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Foreword

Robotics is undergoing a major transformation in scope and dimension. From
a largely dominant industrial focus, robotics is rapidly expanding into human
environments and vigorously engaged in its new challenges. Interacting with,
assisting, serving, and exploring with humans, the emerging robots will in-
creasingly touch people and their lives.

Beyond its impact on physical robots, the body of knowledge robotics has
produced is revealing amuchwider range of applications reaching across diverse
research areas and scientific disciplines, such as: biomechanics, haptics, neu-
rosciences, virtual simulation, animation, surgery, and sensor networks among
others. In return, the challenges of the new emerging areas are proving an abun-
dant source of stimulation and insights for the field of robotics. It is indeed at
the intersection of disciplines that the most striking advances happen.

The Springer Tracts in Advanced Robotics (STAR) is devoted to bringing to
the research community the latest advances in the robotics field on the basis
of their significance and quality. Through a wide and timely dissemination of
critical research developments in robotics, our objective with this series is to
promote more exchanges and collaborations among the researchers in the com-
munity and contribute to further advancements in this rapidly growing field.

The monograph, written by John Mullane, Ba-Ngu Vo, Martin Adams and
Ba-Tuong Vo, is devoted to a field of autonomous robotic systems, which has
received a great deal of attention by the research community in recent years.
The contents are focused on the problem of representing the environment
and its uncertainty in terms of feature based maps. Random finite sets are
adopted as the fundamental tool to represent a feature map, and a general
framework is proposed which eliminates the need for feature management and
data association, and propagates both feature state and number estimates
in a joint Bayesian framework. The approaches are tested in a number of
experiments on both ground based and marine based facilities.

STAR is proud to welcome yet another volume in the series dedicated to
the popular area of SLAM!

Naples, Italy Bruno Siciliano
April 2011 STAR Editor



Preface

This book is intended to demonstrate advances in the field of autonomous
navigation and to serve as an essential text for academics, researchers, in-
dustrial scientists and general practitioners involved in robotic mapping,
sensor modelling and the popular Simultaneous Localisation and Map build-
ing (SLAM) problem. The book focusses on a critical area of autonomous
robotics research - the representation of the environment and its uncertainty,
referred to as the map. Probabilistic maps can be primarily categorised into
three popular representations: Feature based; occupancy grid and topologi-
cal. This book focusses on, arguably the most popular and widely used of
these, the feature based map. Two areas which are essential in designing suc-
cessful autonomous vehicles are addressed: Feature Based Robotic Mapping
(FBRM) which assumes a known robot trajectory, and an area which has
been referred to as the “Holy grail” of autonomous robotics research: Feature
Based - Simultaneous Localisation and Map Building (FB-SLAM) [1]. Rather
than the commonly used framework, which stacks feature estimates and their
measurements into a vector, this book advocates that a more appropriate rep-
resentation for the map, in both FBRM and FB-SLAM, hereafter referred to
as simply SLAM, is the Random Finite Set (RFS).

In both FBRM and SLAM, it is necessary to estimate the location of an
initially unknown number of features, which represent the environment. In
current, vector based methods the number of features and their locations,
are represented by a vector of varying size. Methods are then introduced
which augment this vector when new features are detected. Data association
techniques are then necessary to determine which feature elements of this
vector correspond to which elements of the total current observation, which
is also typically represented as a vector, containing the measured attributes
of the currently sensed features. Only then can a Bayesian update of the
total feature map take place. Hence there is an implicit assumption that im-
mediately before the update, the number of map states is known. Therefore,
for a given vehicle trajectory, with error-free data association, linear pro-
cess and measurement models and white Gaussian noise, optimal estimates
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of a known number of feature locations are realizable using current, vector
based, approaches. However, when the intrinsic properties of the map are
considered (unknown number of insignificantly ordered features), this work
will demonstrate that Bayes optimality has not yet been established.

This book therefore proposes generalisations of the classical vector-based
frameworks for both FBRM and SLAM. These address the concept of Bayes
optimality for estimation with unknown feature number by formulating both
FBRM and SLAM as random set estimation problems. The proposed formu-
lations unify the currently independent concepts of feature management, data
association and state estimation adopted by previous solutions. In the case
of FBRM, this occurs through the recursive propagation of a distribution of
a random finite set of features, when the vehicle’s trajectory is known. In the
case of SLAM, the joint estimation of the vehicle location and the random
finite set of features is derived.

In the case of FBRM, the RFS approach yields the propagation of the FB
map density and leads to optimal map estimates in the presence of unknown
map size, spurious measurements, feature detection and data association un-
certainty. The proposed framework further allows for the joint treatment of
error in feature number and location estimates as it jointly propagates both
the estimate of the number of features and their corresponding states. In
the case of SLAM, the vehicle’s pose state is also jointly estimated. In both
cases, under the RFS framework, the need for feature management and data
association algorithms is eliminated.

An RFS is simply a finite-set-valued random variable. Similar to random
vectors, the probability density (if it exists) is a very useful descriptor of an
RFS, especially in filtering and estimation. However, the space of finite sets
does not inherit the usual Euclidean notion of integration and density. Hence,
standard tools for random vectors are not appropriate for random finite sets.
Mahler’s Finite Set Statistics (FISST) provide practical mathematical tools
and principled approximations for dealing with RFSs [2], [3], based on a
notion of integration and density that is consistent with point process theory
[4]. This approach has attracted substantial research interest in the tracking
community, [5], [6], [3] and this book develops these tools for both FBRM
and SLAM.

Finally, in any estimation problem, the notion of estimation error is of
utmost importance. In all FBRM and SLAM experiments, the measure of
success should be a clearly defined concept. In much of the vector based,
SLAM research to date, successful performance is evaluated based on the
location error of a sub-set of the estimated features. Even if the spatial es-
timation errors of all of the estimated features were used to estimate the
performance, the concept is meaningless if the number of features has not
been estimated correctly, since the goal of SLAM is to estimate both the tra-
jectory and the map. Therefore, for the sake of gauging the performance of
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all the FBRM and SLAM results presented in this book, a consistent metric
for the evaluation of feature map estimation error is presented. This metric
takes into account the error in the cardinality of the map estimate in terms
of the number of feature estimates, as well as their spatial locations.

Singapore John Mullane
Perth, Australia Ba-Ngu Vo
Santiago, Chile Martin Adams
Perth, Australia Ba-Tuong Vo

March 2011
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J
(i)
k Number of Gaussian components in the

ith trajectory conditioned PHD of Mk

ω
(i,j)
k Weight of the jth Gaussian component of the

ith trajectory conditioned PHD of Mk

µ
(i,j)
k Mean of the jth Gaussian component of the

ith trajectory conditioned PHD of Mk

P
(i,j)
k Covariance of the jth Gaussian component of the

ith trajectory conditioned PHD of Mk

d̄(c)(M̂k,Mk) Error between M̂k and Mk, with cut-off parameter c
ρk(m) Distribution of the size of the feature map
PE Probability of existence of a single feature
m̄ Feature selected according to a given strategy



Chapter 1

Introduction

Machines which perceive the world through the use of sensors, make compu-
tational decisions based on the sensors’ outputs and then influence the world
with actuators, are broadly labelled as “Robots”. Due to the imperfect na-
ture of all real sensors and actuators, the lack of predictability within real
environments and the necessary approximations to achieve computational
decisions, robotics is a science which is becoming ever more dependent on
probabilistic algorithms. Autonomous robot vehicles are examples of such
machines, which are now being used in areas other than the factory floors,
and which therefore must operate in unstructured, and possibly previously
unexplored environments. Their reliance on probabilistic algorithms, which
can interpret sensory data and make decisions in the presence of uncertainty,
is increasing. Therefore, mathematical interpretations of the vehicle’s envi-
ronment which consider all the relevant uncertainty are of a fundamental im-
portance to an autonomous vehicle, and its ability to function reliably within
that environment. While a universal mathematical model which considers
the vast complexities of the physical world remains an extremely challenging
task, stochastic mathematical representations of a robots operating environ-
ment are widely adopted by the autonomous robotic community. Probability
densities on the chosen map representation are often derived and then re-
cursively propagated in time via the Bayesian framework, using appropriate
measurement likelihoods.

Of crucial importance in autonomous navigation is the computational rep-
resentation of a robot’s surroundings and its uncertainty, referred to as the
map. This book directly addresses this issue, initially in the area of Feature
Based Robotic Mapping (FBRM) which assumes known robot location, and
then in the area of Feature Based - Simultaneous Localisation and Map Build-
ing (FB-SLAM1). The book demonstrates that the commonly used vector
based methods for FBRM and SLAM suffer many fundamental disadvantages
when applied to realistic situations. Such situations occur in environments in

1 From here on, simply referred to as SLAM.

J. Mullane et al.: Random Finite Sets for Robot Mapping & SLAM, STAR 72, pp. 1–8.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2011



2 1 Introduction

which an a-priori unknown number of features are to be estimated and in the
presence of realistic sensor defects such as missed detections and false alarms.
This book therefore takes a step back to the basic estimation principles and
aims of the FBRM and SLAM problems, and shows that a more appropriate
representation for the map, in both cases, is the Random Finite Set (RFS).
An RFS is a random variable that take values as finite sets. It is defined by
a discrete distribution that characterises the number of elements in the set,
and a family of joint distributions which characterise the distribution of the
element’s values, conditioned on the cardinality [3].

To date, three fundamentally different approaches, namely occupancy
grids [7], FB maps [8] and topological maps [9] have been applied in au-
tonomous mapping research. Of these, occupancy grids and FB maps have
emerged as the most popular means of probabilistic, environmental represen-
tation. Numerous examples of impressive localisation, mapping and naviga-
tion algorithms which adopt these environment models can be seen both in
indoor [10], [11], [12], [13], [14] and outdoor [15], [16], [17], [1], [18] environ-
ments.

The Occupancy Grid approach propagates estimates of landmark existence
on a grid with a fixed, predetermined number of cells. In environmental repre-
sentations of this type, the number of map states is therefore predefined, and
constant and therefore, only the cells’ “contents”, which typically correspond
to the likelihood of an objects existence at that cell’s coordinates, need to
be updated. Hence, the grid, which fully represents the environment, can be
represented mathematically by either a vector or matrix of predefined, fixed
dimensions.

Grid based approaches however suffer from many disadvantages. Standard
occupancy grid maps do not maintain the dependencies of the occupancy
probability of each cell. Also, a full map posterior is generally intractable,
due to the huge combinatorial number of maps which can be represented on
a grid. Further, the grid size, and its resolution (cell size) must be once and
for all determined prior to navigation, thus restricting the area which can be
mathematically represented by the robot.

FB mapping approaches offer the advantage that the sensor data is com-
pressed into features (such as point clusters, circles, lines, corners etc.). The
origins of the feature map can be traced back to the seminal work of Smith
et. al. [8], in which the environment is assumed to consist of these simpli-
fied representations of the physical landmarks – the features. The feature
map representation has since gained wide spread popularity, particularly in
the outdoor robotics domain due to its ability to estimate large scale maps
and provide correction information for simultaneous vehicle pose estimation.
The work of Smith et. al. also first established the “vector of all the spatial
variables, which we call the system state vector”, i.e. M = [m1, m2, · · · , mm].

FB approaches can be computationally appealing, since few features need
to be detected and updated per sensor scan, and feature to feature and fea-
ture to vehicle correlations can be maintained. They fundamentally differ
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from their grid based counterparts, in that they are required to estimate the
location of an initially unknown number of objects, represented as features.
Hence, the number of features and their locations, which fully represent the
environment, are typically represented by varying the size of a vector. Meth-
ods are then introduced which augment this vector when new features are
detected. Data association techniques are then necessary to determine which
feature elements of this vector correspond to which elements of the total cur-
rent observation, which is also typically represented as a vector, containing
the measured attributes of the currently sensed features. Only then can a
Bayesian update of the feature map take place. This concept, which sum-
marises the current state of the art in FBRM and SLAM, is shown in Figure
1.1. It can be seen in the figure that, there is an implicit assumption that
immediately before the update, the number of map states (p in Figure 1.1) to
be estimated, is determined by the map management heuristics/filters just
described. Therefore, with error-free data association and optimal feature
initialisation routines, optimal estimates of a predefined number of feature lo-
cations are realizable using current, vector based, linear Gaussian approaches.
However, when the intrinsic properties of the map are considered (unknown
number of insignificantly ordered features), Bayes optimality of the true prob-
lem has not yet been established. As noted in the field of multi-target filtering
by Mahler ([3], page 571):

“...having a good estimate of target number is half the battle in multitarget
tracking. If one has 1,000 measurements but we know that roughly 900 of
them are false alarms, then the problem of detecting the actual targets has

been greatly simplified.”

This book advocates that the same principle applies to feature maps in
robotics. Realistic feature detection algorithms produce false alarms (as well
as missed detections), and estimating the true number of features is therefore
central to the FBRM and SLAM problems. This book therefore addresses the
concept of Bayes optimality for estimation with unknown feature number, by
formulating it as a random set estimation problem. The proposed formulation
unifies the independent filters adopted by previous solutions, and high-lighted
in Figure 1.1, through the recursive propagation of a distribution of a ran-
dom finite set of features. This allows for the joint propagation of the FB
map density and leads to optimal map estimates in the presence of unknown
map size, spurious measurements, feature detection and data association un-
certainty. The proposed framework further allows for the joint treatment of
error in feature number and location estimates as it jointly propagates both
the estimate of the number of landmarks and their corresponding states, and
consequently eliminates the need for feature management and data associ-
ation algorithms. The RFS approach to FBRM and SLAM is depicted in
Figure 1.2.
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6 1 Introduction

The main focus of the book applies the concepts of RFS mapping to
the well known SLAM problem. For a FB map, SLAM requires the joint
estimation of the vehicle location and the map. As in vector based robotic
mapping algorithms, vector based SLAM algorithms also require ‘feature
management’ as well as data association hypotheses and an estimator to
generate the joint posterior estimate. Hence, in the final part of this book,
RFS based recursive filtering algorithms are presented which jointly prop-
agate both the estimate of the number of landmarks, their corresponding
states, and the vehicle pose state, again without the need for explicit feature
management and data association algorithms.

1.1 Structure of the Book

The book is divided into three parts. In part I, the question “Why use ran-
dom finite sets?” is addressed. Chapter 2 summarises fundamental differences
between RFS and vector based representations of features. The fundamen-
tal mathematical relationships between map states, observations and vehicle
pose are examined under both vector and RFS based frameworks. Essen-
tial components of robot navigation algorithms which are mathematically
inconcise, when modelled under the vector based framework, are shown to
be concisely realisable under the RFS framework. The issues of map repre-
sentation, data association, map management, map error quantification and
the concise application of Bayes theorem will be summarised in this chapter.

Chapter 3, introduces mathematical representations which can be used for
RFSs. As in the case of vector based approaches, full Bayesian estimation
in the space of features and robot trajectory is intractable for all realistic
scenarios. This chapter poses the fundamental question, “Given the posterior
distribution of the map (and trajectory in the case of SLAM), what is the
Bayes optimal estimate?” Principled estimators are therefore presented here,
which are capable of representing RFSs in a Bayes optimal manner. The
probability hypothesis density (PHD) filter is introduced as one of the simplest
approximations to Bayesian estimation with RFSs. This chapter therefore
provides the foundations for most of the filtering algorithms for both FBRM
and SLAM, used throughout the book.

Although much of the current literature advocates that the “Mapping only
problem”, addressed in Part II is now a solved problem, Chapter 4 presents
new insights to motivate an RFS approach to mapping. By focussing on the
mapping only problem, an estimation framework which yields Bayes opti-
mal map estimates in the general case of unknown feature number, spurious
sensor measurements, feature detection and data association uncertainty is
developed. Further, Chapter 4 examines in more detail, the concept of FB
map estimation error, for the general case of an unknown number of features.
This leads to the application of an error metric which is defined on the state
space of all possible feature maps.
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Part III addresses the full SLAM problem. Chapter 5 offers a “brute force”
solution to the SLAM problem using RFSs, as it models the joint vehicle tra-
jectory and map as a singular RFS, and recursively propagates its first order
moment. A first order approximation of the RFS state recursion is imple-
mented which utilises the PHD filter. Under Gaussian noise assumptions, an
extended Kalman Gaussian mixture implementation is used to implement
the PHD-SLAM filter. The filter jointly estimates the vehicle pose, feature
number in the map and their corresponding locations. Assuming a mildly
non-linear Gaussian system, an extended-Kalman Gaussian Mixture imple-
mentation of the recursion is then tested for SLAM. Simulations demonstrate
SLAM in the presence of data with a high rate of spurious measurements,
and comparisons with vector based SLAM are shown.

In Chapter 6 a Rao-Blackwellised (RB) implementation of the PHD-SLAM
filter is proposed based on the Gaussian mixture PHD filter for the map and a
particle filter for the vehicle trajectory. This applies a trajectory conditioned,
PHD mapping recursion to the SLAM problem, in a similar manner to the
well known FastSLAM algorithm [17]. In this sense, each particle, represent-
ing a single, hypothesised vehicle trajectory, maintains its own, conditionally
independent PHD map estimate. It will be shown in this chapter that the
EKF approximation used to represent each trajectory-conditioned map in
FastSLAM is not valid under the RFS framework. Therefore the likelihood
of the measurement set, conditioned on the robot’s trajectory, but not the
map, is derived in closed form. This allows the weight for each particle (rep-
resenting a possible robot trajectory) to be calculated correctly. This chapter
further demonstrates that, under the PHD map representation, the unique
ability of map averaging can be achieved, in a principled manner. Simulated
as well as real experimental results are shown. Also, comparisons with clas-
sical vector based SLAM algorithms and their various feature management
routines, demonstrate the merits of the proposed approach, particularly in
situations of high clutter and data association ambiguity.

Finally, Chapter 7 demonstrates that the RFS-FBRM and SLAM frame-
works allow other approximations and implementations, besides those of the
basic PHD filter, to be made. PHD-SLAM estimates the PHD of the map,
encompassing the expected number of features, and the vehicle trajectory.
Chapter 7 will show that the estimated PHD can be appended with the
distribution of the number of features, as opposed to just its mean value.
In this chapter, the Cardinalised-PHD (CPHD) filter will be introduced in
which both the PHD and the feature cardinality distribution are estimated in
predictor - corrector form. The map can then be readily extracted from the
posterior cardinality distribution. Further, a Multi-Bernoulli representation
of an RFS will be introduced, which allows each map feature to have its own
probability of existence, yielding a valid density function which jointly cap-
tures its existence as well as spatial uncertainty. Known as the Cardinalised
Multi-target Multi-Bernoulli (CMeMBer) SLAM filter, Chapter 7 shows how
the existence probability and spatial density of each feature, within a robot
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trajectory’s map, can be propagated forward in time as measurements ar-
rive. Under the suggested improved RFS approximations, the accuracy of
the map and trajectory estimates would be expected to out perform those of
the standard PHD-SLAM estimators of Chapters 5 and 6.



Part I

Random Finite Sets



Chapter 2

Why Random Finite Sets?

2.1 Introduction

We begin the justification for the use of RFSs by re-evaluating the basic issues
of feature representation, and considering the fundamental mathematical re-
lationship between environmental feature representations, and robot motion.
We further the justification for the use of RFSs in FBRM and SLAM by con-
sidering an issue of fundamental mathematical importance in any estimation
problem - estimation error.

2.2 Environmental Representation: Fundamentals

2.2.1 FBRM and SLAM New Concepts

Consider a simplistic, hypothetical scenario in which a mobile robot traverses
three different trajectories, amongst static objects, as shown in Figure 2.1. If
the trajectory taken by the robot were X1 (red), then it would seem logical
that an on board sensor, with a limited range capability, may sense feature
m1 followed by m2 followed by m3 etc. Hence after completing trajectory X1,
if a vector M is used to represent the map, then the estimated map could be

M̂ = [m1 m2 m3 m4 m5 m6 m7]
T (2.1)

Alternatively, had the robot pursued trajectory X2 (blue) instead, the order
in which the features would be sensed would likely be very different, and the
resulting estimated map could be

M̂ = [m4 m2 m3 m1 m5 m7 m6]
T (2.2)

J. Mullane et al.: Random Finite Sets for Robot Mapping & SLAM, STAR 72, pp. 11–25.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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m1
m2

m3 m4

m6 m5

m7

x

x

x

2

1

3

Fig. 2.1 A hypothetical scenario in which a mobile robot executes three different
trajectories X1, X2, X3, amidst static objects (features) m1 to m7.

and had the robot pursued trajectory X3 (black), the following estimated
map vector could result

M̂ = [m6 m7 m5 m4 m3 m2 m1]
T . (2.3)

Since the order of the elements within a vector is of importance (a change
in the order yields a different vector), three different map vectors result.
However, since the map features themselves were assumed static, it seems odd
that this estimated vector is actually dependent on the vehicle’s trajectory.
In a strict mathematical sense, the order of the features within the map
estimate should not be significant, as any permutation of the vectors results
in a valid representation of the map. By definition, the representation which
captures all permutations of the elements within the vector, and therefore
the features in the map, is a finite set M, whose estimate M̂ would be as
shown in representation 2.4.

M̂ = [m1 m2 m3 m4 m5 m6 m7]
T

M̂ = [m4 m2 m3 m1 m5 m7 m6]
T

...

M̂ = [m6 m7 m5 m4 m3 m2 m1]
T

︸ ︷︷ ︸
M̂ = {m1 m2 m3 m4 m5 m6 m7} (2.4)
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Note that for notational purposes, we denote vector representations in italics
(e.g. for the map M) and set representations in mathcal format (e.g. for the
map M).

2.2.2 Eliminating the Data Association Problem

For most sensors/sensor models considered in SLAM, the order in which
sensor readings are recorded at each sampling instance, simply depends on the
direction in which the vehicle/sensor is oriented, and has no significance on
the state of the map, which typically evolves in a globally defined coordinate
system, independent of the vehicle’s pose. This is illustrated in Figure 2.2 in
which a measurement to state assignment problem is evident. It can be seen

m1
m2

m3 m4

m6 m5

m7

z 1

z 2

z 3

z 4
z 5

z 6

z 7

Fig. 2.2 The order in which observations (features) z1 to z7 are detected/extracted
from the sensor data is usually different from the order of the currently estimated
features m1 to m7 in the state vector.

in the figure, that even for an ideal sensor, which is always able to detect
all of the features, all of the time, under the vector based representation, a
re-ordering of the observed feature vector Z is necessary. This is because, in



14 2 Why Random Finite Sets?

general, observed feature z1 will not correspond to the current estimate m1

etc. (Figure 2.2) and the correct feature associations must be determined -
i.e.:

Z = [z1 z2 z3 z4 z5 z6 z7]
T

ւ ↓ ց ??? Feature Association

M̂ = [m1 m2 m3 m4 m5 m6 m7]
T

(2.5)

It can be seen in Figure 1.1, that this data association step is necessary,
before any vector based, Bayesian update can take place. Hence, current
vector based formulations of the FBRM and SLAM problems require this
feature association problem to be solved prior to the Bayesian (EKF, UKF
etc) update. This is because, feature estimates and measurements are rigidly
ordered in their respective finite vector valued, map states.

The proposed RFS approach on the other hand, represents both features
and measurements as finite valued sets M and Z respectively, which assume
no distinct ordering of the features, as shown in representations 2.4 and 2.6.

Z = [z1 z2 z3 z4 z5 z6 z7]
T

Z = [z4 z2 z3 z1 z5 z7 z6]
T

...
Z = [z6 z7 z5 z4 z3 z2 z1]

T

︸ ︷︷ ︸
Z = {z1 z2 z3 z4 z5 z6 z7} (2.6)

Since the finite set representations 2.4 and 2.6 naturally encapsulate all pos-
sible permutations of the feature map and measurement, feature associa-
tion assignment does not have to be addressed. This will be demonstrated
throughout the book.

2.2.3 Eliminating the Map Management Problem

For the more realistic case of non-ideal sensors/feature extraction algorithms,
the number of measurements, zk, at any given time is not fixed due to de-
tection uncertainty, spurious measurements and unknown number of true
features. As the robot moves through its environment, more and more fea-
tures are detected, as they enter the field of view (FoV) of its sensors. Hence
the map size grows monotonically as shown in Figure 2.3. In the figure it can
be seen that 5 features have been detected, although there are seven features
in the environment shown. Objects m5, m6 and m7 lie out of range of the
sensor, in the robot’s current position. Due to sensor and/or feature detection
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m1
m2

m3 m4

m6 m5

m7

z 1

z 2

z 3

z 5

False alarms

Missed detection

z 4

New Feature

Fig. 2.3 Feature detection with a more realistic sensor. As the robot moves, new
features will enter the FoV of the sensor(s). In general, some features may be un-
detected (missed detections), and some falsely detected features (false alarms) may
be declared, due to less than ideal sensor/feature detection algorithm performance.

algorithm imperfections, two false alarms z3 and z4 have occurred. These can
originate from clutter, sensor noise or incorrect feature detection algorithm
performance. Notice also, that although object m2 lies within the FoV of the
sensor, it has not been detected, and constitutes a missed detection.

Suppose that features m1, m2 and m3 already exist at time k − 1 in a
vector based map representation, and that feature m4 now falls into the
robot’s sensor(s) FoV. Feature m4 is to now be initialised and included in
the state estimate at time k. From a strict mathematical point of view, it is
unclear, using a vector based framework, how this should be carried out, as
shown in equation 2.7.

M̂k−1 = [m1 m2 m3]
T

M̂k
?
= [m1 m2 m3]

T “ + ”[m4] (2.7)

where
?
= is used here to mean “how do we assign M̂k?” Mk−1 represents

the vector based state at time k − 1 and Mk the corresponding state at
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time k. A clear mathematical operation for combining vectors of different
dimensions is not defined. To date, many FBRM and SLAM techniques use
vector augmentation methods. However if the map is defined as a set, then a
set based map transition function can be mathematically defined as

M̂k−1 = {m1 m2 m3}
M̂k = {m1 m2 m3} ∪ {m4} (2.8)

Another fundamental component of any FBRM or SLAM framework is a
necessity to relate observations to the estimated state. As can be seen in
equations 2.9, the relationship between observations and the estimated state
is not clearly defined under a vector based framework.

Zk = h([m1 m2 m3 m4], Xk) + noise

i.e. : [z1 z2 z3 z4 z5]
T ?

= h([m1 m2 m3 m4], Xk) + noise (2.9)

where Zk represents the observation vector at time k, and here the observa-
tion example of Figure 2.3 is used. Xk represents the vehicles pose at time k
and h() is the (typically non-linear) function relating map feature locations
and the vehicle pose, to the observations. Equation 2.9 highlights the prob-
lem of relating, for example, five observations to just four feature locations,
and the robot’s pose. The extra observed features are clearly the result of
clutter in this case, and one feature has been missed (undetected). How such
“clutter” observations, and missed detections can be incorporated into the
vector based measurement equation is undefined. Clearly, assuming that sin-
gle features give rise to at most single observations, there is an inconsistency,
due to the mismatch in the map state and observation vectors’ dimensions.
In the case of vectors, map management heuristics are typically used to first
remove one of the observed features so that the equation can be “forced to
work”.

If set based measurements and state map estimates are used, a strict math-
ematical relationship is possible as shown in equation 2.10

Zk =
⋃

m∈Mk

Dk(m, Xk) ∪ Ck(Xk) (2.10)

where Dk(m, Xk) is the RFS of measurements generated by a feature at
m, and dependent on Xk and Ck(Xk) is the RFS of the spurious measure-
ments at time k, which may depend on the vehicle pose Xk. Therefore
Zk = {z1

k, z2
k, . . . , zzk

k } consists of a random number, zk, of measurements,
whose order of appearance has no physical significance with respect to the
estimated map of features.

As a result of the data association methods and map management rules
which are necessary when the vector based representation is used for FBRM
and SLAM, it is clear that the uncertainty in the number of features is not
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modelled. Typically, post-processing (outside of the Bayesian estimation com-
ponent) filters are required to estimate the feature number [14]. If an RFS
approach is used however, the uncertainty in both the feature state values
(typically locations) and number can be modelled in a consistent, joint math-
ematical manner.

2.3 FBRM and SLAM Error Quantification

Fundamental to any state estimation problem is the concept of estimation
error. While the concept of error quantification is well established in the oc-
cupancy grid literature [16, 19], in the feature-based literature the topic is
less rigorously addressed. Current error evaluations of feature-based frame-
works typically analyse the consistency of a subset of the feature location
estimates [1], [15]. While this may illustrate the consistent spatial state esti-
mates of the selected features, it gives no indication as to the quality of the
estimate of the joint multi-feature map state. Qualitative analysis, in which
estimated map features and robot location are superimposed on satellite im-
ages [17], is also not mathematically consistent and overlooks the underlying
estimation problems of the feature map, namely that of the error in the es-
timated number and location of features in the map.

Whilst the majority of autonomous navigation work focuses on the lo-
calisation accuracy that can be achieved, the accuracy of the resulting map
estimate is of equal importance. A precise measurement of the robots sur-
roundings is essential to any task or behaviour the robot may be required to
perform. A broad range of exteroceptive sensors are generally deployed on au-
tonomous vehicles to acquire information about the surrounding area. Many
sensors, such as laser range finders, sonars and some types of radar, measure
the relative range and bearing from the vehicle to environmental landmarks
and are used to update the time predicted map state. Such measurements
are however subject to uncertainty such as range and bearing measurement
noise, detection uncertainty, spurious measurements and data association un-
certainty [20], [16].

This section demonstrates that, in the context of jointly evaluating the
error in the estimated number of features and their locations, and their true
values, the collection of features, should be represented by a finite set. The
rationale behind this representation traces back to a fundamental consider-
ation in estimation theory - estimation error. Without a meaningful notion
of estimation error, estimation has very little meaning. Despite the fact that
mapping error is equally as important as localisation error, its formal treat-
ment has been largely neglected.

To illustrate this point, recall that in existing SLAM formulations the map
is constructed by stacking features into a vector, and consider the simplistic
scenarios depicted in figure 2.4. Figure 2.4a depicts a scenario in which there
are two true features at coordinates (0, 0) and (1, 1). The true map, M , is
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Fig. 2.4 A hypothetical scenario showing a fundamental inconsistency with vector
representations of feature maps. If M is the true map, how should the error be
assigned when the number of features in the map estimate, M̂, is incorrect?

then represented by the vector M = [0 0 1 1]T . If features are stacked into
a vector in order of appearance then, given a vehicle trajectory X0:k (e.g.
as shown in the figure) and perfect measurements, the estimated map may

be given by the vector M̂ = [1 1 0 0]T . Despite a seemingly perfect estimate

of the map, the Euclidean error of the estimated map, ||M − M̂ ||, is 2. This
inconsistency arises because the ordering of the features in the representation
of the map should not be relevant. A vector representation however, imposes
a mathematically strict arrangement of features in the estimated map based
on the order in which they were detected [21], [1]. Intuitively, the elements of

M̂ could be permuted to obtain a zero error, however, the representation of
all possible permutations of the elements of a vector is, by definition, a set.
Hence, such a permuting operation implies that the resulting error distance
is no longer a distance for vectors but a distance for sets, and thus this
book derives a set based approach to SLAM. Another problem is depicted in
figure 2.4b, in which there are again two features at (0,0) and (1,1), but due
to a missed detection (for instance), the estimated map comprises only one
feature at (1,1). In such a situation, it is difficult to define a mathematically
consistent error metric (Euclidean error, Mean Squared Error) between the

vectors M and M̂ since they contain a different number of elements. It is
evident from these examples that stacking individual features into a single
vector does not lead to a natural notion of mapping error, in general.

