in human–computer
interaction
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� The user preferences are defined by the user and involve parameters how he/she

wants to interact with the system. These parameters range from system settings

like language or system voice (female/male) to personalization features and to

the user’s experience level.

User preference parameters are gathered either by different means: either the

user selects the preference in a setup dialogue or in an external (graphical) user

interface, or the system requests the parameters explicitly, or the system deter-

mines the parameters by observation and automatic learning during the dialogue.

The preferences may also be stored in a database, i.e., they are retrieved from the

database to initialize the dialogue and the database is updated after the dialogue

has finished.

� The user’s current state is determined in each turn of the dialogue by means of

signal analyses and dialogue measures. Among these parameters are the user’s

(current) experience level and emotional state. These parameters are not nec-

essarily stored in a database but are rather contained in an extended dialogue

history based on which parts of the user preferences are updated. As the parame-

ters change within the dialogue, it is possible to adapt the dialogue flow to them.

The transitions between the sub-categories, however, are sometimes seamless as

can be noticed for the user’s experience level: On the one hand, the experience level

may be regarded as a user preference parameter as it needs to be stored for further

dialogues, e.g., a user who has used a dialogue system often enough would not

be satisfied if he was treated as a novice at the beginning of each new dialogue.

On the other hand, the experience level can be determined during the dialogue by

means of turn measures such as number of no-input turns (pauses, i.e., the user

does not reply to a prompt for a predefined time) or no-match turns (user turns

the content of which does not match any rules/classes in the linguistic analysis).

Thus, the prompt strategy is adapted to the (current) experience level after each turn

and the (overall) experience level is stored in the user preferences after the dialogue

so that the subsequent dialogue can be initialized with the suitable, i.e., the most

recent, level.

As mentioned above, the user profile is mainly used to keep the number of dia-

logue turns, i.e., the overall time of interaction, which constitutes a “cost” measure

in the evaluation of a dialogue system, as low as possible. The fields which would

be normally queried by the system are filled from the database whereby also further

misunderstandings are avoided which are especially likely to occur in the interroga-

tion about names or address data.

The predominant purpose of user preference parameters is to make the user feel

more comfortable with the dialogue system. This can be compared to the look and

feel of a graphical user interface, where themes and skins are employed to provide

a “familiar” interface. Here, it includes, e.g., the choice of the computer voice –

depending on the application, some people like a female voice, other people pre-

fer a low male voice. Furthermore, it can be defined how the computer addresses

the user, e.g., “Hello buddy, what’s up?” or “Good morning, Professor, how may

I help you today?” and/or the level of the user’s experience is included in the dia-

logue flow. A novice user who has not used the system before would be relatively
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helpless without any explanation what he is able to do and say in the interaction. In

contrast, an experienced user would be rather annoyed when welcomed with a long

explanation text like, e.g., “Good morning and welcome to UTA, the automated air

travel information and booking system. This system enables you to retrieve all kinds

of information about flights on the dates which you specify, to manage your existing

itineraries and to book flights. You may say, e.g., ‘I want to book a flight from New

York to Paris on Friday’, ‘Show me all flights to London on Thursday’ or ‘Open

Itinerary number 2 4 2 5 6 7’. If you want to talk to an operator you can say ‘Op-

erator’ at any time. Is there anything I can do for you?”. Instead, a short “Good

morning, Sir, how can I help you?” would be sufficient in this case. In addition to

personal user preferences which are typically only stored for users who have already

used the system, default values are defined for novices: E.g., this could be an “ab-

solute novice” experience level, a female voice and an impersonal form of address

like in the long prompt above.

These parameters can be considered as global parameters used as a rough esti-

mate for the adaptation of the dialogue. The fine-tuning adaptation then takes place

according to the user’s current state which is determined on a turn-by-turn basis.

E.g., assuming the user has already often used the system and is therefore consid-

ered as an advanced user, the system initiates the dialogue at the advanced level,

i.e., with short prompts. However, if repeated no-inputs or no-matches occur dur-

ing the interaction, the prompts are adapted immediately, and after the dialogue the

experience level in the user preferences is downgraded for further use. A further

aspect which we consider as an important factor within the user-state parameters is

the user’s emotional state as this has a considerable impact on the success of the

dialogue and, before that, on the organization of the dialogue flow. In Chapter 4, we

discuss different approaches to the recognition of emotions from the speech signal.

In our considerations, these will serve as the predominant user-state parameters to

be integrated into adaptive dialogue management.

Within the situation parameters, there exist also different categories as illustrated

in Fig. 3.10. We address four of these, namely:

� Type of interaction and system, e.g., in a car, at home, information kiosk at an

airport or train station, or telephony-based service (call center). The application

type (information retrieval vs. booking system vs. customer tests or even job

interview) also contributes to the situation, i.e., how important is the outcome of

the interaction to the user.

� Surroundings – noisy or quiet environment, many people or few people around

the user. This also includes the question whether there are other people waiting

and somehow whether the user is under stress (time pressure).

� Sensor data: This is particularly relevant in automotive environments, where the

data from the anti-lock braking system (ABS), electronic stability program (ESP)

or distance sensors is evaluated to determine the driving conditions and thus the

cognitive stress level for the user, i.e., the driver.

� Conflicts may arise from the interaction with multiple applications, e.g., in an

integrated calendar, navigation and communication system in a car, such con-

flicts may occur when the user is not able to keep an appointment due to traffic
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Fig. 3.10 Allocation of situation parameters in SLDSs

delays. The conflicts need to be resolved in the interaction between the user and

the applications which calculate the new estimated time of arrival, integrate the

new appointment in the calendar and communicate the changes to the other par-

ticipants in the meeting.

Among these four sub-categories we distinguish between “given” situation pa-

rameters which are unchangeable and have to be accepted and “variable” situation

parameters. The unchangeable parameters comprise the surroundings and the type

of interaction which is typically defined by the application. Thus, the system and

the dialogue need to be designed to account for these parameters during the entire

dialogue. E.g., if users want to buy train tickets or retrieve timetable information

at a train station where people are typically in a hurry, the dialogue system should

be designed in such a manner that the interaction time is as short as possible. But,

on the other hand, as places like train stations are likely to be quite noisy, the dia-

logue should also be constructed in an appropriate way that compensates robustness

problems and misunderstandings of the automatic speech recognizer.

The variable parameters, determined by sensors or other modalities and issues

from conflict management, in contrast, are very likely to change between or within

the dialogue(s). A typical scenario can be seen in the automotive field. E.g., a user

needs to schedule an appointment in a city which is 200 km away from his current

location. With respect to the fact the user has another appointment later on the same

day in another city, the navigation system determines the shortest route and a driv-

ing time of two hours so that the first appointment can be fixed accordingly after

consultation with the user. If the user is caught up in a traffic jam on the way to the

first appointment, a conflict arises if the user is not able to reach the first destination

in time. This conflict is detected in the interplay of navigation system and calendar,

and the reasoner or problem solving assistant is in charge of communicating the
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inferences to the user so that the conflict may be resolved in the interaction (Bühler

and Riegler 2005):

1 System: We won’t be able to reach Munich in time due to this traffic jam.

Would you like me to postpone the appointment or shall we go to

Regensburg first?

2 User: How far is it to Regensburg from here?

3 System: It is about two hours driving time.

4 User: Then we go to Regensburg first.

5 System: OK, I will check with your partners...

In the following sections we will discuss the integration of user-state and situa-

tion parameters into a framework of adaptive dialogue management. As a situation

parameter it is imaginable to choose noise, i.e., the quality of the speech recognizer

output. With respect to the focus of this work, we concentrate on emotions as the

predominant user-state parameter.

3.3 Dialogue Strategies and Control Parameters

The variety of user-state, situation and further parameters suggest to summarize

and to store these parameters for the use in adaptive dialogue management. Thus,

we propose an approach in which we combine these parameters into the superset

called dialogue control parameters (Pittermann et al. 2005). For dialogue systems

which need to handle an arbitrary number N of dialogue control parameters pi ,

1 � i � N , we suggest to combine these parameters into one single N -dimensional

vector PC .t/ at discrete time t .

Together with the respective user input, all PC .t/ t > 0 form the comprehensive

dialogue history HD .

As opposed to the common definition of a dialogue turn, in the remainder of

this chapter, we consider a turn as one semantic representation or its corresponding

dialogue field and the respective control parameters. The function of the dialogue

history and the attribution of the turns is illustrated with the following dialogue

excerpt. Words the semantic representations of which correspond to dialogue fields

are underlined. Further control parameters (regardless of their meaning) are given

in square brackets.

1 System: Good morning and welcome to UTA, your virtual travel agency.

How can I help you?

2 User: I would like to travel to London please [ 0.37 –20 ]

Analyzing this utterance, the content of this user’s reply matches one semantic rep-

resentation (i.e., the destination field), so that the dialogue history now is

HD D
�

destination D London 0:37 �20
�

:
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In the following part of the dialogue, the user’s reply contains values for two

dialogue fields:

3 System: From where would you like to depart?

4 User: From Paris, if possible on Monday [ 0.10 –17 ]

This reply is split up into two turns, both with the same control parameters, so that

the dialogue history evolves to

HD D

2

4

destination D London 0:37 �20

departure city D Paris 0:10 �17

date D Monday 0:10 �17

3

5 :

In this chapter, we address the formation of the dialogue flow and the sys-

tem reaction according to the probability P.oS .T /jHD/ of the respective system

output oS .T / given the history HD . To accomplish that, we describe two ap-

proaches which, in analogy to the language model P.W / of a speech recognizer,

encompass rule-based methods and stochastic (corpus-driven) methods. These shall

be discussed in the following sections. Limiting the history to semantic labels

p W p.1/; : : : ; p.T / and emotions e W e.1/; : : : ; e.T / and assuming these param-

eters are independent, we can split up the holistic view of P.oS .T /jHD/ into

P.oS .T /jHD/ )
(

Pp.oS .T /jŒp.1/; : : : ; p.T /�/

Pe.oS .T /jŒe.1/; : : : ; e.T /�/
; (3.1)

or suitable combinations of these parameters. In the following sections, we describe

approaches to combine dialogue and emotions into a combined emotional dialogue

model Ppe.oS .T /jŒp.1/; : : : ; p.T /; e.1/; : : : ; e.T /�/.

3.4 Integrating Speech Recognizer Confidence Measures

into Adaptive Dialogue Management

Within the past years of research and development in the field of automatic speech

recognition, a significant improvement could be achieved, not only with regard to

vocabulary size and grammar flexibility but also concerning the recognition per-

formance in terms of word and sentence accuracy (Lefèvre et al. 2001). Despite

the improvements among ASR systems, there exist scenarios where the stochastic

models perform poorly, e.g., in noisy environments like cars (Schmidt and Haulick

2006), outside or in crowded rooms/buildings. Further errors (dropouts) can occur

with persons who have “non-standard” voices, who don’t know how to pronounce

certain words (Henton 2005) or who speak unclearly and with different dialects.

Also, in telephony-based dialogue applications, one has to bargain for transmission

errors, especially when the users call from their mobile phones.
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In these cases, dialogue developers typically integrate confirmation prompts into

the dialogue flow, urging the user to verify whether the input recognized by the

system is correct. As described in Section 1.3, these verifications can be realized as

explicit or implicit confirmations. Explicit confirmations constitute an independent

system turn like

5 System: I understood you wanted to travel on Sunday. Is that correct?

limiting the user’s reply to “yes”, “no” or variations like “sure”, “nope”, etc. Im-

plicit confirmations are embedded in a regular system like

5 System: At what time on Sunday would you like to depart from London?

leaving it to the user whether to reply to the actual question (in case the user ac-

knowledges “Sunday” and “London”), e.g., “In the afternoon.” or to rectify the

misrecognized items, e.g., “On Monday.” or “From Oslo.”.

With regards to dialogue cost and efficiency aspects, however, dialogue duration

and thus the number of turns shall be kept as low as possible. I.e., it is not optimal if a

user who is well understood by the system is excessively prompted for confirmation.

Bridging the gap between dialogue efficiency and robustness, (Litman and Pan

2002) propose an adaptive version of the TOOT train information system, which

selects its confirmation strategy and dialogue initiative according to the confidence

measures c provided by the speech recognizer, either for individual words or for the

entire utterance.

A threshold � which represents the confidence measure for which the predicted

percentage of misrecognitions exceeds an arbitrary number is determined by ma-

chine learning. Each utterance, the confidence measure c of which is below that

threshold is considered as “bad” and after a predefined number of “bad” turns, the

system adapts to a more conservative mode. The system is initialized with user

initiative and no confirmations. Then, with an increasing probability of errors, the

system switches to mixed initiative or even system initiative and integrates implicit

confirmations and explicit confirmations each time c or its weighted average Nc falls

below the threshold � .

The major advantage of adapting the dialogue initiative is the limitation of the

input vocabulary which leads to a more robust speech recognition. In the worst case,

the system could ask the user to spell the words, e.g.:

7 System: Sorry, I could not understand you. Please spell your desired

destination.

8 User: LONDON.

Here, the vocabulary consists of 26 words (“A” to “Z”) and the grammar is defined

by the list of available cities, so that the recognition process performs significantly

better. This, in turn, leads to the problem that the confidence parameters in the

different initiative levels are not comparable. I.e., the confidence measures in the

user initiative level are much lower than in the system initiative level although the

situation itself (noise, unclearly speaking user, etc.) has not necessarily improved.

By that, the adaptation can only occur as a one-way process, as there is no indicator

on the actual situation.
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Decreasing recognizer confidenceθeθi

No Confirmation Implicit Confirmation Explicit Confirmation

Fig. 3.11 “Two-way” adaptation of dialogue initiative and confirmation strategy (see Pittermann
et al. 2007c)

Maintaining the initiative level as mixed initiative, this adaptation can also take

place in two ways. I.e., once the recognition performance increases, e.g., due to

lower background noise, the system returns to a less time-consuming and annoying

confirmation strategy (see Fig. 3.11, Pittermann et al. 2005). Instead of one threshold

� , two thresholds �i and �e are used. With these thresholds, we distinguish three

cases:

� Nc � �i : no confirmations, except for “standard” confirmations explicitly included

in the dialogue.

� �e � Nc < �i : implicit confirmations. These are included in all system turns (ex-

cept for the standard confirmations), either by simply stating “I understood you

wanted to travel to London. When do you want to depart?” or, more sophisti-

cated, “When would you like to depart to London?”.

� Nc < �e: explicit confirmations.

The inclusion of explicit confirmations can be accomplished in different vari-

ations. These can range from the sporadical inclusion after an arbitrary number

of user turns (relaxed strategy) to the (most conservative) case where the user is

prompted for confirmation until each item that has been filled or changed is explic-

itly confirmed. For a successful confirmation, the user can acknowledge either by

saying “Yes.” or by repeating the previous item.

To include all types of explicit confirmations, e.g., in cases where the developer

can not commit himself to one type, further thresholds �e;1 to �e;n�1 can be in-

cluded, where n is the number of gradation levels, defining regions Nc < �e;n�1

(most conservative), �e;n�1 � Nc < �e;n�2, . . . , �e;2 � Nc < �e;1 and �e;1 � Nc < �e

(least conservative, but explicit confirmations).

Alternatively, instead of a rule-based approach, which is rather inflexible in

terms of adaptability to different situations, setups and speech recognizers, we will

now describe our stochastic, corpus-based approach to integrate speech recognizer

confidence measures into the confirmation strategy selection in adaptive dialogue

management. A straightforward approach can be adopted from the above rule-based

approach by calculating a weighted average Nc of the confidence measures and the

confirmation strategy S is chosen among the model

P.S j Nc/ )

8

<

:

P.nj Nc/

P.i j Nc/

P.ej Nc/

; (3.2)
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where the probabilities P.nj Nc/, P.i j Nc/ and P.ej Nc/ are given for no confirmations,

implicit confirmations and explicit confirmations. For the sake of overview, we do

not consider the different types of explicit confirmations.

The probabilities are derived from training data consisting of the users’ utter-

ances, the recognized text (the relevant semantic representations are underlined)

and the recognizer confidence measures.

Such a corpus may consist of recordings of existing human–computer dialogues,

Wizard-of-Oz recordings or distilled human–human dialogues (see Jönsson and

Dahlbäck 2000). Eventual confirmation prompts and the users’ replies to these are

omitted from the original dialogues in order to keep the annotators uninfluenced

by these. Based on the objective speech recognizer performance, regardless of the

actual values of the confidence parameters, the annotators decide whether a user ut-

terance needs no confirmation (n), implicit confirmation (i ) or explicit confirmation

(e). E.g., in cases where the speech recognizer output perfectly matches the user’s

input, no confirmation is necessary and in cases where the important (underlined)

information is not correctly recognized, typically explicit confirmation is required.

The requirements for implicit confirmations are somewhere in between, i.e., the

annotators can also decide according to the actual and previous utterances where

applicable.

On the basis of the training data, probabilities P.njc/, P.i jc/ and P.ejc/ are

calculated for each value c of the confidence measure. Employing a large dia-

logue corpus, a higher resolution can be achieved so that probability curves can

be interpolated. Such an exemplary probability distribution is shown in Fig. 3.12.
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Fig. 3.12 Probability distribution based on processed dialogue data for explicit, implicit and no
confirmations for one confidence measure parameter c D 0:4. The probabilities are determined for
discrete confidence measure values and the curves are interpolated between these points
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The curves are constructed such that there are three continuous zones. These three

zones for no confirmations, implicit confirmations and explicit confirmations are

separated by solid black lines The lower line separating no confirmations and im-

plicit confirmations can be described by P.njc/ and the upper line between implicit

and explicit confirmations follows 1 � P.ejc/. Confidence measures are plotted

against the x-axis and probabilities are plotted against the y-axis. The probability

of a certain confirmation strategy at a certain confidence measure is represented

by the height of the respective zone at the respective confidence measure. E.g., for

c D 0:4, the probabilities can be read off from the intersection points of the ver-

tical dashed line with the solid lines. Following the horizontal dashed lines from

the intersection point, the probability of explicit confirmations can be determined as

P.ej0:4/ � 1 � 0:59 D 0:41, P.i j0:4/ is approximately 0:59 � 0:19 D 0:40 and

the probability of no confirmations is P.nj0:4/ � 0:19 � 0:0 D 0:19.

In order to determine which confirmation strategy S shall be applied, two ap-

proaches can apply. Either the maximum probability for a confidence measure Nc
needs to be found as

S. Nc/ D arg max
s2fno;impl;explg

P.S D sj Nc/; (3.3)

which, however, has the disadvantage that for some curves, certain confirma-

tion strategies might not be included as their probabilities are not high enough

throughout the diagram. E.g., in curves like the one shown in Fig. 3.12, implicit

confirmations would never occur. Alternatively, the strategy is selected randomly

with accordance to the probability distribution of a random number r . This distribu-

tion can be directly obtained from a diagram as shown in Fig. 3.12.

A more sophisticated and more generalized approach taking into account the

history of confidence measures considers the probabilities

P.S D sjHD/ D P.S D sjc/ D P.S D sjŒc.1/; : : : ; c.T /�/: (3.4)

This gives the advantage that outliers in the confidence values can be neglected if the

surrounding values look reasonable. E.g., an utterance can be correctly recognized

although its confidence measures are very low or, vice versa, there can be numerous

misrecognitions despite a very high confidence. The one-dimensional case taking

into account only one value for c has been described in the previous paragraphs.

In accordance with the terminology used in statistical language modeling we refer

to this case as “bi-turn” model as the current turn only depends on the previous

turn. Analogously, we refer to the two-dimensional case as “tri-turn” model and to

any other N -dimensional case as “N C 1-turn” models. Basically, the probabilities

can be trained with the same dialogue corpus as described above. The annotators

decide on n, i and e depending on the comparison of speech recognizer output and

actual utterance. Based on the labeled data, again, probabilities are calculated and

the confirmation strategy is randomly selected with respect to the probabilities.
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Being strongly dependent on random processes, this approach requires a more

complex surveillance than rule-based approaches. This is particularly important to

keep the number of confirmation prompts at a reasonable level with respect to the

user-friendliness and the overall recognizer confidence measures. On the one hand,

it is vital that the system ascertains whether it recognized the user correctly, on the

other hand, however, the user shall not be annoyed by (eventually unneeded) numer-

ous confirmation prompts. There exist several options to accomplish that, especially

in cases where the speech recognizer performance is expected to be low (unclearly

speaking user, noise, etc.):

� A predefined number (e.g., three) of consecutive items which require confirma-

tion are pooled in one confirmation prompt, e.g.:

2 User: I want to travel to London tomorrow. [ 0.189 ]

ASR: I want to go to Paris (explicit confirmation required)

3 System: When do you want to depart?

4 User: Tomorrow. [ 0.553 ]

ASR: Tuesday (explicit confirmation required)

5 System: At what time do you want to depart?

6 User: At seven p.m. [ 0.134 ]

ASR: Eleven a.m. (explicit confirmation required)

7 System: I understood you wanted to travel to Paris on Tuesday at

eleven a.m. Is that correct?

...

� The probability distributions are adapted to the number of recent confirmation

prompts. I.e., if there has been no confirmation prompt within the past turns, the

probabilities for implicit and explicit confirmations increase, if there have been

more explicit confirmations than average within the past turns, the probability for

explicit confirmations decreases.

Referring to the second option, Fig. 3.13 shows the adaptation of the probabilities

depending on the number of confirmations in the past turns. Here, at the beginning

of the dialogue, the probabilities are initialized with the trained distributions, e.g., as

depicted in Fig. 3.12. If the number of explicit confirmation after a fixed number of

turns is above average, the probability distribution curves tend to the extreme curves

shown in Fig. 3.13 (a).

Here, the curves are shifted such that the probability of explicit confirmations de-

creases significantly. I.e., except for cases of very low speech recognizer confidence

measures, the probability of explicit confirmations is very low. The probabilities

of implicit confirmations remain more or less the same and the probabilities for

no confirmations increase accordingly. If, contrariwise, the number of confirmation

prompts is below average, the probability distribution curves tend towards the curves

shown in Fig. 3.13 (b). Analogously, here, the curves are shifted such that the prob-

ability of explicit confirmations increases.
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Fig. 3.13 Adaptation of probability distributions for the different confirmation strategies with
respect to the number of previous confirmation prompts in situation where the speech recognizer
performance is expected to be low. The initial probability distribution is the same like the one
depicted in Fig. 3.12, with an increasing number of explicit confirmations in the previous turns, the
initial curves tend to the curves depicted in the left figure (a), in cases where there haven’t been
any explicit confirmations in the past turns, the initial curves tend to the curves depicted in the right
figure (b)

In state-of-the-art spoken language dialogue systems, which apply in varied call

centers, a contingency plan stipulates that the user is connected to a human call

center agent in cases where the (automated) dialogue is very likely not to finish as

expected (see also Section 3.5). This can be the case, e.g., when the speech recog-

nizer experiences severe problems due to unclearly speaking users or background

noise (very low signal-to-noise ratio) and, thus, when even sophisticated confirma-

tion strategies fail.

3.5 Integrating Emotions into Adaptive Dialogue Management

As discussed in Chapter 2, emotions are difficult to categorize, and therefore, dif-

ficult to handle in the user state and dialogue management. Firstly, the problems

involve the choice of emotions which shall be recognized and considered. As shown

in Section 2.2, there exist several emotion theories defining different sets of primary

and secondary emotions some of which are overlapping in different theories and

some of which are unique in other theories.

To make the variety of emotional states more utilizable, we pick up the idea of

representing emotions by some numerical value as described in Section 2.2. One ap-

proach considers a two-dimensional vector containing numerical values for valence

and arousal of an emotional state. The positions of selected emotions in the valence-

arousal space are depicted in Fig. 3.14.



3.5 Integrating Emotions into Adaptive Dialogue Management 73

boredom

happiness

sadness

anger

fear

disgust

−1 valence1

arousal

−1

1

felicity

neutral

Fig. 3.14 Valence-arousal space representations of selected emotions. Due to the subjectivity in
the different emotion theories and the uncertainty introduced by the emotion recognizer the cross
markers do not represent the exact position of the emotions in the valence-arousal space, but give

an indication of the region where the emotions are located

...
<field name="date">

<prompt cond="valence==0.9 && arousal==0.8">
Oh, that sounds fantastic. And when would you like to
depart?

</prompt>
<prompt cond="valence==0 && arousal==0">
When would you like to depart?

</prompt>
<prompt cond="valence==-0.8 && arousal==0.8">
I am sorry to bother you again, but when did you say you
wanted to depart?

</prompt>
...

Fig. 3.15 Adapted excerpt of our VoiceXML dialogue description applying a simple approach to
include valence and arousal values as dialogue control parameters

Limiting the range of values to Œ�1; 1� for both valence and arousal, we find the

neutral state at .0; 0/, happiness features a very positive valence and a high arousal

and, thus, is situated, e.g., around .0:9; 0:8/. At a very negative valence but still

high arousal, we find anger, and at low values for arousal, we find sadness (negative

valence) or felicity (positive valence).

Using this two-dimensional vector as a dialogue control parameter, we are al-

ready able to construct simple mechanisms to adapt the dialogue flow by including

conditions for the prompts of the dialogue fields as shown in Fig. 3.15. In this ex-

ample, we can see that if valence equals 0.9 and arousal equals 0.8, the stylistic
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Fig. 3.16 Valence-arousal
space representations of
selected emotions and
corresponding emotional
values E . The value E

increases along the grey
arrow from 0 for happiness to
2 for anger (André et al.
2004; Pittermann and
Pittermann 2007)
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realization of the prompt is in a very happy way, if both valence and arousal equal

0, the prompt is formulated in a neutral way and if valence equals –0.8 and arousal

equals 0.8, the prompt is designed to appease an angry user. Despite the fact that

this approach features a very high flexibility in terms of adapting to various differ-

ent emotional states, it also entails a very high complexity as the conditions need

to cover a huge number of cases in the two-dimensional space, even if continu-

ous areas are considered instead of discrete points (like in the example shown in

Fig. 3.15), e.g., if 0:7 < valence < 1:0 and 0:8 < arousal < 1:0, the system reacts

in a happy way.

In order to reduce the complexity, an approach described by André et al. (2004)

can apply to reduce the emotional states to scalars instead of two-dimensional vec-

tors. In their approach, an emotion is assigned a value E ranging from 0 to 2, where

happiness is represented by 0, neutral is represented by 1 and anger is represented

by 2 (see Fig. 3.16).

These values are chosen such that for a lower E it is easier for the system to

interact with the user whereas a high E indicates that the user is difficult to handle,

i.e., the system needs to find a suitable way to appease the user or to make the user

feel more comfortable using the system. Such circumstances are modeled with the

aid of the so-called threat � resulting from an utterance, which is defined as

� D ˚
� N�
�

; (3.5)

with

N� D 1

3
� E.U / � .D.U; S/ C P.U; S/ C V / ; (3.6)

where E.U / is the user’s current emotional state determined as shown in Fig. 3.16,

D.U; S/ is the social distance between user and system, P.U; S/ is the power of

the user over the system and V is the valence of the message to be communicated to
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the user (André et al. 2004). The values for D.U; S/ range from 0 (very low social

distance – the user is familiar with the system and satisfied using the system) to 1

(high distance – the user is skeptical of using the system). Also, P.U; S/ ranges

from 0 (the user has no power, i.e., can be easily influenced by the system) to 1

(the user has power over system, i.e., dominates the dialogue and is not influenca-

ble) and the valence V ranges from 0 to 1, where 0 represents a positive or pleasant

message (e.g., there are flights available on the specified dates in an air travel in-

formation system scenario) and 1 represents a negative message (e.g., all flights are

fully booked). The function ˚. N�/ is used to translate the range of its argument into

the desired range. Here, the argument of N� ranges from 0 to 2, and the desired range

of � is Œ0; 1�. Thus, to emphasize the effect of negative emotions, i.e., high values of

E.U /, the function is defined as

˚Œx� D
�

x 8 0 � x � 1

1 8 x > 1
(3.7)

This approach formulating social behavior with the aid of mathematical terms also

relates to the ideas of game theory described by von Neumann and Morgenstern

(1944).

A further approach extending this idea includes a two-dimensional function E D
f .v; a/ of valence v and arousal a. Applying such a function, we obtain a gradient

of E as illustrated in Fig. 3.17. In order to replicate the curve shown in Fig. 3.16

and to determine surrounding values with a minimal complexity, in this example,

we use the following function

E D f .v; a/ D ..�v � .a C 2// C 3/ =3 D 1 � v � .a C 2/=3; (3.8)
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Fig. 3.17 Continuous gradient of E in the valence-arousal space. The value of E at a point in the
space is represented by the respective color as indicated by the scale to the right
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where v 2 Œ�1; 1� and a 2 Œ�1; 1� are the valence and arousal values of the emotion

in the plane. Verifying the values of E , we obtain Eanger D f .�1; 1/ D 2, Eneutral D
f .0; 0/ D 1 and Ehappiness D f .1; 1/ D 0 in the extreme cases. Furthermore, it can

be observed that the difference between positive and negative valences at constant

levels of arousal is higher for higher levels of arousal and lower for lower levels of

arousal. E.g., at a D 1, the maximal difference is jf .1; 1/ � f .�1; 1/j D 2 whereas

at a D �1, the maximal difference is jf .1; �1/ � f .�1; �1/j D 2=3 � 0:67.

In Fig. 3.1, the user-state manager cooperating with the dialogue manager re-

ceives the emotional control parameters directly from the emotion recognition

component. This corresponds to the scenario where an independent (speech-signal-

based) emotion recognition component is employed. When using a combined

speech-emotion recognizer and/or a linguistic emotion recognizer, additional infor-

mation is also obtained from the parsing (linguistic analysis) module. In this case, a

fusion of the different recognizer outputs is required in or before the user-state man-

agement. As described in Section 5.2, we propose various approaches to combine

the outputs, most of which resulting in soft emotion scores like, e.g., SE Df 0.554

ANGER, 0.188 NEUTRAL, 0.152 HAPPINESS, 0.106 DISGUST g. In order to

apply a two-dimensional valence-arousal function like the one described in Eq. 3.8

and illustrated in Fig. 3.17, we need to define default .v; a/ values for all emotions

to be recognized by the system. If we predefine, e.g., anger at .�0:8; 0:9/, disgust

at .�0:2; �0:7/, happiness at .0:8; 0:8/ and neutral at .0; 0/, we obtain an average

.v; a/ tuple .Nv; Na/ D .�0:314; 0:546/. With this, we can determine the user’s overall

emotional state as

E.U / D f .Nv; Na/ D ..�Nv � . Na C 2// C 3/ =3 D 1:266; (3.9)

In analogy to the integration of recognizer confidence measures as described in

the previous section, we initially describe our straightforward approach to include

the user’s emotional state E.U / and/or exceeding parameters like the threat � in dia-

logue management. These rules are integrated as condition statements in the prompt

design as shown in Fig. 3.18. In the dialogue description excerpt, it can be observed

that different stylistic realizations of the prompts apply for different ranges of E.U /

or � . With respect to the large variety of user responses, it is more reasonable to gen-

erate (at least parts of) the prompts dynamically. In these examples, however, we use

precompiled prompts used in these examples for the sake of a better overview. Con-

sidering only the user’s emotional state as described in Fig. 3.18, these ranges cover

a “very positive state” (0 � E.U / < 0:4), a “positive state” (0:4 � E.U / < 0:8),

neutral (0:8 � E.U / < 1:2), a “negative state” (1:2 � E.U / < 1:6) and a “very

negative state” (1:6 � E.U / � 2). Accordingly, the system reacts in a cheery man-

ner to a happy user, responds rather “neutral”, i.e., without any dispensable flowery

phrases to a neutral user, tries to cheer up a sad (1:2 � E.U / < 1:6) user and affects

conciliatorily on an angry or aggressive user.

As opposed to the user’s emotional state E.U / the whole range of which can

apply in any dialogue context, the threat � is also dependent on the message which

needs to be communicated – if the valence of the message is negative, e.g., when
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...
<field name="destination">

<prompt cond="e_u<0.4">
Wow, that sounds amazing. So, what is your destination?

</prompt>
<prompt cond="e_u>=0.4 && e_u<0.8">
Oh, nice. And where would you like to travel to?

</prompt>
<prompt cond="e_u>=0.8 && e_u<1.2">
Where would you like to go to?

</prompt>
<prompt cond="e_u>=1.2 && e_u<1.6">
Hey, come on, where do you want to go to?

</prompt>
<prompt cond="e_u>=1.6">
Please excuse me, I didn’t get all of what you said.
Where do you want to go to?

</prompt>
...

Fig. 3.18 Excerpt of our VoiceXML dialogue description applying rules to include the user’s
emotional state E.U / in dialogue prompts

a database query does not generate any pleasant results for the user (flights fully

booked, hotels not available, etc.), the threat increases. Thus, following the idea

of adapting the prompts according to E.U / as described above, this would mean

that if the user is already angry and needs to be appeased anyway, there needs to

be even more appeasement in cases where the valence of the message is negative,

challenging the purpose and practicability of stylistic prompt adaptation. In order to

cope with these effects, André et al. (2004) propose a different concept realizing the

prompt design based on four different strategies proposed by Walker et al. (1997a).

Given a linear scale of � , these strategies apply as follows:

� � < 0:25: Direct realization of the prompt or speech act: The output message or

prompt is communicated in a more or less neutral way.

� 0:25 � � < 0:5: Approval oriented realization (positive politeness) taking into

account the user’s demand for approval. This strategy can be subdivided into

three more fine-grained substrategies which are:

– 0:25 � � < 0:33: Claiming common ground

– 0:33 � � < 0:42: Giving the user the impression that user and system are

cooperating partners

– 0:42 � � < 0:5: Fulfilling the user’s needs

� 0:5 � � < 0:75: Autonomy oriented realization (negative politeness)

� 0:75 � � � 1: Off record strategy

In this listing, the strategies are equally distributed along the scale of � from 0 to 1,

which is good and intuitive for the visualization of the process but not necessarily for

the implementation in an actual dialogue system. However, the values may serve as a

good starting point for (adaptive) thresholds which can be adjusted to the respective
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dialogue application with the aid of, e.g., machine learning algorithms. Especially,

as stated in Walker et al. (1997a), off record strategies are difficult to realize in

(spoken) human–computer interfaces. E.g., if we assume that there is no satisfactory

solution for a user who wants to travel to London on the specified dates and who

is already quite angry due to misunderstandings during the previous turns of the

dialogue, it is up to the system to suggest to travel to another destination – either

to the nearest alternative (e.g., London Gatwick instead of London Heathrow) or to

somewhere completely different (“Lhasa has been voted ’Most beautiful city’ by the

readers of the ’Tibetan Travel’ magazine and it features perfect traveling conditions

during that time. Wouldn’t you like to travel there instead?”).

In order to make this approach more practical, a two-level differentiation is

presented in André et al. (2004), manually selecting the four different strategies

described in the list above and using adaptive threat thresholds to choose among

“claiming common ground”, “cooperating partners” and “fulfilling user’s needs”

substrategies. To accomplish that, diverse types of threat are introduced.

As with many rule-based approaches, like for language modeling, dialogue flow

design or adaptation of the confirmation strategy, the rule-based adaptation of

prompts and dialogue behavior features a very high degree of flexibility in terms

of accurateness covering any imaginable aspect and situation for any value of E.U /

or � . This, however, entails a very high effort in setting up these rules and, more-

over, also requires a profound knowledge and experience to judge in which way a

message is communicated appropriately to the user.

3.6 A Semi-Stochastic Dialogue Model

In order to release the dialogue developer from having to evaluate the proper assign-

ment of emotional or affective control parameters and to setup an enormous number

of rules, in the remainder of this section, we propose a “semi-stochastic” approach

for the integration of these parameters in the design of the dialogue. We call this

approach semi-stochastic as it reconciles a set of dialogue states and rules which are

predefined beforehand and a stochastic model describing the transitions between

these states (Pittermann and Pittermann 2007). In terms of model complexity, com-

prehensibility and design effort, our approach constitutes a trade-off between typical

rule-based systems like the ones employing VoiceXML as description language

and stochastic systems which are, e.g., employing Partially Observable Markov

Decision Processes (see Williams et al. 2005; Williams and Young 2007).

The structure of a simple semi-stochastic dialogue model disregarding emotional

parameters is illustrated in Fig. 3.19. This dialogue is represented by a network

formed by a set S consisting of four states S1, S2, S3 and S4, i.e., nodes which

represent the dialogue fields Pi , i D 1; 2; 3; 4, to be filled during the dialogue and

appropriate transitions between the states. Considering only dialogue fields without

any further control parameters, we have a direct mapping
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Fig. 3.19 Semi-stochastic
dialogue model represented
by a network consisting of
four dialogue states
representing dialogue fields

P2

P4
P3

P1

...
<field name="date">

<prompt>
On what date would you like to travel?

</prompt></field>
<field name="departure_city">

<prompt>
From where would you like to depart?

</prompt></field>
<field name="destination">

<prompt>
Where would you like to travel to?

</prompt></field>
<field name="time">

<prompt>
At what time do you want to depart?

</prompt></field>
...

Fig. 3.20 Excerpt of our standard VoiceXML dialogue description predefining dialogue fields and
prompts for four dialogue states

Si ! .Pi / ; i D 1; : : : ; M; (3.10)

where M D jSj is the cardinality of S, i.e., number of dialogue fields to be filled

during the dialogue. If we choose a travel agency scenario, we can define, e.g., P1

as the departure city, P2 as the destination, P3 as the travel date and P4 as the time

of departure.

Pursuing this travel agency dialogue application, the states are defined before-

hand by the fields and the corresponding prompts in the dialogue description as

shown in Fig. 3.20.

Having set up the scaffolding of the dialogue consisting of the dialogue field

states, the transitions between these states are summarized in the set of all edges E .

The probabilities of the respective transitions are obtained on the basis of existing

dialogue data. In analogy to the adaptation of the confirmation strategy described

in the previous section, we consider the probability of a state (field) P .Si jHD/,

1 � i � M , given the dialogue history HD . Recapitulating Eq. 3.1 at the beginning

of this section, for the moment, we limit our considerations to dialogue fields,
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i.e., taking into account the probability of a state and the corresponding dialogue

field Pi , i D 1; : : : ; M for the system action pS at time T described by

Pp.pS .T / D Pi jŒp.1/; : : : ; p.T /�/ given the aggregate user input, i.e., previously

filled dialogue fields p.1/; : : : ; p.T /.

The complexity of the stochastic share of such a dialogue model increases dras-

tically with the size of the history to be considered as the number of turns increases

continuously during the course of the dialogue. For the first system turn, we need a

bi-turn model P.pS .1/jp.1// when the user’s utterance contains one utilizable item

(turn) p.1/. With a total of M states in the network, and assuming that the system

will not ask “Where do you want to travel to?” after the user states “I want to go to

Oslo.”, the bi-turn model contains M � .M � 1/ transition probabilities. Thus, in the

ideal case, the dialogue would end after a maximum of M turns and the maximum

complexity of the model would include M �.M � 1/�: : : �1 D M Š possible transition

probabilities. In reality, however, the number of turns can easily exceed M due to

repetitions, misunderstandings and/or confirmation prompts and it can be assumed

that certain fields are addressed multiple times, e.g., when the user answers under

pressure and, thus, becomes uncertain.

Hence, we can presume that the number of possible n-turn probabilities is ap-

proximately jSjn D M n constituting a high model complexity which is hardly

feasible in terms of computational efforts and the required training material. On this

account, we reduce the stochastic component of the dialogue model to bi-turn and

tri-turn combinations, i.e., P.pS .T /jp.T // and P.pS .T /jp.T � 1/; p.T //, incor-

porating the previous or the previous and the penultimate user turn, respectively.

The bi-turn and tri-turn probabilities are determined by training on the basis of

preprocessed dialogue corpora. These corpora normally contain human–computer

dialogues, recorded in real-world situations (people who call service centers are

typically informed that the phone call may be recorded and analyzed to improve

the service) or in WOZ scenarios where a human supervisor (the wizard) simu-

lates the behavior of the system making the users believe that they are interacting

with a computer. In order to render automated SLDSs more natural, i.e., not making

the users feel that they are talking to a “stupid” computer, we suggest to employ

human–human dialogues for the training. As humans tend to exhibit a different be-

havior in terms of language, style and communication of information when talking

to humans or computers, these dialogues need to be prepared for their use in a

computerized environment. Jönsson and Dahlbäck (2000) describe the process of

distilling human–human dialogues in order to adapt these for further use in SLDSs.

This becomes especially important when more complex dialogue models, requiring

more than just an analysis of semantic labels, are applied.

For the travel agency example, by definition, dialogue data obtained in the do-

main of travel agencies, airline call centers, airport information desks, etc., no matter

whether distilled or not, are required. In the following paragraphs, we describe the

process of preparing the data and the training of the dialogue model on the basis

of excerpts of three example dialogues in the travel agency domain collected in a

corpus to verify the feasibility of dialogue concepts.
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Agent: Good morning, Sir. How are you?

Customer: Good, thanks. Can I book a flight to Frankfurt here?

Agent: Absolutely.
✿✿✿✿✿

From
✿✿✿✿✿✿

where would you like to depart?

Customer: From New York.

Agent:
✿✿✿✿✿

When would you like to leave?

Customer: On Monday.

Agent: OK,
✿✿✿✿

what
✿✿✿✿✿

time would you prefer?

...

Customer: Hi, Can you tell me whether there are any flights to Oslo today?

Agent: Departing
✿✿✿✿

from
✿✿✿✿

here?

Customer: Yes, from Copenhagen.

Agent: Let me see... Yes, there are seats available on eight flights. At

✿✿✿✿

what
✿✿✿✿✿

time do you want to leave?

Agent: Hi, how can I help you?

Customer: Hello, we would like to book a flight.

Agent: Good, do you know
✿✿✿✿✿

where you want to travel
✿

to?

Customer: Hm, we thought of just leaving this place for quite a while as

soon as possible.

Agent: I see. Would you prefer a
✿✿✿✿✿✿✿✿✿✿

destination in the Southern

hemisphere?

Customer: Oh, Buenos Aires would be great.

Agent: Let me check... There are seats available on flight leaving on

Monday
✿

at
✿✿

6
✿✿✿✿

p.m.. Would you like to book that flight?

In these dialogues, the determining parts of the customer (corresponding to the

user) utterances are underlined and the resulting agent (system) reactions are
✿✿✿✿✿✿

wavily

✿✿✿✿✿✿✿✿✿

underlined. Extracting these semantic labels, the dialogues can be “compressed” in

to a sequence of the labels contained in both customer and agent utterances. E.g.,

the first dialogue is rewritten as

Agent: [—]

Customer: [destination]

Agent: [departure city]

Customer: [departure city]

Agent: [date]

Customer: [date]

Agent: [time]

...

From these compressed dialogues, we can determine bi-turn and tri-turn com-

binations of customer (user) turns leading to a specific agent (system) reaction.

The first dialogue starts with a customer utterance containing the destination and
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the agent reacts by asking about the departure city, i.e., the first bi-turn combina-

tion is

destination -> departure_city.

The customer’s reply to the agent’s question contains the departure city and the

agent asks for the travel date. Now we obtain the second bi-turn combination

departure_city -> date,

and (including the previous turn) the first tri-turn combination

destination, departure_city -> date.

Analogously, the following bi-turn and tri-turn combinations are

date -> time
departure_city, date -> time.

Following this procedure for each turn in the three example excerpts, we obtain the

processed training data as shown in Fig. 3.21. It should be noted that the first cus-

tomer utterance in the second dialogue contains two turns, destination and date.

I.e., in combination with the agent’s reaction (departure city?), we obtain two bi-

turn (destination ! departure city, and date ! departure city) combinations

and one tri-turn (destination, date ! departure city) combination. The third di-

alogue starts with an empty customer utterance, so that the agent needs to take the

initiative by asking about the desired destination. Here, we obtain a uni-turn, i.e.,

a possible system reaction in cases where users of an SLDS do not know what to

say. In the training data, the uni-turn is described as a bi-turn containing a zero

state (�).

destination -> departure_city
departure_city -> date
destination, departure_city -> date
date -> time
departure_city, date -> time
destination -> departure_city
date -> departure_city
destination, date -> departure_city
departure_city -> time
destination, departure_city -> time
date, departure_city -> time

* -> destination
departure_city -> destination
date -> destination
date, departure_city -> destination
destination -> time
destination, departure_city -> time
destination, date -> time

Fig. 3.21 Dialogue model training data extracted from three excerpts of human–human dialogues
in the travel agency domain



3.6 A Semi-Stochastic Dialogue Model 83

In the case where the dialogue model consists of M D jSj states, there are M

uni-turns, M � .M � 1/ bi-turns and M � .M � 1/ � .M � 2/=2 tri-turn combinations,

i.e., in this example model, there are 4 uni-turns, 12 bi-turns and 12 tri-turns. This

implies that we do not include the order of occurrence in the left part of the tri-turn

combinations. E.g., (departure city, destination ! date) and (destination, de-
parture city ! date) are treated as one combination. Some of these combinations

occur in the training data, other combinations do not occur. Moreover, the dialogue

developer can exclude certain combinations from the model manually by prefixing

the respective lines with an exclamation mark (!). E.g., if we did not want to allow

the system to prompt for the departure city after the user has mentioned date and

time, we could add

!date, time -> departure_city

to the training data.

Based on the frequency of occurrence of these bi-turn and tri-turn combinations,

the respective (transition) probabilities are determined in the training process. To

accomplish that, at first, for all possible bi-turn and tri-turn combinations the fre-

quencies of occurrence of which are initialized with zeros as shown in Fig. 3.22.

This “skeleton” model corresponds to the dash-dotted grey transitions shown in

Fig. 3.19. For the sake of clarity, the illustration only describes the bi-turn transi-

tions, i.e., transitions between single states. A complete representation of the model

is illustrated in Fig. 3.23. Here, the left network represents uni-turn originating from

the extra zero state (�) and bi-turn transitions between all states. The right network

represents the tri-turn transitions from two connected states to the remaining (sin-

gle) states. The connection between two states is presented by a solid black line

and a grey dot forming the origin of the respective transitions. Still not knowing the

actual transition probabilities, in this figure, the transitions are represented by grey

dash-dotted lines.

In this scenario, there are no self-transitions from one state to the same state

as we assume a simple dialogue model without any repetitions or confirmations.

* -> date 0
...

* -> time 0
date -> departure_city 0
date -> destination 0
...
time -> destination 0
date, departure_city -> destination 0
date, departure_city -> time 0
date, destination -> departure_city 0
...
destination, time -> date 0
destination, time -> departure_city 0

Fig. 3.22 Untrained skeleton dialogue model
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P4

P4

P3

P3

P2

P2
P1

P1

*

Fig. 3.23 Representation of uni-turn, bi-turn and tri-turn transitions in a semi-stochastic dialogue
model network. Uni-turn transitions are represented by arrows originating from the ? node and
bi-turn transitions are represented by the arrows between the states in the left part of the figure.
Tri-turn transitions are represented by the arrows originating from two states combined by thick
black lines (origin indicated by grey circles) in the right part. The unity of both parts is indicated
by dotted lines

Moreover, for the same reason, there are also no tri-turn transitions from a state pair

to one of the connected states, e.g., (departure city, destination ! destination).

In the general case, these transitions can also be included in the model, even tri-

turn combinations with transitions from one state connected to itself to the same

state, e.g., (date, date ! date). With this, assuming M states, the number of uni-

turns is still M , but the number of bi-turns is M 2 and the number of tri-turns is

M 3 or M 2 C M 2 � .M � 1/=2 D M 2 � .M C 1/=2 depending on whether the

chronological order within the tri-turns is taken into account or not. The possible

application of these can be flexibly predefined by the dialogue developer in the

training process.

Having set up the skeleton model in any implementation, for each line of the

training data, the counter of the respective combination in the model increases by 1.

I.e., after the first training step, each uni-turn, bi-turn and tri-turn combination is

assigned its frequency of occurrence in the training data.

Depending on the corpus size, especially for smaller corpora, it is likely that some

of the combinations are assigned 0 as frequency of occurrence. On the one hand, this

can emerge due to the low significance of the respective combinations, on the other

hand, this may lead to deadlock situations in the dialogue later on. To avoid possible

divisions by zero in the field selection process, we add an infinitesimal number "

to each value in the trained data. Having accomplished the training with the data

shown in Fig. 3.21, we obtain a dialogue model as shown in Fig. 3.24.

In this example, there is only one transition originating from the � state. I.e.,

independent of ", in most of the cases, the dialogue manager would ask for the

destination when the user does not know what to say. However, if the question about

the destination was already answered, there would be a deadlock situation as the

system would not be able to determine what to ask next. Adding the same " to all



3.6 A Semi-Stochastic Dialogue Model 85

* -> date 0.001

* -> departure_city 0.001

* -> destination 1.001

* -> time 0.001
date -> departure_city 1.001
date -> destination 1.001
date -> time 1.001
departure_city -> date 1.001
departure_city -> destination 1.001
departure_city -> time 1.001
destination -> date 0.001
destination -> departure_city 2.001
destination -> time 1.001
time -> date 0.001
time -> departure_city 0.001
time -> destination 0.001
date, departure_city -> destination 1.001
date, departure_city -> time 2.001
date, destination -> departure_city 1.001
date, destination -> time 1.001
date, time -> departure_city 0.001
date, time -> destination 0.001
departure_city, destination -> date 1.001
departure_city, destination -> time 2.001
departure_city, time -> date 0.001
departure_city, time -> destination 0.001
destination, time -> date 0.001
destination, time -> departure_city 0.001

Fig. 3.24 Dialogue model trained on the data shown in Fig. 3.21

numbers, here, ensures that all of the other transitions are considered as equally

probable, increasing the robustness of the dialogue manager.

Based on the skeleton depicted in Fig. 3.23 and the model data shown in

Fig. 3.24, the dialogue model is structured as illustrated in Fig. 3.25. In this figure,

transitions are represented by dashed grey lines when their frequency of occurrence

is zero or ", respectively. Thin solid black lines represent transitions with an average

frequency of occurrence (here: once) and thick solid black lines represent transi-

tions that occur more often (here: more than once). In our following considerations

we summarize all transitions/combinations regardless of their probabilities into sets:

U contains all uni-turn combinations (� ! pS ), B contains all bi-turn combinations

(p.T / ! pS ) and T contains all tri-turn combinations (p.T � 1/; p.T / ! pS ),

pS D P1; : : : ; Pn of the emotional model. Furthermore, we define bi-turn subsets

B.y/ � B and tri-turn subsets T .x; y/ � T for arbitrary previously uttered user

turns x and y, where

B.y/ D f.p.T / ! p?/jp.T / D yg;
T .x; y/ D f.p.T � 1/; p.T / ! p?/j.p.T � 1/ D x ^ p.T / D y/ _

.p.T � 1/ D y ^ p.T / D x/g; (3.11)
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P2

P4
P3

*
P1

P3

P2

P1

P4

Fig. 3.25 Illustration of the dialogue model described by Fig. 3.24. The structure of the model
representation is the same like in Fig. 3.23: Uni-turn and bi-turn transitions are shown in the left
part, tri-turn transitions are shown in the right part of the figure. The probability of the transitions
is indicated by the respective line thickness and style. In this example, state P1 represents the
departure city, P2 is the destination, P3 is the travel date and P4 is the time of departure

where p? 2 S (or p? 2 S n fp.T � 1/; p.T /g) can be any (other) state. Here, it

should be noted that p? does not take states the fields of which have already been

filled during the dialogue. This rule or restriction, among others, is one reason why

we call the model semi-stochastic and not stochastic.

