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Foreword

In 1982, at a conference on Logic in Barcelona, I introduced the concept of a
T -Indistinguishability operator in fuzzy logic. As far as I know, this was the
first paper dealing with a concept I borrowed from the complementary views
of Henri Poincaré’s thinking on the physical continuum’s intransitivity, Karl
Menger’s Indistinguishability Relations in Statistical Metric Spaces, and both
Lotfi A. Zadeh and Enrique H.Ruspini’s papers on Fuzzy Similarity Relations.
Two years later, and with my then student Llorenç Valverde, we published
in a book an essay on these operators in which we showed several conceptual
examples, included their characterization by means of elemental fuzzy T -
preorders, and posed the problem we called of Poincaré-Menger. In this book,
Sergei Ovchinnikov also published a very interesting characterization of prod-
Indistinguishability operators by means of positive ’measurements’.

I think this was the beginning of a subject which was then brilliantly con-
tinued by other people, including Joan Jacas, Diońıs Boixader, and Jordi Re-
casens in Barcelona, starting with the 1987 Ph.D Dissertation of Joan Jacas,
which is in an outstanding contribution. I cordially thank Jordi Recasens for
conferring me the honor of writing the Foreword to his book Indistinguisha-
bility Operators. Modelling Fuzzy Equalities and Fuzzy Equivalence Relations.

In what follows let me make a few remarks on what I consider to be most
important for conceptually capturing the essential treatment of the special
fuzzy relations this book considers.

I. The idea behind T -Indistinguishability operators is to give a definition
of a graded equivalence between the elements a, b, c, .. in a set X . To this
end, the problem is to establish a minimal number of properties a fuzzy re-
lation E : X × X → [0, 1] does satisfy in order to express that E(a, b) is
a ’degree up to which a is indistinguishable from, or equivalent, to b’, in
such a way that crisp equivalence relations could be obtained as a special
case. The typical reflexive and symmetric properties are easily translated
by E(a, a) = 1, and E(a, b) = E(b, a), for all a, b in X , but crisp transi-
tivity must be extended by means of a formula involving the three degrees
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E(a, b), E(b, c), and E(a, c). Given a continuous t-norm T , the fuzzy relation
E is said to be T -transitive if T (E(a, b), E(b, c)) ≤ E(a, c), for all a, b, c in
X , a definition clearly generalizing crisp transitivity since T (1, 1) = 1. Notice
that the bounds r ≤ E(a, b), and r ≤ E(b, c), r > 0, give the weaker bound
T (r, r) ≤ E(a, c), with T (r, r) ≤ r. Of course, if T has not zero divisors then
T (r, r) is actually a bound for the indistinguishability degree between a and c,
but if T is in the �Lukasiewicz family, it is required that r satisfies 0 < T (r, r)
since, otherwise we obtain the non informative result E(a, c) ∈ [0, 1]. That
is, if T = Wϕ, it should be r > ϕ−1(0.5) to have E(a, c) ∈ [T (r, r), 1] � [0, 1].
It is interesting to note that the crisp relations E(r), r > 0, defined by
’(a, b) ∈ E(r) iff r ≤ E(a, b)’, always reflexive and symmetric, are only crisp
equivalences if T = min, in which case they facilitate an indexed tree of crisp
partitions of X .

II. From a conceptual point of view, it is relevant that indistinguishability
operators E are directly related to the ’negation’ of distinguishability opera-
tors, or pseudo-distances. For instance,

• E is a min-Indistinguishability operator iff d = 1 − E is a ultradistance
• E is a Wϕ or prodϕ-Indistinguishability operator iff d = Nϕ ◦ E is such

that ϕ ◦ d = 1 − ϕ ◦ E is a pseudo-distance,

with the strong negation Nϕ = ϕ−1 ◦ (1 − id) ◦ ϕ, where ϕ is an order-
automorphism of the unit interval. In the pseudo-metric space (X, ϕ ◦ d), it
holds that r ≤ E(a, b) iff (ϕ ◦ d)(a, b) ≤ 1 − ϕ(r). That is, for each a in X it
holds that r ≤ E(a, b) iff b is in the neighborhood of a with radius 1 − ϕ(r).
Similarly, for each b in X , it is r ≤ E(a, b) iff a is in the neighborhood of b
with radius 1 − ϕ(r).

III. Regardless if the connectives are functionally expressible, commuta-
tive, associative, dual, the negation is a strong one, etc., the only algebras
of fuzzy sets ([0, 1]X , ·, +,′ ) that are lattices are those with · = min and
+ = max, none of them being a ortholattice and less again a boolean al-
gebra, but only De Morgan algebras if ′ is a strong negation. This is an
important difference with the case of crisp sets, to which it should be added
the inexistence of an specification axiom simple as in the case of crisp pred-
icates, since the meaning of the imprecise ones is not definable by necessary
and sufficient conditions and is context and purpose dependent.

What is widely considered is the idea that the most salient feature dif-
ferentiating fuzzy from crisp sets is the failure of the principles of Non-
contradiction (NC), and Excluded-middle (EM), although this is not a intrin-
sic property of fuzzy sets but only a property of their algebras. For instance,
in the case of the standard algebras of fuzzy sets ([0, 1]X , T, S, N):

• NC holds iff T = Wϕ, N ≤ Nϕ, and S is any continuous t-conorm
• EM holds iff S = W ∗

ψ, Nψ ≤ N , and T is any continuous t-norm,
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imply that both principles do hold if and only if T = Wϕ, S = W ∗
ψ ,

and Nψ ≤ N ≤ Nϕ, and fail otherwise. Nevertheless, by interpreting the
principles à la Aristotle:

• NC : μ · μ′ is always self-contradictory (impossible, in Aristotles terms),
that is, μ · μ′ ≤ (μ · μ′)′,

• EM : (μ + μ′)′ is always self-contradictory (μ + μ′ is always the case, in
Aristotles terms), that is, (μ + μ′)′ ≤ ((μ + μ′)′)′,

for all μ in [0, 1]X , both principles do hold in any algebra of fuzzy sets
([0, 1]X , ·, +,′ ).

Hence, if it is not clear enough that the most important difference between
fuzzy and crisp sets is the principles’ failure, it should be admitted that, a
clear difference lies, nevertheless, in the partial distinguishability between a
fuzzy set μ and its complement μ′. For instance, if X = [0, 1], μ(x) = x,
μ′(x) = 1−x, and we consider the W -Indistinguishability operator E(x, y) =
1 − |x − y|, it holds that E(μ(x), μ′(x)) = 1 − |2x − 1|, which has value 1
iff x = 0.5, and 0 iff x = 0 or x = 1. That is, 0 < E(μ(x), μ′(x)) < 1
iff x /∈ {0, 0.5, 1}, although it holds NC: (μ · μ′)(x) = W (μ(x), μ′(x)) = 0
and EM: (μ + μ′)(x) = W ∗(μ(x), μ′(x)) = 1, for all x in [0, 1] . This idea of
intrinsically relating fuzziness to the non-complete distinguishability between
a fuzzy set and its complement, was proposed many years ago by Ronald R.
Yager, followed by myself, Claudi Alsina and Llorenç Valverde, and it is yet
waiting to be developed further by, perhaps, considering the antonym instead
of the complement, since the second does not correspond to a linguistic term.

IV. For representing precise concepts, crisp equivalence relations are the
correct mathematical tool for the comprehension of the bipartition given by a
predicate in the universe in which it is used. In the case of the representation
of imprecise words by means of fuzzy sets, T -Indistinguishability operators
are a mathematical tool for capturing the kind of imperfect fuzzy classifi-
cation generated by an imprecise predicate. A nice example of this, is that
of min-Indistinguishability operators that give, as described above, a tree of
indexed crisp partitions of the universe, and could help to pose finite fuzzy-
probability problems like classical partitions help to pose finite probabilistic
ones.

There is again another topic for which the operators Recasens takes into
account could be of a great interest. This à la Wittgenstein topic is not
only important, but challenging for Computing with Words, and concerns
the degree of ’family resemblance’ existing between a predicate and their
migrates to different universes of discourse.
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The author of this interesting book deserves a high recognition for his
effort in clearly presenting the theory of fuzzy equivalences and collecting, in
a single volume, that which is currently dispersed in many articles published
either in edited books, conference proceedings, or journals. The book is well
organized, with very clear mathematical reasoning, and I am sure it will help
people interested in fuzzy logic to better understand the world of ideas related
to imprecise partitionings.

May this book receive all the acknowledgments and success it deserves!

Enric Trillas
Emeritus Researcher

European Centre for Soft Computing
Mieres(Asturias), Spain



Preface

The ability to determine an equality is essential to every theory because it is
equivalent to the problem of distinguishing the objects that the theory deals
with. This need -and the importance of selecting between different possibili-
ties -arises from the fact that equality allows us to classify in the context of
the theory; and to classify is one of the most important processes of knowl-
edge since it allows us to relate, organize, generalize, find general laws, etc. In
fact, a scientific knowledge that does not need an equality capable of classify-
ing the objects it studies is unconceivable. Borges illustrates this very clearly
in the following paragraph of Funes the Memorious (Ficciones).

Éste, no lo olvidemos, era casi incapaz de ideas generales, platónicas. No
sólo le costaba comprender que el śımbolo genérico perro abarcara tantos
individuos dispares de diversos tamaños y diversa forma; le molestaba que
el perro de las tres catorce (visto de perfil) tuviera el mismo nombre que
el perro de las tres y cuarto (visto de frente)... Sospecho... que no era muy
capaz de pensar. Pensar es olvidar diferencias, es generalizar, abstraer. En el
abarrotado mundo de Funes no hab́ıa sino detalles, casi inmediatos. 1

According to the Identity of indiscernibles, or Leibniz’s law, two or more
objects or entities are identical (i.e. they are one and the same entity) if
they have all of their properties in common. In the abscence of uncertainty,
this principle establishes equivalence relations and, in particular, the first
Common Notion of Euclid’s Elements or transitivity:

Things which equal the same thing also equal one another.

1 He was, let us not forget, almost incapable of general, platonic ideas. It was
not only difficult for him to understand that the generic term dog embraced so
many unlike specimens of differing sizes and different forms; he was disturbed
by the fact that a dog at three-fourteen (seen in profile) should have the same
name as the dog at three-fifteen (seen from the front)... I suspect... that he was
not very capable of thought. To think is to forget differences, to generalize, to
abstract. In the overly replete world of Funes there were nothing but details,
almost contiguous details.
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In the case of imprecision or vagueness, properties are fulfilled up to a de-
gree, and because certain individuals are more similar than others, a gradual
notion of equality appears.

As an example of this phenomenon let us compare two objects of an art
collection according to their beauty. Due to the subjectivity and gradation
of the concept beauty, a crisp equality cannot be expected, but a graded soft
equality can.

A further example occurs when the fulfillment of properties is not a matter
of degree but, instead, there are limitations on the perception and measure-
ment of those properties. Let us, for instance, consider the case of a particular
tool that provides measurements with an error margin ǫ. It naturally defines
the following approximate equality relation ∼:

x ∼ y ⇔ |x − y| ≤ ǫ.

Two measurements become distinguishable only if their absolute difference
is greater than the error threshold ǫ. The relation ∼ is not transitive, since we
could have |x−y| ≤ ǫ, |y−z| ≤ ǫ and not necessarily |x−z| ≤ ǫ; this leads to
Poincaré’s paradox, which asserts that, in the real world, equal really means
indistinguishable and therefore transitivity cannot generally be expected.

In these situations, where crisp equivalence relations are not sufficiently
flexible to cope with uncertainty, the softening of equivalence and equality
relations has proven to be a useful tool, and it is in this context that indis-
tinguishability operators appear.

I have been working with indistinguishability operators for more than
twenty years, and I am still amazed by the richness of their structure. This
is because they can be seen from many different points of view.

• They represent a special kind of fuzzy relations, and the theory of fuzzy
relations can be applied to them.

• Their very metric behaviour allows us to adapt the theory of metric spaces
and topology to their study.

• They can be analyzed from the point of view of mathematical logic, since
they also generalize (fuzzify) logic equivalence or biimplication.

• There is a close relationship between min-indistinguishability operators
and hierarchical trees, which relates the former with Taxonomy and Clas-
sification Theory.

This book examines various aspects of indistinguishability operators. It is
intended to be useful to people involved in either theory and applications
who are interested in systems dealing with uncertainty and soft computing
in general.

Bath, Sant Cugat del Vallès, Jordi Recasens
May 2010
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Introduction

The notion of equality is essential in any formal theory since it allows us to
classify the objects it deals with.

Classifying is one of the most important processes in knowledge, represen-
tation and inference since it permits us to relate, construct, generalize, find

general laws, etc. It is inconceivable that a scientific knowledge should be

without an equality that allows us to classify the objects it studies.
As a first approach to the concept of equality we can take Leibnitz’s Law

of Identity [89]:

Two objects are identical if and only if they have all their properties in
common in a given universe of discourse.

Note the relativism of this law, since two objects can be equal in one universe

and different in any another. But for a fixed universe consisting of a set

of elements and properties, Leibniz’s Identity Law naturally generates an
equivalence relation on that universe.

In many real situations the objects do not necessarily satisfy (or not) a

property categorically, but rather satisfy it at some level or degree (think

for example of the property to be rich). In these cases, properties are fuzzy
concepts and the Identity Law is similarly fuzzy. We can not talk about

identical objects, but a certain degree of similarity must be introduced. In
this way, the equality becomes to a fuzzy concept. Hence, a model of equality
useful in different branches of knowledge must be based on the concept of

indistinguishability, since in a theory two element are considered as equal
if they are indistinguishable at a certain level. Classical (crisp) equivalence

relations are too rigid to model this kind of equality and hence it is necessary
to introduce fuzzy equivalence relations.

These considerations lead us to the following central definition [144], [135].

Definition 1.1. Let X be a universe and T a t-norm. A T -indistinguishabil-
ity operator E on X is fuzzy relation E : X × X → [0, 1] on X satisfying for
all x, y, z ∈ X

J. Recasens: Indistinguishability Operator, STUDFUZZ 260, pp. 1–12.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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1. E(x, x) = 1 (Reflexivity)
2. E(x, y) = E(y, x) (Symmetry)
3. T (E(x, y), E(y, z)) ≤ E(x, z) (T -Transitivity)

E separates points if and only if E(x, y) = 1 implies x = y.

E(x, y) is interpreted as the degree of indistinguishability (or similarity) be-
tween x and y.

T -indistinguishability operators are also called fuzzy equivalence relations
and T -indistinguishability operators separating points fuzzy equalities.

The above three properties fuzzify those of a crisp equivalence relation. Re-
flexivity expresses the fact that every object is completely indistinguishable
from itself. Symmetry says that the degree in which x is indistinguishable from

y coincides with the degree in which y is indistinguishable from x. Transitivity
deserves a special attention. As early as in 1901, H. Poincaré showed inter-
est in this property [112]. He stated that in the physical word, equal actually
means indistinguishable, since when we assert that two objects are equal, the

only thing we can be sure of is that it is impossible to distinguish them. This
consideration leads to the paradox that two objects A and B can be considered

as equal, B can be equal (indistinguishable) to C but in turn A and B can be

different (distinguishable); i.e.: the following situation can happen:

A = B and B = C, but A �= C.

So Poincaré denies full transitivity in the real word.
T -transitivity in T -indistinguishability operators tries to overcome this

paradox by considering degrees of indistinguishability between objects. It
gives a threshold to E(x, z) given the values for E(x, y) and E(y, z). The

intuitive argument is that it is not reasonable in many cases to have three

objects with high degree of indistinguishability between x and y and between
y and z, but with x and z very distinguishable.

In a more logical context, transitivity expresses that the following propo-
sition is true.

If x is indistinguishable from y and y is indistinguishable from z, then
x is indistinguishable from z.

In order to be useful in modelling different equalities, transitivity should be

flexible. This can be achieved with the selection of a particular t-norm.
In this sense, it is worth recalling that when we use the Product t-norm,

we obtain the so-called probabilistic relations introduced and studied by K.
Menger in probabilistic metric spaces [95]. If we choose the �Lukasiewicz t-
norm, we obtain the relations called likeness introduced by E. Ruspini [122].
For the minimum t-norm we obtain similarity relations [144]. It should also be

noticed that a crisp equivalence relation is a T -indistinguishability operator

for any t-norm T .
Indistinguishability operators determine the granularity of a system in the

same way as equivalence relations do. An equivalence relation on a set X
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determines a partition of X consisting of their equivalence classes. Only sub-
sets of X corresponding to unions of these equivalence classes can be observed

taking the equivalence relation into account. These are the information gran-
ules generated by it on X . There are different possibilities to generalize this
idea to indistinguishability operators. For a T -indistinguishability operator E
on a set X , Zadeh defined the fuzzy equivalence classes associated with E as

its columns (also called the aftersets of E) i.e. the family (μx)x∈X of fuzzy sub-
sets of X defined for all y ∈ X by μx(y) = E(x, y) [144]. It is a very natural
generalization, since μx(y) gives the degree in which x and y are related by E.
In [78] a theoretical justification of this definition is provided (see also [29]).
Nevertheless, the fuzzy equivalence classes of E are not enough to determine

the granularity generated by E on X . The observable fuzzy subsets with re-
spect to E are called extensional subsets; i.e., fuzzy subsets μ of X satisfying

T (μ(x), E(x, y)) ≤ μ(y) for all x, y ∈ X . This definition fuzzifies the predicate

If x ∈ μ and x ∼ y, then y ∈ μ.