A finite set representation of the map, Mk = {m1
k, . . . , mmk

k }, where
m1, . . . , mmk are the mk features present at time k, admits a mathemati-
cally consistent notion of estimation error since the ‘distance’, or error be-
tween sets, is a well understood concept. Examples of such ‘distance’ metrics
include the Hausdorff, Optimal Mass Transfer (OMAT) [22] and Optimal
Sub-pattern Assignment (OSPA) [23] distances.
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To the authors’ knowledge, despite widespread quantification of localisa-
tion estimation error, the absolute difference between all estimated and actual
features in the map is rarely jointly considered1. As an example, Figure 2.5
shows a hypothetical posterior map estimate returned by two separate fea-
ture mapping filters. If the true feature map, M ={m1, . . . , mmk} (shown as

green circles) and the estimated map M̂ = {m̂1, . . . , m̂m̂k} (shown as black
crosses), where mk is the total number of features in the map and m̂k is the
estimated number of features in the map, which map estimate is closer to
M?. While visual perception may indicate that the left-hand map estimate
is superior, an accepted metric to answer this fundamental question is lack-
ing in the mobile robotics community. Suitable error metrics to address this
problem, will be the subject of Chapter 4.
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Fig. 2.5 Hypothetical posterior estimates from a feature mapping filter, M̂left and

M̂right, with true feature locations (green circles) and estimated feature locations
(black crosses) shown.

2.4 Bayesian FBRM and SLAM with Vectors and Sets

This section outlines the Bayesian recursion which is central to the ma-
jority of FBRM and SLAM stochastic mapping algorithms. Let M denote
a generic mathematical representation of the environment to be mapped,
Zk = {z1

k, ..., zzk

k } denote the collection of zk sensor measurements at time k
and Xk be the vehicle pose, at time k. In the case of FBRM, the aim is to
then propagate the posterior density of the map from the measurement and
pose history, Z0:k = [Z1, ..., Zk] and X0:k = [X1, ..., Xk] respectively. Maxi-
mum a posteriori (MAP) or expected a posteriori (EAP) estimates may then
be extracted from the posterior density at each time k.

1 Approaches examining the consistency of a subset of feature estimates are com-
mon however [1,15].
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Assuming that such a density exists, from an optimal Bayesian perspective
the posterior Probability Density Function (PDF)

pk|k(M |Z0:k, X0:k)

captures all the relevant statistical information about the map, up to and in-
cluding time k. The posterior PDF of the map can in principle be propagated
in time via the well-known Bayes recursion,

pk|k(M |Z0:k, X0:k) ∝ gk(Zk|M, Xk)pk|k−1(M |Z0:k−1, Xk−1). (2.11)

For clarity of exposition, this static mapping only problem is adhered to in
the first part of this book. This formulation can however be easily extended
to the SLAM problem in which the full posterior pk|k(X0:k, Mk|Z0:k) can be
propagated in time. The formulation can be further extended to incorporate
dynamic maps and multiple vehicle SLAM, which will be the subject of the
final chapter of this book.

A mathematical representation of the map, M , is required before the like-
lihood, gk(Z|M, Xk), and prior, pk|k−1(M |Z0:k−1, Xk−1), can be well defined.
Bayesian based estimation of both occupancy grid (OG), vector FB and RFS
FB map representations are now addressed. The following sections highlight
the advantages of RFS over vector based formulations, in terms of Bayes
optimality.

2.4.1 Bayesian Estimation with Occupancy Grids

Since its inception by Moravec and Elfes [7], the occupancy grid map, denoted
M = [m1, m2, · · · , mm], has been widely accepted as a viable mathematical
representation of a given environment. In the context of an Occupancy Grid,
m, represents a fixed number of spatial cells, usually distributed in the form
of a lattice, which are obtained via an a priori tessellation of the spatial state
space. Each grid cell is then denoted ‘Occupied’, if a landmark2 exists in the
cell, and ‘Empty’, if the cell is empty of landmarks. The recursion of equation
2.11, then propagates the posterior density on the occupancy grid, typically
by invoking a grid cell independence assumption,

pk|k(M |Z0:k, X0:k) =

i=m∏

i=1

pk|k(mi|Z0:k, X0:k)

with pk|k(mi|Z0:k, X0:k) denoting the probability, α, of a landmark existing
in cell mi. The occupancy grid environment representation is attractive due

2 Note in this work, a ‘landmark’ refers to any physical object in the environment.
A ‘feature’ then refers to a simplified representation of a landmark.
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to its ability to model arbitrary landmarks as the cell number tends to infin-
ity. An important, and rarely examined aspect of the grid approach however,
is that the number of grid cells, m, is inherently known a priori. This has
a fundamental impact on the optimality of the Bayesian recursion since it
means that only the occupancy of each cell needs to be estimated and not
the number of grid cells. Thus a vector-valued map state can be used to
represent the grid cells since, in this case, it is not necessary to encapsulate
uncertainty in the number of states. Given the existence estimation state
space of the representation, stochastic detector dependent measurement like-
lihoods are also required [16]. Much of the grid based mapping literature
distributes occupancy uncertainty in the spatial space to model the uncer-
tainty of the sensing and map estimation process [24], [20]. However, while
this environmental representation deals with detection and spurious measure-
ments to propagate the landmark existence estimate, such a representation
in its mathematical structure does not inherently encapsulate and propagate
the spatial uncertainty of sensor measurements [16]. This will be explained
further in Section 2.5. A true spatial state space is explicitly considered in
the feature map representation described next.

2.4.2 Bayesian Estimation with a Vector Feature Map

While defining a vector-valued feature map representation may appear to be
a trivial case of terminology, in fact it has already been demonstrated that
it has numerous mathematical consequences [3], namely an inherent rigid
ordering of variables and a fixed length. The feature map approach has long
been recognised as a “a state estimation problem involving a variable number
of dimensions (features)” [25], however a vector representation for a feature
map can only represent a fixed number of features. That is, the posterior
vector feature map density,

pk|k(M = [m1, m2, · · · , mm̂k ]|Z0:k, X0:k)

represents the spatial density of m̂k features only, and does not encapsu-
late uncertainty in feature number. This limitation of vector representations
is not new to robotics researchers and the sub-optimal map management
methods mentioned in Section 2.2 and shown in Figure 1.1 are subsequently
adopted to adjust the estimate of mk through ‘augmenting’ and ‘pruning’ fil-
tering/heuristic based operations [17], [1]. More advanced methods, which al-
low reversible data association across a finite window of time frames have also
been considered [18], [26]. Furthermore, the order of the features 1, . . . , m̂k in
the vector is fixed, coupled with a vector-valued measurement equation (also
of rigid order), which leads to the need for costly data association algorithms
to decide the measurement-feature assignment. This can be seen in the case
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of SLAM, as applying Bayes theorem (equation 2.11) to a vector valued map
involves the following steps:

• Predicted time update, based on the previous vehicle pose and previous
inputs to the robot (typically speed, steering commands):

pk|k−1( X0:k, Mk|Z0:k−1, U0:k−1, X0) =∫
fX(X0:k, Mk|X0:k−1, Mk−1, Uk−1) ×

pk−1|k−1(X0:k−1, Mk−1|Z0:k−1, U0:k−2, X0)dXk−1 (2.12)

• Acquire the measurement vector Zk.
• Carry out feature associations before the application of Bayes theorem.
• Perform the measurement update:

pk|k(X 0:k, Mk|Z0:k, U0:k−1, X0) = (2.13)

gk(Zk|Mk, Xk)pk|k−1(X0:k, Mk|Z0:k−1, U0:k−1, X0)∫ ∫
gk(Zk|Mk, Xk)pk|k−1(X0:k, Mk|Z0:k−1, U0:k−1, X0)dXkdMk

• Perform independent map management.

It is important to note that when both the measurement likelihood3 gk(Zk|Mk,
Xk) and the predicted SLAM state pk|k−1(X0:k, Mk|Z0:k−1, U0:k−1, X0), in
the numerator of equation 2.13, are represented by random vectors, they must
be of compatible dimensions before the Bayes update can be carried out. This
is why the independent data association step is necessary. It is also of im-
portance to note that the SLAM state and feature number are not jointly
propagated or estimated.

The next section introduces the finite set representation for a feature map,
which yields the joint encapsulation of the feature number and spatial uncer-
tainty as well as their optimal joint estimation.

2.4.3 Bayesian Estimation with a Finite Set Feature
Map

Inconsistencies in the classical vector feature map representation can be
demonstrated through a simple question: How is a map with no features
represented by a vector? A set can represent such a case through the null
set. Furthermore, due to the unknown number of features in a map and the

3 Note the notational change for the measurement likelihood. Throughout this
book, the pk notation is used only on the densities from which state estimates
are to be extracted via a suitable Bayes optimal estimator. While not commonly
used, we believe that denoting the measurement likelihood by gk, adds clarity
and improves readability.
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physical insignificance of their order, the feature map can be naturally rep-
resented as a finite set, M = {m1, m2, · · · , mm}. A random finite set (RFS)
then encapsulates the uncertainty in the finite set, i.e. uncertainty in feature
number and their spatial states. Thus, an RFS feature map can be com-
pletely specified by a discrete distribution that models the uncertainty in the
number of features, and continuous joint densities that model their spatial
uncertainty, conditioned on a given number estimate. In a similar vein to the
previous vector feature map (for FBRM), an RFS can be described by its
PDF

pk|k(M = {m1, m2, · · · , mm̂k}|Z0:k, X0:k)

and propagated through a Bayesian recursion as follows:

• Predicted time update, based on the previous vehicle pose and previous
inputs to the robot:

pk|k−1( X0:k,Mk|Z0:k−1, U0:k−1, X0) =∫
fX(X0:k,Mk|X0:k−1,Mk−1, Uk−1) ×

pk−1|k−1(X0:k−1,Mk−1|Z0:k−1, U0:k−2, X0)dXk−1 (2.14)

• Acquire the measurement set Zk.
• Perform the measurement update:

pk|k( X0:k,Mk|Z0:k, U0:k−1, X0) = (2.15)

gk(Zk|Mk, Xk)pk|k−1(X0:k,Mk|Z0:k−1, U0:k−1, X0)∫ ∫
gk(Zk|Mk, Xk)pk|k−1(X0:k,Mk|Z0:k−1, U0:k−1, X0)dXkδMk

where δ implies set integration.

Contrary to the vector based implementation of Bayes theorem in equation
2.13, it is important to note that the measurement likelihood gk(Zk|Mk, Xk)
and predicted SLAM state pk|k−1(X0:k,Mk|Z0:k−1, U0:k−1, X0) in the nu-
merator of equation 2.15, are finite set statistics (FISST) representing the
RFS, which do not have to be of compatible dimensions.

Integration over the map in the denominator of equation 2.15 requires
integration over all possible feature maps (all possible locations and numbers
of features). By adopting an RFS map representation, integrating over the
map becomes a set integral. This feature map recursion therefore encapsulates
the inherent feature number uncertainty of the map, introduced by detection
uncertainty, spurious measurements and vehicle manoeuvres, as well as the
feature location uncertainty introduced by measurement noise. Features are
not rigidly placed in a map vector, nor are measurements simply a direct
function of the map state, due to the explicit modelling of clutter. Therefore,
contrary to previous vector represented approaches, no explicit measurement-
feature assignment (the data association problem) is required.
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Hence, by adopting an RFS representation of the mapped and observed
features, Bayes theorem can be applied to jointly estimate the feature state,
number and vehicle pose for SLAM.

2.5 Further Attributes of the RFS Representation

To date, a map representation which unifies the existence filtering state-
space of the occupancy map representation and the spatial state-space of
the feature map representation remains elusive. While previous researchers
generally adopt independent filters to propagate the spatial and existence
posteriors of a vector feature map, such an approach leads to some theoretical
inconsistencies. For instance, consider the posterior density for a single feature
map, pk|k(M=[m]|Z0:k). In order for the Bayesian recursion of equation 2.11
to be valid, the density must be a PDF, i.e.

∫
pk|k(M |Z0:k)dM = 1. This

however implicitly implies that the feature definitely exists somewhere in the
map. By using a separate existence filter to obtain an existence probability of
α, the implication is that

∫
pk|k(M |Z0:k)dM = α, which subsequently violates

a fundamental property of a PDF ∀ α �= 1. For such a case, it is evident that
a vector-valued feature map representation cannot jointly incorporate feature
existence and location uncertainty.

An RFS framework can readily overcome these issues. For instance, an
analogous joint recursion can be obtained by adopting a Poisson RFS to
represent the feature map. This approach does not maintain an existence
estimate on each feature, but instead propagates a density which represents
the mean number of features in the map as well as their spatial densities.
An alternative RFS map model is a multi-Bernoulli RFS, as will be shown
in Chapter 3 (equation 3.1), which can jointly encapsulate the positional and
existence uncertainty of each individual feature under a valid PDF, which can
be subsequently propagated and estimated via the so called MeMBer Filter.

2.6 Summary

This chapter has provided several motivations for the theoretical represen-
tation of feature based maps to take the form of RFSs as opposed to the
classically used random vectors. Indeed it has been demonstrated that a vec-
tor representation of the map introduces many algorithmic/mathematical
consequences, in the forms of the ordering of features within the estimated
map and observation vectors; the data association problem; the map man-
agement problem; feature map error quantification and the problems of vec-
tor dimensionality differences within a vector based, Bayes recursion. It was
demonstrated that these mathematical consequences result in algorithmic
routines which typically augment or truncate vectors outside of the Bayesian
FBRM/SLAM recursions, resulting in Bayes optimality only being possible
on a predetermined subset of the detected features.
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The RFS representation has been conceptually introduced as a means in
which the Bayes optimal estimation of both feature number and spatial state,
is achievable without the need for such pre-Bayesian augmenting/truncating
methods. Indeed, it was highlighted that no data association is necessary at
all, under the RFS framework. This naturally leads us to the scope of Chapter
3, in which mathematically tractable, RFS based approximations are derived,
for Bayes optimal FBRM and SLAM.



Chapter 3

Estimation with Random Finite Sets

3.1 Introduction

The previous chapter provided the motivation to adopt an RFS representa-
tion for the map in both FBRM and SLAM problems. The main advantage
of the RFS formulation is that the dimensions of the measurement likeli-
hood and the predicted FBRM or SLAM state do not have to be compatible
in the application of Bayes theorem, for optimal state estimation. The im-
plementation of Bayes theorem with RFSs (equation 2.15) is therefore the
subject of this chapter. It should be noted that in any realistic implemen-
tation of the vector based Bayes filter, the recursion of equation 2.13 is, in
general, intractable. Hence, the well known extended Kalman filter (EKFs),
unscented Kalman filter (UKFs) and higher order filters are used to approx-
imate multi-feature, vector based densities. Unfortunately, the general RFS
recursion in equation 2.15 is also mathematically intractable, since multiple
integrals on the space of features are required. This chapter therefore intro-
duces principled approximations which propagate approximations of the full
multi-feature posterior density, such as the expectation of the map. Tech-
niques borrowed from recent research in point process theory known as the
probability hypothesis density (PHD) filter, cardinalised probability hypothe-
sis density (C-PHD) filter, and the multi-target, multi-Bernoulli (MeMBer)
filter, all offer principled approximations to RFS densities. A discussion on
Bayesian RFS estimators will be presented, with special attention given to
one of the simplest of these, the PHD filter. In the remaining chapters, vari-
ants of this filter will be explained and implemented to execute both FBRM
and SLAM with simulated and real data sets.

The notion of Bayes optimality is equally as important as the Bayesian
recursion of equation 2.15 itself. The following section therefore discusses
optimal feature map estimation in the case of RFS based FBRM and
SLAM, and once again, for clarity, makes comparisons with vector based
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estimators. Issues with standard estimators are demonstrated, and optimal
solutions presented.

3.2 Classical State Estimators

In this section, we pose a fundamental question: “Given the posterior dis-
tribution of the map/SLAM state, what is the Bayes “optimal” estimate?”
While an RFS map representation can jointly encapsulate feature number and
location uncertainty, the problem of extracting the optimal estimate from the
posterior density (in the case of RFS SLAM), pk|k(X0:k,Mk|Z0:k, U0:k−1, X0)
of equation 2.15, is not straight forward. This section therefore outlines cer-
tain technical inconsistencies of traditional estimators, leading to summaries
of principled approaches in Section 3.3 (for more details see [3], [27]).

3.2.1 Naive Estimators

The difficulty of applying standard estimators to RFSs arises because they
represent information on the number of their elements (features) which is
a dimensionless quantity, and the elements themselves, which can have di-
mensions (in the case of features – their location, in units of distance from a
globally defined origin). To demonstrate some of the difficulties in deriving
useful estimators for RFSs, consider the following example in which a PDF
p() on the RFS M, representing an entire, unknown map, is assumed to be
available. Intuitive, and standard, expected a posteriori (EAP) and maximum
a posteriori (MAP) estimators are applied to a seemingly simple estimation
problem [3].

Consider a simplistic situation in which there is at most one feature located
in the map. Suppose that a corresponding feature existence filter [28] reports a
0.5 probability of the feature being present. Suppose also that, if the feature
is present, the posterior density of the corresponding spatial state, p(M),
indicates that it is equally likely to be found anywhere in the one-dimensional
interval [0, 2], with the unit of distance given in meters. It should be noted
here that, already at this simplistic level, vector approaches cannot jointly
model this feature state. Under an RFS representation however, the map
state M can be defined as Bernoulli RFS, with probability density,

p(M) =

⎧
⎨
⎩

0.5 M = ∅
0.25 M = {m}, 0 ≤ m ≤ 2
0 otherwise

. (3.1)
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Note that the density, p(M), is still a valid PDF, since its integral, with
respect to M, equates to unity. However, in this case, it is difficult to define
an expected a posteriori (EAP) estimate since the addition of sets is not
meaningfully defined. Instead, a naive maximum a posteriori (MAP) estimate
could be constructed as,

M̂MAP ?
= arg sup

M
p(M) = ∅, (3.2)

(where
?
= represents a question “Is it equal to?”), since p(∅) > p({m})

(0.5 > 0.25). If the unit of distance is changed from meters to kilometres,
the spatial probability density consequently becomes p(m) = U(0, 0.002),
and the probability density of the map state M is,

p(M) =

⎧
⎨
⎩

0.5 M = ∅
250 M = {m}, 0 ≤ m ≤ 0.002
0 otherwise

,

and the naive MAP estimate then becomes,

M̂MAP ?
= arg sup

M
p(M) = {m} (3.3)

for any 0 ≤ m ≤ 0.002 since p({m}) > p(∅) (250 > 0.5). This leads to
the conclusion, that a target is now present, even though only the units of
measurement have changed. This arises since the naive MAP yields a math-
ematical paradigm which compares a dimensionless quantity p(M) (when
M = ∅) to a quantity p(M) with dimensions (when M = m). Such an MAP
estimate is not well-defined since a change in the units of measurement re-
sults in a dramatic change in the estimate. In fact the MAP is only defined if
the units of all possibilities are the same, such as in discretised state spaces,
divided into cells.

This example has shown that standard estimators (EAP and MAP) are
not well defined in the presence of non-unity target existence probability. It
is therefore the aim of the next section to introduce new multi-target state
estimators which are well behaved.

3.3 Bayes Optimal RFS Estimators

Several principled solutions to performing multi-object state estimation are
now presented, in the form of two statistical estimators and a first order
moment technique (the PHD filter) with desirable properties.

We begin by opening the discussion on the full SLAM problem in terms of
joint Bayes optimal estimators for the vehicle trajectory and the map. The
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Bayes risk is then defined for the map along with corresponding feature map
estimators. Finally, Bayes optimal estimation approximations for FBRM and
SLAM are derived.

This section discusses various Bayesian estimators for the SLAM problem
and their optimality, based on a vector representation of the vehicles trajec-
tory, and a finite-set representation of the map. The notion of Bayes optimal
estimators is fundamental to the Bayesian estimation paradigm. In general,
if the function θ̂ : z �→ θ̂(z) is an estimator of a parameter θ, based on a

measurement z, and C(θ̂(z), θ) is the penalty for using θ̂(z) to estimate θ,

then the Bayes risk R(θ̂) is the expected penalty over all possible realisations
of the measurement and parameter, i.e

R(θ̂) =

∫ ∫
C(θ̂(z), θ)p(z, θ)dθdz (3.4)

where p(z, θ) is the joint probability density of the measurement z and the
parameter θ. A Bayes optimal estimator is any estimator that minimises the
Bayes risk.

In the SLAM context, relevant Bayes optimal estimators are those for
the vehicle trajectory and the map. The posterior densities1 pk(X1:k) �

pk(X1:k|Z0:k, U0:k−1, X0) and pk(Mk) � pk(Mk|Z0:k, U0:k−1, X0) for the ve-
hicle trajectory and map, can be obtained by marginalising the joint posterior
density, pk(Mk, X1:k|Z0:k, U0:k−1, X0). For the vehicle trajectory, the poste-
rior mean, which minimises the mean squared error (MSE), is a widely used
Bayes optimal estimator. However, since the map is a finite set, the notion
of MSE does not apply. Moreover, standard Bayes optimal estimators are
defined for vectors and subsequently do not apply to finite-set feature maps.
To the best of authors’ knowledge, there is no work which establishes the
Bayes optimality of estimators for finite-set feature maps (and consequently
feature-based SLAM). Therefore the following sections propose frameworks
for Bayes optimal estimation with RFSs, which assume varying degrees of
approximation to the statistical representations of sets.

3.3.1 Bayes Risk in Feature Map Estimation

The convergence of the vehicle location estimation aspect, of feature-based
frameworks, has received a great deal of attention to date [1]. However, to
the authors’ knowledge, the convergence of the corresponding map estimate,
particularly with regards to converging to the true number of features, has
never before been addressed or proven. Therefore, to address the optimal map
estimation problem, as before, let Mk denote the feature-based map state
at time k comprising mk features and pk(Mk) denote its posterior density.

1 Note that henceforth for compactness, pk(·) = pk|k(·).
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If M̂k : Z1:k �→ M̂k(Z1:k) is an estimator of the feature map Mk, and

C(M̂k(Z1:k),Mk) is the penalty for using M̂k(Z1:k) to estimate Mk, then
the Bayes risk for mapping is given by

R(M̂k) =

∫ ∫
C(M̂k(Z1:k),Mk)pk(Mk,Z1:k)δMkδZ1:k.

where pk(Mk,Z1:k) is the joint density of the map and measurement his-
tory. Note that since the map and measurements are finite sets, standard
integration for vectors is not appropriate for the definition of the Bayes risk.
Subsequently the Bayes risk above is defined in terms of set integrals. Sev-
eral principled solutions to performing feature map estimation are presented
next, with the main focus of attention being on the PHD filter in Section
3.3.4, which is used widely throughout this book. The following estimators
are Bayes optimal given the definition of an appropriate Bayes risk as just
described.

3.3.2 Marginal Multi-Object Estimator

The Marginal Multi-Object (MaM) estimator is defined via a two-step esti-
mation procedure. The number of features is first estimated using a maximum
a posterior (MAP) estimator on the posterior cardinality distribution, ρ,

m̂k = arg sup
m

ρk(|Mk| = m). (3.5)

Second, the individual feature states are estimated by searching over all maps
with cardinality m̂k, using a MAP criteria,

M̂k

MaM
= arg sup

M:|Mk|=m̂k

pk(M). (3.6)

It has been shown that the MaM estimator is Bayes optimal, however con-
vergence results are not currently known.

3.3.3 Joint Multi-Object Estimator

In contrast to the MaM estimator, which first estimates the number of fea-
tures and restricts its feature state estimation process to maps with only
that number of features, the Joint Multi-Object (JoM) estimator executes its
feature state estimation process on maps of all possible feature number.
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The JoM estimator is defined as

M̂JoM
k,s = arg sup

Mk

(
pk(Mk)

s|Mk|

|Mk|!

)
, (3.7)

where s is a constant with units of volume in the feature space, arg sup
denotes the argument of the supremum, and |Mk| denotes the cardinality of
Mk. Notice that the fundamental difference between this estimator and the
MAP estimator of equations 3.2 and 3.3 is that the factor s|Mk|/|Mk|! allows
target based attributes of differing dimensions (e.g. spatial and non-spatial)
to be “compared” in a principled manner.

First, to consider all possible sizes m of the feature map for each m ≥ 0,
determine the MAP estimate,

M̂(m) = arg sup
M:|M|=m

pk(M|Z0:k). (3.8)

Second, set

M̂JoM
s = M̂(m̂) where m̂ = arg sup

m

pk(M̂(m)|Z0:k)
sm

m!
. (3.9)

It has been shown that the JoM estimator is Bayes optimal and is statistically
consistent i.e. the feature map error distance (to be discussed in Section
4.3), between the optimal estimate and the true map, tends to zero as data
accumulates [23], [3], [27]. Hence,

• “The JoM estimator determines the number m̂ and the locations M̂ of
features optimally and simultaneously without resorting to optimal data
association.” [3].

Additionally, the value of s in equation 3.9 should be made equal to the
desired accuracy for the state estimate. The smaller s is, the greater the ac-
curacy of the estimate, but the rate of convergence of the estimator will be
compromised. Because of this, while JoM is a theoretically attractive estima-
tor, it is computationally expensive.

3.3.4 The Probability Hypothesis Density (PHD)
Estimator

A simple approach to set-based estimation, is to exploit the physical intuition
of the first moment of an RFS, known as its PHD or intensity function.
This corresponds to the multi-feature equivalent of an expected value – the
expectation of an RFS.

This section starts by giving an explanation of what the PHD is, and how
it should be statistically interpreted in Section 3.3.4.1. This is followed by
two intuitive derivations of the PHD in Sections 3.3.4.2 and 3.3.4.3.
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3.3.4.1 Interpretation of the PHD

The intensity function at a point, gives the density of the expected number
of features occurring at that point and therefore the mass (integral of the
density over the volume of the space) of the PHD gives the expected num-
ber of features. The peaks of the intensity function indicate locations with
relatively high concentration of expected number of features, in other words
locations with high probability of feature existence. To provide an intuitive
interpretation, consider a simple 1D example of two targets located at x = 1
and x = 4 each with spatial variance σ2 = 1 taken from page 569, [3]. A
corresponding Gaussian mixture representation of the PHD for this problem
is:

PHD(x) =
1√
2πσ

[
exp

(
− (x − 1)2

2σ2

)
+ exp

(
− (x − 4)2

2σ2

)]
. (3.10)

PHD(x) versus x is plotted in figure 3.1. Note that the maxima of PHD(x)
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Fig. 3.1 A PHD for a 1D, 2 target problem of equation 3.10

occur near the target locations (x = 1, 4)). The integral of PHD(x) is m

where

m =

∫
PHD(x)dx =

∫
N (1, σ2)dx +

∫
N (4, σ2)dx (3.11)

= 1 + 1 = 2
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i.e. m equals the actual number of targets. Here we note that a PHD is not a
PDF, since its integral over the space of its variable is not, in general, unity.

For a 2D, robotic feature based map, graphical depictions of posterior
PHDs after two consecutive measurements, approximated by Gaussian mix-
tures, are shown in figures 3.2 and 3.3. In each figure the intensity function

Fig. 3.2 A sample map PHD at time k−1, with the true map represented by black
crosses. The measurement at k−1 is represented by the yellow dashed lines. The
peaks of the PHD represent locations with the highest concentration of expected
number of features. The local PHD mass in the region of most features is 1, indi-
cating the presence of 1 feature. The local mass close to some unresolved features
(for instance at (5,-8)) is closer to 2, demonstrating the unique ability of the PHD
function to jointly capture the number of features.

Fig. 3.3 A sample map PHD and measurement at time k. Note that the features
at (5,-8) are resolved due to well separated measurements, while at (-3,-4), a lone
false alarm close to the feature measurement contributes to the local PHD mass. At
(-5,-4) a small likelihood over all measurements, coupled with a moderate ck(z|Xk)
results in a reduced local mass.

is plotted as a function of the spatial coordinates. Since the integral of the in-
tensity function (or PHD) is, by definition, the estimated number of features
in the map, the mass (or integral) of each Gaussian can be interpreted as
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the number of features it represents. In the case of closely lying features (and
large measurement noise), the PHD approach may not be able to resolve the
features, as demonstrated for the right hand feature of Figure 3.2 at approxi-
mate coordinates (5, -8). However the PHD will represent the spatial density
of L features by a singular Gaussian with a corresponding mass of L, which
may improve the feature number estimate. This is only theoretically possible
using the RFS framework. A graphical example for L = 2 is illustrated in
Figure 3.2, which is then resolved through measurement updates into indi-
vidual Gaussian components for each feature of mass L ≈ 1, as shown in
Figure 3.3 (the two peaks at approximate coordinates (5, -8)).

The PHD estimator has recently been proven to be Bayes optimal [29] and
has been proven to be powerful and effective in multi-target tracking [3].

3.3.4.2 The PHD as the Limit of an Occupancy Probability

Intuitively, the PHD can be derived as a limiting case of the occupancy
probability used in grid based methods. Following [30], consider a grid system
and let mi denote the centre and B(mi) the region defined by the boundaries
of the ith grid cell. Let P (occ)(B(mi)) denote the occupancy probability and
λ(B(mi)) the area of the ith grid cell. Assume that the grid is sufficiently
fine so that each grid cell contains at most one feature, then the expected
number of features over the region SJ =

⋃
i∈J

B(mi) is given by,

E [|M ∩ SJ |] =
∑

i∈J

P (occ)(B(mi))

=
∑

i∈J

v(mi)λ(B(mi)). (3.12)

where v(mi) = P (occ)(B(mi))
λ(B(mi))

. Intuitively any region SJ can be represented

by
⋃

i∈J

B(mi), for some J . As the grid cell area tends to zero (or for an

infinitesimally small cell), B(mi) → dm. The sum then becomes an integral
and the expected number of features in S becomes,

E [|M ∩ S|] =

∫

S

v(m)dm. (3.13)

v(m) defines the PHD and it can be interpreted as the occupancy probabil-
ity density at the point m. The (coordinates of the) peaks of the intensity
are points (in the space of features) with the highest local concentration of
expected number of features and hence can be used to generate optimal es-
timates for the elements of M. The integral of the PHD gives the expected
number of features and the peaks of the PHD function can be used as esti-
mates of the positions of the features.
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3.3.4.3 The PHD as the Density of the Expectation of a Point

Process

An alternative derivation of the PHD now follows. An analogous notion to
the ‘expectation’ of an RFS can be borrowed from point process theory. This
construct treats the random set as a random counting measure or a point
process (a random finite set and a simple finite point process are equivalent
[31]).