For the sake of clarity, in our considerations, we avoid using the uni-turn set U

and we describe the set as special cases of bi-turns, i.e., U � B.�/. By that, we ob-

tain the set of all transitions E as E D B[T . Furthermore, for a bi-turn combination

.p.T / ! pS D p/ or a tri-turn combination .p.T � 1/; p.T / ! pS D p/, we

define its frequency of occurrence in the dialogue model as N.p.T / ! pS D p/ or

N.p.T � 1/; p.T / ! pS D p/, respectively. With this, the sum of the frequencies

of occurrence of all combinations in a set B.y/ is calculated as

N.B.y// D
X

.p.T /!pS Dp/2B.y/

N.p.T / ! pS D p/; (3.12)

and for T .x; y/ as

N.T .x; y// D
X

.p.T �1/;p.T /!pS Dp/2T .x;y/

N.p.T � 1/; p.T / ! pS D p/:

(3.13)

Using such a dialogue model, the current field is determined among possible

combinations that include the previous and, optionally, the penultimate user turn in

the history. I.e., for each system turn, a set V D B.p.T // [ T .p.T � 1/; p.T //

is formed and for each combination .p.T � 1/; p.T / ! pS D p/ or .p.T / !
pS D p/ in V , the respective probability P.p.T � 1/; p.T / ! pS D p/ or

P.p.T / ! pS D p/ is calculated with respect to its frequency of occurrence

N.p.T � 1/; p.T / ! pS D p/ or N.p.T / ! pS D p/. For implementa-

tion reasons, in cases where the user has not provided enough information to apply
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the tri-turn model, V only contains bi-turn combinations. This technique coincides

with the back-off technique which is used in stochastic language models in speech

recognition.

In statistical language modeling it has been shown that tri-gram models provide a

significantly better representation of the structure of a language than bi-gram or uni-

gram models as the tri-gram models involve more information. Thus, in automatic

speech recognition, tri-gram models also contribute to a more robust recognizer

performance. Similarly, tri-turn models represent a more detailed structure of the

dialogue flow. Thus, we argue that if there are tri-turns among V , their influence on

the field selection process should be increased. This can be accomplished by mul-

tiplying their frequency of occurrence with an arbitrary factor ˛ � 1. Depending

on the size of the model and the dimensions of the training data, ˛ ranges from

1 (few training data for a large model) to 10 (huge amount of training data com-

pared to the model complexity). With this, we calculate the probability of a bi-turn

combination as

P.p.T / ! pS D p/ D N.p.T / ! pS D p/

N.B.p.T /// C ˛ � N.T .p.T � 1/; p.T ///
; (3.14)

and of a tri-turn combination as

P.p.T � 1/; p.T / ! pS D p/ D ˛ � N.p.T � 1/; p.T / ! pS D p/

N.B.p.T /// C ˛ � N.T .p.T � 1/; p.T ///
:

(3.15)

To avoid confusion, we assign each bi-turn and tri-turn combination either a unique

label or an arbitrary number i , 1 � i � jVj and we label the respective proba-

bility P.i/. With this, there exist two approaches to select the current field under

discussion:

A simple approach would be to find the combination i with the highest probabil-

ity among all combinations in the set V

i D arg max
1�i�jVj

P.i/; (3.16)

and choose the respective field from the i th combination. This procedure, however,

neglects finer details in the dialogue model, e.g., if the model contains

departure_city, destination -> date 11.001
departure_city, destination -> time 12.001,

there is a 100% chance, that the system will ask for the departure time, although the

dialogue model also allows for a high probability of asking about the travel date.

Moreover, this selection process lacks robustness, especially in cases when several

combinations are equally probable, e.g.,

date -> departure_city 1.001
date -> destination 1.001
date -> time 1.001.
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Such a case typically requires a random selection process among the remaining

combinations with the highest probability. Having to do so anyway in the given

cases, we argue that we obtain a higher robustness and, moreover, a higher flex-

ibility if we accomplish the entire selection procedure on the basis of a random

process.

Thus, with respect to the fact that the probabilities P.i/ of all bi-turn and tri-turn

combinations add up to
P

i

P.i/ D 1, we assign each of these combinations i a

range Œti ; ti C P.i/�, with 0 � ti < 1 and ti C P.i/ � 1. Then, a random process

generates a number r 2 Œ0; 1� which is uniformly distributed in the interval between

0 and 1. Depending on r , the respective combination i is selected according to

i D arg fti jti � r � ti C P.i/g ; (3.17)

and the current field is chosen from the i th combination. The random selection

process for a general set V is illustrated in Fig. 3.26. The diagram shows the uniform

distribution along the different combinations i .

Coming back to our travel agency scenario, we can exemplify the selection pro-

cess on the basis of the following dialogue taken from our dialogue collection:

. . .

2 User: I want to book a flight to Copenhagen.

3 System: From where would you like to depart?

4 User: From Paris.

At this point the dialogue history contains p.T � 1/ D destination and p.T / D
departure city. Based on these previous turns, the initial set V , as defined above,

consists of the following combinations, taken from the model shown in Fig. 3.24:

P(r)

1

0
t1=0 t2 t3 t4 t|V| 1

i=1 2 ... |V|3

r

Fig. 3.26 Illustration of the field selection process using the dialogue model described by Fig. 3.25
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1 departure_city -> date 1.001
2 departure_city -> time 1.001
3 departure_city, destination -> date 1.001
4 departure_city, destination -> time 2.001

Here, the bi-turn combination (departure city ! destination (1.001)) is not in-

cluded in V as the destination field has already been filled. Each of the four

combinations is assigned a unique number (1–4). To emphasize the importance of

tri-turn combinations, we presume an amplification factor ˛ D 2. With this, we can

calculate the individual probabilities P.i/, i D 1; : : : ; 4 as follows:

P.1/ D P.2/ D 1:001

1:001 C 1:001 C 2 � .1:001 C 2:001/
� 1

8
D 0:125

P.3/ D 2 � 1:001

1:001 C 1:001 C 2 � .1:001 C 2:001/
� 1

4
D 0:25

P.4/ D 2 � 2:001

1:001 C 1:001 C 2 � .1:001 C 2:001/
� 1

2
D 0:5; (3.18)

and we obtain

t1 D 0; t2 D 0:125; t3 D 0:25; t4 D 0:5: (3.19)

Adding up the probabilities, we can see that the overall probability for a combination

leading to time as the next field is 0:625 and the probability for date is 0:375. The

probability distribution for the four combinations is illustrated in Fig. 3.27.

r

P(r)

1

0
t1=0 t2 t3 t4 1

i=1

(date)

2

(time)

|V|=4

(time)

3

(date)

Fig. 3.27 Illustration of the field selection process in the travel agency scenario consisting of four
dialogue fields. Combinations 1 and 2 are bi-turn combinations, 3 and 4 are tri-turn combinations
with correspondingly higher probabilities assuming an amplification of ˛ D 2
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The order of the combinations in this diagram seems quite arbitrary as it corre-

sponds to the order of appearance in the model. Each combination i is also labeled

with the name of next dialogue field which would be prompted if the respective

combination was randomly selected. E.g., if we obtain r D 0:3973 (date), the next

system turn in the dialogue is

5 System: On what date would you like to travel?

3.7 A Semi-Stochastic Emotional Model

In analogy to the setup of the dialogue model described in the previous section,

the user’s emotional state can also be conceptualized in a semi-stochastic model

(Pittermann and Pittermann 2006c). The aim of such a model is to enable the sys-

tem to react appropriately to the emotional state and, if applicable, to previous

states determined by an automatic emotion recognizer. As shown for the plain di-

alogue model, the emotional model consists of a predefined number N of states

S D fS1;S2; : : : ;SN g with N D jSj. Given one arbitrary field Pi from the above

dialogue model, the states in S represent the respective emotional states of the

system. The structure of the emotional model disregarding the dialogue states is

illustrated in Fig. 3.28.

This example model is represented by a network formed by a set S consisting

of three states, i.e., nodes which represent the emotional states Ei , i D 1; 2; 3, in

which the system reacts to the user’s emotional states. Considering only emotional

states without any information about dialogue states and further control parameters,

we have a direct mapping

Si ! .Ei / ; i D 1; : : : ; N; (3.20)

where N D jSj is the cardinality of S, i.e., number of emotions to be considered

in the model. Depending on the application, the values of Ei can be strings like

“anger”, “happiness”, etc., or floating point values, e.g., 0:0 � E.U / � 2:0 as de-

scribed above. Featuring a higher flexibility, for our example, we choose the use

of numerical values E.U / and we assign E1 D 0:3 (strong and positive emotion

Fig. 3.28 Semi-stochastic
emotional model represented
by a network consisting of
three emotional states
representing the respective
system output

E2

E3

E1
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...
<field name="destination">

<prompt cond="e1">
Excellent, and what’s your destination?

</prompt>
<prompt cond="e2">
Where would you like to travel to?

</prompt>
<prompt cond="e3">
I’m sorry to bother you again. Where did you say you
wanted to travel to?

</prompt></field>
...

Fig. 3.29 Excerpt of our VoiceXML dialogue description predefining prompts for the respective
(three) emotional states of one dialogue field (here: destination)

like happiness), E2 D 1:0 (neutral) and E3 D 1:7 (strong and negative emotion like

anger). Pursuing the travel agency example from the previous section, the emotional

states are defined beforehand by the prompts as shown in Fig. 3.29 for the destina-

tion field of the dialogue description.

The transitions between the states are, again, summarized in the set of all edges E .

For each transition, its probability is determined by the probability of the tar-

get state P .SjHD/ given the dialogue history HD . As opposed to Section 3.6,

now, we are not interested in the previously filled dialogue fields p.t/ but in

the previously recognized emotional states e.1/; : : : ; e.T /. Consequently, see also

Eq. 3.1 (page 66), we describe the probability of a transition by the probability

Pe.eS .T / D Ei jŒe.1/; : : : ; e.T /�/ of a system output in emotional state Ei given

the “emotional user turns” e.1/; : : : ; e.T /. It should be noted, that when we say that

the system is in a certain state, e.g., an angry state, this does not mean that it behaves

angrily and yells at the user, but that it reacts (or tries to react) appropriately to the

user’s anger. Thus, system and user state are not identical, i.e., if the system is in

state eS D Ei , this means the system reacts as if the user were in this state Ei .

To reduce the model complexity, the number of emotional turns in the dialogue

history is limited to one or two, so that we only consider bi-turn and tri-turn

probabilities, i.e., P.eS .T /je.T // and P.eS .T /je.T � 1/; e.T //, incorporating the

previous or the previous and the penultimate user turn, respectively. As opposed to

the plain dialogue model, however, we do not include uni-turns, as these are only

important for the first system turn which is typically uttered in a neutral style, e.g.,

“How can I help you?” and for further turns, the system can always rely on data

from the emotion recognizer.

These probabilities are also determined by training, either on dialogue data ob-

tained from processed human–human dialogues or on recorded human–computer

dialogues, typically already employing an automatic emotion recognizer. As men-

tioned before, the exact stylistic realization of the user and system turns is not

important for the model, also the domain of the dialogue data, e.g., travel domain,

pizza ordering system, etc., is irrelevant. In the following excerpts from the training



92 3 Adaptive Human–Computer Dialogue

data, the emotional states e.t/ of the user and the emotional states eS .t/ of the

system are represented by numbers 0 � e.t/; eS .t/ � 2. In general, e.t/ and

eS .t/ can take any value in the given range, however, in order to adapt to the prede-

fined model structure, the values need to be quantized according the values of Ei ,

i D 1; : : : ; N . E.g., given a set S of states mapped to emotions Ei where E1 D 0:1,

E2 D 0:2, E3 D 0:3, . . . , E20 D 2:0, a user’s emotion e.T / D 0:6345 would be

quantized to Ne.T / D 0:6 D E6, whereas given the three-state model as described

above (E1 D 0:3, E2 D 1, E3 D 1:7), e.T / D 0:6345 would be quantized to

Ne.T / D 0:3 D E1.

Due to the fact that in principle any transition from any emotion to any other or

the same emotion is possible, the emotional model is more complex than the simple

four-state dialogue model described in the previous section. Tapping the full range

of possible transitions, we obtain N 2 emotional bi-turn combinations and N 3 emo-

tional tri-turn combinations adding up to a total of N 2�.N C1/ combinations, i.e., the

three-state model includes 9C27 D 36 transitions. In this case, we do not only allow

combinations, where one state transits to itself, e.g., P.e.T / D E1 ! eS D E1/,

but also multiple occurrences of the same state within a tri-turn combination, e.g.,

P.e.T � 1/ D E1; e.T / D E2 ! eS D E1/, P.e.T � 1/ D E1; e.T / D
E1 ! eS D E2/ or even P.e.T � 1/ D E1; e.T / D E1 ! eS D E1/.

Moreover, we take into account the chronological order of user’s emotions in the

tri-turn combinations, i.e., P.e.T � 1/ D E1; e.T / D E2 ! eS D E3/ and

P.e.T � 1/ D E2; e.T / D E1 ! eS D E3/ are considered as different com-

binations. This is especially important when the temporal aspect of how the user’s

emotional state changes shall be included – e.g., if the user’s state changes from

happiness to anger, the system should not react in the same way as if the user’s state

changes from anger to happiness.

The complete interrelationship in such a model is illustrated in Fig. 3.30. Here,

the upper network represents bi-turn transitions between all states and the couple of

lower right network represents the tri-turn transitions from two connected states to

any other state. Moreover, the tri-turn combinations in which the previous and the

penultimate emotional state of the user are the same are represented by the lower

left network. In the lower networks, the connections between the two user states are

presented by a solid black line and a grey dot forming the origin of the respective

transitions. The chronological order and the fact that the upper and the lower net-

works on the right are not identical are emphasized with the aid of triangular lines.

In this illustration, the transitions which occur in the training data (in this case pro-

cessed dialogue data) are represented by solid lines – those which occur more often

than average are represented by thicker lines. All remaining transitions are repre-

sented by grey dashed lines. Apart from the remarkably high number of grey dashed

transitions, it is striking that the majority of transitions are self-transitions, i.e., from

a single state to itself, e.g., .0:3 ! 0:3/, or from a couple to one of the states be-

longing to the same couple, e.g., .1:0; 0:3 ! 0:3/. This is a rather typical behavior,

as humans also tend to respond to their dialogue partner’s emotional state.

From this point of view, looking at the simple example, it seems rather unprac-

tical to use such a complex model instead of just creating a set of rules which,
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Fig. 3.30 Illustration of a
trained emotional model. The
probability of transitions is
indicated by the respective
line thickness and style. State
E1 D 0:3 represents a happy
emotional state, E2 D 1:0

corresponds to neutral and
E3 D 1:7 represents anger E3

E1

E3

E2

E2

E
3

E1

E1

E2

E3

E1

E2

e.g., contain if the user is angry, apply some appeasement strategy. The actual

advantages of this semi-stochastic model become apparent when a finer quantization

structure is applied, i.e., if we distinguish more different levels of positive, neutral

or negative states. Even here, given a sufficient amount of training data, it can be

observed how this corpus-based approach provides a more flexible and less com-

plex model generation, as opposed to a complex rule set which needs to be defined

manually.

The major advantage of such an emotional model, however, can be found in the

interplay with any type of automatic emotion recognizers like these described in

Chapter 4, which can not provide 100% error-free recognition results. Especially

due to the fact that emotions actually cannot be judged on an objective basis, the

automatic emotion recognizers can not please everybody. These discrepancies and

the inaccurateness, however, can be integrated into the model in such a way that the

system reacts appropriately even if the recognizer output does not quite match the

user’s actual emotional state.

To accomplish this, the system needs to include previous user states, assuming

these are more or less correctly recognized. In practice, on the one hand, this means

that in addition to bi-turns and tri-turns, also n-turns including a higher number n

of previous states need to be considered. By that, it is possible to detect outliers in

the recognizer output assuming that it is quite unlikely that the user’s state abruptly

changes between two different states.

On the other hand, the dialogue model needs to be trained on “noisy” data, i.e.,

in the training material, the customers’ real emotional states need to be replaced

by what the automatic emotion recognizer determines from the respective speech

signal (or video, biosignals, etc.). This, however, entails that the higher the emotion
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recognizer’s error rate the more training data is required to obtain a robust emotional

model.

The selection process during the dialogue is similar to the process described in

Section 3.6. Given the previous one or two recognized emotional state(s) e.T / and

optionally e.T � 1/, we can define a set V D B.e.T // [ T .e.T � 1/; e.T // which

includes all possible bi-turn and tri-turn combinations, based on which we can cal-

culate probability distributions for all emotional states. Then, a random selection

process determines the following emotional state.

Picking up our travel agency scenario again, we can exemplify the emotional

state selection process on the basis of an invented dialogue, in which the system is

now about to ask for the user’s destination. This dialogue is now extended by one

emotional control parameter:

. . .

2 User: I want to book a flight tomorrow. [ 0.8954 ]

3 System: From where would you like to depart?

4 User: From Paris. [ 1.5446 ]

This additional number in each user turn is the user’s emotional state E.U / ranging

from 0 to 2, determined with the aid of an automatic emotion recognizer. To simplify

matters, we presume that the emotion recognizer has correctly estimated the user’s

state. After the second user turn, the dialogue history contains e.T � 1/ D 0:8954

which is quantized to e.T � 1/ D 1:0 D E2 and e.T / D 1:5446 which corresponds

to e.T / D 1:7 D E3. Based on these previous turns, the initial set V , as defined

before, now consists of the following combinations, taken from the model described

by Fig. 3.30:

1.7 (E3) -> 0.3 (E1) 0.001
1.7 (E3) -> 1.0 (E2) 1.001
1.7 (E3) -> 1.7 (E3) 2.001
1.0 (E2), 1.7 (E3) -> 0.3 (E1) 0.001
1.0 (E2), 1.7 (E3) -> 1.0 (E2) 1.001
1.0 (E2), 1.7 (E3) -> 1.7 (E3) 1.001

Here, again, we argue that tri-turn combinations contribute to a more robust decision

in the model and, thus, we presume an amplification factor ˛ D 2. With this, we can

calculate the individual probabilities P.Ei /, i D 1; : : : ; N D 3 as follows:

P.E1/ D 0:001 C 2 � 0:001

.0:001 C 1:001 C 2:001/ C 2 � .0:001 C 1:001 C 1:001/
D 0:003

7:009
� 0;

(3.21)

P.E2/ D 1:001 C 2 � 1:001

7:009
� 0:43; (3.22)

P.E3/ D 2:001 C 2 � 1:001

7:009
� 0:57: (3.23)

Looking at the three probabilities, we can see that, e.g., the probability for a

combination leading to an appeasing reaction to an angry user is relatively high
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r

P(r)

1

0
t1=0≈t2 t3 1

E2 E3

Fig. 3.31 Illustration of the emotional reaction selection process in the travel agency scenario
allowing three emotional states

(approx. 0:57) whereas the probability for a cheerful reaction which would be more

suitable for a happy user is negligible. The overall probability distribution for these

combinations is illustrated in Fig. 3.31. If we obtain, e.g., r D 0:7645, the following

system reaction would be realized according to E3 as follows:

5 System: I’m sorry to bother you again. Where did you say you wanted to

travel to?

3.8 A Semi-Stochastic Combined Emotional Dialogue Model

Having introduced both dialogue and emotional models separately, we will now

describe our combined approach to an emotional dialogue model taking into ac-

count both dialogue fields and the appropriate stylistic realization of the respective

prompts (Pittermann et al. 2007b). Such an emotional dialogue model consists of

a predefined number O of states S D fS1;S2; : : : ;SOg with O D jSj � M � N ,

where M is the number of dialogue fields and N is the maximum number of emo-

tional states which are “attached” to each dialogue field. I.e., basically each state

Si is represented by a certain dialogue field the prompt of which is realized accord-

ing to a certain emotional state of the user. The structure of the emotional dialogue

model is illustrated in Fig. 3.32.

For the sake of clarity, this illustration only contains an extract of a network con-

sisting of O D 12 states in total. I.e., combining the example models in Sections 3.6

and 3.7, there are M D 4 dialogue fields Pi and N D 3 emotional states Ej which

now coincide in all possible field-emotion combinations Pi W Ej , i D 1; : : : ; M ,
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...P1 :E1

P1 :E3

P2 :E2
P3 :E2 P4 :E3

P2 :E1
P4 :E2

...
......

...

...

Fig. 3.32 Extract of a network representing a semi-stochastic emotional dialogue model. Each
state represents a combination of dialogue plus emotional state

j D 1; : : : ; N . Following the notations in the above sections, we can now define a

mapping of states

Sk !
�

Pi W Ej

�

; (3.24)

where k D .i �1/�N Cj . As described in the previous section, the emotional attach-

ment can either be a (quantized) numerical value or an arbitrary string like “anger”,

“neutral”, etc. To avoid confusion with the field labels which are typically names like

“departure city” or “date”, we limit our considerations to numerical values so that

a state in the model can be, e.g., “destination:0.7”. It should be noted that there are

a predefined number M of dialogue fields, whereas the number of emotional states

per field can definitely differ from field to field. E.g., for whatsoever reason there

can be “date:0.3”, “date:1.0” and “date:1.7” but also “time:0.7” and “time:1.3”.

The correct mapping of the emotional states happens by appropriate quantization of

the training data which are typically not quantized yet. Using different numbers of

emotional states per field and/or different quantization steps, however, increase the

model complexity significantly. Thus, to simplify matters, we describe our approach

by means of a model in which there are the same emotional states Ej , j D 1; : : : ; N

and the respective values attached to each field. The fields and states are then de-

fined beforehand in the dialogue description as shown in the VoiceXML excerpt in

Fig. 3.33.

Based on this scaffolding, we describe the transitions between the states by the

probabilities P .SjHD/ of a target system state given the dialogue history HD . Here,

the history includes the previously filled dialogue fields as well as the previously

recognized emotional states. I.e., expanding Eq. 3.1, we consider now the probabil-

ity Ppe.pS .T / D Pi ; eS .T / D Ej jŒp.1/; . . . , p.T /; e.1/; . . . , e.T /�/ of a system

reaction for field Pi in emotional state Ej given the previous user turns referring

to fields p.1/; : : : ; p.T / in the respective emotional states e.1/; : : : ; e.T /. Here, it

should be noted that pS .T / is not only dependent on p.1/; : : : ; p.T / but also on

e.1/; : : : ; e.T /, and eS .T / also depends on both fields and emotional states in the
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...
<field name="date">
<prompt cond="e1">

Great, when would you like to depart?
</prompt>
<prompt cond="e2">

On what date would you like to travel?
</prompt>
<prompt cond="e3">

Excuse me, I need to know on what date you would like to
travel?

</prompt></field>
<field name="departure_city">
<prompt cond="e1">

OK, from where will you leave?
</prompt>
<prompt cond="e2">

From where would you like to depart?
</prompt>
<prompt cond="e3">

Could you please tell me from where you would like to
depart?

</prompt></field>
<field name="destination">
<prompt cond="e1">

Excellent, and what’s your destination?
</prompt>
<prompt cond="e2">

Where would you like to travel to?
</prompt>
<prompt cond="e3">

I’m sorry to bother you again. Where did you say you wanted
to travel to?

</prompt></field>
<field name="time">
<prompt cond="e1">

Lovely, at what time could you leave?
</prompt>
<prompt cond="e2">

At what time do you want to depart?
</prompt>
<prompt cond="e3">

Could you please also tell me, when you would like to
depart?

</prompt></field>
...

Fig. 3.33 Excerpt of a VoiceXML representation of our dialogue description predefining (four)
dialogue fields and prompts for the respective (three) emotional states of the dialogue fields

past user turns. Again, our terminology is such that if we say that the system is

in emotional state Ej , this means that the system reacts as if the user was in this

emotional state Ej .
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As discussed for the dialogue and the emotional models, the complexity of the

stochastic share of the emotional dialogue model increases exponentially with the

size of the history to be considered, as the number of turns increases continuously

during the course of the dialogue. Thus, we limit our considerations to bi-turn and

tri-turn combinations. Given the number of combinations in the individual models

from the previous sections, we calculate the overall number as M � .M � 1/ � N 2

bi-turns and M � .M � 1/ � .M � 2/=2 � N 3 tri-turns in the emotional dialogue

model. In order to account more accurately for interdependencies between fields and

emotional states, we propose a threepart model structure including a plain dialogue

model, a plain emotional model and the emotional dialogue model as illustrated

in Fig. 3.34. Within each of the three sub-models, there exist bi-turn and tri-turn

combinations as described for the single models in Figs. 3.25 and 3.30. The same

types of transitions also occur in the combined model, however, the illustration of

which would be too complex and confusing.

Consequently, the transition probabilities are determined on the basis of train-

ing data. As discussed before, for the plain dialogue model, we do not include

any temporal aspects in the tri-turn combinations, whereas the chronological se-

quence is very important in emotional combinations to keep track of the user’s

state. Thus, the plain dialogue and emotional sub-models concur with the ones il-

lustrated in Fig. 3.25 and Fig. 3.30. As described there, the two previous user states

are connected by thick solid lines and the transition occurs from the grey point be-

tween these states to the possible following system state. In the plain emotional and

combined sub-models, the temporal aspect is illustrated with the aid of triangular

connection lines.

With respect to the structure of the model, the field and emotional state selection

process during the dialogue is subdivided into two sub-processes:

1. The current field under discussion Pi is determined on the basis of the plain

dialogue sub-model and the combined emotional dialogue sub-model.

2. the corresponding emotional state is selected among the combinations occur-

ring in the plain emotional sub-model and also the combined emotional dialogue

sub-model.

Although both selection sub-processes are based on the same dialogue history

and (partly) the same dialogue and emotional sub-models, the respective selection

processes are independent of each other. In principle, both selection sub-processes

bear a strong resemblance with the processes described in the previous sections.

Given the previous one or two dialogue and recognized emotional state/s p.T /,

e.T / and optionally p.T � 1/; e.T � 1/, we can form two sets Vp and Ve which

contain all possible bi-turn and tri-turn combinations separated into dialogue state

(p) and emotional state (e) in all sub-models.

For each bi-turn or tri-turn combination in each model, we define the frequency

of occurrence, and, as described for the plain dialogue and emotional models, we

employ an amplification factor ˛ � 1 to emphasize the significance of tri-turn

combinations as opposed to bi-turn combinations within one model. Moreover, we

argue that the combined emotional dialogue sub-model plays a more important role

in the overall model than the other two plain submodels and that the plain dia-
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P1 :E1
P2 :E1

P4 :E2

P3 :E2

P2 :E2
P1 :E2 P4 :E3

Fig. 3.34 Partial illustration of the trained emotional dialogue model. Instead of the full model
representation, some selected tri-gram combinations are shown. P1 represents the departure city,
P2 is the destination, P3 is the travel date and P4 is the time of departure. E1 represents a happy
state, E2 is rather neutral and E3 is an angry state

logue and emotional sub-models should only contribute to a more robust adaptation

process in cases where the combined model is not trained well enough. Thus, we

introduce a second amplification factor ˇ � 1 which emphasizes the significance

of the combinations in the combined emotional dialogue sub-model. Taking into

account these variations, we can calculate the probabilities of each field Pi and each

emotion Ej .

Based on the calculated probability distributions P.P1/; : : : ; P.PM / and

P.E1/; . . . , P.EN /, the system’s new dialogue and emotional states are deter-

mined by random selection.
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In order to illustrate both selection sub-processes, we extend the example from

Section 3.6 by the emotional control parameters E.U / (0 � E.U / � 2) as already

done in the example in the previous section:

. . .

2 User: I want to book a flight to Copenhagen. [ 0.8954 ]

3 System: From where would you like to depart?

4 User: From Paris. [ 1.5446 ]

Here, after the second user turn, the dialogue history contains p.T � 1/ D
destination, p.T / D departure city, e.T � 1/ D 0:8954 D E2 and e.T / D
1:5446 D E3.

Then, e.g., if the random processes return the combination P4 W E2, the respective

system turn would be

5 System: At what time do you want to depart?

3.9 Extending the Semi-Stochastic Combined

Emotional Dialogue Model

In the previous section, we have presented our approach to integrate one dialogue

control parameter (in this case the user’s emotional state) into a semi-stochastic

dialogue model. Having described the summarization of an arbitrary number of

dialogue control parameters in the beginning of this section, we will now give a

short overview on how the semi-stochastic model approach could theoretically be

extended to include N � 1 extra dialogue control parameters p1; : : : ; pN . Assum-

ing M0 plain dialogue states and Mi states per parameter pi ,1 � i � N , we obtain a

total of M0 �M1 � : : : �MN states in the combined model. In addition to this combined

sub-model integrating all parameters, there also exist
�

N C1
1

�

D N C1 plain dialogue

and parameter sub-models,
�

N C1
2

�

sub-models combining two of the parameters

out of p0; : : : ; pN ,
�

N C1
3

�

sub-models combining three of the parameters, . . . ,

and
�

N C1
N

�

D N C 1 sub-models combining N parameters. I.e., the entire model

consists of a total of 2N C1�1 sub-models. The excerpt of such a model is illustrated

in Fig. 3.35. Here, the states of a parameter pi are labeled as P
.j /
i , where 0 � i � N

and 1 � j � Mi . The model which we consider in this example includes N D 3

parameters with M0 D 4, M1 D 3, M2 D 2 and M3 D 3 states per parameter.

For the sake of a better overview, only 4 of the 15 sub-models are depicted in the

illustration.

Within the individual sub-models there exist a variable number of state transi-

tions. Assuming the same limitations for the plain dialogue sub-model like in the

above sections and assuming full flexibility among the other parameters, the num-

bers of bi-turns, tri-turns and states are as follows:
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Fig. 3.35 Illustration of the model approach including a higher number N of additional dialogue
parameters by means of N D 3 parameters with M0 D 4, M1 D 3, M2 D 2 and M3 D 3

� M0 � .M0 � 1/ bi-turns, M0 � .M0 � 1/ � .M0 � 2/=2 tri-turns in the plain dialogue

sub-model consisting of M0 states.

� M 2
k

bi-turns, M 3
k

tri-turns in each of the other plain parameter sub-models, 1 �
k � N , each consisting of Mk states.

� M0 � .M0 � 1/ � M 2
k

bi-turns, M0 � .M0 � 1/ � .M0 � 2/ � M 3
k

=2 tri-turns in a

sub-model combining dialogue fields and one additional parameter, 1 � k � N ,

consisting of M0 � Mk states.
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� M 2
k

� M 2
l

bi-turns, M 3
k

� M 3
l

tri-turns in a sub-model combining two additional

parameters, 1 � k; l � N , k ¤ l , consisting of Mk � Ml states.

� M0 � .M0 � 1/ � M 2
j � M 2

k
bi-turns, M0 � .M0 � 1/ � .M0 � 2/ � M 3

k
� M 3

l
=2 tri-

turns in a sub-model combining dialogue fields and two additional parameters,

1 � k; l � N , k ¤ l , consisting of M0 � Mk � Ml states.

� . . .

� M0 � .M0 � 1/ � M 2
1 � : : : � M 2

N bi-turns, M0 � .M0 � 1/ � .M0 � 2/ � M 3
1 � : : : � M 3

N =2

tri-turns in a sub-model combining dialogue fields and all additional parameters,

consisting of a total of M0 � M1 � : : : � MN states.

Summarizing all terms appropriately, we can calculate the total number of transi-

tions in the over-all model as

"

.M0 � .M0 � 1/ C 1/ �
N
Y

iD1

�

M 2
i C 1

�

#

� 1 bi-turns; (3.25)

and

"

.M0 � .M0 � 1/ � .M0 � 2/=2 C 1/ �
N
Y

iD1

�

M 3
i C 1

�

#

� 1 tri-turns: (3.26)

The total number of states is calculated as
QN

iD0.Mi C 1/ � 1.

Considering the number of parameters of our example, we obtain 12 bi-turns and

12 tri-turns in the plain dialogue sub-model, 9 bi-turns and 27 tri-turns in the first

plain parameter sub-model, 4 bi-turns and 8 tri-turns in the second plain parameter

sub-model and 9 bi-turns and 27 tri-turns in the third plain parameter sub-model.

Among the sub-models including dialogue fields and one of the additional param-

eters, there are, e.g., 108 bi-turns and 324 tri-turns in the sub-model combining

parameters 0 and 1. . . . The sub-model combining all three additional parameters

(1, 2 and 3) contains 324 bi-turns and 5832 tri-turns, and finally, the sub-model

including all parameters contains 3888 bi-turns and 69984 tri-turns. In total, this

integrated dialogue model consists of 15 sub-models, a total of 239 states, 6499

bi-turn and 91727 tri-turn state transitions, requiring a sufficiently large dialogue

training database to obtain a robust dialogue behavior. In cases where the training

data is not that extensive, the " parameter, also used in the previous sections, helps to

avoid dead-lock situations and can, in any case, contribute to a successful dialogue.

The training of the model is accomplished by counting the frequency of occur-

rence of each possible bi-turn or tri-turn combination of the respective sub-model

in the training data. Labeling the states of a parameter i as P
.j /
i , 0 � i � N ,

1 � j � Mi , the model can be described as shown in Fig. 3.36. The figure describes

the representation of bi-turns and tri-turns in the plain sub-models as well as in

differently combined sub-models up to a tri-turn in the sub-model combining all

parameters.



3.9 Extending the Semi-Stochastic Combined Emotional Dialogue Model 103

P0(1)::: -> P0(2)::: 83.01
P0(1)::: -> P0(3)::: 32.01
...
P0(1):::, P0(2) -> P0(3)::: 39.01
...
P0(3):::, P0(4) -> P0(2)::: 13.01
P0(1):P1(1):: -> P0(2):P1(1):: 27.01
...
P0(4):P1(3):: -> P0(3):P1(3):: 54.01
P0(1):P1(1)::, P0(2):P1(1):: -> P0(3):P1(1):: 28.01
P0(1):P1(1)::, P0(2):P1(1):: -> P0(3):P1(2):: 5.01
...
P1(3):P2(2)::, P1(2):P2(1):: -> P1(1):P2(2):: 2.01
...
P2(2):P3(2)::, P2(2):P3(1):: -> P2(1):P3(2):: 26.01
...
P0(2):P2(2):P3(2): -> P0(1):P2(1):P3(2): 14.01
...
P1(2):P2(2):P3(2):, P1(3):P2(2):P3(2):

-> P1(1):P2(1):P3(1): 3.01
...
P0(4):P1(2):P2(2):P3(2) -> P0(3):P1(1):P2(1):P3(1) 12.01
...
P0(4):P1(3):P2(2):P3(3), P0(4):P1(3):P2(2):P3(2)

-> P0(4):P1(3):P2(2):P3(3) 17.01

Fig. 3.36 Excerpt of a trained extended dialogue model including three additional parameters
(" D 0:01)

During the dialogue, the selection of the current states / parameters is subdivided

into N C 1 random processes in which pi S is determined on the basis of the prob-

abilities of a state P
.j /
i given the previous (p0.T / W p1.T / W � � � W pN .T /) and

optionally the penultimate (p0.T � 1/ W p1.T � 1/ W � � � W pN .T � 1/) user state /

turn. In the calculation of these probabilities, an amplification factor ˛ � 1 is used

to emphasize the contribution of tri-turn combinations as opposed to bi-turn combi-

nations. Moreover, a further amplification factor ˇ � 1 is integrated to emphasize

the significance of sub-models containing a higher number of parameters. Actually,

such a weighting can be fitted individually for each sub-model, however, to keep

things simple, we suggest to use ˇn�1 as an amplification factor for a sub-model

containing n parameters. I.e., the contributions from the plain sub-models would be

multiplied by 1 and the probabilities from the sub-model including all parameters

would be multiplied by ˇN �1.

Having calculated all M0 C M1 C � � � C MN possible probabilities, N C 1 prob-

ability distributions are given for a random process generating a number ri 2 Œ0; 1�,

0 � i � N which determines the respective system state. Four exemplary distribu-

tions for N D 3 additional dialogue control parameters are illustrated in Fig. 3.37.

Each region in the distributions is labeled with the respective P
.j /
i which will

be selected if the value of ri is in that region. The width of each region equals the

probability P.P
.j /
i / and the values of the region boundaries tj are rounded to two
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Fig. 3.37 Illustration of the N C 1 selection sub-processes in an extended dialogue model with
M0 D 4, M1 D 3, M2 D 2 and M3 D 3

digits after the decimal point. If, e.g., the random processes generate r0 D 7834,

r1 D 0:5397, r2 D 1265 and r3 D 0:8943, the respective system output would be

according to P
.3/
0 W P

.2/
1 W P

.1/
2 W P

.3/
3 .

3.10 Discussion

There exist a large variety of approaches to integrate dialogue-influencing param-

eters in spoken dialogue. In this chapter we have picked up existing approaches

to adaptive dialogue management and we have proposed stochastic dialogue mod-

els exceeding the flexibility of rule-based dialogue strategies. The stochastic model

behind this idea constitutes a basis for our emotional dialogue model described

in Sections 3.8 which we refer to as semi-stochastic model due the fact that all

states (fields and emotions) including their properties are predefined whereas the

transitions between the states are defined by probabilities. Instead of proposing the

ultimate fashion how to integrate emotions in the dialogue, we propose this model

as a basis for dialogue adaptation.

All of proposed models have in common the probability P.Ot jIt�1; It�2; : : :/

of a system reaction Ot at time t given previous input It�1, It�2, : : : . In the first

case, Ot is the confirmation strategy which depends on the previous confidence

measures. In the latter case, Ot is a dialogue field with an attached emotional state

the probability of which depends on the fields previously addressed by the user and
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the previously recognized emotional states. In both scenarios, we face the problem

that the output of upstream modules such as speech and emotion recognizers is

error-prone which leads to problems in rule-based approaches whereas stochastic

models can be trained (using appropriate material) to handle recognition errors as

well. Nevertheless, the quality of these models stands or falls with the complexity

and quality as well as the availability of the training material.



Chapter 4

Hybrid Approach to Speech–Emotion
Recognition

In order to be able to be responsive to the user, it is vital for human–computer

interfaces to correctly determine a user’s current emotional state. To perform this

emotion recognition, a large variety of ideas and approaches utilizing different

modalities can be implemented. Among these, typically, audio and video data or

signals from biosensors apply in state-of-the-art systems. With the aid of cameras,

the user’s physical behavior, including facial expressions or gestures, is captured

and correlated to the respective emotional state (Ioannou et al. 2005; Busso and

Narayanan 2006). Similarly, physiological signals like skin conductance, heart rate,

blood pressure, finger temperature or an electromyogram are also involved in the

recognition of the user’s emotional state (Nasoz et al. 2003; Peter and Herbon 2006).

Depending on the application, different modalities are utilized. Emotion recog-

nition based on gestures or facial expression, e.g., applies in tele-learning or in

techniques enhancing drivers’ or pilots’ safety where users typically do not per-

manently talk. Measuring physiological signals is only possible in scenarios where

users explicitly agree to be monitored as there are sensors attached to their wrists,

upper arms or faces. In many applications, however, the use of biosensors or cam-

eras is rather impractical or even impossible, e.g., in telephony-based SLDSs. Thus,

in this chapter we discuss the recognition of emotions based on features extracted

from the speech signal. At first, we describe the signal processing and the extraction

of emotion-related features. Then we give details on classification methods and the

actual recognition process.

Due to the fact that our emotion recognizer is closely related to speech recog-

nizers, especially in terms of feature extraction and classification, we will also go

into detail about algorithms and approaches, which have been originally developed

for speech recognition and are now typically used in this area, before describing

their application in our emotion recognizer. We propose a system architecture as

illustrated in Fig. 4.1. In addition to stand-alone speech and/or emotion recognizers,

described in Sections 4.4 and 4.5, we describe our integrated approach combining

both speech and emotion recognition, and we show, how both speech and emo-

tion recognizers can benefit from such a cooperation. This proposed combination is

also motivated by the similarity of speech and emotion recognition regarding signal

processing and classification. Thus, we also describe selected aspects of plain

speech recognition before going into detail about our emotion recognizers.

J. Pittermann et al., Handling Emotions in Human-Computer Dialogues,
DOI 10.1007/978-90-481-3129-7 4, c Springer Science+Business Media B.V. 2010
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Parsing

Speech Synthesis Text Generation

Speech Recognition

Dialogue Manager
Emotion

Recognition

User State

Manager

Fig. 4.1 SLDS applying a combined speech–emotion recognizer (Pittermann et al. 2007b)

Independent of the different speech signal analysis and classification methods,

emotional states, moods or at least tendencies may also be determined from the

linguistic content of texts. In Section 4.7, we outline an approach to recognize emo-

tions with the aid of grammars. This includes the integration of such a recognizer

with our speech–emotion recognizers as described in Sections 4.5 and 4.6.

4.1 Signal Processing

Before the actual recognition of speech or emotions is performed, the speech signal

needs to be processed, i.e., relevant features need to be extracted.

In regular speech recognition the commonly used features are either coefficients

calculated with the aid of a linear prediction analysis (Makhoul 1975) or cepstral

features determined from the output of a filterbank analysis or perceptual linear

prediction coefficients (Hermansky 1990) in different variations (Hermansky and

Morgan 1994). Furthermore, energy measures and time derivatives of the features

are included. Profound explanations of the feature extraction techniques are given in

Fallside and Woods (1985), Deller et al. (1993), Robinson (1997a) and Young et al.

(2006).

For the recognition of emotions, further types of features such as prosodic ones

are used. Thus, having outlined the speech signal preprocessing and the charac-

teristics of the speech signal leading to linear prediction, we concentrate on the

description and calculation of cepstral coefficients and on the extraction of prosodic

features as these are used in our system.

Considering speech signal processing from the information theoretical point of

view, the speech signal may be regarded as a message consisting of information,

redundancy and irrelevance. Here, we assume that the message originates from a

source which produces events e1, e2, . . . with different probabilities p1, p2, . . . .
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Constituting the relevant proportion of such a message, the information I.ei/ of an

event ei is described by

I.ei / D � log2 pi ; (4.1)

and the expectation value of the information of all events is defined as the entropy

H.X/ of the source where

H.X/ D
X

i

pi � I.ei / D �
X

i

pi � log2 pi : (4.2)

The entropy is maximal (H.X/ D Hmax) when all probabilities are equal. Redun-

dancy is then defined as the difference between Hmax and H.X/. Irrelevance can

not be described mathematically as its definition actually depends on the perception

of a human viewer or listener. This plays a role in so-called lossy compression tech-

niques which apply in image, video or audio container formats like JPEG, MPEG

or MP3 (cf. Schroeder et al. 1979; Wallace 1991) where irrelevance is removed to a

certain extent. For pure data transmission it is vital that all information is transmitted

without corruption, i.e., there, lossless compression techniques only reducing redun-

dancy apply. The use of such source coding methods for information transmission

is circumstantially described in Johannesson (1988) or Reza (1961).

While the above mentioned coding techniques could theoretically be applied

for speech or emotion recognition as well, their effect on the recognition perfor-

mance would be mainly negative. This is not due to the low compression provided

by such methods but mainly due to characteristics of speech signals which dif-

fer strongly from those of a regular random signal as typically presumed from

an information source. Thus, contrarily, different coding techniques are applied to

extract relevant characteristics (features) from the speech signal. The most promi-

nent representatives for speech recognition are Mel-frequency cepstral coefficients

(MFCCs). These are calculated every 10 ms and the feature vector typically con-

tains 39 elements (including energy, first and second order regression coefficients)

which seems to be suitable to describe phoneme state transitions in Hidden Markov

Models (HMMs) (Young et al. 2006).

Features such as MFCCs are typically used in automatic speech recognition, as

these cater for a robust and reliable recognition performance independent of the

speakers and the accompanying different characteristics of voices which also change

according of the speakers’ emotional states. Intuitively, one would now argue that

such features are rather not useful for the recognition of emotions and, thus, instead,

rather prosodic or acoustic characteristics like pitch, intensity (energy, loudness),

hamonicity, jitter, etc., could be used. Depending on the classifier different time in-

tervals for the calculation of the features may apply. Whereas for HMMs which are

used in speech recognition and which allow for temporal aspects the features can be

calculated at theoretically any rate from once per sample to once per utterance, clas-

sifiers like feedforward neural networks settle for one feature vector per utterance.

Thus, various approaches to optimizing the feature set with respect to computa-

tional complexity and recognizer performance have been presented in literature. A

qualitative investigation on how prosody and its attitudinal effects relate to certain
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emotions has been presented in Wichmann (2000). Among these intonationally

relevant cues are, e.g., pitch (a wide range is commonly associated with strong

emotions, a narrow pitch range plus positive orientation might indicate boredom)

or nasalized sounds and pitch contour (high fall vs. low fall). Similar relations be-

tween tones and emotional or attitudinal labels have been discussed by Cauldwell

(2000) based on observations presented in, e.g., Crystal (1969). Among these find-

ings are that, e.g., falling tones relate to anger, impatience, irritation or satisfaction,

rise-falling tones relate to excitement, pleasure or amusement whereas a leveled

constant tone indicates boredom. The same line is taken by Potapova and Potapov

(2005), who describe different emotional states by the average pitch level of an ut-

terance, pitch level of stressed syllables and the pitch range as well by tendencies

of the speech rate. For the distinction of emotional / non-emotional utterances, the

pitch contour on word and turn levels is considered in Rotaru and Litman (2005).

Their results show that compared to turn-level features, the use of word-level pitch

features leads to a better emotion recognition performance. Fotinea et al. (2003)

suggest to determine the characteristics in four different sub-bands of the speech

signal and to include vocal cord openings in the estimation of the pitch contour.

Even in tonal languages such as Chinese, the shape of pitch curves correlates with

emotional states as described in Yang and Campbell (2001).

As for the selection of features used in our experiments we stick with the majority

of the approaches described above limiting our considerations on acoustic, prosodic,

spectral and linguistic characteristics. Particular attention is paid to the robustness as

well as to an efficient computation of these features. Our choice of features for plain

emotion recognition includes prosodic and acoustic features such as pitch, intensity

and formants plus their computational statistics such as mean, minimum, maximum,

variance, etc. For our hybrid approach to speech–emotion recognition, we also in-

clude Mel-frequency cepstral coefficients as these benefit a robust word recognition

performance of our system.

4.1.1 Preprocessing

Before the actual features are calculated, the speech signal undergoes certain pre-

processing steps. Among these are pre-emphasis and windowing (Nuttall 1981).

When people speak, the speech signal experiences a certain spectral roll-off due

to the radiation effects of the sound from the mouth. In the spectrum the signal

energy of speech generally decreases as the frequency increases. Especially in the

calculation of linear prediction coefficients this leads to the problem that important

information about specific sounds are lost, as the analysis wrongly focuses on the

predominant low frequencies. To avoid that effect, the signal is flattened with the

aid of a low-pass (“pre-emphasis”) filter described by

y.n/ D x.n/ � ˛ � x.n � 1/; (4.3)

where the factor ˛ typically, also in our system, defaults to 0:97.
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In the calculation of the features, on the one hand, the temporal aspects of the

speech signal shall be accounted for. But also, on the other hand, some operations

require a stationary signal. Thus, the quasi-stationarity of speech is exploited and

the speech signal is subdivided into small blocks in which the signal is assumed

to be stationary. The signal is multiplied by a window function, like the Hamming

window, which is a raised cosine defined as

w.n/ D 0:54 � 0:46 � cos

�

2�n

N � 1

�

; 0 � n � N � 1; (4.4)

where N is the window size. Outside the defined range, w.n/ is set to 0. Considering

the dependency between adjacent samples, overlapping windows are used as shown

in Fig. 4.2. Within these frames, defined by the respective windows, feature param-

eters are calculated. For speech signals, the quasi-stationarity is fulfilled within time

spans of approximately 20 to 30 ms. Thus, in speech applications, the window size

(window duration) is typically 25 ms and the frame period, i.e., the time between

successive frames, is 10 ms.

Further preprocessing steps include the analog-to-digital conversion (quantiza-

tion) as well as noise reduction procedures like spectral subtraction, where an

estimated spectrum of the noise is subtracted from the spectrum of the noisy speech

signal (Linhard and Haulick 1999).

n

w(n)

10 ms

25 ms

Fig. 4.2 Overlapping window function for speech signal preprocessing
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4.1.2 Linear Prediction

The linear prediction (LP) analysis is employed to estimate future values sp.n/ of

the discrete-time speech signal as a linear function of previous samples’ values.

This linear function is typically implemented as a finite impulse response filter with

impulse response h.n/, so that sp.n/ is calculated as follows:

sp.n/ D
m
X

iD1

h.i/ � s.n � i/: (4.5)

The optimal filter coefficients are calculated every 10 or 20 ms based on a minimum

mean square algorithm, demanding that the power of the prediction error e.n/ D
s.n/ � sp.n/ is minimal. This demand can be met by employing the autocorrelation

of the signal as shown in Yule (1927) or Hermansky (1990).

4.1.3 Mel-Frequency Cepstral Coefficients

The human ear perceives frequencies non-linearly across the spectrum. In a percep-

tual experiment conducted by Stevens et al. (1937) listeners were asked to define an

equidistant scale of pitches according to their subjective impressions. Based on the

results, the mel scale has been defined as

m D 2595mel � log10

�

1 C f

700

�

; (4.6)

where f is the frequency in Hz.

This scale applies in the filterbank analysis which is used to obtain a non-linear

frequency resolution of a speech signal. In this filterbank, p filters, typically trian-

gular filters, are distributed according to the mel scale of equidistant frequencies as

shown in Fig. 4.3 (see also Young et al. 2006).

In the analysis, the windowed speech signal is Fourier-transformed and the fil-

terbank coefficients mi , 1 � i � p are calculated by correlating the magnitudes

of transformed signal jS.N /j with the respective triangular filter. I.e., if one of the

triangular filters is described by Ti .N / in the frequency domain, mi is calculated as

follows:

mi D
1
X

N D�1

jS.N /j � Ti .N /: (4.7)

Alternatively, instead of the signal magnitude, also the signal power jS.N /j2 or

the logarithm of the signal magnitude log jS.N /j (leading to “log filterbank coeffi-

cients”) can be included in the formula.
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f
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Fig. 4.3 Mel-scale filterbank

In most speech (recognition) applications, however, cepstral features are em-

ployed. The cepstrum analysis (see Bogert et al. 1963; Oppenheim and Schafer

2004) typically applies when the effects of the signal source and of a (eventually

time-variant) system’s transfer function need to be distinguished. The cepstrum is

defined as the inverse Fourier transform of the logarithm of the Fourier transform of

a time signal.

Mel-frequency cepstral coefficients combining mel-filterbank analysis and cep-

strum analysis are obtained by applying a discrete cosine transform to the log

filterbank coefficients mi as

cj D
p

2=p

p
X

iD1

mi � cos

�

�j

p
.i � 0:5/

�

; (4.8)

where p is the number of filterbank coefficients (see Young et al. 2006).

4.1.4 Prosodic and Acoustic Features

Conventional speech recognition exclusively aims at the text regardless of the man-

ner and the speaker. In order to recognize emotional states, however, it is particularly

necessary to determine how the respective text is expressed. Most of the relevant

acoustic properties are described by prosodic parameters like intonation and stress

(see Bolinger 1989; ’t Hart et al. 1990; Burzio 1993; Kochanski et al. 2005).

In tonal languages like Chinese (cf. Sun et al. 2006) or Thai, pitch (tone) is

used to distinguish different meanings of a word or a syllable. E.g., in Mandarin,
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the syllable “ma” has four different meanings including “mother” and “horse”

depending on the applied pitch contour (high pitch, rise, fall & rise, fall) and it may

also denote a question when pronounced in a neutral tone (low pitch). In contrast,

European languages like English or German are referred to as intonation languages

as in these language pitch is primarily used in a syntactical context, e.g., to distin-

guish questions from statements (Ladd 1996; Gussenhoven 2004; Jun 2005).

Moreover, in intonation languages, prosody is also employed, among syntax dis-

tinctions including irony (see Tepperman et al. 2006) and surprise, to express the

speaker’s emotional state. In SLDSs this is, on the one hand, utilized in speech

synthesis to make the utterance sound more “natural” (Rank and Pirker 1998; Iida

et al. 2003), but also, on the other hand, to detect the user’s current emotional state

(McGilloway et al. 1995; Koike et al. 1998; Fujisawa and Cook 2004).

Without having to extract the (textual) content or the meaning of a speech sig-

nal, prosodic and acoustic features can be extracted from the signal. Among these

features are pitch (fundamental frequency) and intensity (volume), constituting the

most relevant ones, as well as formants, jitter, shimmer, harmonicity, duration and

speech rate. The formants represent the harmonics, i.e., integer multiples of the fun-

damental frequency, created by the resonance properties of the human vocal tract.