For this reason, extensionality is the most important property a fuzzy subset

can fulfill with respect to an indistinguishability operator and many parts of

this book are devoted to its different aspects. Fuzzy points are a special kind

of granules generated by E. A fuzzy point is an extensional fuzzy subset μ
satisfying T (μ(x), μ(y)) ≤ E(x, y), which fuzzifies the predicate

If x, y ∈ μ, then x ∼ y.

A normal fuzzy point (i.e. with an element x satisfying μ(x) = 1) is exactly a

fuzzy equivalence class and in the crisp case points coincide with equivalence

classes.
A different way to tackle the problem of partitioning a set was pro-

posed by Ruspini [121] [10]. In his definition, no indistinguishability op-
erators are needed and a finite family μ1, μ2, .., μn of normal fuzzy sub-
sets of X is a T -S-partition of X when a) T (μi(x), μj(x)) = 0 and b)
S(μ1(x), μ2(x), ..., μn(x)) = 1 for all x ∈ X and where T and S are a t-
norm and a t-conorm respectively. a) assures the empty intersection of the

elements of the partition, while b) says that they are a coverage of X . There

exists a relation between these partitions and indistinguishability operators

as can be found in [129]. See also [80], [85] and Chapter 3 for the relation
between T -S-partitions, fuzzy points and fuzzy equivalence relations.

A very natural way to give semantics to fuzzy sets is using indistinguish-
ability operators. The degree of membership of an object x of a universe X
to a concept described by a fuzzy subset μ can be viewed as the degree of

indistinguishability between x and the prototypes of μ. If P is the set of pro-
totypes of the concept described by μ, then μ(x) = supp∈P E(x, p) where E is
the indistinguishability operator defining the similarity between the objects
of X . This approach goes back to [6] and was first developed by Ruspini [121].
See also [41] [44]. It is easy to see that in fact μ is the smallest extensional
fuzzy subset containing the prototypes P .
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An interesting feature of indistinguishability operators is their metric be-
haviour. To every crisp equivalence relation ∼ with E its characteristic func-
tion, a pseudodistance (in fact a pseudo ultrametric) d = 1 − E can be

associated and vice versa. In this way there is a duality between equivalence

relations and discrete distances. This duality is maintained between indistin-
guishability operators and a kind of Generalized metrics [133] called S-metrics
(see Chapter 4). The corresponding S-metric is a classical pseudodistance if
and only if the t-conorm S is smaller than or equal to the �Lukasiewicz t-
conorm. Also E is a similarity (a min-indistinguishability operator) if and

only if the associated S-metric is a pseudoultrametric.
A second situation in which the metric aspects of T -indistinguishability

operators are apparent is in the case of continuous Archimedean t-norms.
If t is an additive generator of the continuous Archimedean t-norm T and

t[−1] its pseudo inverse (see the Appendix), then t ◦ E is a pseudodistance

and reciprocally, from a pseudodistance d the T -indistinguishability operator

t[−1] ◦ d can be obtained.
These previous results are consequence of the fact that T -indistinguishabil-

ity operators are a special kind of Generalized metrics. A generalized metric
space (X, d) consists of a set X and a map d : X × X → S where (S, ∗,≤) is
an ordered semigroup satisfying for all x, y, z ∈ X

1. d(x, x) = 0.
2. d(x, y) = d(y, x).
3. d(x, z) ≤ d(x, y) ∗ d(y, z).

Examples of Generalized metric spaces are ordinary metric spaces with
(S, ∗,≤) = (R+, +,≤), probabilistic metric spaces ((S, ∗,≤) = (Δ+, ∗,≤)
where Δ+ is the set of positive distribution functions and ∗ the convolution)
[127] and boolean spaces where X is a boolean space and (S, ∗,≤) = (X,△,≤)
where △ is the symmetric difference. T -indistinguishability operators are

also Generalized metrics. Indeed (X, E) is a Generalized metric space with
(S, ∗,≤) = ([0, 1], T,≤T ) where ≤T is the reverse of the natural ordering

in the unit interval so that 0 and 1 are the greatest and the smallest ele-
ment respectively. This captures the idea that two objects are indistinguish-
able when their (generalized) distance is small. It also explains the previous

results since the relation between T -indistinguishability operators and S-
metrics and between T -indistinguishability operators and distances for con-
tinuous Archimedean t-norms is simply an isomorphism of Generalized metric
spaces (see Chapter 4).

The book is organized as follows.

Chapter 2 presents the most popular ways to generate a T -indistinguishabil-
ity operator. The first approach is based on calculating the transitive closure

of a proximity relation (i.e. a reflexive and symmetric fuzzy relation). The

sup−T product is used to generate the operator and a topological approach

then provides a theoretical justification is given. The Representation Theorem
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is a very natural way to generate indistinguishability operators from a family
of fuzzy subsets. The importance of this result will be made clear throughout

the book. In particular, minimal families generating an indistinguishability
operator, called a basis, are important, since when the cardinality of these

families (called its dimension) is small, then the information contained in the

relation can be represented in a small number of fuzzy subsets. These fuzzy
subsets also describe degrees of matching with some features or prototypes

and give semantic meaning to the relation. Decomposable indistinguishabil-
ity operators are generated by a fuzzy subset and it is interesting to note

that they are equivalent to Mamdani implications in fuzzy control. The last

approach presented in this chapter to generate indistinguishability operators

is by calculating a transitive opening of a proximity relation R (an indistin-
guishability operator maximal among those smaller than or equal to R). An
algorithm to find some of them is provided.

Extensionality is the most important property a fuzzy subset can satisfy
with respect to an indistinguishability operator E, because extensional fuzzy
subsets are the only observable fuzzy subsets and determine the granularity
derived from E in the same way as in the crisp case only subsets which are

the union of equivalence classes of an equivalence relation are observable with
respect to it. Chapter 3 is devoted to the study of the set HE of extensional
fuzzy subsets of a T -indistinguishability operator E. An interesting result is
that HE coincides with the set of generators of E in the sense of the Repre-
sentation Theorem. Two operators φE and ψE between fuzzy subsets of the

universe of discourse X are introduced that for a given fuzzy subset of X
produce its upper and lower approximation by extensional ones. This relates

them to fuzzy rough sets and fuzzy modal logic. φE and ψE are also closure

and interior operators and the fuzzy topological structure they generate on
HE is analyzed and related to the crisp topology associated to E. A third
operator ΛE is introduced that characterizes the fuzzy points of E. Indistin-
guishability operators between fuzzy subsets are defined and studied using

the duality principle.
Indistinguishability operators have an important metric property. This is

because they are a special kind of Generalized Metric Spaces since the unit
interval with a t-norm is an ordered semigroup where 0 and 1 are the greatest

and the smallest elements respectively. In Chapter 4 this metric behaviour is
analyzed. In particular, the maps that preserve indistinguishability operators

are given. The relation between indistinguishability operators with respect to
isomorphic t-norms is studied and the isometries between them is related to
their generators in the sense of the Representation Theorem. The duality
between indistinguishability operators and S-metrics is established. Also the

relation between indistinguishability operators and distances is given via the

additive generators of continuous Archimedean t-norms.
Among the different T -indistinguishability operators, those defined with

respect to the minimum t-norm present a particular behaviour. This is be-
cause their α-cuts are equivalence relations and therefore generate partitions
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on the universe of discourse. In this way they generate indexed hierarchi-
cal trees and are very useful in Cluster Analysis and Taxonomy. Chapter 5
is devoted to min-indistinguishability operators and their relation with hi-
erarchical trees. The calculation of the different types of these operators is
a difficult combinatorial problem which will be investigated for universes of

low cardinalities in this chapter. Also a very simple way of storing them

is presented. Their relation between min-indistinguishability operators and

ultrametrics is also analyzed.
An expression of the metric nature of indistinguishability operators is

that they generated metric betweenness relations if the t-norm is continuous

Archimedean (Chapter 6). One dimensional T -indistinguishability operators

are characterized by the fact that they generated linear betweenness rela-
tions. The length of an indistinguishability operator defined in this chapter

relates the betweenness relations with the dimension and the sup−T prod-
uct. Roughly speaking, the greater the dimension, the smaller the cardinality
of the betweenness relation and the length. Decomposable indistinguishabil-
ity operators generate a special kind of betweenness relations called radial
relations in which there is a particular element between any other two ele-
ments. In the real line, given a fuzzy number an indistinguishability operator

is obtained that generates a betweenness relation compatible with the nat-
ural ordering on R. If the values of a one-dimensional T -indistinguishability
operator are distorted by some noise, then the betweenness relation gener-
ated by this new relation will probably be not linear and even can be empty.
This means that the definition of betweenness relation can not capture the

possibility of a relation to be ”almost” linear or -more generally speaking- is
not capable of dealing with points being ”more or less” between others. Fuzzy
betweenness relation are introduced in this chapter in order to overcome this
problem.

The Representation Theorem states that every T -indistinguishability op-
erator E on a set X can be generated by a family of fuzzy subsets of X . This
family is not unique and a minimal family generating E is called a basis and

its cardinality the dimension of E. Chapter 7 solves the problem of finding

the dimension and a basis of a T -indistinguishability operator when T is a

continuous Archimedean or the minimum t-norm. The first case is based on a

geometrical interpretation of HE while for the minimum t-norm the problem
is solved in a combinatorial way. A fuzzy relation can be an indistinguisha-
bility operator for different t-norms. In this chapter an algorithm to decide if
a fuzzy relation is one dimensional for some continuous Archimedean t-norm

is provided. A method based on Saaty’s reciprocal matrices to obtain a one

dimensional T -indistinguishability operator close to a given one for the Prod-
uct t-norm is generated. This is interesting since due to noise or imprecision,
the values of a one dimensional indistinguishability operator can be distorted

and in this way we can recover its original values.
In many cases there is a need to aggregate indistinguishability operators.

This can be the case if the elements of a universe are defined by a number
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of features and there is an indistinguishability operator defined on each do-
main. Chapter 8 provides different ways to do this. Basically if the t-norm

is continuous Archimedean, the weighted quasi-arithmetic mean of indistin-
guishability operators is also an indistinguishability operator. In addition,
some kinds of OWA operators when used to aggregate indistinguishability
operators also produce such an operator. Furthermore, there is a need to ag-
gregate a non-finite number of indistinguishability operators. This is the case

for example if we want to compare fuzzy subsets. In this chapter a method

of aggregating fuzzy subsets of the real line (fuzzy quantities) is proposed.
The transitive closure R of a proximity relation R is greater than or equal

to R while its transitive openings are smaller than or equal to R. If we want

to approximate a proximity by a T -indistinguishability operator, there are

other operators between them that will be closer to R. Chapter 9 presents

different ways to find them when the t-norm is continuous Archimedean.
One is finding the optimal as a weighted quasi-arithmetic mean of R and

a transitive opening. A second modifies the values of the transitive closure

or a transitive opening by applying a homotecy to the operator. A third
approach uses non-linear programming techniques. A method to find good

approximations for the minimum t-norm is also provided.
Fuzzy functions are useful tools in approximate reasoning. Roughly speak-

ing they are functions compatible with indistinguishability operators on their
domain and co-domain. The presence of these indistinguishability operators

generates a granulation and in some sense a fuzzy function maps granules
to granules. Their properties and structure are studied in Chapter 10. The

existence of maximal fuzzy functions is proved and the fuzzy functions for

which the indistinguishability operator on the domain is the classical equality
are analyzed.

Two approaches to approximate reasoning in the presence of indistinguish-
ability operators are given in Chapter 11. The first, based on IF-THEN rules,
models the idea that from the rule ”If x is A, then y is B” and x′ is A′ and

A′ ”close” to A, we must entail that y′ is B′ with B′ ”close” to B. The sec-
ond approach gives a theoretical background to fuzzy control based on the

concept of a fuzzy function, the idea being that every fuzzy rule identifies a

fuzzy patch and a fuzzy function can be generated by them.
Fuzzy subgroups were introduced by Rosenfeld in 1971 and vague groups by

Demirci in 1999. Vague groups are a pair (G, ◦) where ◦ is a vague operation
on G, ◦(a, b, c) meaning that c is vaguely or approximately a ◦ b. This vague

operation is compatible with a T -indistinguishability operator defined on G
and its properties are closely related to those of fuzzy functions. In Chapter

12, vague groups are introduced and related to fuzzy subgroups. Given a crisp
group (G, ◦) and a T -indistinguishability operator defined on G, a vague group

(G, ◦) can be defined by ◦(a, b, c) = E(a ◦ b, c). In this way there is a bijection
between the set of normal fuzzy subgroups of G, the set T -indistinguishability
operators on G invariant under translations and vague groups of G generated

by this kind of indistinguishability operators on G. Under this bijections, if
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(G, ◦) corresponds to the normal fuzzy subgroup μ of μ, we can interpret (G, ◦)
as G/μ. In particular, the results are applied to the real line (R, +) and in-
distinguishability operators on R invariant under translations and with their
columns being fuzzy numbers are characterized. A vague group is associated

to every symmetric triangular fuzzy number and the idea of an integer number

being vaguely a multiple of another is introduced.
The final chapter differs from earlier chapters in that it deals with finitely

valued t-norms. These t-norms, valued on a finite totally ordered set L are

very interesting, since they allow us to compute directly with linguistic vari-
ables. If we have for example a linguistic variable with labels very cold, cold,
neither cold nor warm, warm, hot, very hot, then with a t-norm valued on
these labels we can for instance calculate T (very hot, cold). Finitely valued

indistinguishability operators are introduced in this chapter and some of their
properties are studied. In particular, thanks to two pseudoinverses of an ad-
ditive generator of a finitely valued t-norm, a Representation Theorem can
be established for them and a way to find basis of them based on the solution
of Diophantine systems of inequalities is provided. The relationship to indis-
tinguishability operators valued on the unit interval is investigated and from

that a new way to find a basis of a [0, 1] valued indistinguishability operator

or of an indistinguishability operator close to it is given.
An appendix with the basic definitions and properties of continuous t-

norms has been added at the end of the book.
There are an important number of topics and applications of indistinguish-

ability operators that have not been treated or only sketched on this volume,
since the focus is mainly on theory. A number of the different applications of

T -indistinguishability operators are outlined below.

• Normalizing possibility distributions

It is well known that a normalized fuzzy subset of a universe X generates

a possibility distribution on it. However, in many situations we have to
handle non-normalized fuzzy subsets that do not generate valid possibility
distributions. In these cases, it is assumed that there is a lack of informa-
tion or evidence which means that the mass assignment values associated

with the distribution add up to a number y1 smaller that 1. The lack of

mass 1 − y1 is then usually assigned to the empty set. In order to obtain
a possibility distribution from a given non-normalized fuzzy subset μ, we

have to reallocate the missing mass 1 − y1. The manner in which 1 − y1

is redistributed characterizes a specific normalization of μ and a number

of such methods have been suggested. In [87] an axiomatic approach has

been proposed in order to decide when a normalization can be considered

as valid. In [118] the requirement that the normalization of a given fuzzy
subset μ be as similar as possible to μ with respect to the natural similar-
ity ET on the set of fuzzy subsets of X (T a given t-norm) is investigated.
The greatest (i.e. less specific) normal fuzzy subset μ̂ satisfying this rea-
sonable property is then taken as the normalization of μ with respect to
ET . In this way interesting normalizations are generated. For example, the
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minimal normalization, consisting of shifting the values y1 to 1, the max-
imal normalization, consisting of adding 1 − y1 to all non-zero values of μ
and the cross entropy normalization μ̂ = μ

y1
correspond to the minimum,

�Lukasiewicz and Product t-norms respectively. For ordinal sums of copies
of the �Lukasiewicz t-norm intermediate normalizations are obtained.

• F-transforms

In [111] [25] the problem of approximating fuzzy relations is handled with
the use of F-transforms. Let us only formulate the problem. Fixing ǫ ∈ [0, 1]
there are fuzzy binary relations R1, , R2, ..., Rn defined on X1, X2, ..., Xn

and an unknown fuzzy relation f : X1×X2×...×Xn → [0, 1] for which only
partial information is available. Namely, there is a subset C of X1 × X2 ×
...×Xn and the images f(x1, x2, ..., xn) are known for exactly the elements

of C. Putting R = T (R1, R2, ..., Rn) We want to find D ⊆ X1 × X2 ×
... × Xn and f̂ ∈ MD

∨(∧) such that ET (f̂(x1, x2, ..., xn), f(x1, x2, ..., xn)) ≥
ǫ, ∀(x1, x2, ..., xn) ∈ C, where

MD
∨ = {φR(g) | g : X1 × X2 × ... × Xn → [0, 1]}

and

MD
∧ = {ψR(g) |g : X1 × X2 × ... × Xn → [0, 1]}.

• Kernels as indistinguishability operators

In [99] [132] kernels which are positive-definite functions are proved to be

T -indistinguishability operators for continuous Archimedean t-norms with
additive generators t(x) = arccosx and t(x) =

√
1 − x. In [132] these re-

sults are applied to combinatorial chemistry for the design of large libraries
of compounds in order to find new compounds with drug properties.