Let p(M) be the multi-feature probability distribution of the map RFS

M. A somewhat naive interpretation of its expected value M̂ would then be

M̂naive �

∫
Mip(M)δMi. (3.14)

where Mi represents the ith subset of M. Since the addition of finite subsets
of M is undefined, the above integral is also undefined. It can be solved
by defining a transformation which maps finite subsets Mi into vectors Mi

in some vector space. This transformation must maintain the set theoretic
structure by transforming unions into sums - i.e. Mi ∪ Mj = Mi + Mj, if
Mi ∩Mj = ∅. In this case, an expected value can be defined in terms of the
“equivalent” vectors

M̂ � E[M ] =

∫
Mip(M)dMi (3.15)

The point process literature [32] uses a transformation Mi = δMi
where

δMi
� 0 if Mi = ∅ (3.16)

δMi
�

∑

m∈Mi

δ(x − m) otherwise.

where x is the vector space of the features and δ(x − m) is the Dirac delta
density concentrated at each feature m within the random finite subset Mi.
Taking the expectation of equation 3.16 gives

v(m) � E[δM] =

∫
δMi

p(M)δMi (3.17)

which is the multi-feature equivalent of the expected value. This is called the
probability hypothesis density (PHD), also known as the intensity density,
or intensity function v(m) of M.

Note that while v(m) is a density, it is not a PDF, since it may not nec-
essarily integrate to 1. This is clear, as the integral of v(m) over any region
S gives the expected number of features in that region - i.e.

∫

S

v(m)dm = E [|M ∩ S|] (3.18)
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Hence, the integral of the non-negative intensity function v(m) over M gives
the expected number of features in the map.

Note that we have arrived at the same result as equation 3.13, in which
the PHD was considered to be the limit of an occupancy probability.

3.3.4.4 Recovering the Map from the PHD Intensity Function

Since v(m) is a density, it can be readily approximated by standard Sequen-
tial Monte Carlo (SMC) or Gaussian Mixture methods as described later in
Chapter 4. The PHD filter recursion therefore propagates the intensity func-
tion v(m) of the RFS state and uses the RFS measurement in the update
stage. Since the intensity is the first order statistic of a random finite set, the
PHD filter is analogous to the constant gain Kalman filter, which propagates
the first order statistic (the mean) of the vector-based state. However, the
intensity, v(m), can be used to estimate both the number of features in the
map, and their corresponding states (along with the uncertainty in the state
estimates) [2].

If the RFS, Mk, is Poisson, i.e. the number of points is Poisson dis-
tributed and the points themselves are independently and identically dis-
tributed (IID), then the probability density of Mk can be constructed exactly
from the PHD.

pk(Mk) =

∏
m∈Mk

vk(m)

exp(
∫

vk(m)dm)
. (3.19)

where vk(m) is the map intensity function at time k and Mk is the RFS map
which has passed through the field of view (FoV) of the vehicle’s on board
sensor(s) up to and including time k. In this sense, the PHD can be thought
of as a 1st moment approximation of the probability density of an RFS.

Under these approximations, it has been shown [2] that, similar to standard
recursive estimators, the PHD recursion has a predictor -corrector form.

3.4 The PHD Filter

As defined in Section 3.2.1, M is the RFS representing the entire unknown
map. Let Mk−1 be the RFS representing the explored map, with trajectory
X0:k−1 = [X0, X1, . . . , Xk−1] at time k − 1, i.e.

Mk−1 = M∩ FoV (X0:k−1). (3.20)

Note that FoV (X0:k−1) = FoV (X0) ∪ FoV (X1) ∪ · · · ∪ FoV (Xk−1). Mk−1

therefore represents the set on the space of features which intersects with
the union of individual FoVs, over the vehicle trajectory up to and including
time k−1. Given this representation, Mk−1 evolves in time according to,
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Mk = Mk−1 ∪
(

FoV (Xk) ∩ M̄k−1

)
(3.21)

where M̄k−1 = M − Mk−1 represents the unexplored map (note the dif-
ference operator used here is the set difference, sometimes referred to as
M\Mk−1 or the relative complement of Mk−1 in M), i.e the set of features
that are not in Mk−1. Let the newly explored features which have entered
the FoV be modelled by the independent RFS, Bk(Xk). In this case, the RFS
map transition density is given by,

fM(Mk|Mk−1, Xk) =
∑

W⊆Mk

fM(W|Mk−1)fB(Mk−W|Xk) (3.22)

where fM(W|Mk−1) is the transition density of the set of features that are
in FoV (X0:k−1) at time k − 1 to time k, and fB(Mk−W)|Xk) is the density
of the RFS, B(Xk), of the new features that pass within the field of view
at time k. To define the PHD filter in a form general enough to be applied
to FBRM and SLAM, we now define a state variable Γk which corresponds
to the state of interest to be estimated. In the case of FBRM, Γk would be
replaced by “m|Xk” i.e. the feature at m, given the vehicle location Xk. This
implementation of the PHD filter will be the subject of Chapter 4. In the
case of SLAM a “brute force” approach is implemented in Chapter 5 which
replaces Γk with each feature augmented with a hypothesised vehicle trajec-
tory. Its implementation is shown to demonstrate a viable, and theoretically
simple, SLAM implementation. A more elegant, Rao-Blackwellised imple-
mentation of the PHD filter is implemented in Chapter 6 which propagates
N conditionally independent PHDs, based on each of the N hypothesised
trajectories, represented as particles. In this case, Γk is effectively replaced
by “m|X0:k” i.e. the feature at m conditioned on the vehicle trajectory X0:k.
This will demonstrate a more computationally efficient SLAM implementa-
tion, which allows the Bayes optimal, expected trajectory and expected map
to be evaluated.

In terms of the general state variable Γk the prediction of the map intensity
function vk|k−1(Γk), is given by

vk|k−1(Γk) = vk−1|k−1(Γk−1) + b(Γk) (3.23)

where b(Γk) is the PHD of the new feature RFS, B(Xk). Note that vk−1|k−1()
corresponds to the estimate of the intensity function at time k − 1, given all
observations up to, and including, time k − 1. For ease of notation however,
this will be referred to as vk−1() in future instances.
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The PHD corrector equation is then [2],

vk(Γk) = vk|k−1(Γk)

[
1 − PD(Γk)+

∑

z∈Zk

PD(Γk)gk(z|Γk)

ck(z) +
∫

PD(ξk)gk(z|ξk)vk|k−1(ξk)dξk

]
(3.24)

where vk|k−1(Γk) is the predicted intensity function from equation 3.23, ξ is
a subset of Mk and,

PD(Γk) = the probability of detecting a feature at
m, from vehicle location Xk (encapsulated in Γk),

gk(z|Γk) = the measurement model of the sensor at time k,
ck(z) = intensity of the clutter RFS Ck(Xk) (in equation 2.10) at time k.

3.4.1 Intuitive Interpretation of the PHD Filter

An intuitive interpretation of the PHD filter equations 3.23 and 3.24 is given
in Chapter 16 of [3]. The predictor equation 3.23 comprises the addition of
the previous PHD correction and the PHD of the set of features hypothesised
to enter the sensor’s FoV. The corrector equation 3.24, can be more clearly
interpreted in its integrated form since, by definition

∫
vk(Γk)dΓk = mk (3.25)

where mk is the number of estimated features at time k. To simplify the
interpretation further, a constant (state independent) probability of detection
is assumed in this section - i.e.

PD(Γk) = PD. (3.26)

Therefore, from equation 3.24,

mk =

∫
vk(Γk)dΓk

= (1 − PD)mk|k−1 +

PD

∑

z∈Zk

∫
gk(z|Γk)vk|k−1(Γk)dΓk

ck(z) + PD

∫
gk(z|ξk)vk|k−1(ξk)dξk

(3.27)

Notice that the integrals in the numerator and denominator of the final term
within the summation of equation 3.27 are identical and to simplify the equa-
tion we introduce
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Dk|k−1(gk, vk|k−1) �

∫
gk(z|Γk)vk|k−1(Γk)dΓk =

∫
gk(z|ξk)vk|k−1(ξk)dξk

(3.28)
where gk abbreviates gk(z|Γk) and vk|k−1 abbreviates vk|k−1(Γk). Therefore
the integral of the PHD corrector equation 3.24, with constant PD, can be
written as the feature number corrector equation

mk = (1 − PD)mk|k−1 + PD

∑

z∈Zk

Dk|k−1(gk, vk|k−1)

ck(z) + PDDk|k−1(gk, vk|k−1)
(3.29)

Equation 3.29 is useful for intuitively interpreting the PHD corrector equa-
tion, and is governed by the following effects:

1. Probability of detection PD. If the map feature at m is not in the FoV of
the sensor, it could not have been observed, thus PD = 0. Therefore, from
equation 3.29

mk = (1 − 0)mk|k−1 + 0 = mk|k−1 (3.30)

i.e. the updated number of features simply equals the predicted number,
since no new information is available. Similarly from from equation 3.24,

vk(Γk) = vk|k−1(Γk)[1 − 0 + 0] = vk|k−1(Γk) (3.31)

i.e. the updated PHD will simply equal the predicted value.
On the other hand, if m is within the sensor FoV and if PD ≈ 1, the
summation in equation 3.24, tends to dominate the PHD update and

vk(Γk) ≈ vk|k−1(Γk)

[ ∑

z∈Zk

gk(z|Γk)

ck(z) +
∫

gk(z|ξk)vk|k−1(ξk)dξk

]
(3.32)

Then the predicted PHD is modified by the sum of terms dependent on
the measurement likelihood and clutter PHD.

2. False alarms ck(z). A particular feature observation could have originated
from a feature or as a false alarm. Assume that the number of false alarms
λ (represented by its intensity ck(z)) is large and uniformly distributed
in some region R. If the observed feature is in R, the term within the
summation of equation 3.29 becomes

PD

Dk|k−1(gk, vk|k−1)

ck(z) + PDDk|k−1(gk, vk|k−1)
(3.33)

= PD

Dk|k−1(gk, vk|k−1)
λ
|R| + PDDk|k−1(gk, vk|k−1)

≈ PD
|R|
λ

Dk|k−1(gk, vk|k−1) ≈ 0

since λ is so large that it dominates the denominator. Therefore, if an
observation originates from R, it is likely to be a false alarm, and it con-
tributes almost nothing to the total posterior feature count, as it should.
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On the other hand if a measurement originates from a region other than
R, with low clutter, then it is unlikely to be a false alarm. This means that
ck(z) ≈ 0 and

PD

Dk|k−1(gk, vk|k−1)

ck(z) + PDDk|k−1(gk, vk|k−1)
≈ PD

Dk|k−1(gk, vk|k−1)

0 + PDDk|k−1(gk, vk|k−1)
= 1

(3.34)
so that the measurement now contributes one feature to the total feature
number. In general, if the number of false alarms, governed by the clutter
PHD ck(z|Xk), is high, this increases the denominator of the summation,
thus lowering the effect of the sensor update, as it should.

3. Prior information PDgk(z|Γk). Assume that the sensor model is good, and
PDgk(z|Γk) is large for a particular state Γk which produces z. If z is consis-
tent with prior information (the observation model), PDDk|k−1(gk, vk|k−1)
will tend to dominate the denominator of the summation in equation 3.29,
and the term corresponding to that feature in the summation will become

PD

Dk|k−1(gk, vk|k−1)

ck(z) + PDDk|k−1(gk, vk|k−1)
≈ 1 (3.35)

Hence, a feature which is consistent with the observation model tends to
contribute one feature to the total feature count.

Conversely if the observation z is inconsistent with prior information (is
unlikely according to the sensor model), then the product PDgk(z|Γk) will
be small, and its corresponding term in the summation in equation 3.29
will tend to be ignored.

Equations 3.23 and 3.24 which comprise the PHD filter have been shown
to be Bayes optimal, assuming that the RFS observation and map statistics
can be represented by their first moments only [3].

3.5 Summary

This chapter addressed the issues of estimation with RFSs. Initially, the tra-
ditional MAP and EAP estimators were applied to a simple, single feature
problem with both feature existence and spatial uncertainty. It was demon-
strated that such estimators are not suitable in such applications, and new
multi-feature estimators were defined, which minimised the Bayes risk in fea-
ture map estimation.

The main focus of attention of the chapter was on the PHD filter. An RFS
map density can be represented by its first moment, the intensity function.
Brief derivations for the PHD estimator (intensity function) were shown based
on the PHD as the limit of an occupancy probability, and the density of the
expectation of a point process.
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The PHD recursion is far more numerically tractable than propagating the
RFS map densities of equation 2.15. In addition, the recursion can be readily
extended to incorporate multiple sensors/vehicles by sequentially updating
the map PHD with the measurement from each robot.



Part II

Random Finite Set Based Robotic
Mapping



Chapter 4

An RFS Theoretic for Bayesian
Feature-Based Robotic Mapping

4.1 Introduction

Estimating a FB map requires the joint propagation of the FB map density
encapsulating uncertainty in feature number and location. This chapter ad-
dresses the joint propagation of the FB map density and leads to an optimal
map estimate in the presence of unknown map size, spurious measurements,
feature detection and data association uncertainty. The proposed framework
further allows for the joint treatment of error in feature number and loca-
tion estimates. As a proof of concept, the first-order moment recursion, the
PHD filter, is implemented using both simulated and real experimental data.
The feasibility of the proposed framework is demonstrated, particularly in
situations of high clutter density and large data association ambiguity. This
chapter establishes new tools for a more generalised representation of the
FB map, which is a fundamental component of the more challenging SLAM
problem, to follow in Part II.

In this chapter, FB map only estimation is addressed, i.e. the vehicle tra-
jectory is assumed known. The chapter presents new insights to motivate an
RFS approach, under which Bayes optimality is examined. Further, the con-
cept of FB map estimation error (in the general case of an unknown number
of features) is addressed through a mathematically consistent1 error metric.

The chapter is organised as follows. Section 4.2 reiterates the natural repre-
sentation of the feature map as a set of features, and formulates the Bayesian
estimation problem for estimating the feature locations and number in a joint
manner. Current FB error evaluation methods are discussed and a mathemat-
ically consistent error metric introduced in Section 4.3. Section 4.4 explicitly
relates the PHD filter concepts of section 3.4 in Chapter 3 to the FBRM
problem. As a proof-of-concept, the first-order moment PHD recursion for

1 A mathematically consistent metric is one that is defined on the state-space of
interest (the space of all possible feature maps) and satisfies the necessary metric
axioms. See Section 4.3 and [23] for further details.

J. Mullane et al.: Random Finite Sets for Robot Mapping & SLAM, STAR 72, pp. 45–76.
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FB maps is further outlined in Section 4.4, followed by contrasting filter im-
plementations in Section 4.5. Simulation and real experimental results, using
the new framework, are demonstrated in Section 4.6 with comparisons to clas-
sical approaches. Finally Section 4.8 offers some bibliographical comments on
related robotic mapping work and summarises the latest developments in a
related field of multi-object filtering.

4.2 The Feature-Based Map Estimation Framework

As introduced in Chapters 2 and 3, in contrast to the classical vector rep-
resentation, a RFS map state, Mk, can jointly encapsulate feature number
and location uncertainty. Equivalently, a RFS measurement, Zk, can model
uncertainty in measurement number and value.

Given the current vehicle state, Xk, and the feature RFS map Mk, as
mentioned in Chapter 2 (equation 2.10), and repeated here for convenience,
the measurement consists of a set union,

Zk =
⋃

m∈Mk

Dk(m, Xk) ∪ Ck(Xk) (4.1)

where Dk(m, Xk) is the RFS of a measurement generated by a feature at
m and Ck(Xk) is the RFS of the spurious measurements at time k, which
may be dependent on the vehicle pose, Xk. Therefore Zk consists of a ran-
dom number of measurements. In this chapter, and throughout the book,
the measurements take the form of range and bearing. It should be noted
however that the RFS framework can be readily extended to other measure-
ment types. Note that the number of detected measurements may differ from
the number of features in Mk due to detection uncertainty, occlusion and
spurious measurements. It is also assumed that Dk(m, Xk), and Ck(Xk) are
independent RFSs.

The RFS of a measurement generated by a feature at m is assumed to be
a Bernoulli RFS2 given by, Dk(m, Xk) = ∅ with probability 1−PD(m, Xk)
and Dk(m, Xk)={z} with probability density PD(m, Xk)gk(z|m, Xk). For a
given robot pose Xk, PD(m, Xk) is the probability of the sensor detecting a
feature at m and, when conditioned on gk(z|m, Xk), is the likelihood that a
feature at m generates the measurement z. The concept of detection prob-
ability is important to the measurement model, and indeed multiple models
such as uniform or exponential mixture [33] can be accommodated in to the
framework. In particular, state-dependant detection probabilities are most
useful in a mobile robotics framework, since the ability of the sensor (or fea-
ture extraction algorithm) to detect a given object can be highly influenced

2 The Bernoulli RFS is empty with a probability 1−α and is distributed according
to a density p with probability α. The example in Section 3.2.1 was that of a
Bernoulli RFS.
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by its relative location. For instance, occlusions would effectively result in a
PD of zero, and it is also possible that the PD would taper off with increasing
distance from the sensor. While such approaches can be readily incorporated
into the measurement model and subsequent filter [33], [34], throughout the
context of this book a binary approach is taken. That is PD(m, Xk) = PD

when the feature is within the sensor field of view and PD(m, Xk) = 0
otherwise.

The measurement generated by the sensor at time k is modelled by the
RFS of equation 4.1. The RFS Zk therefore encapsulates all measurement un-
certainty such as measurement noise, sensor field of view (i.e. state-dependent
probability of detection) and spurious measurements. The probability density
that the sensor produces the measurement Zk, given the vehicle state Xk and
map Mk at time k, is then given by the convolution [2],

gk(Zk|Xk,Mk) =
∑

W⊆Zk

gD(W|Mk, Xk)gC(Zk −W). (4.2)

Here, gD(W|Mk, Xk) denotes the density of the RFS Dk of measurements
generated by features in Mk, given the state of the vehicle, and gC(Zk −W)
denotes the density of the RFS Ck of spurious measurements where, as in
Section 3.4, the difference operation used in equation 4.2 is the set difference.
gD(W|Mk, Xk) describes the likelihood of receiving a measurement from the
elements of the map, and incorporates detection uncertainty and measure-
ment noise. gC(Zk −W) models the spurious measurements of the sensor and
is typically a priori assigned [18], [14].

If fM(Mk|Mk−1, Xk−1) then represents the RFS feature map state tran-
sition density (which typically incorporates an increasing number of map
features as the vehicle moves, as shown in Section 3.4), and the RFS mea-
surement is as in equation 4.1, the generalised Bayesian RFS FBRM recursion
can be written in a form similar to equations 2.14 and 2.15 in Chapter 2. The
difference here is that only the RFS map density is to be estimated:

pk|k−1(Mk|Z0:k−1, Xk) =

∫
fM(Mk|Mk−1, Xk)×

pk−1(Mk−1|Z0:k−1, X0:k−1)δMk−1 (4.3)

pk(Mk|Z0:k, X0:k) =
gk(Zk|Xk,Mk)pk|k−1(Mk|Z0:k−1, Xk)∫

gk(Zk|Xk,Mk)pk|k−1(Mk|Z0:k−1, Xk)δMk
(4.4)

where δ once again implies a set integral. Note again here, that for ease
of notation, pk−1 in equation 4.3 actually corresponds to pk−1|k−1 and pk

in equation 4.4 actually corresponds to pk|k. This simplified notation will be
adopted throughout this book. Integration over the map, requires integration
over all possible feature maps (all possible locations and numbers of features).
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By adopting an RFS map representation, integrating over the map becomes
a set integral, which can be defined as [3],

∫
pk|k−1(Mk|Z0:k−1, Xk)δMk =

∞∑

mk=0

1

mk!

∫
pk|k−1({m1, . . . , mmk}|Z0:k−1, Xk)dm1dm2 . . . dmmk . (4.5)

This feature map recursion therefore encapsulates the inherent feature num-
ber uncertainty of the map introduced by detection uncertainty, spurious
measurements and vehicle manoeuvres, as well as the feature location uncer-
tainty introduced by measurement noise. Features are not rigidly placed in
a map vector (as is the case in previous approaches), nor are measurements
simply a direct function of the map state, due to the explicit modelling of
clutter. Therefore, as introduced in Chapter 2, contrary to previous vector
represented approaches, no explicit measurement to feature assignment (the
data association problem) is required.

4.3 FB Map Estimation Error

This book focuses on arguably the most popular and widely studied mobile
robotics problem, localisation and mapping in a feature-based map. While
in practice, the form a map takes would mostly depend on its application
(path planning for instance would likely require higher resolution Grid Based
(GB) maps), feature based maps form the basis of numerous mobile robotic
frameworks. Whether for the given application, the feature represents a fixed
static object for localisation, a target for defence or an injured human for
search & rescue, the problem can in general be formulated as one of estimating
an unknown number of objects at unknown locations. As such, a measure of
the accuracy of any given mapping filter is of critical importance. To the
authors’ knowledge, there is currently no work which presents a well defined
mathematical distance to gauge feature-based mapping error.

The primary difficulty in determining map estimation error is due to dif-
ferences between the estimated and true number of features, and the need to
satisfy the 4 metric axioms [23]3. Error metrics for fixed dimension problems,
such as a sum of the squared error can be readily obtained from grid-based
robotic frameworks [7] or metrics based on the Hausdorff distance [35] from
the template matching literature. Such metrics however, cannot encapsulate

3 The 4 metric axioms can be defined as follows. Let X be an arbitrary, non-empty
set. Then the function d is a metric iff: 1) d(x, y) >= 0, for all x, y ∈ X ; 2)
d(x, y) = 0 iff x = y, x ∈ X (identity axiom); 3) d(x, y) = d(y, x), for all x, y ∈ X
(symmetry axiom); 4) d(x, y) ≤ d(x, z) + d(y, z), for all x, y, z ∈ X (triangle
inequality axiom).
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cardinality estimation error and are thus not suited to the evaluation of FB
map estimates.

A finite set representation of the map naturally allows for a metric to
gauge map estimation error [23]. While there are several metrics for finite-
set-valued estimation [23], the feature map estimation error metric used here
(which jointly considers errors in feature location estimate, and feature num-

ber estimate) is based on a 2nd-order Wasserstein construction. If |M| > |M̂|,
it is given by,

d̄(c)(M̂,M) :=

(
1

|M|

(
min

j∈{1,...,|M|}

|M̂|∑

i=1

d(c)(m̂i, mj)2 + c2(|M| − |M̂|)
))1/2

(4.6)
where,

d(c)(m̂i, mj) = min(c, ||m̂i − mj ||) (4.7)

is the minimum of the cut-off parameter, c, and the Euclidean distance be-
tween the estimated feature location, m̂i and the true feature location mj . If
|M| < |M̂| the metric is obtained through d̄(c)(M,M̂). Note that the stan-
dard Euclidean distance used in the definition of d(c)(m̂i, mj) is arbitrary. To
incorporate orientated features, other vector distances such as a Mahalanobis
distance could be adopted where,

d(c)(m̂i, mj) = min
(
c,
(
(m̂i − mj)T P̂−1

i (m̂i − mj)
)1/2)

(4.8)

with P̂i being the estimated covariance of the ith feature. The Wasserstein
construction is commonly adopted in theoretical statistics as a measure of
similarity between probability distributions. It has been shown previously
that for distributions of equal dimensionality, the Wasserstein distance re-
duces to an optimal assignment problem [23]. Minimisation of a global dis-
tance between the estimated and ground truth maps inherently considers the
problem in its joint-estimation framework, as opposed to analysis of individ-
ual estimates of features assigned through nearest neighbour methods [1]. The
metric of equation 4.6 explicitly accounts for the dimensionality estimate er-
rors through the term c2(|M|−|M̂|), which assigns a user-defined cost, c, for
each unassigned feature state. This threshold decides whether a given feature
estimate is an incorrectly declared feature, or is a correctly declared feature
that is poorly localised. The effects of varying the c parameter are illustrated
later in Section 4.6.5. For example, given the estimated maps of Figure 2.5 in
Chapter 2, with the parameter choice c=5, d̄(5)(M̂left,M)=1.48m whereas

d̄(5)(M̂right,M) = 2.02m, with d̄(5)(M,M) = 0m. With such a metric, the
quality of estimated maps can be compared in a quantitative manner.

Equation 4.6 will be used to gauge the FBRM estimation performance, in
the cases of known ground truth maps, in the results section. The remaining
sections of this chapter are devoted to a solution to the FBRM problem using
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the PHD filter. Contrasting RFS FBRM filters are outlined and derived for
both static and pseudo-static maps, coupled with analysis and results using
benchmark approaches adopted by the robotics community.

4.4 The PHD-FBRM Filter

The recursion of equations 4.3 and 4.4, which are the mapping only versions
of the general Bayes update equations 2.14 and 2.15, constitutes a Bayesian
approach to the FBRM problem. However, as is the case for the vector recur-
sion, a direct implementation is generally computationally intractable due to
multiple integrals on the space of features. This is evident from the set inte-
gration result of equation 4.5. Therefore, as an approximation, the PHD filter,
introduced in Chapter 3 (Section 3.4), is used to propagate the expectation
of the map as opposed to the full multi-feature posterior density.

As introduced in Chapters 2 and 3, the newly explored features which have
entered the FoV of the vehicle’s sensor(s) are modelled by the RFS, Bk(Xk)
and the spurious measurements at time k, which may depend on the vehicle
pose Xk, are modelled by the RFS Ck(Xk). Then, the state of interest in the
FBRM case is the feature position m given the robot pose Xk. Hence in the
general state update equations 3.23 and 3.24

Γk −→ m|Xk (4.9)

and from equation 3.23 the prediction of the map intensity function vk|k−1(Γk)
becomes vk|k−1(m|Xk), given the robot location (i.e. FBRM), and is given
by

vk|k−1(m|Xk) = vk−1(m|Xk−1)
4 + bk(m|Xk) (4.10)

where bk(m|Xk) is the PHD of the new feature RFS, B(Xk).
The PHD filter corrector equation 3.24, vk(Γk) then becomes vk(m|Xk),

where

vk(m|Xk) = vk|k−1(m|Xk)

[
1 − PD(m|Xk)+

∑

z∈Zk

PD(m|Xk)gk(z|m, Xk)

ck(z|Xk) +
∫

PD(ξ|Xk)gk(z|ξ, Xk)vk|k−1(ξ|Xk)dξ

]
(4.11)

where vk|k−1(m|Xk) is the predicted intensity function and,

4 As mentioned in chapter 3, vk−1() is a shortened notation, actually referring to
vk−1|k−1() i.e. the estimated intensity function at time k−1, given all observations
up to, and including, time k − 1.
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PD(m|Xk) = the probability of detecting a feature at
m, from vehicle location Xk,

gk(z|m, Xk) = the measurement model of the sensor at time k,
ck(z|Xk) = intensity of the clutter RFS Ck(Xk) at time k.

Hence the FBRM filter estimates vk(m|Xk) which, under a Gaussian mixture
(GM) implementation, has the form of the PHD (intensity function), shown
in figures 3.2 and 3.3. In the FBRM case, under this representation, each
Gaussian is conditioned on the known vehicle state Xk.

While equation 4.11 defines the PHD measurement update, the follow-
ing subsections describe differing interpretations of the map state, Mk. One
interpretation is as a static (in both feature location and number) unknown
state, while the other is as a static (in location), but monotonically increasing
in number as the vehicle manoeuvres.

4.4.1 Static Map State

The PHD recursion of equation 4.11 estimates the map by fusing the RFS
measurement likelihood with the prior map intensity function. This represents
a direct implementation of the FBRM problem, where a static map is assumed
as M={m1, · · · , mmk}, where mk is the true number of features in the entire
map state. The problem is to estimate the entire number of map features mk,
as well as their respective locations, m. Since the map, M, does not evolve
in time, the predicted multi-feature density is simply obtained by,

pk|k−1(M|Z0:k−1, Xk) = pk−1(M|Z0:k−1, Xk−1) (4.12)

and consequently the predicted intensity required in equation 4.11 is given
by,

vk|k−1(m|Xk) = vk−1(m|Xk−1) (4.13)

where vk−1(m|Xk−1) is the posterior intensity at time k−1. This “brute
force” approach to the FBRM problem requires an intuitive prior on the
map state (analogous to the OG mapping problem), which is then refined
through successive measurement updates.

4.4.2 Pseudo-static Map State

A second contrasting interpretation of the map is to consider a map state
with stationary features, but which grows indefinitely over time due to the
limited sensor field of view. This pseudo-static map model concept was al-
ready introduced in Section 3.4, and is repeated here for completeness. Let
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the map state represent the subset of M, which has been observed by the
on-board sensor, i.e.

Mk−1 = M∩ FoV (X0:k−1) (4.14)

with FoV (X0:k−1)=FoV (X0)∪FoV (X1)∪· · ·∪FoV (Xk−1) where FoV refers
to the field of view of the sensor. Mk−1 therefore represents the set on the
space of features which intersects the union of the individual FoVs over the
vehicle trajectory up to and including time k−1. Given this representation,
although the features in the map state are assumed static, the map itself
evolves in time according to,

Mk = Mk−1 ∪
(

FoV (X0:k) ∩ M̄k−1

)
(4.15)

where, M̄k−1 represents the unexplored map5. This predictive map model
was introduced in Chapter 3, Section 3.4. This models the map state as
static in value, but monotonically increasing in cardinality with time, due
to new features in M entering the field of view of the sensor as the vehicle
traverses the terrain. Therefore, Mk ={m1, · · · , mmk}, where mk is the time
varying cardinality of Mk and mk ≤ m, with m being the total number of
features in the entire map, M.

As introduced in section 3.4, the new features which have entered the FoV
can be modelled by the RFS B(Xk) and the RFS map transition likelihood
required in the recursion equation 4.3 can be written,

fM(Mk|Mk−1, Xk) =
∑

W⊆Mk

fM(W|Mk−1)fB(Mk−W|Xk) (4.16)

where fM(W|Mk−1) is the transition density of the set of features that are
in FoV (X0:k−1) at time k − 1 to time k, and fB(Mk−W|Xk) is the density
of the RFS, B(Xk), of the new features that pass within the field of view at
time k.

It can then be shown that the intensity of the multi-feature predicted
density p(Mk|Z0:k−1, Xk) is given by [3],

vk|k−1(m|Xk) = vk−1(m|Xk−1) + bk(m|Xk) (4.17)

where bk(m|Xk) is the intensity of the new feature RFS, B(Xk).

4.5 PHD-FBRM Filter Implementations

This section outlines suitable implementations of the previously presented
PHD-FBRM frameworks. The static map state assumption is analogous to

5 Mathematically: all features in the entire map, M, not already in Mk−1.
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grid mapping approaches, in that an intuitive prior is set over the entire
map, and inferences are drawn on both the observed and unobserved map. A
Sequential Monte Carlo (SMC) implementation for this map interpretation is
adopted. The pseudo-static approach is analogous to the approach adopted
by the majority of FB map estimation algorithms [1], [36], [17], which uses
Kalman filters for map estimation. For accurate comparison with previous
vector based methods, a Kalman-based, GM implementation is thus adopted.