Jitter, shimmer and harmonicity describe the voice “quality”, where jitter considers

the variation of the fundamental frequency and shimmer considers the peak ampli-

tudes (cf., e.g., Baken and Orlikoff 2000). Harmonicity is the harmonics-to-noise

ratio defined by energies of the periodic part and the noise in a speech signal. In

general, for periodic signals, harmonicity is equivalent to the signal-to-noise ratio.

Further processing is required, e.g., to determine the speech rate and the duration.

To obtain these parameters, it is essential to know the text content of the utterance to

compare the length of the contained words or the number of words per time unit to

standard values listed in tables or averaged over language- and domain-specific

corpora.

The pitch distribution functions of different emotions are displayed in Figs. 4.4

for female speakers and 4.5 for male speakers. The diagrams in both figures are ob-

tained by calculating the probability density functions of the pitch parameters of all

utterances in the respective data subset (male/female, anger/. . . /sadness) taken from

the Berlin Database of Emotional Speech (Burkhardt et al. 2005), also described in

Section 6.3, provided by the Technical University of Berlin. Comparing the pitch

distributions, it can be observed that, for both female and male speakers, there exist

differences but also similarities between certain emotion pairs: anger and happi-

ness as well as boredom and neutral show strong similarities, whereas, e.g., sadness

and happiness show strong differences. The pitch distributes in a larger range for

anger, fear and happiness and the most frequent frequencies are around 200 Hz –

300 Hz. For boredom, neutral and sadness, the pitch distributes in a smaller range

and the most frequent frequencies are around 100 Hz to 200 Hz. Comparing female

and male speakers, it can be observed that the respective distributions have similar

shapes but are shifted due to the fact that men typically speak with a lower-pitched

voice than women.
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Fig. 4.4 Pitch distributions of different emotions (female speakers)

The application of speech rate and duration in emotional speech is illustrated in

Fig. 4.6. Both diagram show the waveform, also taken from the Berlin Database,

of a woman pronouncing the sentence “Die wird auf dem Platz sein, wo wir sie

immer hinlegen” (“It will be on the place where we always put it.”) in an angry

and a sad fashion. At a first glance, it is striking that the angry utterance (2.52 s)

is of considerably shorter length than the sad utterance (3.93 s). This is, on the one
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Fig. 4.5 Pitch distributions of different emotions (male speakers)

hand due, to the long pauses between certain words (“Die wird auf dem PAUSE

Platz sein, PAUSE wo . . .”) leading to a lower speech rate, but also, on the other

hand, due to longer duration of single words. In this specific sentence with eleven

words, the speech rate is 4.4 words per second for anger and 2.8 words per second

for sadness (Fig. 4.6).
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Fig. 4.6 Duration comparison of a sentence uttered in an angry and a sad fashion

In the majority of current speech recognition systems, MFCCs, perceptual linear

prediction (PLP) coefficients or optimized parameters based on these principles are

employed. To enhance these systems’ performance, time derivatives are appended

to the feature parameters (Veeravalli et al. 2005). The “regular” speech recognition

feature vectors typically consist of 12 MFC coefficients plus an energy measure.

First and second order regression (delta and acceleration) coefficients are calculated

as difference quotients, typically including 2 previous and 2 succeeding frames (see

Young et al. 2006).

In addition to the acoustic and prosodic features described in the previous section,

also their computational statistics are of interest in the recognition of emotions.

These parameters include minimum, mean and maximum values as well as standard

deviation and range of the respective features. A comparison of minimum, mean and

maximum values of pitch and intensity for different emotions is shown in Fig. 4.7. In

both diagrams the overall range minimum, mean and maximum values of all female

or male speakers are represented by black bars (female speakers) and white bars

(male speakers). For the sake of clarity, the values of two representative speakers

are indicated with ‘x’ markers. Looking at the pitch diagram in Fig. 4.7 (a), it can

again be observed that anger and happiness are among the emotions which contrast

most with neutral, whereas boredom is particularly similar to neutral. Moreover,

it can be seen that female and male speakers do not only differ in pitch in general

but also in the way how an emotion is expressed. E.g., looking at the pitch range, i.e.,

the difference between minimum pitch and maximum pitch – for male speakers the

pitch range of sad utterances is smaller than the range of neutral utterances, whereas

for female speakers the pitch range of sad utterances is larger than that of neutral

utterances.

Emotions are also distinguishable regarding intensity as shown in

Diagram 4.7 (b). As expected it can be observed that angry or happy persons

tend to speak louder than bored or sad persons. However, in many speech corpora,

the recordings are normalized which means that the intensity is more or less equal

for all emotions. Also when the speakers do not keep to a predefined distance to

the microphone, the intensity varies significantly. Consequently, in the respective
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Fig. 4.7 Computational statistics of pitch and intensity for different emotions

experiments, the intensity feature will not have a strong impact on the recognizer

performance, however, it can be observed that, e.g., the intensity range of an angry

or happy speaker is larger than the range of a neutral utterance. Similarly, for the

other features, also not only minimum and maximum values but range is partially

included in the feature sets.

The parameters described above and their “derivatives” sum up to a total of 63,

3 � 13 MFC coefficients plus 24 acoustic/prosodic parameters. Thus, theoretically,

there exist 263 � 1�1019 combinations that may form feature vectors for speech

and/or emotion recognition. As it is obviously impractical to carry out experiments

with all these feature combinations, we restrict our considerations to a limited num-

ber of combinations (feature vectors) as described in Fig. 4.8.

There exists a large variety of software tools to extract certain features from the

speech signal. For our experiments, we use the HCopy tool included in the Hidden

Markov Model Toolkit (HTK, Woodland and Young 1993; Young et al. 2006),

which allows single file and batch conversions from standard RIFF waveforms or

HTK-parameter waveforms to MFCCs, LPCs, PLP coefficients and further feature

types which are commonly used in automatic speech recognition. The prosodic and

acoustic features are extracted with the aid of Praat (see Boersma 2001, 2002), a

software for phonetical purposes. Praat allows the calculation of multiple features

like the ones described above, as well as their statistical computations. The calcu-

lations can either be performed and controlled from a graphical user interface or

in batch mode controlled by Praat scripts containing menu and action commands.

Apart from speech analysis and feature calculations, the software can also be used

for speech synthesis, labeling and to illustrate the calculated features in a variety of

diagram types.

The periodic change of pitch, intensity and the MFCC features of an angry and

a sad utterance (both containing the same text), taken from the Berlin Database of

Emotional Speech (Burkhardt et al. 2005), are illustrated in Fig. 4.9. At first glance,

obvious differences between both emotionally uttered sentences in terms of the
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MFCC-13: 13 MFC coefficients

mfcc0 mfcc1 . . . mfcc12

MFCCDA-39: 13 MFC coefficients plus their first (delta, d) and second time derivatives
(acceleration, a)

mfcc-13 mfccd0 mfccd1 . . . mfccd12 mfcca0 mfcca1 . . . mfcca12

PAC-24: 24 prosodic and acoustic coefficients: pitch (p), formants (f), intensity (i), jitter (j),
harmonicity (h), pitch in voiced parts (vp) and the respective computational statistics
including minimum, maximum, range, mean and standard deviation (cs)

p f1 f2 f3 i j h vp pcs ics vpcs

MFCPAC-40: 39 MFC-DA coefficients and pitch

mfcc-39 p

MFCPAC-41: 39 MFC-DA coefficients, pitch and intensity

mfcc-39 p i

MFCPAC-44: 39 MFC-DA coefficients, pitch, intensity and formants

mfcc-39 p i f1 f2 f3

MFCPAC-46: 39 MFC-DA coefficients, pitch, intensity, formants, jitter and harmonicity

mfcc-39 p i f1 f2 f3 j h

MFCPAC-48: 39 MFC-DA coefficients, pitch, intensity, formants, minimum pitch, maxi-
mum pitch, mean pitch and pitch deviation

mfcc-39 p i f1 f2 f3 pmin pmax pmean pdev

MFCPAC-52: 39 MFC-DA coefficients, pitch, intensity, formants, minimum pitch, maxi-
mum pitch, mean pitch, pitch deviation, minimum intensity, maximum intensity, mean
intensity and intensity deviation

mfcc-39 p i f1 f2 f3 pmin pmax pmean pdev imin imax imean idev

MFCPAC-56: 39 MFC-DA coefficients, pitch, intensity, formants, minimum pitch, maxi-
mum pitch, mean pitch, pitch deviation, minimum intensity, maximum intensity, mean
intensity, intensity deviation, minimum voiced pitch, maximum voiced pitch, mean
voiced pitch and voiced pitch deviation

mfcc-39 p i f1 f2 f3 pmin pmax pmean pdev imin imax imean idev

vpmin vpmax vpmean vpdev

MFCPAC-63: 39 MFC-DA coefficients and all 24 PA coefficients

mfcc-39 pac-24

Fig. 4.8 List of feature combinations considered in our experiments (Pittermann and Pittermann
2006d; Pittermann et al. 2007b)

respective features can be observed as previously discussed: The duration of the sad

utterance is approx. 55% longer than the duration of the angry utterance, the pitch

is significantly lower and spans a very small range. Also, differences in the MFCC

parameter values can be noticed. Concerning intensity, no particular difference can

be observed which is due to the fact that the utterances have been normalized to a
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Fig. 4.9 Illustration of pitch, intensity and MFCC features of an angry and a sad utterance

common power density (Pittermann and Pittermann 2006a). The visible discontinu-

ities and the omission of values in the pitch curves occur in unvoiced parts of the

utterance where noise is the predominant share in the speech signal. To avoid un-

wanted side-effects in the further processing steps, the pitch curves are commonly

smoothed over a short period.

4.2 Classifiers for Emotion Recognition

Having extracted relevant and representative features X , these need to be assigned

to an emotion E such that the probability P.EjX/ is maximized. Here, a large

variety of classifier types seem suitable, a few of which are actually implemented in
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speech and emotion recognizers: Hidden Markov Models, artificial neural networks,

support vector machines (SVMs, cf. Cristiani and Shawe-Taylor 2000), k-nearest

neighbor (KNN, cf. Dasarathy 1991) classifiers, etc. In this section, we give a short

overview on HMMs and ANNs as these constitute the most prominent classifiers

in current emotion recognizers and as we also use HMMs in our speech–emotion

recognizers the remainder of this chapter.

4.2.1 Hidden Markov Models

Hidden Markov Models are currently applying in speech recognition and under-

standing (see Rabiner 1989), image classification (see Li et al. 2000), bioinformatics

(see Durbin et al. 1999) and various other disciplines. With respect to our speech–

emotion recognizer which also employs HMMs, we shortly describe the most

prominent characteristics of this classifier.

A time discrete stochastic process X.n/; n � 0 taking non-negative integer val-

ues in; n � 0, is called a Markov process if it holds that

P
�

X .n0 C 1/ D in0C1jX.n0/ D in0
; X.n0 � 1/ D in0�1; : : : ; X.0/ D i0

�

D P
�

X.n0 C 1/ D in0C1jX.n0/ D in0

�

; (4.9)

for all n0 � 0 (Markov 1907; Howard 1971). Furthermore if the above described

probability satisfies

P ŒX.n0 C 1/ D i jX.n0/ D j � D P ŒX.1/ D i jX.0/ D j � D aij ; (4.10)

for all n0; i; j � 0, this Markov process is called homogeneous.

Assuming that the values in of a Markov process X.n/ form a countable set

S, a sequence X.1/; X.2/; : : : is called a Markov chain. Such a Markov chain is

typically defined by its state space S D fs1; s2; : : :g. If S is a finite set, the transition

probabilities may be combined to a matrix A.

Markov chains or models are extensively used in various disciplines of research,

not only for pattern recognition but also to describe dependencies in languages,

e.g., used for data compression (see Shannon 1948), or to model complex dynam-

ical systems. One of the most active and proliferous implementations of a Markov

chain is Google’s PageRank (cf. Page et al. 1998) which considers the whole world

wide web as a large state space and calculates scores for all websites (i.e., states)

depending on how popular these are among other websites.

In most applications like pattern recognition, the dimension of Markov chains

is considerably smaller. Therefore we assume that, unless otherwise indicated, the

Markov chains are (time-)homogeneous and that their state space S is finite in the

following considerations. Then the chain can be described by S D fs1; : : : ; sng and

A D
�

aij

�

where i; j 2 S.
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Fig. 4.10 Directed graph of a
three-state Markov chain
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As shown for a simple example in Fig. 4.10 a Markov chain may be represented

by a directed graph. Here S is formed by three states f1; 2; 3g and A is a 3�3 matrix

A D

2

4
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a21 a22 a23

a31 a32 a33

3

5 : (4.11)

An HMM is a statistical model involving two stochastic processes: a Markov

chain characterized by S and A and a stochastic process generating output symbols

according to a state-dependent probability density function (pdf). The parameters of

this model, i.e., A and the pdfs, however, are unknown (hidden) and the state is not

visible implicating the task to determine these parameters on the basis of observed

output.

An HMM may also be represented by a directed graph (see Fig. 4.11) and it is

formally defined by a five-tuple

M D .S; A; �;O;B/ ; (4.12)

where S and A are state space and transition probabilities of the Markov chain, �

is a pdf which includes probabilities �i of i 2 S being the entry state. O is the

feature space, i.e., a finite set of possible observations o.t/ at instant t � 0 and

B D fb1; : : : ; bng is the set of output pdfs of the states.

Depending on the application, different types of HMMs can be employed. An

HMM is called ergodic, when every state j of the model can be reached from every

other state i ¤ j in a finite number of steps. E.g., the model shown in Fig. 4.11 is

a special case of an ergodic HMM as all states are adjacent to each other and can

therefore be reached within one step. In this case all elements aij of the transition

matrix are non-zero, aij > 0.

Ergodic models may be used, e.g., to model stationary signals the properties of

which do not change over time. However, in case of time-variant signals like speech,

so-called left-to-right (LR) models (see Fig. 4.12) have been found more suitable
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Fig. 4.11 Directed graph of a
three-state Hidden Markov
Model
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(Bakis 1976). In the state sequence of such a model, the states proceed from left

to right, i.e., the property of the observation changes, as time increases (Rabiner

1989).

When employing HMMs in classification applications such as speech (or emo-

tion) recognition, there arise three fundamental problems (see Baum et al. 1970;

Rabiner 1989) that need to be solved:

1. Evaluation/Decoding: How can the probability P.OjM / of an observation se-

quence O D o1; o2; : : : ; oT given a model M be calculated?

2. Unveiling hidden characteristics: How can the optimal corresponding state se-

quence S D s1; s2; : : : be determined given an observation sequence O D o1; o2;

: : : ; oT ?

3. Training: How can the model parameters (A; �;B) be adjusted to optimize

P.OjM /?

The evaluation or decoding problem poses the question how well an observation

sequence matches a given model. I.e., the solution to this problem facilitates the

selection of the best-matching model among a set of competing models and can be

described by the “best” path through a graph formed by one or multiple HMMs. As

a brute-force approach, i.e., testing all possible state and observation combinations,

is more or less unfeasible, the forward part of the Forward-Backward algorithm is
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applied (Baum and Eagon 1967; Baum and Sell 1968). The probability of a partial

observation sequence o1; : : : ; ot and state i at time t

at .i/ D P Œo1; : : : ; ot ; st D i � ; (4.13)

is called forward probability. Starting with a1.i/, which is the product of the initial

probability �i and the probability of observation o1 for state i , all at .i/ are itera-

tively estimated traversing the trellis of the model’s possible state transitions until

aT .i/ is determined. Then the solution is

P.OjM / D
n
X

iD1

aT .i/: (4.14)

Such a trellis representing all possible state transitions in a Hidden Markov Model

for an observation sequence length T is shown in Fig. 4.13.

In order to solve the second problem, the term “optimal” needs to be defined. One

approach includes the choice of the most likely state for each time t . This, however,

may lead to improbable or even impossible state sequences, especially when cer-

tain transitions probabilities aij are zero. Thus usually the Viterbi algorithm is used

to find the single best state sequence, i.e., to maximize P.SjO; M / (Viterbi 1967).

Also being implemented by a trellis of the model’s state transitions, the procedure

is similar to the forward part of the Forward-Backward algorithm, where the sum-

mation in Equation (4.14) is replaced by a maximization of path metrics.

The training problem can not be solved analytically, however, iterative proce-

dures may be employed to locally maximize P.OjM /. For the training of HMMs

for automatic speech recognition (see Young et al. 2006), typically, the Baum-Welch

algorithm (Welch 2003) is used to re-estimate the model parameters once they are

initialized. For the initialization it is assumed that the observations are equally dis-

tributed among the states, e.g., if there are three states and nine observations, the first

three observations are assumed to relate to the first state, and so on, and observation

probability functions (pdfs) are calculated for each state. Once a first estimate is de-

termined, it can be refined by realigning the observations using the Viterbi algorithm

or the Baum-Welch algorithm and recalculating the pdfs.

Fig. 4.13 Trellis of possible
state transitions in an HMM
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For the observation probability density function (pdf) there exist several models

ranging from a single Gaussian distribution to highly complex shapes involving a

huge number of parameters. In HMMs used in signal processing, speech recognition

or econometrics typically include mixture models

f ?.x/ D
M
X

iD1

wi � fi .x/; (4.15)

where a complex pdf is approximated by f ?.x/ which is a combination of M “sim-

ple” pdfs fi .x/, called mixtures. These pdfs are differently weighted with factors

wi , where
P

i wi D 1. When fi .x/ are Gaussian distributions, which are in the

one-dimensional case described by

fi .x/ D g.x; �i ; �i / D 1p
2� � �i

� exp

�

.x � �i /
2

�2
i

�

; (4.16)

the model is called Gaussian Mixture Model (GMM).

Figure 4.14 shows three mixtures and the resulting pdf of an exemplary GMM.

A detailed description of mixtures of distributions including model parameter esti-

mation algorithms is given in Marin et al. (2005).

4.2.2 Artificial Neural Networks

Inspired by the network structure of the human brain, an ANN is commonly de-

scribed as a network of processing elements (artificial neurons) and is typically used

f1(x)

f2(x)

f3(x)

f *(x)

x

f(x)

Fig. 4.14 Probability density functions of a GMM
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Fig. 4.15 Structure of an
artificial neuron x1
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to recognize patterns or to describe complex relationships between (observed) M -

dimensional input and N -dimensional output.

An artificial neuron (see Fig. 4.15) constitutes the basic unit of an ANN receiving

an m-dimensional vector of input signals x1; : : : ; xm and producing an output signal

y according to

y D ˚

 

b C
m
X

iD0

wi � xi

!

; (4.17)

where b is a bias value and w1; : : : ; wm are the input weights. ˚.x/ is a typically

non-linear function called activation function. Depending on the application, differ-

ent activation functions can be applied. The simplest function as used by McCulloch

and Pitts (1943) is a threshold function

˚.x/ D
�

0 x < �

1 x � �
; (4.18)

where � is a specified threshold. Other activation functions include the sigmoid

function or the hyperbolic tangent.

Formed by multiple artificial neurons which are interconnected and which are

able to operate in parallel, an ANN can be described by a function y D f .x/

mapping input x to output y. This function may be composed of other functions,

these again can be composed of functions, etc., and these functions and subfunctions

can be represented by one or more artificial neurons.

The structure of an exemplary artificial neural network with four input nodes and

three output nodes is depicted in Fig. 4.16. There can be a different number of lay-

ers between input and output nodes, these layers are commonly called hidden layers.

ANNs that can be described as directed graph without cycles are called feedforward

ANNs as they propagate the data linearly from the input nodes to the output nodes.

Feedforward networks are typically arranged in layers putting together neurons that

operate in parallel. Popular models among feedforward networks are single- and

multi-layer perceptrons. ANNs that show cycles and thus, unlike feedforward net-

works, include certain temporal dependencies are called recurrent ANNs.

One characteristic of ANNs which is especially taken advantage of in pattern

or sequence recognition is their learning capability. I.e., using an appropriate ANN
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Fig. 4.16 Structure of an
Artificial Neural Network

x1 x2 x3 x4

y1 y2 y3

...

and given a set of observations x and the desired output y, a function Of .x/ can be

deduced which approximates an unknown and/or complex function y D f0.x/ best.

To accomplish the learning process, first a cost function c.f / which is minimal for
Of .x/ needs to be defined. E.g., given a corpus of N labeled observations x1; : : : ; xN

and the respective output y1; : : : ; yN , a cost function can be defined as the mean-

squared error, and Of .x/ can be determined as

Of .x/ D arg min
f 2F

 

1

N

N
X

iD0

jf .xi / � yi j2
!

; (4.19)

where F is a class of functions to be considered. This type of learning process is

commonly applied in classification applications and is called supervised learning.

Further learning methods used in coding or control engineering are unsupervised

learning where y is not given and reinforcement learning where x is not explicitly

given but generated by a Markov process. Concise descriptions of artificial neural

networks and their use in signal processing and classification applications are given

in Abdi et al. (1999); Masters (1994), and Ripley (1996).

4.3 Existing Approaches to Emotion Recognition

In current research there exist several approaches to classify and recognize emo-

tions, ranging from gestures and facial expressions interpretation in multimodal

systems (cf., e.g., Martin et al. 2006) to physiological measurements (see Picard

2000b; Bosma and André 2004; Kim et al. 2004a), semantic analyses or combina-

tions of these modalities. With respect to the integration of emotions into SLDSs,

we focus our considerations on the recognition of emotions from spoken user input.

This includes recognition on the basis of speech signals as well as analyses of the
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textual content determined by a preceding speech recognizer. The bar is raised by

Schröder (2000) who gives a concise overview on the human emotion recognition

performance on affect bursts where an average emotion recognition rate of 81% is

achieved for ten different emotions.

A good overview on the performance of speech-based emotion recognizers is

given in Kwon et al. (2003). The comparison includes support vector machines,

linear discriminant analysis, quadratic discriminant analysis and Hidden Markov

Models for a neutral-stressed discrimination and a classification of five emotions

concluding that support vector machines and Hidden Markov Models yield better

recognition results (of approx. 43%). An approach to directly distinguishing only

positive and negative emotions on the basis of prosodic values like duration (longer

for negative), pitch (higher for negative), however, facing problems with signifi-

cant variances, is described in Swerts and Krahmer (2000). Decision trees allow the

classification of emotions on the basis of decisions and their sub-decisions which

are represented by a tree, in each node of which the system decides between two or

more emotions or emotion groups.

In order to improve the performance of weak classifiers, so-called boosting algo-

rithms are commonly used. The idea behind boosting is to iteratively learn multiple

weak classifiers and to combine these to a stronger classifier. Freund and Schapire

(1997) describe the AdaBoost (adaptive boost) algorithm which repeatedly calls

the same weak classifier while increasingly concentrating on the classifier’s mis-

classifications. For the classification of four different states of (un)certainty, Ai et al.

(2006) use AdaBoost with a decision tree with the aid of which an accuracy of 59%

is achieved.

A commonly used tool which implements a large variety of machine learning al-

gorithms is the WEKA software (see also http://www.cs.waikato.ac.nz/�ml/weka/,

Witten and Frank 2000). Apart from the boosted decision tree, it also includes, e.g.,

the C4.5 decision tree learner, k-nearest neighbor classifiers, decision rules, per-

ceptrons, support vector machines, Bayes classifier, etc. An overview on selected

algorithms provided by the tool is given by Oudeyer (2003).

Nogueiras et al. (2001) use Hidden Markov Models for the recognition of emo-

tions. On the basis of seven emotions to be distinguished, they show that even

with single state HMMs, a recognition rate significantly above chance level can

be achieved and that for speaker-dependent models accuracies of 80% are obtained

with 64-state HMMs and eleven vector quantized features. In Luengo et al. (2005)

experiments with HMMs and support vector machines are conducted on a single-

speaker emotional database containing seven emotions. Their experiments lead to

the conclusion that HMMs perform significantly better despite the fact that support

vector machines with a lower complexity in terms of feature space dimensions also

lead to an overall accuracy of 92%. Similar observations are found in Pao et al.

(2004) where HMMs perform better than linear discriminant analysis and k-nearest

neighbor classifiers. Here, with an extended set of spectral features, a recognition

rate of 88% is achieved for seven emotional states. Using vector-quantized MFCC

features and discrete HMM classifiers, an average accuracy of 72% on six emotions

is shown in Nwe et al. (2001). Their approach shows a comparable performance to

http://www.cs.waikato.ac.nz/~ml/weka/
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similar work with pattern recognition, neural networks and nearest mean criteria.

Polzin and Waibel (1998) use suprasegmental HMMs, where certain states within

an HMM are combined, to detect four emotional states with an accuracy of 72%.

We pick up their approach involving emotion-dependent models for our combined

speech–emotion recognizer described in Section 4.6. The original approach is fur-

ther described in Polzin and Waibel (2000), where a maximum likelihood regression

technique is used to adapt a (neutral) speech-recognizer to different emotional states.

Depending on the emotion set and the choice of features (verbal and non-verbal)

recognition accuracies of up to 47% or 64% (compared to human recognition per-

formance of 55% or 70%) are yielded with the recognition of three emotions. An

overview on existing work and approaches using speech recognizer frameworks in

combination with emotions is given in ten Bosch (2000), also including HMMs or

neural networks.

An issue which is rather negligible in standard spoken dialogue applications,

but still interesting to academia, is the classification of emotions in infants’ cries

as described in Matsunaga et al. (2006). They also use HMMs (three states, eight

Gaussian mixtures) to distinguish five emotional states which are labeled in a hier-

archical structure of three levels. With MFCC features, recognition rates of up to

75% are achieved.

Neural networks also enjoy a great popularity in the field of speech-based

emotion recognition. The emotion recognizer in Tato et al. (2002) is based on feed-

forward neural networks implemented with the Stuttgart Neural Networks Simulator

(see Zell et al., 1991) which are trained with a chunkwise-backprogragation learn-

ing algorithm with ten out of 37 acoustic features. Experiments are conducted for

arousal classification (high, neutral, low) with 84% and 77% for speaker-dependent

and speaker-independent models as well as for anger-happiness discrimination

(74%) and bored-sad classification (66%) constituting the emotion pairs which

are most commonly confused. In their experiments, Park and Si (2003) use a dy-

namic recurrent neural network with different acoustic feature sets and achieve

relatively high recognition rates, however, with a very limited test corpus including

four emotional states. A multi-layer perceptron and a probabilistic neural network

are compared in Dan-Ning Jiang (2004) where recognition rates of up to 94% are

achieved for six emotions with the probabilistic neural network based on acoustic

features. Emotion recognition experiments on the SYMPAFLY corpus using a neu-

ral network are described in Batliner et al. (2004b). For the discrimination of six

cover classes, a recognition rate of 51% is yielded, combining some of the negative

classes the rate increases to 76%.

Particularly with regard to our proposed speech–emotion recognizer, we initially

implement a plain emotion recognizer using prosodic and acoustic features and

HMMs as commonly used in speech recognition (see Section 4.5). In order to follow

the temporal aspects of the features within an utterance, we do not include support

vector machines and (feedforward) neural networks in our considerations. Recurrent

neural networks are also not considered due to their higher complexity. Instead, we

employ HMMs for our acoustic model. In our plain emotion recognition approach,

each emotion is represented by a three-state left-to-right HMM. Due to the relatively
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low number of HMMs in the acoustic model, we achieve a relatively low training

and decoding complexity, even when considering different models for female and

male speakers. An assessment of our approach’s performance compared to existing

work proves to be rather difficult due to different evaluation criteria (e.g., number

of emotions, how to determine whether an emotion is correctly recognized or not,

use of word or utterance level measures, etc.). On the one hand, there exist systems

which, according to the respective publications, yield a higher emotion accuracy for

the classification of more emotional states. On the other hand, there are also sys-

tems which exhibit lower recognition rates for the classification of fewer emotions.

Leaving the plain emotion recognizer’s performance as it is, in our research, we

concentrate our attention to the development and improvement of a speech–emotion

recognizer as described in Section 4.6 which is silhouetted against the above ap-

proaches by the combination of speech and emotion recognition. The idea behind

our hybrid recognizer is to consolidate the (normally) separate but similar processes

of speech and emotion recognition into one process taking advantage of the same

signal preprocessing and classification methods. This is also implemented on the

basis of HMMs – now the acoustic model contains one HMM per phoneme and its

attached emotional state. Despite the high complexity of such a model, we achieve

a satisfactory recognition performance with this approach outperforming our plain

emotion recognizer.

For the recognition of emotions based on the feature vectors described in the

previous section there exist several approaches. The “simple database” approach,

storing all possible feature values for each emotional state and comparing these

to the features to be recognized, is not implementable due to its calculating effort

and the required memory. Thus, we limit our considerations to statistical methods,

namely artificial neural networks and Hidden Markov Models. Both methods have

in common that a large amount of training data, i.e., a labeled corpus, is used to train

the classifier(s).

Neural networks, as described in Section 4.2.2, are quite popular in several clas-

sification applications, including emotion recognition based on different modalities.

As this approach typically does not account for temporal aspects, one feature vector

Œx1; : : : ; xn� is extracted from the biosignals, video caption or speech signal serving

as the input of the trained network. The output indicates the emotional state, either

as a number or as a vector the elements of which are assigned to the emotions as

depicted in Fig. 4.17. In this exemplary system the set of emotions consists of “an-

gry”, “neutral” and “happy”. The output can be therefore, e.g., Œ1 0 0� for an angry

utterance or Œ0 0 1� for a happy utterance. Such an approach also allows “soft”

decisions like Œ0:5 0:4 0:1� in cases of ambiguity which may occur when different

people express their emotions in different ways or which may be due to insufficient

or faulty training data. Focusing on the temporal aspects, i.e., on how the emotional

expression evolves during an utterance, we favor HMMs over neural networks in

our work. This is particularly relevant for the combination of speech and emotion

recognition where the speech recognizer already employs HMMs.



4.4 HMM-Based Speech Recognition 131
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Fig. 4.17 Emotion recognition using a neural network

In the remainder of this chapter we firstly describe plain speech recognition using

HMMs, then we specify plain emotion recognition using HMMs with respect to its

parallels to speech recognition and, finally, we characterize an approach merging

both methods to obtain a combined speech–emotion recognizer.

4.4 HMM-Based Speech Recognition

The goal of speech recognition can be formulated as a probabilistic problem to

find a sequence of words W which is most probable given a sequence of acoustic

observations X :

W D arg max
W

P.W jX/; (4.20)

which can be rewritten applying Bayes’ rule and which can be simplified as follows:

W D arg max
W

P.X jW / � P.W /; (4.21)

Here P.X jW / represents an acoustic model and P.W / is determined by a language

model.

HMMs commonly apply in acoustic models of most state-of-the-art speech

recognition systems, e.g., as plain HMMs as well as HMMs with Gaussian mixture

models or neural networks (Rabiner 1989). In speech recognition, each phoneme is

represented by one model, so that in the recognition process a Viterbi search is per-

formed over all models resulting in a string of phonemes. The likelihood P.X jM /

of a sequence of features X given a model M is calculated with the aid of the for-

ward part of the Forward-Backward algorithm.

As not all phoneme combinations are meaningful in most languages, the search

is constrained with the aid of a dictionary containing all words to be recognized

plus the respective phoneme transcriptions as shown in Fig. 4.18. The exemplary

dictionary entries are extracted from the British English Example Pronunciations

dictionary (BEEP, Robinson 1997b). Unlisted words like, e.g., the word “ULM” are
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FOUR f ao
FOUR f ao r
GO g ow
I ay
NEW_YORK n y uw y ao k
PLEASE p l iy z
TO t uw
ULM uh l m
WEDNESDAY w eh n z d ey

Fig. 4.18 Dictionary for a speech recognizer adapted from the BEEP dictionary (see Robinson,
1997b)

$city = ( LONDON | NEW_YORK | PARIS | ULM );
$weekday = ( MONDAY | TUESDAY | WEDNESDAY | THURSDAY );
$date = ( TODAY | TOMORROW | ON $weekday );

( [ I ( WANT | WOULD LIKE ) TO ( GO | TRAVEL) ] TO $city
[ $date ] [ PLEASE ] )

Fig. 4.19 EBNF of a grammar for speech recognition

transcribed manually by regarding listed words which sound similarly: “uh (short

’u’ like in ’good’) l m”. Including such a dictionary in the recognition, the recogni-

tion result is a string of words. However, as not all word combinations necessarily

make sense, also restrictions on a higher level, i.e., a grammar or language model

providing P.W /, need to be included in the Viterbi search.

For smaller speech applications like a travel information system, it is normally

sufficient to create a rule-based grammar as shown in Fig. 4.19. In this example

grammar the Extended Backus-Naur Form (EBNF) is used to define allowed se-

quences of words: the non-terminal symbol $city defines a sub-rule allowing one

of the cities separated by j characters. In the main rule at the bottom “to $city” is

mandatory, the words before or after this sequence surrounded by Œ � brackets are

optional. Round brackets . / are used to group items, angle brackets < > (not con-

tained in the example) surround arbitrary repetitions which may occur, e.g., in the

recognition of phone numbers or in simple word loops.

Alternatively, depending on the application, instead of the EBNF or similar forms

like the Java Speech Grammar Format (JSGF), etc., an Extensible Markup Language

(XML) form as proposed in the Speech Recognition Grammar Specification (SRGS)

by the W3C can be used to define grammar rules (Hunt and McGlashan 2004). In ei-

ther cases, to facilitate the recognition process, the grammar is typically converted to

a word network containing all allowed word transitions. For more complex applica-

tions such as dictation systems, it is rather tedious to define grammar rules that cover

all possible word combinations in one or multiple languages. In these cases, typi-

cally, stochastic language models apply considering the probability of a word given

adjacent words. The most accurate models can be obtained by including the com-

plete context, i.e., calculating a word’s probability given all previous words. As the

model’s complexity increases exponentially with the number of previous words to
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be considered, only short-term dependencies are included in state-of-the-art speech

recognizers: bigrams include the relation between the previous word and the current

word, trigrams include two previous words and the current words, n-grams include

n � 1 previous words and the current word (Roark et al. 2007).

In simple “monophone” recognizers, each of the phoneme models is trained

separately without allowing for dependencies on adjacent phonemes. Effects like

coarticulation, where phonemes are differently pronounced depending on adjacent

phonemes occurring in either the same word or in neighboring words, are included

using “triphone” combinations consisting of a phoneme and the precedent and suc-

ceeding phonemes. E.g., according to the dictionary shown in Fig. 4.18, the isolated

word “WEDNESDAY” consists of the following triphones: “?-w-eh”, “w-eh-n”,

“eh-n-z”, “n-z-d”, “z-d-ey”, and “e-ey-?”. The combinations at word boundaries

are actually “biphones” as words are typically separated by short pauses not permit-

ting dependencies between words. Assuming approximately 50+ phonemes in an

English large-vocabulary, there exists .50C/3 > 125;000 triphone combinations in-

cluding all of these in speech recognition would be rather impractical. Fortunately,

not all of these combinations actually occur in the respective language, and, more-

over, most of the triphone combinations with similar properties can be pooled by

“tying” states, i.e., triphones share model parameters like transition probabilities or

emission probability distributions (Young et al. 2006).

The training of the models consists of multiple re-estimation procedures iter-

atively updating the HMM parameters as well as pruning algorithms to sort out

unreliable training data. As described in Section 4.2.1, the model re-estimation is

accomplished with the aid of the Baum-Welch algorithm (Welch 2003; Young et al.

2006). The tying of states is performed on the basis of scripts and macros which

need to be adapted to the language. In these macros also the context of the tied-state

triphones can be included. The pruning of the training data is typically performed by

aligning the utterances and the labels. At this, the trained models are used to perform

a recognition on the training utterances. These recognition results are compared to

the original labels of the training data so that the timing information, which phoneme

occurs at which time, can be corrected and the suitable pronunciation variant can be

selected for words which have multiple phonetical transcriptions, like “FOUR” in

the dictionary shown in Fig. 4.18. Also, utterances are removed from the training

set in cases where the results differ significantly from the labels.

In straightforward approaches covering small vocabularies and simple grammars,

it is normally sufficient to use HMMs, the observation vector probability distribu-

tion functions of which are Gaussian functions. In these cases, the model parameters

of the observations of an HMM state are combined in a vector of mean � and vari-

ance &2, assuming that the real values actually distribute similar to these Gaussian

functions. A prototype of such an HMM, described in the notation used by HTK, is

shown in Fig. 4.20.

The model consists of 5 states, which is commonly used in automatic speech

recognition. States 1 and 5 represent the start and the end states, observations oc-

cur only in the non-emitting states 2, 3 and 4. According to the transition matrix

(TransP), the model is a left-to-right model as only transitions to the same or the
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<BeginHMM>
<NumStates> 5
<State> 2 <NumMixes> 1

<Mean> 39
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ...

<Variance> 39
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ...

<State> 3 <NumMixes> 1
<Mean> 39
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ...

<Variance> 39
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ...

<State> 4 <NumMixes> 1
<Mean> 39
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ...

<Variance> 39
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ...

<TransP> 5
0.0 1.0 0.0 0.0 0.0
0.0 0.6 0.4 0.0 0.0
0.0 0.0 0.6 0.4 0.0
0.0 0.0 0.0 0.7 0.3
0.0 0.0 0.0 0.0 0.0

<EndHMM>

Fig. 4.20 Prototype of an HMM with Gaussian observation probability density distribution
functions

following state (to the right) are permitted. During the training, the non-zero tran-

sition probabilities are adapted with respect to the training data, however, the

probabilities of the non-existing transitions remain zero. In the prototype, the mean

values and variances of all observations default to 1.

In order to obtain more “realistic” models, Gaussian Mixture Models are com-

monly used in large-vocabulary continuous speech recognition. As described in

Section 4.2.1, almost any shape of a probability density function can be generated

by linearly combining Gaussian functions. One of the few constraints is that the

sum of all weighting factors, the Gaussian functions are multiplied with, is 1. In

the training of phoneme models for automatic speech recognition, firstly, simple

HMMs with only one mixture are trained up to a certain degree of accuracy. Then,

each model is converted to an HMM-GMM with two mixtures by splitting up each

Gaussian function into a sum of two Gaussian functions with similar parameters

but different weighting factors. In the subsequent re-estimation steps, the parame-

ters of the mixture model are refined and the number of mixtures can be gradually

increased. Depending on the complexity and the number of Gaussian mixtures, the

training of the HMMs involves between seven and 20+ re-estimation steps (Young

et al. 2006).

The decoding or recognition includes the HMMs, the dictionary and a word net-

work generated from the grammar, all combined to a joint network which, in the
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0 1500000 I -1992.69
1500000 4800000 WANT -4219.77
4800000 6100000 TO -1736.19
6100000 7900000 GO -2366.27
7900000 9400000 TO -2054.00
9400000 12800000 PARIS -4707.06

Fig. 4.21 Output of a speech recognizer using the grammar shown in Fig. 4.19 (Young et al. 2006)

end, consists of HMM states connected to each other according to the grammar,

dictionary and HMM specifications. On this large network a Viterbi search is per-

formed providing the most probable path(s) through the network given a sequence

of input feature vectors. These paths represent word sequences which are typically

combined to a word transition network (WTN), also referred to as word hypothesis

graph (Gibbon and Lüngen 1999), the most probable path of which is the preferred

recognition result. Optionally the second best or third best word sequence can also

be extracted from the WTN. Using HTK, a typical speech recognizer output looks

as shown in Fig. 4.21.

The first and second column contain the beginning and the end of a time period.

In HTK, the time unit used for labeling, recognition and frame parameters is prede-

fined as 100 ns. The third column contains the word which was recognized in the

respective time period, and the numbers given in the fourth column show acoustic

and linguistic likelihood scores. These scores are calculated on the basis of path

metrics which are accumulated or maximized when traversing through the recog-

nition network during the recognition. Typically, logarithmic measures are used to

maintain a reasonable preciseness in the range of values during the calculation, so

that a measure of 0 represents the highest possible score, (corresponding to a proba-

bility or confidence of 1), whereas a measure of �1 denotes a probability of 0, i.e.,

the lowest possible score.

4.5 HMM-Based Emotion Recognition

For speech-based emotion recognition, the principles described above can be

adopted for the most part (ten Bosch 2000; Pittermann and Pittermann 2006a).

The respective emotion recognizer includes a simplified dictionary, a language

model and acoustic models, training and recognition are performed in the same

manner. Several approaches exist for the labeling of emotional speech data: In cases

where one single feature vector is extracted from the waveform it is correspond-

ingly sufficient to label each utterance with one emotion without regarding pauses

or other changes in the waveform (cf. also Fig. 5.1 in Section 5.1).

In order to account for temporal changes, i.e., in cases where feature vectors are

extracted regularly, e.g., every 10 ms like in speech recognition, the emotional label-

ing is similar to word labeling. Each part of the waveform is assigned an emotional
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label and, optionally, pauses are also labeled in order to obtain a more accurate

emotion recognition. In order to increase the annotators’ flexibility, we allow multi-

ple emotional states in one utterance.

The labeling process, which may be quite tiresome especially in cases where a

large amount of data needs to be labeled, can be facilitated by several means: Instead

of labeling each utterance manually, it can be prelabeled with the aid of a speech-

pause detector which already inserts the pause labels. Such a detector is realized on

the basis of energy measures calculated from the speech signal. The average power
NPi of a signal region or time frame i is calculated as

NPi D 1

iend � ibegin

�
iend
X

j Dibegin

jsj j2; (4.22)

where sj is the value of the signal’s j th sample. Frame i begins with the ibeginth

sample and ends with the iendth sample. For speech-pause detection a threshold #

is defined such that a frame i is labeled as pause if NPi < # � NPs , where NPs is the

average power of the utterance. The optimal threshold is determined by experiments

by comparing the speech-pause detectors output to the actual shape of waveform:

the higher # is, the more frames are considered as pause. Depending on the quality

of the speech signal, i.e., signal-to-noise ratio # ranges from 0:0001 to 0:05 when

comparing the average power as described above. When comparing signal ampli-

tudes and the signal’s maximum amplitude, the threshold O# ranges from 0:001 to

0:1 (Pittermann and Pittermann 2006d).

Further labeling assistance is provided by the iterative “bootstrapping” method.

It takes advantage of a recognizer, trained on a small set of labeled data, which is

used to label the remaining data semi-automatically. The functionality of the boot-

strap algorithm is illustrated in Fig. 4.22. Given a corpus size of several thousand

utterances, the annotator (also referred to as “human expert”) selects a subset of a

few hundred arbitrary utterances and labels them manually according to predefined

utterances

parameter

estimation

emotion

recognition

human

expert

manual

correction

stochastic

emotional

model

manual labeling

utterances

emotional labels emotional labels

Fig. 4.22 Bootstrap algorithm for labeling (emotional) speech data (Pittermann and Pittermann
2006d)
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constraints. These utterances and the respective labels are then used to estimate the

parameters of preliminary stochastic (emotional) models and these models are used

to perform a recognition on another subset of a few hundred utterances. The recog-

nition result is then reviewed by the annotator and manual corrections are performed

where necessary. Then both manually labeled and corrected utterances plus their la-

bels are used to train new models which, in turn, are used to label unlabeled data,

etc., until the whole corpus is labeled. The major improvement provided by this

method is due to the fact that the stochastic models are supposed to become more

accurate with an increasing number of training utterances. By that, the reviewing and

correction effort of the annotator decreases significantly after the first few iterations.

Moreover, the number of new unlabeled utterances per subset can be increased to

speed up the process. In short, technically speaking, given a corpus C, the algorithm

can be described by the procedure in Fig. 4.23.

In order to distribute the workload, there exist approaches to enable multiple an-

notators to work on the same corpus (Ma et al. 2002). Although such an approach

does not necessarily facilitate a single annotator’s work, it speeds up the labeling

process as annotators are able to work in parallel. Moreover, an annotator may even

employ other annotators’ results in the training process to obtain more accurate

models and, by that, to reduce the own correction effort. A distributed system is

typically based on a client-server architecture accessing one central database stor-

ing the utterances, labels and preliminary results. Such an approach is described

in Abdennaher et al. (2007): A client software provides a graphical user interface

allowing the annotator to select subsets to be used for parameter estimation and

recognition, to perform the actual training and recognition process as previously

specified, and to review and correct the recognition results.

An exemplary dictionary is given in Fig. 4.24. Each emotion and the pause is

assigned one “emotioneme” (in analogy to phonemes in speech recognition), e.g.,

“DISGUST” $ “dis”. Such a simple dictionary, however, does not contribute to any

significant constraints in the recognition network, as each emotion is only assigned

one emotioneme. However, when deriving emotion recognition from speech recog-

nition, it is practical to set up a dictionary as described in this example. Optionally,

an emotion can be transcribed by a set of emotionemes in order to model acous-

tic effects at the beginning, in the middle and at the end of the respective emotion,

e.g., “DISGUST” evolves to “dis-begin dis-middle dis-end”. This, on the one hand,

1. let i D 0; choose subset L0 � C and annotate utterances in L0

while Li ¤ C do f

2. perform stochastic model parameter estimation using the data in Li

3. select a subset T 2 C, T \ Li D ¿

4. perform recognition on data in T using the stochastic models
5. review and correct the recognition results; let LiC1 D Li [ T , i D i C 1

g.

Fig. 4.23 Technical description of the bootstrap algorithm for labeling (emotional) speech data
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ANGER ang
BOREDOM bor
DISGUST dis
FEAR fea
HAPPINESS hap
NEUTRAL neu
PAUSE pau
SADNESS sad

Fig. 4.24 Dictionary for an emotion recognizer

$emotion = ( ANGER | BOREDOM | DISGUST | FEAR | HAPPINESS
| NEUTRAL | SADNESS );

( < $emotion | PAUSE > )

Fig. 4.25 EBNF of a flexible grammar for emotion recognition

( PAUSE $emotion PAUSE )

(a)

( PAUSE < $emotion | PAUSE > )

(b)

( PAUSE ( < ANGER [ PAUSE ] > | < BOREDOM [ PAUSE ] > |
< DISGUST [ PAUSE ] > | .... ) PAUSE )

(c)

Fig. 4.26 EBNF of alternative grammars for emotion recognition. The emotions in $emotion
are the same like in Fig. 4.25

provides more accurate models, especially in cases where one emotion stretches

over a longer time span, but, on the other hand, requires three times more models

than for the one-emotioneme-per-emotion case. This in turn requires more training

data and may lead to a lower recognition accuracy as there are more models to

choose from in the recognition (Pittermann and Pittermann 2006a).

The “emotional grammar” shown in Fig. 4.25 represents the most general and

flexible type of a language model for emotion recognition. In analogy to a “word

loop” which is commonly used in speech recognition, every emotion or pause is

allowed before or after any other emotion. Also, no restriction on the number of

emotions per utterance is defined. Alternatively, more restrictive grammars as shown

in Fig. 4.26 can be employed, assuming certain knowledge how the emotion(s) is/are

temporally arranged in the utterance or forcing pauses between single emotional

states.
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Like in plain speech recognition, also statistical language models can apply by

using an emotion loop grammar like in Fig. 4.25 and introducing restrictions such as

the conditional probability P.xjy/ of emotion x given emotion y as the preceding

emotion. For use in an actual recognizer, these probabilities can be derived from

speech corpora, however, it is comprehensible that, e.g., the probability of chang-

ing from sad to happy is considerably lower than the probability of changing from

neutral to disgusted.

In analogy to the phonemes in speech recognition, each emotioneme is repre-

sented by one HMM. With respect to the labeling and therefore the grammar used

in the recognition process, an emotioneme tends to span a longer time period than

a phoneme. This can either be considered by using HMMs with more than five

states, e.g., ten or 20 states, by increasing the self-transition probabilities in a five-

state HMM, or by using more general models also allowing right-to-left transitions.

An increase of the number of states involves more training effort and allows more

changes of the feature vectors during one emotion(eme). Thus, it has shown to be

more practical using five-state HMMs when subdividing an utterance in many short

emotion periods as opposed to using larger HMMs when, e.g., labeling one com-

plete utterance with one emotion.

Representing emotionemes, the length of which exceeds the length of phonemes,

the respective HMMs are required to be less restrictive than the HMMs used in

speech recognition. Apart from the fact that the number of features varies from

recognizer to recognizer, also the shapes of the probability density functions dif-

fer from feature parameter to feature parameter. This, like in speech recognition, is

taken into consideration by using GMMs. However, as the training of emotioneme

models does not include tied-state triphones (or tri-emotions, respectively) and spe-

cial pause models, the appropriate number of Gaussian mixtures is already trained

right away from the first (re-)estimation step. Thus, GMM prototypes, like the ex-

emplary model shown in Fig. 4.27 are used in the training procedure.

As opposed to the prototype in Fig. 4.20, the observation probability density

functions part of the states in the GMM prototype is subdivided into multiple

mixture functions which are differently weighted. Still assuming that the result-

ing probability density function is at least somehow similar to a Gaussian function,

there exists one “dominant” mixture, and the remaining mixtures have significantly

smaller weights (see also Fig. 4.14).

The training of the emotioneme models is accomplished by repeating re-

estimation steps and an alignment procedure to sort out unreliable training data.

With respect to the number of Gaussian mixtures, in our system ranging from 1

to 8, a higher number of re-estimation steps, compared to speech recognition, is

required to obtain accurate models. The “ideal” number of iterations, representing

a trade-off between good performance and smallest possible number of iterations,

has been determined in experimental series; it ranges from 25 for 1 mixture to 35

for 8 mixtures (Pittermann and Pittermann 2006a).

Using the dictionary shown in Fig. 4.24 and the grammar in Fig. 4.26 (b), the

recognition network is structured as illustrated in Fig. 4.28.
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<BeginHMM>
<NumStates> 5
<State> 2 <NumMixes> 3

<Mixture> 1 0.5
<Mean> 63
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ...

<Variance> 63
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ...

<Mixture> 2 0.3
<Mean> 63
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ...

<Variance> 63
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ...

<Mixture> 3 0.2
<Mean> 63
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ...

<Variance> 63
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ...

<State> 3 <NumMixes> 3
[...]

<State> 4 <NumMixes> 3
[...]

<TransP> 5
0.0 1.0 0.0 0.0 0.0
0.0 0.6 0.4 0.0 0.0
0.0 0.0 0.6 0.4 0.0
0.0 0.0 0.0 0.7 0.3
0.0 0.0 0.0 0.0 0.0

<EndHMM>

Fig. 4.27 Prototype of a Gaussian mixture HMM

FEAR

HAPPINESS

PAUSE PAUSE

NEUTRAL

SADNESS

DISGUST

BOREDOM

ANGER

Fig. 4.28 Emotion recognition network based on the dictionary and the grammar shown in
Fig. 4.24 and 4.26 (b)



4.5 HMM-Based Emotion Recognition 141

0 300000 PAUSE -365.44
300000 800000 NEUTRAL -487.93
800000 1100000 PAUSE -321.48
1100000 4400000 FEAR -3101.73
4400000 4700000 PAUSE -323.36
4700000 20500000 SADNESS -9212.50
20500000 21400000 PAUSE -909.05
21400000 26100000 FEAR -4656.30
26100000 27200000 PAUSE -1183.06

vs.

0 400000 PAUSE -432.65
400000 1200000 NEUTRAL -1389.36
1200000 1400000 PAUSE -317.85
1400000 4100000 NEUTRAL -9102.45
4100000 4700000 PAUSE -524.46

Fig. 4.29 Emotion recognition results (ETNs) for different utterances and model types

Performing the same Viterbi search method on this network like in speech recog-

nition, an emotion transition network (ETN) representing the most probable path

in the network is obtained. Examples of ETNs for different utterances using differ-

ent types of emotioneme models are shown in Fig. 4.29. Each HMM represents one

emotioneme which is, according to the dictionary, equivalent to one emotional state.

With the grammar requiring pauses at the beginning, between emotions and at the

end, the loop closes between the respective nodes.