• Indistinguishability operators and CAGD

IF-THEN rules can be applied to CAGD (Computer Aided Geometric De-
sign) in a straightforward way [65]. Let us illustrate the idea for generating

a functional curve. In a similar way parametric curves and surfaces can
also be built. Let us consider a set of control points {x0, x1, ..., xn} with
their images {y0, y1, ..., yn}. If we want continuity in our curve f , it is nat-
ural to impose that if x is close to xi, then f(x) be close to yi. This can
be expressed by a set of fuzzy rules similar to that of Chapter 11. If the

fuzzy subsets of the rules and the t-norm are Ck, then a Takagi Sugeno
fuzzy controller gives a Ck curve. This approach is especially useful for

generating surfaces when the control points are not located on a grid.
• Concept lattices

A triple (X, Y, I) where X and Y are sets and I ∈ [0, 1]X×Y is called a

formal context. The elements of X are considered as objects and the ones

of Y as properties, I(x, y) means the degree in which the object x satisfies

property y. For every fuzzy subset μ of X the subset μ ↑ of Y is defined

by μ ↑ (y) = infx∈X
−→
T (μ(x)|I(x, y)) and for every fuzzy subset ν of Y the

fuzzy subset ν ↓ of X is defined by ν ↓ (x) = infy∈Y
−→
T (ν(y)|I(x, y).
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(↑, ↓) is called the polarity generated by I and the set F(X, Y, I) of

fixed points (μ, ν) of (↑, ↓) is a fuzzy concept lattice. For a fuzzy con-
cept (μ, ν) ∈ F(X, Y, I), μ consists of the objects of X that satisfy the

properties of ν and ν is the set of properties shared by all the objects of

μ. There is a bijection between the polarities between X and Y and fuzzy
Galois connections, and the polarities are compatible with the natural
indistinguishability operators ET on [0, 1]X and [0, 1]Y ([8]).

• Fuzzy modal logic

The use of T -indistinguishability operators, and especially of the maps φE ,
ψE in fuzzy modal logic has been briefly exposed in Chapter 3.

• Fuzzy rough sets

Also these two maps generate fuzzy rough sets as explained in Chapter 3.
• Observational entropy

In the definition of Shannon’s entropy of a random variable (H(X) =
−∑

x∈X p(x) log2(p(x)) it is assumed that the elements x of X are com-
pletely indistinguishable. If a T -indistinguishability operator E is defined

on X , then we cannot be sure if we have observed the event x or an
event indistinguishable from x at some extent. In these situations, the

definition of entropy must take E into account. In [141], [55] this idea

has been developed and a new concept, called observational entropy has

been studied. The observation degree of an element xj of X is defined by
π(xj) =

∑
x∈X p(xj)E(x, xj) and the observational entropy of X (HO(X))

by HO(X) = −∑
x∈X p(x) log2 π(x). From this definition, in [55] the con-

cepts of simultaneous observation degree, conditioned observational en-
tropy and joint observational entropy are given and applied to the gener-
ation of fuzzy decision trees.

• Fuzzy decision trees

Decision trees have become one of the most relevant paradigms of machine

learning methods. The main reason for this widespreading success lies
in their proved applicability to a broad range of problems, in addition
to appealing features as the readability of the knowledge represented in
the tree. Therefore, a lot of work has been carried out from Quinlan’s
TDID3 algorithm in order to extend their applicability. An important

possibility to do this is providing decision tree induction capable of coping

with other sources of uncertainty beyond the probabilistic type. The case

when uncertainty arises as a consequence of having indistinguishability
operators on the domains of the attributes used to describe the set of

instances can be found in [57]. There, observational entropy is used in
building an observational decision tree from a set of examples. The problem
could be posed as follows: Let At = {A1, ..., An, C} be a set of nominal
attributes (being the classes of C the classification we want to learn), with
domains Di = {vi1 , ..., vimi

} and Dc = {vc1
, ..., vcmc

}. Let S ⊆ D1 × ... ×
Dn ×Dc be the set of instances and for each attribute A, we consider a T -
indistinguishability operator EA and a probability distribution pA defined

on the domain of A. From that a fuzzy decision tree is generated, the main
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idea consisting in using the notion of conditioned observational entropy as

a basis for the definition of the attribute selection measure, which leads to
a criterion of observational information gain maximization.

• Indistinguishability operators between prototypes

Let us suppose the existence of some prototypes a1, a2, ..., an. It is com-
mon to assume that prototypes are completely different and that every
prototype is completely distinguishable from the other ones, but it is not

difficult to think of situations in which this is not the case. Let us then in
this cases assume the presence of an indistinguishability operator E be-
tween them. If we consider a set X of objects resembling the prototypes to
some extent, then it seems reasonable to extend the relation E to the set

X . The preceding situation can be modeled in this way: There are n fuzzy
subsets of X denoting the resemblance of the elements of X to the pro-
totypes and an indistinguishability operator E between these prototypes.
In [56] some methods to define an indistinguishability operator E on X
compatible with E can be found depending on the properties of the fuzzy
subsets defined on X .

• Defuzzification

Defuzzification is an essential problem in fuzzy systems that is always

solved in a heuristic way. The first step in a fuzzy system consist on the

fuzzification of the data. Starting from a crisp set A ⊆ X or an element

x ∈ X , a fuzzy subset is generated that takes the fuzziness of the system

into account. In the case when a T -indistinguishability operator is defined

on X , φE(A) and ψE(A) are good candidates for fuzzifying A, since they
are its best upper and lower approximations by fuzzy extensional subsets.
The problem of defuzzification can be thought as the inverse problem of

fuzzification. From an output, given as a fuzzy subset ν a crisp set is
searched that can better express it once the fuzziness is eliminated. In [19]
a couple of methods to defuzzify a fuzzy output are provided. The first

one assumes the presence of a T -indistinguishability operator F on the set

of outputs Y and defines two possible defuzzifications of a fuzzy subset

ν: defuzz(ν) = inf{C ⊆ Y | ν ≤ φF (C)} and defuzz(ν) = sup{C ⊆
Y | φF (C ≤ ν}. The second one finds the greatest crisp set closer to ν
by the natural indistinguishability operator ET . It is worth noticing that

the defuzzification of ν is a crisp set, rather than a crisp element. If an
element is needed, then the problem of selecting a specific element of the

set is outside of the fuzzy system.
• Generating aggregation operators

When we aggregate two values a and b we may want to get a num-
ber λ which is as similar to a as to b or, in other words, λ should be

equivalent to both values. If a T -indistinguishability operator E is de-
fined on our universe, then the aggregation λ of a and b should satisfy
E(a,λ) = E(b, λ). This idea is developed in [76] when the universe is the

unit interval [0, 1] and the T -indistinguishability operator is the natural
T -indistinguishability operator ET associated to a continuous t-norm T . It
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is proved that for a continuous Archimedean t-norm T with additive gen-
erator t the aggregation operator associated to ET is the quasi-arithmetic

mean m generated by t (m(x, y) = t−1
(

t(x)+t(y)
2

)
). This can give a justifi-

cation for using a concrete quasi-arithmetic mean in a real problem, since

it will be related to a logical system having T as conjunction (and ET as bi-
implication). When T is an ordinal sum, interesting aggregation operators

are obtained since the way they aggregate two values varies locally: For

points in a piece [ai, bi]
2 where we have a copy of a continuous Archimedean

t-norm with additive generator ti their aggregation is related to the quasi-
arithmetic mean generated by ti while points outside these pieces with the

smallest coordinate c in some [ai, bi] have ai + (bi − ai) t−1
i

(
t(

c−ai
bi−ai

)

2

)
as

aggregation. The aggregation of the rest of the points is their smallest coor-
dinate. The idea is generalized to weighted aggregations and aggregations

of more than two objects.
• Fuzzy logic in the narrow sense

Some fuzzy predicate logics need an equality that models fuzzy equality
in fuzzy systems. This can be done in the syntactic level introducing an
equality predicate ≈ on the language satisfying reasonable axioms:

– (∀x)(x ≈ x) (Reflexivity)
– (∀x, y)(x ≈ y → y ≈ x) (Symmetry)
– (∀x, y, z)((x ≈ y & y ≈ z) → x ≈ z) (Transitivity)
– (∀x1, ..., xk, y1, ..., yk)((x1 ≈ y1 &...& xk ≈ yk) → Fi(x1, ..., xk) ≈

Fi(y1, ..., yk)) where Fi is of arity k. (Congruence).

In the interpretations, ≈ correspond to T -indistinguishability operators.
In this setting, the properties of T -indistinguishability operators can be

defined and derived at the formal language level. See [54],[52],[104],[49],
[9] for different approaches.

Reflexive and T -transitive fuzzy relations are called T -preorders or T -fuzzy
preorders. T -preorders are very interesting fuzzy relations since they fuzzify
the concept of partial preorder on a set X . They have been studied in depth

(see [12]) and since T -indistinguishability operators can be seen as special
T -preorders (the symmetric ones), many of the ideas and results of this book

can be applied to preorders in a straightforward way, though the concepts

can have different meaning. For example, if P is a T -preorder, the images of

φP (cf. Definition 3.7) fuzzify the concepts of filter and ideal and are called
fuzzy filters and fuzzy ideals.

For the sake of simplicity we have assumed in this book that all t-norms

are continuous, though most of the results remain valid for more general
structures like left-continuous t-norms or GL-monoids [23]. The last chapter

is an exception since it deals with finitely valued t-norms and finitely valued

T -indistinguishability operators.



2

Generating Indistinguishability
Operators

One of the most interesting issues related to indistinguishability operators is
their generation, which depends on the way in which the data are given and

the use we want to make of them. The four most common ways are:

• By calculating the T -transitive closure of a reflexive and symmetric fuzzy
relation (a proximity or tolerance relation).

• By using the Representation Theorem.
• By calculating a decomposable operator from a fuzzy subset.
• By obtaining a transitive opening of a proximity relation.

In many situations, data come packed as a reflexive and symmetric fuzzy
matrix or relation R, also known as a proximity or tolerance relation . When,
for coherence, transitivity is also required, the relation R must be replaced

by a new relation R′ that satisfies the transitivity property. The transitive

closure of R is the smallest of such relations among those greater than or

equal to R. It is the most popular approximation of R and there are several
algorithms for calculating it. In Section 2.1, the sup−T product is introduced

to generate it. If a lower approximation is required, transitive openings are a

possibility 2.4.
A T -indistinguishability operator Eμ can be generated in a very natural

way from a fuzzy subset μ of a set X . The Representation Theorem states

that all T -indistinguishability operators can be generated from a family of

fuzzy subsets of X . This means that, from the degrees of satisfiability of a

family of features by the elements of X or their degree of similarity to a family
of prototypes, a T -indistinguishability operator can be obtained. Section 2.2
will examine the Representation Theorem and Chapter 7 will look at some

important consequences of the Theorem.
Another way to obtain a T -indistinguishability operator from a fuzzy sub-

set is by calculating its corresponding decomposable operator. This is inter-
esting due to the fact that these relations are used in Approximate Reasoning

and in Mamdani fuzzy controllers. Chapter 6 will examine the betweenness

J. Recasens: Indistinguishability Operator, STUDFUZZ 260, pp. 13–39.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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relations they generate and compare them with those obtained using the

Representation Theorem.

2.1 Transitive Closure

Given a t-norm T , the transitive closure of a reflexive and symmetric fuzzy
relation R on a set X is the smallest T -indistinguishability operator relation
R on X greater than or equal to R. There are several algorithms to compute it
for the finite case, but in this chapter we will only study the sup−T product.

In the crisp case, if R is a crisp reflexive and symmetric relation, its tran-
sitive closure is the smallest equivalence relations that contains R. If R is
represented by a graph, its transitive closure is the smallest graph that con-
tains R and with all its connected components complete subgraphs. This
produces the well known chain effect or chaining: if a1, a2, ..., an is a chain of

vertexes such that every one is connected to the next one, then in its tran-
sitive closure a1 is connected to an. Though this effect is non-desirable in
general, since the meaning of the relation may be distorted by this effect, in
some cases it is a usable tool as can be seen for instance in [130], Example
13.3 of [84].

In this section, the sup−T product will be used to generate the transitive

closure of a reflexive and symmetric fuzzy relation. Some properties of this
product will be given. In particular, the set of fuzzy relations on a set is
proved to be an ordered topological semigroup.

The sup−min product has theoretical justifications (from set theory or

from graph theory for instance) that are difficult to be generalized to justify
the sup−T product for arbitrary t-norms. At the end of this section a natural
topological approach to the sup−min product and its generalization to the

sup−T product will be given. The sup−T product will be identified to closure

operators in VD spaces ([127]) and in this way a theoretical basis for this
product will be provided.

Definition 2.1. A fuzzy relation R on a set X is a map R : X ×X → [0, 1].

Given two fuzzy relations R, S on a set X , we will say that R ≤ S if and

only if R(x, y) ≤ S(x, y) for all x, y ∈ X .

Definition 2.2. Let R and S be two fuzzy relations on X and T a t-norm.
The sup−T product of R and S is the fuzzy relation R ◦ S on X defined for
all x, y ∈ X by

(R ◦ S)(x, y) = sup
z∈X

T (R(x, z), S(z, y)).

In order to give a geometric interpretation to the sup−T product, let us give

an example in the crisp case. If R is a crisp reflexive and symmetric relation
on a finite set X , then it can be represented as a graph with as many vertices
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Fig. 2.1 A graph GR corresponding to a crisp reflexive and symmetric relation R

on {a, b, c, d, e, f, g}.
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Fig. 2.2 The graph corresponding to R ◦ R.

as the cardinality of X and where two vertices x and y are connected by an
edge if and only if xRy. In this case xR ◦Ry if and only if there exists z such

that xRz and zRy. Figures 2.1 and 2.2 illustrate this case.
Since the sup−T product is associative for continuous t-norms, we can

define for n ∈ N the nth power Rn of a fuzzy relation R:

Rn =

n times︷ ︸︸ ︷
R ◦ ... ◦ R .

Definition 2.3. Let RX be the set of reflexive and symmetric fuzzy relations
on X. The distance d between M, N ∈ RX is defined by

d(M, N) = sup
x,y∈X

|M(x, y) − N(x, y)|.

d is indeed a distance since the supremum of distances is a distance as well.

Proposition 2.4. Let T be a continuous t-norm and RX the set of reflexive
and symmetric fuzzy relations on X. (RX , sup−T ) is a topological ordered
semigroup.
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Proof

• Associativity.

(M ◦ (N ◦ P ))(x, y) = sup
z∈X

T (M(x, z), (N ◦ P )(z, y))

= sup
z∈X

T (M(x, z), sup
t∈X

T (N(z, t), P (t, y)))

= sup
z,t∈X

T (M(x, z), N(z, t), P (t, y))

= sup
t∈X

T (sup
z∈X

T (M(x, z), N(z, t)), P (t, y))

= ((M ◦ N) ◦ P )(x, y).

• Neutral element. The identity relation I(x, y) =

{
1 if x = y
0 if x �= y.

• Continuity. Since T is defined in a compact set, T is also uniformly con-
tinuous. Therefore,

∀ǫ > 0 ∃δ > 0 such that ∀m, n, a, b ∈ [0, 1]

max(|m − a|, |n − b|) < δ ⇒ |T (m, n) − T (a, b)| < ǫ. (∗)
We want to prove that given two relations A, B ∈ RX ,

∀ǫ > 0 ∃δ > 0 such that ∀M, N ∈ RX

max(d(M, A), d(N, B)) < δ ⇒ d(M ◦ N, A ◦ B) < ǫ.

Given ǫ > 0, let us choose δ satisfying (*). Then

d(M ◦ N, A ◦ B)

= sup
x,y∈X

∣∣∣∣sup
z∈X

T (M(x, z), N(z, y)) − sup
z∈X

T (A(x, z), B(z, y))

∣∣∣∣

≤ sup
x,y,z∈X

|T (M(x, z), N(z, y)) − T (A(x, z), B(z, y))| ≤ ǫ.

• Monotonicity. M ≤ M ′, N ≤ N ′ ⇒ M ◦ N ≤ M ′ ◦ N ′ is a consequence of

the monotonicity of T .

Corollary 2.5. For any n ∈ N, the map f : RX → RX defined by f(M) =
Mn is continuous and non-decreasing.

Proof. f is the composition of continuous and non-decreasing maps.

Of course, a similar result can be obtained for the set of all fuzzy relations

on X with the sup−T product.

Proposition 2.6. Let T and T ′ be two isomorphic continuous t-norms (i.e.
there exists f : [0, 1] → [0, 1] such that f ◦ T = T (f × f) cf. Definition 4.9).
Then f induces an isomorphism f : (RX , sup−T ) → (RX , sup−T ′).
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Proof. Given R ∈ RX , let us define f(R) by (f(R))(x, y) = f(R(x, y)) for all
x, y ∈ X .

(f(R ◦T S))(x, y) = f((R ◦T S)(x, y))

= f(sup
z∈X

T (R(x, z), S(z, y)))

= sup
z∈X

f(T (R(x, z), S(z, y)))

= sup
z∈X

T ′(f(R(x, z)), f(S(z, y)))

= sup
z∈X

T ′((f(R))(x, z), (f(S))(z, y))

= ((f(R) ◦T ′ f(S))(x, y).