4.5.1 The Static Map: An SMC PHD-FBRM
Implementation

Recall from section 4.4.1 that the the static feature map filter is analogous
to an occupancy grid in that the number of map elements is fixed a priori.
Dispersing particles in a grid (or any arbitrary) layout, represents all the pos-
sible regions of features occurring, whereas the total weight in a given region
represents the a priori estimate on the number of features in that region.
Thus in this map representation, the particles model both the multitude of
the number of features in the map, as well as their locations.

This section presents a SMC implementation of the static map PHD-
FBRM recursion. Assume at time k−1, a set of weighted particles

{ω(j)
k−1, m

(j)
k−1}

Jk−1

j=1 representing the prior intensity, vk−1(m|Xk−1) is available,
i.e.

vk−1(m|Xk−1) ≈
Jk−1∑

j=1

ω
(j)
k−1δm

(j)
k−1

(m). (4.18)

Exploiting a suitably chosen proposal q, the predicted MC approximation for
particles j = 1, . . . , Jk−1 can be obtained according to,

m̃
(j)
k ∼ q(m|m(j)

k−1,Zk) (4.19)

According to the PHD-FBRM update of equation 4.11, following the mea-
surement Zk at time k, the posterior map intensity may then be approximated
by,

vk(m|Xk) ≈
Jk∑

j=1

ω
(j)
k δ

m
(j)
k

(m) (4.20)

where, based on equation 4.11, the weights are initially calculated via,

ω̃
(j)
k =

[
1 − PD(m̃

(j)
k |Xk) +

∑

z∈Zk

ςz(m̃
(j)
k , Xk)

ck(z) +

Jk∑

i=1

ςz(m̃
(i)
k , Xk)ω

(i)
k−1

]
ω

(j)
k−1 (4.21)
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with,

ςz(m̃
(j)
k , Xk) = PD(m̃

(j)
k |Xk)g(z|m̃(j)

k , Xk). (4.22)

Resampling then results in the required posterior intensity parameters,

{m(j)
k , ω

(j)
k }Jk

j=1. Note that contrary to standard SMC implementations, the

sum of the weights ω
(j)
k used to calculate the updated intensity function of

equation 4.20 is not unity. In this case, the sum
∑Jk

j=1 ω
(j)
k =m̂k, the estimated

dimensionality of the feature map.

4.5.1.1 State Initialisation and Estimation

The static map FBRM implementation requires the map intensity to be a
priori initialised. This is analogous in principle to grid mapping algorithms,
in which the occupancy state is typically initialised at a non-informative value
of 0.5. For the FBRM case, a non-informative initialisation condition is an in-
tensity with uniform spatial distribution over the entire mapping state space.
The integral of the intensity would give the expected number of features
within the map. This can be achieved through an expected feature density,
however, in practice, the results are not overly sensitive to this initialisation
parameter. At any time k, the posterior map estimate can be extracted by
segmenting the posterior particle approximation into m̂k clusters (perhaps
with a K-means clustering algorithm) and using the cluster centroid as the
estimate of the feature location.

4.5.1.2 Particle Representation Considerations

Unlike particle filter implementations for robot localisation filters [37], main-
taining a fixed number of particles for a robotic mapping filter may result
in depletion issues where there is an insufficient number of particles to ade-
quately represent the spatial uncertainty of all estimates features. Therefore
the map is typically resampled with respect to ρ, the number of particles
per feature, to result in Jk = ρm̂k. Furthermore, a static particle transition
(equation 4.19) may deteriorate the accuracy of the filter since the measure-
ments would not be bound to the initial particle lattice (such as is the case for
GBRM filters). A Brownian transition of very small covariance can therefore
improve estimation accuracy.

In practise, the static-map FBRM filter can be prone to large dimensional-
ity estimation errors, especially in the case of features with non-unity detec-
tion probability. In such cases, the following pseudo-static implementation
is better suited, as the transition equation directly accounts for predicted
dimensionality changes in the map, for instance as a result of features only
being detectable well within the sensor field of view.
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4.5.1.3 Static Map, SMC PHD FBRM Pseudo Code

This section details the pseudo-code of the proposed filter. Table 4.1 outlines
in the initialisation algorithm while Table 4.2 describes a simple prediction
algorithm assuming a static map. Table 4.3 shows how to update the map
given the latest measurement and vehicle pose. Tables 4.4 and 4.5 detail the
resampling and estimation processes of the filter.

Table 4.1 SMC-PHD-FBRM-Initialise

Algorithm SMC-PHD-FBRM-Initialise
(
v0(m|X0)

)

// For all map particles
1. for i = 1 to J0 do
// Initialise strategy (e.g. grid lattice)

2. m
(i)
0 = [x y]

// Estimate of feature density

3. ω
(i)
0 = α

4. end for
// The initialised static map PHD

5. v0(m|X0) = {ω(i)
0 , m

(i)
0 }J0

j=1

6. return
(
v0(m|X0)

)

Table 4.2 SMC-PHD-FBRM-Predict

Algorithm SMC-PHD-FBRM-Predict
(
vk−1(m|Xk−1)

)

// PHD Prediction
1. for i = 1 to Jk−1 do
// Static map assumption with perturbation

2. m̃
(i)
k = m

(i)
k−1 + δ(m)

3. end for
4. Jk|k−1 = Jk

// The predicted map PHD

5. vk|k−1(m|Xk) = {ω(j)
k−1, m̃

(j)
k }Jk|k−1

j=1

6. return
(
vk|k−1(m|Xk−1)

)
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Table 4.3 SMC-PHD-FBRM-Update

Algorithm SMC-PHD-FBRM-Update
(
Zk, Xk, vk|k−1(m|Xk−1)

)

// To obtain vk(m|Xk)
1. for j = 1 to zk do

2. ς
(j)
k =

∑Jk|k−1

i=1 N
(
z; Hkm̃

(i)
k , R

)
ω

(i)
k−1

3. end
// evaluate (4.21)
4. for i = 1 to Jk|k−1 do

5. ω̃
(i)
k =

(
1 − PD(m̃|Xk) + ̟

)
ω

(i)
k−1 +

zk∑

j

N
(
zj; Hkm̃

(i)
k , R

)
ω

(i)
k−1

ck(z) + ς
(j)
k

6. end for

7. vk(m̃|Xk) = {ω̃(j)
k , m̃

(j)
k }Jk|k−1

j=1

8. return
(
vk(m̃|Xk)

)

Table 4.4 SMC-PHD-FBRM-Resample

Algorithm SMC-PHD-FBRM-Resample
(
vk(m̃|Xk−1)

)

// Resample the updated PHD

1. m̂k =

Jk|k−1∑

j=1

ω̃
(j)
k

// Normalise weights for resampling

2. Resample { ω̃
(j)
k

m̂k
, m̃

(j)
k }Jk|k−1

j=1

3. Rescale resampled weights by m̂k to get {ω(j)
k−1, m

(j)
k }Jk

j=1

4. vk(m|Xk) = {ω(j)
k , m

(j)
k }Jk

j=1

5. return
(
vk(m|Xk)

)

Table 4.5 SMC-PHD-FBRM-Estimate

Algorithm SMC-PHD-FBRM-Estimate
(
vk(m|Xk)

)

// Initialise the map estimate

1. M̂k = ∅
2. Cluster {m(j)

k }Jk

j=1 into m̂k clusters, ǫ(i)

2. for i = 1 to m̂k do
// concatenate estimate

4. M̂k = [M̂k centroid(ǫ(i))]
6. end for

7. return
(
M̂k

)
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4.5.2 The Pseudo-static Map: A GM PHD-FBRM
Implementation

This section presents a Gaussian mixture implementation of the pseudo-static
map PHD-FBRM recursion. Recall from section 4.4.2, the pseudo-static map
is a map which is modelled as static in feature location, but monotonically
increasing in size as new features are observed. As with the SMC implemen-
tation described in section 4.4.1, the Gaussian components of the mixture
represent the multitude of locations of features in the map, while their masses
represent the number of features in that given region. In this case, let the
prior map intensity, vk−1, be a Gaussian mixture of the form,

vk−1(m|Xk−1) =

Jk−1∑

j=1

w
(j)
k−1N

(
m; μ

(j)
k−1, P

(j)
k−1

)
(4.23)

which is a mixture of Jk−1 Gaussians, with w
(j)
k−1, μ

(j)
k−1 and P

(j)
k−1 being their

corresponding predicted weights, means and covariances respectively. Note
that, in contrast to the previous implementation of Section 4.5.1, the map
state is now time dependent. Let the new feature intensity in equation 4.17,
bk(m|Zk−1, Xk−1) at time k, also be a Gaussian mixture of the form

bk(m|Zk−1, Xk−1) =

Jb,k∑

j=1

w
(j)
b,kN

(
m; μ

(j)
b,k, P

(j)
b,k

)
(4.24)

where, Jb,k defines the number of Gaussians in the new feature intensity at

time k and w
(j)
b,k, μ

(j)
b,k and P

(j)
b,k determine the shape of the new feature GM

proposal density according to a chosen strategy. This is analogous to the
proposal distribution in the particle filter and provides an initial estimate of
the new features entering the map. More details on the chosen strategy are
provided in Section 4.5.2.1. The predicted intensity vk|k−1 is therefore also a
Gaussian mixture,

vk|k−1(m|Xk) =

Jk|k−1∑

j=1

w
(j)
k|k−1N

(
m; μ

(j)
k|k−1, P

(j)
k|k−1

)
(4.25)

which consists of Jk|k−1 = Jk−1 + Jb,k Gaussians representing the union of
the prior map intensity, vk−1(m|Xk), and the proposed new feature intensity
according to equation 4.17 where,
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w
(j)
k|k−1 = w

(j)
k−1

μ
(j)
k|k−1 = μ

(j)
k−1

P
(j)
k|k−1 = P

(j)
k−1

⎫
⎪⎪⎬
⎪⎪⎭

for j ∈ {1, . . . , Jk−1} (previously observed features)

w
(j)
k|k−1 = w

(j−Jk−1)
b,k

μ
(j)
k|k−1 = μ

(j−Jk−1)
b,k

P
(j)
k|k−1 = P

(j−Jk−1)
b,k

⎫
⎪⎪⎬
⎪⎪⎭

for j ∈ {(Jk−1+1), . . . , Jk|k−1} (newly observed features).

Since the measurement likelihood is also of Gaussian form, it can be seen
from equation 4.11, that the posterior intensity, vk is then also a Gaussian
mixture given by,

vk(m|Xk) = vk|k−1(m|Xk)

[
1 − PD(m|Xk) +

∑

z∈Zk

Jk|k−1∑

j=1

v
(j)
G,k(z, m|Xk)

]
.

(4.26)
From the general PHD filter update equation 4.11, the components of the
above equation are given by,

v
(j)
G,k(z, m|xk) = w

(j)
k (z|xk)N (m; μ

(j)
k|k, P

(j)
k|k) (4.27)

w
(j)
k (z|Xk) =

PD(m|Xk)w
(j)
k|k−1q

(j)(z, Xk)

ck(z) +

Jk|k−1∑

i=1

PD(m|Xk)w
(i)
k|k−1q

(i)(z, Xk)

(4.28)

where, q(i)(z, Xk) = N
(
z; Hkμ

(i)
k|k−1, S

(i)
k

)
. The components μ

(j)
k|k and P

(j)
k|k

can be obtained from the standard EKF update equations,

S
(i)
k = Rk + ∇HkP

(i)
k|k−1∇HT

k (4.29)

K
(i)
k = P

(i)
k|k−1∇HT

k [S
(i)
k ]−1 (4.30)

μ
(i)
k|k = μ

(i)
k|k−1 + K

(i)
k (z − Hk(μ

(i)
k|k−1)) (4.31)

P
(i)
k|k = [I − K

(i)
k ∇Hk]P

(i)
k|k−1 (4.32)

with ∇Hk being the Jacobian of the measurement equation with respect to
the landmarks estimated location. As stated previously, the clutter RFS, Ck,
is assumed Poisson distributed [18], [14] in number and uniformly spaced over
the mapping region. Therefore the clutter intensity is given by,
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ck(z) = λcV U(z) (4.33)

where λc is the clutter density per scan, V is the volume of the surveillance
region and and U(z) denotes a uniform distribution on the measurement
space.

4.5.2.1 The FBRM New Feature Proposal Strategy

While any arbitrary strategy can be used for the new feature intensity
bk(m|Zk−1, Xk−1), an intuitive strategy closely related to previous vector-
based implementations is used in this work. As seen in equation 4.24, given a
GM intensity representation, the mean, covariance and weight of each Gaus-
sian must be chosen. The GM component means and covariances determine
the spatial distribution on the likely location of new features entering the

map, with the sum of the weights,
∑Jb,k

j=1 w
(j)
b,k then providing an estimate of

the expected number of new features to appear at time k.
The new feature intensity at time k, bk(m|Zk−1, Xk−1), is adaptively de-

termined by the previous measurements Zk−1 and the previous vehicle state
Xk−1. The components of the GM of equation 4.24 are then determined ac-
cording to

w
(j)
b,k = 0.01, μ

(j)
b,k = h−1(zj

k−1, Xk−1),

P
(j)
b,k = h

′

(μ(j), Xk−1)R[h
′

(μ(j), Xk−1)]
T

where h−1 is the inverse measurement equation, R is the measurement noise
covariance and h

′

(μ(j), Xk−1) is the Jacobian of the measurement model func-
tion with respect to the Gaussian state, j. Therefore, the implementation
initially considers all detections at time k−1 to be potential new features at
time k. This allows for features of low detection probability, which perhaps
only become detectable at close ranges, to be reliably estimated.

4.5.2.2 Gaussian Management and State Estimation

Note from (4.26) that every measurement is combined with every Gaussian
component, resulting in an explosive growth in the number of Gaussians in
the posterior intensity. Therefore, as with previous GM implementations [38],
pruning and merging operations are required. Gaussians which are determined
sufficiently close (through a Mahalanobis distance threshold) are merged into
a singular Gaussian as in [33]. Recall from equation 3.18 that the integral of the
intensity function over a region on the space of features, S, equals the number
of features present in that region. Therefore, in some instances (particularly for
closely lying features and/or high measurement noise), more than one feature
can be represented by a single Gaussian component. A multi-level threshold
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is thus used to estimate the dimensionality according to ǫL, with L being the
number of features modelled by a single Gaussian component. State estimation
occurs by extracting the means and covariances of the Gaussian components
whose associated weights exceed the given thresholds.

4.5.2.3 Pseudo-static Map, GMM PHD FBRM Pseudo Code

This section details the pseudo-code of the GMM-PHD-FBRM filter. Table
4.6 outlines the generation of the feature birth density whilst Table 4.7 details
the construction of the predicted GMM PHD. Table 4.8 presents its update
given the current measurement, Table 4.9 describes the Gaussian Manage-
ment algorithm and finally, Table 4.10 shows the process used to extract
feature map estimates at each time.

Table 4.6 GMM-PHD-FBRM-Birth

Algorithm GMM-PHD-FBRM-Birth
(
Zk−1, Xk−1

)

// Implementation of section 4.5.2.1 (Any strategy is valid)
// For each measurement
1. for i = 1 to zk−1 do
// initialise the mean

2. μ
(i)
b,k = h−1(z

(i)
k−1, Xk−1)

// initialise the covariance

3. P
(i)
b,k = h

′

(m
(i)
b,k, Xk−1)

// initialise the weight

4. ω
(i)
b,k = α

5. end for
// Set the number of birth components
6. Jb,k = zk−1

// Construct birth PHD

7. bk(m|Zk−1, Xk−1) = {μ(i)
b,k, P

(i)
b,k , ω

(i)
b,k}

Jb,k

i=1

8. return
(

bk(m|Zk−1, Xk−1)
)

4.6 Algorithm Performance

This section compares the proposed finite-set-based framework and GM im-
plementation to popular solutions from the literature. Regardless of the choice
of vehicle state representation, the vast majority of feature-based implemen-
tations adopt an EKF framework coupled with data association and map
management methods for propagating the feature map estimate [17], [14],
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Table 4.7 GMM-PHD-FBRM-Predict

Algorithm GMM-PHD-FBRM-Predict
(
Zk−1, Xk−1, vk−1(m|Xk−1)

)

// To obtain equation (4.25)
// PHD Prediction: existing components
1. for i = 1 to Jk−1 do
// Static map assumption

2. μ
(i)
k|k−1 = μ

(i)
k−1, P

(i)
k|k−1 = P

(i)
k−1, ω

(i)
k|k−1 = ω

(i)
k−1

3. end for
// Generate map birth components
4. GMM-PHD-FBRM-Birth(Zk−1, Xk−1)
// PHD Prediction: new components
5. for i = 1 to Jb,k do
// Components from birth proposal bk(m|Zk−1, Xk)

6. μ
(Jk−1+i)
k|k−1 = μ

(i)
b,k, P

(Jk−1+i)
k|k−1 = P

(i)
b,k, ω

(Jk−1+i)
k|k−1 = ω

(i)
b,k

7. end for
// Total number of Gaussian components in vk|k−1(m|Xk−1)
8. Jk|k−1 = Jk−1 + Jb,k

// The predicted map PHD

9. vk|k−1(m|Xk) = {μ(i)
k|k−1, P

(i)
k|k−1, ω

(i)
k|k−1}

Jk|k−1

i=1

10. return
(
vk|k−1(m|Xk)

)

[1], [15], [15], [18]. As emphasised throughout this chapter, in their estima-
tion of the feature map, estimates of the feature number and location are
generated through independent filters. Under such methods, it is not clear
whether Bayes optimality can be achieved, i.e. how is the Bayes risk de-
fined and minimised. A simple nearest-neighbour EKF implementation is first
adopted, coupled with the ‘log-odds’ map management method. The map-
management approach ‘propagates’ the map size by assigning an intuitive log
odds score to each associated or unassociated-associated feature. The prob-
ability of a feature existing can then be readily recovered from the log-odds
representation. For this analysis, a 95% χ2 association confidence window is
chosen. This is identical to the map estimation method of FastSLAM (for a
single particle) [17], however in the analysis of this Chapter, the vehicle tra-
jectory is assumed known and is not estimated. A joint compatibility branch
and bound (JCBB) [39] data association approach, is also adopted, however
given that the true location of the vehicle is assumed known, there is lack of
measurement error correlation which JCBB exploits, thus limiting its useful-
ness for mapping-only trials. As with the proposed framework, map size esti-
mates are extracted by comparison with a predefined threshold, ǫ. Tentative
feature lists are maintained for unconfirmed features, which are then either
added as confirmed features (with an increase in the map size estimate), or
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Table 4.8 GMM-PHD-FBRM-Update

Algorithm GMM-PHD-FBRM-Update
(
Zk, Xk, vk|k−1(m|Xk−1)

)

// Initialise number of Gaussian components
1. L = 0
// Missed detections and Update Terms
2. for i = 1 to Jk|k−1 do
// Increment component counter
3. L = L+1
// miss-detected component update of (4.26)

4. μ
(L)
k =μ

(i)
k|k−1, P

(L)
k =P

(i)
k|k−1

// miss-detected weight update of (4.26)

5. ω
(L)
k =(1 − PD)ω

(i)
k|k−1

// measurement prediction

6. z
(i)
k|k−1 = h(μ

(i)
k|k−1, Xk)

// Calculate Jacobian

7. H = h
′

(μ
(i)
k|k−1, Xk)

// Kalman Gain of (4.30)

8. K
(i)
k = P

(i)
k|k−1[H ]T [S

(i)
k ]−1

// Innovation Covariance of (4.29)

9. S
(i)
k = HP

(i)
k|k−1[H ]T + R

// Updated Covariance of (4.32)

10. P
(i)
U,k = [I − K

(i)
k H ]P

(i)
k|k−1

11. end for
// For each measurement
12. for i = 1 to zk do
// For each map PHD component
13. for j = 1 to Jk|k−1 do
// Updated component mean of (4.31)

15. μ
(L+j)
k =μ

(j)
k|k−1 + K

(j)
k (z

(i)
k − z

(j)
k|k−1)

// Updated GMM component covariance

16. P
(L+j)
k =P

(j)
U,k

// Numerator of (4.27)

17. τ (j) = PDω
(j)
k|k−1|2πS

(j)
k |−0.5

× exp
(
(z

(i)
k − z

(j)
k|k−1)[S

(j)
k ]−1(z

(i)
k − z

(j)
k|k−1)

)

18. end for
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Table 4.8 (Continued)

/ / For each map PHD component
19. for j = 1 to Jk|k−1 do
// denominator of (4.27)

20. ω
(L+j)
k = τ (j)/(c(z) +

∑Jk|k−1

l=1 τ (l))
21. end for
22. L = L+Jk|k−1

23. end for
// Number of components in updated GMM
24. Jk = L
// The updated map PHD

25. vk(m|Xk) = {μ(i)
k , P

(i)
k , ω

(i)
k }Jk

i=1

26. return
(
Xk, vk(m|Xk)

)

deleted. The purpose of the trials is not to indicate superiority over existing
approaches, but to confirm the ‘sensible’ operation of this fundamentally new
approach to propagating and evaluating feature-based map estimates. These
results form the basis for future extensions to the SLAM problem, and to
applications in cluttered environments, where the true qualities of the RFS
framework will be demonstrated.

Simulated trials are carried out based on the feature map shown previ-
ously in Figure 2.5. For simplicity of presentation, the environment shall be
restricted to comprise only point features, however the framework can read-
ily be extended to other less structured environments with the use of robust
feature extraction techniques. For each trial, all filters receive identical mea-
surement sequences. The existence threshold is set at ǫN =N−0.4. Therefore,
for previous approaches, ǫ1 =0.6, since only one feature can be represented per
Gaussian. For the proposed PHD solution, the Gaussian mass indicates the
number of features, thus multi-feature thresholds, ǫ2 = 1.6, ǫ3 = 2.6, ǫ4 = 3.6
etc. are used.

As outlined in [17], the independent map management algorithms incorpo-
rated into vector-based recursions also require score values to be intuitively
set. To this end, an associated feature receives a score of +0.5, while an unas-
sociated feature (within the sensor field of view), receives a score of −0.2. A
simple existence counting rule is therefore established. While other methods
of estimating the map dimensionality exist in the literature [1], as empha-
sised throughout this book, the independence of such approaches from the
Bayesian update, compromises estimation optimally. The following FBRM
error metric results are obtained from equation 4.6, with parameter c = 5,
while the effects of adjusting this parameter are discussed in Section 4.6.5.
Results of applying the RFS map estimation framework in a real, outdoor
environment will be shown in Section 4.6.7.



64 4 An RFS Theoretic for Bayesian Feature-Based Robotic Mapping

Table 4.9 GMM-PHD-FBRM-Prune

Algorithm GMM-PHD-FBRM-Prune
(
vk(m|Xk), Dmin, Tmin, Jmax

)

// Initialise number of Gaussian components
1. L = 0
// Remove components with weight below Tmin

2. I = {i = 1, . . . , Jk|ω(i)
k > Tmin} // Gaussian merging

3. do while I �= ∅
// Increment component counter
4. L = L+1
// Get index of max weight component

5. j = argmax
i∈I

ω
(i)
k

// Cluster those within distance Dmin

6. K = {i ∈ I|(μ(i)
k − μ

(j)
k )T [P

(i)
k ]−1(μ

(i)
k − μ

(j)
k ) ≤ Dmin}

// Combine component weights

7. ω̃
(L)
k =

∑

i∈K

ω
(i)
k

// Weighted average mean

8. μ̃
(L)
k =

1

ω̃
(L)
k

∑

i∈K

ω
(i)
k μ

(i)
k

// Combined covariance

9. P̃
(L)
k =

1

ω̃
(L)
k

∑

i∈K

ω
(i)
k

(
P

(i)
k + (μ̃

(L)
k − μ

(i)
k )(μ̃

(L)
k − μ

(i)
k )T

)

// Remove K from I and repeat
10. I = I - K
11. end for
12. Jk = L
// If max component number exceeded
12. if Jk ≥ Jmax

13. replace {ω̃(i)
k , μ̃

(i)
k , P̃

(i)
k }Jk

i=1 with those of the Jmax largest weights.
11. end for
// The pruned map PHD

13. vk(m|Xk) = {ω̃(i)
k , μ̃

(i)
k , P̃

(i)
k }Jk

i=1

14. return
(
vk(m|Xk)

)

4.6.1 FBRM Error vs. Measurement Noise

Increases in measurement noise (range/bearing), have the subsequent effect
of increasing data association ambiguity in vector based methods, and hence
the difficulty of the FBRM problem. To demonstrate the performance of
the proposed method, trials are carried out in which the measurements are
subjected to increasing amounts of noise. The measurement noise covariance
for each trial is set at R= γ[(0.25m)2 0; 0 (0.5o)2], where γ ∈ [1, . . . , 100].
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Table 4.10 GMM-PHD-FBRM-Estimate

Algorithm GMM-PHD-FBRM-Estimate
(
vk(m|Xk), Tfeature

)

// Initialise the map estimate

1. M̂k = ∅
2. for i = 1 to Jk do

3. if ω
(i)
k > Tfeature

// concatenate estimate

4. M̂k = [M̂k μ
(i)
k ]

5. end if
6. end for

7. return
(
M̂k

)

Figure 4.1 shows a comparison of the final FBRM error of the posterior
feature map estimate for each filter at differing noise inflation values, γ.
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Fig. 4.1 Comparison of FB mapping error vs. measurement noise for the proposed
filters and classical vector EKF solutions.

The result demonstrates the reasonable performance of the new framework
for estimating the feature-based map. Note that for γ ≤ 20, all filters return
comparable map estimates, indicating little data association ambiguity. As γ
increases however, association errors are introduced into the NN and JCBB
solutions resulting in the continual deterioration of the map estimation accu-
racy. Note that the lack of measurement error correlation (since these feature
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map estimation trials assume a known vehicle trajectory), reduces the effec-
tiveness of JCBB. While the error in the GMM-PHD approach also increases,
it appears robust to an increasing γ.

4.6.2 FBRM Error vs. Clutter Rate

Despite widespread acknowledgement that clutter is a prominent component
of measurement uncertainty, a review of the literature indicates that algo-
rithm performance versus increasing clutter rates is not often reported [39],
[14], [18]. In this chapter, the clutter density is defined as the density of
clutter measurements within the sensor field of view. Furthermore, clutter
measurements are uniformly distributed in polar space, i.e. the sensor mea-
surement space. Setting the measurement noise multiplier at a fixed value of
γ =20, which from Figure 4.1 is seen to be the point just prior to significant
deviation in filter performances, the map estimation error for various clutter
densities is analysed.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0.5

1

1.5

2

2.5

3

3.5

4

λc

F
B

R
M

 E
rr

o
r 

(m
) JCBB−EKF−FBRM

NN−EKF−FBRM

GMM−PHD−FBRM

Fig. 4.2 Feature mapping error vs. clutter density for vector based NN-EKF and
JCBB-EKF approaches and the proposed PHD framework. The proposed approach
is seen to perform well in high clutter.

Figure 4.2 plots the map estimation error for clutter densities ranging
from λc = 0 to λc = 0.0707m−2, which correspond to a mean number of
(Poisson distributed) clutter measurements of 0 to 50 per 360o scan within
a maximum range of 15m. Given the commonly adopted map management
methods, it is unspecified how scoring regimes should be altered for a given
clutter rate. Furthermore, feature existence and spatial estimates cannot be
jointly propagated in current frameworks as outlined previously in Chapter 3
(Section 3.2.1). The proposed framework however, directly incorporates clut-
ter probabilities into the filter recursion of equation 4.11, thus no parameter
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adjustment/tuning is required. Although the error for each approach mono-
tonically increases with clutter rate, it is evident that the proposed framework
is robust and produces meaningful map estimates. Note again that the effec-
tiveness of JCBB in these trials is limited by the lack of measurement error
correlation. Comparison with JCBB is thus dropped for the remainder of the
analysis.

4.6.3 FBRM Error vs. Dynamic Object Density

This section demonstrates algorithm robustness in the presence of dynamic
objects, given its static feature assumption in the formulation. Dynamic ob-
jects can corrupt the static map estimation process and, under this frame-
work, are considered to be disturbances, which should not be declared as
features. The measurement noise multiplier is again fixed at γ =20, with the
clutter density set at λc =0.014m−2 (10 clutter measurements per scan). Dy-
namic features are simulated to be uniformly distributed and evolve in time
according to a Brownian motion model, Xk =Xk−1+ωk with ωk ∼ N (0, Q).
The detection probability of a dynamic feature is set equal to that of a static
feature (PD =0.95). Taking a map area to be 20m× 20m (as in Figure 2.5),
the density of dynamic features is increased and the effects on the mapping
accuracy examined. Figure 4.3 plots the posterior map estimation error at
various densities of moving features. The results verify the merits of the pro-
posed approach in that mapping accuracy does not drastically deteriorate in
the presence of dynamic objects.
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Fig. 4.3 Comparison of the map estimation error in the presence of increasing
densities of moving features.
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4.6.4 FBRM Error vs. Detection Probability

The influence of feature detection probability (a joint function of the signal
detection probability and the feature extraction algorithm) is investigated
in this section. Measurement noise and clutter rates are set as in the dy-
namic object trial of Section 4.6.3, while the feature detection probability
is varied from 0.6 to 1. As is the case for the clutter trial of Section 4.6.2,
most map-management methods do not have a feature detection probability
parameter [14], [18]. However, as shown in Figure 4.4 in some instances the
results can in fact be superior, depending on the sequence of measurements
supplied to the filter. As is evident from the update equation 4.11, given a
single missed detection of feature j at time k, the updated weight becomes

(1−PD)w
(j)
k . Given two successive missed detections, the weight becomes

(1−PD)(1−PD)w
(j)
k , which typically would be below the map dimensional-

ity estimation threshold, ǫ. Consequently, given successive missed detections
prior to exiting the sensor field of view, features may not be correctly declared
resulting in an increased mapping error. This problem becomes more evident
as PD decreases. This is in contrast to scoring regimes which depend on the
total number of detections/missed detection of a given feature, as opposed
to the order of the detection sequence. Enhancements to the proposed filter
to improve this aspect are currently under investigation.
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Fig. 4.4 Posterior map estimation error at increasing feature detection probabili-
ties.
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4.6.5 FBRM Error Metric Analysis

Figure 4.5 shows some simple generated input data, with the resulting poste-
rior feature map estimates depicted in Figure 4.6. A simple example is used
to demonstrate the use of the map estimation metric. Visual inspection re-
veals that, for the same set of measurements, a single false feature is declared
with the NN-EKF approach coupled with increased feature localisation error
when compared with the proposed method. For a quantitative comparison of
the map estimate, as introduced in Section 4.3, the c parameter in equation
4.6 gives the relative weighting of feature number and location estimation
error. Further insight into the effects of a given choice of c is shown in Fig-
ure 4.7. As is evident in the figure an increasing c parameter results in an
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Fig. 4.5 A sample FBRM trial illustrating the ground truth (left) and raw mea-
surement data (right).

increasing overall error for the NN-EKF estimate. This is due to the con-
tribution of the single false feature, which correspondingly has no effect on
the error reported by GMM-PHD posterior estimate, since in this particular
trial, it has correctly estimated the true number of features. The c parameter
also determines the maximum distance at which an estimate is classified as
a poorly localised feature estimate, as opposed to a false feature declaration,
and should be chosen based on the maximum allowable estimated feature
location error in a given application.