As opposed to speech recognition, where the correctness of the resulting word

transition networks can be directly evaluated by comparing these to the reference la-

bels and counting insertions, substitutions or deletions, the “correctness” of an ETN

cannot be directly determined by objective measures. Especially in cases where the

labels of the reference do not cover the complete utterance, the recognizer inserts

arbitrary emotions which do not necessarily have to influence the result in a negative

way, but which make up an error in terms of objective error measures. Thus, a goal

for the recognition needs to be defined, e.g., the predominant emotion occurring in

an utterance has to be correctly recognized (see Section 6.3). By that, only utterance-

level errors are measured, in analogy to sentence errors, instead of emotion-level

errors, in analogy to word errors. I.e., if the defined goal is not achieved, the utter-

ance is considered as not correctly recognized. Such an approach entails that, even

if the ETN of an anger-dominated utterance contains “ANGER” parts, it is consid-

ered as wrongly recognized as soon as, e.g., “NEUTRAL” parts occur more often.

Alternatively, either the evaluation is completely subjective, with a human reviewer

judging whether each recognition result is “acceptable” or not, or soft measures can

be used to calculate a likelihood between result and reference: Assuming an ut-

terance is labeled as 100% “ANGER” and the ETN contains 80% “ANGER”, 15%

“NEUTRAL” and 5%“HAPPINESS”, the likelihood, i.e., the correctness ratio is 0.8

(see also Section 6.3).
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4.6 Combined Speech and Emotion Recognition

In the previous two sections, speech recognition and emotion recognition have been

considered as separate modules or processes operating independently of each other.

However, due to their similarities, we argue that it is more efficient in terms of

complexity and more effective in terms of recognition performance either to com-

bine both processes or to take advantage of mutual information exchange between

both processes. In this section, we describe the setup of a combined speech–

emotion recognizer which is simultaneously recognizing the textual content and

the emotional state of an utterance. I.e., instead of a string of words or a sequence

of emotions, a sequence of emotionally pronounced words is recognized. This

is accomplished by attaching the emotional state to the words (word–emotions).

E.g., “WEDNESDAY” evolves into “WEDNESDAY-ANGER”, “WEDNESDAY-

BOREDOM”, “WEDNESDAY-DISGUST”, etc.

An excerpt of a dictionary to be used in combined speech emotion recognition

is shown in Fig. 4.30. In the dictionary there exist different transcriptions for each

word depending on the emotional state attached to it. From the linguist’s point of

view, this does not look useful, however, this is necessary to distinguish the acous-

tic properties of phonemes in different emotional states. For the sake of clarity,

the word-only transcriptions of the respective words without emotions are given

as comments after “#”s. Accordingly, each phoneme now exists in multiple vari-

ations. I.e., considering the seven emotional states included in our experiments,

the “uw” phoneme evolves into seven emotional phonemes (“emophonemes”):

“uwa”, “uwb”, “uwd”, “uwf”, “uwh”, “uwn” and “uws”. In these transcriptions

we assume that there is only one emotional state attached to each word. I.e., the

speaker’s emotional state does not change within one word, so that there is, e.g., no

“WEDNESDAY-ANGER-NEUTRAL” consisting of “wa eha nwa za don eyn”.

Within one utterance, the emotional state may theoretically change at any point

of time. Consideration can be given to this actuality by extending the speech

recognition grammar shown in Fig. 4.19 to a speech–emotion grammar as shown

in Fig. 4.31.

GO-ANGER ga owa # g ow
GO-BOREDOM gb owb
...
I-DISGUST ayd # ay
I-FEAR ayf
...
NEW_YORK-HAPPINESS nh yh uwh yh aoh kh # n y uw y ao k
NEW_YORK-NEUTRAL nn yn uwn yn aon kn
NEW_YORK-SADNESS ns ys uws ys aos ks
...
PLEASE-FEAR pf lf iyf zf # p l iy z
...
WEDNESDAY-SADNESS ws ehs ns zs ds eys # w eh n z d ey

Fig. 4.30 Dictionary for combined speech–emotion recognition
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$city = ( LONDON-ANGER | LONDON-BOREDOM | LONDON-DISGUST
| LONDON-FEAR | LONDON-HAPPINESS | LONDON-NEUTRAL
| LONDON-SADNESS | NEW_YORK-ANGER | NEW_YORK-BOREDOM
| ... | PARIS-NEUTRAL | ... | ULM-SADNESS );

$weekday = ( MONDAY-ANGER | MONDAY-BOREDOM | ...
| WEDNESDAY-DISGUST | ... | THURSDAY-NEUTRAL
| THURSDAY-SADNESS );

date = ( TODAY-ANGER | ... | TOMORROW-DISGUST
| ... | ( ON-ANGER | ... | ON-SADNESS ) $weekday );

( [ ( I-ANGER | ... | I-SADNESS )
( ( WANT-ANGER | ...| WANT-SADNESS )

| ( WOULD-ANGER | ... | WOULD-SADNESS )
( LIKE-ANGER | ... | LIKE-SADNESS ) )

( TO-ANGER | ... | TO-SADNESS )
( GO-ANGER | GO-BOREDOM | ... | TRAVEL-SADNESS )

]
( TO-ANGER | ... | TO-SADNESS ) $city [ $date ]
[ PLEASE-ANGER | ... | PLEASE-SADNESS ] )

Fig. 4.31 Speech–emotion grammar adapted from the grammar shown in Fig. 4.19

$wordemotion = ( GO-ANGER | GO-BOREDOM | ... | I-FEAR | ...
| NEW_YORK-HAPPINESS | ... | WOULD-SADNESS );

( [ PAUSE ] < $wordemotion > [ PAUSE ] )

Fig. 4.32 Word–emotion loop as a language model for flexible combined speech–emotion
recognition

Technically, every word “X” is replaced by “(X-ANGER j X-BOREDOM j . . . j
X-SADNESS )”, increasing the complexity of the grammar from 5 � 4 � 7 � 2 D
280 valid word-only sequences to 12,710,187,616 valid word–emotion sequences.

In cases where an exact order of the words can not be predetermined, a more

flexible language model allowing for these changes is required. The simplest ap-

proach to that is a word–emotion loop as shown in Fig. 4.32. The complexity of

such a model, however, increases with the length of the utterance: E.g., allowing

up to 5 consecutive word–emotions, there exist 133 C 1332 C 1333 C 1334 C
1335 D 41; 931; 067; 073 valid word–emotion sequences for a dictionary of 19

words evolving to 7 �19 D 133 word–emotions. It can be determined in experiments

that, like in speech recognition, the recognizer performance decreases when using

more flexible language models and larger vocabularies. A reduction of the language

models’ complexity is described in Section 5.1.2 (Pittermann et al. 2007b).

A trade-off between high flexibility and low complexity is obtained when using

n-gram language models which, typically employed in speech recognition, can also

be adapted to speech–emotion recognition. For an accurate recognition, however,

a large text corpus for training is required to account for all transitions between
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0 1400000 I-ANGER -3972.94
1400000 4900000 WANT-ANGER -9244.79
4900000 6200000 TO-NEUTRAL -2937.85
6200000 7700000 GO-NEUTRAL -4965.31
7700000 9500000 TO-NEUTRAL -3959.03
9500000 12100000 PARIS-ANGER -10854.37

Fig. 4.33 Output of a speech–emotion recognizer using the grammar shown in Fig. 4.31

both words and the respective emotional states. E.g., for a dictionary containing 19

words, there exist 192 D 361 bi-gram combinations, evolving to .19 � 7/2 D 17689

word–emotion bi-gram combinations.

Introducing emophonemes instead of phonemes, the number of models is mul-

tiplied by seven, as each emophoneme is represented by one HMM. This not only

requires more training effort, but also leads to a lower recognition performance due

to the higher complexity of the recognition network unless any optimizations are

included. Performing a Viterbi search like in plain speech or emotion recognition,

we obtain a word–emotion transition network (WETN) like the example shown in

Fig. 4.33.

The evaluation of a speech–emotion recognizer can be accomplished in a large

variety of methods – either word–emotions are treated like words in plain speech

recognition or word recognition performance and emotion recognition performance

are considered separately applying different measures. Whereas for the word part

“regular” criteria like insertions, deletions or substitutions can be applied, the emo-

tion part, as described in Section 4.5, requires a more sophisticated evaluation.

4.7 Emotion Recognition by Linguistic Analysis

Alternatively, or in addition to the speech signal based emotion recognition meth-

ods, the emotional state of an utterance can be extracted by considering its textual

content. On the one hand, as all operations are performed on text, this approach it-

self does not require complex signal analysis and classification methods, but, on the

other hand, presumes that the text has been correctly recognized, i.e., the preceding

speech recognizer performs reliably.

A neutral sentence, e.g., ““I want to return on Monday””s may be extended

such that it represents happiness (positive mood) ““Oh great, I’d like to return on

Monday”” or anger (negative mood) ““Damn, I have to return on Monday””. As

indicated by the emphasized text, most of the emotional information is strongly

related to keywords that need to be spotted. Such a list of keywords that contain

emotional cues is provided by the BEEV (Cowie et al., 1999a, 2001).

Based on the BEEV, we have compiled a keyword dictionary in which, similar

to a speech recognizer dictionary, words in the first column are transcribed to an

emotion (anger, happiness, ...) in the second column as well as to a valence “++”
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acceptable happiness ++
...
awful anger --
awful disgust -
...
boredom boredom 0
...
cool happiness ++
...
funny happiness ++
...
irritated fear -
irritated sadness -
...
neutral neutral 0
...
ok neutral 0
...
pissed [off] anger --
...
ridiculous anger --
...
sorry sadness -
...
wow happiness ++
yawn boredom 0
yuk disgust -

Fig. 4.34 Emotional dictionary for linguistic emotion recognition. The first column contains the
keywords, the second column contains an emotional state and the third column indicates the va-
lence (positive/neutral/negative)

(very positive), “0” (neutral), “�” (negative) or “�” (very negative) in the third

column, see Fig. 4.34. The valence is used to estimate an overall tendency of a

sentence or utterance. This is useful in cases, where multiple different emotional

keywords occur in the utterance, so that the tendency is determined by summing up

the “+” and “�” as “+1” and “�1” resulting in a positive or negative number. Some

words like, e.g., “awful” or “irritated”, have multiple emotion labels which is due to

the different contexts in which they occur. Further aspects like irony which typically

emanate from the whole sentence may not be covered by simple keywords, but

require a more sophisticated grammar in combination with a speech signal analysis

(Tepperman et al. 2006). This affective keyword dictionary contains a total of 376

keywords: 72 for anger, 30 for disgust, 62 for fear, 132 for happiness, 76 for sadness

and 4 for neutral. The low number of neutral words in this compilation is not due to

the fact that there are no neutral words. It is rather vice versa as we assume that all

words are neutral except for those listed in this dictionary (Pittermann et al. 2008b).

The keyword list is integrated into the linguistic analysis such that the emo-

tions of the occurring keywords of an utterance are concatenated. I.e., following

the XML grammar notation described in Hunt and McGlashan (2004), the words

are embedded as
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<item> <tag>emotion+=’,happiness’;</tag> great </item>

in order to obtain emotion labels or as

<item> <tag>valence+=’,++’;</tag> great </item>

in order to obtain valence measures. Assuming that the user is in a neutral state

if none of the emotion words occur in the utterance, each utterance is initialized as

neutral, and a sentence like ““I want to return on Monday”” would be characterized

as “neutral” or “0”, whereas ““Oh great I’d like to return on Monday”” would

be analyzed as “neutral, happiness, happiness” or “0, ++, ++”. In the latter case,

however, the initial “neutral” or “0” is typically ignored in the further processing. We

refer to this grammar which constitutes the basis of the linguistic emotion recognizer

as affective grammar.

Due to its autonomy from other components, the linguistic emotion recognition

can be easily integrated into spoken language dialogue systems in different ways.

The most prominent approaches are illustrated in Fig. 4.35.

In the first approach (a), the speech–emotion recognizer provides a word–

emotion transition network which is optionally post-processed with the ROVER

method (see Chapter 5.2) if multiple speech–emotion recognizers are involved.

The word–emotions in the (processed) WETN are then separated into words

and emotions and the resulting sentence is parsed by the linguistic analysis.

Speech & Emotion

Recognition

R
O

V
E

R

Linguistic

Analysis

++

Speech

Recognition

R
O

V
E

R
R

O
V

E
R

Linguistic

Analysis

++
Emotion

Recognition

Speech & Emotion

Recognition

Linguistic

Analysis
emotional labels

semantic labels

emotional labels

semantic labels

semantic labels

emotional labels

R
O

V
E

R

a

b

c

Fig. 4.35 Integrating linguistic emotion recognition and speech–emotion recognition into SLDSs
(Pittermann et al. 2008b)
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E.g., a sentence like “EXCELLENT-HAPPINESS I-NEUTRAL WOULD-

HAPPINESS LIKE-NEUTRAL TO-NEUTRAL RETURN-HAPPINESS ON-

NEUTRAL MONDAY-HAPPINESS” would be transformed into “EXCELLENT

HAPPINESS I NEUTRAL WOULD HAPPINESS LIKE NEUTRAL TO NEU-

TRAL RETURN HAPPINESS ON NEUTRAL MONDAY HAPPINESS” and the

emotions are also treated as words. Thus, the output of the linguistic analysis

(omitting the initial “neutral”) would be “happiness, happiness, neutral, happiness,

happiness, neutral, neutral, happiness, neutral, happiness” as both “LIKE” and

“EXCELLENT” are mapped to “happiness”. Alternatively, the valence of the sen-

tence would be “++, ++, 0, ++, ++, 0, 0, ++, 0,++”. Comparing the influence of the

speech–emotion recognizer and the linguistic emotion analysis, it is obvious, that

the impact of the speech–emotion recognizer is significantly higher as all words by

design are assigned one emotion whereas the number of emotional keywords in the

sentence is much lower. In the above example, the ratio is 2 (emotional keywords):

8 (total number of word–emotions). In order to avoid such an unequal treatment,

the emotional dictionary can be adapted to use different numbers of “+” or “�” in

the valence for emotional words (like “great”) and emotion words (like “anger”).

The same idea can also be applied to the emotional labels, so that the keyword

dictionary is modified, e.g., as shown in Fig. 4.36.

By that, a sentence like “GREAT-BOREDOM I-ANGER WOULD-ANGER

LIKE-DISGUST TO-NEUTRAL RETURN-HAPPINESS ON-ANGER MON-

DAY-ANGER” which is regularly classified as “++, 0, –, –, ++, �, 0, ++, –, –” (total

valence: �3) would be classified as “++++, 0, �, �, ++++, �, 0, +, �, �” (total

valence: +4). Taking into account, that anger and happiness are quite likely to be

confused, the latter approach turns up to be more practical.

A further approach for the integration of the emotional linguistic analysis is

shown in Fig. 4.35 (b). This architecture also includes one speech–emotion rec-

ognizer, or optionally multiple speech–emotion recognizers applying the ROVER

method, however, only the output word transition networks are passed to the

linguistic analysis. The emotion transition networks or numerical emotion scores

...
anger anger -
...
boredom boredom 0
...
great happiness happiness ++++
...
pissed [off] anger anger ----
...
sorry sadness sadness --
...
wow happiness happiness ++++
...

Fig. 4.36 Alternative emotional dictionary for linguistic emotion recognition. This approach uses
different “weighting factors” for emotional keywords and emotion words



148 4 Hybrid Approach to Speech–Emotion Recognition

are passed to a further module which combines the emotion information from

these ETNs or scores and the emotional output of the linguistic analysis into

an adequate emotion representation. This combination can be performed by

simply concatenating the emotional words and the emotions in the ETNs to

obtain an output as described in the first approach. Additionally, more sophisti-

cated combination methods on a numerical basis are feasible. For the example

sentence “GREAT-NEUTRAL I-ANGER WOULD-ANGER LIKE-DISGUST TO-

NEUTRAL RETURN-HAPPINESS ON-ANGER MONDAY-ANGER” we obtain

two “happiness” words from the linguistic analysis and a soft emotion score of

SE Df 0.554 ANGER, 0.188 NEUTRAL, 0.152 HAPPINESS, 0.106 DISGUST g
from the voting module of the ROVER system. Based on these conditions, several

methods are possible:

� The proportion of happiness in this example is 1.0, which can be added to the

happiness proportion in the soft score: S 0
E Df 0.554 ANGER, 0.187 NEUTRAL,

1.152 HAPPINESS, 0.107 DISGUST g which then needs to be normalized (di-

viding by 1 C 1 D 2) to NSE Df 0.576 HAPPINESS, 0.277 ANGER, 0.094

NEUTRAL, 0.053 DISGUST g. This approach can also be referred to as averag-

ing approach.

� Alternatively, a weighted average approach can apply, i.e., the final soft score NSE

is calculated as
NSE D .SE C  � LE / =.1 C /;

where 0 <  < 1 is a weighting factor representing the importance of the

linguistic emotion score LE . E.g., for  D 0:5, the final score for the numbers

given above is

NSE D .f0:554A; 0:188N; 0:152H; 0:106Dg C 0:5 � f0A; 0N; 1H; 0Dg/ =1:5

D f0:369A; 0:125N; 0:435H; 0:071Dg:

� The third method includes a statistical model, based on which the final score NSE

is determined by maximizing the probability P. NSE jSE ; LE / given the recog-

nizer soft score SE and the linguistic emotion score LE as described above.

NSE D arg max
S�

P.S�jSE ; LE /:

Such a model can be implemented as a Bayes classifier or a Markov Decision

Process, trained on a corpus of annotated examples extracted from recorded

human–computer or distilled human–human dialogues.

The third integration approach as illustrated in Fig. 4.35 (c) follows the ideas

described for the second approach, except for the fact that words and emotions

are recognized independently by separate modules using one or multiple recog-

nizers for speech and emotion recognition at any time. This entails the effect that

words and emotions are not aligned, so that calculation of emotional scores in the

combination module needs to be adapted to the respective recognizers’ properties.
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E.g., for a sentence like “GREAT I WOULD LIKE TO RETURN ON MONDAY”

the emotional labels may range from “HAPPINESS” to “BOREDOM ANGER

HAPPINESS ANGER ANGER . . . ANGER NEUTRAL DISGUST . . . NEUTRAL

ANGER ANGER” depending on the emotioneme models. To account for that dis-

crepancy, the weighting factors need to be selected accordingly or the model for NSE

needs to be trained on suitable data (Pittermann et al. 2008b).

4.8 Discussion

In this chapter, we have described our approaches to speech-based emotion recogni-

tion. We pay particular attention to what we refer to as speech–emotion recognition,

i.e., the combined recognition of speech (text) and emotions. Accordingly, our selec-

tion of features and the properties are strongly geared to regular speech recognition.

I.e., we use Mel-frequency cepstral coefficients for robust phonetic classification

plus prosodic and acoustic features for the detection of the emotional state. The

acoustic model consists of Hidden Markov Models each of which represents one

phoneme in one emotional state. By that, the complexity of the acoustic model

grows linearly with the number of emotions to be recognized, which initially leads

to an increasing decoding complexity and a lower recognition performance. An

evaluation of the proposed methods is given in Section 6.3. Optimizations to our

combined speech–emotion recognizer as well as an approach to fusion multiple

speech–emotion recognizers are described in Chapter 5.

Additionally, we propose an approach to emotion recognition by linguistic anal-

ysis by spotting emotionally relevant keywords as described in Section 4.7. Such

an approach at first requires a reliable speech recognizer output. Due to the fact

that explicit emotional keywords occur relatively infrequently, the linguistic anal-

ysis is rather useful in combination with the emotion recognizers described above.

We describe the evaluation of our affective grammar approach in Section 6.3.4.



Chapter 5

Implementation

The ideas about adaptive dialogue management and speech-based emotion

recognition as described in Chapters 3 and 4 constitute a firm groundwork as for

theoretical aspects of the integration of emotions into adaptive SLDSs. This ground-

work, however, features a large potential for improvement as well as a high degree

of flexibility concerning an implementation. In this chapter, we identify approaches

to improve the performance of our emotion and speech–emotion recognizers and

we describe the implementation of our adaptive dialogue manager.

There exist a large variety of parameters which can be altered to increase the

performance and robustness of speech-based emotion recognizers. In the following

section, we address the optimization of our plain emotion recognizer and our com-

bined speech-emotion recognizer. Optimizations of the recognition performance do

not necessarily require a change of the recognizers. Instead, a post processing algo-

rithm can be applied to reduce the recognition errors after the recognition process.

Our approach to combining multiple plain emotion recognizers or combined speech-

emotion recognizers to reduce the overall error rate is described in Section 5.2. In

Section 5.3, we present an adaptive dialogue manager which is based on VoiceXML.

This dialogue manager integrates the semi-stochastic emotional dialogue model as

described in Section 3.8 to adapt the dialogue flow to the user’s emotional state.

5.1 Emotion Recognizer Optimizations

In Sections 4.5 and 4.6, we have described two approaches to (speech–)emotion

recognition using Hidden Markov Models. Evaluations of implementations in the

described standard setup and configuration (see Chapter 6) have shown that these ap-

proaches provide a relatively useful performance, which, however, can be expanded

by several means (Pittermann and Pittermann 2006a; Pittermann et al. 2007b). In

this section we address problems observed in the experiments and we propose

approaches to improve the recognizers’ performance, for both plain emotion recog-

nition and speech–emotion recognition.

J. Pittermann et al., Handling Emotions in Human-Computer Dialogues,
DOI 10.1007/978-90-481-3129-7 5, c Springer Science+Business Media B.V. 2010
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5.1.1 Plain Emotion Recognition

For test purposes, a plain emotion recognizer including an HMM with one Gaussian

mixture has been trained on arbitrary speech data taken from the Berlin Database of

Emotional Speech (see also Section 6.3) made publicly available by the Technical

University of Berlin (Burkhardt et al. 2005). For the labeling, an automatic speech–

pause detector has been employed and the ‘speech’ parts have been assigned the

predominant emotional state given for the respective utterance. Tests with this setup

have, on the one hand, unearthed a rather low performance of the system, but, on

the other hand, provided indications about the weaknesses or where optimizations

can be taken up.

The first kind of optimization, which actually does not directly relate to the HMM

classification, is applied to the labeling of the data. On the one hand, it is manda-

tory that the labels reliably match the actual emotional or textual content of the

utterances. On the other hand, the labels should be designed and arranged such that

they go with the employed model type. For speech recognition, both criteria are ful-

filled by default – each word in the utterance is assigned the respective text which

is subdivided into phonemes which, in turn, are represented by one model with the

appropriate parameters. For plain emotion recognition, however, the labels of an

utterance can be subdivided arbitrarily without modifying the actual emotional con-

tent. Exemplary labeling methods of one utterance are illustrated in Fig. 5.1. Apart

ANGER

ANGER ANGER ANGER ANGER

ANGER* * * * * * * * * *

* * * * ** ***** ***** * * * * * * * * * * * * * * * * * * * * * *
(* = ANGER)

a

b

c

d

Fig. 5.1 Different labeling levels for emotional labeling: (a) utterance level, (b) group level,
(c) word level and (d) phoneme level
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from further possible variations, we distinguish four basic labeling levels (cf. the

three labeling stages described by Campbell et al. 2006):

1. Utterance level, i.e., labeling the whole utterance with one single emotion as

shown in Fig. 5.1(a).

2. Speech–pause/group level, i.e., groups of words, separated by pauses, are labeled

with the respective emotion, Fig. 5.1(b).

3. Word level, i.e., like in speech recognition, the utterance is subdivided into words

and each word is assigned one emotion as illustrated in Fig. 5.1(c).

4. Sub-word/phoneme level, i.e., each word is again subdivided into its phonemes

or syllables and each of these is assigned one emotion, Fig. 5.1(d).

Labeling the whole utterance at once (level 1.) is the most trivial method, but

does not make allowance for the models’ properties well enough, as most utterances

last a few seconds or longer, overstraining the range of an HMM. Labeling each

phoneme separately (level 4.) might suit the HMMs best due to the temporal struc-

ture. However, for the annotator, it is quite tedious to subdivide an utterance into a

large number of phonemes and label these individually. E.g., a short sentence like “I

want to travel to New York” already contains 20 phonemes. In cases where the word

boundaries are known, or where the words are already labeled, level 3. or, with the

aid of a modified dictionary, even level 4. may be applied.

Further fine-tuning can be applied on the speech–pause level (level 2). Varying

the speech–pause threshold, different segmentation characteristics can be procured

and an optimal threshold (for certain model parameters) can be determined by simu-

lation series: For each threshold value, automatic labeling is applied and emotional

models are trained on the basis of these labels and the utterances. Then, recognition

tests are performed on test utterances and the accuracy of the output is evaluated

by means of word-level measures as used in speech recognition, i.e., substitutions

as well as insertions and deletions count as errors. The optimal threshold is defined

as the threshold for which the accuracy is maximal. E.g., for a five-state left-to-

right HMM, the threshold is at around 1% of the maximum amplitude of the speech

signal(s) (Pittermann and Pittermann 2006a).

A further approach to improve the emotion recognizer’s performance also affects

the emotion models and the functionality of the recognizer only marginally and,

thus, actually cannot intrinsically be considered as an optimization. However, for the

sake of completeness and with respect to the typical scenario in which the emotion

recognizer operates, we will shortly describe the application of a reduced emotion

set (Pittermann and Pittermann 2006d).

On the one hand, it is obvious and comprehensible that a reduction of the set of

emotions automatically leads to an improvement of the recognition performance:

Even if the recognizer just randomly selected its output, a reduction from seven to

five emotions increases the recognition rate from 1=7 � 14:3% to 1=5 D 20%. And

one may wonder why certain emotions shall be excluded from the recognizer. On

the other hand, the goal of the emotion recognizer is not only to recognize distinct

emotions correctly but also to supply the dialogue management with useful infor-

mation in order to adapt the dialogue according to the user’s emotional state. Thus,
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we argue that there exist emotions that do not only show very similar acoustic and

prosodic properties but which also evoke similar reactions towards the user. And,

moreover, certain emotions do not necessarily influence the dialogue flow at all.

For the latter reason, disgust is omitted from the set of emotions. We argue that,

e.g., in a travel information system we can assume that users are not disgusted when

querying the departure time of a flight, and, moreover, there wouldn’t be an ap-

propriate way to respond to a disgusted user other than responding in a neutral or

appeasing way. A similar argumentation holds for boredom. How shall the reaction

towards a bored user differ from the reaction towards a neutral user?

Comparing the acoustic and prosodic features of the respective utterances (see

the pitch distributions illustrated in Figs. 4.4 and 4.5 or the statistical computations

in Fig. 4.7), it can be observed that neutral and boredom show a very strong sim-

ilarity and that disgust, exhibits a certain degree of identicalness with any other

emotion, is more difficult to distinguish from other emotions. These observations

hold not only for pitch, but also for other features which can be verified by means

of recognition results. For a regular emotion recognizer as described in Section 4.5

using all emotions, an analysis of the recognition results shows that there is a sig-

nificantly high degree of confusion between neutral and boredom and that disgust

equally interferes with the other emotions. Further details of the recognition results

are given in Chapter 6.

Applying this idea, “disgust” utterances are omitted completely and “boredom”

utterances are re-labeled as neutral utterances contributing to a common “neutral”

model. By that, the number of emotional models reduces from seven to five. The

models for anger, fear, happiness and sadness remain unchanged. The model for

disgust is removed and the new model for neutral becomes a more general model

with broader distributions than the original neutral model. By that, the likelihood of

confusion between neutral and other emotions increases.

A third optimization approach, also visibly improving the recognition per-

formance, is the discrimination of female and male speakers for all emotional

states (Pittermann and Pittermann, 2006a). To accomplish that, labels, dictionary

and language models need to be adapted. Each emotion evolves into a female and

a male version, e.g., the label “ANGER” becomes “ANGER-F” and “ANGER-M”.

The respective dictionary is shown in Fig. 5.2. By that, the number of models

increases from eight (seven emotions plus pause) to 15 (two times seven emotions

plus pause). This, on the one hand, provides a larger choice for the recognizer which

could lead to a lower recognition performance. However, on the other hand, these

15 models are stronger silhouetted against each other than the original eight models

so that the recognizer’s robustness is visibly increased. As opposed to speaker-

independent speech recognition, where the (general) phoneme models shall suit

as many different speaker types as possible, this approach focuses on highly con-

stricted models. These differences between female and male speakers can, again,

be observed when comparing the characteristics of the features like pitch (Figs. 4.4

and 4.5), intensity and their statistical computations (Fig. 4.7).

A suitable grammar is shown in Fig. 5.3. It is adapted from the most flexi-

ble grammar described in Fig. 5.3. Emotions are subdivided into female and male
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ANGER-F angf
ANGER-M angm
BOREDOM-F borf
BOREDOM-M borm
DISGUST-F disf
DISGUST-M dism
... ...
NEUTRAL-F neuf
NEUTRAL-M neum
PAUSE pau
SADNESS-F sadf
SADNESS-M sadm

Fig. 5.2 Dictionary for a gender-dependent emotion recognizer

$emotionf = ( ANGER-F | BOREDOM-F | DISGUST-F | FEAR-F |
HAPPINESS-F | NEUTRAL-F | SADNESS-F );

$emotionm = ( ANGER-M | BOREDOM-M | DISGUST-M | FEAR-M |
HAPPINESS-M | NEUTRAL-M | SADNESS-M );

( < $emotionf | PAUSE > | < $emotionm | PAUSE > )

Fig. 5.3 A grammar for emotion recognition distinguishing female and male speakers

variations. However, only one of these two sets is allowed in an utterance, making

allowances for the fact that the user does not change from female to male or vice

versa while speaking. As mentioned above, the respective models differ strongly

enough to improve the emotion recognition performance, and, moreover and sec-

ondary, the recognizer is also able to determine the speaker’s gender.

5.1.2 Speech–Emotion Recognition

For combined speech–emotion recognition, in principle, the approaches described

in the previous section can also apply, except for the labeling. As word–emotions

are assigned to the respective parts of an utterance where these words are uttered,

one cannot change their positions significantly. Thus, the labels may only vary by

plus or minus a few milliseconds to achieve a more optimal segmentation of the

phonemes.

The reduction of the emotion set also leads to an improvement of the recogni-

tion performance. With respect to the same feature characteristics as described in

the previous section, it appears to be practical, again, to omit disgust and to merge

boredom and neutral into a common neutral model. For combined speech–emotion

recognition, also separate approaches, one only omitting disgust and one only merg-

ing boredom and neutral have been evaluated leading to slightly different results

compared to plain emotion recognition (Pittermann et al. 2007b).
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GO-ANGER-F gaf owaf
GO-ANGER-M gam owam
GO-BOREDOM-F gbf owbf
GO-BOREDOM-M gbm owbm
...
PLEASE-FEAR-F pff lff iyff zff
...
WEDNESDAY-SADNESS-M wsm ehsm nsm zsm dsm eysm

Fig. 5.4 Dictionary for combined speech–emotion recognition distinguishing female and male
speakers

When applying the differentiation of female and male speakers in plain emo-

tion recognition, the number of emotioneme models increases from 8 to 15, still

constituting a manageable amount in terms of complexity and robustness. For

speech–emotion recognition, however, where approximately 50 phonemes are al-

ready expanded to 350 emophonemes, the implementation of this approach leads

to several practical problems. As shown in Fig. 5.4, e.g., a word like “GO” which

has already evolved to word–emotion “GO-ANGER” now becomes word–emotion-

gender “GO-ANGER-F”.

This large amount of approximately 700 female/male emophonemes not only

requires a larger training corpus to obtain equally accurate models but may also ex-

ceed (default) limitations of the recognition software. However, tests with a reduced

emophoneme set have shown that, like in plain emotion recognition, the recogni-

tion performance can be improved when training different emophoneme models for

female and male speakers and when using an adapted language model.

Up to now we have considered speech–emotion recognition as a one-step pro-

cess searching the most probable path within a huge recognition network consisting

of emophoneme models connected by a large variety of paths. With respect to the

different evaluation criteria for speech–emotion recognition, optimizations can ap-

ply to either the speech recognition part or the emotion recognition part or both.

From the technical point of view, a recognizer becomes more robust the fewer paths

are allowed in the recognition network. In the one-step approach, however, such a

reduction decreases the recognizer’s flexibility significantly.

Thus, we propose a two-step approach involving two recognizers using (two)

different recognition networks for speech and emotion recognition without requiring

a noticeably higher effort than regular speech–emotion recognition. The architecture

of this two-step approach is illustrated in Fig. 5.5. It consists of a feature parameter

extraction, a based speech recognizer using a bi-gram language model, a language

model adaptation module and a combined speech–emotion recognizer using this

adapted language model (Pittermann et al. 2007b). In order to distinguish between

this approach and “regular” speech–emotion recognition as described in Section 4.6,

we also refer to the regular approach as “one-step” approach.

Firstly, the desired features which are used in regular speech–emotion recogni-

tion are extracted from the speech signal. These features typically include MFCCs

plus prosodic and acoustic features. The MFCCs are passed to a plain speech
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Feature Extraction

Speech Recognition

LM AdaptationMFCC and Prosodic/Acoustic

Parameters

Speech−Emotion Recognition

Speech Recognizer

Language Model

MFCC Parameters

Speech−Emotion LM

Speech Signal

Recognized Text

Word−Emotion sequence

MFCC PAC

MFCC

Fig. 5.5 Two-step approach for combined speech–emotion recognition (Pittermann et al., 2007b)

( I-ANGER WANT-ANGER TO-ANGER TRAVEL-ANGER TO-ANGER
NEW_YORK-ANGER ON-ANGER MONDAY-ANGER |
I-BOREDOM WANT-BOREDOM TO-BOREDOM TRAVEL-BOREDOM TO-BOREDOM
NEW_YORK-BOREDOM ON-BOREDOM MONDAY-BOREDOM |
I-DISGUST WANT-DISGUST TO-DISGUST TRAVEL-DISGUST TO-DISGUST
NEW_YORK-DISGUST ON-DISGUST MONDAY-DISGUST |
... |
I-SADNESS WANT-SADNESS TO-SADNESS TRAVEL-SADNESS TO-SADNESS
NEW_YORK-SADNESS ON-SADNESS MONDAY-SADNESS )

Fig. 5.6 A simple grammar for two-step speech–emotion recognition

recognizer which involves an acoustic model consisting of standard phoneme mod-

els and a word-level language model. Depending on the application, this language

model may be a domain-specific grammar like the one shown in Fig. 4.19 or a

general statistical language model on a bi-gram or tri-gram basis. Considering this

recognizer’s output, a word–emotion grammar is created consisting of the recog-

nized word sequence plus emotions attached to each word. E.g., if “I WANT TO

TRAVEL TO NEW YORK ON MONDAY” is recognized, the new grammar ap-

pears as shown in Fig. 5.6 or Fig. 5.7, alternatively.

The simple grammar in Fig. 5.6 leads to the most restrictive recognition net-

work, consisting of only seven paths, as it assumes that the whole utterance is

pronounced in the same emotional state. The alternative grammar (Fig. 5.7) pro-

vides 78 D 5; 764; 801 possible paths (which is still less than 12 billion paths in the

original word–emotion recognition network), allowing individual emotional states

for each word.
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$i = ( I-ANGER | I-BOREDOM | I-DISGUST | I-FEAR |
I-HAPPINESS | I-NEUTRAL | I-SADNESS );

$monday = ( MONDAY-ANGER | MONDAY-BOREDOM | MONDAY-DISGUST |
... | MONDAY-SADNESS );

$new_york = ( NEW_YORK-ANGER | NEW_YORK-BOREDOM | ... |
NEW_YORK-NEUTRAL | NEW_YORK-SADNESS );

$on = ( ON-ANGER | ... | ON-DISGUST | ON-FEAR |
ON-HAPPINESS | ON-NEUTRAL | ON-SADNESS );

$to = ( TO-ANGER | TO-BOREDOM | ... | TO-FEAR |
TO-HAPPINESS | TO-NEUTRAL | TO-SADNESS );

$travel = ( TRAVEL-ANGER | TRAVEL-BOREDOM | ... |
TRAVEL-NEUTRAL | TRAVEL-SADNESS );

$want = ( WANT-ANGER | ... | WANT-FEAR | WANT-HAPPINESS |
WANT-NEUTRAL | WANT-SADNESS );

( $i $want $to $travel $to $new_york $on $monday )

Fig. 5.7 An alternative grammar for two-step speech–emotion recognition

Regarding this two-step recognition process, it can be determined how speech

recognition can help to improve the performance of the associated emotion recog-

nizer. Experiments have shown (see Chapter 6) that perfect knowledge of the textual

content, i.e., a speech recognition rate of 100%, leads to significantly better emo-

tion recognition rates than no knowledge of the textual content (as assumed in the

one-step speech–emotion recognition approach). One of the reasons for this effect

is illustrated in Fig. 5.8: The one-step recognizer can not use any information about

the positions or the properties of the phonemes and, thus, first needs to segment

the utterance appropriately and then find the most probable emophoneme (out of all

emophonemes) or word–emotion sequence. The speech–emotion recognizer in the

two-step approach has the advantage that it can avail itself of a mostly reasonable

recognition result based on which it can not only subdivide the utterance appropri-

ately but also assign correct phonemes to the respective positions, in this case the

words “ON WEDNESDAY” are given. Then, choosing the suitable emophoneme,

i.e., the emotional state among seven or five emotions, for each phoneme is less

complex and provides more reliable results.

Summarizing, the two-step approach described above, the emotion recognition

performance is improved by taking into account the (hopefully correct) output of the

speech recognizer. Referring to the speech recognition process which is described

by Eq. 4.21, the speech–emotion recognition process of a word–emotion sequence

WE can be described by

WE D arg max
WE

P.X jWE/ � P.WE/: (5.1)

Already knowing the output of the speech recognizer, in the two-step approach, the

equation changes to

WE D arg max
WE

P.X jWE; W / � P.WEjW /; (5.2)
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Fig. 5.8 (Emo-)phoneme alignment in one-step (a) and two-step (b) speech–emotion recognition

where W is the word part in the sequence of word–emotions. This can be summa-

rized to

E D arg max
E

P.X jWE; W / � P.E/; (5.3)

where E is the emotion part in the sequence of word–emotions. This means, the

recognizer can now “concentrate” on the recognition of emotions given W . Vice

versa, it is also imaginable to use the output of an emotion recognizer to improve the

speech recognition performance of the combined system. However, due to the fact

that the emotion recognition performance is typically below the speech recognition

performance, it does not seem sensible to apply this approach in actual systems as

the speech recognizer will not benefit significantly from the extra information.

5.2 Using Multiple (Speech–)Emotion Recognizers

In systems where transmission or recognition errors occur stochastically, i.e., not

predictably, it has been shown, that when slightly changing the system’s parame-

ters, different types of errors occur. Thus, a combination of multiple (different)
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Fig. 5.9 Different scenarios for error distributions when using multiple recognition systems

systems may lead to a better detection or recognition performance if the parameters

are appropriately chosen. E.g., in information transmission, the use of multiple an-

tennas (multiple-input-multiple-output, MIMO, see Telatar 1999) helps to achieve

a higher efficiency and reliability. Also the combination of sensory data (sensor

fusion) which applies in, e.g., image processing or control engineering is em-

ployed to achieve a “better” data in terms of accuracy or completeness (Wagner

and Dieckmann 1995; Kalman 1960).

An approach how to take advantage of the combination of multiple speech rec-

ognizers has been proposed by Fiscus (1997). The ROVER post-processing system

exploits differences in the way how errors occur in multiple recognition systems.

Figure 5.9 illustrates the idea behind this combinations: In these three scenarios, the

entirety of all utterances U is represented by the squares and the misrecognitions of

recognizers A and B are represented by striped clouds with the respective character

(A or B).

In the first scenario (a), the A and B clouds do not overlap, i.e., utterances

which are incorrectly recognized by the recognizer A are correctly recognized by

recognizer B and vice versa. Here, an appropriate combination may theoretically

lead to an error-free overall recognition. In the second scenario (b), there is some

small overlap of both clouds, i.e., the utterances in the A \ B part certainly will

not be recognized correctly by the combined system, whereas the utterances in

A 4 B D .A [ B/ n .A \ B/ could be corrected in a combined setup. Finally, in the

third scenario (c), where A D B, there is no chance correcting errors as both rec-

ognizers “agree” on the incorrect recognitions. Alternatively, instead of considering

utterances, the error distributions can also be determined on a word level.

The architecture of a ROVER system is outlined in Fig. 5.10. It is subdivided

into two modules – an alignment and a voting module. In the alignment module,

the word transition networks, i.e., the output word strings of the different speech

recognizers are merged to one overall WTN. Based on this WTN, the best scoring

output WTN is selected in the voting module.

The alignment process is illustrated in Fig. 5.11. In the dynamic programming

approach, which is typically used in the ROVER system, the WTNs are aligned

according to the sequence of words, regardless of the durations of the single words.



5.2 Using Multiple (Speech–)Emotion Recognizers 161

Alignment

Module

Voting

Module

ASR 1

ASR 2

ASR N

...

Output WTN

W
TN 1 

WTN 2

W
TN N

 

Fig. 5.10 Architecture of the ROVER system for speech recognition (Fiscus 1997)

I WANT TO TRAVEL TO NEW_YORK

I WOULD LIKE TO TRAVEL TO TODAY

I WANT TO GO TO NEW_YORK PLEASE

LONDON
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Fig. 5.11 Alignment of three word transition networks in the alignment module of a ROVER
system (Fiscus 1997). One approach involves dynamic programming, the other approach aligns the
WTNs on a time basis. The “*” represent null word transitions which are included in the WTNs
when words are inserted or deleted

The WTN of the first recognizer serves as the basic WTN, so that the WTNs of

the second, third, . . . Nth recognizers are individually aligned to the basic WTN.

This alignment is performed according to the minimal edit distance, which can be

defined by the Levenshtein distance as illustrated in Fig. 5.12 (Levenshtein 1966;

Fiscus 1997).

In this figure we align string x (I WANT TO GO TO NEW YORK PLEASE)

and string y (I WOULD LIKE TO TRAVEL TO LONDON TODAY). Both word

strings are spread in a table and the 0th column (di;0) and the 0th row (d0;j ) of

the distance matrix are initialized with 0, 1, 2,. . . , where di;0 D i , d0;j D j and
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I WOULD LIKE TO TRAVEL TO LONDON TODAY

0 1 2 3 4 5 6 7 8

I 1 0 1 2 3 4 5 6 7

WANT 2 1 (1) 2 3 4 5 6 7

TO 3 2 2 (2) 2 3 4 5 6

GO 4 3 3 3 3 3 4 5 6

TO 5 4 4 4 3 4 3 4 5

NEW YORK 6 5 5 5 4 4 4 4 5

PLEASE 7 6 6 6 5 5 5 5 5

Fig. 5.12 Calculation of the Levenshtein distance between two word transition networks

0 � i � length.x/, 0 � j � length.y/ (see italicized numbers in second row

and second column of the table). Then, for each i , 0 � i � length.x/ and j ,

0 � j � length.y/ the distance metrics di;j are calculated as

di;j D min

�

di�1;j C 1I di;j �1 C 1I di�1;j �1 C
�

0 xi D yj

1 xi ¤ yj

�

: (5.4)

Once all elements di;j are calculated, the lower right element dlength.x/;length.y/ de-

notes the Levenshtein distance between x and y, in this example, the distance

is 5. The modifications (“edits”) which are necessary to transform x into y can

be reconstructed by traversing the distance matrix along the minimal values of

di;j , starting from the final element dlength.x/;length.y/, as emphasized by the bold

numbers. In this example, putting the cart before the horse, “TODAY” is a sub-

stitution for “PLEASE” as d7;8 D d6;7 C 1. Analogously, “LONDON” (instead

of “NEW YORK”) and “TRAVEL” (instead of “GO”) are also substitutions. The

“TO”s coincide in both cases. Continuing from “TO” (d3;4), there exist two possi-

ble paths – either the bold path stating that “LIKE” is a substitution of “WANT” and

“WOULD” is an insertion, or the other path (numbers in round brackets) stating that

“LIKE” is an insertion and “WOULD” is a substitution of “WANT”.

Alternatively, the word transition networks can also be aligned with respect to

their chronological coincidence (time alignment), again with WTN 1 serving as the

reference. In Fig. 5.10, this alignment has been accomplished according to a sim-

ple algorithm calculating and including the maximal overlap of words. Comparing

WTNs 1 and 2, the “I”s match perfectly, “WOULD” and “WANT” show a signifi-

cant overlap. The overlaps “TO” $ “LIKE” and “GO” $ “LIKE” are equal, so that

the deletion can be either with “TO” or with “GO”. The following “TO”s as well as

“NEW YORK” and “TRAVEL” coincide, however, the following “TO” in WTN 2

is an insertion similar to “TODAY” at the end.

Regardless of which approach has been applied, an overall (“composite”) WTN

like the examples shown in Fig. 5.11 is generated in the alignment module. From

this WTN, the best scoring (most probable/likely) word sequence is selected in the

voting module. In this module, for each word w in the composite WTN, a score
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NEW_YORK

NEW_YORK *

TODAY

PLEASE

LONDON

TO

TO

TOTRAVEL

TRAVEL

GOTO

TO

TO*

LIKE

*WANT

WANT

WOULD

I

I

I

1 2 3 4 5 6 7 8t =

Fig. 5.13 Exemplary composite WTN for the scoring module of the ROVER system (see also
Fiscus 1997)

S.w/ is calculated on the basis of its frequency of occurrence and its speech recog-

nizer confidence measure. Figure 5.13 shows a composite WTN based on which this

scoring shall be exemplified.

The frequencies of occurrence are determined individually at each (discrete)

time i . Initially, a set of unique words is determined for each t and the frequency

of each word w from this set is calculated as N.w; t/=Ns, where Ns is the number

of input systems and N.w; t/ is the number of occurrence of w at time t . The con-

fidence measures C.w; t; r/ of word w at time t in WTN r can be directly obtained

from the speech recognizer output as shown in Fig. 4.21 which, however, in order

to conform with the score calculation, need to be converted to non-log measures

by exponentiating and multiplying with a suitable constant. Then, the score S.w/ is

calculated as

S.w/ D ˛ � N.w; t/

Ns

C .1 � ˛/ � C.w; t/; (5.5)

where C.w; t/ is the confidence of word w at time t determined from the confidence

measures C.w; t; r/ of all involved WTNs and where ˛ is a weighting factor deter-

mining the proportions of frequency of occurrence and confidence measure in the

scoring (Fiscus 1997; Pittermann and Pittermann 2006b). The values for ˛ as well

as for the confidence C.�/ of a null word are trained with the aid of an exhaustive

search on representative material for the lowest word error rate. On the basis of the

above formula, Fiscus (1997) proposes three voting approaches:

1. Plain frequency of occurrence (˛ D 1),

2. Calculating the confidence score as the average of all involved confidence mea-

sures (˛ < 1)

C.w; t/ D 1

Ns

Ns
X

rD1

C.w; t; r/;

3. Using the maximum confidence measure as the confidence score (˛ < 1)

C.w; t/ D max
r

C.w; t; r/:

With respect to the fact that the confidence measures to some extent constitute

indicators about the output’s correctness, approaches 2 and 3 lead to better results
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than the first approach. In the third approach, only the confidence measures of the

“most confident” recognizer are considered by what mistakes by other recognizers

are ignored and by what the third approach also performs better than the second one.

Based on the scores S.w/ an output WTN is constructed. In cases where no

knowledge about the sentence structure is available, this WTN contains a plain se-

quence of words with the best score regardless of their context. I.e., the output is a

sequence W of words wi such that

W D arg max
W Dw1;w2;:::

X

i

S.wi /: (5.6)

Optionally, a WTN with the N best words can be produced, based on which a Viterbi

search including a language model can be performed.

In order to estimate the performance of a ROVER system, upper and lower

bounds on the overall recognition rate can be defined (Pittermann and Pittermann,

2006b). The theoretical limit RC is the maximal recognition rate that may be

achieved on predefined input conditions, i.e., on given WTNs. Considering the error

distributions illustrated in Fig. 5.9, the upper bound is determined by the uncor-

rectable utterances A \ B, i.e., in the first scenario, RC would be 100%, in the

second scenario, RC would be 100% minus the percentage of A\B in U, and in the

third scenario RC would be equal to the recognition rate of one of the recognizers.

Extending the considerations on a ROVER system combining N recognizers, the

theoretical limit is calculated as

RC D
�

1 � jE1 \ E2 \ : : : \ EN j
jUj

�

� 100%; (5.7)

where E1, . . . , EN are the error distributions of recognizers 1; : : : ; N , U is the en-

tirety of all utterances or words, and j � j is the cardinality of a set. This definition

of the upper bound implicitly assumes perfect knowledge about the correctness of

the single recognizers’ recognition results. Moreover, it also supports the claim that

error-free recognition is theoretically possible for N ! 1 when combining an

infinite number of recognizers. Taking into account these circumstances, it is un-

derstandable that an actual overall recognition rate of RC is not very likely to be

achieved.

Analogously, a lower bound R� for the overall recognition rate can be defined.

In this bound, the worst case, i.e., the fact that ROVER always decides on the wrong

word/utterance no matter how often it is correctly recognized by the other recog-

nizers, is assumed. E.g., in the example scenarios, the lower bound is defined by all

errors as 100% minus the percentage of A[B. Generally, given the same conditions

like for the upper bound, for N recognizers, R� is defined as

R� D
�

1 � jE1 [ E2 [ : : : [ EN j
jUj

�

� 100%: (5.8)
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Table 5.1 Determination of upper and lower limits for a ROVER system on the basis of
four exemplary input word transition networks

# WTN 1 WTN 2 WTN 3 WTN 4 Reference

001 TO TO TO TO TO

NEW YORK NEW YORK NEW YORK NEW YORK NEW YORK

002 TO TO TO TO TO

ULM LONDON NEW YORK ULM ULM

TODAY TODAY PLEASE TODAY TODAY

PLEASE

003 I I I I I

WANT WOULD WOULD WANT WANT

TO LIKE LIKE TO TO

TRAVEL TO TO TRAVEL TRAVEL

TO GO TRAVEL TO TO

LONDON TO TO NEW YORK PARIS

TODAY LONDON ULM PLEASE TODAY

004 TO TO TO TO TO

NEW YORK LONDON PARIS PARIS PARIS

PLEASE PLEASE PLEASE TODAY PLEASE

005 TO TO TO TO TO

PARIS PARIS LONDON LONDON PARIS

TODAY TODAY TODAY TODAY

PLEASE PLEASE PLEASE PLEASE PLEASE

This bound, to some extent, also assumes perfect knowledge about the recognition

results’ correctness, and for N ! 1 recognizers with sufficiently different error

distributions this lower bound converges to 0.

In order to determine the upper and lower bound for the combination of actual

recognizers, their WTNs need to be compared as shown in Table 5.1. In this small

example, word errors including substitutions, deletions and insertions are indicated

as deleted text. The single recognizers achieve word recognition accuracies between

11=19 � 58% (WTN 3) and 17=19 � 89% (WTN 1) as well as sentence recognition

rates between 1=5 D 20% (WTN 4) and 3=5 D 60% (WTN 1). Having a closer

look at the particular utterances, it can be noticed that the first utterance is correctly

recognized by all recognizers, utterances 002, 004 and 005 are correctly recognized

by at least one recognizer and utterance 003 is not correctly recognized by any

recognizer. Thus, the upper and lower bounds on the utterance level are calculated

as follows:

R�;.u/ D
�

1 � jf002; 003; 004; 005gj
jf001; 002; 003; 004; 005gj

�

� 100% D
�

1 � 4

5

�

� 100% D 20%;

RC;.u/ D
�

1 � jf003gj
jf001; 002; 003; 004; 005gj

�

� 100% D 80%: (5.9)
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Looking at the single words, most words are correctly recognized by at least

one recognizer (e.g., “ULM” in utterance 002) or even by all recognizers (e.g.,

“NEW YORK” in utterance 001). Only “PARIS” in utterance 003 is not correctly

recognized by any recognizer. The upper and lower bounds on the word level are

calculated as:

R�;.w/ D
�

1 � jfULM; TODAY; WANT; TRAVEL; : : : ; TODAYgj
jfTO; : : : ; PLEASEgj

�

� 100%

D .1 � 10=19/ � 100% � 47%;

RC;.w/ D
�

1 � jfPARISgj
jfTO; : : : ; PLEASEgj

�

� 100% � 95%: (5.10)

Comparing these numbers, it can be seen that the utterance level recognition rate

may be improved from 60% to 80% but, in the worst case, may also decrease to

20%. Also, the word accuracy has the potential to increase from 89% to 95% or to

drop to 47%. Based on these bounds, the developer can roughly estimate whether it

is worth using and combining multiple recognizers.