Before defining the transitive closure of a fuzzy relation, let us first recall
what its α-cuts are and the relation between them and crisp relations.

Definition 2.7. Let R be a reflexive and symmetric fuzzy relation on a set
X and α ∈ [0, 1]. The α-cut of R is the crisp relation ∼α on X defined by

x ∼α y if and only if R(x, y) ≥ α.

∼α is a reflexive and symmetric (crisp) relation and therefore generates a

covering of X . We will identify the covering with the relation ∼α.

Lemma 2.8

1. If α ≥ β, then the α-cut of R is a refinement of the β-cut.
2. The 0-cut of R is X.
3. If R ≥ S, then the α-cut of S is a refinement of the α-cut of R.

Proof. Trivial.

Definition 2.9. Let R be a crisp reflexive and symmetric relation on a set
X. The transitive closure of R is the smallest equivalence relation R on X
that contains R.

If X is finite, the transitive closure can be calculated by the single linkage

method.

Definition 2.10. Let R be a reflexive and symmetric crisp relation on a finite
set X. a, b ∈ X are related by single linkage (with respect to R) and we will
denote it by aRb if and only if there exists a chain a = x0, x1, ..., xr−1, xr = b
of elements of X such that xi−1Rxi for all i = 1, 2, ..., k.

Clearly R is the transitive closure of R.
If R is represented by a graph GR, then its transitive closure is the graph

GR obtained by completing all connected subgraphs of GR. Figures 2.3 and

2.4 show the graph GR generated by a reflexive and symmetric relation R
and its corresponding transitive closure GR.
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Fig. 2.3 A graph GR corresponding to a crisp reflexive and symmetric relation on
{a, b, c, d, e, f, g}.
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Fig. 2.4 The transitive closure GR of GR obtained by single linkage.

Definition 2.11. Let T be a continuous t-norm and R a reflexive an sym-
metric fuzzy relation on a set X. Its transitive closure is the fuzzy relation R
satisfying

1. R is a T -indistinguishability operator.
2. R ≤ R.
3. If S is a T -indistinguishability operator on X with S ≥ R, then S ≥ R.

The transitive closure of a reflexive and symmetric fuzzy relation R is the in-
tersection of all T -indistinguishability operators greater than or equal to R.

Proposition 2.12. Let T be a continuous t-norm and R a reflexive and sym-
metric fuzzy relation on X. Let A be the set of all T -indistinguishability op-
erators on X greater than of equal to R. Then

R = inf
S∈A

S.

Proof. Let us first prove that infS∈A S is a T -indistinguishability operator.
Reflexivity and symmetry is trivial. Let us prove T -transitivity.

T ( inf
S∈A

S(x, z), inf
S∈A

S(z, y)) ≤ inf
S∈A

T (S(x, z), S(z, y)) ≤ inf
S∈A

S(x, y).
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Now, since R ≤ S for all S ∈ A, then R ≤ infS∈A S. But since R ∈ A,
then R ≥ infS∈A S.

A very natural way to calculate the transitive closure of a fuzzy relation R is
using the sup−T product.

Lemma 2.13. Let R be a reflexive and symmetric fuzzy relation on a set X
and T a continuous t-norm. R is a T -indistinguishability operator if and only
if R ◦ R ≤ R.

Proof. R is T -transitive if and only if

T (R(x, z), R(z, y)) ≤ R(x, y)

for all x, y, z ∈ X , which is equivalent to

(R ◦ R)(x, y) = sup
z∈X

T (R(x, z), R(z, y)) ≤ R(x, y).

Proposition 2.14. Let R be a reflexive and symmetric fuzzy relation on a
set X and T a continuous t-norm. Let RT be the fuzzy relation on X defined
by RT (x, y) = supn∈N Rn(x, y) for all x, y ∈ X. Then RT = R.

Proof. Let us first prove that RT is T -transitive.

(RT ◦ RT )(x, y) = sup
n∈N

Rn(x, y) ◦ sup
n∈N

Rn(x, y) = sup
n∈N,m∈N

Rn(x, y) ◦ Rm(x, y)

= sup
n∈N,m∈N

Rn+m(x, y) ≤ sup
k∈N

Rk(x, y) = RT (x, y).

Now let S be a T -transitive fuzzy relation on X greater than or equal to R.
By induction we will prove that Rn ≤ S for all n ∈ N.

R2 = R ◦ R ≤ S ◦ S ≤ S.

If Rn ≤ S, then
Rn+1 = R ◦ Rn ≤ S ◦ S ≤ S.

Hence

RT (x, y) = sup
n∈N

Rn(x, y) ≤ S(x, y) for all x, y ∈ X.

Lemma 2.15. If R is a reflexive and symmetric fuzzy relation on X and T
a continuous t-norm, then Rn

T ≤ Rm
T when n ≤ m.

Proof. Let us consider the classical equality I on X defined by

I(x, y) =

{
1 if x = y
0 if x �= y

which is T -transitive. Since R is reflexive, I ≤ R. Therefore Rn = I ◦ Rn ≤
R ◦ Rn = Rn+1.
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Proposition 2.16. Let R be a reflexive an symmetric fuzzy relation on a
finite set X of cardinality n. Then

RT = Rn−1
T .

Proof. If x �= y, then

Rn(x, y) = sup
z1,z2,...,zn−1

T (R(x, z1), R(z1, z2), ..., R(zn−1, y)).

Since the cardinality of X is n, at least two of the elements x = z0, z1, z2, ...,
zn−1, zn = y coincide. Let us suppose that zr = zs with r < s. Then

T (R(x1, z1), ..., R(zr−1, zr), ..., R(zs, zs+1), ..., R(zn−1, y))

≤ T (R(x1, z1), ..., R(zr−1, zr), R(zs, zs+1), ..., R(zn−1, y))

≤ Rn−1(x, y).

Hence Rn(x, y) ≤ Rn−1(x, y) and therefore Rn(x, y) = Rn−1(x, y).

In Chapter 4 the following proposition will be proved.

Proposition 2.17. Let R be a reflexive and symmetric fuzzy relation on a
set X. R is a min-indistinguishability operator if and only if for all α ∈ [0, 1]
the α-cut of R is a partition of X (i.e. ∼α is an equivalence relation on X).

Corollary 2.18. Let R be a reflexive and symmetric fuzzy relation on X and
α ∈ [0, 1]. The transitive closure of the α-cut of R coincides with the α-cut
of the min-transitive closure of R.

So the transitive closure is a way to get an upper approximation of a given
reflexive and symmetric fuzzy relation by a T -indistinguishability operator.

If the cardinality n of X is finite, we can represent a fuzzy relation R on
X by a square n × n matrix. The matrix is symmetric if and only if R is. R
is reflexive if and only if the diagonal of the matrix consists of ones.

Example 2.19. Let R be the fuzzy relation given by the matrix

⎛

⎜⎜⎝

1 0.9 0.3 0.4
0.9 1 0.5 0.4
0.3 0.5 1 0.9
0.4 0.4 0.9 1

⎞

⎟⎟⎠ .

The transitive closure with respect to the t-norms of �Lukasiewicz, Product

and minimum respectively are

⎛

⎜⎜⎝

1 0.9 0.4 0.4
0.9 1 0.5 0.4
0.4 0.5 1 0.9
0.4 0.4 0.9 1

⎞

⎟⎟⎠
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⎛

⎜⎜⎝

1 0.9 0.45 0.4
0.9 1 0.5 0.45
0.45 0.5 1 0.9
0.4 0.45 0.9 1

⎞

⎟⎟⎠

⎛

⎜⎜⎝

1 0.9 0.5 0.5
0.9 1 0.5 0.5
0.5 0.5 1 0.9
0.5 0.5 0.9 1

⎞

⎟⎟⎠ .

The sup−min product and the min-transitive closure of a reflexive and sym-
metric fuzzy relation R have natural interpretations in the set and in the

graph theory that are difficult to generalize to other t-norms. This section
will end with a topological interpretation of the sup−min product that will
be generalized to more general sup−T products.

Given a reflexive and symmetric fuzzy relation R on a set X and p, q ∈ X ,
R(p, q) can be interpreted as the degree of proximity between p and q. Since

proximity is a topological concept, it is natural to try to find a topological
structure to X through R. This point of view will allow us to identify the

sup−T product with closure operators in certain VD spaces [127].

Definition 2.20. Let R be a reflexive and symmetric fuzzy relation on a set
X. Given α ∈ [0, 1] and p ∈ X, for every h ∈ (0, 1] Nα

p (h) is the neighbour-
hood of p given by

Nα
p (h) = {q ∈ X such that R(p, q) > α − h} .

Proposition 2.21. If U, V are neighbourhoods of p, then there exists a neigh-
bourhood W of p such that W ⊆ U ∩ V .

Proof. Trivial.

A set with a family of neighbourhoods satisfying the last proposition is called
a VD space ([127]).

Proposition 2.22. The structure defined on X is a topology for all α ∈ [0, 1]
if and only if R is a min-indistinguishability operator on X.

Proof. We must prove that if q ∈ Nα
p (h), then there exists h′ ∈ [0, 1] such

that Nα
q (h′) ⊆ Nα

p (h).
Let us take h′ = h. If x ∈ Nα

q (h), then R(x, p) ≥ min(R(p, q), R(q, x)) ≥
min(α − h, α − h) = α − h. Therefore x ∈ Nα

p (h).

There is the notion of contiguity in VD spaces.

Definition 2.23. Given A ⊆ X, p ∈ X is contiguous to A (at level α) if and
only if there exists q ∈ A such that R(p, q) ≥ α.

The concept of contiguity in VD spaces allow us to define a Čech closure

operator Cα on the power set P (X) of X .
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Definition 2.24. Cα : P (X) → P (X) assigns to every subset A of X the set
Cα(A) of contiguous elements to A (at level α).

Proposition 2.25

1. Cα(∅) = ∅.
2. Cα(A ∪ B) = Cα(A) ∪ Cα(B).
3. A ⊆ Cα(A).
4. A ⊆ B ⇒ Cα(A) ⊆ Cα(B).
5. Cα(A) =

⋃
p∈A Cα {p}.

6. α ≥ α′ ⇒ Cα(A) ⊆ Cα′

(A).

Proof. Straightforward.

Definition 2.26. The subsets A ⊆ X such that Cα(A) = A are called Cα-
closed.

In order to define a topology on X we must define a Kuratowski closure

operator Cα
K .

Definition 2.27. Cα
K : P (X) → P (X) assigns to every subset A of X the

set Cα
K(A) intersection of all Cα-closed sets that contain A.

Proposition 2.28

1. R is a min-indistinguishability operator on X if and only if Cα = Cα
K for

all α ∈ [0, 1].
2. A ⊆ Cα(A) ⊆ Cα

K(A).

3. (Cα)n(A) ⊆ Cα
k (A) where (Cα)n(A) =

n times︷ ︸︸ ︷
Cα(Cα(...(Cα(A)))).

4. Cα
K(A) = {x ∈ X such that ∃n ∈ N with x ∈ (Cα)n(A)}.

Proof

1. is a consequence of Proposition 2.22.
2. Trivial.
3. Trivial.
4. Let M = {x ∈ X such that ∃n ∈ N with x ∈ (Cα)n(A)}.

a. M ⊆ Cα
K(A): if x ∈ M , then there exists n ∈ N such that x ∈ (Cα)n(A)

and thanks to 3 x ∈ Cα
K(A).

b. Cα
K(A) ⊆ M : It is enough to see that M is a Cα-closed set, which is a

consequence of 2.25.3.

From the last property the following four propositions follow.

Proposition 2.29. If X is a finite set of cardinality s, then (Cα)n = Cα
K if

n ≥ s.
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Proposition 2.30. Given p, q ∈ X, either Cα
K({p}) = Cα

K({q}) or Cα
K({p})∩

Cα
K({q}) = ∅.

Therefore Cα
K defines a partition on X . If ∼α is the equivalence relation

associated to this partition we have the following result.

Proposition 2.31. ∼α is the equivalence relation obtained by single linkage
of the α-cut of R.

Proposition 2.32. Given n ∈ N and p, q ∈ X, if Rn
min is the n-th sup−min

power of R, then

Rn
min(p, q) = inf {α ∈ [0, 1] such that q ∈ (Cα)n({p})} .

These two last propositions, and especially Proposition 2.32, give a topo-
logical approach to the sup−min product identifying it with Čech clo-
sure operators. This approach will be generalized now to general continuous

t-norms.

Definition 2.33. Given a reflexive and symmetric fuzzy relation R on a set
X, a continuous t-norm T and α ∈ [0, 1], for any n ∈ N Cα,n

T : X → P (X)
is defined by

Cα,n
T (p) = {q ∈ X such that ∃ x0, x1, ..., xn ∈ X with x0 = p, xn = q and

T (R(x0, x1), R(x1, x2), ..., R(xn−1, xn)) ≥ α}.

In particular, Cα,1
T (p) = {q ∈ X such that R(p, q) ≥ α}.

Cα,n
T defined on X can be extended to P (X) in the standard way.

Definition 2.34. Cα,n
T : P (X) → P (X) is defined by

Cα,n
T (A) =

⋃

p∈A

Cα,n
T (p).

It is easy to prove that Cα,n
T satisfies the properties of Proposition 2.25. In

particular, Cα,n
T is a Čech closure operator on the VD space defined on X by

the neighbourhoods (Nα
p )p∈X .

Also if T is the minimum t-norm, then Cα,n
T = (Cα)n.

It is also easy to prove a similar result to Proposition 2.29.

Proposition 2.35. If X is a finite set of cardinality s, then

Cα,n
T = Cα,n+1

T if n ≥ s.

The next proposition relates the sup−T product to closure operators of a

VD space.
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Proposition 2.36. Let R be a reflexive and symmetric fuzzy relation on a
set X. Given n ∈ N and p, q ∈ X,

Rn
T (p, q) = inf {α ∈ [0, 1] such that q ∈ Cα,n

T (p)} .

2.2 The Representation Theorem

The Representation Theorem allows us to generate a T -indistinguishability
operator on a set X from a family of fuzzy subsets of X and, reciprocally,
states that every T -indistinguishability operator can be obtained in this form.

Let us recall the concept of residuation of a t-norm. In fuzzy logic, the

conjunction is usually modeled by a t-norm and its residuation is one of the

possible ways to model the implication.

Definition 2.37. The residuation
−→
T of a t-norm T is the map

−→
T : [0, 1] ×

[0, 1] → [0, 1] defined for all x, y ∈ [0, 1] by

−→
T (x|y) = sup{α ∈ [0, 1] | T (x,α) ≤ y}.

The residuation of a t-norm T is also known as its quasi inverse, especially
in early papers, and is also denoted by T̂ .

The following properties of the residuation of a t-norm will be used

throughout the book.

Lemma 2.38. Given a left-continuous t-norm T , we have:

1.
−→
T (x|y) is left continuous and non increasing with respect to the first vari-
able x.

2.
−→
T (x|y) is right continuous and non decreasing with respect to the second
variable y.

Proof. Trivial.

Lemma 2.39. Given a left-continuous t-norm T , for any x, y, z ∈ [0, 1] the
following relations hold:

1.
−→
T (1|x) = x.

2. x ≤ y ⇒ −→
T (x|y) = 1.

3. T (x,
−→
T (x|y)) ≤ y.

Proof. Trivial.

Lemma 2.40. Given a left-continuous t-norm T , for any x, y, z ∈ [0, 1] the
following relation holds:

−→
T (x|T (y, z)) ≥ T (y,

−→
T (x|z)).
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Proof

−→
T (x|T (y, z)) = sup{α|T (α, x) ≤ T (y, z)}.

From Lemma 2.39.4
T (y,

−→
T (x|z), x) ≤ T (y, z).

Lemma 2.41. Let T be a left continuous t-norm. Then

−→
T (x|y) = sup{α ∈ [0, 1] such that

−→
T (α|y) ≥ x}.

Proof. Let A = {α ∈ [0, 1] such that T (α, x) ≤ y} and B = {α ∈
[0, 1] such that

−→
T (α|y) ≥ x}. Clearly A ⊆ B and since T is left continu-

ous, also B ⊆ A.

Lemma 2.42. If T is a left continuous t-norm, then

T (x,
−→
T (y, z)) ≤ −→

T (
−→
T (x|y)|z).

Proof

T (T (x,
−→
T (y|z)),

−→
T (x|y)) = T (x, T (

−→
T (x|y),

−→
T (y|z)))

≤ T (x,
−→
T (x|z)) ≤ z.

Lemma 2.43. Let T be a t-norm.

−→
T (T (x, z)|T (y, z)) ≥ −→

T (x|y).

Proof. Let us consider the sets

A1 = {α ∈ [0, 1] such that T (α, x) ≤ y}

and

A2 = {α ∈ [0, 1] such that T (α, T (x, z)) ≤ T (y, z)} .

If α ∈ A1, then T (α, T (x, z)) = T (T (α, x), z) for all z ∈ [0, 1] and hence

α ∈ A2.
So, A1 ⊆ A2 and

−→
T (x|y) = sup A1 ≤ sup A2 =

−→
T (T (x, z)|T (y, z)).