For a given feature estimate-ground truth assignment, the value of p in
equation 4.6 influences the contribution of the localisation estimation error.
The visually evident improved feature location estimates of Figure 4.6 (right
hand figure) are evident in Figure 4.7 by a lower total error reported for
a given choice of p. To isolate the feature localisation estimation aspect,
comparisons are also shown in which the false features from the NN-EKF
estimate, was both ignored and included.
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Fig. 4.6 Posterior FB map estimates from the classical NN-EKF-FBRM filter (left)
and the proposed GMM-PHD-FBRM filter (right). Visual inspection indicates an
improved map estimate from the proposed method, since all features are correctly
declared (without false alarm) at ‘closer’ distances to the ground truth.
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Fig. 4.7 FBRM error vs. c parameter, for a given value of p. The c parameter
primarily determines the contribution of dimensionality errors to the total reported
error.

4.6.6 Computational Complexity Analysis

At time k, given zk measurements and mk map states, the computational com-
plexity of a naive implementation of a NN-EKF FBRM solution is O(zkmk),
due to conditional feature / measurement independencies given an assumed
known vehicle trajectory and evaluation of the measurement-map state as-
sociations. According to update equation 4.11, the complexity of the pro-
posed solution is also O(zkmk). Absolute computational load is compared
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through side by side C++ implementations of varying map dimensionality,
on Intel(R) duo-core 1.73GHz processors with 2GB RAM. Figure 4.8 reports
the average measurement update execution time, obtained through averaging
1000 Monte Carlo updates, for an increasing map dimensionality. The figure
clearly illustrates the expected linear increase in computation load for both
approaches, with the proposed method requiring more processing time than
a naive NN-EKF implementation, primarily due to the pruning and merging
operations required for GMM implementations. Despite its increased load,
real-time implementation is possible.
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Fig. 4.8 Comparison of the computational complexity, demonstrating the linear
increase in load with map dimensionality.

4.6.7 Outdoor Experiment

This section presents a practical implementation of the proposed finite-set-
based framework for ground-based autonomous vehicles to demonstrate its
applicability to real-world scenarios. The testing environment is a section of
the Nanyang Technological University (NTU) university campus which con-
tains numerous point features (trees, lamp posts, fire hydrants) which com-
prise the point-feature map. Figure 4.9 gives an overview of the testing area,
with the inset vehicle-centric perspective showing the typical point features
present. As with any practical implementation of an estimation algorithm,
ground-truth is essential for error evaluation. For an FBRM implementation,
both the true number and locations of all point features must be determined.
This was achieved as best as possible, through observation of the synchronised
video stream and successive manual scan matching of all the corresponding
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laser data. The manually extracted centroid of all laser point features identi-
fied on the video stream then provided the ground truth locations6. The goal
of an FBRM algorithm is therefore to estimate the number and location of all
the point features within the mapped region (over a path of approximately
300m).

Fig. 4.9 An overview of the testing ground within the NTU university campus.
The path (red) and raw laser measurements (yellow) are superimposed on a portion
of a satellite image of the campus. The inset of a vehicle-centric view shows the
environment mainly comprising point features such as trees and lamp posts. Laser
data is projected into the image plane for verification.

For clarity of presentation, the preceding simulated trials examined only
the final posterior map estimates. However, taking the true map at time k,
Mk, to be the subset of the entire map which has entered the sensor field
of view, the quality of the map estimate can be examined over the course
of the trial. Feature number estimates are compared in Figure 4.10 at each
time step with the true number also provided. It can be seen that feature
number estimation error is introduced into the vector based approach as
the feature initialisation and termination routines generally rely on accurate
data association decisions. These can be prone to failure in environments of
fluctuating detection probabilities and frequent spurious measurements.

6 Note this does not account for the potential presence of any sensor bias.
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Fig. 4.10 The posterior feature map dimensionality estimate following each mea-
surement update compared to the ground truth.

A graphical comparison of the final posterior map estimates is depicted in
Figure 4.11, highlighting some mapping errors from both filters. It is evident
that the proposed approach reports fewer false features, but also missed some
features of poor detectability and/or feature extraction reliability. Features of
low detection probability, may be less consistently identified in the proposed
method as outlined previously in Section 4.6.4. Figure 4.12 plots the FBRM
joint estimation error after each update. The ideal error is the mapping error
(as a function of the entire map), given that each feature that enters the
sensor field of view is instantaneously detected and assigned an error-free
localisation estimate. The proposed method closely follows the ideal error
with temporary glitches as some dimensionality estimation errors occur (as
seen in Figure 4.10). The final posterior estimation error is also seen to be
significantly less than that of the NN-EKF approach.

It is remarked that this example serves to demonstrate that a first or-
der approximation to the proposed framework generates sensible results to
the feature map estimation problem. Better approximation and more efficient
implementation requires further investigation as well as comparisons with nu-
merous sophisticated data association and/or map management techniques.
Such investigations will be left until Chapters 5 and 6 in which RFS SLAM
estimation is demonstrated.

4.7 Summary

This chapter proposed a random set theoretic framework for feature based
(FB) map estimation, in the context of autonomous navigation problems.
Estimating a FB map encompasses estimating the location of an unknown
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number of features, however most current solutions do not jointly estimate
the number of features and their locations. This is necessary as the classi-
cal vector-based approach cannot jointly encapsulate spatial and existence
uncertainty. By adopting a random finite set map and measurement, the un-
certainty in the map size and feature locations can be jointly propagated and
estimated. This new approach therefore generalises the notion of Bayes opti-
mality to the realistic situation of an a priori unknown number of features.
Furthermore, the new framework allows for a mathematically consistent error
metric to be readily adopted for the joint evaluation of FB map estimation
error.

To demonstrate the applicability of the proposed framework to solve real
FB autonomous problems, it was shown how the first order approximation,
the PHD filter, could be implemented. Through simulated and real experi-
mental trials, a proof-of-concept was presented. The proposed filter alleviates
the need for data association and map dimensionality estimation filters, as the
proposed theory incorporates these sources of uncertainty into the Bayesian
recursion. Given its non-reliance on data association, the proposed approach
may be more suited to applications with high clutter and/or a highly ma-
noeuvring vehicle.

4.8 Bibliographical Remarks

Whilst most RM algorithms are occupancy-grid based, feature-based RM al-
gorithms are typically adopted from feature-based SLAM algorithms, which
have been modified to incorporate a known vehicle location. That is, exami-
nation of the posterior map estimate from a feature-based SLAM algorithm
where the vehicle location uncertainty is zero. This has the effect of removing
the cross-correlations between landmarks in the map and the vehicle state, a
property which is also exploited in Rao-Blackwellised FastSLAM implemen-
tations [17].

The most common types of exteroceptive sensors deployed for FBRM
applications are 2D range-bearing measuring devices. Such sensors’ measure-
ments are subject to often assumed Gaussian range and bearing measure-
ment noise, which are typically used to update the time predicted map state
through an EKF filtering framework [18] [15]. Due to the non-linearity of
the measurement equation, Taylor approximations of the ‘extended’ filter are
required.

In general, the FB autonomous framework is closely related to the
multi-sensor, multi-target filtering problem, where the objective is to jointly
estimate the time-varying number of targets and their states from sensor
measurements in the presence of data association uncertainty, detection un-
certainty, clutter and noise. The first systematic treatment of this problem
using random set theory was conceived by Mahler in 1994 [40], which later
developed into finite set statistics (FISST). Moreover, this treatment was
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developed as part of a unified framework for data fusion using random set
theory. [41] provides an excellent overview of FISST.

Mahler refined FISST to what he called generalised FISST and published
this along with the derivation of the Probability Hypothesis Density (PHD)
filter in 2003 [2]. Additionally, the relationship between FISST set deriva-
tives and probability density (as Radon Nikodym derivatives of probability
measures) for random finite sets was established in [4]. Further, generic se-
quential Monte Carlo (SMC) implementations of the multi-object Bayes filter
and PHD filter, with convergence analysis was also provided. Numerous in-
dependent SMC solutions were also proposed [4], [42], [43], [44] and applied
to a wide range of practical problems including feature point tracking in im-
age sequences [45], tracking acoustic sources from Time Difference Of Arrival
(TDOA) measurements [46], and tracking using bi-static radar data [47]. The
reader is referred to [48] for a more complete survey of applications.

As indicated in Chapter 3, the FISST Bayes multi-object filter is generally
intractable. Therefore, in 2000, Mahler proposed to approximate the multi-
object Bayes recursion by propagating the Probability Hypothesis Density
(PHD) of the posterior multi-object state [2], [3].

In 2005 a closed-form solution to the PHD recursion for the linear Gaussian
multi-target model was published together with the Gaussian Mixture (GM)
PHD filter for linear and mildly non-linear multi-target models [33]. While
more restrictive than SMC approaches, Gaussian mixture implementations
are much more efficient. Moreover, they obviate the need for clustering -
an expensive step in the SMC implementation. Convergence results for the
GM-PHD filter were established in [49]. Further extensions were introduced
in 2006 through the cardinalised PHD (CPHD) recursion - a generalisation
of the PHD recursion that jointly propagates the posterior PHD and the
posterior distribution of the number of targets [50], [51]. A detailed treatment
can be found in Mahler’s recent book [3].

Since FB map estimation involves the estimation of a set of features us-
ing noisy, and cluttered measurements, it is evident that the mathematical
foundation of multi-object tracking is related to the FBRM framework and
thus provides motivation to re-examine the rationale and map estimation op-
timality of existing approaches. The following section therefore examines the
underlying estimation theory fundamental to the problem of estimating the
FB map.
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Chapter 5

An RFS ‘Brute Force’ Formulation for
Bayesian SLAM

5.1 Introduction

The feature-based (FB) SLAM scenario is a vehicle moving through an envi-
ronment represented by an unknown number of features. The classical prob-
lem definition is one of “a state estimation problem involving a variable num-
ber of dimensions” [28]. The SLAM problem requires a robot to navigate
in an unknown environment and use its suite of on board sensors to both
construct a map and localise itself within that map without the use of any
a priori information. Often, in the planar navigation context, a vehicle is
assumed to acquire measurements of its surrounding environment using on
board range-bearing measuring sensors. This requires joint estimates of the
three dimensional robot pose (Cartesian x and y coordinates, as well as the
heading angle θ), the number of features in the map as well as their two di-
mensional Euclidean coordinates. For a real world application, this should be
performed incrementally as the robot manoeuvres about the environment.
As the robot motion introduces error, coupled with a feature sensing er-
ror, both localisation and mapping must be performed simultaneously [8].
As mentioned in Chapter 2, for any given sensor, an FB decision is subject
to detection and data association uncertainty, spurious measurements and
measurement noise, as well as bias.

The majority of proposed algorithms, stemming from the seminal work
of [8], adopt an augmented state containing both the vehicle pose estimate
and the estimate of the map. It is important to note however, that the exam-
ple discussed in [8] consisted of a map containing features of unity detection
probability, assumed the measurement-feature association was known, and
that the sensor reported no spurious measurements. With these strict as-
sumptions, the Kalman based SLAM estimate is indeed Bayes optimal. This
work was incorporated into multiple Kalman-based solutions to the SLAM
problem [52].

J. Mullane et al.: Random Finite Sets for Robot Mapping & SLAM, STAR 72, pp. 79–96.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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The presence of detection uncertainty and spurious measurements have
also been long acknowledged in the SLAM community, and subsequently
feature initialisation and termination algorithms are frequently incorporated
into the vector-based SLAM algorithm [52] (also shown in figure 1.1). This
chapter again emphasises that these are required due to the inability of a vec-
tor representation to incorporate uncertainty in the number of dimensions,
and highlights that such methods (which are independent of the filter recur-
sion) compromise filter performance. As shown in this chapter, this can result
in filter divergence and large mapping error, especially in scenarios of high
clutter and large data association ambiguity. Through the re-formulation of
the classical SLAM problem, and by explicitly incorporating the problem of a
variable number of dimensions into the filter recursion, increased robustness
in noisy scenarios will be demonstrated.

A finite set-valued measurement allows for the inclusion of spurious mea-
surements directly into the measurement equation, as introduced in equation
2.10, which is then the union of the set-state dependant measurements (as is
the case in the classical Bayesian SLAM formulations) and the set of spurious
measurements. A finite set-valued map state can be constructed from the set
union of the existing features and the new features which may appear in the
map due to the motion of the robot, as introduced in equation 3.21.

This chapter subsequently casts the SLAM problem into a random set the-
oretic filtering problem that incorporates the joint estimation of the vehicle
pose, feature number and corresponding feature locations. The term “Brute
force” is used to describe the concept presented here, since each estimated
feature is augmented with a hypothesised vehicle trajectory. While this is the-
oretically sound, and simple to implement, its computational burden becomes
obvious when one considers that a single PHD is propagated, which requires
many Gaussian functions to represent a single feature, since that feature
can be augmented with many hypothesised trajectories. Although computa-
tionally intractable in any realistic environment with significant numbers of
features, its implementation is included here to demonstrate a viable, and
theoretically simple, RFS based SLAM solution. A more elegant, and com-
putationally tractable solution, based on Rao-Blackwellisation, will be the
subject of Chapter 6.

This chapter is organised as follows. A recap of the RFS Bayesian, SLAM
formulation is given in Section 5.2, based on the RFS map transition func-
tion introduced in Chapter 3 and the RFS measurement model, introduced
in Chapter 2. Section 5.3 introduces an augmented joint vehicle-map RFS to
incorporate vehicle location uncertainty. The PHD of the augmented state
recursion is then presented, and the PHD-SLAM filter is introduced. Using
Gaussian noise assumptions, an extended-Kalman Gaussian Mixture (GM)
implementation is developed in Section 5.4. This implementation accounts
for the non-linearity in the measurement equation and jointly estimates
the feature number in the map, their corresponding states and the vehi-
cle pose. Importantly, this can be achieved without the need for explicit data
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association decisions and/or feature management algorithms. Simulated map-
ping and pose estimation results are shown in Section 5.6 where the proposed
GM-PHD SLAM filter is tested on simulated data which contains a large
number of spurious measurements. Results show the efficacy of the proposed
framework for solving the Bayesian SLAM problem. Real RFS based SLAM
results in both outdoor and coastal environments (at sea) will be given for
the formulation presented in chapter 6.

5.2 RFS Formulation of the Bayesian SLAM Problem

The starting point for the RFS, SLAM formulation is a recap of the map
transition equation for RFSs, introduced in Chapter 2 (equation 2.10) and
the RFS measurement model introduced in Chapter 3 (equation 3.21).

To incorporate the fact that new features enter the map, Mk, with time,
let the map state Mk be an RFS which evolves in time according to,

Mk = Mk−1 ∪ Bk (5.1)

comprising the set union of the previous RFS multi-feature map, Mk−1 and
the RFS of the new features at time k, Bk. These sets are assumed mutually
independent.

As in equation 2.10 (repeated below for convenience), to contend with the
realistic situation of missed detections and clutter, the measurement is also
modelled as an RFS. Given the vehicle state, Xk, and the map Mk, the
measurement consists of a set union,

Zk =
⋃

m∈Mk

Dk(m, Xk) ∪ Ck(Xk) (5.2)

where Dk(m, Xk) is the RFS of the measurement generated by a feature at
m and Ck(Xk) is the RFS of the spurious measurements at time k.

For each feature, m ∈ Mk, and z ∈ Zk,

Dk(m, Xk) = {z} (5.3)

with probability density PD(m, Xk)g(z|m, Xk) and Dk(Xk, m)=∅ with prob-
ability 1−PD(m, Xk), where PD(mmk , Xk) is the probability of the sensor
detecting the m

th
k feature from pose Xk. Using Finite Set Statistics [3], the

probability density that the sensor produces the measurement set Zk given
the vehicle state Xk and map Mk at time k is then given by [2]:

gk(Zk|Mk, Xk) =
∑

W⊆Zk

gD(W|Mk, Xk)gC(Zk −W) (5.4)
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with gD(W|Mk, Xk) denoting the density of the RFS of observations,
Dk(m, Xk), generated from the features in the observed map Mk given the
state of the vehicle, and gC(Zk−W) denoting the density of the clutter RFS,
Ck. gD(W|Mk, Xk) describes the likelihood of receiving a measurement from
the elements of the set-valued map which incorporates detection uncertainty
and measurement noises. gC(Zk−W) models the spurious measurement rate
of the sensor and is typically a priori assigned [18] [14]. Expanding the multi-
target RFS Bayes recursion of [3] to include the vehicle state, the optimal
Bayesian SLAM filter then jointly propagates the set of features and the
vehicle location according to,

pk(X0:k,Mk|Z0:k, U0:k−1, X0) =

gk(Zk|Mk, Xk)pk|k−1(X0:k,Mk|Z0:k−1, U0:k−1, X0)∫ ∫
gk(Zk|Mk, Xk)pk|k−1(X0:k,Mk|Z0:k−1, U0:k−1, X0)dXkμ(dMk)

(5.5)

where,

pk|k−1(X0:k,Mk|Z0:k−1, U0:k−1, X0) =∫
fX(Xk|Xk−1, Uk−1)pk−1(X0:k−1,Mk−1|Z0:k−1, U0:k−2, X0)dXk−1 (5.6)

and μ is a reference measure on the space of features. As noted in Chapter
2, in a direct implementation of the vector-based Bayesian SLAM recursion
of equation 2.15, computational complexities and multiple integrals generally
lead to intractable solutions. Therefore the PHD approximation introduced
in Chapter 3 is used.

5.3 The ‘Brute Force’ PHD SLAM Filter

The RFS formulation of the general Bayesian SLAM problem was described
in the previous section. This section modifies the formulation to admit a
compact PHD solution. The key to the approach is the introduction of a new
RFS state, Y, which comprises the unordered set of n elements, ζ, such that
at time k,

Yk = {ζ1
k , ζ2

k , · · · , ζnk

k } (5.7)

where each ζk comprises a map state, mk, conditioned on a vehicle trajectory,
X0:k. nk will be defined below. Conditioning each feature state, m, on the
history of vehicle poses X0:k, introduces a conditional independence between
feature measurements allowing the joint states, ζk to be independently prop-
agated through the PHD SLAM framework [17]. Following the introduction
of the PHD SLAM filter in Section 3.4, a “Brute force” PHD SLAM filter
can then be derived if, in equations 3.23 and 3.24,

Γk −→ ζk. (5.8)
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Each element of Yk, evolves in time according to the transition
f(ζk|ζk−1, Uk−1) and, if the feature in ζk is detected by the sensor at
the conditioning pose Xk, a measurement z is generated with likelihood
PD(ζk)gk(z|ζk). The precise reason why the conditioning of the feature state
m, with each of the N hypothesised vehicle trajectories to form the state ζk,
is permitted under the RFS framework is due to Campbell’s theorem, as ex-
plained in Appendix A. Therefore, let the vehicle state be sampled by N par-
ticles, to produce N×mk = nk augmented states, ζk. Given a set of augmented
features, ζk, joint estimates of the number of features, their locations, as well
as the vehicle state, can then be obtained. Hence this SLAM implementation
estimates a potentially extremely large, single PHD (intensity function) con-
taining representations of each feature, conditioned on each vehicle trajectory.
Referring to the GM PHDs of figures 3.2 and 3.3, in the “Brute force” SLAM
case, multiple Gaussians are necessary to represent each single feature, since
each must be conditioned on every one of the N hypothesised trajectories.
In contrast to the FBRM case of Chapter 4, computationally, a copy of each
hypothesised vehicle trajectory (rather than the single known vehicle pose)
is necessary to condition each feature. The PHD-SLAM recursion can then
be formulated in terms of the state elements ζk. The prediction of the state
intensity vk|k−1(ζk) is then given by

vk|k−1(ζk) =

∫
f(ζk|ζk−1, Uk−1)vk−1(ζk−1)dζk−1 + bk(ζk|Xk) (5.9)

=

∫
f(ζk|Xk−1, mk, Uk−1)vk−1(Xk−1, mk)dXk−1 + bk(ζk|Xk)

where f(ζk|ζk−1, Uk−1) incorporates both the assumed vehicle and feature
predicted transition functions. As before, bk(ζk|Xk) models the new features
entering the vehicles FoV. The corrector equation for the combined state,
SLAM intensity function is

vk(ζk) = vk|k−1(ζk)

[
1 − PD(ζk) (5.10)

+
∑

z∈Zk

PD(ζk)gk(z|ζk)

ck(z|Xk) +
∫

PD(ξ)gk(z|ξ)vk|k−1(ξ)dξ

]

where again at time k,

bk(ζk|Xk)= intensity of the new feature RFS Bk,
gk(z|ζk) = likelihood of z, given the joint state ζk,
PD(ζk) = probability of detection of the feature in

ζk, given the pose in ζk,
ck(z|Xk) = intensity of the clutter RFS Ck(Xk).
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In [33], Gaussian noise assumptions were used to obtain closed form solu-
tions for the target tracking PHD filter. Similarly for the PHD-SLAM filter,
GM techniques can be applied to solve the PHD-SLAM joint intensity recur-
sion of equation 5.11. It is also possible to use a particle-based approach [4],
however, for mildly non-linear problems the Gaussian mixture approach is
much more efficient. The following section thus presents a GM implemen-
tation of the PHD-SLAM filter, while a particle based version is left until
Chapter 6.

5.4 Gaussian Mixture (GM) PHD-SLAM

Let the joint intensity, vk−1(ζk−1), at time k−1 be a Gaussian mixture of the
form,

vk−1(ζk−1) =

N×Jk−1∑

i=1

w
(i)
k−1N

(
ζ; μ

(i)
k−1, P

(i)
k−1

)
(5.11)

composed of N × Jk−1 Gaussians, with w
(i)
k−1, μ

(i)
k−1 and P

(i)
k−1 being their

corresponding weights, means and covariances respectively. Note that the

weight, w
(i)
k−1 is a weight on both a particular feature state, m, and a particular

vehicle pose X
(n)
k−1, i.e. on the joint state ζ

(i)
k−1.

Since the map is assumed static, the joint state transition density is

fX(X
(n)
k |X(n)

k−1, Uk−1)δ(mk−mk−1) (5.12)

where X
(n)
k−1 is one of N vehicle pose particles at time k−1 and δ(mk−mk−1)

is a Dirac delta function to mathematically incorporate the fact that the map
must remain static in this case. Let the new feature intensity at time k also
be a Gaussian mixture,

bk =

N×Jb,k∑

i=1

w
(i)
b,kN

(
ζ; μ

(i)
b,k, P

(i)
b,k

)
(5.13)

where w
(i)
b,k, μ

(i)
b,k and P

(i)
b,k determine the shape of the new feature GM proposal

density according to a chosen strategy. This is analogous to the proposal
distribution in the particle filter [17] and provides an initial estimate of the
new features entering the map (see Section 5.4.1). Again, each new feature
density component is conditioned on each predicted vehicle pose particle,

X
(n)
k to form the N×Jb,k components of the GM new feature intensity. That

is, for each hypothesised vehicle trajectory, a set of Jb,k Gaussian components
are initialised. Recalling that each Gaussian models the feature and vehicle
trajectory, Jb,k copies of a given trajectory are distributed to Jb,k features.
This is in contrast to classical Rao-Blackwellised approaches, as presented in
the following chapter, where only a single copy of each trajectory is required.
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However, in the PHD-SLAM filter, this conditioning allows for each joint
state (feature and trajectory) to be independently estimated via the PHD
framework. Therefore, the predicted intensity, vk|k−1(ζk) is also a Gaussian
mixture

vk|k−1(ζk) =

Jk|k−1∑

i=1

w
(i)
k|k−1N

(
ζ; μ

(i)
k|k−1, P

(i)
k|k−1

)
(5.14)

where, Jk|k−1 = N(Jb,k + Jk−1) and,

w
(i)
k|k−1 = w

(i)
k−1

μ
(i)
k|k−1 = μ

(i)
k|k−1

P
(i)
k|k−1 = P

(i)
k−1

⎫
⎪⎪⎬
⎪⎪⎭

for i ∈ {1, . . . , N×Jk−1} (previously observed features)

w
(i)
k|k−1 = w

(i)
b,k

μ
(i)
k|k−1 = μ

(i)
b,k

P
(i)
k|k−1 = P

(i)
b,k

⎫
⎪⎪⎬
⎪⎪⎭

for i ∈ {N×Jk−1 + 1, . . . , N×Jb,k} (newly observed features).

Assuming a Gaussian measurement likelihood, g(z|ζk), analysis of equation
5.11 shows that the joint posterior intensity, vk(ζk), is consequently also a
Gaussian mixture,

vk(ζk) = vk|k−1(ζk)

[
1 − PD(ζk) +

∑

z∈Zk

Jk|k−1∑

i=1

v
(i)
G,k(z|ζk)

]
(5.15)

where,

v
(i)
G,k(z|ζk) = w

(i)
k N (ζ; μ

(i)
k|k, P

(i)
k|k) (5.16)

w
(i)
k =

PD(ζk)w
(i)
k|k−1q

(i)(z, ζk)

ck(z) +

Jk|k−1∑

j=1

PD(ζk)w
(j)
k|k−1q

(j)(z, ζk)

(5.17)

with, q(i)(z, ζk) = N
(
z; Hkμ

(i)
k|k−1, S

(i)
k

)
. The component distributions are

represented by their first and second moments obtained from the standard
EKF update equations,

S
(i)
k = Rk + ∇HkP

(i)
k|k−1∇HT

k (5.18)

K
(i)
k = P

(i)
k|k−1∇HT

k [S
(i)
k ]−1 (5.19)

μ
(i)
k|k = μ

(i)
k|k−1 + K

(i)
k (z − Hkμ

(i)
k|k−1) (5.20)
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P
(i)
k|k = [I − K

(i)
k ∇Hk]P

(i)
k|k−1 (5.21)

with ∇Hk being the Jacobian of the measurement equation with respect to
the features estimated location. As stated previously, the clutter RFS, Ck, is
assumed Poisson distributed [18], [14] in number and uniformly spaced over
the sensor surveillance region. Therefore the clutter intensity is,

ck(z) = λcV U(z) (5.22)

where λc is the average number of clutter returns, V is the volume of the
sensor’s surveillance region and U(z) denotes a uniform distribution over
range and bearing. As stated in Section 5.1, the Gaussian number growth of
this formulation becomes very large and hence Gaussian pruning and merging
methods are used as in [33].

5.4.1 The SLAM New Feature Proposal Strategy

The new feature proposal density, equation 5.13, is similar to the proposal
function used in particle filters, and is used to give some a priori information
to the filter about where features are likely to appear in the map. In SLAM,
with no a priori information, bk, may be uniformly distributed in a non-
informative manner about the space of features (analogous to the prior map
used in occupancy grid algorithms). However, in this work the feature birth
proposal at time k is chosen to be the set of measurements at time k−1, Zk−1.

The sum
∑N×Jb,k

i=1 w
(i)
b,k then gives an estimate of the expected number of new

features to appear at time k. The components of the Gaussian mixture used
to form bk are determined in exactly the same way as for the FBRM case,
described in Section 4.5.2.1.

5.5 Brute Force SLAM Pseudo-code

This section details the pseudo-code of the proposed PHD-SLAM algorithm.
Table 5.1 presents the birth proposal algorithm which accommodates new
features entering the map as well as aiding particle diversity since each new
potential feature is seeded with a corresponding potential vehicle pose. Table
5.2 outlines in the prediction module while Tables 5.3 and 5.3 describe the
update module. Vehicle pose and map estimation are achieved via the process
detailed in Table 5.4.
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Table 5.1 PHD-SLAM-Birth

Algorithm PHD-SLAM-Birth
(
Zk−1, vk−1(ζ|Zk−1)

)

// Generate eqn.(5.13). Note: Any arbitrary strategy is valid.
// For each measurement
1. for i = 1 to zk−1 do
// For each particle
2. for j = 1 to Jk−1 do
// initialise the feature mean

3. νb,k = h−1(z
(i)
k−1, X

(j)
k−1)

// initialise the concatenated state mean

4. μ
((i−1)×Jk−1+j)
b,k = [X

(j)
k−1 νb,k]

// initialise the covariance

5. P
((i−1)×Jk−1+j)
b,k = h

′

(νb,k, X
(j)
k−1)

// initialise the weight

6. ω
((i−1)×Jk−1+j)
b,k = α

7. end for
8. end for
// Set the number of birth components
9. Jb,k = zk−1 × Jk−1

// Construct birth PHD

10. bk(ζ|Zk−1) = {μ(i)
b,k, P

(i)
b,k, ω

(i)
b,k}

Jb,k

i=1

11. return
(

bk(ζ|Zk−1)
)

5.6 Algorithm Performance

This section analyses the performance of the proposed GM-PHD SLAM filter
in a simulated environment, and compares it to a FastSLAM implementation
using maximum likelihood data association decisions and Log-Odds feature
management [17]. The vehicle is assumed to be travelling at 3ms−1 while
subject to velocity and steering input noises of 1ms−1 and 5o respectively.
Only 10 particle samples are used for both filters and both filters receive
the same noisy input samples and sensor measurements. Two simulated com-
parisons are performed in an ‘Easy’ and ‘Difficult scenario’. For the ‘easy’
scenario, the clutter parameter, λc = 0 m−2, feature detection probability is
0.95, and the measurement noises are 0.25m in range and 0.5o in bearing.
For the ‘difficult’ scenario, λc = 10 m−2 (i.e. 10 false alarms occur for every
square metre of area within the sensors FoV), feature detection probability is
again 0.95 and the measurements noises are set at 12.5m in range and 25o in
bearing. The effect of the artificially large measurement noises are to give the
appearance of closely spaced features, hampering data association decisions
and feature map building.
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Table 5.2 PHD-SLAM-Predict

Algorithm PHD-SLAM-Predict
(
vk−1(ζ|Zk−1), Uk−1

)

// Generate eqn.(5.14)
// Generate map birth components
1. GMM-PHD-FBRM-Birth(Zk−1, vk−1(ζ|Zk−1))
// append PHD with birth components
2. for i = 1 to Jb,k do

3. ω
(Jk−1+i)
k−1 = ω

(i)
b,k

4. μ
(Jk−1+i)
k−1 = μ

(i)
b,k

5. P
(Jk−1+i)
k−1 = P

(i)
b,k

6. end for
// increment component counter
7. Jk|k−1 = Jk−1 + Jb,k

8. for i = 1 to Jk|k−1

// sample a pose from the vehicle model

9. X
(i)
k|k−1 ∼ fX(X

(i)
k |X(i)

k−1, Uk−1)

// static map assumption

10. ν
(i)
k|k−1 = ν

(i)
k−1

11. μ
(i)
k|k−1 = [X

(i)
k|k−1 ν

(i)
k|k−1]

12. P
(i)
k|k−1 = P

(i)
k−1

13. ω
(i)
k|k−1 = ω

(i)
k−1

14. end for
// The predicted SLAM PHD

15. vk|k−1(ζ|Zk−1) = {μ(i)
k|k−1, P

(i)
k|k−1, ω

(i)
k|k−1}

Jk|k−1

i=1

16. return
(
vk|k−1(ζ|Zk−1)

)

Figure 5.1 shows the estimated vehicle trajectory and corresponding fea-
ture map from both filters, in the case of the ‘Easy scenario’.