5.2.1 ROVER for Emotion Recognition

Using an emotion recognizer as described in Section 4.5, the ROVER idea may

also apply for emotion recognition (Pittermann and Pittermann 2006b). On the one

hand, in these systems the emotions are recognized on a time basis so that they can

be aligned and treated like words. On the other hand, these emotion recognizers

provide information about confidence measures so that a scoring can be performed.

The architecture of an emotional ROVER system is similar to the architecture

shown in Fig. 5.10. Instead of the automatic speech recognition systems provid-

ing word transition networks, this approach combines multiple emotion recognition

systems providing ETNs. In the alignment module, these ETNs are combined to a

composite ETN based on which the most probable sequence of emotions is selected

in the voting module. As illustrated in Fig. 5.14, the alignment can be performed ac-

cording to time measures or edit distance measures. As opposed words which have

to be considered individually, it may be useful to merge adjacent emotions if they

represent the same emotional state.

In this figure, it can be seen that the different recognizers’ output may dif-

fer significantly. E.g., the ETN of the third recognizer consists of many emotions

with short durations whereas ETN 1 consists of only three emotions although the

overall duration of the ETNs is approximately the same. Taking into account the

temporal overlap(s) of the emotions in the ETNs, the dynamic programming align-

ment approach which treats emotions like words (word-like alignment) is a rather

inappropriate representation. Thus, instead, we propose a time-based alignment

summarizing emotions and omitting pauses which do not represent emotional states.

In this approach, contiguous emotions of the same state are merged as shown in
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ANGER P. ANGER NEUTRAL

NEUTR.P.NEUTR.A.PAUSEANGERP.

A. A. A. A. A. P. A. A. NEUTR. NEUTR. NEUTR.

ETN  1

ETN  2

ETN  3

Word−like Alignment

A.A. A.

* * *

*

A. A. P. A. A. N.

*

N. N.

* * A. A.P.*

P.A.P. A.

N.

N. P. N.

***

Summarized Time Alignment

ANGER (1)

ANGER (1)

ANGER (5)

ANGER (1)

ANGER (1)

ANGER (2)

NEUTRAL (1)

NEUTRAL (1)

NEUTRAL (3)

*

*

NEUTRAL (1)

Fig. 5.14 Alignment of three ETNs in the alignment module of a ROVER system. One approach
involves dynamic programming (DP) considering the individual emotions, the other approach sum-
marizes the emotions in the ETNs and aligns these on a time basis. The “*”s represent null emotion
transitions which are included in the ETNs when words are inserted or deleted

the lower part of Fig. 5.14. The emotions in the first two ETNs are separated by

pauses or adjacent emotions do not represent the same state (e.g., “ANGER” ,
“NEUTRAL”). Thus, in these cases, only the pauses are removed from the ETNs.

In the third ETN, there are five consecutive “ANGER”s, another two consecutive

“ANGER”s and three consecutive “NEUTRAL”s that may be combined to “ANGER

ANGER NEUTRAL”. However, when combining emotions, their individual confi-

dence measures also need to be combined somehow to make them comparable to

the other confidence measures. This is accomplished with an integrative approach,

calculating the average value NC.e; t 0; r/ for all combined emotions as

NC.e; t 0; r/ D 1

T2 � T1

�
T2
Z

T1

C.e; �; r/d� D 1

T2 � T1

�
X

t2Te

C.e; t; r/ � l.e; t; r/;

(5.11)

where T1 and T2 are start and end time of the combined emotion interval, � is the

continuous time, t is the discrete time as used in the speech recognizer ROVER

description, t 0 is the new time index after the combinations, Te is the set of all t of

the emotion e that are combined and l.e; t; r/ is the duration of emotion e at t in

ETN r . E.g., for the combination of “ANGER”s in the following emotion recognizer
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output (the logarithmic confidence measures have already been converted to positive

values)

...
800000 1100000 ANGER 0.5678

1100000 4400000 ANGER 0.8546
4400000 8700000 ANGER 0.4289
8700000 15500000 SADNESS 0.7584,

...

the average confidence measure would be

NC .ANGER; t 0
0; r0/ D 1

8700000 � 800000
� .0:5678 � .1100000 � 800000/

C0:8546 � .4400000 � 1100000/

C0:4289 � .8700000 � 4400000// D 0:6120: (5.12)

In the voting module, the scores for the emotions in the composite ETN are

determined. In analogy to the ROVER for speech recognition, especially if the ETNs

are aligned according to the edit distance, the score of an emotion can be calculated

according to Eq. 5.5:

S.e/ D ˛ � N.e; t/

Ns

C .1 � ˛/ � C.e; t/; (5.13)

where N.e; t/ is the number of occurrences of emotion e at time t and where C.e; t/

is the representative (average or maximum) confidence measure of emotion e at t .

Applying this score, the most probable sequence of emotions can be determined.

For most applications, however, it is sufficient to assign a single emotion to each

utterance instead of determining a sequence of emotions. Thus, we propose an al-

ternative voting approach, defining the predominant emotion E� of an utterance as

E� D arg max
e

S 0.e/; (5.14)

where S 0.e/ is the modified score of an emotion e calculated as

S 0.e/ D ˛ � N 0.e/ C .1 � ˛/ � C 0.e/: (5.15)

Here, N 0.e/ is the normalized overall length of emotion e:

N 0.e/ D

0

@

X

ft;rgje0De

C.e0; t; r/

1

A =

0

@

X

t;r;e0

C.e0; t; r/

1

A ; (5.16)

where l.e0; t; r/ is the duration (length) of emotion e0 in ETN r at time t . Due to

the fact that, as illustrated in Fig. 5.14, depending on the recognizer, one emotion
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may occur more often in one recognizer but span the same time period, we consider

the overall duration of an emotion instead of counting its frequency of occurrence.

Similarly, C 0.e/ is the normalized overall confidence of emotion e calculated as

C 0.e/ D

0

@

X

ft;rgje0De

C.e0; t; r/

1

A

,

0

@

X

t;r;e0

C.e0; t; r/

1

A ; (5.17)

where C.e0; t; r/ is the adapted or average confidence measure of emotion e0 in ETN

r at time t .

The performance of a ROVER system for emotion recognition can also be esti-

mated with the aid of upper and lower bounds as described by Eqs. 5.7 and 5.8. Only

determining the predominant emotion of an utterance, the word-level measures be-

come superseded by utterance-level measures. Analogously, R�;.u/ and RC;.u/ can

be calculated on the basis of the ETNs provided by the emotion recognizers. Ex-

ample ETNs to be used in limit considerations are shown in Table 5.2. Regarding

the utterances’ predominant emotions (in bold letters), the individual utterance re-

cognition rates range from 40% (recognizer 4) to 80% (recognizer 1). Based on

these measures, the lower bound R�;.u/ is at 20% (utterance 002 is very likely to be

Table 5.2 Determination of upper and lower limits for a ROVER system on the basis
of four exemplary input emotion transition networks. Pauses are omitted, emotions are
summarized where applicable

# ETN 1 ETN 2 ETN 3 ETN 4 Reference

001 ANGER SADNESS ANGER NEUTRAL

ANGER DISGUST NEUTRAL ANGER

ANGER SADNESS ANGER NEUTRAL ANGER

002 FEAR FEAR HAPPINESS NEUTRAL

NEUTRAL NEUTRAL NEUTRAL NEUTRAL

BOREDOM NEUTRAL BOREDOM BOREDOM

NEUTRAL NEUTRAL NEUTRAL NEUTRAL NEUTRAL

003 HAPPINESS NEUTRAL HAPPINESS BOREDOM

BOREDOM NEUTRAL HAPPINESS SADNESS

HAPPINESS BOREDOM NEUTRAL BOREDOM

NEUTRAL HAPPINESS NEUTRAL NEUTRAL

BOREDOM NEUTRAL BOREDOM

HAPPINESS

HAPPINESS HAPPINESS NEUTRAL NEUTRAL HAPPINESS

004 ANGER NEUTRAL SADNESS NEUTRAL

NEUTRAL DISGUST NEUTRAL SADNESS

NEUTRAL DISGUST SADNESS NEUTRAL DISGUST

005 NEUTRAL DISGUST BOREDOM NEUTRAL

BOREDOM NEUTRAL NEUTRAL DISGUST

NEUTRAL BOREDOM

NEUTRAL DISGUST NEUTRAL NEUTRAL NEUTRAL
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recognized correctly, even in the worst case), the upper bound RC;.u/ would be at

100%. These measures include most of eventualities that may influence the decision

in the voting module.

For three existing emotion recognizers which achieve individual utterance emo-

tion recognition rates of 72%, 70.7% and 70.7%, an upper bound RC;.u/ has been

determined as 77.3%, standing for a possible absolute improvement of 5.3%. In a

different scenario, combining emotion recognizers with 64%, 62.7% and 60%, an

upper bound of 74.7%, constituting a possible improvement of 10.7%, has been

found (Pittermann and Pittermann 2006b).

5.2.2 ROVER for Speech–Emotion Recognition

On the basis of the ROVER approaches described above, it is also possible to im-

plement a method to combine the output of multiple speech–emotion recognizers

as described in Section 4.6. In principle, word–emotions w�e can be considered and

treated like plain words, so that an architecture like the one illustrated in Fig. 5.10

can be employed. I.e., Ns speech–emotion recognizers provide Ns WETNs which

are aligned to a composite WETN in the alignment module. In the voting module a

score S.w�e/ is calculated for each word–emotion w�e in the composite WETN (see

Eq. 5.5) as

S.w�e/ D ˛ � N.w�e; t/

Ns

C .1 � ˛/ � C.w�e; t/; (5.18)

where N.w�e; t/ and C.w�e; t/ are frequency of occurrence and confidence measure

of w�e. Based on these scores, the most probable sequence of word–emotions is de-

termined.

However, due to the fact that the number of possible word–emotions is seven

times the number of possible words, it is very likely that no majorities can be found

for word–emotions in the composite WETN making the frequency of occurrence

considerations (N.w�e; t/) useless in the voting. A further problem is the evalu-

ation of a word–emotion sequence. From the speech recognizer point of view, a

word–emotion is incorrectly recognized when at least one of word or emotion dif-

fer from the reference word–emotion, which is a very strict measure. A constructed

worst-case example for the straightforward ROVER approach is shown in Table 5.3.

Considering the individual WETNs, it is obvious that the word “I” has been cor-

rectly recognized by all four recognizers, but the associated emotional state has not

been recognized by any of the recognizers. Furthermore, the reference sentence “I

WANT TO TRAVEL TO PARIS” has been correctly recognized by recognizer 1,

but, again, none of the associated emotions have been recognized. Vice versa, the

suitable emotional states (BOREDOM, NEUTRAL) have been recognized by the

other three recognizers, however, most of the words have not been correctly recog-

nized. In brief, the ROVER approach would probably fail, voting for a word string

which does not approximate the reference sentence. An analysis of word–emotion

error distributions with similar behavior is illustrated in Fig. 5.15.
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Table 5.3 Example word–emotion transition networks bringing out limitations of
a straight-forward ROVER system for speech–emotion recognition. For the sake of
overview he emotional states are abbreviated (A D ANGER, B D BOREDOM, etc.)

# WETN 1 WETN 2 WETN 3 WETN 4 Reference
. . .

092 I-A I-H I-A I-N I-B

WANT-N WOULD-B WANT-D WOULD-B WANT-B

TO-A LIKE-N TO-D LIKE-B TO-N

TRAVEL-A TO-B GO-B TO-B TRAVEL-B

TO-N GO-B TO-N TRAVEL TO-D

PARIS-N TO-A NEW YORK-B TO-B PARIS-B

ULM-B PARIS-D

. . .

Awe Bwe

word-emotions

a

Aw

Bw

words

b

Ae

Be

emotions

c

Fig. 5.15 Word–emotion error distributions for two speech–emotion recognizers and the respec-
tive word-only and emotion-only error distributions

Figure 5.15 shows the error distributions in the word–emotion (w�e) space as well

as the respective error distributions in the plain word space and the emotion space.

The error clouds in the w�e-space show a significant overlap jA\Bj � jA4Bj, which

means that the regular ROVER approach has no potential to correct a large number

of errors on the WETNs. However, looking at the error clouds in the w-space or in

the e-space, the overlap jAw \ Bwj or jAe \ Bej is considerably smaller independent

of the cardinality of the sets. Typically, there are more emotion recognition errors

than word recognition errors, so that jAwj � jAj � jAej or jBwj � jBj � jBej,
respectively.

In order to account for the larger word–emotion variety and the independence

between words and emotions, we propose a modified ROVER method as illustrated

in Fig. 5.16.

Here, the input WETNs are separated into WTNs and ETNs by splitting each

word–emotion w�e into word w and emotion e (see Fig. 5.17) (Pittermann et al.

2007b).
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WTN/ETN

WETN

Emotion
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Emotion

Voting
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Output ETN

Output WETN
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Fig. 5.16 Architecture of a ROVER system for speech–emotion recognition

9500000 12100000 PARIS−ANGER −10854.37

7700000  9500000 TO−NEUTRAL   −3959.03

6200000  7700000 GO−NEUTRAL   −4965.31

4900000  6200000 TO−NEUTRAL   −2937.85

1400000  4900000 WANT−ANGER   −9244.79

      0  1400000 I−ANGER      −3972.94

9500000 12100000 PARIS 0.3378

1400000  4900000 WANT  0.3967

4900000  6200000 TO    0.7454

6200000  7700000 GO    0.6086

7700000  9500000 TO    0.6731

      0  1400000 I     0.6721       0  4900000 ANGER   0.4754

4900000  9500000 NEUTRAL 0.6725

9500000 12100000 ANGER   0.3378

Fig. 5.17 Transformation of a word–emotion transition network into the respective word transition
network and emotion transition network (Pittermann et al. 2007b). The emotions in the ETNs are
summarized according to Section 5.2.1 before transferred to the alignment module

I.e., the w part is contained in the WTN, and the e part goes into the ETN.

Whereas the WTN remains untouched, the emotions in the ETN are summarized

as described in Section 5.2.1. The recognizer confidence measures are contained in

both networks for further use in the respective ROVER subsystems.

In the word subsystem, the WTNs are aligned according to edit distance or time

measures as described in the beginning of this section (see also Fig. 5.11). Also, the

voting is based on word scores S.w/ calculated according to Eq. 5.5.

In the emotion subsystem, the summarized ETNs are also aligned on a time basis.

Depending on the application, the scores are calculated in two ways. Either output

of the ROVER system is required to be a time-dependent sequence of emotions

(in analogy to the output WTNs), then the scores S.e/ are calculated according to

Eq. 5.13. This approach has the advantage that once the output WTN and ETN are

determined, these can be merged into a common output WETN where the w�e con-

sist words w and the aligned emotions e. Alternatively, it is sufficient to determine
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one predominant emotion for each utterance. Then, the scores S.e/ are calculated

as shown in Eq. 5.15 and the emotion with the maximum score is selected as the

predominant emotion E�. This approach can also be extended to “soft” emotional

labels which account for the mixture of emotions due to the categorization and

perceptual uncertainties. The “hard” decision (i.e., the reduction to one emotion)

involves a significant loss of information for further processing.

Thus, the soft values help to improve the robustness of, e.g., the adaptive dia-

logue management. Firstly, for each utterance u, a set Eu of emotions which occur

in the composite ETN for u is defined. Then, for each e 2 Eu, the score S 0.e/ is

calculated as

S 0.e/ D ˛ � N 0.e/ C .1 � ˛/ � C 0.e/; (5.19)

where N 0.e/ and C 0.e/ are the normalized frequency of occurrence and confidence

measures as described in Eqs. 5.16 and 5.17. In the soft emotional values either all

emotions in Eu may be included or, alternatively, a limited number of best emotions.

I.e., a set E�
u � Eu is found and the share of an emotion e 2 E�

u is calculated as

NS 0.e/ D S 0.e/=

0

@

X

e02E�
u

S 0.e0/

1

A ; (5.20)

so that the soft output is E�
u and the respective scores. This may be, e.g., “f 0.654

ANGER, 0.239 NEUTRAL, 0.107 DISGUST g”.

5.3 Implementation of Our Dialogue Manager

In this section, we describe the implementation of an adaptive dialogue manager

integrating the ideas shown in the previous section. For our implementation, we

choose VoiceXML as a basis, as it is commonly used in research and provides a high

flexibility in terms of platform independence and modularity of the surrounding mo-

dules such as speech recognition, linguistic analysis, text-to-speech synthesis, etc.

Moreover, VoiceXML supports the integration of ECMAScript code (also known as

JavaScript, see Ecma International 1999, 2005) for dynamic calculations and, thus,

parameter adaptations during the dialogue.

Extensively using ECMAScript, it is virtually possible to create one’s own di-

alogue manager within the VoiceXML framework, yielding the advantage, that all

existing dialogue system components can be used and the behavior of the dialogue

manager can be personalized as desired (Pittermann et al. 2005). The success of

such an implementation, however, stands or falls depending on the capabilities of

the utilized VoiceXML interpreter. Unfortunately, it has shown that the interpreta-

tion of ECMAScript code is not consistent among different VoiceXML interpreters.

Then, in the best case, it happens that the ECMAScript dialogue manager works

properly, in the worse cases, this dialogue manager either shows a strange behavior



174 5 Implementation

or even refuses to work at all, e.g., due to interpretation errors. Further errors can

occur due to an ambiguous variable declaration (e.g., var i=1) which does not in-

clude a type declaration. With this, the addition of two integer variables can lead

to a string concatenation (e.g., 1+1=11) if one of the variables happens to be of

string type.

To obtain a robust (in terms of functionality) dialogue manager within the dia-

logue system, we choose the use of compiled VoiceXML as proposed by Bühler and

Hamerich (2005), where the VoiceXML form is translated into ECMAScript code

consisting of very basic functions so that it can be smoothly processed by standard

VoiceXML interpreters. E.g., using the compiled VoiceXML output, it is even pos-

sible to run a simple dialogue manager in the web-browser of a standard PDA. Apart

from its platform-independence, the compiled VoiceXML approach also has the ad-

vantage that it can be run in the Java-based Rhino ECMAScript implementation

provided by the Mozilla Foundation (see http://www.mozilla.org/rhino/). Using this

ECMAScript implementation, it is then possible to include all kinds of Java classes

and their methods in the VoiceXML code, which in turn contributes to a more robust

implementation featuring more functionality and flexibility. Thus, apart from the

interfaces between the VoiceXML interpreter and the manager which are realized

in ECMAScript, the entire functionality of the dialogue manager is implemented

in Java.

Our dialogue manager basically adopts the ideas of storing relevant dialogue

parameters in a dialogue history array HD as defined in Chapter 3. This includes

the implementation of the ideas described in Section 3.5, i.e., the adaptation of the

dialogue flow and the stylistic realization of the system output to the user’s input

and the recognized emotional state of the user.

The simplified structure of the dialogue manager, embedded in a dialogue sys-

tem architecture, is illustrated in Fig. 5.18. In this diagram and in the further system

description, we refer to the term “context”, represented by the grey box, as the en-

tirety of all information, variables, modules and methods which are involved in

the functionality of the dialogue manager. Furthermore, we paraphrase what we

call “system reaction” in the previous section by the term “field under discussion”

(FUD). Parts of this structure and the approach accounting for an FUD are adopted

from the TRINDI dialogue move engine as described in Larsson and Traum (2000)

and Larsson (2000). As opposed to standard VoiceXML, here, like in the general-

ized dialogue model, the term “field” also includes all possible attached dialogue

control parameters like, e.g., the user’s emotional state. Among these fields, we dis-

tinguish between pre-defined fields and dynamically generated fields which can be

included at run time.

In our implementation, the context is represented by one Java class which em-

braces the following sub-classes as shown in Fig. 5.18:

� “fields” is an array containing all dialogue fields regardless of whether these

are pre-defined beforehand by the designer or dynamically generated during the

course of the dialogue. The pre-defined fields are described with the aid of XML

in a customized variation of VoiceXML.

http://www.mozilla.org/rhino/
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Fig. 5.18 Simplified architecture of the adaptive dialogue manager embedded in a standard dia-
logue system environment

� The configuration, implemented as XML, contains all setup parameters which

determine the basic behavior of the dialogue manager. This includes, e.g., the

selection of the dialogue strategy (rule-based vs. semi-stochastic) or confirma-

tion strategy, how the dialogue system shall overanswering cases where the user

provides more information than required (flexible vs. pure system initiative), etc.

� The user-defined functions (“func()”) enable the dialogue developer to include

further functionality to the system. These functions can be called and accessed

from any class within the context and from the field and configuration descrip-

tions. By that, e.g., prompts for certain fields can be adapted or an external

database can be accessed during the dialogue.

� “var” serves as a collecting basin for user-defined variables which can also be

accessed from any class or dialogue field within the context. These variables, e.g.,

allow the calculation and storage of further parameters which are not contained

in the dialogue history.

� For the sake of overview, the dialogue history is subdivided into two parts – the

actual user “input” which is required to fill the dialogue fields, and the respective

control parameters which are contained in C.

In this setup, one dialogue turn takes place as follows: The user replies to a certain

system prompt, e.g., “From Boston to Los Angeles.”. This utterance is processed by

the speech recognizer and linguistic analysis, emotion recognizer, etc. and the se-

mantic representations as well as further dialogue control parameters are extracted

according to the specifications of the system configuration. These representations

and parameters are passed to the dialogue manager and (optionally) to the user-state

and situation manager which assists the dialogue manager in adapting the dialogue
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<?xml version="1.0"?>
<!DOCTYPE vxml PUBLIC "vxml"

"http://www.w3.org/TR/voicexml20/vxml.dtd">

<vxml version="2.0">
<script src="ds_main_system.js"/>
<var name="context"

expr="new DSContext(’dialog.xml’,’config.xml’)"/>

<form id="mydialog">
<grammar src="ds_grammar.grxml"></grammar>

<block name="block0">
<value expr="context.dialog.getDI(’ds-start’).getText()"/>
</block>

<field name="ds_input" expr="’’"/>
<field name="ds_control" expr="’’"/>

<field name="exit">
<prompt bargein="true">

<value expr="context.FUD.getQuestion()"/>
</prompt>
</field>

<filled mode="any" namelist="ds_input">
<value
expr="context.manager.fullAnalysis(ds_input,ds_control)"/>
<value expr="update()"/>
</filled>

<block name="block1">
<value expr="context.dialog.getDI(’ds-start’).getText()"/>
</block>

</form>
</vxml>

Fig. 5.19 VoiceXML form used to integrate the functionality of our dialogue manager into the
dialogue framework (Pittermann et al. 2007c)

flow. For further use, the input and the parameters are stored in the dialogue history

based on which the dialogue flow and realization is adapted. After an alignment

with all previous user turns, the manager selects a new field under discussion (FUD)

which is then prompted according to the other dialogue control parameters as sug-

gested by the user-state and situation manager.

The integration of our implementation of the dialogue manager is accomplished

with the aid of a consistent VoiceXML form as shown in Fig. 5.19. At the begin-

ning, the context class is initialized on the basis of the dialogue and configuration

XML files and an external ECMAScript file containing the interface functionality is

loaded. The dialogue form contains two blocks (ds-start and ds-end) which can in-

clude a personalized greeting or goodbye message like “Welcome to the University
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of Ulm’s experimental dialogue system!”. These messages will be outputted at the

very beginning and at the very end of the dialogue. The fields called ds input and

ds control are solely used to receive the user input and the respective control pa-

rameters from the linguistic analysis and the signal processing module. As these

fields do not include any prompts, these are pre-assigned an empty string as value.

Being initialized before the dialogue form, our dialogue manager’s main func-

tionality is called from the field exit and the filled node. In the exit field, the prompt

of the current FUD is outputted and in the filled node, the user’s input and the con-

trol parameters are processed and the further progress of the dialogue is determined

in accordance with the employed dialogue model and the system configuration. The

function update() is used to synchronize the dialogue manager and the VoiceXML

interpreter. It should be noted that, despite that fact that the actual dialogue can con-

tain an almost infinite number of fields, there is only one VoiceXML field (exit)
containing a prompt statement. Here, the VoiceXML form interpretation algorithm

(FIA) is outwitted in such a manner that only the fields ds input and ds control
are filled during the dialogue, whereas exit is not filled until a stopping condition

is fulfilled, e.g., when all the fields within the context of our dialogue manager are

filled or when the dialogue shall be aborted. This is made possible by a grammar

which actually does not know about the existence of the exit field.

The course of a dialogue description form is shown in Fig. 5.20. The FIA first

executes block0 where the introductory text like “Welcome to. . . ” is generated. As

the fields ds input and ds control are already filled, the FIA then executes the field

exit and prompts a text or question generated by the dialogue manager. The user’s

reply and the respective control parameters are temporarily stored in ds input and

ds control before being processed by the dialogue manager. As exit could not be

filled by the VoiceXML interpreter, the FIA prompts a newly generated text when

executing exit again in the next turn. This process is repeated until the dialogue

...

"Where would you like to go to?"

"How may I help you?"

"Welcome to the virtual travel agency."

"Thank you for using our travel agency."

"When would you like to return?"

<vxml>

  <form>

   </block>

   <field name="exit">

     ...

   </field>

   <block name="...">

   </block>
   ...

   <block name="...">

Fig. 5.20 Illustration of the cooperation between the VoiceXML form interpretation algorithm
and the dialogue manager
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manager fills exit with an arbitrary value (which will not be evaluated by the dia-

logue manager), then block1 is executed and a conclusion like “Thank you for. . . ”

is outputted.

Constituting a central part within the context, the manager ensures a proper

course of the dialogue. In order to accomplish this it provides the following basic

functionality:

� Generation and stylistic realization of prompts according to the control param-

eters and the current field under discussion. For the actual implementation of

a dialogue system, the designer can choose between a rule-based strategy as

described in Section 3.5 which imitates the standard behavior of a VoiceXML

interpreter or a semi-stochastic approach as described in Section 3.8.

� Generation of confirmation prompts under certain conditions: If the user of a

travel information system says, e.g., “I want to travel to Munich to Paris.”, the

linguistic analysis of a standard VoiceXML interpreter would choose “Paris”

(i.e., the last item mentioned) as the destination whereas our system can allow for

overanswering by temporarily saving both current and also previous answer(s).

Using this feature it can prompt for confirmation such as “Would you like to

travel to Munich or to Paris?”. Also if the predicted recognition rate calculated

from the speech recognizer confidence measures is below a certain threshold, the

system can prompt for an explicit confirmation like “I understood you wanted to

travel to Paris. Is this correct?” or include an implicit confirmation like “From

where would you like to depart to Paris?”. It should be noted that these confir-

mations are already included in each field and can be prompted arbitrarily during

the dialogue, whereas in standard VoiceXML the dialogue designer needs to add

an extra field for each kind of confirmation. Also, a slot called yesno is included

in the grammar to pass the respective reply to the dialogue manager.

� Reception of the user’s input and control parameters as well as the analysis and

storage of these: The mapping of user input to the respective fields can be done

in multiple different ways. Considering an automated travel information system,

a city can either be a destination or a departure city. Typically, an utterance like

“I want to travel from Munich to Paris.” is analyzed as departure city = ‘Mu-
nich’ and destination = ‘Paris’ whereas “I want to travel Munich Paris.” does

not necessarily lead to any results in standard VoiceXML. In the linguistic anal-

ysis, we avoid this problem by introducing an additional, more general semantic

label called city resulting in city = ‘Munich’ and city = ‘Paris’ and leaving it to

the dialogue manager how to proceed with this information. If in this case the

configuration parameters are set accordingly and the order of the fields is 1. de-
parture city and 2. destination, the first city can be considered as the departure

city and the second city is considered as the destination. Here, we assume that it

is more probable in common speech that the first city of such a sentence is the

departure city and the second city is the destination. For a better interpretation

the system can also ask for confirmation in these cases.

� Dynamic generation of fields or explicit confirmations during the course of the

dialogue. This feature can be useful in cases where not all dialogue conditions

can be foreseen in the development phase or when certain dialogue conditions
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are very unlikely to occur. In standard implementations, these cases are typi-

cally covered by pre-defined fields rendering the dialogue flow, i.e., the dialogue

description rather unclear, especially when each confirmation requires its own

field. Thus, in this system, the dialogue manager decides at run time whether a

certain confirmation shall be prompted, making it easier to implement the ideas

proposed in Litman and Pan (2002) when speech recognition problems occur. Al-

ternatively, following the ideas in Section 3.5, when it is necessary to adapt the

prompt style to certain conditions, e.g., when a bad message needs to be commu-

nicated to an angry user, this message can be tailored to the situation. E.g., if the

desired flight is fully booked, the system can either ask for an alternative time,

date or origin or it can offer an alternative itinerary and ask if the user accepts

that suggestion: “I’m sorry, but all flights from Stockholm to Paris on March 1st

are fully booked. Would it be OK for you to travel on March 2nd?”

Each dialogue item occurring in the dialogue holds a certain set of default prop-

erties which can be modified with the aid of an XML-based dialogue description as

shown in Fig. 5.21. The first dialogue item is the ds-start item which solely con-

tains the text which is outputted at the beginning of the dialogue. This text is put in

quotation marks in order to allow the inclusion of variables and text concatenation.

In this mixed initiative dialogue, the first field is of initial type allowing the user

to provide as much information as flexibly as possible. Here, to properties of this

field are set up: questions corresponds to the prompt tag in VoiceXML and, thus,

contains the questions or prompts posed by the system. As opposed to VoiceXML,

multiple questions can be defined and the system randomly selects one of these at

runtime. These are separated by ///. Similarly, explanations can be defined which

are outputted before the new prompt in cases where the user does not say anything

(“noinput”) or says something which does not match any item of the linguistic analy-

sis (“nomatch”). These explanations are sorted according to the order in which they

are outputted, making it possible to follow the incremental prompts idea proposed

in Yankelovich (1996) where the length and the information content of a prompt

increase every time the user input is not useful.

The departure city field possesses the entire set of parameters that can be as-

signed to a field. The use of questions and explanation is equivalent to the initial

field. Furthermore, there is a summary which, in combination with another field’s

prompt, can form an implicit confirmation (e.g., “I understood you want to travel

from Paris. Where would you like to go to?”) or, in combination with the confir-
mation text, can form an explicit confirmation (e.g., “I understood you want to

travel to Munich. Is this correct?”). The slots property provides the dialogue man-

ager more flexibility to react on ambiguous user input like “I want to travel Munich

Paris.” as described above. I.e., if the user’s input contains a city which matches

neither departure city nor destination, that city is labeled as city. Typically, a

VoiceXML field can contain one value received from the user, e.g., destination
= ’Paris’. In some cases, however, it may be more convenient to store multi-

ple values, e.g., when asking “From which cities would you be able to depart?”.

Setting the max num ans (maximum number of answers) parameter to 3, it is

then possible to store three departure cities, e.g., departure city = f‘New York’,
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<dialog-xml>
<ds-start>

’Welcome to the UTA, the virtual Travel Agent in Ulm!’
</ds-start>
<initial name="initial1">

<questions value="’How may I help you?’///’What can I
do for you?’"/>

<explanation value="’You can inquire or book a trip’///
’You can say something like &quot;I want to book a flight to
Oslo&quot;.’"/>
</initial>
<field name="departure_city">

<questions value="’From where would you like to
travel?’"/>

<explanation value="’Please tell me your departure
city.’"/>

<summary value="’I understood you want to travel
from ’+$$jsstring:dlg:departure_city:utterance$$+’.’"/>

<confirmation value="’Is this correct?’"/>
<slots value="city"/>
<max_num_ans value="1"/>
<cond value="true"/>
<text value="’’"/>

</field>
<field name="destination">

<questions value="’What is your destination?’///’Where
would you like to go to?’"/>

<summary value="’I understood &quot;’
+$$jsstring:dlg:destination:utterance$$+’&quot;.’"/>

<confirmation value="’Is this correct?’"/>
<slots value="city"/>

</field>
<field name="date">

<questions value="’When would you like to depart?’"/>
<summary value="’I understood &quot;’

+$$jsstring:dlg:date:utterance$$+’&quot;.’"/>
<confirmation value="’Is this correct?’"/>

</field>
...
<confirmation name="conf1">

<questions value="’Are you sure you want to travel
from ’+...+’ to ’+...+’ on ’+...+’?’"/>

<slots value="departure_city///destination///date"/>
</confirmation>

</dialog-xml>

Fig. 5.21 Standard dialogue description excerpt of our travel information system

‘Philadelphia’, ‘Boston’g. As known from VoiceXML, fields can be assigned condi-

tions about whether they are included in the dialogue or not. Similarly, the argument

of cond can be an ECMAScript statement evaluating to true or false determining

whether the field shall be included. Like in the other properties, values of other
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fields, variables or functions can also be accessed with the aid of the interface call

$$jsstring:dlg:field name:answer$$. Finally, the text parameter can contain any

kind of text which cannot be assigned to the other parameters but which might be

needed in certain dialogue conditions. Apart from that it can also contain comments

or further information in the dialogue description file. Analogously, the fields des-
tination and date are included, with date being defined by the minimal number

of required parameters. Apart from the initial and field type dialogue items, there

also exists the confirmation type which allows the system to prompt for special

confirmations which are, like in this example, combining multiple fields. Here, the

slots are the ones which are reset when the user disagrees. E.g., if the system asks

“Are you sure you want to travel from Munich to Paris on December 2nd?” and

the user replies “No.”, the fields departure city, destination and date are reset.

For the sake of overview, the variable access is replaced by “. . . ” in the dialogue

description excerpt.

In order to provide the functionality of the dialogue manager as described up to

now, a specialized grammar is required to, somehow, outwit the linguistic analysis

of the VoiceXML interpreter. An excerpt of a grammar which could be used for the

travel information system described by the code in Fig. 5.21 is shown in Fig. 5.22.

In this example, the grammar is structured in order to provide a maximum flexibility

allowing the user to say literally anything. This mixed initiative approach is mani-

fested in the <count numberD“1C”> in the root rule allowing any combination

of the items once or more often in the answer and confirm rules and further rules

which are omitted in this example. In the answer rule, a garbage model is included

to also allow words or phrases which are not required for the linguistic analysis like

“I want to . . . ”, “hm”, “please”, etc. Furthermore, all cities appearing after “from”

are classified as departure city, all cities after “to” are considered as destination,

all cities without any context are just treated as city, etc. The confirm rule is used

to cover the various replies of a user to a confirmation prompt or to other prompts

requiring “yes” or “no” answers.

The major difference compared to standard VoiceXML grammars is given by the

CD operator instead of D . This means that the repeated input for a field leads

to the concatenation of the previous input and the current input in the linguis-

tic analysis. In order to separate semantic labels from values and to distinguish

between different fields within one utterance, different separator levels are used.

Although the resulting strings are not evaluated by the ECMAScript interpreter,

these separators are selected in such a way that they can not be confused with

ECMAScript operators like, e.g., D. Thus, here, a semantic label is assigned a

value with @. Multiple of these are concatenated with C and appended to the

name of the rule using #. The results of multiple rules are concatenated with jj.
Depending on the parsing tool, this CD approach implicates the problem that

at the beginning a result string is appended to a not initialized string leading to

strange output like, e.g., undefinedjjanswer#undefined+destination@Parisjj. . .
which after some preprocessing evaluates to answer#destination@Parisjj. . . . Us-

ing such a grammar and the appropriate preprocessing, a user input like, e.g., “Yes,

I would like to travel from Munich to Paris or to London tomorrow.” would be
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<?xml version="1.0"?>
<grammar xml:lang="en-US" version="1.0" root="ROOT">

<rule id="ROOT" scope="public" >
<count number="1+">

<item><ruleref uri="#answer"/> <tag>ds_input+=’||answer#’
+answer.val;</tag></item>

<item><ruleref uri="#confirm"/> <tag>ds_input+=’||confirm#’
+confirm.val;</tag></item>

...
</count>

</rule>

<rule id="answer">
<one-of>

<item>
<ruleref import="garbage#base_garbage"/>

</item>
<item>

from
<ruleref uri="#cities"/>
<tag>val+=’+departure_city@’+cities.val;</tag>

</item>
<item>

<ruleref uri="#cities"/>
<tag>val+=’+city@’+cities.val;</tag>

</item>
<item>

<ruleref uri="#date"/>
<tag>val+=’+date@’+date.val;</tag>

</item>
...

</one-of>
</rule>

<rule id="confirm">
<ruleref uri="#yesno"/> <tag>val+=’+yesno@’+yesno.val;</tag>

</rule>

<rule id="cities">
<one-of>
<item> london <tag>val=’London’</tag></item>
...

</one-of>
</rule>
...
</grammar>

Fig. 5.22 Excerpt of an XML grammar tailored to the travel information system shown in Fig. 5.21
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<config-xml>
<constants>

<grammarseparator1 value="’\\|\\|’"/>
...
<grammarconfirmationslot value="’yesno’"/>
<grammarconfirmation_yes value="’yes’"/>
...

</constants>
<dialoghandling>

<allow_multiple_answers value="true"/>
<multiple_answers_same_slot value="true"/>
<multiple_answers_choose_last value="false"/>
...
<stochastic_dm value="true"/>
...

</dialoghandling>
...

</config-xml>

Fig. 5.23 Excerpt of a configuration file for the dialogue manager

analyzed as ds input D cond#yesno@yesjjanswer#departure city@MunichC
destination@ParisC destination@LondonC date@tomorrow.

As mentioned above, the functionality and behavior of the dialogue manager is

determined by the configuration parameters which are defined in a separate con-

figuration XML file. An excerpt of such a configuration file including some of

the significant parameters is shown in Fig. 5.23. The configuration is subdivided

into constants and dialoghandling plus output where the verbosity of the out-

put can be adjusted, e.g., for debugging reasons. The prompt style is influenced

by prompts, userfunctions establishes the integration of task-related user-defined

functions, ctrlparam defines the use of dialogue control parameters and files ad-

ministrates the file names of dialogue description and dialogue model parameter

files.

The constants section contains all important string and number constants which

occur anywhere in the dialogue manager. Most of them concern the linguistic anal-

ysis where the developer can use arbitrary names and symbols as separators or slot

names. The most significant parameters in terms of dialogue manager behavior are

contained in the dialoghandling section. Here, the developer can intentionally con-

strain the flexibility of the system limiting the number of answers per user turn

to one (allow multiple answers D true allows a flexible mixed-initiative behav-

ior, . . . D false expects the user to reply to the current FUD and nothing else like

in plain system initiative). The parameters multiple answers same slot and mul-
tiple answers choose last define whether overanswering shall be allowed and,

if no, how multiple replies to one field shall be processed. E.g., selecting mul-
tiple answers same slot D true and multiple answers choose last D true
imitates the behavior of a standard VoiceXML interpreter analyzing “. . . to Paris to

London . . . ” as destination D ’London’ whereas multiple answers choose last
D false temporarily stores destination D f’Paris’,’London’g and leaves it up to
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the dialogue manager how to treat that case. Apart from further parameters which,

among other things, allow or disallow the user to repeat or change the stored values

of filled fields, the developer can also choose whether the semi-stochastic dialogue

model shall be used (stochastic dm D true) or whether the standard rule-based

dialogue model shall be employed (. . . D false).

Up to now, we have only considered the plain dialogue capabilities of the dia-

logue manager implementation. As described in Section 3.2, however, a dialogue

model contains more than only dialogue fields, but also dialogue control parame-

ters like, e.g., the user’s emotional state or the confidence measures provided by the

automatic speech recognizer. The integration of (an arbitrary number of) control pa-

rameters is implicitly provided for in this implementation. To accomplish that, the

definition of a field is extended with respect to the employed control parameters.

Depending on the number of combinations, an arbitrary number of extended ques-
tionsX. . . statements are included. An example is given in the destination field

in Fig. 5.24. Here, we presume three emotional states “happy”, “neutral” and “an-

gry” represented by their numerical values E.U / D 0:3, 1:0 and 1:7. Accordingly,

three extended prompts questionsX0 3, questionsX1 0 and questionsX1 7 are

defined. I.e., if the dialogue manager determines FUDDdestination:0.3, the fol-

lowing system turn will be “Excellent, and what is your destination?”.

A prominent example of how the confidence measures provided by the automatic

speech recognizer can be included is shown in the confirmation field in Fig. 5.24.

Here, the condition on which the confirmation is requested is directly dependent on

the value of the confidence measure which is assumed to be stored as a variable

called confidence. If this value, which is typically the log-likelihood of the speech

recognizer output ranging from �1 to 0, is below a threshold of, e.g., �4.0, the sys-

tem includes this combined confirmation. Furthermore, by default, the confidence

...
<field name="destination">
<questions value="’What is your destination?’///

’Where would you like to travel to?’"/>
<summary value="’I understood ’

+$$jsstring:dlg:destination:utterance$$+’.’"/>
<confirmation value="’Is this correct?’"/>
<questionsX0_3 value="’Excellent, and what is your

destination?’"/>
<questionsX1_0 value="’Where would you like to travel to?’"/>
<questionsX1_7 value="’I am sorry to bother you again.

Where did you say you wanted to travel to?’"/>
</field>
...
<confirmation name="conf_dep_dest">
<questions value="’Are you sure you want to travel from ’

+...+’ to ’+...+’?’"/>
<slots value="departure_city///destination"/>
<cond value="$$float:var:confidence:value$$ < -4.0"/>

</confirmation>

Fig. 5.24 Extended dialogue description excerpt of our travel information system corresponding
to the dialogue model illustrated in Fig. 3.34
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measures have a direct influence whether or not single confirmations (implicit or ex-

plicit) for certain fields are included. To accomplish that, two threshold values �i and

�e, �i > �e are defined. If the confidence measure of a user utterance addressing a

certain field is lower than �e , an explicit confirmation for this field is included. If the

confidence measure of the same turn is between �e and �i , an implicit confirmation

is included. Otherwise, no confirmation is requested.

If, following the considerations in Section 3.9, further control parameters shall

be included in the prompt realization, the extended questions can be described as

questionsXp1Xp2X. . . XN representing N further parameters which are described

as destination W p
.j1/
1 W p

.j2/
2 W : : : W p

.jN /
N .

5.4 Discussion

In this chapter, we have described implementation aspects and improvements for

our proposed speech-based emotion recognizers. The reduction of the emotion set

as well as gender discrimination constitute just a modicum of practical aspects when

dealing with plain emotion recognition. As discussed in Section 5.1.1, also data

annotation methods influence the performance of the emotion recognizer.

Using appropriate features, selecting representative emotions and applying the

two-step approach described in Section 5.1.2, we are able to keep the speech–

emotion recognizer’s complexity at a reasonable level resulting a robust recognition

performance. In the two-step speech–emotion recognizer, we employ the output of

an upstream speech recognizer as a-priori information for the actual speech–emotion

recognizer, which particularly leads to a better emotion recognition performance.

An assessment of our plain emotion recognizer as well as of our combined speech–

emotion recognizer is given in Sections 6.3.1 and 6.3.2.

The combination of multiple speech–emotion recognizers in order to improve

the recognition performance is described in Section 5.2. We exploit the dissimi-

larities in the output of different speech–emotion recognizers to reduce the overall

error rate. With respect to the high complexity which is linearly increasing with

the number of involved recognizers, it is important to be able to assess the perfor-

mance gain beforehand in order to estimate whether it is worth the effort. Here, we

consider theoretical limits which indicate whether the use of multiple recognizers

actually increases or decreases the performance compared to a single recognizer.

In Section 6.3.3, we discuss the actual performance of our approach to combining

multiple speech–emotion recognizers.

In Chapter 3, we have described a theoretic foundation to semi-stochastic emo-

tional dialogue modeling. Here the term “semi-stochastic” refers to the fact that all

states (fields and emotions) including their properties are predefined whereas the

transitions between the states are defined by probabilities. An implementation of

this dialogue model is described in Section 5.3. Our proposed dialogue manager is

integrated in the VoiceXML framework utilizing all of the framework’s advantages

while offering possibilities which exceed the framework’s limitations.



Chapter 6

Evaluation

Identifying the weaknesses of a system as well as establishing test criteria and

measures which make different systems and concepts comparable are one of the

major challenges in the evaluation of human–computer interfaces. We have given

a synopsis about the evaluation of SLDS in Section 1.5 (cf. also Fig. 1.3). In the

following section, we outline further aspects of the evaluation of SLDSs and their

components. In the remainder of this chapter, we present an in-depth evaluation of

the performance of the emotion recognizers described in Chapters 4 and 5, and we

describe our approach to measure the usability of the dialogue manager described

in Chapter 5.3.

6.1 Description of Dialogue System Evaluation Paradigms

Over the years, the PARADISE approach proposed by Walker et al. (1997b) has

emerged to a quasi-standard for the evaluation of human–computer interfaces. In

this model (see Fig. 6.1), it is assumed that both task success and dialogue costs

constitute relevant contributors to the top level objective (user satisfaction). The di-

alogue costs objective, in turn, can be further subdivided into efficiency and quality

objectives. For each of the low level objectives, there exist performance measures

such as the �-factor for the task success, various time measures for the efficiency

and utterance measures for the quality. In order to be able to determine a value for

�, here, attribute value matrices for the dialogue domain and the therein included

tasks are defined, i.e., attributes like departure city are assigned possible values

like “London”, “Paris”, etc. Then, a confusion matrix for all attributes is deter-

mined on the basis of the dialogues to be evaluated and � is calculated as described

for the labeling process in Section 2.3 as

� D P.A/ � P.E/

1 � P.E/
; (6.1)

where P.A/ is the probability that the attribute value matrices for the evaluation dia-

logues agree with those of the reference dialogue(s) and P.E/ is the probability that

J. Pittermann et al., Handling Emotions in Human-Computer Dialogues,
DOI 10.1007/978-90-481-3129-7 6, c Springer Science+Business Media B.V. 2010
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Maximize task success

Maximize user satisfaction

Minimize costs

Efficiency

measures

Qualitative

measures

κ (kappa) − # utterances

− dialogue time

− ...

− inappropriate utt. ratio

− agent response delay

− repair ratio

− ...

Fig. 6.1 Structure of objectives for the evaluation of SLDSs using the PARADISE ap-
proach (Walker et al. 1997b)

the attribute value matrices coincide by chance (see also Cohen 1960; Fleiss 1971;

Carletta 1996). Taking into account a task’s complexity by including P.E/, � can

be used to compare dialogue systems which even perform different tasks (Walker

et al. 1998).

Dialogue costs, also referred to as cost functions ci , such as number of dia-

logue turns, number of repair utterances, etc., can be also determined by comparing

attribute value matrices in order to take into account the structure of dialogues (seg-

ments and subdialogues).

Given these measures of success and costs, the PARADISE approach calculates

the overall performance PfDjSg of a dialogue D or a dialogue segment S as

PfDjSg D ˛ � ˘.�/ �
n
X

iD1

.wi � ˘.ci // ; (6.2)

where ˛ is a weighting factor setting up the influence of � and wi are weighting

factors for the individual cost functions ci , i D 1; : : : ; n. ˘.�/ is a normalization

function which is used to compensate the problem that the values of ci and � are not

on the same scale. It is defined as

˘.x/ D x � �x

�x

; (6.3)

where �x and �x are mean value and standard deviation of x (Cohen 1995; Walker

et al. 1997b).
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The weighting factors ˛ and wi in Eq. 6.2 are calculated by determining the

impact of � and ci on the user satisfaction which has been defined as the top level

objective of the PARADISE approach. This is accomplished by putting values for

user satisfaction, � and ci , which have been collected in experiments, into relation

and applying a multivariate linear regression to obtain ˛ and wi . In this calculation,

the statistical significance of ci also plays an important role. I.e., it is not unlikely

that certain cost measures finally do not contribute to the user satisfaction. It should

also be noted that the values for ˛ and wi are different for different dialogue systems.

The application of the PARADISE approach to two different SLDSs including

possible task specifications, � and cost measures and the organization of a user sur-

vey is circumstantially described in Walker et al. (1998). Being originally designed

for SLDSs and agents, the PARADISE model itself has been adapted to a huge va-

riety of fields like the PROMISE approach to the evaluation of multimodal dialogue

systems (Beringer et al. 2002) and has been amply analyzed (see, e.g., Hajdinjak

and Mihelič 2006).

As an alternative to PARADISE, Dybkjær and Bernsen (2001) propose a frame-

work to assess the usability of SLDSs. This framework embraces 15 measures to be

evaluated ranging from the appropriateness of the modality (is speech the modality

of choice for the given application/domain?), the system’s understanding capabili-

ties, the quality and adequacy of its output, the structure of the dialogue flow to the

system’s intelligence (including its reasoning or error handling capabilities), coop-

erativity and finally also the users’ satisfaction.

Despite the fact that holistic evaluation schemes such as PARADISE provide

a good basis for the comparison of different dialogue systems, their informative

value about possible improvements of the system or its components is relatively

low. Moreover, involving an extremely high effort for user studies and surveys, these

evaluation schemes are not suitable at all to debug a system under development, i.e.,

to track possible faults in individual components or in the overall system.

Thus, we do not limit the term “evaluation” to the final assessment of an end-

to-end system but also include preliminary tests to evaluate and optimize the

performance of single components or of the overall system as already indicated

in Fig. 1.3. Moreover, we argue that the PARADISE approach is too extensive

for our needs in terms of parameters to be considered and overall user studies to

be conducted. Accordingly, for the evaluation described in this chapter, we do not

implement the complete PARADISE idea, but concentrate on selected details, par-

ticularly on performance measures of speech and emotion recognition as well as the

user acceptance of our approach to adaptive dialogue management.

Regarding the architecture of adaptive SLDSs as described in the previous chap-

ters, specific performance measures can be defined for each of the components as

shown in Fig. 6.2. Focusing our consideration on the processing of the user’s input,

we primarily go into detail about the performance measures of the respective com-

ponents. Thus, to simplify matters, we presume that the assessment of components

like synthesis is, to some extent, included in the holistic evaluation.

For the linguistic analysis (parsing), the concept accuracy is determined on

the basis of reference sentences and the respective labels containing the included
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Fig. 6.2 Architecture of an adaptive SLDS and typical performance measures for its input pro-
cessing components

semantic representations. Typically, the sentences are analyzed and the output is

compared to the reference labels. The accuracy is calculated as the proportion

of correctly recognized representations and analysis errors. These errors include

misinterpretations (a keyword is assigned the wrong semantic meaning, e.g., “To

Paris.” is analyzed as departure city=’Paris’), additional interpretation (a word

without meaning is assigned a semantic meaning, e.g., “From London, please.” is

analyzed as departure city=’London’, destination=’Please’) or missing interpre-

tations (e.g.,“From London to Paris.” is interpreted as departure city=’London’).
The performance measures for speech and emotion recognition are quite similar.

These typically include information about the complexity of the recognizer (vocabu-

lary size or number of emotions, isolated words vs. continuous text) and the distance

between the recognized text or emotion sequence and the reference sentences or

emotional state sequence. With respect to the similarity of both recognizers, we will

comprehensively describe these measures in the following section before evaluating

the performance of the emotion recognizers described in Chapters 4 and 5.

6.2 Speech Data Used for the Emotion Recognizer Evaluation

In the experiments conducted in the course of the development and the perfor-

mance evaluation of speech-based emotion recognizers, we use speech data from

two corpora – the Berlin Database of Emotional Speech, presented in Burkhardt



6.2 Speech Data Used for the Emotion Recognizer Evaluation 191

et al. (2005), and a smaller database containing recordings of spontaneous emo-

tional speech, shortly described in Pittermann et al. (2007b).