Lemma 2.44. Let T be a continuous Archimedean t-norm with additive gen-
erator t. Then

−→
T (x|y) = t[−1](t(y) − t(x)) ∀x, y ∈ [0, 1].

where t[−1] is the pseudo inverse of t (Theorem A.10).

Proposition 2.45. The residuation
−→
T of a t-norm T is a T -preorder on

[0, 1].



26 2 Generating Indistinguishability Operators

Proof. It follows directly from the definition of residuation.

Corollary 2.46. Let T be a left continuous t-norm. Then

• −→
T (

−→
T (z|x)|−→T (z|y)) ≥ −→

T (x|y).

• −→
T (

−→
T (y|z)|−→T (x|z)) ≥ −→

T (x|y).

Proof. It is a consequence of the transitivity of
−→
T .

The biimplication or logical equivalence is the symmetrized of the residuation.

Definition 2.47. The biresiduation
↔
T of a t-norm T is the map

↔
T : [0, 1] ×

[0, 1] → [0, 1] defined for all x, y ∈ [0, 1] by

↔
T (x, y) = T (

−→
T (x|y),

−→
T (y|x)).

The biresiduation is also known as the natural T -indistinguishability oper-
ator associated to T and is also notated by ET . This will be the notation
used in this book in order to stress the fact that the biresiduation is a T -
indistinguishability operator.

Lemma 2.48

a) ET (x, y) = min(
−→
T (x|y),

−→
T (y|x)).

b) ET (x, y) =
−→
T (max(x, y)|min(x, y)).

Proof

a) Either
−→
T (x|y) = 1 or

−→
T (y|x) = 1.

b)

ET (x, y) = min(
−→
T (max(x, y)|min(x, y)),

−→
T (min(x, y)|max(x, y)))

=
−→
T (max(x, y)|min(x, y)).

Example 2.49. See Table 2.1.

1. If T is a continuous Archimedean t-norm with additive generator t, then
ET (x, y) = t−1(|t(x) − t(y)|) for all x, y ∈ [0, 1].
As special cases,

• If T is the �Lukasiewicz t-norm, then ET (x, y) =
↔
T (x, y) = 1 − |x − y|

for all x, y ∈ [0, 1].

• If T is the Product t-norm, then ET (x, y) =
↔
T (x, y) = min(x

y , y
x) for all

x, y ∈ [0, 1] where z
0 = 1.

2. If T is the minimum t-norm, then

ET (x, y) =
↔
T (x, y) =

{
min(x, y) if x �= y
1 otherwise.
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Proposition 2.50. The natural T -indistinguishability operator with respect
to a t-norm T is indeed a T -indistinguishability operator on [0, 1].

Proof. Reflexivity and symmetry are trivial to prove.
Transitivity:

T (ET (x, y), ET (y, z)) = T (T (
−→
T (x|y),

−→
T (y|x)), T (

−→
T (y|z),

−→
T (z|y)))

≤ T (
−→
T (x|z),

−→
T (z|x)) = ET (x, z).

Table 2.1 The three most popular t-norms with their residuations and natural
T -indistinguishability operators.

�Lukasiewicz t-norm Residuation of �Lukasiewicz t-norm ET for the �Lukasiewicz t-norm

T (x, y) = max(x + y − 1, 0)
−→
T (x|y) =

j

1 − x + y if x > y

1 otherwise
ET (x, y) = 1 − |x − y|

Product t-norm Residuation of the Product t-norm ET for the Product t-norm

T (x, y) = x × y
−→
T (x|y) =

j

y

x
if x > y

1 otherwise
ET (x, y) = min( y

x
, x

y
)

minimum t-norm Residuation of the minimum t-norm ET for the minimum t-norm

T (x, y) = min(x, y)
−→
T (x|y) =

j

y if x > y

1 otherwise
ET (x, y) =

j

min(x, y) if x �= y

1 otherwise
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The following property will be used throughout the book.

Proposition 2.51. Let E be a reflexive and symmetric fuzzy relation on a
set X. E is a T -indistinguishability operator on X if and only if for all
x, y, z ∈ X ET (E(x, y), E(y, z)) ≥ E(x, z).

Proof

ET (E(x, y), E(y, z))

= min((
−→
T (E(x, y)|E(y, z)), (

−→
T (E(y, z)|E(x, y))) ≥ E(x, z)

if and only if

−→
T (E(x, y)|E(y, z)) ≥ E(x, z) and

−→
T (E(y, z)|E(x, y)) ≥ E(x, z)

which is equivalent to

T (E(x, z), E(x, y)) ≤ E(y, z) and T (E(x, z), E(y, z)) ≤ E(x, y).

Every fuzzy subset μ of a set X generates a T -indistinguishability operator

on X in a very natural way.

Lemma 2.52. Let μ be a fuzzy subset of X and T a continuous t-norm. The
fuzzy relation Eμ on X defined for all x, y ∈ X by

Eμ(x, y) = ET (μ(x), μ(y))

is a T -indistinguishability operator.
Eμ separates points if and only if μ is a one-to-one map.

Proof. Eμ is a T -indistinguishability operator since ET is.

Eμ(x, y) = 1 if and only if ET (μ(x), μ(y)) = 1 if and only if μ(x) = μ(y).

Hence Eμ separates points if and only if μ is a one-to-one map.

In the crisp case, when μ = A is a crisp subset of X , EA generates a

partition of X into A and its complementary set X − A, since in this case

EA(x, y) = 1 if and only if x and y both belong to A or to X − A.
T -indistinguishability operators generated by a fuzzy subset as in the pre-

vious proposition are called one-dimensional.

Lemma 2.53. Let (Ei)i∈I be a family of T -indistinguishability operators on
a set X. The relation E on X defined for all x, y ∈ X by

E(x, y) = inf
i∈I

Ei(x, y)

is a T -indistinguishability operator.
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Proof. Similar to Proposition 2.12.

The next theorem is a crucial result in order to understand the struc-
ture of T -indistinguishability operators. It will allow us to generate them

from families of fuzzy subsets and reciprocally states that for any given T -
indistinguishability operator families of fuzzy subsets generating it can be

found.

Theorem 2.54. Representation Theorem [139] . Let R be a fuzzy relation on
a set X and T a continuous t-norm. R is a T -indistinguishability operator if
and only if there exists a family (μi)i∈I of fuzzy subsets of X such that for
all x, y ∈ X

R(x, y) = inf
i∈I

Eμi
(x, y).

(μi)i∈I is called a generating family of R. A fuzzy subset belonging to a

generating family of R is called a generator of R. In chapter 3 it will be

proved that generators are exactly the extensional sets of R. In chapter 7

the generating families of R with minimal cardinality will be studied. These

families are called basis of E and the cardinality of the corresponding set of

indexes their dimension.

Proof. ⇐)
Lemmas 2.52 and 2.53.
⇒)
For every x ∈ X we can consider the fuzzy subset μx defined for all y ∈ X

by μx(y) = R(x, y). (This fuzzy subset is called the column or singleton of R
associated to x). Then R = infx∈X Eμx

.
Indeed,

Eμx
(y, z) = ET (μx(y), μx(z)) = ET (R(x, y), R(x, z)) ≥ R(y, z).

So Eμx
≥ R and R ≤ infx∈X Eμx

.
But for y, z ∈ X ,

( inf
x∈X

Eμx
)(y, z) ≤ Eμy

(y, z) = ET (R(y, y), R(y, z)) = R(y, z).

Hence R = infx∈X Eμx
.

The Representation Theorem provides us with a method to generate a T -
indistinguishability operator from a family of fuzzy subsets. These fuzzy sub-
sets can measure the degrees in which different features are fulfilled by the

elements of our universe X or can be the degree of compatibility with different

prototypes.
Also, given a reflexive and symmetric fuzzy relation R on X , the T -

indistinguishability operator R generated by the set of the columns of R
can be built.
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Proposition 2.55. R ≤ R.

Proof. For each x, y ∈ X , we have Eμx
(x, y) = R(x, y). Therefore

inf
x∈X

Eμx
≤ R.

Example 2.56. Considering the same fuzzy relation R of Example 2.19 given
by the matrix ⎛

⎜⎜⎝

1 0.9 0.3 0.4
0.9 1 0.5 0.4
0.3 0.5 1 0.9
0.4 0.4 0.9 1

⎞

⎟⎟⎠ ,

the obtained indistinguishability operators with respect to the t-norms of

�Lukasiewicz, Product and minimum respectively are

⎛

⎜⎜⎝

1 0.8 0.3 0.4
0.8 1 0.4 0.4
0.3 0.4 1 0.9
0.4 0.4 0.9 1

⎞

⎟⎟⎠

⎛

⎜⎜⎝

1 0.6 0.3 0.3̂

0.6 1 0.3̂ 0.4

0.3 0.3̂ 1 0.75

0.3̂ 0.4 0.75 1

⎞

⎟⎟⎠

⎛

⎜⎜⎝

1 0.3 0.3 0.3
0.3 1 0.3 0.4
0.3 0.3 1 0.3
0.3 0.4 0.3 1

⎞

⎟⎟⎠ .

There is a similar Representation Theorem for fuzzy T -preorders that states

Theorem 2.57. Representation Theorem for T -preorders [139]. Let R be a
fuzzy relation on a set X and T a continuous t-norm. R is a T -preorder if
and only if there exists a family (μi)i∈I of fuzzy subsets of X such that for
all x, y ∈ X

R(x, y) = inf
i∈I

Pμi
(x, y)

where the fuzzy T -preorders Pμi
on X are defined for all x, y ∈ X by

Pμi
(x, y) =

−→
T (μi(x)|μi(y)).

There is a generalization of the Representation Theorem due by Fodor and

Roubens [45] that permits the generation of any T -transitive relation. This
time two families of fuzzy subsets are needed.
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Theorem 2.58. Let R be a fuzzy relation on a set X and T a continuous
t-norm. R is T -transitive if and only if there exist two families (μi)i∈I and
(νi)i∈I of fuzzy subsets of X with μi ≥ νi ∀i ∈ I such that for all x, y ∈ X

R(x, y) = inf
i∈I

−→
T (μi(x)|νi(y)).

The Representation Theorems of this section are also valid for more general
structures like left-continuous t-norms and GL-monoids [23].

2.3 Decomposable Indistinguishability Operators

Decomposable fuzzy relations have been applied successfully in Mamdani
controllers, first using the minimum t-norm and then with more general t-
norms. This section is focused on decomposable indistinguishability operators

when the t-norm is continuous Archimedean or the minimum.

Definition 2.59. For a given t-norm T , a fuzzy relation R on a set X is
T -decomposable if and only if there exists a couple of fuzzy subsets μ, ν of X
such that for all x, y ∈ X

R(x, y) = T (μ(x), ν(y)).

We will say that the pair (μ, ν) generates R. If μ = ν, then we will simply
say that μ generates R.

The first results will prove that a symmetric fuzzy relation can be generated

by a single fuzzy subset.
The next lemma is trivial.

Lemma 2.60. Let T be a t-norm, X a set and μ a fuzzy subset of X. The
decomposable fuzzy relation R on X generated by μ is symmetric.

Let us find which conditions a pair of fuzzy subsets must fulfill in order to
generate a symmetric decomposable fuzzy relation.

Lemma 2.61. Let T be a continuous Archimedean t-norm, t an additive
generator of T , μ, ν two fuzzy subsets of a universe X and R the decom-
posable fuzzy relation on X generated by the pair (μ, ν). Let us assume that
R(x, y) �= 0 for all x, y ∈ X. R is symmetric if and only if

1. μ ≤ ν and
−→
T (ν|μ) is a constant k

or
2. ν ≤ μ and

−→
T (μ|ν) is a constant k.

Proof. ⇒)
Given x, y ∈ X , since R(x, y) �= 0 and R is symmetric,

t(μ(x)) + t(ν(y)) = t(μ(y)) + t(ν(x)).
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• If μ(x) ≤ ν(x), then

0 ≤ t(μ(x)) − t(ν(x)) = t(μ(y)) − t(ν(y))

and μ(y) ≤ ν(y). Since this is true for all y ∈ X , μ ≤ ν. Also

−→
T (ν(y)|μ(y)) = t−1(t(μ(y)) − t(ν(y)) = t−1(t(μ(x)) − t(ν(x)))

and therefore
−→
T (ν|μ) is a constant and we are in case 1.

• If μ(x) ≥ ν(x), a similar reasoning leads to case 2.

⇐)

If μ ≤ ν and
−→
T (ν|μ) = k, then for all x ∈ X

−→
T (ν(x)|μ(x)) = t−1(t(μ(x)) − t(ν(x))) = k

and

t(μ(x)) − t(ν(x)) = t(k).

Given x, y ∈ X ,

R(x, y) = T (μ(x), ν(y)) = t[−1](t(μ(x)) + t(ν(y)))

= t[−1](t(k) + t(ν(x)) + t(μ(y)) − t(k))

= t[−1](t(μ(y)) + t(ν(x)))

= T (μ(y), ν(x)) = R(y, x).

In a similar way we can prove the symmetry of R when ν ≤ μ and
−→
T (μ|ν) = k.

Lemma 2.62. Let T be a continuous Archimedean t-norm with additive gen-
erator t and x ∈ [0, 1]. Then

x
( 1
2
)

T = t−1(
1

2
t(x)).

where x
( 1
2
)

T is the square root of x with respect to T (cf. Definition 9.11).

Proof

• If x �= 0, then

– T (z, z) = x ⇔ t−1(t(z) + t(z)) = x ⇔ 2t(z) = t(x) ⇔ z = t−1(1
2 t(x)).

• If x = 0, then

– if T is strict, then x
( 1
2
)

T = 0 and t−1(1
2 t(0)) = t−1(∞) = 0.

– if T is non-strict, let z be the greatest value in [0, 1] with T (z, z) = 0.

t[−1](2t(z)) = 0, 2t(z) = t(0), t(z) =
1

2
t(0), z = t−1(

1

2
t(0)).



2.3 Decomposable Indistinguishability Operators 33

Lemma 2.63. Let T be a continuous Archimedean t-norm with additive gen-
erator t and R a T -decomposable fuzzy relation on X with R(x, y) �= 0 for
all x, y ∈ X. R is symmetric if and only if there exists a pair (μ, ν) of fuzzy
subsets of X such that for all x, y ∈ X

1. μ ≤ ν and R(x, y) = T (ρ(x), ρ(y)) where ρ(x) = T (ν(x),
−→
T (ν(x)|μ(x))

1
2 )

or
2. ν ≤ μ and R(x, y) = T (ρ(x), ρ(y)) where ρ(x) = T (μ(x),

−→
T (μ(x)|ν(x))

1
2 ).

Proof. ⇒)
Let (μ, ν) be a pair of fuzzy subsets of X generating R.

1. If μ ≤ ν, then there exists a constant k such that
−→
T (ν(x)|μ(x)) = k and

t(μ(x)) = t(ν(x)) + t(k).

−→
T (ν(x)|μ(x))

1
2 = t−1(

1

2
t ◦ t−1(t(μ(x)) − t(ν(x)))

= t−1(
1

2
(t(μ(x)) − t(ν(x)))

and hence

ρ(x) = T (ν(x),
−→
T (ν(x)|μ(x))

1
2 )

= t−1(t(ν(x)) + t ◦ t−1(
1

2
(t(μ(x)) − t(ν(x))))

= t−1(t(ν(x)) +
1

2
(t(μ(x)) − t(ν(x)))

= t−1

(
t(ν(x)) + tμ(x))

2

)
= t−1

(
2t(ν(x)) + t(k)

2

)
.

Therefore

R(x, y) = t−1(t(μ(x)) + t(ν(y)))

= t−1(t(ν(x)) + t(k) + t(ν(y)))

= t−1

(
t(ν(x)) +

t(k)

2
+ t(ν(y)) +

t(k)

2

)

= t−1(t(ρ(x)) + t(ρ(y))) = T (ρ(x), ρ(y)).

2. If ν ≤ μ, a similar reasoning can be applied.

⇐)
Trivial. Simply take μ = ν = ρ.

ρ is is fact the quasi-arithmetic mean of μ and ν.
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Definition 2.64. m is a quasi-arithmetic mean in [0,1] if and only if there
exists a continuous monotonic map t : [0, 1] → [−∞,∞] such that for all
n ∈ N and x1, ..., xn ∈ [0, 1]

m(x1, ...xn) = t−1

(
t(x1) + ... + t(xn)

n

)
.

m is continuous if and only if Ran t �= [−∞,∞].

Proposition 2.65. With the same notations as in the previous lemma,

ρ(x) = t−1

(
t(μ(x)) + t(ν(x))

2

)
= m(μ(x), ν(x)).

Corollary 2.66. Let T be a continuous Archimedean t-norm with addi-
tive generator t. If (μ, ν) and (μ′, ν′) generate the same symmetric T -
decomposable fuzzy relation, then

t−1

(
t(μ(x)) + t(ν(x))

2

)
= t−1

(
t(μ′(x)) + t(ν′(x))

2

)
.

This means that the quasi-arithmetic mean of μ, ν and μ′, ν′ coincide.
So, symmetric decomposable fuzzy relations with respect to Archimedean

t-norms can be generated by a single fuzzy subset ρ.