Both results compare well with ground truth (green). This result veri-
fies the accuracy of the proposed PHD-SLAM filter, in its ability to jointly
estimate the vehicle trajectory, the number of features, and their correspond-
ing location, without the need for external data association and feature map
management methods, as are required by FastSLAM (and other vector-based
solutions).

The missed feature declaration highlights an issue of the proposed method
with respect to PD(ζk). In the presented implementation, this is simply a
binary function which has an assumed value of 0.95 if the feature is predicted
to be within the sensor FoV, and 0 if it is not. Vehicle and feature estima-
tion uncertainty may result in a feature erroneously being hypothesised of
being within the FoV, or vice-versa. If the proposed filter then receives a
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Table 5.3 PHD-SLAM-Update

Algorithm PHD-SLAM-Update
(
Zk, vk|k−1(ζ|Zk−1)

)

// Initialise number of Gaussian components
1. L = 0
// Missed detections and Update Terms
2. for i = 1 to Jk|k−1 do
// Increment component counter
3. L = L+1
// Updated feature equals predicted feature

4. νk =ν
(i)
k|k−1, P

(L)
k =P

(i)
k|k−1

// Updated joint mean

5. μ
(L)
k =[νk X

(i)
k|k−1]

// weight decreased

6. ω
(L)
k =(1 − PD)ω

(i)
k|k−1

// measurement prediction

7. z
(i)
k|k−1 = h(ν

(i)
k|k−1, X

(i)
k|k−1)

3// Calculate Jacobian

8. H = h
′

(ν
(i)
k|k−1, X

(i)
k|k−1)

// Innovation Covariance of (5.18)

9. S
(i)
k = HP

(i)
k|k−1[H ]T + R

// Kalman Gain of (5.19)

10. K
(i)
k = P

(i)
k|k−1[H ]T [S

(i)
k ]−1

// Updated Covariance of (5.21)

11. P
(i)
U,k = [I − K

(i)
k H ]P

(i)
k|k−1

12. end for
// For each measurement
13. for i = 1 to zk do
// For each component
14. for j = 1 to Jk|k−1 do
// Updated map component mean

15. νk =ν
(j)
k|k−1 + K

(j)
k (z

(i)
k − z

(j)
k|k−1)

// Updated joint mean

16. μ
(L+j)
k =[νk X

(i)
k|k−1]

// Updated GMM component covariance

17. P
(L+j)
k =P

(j)
U,k

// Numerator of (5.16)

18. τ (j) = PDω
(j)
k|k−1|2πS

(j)
k |−0.5

× exp
(
(z

(i)
k − z

(j)
k|k−1)[S

(j)
k ]−1(z

(i)
k − z

(j)
k|k−1)

)

19. end for
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Table 5.3 (Continued)

/ / For each map PHD component
20. for j = 1 to Jk|k−1 do
// denominator of (5.16)

21. ω
(L+j)
k = τ (j)/(c(z) +

∑Jk|k−1

l=1 τ (l))
22. end for
23. L = L+Jk|k−1

24. end for
// Number of components in updated GMM
25. Jk = L
// The updated map PHD

26. vk(ζ|Zk) = {μ(i)
k , P

(i)
k , ω

(i)
k }Jk

i=1

27. return
(
vk(ζ|Zk)

)

Table 5.4 PHD-SLAM-Estimate

Algorithm PHD-SLAM-Estimate
(
vk(ζ|Zk), Tfeature

)

// Initialise the map estimate

1. M̂k = ∅
2. Ωk = 0
3. for i = 1 to Jk do

4. Ωk = Ωk + ω
(i)
k

5. if ω
(i)
k > Tfeature

// concatenate estimate

6. M̂k = [M̂k ν
(i)
k ]

7. end if
8. end for
// expected pose

9. X̂k =
1

Ωk

Jk∑

i=1

ω
(i)
k X

(i)
k

10. return
(
X̂k,M̂k

)

measurement contrary to the prediction, the resulting feature weight may
be detrimentally reduced, and a missed feature declaration may occur. The
uncertainty in the estimated sensor FoV is not considered in this implemen-
tation.

The raw measurements as well as the final posterior joint estimate of both
filters for the ‘hard’ scenario are presented respectively in figures 5.2 and
5.3. As can be seen, the FastSLAM filter shows divergence of the estimated
vehicle trajectory from its true value, as well as many falsely estimated map
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features. The proposed filter however, displays dramatically reduced feature-
based mapping error in the face of large data association uncertainty and
large quantities of spurious measurements, reporting only a single false fea-
ture and a single missed feature over the entire run. This is expected, as the
clutter rate is integrated directly into the filter recursion in an optimal man-
ner and feature management is performed jointly with feature and vehicle
location estimation. The key to this vast difference in performance in clut-
tered environments, is evident in figure 5.4. The figure shows the estimated
number of features in the map over time, for both the discussed filters, as
well as the number of false measurements at each time instant. The proposed
filter accurately tracks the true number of features over time, whereas the
FastSLAM filter deviates drastically in the face of the challenging spurious
measurements and data association ambiguities. Estimating the true number
of state dimensions influences the accuracy of the overall SLAM filter. The es-
timated vehicle trajectory also displays less error than that of the FastSLAM
approach. Similarly to FastSLAM, increased trajectory estimation accuracy
may be possible by increasing the number of pose samples. Figure 5.5 com-
pares the estimated vehicle heading over the course of the test, highlighting
the increased accuracy of the proposed filter.

Fig. 5.1 Comparative results for the proposed GM-PHD SLAM filter (black) and
that of FastSLAM (red), compared to ground truth (green).
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Fig. 5.2 The predicted vehicle trajectory (blue) along with the raw sensor measure-
ments for the ‘hard’ scenario, at a clutter density of 0.03m−2. Also superimposed
are the ground truth trajectory and feature map (black crosses).

Fig. 5.3 The estimated trajectories of the GM-PHD SLAM filter (black) and that
of FastSLAM (red). Estimated feature locations (crosses) are also shown with the
true features (green circles)
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5.6.1 A Note on Computational Complexity

As is evident from the update of equation 5.15, the proposed algorithm scales
linearly with O(NJk|k−1zk), which equals that of a naive FastSLAM imple-
mentation. Future work will address reducing this to a Log order complexity
of the number predicted map states Jk|k−1. The presented results illustrate
the effectiveness of the new finite-set based SLAM framework, and the pro-
posed GM-PHD implementation, when compared to vector-based solutions
which fail to jointly consider the entire system uncertainty.

5.7 Summary

This chapter outlined a ‘Brute force’ formulation of the Bayesian SLAM prob-
lem, using random set theory. The set theoretic approach allows for detection
uncertainty, spurious measurements as well as data association uncertainty
to be incorporated directly into the filter recursion. This is in contrast to
vector-based SLAM which requires additional algorithms and pre/post pro-
cessing to solve the data association problem prior to filter update, and to
extract estimates of the number of features present in the map. These are
necessary as such sources of uncertainty are not considered in the classical
vector-based measurement model and subsequent filter recursion. Previous
Bayesian SLAM solutions also lack a concept of Bayesian optimality as the
variable dimensionality problem is not jointly considered.

Propagating the first order statistic of the random set (the probability hy-
pothesis density) is a common method of reducing the computational require-
ments of implementing the set-valued Bayesian recursion. By augmenting the
feature state with a history of vehicle poses, conditional independencies be-
tween the features and the vehicle state are introduced. The joint vehicle
feature RFS was shown to maintain the necessary Poisson assumptions for
application of the tracking based PHD recursion for the PHD-SLAM prob-
lem. A Gaussian mixture implementation of the PHD-SLAM filter was out-
lined assuming a Gaussian system with non-linear measurement and process
models. The proposed finite-set filter was compared to a FastSLAM imple-
mentation with explicit (per particle) data association decisions and feature
management methods. Results show the proposed filter performing similarly
to FastSLAM in an ‘easy’ scenario, and considerably outperforming it in a
‘hard’ scenario.
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5.8 Bibliographical Remarks

As explained in Chapter 2, it is critical for data association algorithms not
to use falsely declared targets in their hypothesis decision making process.
In [17], This is a well known fact in the SLAM community, which has been
addressed by various researchers. For example, M. Montemerlo et. al. use
methods from occupancy-grid based robotic mapping [12] to estimate the
number of landmarks in the map state. A probabilistic evidence for landmark
existence is derived from the measurement and propagated through a Log-
Odds discrete Bayes recursion. This discrete recursion is independent of the
main RM state estimation filter and is effectively a post-processing of the map
state estimate at each time step. The output of the maximum likelihood data
association decision is incorporated into the existence update. If the landmark
is not associated (and therefore assumed undetected) the existence posterior
is reduced, thus inherently assuming that the probability of detection of all
the landmarks is unity. Based on a predefined-defined log-odds threshold,
landmarks are then either added or removed from the map state. The number
of landmarks in the map state at any given time then gives an estimate of
the number of landmarks in the map, as every component of the map state
is assumed to be a valid landmark. However, since in reality, landmarks have
non-unity detection probabilities, a missed-detection does not always indicate
the non-presence of the landmark.

Another method of landmark management was introduced by D. Makarsov
in [14] and used in [1] which outlined the so-called ‘Geometric feature track
quality’ measure of landmark existence. This measure is inversely propor-
tional to the innovation between a predicted landmark and the measurements
and is therefore only updated when measurements are made (and associated).
It does not consider the frequent sensor errors in terms of detection uncer-
tainty and spurious measurements. Other techniques [18] simply use the num-
ber of successive associations over a fixed set of measurement frames which
requires both low clutter rates and correct association hypotheses. Again,
such methods are effectively post/pre-processing techniques which are inde-
pendent of the state estimating filter recursion.

Sequential Monte Carlo (SMC) solutions to Bayesian SLAM also gained
popularity [28] through the use of Rao-Blackwellised particle filters. Fast-
SLAM [17] displayed impressive results by sampling over the vehicle trajec-
tory and applying independent Kalman filters to estimate the location of the
hypothesised map features. By conditioning the map estimates on the history
of vehicle poses, a conditional measurement independence is invoked which
allows the correlations introduced in [8] to be discarded.

A Gaussian mixture solution to the Bayesian SLAM problem was also
described in [53] which approximated both the transition and measurement
densities as Gaussian mixtures and propagated the joint state through a
Bayes recursion.
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Extensions to of the PHD filter to SLAM were first given in [54] [55], upon
which this chapter is based.



Chapter 6

Rao-Blackwellised RFS Bayesian SLAM

6.1 Introduction

This chapter proposes an alternative Bayesian framework for feature-based
SLAM, again in the general case of uncertain feature number and data as-
sociation. As in Chapter 5, a first order solution, coined the probability hy-
pothesis density (PHD) SLAM filter, is used, which jointly propagates the
posterior PHD of the map and the posterior distribution of the vehicle tra-
jectory. In this chapter however, a Rao-Blackwellised (RB) implementation
of the PHD-SLAM filter is proposed based on the GM PHD filter for the map
and a particle filter for the vehicle trajectory, with initial results presented
in [56] and further refinements in [57].

A tractable PHD approximation to the SLAM problem is derived, which
propagates the posterior PHDs of multiple trajectory-conditioned maps and
the posterior distribution of the trajectory of the vehicle. Furthermore, this
approach to SLAM admits the concept of an ‘expected’ map via the PHD
construct, which is not available in previous SLAM approaches.

The chapter is organised as follows. Section 6.2 discusses the factorised
RFS SLAM recursion, in which the posterior density of the map, conditioned
on the trajectory, and the trajectory itself can be propagated jointly. The
RFS framework is then applied to this factorised solution, where it is demon-
strated that subtle differences, regarding the use of sets, make a direct, naive
implementation of FastSLAM to the RFS problem inappropriate. In particu-
lar, the likelihood of the measurement, conditioned on the trajectory, which
is necessary for the calculation of the particle weights, cannot be approxi-
mated under an EKF framework, as in FastSLAM [58]. Solutions, which give
a closed form solution to this problem, are presented in this section. Section
6.3 outlines a Rao-Blackwellised implementation of the PHD-SLAM filter.
The necessary steps to implement the PHD filter for the estimation of the
map and the vehicle trajectory are given, along with pseudo code. Section
6.4 presents and discusses the Rao-Blackwellised RFS SLAM performance.

J. Mullane et al.: Random Finite Sets for Robot Mapping & SLAM, STAR 72, pp. 97–126.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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Demonstrations of simulated examples are given, due to the simplicity of
generating both trajectory and map ground truth values, necessary for true
performance evaluation assessment. This is followed by an implementation
with real, short range, millimetre wave (MMW) radar data, and a mobile
robot platform, in a car park environment. The advantages of these sensors
over other devices such as laser range finders is discussed in [16]. Data sets
from the radar are recorded, along with odometry and single axis gyro rate
data, from a moving vehicle. Comparisons are made with classical, vector
based, EKF SLAM which utilises the Joint Compatibility Branch and Bound
(JCBB) [39] data association method and FastSLAM with Multiple Hypoth-
esis (MH) data association. Further comparative results, in a much larger
scenario, where accurate SLAM performance in the presence of high clutter
is essential, are demonstrated at sea, in a coastal environment, using an “Au-
tonomous kayak” [59] as the vehicle and a commercially available X-Band
radar. The performance improvement, in the presence of clutter is clearly
demonstrated. Comparisons and discussions of the computational complex-
ity of the algorithms is also given.

6.2 The Rao-Blackwellised (RB) PHD-SLAM Filter

Since the full RFS-SLAM Bayes filter of equations 2.14 and 2.15 is numer-
ically intractable, it is again necessary to look for tractable but principled
approximations. This section derives a recursion that jointly propagates the
posterior PHD of the map and the posterior density of the vehicle trajec-
tory. Analogous to FastSLAM, the RFS-SLAM recursion can be factorised
as shown in Section 6.2.1. Section 6.2.2 discusses the PHD estimator in the
context of this factorised recursion, Section 6.2.3 addresses the PHD represen-
tation of the map component only while Section 6.2.4 extends this algorithm
to perform SLAM.

6.2.1 The Factorised RFS-SLAM Recursion

Using standard conditional probability, the joint posterior RFS-SLAM den-
sity of equation 2.15 can be decomposed as,

pk(Mk, X1:k|Z0:k, U0:k−1, X0) =

pk(X1:k|Z0:k, U0:k−1, X0)pk(Mk|Z0:k, X0:k). (6.1)

Thus, the recursion for the joint RFS map-trajectory posterior density ac-
cording to equation 2.15 is equivalent to jointly propagating the posterior
density of the map conditioned on the trajectory and the posterior density
of the trajectory. In this section, as before, for compactness,
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pk|k−1(Mk|X0:k) = pk|k−1(Mk|Z0:k−1, X0:k) (6.2)

pk(Mk|X0:k) = pk(Mk|Z0:k, X0:k) (6.3)

pk(X1:k) = pk(X1:k|Z0:k, U0:k−1, X0) (6.4)

and it follows that,

pk|k−1(Mk|X0:k) =

∫
fM(Mk|Mk−1, Xk)pk−1(Mk−1|X0:k−1)δMk−1

(6.5)

pk(Mk|X0:k) =
gk(Zk|Mk, Xk)pk|k−1(Mk|X0:k)

gk(Zk|Z0:k−1, X0:k)
(6.6)

pk(X1:k) = gk(Zk|Z0:k−1, X0:k)
fX(Xk|Xk−1, Uk−1)pk−1(X1:k−1)

gk(Zk|Z0:k−1)
. (6.7)

Apart from adopting RFS likelihoods for the measurement and map, the
recursion defined by equations 6.5, 6.6 and 6.7 is similar to that in Fast-
SLAM [58], [60]. However, the use of RFS likelihoods has important conse-
quences in the evaluation of equation 6.7, to be seen later in Section 6.2.4. In
FastSLAM, it should be noted that the map recursion of equation 6.6 is fur-
ther decomposed into the product of K independent densities for each of the
K features assumed to exist in the map. Furthermore, FastSLAM is condi-
tioned on the inherently unknown data association assignments. In contrast,
RFS-SLAM is not conditioned on any data association hypotheses to deter-
mine the number of features to estimate and the recursion of equation 6.6
is that of a RFS feature map. Consequently, the propagation of the map in-
volves probability densities of random finite sets and marginalisation over the
map involves set integrals. Similar to FastSLAM, the effect of the trajectory
conditioning on RFS-SLAM is to render each feature estimate conditionally
independent and thus the map correlations, critical to EKF-SLAM [1], are
not required.

6.2.2 The PHD in RFS-SLAM

Recall from Section 3.3.1, that an optimal estimator for a random vector is
the conditional expectation. Many state-of-the-art SLAM algorithms adopt
Sequential Monte Carlo (SMC) methods. It is well known that SMC tech-
niques are more amenable to expectation operations than maximisation oper-
ations, since if p is approximated by a set of weighted samples {η(i), X(i)}N

i=1,
then [61], [62],

N∑

i=1

η(i)X(i) → E[X ] (6.8)
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as N→∞. However, in FastSLAM [58], it is common to choose the trajectory
sample with the highest weight as the estimate of the vehicle path, and its
corresponding map, as the estimate of the map. It is easier to establish con-
vergence in SMC implementations if we use the expected path and expected
map. However, it is not clear how the expected map is interpreted.

The PHD construct allows an alternative notion of expectation for maps,
thereby fully exploiting the advantage of an SMC approximation. The PHD,
v, is a function defined on the feature space satisfying equation 3.18. Recall
from Section 3.3.4.1, that the value of the PHD at a point gives the expected
number of features at that point while the integral over any given region
gives the expected number of features in that region. A salient property of
the PHD construct in map estimation is that the posterior PHD of the map is
indeed the expectation of the trajectory-conditioned PHDs. More concisely,

vk(m) = E [vk(m|X1:k)] , (6.9)

where the expectation is taken over the vehicle trajectory X1:k. This result
follows from the standard properties of the PHD (intensity function) of an
RFS, see for example classical texts such as [31], [32]. Thus the PHD con-
struct provides a natural framework to average feature map estimates, while
incorporating both unknown associations and different feature numbers. This
differs dramatically from vector based map averaging methods which require
feature identification tracking and rule-based combinations [63]. In contrast,
map averaging for grid-based maps is straight forward due to both known
grid alignments and number of cells. While the practical merits of an ex-
pected feature map estimate for SLAM using a single sensor may be unclear
at this time, related operations such as ‘feature map addition’ may be of
use in sensor fusion and multi-robot SLAM applications. Furthermore, the
PHD construct admits a Bayes optimal estimator for the map, as discussed
previously in Section 3.3.1.

6.2.3 PHD Mapping

This section details the trajectory-conditioned PHD mapping recursion of
equation 6.6, as was first proposed in [64]. The predicted and posterior RFS
maps are approximated by Poisson RFSs with PHDs vk|k−1(m|X0:k) and
vk(m|X0:k) respectively,

pk|k−1(Mk|X0:k) ≈

∏
m

vk|k−1(m|X0:k)

exp
(∫

vk|k−1(m|X0:k)dm
) (6.10)
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pk(Mk|X0:k) ≈

∏
m∈Mk

vk(m|X0:k)

exp
(∫

vk(m|X0:k)dm
) . (6.11)

In essence, this approximation assumes that features are IID and the number
of features is Poisson distributed. This PHD approximation has been proven
to be powerful and effective in multi-target tracking [3]. Poisson approxi-
mations for the number of new features have also been adopted in certain
SLAM solutions [14]. In light of the above advantages of representing an RFS
with sequential Monte Carlo methods, the PHD filter for the SLAM problem
can be implemented in Rao-Blackwellised form. Again, referring to the PHD
predictor – corrector of equations 3.23 and 3.24, substituting

Γk −→ m|X0:k (6.12)

the PHD predictor equation then becomes

vk|k−1(m|X0:k) = vk−1(m|X0:k−1) + b(m|Xk) (6.13)

where b(m|Xk) is the PHD of the new feature RFS, B(Xk), initially intro-
duced in Section 3.4.

The corresponding Rao-Blackwellised, PHD corrector equation is then

vk(m|X0:k) = vk|k−1(m|X0:k)

[
1 − PD(m|Xk)+

∑

z∈Zk

PD(m|Xk)gk(z|m, Xk)

ck(z|Xk) +
∫

PD(ξ|Xk)gk(z|ξ, Xk)vk|k−1(ξ|X0:k)dξ

]
(6.14)

where

PD(m|Xk) = the probability of detecting a feature at
m, from vehicle pose Xk.

ck(z|Xk) = PHD of the clutter RFS Ck(Xk) (in equation 2.10)
at time k and,

gk(z|m, Xk) = the measurement model of the sensor at time k.

(6.15)

In contrast to the “Brute force” SLAM approach of chapter 5, the RB PHD
SLAM filter estimates multiple, conditionally independent PHDs (intensity
functions). Each independent map PHD, is conditioned on each of the N hy-
pothesised vehicle trajectories (particles). Referring again to the GM example
representations of PHDs in figures 3.2 and 3.3, in any particular map PHD,
each Gaussian representing a/some possible feature(s) is conditioned on one
of the N hypothesised vehicle trajectories. N such conditionally independent
PHDs, one per hypothesised trajectory, are then propagated.
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6.2.4 PHD-SLAM

This section extends the trajectory-conditioned PHD mapping recursion to
the SLAM problem. With the hindsight of FastSLAM [58], the most obvious
extension of PHD mapping [64] to SLAM is to exploit the factorisation equa-
tions 6.5, 6.6 and 6.7, e.g. PHD for mapping and particle filtering for localisa-
tion. This technique requires the computation of the posterior density of the
vehicle trajectory in equation 6.7, in particular the term gk(Zk|Z0:k−1, X0:k),
which requires set integration,

gk(Zk|Z0:k−1, X0:k) =

∫
p(Zk,Mk|Z0:k−1, X0:k)δMk. (6.16)

This set integral is numerically intractable and a naive approach is to directly
apply the EKF approximation proposed for FastSLAM [65]. However, an EKF
approximation cannot be used since the likelihood equation 6.16, defined on
the space of finite-sets, and its FastSLAM counterpart, defined on a Euclidean
space, are two fundamentally different quantities and it is not known how they
are even related. Therefore, in this case, it is fundamentally incorrect to use
the EKF approximation in [58] as it will not result in a valid density, and
thus its product with equation 6.6 cannot give the joint posterior of the map
and pose. An EKF approximation requires a hypothesised data association
assignment. Since there is no concept of data association in the RFS-SLAM
framework (there is no fixed ordering of features or measurements in the
state), alternative methods of evaluation of equation 6.16 are required.

Fortunately, by rearranging equation 6.6, it can be seen that
gk(Zk|Z0:k−1, X0:k) is merely the normalising constant,

gk(Zk|Z0:k−1, X0:k) =
gk(Zk|Mk, Xk)pk|k−1(Mk|X0:k)

pk(Mk|X0:k)
. (6.17)

Note in the above, that the LHS does not contain the variable Mk, while
the RHS has Mk in both the denominator and numerator. In essence, Mk

in equation 6.17 is a dummy variable, and thus equation 6.17 holds for any
arbitrary choice of Mk. This allows the substitution of any choice of Mk to
evaluate gk(Zk|Z0:k−1, X0:k). This is an important result, which allows for
the likelihood of the measurement conditioned on the trajectory (but not the
map), to be calculated in closed-form, as opposed to using the EKF approxi-
mations in [58]. The following considers two simple choices: (derivations can
be seen in Appendix B.)

6.2.4.1 The Empty Strategy

It was mentioned in Section 3.3.4.4, that if the RFS Mk is Poisson dis-
tributed in its number, and the points within Mk are IID distributed, then
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the probability density of Mk can be recovered exactly from the PHD inten-
sity function according to equation 3.19. Similarly the predicted and posterior
RFS maps can be approximated by Poisson RFSs with PHDs vk|k−1(m|X0:k)
and vk(m|X0:k) respectively,

pk|k−1(Mk|X0:k) ≈

∏
m∈Mk

vk|k−1(m|X0:k)

exp
(∫

vk|k−1(m|X0:k)dm
) (6.18)

pk(Mk|X0:k) ≈

∏
m∈Mk

vk(m|X0:k)

exp
(∫

vk(m|X0:k)dm
) . (6.19)

Setting Mk = ∅, and using the Poisson RFS approximations, equation 6.18
and equation 6.19, as well as the RFS measurement likelihood, equation 5.4
shown in Section 5.2, it follows that (see Appendix B)

gk(Zk|Z0:k−1, X0:k) ≈ κZk

k exp

(
m̂k − m̂k|k−1 −

∫
ck(z|Xk)dz

)
, (6.20)

where, κZk

k =
∏

z∈Zk

ck(z|Xk) with, ck(z|Xk) being the PHD of the measure-

ment clutter RFS Ck(Xk). In addition, m̂k =
∫

vk(m|X0:k)dm and m̂k|k−1 =∫
vk|k−1(m|X0:k)dm. Equation 6.20 gives the closed form likelihood of the

measurement, conditioned on the trajectory, and not on the map.

6.2.4.2 The Single Feature Strategy

In a similar manner, to evaluate the normalising constant for the case of
Mk = {m̄}, again using equations 6.18, 6.19, and 5.4,

gk(Zk|Z0:k−1, X0:k) ≈ 1

Γ

[(
(1 − PD(m̄|Xk))κZk

k +

PD(m̄|Xk)
∑

z∈Zk

κ
Zk−{z}
k gk(z|m̄, Xk)

)
vk|k−1(m̄|X0:k)

]

(6.21)

with,

Γ = exp

(
m̂k|k−1 − m̂k +

∫
ck(z)dz

)
vk(m̄|X0:k). (6.22)

For this choice of Mk, m̄ can be, for instance, the feature with the least uncer-
tainty or the maximum measurement likelihood. It is possible to choose Mk

with multiple features, however this will increase the computational burden.
Due to the presence of the measurement likelihood term gk(z|m̄, Xk), it is
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expected that, in general, the single feature map update will outperform that
of the empty map update. Note that in equation 6.17, every choice of Mk

would give the same result, however equations 6.20 and 6.21 use different ap-
proximations of pk(Mk|X0:k), yielding slightly different results. In principle,
any map strategy can be used including more features, however the computa-
tion required to evaluate the trajectory conditioned measurement likelihood
would also increase. The following section presents a Rao-Blackwellised im-
plementation of the proposed PHD-SLAM filter.

6.3 Rao-Blackwellised Implementation of the
PHD-SLAM Filter

Following the description of the PHD-SLAM filter in the previous section, a
Rao-Blackwellised (RB) implementation is detailed in this section. In essence,
a particle filter is used to propagate the vehicle trajectory (equation 6.7), and
a Gaussian mixture (GM) PHD filter is used to propagate each trajectory-
conditioned map PHD (equation 6.6). As such, let the PHD-SLAM density
at time k−1 be represented by a set of N particles,

{
η
(i)
k−1, X

(i)
0:k−1, v

(i)
k−1(m|X(i)

0:k−1)

}N

i=1

,

where X
(i)
0:k−1 = [X0, X

(i)
1 , X

(i)
2 , . . . , X

(i)
k−1] is the ith hypothesised vehicle tra-

jectory and v
(i)
k−1(m|X(i)

0:k−1) is its map PHD. The filter then proceeds to
approximate the posterior density by a new set of weighted particles,

{
η
(i)
k , X

(i)
0:k, v

(i)
k (m|X(i)

0:k)

}N

i=1

,

as follows:

6.3.1 PHD Mapping – Implementation

Let the prior map PHD for the ith particle, v
(i)
k−1(m|X(i)

k−1), be a Gaussian
mixture of the form,

v
(i)
k−1(m|X(i)

k−1) =

J
(i)
k−1∑

j=1

ω
(i,j)
k−1N

(
m; μ

(i,j)
k−1 , P

(i,j)
k−1

)
(6.23)
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which is a mixture of J
(i)
k−1 Gaussians, with ω

(i,j)
k−1 , μ

(i,j)
k−1 and P

(i,j)
k−1 being the

corresponding predicted weights, means and covariances respectively for the
jth Gaussian component of the map PHD of the ith trajectory. Let the new

feature intensity for the particle, b(m|Zk−1, X
(i)
k ), from the sampled pose,

X
(i)
k at time k also be a Gaussian mixture of the form

b(m|Zk−1, X
(i)
k ) =

J
(i)
b,k∑

j=1

ω
(i,j)
b,k N

(
m; μ

(i,j)
b,k , P

(i,j)
b,k

)
(6.24)

where, J
(i)
b,k defines the number of Gaussians in the new feature intensity at

time k and ω
(i,j)
b,k , μ

(i,j)
b,k and P

(i,j)
b,k are the corresponding components. This is

analogous to the proposal distribution in the particle filter and provides an
initial estimate of the new features entering the map.

The predicted intensity is therefore also a Gaussian mixture,

v
(i)
k|k−1(m|X(i)

k ) =

J
(i)
k|k−1∑

j=1

ω
(i,j)
k|k−1N

(
m; μ

(i,j)
k|k−1, P

(i,j)
k|k−1

)
(6.25)

which consists of J
(i)
k|k−1 = J

(i)
k−1 + J

(i)
b,k Gaussians representing the union of

the prior map intensity, vk−1(m|X(i)
k−1), and the proposed new feature inten-

sity according to equation 6.13. Since the measurement likelihood is also of
Gaussian form, it follows from equation 6.14 that the posterior map PHD,

v
(i)
k (m|X(i)

k ) is then also a Gaussian mixture given by

v
(i)
k (m|X(i)

k ) = v
(i)
k|k−1(m|X(i)

k )

[
1−PD(m|X(i)

k )+
∑

z∈Zk

J
(i)
k|k−1∑

j=1

v
(i,j)
G,k (z, m|X(i)

k )

]
.

(6.26)
The components of the above equation are given by,

v
(i,j)
G,k (z, m|X(i)

k ) = ψ
(i,j)
k (z|X(i)

k )N (m; μ
(i,j)
k|k , P

(i,j)
k|k ) (6.27)

ψ
(j)
k (z|X(i)

k ) =
PD(m|X(i)

k )ω
(i,j)
k|k−1N

(
z; Hkμ

(i,j)
k|k−1, S

(i,j)
k

)

c(z) +

J
(i)
k|k−1∑

ℓ=1

PD(m|X(i)
k )ω

(i,ℓ)
k|k−1N

(
z; Hkμ

(i,ℓ)
k|k−1, S

(i,ℓ)
k

)
(6.28)

The terms μk|k, Pk|k and Sk can be obtained using any standard filtering
technique such as EKF or UKF [66]. In this chapter, the EKF updates are
adopted.
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The clutter RFS, Ck, is assumed Poisson distributed [14] in number and
uniformly spaced over the mapping region. Therefore the clutter intensity is
given by, c(z) = λc U(z), where λc is the average number of clutter measure-
ments and U(z) denotes a uniform distribution on the measurement space.
As with other feature-based GM implementations [38], pruning and merging
operations are required to curb the explosive growth in the number of Gaus-
sian components of the posterior map PHD. These operations are carried out
as in [33].