The Berlin Database of Emotional Speech which is publicly available from the

Technical University of Berlin includes seven emotions, namely anger, boredom,

disgust, fear, happiness and sadness along with neutral recordings serving as refer-

ences. Ten different everyday-speech sentences not containing any linguistic cues

to certain emotional states like “Der Lappen liegt auf dem Eisschrank.” (“The cloth

is lying on the fridge.”) or “An den Wochenenden bin ich jetzt immer nach Hause

gefahren und habe Agnes besucht.” (“At the weekends I used to go home and visit

Agnes.”) have been performed by different actors in all different emotional states

and recorded in an anechoic chamber to minimize background noise and other dis-

turbing effects like echoes. Ten actors, five female and five male speakers, have

performed these sentences, each utterance in all seven emotions so that a high com-

parability across all emotions and speakers is ensured. With some sentences having

been recorded more often than once by the same speaker in the emotional state, a to-

tal of 813 utterances is available for our experiments. The emotional quality of each

utterance has been rated by 20 persons, who were asked to listen to the utterances

only once in front of a computer monitor and then to choose the emotion which they

think is acted in the respective utterance as well as to specify how convincing this

emotion has been brought out (Burkhardt et al. 2005; Bartels et al. 2006).

For the experiments with natural speech data, the Ulm Small Database of English

Spontaneous and Affective Speech (USDESAS) is used. The database consists of

586 utterances involving four emotions (anger, boredom, happiness and sadness)

and neutral. Selected neutral utterances have also been assigned “certainty” and

“doubt” as cognitive states. Twelve speakers (two female and ten male) have been

recorded while interacting with a quiz and a personality test both designed to elicit

certain emotional reactions from the candidates. These persons, mainly international

students and staff members, have been novices in the field of human–computer inter-

action without any experience with such systems. The recording sessions have been

performed in a Wizard-of-Oz environment as shown in Fig. 6.3 (see also Bernsen

et al. 1994) and the persons have not been told beforehand that the interaction ac-

tually is between them and a simulated system controlled by a human “wizard”.

Nevertheless, they have given their consent that the recorded data may be used in

experiments. The recordings have been performed in a secluded room without any

background noise and the utterances have been labeled manually based on subjective

Fig. 6.3 Wizard-of-Oz setup
for the recording of emotional
speech data (Bernsen et al.
1994)

subject wizard

interface

wizard
user

interface
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impressions. In order to achieve a higher credibleness of the data, the utterances have

been relabeled iteratively by different annotators using the bootstrapping algorithm

as described in Section 4.5. As opposed to the acted emotional speech data where

the emotional state for an utterance is clearly predefined and where the utterances

are “clean” in terms of additional sounds, the spontaneous speech data are often

hard to categorize and also contain additional sounds like laughter or breath sounds

making it easier to annotate these data but discombobulating the emotion recognizer

during the training and recognition.

Despite the fact that certain utterances in the databases (particularly in the Berlin

Database of Emotional Speech) have been judged as “not very convincing”, all of

these utterances are also included in our experiments to assess the systems’ robust-

ness against such outliers. In all experiments, disjoint training, development test and

evaluation test sets are randomly selected from the speech database(s) used in the re-

spective experiments. From the 813 utterances of the Berlin Database of Emotional

Speech, we choose 600 utterances for the training, 63 utterances for development

tests and 150 utterances for evaluation test. Constraints on the selection of the sets

are, e.g., disjoint speaker and sentences sets for training and testing. All experi-

ments are carried out repeatedly with different set combinations and the results of

the individual test runs are averaged.

6.3 Performance of Our Emotion Recognizer

Within the architecture of an adaptive SLDS, automatic speech recognition consti-

tutes the component the performance of which is the easiest to measure. As opposed

to the evaluation of the dialogue manager or the quality assessment of text-to-speech

synthesis which inherently require the subjective opinion of test users, the perfor-

mance evaluation of a speech recognizer can be broken down into the comparison of

two strings of words and the recognition error rate can be directly determined from

the distance of the two strings.

The Levenshtein distance may also be involved in the calculation of the word

accuracy of a speech recognizer on the basis of a set of test sentences. Given a refer-

ence sentence “I would like to travel to Paris today.” and the respective recognizer

output “I want to go to Paris today, please.”, we determine the Levenshtein distance

according to Eq. 5.4 (see also Fig. 5.12).

At a first glance, both sentences look similar, yet they contain the same informa-

tion. I.e., the linguistic analysis in an SLDS would extract the same semantic rep-

resentations from both sentences. Nevertheless, we can determine the Levenshtein

distance as L D 4. Including the overall length N of the reference sentence (8

words), the accuracy for this sentence is only .8 � 4/=8 D 50%. Regarding the de-

tails, we observe two substitutions (“want” instead of “would” and “go” instead

of “travel”), one deletion (“like” is missing in the recognized sentence) and one

insertion (“please” does not occur in the reference sentence).
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Depending on the application, insertions are sometimes not considered as critical

errors in the evaluation. Thus, there exists the strict performance measure of the

accuracy which is defined as

Acc: D N � .S C D C I /

N
� 100% D N � L

N
� 100%; (6.4)

and the more relaxed measure of the word recognition rate which is defined as

WordCorr: D N � .S C D/

N
� 100%: (6.5)

By definition, the word recognition rate ranges between 0 and 100% as the number

of substitutions and deletions may not be larger than the number of words in the

reference sentences. On the other hand, the accuracy may also take negative values

(in the worst case �1) as the number of insertions is not limited. E.g., “From

Munich to Paris.” instead of “To Munich.” leads to two insertions and one substi-

tution resulting in an accuracy of .2 � 3/=2 D �50%. Analogously, the sentence

recognition rate is defined as

Sent:Corr: D CS

NS

� 100%; (6.6)

i.e., the number of totally correctly recognized sentences CS divided by the num-

ber of sentences NS . Accepting only correct sentences without any substitutions,

deletions or insertions, and thus being lower than the word recognition rate, the sen-

tence recognition rate constitutes the hardest criterion for the evaluation of speech

recognizers.

Due to their similarity of our proposed emotion recognizers to standard speech

recognition systems, the criteria described above can, to some extent, also be used to

evaluate speech-based emotion recognizers as described in Chapter 4. Thus, it seems

obvious to treat substitution, deletions and insertions as errors and to calculate the

accuracy of the recognizer as described above. Having done so, one might notice

that these numbers are frustratingly low although a manual visual comparison of

recognition result and reference by rule of thumb looks rather positive.

A selection of results from our plain emotion recognizer as described in

Section 4.5 and the reference labels are shown in Fig. 6.4. In the left column,

the reference labels for three utterances are given and the respective recognition

results are given in the right column. The numbers in this figure represent beginning

and end time of the individual emotions in milliseconds.

In both reference and recognizer results it is presumed that there are (short)

pauses between individual emotions representing eventual transitions which are dif-

ficult to classify. As these pauses do not actually contribute to the recognition of

emotions, the pauses are not considered in the evaluation. Applying standard speech

recognizer criteria, the first recognized utterance contains one substitution and one

insertion, the second utterance contains one substitution and one deletion and the
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0 120 PAUSE 0 30 PAUSE
120 760 SADNESS 30 350 ANGER
760 790 PAUSE 350 380 PAUSE
790 1810 ANGER 380 730 ANGER
1810 1870 PAUSE 730 760 PAUSE

760 1840 ANGER
1840 1870 PAUSE

0 30 PAUSE 0 30 PAUSE
30 50 NEUTRAL 30 2690 NEUTRAL
50 70 PAUSE 2690 2730 PAUSE
70 3080 NEUTRAL 2730 3610 BOREDOM

3080 3110 PAUSE 3610 3640 PAUSE
3110 3630 NEUTRAL
3630 3640 PAUSE

0 30 PAUSE 0 30 PAUSE
30 1710 HAPPINESS 30 590 HAPPINESS

1710 1780 PAUSE 590 620 PAUSE
620 1750 ANGER
1750 1780 PAUSE

Fig. 6.4 Reference emotional labels (left column) of three utterances and the respective output of
a speech-based emotion recognizer (right column)

third utterance contains one insertion. Summarizing the errors and the number of

reference emotions, we obtain an accuracy of .6 � 5/=6 D 1=6. Moreover, the sen-

tence recognition rate is even 0%.

Taking into account the durations of the individual emotions, however, in this

example, it is striking that the sadness period in the first utterance is shorter than the

anger period making anger the predominant emotion in the reference. Comparing

this to the predominant emotion in the recognizer output which is also anger, we

could now declare the first utterance as correctly recognized. The same applies to the

second utterance, where the boredom period in the recognizer output is significantly

shorter than the neutral period and where the predominant reference emotion is also

neutral. For the third utterance, however, the predominant emotion in the recognizer

output is anger as opposed to happiness which is the only emotion in the reference.

All in all, comparing the predominant emotions, we obtain a recognition rate of

2=3 for these examples. With respect to the further use of the emotion recognizer

output in the adaptive SLDS (see Chapter 3), the application of this criterion is jus-

tifiable, last but not least as other approaches to emotion recognition, like artificial

neural networks, are also not able to account for temporal aspects and, thus, only

provide one emotion per utterance anyway.

For the determination of the predominant emotion in one utterance, we follow

two methods: either by comparing the frequencies of occurrences or by comparing

the relative durations of the individual emotions. In the first method, the predomi-

nant emotion E0 is determined as

E0 D arg max
E

N.E/; (6.7)
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where E are all emotions occurring in the utterance and N.E/ is the number of

occurrences of emotion E in the utterance. Similarly, the second method determines

E0 as

E0 D arg max
E

D.E/ D arg max
E

X

i

Di .E/; (6.8)

where D.E/ is the overall duration of emotion E in the utterance calculated as the

sum of the durations of the individual occurrences of the emotion Di .E/.

Following the scoring idea in the ROVER approach as described by Eq. 5.5, it

may seem self-evident to combine both methods, i.e., determining E0 as

E0 D arg max
E

˛ � N.E/ C .1 � ˛/ � D.E/; (6.9)

where ˛ 2 Œ0; 1� is a weighting factor defining the proportions of the first and the

second method – ˛ D 1 corresponds to the first method, ˛ D 0 represents the second

method and any value for ˛ in between leads to a mixture of both methods. An ex-

haustive search for a representative value for ˛ over all experiments conducted with

different emotion recognizer setups has lead to the conclusion that both methods in-

dividually lead to similar results. I.e., it is left to the evaluator whether to determine

E0 using the first or second method. A combination of both methods, however, is

breaking a butterfly on a wheel and therefore unnecessary.

As opposed to speech recognition where the words are explicitly defined and

provide a reliable basis for comparison, the labeling of emotions involves a large

degree of subjectivity and, thus, may lead to strong discrepancies among different

annotators. In the Berlin Database of Emotional Speech (Burkhardt et al. 2005),

which we also use for the evaluation of the emotion recognizers, this problem has

been addressed by providing the labels of all 20 annotators plus the actual emotion

the actor was asked to play for each utterance. E.g., if the actor was asked to say

a sentence in an sad manner and nine annotators labeled the utterance as sad, eight

chose bored, two chose neutral and one chose disgusted, the reliability of the utter-

ance would be 45% and it would or should not be surprising if the utterance was not

recognized “correctly” by any of the systems.

Considering seven emotions (anger, boredom, disgust, fear, happiness and sad-

ness plus neutral) as contained in the database, one could now think of a vectorial

representation in a seven-dimensional space, where the position is given by the pro-

portion of the respective emotion among all annotators. E.g., the utterance discussed

above would be represented by Œ 0.0 anger, 0.4 boredom, 0.05 disgust, 0.0 fear, 0.0

happiness, 0.45 sadness, 0.1 neutral �. Theoretically, the HMMs in the recognizer

could be trained accordingly and the recognition performance could be assessed

on the basis of the distance between reference and recognizer output in the seven-

dimensional space. Commonly used for calculations in vector spaces, here, the

Euclidean distance is a possible distance measure. However, assuming seven emo-

tions and 20 annotators, there exist a vast number of discrete points in the vector

space and therefore models to be trained, which is not feasible unless an appropriate

amount of training data is available. It should be noted, that the emotional space
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does not necessarily have to be seven-dimensional – depending on the number of

emotions to be considered, it may also be of lower or higher dimension.

Nevertheless, the output of the recognizer as shown in the right column in

Fig. 6.4 may also be transformed into the seven-dimensional space by con-

sidering the relative duration of each of the seven emotions in each utterance.

E.g., in the output of the second utterance, the proportion of boredom is

(36,100�27,300)/(26,900�300C36,100�27,300) � par0:25, so that the second

recognized utterance can be described by Œ 0.0 anger, 0.25 boredom, 0.0 disgust,

0.0 fear, 0.0 happiness, 0.0 sadness, 0.75 neutral �. It should be noted that in the

first case, the values are averaged over all annotators and in the second case, the

values are derived from the temporal trend of emotions within an utterance which,

strictly speaking, does not allow us to compare the vectors of both cases. However,

as it is not identifiable based on which point of time within the utterance each of

the annotators bases his judgment, we presume that different annotators form their

opinions at different points of time like the recognizer also does, so that we argue

that both cases form a comparable basis as well.

Again considering the second utterance in Fig. 6.4 the Euclidean distance be-

tween reference and recognizer output is
p

.1 � 0:75/2 C .0 � 0:25/2 � 0:35. By

definition, the minimum Euclidean distance in this space is 0 and the maximum

distance is
p

2. Thus, for a better comparability, we normalize each distance di-

viding its value by
p

2, so that, e.g., the normalized distance for the second

utterance is 0:25. Similarly, the distance for the first utterance is approximately
p

.0 � 0:39/2 C .1 � 0:61/2=
p

2 D 0:39 and 0:67 for the third utterance.

Using these numbers, the recognition performance of a plain emotion recognizer

can be determined as

EmotionCorr: D
 

1 � 1

jU j �
X

u2U

Nd.u/

!

� 100%; (6.10)

where U is the set of all test utterances, jU j is the cardinality of U and Nd.u/ is

the normalized Euclidean distance for utterance u in the emotional vector space.

Summarizing the numbers calculated for the utterances in Fig. 6.4, we obtain a

recognition performance of 1 � 1
3
.0:25 C 0:39 C 0:67/ D 56:3%.

Instead of the complicated distance calculations in the multi-dimensional emo-

tional space, the same considerations can also be made in the two-dimensional

valence-arousal space as depicted in Fig. 6.5 (see also Fig. 3.14 in Section 3.5).

Predefining fixed values for each emotion, each utterance is represented as the lin-

ear combination of its included emotions. For the emotions in this example, we

presume the following coordinates: anger .�0:9; 0:9/, boredom .�0:1; �0:3/, hap-

piness .0:9; 0:8/, neutral .0:0; 0:0/ and sadness .�0:8; �0:2/. The coordinates of

reference and recognition result for each utterance are marked with black and grey

circles and the distances are represented by black solid lines.

For example, for the first utterance, the reference value is 0:39�sadness C 0:61�
anger � .�0:861; 0:471/. Here the proportions are also derived from the duration
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Fig. 6.5 Evaluating the
emotion recognizer
performance on the basis of
distance measures in the
valence-arousal
space (Pittermann et al.
2008a)
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of each emotion in the utterance. The coordinates of the recognition results coincide

with anger and are .�0:9; 0:9/, so that the Euclidean distance is � 0:43. The maxi-

mum Euclidean distance in the valence-arousal space is 2
p

2, so that the normalized

distance for the first utterance is approximately 0:152. Analogously, the distance for

the second utterance is 0:028 and for the third utterance 0:427. Applying Eq. 6.10,

we obtain a recognition performance of 79:8%.

Furthermore, as an alternative to distance calculations in the multi-dimensional

emotional space or the valence-arousal space, we can also calculate the error of the

resulting emotional value E.U / which is described as a projection in the valence-

arousal space as presented in Section 3.5. Typically, the values are distributed

according to the curve shown in Fig. 3.16. Positing E.U / D 0 for extreme hap-

piness (upper right corner of the valence-arousal space), E.U / D 1 for neutral

and E.U / D 2 for extreme anger (upper left corner), a different continuous gradi-

ents can be defined following different types of functions. Given further predefined

points in the space and their values E.U /, linear combinations of polynomials,

exponential functions, harmonic or other functions may be found to satisfy the

requirements. In Section 3.5, we are content with a relatively simple approach as

described by Eq. 3.8:

E.U / D 1 � v � .a C 2/=3; (6.11)

where v and a are the values of valence and arousal.

Calculating the emotional values for both reference and recognizer output, we

determine the distance as the absolute difference of both values. Inserting the

valence-arousal values from above, we obtain for the first utterance Eref .U / D
1 � .�0:861/ � .0:471 C 2/=3 � 1:71 and Erec.U / D 1 C 0:9 � 2:9=3 � 1:87. With

a maximum possible distance of 2 among the values of E.U /, the normalized dis-

tance for the first utterance is j1:71 � 1:87j=2 D 0:08. Analogously, the normalized
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distance for the second utterance is 0:008 and for the third utterance 0:56. Again,

applying Eq. 6.10, we obtain a further recognition performance measure of 78:2%

for these utterance.

Comparing the different approaches to measuring the performance of an emo-

tion recognizer, it is remarkable that the standard speech recognizer measures do

not necessarily provide a useful basis for assessing the strengths and weaknesses of

a system, whereas application-oriented measures help to rank recognition errors ac-

cording to their actual impact on the further processing of the emotions. Advancing

these ideas, it is absolutely imaginable that the definition of different performance

measures as done above or in literature, is tempting to somehow gloss over one’s

own results by searching for some strange measure which leads to fabulous results.

E.g., if, for whatever reason, we decided to use the mean square difference instead

of the mean absolute difference when comparing the emotional values (by what the

square difference needs to be normalized by factor 1/4) and to apply the compen-

satory square root at the right place, we could obtain a theoretical performance of

“more than 90%” without any information value (Pittermann et al. 2008a).

Unless otherwise indicated, for the performance assessment of the emotion-

recognizers and speech–emotion recognizers in the remainder of this section, we

mainly apply the “predominant emotion”-criterion as this provides an application-

independent basis for comparison and helps to point out and eventually to avoid

model-conditioned weaknesses of the recognizers. Nevertheless, we argue that the

three distance measures described above still constitute equitable and comparable

measures. Thus, for our plain emotion recognizer, we also accomplish a perfor-

mance evaluation on the basis of E.U /.

6.3.1 Plain Emotion Recognition

When considering only the emotional content of an utterance, we face the problem

from which part(s) of the utterance, the relevant emotion(s) shall be extracted (as

opposed to speech recognition where the words are clearly defined by their bound-

aries). Accordingly, we use a speech–pause detector to determine which parts of

the utterance are relevant (speech) and which are not (pause). Thus, the performance

of the emotion recognizer also stands or falls with the output of the speech–pause

detector. A simple straightforward approach is to define a threshold factor �sp � 1

and to label each contiguous block of samples (here: a frame of 10ms length) as

pause if their amplitudes are smaller than �sp times the maximum signal amplitude.

Alternatively, but requiring a lot more computational effort, an adaptive minimum-

tracing method can be applied to speech-relevant bands in the frequency domain as

described in Linhard and Haulick (1999). To keep things simple, this approach is

not employed in our experiments.

As expected, applying standard speech recognizer evaluation criteria a relatively

low emotion accuracy of approximately 20–30% is achieved for any of the values for

the speech–pause threshold �sp. Among the features described in Section 4.1.4 we
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use exclusively prosodic and acoustic coefficients, which we refer to as “PAC-24”,

including pitch, three formants, intensity, jitter, harmonicity, pitch in voiced parts

and the respective computational statistics including minimum, maximum, range,

mean and standard deviation for selected features. These features are extracted from

the speech signals with the aid of Praat (Boersma 2001, 2002).

In conformance with speech recognition, we choose a frame rate of 100 Hz, i.e.,

the features are calculated every 10 ms. As opposed to speech recognition where

the state transitions in the phoneme models occur at such high rates, a lower frame

rate would also be sufficient for emotion recognition. However, to enable a later

exchange of features and to retain a higher consistency for the sake of a better com-

parability when evaluating speech–emotion recognizers, we afford the extravagance

to actually operate the recognizer at that pace.

In addition to different speech–pause thresholds, we also use different numbers

of Gaussian mixtures in the HMMs. As described in Section 4.2.1, mixtures are

used to approximate more complex probability density functions with the aid of

linear combinations of multiple Gaussian distributions with different mean values,

variances and weights in the overall distribution.

For our experiments, we consider speech–pause thresholds of 0.002, 0.005, 0.01,

0.07 and 0.1 (of the maximal absolute signal amplitude, averaged of 10 ms windows)

and the HMM prototypes include 1, 2, 3, 4 or 8 Gaussian mixtures. The recognition

rates for these environment parameters are shown in Table 6.1. Here, as discussed

in Section 5.1.1, only a reduced set of emotions, where disgust is omitted and where

boredom and neutral are merged, is considered. I.e., the boredom parts in all utter-

ances are relabeled as neutral contributing to a slightly more general acoustic model

for neutral and should accordingly also be recognized as neutral after the training

whereas all utterances containing disgust are removed from all training and test sets.

Looking at the table, it can be observed that the recognition rates range from 49:3%

to 65:3% variegatedly distributed across the table. Tendencies how the recognition

rates depend on �sp or the number of mixtures are difficult to derive, except for a

recommendation not to employ more than four Gaussian mixtures in the models.

The maximum recognition rate is obtained with two mixtures – at a relatively low

�sp of 0.005 but also at the highest �sp of 0.1.

As described in Sections 4.1.4 and 5.1.1, it is sensible to employ separate acous-

tic models for female and male speakers with respect to the different ways how

women and men express emotions. By that, the number of models and thus the

Table 6.1 Plain emotion recognition rates (in %) for different speech–pause thresholds
and numbers of Gaussian mixtures (Pittermann and Pittermann 2006a)

1 mixt. 2 3 mixt. 4 mixt. 8 mixt.

�sp D 0.002 57.3 53.3 64.0 57.3 58.7

�sp D 0.005 56.0 65.3 58.7 60.0 58.7

�sp D 0.01 54.7 60.0 61.3 49.3 57.3

�sp D 0.07 61.3 62.7 60.0 54.7 54.7

�sp D 0.1 62.7 65.3 52.0 61.3 50.7
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Table 6.2 Plain emotion recognition rates (in %) for different speech–
pause thresholds and numbers of Gaussian mixtures with gender discrim-
ination (different models for female and male speakers, Pittermann and
Pittermann 2006a)

1 mixt. 2 mixt. 3 mixt. 4 mixt. 8 mixt.

�sp D0.002 64.0 66.7 64.0 66.7 69.3

�sp D0.005 62.7 70.7 62.7 70.7 58.7

�sp D0.01 61.3 72.0 65.3 64.0 70.7

�sp D0.07 56.0 62.7 61.3 61.3 65.3

�sp D0.1 66.7 60.0 62.7 57.3 61.3

recognizer complexity are doubled. With a smaller amount of training data available

for each model (when using the same training material), one might expect less ac-

curate models and, thus, a lower recognition performance. Typically, a recognizer’s

performance tends to decrease when the recognition perplexity increases, e.g., when

the domain becomes more complex, when the language model becomes more flexi-

ble or when the vocabulary size increases. This behavior has notably been observed

by Lippmann (1997) who has conducted appropriate experiments with both humans

and automatic speech recognizers.

We implement this idea of gender discrimination with the same parameters (emo-

tion set, �sp and mixtures) as described above. The respective recognition rates are

listed in Table 6.2. Looking at these results, it can be seen that the values still look

untraceably distributed among the table but now range from 56% to 72% which is

noticeably higher than the values in Table 6.1 although there are more HMMs in

the acoustic model. This is mainly owed to the differences in pitch and formants in

female and male speech. The maximum recognition rate is 72% at �sp D 0:01 with

two mixtures in the models.

It should be noted that, although there are different HMMs for female and male

speakers, there is no extra “gender recognizer” required. I.e., the emotion recognizer

returns both emotion and gender simultaneously like “ANGER-F” (female anger),

where the gender information is neglected in our further analyses. Not yet further

documented, in noncompetitive experiments, this emotion recognizer achieves a

gender recognition rate of 90% and above, providing robust extra information for

free which could be used, e.g., in combination with a speaker identification module

in enhanced user modeling.

The influence of reducing the number of emotions can also be identified with the

aid of confusion statistics, either in matrices or in a table listing the five most promi-

nent types of errors which occur most often as shown in Table 6.3. In Table 6.3(a)

the most frequent errors when considering all six emotions and neutral are listed.

Looking at these numbers, it is striking that the most frequent error involves the

confusion of boredom and neutral. It should be noted that in both tables, the confu-

sion (emotion-a • emotion-b) includes both cases where emotion-a is recognized

as emotion-b and where emotion-b is recognized as emotion-a. Moreover, the num-

bers in the tables are averaged over all recognizers with different values for �sp
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Table 6.3 Relative
frequency of errors with the
full (a) and the reduced (b)
set of emotions (Pittermann
and Pittermann 2006a)

All emotions:

error freq.

Boredom • neutral 10.4%

Anger • happiness 7.0%

Fear • neutral 5.4%

Neutral • sadness 4.5%

Anger • fear 3.8%

(a)

Reduced set of emotions:

error freq.

Fear • neutral 7.9%

Anger • happiness 7.7%

Neutral • sadness 6.5%

Anger • fear 5.0%

Happiness • neutral 2.7%

(b)

and the number of mixtures. The more typical confusion in speech-based emotion

recognition, namely between anger and happiness, still constitutes a frequent error

and is at the second position. Further “important” confusions involve also neutral

and fear. In this ranking, confusions with disgust occur with relatively low frequen-

cies, supporting the conjecture that the use or omission of disgust has no influence

on the recognizers’ performance.

Nevertheless, a reduced set of emotions without boredom (merged with neutral)

and disgust (omitted) is considered for comparison in Table 6.3(b). By design, the

confusion of boredom and disgust does not occur any more, however, it is remark-

able that all confusions with neutral gain in importance, especially (fear • neutral)

which now constitutes the most prominent confusion, still sending (anger • happi-

ness) off to be second. The increase of almost all numbers is due to the fact that the

proportion of the confusions with disgust is now missing in the statistics by what the

proportion of the other errors increases. Moreover, the neutral models (female and

male) now exhibit a larger variance as they are also trained with boredom utterances

and the previous confusions between boredom and other emotions are now shoveled

on to neutral • other emotions.

All in all, the training of different models for female and male speakers leads

to a significant improvement of the plain emotion recognizer performance. For five

emotions, such a recognizer achieves a recognition rate of up to 72% on the Berlin

Database of Emotional Speech (Pittermann and Pittermann 2006d). For these com-

parisons, we assume that the emotion accuracies are commonly determined by hard

measures (match vs. no match) on the utterance level which we also apply with our

predominant emotion criterion. Including soft distance measures on the values of

E.U / (see also the evaluation of the combined speech–emotion recognizer) for our

best performing emotion recognizer, this “new” emotion accuracy is above 85%.
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Calculating the average emotion classification recall ratio of all 20 annotators

for all utterances of the Berlin Database Emotional Speech, we determine a hu-

man emotion recognition accuracy of 85.2% constituting an desirable upper bound

(Meng et al. 2007). This number seems realistic compared to the observations by

Schröder (2000) who observes a human emotion recognition rate of 81% for 10

emotional states.

In comparison to similar work by, e.g., Nwe et al. (2001) who use HMMs

with MFCC features achieving an accuracy of 72%, the performance of our

straightforward approach seems satisfactory. In contrast, Luengo et al. (2005) report

an accuracy of 92% for the HMM-based classification of seven emotions, however,

in a single-speaker scenario. Vogt and André (2006) report recognition rates of up

to 86% on acted speech also taken from the Berlin corpus which actually constitutes

a “better” performance than the reference labels by the annotators. Dating further

back, a system similar to ours also achieves an emotion accuracy of 72% (Polzin

and Waibel, 1998). Nevertheless, depending on the used speech data, performances

of 60% or lower are also reported for similar systems (e.g., Kwon et al. 2003; Iwai

et al. 2004; Ai et al. 2006). The accuracies mentioned in this paragraph may also

serve as a basis for comparison with the emotion accuracies of our speech–emotion

recognizers.

6.3.2 Speech–Emotion Recognition

The combination of speech and emotion recognition does not only reduce the recog-

nition complexity by using similar or even the same features from the speech signals,

but also add a new dimension or degree of freedom to the evaluation compared to

plain speech or emotion recognizers. Due to the fact that emotions are now tied to

words (actually to phonemes, but we evaluate only the recognizer output and not

intermediate results like, e.g., emophoneme sequences) we can now read off and as-

sign the exact time dependencies when a certain emotional state persists and when

it should be recognized.

At a first glance, the use of standard speech recognizer measures on the basis

of the edit distance makes sense again. In fact, these criteria provide a solid basis

for performance comparison while constituting a strict measure. However, on closer

examination, it turns out that the thereby determined recognition rates are not very

meaningful about the nature of the errors and also about the actual impact of the

errors in further processing steps of the overall dialogue system. E.g., if a (neutral)

reference utterance like

“I-neutral want-neutral to-neutral travel-neutral to-neutral London-neutral tomorrow-

neutral.”

is recognized as “I-disgust want-boredom to-boredom travel-neutral to-fear

London-fear tomorrow-boredom.” we obtain the same recognition rate of

1=7 � 14:3% for this sentence as when recognizing “We-neutral would-neutral
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like-neutral to-neutral go-neutral to-neutral Paris-neutral today-neutral.” or “We-

disgust would-boredom like-boredom to-neutral go-fear to-neutral Paris-fear

today-boredom”. Obtaining the same recognition rates for all three example cases,

it becomes difficult to judge whether and to which extent errors occur on the word

and/or emotion level.

Thus, in addition to these admittedly convenient and easy to determine measures,

we also consider word and emotion recognition rates separately – the word recog-

nition rates are determined on the basis of the edit distance and the emotion

recognition rates are determined on the basis of the predominant emotion as de-

scribed above.

Another important factor in the evaluation of speech recognizers is the language

model used in the recognition. Accordingly, here, size and flexibility of the emo-

tional language model have a strong influence on the output of the speech–emotion

recognizer.

In our experiments we include three different types of emotional language

models:

� A word–emotion loop the use of which leads to the lower bound on the recogni-

tion performance

� a sentence grammar strongly constrains the recognizer flexibility leading to

rather unfair results which could be referred to as an upper bound on the per-

formance

� a bi-gram emotional language model trained on the word–emotions occurring in

the Berlin Database of Emotional Speech

As indirectly suggested in the HTK Book (Young et al. 2006) for the evaluation

of plain speech recognizers, we evaluate the speech–emotion recognizers at three

different stages of the training process of the HMMs:

� Stage-1 (corresponding to hmm7 of the tutorial in the HTK Book): the mono-

phone HMMs have been iteratively re-estimated for five times and a short pause

model has been derived from the silence model.

� Stage-2 (corresponding to hmm9): based on stage-1, a realignment of the data

using the Viterbi recognizer has been performed and the monophone HMMs have

been re-estimated twice more.

� Stage-3 (corresponding to hmm15): based on stage-2, tied-state triphones have

been derived and the respective HMMs have been re-estimated four more times.

Concerning the feature sets we employ most of the sets described in Section 4.1.4.

These sets range from 39 plain MFCCs and 24 plain prosodic and acoustic coef-

ficients to various combinations of these features. Here, the prosodic and acoustic

features are again extracted with the aid of Praat (Boersma 2001, 2002), the MFCCs

are calculated by HTK’s HCopy tool (Young 1994; Young et al. 2006). For the

sake of consistency we use the same notation (MFCCDA-39, PAC-24, etc.) in our

experiments as well.
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Table 6.4 Evaluation of the
speech–emotion recognizer
using prosodic and acoustic
features (PAC-24) by means
of word–emotion (a), word
(b) and emotion (c) recogni-
tion rates

(a) Word–emotion recognition rates in %

W.-e. loop Sentence Bi-gram

Stage-1 17.8 23.0 18.7

Stage-2 17.1 22.3 19.5

(b) Word recognition rates in %

W.-e. loop Sentence Bi-gram

Stage-1 19.6 34.5 21.9

Stage-2 22.3 34.7 22.6

(c) Emotion recognition rates in %

W.-e. loop Sentence Bi-gram

Stage-1 46.2 46.2 45.3

Stage-2 45.3 48.1 47.2

An overview on the recognizer performance when using only the 24 prosodic

and acoustic features is shown in Table 6.4. For this feature type, there are no

results available for the third training stage (tied-state triphones) as the plain

prosodic features cause numerical instabilities in the speech recognizer training.

The word–emotion recognition rates (a) range from 17% (word–emotion loop) to

23% (sentence grammar), the plain word recognition rates (b) range from a little

more than 19% (word–emotion loop) to 34:7% (sentence grammar) and the emo-

tion recognition rates (c) are relatively dense between 45% and 48:1% independent

of the used emotional language model. Concerning the word recognition perfor-

mance, it should be noted that the significant difference between the word–emotion

loop and the sentence grammar is due to the fact that with the sentence grammar the

recognizer is able to include the (known) length of the utterances in its calculations.

I.e., if all sentences were known and of different lengths, the recognizer still would

have good chances, guessing the correct sentence even if the features were useless.

Apart from the fact, that in all respects the recognition performance is unaccept-

ably low, and that, as expected, the word–emotion recognition rates are lower than

plain word or emotion recognition rates, it is remarkable that the emotion recogni-

tion rates are noticeably higher than the word recognition rates. This is due to the

fact that prosodic parameters alone do not suffice for speech recognition but can be

employed for emotion recognition as done in the previous section.

The recognition rates for the same scenarios as described above, now with plain

MFCC features including delta and acceleration coefficients (MFCCDA-39), are

listed in Table 6.5. It is not exaggerated to state that MFCCs outperform the plain

prosodic and acoustic features in any discipline – the recognition rates for word–

emotions, words and emotions are significantly better. It is noticeable that for almost

all measures, the recognition rates decrease after the third stage. This is partly due

to the fact that the use of triphones leads to a higher model complexity which in

turn requires more training data (and then also more iterations). Being originally

designed to optimize the performance of speech recognizers, the MFCCs lead to
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Table 6.5 Evaluation of the
speech–emotion recognizer
using Mel-frequency cepstral
coefficients and their first
and second order regression
coefficients (MFCCDA-39)
by means of word–emotion

(a), word (b) and emotion (c)
recognition rates

(a) Word–emotion recognition rates in %

W.-e. loop Sentence Bi-gram

Stage-1 34.5 74.2 54.5

Stage-2 28.2 75.8 58.1

Stage-3 26.9 70.7 56.1

(b) Word recognition rates in %

W.-e. loop Sentence Bi-gram

Stage-1 53.3 >98 80.7

Stage-2 50.5 >98 87.3

Stage-3 49.6 >98 87.7

(c) Emotion recognition rates in %

W.-e. loop Sentence Bi-gram

Stage-1 65.1 67.0 61.3

Stage-2 64.2 67.9 63.2

Stage-3 62.3 65.1 62.3

unsurprisingly good word recognition rates. When using the sentences grammar,

constituting the most restrictive language model, we achieve the highest word recog-

nition rates – up to 100% in our simulation with a limited number of utterances.

Taking into account possible statistical deviations, we can assume that recognition

rates of at least 98% are achievable with these settings. Such rather unusual perfor-

mance outliers are indicated by “>98%”. On the other hand, the recognition rates

of approximately 87% for the bi-gram language model appear more realistic with

respect to the flexibility of a bi-gram model. Kim (2006) discusses the performance

of commercially available speech recognition software, for which most developers

claim accuracies of up to 99% in their product descriptions. According to an assess-

ment conducted by Zhou et al. (2005), the baseline word accuracy of a system like

Nuance’s IBM ViaVoice (see http://www.nuance.com/viavoice/) is approximately

88% for their evaluation scenario.

The highest emotion recognition rate of 67.9% (and also the highest word–

emotion recognition rate of 75.8%) is obtained with the sentences grammar. Com-

pared to the plain emotion recognizer (Tables 6.1 and 6.2) for five emotions, we now

achieve similar recognition rates for seven emotions without even distinguishing fe-

male and male speakers.

The idea of using Gaussian Mixture Models is applied for mixed MFCCs and

prosodic and acoustic features and we consider two further training stages:

� Stage-4: based on stage-3, the HMMs are extended to GMMs based on two Gaus-

sian mixtures. These models are re-estimated two more times.

� Stage-5: based on stage-4, the two-mixture GMMs are extended to three-mixture

GMMs and re-estimated two more times.

With respect to the fact that the listing of all recognition rates for all combinations of

mixed-features would be rather disproportionate, we illustrate an idea of the results

http://www.nuance.com/viavoice/
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Table 6.6 Evaluation of the
speech–emotion recognizer
using Mel-frequency cepstral
coefficients and five addi-
tional prosodic and acoustic
coefficients (MFCPAC-44)
by means of word–emotion

(a), word (b) and emotion (c)
recognition rates

(a) Word–emotion recognition rates in %

W.-e. loop Sentence Bi-gram

Stage-1 31.9 72.7 55.4

Stage-2 30.2 74.1 56.5

Stage-3 28.2 69.8 52.6

Stage-4 30.8 74.0 56.5

Stage-5 34.4 72.7 58.4

(b) Word recognition rates in %

W.-e. loop Sentence Bi-gram

Stage-1 52.3 >98 83.2

Stage-2 52.3 >98 85.1

Stage-3 50.9 >98 83.3

Stage-4 54.2 >98 84.6

Stage-5 56.5 >98 84.7

(c) Emotion recognition rates in %

W.-e. loop Sentence Bi-gram

Stage-1 64.2 67.0 67.0

Stage-2 63.2 68.9 66.0

Stage-3 61.3 65.1 61.3

Stage-4 63.2 69.8 64.2

Stage-5 68.9 67.9 67.0

at the example of the MFCPAC-44 feature set consisting of the 39 MFCCDA coeffi-

cients plus pitch, intensity and three formants. These results are shown in Table 6.6.

Comparing these recognition rates to the ones in Table 6.5, it is noticeable that

the numbers do not differ significantly but that there are cases where the com-

bined features perform better and there are cases where the MFCCs perform better.

First of all, it can be seen that the maximum emotion recognition rate of 69.8%

is better than with plain MFCCs although the corresponding word–emotion recog-

nition rate is lower than with MFCCs. Even with the word–emotion loop or the

bi-gram language model, higher emotion recognition rates are achieved compared to

MFCCs. Although the word recognition rates using the sentences grammar are still

at 100%, most of the word–emotion and word recognition rates are lower than those

with MFCCs. Accordingly, the highest word–emotion recognition rate of 75.8% is

achieved with plain MFCCs (see Table 6.5). The highest emotion recognition rate of

71.7% is achieved with the MFCPAC-48 feature set using the word–emotion loop

after stage-5 of the training.

The average error frequencies between emotion pairs are illustrated by the

confusion matrix in Table 6.7. In this table the numbers are calculated from the

recognition results for MFCPAC-40, MFCPAC-41, MFCPAC-44 (see Table 6.6),

MFCPAC-46, MFCPAC-48, MFCPAC-52 and MFCPAC-56. For these seven

recognizers the average emotion error rate is 36.2%. The left numbers are the

absolute error frequencies in % and the right numbers in parentheses are the relative
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Table 6.7 Emotion confusion matrix (average values in %) for speech–emotion recognizers with
different feature sets combining MFCCs and prosodic and acoustic features (Meng et al. 2007)

Sadness Neutral Happiness Fear Disgust Boredom

Anger 0.00 (0.00) 0.13 (0.35) 6.66 (18.4) 1.60 (4.43) 1.12 (3.08) 0.32 (0.89)

Boredom 3.22 (8.88) 5.03 (13.9) 0.17 (0.46) 0.83 (2.28) 0.50 (1.39)

Disgust 0.34 (0.93) 1.37 (3.78) 1.60 (4.41) 0.87 (2.41)

Fear 0.00 (0.00) 2.56 (7.06) 6.04 (16.7)

Happiness 0.71 (1.96) 1.06 (2.93)

Neutral 2.08 (5.76)

error frequencies (in relation to the 36.2%). The three most frequent errors occur

between anger and happiness, fear and happiness as well as boredom and neutral.

The total error rate of these three emotion pairs amounts to 49% of the overall

error rate, i.e., almost half of the errors are due to these error sources whereas

errors between anger and sadness or fear and sadness are not very likely to occur.

It should be noted that these numbers are all based on the predominant emotion

criterion as described in the beginning of this section. Applying distance measures

in the valence-arousal space or along the gradient of E.U /, we can obtain more

application-specific performance measures.

Assuming the emotions are distributed in the valence-arousal space accord-

ing to anger ! .�0:9; 0:9/, boredom ! .�0:1; �0:3/, disgust ! .�0:2; �0:8/,

fear ! .�0:1; 0:4/, happiness ! .0:9; 0:8/, neutral ! .0:0; 0:0/ and sadness !
.�0:8; �0:2/ and calculating E.U / as described by Eq. 6.11, we obtain Eanger.U / D
1:87, Ebored:.U / D 1:06, Edisg:.U / D 1:08, Efear.U / D 1:08, Ehapp:.U / D 0:16,

Eneut:.U / D 1 and Esadn:.U / D 1:59. If the emotions were more or less equally

distributed along the scale of E.U /, one could argue to use the maximum distance

(here jEanger.U / � Ehapp:.U /j D 1:71) to normalize the distances. In this case,

with most of the values above 1, we use the average distance of all 21 emotion

pairs which can be determined as 0.602. By that, we obtain, e.g., �anger�happ: D
1:71=0:602 D 2:84 or �bored:�fear D j1:06 � 1:08j=0:602 D 0:03. The absolute

error frequencies in Table 6.7 can then be directly multiplied with the normalized

distances and we obtain the “new” error frequencies as shown in Table 6.8. Here,

again, the numbers on the left denote the absolute error frequencies and the num-

bers in parentheses on the right denote the relative error frequencies which are based

on the new overall error rate of 44.4% (the sum of all numbers on the left side). It

should be noticed that this overall error rate is directly dependent on the reference

distance which we here define as the average distance. I.e., increasing this refer-

ence distance by defining it differently would make it possible to tune the new error

rate to a more attractive value than 44.4%. However, as these modifications have

no influence on the relative error frequencies, we leave it at that rather unattractive

value. The most frequent errors again occur between happiness and anger as well

as between happiness and fear. These two errors already constitute more than 60%

of all errors. Due to the new distance measures, their proportion in the overall has

increased significantly compared to the old measures. On the third place, we find
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Table 6.8 Weighted emotion confusion matrix (average values in %) based on the values in
Table 6.7 with respect to the normalized distance

Sadness Neutral Happiness Fear Disgust Boredom

Anger 0.00 (0.00) 0.19 (0.43) 18.9 (42.6) 2.10 (4.73) 1.47 (3.31) 0.43 (0.97)

Boredom 2.83 (6.38) 0.50 (1.13) 0.25 (0.56) 0.03 (0.07) 0.02 (0.05)

Disgust 0.29 (0.65) 0.18 (0.41) 2.44 (5.50) 0.00 (0.00)

Fear 0.00 (0.00) 0.34 (0.77) 9.22 (20.8)

Happiness 1.68 (3.78) 1.48 (3.33)

Neutral 2.04 (4.60)

boredom vs. sadness although its proportion has even decreased. In exchange, the

confusion of boredom and neutral has lost its importance dramatically.

In the remainder of this section we will go into detail about our approaches

to achieve a better recognition performance. Before finally analyzing the perfor-

mance of the two-step speech–emotion recognizer setup, we will now have a quick

glance at the impact of reducing the emotion set as already done for plain emotion

recognition. Applying the distance measures among E.U / as described above is of

course not motivating to change anything regarding the emotions as there will al-

ways be confusions between anger, fear and happiness. However, applying the usual

hard measures, one might expect to see better recognition rates.

Here, we distinguish the omission of disgust, the merging of neutral and boredom

and a combination of both leading to a reduced emotion set of four emotions plus

neutral. The omission of disgust does not lead to any significant improvement of

the recognition rates: using plain MFCCs as features, the maximum word–emotion

recognition rates are 35.7% (word–emotion loop), 74.8% (sentences) and 57.4% (bi-

gram). Compared to the numbers in Table 6.5, these numbers are to some extent even

lower. The best word–emotion recognition rates among all feature sets are achieved

with the MFCPAC-40 features – here we obtain 35.8%, 75.8% and 60.1% which is

also just slightly better than the equivalent performance of the regular MFCC-based

recognizer.

Merging boredom and neutral, i.e., including boredom in the neutral models,

we achieve slightly better results when using MFCC features. Here, the maximum

word–emotion recognition rates are 35.8% (word–emotion loop), 78.2% (sentences)

and 61.9% (bi-gram). Among the other feature sets, the best performance is obtained

with the MFCPAC-44 and MFCPAC-40 features, namely 35.8%, 80.0% and 61.5%.

Comparing these numbers with the ones in Tables 6.5 and 6.6, it is noticeable

that the most significant improvement is achieved with the sentences grammar. I.e.,

a-priori knowledge about the text helps to improve emotion recognition.

Similar results are achieved with the combination of both approaches. For

MFCCs, we obtain 37.3%, 78.2% and 62.1%, among the other feature sets, we ob-

tain, e.g., 36.3%, 79.3% and 61.9% when using MFCPAC-44 features. An overview

on the MFCC results is given in Table 6.9. Whereas the word recognition rates

do not improve significantly (as expected), the emotion recognition rates increase

when merging boredom and neutral. Although the recognition rates in Table 6.9
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Table 6.9 Evaluation of the
speech–emotion recognizer
using Mel-frequency cepstral
coefficients and their first
and second order regression
coefficients (MFCCDA-39)
by means of word–emotion

(a), word (b) and emotion
(c) recognition rates with a
reduced emotion set

(a) Word–emotion recognition rates in %

W.-e. loop Sentence Bi-gram

Stage-1 37.3 77.6 58.5

Stage-2 35.0 78.2 62.2

Stage-3 30.1 74.6 60.1

(b) Word recognition rates in %

W.-e. loop Sentence Bi-gram

Stage-1 53.6 >98 82.1

Stage-2 53.3 >98 88.4

Stage-3 48.9 >98 87.1

(c) Emotion recognition rates in %

W.-e. loop Sentence Bi-gram

Stage-1 67.4 72.6 66.3

Stage-2 67.4 72.6 65.3

Stage-3 70.5 69.5 69.5

are determined for both omitting disgust and merging boredom and neutral, we

can achieve similar numbers when only merging boredom and neutral. Using other

features than MFCCs, we achieve even higher emotion recognition rates of up to

75.8% (MFCPAC-41 and MFCPAC-44) still without distinguishing female and male

speakers.

The what we refer to as two-step approach, described in Section 5.1.2, is mainly

motivated by the consideration how much the emotion recognizer part of the

speech–emotion recognizer can benefit when information about the speech rec-

ognizer output is already present. Simulation results for the two-step recognition

approach with all seven emotions are listed in Table 6.10. Here, we distinguish two

scenarios/assumptions:

� The speech recognizer output is not 100% reliable, i.e., not all words are nec-

essarily correctly recognized. Here, we use the output of the MFCC recognizer

with a bi-gram recognizer which features a word accuracy of 94.7%. The results

are shown in Table 6.10(a).

� The speech–emotion recognizer in the second step can avail itself of the full

knowledge about the recognized text (fictive word accuracy of 100%). The re-

spective results are shown in Table 6.10(b).

Looking at the recognition rates, it can be seen that the word–emotion recognition

rates increase when the reliability of the speech recognizer increases. All in all,

however, the performances in both cases are not exhilarating, the values for 100%

speech recognizer accuracy more or less concur with the recognition rates when

using the sentences grammar as shown for selected features in Tables 6.5 and 6.6.

Keeping these recognition rates in mind, we now consider the reduction of the

emotion set. With respect to our previous considerations on the different approaches
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Table 6.10 Evaluation of two-step speech–emotion recognizers (seven
emotions) by word–emotion recognition rates (in %)
(a) Word accuracy 94.7%

Stage-1 Stage-2 Stage-3 Stage-4 Stage-5

MFC 71.5 71.0 67.0

PAC-24 49.2 46.5

MFCPAC-40 67.5 67.5 64.2 69.6 69.7

MFCPAC-41 69.3 70.4 67.1 69.4 68.0

MFCPAC-44 69.0 70.4 69.4 70.3 70.4

MFCPAC-46 69.3 69.7 69.7 71.6 67.5

MFCPAC-56 69.5 69.5 69.0 71.8 71.2

(b) Word accuracy 100%

Stage-1 Stage-2 Stage-3 Stage-4 Stage-5

MFC 74.2 75.8 70.7

PAC-24 50.6 49.4

MFCPAC-40 72.4 70.7 67.5 70.8 70.6

MFCPAC-41 72.1 74.1 69.1 71.2 70.7

MFCPAC-44 72.7 74.1 69.8 74.0 72.7

MFCPAC-46 71.9 70.8 72.2 74.3 68.0

MFCPAC-56 72.6 72.2 72.3 73.2 73.5

to reducing the emotion set for one-step speech–emotion recognition, we only merge

boredom and neutral as the omission of disgust does not lead to significant im-

provements. In contrary, experiments show that the combination of both approaches

deteriorate the recognition rates compared to only merging boredom and neutral.

The respective results are listed in Table 6.11. The word–emotion recognition rates

are shown in Table 6.11(a). Comparing these numbers to the respective ones in

Table 6.10 a significant increase is noticeable. I.e., by merging boredom and neu-

tral word–emotion recognition rates of up to 80% (with MFCPAC-44 features) are

achieved. Accordingly, also the plain emotion recognition rates increase. Now, the

maximum emotion recognition rate, also achieved using MFCPAC-44 features, is

79.3% (six emotions, female and male speakers are not distinguished) given the

speech recognizer output with an accuracy of 94.7%.

Summarizing, despite its noticeably higher complexity as opposed to plain

speech or emotion recognizers, the combined speech–emotion recognition approach

features a comparably good and also a large potential for optimizations. For seven

emotions, the “standard” speech–emotion recognizer achieves emotion recognition

rates of 67.9% when using MFCC features and up to 71.7% with mixed features

such as the MFCPAC-48 feature set. A reduction of the emotion set increases the

emotion recognition rates, especially when boredom and neutral are merged. For

five emotions, the speech–emotion recognizer achieves emotion recognition rates

of 72.6% with MFCC features and up to 75.8%, e.g., with the MFCPAC-41 or -44

feature sets. At a first glance, for all seven emotions the two-step recognizer does

not lead to (expected) significant improvements. With (partial) knowledge about the

textual content of the utterances, the word–emotion recognition rates resemble those
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Table 6.11 Evaluation of two-step speech–emotion recognizers (six
emotions – boredom and neutral are merged) assuming a speech recog-
nizer accuracy of 94.7%
(a) Word–emotion recognition rates in %

Stage-1 Stage-2 Stage-3 Stage-4 Stage-5

MFC 78.2 77.7 75.7

PAC-24 57.8 52.2

MFCPAC-40 76.3 76.7 74.7 76.9 77.3

MFCPAC-41 76.8 78.3 76.2 79.3 79.2

MFCPAC-44 77.0 77.9 75.1 79.6 80.0

MFCPAC-46 75.7 74.9 77.8 79.3 79.1

MFCPAC-56 75.8 76.4 76.1 76.5 76.3

(b) Emotion recognition rates in %

Stage-1 Stage-2 Stage-3 Stage-4 Stage-5

MFC 74.5 73.6 70.8

PAC-24 49.1 42.5

MFCPAC-40 70.8 71.7 70.8 74.5 71.7

MFCPAC-41 71.7 73.6 70.8 73.6 72.6

MFCPAC-44 71.7 73.6 71.7 79.3 79.3

MFCPAC-46 70.8 72.6 75.5 72.6 73.6

MFCPAC-56 71.7 72.6 71.7 77.4 76.4

of the regular speech–emotion recognizers using the (rather unfair) sentences gram-

mar. However, when reducing the emotion set by merging boredom and neutral,

the two-step approach unfolds its potential. For six emotions emotion recognition

rates of 74.5% with MFCC features and up to 79.3% with MFCPAC-44 features are

achieved, outperforming the plain emotion recognizer as described in Section 6.3.1.

6.3.3 Combining Multiple Speech–Emotion Recognizers

When we compare the output of different speech recognizers, it can be noticed that

the errors occur at different positions even though the overall word accuracies are

similar. These differences are exploited by the ROVER approach which is targeted

on improving the recognition performance by combining the output of different

speech recognizers as described by Fiscus (1997). The extension of this approach to

speech–emotion recognition is described in Section 5.2.