Corollary 2.67. Let T be a continuous Archimedean t-norm. If R is a sym-
metric T -decomposable fuzzy relation on X with R(x, y) �= 0 ∀x, y ∈ X, then
there is a fuzzy subset μ of X such that (μ, μ) generates X.

Let us study symmetric decomposable fuzzy relations with respect to the

minimum t-norm.
For two fuzzy subsets μ, ν of X let us define m = supx∈X{μ(x) such that

μ(x) = ν(x)} if this set is not empty, and m = 0 otherwise.

Proposition 2.68. Let R be the min-decomposable fuzzy relation on X gen-
erated by (μ, ν). R is symmetric if and only if

1. μ ≤ ν and in the points x ∈ X in which μ(x) �= ν(x), μ is a constant
greater than or equal to m.
or

2. ν ≤ μ and in the points x ∈ X in which ν(x) �= μ(x), ν is a constant
greater than or equal to m.

Proof. ⇒)

a) Let us first prove that either μ ≤ ν or ν ≤ μ.
If there were x, y ∈ X with μ(x) > ν(x) and μ(y) < ν(y), then the

equality min(μ(x), ν(y)) = min(μ(y), ν(x)) would contradict the following

two cases
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– If μ(x) ≥ μ(y), then min(μ(x), ν(y)) = ν(y). But from ν(y) > μ(y),
min(μ(x), ν(y)) > min(μ(y), ν(x)) would follow.

– If μ(x) ≤ μ(y), then min(μ(x), ν(y)) = μ(x). But then we would have

μ(x) = ν(x).

Hence μ ≤ ν or ν ≤ μ.
b) Let us examine both cases.

– Case μ ≤ ν.
If it does not exist x ∈ X with μ(x) �= ν(x), then μ = ν and the proof

is ended.
If there are x, y ∈ X with μ(x) < ν(x) and μ(y) < ν(y), then
min(μ(x), ν(y)) ≤ μ(x) < ν(x) and min(μ(y), ν(x)) = μ(y). Symmetri-
cally, min(μ(x), ν(y)) = μ(x) and μ(x) = μ(y). So μ is constant in the

points x ∈ X where μ(x) �= ν(x).
If there exists z ∈ X with μ(z) = ν(z), let x ∈ X be a point with
μ(x) < ν(x).
From min(μ(x), ν(z)) = min(μ(z), ν(x)), min(μ(z), ν(x)) = ν(z) follows

and therefore μ(x) ≥ m.
– Case ν ≤ μ is similar to the previous one.

⇐)

Case 1

– if μ(x) = ν(x) and μ(y) = ν(y), then trivially min(μ(x), ν(y)) =
min(μ(y), ν(x)).

– if μ(x) = ν(x) and μ(y) �= ν(y), then μ(x) = ν(x) ≤ μ(y) < ν(y) and

therefore min(μ(x), ν(y)) = min(μ(y), ν(x)).
– if μ(x) �= ν(x) and μ(y) �= ν(y), then μ(x) = μ(y) ≤ ν(x) and μ(x) =

μ(y) ≤ ν(y). Therefore min(μ(x), ν(y)) = min(μ(y), ν(x)).

Case 2 is similar to the previous one.

Now let us focus our attention on decomposable indistinguishability
operators.

Proposition 2.69. Let T be a t-norm and R a T -decomposable fuzzy relation
on X. Then R is T -transitive.

Proof. Let (μ, ν) be a pair of fuzzy subsets of X generating R. For x, y, z ∈ X ,

T (R(x, y), R(x, z)) = T (T (μ(x), ν(y)), T (μ(y), ν(z)))

≤ T (T (μ(x), 1), T (ν(z), 1))

= T (μ(x), ν(z)) = R(x, z).

Corollary 2.70. Given a t-norm T , a decomposable fuzzy relation on X gen-
erated by a fuzzy subset μ of X is symmetric and T -transitive.
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Of course, a decomposable fuzzy relation generated by μ is reflexive if and

only if μ ≡ 1. Nevertheless, there is a possibility to generate a decomposable
T -indistinguishability operator from any fuzzy subset μ.

Definition 2.71. Let T be a t-norm. The decomposable T -indistinguishabili-
ty operator Eμ generated by a fuzzy subset μ of X is defined for all x, y ∈ X
by

Eμ(x, y) =

{
T (μ(x), μ(y)) if x �= y
1 otherwise.

It is trivial to prove that Eμ is indeed a T -indistinguishability operator.

Proposition 2.72. The decomposable T -indistinguishability operator on X
generated by μ separates points if and only if there are no two different ele-
ments x, y ∈ X with μ(x) = μ(y) = 1.

Proof

Eμ(x, y) = 1 ⇔ T (μ(x), μ(y)) = 1 ⇔ μ(x) = μ(y) = 1.

Decomposable indistinguishability operators generate interesting between-
ness relations as it will be exposed in Chapter 6. They also generate another

kind of relations that we call tetrahedric which characterize them.

Proposition 2.73. Let T be a continuous Archimedean t-norm with additive
generator t and μ a fuzzy subset of X. If the decomposable T -indistinguishabil-
ity operator Eμ on X generated by μ satisfies Eμ(x, y) �= 0 for all x, y ∈ X,
then it generates the following tetrahedric relation on X: Given four different
elements x, y, z, t ∈ X,

T (Eμ(x, y), Eμ(z, t)) = T (Eμ(x, z), Eμ(y, t)).

Proof

Eμ(x, y) = T (μ(x), μ(y)) = t−1(t(μ(x)) + t(μ(y)))

and

Eμ(z, t) = T (μ(z), μ(t)) = t−1(t(μ(z)) + t(μ(z))).

So,

T (Eμ(x, y), Eμ(z, t))

= t[−1](t ◦ t−1(t(μ(x)) + t(μ(y))) + t ◦ t−1(t(μ(z)) + t(μ(t))))

= t[−1](t(μ(x)) + t(μ(y)) + t(μ(z)) + t(μ(t)))

= t[−1](t(μ(x)) + t(μ(z)) + t(μ(y)) + t(μ(t)))

= t[−1](t ◦ t−1(t(μ(x)) + t(μ(z))) + t ◦ t−1(t(μ(y)) + t(μ(t))))

= T (Eμ(x, z), Eμ(y, t)).
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The next proposition provides a partial reciprocal result.

Proposition 2.74. Let T be a continuous Archimedean t-norm and E a
T -indistinguishability operator separating points on X satisfying the tetra-

hedric relation and such that E(x, y) > 0
1
2

T for all x, y ∈ X and such that
minx,y∈X E(x, y) exists and is greater than 0. Then there exists a decompos-
able T -indistinguishability operator E′ on X and a constant k ∈ [0, 1] such
that

E(x, y) =
−→
T (k|E′(x, y)) ∀x, y ∈ X.

Proof. Let a, b ∈ X a �= b be such that E(a, b) = minx,y∈X E(x, y) > 0.
For any two different x, y ∈ X different from a and from b,

T (E(a, b), E(x, y)) = T (E(a, x), E(b, y)) = T (E(a, y), E(b, x))). (∗)

Let us consider the fuzzy subset μ of X defined by

μ(x) = t−1(
t(E(a, x)) + t(E(b, x))

2
)

and the decomposable T -indistinguishability operators E′ = Eμ it generates.
Then

E(x, y) =
−→
T (E(a, b)|E′(x, y)).

Indeed, from (*)

E(x, y) =
−→
T (E(a, b)|T (E(a, x), E(b, y))) =

−→
T (E(a, b)|T (E(a, y), E(b, x))).

We must only show that

E′(x, y) = T (E(a, x), E(b, y)).

E′(x, y)

= T (μ(x), μ(y))

= t[−1](t(μ(x)) + t(μ(y)))

= t[−1](t(t−1(
t(E(a, x)) + t(E(b, x))

2
)) + t(t−1(

t(E(a, y)) + t(E(b, y))

2
)))

= t[−1](
t(E(a, x)) + t(E(b, x))

2
+

t(E(a, y)) + t(E(b, y))

2
).

On the other hand, thanks to (*),

T (E(a, x), E(b, y)) = t−1(
t(T (E(a, x), E(b, y))) + t(T (E(a, y), E(b, x)))

2
)

= t−1(
t(E(a, x)) + t(E(b, y)) + t(E(a, y)) + t(E(b, x))

2
).
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2.4 Transitive Openings

As we have seen in section 2.1, the transitive closure of a reflexive and

symmetric fuzzy relation R gives a T -indistinguishability operator greater

than or equal to R. In this case it is possible to obtain the best upper

approximation since the infimum of T -indistinguishability operators is also
a T -indistinguishability operator. If we want a lower approximation, then
the situation is more complicated since the supremum of indistinguishabil-
ity operators is not such an operator in general. What we can find is T -
indistinguishability operators maximal among the ones that are smaller than
or equal to a given reflexive and symmetric fuzzy relation. These relations

are not unique, but there can be an infinite quantity of them, even in sets of

finite cardinality.
Unfortunately, there is no general method to calculate them. In [45], an

algorithm to find maximal transitive openings of a given fuzzy relation is
given, but the obtained openings are not symmetric in general and in the

process of symmetrizing them, maximality can be lost. Heuristic methods

to obtain T -indistinguishability operators smaller than or equal to a given
fuzzy relation close to maximal ones have been proposed [31], but a general
methodology to find them is still unknown.

The minimum t-norm is an exception because of the special behaviour of

min-indistinguishability operators (see Chapter 5). In this case there are a

number of algorithms to find at least some of the min-transitive openings

of a given proximity relation. A classic method is the complete linkage that

will be explained below. Other algorithms can be found in [26] [48]. In the

complete linkage, the values of a proximity relation or matrix R = (aij) on
a finite set X are modified according to the next algorithm to obtain a min-
transitive opening. Given two disjoint subsets Ci Cj of X its similarity degree

S is defined by S(Ci, Cj) = mini∈Ci,j∈Cj
(aij). As usual in Cluster Analysis,

the subsets of a partition of X will be called clusters. The complete linkage

algorithm goes as follows.

1. Initially a cluster Ci is assigned to every element xi of X (i.e. the clusters

of the first partition are singletons).
2. In each new step two clusters are merged in the following way.

If {C1, C2, ..., Ck} is the actual partition, then we must select the two
clusters Ci and Cj for which the similarity degree S(Ci, Cj) is maximal.
(If there are several such maximal pairs, one pair is picked at random).
The new cluster Ci∪Cj replaces the two clusters Ci and Cj , and all entries
of amn and anm of R with m ∈ Ci and n ∈ Cj are lowered to S(Ci, Cj).

3. Step 2 is repeated until there remains one single cluster containing all the

elements of X .

Example 2.75. Let us consider the proximity R on X = {x1, x2, x3, x4} with
matrix
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⎛

⎜⎜⎝

x1 x2 x3 x4

x1 1 0.1 0.7 0.4
x2 0.1 1 0.4 0.3
x3 0.7 0.4 1 0.5
x4 0.4 0.3 0.5 1

⎞

⎟⎟⎠.

The first partition is C1 = {x1}, C2 = {x2}, C3 = {x3}, C4 = {x4}. The

greatest similarity degree between clusters is S(C1, C3) = 0.7. These two
clusters are merged to form C13 = {x1, x3}. The matrix does not change in
this step.

The new partition is C13, C2, C4. The similarity degrees are

S(C13, C2) = min(a12, a32) = min(0.1, 0.4) = 0.1

S(C13, C4) = min(a14, a34) = min(0.4, 0.5) = 0.4

S(C2, C4) = a24 = 0.3.

The greatest similarity degree is 0.4 and the new partition is therefore C134 =
{x1, x3, x4}, C2 = {x2}. The entries a14, a41, a34, a43 of the matrix R are

replaced by 0.4 obtaining

⎛

⎜⎜⎝

x1 x2 x3 x4

x1 1 0.1 0.7 0.4
x2 0.1 1 0.4 0.3
x3 0.7 0.4 1 0.4
x4 0.4 0.3 0.4 1

⎞

⎟⎟⎠.

In the last step, we merge the two clusters C134, C2. The similarity degree is

S(C134, C2) = min(a12, a32, a42) = min(0.1, 0.4, 0.3) = 0.1.

The transitive opening of R obtained by complete linkage is then

⎛

⎜⎜⎝

x1 x2 x3 x4

x1 1 0.1 0.7 0.4
x2 0.1 1 0.1 0.1
x3 0.7 0.1 1 0.4
x4 0.4 0.1 0.4 1

⎞

⎟⎟⎠.
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Granularity and Extensional Sets

The presence of an indistinguishability operator on a universe determines its
granules.

According to Zadeh, granularity is one of the basic concepts that underlie
human cognition [146] and the elements within a granule ’have to be dealt
with as a whole rather than individually’ [145].

Informally, granulation of an object A results in a collection of granules
of A, with a granule being a clump of objects (or points) which are
drawn together by indistinguishability, similarity, proximity or func-
tionality [146].

In a classical (crisp) context, a crisp equivalence relation ∼ on a universe X
determines the granules of X as its equivalence classes. Indeed, if we take the

relation ∼ into account, only the sets that are unions of equivalence classes of

(X,∼) can be observed in X , and properties are shared by all of the elements

of the same equivalence class [18].
If the crisp equivalence relation is replaced by a fuzzy one, i.e. an in-

distinguishability operator E, there are basically two ways to consider the

granularity induced on the universe by E.

• One is by considering the fuzzy equivalence classes generated by E, as

defined by Zadeh in [144]. For each object x of the universe, the fuzzy
equivalence class of x is the column μx of E (μx(·) = E(x, ·)). An extensive

study of this idea can be found in [78].
• A more general extension of the granules is achieved by fuzzy points, the

granularity consisting, then, of the fuzzy points of E.

A fuzzy point is an extensional fuzzy subset μ that satisfies T (μ(x), μ(y)) ≤
E(x, y), which fuzzifies the predicate

If x and y belong to the same point μ, then they are equivalent with
respect to the equivalence relation E.

J. Recasens: Indistinguishability Operator, STUDFUZZ 260, pp. 41–79.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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Fuzzy equivalence classes are exactly the normal fuzzy points of E and, in
the crisp case, crisp equivalence classes are exactly the points associated with
the crisp relation.

An important notion related to granularity and fuzzy equivalence relations

is the idea of observability. In the crisp case again, if an equivalence relation is
defined on a universe X , then only subsets of X that are unions of equivalence

classes are compatible with the equivalence relation. Other subsets cannot be

observed by taking the equivalence relation into account. In the fuzzy context,
the observable fuzzy subsets with respect to a T -indistinguishability operator

E are exactly the extensional fuzzy subsets of E.
From a structural point of view, it is especially interesting to study the

set HE of all extensional fuzzy subsets of a T -indistinguishability operator E
defined on a set X . Section 3.1 is devoted to this and introduces two maps

φE and ψE between fuzzy subsets of the universe of discourse. These maps

are key tools for studying the structure of HE because they characterize
HE as the set of their fixed points, and for a given fuzzy subset μ of X ,
φE(h) and ψE(h) are the smallest extensional fuzzy subset greater than or

equal to μ and the largest extensional fuzzy subset smaller than or equal
to μ respectively and hence its upper and lower approximations in HE [18].
HE can be interpreted as the set of fuzzy subsets of the quotient set X/E
(i.e.: HE = [0, 1]X/E) and φE : [0, 1]X → [0, 1]X/E can be interpreted as the

canonical map. Note that if the indistinguishability operator E is a crisp one,
then φE|X is the crisp canonical map π : X → X/E.

φE and ψE , as upper and lower approximation operators of fuzzy sets by
observable ones, can also be thought of as the key tools for defining fuzzy
rough sets on X . They are also useful in other fields, such as fuzzy modal
logic, where they model the possibility and necessity operators.

φE and ψE are a closure operator and an interior operator, respectively.
Therefore, HE can be seen as a fuzzy topology of X . Also, E generates a

metric topology on X . Section 3.1 will analize the close relationship between
these topologies.

A third map (ΛE) is introduced in Section 3.2 in order to characterize the

columns of E. The main results state that fuzzy points can be thought of as

columns of extensions (X, E) of (X, E) and that the columns of E are the nor-
mal fixed points of ΛE. The fixed points of ΛE are the maximal fuzzy points

of X . Also the set Im(ΛE) is characterized as a set of fixed points of Λ2
E .

Section 3.3 explores what happens when the elements of a family (μi)i∈I

of fuzzy subsets are columns of the T -indistinguishability operator that they
generate using the Representation Theorem. It turns out that there is a close

relationship between this property and fuzzy points.
In many applications, it is essential to have a way to measure the degree

of similarity or indistinguishability between the fuzzy subsets of a universe.
The most natural way to do this will set out in Section 3.4 using the duality
principle. Other possibilities will be presented in Section 8.4.
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3.1 The Set HE of Extensional Fuzzy Subsets

Definition 3.1. Let E be a T -indistinguishability operator on a set X. A
fuzzy subset μ of X is extensional with respect to E (or simply extensional)
if and only if for all x, y ∈ X

T (E(x, y), μ(y)) ≤ μ(x).

HE will be the set of extensional fuzzy subsets of X with respect to E.

The previous definition fuzzifies the predicate

If x and y are equivalent and y ∈ μ, then x ∈ μ.