6.3.2 The Vehicle Trajectory – Implementation

The proposed filter adopts a particle approximation of the posterior vehicle
trajectory, pk(X1:k), which is sampled/re-sampled as follows:

Step 1: Sampling Step

• For i = 1, ..., N , sample X̃
(i)
k ∼ fX(X̃

(i)
k |X(i)

k−1, Uk−1) and set

η̃
(i)
k =

gk(Zk|Z0:k−1, X̃
(i)
0:k)fX(X̃

(i)
k |X(i)

k−1, Uk−1)

fX(X̃
(i)
k |X(i)

k−1, Uk−1)
η
(i)
k−1. (6.29)

• Normalise weights:
∑N

i=1 η̃
(i)
k = 1.

Step 2: Resampling Step

• Resample

{
η̃
(i)
k , X̃

(i)
0:k

}N

i=1
to get

{
η
(i)
k , X

(i)
0:k

}N

i=1
.

Since the vehicle transition density is chosen as the proposal density as with
FastSLAM 1.0 [58],

η̃
(i)
k = gk(Zk|Z0:k−1, X̃

(i)
0:k)η

(i)
k−1 (6.30)

which can be evaluated in closed form according to Mk being the empty map
(equation 6.20) or Mk being a single feature map (equation 6.21), where

m̂
(i)
k|k−1 =

J
(i)
k|k−1∑

j=1

ω
(i,j)
k|k−1 and m̂

(i)
k =

J
(i)
k∑

j=1

ω
(i,j)
k . (6.31)

Note that the incorporation of the measurement conditioned proposal of Fast-
SLAM 2.0 can also be accommodated in this framework. This direction of
research focuses on more efficient SMC approximations and is an avenue for
further studies.
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6.3.3 SLAM State Estimation and Pseudo-code

As mentioned in the introduction, in contrast to previous SLAM algorithms,
the PHD map representation allows for a natural ability to average feature
maps. That is, independent map estimates from N independent trajectory
particles can be readily averaged into an expected estimate, even with map
estimates of different size and without having to resolve the intra-map feature
associations. Consequently, in the case of the RB-PHD-SLAM filter, both the
expected vehicle trajectory and feature map can be determined as follows:

Given the posterior set of weighted particles and corresponding map PHDs,

{
η
(i)
k , X

(i)
0:k, v

(i)
k (m|X(i)

0:k)

}N

i=1

,

and η̄ =
∑N

i=1 η
(i)
k then,

X̂0:k =
1

η̄

N∑

i=1

η
(i)
k X

(i)
0:k. (6.32)

As demonstrated previously in Section 6.2.4, the posterior PHD of the map
is the expectation of the trajectory-conditioned PHDs and thus

vk(m|X0:k) =
1

η̄

N∑

i=1

η
(i)
k v

(i)
k (m|X(i)

0:k). (6.33)

If m̂k =
∫

vk(m|X0:k)dm, is the mass of the posterior map PHD, the expected
map estimate can then be extracted by choosing the m̂k highest local maxima.
The pseudo-code for the RB-PHD-SLAM filter are provided in tables 6.1, 6.2,
while that of appropriate estimators is provided in Tables 6.3 and 6.4, which
continues as Table 6.4. The following section presents the results and analysis
of the proposed filter, with comparisons to standard SLAM algorithms.

6.4 Results and Analysis

This section presents the results and analysis of the proposed approach us-
ing both simulated and real experimental datasets. Initial comparisons are
made with the FastSLAM [58] algorithm with maximum likelihood data as-
sociation, using a mutual exclusion constraint and a 95% χ2 confidence gate.
These comparisons are demonstrated with a simulated single loop vehicle
trajectory carrying a simulated range – bearing measuring sensor and a real,
land based vehicle using a millimetre wave (MMW) radar for feature extrac-
tion. To further demonstrate the abilities of the RB-RFS-SLAM approach,
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Table 6.1 RB-PHD-SLAM-Predict

Algorithm RB-PHD-SLAM-Predict(
{η(i)

k−1, X
(i)
0:k−1, v

(i)
k−1(m|Zk−1, X

(i)
k−1)}N

i=1,Zk−1, Uk−1

)

// Construct (6.25)
1. for i = 1 to N do
// Sample pose

2. X̃
(i)
k ∼ fX(X̃

(i)
k |X(i)

k−1, Uk−1)
// Predict map

3. GMM-PHD-FBRM-Predict
(
Zk−1, X

(i)
k−1, v

(i)
k−1(m|Zk−1, X

(i)
k−1)

4. end for

5. return
(
{η(i)

k−1, X̃
(i)
k , v

(i)
k|k−1(m|Zk−1, X

(i)
k−1)}N

i=1

)

Table 6.2 RB-PHD-SLAM-Update

Algorithm RB-PHD-SLAM-Update(
{η(i)

k−1, X̃
(i)
k , v

(i)
k|k−1(m|Zk−1, X

(i)
k−1)}N

i=1,Zk

)

1. for i = 1 to N do
// Update map PHD

2. GMM-PHD-FBRM-Update
(
Zk, X̃

(i)
k , v

(i)
k|k−1(m|Zk−1, X

(i)
k−1)

)

// Predicted PHD mass

3. m̂k|k−1 =
∑J

(i)
k|k−1

j=1 ω
(i,j)
k|k−1

// Updated PHD mass

4. m̂k =
∑J

(i)
k

j=1 ω
(i,j)
k

5. if( Empty Strategy TRUE ) do
// Updated trajectory weight of (6.20)

6. η̃
(i)
k =

(
c(z)|Zk| exp(m̂k−m̂k|k−1−λc)

)
η
(i)
k−1

7. end if
8. if( Single Feature Strategy TRUE ) do
// Select a given map state

9. j = {i = 1, . . . , J
(i)
k |m(i,j) = m̄}

10. a = (1 − PD)c(z)|Zk| + PDω
(i,j)
k|k−1×∑

z∈Zk

(c(z)|Zk|−1)N (z; z
(i,j)
k|k−1, S

(i,j)
k )

11. b = exp(m̂k|k−1−m̂k+λc) ω
(i,j)
k

// Update trajectory weight of (6.21)

12. η̃
(i)
k =

a

b
η̃
(i)
k|k−1

13. end if
14. end for

15. return
(
{η̃(i)

k , X̃
(i)
k , v

(i)
k (m|Zk, Xk)}N

i=1

)
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Table 6.3 RB-PHD-SLAM-MAPestimate

Algorithm RB-PHD-SLAM-MAPestimate(
{η(i)

k−1, X
(i)
k , v

(i)
k|k−1(m|Zk−1, Xk−1)}N

i=1,Zk, Tfeature

)

// Initialise the map estimate

1. M̂k = ∅
2. I = {1,. . . ,N}
// Get index of max weight component

3. j = arg max
i∈I

η
(i)
k

// Estimated Trajectory

4. X̂0:k = X
(j)
0:k

// Estimate Map from corresponding map PHD

5. for i = 1 to J
(j)
k do

6. if ω
(j,i)
k > Tfeature

// concatenate estimate

7. M̂k = [M̂k μ
(j,i)
k ]

8. end if
9. end for
// RB-PHD-SLAM MAP Estimate

10. return
(
X̂0:k,M̂k

)

further, somewhat more complicated, experiments are carried out in which
the benchmark algorithms used are the classical FastSLAM [58] but with
with Multiple Hypothesis Data association [67] and the Joint Compatibility
Branch and Bound (JCBB) EKF [39]. In this second set of experiments, in
the simulation, multiple vehicle loop trajectories are executed and for the real
experiment, a much larger scenario, where accurate SLAM performance in
the presence of high clutter is essential, is demonstrated at sea, in a coastal
environment, using an “Autonomous kayak” [59] as the vehicle and a com-
mercially available X-Band radar.

In all experiments, the ‘single feature map’ trajectory weighting of equation
6.21 is adopted for the proposed RB-PHD-SLAM filter. An implementation
using the ‘empty map update’ of equation 6.20 was presented in [56]. While
any feature can theoretically be selected to generate the trajectory weight-
ing, in this implementation, that which generates the maximum likelihood
amongst all measurements is chosen. A comprehensive study as to the best
suited feature selection strategies is left to future work.

Current SLAM filters deal with clutter through ‘feature management’
routines, such as the landmark’s quality [1] or a binary Bayes filter [58].
These operations are typically independent of the joint SLAM filter update,
whereas the proposed approach unifies feature management, data association
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Table 6.4 RB-PHD-SLAM-EAPestimate

Algorithm RB-PHD-SLAM-EAPestimate(
{η(i)

k−1, X
(i)
k , v

(i)
k|k−1(m|Zk−1, Xk−1)}N

i=1,Zk, Tfeature, Dmin

)

1. Ωk = 0
2. for i = 1 to N do

3. Ωk = Ωk + η
(i)
k

4. end for
// expected trajectory

5. X̂0:k =
1

Ωk

N∑

i=1

η
(i)
k X

(i)
0:k

// Initialise number of Gaussian components
6. l = 0
7. for i = 1 to N

8. for j = 1 to J
(i)
k

9. l = l+1

10. ω̄
(l)
k = η

(i)
k ω

(i,j)
k

11. μ̄
(l)
k = μ

(i,j)
k

12. P̄
(l)
k = P

(i,j)
k

13. end for
14. end for
15. R = {1, . . . , l}
// Initialise number of merged Gaussian components
16. L = 0
// Gaussian merging
17. do while R �= ∅
// Increment component counter
18. L = L+1
// Get index of max weight component

19. j = arg max
r∈R

ω̄
(r)
k

// Cluster those within distance Dmin

20. K = {r ∈ R|(μ̄(r)
k − μ̄

(j)
k )T [P̄

(r)
k ]−1(μ̄

(r)
k − μ̄

(j)
k ) ≤ Dmin}

// Combine component weights

21. ω̃
(L)
k =

∑

i∈K

ω̄
(i)
k

// Weighted average mean

22. μ̃
(L)
k =

1

ω̃
(L)
k

∑

i∈K

ω̄
(i)
k μ̄

(i)
k
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Table 6.4 (Continued)

/ / Combined covariance
// Remove K from R and repeat

23. P̃
(L)
k =

1

ω̃
(L)
k

∑

i∈K

ω̄
(i)
k

(
P̄

(i)
k + (μ̃

(L)
k − μ̄

(i)
k )(μ̃

(L)
k − μ̄

(i)
k )T

)

24. R = R− K
25. end while
26. for i = 1 to L do

27. if ω̃
(i)
k > Tfeature

// concatenate estimate

28. M̂k = [M̂k μ̃
(i)
k ]

29. end if
30. end for
// RB-PHD-SLAM EAP Estimate

31. return
(
X̂0:k,M̂k

)

and state filtering into a single Bayesian update. While these methods have
been used successfully, they generally discard the sensor’s detection (PD) and
false alarm (PFA) probabilities and thus can be erroneous when subject to
large clutter rates and/or measurement noise. Since the proposed approach
assumes knowledge of these probabilities, as seen in equation 6.14, a modi-
fied feature management routine coined the ‘feature existence filter’ (see Ap-
pendix C), which incorporates both PD and PFA, is used with the benchmark
algorithms in an attempt to be ‘fairer’ to them in the comparisons.

To quantify the map estimation error, a metric must be adopted which
jointly evaluates the error in the feature location and number estimates.
Current methods typically examine the location estimates of a selected num-
ber of features and obtain their Mean Squared Error (MSE) using ground
truth [1]. As such, vector-based error metrics are applied to feature maps
and the error in the estimated number of features is neglected. While there
are several metrics for finite-set-valued estimation error, that of [23] has been
demonstrated to be most suitable [64], [56]. Therefore, the set map error
metric described in Chapter 4 (equation 4.6) is therefore once again used
to gauge the mapping performance in terms of estimated and actual feature
number, as well spatial error. In the following sections, this metric along with
the root mean squared error (RMSE) and graphical comparisons are used to
demonstrate the merits of the RB-PHD-SLAM filter.
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6.4.1 Simulated Datasets

Comparisons of RB-RFS-SLAM with standard vector based SLAM algo-
rithms are firstly presented in the form of simulated trials due to the ease of
generating known ground truth (trajectories and maps) for estimation error
evaluation.

6.4.1.1 Simulation: Single Loop Trajectory

The filter parameters used for the single loop trajectory simulated trial are
shown in Table 6.5. The measurement noise was inflated to hinder data as-

Table 6.5 Filter parameters used for the single loop trajectory trial.

Filter Parameter Value

Velocity input standard deviation (std) 1.5 m/s
Steering input std. 9.5o

Range measurement std. 1.75m
Bearing measurement std. 3.5o

Probability of Detection PD 0.95
Clutter rate λc 5m−2

Sensor maximum range 10m
Sensor Field-of-View (FoV) 360o

Feature existence threshold 0.5

sociation in the vector-based filter. For both filters, both the maximum a
posterior (MAP) and expected a posterior (EAP) trajectories are reported.
For FastSLAM, the map of the highest weighted trajectory estimate is used
as the map estimate, while for the proposed filter, both the map of the highest
weighted trajectory and the EAP map estimate are determined for compari-
son. 50 Monte Carlo (MC) trials were carried out.

Figure 6.1 shows a sample of the raw data used in the trials, with the
green circles depicting the true feature locations. A quantitative evaluation
of the estimation results is provided through the RMSE, along with stan-
dard deviations, of the trajectory estimate as shown in figure 6.2. Without
knowledge of PD and PFA, the benchmark approach can be made to ap-
pear highly erroneous due to poor feature management. Incorporating this
information can improve the result, however the feature management is still
effectively a post-filter update processing method. The RB-PHD-SLAM algo-
rithm is significantly more robust due to the RFS feature map representation
and Bayesian recursion which jointly performs feature management and state
estimation.
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Fig. 6.1 The simulated environment showing point features (green circles). A sam-
ple measurement history (black points) plotted from a sample noisy trajectory (blue
line) is also shown.

In terms of the map estimation, figure 6.3 depicts both the true and esti-
mated number of features as the robot explores the map, with the proposed
approach closely tracking the true number. Note that since this trial is a
simulation, the true number of features which have entered the vehicle’s FoV
during its entire trajectory, can be calculated exactly. Since this result does
not examine the locations of the estimated features, the set metric of equa-
tion 4.6 is used to compare map estimates, as shown in figure 6.4. The figure
shows the ‘ideal’ mapping error (i.e. every feature is instantly estimated by
its true coordinates when it enters the sensor FoV), which converges to zero
once all features in the map have been scanned. The mean and std of the
map estimates for both the benchmark and proposed approach are plotted,
with that of the RB-PHD-SLAM filter reporting less map estimation error.
A qualitative depiction of the posterior estimates from both approaches is
provided in figures 6.5 and 6.6, demonstrating the usefulness of the RFS ap-
proach and the associated RB-PHD-SLAM filter. In both figures, the green
line and circles represent the ground truth vehicle trajectory and feature lo-
cations respectively. The black crosses represent the estimated map. In the
case of FastSLAM, this is derived with respect to the MAP FastSLAM trajec-
tory estimate (the particle (trajectory) with the final maximum weight). In
each figure, the blue line indicates the MAP trajectory estimate, which cor-
responds to the particle with the maximum weight, at each time and the red
line corresponds to the expected trajectory estimate, which is the weighted
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average of all particles at each time (see Tables 6.3 and 6.4). Given that the
filter jointly incorporates data association and feature number uncertainty
into its Bayesian recursion, it is more robust to large sensing error, as it does
not rely on hard measurement-feature assignment decisions. Furthermore, it
jointly estimates the number of features and their locations, alleviating the
need for popular feature management methods [1], [58].
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Fig. 6.2 The mean and standard deviation of the expected trajectory estimates
of RB-PHD-SLAM vs. that of FastSLAM over 50 MC runs. LQ refers to an imple-
mentation with the ‘landmark quality’ method of [1].
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Fig. 6.3 The average estimated number of features in the map vs. ground truth
for each approach. The feature number estimate of RB-PHD-SLAM can be seen
to closely track that of the ground truth. Clearly there is no distinction between
correctly estimated feature and false feature in this result.
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Fig. 6.4 A comparative plot of the mean and standard deviation of the map es-
timation error vs. time. The error incorporates that of the number of features,
shown in figure 6.3 as well as their positional estimates. Note that the ‘ideal’ er-
ror converges to zero, an important property for SLAM filters and map estimation
comparisons.
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Fig. 6.5 A sample posterior estimate from FastSLAM showing error in the esti-
mated trajectory and feature map. The green circles and line show the ground truth
feature locations and path respectively. The black crosses show the FastSLAM es-
timated map (feature locations). The blue line shows the MAP trajectory estimate
and the red line shows the expected trajectory estimate.
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Fig. 6.6 The posterior estimate given the same inputs / measurements as those
used in figure 6.5. Again, the green circles and line show the ground truth fea-
ture locations and path respectively. The black crosses show the RB-PHD-SLAM
estimated map (feature locations). The RB-PHD-SLAM filter demonstrates its ro-
bustness and accuracy given high clutter and data association ambiguity.

6.4.1.2 Simulation: Multiple Loop Trajectories

The parameters for the more complex, multiple loop trajectory, simulated tri-
als are shown in table 6.6. A 95% validation gate is used throughout. For each

Table 6.6 Filter parameters used for the single loop trajectory trial.

Filter Parameter Value

Velocity input standard deviation (std) 2.0 m/s
Steering input std. 5.0o

Range measurement std. 1.00m
Bearing measurement std. 2.0o

Probability of Detection PD 0.95
Clutter rate λc 20m−2

Sensor maximum range 10m
Sensor Field-of-View (FoV) 360o

Feature existence threshold 0.5
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SLAM filter, 50 Monte Carlo (MC) trials were carried out in which all meth-
ods received identical sequences of control inputs and measurements. The
RB based filters used 50 trajectory particles each, while for MH-FastSLAM
a maximum limit of 2000 particles (number of hypotheses considered prior
to resampling) was used.
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Fig. 6.7 The simulated environment showing point features (green circles) and
true vehicle trajectory (green line). A sample measurement history plotted from a
sample noisy trajectory (red line) is also shown (black points).

Figure 6.7 shows a sample of the raw input data used in the trials, su-
perimposed onto the ground truth feature map and path. A comparison of
the average trajectory estimation errors for all three filters is then presented
in Figure 6.8. In terms of the estimated trajectory, the first order RB-PHD-
SLAM algorithm can be seen to outperform the vector based FastSLAM with
robust data association, but does not quite achieve the estimation accuracy
of JCBB-EKFSLAM. This is primarily due to the fact that JCBB is very
conservative in its choice of measurement-feature associations (jointly com-
patible constraint) resulting in very few false association pairs influencing
the trajectory estimation. However, later results in Figures 6.9, 6.10 and 6.12
highlight the drawbacks of achieving such impressive localisation results.

In terms of the map estimation component of each SLAM algorithm, Figure
6.9 depicts both the true and estimated number of features as the vehicle ex-
plores the map, with the proposed RB-PHD-SLAM approach seen to closely
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track the true number of features in the explored map. Erroneous associa-
tions for the MH-FastSLAM approach result in excessive feature declarations,
while the conservative (only including those which are jointly compatible)
association decisions of JCBB-EKF SLAM reduces the number of correct
associations. Since vector based feature management routines are typically
dependant on the data association decisions, this dramatically influences the
map estimation error.

Incorporating the estimation error in both the number and location of
features in the map, Figure 6.10 plots the map error distance of equation
4.6 for each approach. Note that in order to generate this result, the vector
based maps of FastSLAM and JCBB-EKFSLAM are temporarily ‘assumed’
to be sets. The proposed method can be seen to report the least mapping
error due it is robust ability to jointly incorporate uncertainty in feature
locations and numbers, while erroneous feature estimates contribute to in-
creased mapping error for the vector based approaches. A qualitative depic-
tion of the posterior estimates is provided in Figure 6.11, demonstrating the
usefulness of the RFS-SLAM framework and the proposed RB-PHD-SLAM
filter.
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Fig. 6.8 The mean and standard deviation of the trajectory estimates from each
filter over 50 MC runs versus time.

6.4.2 A Note on Computational Complexity

As can be observed from the implementation of Section 6.3, the computa-
tional complexity of RB-PHD-SLAM is, O(mkzkN) i.e. linear in the number
of features (in the FoV), linear in the number of measurements and linear in
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Fig. 6.9 The average estimated number of features in the map for each filter versus
time, compared to the ground truth number of features in the explored map Mk.
The feature number estimate of RB-PHD-SLAM can be seen to closely track that
of the ground truth.
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Fig. 6.10 A comparative plot of the mean and standard deviation of the map
estimation error for each filter vs. time. At any given time, for the ideal case, the
mapping error from equation 4.6 wrt. the explored map is zero.
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Fig. 6.11 Comparisons of the posterior SLAM estimates from MH-FastSLAM
(left, red) and the proposed RB-PHD-SLAM (right, blue). The ground truth tra-
jectory and map are represented by the green line and circles respectively. The
RB-PHD-SLAM filter demonstrates its robustness and accuracy given high clutter
and data association ambiguity.

the number of trajectory particles. The linear complexity of each particle in
the mapping filter was verified previously in Figure 4.8.

For a single thread implementation, Figure 6.12 shows that the computa-
tional time is comparable with that of the MH-FastSLAM algorithm, both
of which are less expensive than JCBB-EKF SLAM as its hypothesis tree
grows in the presence of high clutter. Note that due to the Rao-Blackwellised
structure of RB-PHD-SLAM, binary tree based enhancements, such as those
applied to traditional FastSLAM [58], can be readily developed to further
reduce the complexity to O

(
zkN log(mk)

)
. Furthermore, in contrast to data

association based methods, the proposed approach admits numerous other
computational enhancements, since the map PHD update can be segmented,
executed in parallel and subsequently fused for state estimation. This is in
contrast to DA based approaches which are scalable.

6.4.3 Outdoor Experiments

6.4.3.1 Land Based SLAM with MMW Radar

This section discusses the performance of the proposed framework, using a
millimetre wave radar SLAM dataset in a university car park environment.
Millimetre wave radar offers numerous advantages over standard laser-based
systems, returning a power vs. range spectrum. This allows for customised
detection algorithms to be developed, however it can be prone to high clutter
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Fig. 6.12 A comparison of the computation time per measurement update for
RB-PHD-SLAM (blue), MH-FastSLAM (red) and JCBB-EKFSLAM (black).

rates [16]. The extracted radar point clusters, plotted relative to the odome-
try only pose estimates of the vehicle, as well as the odometry pose estimates
themselves are depicted in figure 6.13 (left). The information displayed in
this figure can be thought of as the information input to the SLAM algo-
rithms, which must be processed to yield the best estimated trajectory and
map. Given the tree coverage and surrounding buildings in the area, GPS is
generally not available. Ground truth was thus obtained by manually match-
ing successive scans from a laser range finder which was also mounted on the
vehicle, with graphical verification also provided in figure 6.13 (right). The
vehicle was driven at approximately 1.5m/s around 3 loops, with a control
input frequency of 10Hz and a radar measurement frequency of 2.5Hz. The
car park environment is comprised of buildings, bushes, trees, fire hydrants,
curbs, medians, a car etc.

Given the small-sized loop, the maximum range of the radar was set at 15m
and both FastSLAM, with maximum likelihood data association, and RB-
PHD-SLAM were executed on the dataset. Figure 6.14 depicts the posterior
estimated trajectory and map using the FastSLAM algorithm (left) and that
from RB-PHD-SLAM (right), given the same control input samples. Given
the noisy measurements from the radar sensor, the merits of the proposed
approach are demonstrated. It should be noted that, as is the case with any
experimental dataset, the ground truth feature map is extremely difficult to
obtain, making it challenging to evaluate the feature map estimation error.
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Fig. 6.13 Left: Odometery and extracted clusters from the radar data, represent-
ing the raw inputs to the SLAM algorithms. Right: The ground truth trajectory
(green) obtained by matching laser data due to a lack of GPS data.
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Fig. 6.14 Left: The posterior estimate from FastSLAM using the radar-based car
park dataset. Right: The posterior estimate from RB-PHD-SLAM using the same
dataset. The proposed integrated Bayesian framework for SLAM, incorporating DA
and feature management enhances the robustness of the SLAM algorithm given
noisy measurements.
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6.4.3.2 Sea Based SLAM with X-Band Radar

This section discusses the filter’s performance in a surface-based marine envi-
ronment, using an X-band radar mounted on a powerboat. In order to max-
imise the detection of all sea surface point features (comprising boats, buoys,
etc.), a low detection threshold is required, which subsequently increases the
clutter rate. GPS data is available for measuring the ground truth trajectory,
while sea charts and data from surrounding vessels’ Automatic Identification
Systems provide the feature map ground truth. The test site is off the South-
ern coast of Singapore, as shown in Figure 6.15, where the boat was driven in
a loop trajectory of 13Km. Adaptive thresholding methods were applied to
extract relative point measurements from the radar data [59]. The maximum
range of the radar, logging at 0.5Hz, was limited to 1Km. While heading
measurements were available via a low grade on-board single axis gyroscope,
due to the lack of Doppler velocity logs, the speed was estimated at 8 knots
(4.1 m/s).

Fig. 6.15 Overview of the test site (1o13′ N,103o43′ E), showing the GPS trajec-
tory (green line) and GPS coordinates-ordinates (green dots) of the point feature
map. The point feature measurement history is also provided (black dots).

Figure 6.16 compares the posterior SLAM estimates from MH-FastSLAM
and RB-PHD-SLAM, with Figure 6.17 comparing the estimated map sizes.
The proposed approach can be seen to generate more accurate localisation
and feature number estimates, however it can also be seen that some feature
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estimates are misplaced in comparison to the ground truth feature map. The
framework is still demonstrated to be useful for high clutter feature-based
SLAM applications.
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Fig. 6.16 Top: The posterior SLAM estimate (red) from MH-FastSLAM and Bot-
tom: The posterior SLAM estimate (blue) from RB-PHD-SLAM, in comparison to
the ground truth (green).

6.5 Summary

This chapter presented a tractable solution for the feature-based SLAM prob-
lem. The finite set representation of the map admits the notion of an expected
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Fig. 6.17 Comparison of the number of estimated features for each approach. The
noisy estimates are likely due to deviations from the Poisson clutter assumption in
places.

map in the form of a PHD or intensity function. A Rao-Blackwellised im-
plementation of the filter was proposed, in which the PHD of the map was
propagated using a Gaussian mixture PHD filter, and a particle filter propa-
gated the vehicle trajectory density. A closed form solution for the trajectory
weighting was also presented, alleviating the need for approximation, which
is commonly used.

Analysis was carried out, both in a simulated environment through Monte
Carlo trials and an outdoor SLAM experimental dataset based on a millimetre
wave radar sensor. Results demonstrated the robustness of the proposed filter,
particularly in the presence of large data association uncertainty and clutter,
illustrating the merits of adopting an RFS approach to SLAM.

In terms of its computational complexity, the Rao-Blackwellised SLAM fil-
ter was shown to be linear in the number of estimated features, measurements
and trajectory particles. It should be noted that computational enhancements
are possible, in terms of parallelisable operations, which are not possible with
vector based approaches requiring data association.

6.6 Bibliographical Remarks

The RFS approach to SLAM was first suggested in [54] with preliminary
studies using ‘brute force’ implementations shown in Chapter 5. The approach
modelled the joint vehicle trajectory and map as a single RFS, and recursively
propagated its first order moment.



126 6 Rao-Blackwellised RFS Bayesian SLAM

Initial results of a Rao-Blackwellised (RB) implementation of the PHD-
SLAM filter, were presented in [56]. This chapter extends [56], to present a
more rigorous analysis of the RFS approach to SLAM, an improved version
of the PHD-SLAM filter as well as real and simulated experimental results,
and is an extended version of [57]. The merits of the RFS approach are
demonstrated, particularly in situations of high clutter and data association
ambiguity.

A factorised approach to SLAM was established in the, now well known,
FastSLAM concept [58]. However, this chapter has shown that the same fac-
torisation method applied to vectors in FastSLAM, cannot be applied to
sets, since it results in invalid densities in the feature space. Therefore one
of the main contributions of this chapter is a technique which allows such a
factorisation to be applied to sets in a principled manner.



Chapter 7

Extensions with RFSs in SLAM

7.1 Introduction

This book demonstrates that the inherent uncertainty of feature maps and
feature map measurements can be naturally encapsulated by random finite
set models, and subsequently in Chapter 5 proposed the multi-feature RFS-
SLAM framework and recursion of equations 5.5 and 5.6. The SLAM solu-
tions presented thus far focussed on the joint propagation of the the first-order
statistical moment or expectation of the RFS map, i.e. its Probability Hy-
pothesis Density, vk, and the vehicle trajectory. Recall from Chapter 3 that
the integral of the PHD, which operates on a feature state space, gives the
expected number of features in the map, at its maxima represent regions in
Euclidean map space where features are most likely to exist.

As will be demonstrated in this chapter, the proposed RFS-SLAM frame-
work admits numerous alternative approximations and implementations.
While the PHD-SLAM approach propagates the PHD of the map (encom-
passing the expected number of features) and the vehicle trajectory, it is also
possible to append the propagated map PHD with the distribution of the
number of features, as opposed to just its mean. This can dramatically reduce
the variance in the estimated number of features in the map when compared
with the PHD-only approach and subsequently improve the robustness and
mapping accuracy of PHD-SLAM.

In contrast to the moment approximation methods of the RFS-SLAM re-
cursion based on the PHD, a direct approximation of the multi-feature RFS-
SLAM recursion can also be constructed and propagated. Indeed, by adopting
a multi-Bernoulli representation of the RFS map, each feature’s individual
probability of existence and probability density, as well as the vehicle tra-
jectory can be propagated. By modelling each feature’s existence probabil-
ity, this approach is conceptually analogous to existing vector-based SLAM
approaches which also attempt to incorporate individual feature existence
estimates.

J. Mullane et al.: Random Finite Sets for Robot Mapping & SLAM, STAR 72, pp. 127–136.
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7.2 Alternative RFS Map Representations

This section presents alternative RFS models for a feature map. The PHD-
SLAM and RB-PHD-SLAM approaches presented thus far, approximate the
prior and predicted RFS map densities by Poisson RFSs. Recall from section
3.3.4.4, that the Poisson RFS can be completely characterised by its PHD,

pk(Mk|X0:k) ≈

∏
m∈Mk

vk(m|X0:k)

exp(
∫

vk(m|X0:k)dm)
. (7.1)

Since the mass of the PHD (
∫

vk(m|X0:k)dm) is a real number, the cardinality
of a Poisson RFS map is captured by the single parameter of the denominator
term, exp(

∫
vk(m|X0:k)dm), that is, the distribution of the size of the map is

also approximated by a Poisson distribution. Since the mean and variance of a
Poisson distribution are the same, large variations are likely in the estimated
number of features for high density maps and/or sensors with large FoVs.