In our experiments, we distinguish two different approaches to the word–emotion

transition network alignment: timestamps alignment (with respect to the begin-

ning and end times of word–emotions) and Levenshtein alignment (considering

the minimum edit distance between two word–emotion sequences). Furthermore,

we consider five values for the weighting factor ˛ in the scoring module: 0.0 (score
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is exclusively dependent on the frequency of occurrence of a word, emotion or

word–emotion), 0.25, 0.5, 0.75 and 1.0 (score is only dependent on the recognizer

confidence measures).

We choose the potential input systems among our standard one-step speech–

emotion recognizers distinguishing seven emotions without any optimizations.

These are, in descending order of their overall word–emotion recognition rates:

� WETN-1: speech–emotion recognizer based on MFCPAC-40 features, using a

bi-gram language model.

– 59.5% word–emotion accuracy

– 89.1% word accuracy

– 68.9% emotion recognition rate

� WETN-2: speech–emotion recognizer based on MFCPAC-48 features, using a

bi-gram language model.

– 59.0% word–emotion accuracy

– 82.5% word accuracy

– 68.9% emotion recognition rate

� WETN-3: speech–emotion recognizer based on MFCPAC-44 features, using a

bi-gram language model.

– 58.4% word–emotion accuracy

– 84.7% word accuracy

– 67.0% emotion recognition rate

� WETN-4: speech–emotion recognizer based on MFC-39 features, using a bi-

gram language model.

– 58.1% word–emotion accuracy

– 87.7% word accuracy

– 63.2% emotion recognition rate

� WETN-5: speech–emotion recognizer based on MFCPAC-41 features, using a

bi-gram language model.

– 57.1% word–emotion accuracy

– 87.0% word accuracy

– 66.0% emotion recognition rate

On the basis of these input WETNs we consider four ROVER systems: ROVER-2

combining WETN-1 and WETN-2, ROVER-3 combining WETN-1, WETN-2 and

WETN-3, ROVER-4 combining WETN-1, WETN-2, WETN-3 and WETN-4 and

ROVER-5 combining all five of the above WETNs.

The word–emotion accuracies when applying the standard ROVER approach to

these WETNs are listed in Table 6.12. Looking at these numbers, it can be observed

that the difference between both alignment methods is not very noteworthy. This

can be reproduced by means of the output of speech or speech–emotion recogniz-

ers where the words or word–emotions typically co-occur to some extent by what
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Table 6.12 Word–emotion recognition rates (in %) with a stan-
dard ROVER approach using timestamps (left numbers) and
Levenshtein (right numbers) alignment applied to up to five
WETNs

˛ ROVER-2 ROVER-3 ROVER-4 ROVER-5

0.00 58.8/58.7 59.3/59.1 59.6/59.7 60.1/59.8

0.25 58.8/58.7 59.7/59.1 59.7/59.9 59.8/59.9

0.50 58.8/58.7 59.9/59.2 60.0/60.2 59.9/60.2

0.75 58.8/58.7 59.8/59.4 60.1/60.2 59.9/60.1

1.00 59.5/59.5 59.7/59.2 60.5/59.9 59.9/60.5

both alignment methods provide similar results. Regarding the number of included

recognizers, it can be seen that the ROVER-2 system, although combining the two

best recognizers, leads to worse results than the single recognizers. The combina-

tion of the three best recognizers already leads to some slight improvement over the

best single recognizer and the ROVER-4 and ROVER-5 system lead to (although

still not flabbergasting) improvements regardless of the value of ˛. The maximum

word–emotion recognition rate of 60.5% are achieved with four or five recognizers

which is 1% better than the best single word–emotion recognition rate of 59.5%.

In the modified approach to using the ROVER idea for word–emotions, words

and emotions are separated into word transition networks and emotion transi-

tion networks which are evaluated individually as described in Section 5.2.2. The

recognition results for this approach are presented in Table 6.13. Comparing the

word–emotion recognition rates in Table 6.13(a) with the numbers in Table 6.12, a

strong improvement (up to 72.4% from 60.5% in the standard ROVER and 59.5%

of the best single recognizer) can be noticed. These rates are determined after words

and emotions pass through separated ROVER processes the output WTNs and ETNs

of which are recombined to the output WETN. Again, the best results are obtained

with four or five recognizers, although the combination of recognizers also leads

to some remarkable improvements in the word–emotion recognition rates. A break-

down of the reasons leading to the improvement of this approach can be found when

considering the word recognition rates (b) and emotion recognition rates (c) sepa-

rately. The word recognition rate ranges from 87.8% to 89.8% constituting rather a

decrease than an increase from the best single recognizer at 89.1%. I.e., here, on the

word level, the ROVER idea does not contribute to any significant improvements

justifying the enormous effort of multiple recognizers.

As described in Section 5.2.2, no alignment is applied to the emotion transition

networks so that the voting module directly operates on all emotions, calculating

the scores not for each discrete time slot but for all emotions in all ETNs together at

once. Integrating this approach into the ROVER system for speech–emotion recog-

nition, we achieve emotion recognition rates of up to 76.4% which is significantly

higher than the emotion recognition of 68.9% for the best single speech–emotion

recognizer. Further examining these numbers, it is remarkable that for any ˛ � 0:5

and for any number of speech–emotion recognizers in the system the emotion recog-

nition rates are above those of the best single recognizer.
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Table 6.13 Recognition rates with the modified speech–emotion
ROVER approach using timestamps (left numbers) and Leven-
shtein (right numbers) alignment applied to up to five WETNs
(a) Word–emotion recognition rates in %

˛ ROVER-2 ROVER-3 ROVER-4 ROVER-5

0.00 64.3/64.6 62.1/62.3 63.8/63.9 65.0/65.0

0.25 65.8/66.1 65.4/65.1 68.1/68.5 69.7/69.6

0.50 67.1/67.3 69.7/69.4 71.5/71.6 72.0/71.9

0.75 68.4/68.6 68.6/68.4 71.8/71.7 72.4/72.3

1.00 69.8/69.8 68.1/68.0 69.8/69.7 69.8/69.8

(b) Word recognition rates in %

˛ ROVER-2 ROVER-3 ROVER-4 ROVER-5

0.00 88.4/88.7 87.8/87.8 89.2/89.6 89.1/89.2

0.25 88.4/88.7 88.3/87.8 89.3/89.7 88.7/88.8

0.50 88.4/88.7 88.3/88.0 89.4/89.7 88.9/89.1

0.75 88.4/88.7 88.3/87.9 89.5/89.7 89.0/89.2

1.00 89.1/89.1 88.3/88.3 89.8/89.7 89.3/89.2

(c) Emotion recognition rates in %

˛ ROVER-2 ROVER-3 ROVER-4 ROVER-5

0.00 67.0 64.2 65.1 66.0

0.25 69.8 68.9 71.7 72.6

0.50 71.7 74.5 75.5 76.4

0.75 71.7 71.7 74.5 75.5

1.00 71.7 70.8 70.8 71.7

Hypothetically, given a large number of input systems tending to infinity, the out-

put recognition rates (at least their upper bounds) of a ROVER system are supposed

to approach 100%. Apart from the problem that this is quite difficult to realize,

we also face the problem that the errors are not as ideally distributed as the whole

idea presumes. In addition to the system including the five best recognizers as de-

scribed above we also examine a system including the six best recognizers where,

needless to say, the sixth recognizer’s performance is lower than the other five rec-

ognizers’ performance. Here, a turnaround is recognizable: the recognition rates

(word–emotion as well as words and emotions separately) decrease visibly, in some

cases even below the recognition rates of the individual recognizers. The problem

with such an approach is that, choosing the n best recognizers, the error rate of

each additional recognizer increases. By that, we have an increasing number of

recognizers (which should increase the robustness of the combined output) which

unfortunately leads to the inclusion of more errors (which has a negative influence

on the robustness of the combined output). In our case, the trade-off is achieved

with five recognizers. Further experiments with reduced emotion sets show that the

combination of multiple recognizers may also lead to improvements of the overall

recognizer performance in these cases. E.g., considering five emotions, the recogni-

tion rates is slightly increased to up to 77.9% (from 75.8% and less).
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With respect to the rather unusual output of our speech–emotion recognizers

which can contain multiple emotions (one per word), the results of the ROVER

idea motivate also to apply the emotional scoring as described in Eq. 5.15 on

single WETNs, i.e., the output of a single speech–emotion recognizer in order to

determine the predominant emotion of an utterance. In practice, this means, for an

utterance we calculate the score S 0.e/ of each emotion e as

S 0.e/ D ˛ � N 0.e/ C .1 � ˛/ � C 0.e/; (6.12)

where N 0.e/ and C 0.e/ are the normalized overall durations and confidence mea-

sures of e in the utterance.

Altogether, the idea to combine the information provided by multiple recognizers

carries a large potential to achieve lower error rates. The opportunities and risks of

using such a complex approach can be estimated in advance with the aid of upper

and lower bounds on the recognition rates on the basis of existing data as described

in Section 5.2. In our simulations, even the standard ROVER approach, originally

designed for plain speech recognition, leads to, although not significant, improve-

ments of the word–emotion recognition rate of up to 60.5% compared to the rates

of the single recognizers which are at 59.5% or lower. Applying a modified ROVER

approach processing words and emotions separately, significant improvements can

be achieved, especially among the emotion recognition rate. The word–emotion

recognition rates reach values up to 72.4% still compared to 59.5% and lower of

the single recognizers, the emotion recognition rates increase from 68.9% to 76.4%.

6.3.4 Emotion Recognition by Linguistic Analysis

For the evaluation of our speech signal-based emotion recognizers we follow, with

slight variations, the standard evaluation procedure of speech recognizers: a set of

utterances is labeled by human experts and then processed by the recognizer under

test. The respective recognition rates are determined by comparing reference labels

and recognizer output. By contrast, to estimate the capabilities of our approach to

emotion recognition by linguistic analysis, we put the cart before the horse. On

the basis of the employed affective grammar in combination with the application-

specific grammar, we generate a large number of possible sentences which are in

accordance to these grammars. An arbitrary number of these sentences (e.g., 100)

are randomly selected from this set and human experts (test persons) are then asked

to assess the emotional content of these sentences in a questionnaire.

This assessment can be done in different ways: either the test persons assign

each word of the sentence an emotional state, e.g., “Great, I want to go to London.”

could be labeled as “happiness, neutral neutral neutral neutral neutral neutral”, or

the sentence is assigned one emotional state, either by name (“anger”) or valence

representations (“++”, “+”, “o”, . . . ). Then, the performance, i.e., the credibility of
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+Great, please give me a ticket to Seattle.

Shut up, idiot, from JFK.

That’s frustrating.

From L A X to Miami.

That’s unacceptable.

Such a pleasure, to Dallas you stupid thing.

Oh, how humiliating from Denver, great.

happiness

anger

sadness

neutral

anger

...

anger

happiness −+

−

−

o

−

+−

Fig. 6.6 Excerpt of a questionnaire to assess the performance of emotion recognition by texts and
linguistic analysis

the linguistic analysis is also determined as a recognition rate by comparing the

recognizer output (which we certainly know) and the labels of the human “experts”

(which may naturally differ).

An excerpt of one of the questionnaires used in our survey is shown in Fig. 6.6.

Here, the test persons are asked to choose among seven emotions (anger, boredom,

disgust, fear, happiness, sadness and neutral) and among three valences (positive

“+”, neutral “o” and negative “�”) for each utterance. In addition to the affective

grammar, an exemplary grammar for an air travel information system on flights

within the United States is considered here to define the application scenario. The

sentences are generated on a random basis with the aid of HTK (HSGen, see Young

et al., 2006). By that, depending on the flexibility of the grammar, not all of these

sentences actually make sense, are grammatically correct or contain any utilizable

information. Accordingly, also the emotional keywords are arbitrarily blended lead-

ing to confusion and disagreement among the test persons. Whereas, e.g., “Great,

please give me a ticket to Seattle.” (punctuation manually added after the text gen-

eration) is unequivocally classifiable as happy, sentences like “Such a pleasure, to

Dallas you stupid thing.” rather lead to varying opinions. At first glance, such a

sentence may seem to be very unlikely to occur in dialogues. However, the linguis-

tic analysis in an interactive voice response system (IVR) also needs to be able to

cope with error-prone speech recognizer output, where a lot of errors occur in the

recognition of emotional keywords (Pittermann et al. 2008b). This requires an ad-

equate error handling, i.e., as commonly done in information-theoretical problems

like channel (de)coding, a majority decision is applied: Considering the valences,

we have happiness (“+”) at the beginning and we have anger (“�”) at the end of

the sentence adding (or averaging) up to “o”, i.e., neutral. Here, each utterance is

considered individually and not in the context with previous or following utterances.
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On the other hand, such a sentence can not be labeled as a typical neutral sentence.

I.e., depending on the test person’s gut feeling and creativity, the sentence could be

labeled as, e.g., anger, happiness, or happiness-anger. To obtain a better overview,

in the questionnaire, we leave it up to the test persons how to assign the labels.

The evaluation is performed on 500 sample sentences. Depending on how strictly

we compare the system-generated sentences and the labels in the questionnaires, we

achieve different recognition rates:

� Demanding a strict congruence of the labels, i.e., the experts totally agree with

the system about each word, 34% are correctly interpreted.

� Demanding a congruence of the predominant emotion in each utterance, the

recognition rate increases to 70%.

� Comparing the valence tendencies by sign (“�”/ “o”/“+”), 90% of the sentences

are correctly interpreted.

Regarding these numbers and taking into account the problem that most of the

words in any language can not be unambiguously assigned a certain emotional state,

it can be concluded that the strength of linguistic approaches to emotion recognition

is not the classification of distinct emotions but rather the detection of emotional

tendencies, e.g., whether the user is in a positive, neutral or negative state. This

would be sufficient, e.g., in dialogue systems which need to determine whether

the human–computer dialogue is likely to end successfully or whether it is reason-

able to put the (mostly angry) user through to a human call center agent (see also

Burkhardt et al. 2006a). Alternatively, the linguistic analysis is a suitable supplement

to further emotion recognizers contributing to a more robust overall recognition per-

formance assuming an expedient fusion of recognition results as partly described

in Section 5.2.2. Furthermore, a combination of speech signal-based and linguistic

analysis open up new vistas such as irony detection presuming the both recognizers

separately provide reliable recognition results.

6.4 Evaluation of Our Dialogue Manager

Constituting the central component in an SLDS, the dialogue manager is not only

expected to manage the application access and provide the appropriate system

reaction but also to do its job robustly without being tripped up by (eventually un-

expected) user input. If we assess the performance of, e.g., an automatic speech

recognizer implemented on the basis of existing (purchased) tools, we typically trust

in the fact that these tools serve the purpose as described in their specifications and

we limit our evaluation considerations to the concepts and data applied to these tools

unless some strange behavior leads to suspiciousness about the tools’ functionality.

The same applies to dialogue systems, the dialogue manager of which is typically

implemented in existing frameworks like, e.g., the CSLU Toolkit. Here, with respect

to the fact that most parts of the dialogue manager are implemented independent of

the underlying VoiceXML framework, the evaluation of this dialogue manager puts
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forth at two main levels: the robust functionality of the underlying system and the

performance and usability of the concept implementation based on this system.

A rough overview on whether the system actually functions correctly can be ob-

tained by implementing a short dialogue, here in the air travel information domain,

and testing this dialogue:

1 System: Welcome to the flight information system. Where do you want to

travel to?

2 User: To Colorado.

3 System: Which of the following airports in Colorado would you prefer

– Aspen (ASE), Colorado Springs (COS), Denver International

Airport (DEN), Grand Junction (GJT) or Pueblo (PUB)?

4 User: Denver.

5 System: Sorry, I didn’t understand you. Which of the following airports

in Colorado would you prefer – Aspen (ASE), Colorado Springs

(COS), Denver International Airport (DEN), Grand Junction

(GJT) or Pueblo (PUB)?

6 User: D E N.

7 System: From where would you like to depart?

8 User: Trenton, New Jersey.

9 System: There are no flights available from Trenton, New Jersey (TTN)

to Denver International Airport, Colorado (DEN). Alternatively,

you could go from Newark International Airport, New Jersey

(EWR) to Denver International Airport, Colorado (DEN). Thank

you for using this flight system.

Apart from the problem that the system is not able to interpret “Denver” correctly

(here, the user is supposed the say/enter “Denver International Airport”), which is

rather a grammar problem than a fault of the underlying system, the system seems to

be functional. With respect to the fact that one single test like this dialogue example

is not representative at all, a larger number of further tests need to be accomplished.

As these are quite time-consuming and tedious to accomplish, we use an automated

approach bombarding the system (similar to the approach proposed in Ito et al.

(2006)) with a huge number of generated sentences like those in Fig. 6.6 plus other

sentences which are not covered by this example system’s grammar. Storing the

generated input and the respective system reaction, most problems concerning the

system’s functionality can be addressed. Whereas the functionality of a rule-based

dialogue approach can be reconstructed with relatively low effort, a large amount

of data is required for the involved statistical processes to see, e.g., if the selection

of prompts is actually in accordance with the probabilities established by the dia-

logue model. Here, in the ideal case, it is necessary to determine reliable probability

density functions for all occurring transitions, which would, however, exceed the

scopes. Thus, typically, a few of these cases are covered by the in-depth tests.

Assuming the underlying system is working reliably, in the second step, we as-

sess the usability and user acceptance of the adaptive dialogue concept. This is
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typically accomplished on the basis of user surveys about the implementation of

the respective dialogue concept. Here, we put forth the example of the air travel

information system as described above and we extend it with the ability to react

on the user’s emotional states as determined by the linguistic analysis. The exper-

iments are not conducted in a WOZ setting but in a fully automated environment.

I.e., the users are not only made believe that they are interacting with a computer,

they are actually on their own without any supervision. By that, on the one hand, we

are able to achieve realistic dialogues, on the other hand, the user is facing a higher

number of understanding problems due to speech recognizer inaccuracies.

The dialogue manager functionality of such an example system is implemented in

VoiceXML and then integrated into an end-to-end framework by compilation to EC-

MAScript as described by (Bühler and Hamerich 2005). This Java-based framework

includes a Sphinx-4 speech recognizer (see Lamere et al. 2003) including diversi-

fied models for universal use in test environments and a FreeTTS text-to-speech

synthesis (Walker et al. 2002). The system accepts both typed and spoken input: For

functionality tests, we prefer typed input as this also allows input from large text

files by the “<” operator on the console. Here, however, the keyboard is disabled

and for the users there is nothing else to it but to interact with the system in natural

language. Concerning the output modalities, the system also shows the spoken out-

put as text on the screen. As for standard VoiceXML interfaces, it is also possible

to include prerecorded files (jingles, sounds, music or text) in the audio output or

to replace the text-to-speech synthesis totally by prerecorded system prompts and

replies.

An excerpt of the dialogue description is shown in Fig. 6.7. Each of the field

includes its own texts for standard prompts and for extra events like help texts or

replies to no input or no match. E.g., a bell sounds if the user’s input is not utilizable.

The main processing is launched after the user’s reply to the prompts. Here, the

user’s emotional state is determined on the basis of the current input and the previous

emotional states as stored in the dialogue history. Accordingly, an acknowledgment

to the user’s input is realized for the determined emotional state. It should be noted

that such a chronological order is technically equivalent to the implementation as

described in Section 5.3 where the actual prompts are realized according to the

previously determined emotional state. Here, there is one acknowledgment output

per emotion for each field. These prompts differ from field to field. Depending on the

application it is also possible to pool all associated prompts centrally and access

these, e.g., randomly, from the individual fields. If no emotional state is determined,

the system assumes that the user is in a neutral state.

In the same manner, also fields for departure state, destination state and desti-

nation airport as well as an explicit confirmation at the end are implemented. The

test users are given an instruction sheet describing the tasks they are required to

accomplish. Such an instruction sheet is shown in Fig. 6.8. Here, the test users are

asked to find out about flight connections between American airports. They are also

encouraged to express their emotions by certain keywords in order to assess how

well the system reacts to these clues.
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<!--Departure airport-->
<field name="dep_airport">
<prompt count="1">

The Airports available in <value expr="dep_state"/> are:
<value expr="getAirports(dep_state)"/>
Please choose one of the available airports!

</prompt>
<prompt count="2">

<audio src="bell.wav"/>
Please tell me the airport’s name or its three-letter code.

</prompt>
<help>

Choose an airport from the list, say its name or code.
</help>
<noinput count="1">

<audio src="bell.wav"/>
I’m sorry, I didn’t hear anything, please repeat.

</noinput>
...

<filled>
<if cond="emotion_state==undefined">

<assign name="emotion_state" expr="’neutral’"/>
</if>
<!-- Calculate the cumulative emotional state -->
<assign name="emo_state"

expr="calcEmotion(emotionList,emotion_state)"/>
<prompt cond="emo_state==’angry’">
Please don’t be frustrated!
I’ll offer you the best possible service!

</prompt>
<prompt cond="emo_state==’happy’">

Great, good choice!
</prompt>
<prompt cond="emotion_state2==’sad’">

Hey, come on, cheer up!
</prompt>
<prompt cond="emotion_state2==’fear’">

Don’t worry! It’ll be great.
</prompt>
<prompt cond="emotion_state2==’neutral’">

Thank you!
</prompt>

</filled>
</field>

Fig. 6.7 VoiceXML excerpt of the adaptive dialogue description for the dialogue manager
evaluation

Having accomplished all tasks, the users are asked to complete a questionnaire

parts of which are shown in Fig. 6.9. Typically, users are surveyed about further

details about themselves (age, gender, experience with computers, experience with

(spoken) human–computer interfaces, etc.) and the questions are also layed out such

that further information about the user’s psychological background can be extracted.
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Find out about the flight connections from and to the following locations:

To:

From: Tucson International Airport, Arizona

Seattle Tacoma International Airport, Washington

To:

From: Yuma International Airport, Arizona

Los Angeles International Airport, California

To:

From:

San Jose, California

Phoenix Sky Harbor International Airport, Arizona

Please follow the system’s instructions. On success, the system will list all

available flights. You may say "help" or "exit" anytime to obtain further

information or to exit the dialogue.

− ...

− happiness: wow, great, excellent

You are able to express your emotional state using the following keywords:

...

Task 3

Task 2

Task 1

Fig. 6.8 Instruction sheet containing the tasks to be completed while interacting with the dialogue
system under test

boredom disgust

happiness sadness

fear

anger

boredom disgust

happiness sadness

fear

anger

System A System B 

Number of successfully completed tasks

Satisfaction with the system responses

Emotions you tried to express during the dialogue

How did the system react to your emotions?

Overall satisfaction with the system:

6 5

Fig. 6.9 Questionnaire about the users’ experience with the dialogue system
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Here, knowing that most of the test users are international students around the age

of 20, experienced with computers and electronics but not experienced with spo-

ken dialogue systems, at this point, we set aside these details. The questionnaire is

subdivided into two parts corresponding to two systems the users are asked to in-

teract with, without being told whether and how these systems differ. If System A

and System B are identical, there is more elbowroom for the interpretation of the

results – either a user has the same opinion on both systems (which one would actu-

ally expect) or a user has different opinions on these systems (which might indicate

that this user probably is not as assiduous as other users). Here, both systems actu-

ally differ: they are indeed based on the same implementation, but only System B is

responsive to the emotional cues as described in Fig. 6.7, whereas System A does

not consider the emotional states and, across the board, presumes that the user is in

a neutral state. This direct comparison is required to obtain the relative user satis-

faction which is more meaningful than conducting two user studies (one for each

system) with different test users. Accordingly, the evaluation results for both sys-

tems are slightly different.

Preliminary experiments with the system show that the performance of the

speech recognizer is directly depending on the size and complexity of the task gram-

mar. I.e., it makes a significant difference whether the grammar contains 184 airports

in 50 states or just the 12 airports in 7 states covered by the task description. Sim-

ilarly, the inclusion of the affective grammar with a total of 376 keywords leads

to a strong decrease of the speech recognizer performance. Even with a reduced

affective grammar, the regular system (System A) yields better word recognition

rates than the adaptive system (System B). Keeping this in mind, it is not surprising

that the task success rate of the adaptive system is lower than the task success rate

of the regular system. In situations where the system repeatedly misunderstands the

input, users tend to exit the dialogue and start over hoping the system’s performance

improves after the restart. Although not mentioned in Fig. 6.9, the users are also

asked what they like and dislike most about the systems. Here, a strong agreement

about System B’s low speech recognition performance is identifiable. Nevertheless,

most of the test persons feel that System B is more responsive to the user’s emo-

tional state than System A. Accordingly, their judgment about the system responses

is more positive for System B. The most commonly used emotions are anger and

happiness, sadness plays a rather minor role whereas boredom, disgust and fear are

almost not involved at all. For this particular scenario, we can observe a sort of

trade-off between user-friendliness and usability resulting in a relatively constant

overall satisfaction for both systems.

Leaving aside interpretation errors, which could be reduced by using more ac-

curate and specialized models, the integration of emotions as done in the adaptive

system evokes a different behavior among the users. As a computer is typically not

expected to react on the users’ emotional state, the users’ curiosity is aroused and

they consider it entertaining or even funny to see how the system reacts in different

cases. This, not uncommonly, even ends with users laughing (a behavior which has

been observed quite often during the recordings of the spontaneous speech database)

or showing their friends “Look at that! Isn’t that funny?”. Furthermore, the
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evaluation results still leave open some questions, especially when and to what

extent it is useful or sensible to integrate emotions into spoken dialogue and when

users actually expect a dialogue system to be responsive to their emotions. Depend-

ing on the application domain and the anticipation or expectations of the users, the

use of emotional cues like in the described scenario can either be appropriate or

breaking a fly on the wheel. Nevertheless, we argue that there is a large potential for

the integration of emotions into spoken dialogue.

It remains to be seen whether an emotion-sensitive information kiosk, e.g., a

train timetable system in stations, is actually preferred to hitherto existing systems

or whether such a system is rather smiled at by its users. One promising applica-

tion in call centers, as already mentioned in the previous section, is the assessment

whether an ongoing dialogue is likely to finish successfully or not, based on the

current state. Here, in addition to multiple factors such as dialogue measures like

the number of repair requests or no-input/no-match user utterances also emotions

play an important role in this assessment. If the system detects a certain risk that the

caller hangs up before the dialogue finishes successfully, the caller is typically put

through to a human call center agent. In the majority of the cases, people call service

hotlines when they require help with a product or when something went completely

wrong and not when they just feel like conversing with someone. Accordingly, voice

portal systems like the one described in Burkhardt et al. (2006a) are targeted on de-

tecting when the caller becomes angry or, in situations where the callers are already

angry before they decide to call, when a caller’s anger level exceeds a certain critical

point. Due to their modularity, our approaches to emotion recognition as described

in Chapter 4 and in Section 6.3 above are in principle insertable without difficulty in

such a system as, especially when reducing the emotion set to “angry” and “not an-

gry” or to “+” and “�”, these recognizers feature a sufficient recognition accuracy.

Also, the dialogue models in the dialogue manager may be extended by an “abort”

state in which the dialogue manager hands over the caller to a human contact person.

6.5 Discussion

As opposed to plain speech recognition, the evaluation of emotion recognizers faces

the problem of inconsistent performance evaluation criteria making it difficult to

actually compare different approaches and classification methods. In our work, to

maintain a certain degree of comparability, we limit our considerations on matching

predominant emotions on the utterance level without regarding “soft” distance mea-

sures, e.g., in the valence-arousal space. The huge number of experiments which we

conduct with different feature sets, models, and recognizer setups typically entails

also an accordingly huge number of results. For the sake of a better overview, we

collect the most important results in this chapter.

Summarizing, we propose four different approaches and modifications to

speech-based emotion recognition: plain emotion recognition, combined speech–

emotion recognition, two-step speech–emotion recognition and the adapted
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ROVER approach combining the outputs of multiple speech–emotion recognizers.

In the following, we briefly discuss the underlying ideas and summarize their

performance.

� The plain emotion recognizer is designed as an independent stand-alone module

including its own feature extraction and classification capabilities. The acous-

tic model either includes one HMM per emotion or separate HMMs for female

and male speakers leading to a significant improvement of the recognition

performance. Our emotion recognizer implementation achieves an accuracy of

approximately 62% for seven emotions and 72% for five emotions.

� Our approach to combined speech–emotion recognition reduces the overall sys-

tem complexity by consolidating feature extraction and classification of speech

and emotion recognizers. With respect to the multiplication of HMMs in the

acoustic model, the word recognition performance decreases (compared to a

plain speech recognizer trained on the same data) whereas the emotion recog-

nition accuracy remains on a satisfactory level. Modifications on the feature set,

however, allow optimizations of either word or emotion recognition performance.

Using standard MFCC features, the system achieves emotion recognition accura-

cies of 63.2% (seven emotions) and 69% (six emotions) with a word accuracy of

87.3%. Enriching the feature set with pitch, intensity and formants (MFCPAC-

44), the emotion accuracies increase to 67% (seven emotions) and 75.8% (six

emotions) with a word accuracy of 84.7%.

� Aiming at an improvement of the overall word and emotion recognition per-

formance we surrender (to some extent) the idea of a compact speech–emotion

recognizer when introducing a two-step approach. This approach involves a

common feature extraction but inserts a plain speech recognition using MFCC

features before the combined speech–emotion recognizer. Based on the output of

the preceding speech recognizer, a minimized language model for the speech–

emotion recognizer is derived reducing its decoding complexity and increasing

the overall performance. With this approach, we achieve a word accuracy of

94.7% and emotion accuracies of 73% (seven emotions) and 79.% (six emotions)

also with the MFCPAC-44 features.

� Independent of the speech–emotion recognizer implementation (regular or two-

step), we propose an adapted ROVER method (see Fiscus, 1997) which combines

the output of multiple recognizers into one sequence of word–emotions with a

lower number of errors. Our approach includes the standard alignment and vot-

ing of the words like in the original ROVER plus an extra voting module for

the emotions. Considering five different speech–emotion recognizers with word

accuracies between 82.5% and 89.1% and emotion accuracies between 63.2%

and 68.9% our implementation achieves an overall emotion accuracy of up to

76.4% and a word accuracy of 89.7%. Whereas the improvement of the word ac-

curacy is negligible, we observe a significant increase in the emotion recognition

performance.

A general recommendation which technique may be preferred in any environment

is difficult to be given since the actual advantages of a certain approach are directly
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affected by individual scenarios and preferences. On the one hand, the plain emotion

recognizer is absolutely suitable as an add-on to existing dialogue frameworks

requiring a satisfactory recognition performance without an excessive processing

overhead. On the other hand, the two-step speech–emotion recognizer constitutes

an all-in-one solution featuring better emotion recognition capabilities in conjunc-

tion with speech recognition, e.g., enabling a better integration of further emotion

recognition concepts like linguistic cues into an end-to-end system. As for the selec-

tion of useful features we suggest to combination of MFCCs with few prosodic and

acoustic features such as pitch, intensity and formants portending that plain MFCCs

may also lead to satisfactory results.

The evaluation of the adapted ROVER method to combine multiple recogniz-

ers shows visible and promising improvements of the emotion recognition rate. Its

actual application in SLDS frameworks seems rather like breaking a butterfly on

a wheel due to the enormous complexity introduced by the multiple recognizers

and the alignment and voting procedures. Thus, the system developer needs to trade

off well whether potential improvements legitimate the high complexity. Our ex-

periments show that the best results can be achieved when combining four or five

recognizers – fewer recognizers typically do exhibit the required differences in the

nature of errors whereas a larger number of recognizers introduce more errors in

general. It should be noted that we choose the five best recognizers from a given set

by what each additional recognizer itself exhibits a lower performance which has an

unfavorable effect on the overall performance.

Our proposed approach to integrating emotional cues into dialogue management

is established on the adaptation of the stylistic realization of system prompts fol-

lowing Brown and Levinson (1987) and Walker et al. (1997a) as proposed by André

et al. (2004). In our straightforward rule-based approach, the appropriate prompt

is selected with respect to the detected emotional state according to predefined

rules. In excess thereof, we introduce a semi-stochastic dialogue model consisting

of predefined states the transitions between which are determined according to bi-

and tri-turn transition probabilities derived from preprocessed dialogue data. This

does not only allow the adaptation of the prompt style but also an alignment of

the dialogue flow according to an arbitrary number of dialogue control parameters

such as emotions, speech recognizer confidence measures, etc. User studies of an

emotion-sensitive implementation show a higher user-friendliness and user accep-

tance compared to a standard dialogue implementation.
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Conclusion and Future Directions

With an increasing performance of their components such as automatic speech

recognition, linguistic analysis as well as naturally sounding text-to-speech syn-

thesis, spoken language dialogue systems take on an important place in everyday

life. SLDSs have evolved from the first commercially available systems which did

not feature much more than isolated word or command recognition with a very lim-

ited vocabulary to natural language systems including continuous word recognition,

covering multiple domains and even involving a certain degree of “intelligence”.

Nevertheless, surveys conducted on different occasions give the impression that the

acceptance of SLDSs, especially in interactive voice response systems such as voice

portals or call center applications which are considered as annoying, is relatively low

despite their actual capabilities.

There exist a large variety of approaches, in current research and available prod-

ucts, to rendering spoken human–computer interfaces more efficient, more natural

and more user-friendly. In this book, we have addressed the question of how SLDSs

can and shall react to the user’s emotional state. Consequently, we have concen-

trated, for one, on the recognition of emotions from the speech signal in cooperation

with the speech recognizer and, for another, on the integration of emotions into the

dialogue flow via an extended user state and dialogue manager.

For the integration of emotional cues into dialogue management, in Section 3.5,

we have described a rule-based approach which adapts the stylistic realization of

system prompts following Brown and Levinson (1987) and Walker et al. (1997a)

as described by André et al. (2004). To accomplish that, the output of the emotion

recognizer is transformed into a value between 0 and 2 according to the emotion’s

position in the valence-arousal space and the appropriate prompt is selected de-

pending on that value. With respect to the complexity introduced by the additional

control parameter rendering the dialogue design process rather inflexible, we have

proposed a semi-stochastic dialogue model to adapt the dialogue flow and style to

the user’s input and emotional state (Pittermann and Pittermann, 2007). Compared

to other stochastic approaches like (Partially Observable) Markov Decision Pro-

cesses, our dialogue model features a lower complexity in terms of the involved

(internal) parameters. Analogously, the dialogue flow is modeled by transitions be-

tween dialogue states in a network. As opposed to existing work considering bi-turn

transitions (from the previous state to the current), we have also included tri-turn

J. Pittermann et al., Handling Emotions in Human-Computer Dialogues,
DOI 10.1007/978-90-481-3129-7 7, c Springer Science+Business Media B.V. 2010
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transitions (from the penultimate state to the previous state to the current state)

leading to a more consistent model. The respective probabilities are trained on pre-

processed dialogue data. Using appropriate training data, our model can also allow

for an error-prone emotion recognizer output (see Sections 3.6–3.9). User studies on

an exemplary implementation of the dialogue manager as described in Section 5.3

corroborate the presumed user-friendliness and naturalness of our approach.

Our approaches to speech-based emotion recognition are largely geared to com-

mon approaches to automatic speech recognition. I.e., we concentrate on the com-

bination of MFCCs with prosodic and acoustic features which are not calculated

for the utterance as a whole but every 10 ms to capture the temporal characteristics

of these features during the utterance. Concerning the classification we do not ex-

plicitly distinguish between speech, emotion or speech–emotion recognition as we

persistently use three-state left-to-right HMMs with Gaussian mixtures operating on

the phoneme, emotioneme or emophoneme level.

In our approach to plain emotion recognition as described in Section 4.5, we

have overstrained these HMM-based acoustic models by considering an emotion as

one “emotioneme” (in analogy to a phoneme) which, however, may span a longer

period than a typical phoneme. Our choice of features includes the most common

prosodic and acoustic features like pitch, intensity, formants, jitter, harmonicity plus

their computational statistics such as (global) minimum, mean, maximum and vari-

ance or local characteristics applied to voiced and unvoiced parts of the utterances.

This choice has been motivated by the dominant features in human perception of

emotions – e.g., angry persons tend to speak faster, more loudly and with a broader

pitch range than sad persons.

With a total of 24 prosodic and acoustic features, recognition rates of up to

72% have been achieved on the acted emotional speech data provided by the

Berlin Database of Emotional Speech (Burkhardt et al. 2005) with a reduced set

of five emotions (see Section 5.1.1). This performance is comparable to the average

performance of existing plain emotion recognizers. However, our recognizer’s com-

plexity is considerably reduced with particular respect to our approach to combining

speech and emotion recognition. Our associated experiments have been conducted

on randomly selected utterances of the corpus regardless of how convincing they

were perceived by the annotators. Analyzing the results of different test series,

we have found that a better performance is yielded when training different mod-

els for female and male speakers and when considering boredom and neutral as one

“mainly neutral” superclass. The differentiation of female and male speakers, on the

one hand, doubles the number of acoustic models, but, on the other hand, leads to

more precise models finally providing a more reliable recognizer output. We have

combined neutral and boredom with respect to their acoustic similarity and due to

the fact that their influence in an adaptive dialogue system is almost identical. This

combination occurs in accordance with the emotional labels but leads to a more

vague and imprecise boredom-neutral model. I.e., other emotions are more likely to

be confused with this superclass, which, however, is bearable compared to the over-

all performance gain. Considering that disgust is not relevant for the application of

adaptive dialogue management, we have also left out disgust utterances and models
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in our plain emotion recognition experiments, although this has not led to a perfor-

mance improvement or degradation. With respect to the HMM properties, also the

labeling of the emotions, especially their duration, has a significant influence on the

recognizer performance. However, despite the fact that the HMMs are better suited

for phoneme-level recognition, they also perform well when labeling the emotions

on a word level.

In excess of plain emotion recognition we have considered a combined approach

to speech and emotion recognition which we refer to as “speech–emotion recogni-

tion” as described in Section 4.6. Here, emotions are considered on the phoneme

level, i.e., each (speech recognizer) phoneme is assigned different emotional states.

Accordingly, each word is extended to a word–emotion, e.g., “PLEASE” (p l iy

z) becomes “PLEASE-ANGER” (pa la iya za), “PLEASE-BOREDOM” (pb lb iyb

zb), etc., and we assume that the speaker’s emotional state does not change within

one word. Considering seven emotional states, the number of phonemes (which we

refer to as “emophonemes” in this context) and, thus, the number of HMMs in the

acoustic model is multiplied by seven. To counter the loss of performance due to

this multiplication of models, robust features for recognizing both text and emo-

tional states from speech are required. Preliminary experiments have shown that the

use of plain prosodic and acoustic features does not lead to satisfactory results for

the recognition of text, whereas plain MFCC features already provide reasonable

recognition rates for both text and emotions.

Using plain MFCC features and distinguishing seven emotions, we have ob-

tained an overall word–emotion recognition accuracy of 58.1% which includes a

word accuracy of 87.3% and an emotion accuracy of 63.2%. Having performed an

exhaustive search on promising feature combinations, we have proposed the com-

bination of MFCCs with a comparatively small number of prosodic and acoustic

features. Using MFCCs with pitch, intensity and three formants, our system has

yielded a word–emotion accuracy of 58.4% with 84.7% word accuracy and 67%

emotion accuracy. Reducing the emotion set we have achieved accordingly better

results, especially when merging neutral and boredom, whereas, as expected, the

omission of disgust has not influenced the recognition performance. Distinguish-

ing anger, disgust, fear, happiness, sadness and the boredom-neutral superclass, the

recognizer has yielded a word–emotion accuracy of 60.1% with the same word accu-

racy of 87.1% and an emotion accuracy of 69.5% also using MFCC features (Meng

et al., 2007). Compared to existing (plain) speech or emotion recognizers, these

numbers seem rather low but prove the feasibility of our straightforward approach.

Further developing the idea of combined speech–emotion recognition, we have

also examined how the knowledge about the textual content of an utterance helps

to improve the emotion recognition performance. To accomplish that, we have

proposed a two-step approach to speech–emotion recognition as described in

Section 5.1.2 (see Fig. 5.5). In this approach, all features for speech–emotion

recognition are extracted and in the first step, only the MFCC features are used to

perform plain speech recognition on the speech signal using a flexible stochastic

language model. Based on this recognizer output, an optimized sentence-based

language model is created for the speech–emotion recognizer in the second step.
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Here, we have distinguished perfect knowledge (100% word accuracy) and realistic

knowledge (approx. 94% word accuracy) of the textual content and we have been

able to achieve up to 73% (seven emotions) and 79.3% (six emotions) emotion

accuracy with this approach. Particularly, for six emotions, the emotion recognition

performance of our speech–emotion recognizer is above most existing (plain) emo-

tion recognizers, while simultaneously also accomplishing speech recognition at a

reasonable performance.

The exploitation of differences in the nature of errors occurring in the output

of multiple (different) speech recognizers has been addressed by Fiscus (1997). In

Section 5.2, we have picked up the ROVER idea and adapted it to our speech–

emotion recognizer. With respect to the different evaluation criteria for speech and

emotion recognition, the proposed ROVER algorithm for speech–emotion recogni-

tion includes a specific emotion scoring and voting module in addition to the original

speech recognizer output alignment and voting modules. For our experiments we

have chosen the five “best” recognizers for one-step speech emotion recognition us-

ing different feature sets. Their single word–emotion accuracies are between 57.1%

and 59.5% and the respective emotion accuracies are ranging from 63.2% to 68.9%.

Combining the outputs of all five recognizers, our approach has yielded an overall

word–emotion accuracy of 72.4% and an emotion accuracy of 76.4% constituting

an absolute increase of 7.5% compared to the emotion accuracy of the best single

recognizer (Pittermann et al. 2007b). Comparable work on the use of ROVER-like

methods for emotion recognition is not reported in literature. In the field of speech

recognition, however, lower improvements have been reported with the ROVER al-

gorithm (5% increase at word accuracies below 55%, Fiscus 1997).

Our speech–signal-based emotion recognizers have been complemented by a lin-

guistic approach to emotion recognition based on a what we refer to as “affective

grammar”. We have evaluated the performance of this affective grammar on the

basis of user studies who were asked to assess the emotional content of sample sen-

tences. Depending on the evaluation criteria, recognition rates between 60% and

80% have been yielded.

In this work, we have proposed four different approaches and modifications

to speech-based emotion recognition each of which has its individual advantages

and weak points and we have demonstrated the feasibility and functionality of the

ROVER approach on the basis of five speech–emotion recognizers. Considerations

on the theoretical limits have shown that higher recognition rates may be yielded

when combining multiple recognizers. The developer, however, should trade off

whether such a gain is justifiable by the enormous effort involved in this proce-

dure. The use of an affective grammar as an independent emotion recognizer seems

promising but we expect a higher recognition reliability when combining the lin-

guistic analysis with our proposed acoustic emotion recognizers.

A summarizing overview on the performance of our proposed systems is illu-

strated in Fig. 7.1. The average recognition rate of the linguistic analysis (strict

evaluation, i.e., the predominant emotions must be recognized) of 60% as well as

the human emotion recognition accuracy of 85.2% (see also Section 6.3.1) are rep-

resented by light grey bars for comparison. Determined from the corpus annotators’
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Fig. 7.1 Emotion recognition performance comparison of the proposed speech-based emotion
recognizers

labels (cf. Burkhardt et al. 2005) and forming the basis for the training of our

recognizers, the human recognition accuracy constitutes the upper bound for the per-

formance of the recognizers. Our plain emotion recognizer yields 65% accuracy for

all seven emotions and 72% for five emotions and our one-step speech–emotion rec-

ognizer achieves 67% and 75.8% for seven and six emotions, respectively. A visible

performance gain is obtained with the two-step speech–emotion recognizer, which

yields 73% and 79.3% accuracy for the classification of seven and six emotions. The

highest performance has been achieved when combining multiple speech–emotion

recognizers – a barely acceptable trade-off between performance and complexity is

the combination of five speech–emotion recognizers which yields an overall recog-

nition rate of 76.4% for all seven emotions.

Nevertheless, the proposed approaches still exhibit some weaknesses which es-

tablish a wide range of possibilities for improvements. The performance of speech

and emotion recognizers in general stands or falls with the quality and the size of

the corpora used for the training of the statistical models. Despite the fact that the

Berlin Database of Emotional Speech provides a sound solid basis for our experi-

ments, its actual (available) size is too small for more detailed considerations. Using

a larger amount of training and test data, including a larger variety of speakers, we

expect to be able to perform a better fine-tuning of the parameters. Particularly, in

our combined speech–emotion recognizer we accept a compromise of complexity
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and performance with respect to the limited amount of data, leading to the two-step

version of a system which is originally meant to be a one-step system. Experiments

with our two-step system have shown that the knowledge about the textual content

of an utterance contributes to a better emotion recognition performance. In this ap-

proach, up to now, we have only considered the best speech recognizer output string

as the basis for the language model of the speech–emotion recognizer in the second

step. With a larger number of data available, we expect an even better performance

when also integrating the second best, third best, etc. recognizer hypothesis into

this adapted language model. Focusing on the further development of our combined

speech–emotion recognizer, possible improvements of the plain emotion recognizer

will be directly integrated into the speech–emotion recognizer. Experiments have

shown that MFCC features also contribute to a better emotion recognition per-

formance, virtually turning the plain emotion recognizer into a speech–emotion

recognizer.

The ROVER method combining multiple speech–emotion recognizers is, as

demonstrated in our experiments, also applicable to our speech–emotion recog-

nizers, where particularly the emotion recognition rate improves. In our according

experiments, the nature of errors in the output of the individual recognizers has

been sufficiently different as respects the emotion recognition portion, whereas for

the word recognition portion, the output of the recognizers have resembled more

strongly. The effect is clearly observable – the overall emotion recognition perfor-

mance improves whereas the word recognition performance does not outperform

the best single word recognition performance significantly. Experiments with plain

speech recognizers have shown that such a strong degree of dissimilarity of mul-

tiple recognizers is difficult to achieve virtually rendering the ROVER algorithm

useless in certain scenarios. To avoid frustration in such cases, we envisage more

meaningful bounds as indicators whether the use of the ROVER method is useful

in certain situations. Upper and lower bounds assuming the best and worst case

of a ROVER implementation have been already described in Section 5.2 and in

Pittermann and Pittermann (2006b). The calculation of these performance bounds

is planned to be extended by probabilistic considerations so that these measures al-

low a more realistic assessment about the usefulness of the ROVER method without

having to implement a complete system beforehand. In order to improve the perfor-

mance of a system combining multiple recognizers, Hillard et al. (2007) propose the

application of a stochastic classifier instead of the voting module showing promis-

ing results. Accordingly, we also plan to include aspects of this “iROVER” idea in

our adapted ROVER method for speech–emotion recognition.

Further attention for our future work on emotion recognition is paid to the com-

bination of linguistic and paralinguistic cues to achieve a better and more reliable

hybrid recognizer performance. This involves an optimization of the phoneme-level

models tying these to a certain emotional state over a longer period than the duration

of one phoneme while still being able to recognize (correct) phoneme sequences.

One predominant problem in the development of speech-based emotion recognition

is the availability of useful emotional speech data. Whereas it is comprehensible that

acted emotional speech differs significantly from spontaneous emotional speech,
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the quality of spontaneous speech corpora is rather unsatisfactory as most of the

included utterances are typically neutral plus a few angry or happy utterances. Espe-

cially our combined speech–emotion recognizer suffers from the fact that emotional

speech corpora do not include a wide range of text which makes these rather un-

suitable for the training of large vocabulary continuous speech recognizers. We plan

to address this problem by spicing up neutral speech corpora for speech recognizer

training with emotional characteristics on the feature level by generating differential

models between neutral and other emotional states which shall then be “added” to

the plain speech data. To improve the performance of the emotional linguistic anal-

ysis we plan to relocate the classification from the rule-based grammar approach

to a stochastic language modeling approach as described by Minker et al. (1999)

or to combine the advantages of both methods. For the combination of linguistic

and paralinguistic emotion recognition, we also plan to pick up and extend the three

approaches described in Section 4.7. These include an extended linguistic analy-

sis taking into account the emotions from the speech–emotions or an extra module

performing the fusion of both information sources (Pittermann et al. 2008b).

Our semi-stochastic dialogue model described in Chapter 3 has proved to be

straightforward to implement and suitable for selected applications (Pittermann

et al. 2007b). In excess of its application to only one dialogue control parameter

(here: emotion), the model is also capable of including a virtually unlimited number

of further parameters as discussed in Section 3.9. By nature, the model complexity

increases with every additional state per parameter and, even more significant, with

every additional dimension (parameter). Simultaneously, a (significantly) larger

amount of dialogue data is required for the training of an accurate model. This

entails the same problem which we are also facing with our speech–emotion recog-

nizer: the (unfortunately limited) availability of adequate data. In the current struc-

ture of the model, we compensate for the lack of training data by a simplified backoff

strategy adding a comparatively small fixed number to all state transitions regard-

less of whether these occur in the training data or not. We plan to enhance this fixed

number by an adaptive factor which is determined on the basis of similar transitions

in the model. E.g., assuming that the dialogue training data does not provide any

information about transitions from the “departure city:happy”, but includes reliable

data for the transitions from the “departure city:angry” and the “destination:happy”

states, the backoff summands for the “departure city:happy” are adapted according

to the transition probabilities of the other two states. Going beyond this simple ex-

ample, we envisage a more sophisticated calculation of the summands involving all

cross-relations between states and transitions. Furthermore, we plan to apply meth-

ods to reduce the number of states by estimating the significance of the individual

states and replacing the least significant states by one dummy state. Accordingly,

the selection process also needs to be adapted to these strategies. Such an extended

system shall then be adapted to two different application scenarios – in IVR systems

on the one hand, and in ambient intelligent systems on the other hand.

We are currently witnessing an increasing use of SLDS technology in today’s

IVR systems such as call centers to unburden the call center employees from routine

requests, and to lower the number of calls on hold. These systems enable a quicker
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and more efficient handling of the calls and, last but not least, lower the costs for

customer service significantly. Typically, SLDSs are deployed in front-ends for call-

routing (e.g., “If you experience trouble with our products please press ‘1’ or say

‘Support’, if you want to purchase one of our products, please press ‘3’ or say

‘Sales’. . . ”), for plain information retrieval like train schedule information systems

or as automated agents providing fully automated (technical) support to customers.

However, speech recognition errors, badly designed dialogues or the customers’ in-

ability to interact with SLDSs may lead to decreasing customer satisfaction and in

the worst case to a hang up on the part of the customer. Particularly with regard

to the assessment whether a dialogue is likely to end successfully or not, emotion

recognition can contribute to the detection of such problems emerging during the

call and may, in combination with other indicators, lead to a change in the dia-

logue strategy or in an escalation to a human operator. To achieve a robust behavior

of the dialogue estimation we focus our consideration on the detection of anger

as proposed by Burkhardt et al. (2006a) by limiting the emotion set to “positive”,

“neutral” and “negative”. For the classification of these three states we expect a vis-

ibly better performance than for the above described classification of five, six or

seven emotional states. Moreover, the linguistic analysis shall concentrate on nega-

tive keywords, especially swearwords which contribute to a very robust detection of

negative emotional states. An appropriate system shall be implemented and tested

on existing dialogue data as well as on human subjects in live tests (Pittermann

et al. 2008b).

For the integration of intelligence and emotion awareness into ambient SLDSs,

we are currently working on a system that enables the user to interact with one or

multiple applications in a natural and user-friendly way. Such a system is able to

detect conflicts arising from the cooperation of different applications and commu-

nicates these to the user. In this way, the system and the user can negotiate solutions

whereupon the user is not burdened too much with brooding over possible solutions.