The set HE has been widely studied [68], [69], [23] and its elements have been
characterized as the generators [69] of E, the eigenvectors [68] i.e. the fixed

points of φE and ψE , the logical states associated to E [4] and its extensional
and observable sets [23].

If E is a crisp equivalence relation on X , then a crisp subset A of X is
extensional if and only if it is the union (and intersections if we want to
obtain the empty set) of the equivalence classes of A. HE restricted to crisp

subsets is in this case the set {0, 1}X/E
of subsets of the quotient set X/E.

Proposition 3.2. Let E be a T -indistinguishability operator on X, μ a fuzzy
subset of X and Eμ the T -indistinguishability operator generated by μ as in
Lemma 2.52. μ ∈ HE if and only if Eμ ≥ E.

Proof. Eμ(x, y) = ET (μ(x), μ(y)) ≥ E(x, y) if and only if T (E(x, y), μ(x)) ≤
μ(y) and T (E(x, y), μ(y)) ≤ μ(x).

Hence HE coincides with the set of generators of E.

Lemma 3.3. Given a T-indistinguishability operator E on a set X and an
element x ∈ X, the column μx of x is extensional.

Proof. Given y, z ∈ X

Eμx
(y, z) = ET (E(x, y), E(x, z)) ≥ E(y, z).

Proposition 3.4. Let E be a T -indistinguishability operator on a set X.
The following properties are satisfied for all μ ∈ HE, (μi)i∈I a family of
extensional fuzzy subsets and α ∈ [0, 1].

1.
∨

i∈I μi ∈ HE.
2.
∧

i∈I μi ∈ HE.
3. T (α, μ) ∈ HE.

4.
−→
T (μ|α) ∈ HE.

5.
−→
T (α|μ) ∈ HE.
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Proof

1. follows from the continuity of T .
2. follows from the continuity of T .
3. T (E(x, y), T (α, μ)(y)) = T (α, T (E(x, y), μ(y)) ≤ T (α, μ(x)) = T (α, μ)(x).
4. We must prove

T (E(x, y),
−→
T (μ(y)|α)) ≤ −→

T (μ(x)|α)

which is equivalent to prove

T (μ(x), E(x, y),
−→
T (μ(y)|α)) ≤ α.

But

T (μ(x), E(x, y),
−→
T (μ(y)|α)) ≤ T (μ(y),

−→
T (μ(y)|α)) ≤ α.

5. We must prove

T (E(x, y),
−→
T (α|μ(y))) ≤ −→

T (α|μ(x))

which is equivalent to prove

T (α, E(x, y),
−→
T (α|μ(y))) ≤ μ(x).

But

T (α, E(x, y),
−→
T (α|μ(y)) ≤ T (E(x, y), μ(y)) ≤ μ(x).

The next Theorem 3.6 characterizes the sets of extensional sets with respect

to T -indistinguishability operators as the sets satisfying the properties of the

last proposition.

Lemma 3.5. Let E be a T -indistinguishability operator on a set X. HE is a
generating family of E in the sense of the Representation Theorem 2.54.

Proof. Trivial, since any generating family of E is contained in HE .

Theorem 3.6. [23] Let H be a subset of [0, 1]X satisfying the properties of
Proposition 3.4. Then there exists a T -indistinguishability operator E on X
such that H = HE. E is uniquely determined and it is generated (using the
Representation Theorem) by the family of elements of H.

Proof. Let E be the T -indistinguishability operator generated by H .
Let us first prove that H = HE .
Since H is a generating family of E, its fuzzy subsets are extensional and

H ⊆ HE .
Given μ ∈ HE and y ∈ X , let us define the fuzzy subset μy by μy(x) =

T (E(x, y), μ(y)). We will show that μ = supy∈X μy.
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μy(x) = T ( inf
ν∈H

Eν(x, y), μ(y))

= inf
ν∈H

T (min(
−→
T (ν(x)|ν(y)),

−→
T (ν(y)|ν(x))), μ(y)).

Since μ(y) and ν(y) are constants, applying properties 2, 3, 4, 5 of 3.4 we

have that μy ∈ H .
Since μ is extensional, μy(x) = T (E(x, y), μ(y)) ≤ μ(x). Adding that

μy(y) = μ(y) we obtain μ = supy∈X μy which is an element of H tanks

to property 3.4.1. This gives that HE ⊆ H .
Let us prove the uniqueness of E.
Let E′ be a T -indistinguishability operator with H = HE′ . Then E′ ≤ E.
To prove the other inequality, let us consider for all x ∈ X the column μx

of E′, which is extensional with respect to E′ and therefore μx ∈ H . But this
means that μx is also extensional with respect to E and we have

E(x, y) = T (E(x, y), μx(x)) ≤ μx(y) = E′(x, y).

Theorem 3.6 establish a bijection between T -indistinguishability operators

and subsets H of [0, 1]X satisfying the properties of Proposition 3.4. If EH

is the T -indistinguishability operator generated by H , then EHE
= E and

HEH
= H .

3.1.1 The Map φE

This and the next subsections introduce two maps (φE , ψE : [0, 1]X → [0, 1]X)
which are key tools in order to study the structure of HE [18].

The main result concerning these maps is that both, φE and ψE , have HE

as the set of fixed points.

Definition 3.7. Let E be a T-indistinguishability operator on a set X. The
map φE : [0, 1]X → [0, 1]X is defined for all x ∈ X by

φE(μ)(x) = sup
y∈X

T (E(x, y), μ(y)) .

Proposition 3.8. For all μ, μ′ ∈ [0, 1]X,

1. If μ ≤ μ′ then φE(μ) ≤ φE(μ′).
2. μ ≤ φE(μ).
3. φE(μ ∨ μ′) = φE(μ) ∨ φE(μ′).
4. φE(φE(μ)) = φE(μ).
5. φE({x})(y) = φE({y})(x)
6. φE(T (α, μ)) = T (α, φE(μ)).
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Proof

1. It is a consequence of the monotonicity of the t-norm.
2. φE(μ)(x) = supy∈X T (E(x, y), μ(y)) ≥ T (E(x, x), μ(x)) = μ(x).
3.

φE(μ ∨ μ′)(x) = sup
y∈X

T (E(x, y), (μ ∨ μ′)(y))

= sup
y∈X

T (E(x, y), μ(y) ∨ μ′(y))

= sup
y∈X

T (E(x, y), μ(y)) ∨ sup
y∈X

T (E(x, y), μ′(y))

= φE(μ)(x) ∨ φE(μ′)(x).

4.

φE(φE(μ))(x) = sup
y∈X

T (E(x, y), φE(μ)(y))

= sup
y∈X

sup
z∈X

T (E(x, y), E(y, z), μ(z))

≤ sup
z∈X

T (E(x, z), μ(z)) = φE(μ)(x).

So φE(φE(μ)) ≤ φE(μ). From 2 equality holds.
5. φE({x})(y) = supz∈X T (E(y, z), {x} (z)) = E(x, y) and the result follows

from symmetry.
6.

φE(T (α, μ(x)) = sup
y∈X

T (E(x, y), T (α, μ)(y))

= sup
y∈X

T (E(x, y), α, μ(y))

= T (α, φE(μ)(x)).

There is a bijection between the operators satisfying Proposition 3.8 and

T -indistinguishability operators.

Lemma 3.9. Let φ be a map φ : [0, 1]X → [0, 1]X satisfying the properties of
Proposition 3.8. Then

φ(μ)(x) = sup
y∈X

T (φ({y}), μ(y))(x).

Proof. Clearly μ(x) = supy∈X T ({y} , μ(y))(x).
By 3.8.3 and 3.8.6

φ(μ)(x) = φ(sup
y∈X

T ({y} , μ(y))(x) = sup
y∈X

T (φ({y}), μ(y))(x).
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Proposition 3.10. Let φ : [0, 1]X → [0, 1]X be a map satisfying the proper-
ties of Proposition 3.8. The fuzzy relation Eφ on X defined for all x, y ∈ X
by

Eφ(x, y) = φ({x})(y)

is a T -indistinguishability operator on X.

Proof. For all x, y, z ∈ X

• Reflexivity: Eφ(x, x) = φ({x})(x) ≥ {x} (x) = 1.
• Symmetry follows from condition 3.8.5.
• T -transitivity:

Eφ(x, y) = φ({x})(y) = φ(φ({x}))(y)

= sup
u∈X

T (φ({x})(u), φ({u}))(y)

= sup
u∈X

T (Eφ(x,u), Eφ(u, y)).

Proposition 3.11. There is a bijection between the set of T -indistinguisha-
bility operators and maps φ satisfying the conditions of Proposition 3.8.

Proof. We have to prove that φEφ
= φ and EφE

= E.

• Let φ be a map satisfying the conditions of Proposition 3.8. For all x, y ∈ X
and all fuzzy subsets μ of X we have

φEφ
(μ)(x) = sup

y∈X

T (Eφ(x, y), μ(y)) = sup
y∈X

T (φ({y})(x), μ(y)) = φ(μ)(x).

• Given a T -indistinguishability operator E, then for all x, y ∈ X we have

EφE
(x, y) = φ({x})(y) = sup

z∈X

T (E(y, z), {x} (z)) = E(x, y).

Proposition 3.12. μ ∈ HE if and only if φE(μ) = μ.

Proof. μ ∈ HE if and only if T (E(x, y), μ(y)) ≤ μ(x) for all x, y ∈ X . There-
fore φE(μ) ≤ μ. Since φE(μ) ≥ μ holds for all fuzzy subsets, equality follows.

Hence, HE is characterized as the set of fixed points of φE .

Proposition 3.13. Im(φE) = HE.

Proof.

• If μ ∈ HE , then φE(μ) = μ and hence μ ∈ Im(φE).
• If μ = φE(ν), then φE(μ) = φE(φE(ν)) = φE(ν) = μ. Therefore μ ∈ HE .
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Proposition 3.14. For any μ ∈ [0, 1]X, φE(μ) = infμ′∈HE
{μ ≤ μ′}.

Proof

inf
μ′∈HE

{μ ≤ μ′} = inf
φE(μ′)∈HE

{μ ≤ φE(μ′)}

= inf
φE(μ′)∈HE

{φE(μ) ≤ φE(μ′)} = φE(μ).

So, φE(μ) is the most specific extensional set that contains μ (i.e. μ ≤ φE(μ))
and in this sense it is the optimal upper bound of μ in HE .

3.1.2 The Map ψE

Now, let us study the map ψE that maps each fuzzy subset to the greatest

extensional fuzzy subset ψE(μ) contained in μ (i.e. ψE(μ) ≤ μ).

Definition 3.15. Let E be a T-indistinguishability operator on a set X. The
map ψE : [0, 1]X → [0, 1]X is defined by

ψE(μ)(x) = inf
y∈X

−→
T (E(x, y)|μ(y)) ∀x ∈ X.

Lemma 3.16. ψE(
−→
T ({x} |α)(y) =

−→
T (E(x, y)|α).

Proof

ψE(
−→
T ({x} |α)(y) = inf

z∈X

−→
T (E(y, z)|−→T ({x} |α)(z))

= inf
z∈X

−→
T (E(y, z)|−→T ({x} (z)|α))

= min(
−→
T (E(y, x)|−→T (1|α)), inf

z∈X,z 	=x

−→
T (E(y, z)|−→T (0|α)))

= min(
−→
T (E(x, y)|α), inf

z∈X,z 	=x

−→
T (E(y, z)|1))

= min(
−→
T (E(x, y)|α), 1) =

−→
T (E(x, y)|α).

Proposition 3.17. For all μ, μ′ ∈ [0, 1]X, we have:

1. μ ≤ μ′ ⇒ ψE(μ) ≤ ψE(μ′).
2. ψE(μ) ≤ μ.
3. ψE(

∧
i∈I μi) =

∧
i∈I ψE(μi).

4. ψE(ψE(μ)) = ψE(μ).

5. ψE(
−→
T ({x} |α))(y) = ψE(

−→
T ({y} |α))(x).

6. ψE(
−→
T (α|μ)) =

−→
T (α|ψE(μ)).
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Proof

1.
−→
T is non-decreasing in the second variable.

2.

ψE(μ)(x) = inf
y∈X

−→
T (E(x, y)|μ(y))

≤ −→
T (E(x, x)|μ(x)) = μ(x).

3.

ψE(
∧

i∈I

μi)(x) = inf
y∈X

−→
T (E(x, y)|

∧

i∈I

μi(y))

= inf
y∈X,i∈I

−→
T (E(x, y)|μi(y)) =

∧

i∈I

ψE(μi)(x).

4.

ψE(ψE(μ))(x) = inf
y∈X

−→
T (E(x, y)|ψE(μ)(y))

= inf
y∈X

−→
T (E(x, y)| inf

z∈X

−→
T (E(y, z)|μ(z)))

= inf
x,y∈X

−→
T (E(x, y)|−→T (E(y, z)|μ(z)))

= inf
x,y∈X

−→
T (T (E(x, y), E(y, z))|μ(z))

≥ inf
z∈X

−→
T (E(x, z)|μ(z)) = ψE(μ)(x).

So ψE(ψE(μ)) ≥ ψE(μ). From 2 we get the other inequality.
5. It follows from Lemma 3.16 and the symmetry of E.
6.

ψE(
−→
T (α|μ))(x) = inf

y∈X

−→
T (E(x, y)|−→T (α|μ)(y))

= inf
y∈X

−→
T (E(x, y)|−→T (α|μ(y)))

= inf
y∈X

−→
T (α|−→T (E(x, y)|μ(y)))

=
−→
T (α| inf

y∈X

−→
T (E(x, y)|μ(y)))

=
−→
T (α|ψE(μ)(x)) =

−→
T (α|ψE(μ))(x).

A similar result to Proposition 3.11 can be established between T -indistin-
guishability operators and maps satisfying the conditions of Proposition 3.17.

Proposition 3.18. There is a bijection between the T -indistinguishability
operators on X and the maps on X satisfying the conditions of Proposition
3.17.
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• A T -indistinguishability operator E defines ψE which satisfies the condi-
tions.

• From a map ψ satisfying the conditions we get the T -indistinguishability
operator Eψ defined for all x, y ∈ X by

E(x, y) = inf
α∈[0,1]

−→
T (ψ(

−→
T ({x} |α)(y)|α)).

Proposition 3.19. μ ∈ HE if and only if ψE(μ) = μ.

Proof. μ ∈ HE if and only if for all x, y ∈ X T (E(x, y), μ(x)) ≤ μ(y), which is

equivalent to
−→
T (E(x, y)|μ(y)) ≥ μ(x) for all x, y ∈ X . This again is equivalent

to infy∈X
−→
T (E(x, y)|μ(y)) ≥ μ(x). In other words, ψE(μ)(x) ≥ μ(x).

So, HE is also characterized as the set of fixed points of ψE .

Proposition 3.20. Im(ψE) = HE.

Proof

• If μ ∈ HE , then ψE(μ) = μ. Therefore μ ∈ Im(ψE).
• If μ ∈ ImψE , then there exists ν with ψE(ν) = μ. So μ = ψE(ν) =

ψE(ψE(ν)) = ψE(μ) and μ ∈ HE .

Proposition 3.21. For any μ ∈ [0, 1]X, ψE(μ) = supμ′∈HE
{μ′ ≤ μ}.

Proof

sup
μ′∈HE

{μ′ ≤ μ} = sup
ψE(μ′)∈HE

{ψE(μ′) ≤ μ}

= sup
ψE(μ′)∈HE

{ψE(μ′) ≤ ψE(μ)}

= ψE(μ).

3.1.3 Properties of φE and ψE. Fuzzy Rough Sets and
Modal Logic

The maps φE and ψE provide upper and lower approximations to any fuzzy
subset μ of X . This is the key idea of rough sets. Lets recall that if there is
a crisp equivalence relation ∼ defined on a set X , a crisp subset A ⊆ X is
approximated by

A = {x ∈ X such that x ∩ A �= ∅}

and

A = {x ∈ X such that x ⊆ A}
where x denotes the equivalence class of x. (A, A) is called a rough set [110] .
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In this way, every crisp set is approximated by the closest sets that can be

observed when the equivalence relation ∼ is taken into account. Let us note

that the definitions of the approximations A and A can also be written

x ∈ A if and only if ∃y ∈ X such that y ∈ A ∧ x ∼ y

and

x ∈ A if and only if ∀y ∈ X x ∼ y → y ∈ A.

which are φ∼(A) and ψ∼(A).
Therefore φE and ψE generalize rough sets to fuzzy rough fuzzy sets.
φE and ψE have also been applied to model the fuzzy possibility and the

fuzzy necessity operators in fuzzy modal logic, where the accessibility relation
between possible worlds is given by a T -indistinguishability operator E or,
more general, by a fuzzy relation [21].

In general a fuzzification of a Kripke frame is a pair F = (W, R) where W is
the set of possible worlds and R a fuzzy relation on W called the accessibility
relation.

A Kripke model is a 3-tuple M = (W, R, V ) where (W, R) is a Kripke

frame and V is a map, called valuation, assigning to each variable in V ar
and each world in W an element of [0, 1] (i.e., V : V ar × W → A).

The valuation V can be extended to any formula ϕ and given a formula ϕ
the map Vϕ : W → [0, 1] can be defined as Vϕ(w) = V (ϕ, w).