7.2.1 The Independent and Identically Distributed
(IID) Cluster RFS

A more general approximation of the map RFS is an IID cluster process,

pk(Mk|X0:k) ≈
m!ρk(m)

∏
m∈Mk

vk(m|X0:k)

(∫
vk(m|X0:k)dm

)m (7.2)

where, as before m is the cardinality of the map Mk and now ρk(m) is the
distribution of the size of the feature map. The approximation generalises the
Poisson RFS representation to allow for any arbitrary cardinality distribu-
tion, constrained only by the property

∑∞
n=0 nρk(n) =

∫
vk(m|X0:k)dm. It

can be seen that by replacing ρk(m) with a Poisson distribution, (7.2) reduces
to (7.1). Thus the spatial randomness of the features is still encapsulated by a
Poisson RFS, but the distribution of the number of features is not restricted
to a Poisson distribution. The subsequent SLAM formulation based on this
map approximation is presented in section 7.3.1.

7.2.2 The Multi-Bernoulli RFS

Recall from Chapter 4, that an individual feature measurement was mod-
elled as a Bernoulli RFS, that is, (1) the measurement is not received, with a
probability equal to that of a missed detection (1−PD) (2) the measurement



7.3 Extended RB-RFS-SLAM Formulations 129

is received with a probability equal to the detection probability of that fea-
ture and when it is received, has a measurement likelihood PDgk(z|m, Xk).
Equivalently, an individual map feature can be represented by a Bernoulli
RFS which,

1. does not exist with a probability equal to that of its non-existence proba-
bility, (1 − PE),

2. exists with a probability equal to its existence probability PE and when it
does exist, has a spatial likelihood pk(m|Zk, X0:k).

Generalising to a feature map comprising mk features, the multi-Bernoulli
RFS can be written as

pk(Mk = ∅) =

mk∏

j=1

(
1 − P

(j)
E

)
(7.3)

and in the case of any or all n features existing,

pk(Mk ≈ {m1, ..., mn}) = pk(∅)
∑

1≤i1 �=···�=in≤mk

n∏

j=1

P
(ij)
E p

(ij)
k (mj |Zk, X0:k)

1 − P
(ij)
E

.

(7.4)

Note that this map representation is an approximation of the multi-feature
map posterior density as opposed to a moment-based approximation of other
approaches. The subsequent SLAM formulation based on this map approx-
imation is presented in section 7.3.2. Furthermore, while the moment ap-
proximation methods encapsulate the mean (for the Poisson map model)
and distribution (for the IDD cluster model) of the number of features in the
map, the Multi-Bernoulli representation is analogous to popular vector based
SLAM approaches [58], [1], [15] in that each feature has its own probability
of existence. However, by using this RFS representation, the mathematical
ambiguity highlighted previously in section 2.5 is overcome as the density for
each feature jointly incorporates the existence and non-existence probabilities
and still integrates to unity implying it is a valid density function.

7.3 Extended RB-RFS-SLAM Formulations

This section details the derivations of the appropriate equations necessary for
Rao-Blackwellised SLAM implementations based on the extended RFS map
models of the previous section.
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7.3.1 RB Cardinalised PHD-SLAM

In the case of the IID cluster RFS map representation of section 7.2.1, the
so-called Cardinalised PHD (CPHD) filter [51] can be readily modified to
propagate the map PHD and cardinality distribution forward in time as mea-
surements arrive. If a set of N weighted particles comprising,

{
Particle Weight, Trajectory Sample, Map PHD, Map Cardinality Dist.

}N

i=1

i.e. {
η
(i)
k−1, X

(i)
0:k−1, v

(i)
k−1(m|X(i)

0:k−1), ρ
(i)
k−1(n|X

(i)
0:k−1)

}N

i=1

(7.5)

is available at time k−1, then given a vehicle input, Uk−1 and measurement,
Zk, the RB-CPHD-SLAM filter generates an updated set of particles,

{
η
(i)
k , X

(i)
0:k, v

(i)
k (m|X(i)

0:k), ρ
(i)
k (n|X(i)

0:k)

}N

i=1

(7.6)

whereby both the PHD (intensity function) v and the cardinality distribu-
tion ρ are updated through predictor – corrector equations via the following
processes.

7.3.1.1 Map Update

If the predicted vehicle pose, X̃
(i)
k , is sampled from the vehicle transition

density fX(X̃k|Xk−1, Uk−1) and, as introduced previously in Chapter 4, if

the prior, v
(i)
k−1(m|X(i)

k−1) and birth, b
(i)
k (m|X̃(i)

k ), PHDs are available for each
particle, then for each trajectory sample, the predicted map PHD is,

v
(i)
k|k−1(m|X̃(i)

k ) = v
(i)
k−1(m|X(i)

k−1) + b
(i)
k (m|X̃(i)

k ). (7.7)

In addition, if the prior, ρ
(i)
k−1(n|X

(i)
k−1) and birth cardinality distributions

ρ
(i)
b,k(n|X̃(i)

k ) are available, then the predicted map cardinality distribution
must also be evaluated. Since robotic feature mapping has been formulated
as a finite-set estimation problem in this book, which was solved by modifying
the PHD framework in previous chapters, a similar concept can be adopted
such that the CPHD filtering framework [68], [51], can be modified to solve
the feature mapping problem in the case of an IID cluster RFS map. Thus,
the predicted map cardinality distribution can be obtained from,
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ρ
(i)
k|k−1(n|X̃

(i)
k )

=

n∑

j=0

(
ρ
(i)
b,k(n−j|X̃(i)

k )

∞∑

l=j

Cl
j

( ∫
v
(i)
k−1(m|X(i)

k−1)dm
)l−j

ρ
(i)
k−1(l|X

(i)
k−1)

)

(7.8)

where Cl
i denotes the binomial coefficient.

Similarly, given the RFS measurement at time k, Zk, the updated map
PHD is then given by,

v
(i)
k (m|X̃(i)

k ) =

∑∞
n=0 Γ 1

k

[
v
(i)
k|k−1(m|X̃(i)

k ),Zk

]
(n)ρ

(i)
k|k−1(n|X̃

(i)
k )

∑∞
n=0 Γ 0

k

[
v
(i)
k|k−1(m|X̃(i)

k ),Zk

]
(n)ρ

(i)
k|k−1(n|X̃

(i)
k )

(7.9)

×(1 − PD)v
(i)
k|k−1(m|X̃(i)

k )

+

( ∑

z∈Zk

∑∞
n=0 Γ 1

k

[
v
(i)
k|k−1(m|X̃(i)

k ),Zk/{z}
]
(n)ρ

(i)
k|k−1(n|X̃

(i)
k )

∑∞
n=0 Γ 0

k

[
v
(i)
k|k−1(m|X̃(i)

k ),Zk

]
(n)ρ

(i)
k|k−1(n|X̃

(i)
k )

×ψz,k(m)v
(i)
k|k−1(m|X̃(i)

k )

)

where,

ψz,k(m) =

∫
ck(z|X̃(i)

k )dz

ck(z|X̃(i)
k )

× PD(m|X̃(i)
k )gk(z|m, X̃

(i)
k ) (7.10)

and,

Γ q
k

[
vk|k−1(m|X̃k),Zk

]
(n) =

min(zk,n)∑

j=0

(zk − j)!ρκ,k(zk − j)|X̃k)Pn
j+q

( ∫
(1 − PD)vk|k−1(m|X̃k)dm

)n−(j+q)

( ∫
vk|k−1(m|X̃k)dm

)n

× ej(Ξ(vk|k−1,Zk)). (7.11)

Here, zk represents the number of features observed at time k, Pn
j+q denotes

the permutation coefficient, ej(·) denotes the elementary symmetric function
of order j and,

Ξ(vk|k−1,Zk) = {
∫

vk|k−1(m|X̃k)ψz,k(m)dm : z ∈ Zk}. (7.12)

The updated map cardinality is obtained from,
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ρ
(i)
k (n|X̃(i)

k ) =
Γ 0

k

[
v
(i)
k|k−1(m|X̃(i)

k ),Zk

]
(n)ρ

(i)
k|k−1(n|X̃

(i)
k )

∑∞
n=0 Γ 0

k

[
v
(i)
k|k−1(m|X̃(i)

k ),Zk

]
(n)ρ

(i)
k|k−1(n|X̃

(i)
k )

(7.13)

7.3.1.2 Trajectory Update

If, as before, the predicted vehicle pose, X̃
(i)
k , is sampled from the vehicle

transition density, fX(X̃k|Xk−1, Uk−1), then the updated weight is calculated
according to,

A. The Empty Strategy

η̃
(i)
k =

zk!ρk(zk|X̃(i)
k )κZk

k(∫
ck(z|X̃(i)

k )dz
)zk

× ρk|k−1(0|X̃(i)
0:k)

ρk(0|X̃(i)
0:k)

η
(i)
k−1 (7.14)

where, as before, κZk

k =
∏

z∈Zk
ck(z|Xk) and ck is the PHD of the RFS

clutter measurement. Since the map strategy is empty, there are assumed
no features present for the update and thus the cardinality distribution is
written as, ρk(0|·).

B. The Single Feature Strategy

η̃
(i)
k =

(
1 − PD(m̄|X̃(i)

k )
)

κZk

k + PD(m̄|X̃(i)
k )

∑
z∈Zk

κZk−z
k gk(z|m̄, X̃

(i)
k )

exp
(∫

ck(z|X̃(i)
k )dz

)

×
ρ
(i)
k|k−1(1|X̃

(i)
0:k)v

(i)
k|k−1(m̄|X̃(i)

0:k)
∫

v
(i)
k (m|X̃(i)

0:k)dm

ρ
(i)
k (1|X̃(i)

0:k)v
(i)
k (m̄|X̃(i)

0:k)
∫

v
(i)
k|k−1(m|X̃(i)

0:k)dm
η
(i)
k−1 (7.15)

where, as before, m̄, is a feature selected according to a given strategy (i.e.
least uncertainty, highest measurement likelihood etc.). As before, since the
strategy is a that of a single feature, the cardinality distribution is written
as, ρk(1|·).

7.3.1.3 Estimator

As with the RB-PHD-SLAM filter, a MAP estimate of the posterior tra-
jectory density can be taken to estimate the vehicle pose at each time. To
estimate the map, EAP or MAP estimates of the number of features in the
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map can be extracted from the chosen particle’s posterior cardinality dis-
tribution. Conditioned on this estimate, as with the RB-PHD-SLAM filter,
the feature estimates can be chosen from the peaks of the posterior map
PHD. Given that the CPHD filter propagates the distribution of the number
of features as opposed to just its mean, it is anticipated that the map, and
subsequently the trajectory, estimates from RB-CPHD-SLAM would be re-
markably improved in comparison to RB-PHD-SLAM. This is an avenue for
further research.

7.3.2 RB Multi-target Multi-Bernoulli (MeMBer)
SLAM

In the case of the Multi-Bernoulli RFS map representation of section 7.2.2,
the so-called Cardinalised Multi-target Multi-Bernoulli (CMeMBer) filter [69]
can be readily modified to propagate the map density forward in time as
measurements arrive. If a set of weighted particles,

{
η
(i)
k−1, X

(i)
0:k−1, {

(
P

(i,j)
E,k−1, p

(j)
k−1(m|X(i)

0:k−1)
)
}J

(i)
k−1

j=1

}N

i=1

(7.16)

comprising the particle weight, trajectory sample, the existence probability
and spatial density of each feature in each trajectory’s map, is available at
time k − 1, then given a vehicle input, Uk−1 and measurement, Zk, the RB-
MeMBer-SLAM filter generates an updated set of particles,

{
η
(i)
k , X

(i)
0:k, {

(
P

(i,j)
E,k , p

(j)
k (m|X(i)

0:k)
)
}J

(i)
k

j=1

}N

i=1

(7.17)

via the following processes.

7.3.2.1 Map Update

If the predicted vehicle pose, X̃
(i)
k , is sampled from the vehicle transi-

tion density, fX(X̃k|Xk−1, Uk−1), and the parameters of the prior, πk−1 =

{
(
P

(i,j)
E,k−1, p

(j)
k−1(m|X(i)

0:k−1)
)
}J

(i)
k−1

j=1 and birth, {
(
P

(i,j)
b,E,k, p

(j)
b,k(m|X̃(i)

k )
)
}J

(i)
b,k

j=1 ,
multi-Bernoulli RFSs are available for each particle, then for each trajectory
sample, the parameters of the predicted map are obtained from,

π
(i)
k|k−1 = π

(i)
k−1

⋃
{
(
P

(i,j)
b,E,k, p

(j)
b,k(m|X̃(i)

k )
)
}J

(i)
b,k

j=1 . (7.18)
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Again, since the feature mapping problem is cast into a finite-set estimation
framework, related filters in the tracking community [3], [69], can be modified
to perform the map update. Therefore, given the RFS measurement at time

k, Zk, the updated map for each sample trajectory particle, X̃
(i)
k , is then

given by,

π
(i)
k = {

(
P

(i,j)
E,k , p

(j)
k (m|X̃(i)

0:k)
)
}J

(i)
k

j=1 (7.19)

where, J
(i)
k = J

(i)
k−1 + J

(i)
b,k + zk. If J

(i)
k|k−1 = J

(i)
k−1 + J

(i)
b,k, then for j =

1, . . . , J
(i)
k|k−1,

P
(i,j)
E,k = P

(i,j)
E,k−1

1 −
∫

PD(m|X̃(i)
k )p

(j)
k−1(m|X̃(i)

k )dm

1 − P
(i,j)
E,k−1

∫
PD(m|X̃(i)

k )p
(j)
k−1(m|X̃(i)

k )dm
(7.20)

p
(j)
k (m|X̃(i)

0:k) =
(1 − PD(m|X̃(i)

k ))p
(j)
k−1(m|X(i)

0:k−1)

1 −
∫

PD(m|X̃(i)
k )p

(j)
k−1(m|X(i)

0:k−1)dm
(7.21)

and for j = J
(i)
k|k−1 + 1, . . . , J

(i)
k ,

P
(i,j)
E,k =

∑J
(i)
k|k−1

l=1

P
(i,l)
E,k−1(1−P

(i,l)
E,k−1)

∫
PD(m|X̃

(i)
k )p

(l)
k−1(m|X̃

(i)
0:k)gk(z|m,X̃

(i)
k )dm(

1−P
(i,l)
E,k−1

∫
PD(m|X̃

(i)
k )p

(l)
k−1(m|X̃

(i)
0:k)dm

)2

κk +
∑J

(i)
k|k−1

l=1

P
(i,l)
E,k−1

∫
PD(m|X̃

(i)
k )p

(l)
k−1(m|X̃

(i)
0:k)gk(z|m,X̃

(i)
k )dm

1−P
(i,l)
E,k−1

∫
PD(m|X̃

(i)
k )p

(l)
k−1(m|X̃

(i)
0:k)dm

(7.22)

p
(j)
k (m|X̃(i)

0:k) =

∑J
(i)
k|k−1

l=1

P
(i,l)
E,k−1

(1−P
(i,l)
E,k−1)

PD(m|X̃(i)
k )gk(z|m, X̃

(i)
k )p

(l)
k−1(m|X̃(i)

0:k)

∑J
(i)
k|k−1

l=1

P
(i,l)
E,k−1

(1−P
(i,l)
E,k−1)

∫
PD(m|X̃(i)

k )gk(z|m, X̃
(i)
k )p

(l)
k−1(m|X̃(i)

0:k)dm

(7.23)

7.3.2.2 Trajectory Update

If the predicted vehicle pose, X̃
(i)
k , is sampled from the vehicle transition

density, fX(X̃k|Xk−1, Uk−1), then the updated weight is calculated according
to,
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A. The Empty Strategy

η
(i)
k =

κZk

k

exp
(∫

ck(z|X̃(i)
k )dz

)
∏m

(i)
k|k−1

j=1

(
1 − P

(i,j)
E,k−1

)

∏m
(i)
k

j=1

(
1 − P

(i,j)
E,k

) η
(i)
k−1. (7.24)

B. The Single Feature Strategy

η
(i)
k =

(
1 − PD(m̄|X̃(i)

k )
)

κZk

k + PD(m̄|X̃(i)
k )

∑
z∈Zk

κZk−z
k gk(z|m̄, X̃

(i)
k )

exp
(∫

ck(z|X̃(i)
k )dz

)

× 1

Γ

m
(i)
k|k−1∏

j=1

(
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E,k−1

)
× 1

Γ

m
(i)
k|k−1∑

j=1

P
(i,j)
E,k−1p

(j)
k|k−1(m̄|X̃(i)

0:k)

1 − P
(i,j)
E,k−1

η
(i)
k−1

where,

Γ =

m
(i)
k∏

j=1

(
1 − P

(i,j)
E,k

)m
(i)
k∑

j=1

P
(i,j)
E,k p

(j)
k (m̄|X̃(i)

0:k)

1 − P
(i,j)
E,k

(7.25)

7.3.2.3 Estimators

As with the RB-PHD-SLAM filter, an MAP estimate of the posterior trajec-
tory density can be used to estimate the vehicle pose at each time. Given that
the posterior existence probability of each feature is available, feature map
estimate can be obtained from the means or modes of the posterior densities
of each hypothesised map state with an existence probability greater than a
given threshold. Using a Bernoulli RFS to represent each feature allows for
the joint encapsulation of its existence probability and location in a single
PDF, in contrast to existing SLAM methods [1], [58], [18]. It is expected that
RB-MeMBer-SLAM would perform well in the presence of highly non-linear
process and/or measurement models.

7.4 Summary

This chapter has detailed enhancements to the PHD-SLAM framework pro-
posed in earlier chapters by exploiting alternative RFS map approximations
and developing suitable filters which can be readily implemented via RB
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techniques. Firstly, the RB-CPHD-SLAM filter was formulated, which re-
laxes the Poisson distribution assumption on the number of features in the
map, and propagates the map cardinality distribution as opposed to just its
mean. Indeed, since the Poisson RFS is a special case of the IID cluster RFS
(with a Poisson cardinality distribution), the RB-PHD-SLAM filter can be
regarded as a special case of the RB-CPHD-SLAM filter. The formulation
also included the weighting functions necessary for a RB implementation as
well as suitable methods of state estimation.

The RB-MeMBer-SLAM filter adopted a Multi-Bernoulli RFS map rep-
resentation, which jointly encapsulates both the existence probability and
the spatial density of each feature. In essence, it is conceptually equivalent
to how the vast majority of existing vector-based SLAM approaches process
uncertainty in the size of the feature map. However, since an RFS model
is adopted, the tools of RFS filtering techniques are required to develop a
suitable filter. The RB-MeMBer-SLAM filter directly approximates the joint
multi-feature vehicle trajectory posterior as opposed to the moment approx-
imation methods based on the PHD.



Appendix A

Concatenation of the Feature State m

with Hypothesised Vehicle Trajectories –
Campbell’s Theorem

If L denotes the space of features and K denotes the space of vehicle states,
Campbell’s theorem [70] implies that the intensity of the point process on
L×K formed by the Cartesian product of a point process on L, with intensity
ṽ, and a point process on the mark space (a vehicle pose particle) K, is

v(Xk, m) = p(Xk|m)ṽ(m), (A.1)

where p(Xk|m) is the mark distribution given a point m of the original point
process on L. Moreover, if the point process on L (the set of features) is
Poisson, then the product point process on L×K is also Poisson [70]. As the
RFS of the joint vehicle and map state is therefore Poisson, the derivation
established in [2] can be incorporated into this work to include the joint
vehicle-feature, augmented state.



Appendix B

Derivation of gk(Zk|Z0:k−1, X0:k) for the
RB-PHD-SLAM Filter

Recall equation 6.6,

pk(Mk|X0:k) =
gk(Zk|Mk, Xk)pk|k−1(Mk|X0:k)

gk(Zk|Z0:k−1, X0:k)

and the Poisson RFS approximations,

pk|k−1(Mk|X0:k) ≈

∏
m∈Mk

vk|k−1(m|X0:k)

exp
(∫

vk|k−1(m|X0:k)dm
) ,

pk(Mk|X0:k) ≈

∏
m∈Mk

vk(m|X0:k)

exp
(∫

vk(m|X0:k)dm
) .

B.0.1 The Empty Strategy

Rearranging, and assigning Mk = ∅ gives,

gk(Zk|Z0:k−1, X0:k) = gk(Zk|∅, Xk) ×

∏
m∈Mk

vk|k−1(m|X0:k)

∏
m∈Mk

vk(m|X0:k)
×

exp (
∫

vk(m|X0:k)dm)

exp
(∫

vk|k−1(m|X0:k)dm
)

Since, Mk = ∅, the empty set measurement likelihood is that of the clutter
RFS (Poisson),

gk(Zk|∅, Xk) =

∏
z∈Zk

ck(z|Xk)

exp(
∫

ck(z|Xk)dz)
.

The PHDs vk|k−1 and vk are empty, implying their product is 1, m̂k|k−1 =∫
vk|k−1(m|X0:k)dm and m̂k =

∫
vk(m|X0:k)dm, giving,
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gk(Zk|Z0:k−1, X0:k) =
∏

z∈Zk

ck(z|Xk)exp

(
m̂k − m̂k|k−1 −

∫
ck(z|Xk)dz

)
.

Note that while for the empty map choice, the likelihood gk(Zk|Z0:k−1,
X0:k) does not contain a measurement likelihood term gk(Zk|Mk, Xk), the
history of measurements and trajectories are incorporated into the predicted
and updated intensity terms, whose integrals appear as the terms m̂k|k−1 and
m̂k respectively.

B.0.2 The Single Feature Strategy

Assigning Mk = {m̄}, with m̄ being chosen according to a given strategy,

gk(Zk|Z0:k−1, X0:k) = gk(Zk|m̄, Xk) ×

∏
m∈Mk

vk|k−1(m|X0:k)

∏
m∈Mk

vk(m|X0:k)
×

exp (m̂k)

exp
(
m̂k|k−1

)

= gk(Zk|m̄, Xk) ×
vk|k−1(m̄|X0:k)

vk(m̄|X0:k)
× exp

(
m̂k − m̂k|k−1

)

If Mk = {m̄}, thus from (5.4),

gk(Zk|m̄, Xk) =

(1 − PD(m̄|Xk))
∏

z∈Zk

ck(z|Xk)

exp(
∫

ck(z|Xk)dz)
+

PD(m̄|Xk)

∑
z∈Zk

( ∏
z∈Zk−z̄

ck(z|Xk)

)
g(z|m̄, Xk)

exp(
∫

ck(z|Xk)dz)

then,

gk(Zk|Z0:k−1, X0:k) =

( (1 − PD(m̄|Xk))
∏

z∈Zk

ck(z|Xk)

exp(
∫

ck(z|Xk)dz)
+

PD(m̄|Xk)

∑
z∈Zk

( ∏
z∈Zk−z̄

ck(z|Xk)

)
g(z|m̄, Xk)

exp(
∫

ck(z|Xk)dz)

)
vk|k−1(m̄|Xk)

vk(m̄|Xk) exp(m̂k|k−1 − m̂k)



Appendix C

FastSLAM Feature Management

This appendix details the feature management routine developed for Fast-
SLAM in a cluttered environment, providing it with knowledge of the de-
tection and false alarm probabilities for a fair comparison with the RFS ap-
proach. As with standard approaches [1], tentative new features are declared
for unassociated measurements. The ‘existence probability’ of each feature,

P
(j)
E,k, given a 95% confidence gate and prior existence probability of P

(j)
E,k−1,

then evolves through a binary Bayes filter according to

Step 1: (Obtain association details within FoV)

J̄ = {j ∈ Mk|m
j ∈ FoV & mjnot associated.}

J = {j ∈ Mk|m
j ∈ FoV & mjassociated.}

Step 2: (Calculate hit, miss and association probabilities)

FA = λc/(R2
MAX × π)

P
(J̄)
miss = (1 − PD) × P

(J̄)
E,k−1 + PD × 0.05 × P

(J̄)
E,k−1

P
(J)
hit = PD × P (J)

assocP
(J)
E,k−1

P (J)
assoc =

1

2π
|Sk|

−1/2 exp(−0.5υS−1
k υT )

Step 3: (Update Existence probabilities)

P
(J̄)
E,k =

P
(J̄)
miss

P
(J̄)
miss + (1 − PFA)(1 − P

(J̄)
E,k−1)

P
(J)
E,k =

P
(J)
hit

P
(J)
hit + PFA(1 − P

(J)
E,k−1)

This ad-hoc but effective routine enhances the robustness of standard
SLAM feature management as shown in figures 6.2 and 6.3 when exposed to
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high clutter rates. Thus both the benchmark and proposed approach receive
the same information for each filter loop. However, one of the fundamental
merits of the proposed RFS framework is that feature management (and data
association) are jointly incorporated into a single SLAM Bayesian update.
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Cells and Robots: Modeling and Control of
Large-Size Agent Populations
130 p. 2007 [978-3-540-71981-6]


	Introduction
	Structure of the Book

	Part I Random Finite Sets
	Why Random Finite Sets?
	Introduction
	Environmental Representation: Fundamentals
	FBRM and SLAM New Concepts
	Eliminating the Data Association Problem
	Eliminating the Map Management Problem

	FBRM and SLAM Error Quantification
	Bayesian FBRM and SLAM with Vectors and Sets
	Bayesian Estimation with Occupancy Grids
	Bayesian Estimation with a Vector Feature Map
	Bayesian Estimation with a Finite Set Feature Map

	Further Attributes of the RFS Representation
	Summary

	Estimation with Random Finite Sets
	Introduction
	Classical State Estimators
	Naive Estimators

	Bayes Optimal RFS Estimators
	Bayes Risk in Feature Map Estimation
	Marginal Multi-Object Estimator
	Joint Multi-Object Estimator
	The Probability Hypothesis Density (PHD) Estimator

	The PHD Filter
	Intuitive Interpretation of the PHD Filter

	Summary

	Part II Random Finite Set Based Robotic Mapping
	An RFS Theoretic for Bayesian Feature-Based Robotic Mapping
	Introduction
	The Feature-Based Map Estimation Framework
	FB Map Estimation Error
	The PHD-FBRM Filter
	Static Map State
	Pseudo-static Map State

	PHD-FBRM Filter Implementations
	The Static Map: An SMC PHD-FBRM Implementation
	The Pseudo-static Map: A GM PHD-FBRM Implementation

	Algorithm Performance
	FBRM Error vs. Measurement Noise
	FBRM Error vs. Clutter Rate
	FBRM Error vs. Dynamic Object Density
	FBRM Error vs. Detection Probability
	FBRM Error Metric Analysis
	Computational Complexity Analysis
	Outdoor Experiment

	Summary
	Bibliographical Remarks

	Part III Random Finite Set Based Simultaneous Localisation and Map Building
	An RFS ‘Brute Force’ Formulation for Bayesian SLAM
	Introduction
	RFS Formulation of the Bayesian SLAM Problem
	The `Brute Force' PHD SLAM Filter
	Gaussian Mixture (GM) PHD-SLAM
	The SLAM New Feature Proposal Strategy

	Brute Force SLAM Pseudo-code
	Algorithm Performance
	A Note on Computational Complexity

	Summary
	Bibliographical Remarks

	Rao-Blackwellised RFS Bayesian SLAM
	Introduction
	The Rao-Blackwellised (RB) PHD-SLAM Filter
	The Factorised RFS-SLAM Recursion
	The PHD in RFS-SLAM
	PHD Mapping
	PHD-SLAM

	Rao-Blackwellised Implementation of the PHD-SLAM Filter
	PHD Mapping – Implementation
	The Vehicle Trajectory – Implementation
	SLAM State Estimation and Pseudo-code

	Results and Analysis
	Simulated Datasets
	A Note on Computational Complexity
	Outdoor Experiments

	Summary
	Bibliographical Remarks

	Extensions with RFSs in SLAM
	Introduction
	Alternative RFS Map Representations
	The Independent and Identically Distributed (IID) Cluster RFS
	The Multi-Bernoulli RFS

	Extended RB-RFS-SLAM Formulations
	RB Cardinalised PHD-SLAM
	RB Multi-target Multi-Bernoulli (MeMBer) SLAM

	Summary

	Cover
	Front Matter
	Introduction
	Introduction
	Structure of the Book


	Part I Random Finite Sets
	Why Random Finite Sets?
	Environmental Representation: Fundamentals
	Introduction
	FBRM and SLAM New Concepts
	Eliminating the Data Association Problem
	Eliminating the Map Management Problem

	FBRM and SLAM Error Quantification
	Bayesian FBRM and SLAM with Vectors and Sets
	Bayesian Estimation with Occupancy Grids
	Bayesian Estimation with a Vector Feature Map
	Bayesian Estimation with a Finite Set Feature Map

	Further Attributes of the RFS Representation
	Summary

	Estimation with Random Finite Sets
	Introduction
	Classical State Estimators
	Naive Estimators

	Bayes Optimal RFS Estimators
	Bayes Risk in Feature Map Estimation
	Marginal Multi-Object Estimator
	Joint Multi-Object Estimator
	The Probability Hypothesis Density (PHD) Estimator

	The PHD Filter
	Intuitive Interpretation of the PHD Filter

	Summary


	Part II Random Finite Set Based Robotic Mapping
	An RFS Theoretic for Bayesian Feature-Based Robotic Mapping
	Introduction
	The Feature-Based Map Estimation Framework
	FB Map Estimation Error
	The PHD-FBRM Filter
	Pseudo-static Map State
	Static Map State

	PHD-FBRM Filter Implementations
	The Static Map: An SMC PHD-FBRM Implementation
	The Pseudo-static Map: A GM PHD-FBRM Implementation

	Algorithm Performance
	FBRM Error vs. Measurement Noise
	FBRM Error vs. Clutter Rate
	FBRM Error vs. Dynamic Object Density
	FBRM Error vs. Detection Probability
	FBRM Error Metric Analysis
	Computational Complexity Analysis
	Outdoor Experiment

	Summary
	Bibliographical Remarks


	Part III Random Finite Set Based Simultaneous Localisation and Map Building
	An RFS ‘Brute Force’ Formulation for Bayesian SLAM
	Introduction
	RFS Formulation of the Bayesian SLAM Problem
	The `Brute Force' PHD SLAM Filter
	Gaussian Mixture (GM) PHD-SLAM
	Brute Force SLAM Pseudo-code
	The SLAM New Feature Proposal Strategy

	Algorithm Performance
	Summary
	A Note on Computational Complexity

	Bibliographical Remarks

	Rao-Blackwellised RFS Bayesian SLAM
	Introduction
	The Rao-Blackwellised (RB) PHD-SLAM Filter
	The Factorised RFS-SLAM Recursion
	The PHD in RFS-SLAM
	PHD Mapping
	PHD-SLAM

	Rao-Blackwellised Implementation of the PHD-SLAM Filter
	PHD Mapping – Implementation
	The Vehicle Trajectory – Implementation

	Results and Analysis
	SLAM State Estimation and Pseudo-code
	Simulated Datasets
	A Note on Computational Complexity
	Outdoor Experiments

	Summary
	Bibliographical Remarks

	Extensions with RFSs in SLAM
	Introduction
	Alternative RFS Map Representations
	The Independent and Identically Distributed (IID) Cluster RFS
	The Multi-Bernoulli RFS

	Extended RB-RFS-SLAM Formulations
	RB Cardinalised PHD-SLAM
	RB Multi-target Multi-Bernoulli (MeMBer) SLAM

	Summary


	Back Matter