Apart from its problem solving capabilities, the system also needs to be able to adapt

to the user’s emotional state and/or (cognitive) stress level to communicate the re-

quired information appropriately. A typical application scenario can be found in the

automotive sector. Here the driver’s attentiveness and ability to react is significantly

impaired by having to handle different communication and (route) planning devices

while driving. Despite the fact that speech technology is already successfully uti-

lized in this area, the construction and management of complex tasks and constraints

for isolated applications still constitute a high cognitive burden on the driver. An-

other scenario relates to the care of the elderly or to situations in hospitals where

employees and physicians as well as patients and residents interact with a variety

of applications provided by a central computer system. These may be reminders for

medication, emergency calls, patients’ requests for service, a patients database or

an electronic working plan and task scheduler for employees. Here problems and

conflicts may arise ranging from minor issues like the precise timing of medica-

tion intake up to critical emergencies. In either case, the people involved may suffer

from high stress or even fear, so that the communication provided by the dialogue

system should be adapted accordingly. In order to achieve these goals we envisage
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the development of a generalized concept for the reconciliation of the user’s state,

situation and issues arising from problem solving. Based on the components de-

veloped to date, a prototype system is currently being implemented. It includes the

described dialogue manager, problem solving assistant and speech-based emotion

recognizer. With the aid of WOZ experiments conducted with the prototype sys-

tem, application-dependent dialogue flow definitions will be developed. Moreover,

the system will be equipped with additional functionality including user preferences

and personalization features. I.e., apart from regular user-dependent settings, a set

of parameters will be stored user-independently in the system. These, however, can

be negotiated during the dialogue, when certain situation- or user-specific priorities

are explicitly requested from the user. Furthermore, typical user preferences will

be gathered by observation and automatic learning of the user’s behavior, also in-

cluding the current user’s emotional state. Here, the appropriate parameters, settings

and preferences need to be identified by the system and then used in the adaptation

process (Pittermann et al. 2007a).
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Emotional Speech Databases

Basque: Audiovisual Database of Emotional Speech in Basque by Navas et al.

(2004a).

Emotions: Anger, disgust, fear, happiness, sadness, surprise, neutral

Elicitation: Audio–visual recordings of a professional actress uttering isolated

words and digits as well as sentences of different length, both with emotional

content and emotion-independent content

Size: 450 utterances with emotional content, 665 utterances with emotion-

independent content, 1 female speaker.

Basque: Emotional Speech Database for Corpus Based Synthesis in Basque by

Saratxaga et al. (2006).

Emotions: Anger, disgust, fear, happiness, sadness, surprise, neutral

Elicitation: Recordings of two speakers reading texts

Size: 702 sentences per emotion (20 h of recordings in total), two speakers (one

female, one male).

Burmese: Emotional speech corpus by Nwe et al. (2001).

Emotions: Anger, dislike, fear, happiness, sadness, surprise

Elicitation: Recordings of two speakers uttering sentences experienced in daily

life in different emotional states including rehearsals

Size: 144 sentences (54 sentences of the first speaker, 90 sentences of the second

speaker, 0.6 to 1.6 s per sentence), two speakers.

Chinese: Emotional speech corpus by Yang and Campbell (2001).

Emotions: Wide range of emotions

Elicitation: Recordings of Mandarin Chinese speakers, combination of acoustic

data from spontaneous conversation and experimental data from perceptual tests

Size: 6 h of recorded speech.

Chinese: Emotional speech database by Yuan et al. (2002).

Emotions: Anger, fear, joy, sadness

Elicitation: Speakers were asked to read the first paragraphs of a story evoking

certain emotions. Recordings of the last paragraph plus two target sentences

uttered emotionally

Size: 288 target sentences, nine female speakers.

Chinese: Drama corpus (Chuang and Wu 2004).

Emotions: Anger, disgust, fear, happiness, sadness, surprise, neutral

237
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Elicitation: Recordings of professional impersonators in different emotional

states

Size: 2,100 sentences in 440 dialogues by two speakers (1,085 sentences in

227 dialogues from the leading man, 1,015 sentences in 213 dialogues from the

leading woman).

Chinese: Emotional speech database by Dan-Ning Jiang (2004).

Emotions: Anger, fear, happiness, sadness, surprise, neutral

Elicitation: Recordings of an amateur actress uttering different sentence types

(statements, questions)

Size: Approx. 200 utterances per emotion, neutral database with approx. 300

utterances, one female speaker.

Chinese: Mandarin Emotional Speech Corpus I. (Pao et al. 2004).

Emotions: Anger, boredom, happiness, sadness, neutral

Elicitation: Recordings of short utterances expressed by native Mandarin speak-

ers in different emotional states

Size: 558 utterances, 12 speakers (seven females, five males).

Chinese: Mandarin Emotional Speech Corpus II used by Pao et al. (2004).

Emotions: Anger, boredom, happiness, sadness, neutral

Elicitation: Recordings of utterances expressed by professional Mandarin

speakers in different emotional states

Size: 503 utterances, two speakers (one female, one male).

Chinese: Spontaneous speech corpus used by Tao (2004).

Emotions: Anger, fear, hate, joy, sadness, surprise, neutral

Elicitation: No further information available

Size: 835 sentences, 5,000 words used by Tao (2004).

Chinese: Acted speech corpus by Tao et al. (2006).

Emotions: Anger, fear, happiness, sadness, neutral

Elicitation: A professional actress reading texts from a Reader’s Digest

collection

Size: 1,500 utterances, 3,649 phrases, one speaker.

Chinese: Emotional speech corpus (Wu et al. 2006).

Emotions: Anger, fear, happiness, sadness, neutral

Elicitation: Recordings of 25 actors uttering short passages with emotional con-

tent and command phrases

Size: 150 short passages (30–50 s), 5,000 command phrases (2–10 s), 50 speak-

ers (25 females, 25 males).

Chinese: Speech database by Zhang et al. (2006).

Emotions: Anger, fear, joy, sadness, neutral

Elicitation: Recordings of eight speakers (acoustically isolated room)

Size: 2,400 sentences (20 sentences, uttered three times each, for every emo-

tion), eight speakers (four females, four males).

Chinese, English, Japanese: JST/CREST database by Campbell (2002).

Emotions: Wide range of emotional states and emotion-related attitudes

Elicitation: Natural emotions of volunteers recording their domestic and social

spoken interactions for extended periods throughout the day

Size: Recordings still ongoing, target: 1,000 h over 5 years.
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Chinese, English, Japanese: Speech corpus by Jiang et al. (2005).

Emotions: Angry, calm, happy, sad, surprise

Elicitation: Recordings of a speaker uttering a sentence in three languages and

in different emotional states

Size: 750 utterances (50 utterances per language and emotion), one speaker.

Danish: Danish Emotional Speech Database (Engberg et al. 1997).

Emotions: Anger, happiness, sadness, surprise, neutral

Elicitation: Recordings of actors familiar with radio theater uttering single

words, sentences and passages of fluent speech in different emotional states

Size: Approx. 10 min of speech in total (30 s per emotion per speaker) plus neu-

tral recordings (2 speakers) plus extra recordings (three speakers), four speakers

in total (two females, two males).

Dutch: Emotional database by Van Bezooijen (1984).

Emotions: Anger, contempt, disgust, fear, interest, joy, sadness, shame, surprise,

neutrality

Elicitation: Recordings of speakers reading semantically neutral phrases

Size: four phrases, eight speakers (four females, four males).

Dutch: Groningen corpus S0020 ELRA (1996) (see http://www.elra.info/).

Emotions: Mostly neutral, few emotions

Elicitation: Recordings of speakers reading short texts, sentences, numbers,

monosyllabic words, long vowels and an extended word list

Size: 20 h of speech, 238 speakers.

Dutch: Emotional database by Mozziconacci and Hermes (1999).

Emotions: Anger, boredom, fear, indignation, joy, sadness, neutrality

Elicitation: Recordings of actors expressing semantically neutral sentences in

different emotional states after the respective emotion has been elicited by read-

ing a semantically emotional sentence

Size: three speakers (one female, two males), 315 utterances, five sentences.

Dutch: Experiment at Tilburg University (Wilting et al. 2006).

Emotions: Acted negative, acted positive, negative, positive, neutral

Elicitation: Recordings of participants reading sentences in different (partly

acted) emotional states according to the mood induction procedure proposed

by Velten (1968)

Size: 50 participants (31 females, 19 males), each reading 40 sentences of 20 s

length.

English: Database produced by Cowie and Douglas-Cowie (1996).

Emotions: Anger, fear, happiness, sadness, neutral

Elicitation: Recorded passages of speakers from the Belfast area

Size: 40 speakers (20 females, 20 males), passages of 25–30 s length.

English: SUSAS database (Hansen et al. 1998).

Emotions: Talking styles (angry, clear, fast, loud, question, slow, soft), single

tracking task (high stress, Lombard effect, moderate), dual tracking task (high

stress, moderate), actual speech under stress (anxiety, fear, G-force, Lombard

effect, noise), psychiatric analysis (angry, anxiety, depression, fear)
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Elicitation: Recordings of isolated-word utterances under simulated or actual

stress in several scenarios, e.g., amusement park roller-coaster, helicopter cock-

pit, patient interviews

Size: Approx. 16,000 utterances of 36 speakers (13 females, 23 males) in total.

English: Emotional speech database by Li and Zhao (1998).

Emotions: Anger, fear, happy, sad, surprised, neutral

Elicitation: Recordings of actors uttering 20 sentences with emotional content

and three sentences without emotional content in different emotional states

Size: 5 untrained speakers (two females, three males), 23 sentences per speaker.

English: Emotional speech database by Whiteside (1998).

Emotions: Cold Anger, elation, happiness, hot anger, interest, sadness, neutral

Elicitation: Recordings of actors uttering sentences in different emotional states

Size: 70 utterances, two speakers (one female, one male), five different short

sentences.

English: Emotional corpus by Cowie et al. (1999b).

Emotions: Wide range of emotions as defined in the FEELTRACE tool

Elicitation: Video tape recordings of groups of three friends each discussing

about issues they strongly felt about

Size: Recordings of 1 h per group, nine speakers (three groups of three friends).

English: Emotional speech database by Robson and Mackenzie-Beck (1999).

Emotions: Smiling, neutral

Elicitation: Recordings of speakers uttering sentences in a neutral state and

while smiling

Size: 66 utterances, 11 speakers, three sentences.

English: Reading/Leeds Emotional Speech Corpus (Greasley et al. 2000).

Emotions: Anger, disgust, fear, happiness, sadness, neutral

Elicitation: Recordings of interviews on radio/television, speakers asked by in-

terviewers to relive emotionally intense experiences

Size: Approx. 5 h of samples of emotional speech.

English: Emotional speech database by McGilloway et al. (2000).

Emotions: Anger, fear, happiness, sadness, neutral

Elicitation: Recordings of speakers reading emotional texts in appropriate style

Size: 40 speakers, five texts (100 syllables each).

English: Emotional speech database by Pereira (2000).

Emotions: Cold anger, happiness, hot anger, sadness, neutral

Elicitation: Recordings of actors uttering two sentences in different emotional

states

Size: 80 utterances (two repetitions of 40 utterances), two speakers.

English: Database produced by Polzin and Waibel (2000).

Emotions: Anger, sadness, neutrality (other emotions as well, but in insufficient

numbers to be used)

Elicitation: Audio–visual data, i.e., sentence-length segments taken from acted

movies

Size: 1,586 angry segments, 1,076 sad segments, 2,991 neutral segments.

English: Belfast Naturalistic Database (Douglas-Cowie et al. 2000).

Emotions: Wide range of emotions
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Elicitation: Audio–visual recordings of people discussing emotive subjects with

each other/the research team plus recordings of extracts from television pro-

grams, i.e., members of the public interacting in a way that appears essentially

spontaneous

Size: 239 clips (209 from TV Recordings, 30 from interview recordings, clip

durations: 10–60 s), 125 speakers (94 females, 31 males).

English: Database by France et al. (2000).

Emotions: Depression, suicidal state, neutrality

Elicitation: Recordings of spontaneous dialogues between patients and ther-

apists in therapy sessions, phone conversations and post therapy evaluation

sessions

Size: 115 speakers (48 females, 67 males).

English: DARPA Communicator corpus (Walker et al. 2001).

Emotions: Annoyance, frustration

Elicitation: Users making air travel arrangements over the phone

Size: Recordings of simulated interactions with a call center, 13,187 utterances

in total (1,750 emotional utterances).

English: Capital Bank Service and Stock Exchange Customer Service (Devillers

et al. 2002).

Emotions: Anger, excuse, fear, satisfaction, neutral

Elicitation: Human–human interaction in a stock exchange customer service

(call) center

Size: 100 dialogues, 5,229 speaker turns.

English: Emotional speech database by Fernandez and Picard (2003).

Emotions: Stress

Elicitation: Recordings of speakers solving mathematical problems while driv-

ing in a car simulator

Size: four speakers, four situations, 598 utterances, length varying from 0.5

to 6 s.

English: Speech database by Lee and Narayanan (2003).

Emotions: Negative, non-negative

Elicitation: Users interacting with a machine agent in a call center

Size: 1,367 utterances (776 utterances of female speakers, 591 utterances of

male speakers).

English: LDC Emotional Prosody Speech and Transcription used by Liscombe

et al. (2003) and Yacoub et al. (2003).

Emotions: Anxiety, boredom, cold anger, contempt, despair, disgust, elation,

happy, hot anger, interest, panic, pride, sadness, shame, neutral

Elicitation: Professional actors reading short (4-syllables each) dates and

numbers

Size: eight actors (five females, thre males), 44 utterances used by Liscombe

et al. (2003), 2,433 utterances used by Yacoub et al. (2003) .

English: ORESTEIA database by McMahon et al. (2003).

Emotions: Irritation, shock, stress
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Elicitation: Audio-physiological (and partly visual) recordings of driving per-

sons encountering various problems (deliberately positioned obstructions, dan-

gers, annoyances “on the road”)

Size: 90 min per session and speaker, 29 speakers.

English: Sensitive Artificial Listener (SAL) database by Cowie et al. (2004).

Emotions: Wide range of emotions or emotion related states

Elicitation: Audio–visual recordings of speakers interacting with an artificial

listener with different personalities

Size: Recordings of approx. 10 h, 20 speakers.

English: Speech database by Lee et al. (2004) and Yildirim et al. (2004).

Emotions: Angry, happy, sad, neutral

Elicitation: Recordings of a semi-professional actress uttering 112 unique sen-

tences in four emotions

Size: 880 utterances, one female speaker.

English: Emotional speech synthesis database (Tsuzuki et al., 2004).

Emotions: Anger, happiness, sadness, neutral

Elicitation: Recordings of a non-professional male speaker uttering short declar-

ative sentences with emotional content

Size: 363 utterances, one male speaker.

English: Modified LDC CallFriend corpus prepared by Yu et al. (2004).

Emotions: Boredom, happy, hot anger, interest, panic, sadness, no emotion plus

numerical values (on a discretized scale from 1 to 5) for each of arousal, valence

and engagement

Elicitation: Recordings of social telephone conversations between friends

Size: 1,888 utterances (1,011 utterances from female speakers, 877 utterances

from male speakers, eight speakers (four females, four males).

English: WOZ data corpus (Zhang et al., 2004).

Emotions: Confidence, puzzle, hesitation

Elicitation: Audio–visual recordings of children interacting with an intelligent

tutoring system for learning basic concepts of Mathematics and Physics

Size: 714 students’ utterances (approx. 50 min of clean speech), 4.2 s of speech

and 8.1 words per utterance, 17 speakers.

English: Speech database by Lee et al. (2005).

Emotions: Angry, happy, sad, neutral

Elicitation: Recordings of a male speaker producing sentences with non-

emotional content in the respective emotional states (including biosensor data)

Size: 280 utterances, 14 sentences, one male speaker.

English: HMIHY speech database (Liscombe et al. 2005).

Emotions: Positive/neutral, somewhat angry, somewhat frustrated, somewhat

other negative, very angry, very frustrated, very other negative

Elicitation: Recordings of callers interacting with an automated agent con-

cerning account balance, explanation of bill charges, AT&T rates and calling

plans, etc.

Size: 5,690 dialogues, 20,013 user turns.
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English: Expressive spoken corpus of children’s stories modified by Alm and

Sproat (2005).

Emotions: Angry, disgusted, fearful, happy, sad, surprised, neutral

Elicitation: Recordings of a semi-professional female speaker reading two chil-

dren’s stories in an extremely expressive mode

Size: Approx. 10 min of speech, 128 sentences, one female speaker.

English: ITSPOKE corpus (Ai et al. 2006).

Emotions: Positive, negative, neutral

Elicitation: Students interacting with an interactive tutoring system

Size: 100 dialogues, 20 students, 2,252 student turns, 2,854 tutor turns plus a

set of human–human corpus.

English: Situation Analysis in a Fictional and Emotional (SAFE) corpus (Clavel

et al., 2006).

Emotions: Fear, other negative emotions, positive emotions, neutral

Elicitation: Audio–visual excerpts taken from movie DVDs, abnormal contexts

Size: 400 sequences, total length 7 h, 4,724 segments of speech (up to 80 s).

English: Castaway database (Devillers et al. 2006).

Emotions: Wide range of emotions

Elicitation: Audio–visual recordings of a reality TV show

Size: 10 recordings (30 min each), 10 speakers.

English: Speech database by Lee et al. (2006).

Emotions: Angry, happy, sad, neutral

Elicitation: Recordings and magnetic resonance images of a male speaker utter-

ing a set of four sentences

Size: 80 utterances (four sentences, five repetitions, four emotions), one male

speaker.

English: Emotional speech corpus by Kumar et al. (2006).

Emotions: Inappropriateness, lack of clarity, uncertainty, neutral

Elicitation: Recordings of participants interacting with an SLDS in terms of a

customer survey about grocery stores plus answering of a questionnaire

Size: 257 utterances, 17 participants (10 females, 7 males).

English: ISL Meeting corpus (Neiberg et al. 2006).

Emotions: Negative, positive, neutral

Elicitation: Recordings of 18 meetings with a total of 92 persons and an average

duration of 35 min accompanied by orthographic transcription

Size: 12,068 utterances, thereof 424 negative, 2,073 positive and 9,571 neutral.

English: “Yeah right” corpus by Tepperman et al. (2006).

Emotions: Sarcastic, neutral

Elicitation: “Yeah right” utterances taken from the Switchboard and Fisher cor-

pora of spontaneous telephone dialogues

Size: 131 utterances.

English, French, German: Speech database by Klasmeyer et al. (2000).

Emotions: Emotional, neutral

Elicitation: Recordings of English, French and German speakers reading sen-

tences and uttering passages of spontaneous speech
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Size: Approx. 13,000 utterances, 120 speakers (25 English, 65 French, 30

German).

English, French, German, Italian: Geneva Airport Lost Luggage Speech Data-

base by Scherer and Ceschi (1997).

Emotions: Anger, good humor, indifference, resignation, worry

Elicitation: Audio–visual recordings of passengers at the lost luggage desk at

Geneva Airport plus interviews

Size: 112 passengers, 12 airline employees, 10–20 min of interaction per pas-

senger at the desk.

English, French, Slovenian, Spanish: INTERFACE Emotional Speech Synthesis

Database (IESSDB, Nogueiras et al. 2001).

Emotions: Anger, disgust, fear, joy, sadness, surprise, neutral

Elicitation: Six different kinds of sentences (affirmative, exclamatory, interrog-

ative, paragraphs of approx. five sentences, isolated words and digits) spoken

by professional actors in each language and each emotion

Size: Two actors (one female, one male), 150–190 utterances for each of the six

emotional styles in four languages.

English, German: AIBO (Erlangen database, Batliner et al. 2004a).

Emotions: Angry, bored, emphatic, helpless, joyful, motherese, reprimanding,

surprised, touchy (irritated), neutral and rest

Elicitation: Children interacting with a WOZ robot

Size: 51 German children (30 females, 21 males, 51,393 words, 9.2 h of speech),

30 English children (5,822 words, 1.5 h of speech).

English, German: Corpus in the framework of the FERMUS-III project (Rigoll

et al. 2005).

Emotions: Anger, disgust, fear, sadness, surprise, neutral

Elicitation: First set: Actors uttering sentences in different emotional states, sec-

ond set: utterances of automotive infotainment speech interaction dialogues

Size: 3,529 utterances (first set: 2,829 utterances, second set: 700 utterances),

13 speakers (one female, 12 males).

English, German, Japanese: Material taken from the TV series Ally McBeal

(Braun and Katerbow 2005).

Emotions: Cold anger, fear, hot anger, joy, sadness, neutral

Elicitation: Audio–visual data taken from a DVD

Size: six speakers (three females, three males), 135 utterances in total (45

utterances per language).

English, Japanese: Emotional database by Shigeno (1998).

Emotions: Anger, disgust, fear, happiness, sadness, surprise

Elicitation: Audio–visual recordings of actors uttering short sentences and

words in English and Japanese

Size: two speakers (one American, one male), 36 audio–visual stimuli.

English, Korean: Emotional database by Chung (2000).

Emotions: Joy, sadness, neutral

Elicitation: Audio–visual recordings of female speakers in Korean and Ameri-

can television shows talking about problems in their lives, expressing sadness

and joy
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Size: one Korean speaker (eight utterances, each lasting 1 min), five Ameri-

can speakers (one neutral and one emotional utterance, each lasting 1 min, per

speaker).

English, Malay: Emotional speech database by Razak et al. (2005).

Emotions: Anger, disgust, fear, happy, sad, surprise

Elicitation: Recordings of learning actors uttering sentences frequently used in

everyday communication

Size: 1,200 utterances, four different sentences, female and male speakers.

English, Swedish: Speech database by Laukka (2004).

Emotions: Anger, disgust, fear, happiness, sadness, neutral

Elicitation: Recordings of British and Swedish actors uttering short sentences

Size: 176 utterances, eight speakers (four females, four males, four British, four

Swedish).

Farsi/Persian: Farsi emotional speech corpus (Gharavian and Ahadi 2005).

Emotions: Angry, sad, neutral

Elicitation: Sentences of a non-emotional corpus reuttered angrily, sadly and

neutrally

Size: 1,518 utterances, one male speaker.

Finnish: MediaTeam emotional speech corpus (Väyrynen et al. 2003).

Emotions: Anger, happiness/joy, sadness, neutral

Elicitation: Recordings of professional actors reading out a phonetically rich

Finnish passage with non-emotional content

Size: 56 monologues, 14 speakers (six females, eight males).

French: Emotional database by Johnstone and Scherer (1999).

Emotions: Anxious, bored, depressed, happy, irritated, tense, neutral

Elicitation: Recordings of students playing a manipulated computer space game

and making statements to their emotions, furthermore recordings of biosignals

Size: 36 males speakers.

French: Messages corpus by Chateau et al. (2004).

Emotions: Positive emotion, negative emotion, no particular emotion (neutral)

Elicitation: Recordings of France Telecom customers describing their opinions

about the customer care service

Size: 103 messages split into 478 emotional utterances, 103 speakers.

French: EmoTV corpus (Abrilian et al. 2005).

Emotions: Anger, despair, disgust, doubt, exaltation, fear, irritation, joy, pain,

sadness, serenity, surprise, worry, neutral plus 176 fine-grain categories

Elicitation: Audio–visual recordings of TV news interviews

Size: 51 recordings, 48 speakers, 14 s per recording, 2,500 words.

French: Talkapillar corpus by Beller and Marty (2006).

Emotions: Anger, boredom, disgust, happiness, indignation, sadness, surprise

(negative and positive), neutral and neutral question

Elicitation: Recordings of one actor reading semantically neutral sentences in

different emotional states

Size: 539 utterances, one speaker, 26 sentences, 2 h of speech.
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French: CEMO corpus (Devillers et al. 2006).

Emotions: 8 coarse-grained classes: anger, fear, hurt, other positive, relief, sad-

ness, surprise, neutral, additionally 21 fine-grained classes

Elicitation: Real agent-client recordings obtained from a medical emergency

call center offering medical advice

Size: 688 agent-client dialogues of around 20 h, seven agents (four females,

three males), 784 clients (513 females, 271 males), 48 turns per dialogue in

average, 262,000 words thereof 92,000 distinct words.

German: Emotional speech database by Tolkmitt and Scherer (1986).

Emotions: Cognitive and emotional stress

Elicitation: Recordings of speakers who were shown slides either containing

logical problems which they had to solve verbally or photos of injured people

which they were asked to comment on

Size: 60 speakers (27 females, 33 males), 20 slides, max. 40 s speech per slide.

German: Geneva Vocal Emotion Expression Stimulus Set (GVEESS, Banse and

Scherer, 1996).

Emotions: Anxiety, boredom, cold anger, contempt, disgust, elation, happiness,

hot anger, interest, panic fear, pride, sadness, shame

Elicitation: Audio–visual recordings of actors acting scripted emotion-eliciting

scenarios for each emotion

Size: 12 actors (six females, 6 males), 224 recordings.

German: Speech database by Dellaert et al. (1996).

Emotions: Anger, fear, happiness, sadness, neutral

Elicitation: Recordings of speakers reading a variety of sentences in different

emotional states

Size: five actors, 50 sentences, 1,000 utterances.

German: Speech database by Klasmeyer (1996).

Emotions: Anger, boredom, fear, happiness, sadness, neutral

Elicitation: Recordings of actors uttering short sentences with non-emotional

content

Size: 10 sentences per emotion, three actors.

German: Emotional speech material used by Alter et al. (1999) and Alter et al.

(2000).

Emotions: Anger, happiness, neutral

Elicitation: Recordings of sentences with emotional content spoken by a trained

female speaker in a sound proof room at the University of Leipzig, ratings by

30 subjects on a 5-point scale indicating the three emotions

Size: 148 sentences, one speaker.

German: Database used and produced by Batliner et al. (2000).

Emotions: Anger, neutral

Elicitation: Recordings of an acting person produced within the VERBMOBIL

scenario, recordings of naive subjects reading emotional sentences, recordings

of angry and neutral persons in a WOZ scenario

Size: Acted data: 1,240 neutral turns and 96 angry turns, Read data: 50 neutral

and 50 emotional sentences, WOZ data: 2,395 turns (20 dialogues) planned to

be extended.
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German: Database of affect bursts (Schröder 2000).

Emotions: Admiration, anger, boredom, contempt, disgust, elation, relief, star-

tle, threat, worry

Elicitation: Speakers reading silently a frame story, recordings of an produced

affect burst of their choice plus two produced affect bursts from a list

Size: 180 vocalizations (30 vocalization per speaker), six speakers (three fe-

males, three males, thereof four amateur actors).

German: Lego corpus (Kehrein 2001).

Emotions: Wide range of emotions

Elicitation: Recordings of dialogues between two persons interactively trying

to build a Lego kit without seeing each other

Size: 180 min of speech thereof 372 emotional turns.

German: SmartKom database (Schiel et al., 2002; Wahlster, 2006).

Emotions: Anger, gratification, helplessness, irritation, joy, pondering, reflect-

ing, surprise, neutral, unidentifiable episodes

Elicitation: Audio–visual recordings of human–computer information system

dialogues in a WOZ scenario

Size: 224 speakers, 448 recordings, 4-5 min sessions.

German: Speech database used by Tato et al. (2002).

Emotions: Angry, bored, happy, sad, neutral

Elicitation: Recordings of speakers put in an emotional state and reading com-

mands to the Sony entertainment robot AIBO

Size: 2,800 utterances, 40 commands, 14 speakers (seven females, seven males).

German: SYMPAFLY database (Batliner et al. 2004b).

Emotions: Angry, compassionate, emphatic, helpless, ironic, joyful, panic, sur-

prised, touchy, neutral

Elicitation: Naive users book flights using a machine dialogue system

Size: 270 dialogues and 29,200 words in total, three parts with increasing sys-

tem performance and 62–110 speakers per part.

German: Berlin Database of Emotional Speech (Burkhardt et al. 2005).

Emotions: Anger, boredom, disgust, fear, joy, sadness, neutral

Elicitation: Recordings of non-professional actors uttering sentences with non-

emotional content in each emotion

Size: More than 800 utterances, 10 speakers (five females, five males).

German: EMO-SI database (Schuller et al. 2005).

Emotions: Anger, disgust, fear, joy, sadness, surprise, neutrality

Elicitation: Spontaneous and acted emotions in short phrases of car interaction

dialogues

Size: 39 speakers (three females, 36 males), 2,730 samples (70 samples per

speaker).

German: Emotional database by Kim and André (2006).

Emotions: High arousal (negative valence, positive valence), low arousal (neg-

ative valence, positive valence)

Elicitation: Recordings of users playing a quiz (including biosensor data)

Size: 45 min per speaker, three speakers.
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Greek: Greek Emotional Database (Fakotakis 2004).

Emotions: Anger, fear, joy, sadness, neutral

Elicitation: Recordings of a professional actress reading semantically neutral

words and sentences in different emotions

Size: 10 single words, 20 short sentences, 25 long sentences, 12 passages of

fluent speech, one female speaker.

Hebrew: Emotional speech corpus by Amir et al. (2000).

Emotions: Anger, disgust, fear, joy, sadness, neutral

Elicitation: Recordings of students telling of personal experiences evoking cer-

tain emotions (including biosensor data)

Size: 31 speakers (15 females, 16 males).

Japanese: Nicholson et al. (1999).

Emotions: Anger, disgust, fear, joy, sadness, surprise, teasing, neutral

Elicitation: Speakers were asked to read a word list in eight emotions trying to

imitate emotional recordings produced by radio actors

Size: 50 females and 50 males native Japanese speakers uttering a list of

100 context-free Japanese words eight times (once per emotion), each of the

Japanese phonemes equally represented within the list.

Japanese: Speech database by Oudeyer (2003).

Emotions: Anger, joy/pleasure, sorrow/sadness/grief, normal/neutral

Elicitation: Recordings of professional speakers uttering short sentences or

phrases and imagining themselves uttering these sentences to a pet robot

Size: 4,800 utterances (200 per speaker and emotion), six speakers (female and

male).

Japanese: Prosodic corpus by Hirose et al. (2004).

Emotions: Anger, calm, joy, sadness

Elicitation: Recordings of a female narrator reading sentences with emotional

content

Size: Approx. 1,600 utterances (around 400 sentences per emotion), one female

speaker.

Japanese: Emotional speech database by Iwai et al. (2004).

Emotions: Anger, joy, sadness, neutral

Elicitation: Recordings of students uttering the word “okaasan” (Japanese:

“mother”) in four emotions

Size: 766 utterances, three male speakers.

Japanese: Emotional speech database by Takahash et al. (2005).

Emotions: Angry, bright, excited, raging, neutral

Elicitation: Recordings of expressive speech sounds narrated by professional

actors

Size: 1,500 expressive speech sounds, eight speakers.

Japanese: Emotional speech database by Nisimura et al. (2006).

Emotions: Anger, contempt, contentment, depression, excitement, fear, joy,

mirth, pleasure, pressure, sadness, surprise, tension, tiredness, displeasure,

neutral

Elicitation: Recordings of children’s utterances extracted from a public spoken
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dialogue system

Size: 2699 utterances.

Korean: Emotional speech database by Kim et al. (2004b).

Emotions: Anger, joy, sadness, neutral

Elicitation: Recordings of speakers uttering short sentences in different emo-

tional states

Size: 400 utterances, five different sentences (less than 1.5 sec. duration), four

male speakers.

Korean: Database produced by Media and Communication Signal Processing Lab-

oratory, Prof. C.Y. Lee of Yonsei University (Kim et al. 2005).

Emotions: Angry, joyful, sad, neutral

Elicitation: Ten speakers uttering dialogic sentences expressing natural emo-

tions with easy pronunciation; afterwards subjective emotion recognition by

human listeners for verification

Size: 5,400 sentences: 45 dialogic sentences, three repetitions, four emotions,

10 speakers (five females, five males).

Russian: RUSLANA database (Makarova et al. 2002).

Emotions: Anger, fear, happiness, sadness, surprise, neutral

Elicitation: Recordings of actors expressing emotional sentences

Size: 61 actors (49 females, 12 males), 610 utterances.

Spanish: SES Spanish Emotional Speech database (Montero et al. 1999).

Emotions: Anger, happiness, sadness, surprise, neutral

Elicitation: Recordings of an actor reading neutral texts in different emotional

states

Size: three passages and 15 sentences acted by one speaker in four emotions

plus neutral style.

Spanish: Emotional speech database by Iriondo et al. (2000).

Emotions: Desire, disgust, fear, fury, joy, sadness, surprise

Elicitation: Recordings of actors reading texts in different emotional states and

intensities

Size: eight actors (four females, four males), three intensities, 336 utterances.

Spanish: Emotional speech database by Álvarez Martı́nez and Barrientos Cruz

(2005).

Emotions: Anger, fear, happiness, sadness, neutral

Elicitation: Recordings of actors and actresses uttering sentences in different

emotional states plus extracted utterances from DVD movies

Size: 380 utterances (300 utterances with four different sentences as syn-

thetic data set (actors), 80 utterances as real data set (DVD movies)), 15

non-professional speakers (female and male) in the synthetic data set.

Swedish: Emotional speech database by Abelin and Allwood (2000).

Emotions: Anger, disgust, dominance, fear, joy, sadness, shyness, surprise

Elicitation: Recordings of a speaker uttering a non-emotional phrase in different

emotional states

Size: 1 male speaker.
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Swedish: VeriVox database by Karlsson (1999).

Emotions: Stress ranked from zero to nine identifying 5 as normal stress level

Elicitation: Recordings of male speakers reading texts in different tasks and

stress levels

Size: 50 males speakers, 30 min per speaker.

Swedish: The Voice Provider Material (VP, Neiberg et al. 2006).

Emotions: Emphatic, negative, neutral

Elicitation: Recordings of voice-controlled telephone services (traffic informa-

tion, postal assistance, etc.)

Size: 7619 utterances, thereof 160 emphatic, 335 negative and 7,124 neutral.

No specific language: Corpus of infants’ cries (Matsunaga et al. 2006).

Emotions: Anger, hunger, pampered, sadness, sleepiness

Elicitation: Infants’ cries recorded by their mothers at home using a digital

recorder, emotional judgment by the mothers taking into consideration facial

expressions, behavior, etc., emotional intensity ranked from zero (emotion not

contained at all) to four (emotion fully contained)

Size: 402 cries, 23 infants (12 females, 11 males, age: 8–13 months).

(see also “The HUMAINE Portal” website at http://emotion-research.
net/wiki/Databases)
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Used Abbreviations

ANN Artificial Neural Network

ANS Autonomic Nervous System

ASR Automatic Speech Recognition

ATIS Air Travel Information System

BDI Beliefs-Desires-Intentions

BEEP British English Example Pronunciations dictionary

BEEV British English Emotional Vocabulary

CSLU Center for Spoken Language Understanding (Oregon Health &

Science University)

DBN Dynamic Belief Network

DETT Disposition–Emotion–Trigger–Tendency

DVD Digital Versatile Disk

EBNF Extended Backus-Naur Form

ELRA European Language Resources Association

ETN Emotion Transition Network

FIA Form Interpretation Algorithm

GMM Gaussian Mixture Model

GSM Global System for Mobile communications

HMIHY How May I Help You?

HMM Hidden Markov Model

HTK Hidden Markov Model Toolkit

IPA International Phonetic Alphabet

ITU-T Telecommunication Standardization Sector of the International

Telecommunication Union

IVR Interactive Voice Response

JPEG Joint Photographic Experts Group

JSGF Java Speech Grammar Format

KNN k-Nearest Neighbor

LDC Linguistic Data Consortium (University of Pennsylvania)

LP Linear Prediction

MDP Markov Decision Process

MFCC Mel-Frequency Cepstral Coefficient

MIMO Multiple Input Multiple Output
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MP3 MPEG-1 Audio Layer 3

MPEG Moving Picture Experts Group

OCC Ortony, Clore, Collins

PARADISE PARAdigm for DIalogue System Evaluation

PDA Personal Digital Assistant

PLP Perceptual Linear Prediction

POMDP Partially Observable Markov Decision Process

PROMISE PROcedure for Multimodal Interactive System Evaluation

RIFF Resource Interchange File Format

ROVER Recognizer Output Voting Error Reduction

SAMPA Speech Assessment Methods Phonetic Alphabet

SLDS Spoken Language Dialogue System

SRGS Speech Recognition Grammar Specification

SVM Support Vector Machine

TRINDI Task oRiented INstructional DIalogue

W3C World Wide Web Consortium

WETN Word-Emotion Transition Network

WOZ Wizard-of-OZ

WTN Word Transition Network

XML eXtensible Markup Language
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Does culture make a difference? In: 3rd international conference on speech prosody, Dresden,
Germany, pp 245–248

Burkhardt F, Paeschke A, Rolfes M, Sendlmeier WF, Weiss B (2005) A database of german emo-
tional speech. In: European conference on speech and language processing (EUROSPEECH),
Lisbon, Portugal, pp 1517–1520

Burton RR (1976) Semantic grammar: An engineering technique for constructing natural language
understanding systems. Technical report 3353, Bolt Beranek & Newman, Inc, Cambridge, USA

Burzio L (1993) English stress, vowel length, and modularity. J Linguist 29(2):359–418
Busso C, Narayanan S (2006) Interplay between linguistic and affective goals in facial expression

during emotional utterances. In: Proceedings of 7th international seminar on speech production
(ISSP), Ubatuba, Brazil, pp 549–556

Campbell JP (1997) Speaker recognition: A tutorial. Proc IEEE 85(9):1437–1462
Campbell N (2000) Databases of emotional speech. In: Proceedings of ISCA workshop on speech

and emotion, Belfast, United Kingdom
Campbell N (2002) The Recording of emotional speech – JST/CREST database research. In:

International conference on language resources and evaluation (LREC), vol 6. Las Palmas,
Spain, pp 2029–2032

Campbell N, Devillers L, Douglas-Cowie E, Aubergé V, Batliner A, Tao J (2006) Resources for
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An instrument for recording perceived emotion in real time. In: Proceedings of ISCA workshop
on speech and emotion, Belfast, United Kingdom

Cowie R, Douglas-Cowie E, Tsapatsoulis N, Votsis G, Kollias SD, Fellenz WA, Taylor JG (2001)
Emotion recognition in human-computer interaction. IEEE Signal Proc Mag 12:32–80
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Jönsson A, Dahlbäck N (2000) Distilling dialogues – A method using natural dialogue corpora
for dialogue systems development. In: 6th applied natural language processing conference
(ANLP), Seattle, USA, pp 44–51

Juang B-H, Rabiner LR (1991) Hidden markov models for speech recognition. Technometrics
33(3):251–272

Jun S-A (2005) Prosodic typology. The phonology of intonation and phrasing. Oxford University
Press, New York, USA

Kalman RE (1960) A new approach to linear filtering and prediction problems. Trans ASME J
Basic Eng 82:35–45

Kamm C, Narayanan S, Dutton D, Ritenour R (1997) Evaluating spoken dialog systems for
telecommunication systems. In: European conference on speech and language processing (EU-

ROSPEECH), Rhodes, Greece, pp 22–25
Karlsson I (1999) Within-speaker variability in the VeriVox database. In: Proceedings of the twelfth

swedish phonetics conference (Fonetik 99), number 81 in Gothenburg Papers in Theoretical
Linguistics, Gothenburg, Sweden, pp 93–96

Kehrein R (2001) Linguistische und psychologische Aspekte der Erforschung des prosodischen
Emotionsausdrucks. In: Germanische Linguistik (GL), 157–158:91–123

Kim EH, Hyun KH, Kwak YK (2005) Robust emotion recognition feature, frequency range of
meaningful signal. In: IEEE international workshop on robots and human interactive commu-
nication (RO-MAN), Nashville, USA, pp 667–671

Kim I-S (2006) Automatic speech recognition: Reliability and pedagogical implications for teach-
ing pronunciation. Educ Technol Soc 9(1):322–334
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diovisual database of emotional speech in Basque. In: International conference on language
resources and evaluation (LREC), Lisbon, Portugal, pp 1387–1390
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Navas E, Hernáez I, Luengo I (2006) An objective and subjective study of the role of semantics

and prosodic features in buidling corpora for emotional TTS. IEEE Trans Audio Speech Lang
Proces 14(4):1117–1127

Neiberg D, Elenius K, Laskowski K (2006) Emotion recognition in spontaneous speech using
GMMs. In: International conference on speech and language processing (ICSLP), Pittsburgh,
USA, pp 809–812

Nicholson J, Takahashi K, Nakatsu R (1999) Emotion recognition in speech using neural networks.
In: Proceedings of the 6th international conference on neural information processing (ICONIP),
vol 2. Perth, Australia, pp 495–501

Nisimura R, Omae S, Kawahara H, Irino T (2006) Analyzing dialogue data for real-world emo-
tional speech classification. In: International conference on speech and language processing
(ICSLP), Pittsburgh, USA, pp 1822–1825

Nogueiras A, Moreno A, Bonafonte A, no J. BM (2001) Speech emotion recognition using
hidden Markov models. In: European conference on speech and language processing (EURO-
SPEECH), Aalborg, Denmark, pp 2679–2682

Nuttall AH (1981) Some windows with very good sidelobe behavior. IEEE Trans Acoust Speech
Signal Proces ASSP-29(1):84–91

Nwe TL, Wei FS, De Silva LC (2001) Speech based emotion classification. In: Proceedings of the
IEEE region 10 international conference on electrical and electronic technology (TENCON),
vol 1. Phuket Island, Singapore, pp 297–301

Oatley K, Jenkins JM (1996) Understanding emotions. Blackwell, Oxford, United Kingdom
Oatley K, Johnson-Laird PN (1987) Towards a cognitive theory of emotions. Cogn Emot 1:29–50
Oatley K, Johnson-Laird PN (1995) Communicative theory of emotions: Empirical tests, mental

models & implications for social interaction. In: Martin LL, Tesser A (eds) Goals and affect.
Erlbaum, Hillsdale, USA

O’Brien D, Monaghan A. IC (2001) Concatenative synthesis based on a harmonic model. IEEE
Trans Speech Audio Process, 9(1):11–20

Okada N, Inui K, Tokuhisa M (1999) Towards affective integration of vision, behavior, speech
processing. In: Proceedings of integration of speech and image understanding, Corfu, Greece,
pp 49–77

O’Malley MH (1990) Text-to-speech conversion technology. Computer 23(8):17–23
O’Neill I, Hanna P, Liu X, McTear M (2003) The queen’s communicator: An object-oriented dia-

logue manager. In: European conference on speech and language processing (EUROSPEECH),
Geneva, Switzerland, pp 593–596

Oppenheim AV, Schafer RW (2004) From frequency to quefrency: A history of the cepstrum. IEEE
Signal Proces Mag 21(5):95–106

Ortony A, Clore G, Foss M (1987) The referential structure of the affective lexicon. Cogn Sci
11:341–346

Ortony A, Clore GL, Collins A (1988) The cognitive structure of emotions. Cambridge University
Press, Cambridge, United Kingdom

Ortony A, Turner TJ (1990) What’s basic about basic emotions. Psychol Rev 97(3):315–331
Osgood CE, Suci GJ, Tanenbaum PH (1957) The measurement of meaning. University of Illinois

Press, Urbana, USA



266 References

Oudeyer P-Y (2003) The production and recognition of emotions in speech: Features and algo-
rithms. Int J Hum-Comput St 59(1-2):157–183

Oviatt SL (1997) Multimodal interactive maps: Designing for human performance. Hum-Comput
Int (Special Issue on Multimodal Interfaces) 12:93–129

Oviatt SL (2000) Taming recognition errors with a multimodal interface. Commun ACM 43(9):
45–51

Page L, Brin S, Motwani R, Winograd T (1998) The PageRank citation ranking: Bringing order to
the Web. Technical report, Stanford digital library technologies project

Panksepp J (1982) Toward a general psychobiological theory of emotions. Behav Brain Sci 5:407–
467

Pao T-L, Chen Y-T, Yeh J-H, Lu J-J (2004) Detecting emotions in mandarin speech. In: Proceed-

ings of the 16th conference on computational linguistics and speech processing ROCLING,
Taipei, Taiwan

Park C-H, Si K-B (2003) Emotion recognition and acoustic analysis from speech signal. In:
Proceedings of the international joint conference on neural networks (IJCNN), vol 4. Portland,
USA, pp 2594–2598

Parunak H. VD, Bisson R, Brueckner S, Matthews R, Sauter J (2006) A model of emotions for
situated agents. In: Proceedings of the fifth international joint conference on autonomous agents
and multiagent systems, Hakodate, Japan

Pereira C (2000) Dimensions of emotional meaning in speech. In: Proceedings of ISCA workshop
on speech and emotion, Belfast, United Kingdom

Peter C, Beale R (eds) (2008) Affect and emotion in human-computer interaction: From theory to
applications. (Lecture notes in computer science) Springer, Berlin, Germany

Peter C, Herbon A (2006) Emotion representation and physiology assignments in digital systems.
Interact Comput 18(2):139–170

Peter G, Rösner D (1994) User-model-driven generation of instructions. User Model User-Adapted
Interact 3(4):289–319

Picard RW (2000a) Affective computing. The MIT Press, Cambridge, USA
Picard RW (2000b) Toward computers that recognize and respond to user emotion. IBM Syst J

39(3,4):705–718
Pierrehumbert J, Hirschberg J (1990) The meaning of intonational contours in the interpretation

of discourse. In: Cohen PR, Morgan J, Pollack ME (eds) Intentions in communication. MIT
Press, Cambridge, USA, pp 271–311

Pittermann A, Pittermann J (2006a) Getting bored with HTK? Using HMMs for emotion recog-
nition. In: 8th international conference on signal processing (ICSP), vol 1. Guilin, China,
pp 704–707

Pittermann J, Minker W, Pittermann A, Bühler D (2007a) ProblEmo – Problem solving and emo-
tion awareness in spoken dialogue systems. In: 3rd IET international conference on intelligent
environments, Ulm, Germany

Pittermann J, Pittermann A (2006b) A post-processing approach to improve emotion recogni-
tion rates. In: 8th international conference on signal processing (ICSP), vol 1. Guilin, China,
pp 708–711

Pittermann J, Pittermann A (2006c) An ‘emo-statistical’ model for flexible dialogue management.
In: 8th international conference on signal processing (ICSP), vol 2. Guilin, China, pp 1599–
1602

Pittermann J, Pittermann A (2006d) Integrating emotion recognition into an adaptive spoken lan-
guage dialogue system. In: 2nd IET international conference on intelligent environments, vol 1.
Athens, Greece, pp 197–202

Pittermann J, Pittermann A (2007) A data-oriented approach to integrate emotions in adaptive dia-
logue management. In: International conference on intelligent user interfaces (IUI), Honolulu,
USA, pp 270–273

Pittermann J, Pittermann A, Meng H, Minker W (2007b) Towards an emotion-sensitive spoken
dialogue system – Classification and dialogue modeling. In: 3rd IET international conference
on intelligent environments, Ulm, Germany



References 267

Pittermann J, Pittermann A, Minker W (2007c) Design and implementation of adaptive dialogue
strategies for speech-based interfaces. J Ubiquitous Comput Intell 1(2):145–152

Pittermann J, Pittermann A, Schmitt A, Minker W (2008a) Comparing evaluation criteria for (au-
tomatic) emotion recognition. In: 4th IET international conference on intelligent environments,
Seattle, USA

Pittermann J, Rittinger A, Minker W (2005) Flexible dialogue management in intelligent human-
machine interfaces. In: The IEE international workshop on intelligent environments, University
of Essex, Colchester, United Kingdom

Pittermann J, Schmitt A, Fawzy El Sayed N (2008b) Integrating linguistic cues into speech-based
emotion recognition. In: 4th IET international conference on intelligent environments, Seattle,
USA

Plutchik R (1980a) A generalpsychorevolutionary theory of emotion. In: Plutchik R, Kellerman
H (eds) Emotion: Theory, research, experience: Vol. 1. Theories of emotion. Academic, New
York, USA, pp 3–31

Plutchik R (1980b) Emotion: A psychorevolutionary synthesis. Harper & Row, New York, USA
Plutchik R (1994) The psychology and biology of emotion. Harper Collins College Publishers,

New York, USA
Polifroni J, Chung G (2002) Promoting portability in dialogue management. In: International

conference on speech and language processing (ICSLP), Denver, USA, pp 2721–2724
Polzin TS, Waibel A (1998) Detecting emotions in speech. In: Proceedings of the CMC, Tilburg,

The Netherlands
Polzin TS, Waibel A (2000) Emotion-sensitive human-computer interfaces. In: ITRW on speech

and emotion, ISCA, pp 201–206
Potapova R, Potapov V (2005) Identification of prosodic features of emotional state of a speaker.

In: Proceedings of SPECOM, Patras, Greece, pp 25–32
Power M, Dalgleish T (1997) Cognition and emotion: From order to disorder. Pschology Press,

Hove, United Kingdom
Rabiner LR (1989) A tutorial on hidden Markov models and selected applications in speech recog-

nition. Proc IEEE 77(2):257–286
Rank E, Pirker H (1998) Generating emotional speech with a concatenative synthesizer. In: Inter-

national conference on speech and language processing (ICSLP), Sydney, Australia
Rao AS, Georgeff MP (1991) Modeling agents within a BDI architecture. In: Proceedings of the

2nd international conference on principles of knowledge representation and reasoning (KR-91),
pp 473–484

Razak AA, Komiya R, Abidin M. IZ (2005) Comparison between fuzzy and NN method for speech
emotion recognition. In: Proceedings of the 3rd IEEE international symposium on information
technology and applications (ICITA), vol 1. Sydney, Australia, pp 297–302

Razak AA, Yusof M. HM, Komiya R (2003) Towards automatic recognition of emotion in speech.
In: Proceedings of the 3rd IEEE international symposium on signal processing and information
technology (ISSPIT), Darmstadt, Germany, pp 548–551

Reeves B, Nass C (1996) The media equation: How people treat computers, television, new media
like real people and places. Cambridge University Press, Cambridge, United Kingdom

Reidsma D, Heylen D, Ordelman R (2006) Annotating emotions in meetings. In: International
conference on language resources and evaluation (LREC), Genova, Italy, pp 1117–1122

Reiter E, Dale R (2000) Building natural language generation systems. Cambridge University
Press, Cambridge, United Kingdom

Reza FM (1961) An introduction to information theory. McGraw-Hill, New York, USA
Rigoll G, Müller R, Schuller B (2005) Speech emotion recognition exploiting acoustic and lin-

guistic information sources. In: Proceedings of SPECOM, Patras, Greece, pp 61–67
Ripley BD (1996) Pattern recognition and neural networks. Cambridge University Press,

Cambridge, United Kingdom
Roark B, Saraclar M, Collins M (2007) Discriminative n-gram language modeling. Comput Speech

Lang 21(2):373–392



268 References

Robinson T (1997a) Speech analysis – Lecture notes, lent term. Cambridge University, Cambridge,
(Online tutorial)

Robinson T (1997b) The British English example pronunciation dictionary
Robson J, Mackenzie-Beck J (1999) Hearing smiles – Perceptual, acoustic and production aspects

of labial spreading. In: International congress of phonetic sciences (ICPhS), San Francisco,
USA, pp 219–222

Roseman IJ (1979) Cognitive aspects of emotion and emotional behaviour. In: 87th annual con-
vention of the American Psychological Association, New York, USA

Roseman IJ, Spindel MS, Jose PE (1990) Appraisals of emotion-eliciting events: Testing a theory
of discrete emotions. J Personality Soc Psychol 59:899–915

Rossi G, Schwabe D, Guimarães R (2001) Designing personalized Web applications. In: Proceed-

ings of the 10th international World Wide Web conference, Hong Kong, China, pp 275–284
Rotaru M, Litman DJ (2005) Using word-level pitch features to better predict student emotions

during spoken tutoring dialogues. In: International conference on speech and language pro-
cessing (ICSLP), Lisbon, Portugal, pp 1845–1848

Rotaru M, Litman DJ, Forbes-Riley K (2005) Interactions between speech recognition problems
and user emotions. In: International conference on speech and language processing (ICSLP),
Lisbon, Portugal, pp 2481–2484

Roy N, Pineau J, Thrun S (2000) Spoken dialogue management using probabilistic reasoning.
In: Proceedings of the 38th annual meeting of the association for computational linguistics
(ACL2000), Hong Kong, China

Russell JA (1980) A circumplex model of affect. J Personality Soc Psychol 39:1161–1178
Russell JA, Mehrabian A (1977) Evidence for a three-factor theory of emotions. J Res Personality

11:273–294
Sagisaka Y (2001) Speech synthesis. J ASJ 57(1):11–20
Sakoe H, Chiba S (1978) Dynamic programming algorithm optimization for spoken word recog-

nition. IEEE Trans Acoust Speech Signal Proces (ASSP) 26(1):43–49
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