Then valuation of the necessity �ϕ of ϕ in world w is then defined by

V (�ϕ, w) = ψR(Vϕ)(w) = inf
w′∈W

−→
T (R(w, w′)|Vϕ(w′))

and the possibility ♦ϕ of ϕ in world w is

V (♦ϕ, w) = φR(Vϕ)(w) = sup
w′∈W

T (R(w, w′), Vϕ(w′)).

In a classical setting, the possibility is often defined from the necessity by
♦ = ¬�¬ where ¬ is the negation. In the fuzzy case we do not have this
equality in general. In order to study the cases when φE = ϕ ◦ ψE ◦ ϕ where

ϕ is a strong negation is satisfied we need first to recall the characterization
theorem for strong negations.

Definition 3.22. [134] A strong negation ϕ is defined as a strictly decreasing,
continuous function ϕ : [0, 1] → [0, 1] with boundary conditions ϕ(0) = 1 and
ϕ(1) = 0 such that ϕ is involutive (i.e., ϕ(ϕ(x)) = x holds for any x ∈ [0, 1]).

The standard strong negation is ϕ(x) = 1 − x.

Theorem 3.23. [134] A map ϕ : [0, 1] → [0, 1] is a strong negation if and
only if there exists a continuous and decreasing map t : [0, 1] → R+ with
t(1) = 0 such that
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ϕ(x) = t−1(t(0) − t(x)) ∀x ∈ [0, 1].

A map t as defined in the preceding theorem is called a generator of the

strong negation ϕ.
This theorem can be interpreted in the following way.

Corollary 3.24. ϕ is a strong negation if and only if there exists a continu-
ous non-strict Archimedean t-norm T with additive generator t such that

ϕ(x) =
−→
T (x|0).

Proposition 3.25. Let X be a set and ϕ a strong negation with generator t.
If T is a non-strict Archimedean t-norm with additive generator t and E is
a T -indistinguishability operator on X, then ϕ ◦ φE ◦ ϕ = ψE (and therefore
ϕ ◦ ψE ◦ ϕ = φE).

Proof

ψE(μ)(x) = inf
y∈X

−→
T (E(x, y)|μ(y))

= inf
y∈X

(t[−1](t(μ(y)) − t(E(x, y))

= inf
y∈X

t[−1](t(0) − (t(E(x, y)) + t(0) − t(μ(y))))

= inf
y∈X

t[−1](t(0) − t(t[−1](t(E(x, y)) + t(t[−1](t(0) − t(μ(y))))))

= inf
y∈X

ϕ(T (E(x, y), ϕ(μ(y))))

= ϕ(sup
y∈X

T (E(x, y), ϕ(μ(y))))

= ϕ(φE(ϕ(μ)(x))).

The following reciprocal result holds.

Proposition 3.26. Let X be a set, T a continuous Archimedean t-norm, ϕ
a strong negation and E a non crisp T -indistinguishability operator on X. If
ϕ◦φE ◦ϕ = ψE, then T is a non-strict Archimedean t-norm and ϕ|D = ϕT |D
where D = {E(x, y) with x, y ∈ X} and ϕT is the strong negation associated

to T (ϕT (x) =
−→
T (x|0)).

Proof. Let us first suppose that T is a strict Archimedean t-norm with gen-
erator t. Let x, y ∈ X be such that E(x, y) /∈ {0, 1} and consider the column
μx of E which is an extensional fuzzy subset (μx ∈ HE).

We want to prove that ψE(μx) �= ϕ ◦ φE ◦ ϕ(μx), which is equivalent to
prove ϕ ◦ ψE(μx) �= φE ◦ ϕ(μx).

Since φE ◦ ϕ(μx) ∈ HE , to prove the last inequality it suffices to see that

ϕ ◦ ψE(μx) /∈ HE . But since ψE(μx) = μx, this is equivalent to see that

ϕ(μx) /∈ HE .
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Eϕ(μx)(x, y) = ET (ϕ(E(x, x)), ϕ(E(x, y)))

=
−→
T (ϕ(E(x, y))|0) = 0 < E(x, y)

and therefore ϕ(μx) /∈ HE .
On the other hand, since μx is extensional with respect to E,

ϕ(μx(z)) = ϕ(ψE(μx(z)))

= φE(ϕ(μx)(z))

= sup
y∈X

T (E(z, y), ϕ(μx(y)))

= sup
y∈X

t[−1](t(E(z, y)) + t(ϕ(E(x, y)))).

In particular,

ϕ(μx(x)) = 0 = sup
y∈X

t[−1](t(E(x, y)) + t(ϕ(E(x, y))).

Therefore, for all y ∈ X , t(E(x, y)) + t(ϕ(E(x, y))) = t(0) and

ϕ(E(x, y)) = t[−1](t(0) − t(E(x, y))) = ϕT (E(x, y)).

Let us end this subsection with some properties combining φE and ψE to
show their dual behaviour.

Proposition 3.27. Let E be a T -indistinguishability operator on a set X and
μ a fuzzy subset of X.

1. ψE(μ) = infα∈[0,1]
−→
T (φE(

−→
T (μ|α))|α).

2. φE(μ) = infα∈[0,1]
−→
T (ψE(

−→
T (μ|α))|α).

Proof

1.

inf
α∈[0,1]

−→
T (φE(

−→
T (μ(x)|α))|α) = inf

α∈[0,1]

−→
T (sup

y∈X

T (E(y, x),
−→
T (μ(y)|α))|α)

= inf
α∈[0,1]

inf
y∈X

−→
T (T (E(y, x),

−→
T (μ(y)|α))|α)

= inf
y∈X

inf
α∈[0,1]

−→
T (E(y, x)|−→T (

−→
T (μ(y)|α))|α)

= inf
y∈X

−→
T (E(y, x)| inf

α∈[0,1]

−→
T (

−→
T (μ(y)|α))|α)

= inf
y∈X

−→
T (E(y, x)|μ(y))

= ψE(μ)(x).

2. can be proved in a similar way.
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Proposition 3.28. For every α ∈ [0, 1] and μ, ν fuzzy subsets of X,

1. φE(ψE(μ)) = ψE(μ).
2. ψE(φE(μ)) = φE(μ).

3. ψE(
−→
T (μ|α)) =

−→
T (φE(μ)|α).

4. infx∈X
−→
T (μ(x)|ψE(ν)(x)) = infx∈X

−→
T (φE(μ)(x)|ν(x)).

5. infx∈X
−→
T (ψE(μ)(x)|ψE(ν)(x)) = infx∈X

−→
T (ψE(μ)(x)|ν(x)).

6. infx∈X
−→
T (φE(μ)(x)|φE(ν)(x)) = infx∈X

−→
T (μ(x)|φE(ν)(x)).

Proof

1. ψE(μ) is extensional.
2. φE(μ) is extensional.
3.

ψE(
−→
T (μ|α)(x)) = inf

y∈X

−→
T (E(y, x)|−→T (μ(y)|α))

= inf
y∈X

−→
T (T (E(y, x), μ(y))|α)

=
−→
T (sup

y∈X

T (E(y, x), μ(y))|α)

=
−→
T (φE(μ)(x)|α).

4.

inf
x∈X

−→
T (μ(x)|ψE(ν)(x)) = inf

x∈X

−→
T (μ(x)| inf

y∈X

−→
T (E(y, x)|ν(x)))

= inf
x∈X

inf
y∈X

−→
T (T (E(y, x)|μ(x))|ν(y))

= inf
y∈X

−→
T (sup

x∈X

T (E(y, x), μ(x))|ν(y))

= inf
x∈X

−→
T (φE(μ)(x)|ν(x)).

5.

inf
x∈X

−→
T (ψE(μ)(x)|ψE(ν)(x)) = inf

x∈X

−→
T (φE(ψE(μ))(x)|ν(x))

= inf
x∈X

−→
T (ψE(μ)(x)|ν(x)).

6.

inf
x∈X

−→
T (φE(μ)(x)|φE(ν)(x)) = inf

x∈X

−→
T (μ(x)|ψE(φE(μ))(x))

= inf
x∈X

−→
T (μ(x)|φE(ν)(x)).
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3.1.4 Topological Structure of HE

As we will see in this subsection, the set HE of extensional sets of a T -
indistinguishability operator on a set X is the set of closed fuzzy subsets of

a fuzzy topology defined on X and the maps φE and ψE are fuzzy closure

and interior operators of it. E by its side also generates a classical topology
on X and the tight relation between both classical and crisp topologies will
be established.

Let us recall the definitions of fuzzy topology, fuzzy closure operator and

fuzzy interior operator ([91]).

Definition 3.29. A subset τ of [0, 1]X is a fuzzy topology on X if and only
if it satisfies the following properties.

1. If A ⊆ τ , then sup {μ such that μ ∈ A} ∈ τ .
2. If μ, μ′ ∈ τ , then min(μ, μ′) ∈ τ .
3. If μk is a constant fuzzy subset of X (i.e. μk(x) = k ∈ [0, 1] for all x ∈ X),

then μk ∈ τ .

Definition 3.30. A map φ : [0, 1]X → [0, 1]X is a fuzzy closure operator if
and only if for all fuzzy subsets μ, μ′ of X satisfies

1. μ ≤ φ(μ).
2. φ(μ ∨ μ′) = φ(μ) ∨ φ(μ′).
3. φ(φ((μ)) = φ(μ).
4. φ(μk) = μk for every constant fuzzy subset μk of X.

Definition 3.31. A map ψ : [0, 1]X → [0, 1]X is a fuzzy interior operator if
and only if for all fuzzy subsets μ, μ′ of X satisfies

1. ψ(μ) ≤ μ.
2. ψ(μ ∧ μ′) = ψ(μ) ∧ ψ(μ′).
3. ψ(ψ(μ)) = ψ(μ).
4. ψ(μk) = μk for every constant fuzzy subset μk of X.

The elements of a fuzzy topology τ are called open fuzzy subsets. Given a

strong negation ϕ a fuzzy subset μ is called closed if and only if ϕ◦μ is open.
It is easy to prove that, given a fuzzy interior operator ψ on a set X, the

fuzzy subsets μ of X satisfying ψ(μ) = μ (the fixed points of ψ) are the

open subsets of a fuzzy topology τψ . Also the fixed points of a fuzzy closure

operators are the closed subsets of a fuzzy topology of X .
Some of the results of the previous two subsections can be translated to

the following proposition.

Proposition 3.32. Let E be a T -indistinguishability operator on a set X.

• The map φE is a fuzzy closure operator.
• The map ψE is a fuzzy interior operator.
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• The set HE of extensional sets of E is a fuzzy topology on X and also the
set of closed fuzzy subsets of a topology on X.

On the other hand, a T -indistinguishability operator E on a set X defines a

crisp topology on X in a natural way.

Definition 3.33. Given a T -indistinguishability operator E separating points
on a set X and a strong negation ϕ, the open ball B(x, r) of centre x ∈ X and
radius r ∈ (0, 1] is defined by

B(x, r) = {y ∈ X such that E(x, y) > ϕ(r)} .

The set of open balls is a basis of a topology denoted by TE .
In order to relate the topologies TE and τE generated by a T indistinguish-

ability operator E, we recall the following definitions ([91]).

Definition 3.34. Let T (X) and τ(X) denote the sets of topologies and fuzzy
topologies on a given set X respectively. The mappings i : τ(X) → T (X) and
ω : T (X) → τ(X) are defined in the following way.

i(τ) =
{
μ−1(α, 1] such that α ∈ [0, 1), μ ∈ τ

}
.

ω(T ) =
{
μ ∈ [0, 1]X such that μ is lower semicontinuous

}
.

For these two maps we have

ω ◦ i = idτ(X).

Proposition 3.35. If T and τ are the topology and the fuzzy topology gener-
ated on a set X by a T -indistinguishability operator E separating points and
ϕ is a strong negation, then i(τ) = T (and therefore ω(T ) = τ).

Proof

• i(τ) ⊆ T : If A ∈ i(τ), then there exist α ∈ [0, 1) and μ ∈ τ such

that A = μ−1(α, 1] = {x ∈ X such that μ(x) > α}. If A = ∅, then
A ∈ T . Otherwise, for each x ∈ A, the ball of centre x and radius

r = ϕ
(−→

T (ϕ(α)|ϕ (μ(x)))
)

is contained in A. Indeed, given y ∈ B(x, r),

1. if μ(y) ≥ μ(x), then μ(y) > α.
2. if μ(y) < μ(x), then

Eϕ◦μ(x, y) =
−→
T (ϕ (μ(y)) |ϕ (μ(x)))

≥ E(x, y) >
−→
T (ϕ(α)|ϕ (μ(x))) .

Since
−→
T is decreasing in its first component, ϕ (μ(y)) < ϕ(α) and there-

fore μ(y) > α.
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• T ⊆ i(τ): Let us prove that any given ball B(x, r) of T is an open set of

i(τ).

If μx,r is defined by μx,r = ϕ(
−→
T (E(x, y)|ϕ(r)), then

B(x, r) = {y ∈ X such that E(x, y) > ϕ(r)}
= {y ∈ X such that

−→
T (E(x, y)|ϕ(r)) < 1} = μ−1

x,r(0, 1].

Therefore it is sufficient to prove that ϕ(μx,r) ∈ HE . Indeed, given y, z ∈ X
we can assume without loss of generality that μ(y) ≥ μ(z) and

Eϕ(μ)(x, y) =
−→
T (

−→
T (E(x, y)|ϕ(r))|−→T (E(x, z)|ϕ(r)))

≥ −→
T (E(x, z)|E(x, y)) ≥ E(y, z).

3.2 Fuzzy Points and the Map ΛE

In the present section, we are going to associate a new map ΛE to a given T -
indistinguishability operator E, which is also closely related to the structure

of E. The main result concerning ΛE is that it has the columns of E as fixed

points.
The set Im(ΛE) will be characterized as the set of fixed points of Λ2

E. In
this way, Im(ΛE) appears as a well differentiated subset of HE . Fix(ΛE) will
be characterized as the set of maximal fuzzy points of E.

Definition 3.36. Let E be a T -indistinguishability operator on a set X. μ ∈
HE is a fuzzy point of X with respect to E if and only if

T (μ(x1), μ(x2)) ≤ E(x1, x2) ∀x1, x2 ∈ X.

PX will denote the set of fuzzy points of X with respect to E.

Definition 3.37. Let E, E be two T -indistinguishability operators on X and
X respectively.

(
X, E

)
is an extension of (X, E) if and only if

1. X ⊆ X
2. E(x, y) = E(x, y) ∀x, y ∈ X.

More general,

Definition 3.38. Let E, F be T -indistinguishability operators on X and Y
respectively. A map τ : X → Y is an isometric embedding of (X, E) into
(Y, F ) if and only if

E(x, y) = F (τ(x), τ(y)) ∀x, y ∈ X.
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The next Theorem provides us with a criterion to decide whether an exten-
sional set is a fuzzy point.

Theorem 3.39. Let E be a T-indistinguishability operator on X. Given μ ∈
HE, these are equivalent statements:

a) μ is a fuzzy point.
b) There exists an extension (X, E) of (X, E) such that μ = μy|X for a

particular y ∈ X (i.e. μ(x) = E(y, x) ∀x ∈ X).

Proof. b) ⇒ a)

T (μ(x1), μ(x2)) = T (E(y, x1), E(y, x2))

≤ E(x1, x2) = E(x1, x2)

for all x1, x2 ∈ X .
a) ⇒ b)
We define a T -indistinguishability operator E on the set X = X ∪ {μ} as

follows:

E(x1, x2) = E(x1, x2) ∀x1, x2 ∈ X

E(x, μ) = E(μ, x) = μ(x) ∀x ∈ X

E(μ, μ) = 1.

E is reflexive and symmetric and it is an extension of E.
It remains to prove the T -transitivity of E, i.e. T (E(x, y), E(y, z)) ≤

E(x, z). There are only four possible (non exclusive) cases:

• x = y, y = z or x = z (trivial)
• x, y, z ∈ X (trivial)
• y = μ and x, z ∈ X . In this case

T (E(x, μ), E(μ, z) = T (μ(x), μ(z)) ≤ E(x, z).

• x = μ and y, z ∈ X . In this case

T (E(μ, y), E(y, z) = T (μ(y), E(y, z)) ≤ μ(z) = E(μ, z),

because μ ∈ HE .

This theorem characterizes both the columns of E and the columns of its
extensions as exactly the fuzzy points of E. We note

CE = {μ ∈ HE |∃(X, E) extension of (X, E) and y ∈ X such that

μ(x) = E(y, x), ∀x ∈ X}.
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Of course, PX = CE and we will say that a fuzzy point is in CE when we

want to stress the idea that it can be a column of an extension of (X, E).
If μ is normal, then (X, E) = (X, E), and μ = μx for some x ∈ X . This

particular case is a well known result (see, for example, [23]).
In order to have a characterization of the columns of E, let us introduce

the map ΛE [20].

Definition 3.40. Let E be a T -indistinguishability operator on a set X. The
map ΛE : [0, 1]X → [0, 1]X is defined by

ΛE(μ)(x) = inf
y∈X

−→
T (μ(y)|E(y, x)) ∀x ∈ X.

It is easy to check that if E is a crisp equivalence relation ∼, then ΛE acts

simply by intersecting equivalence classes: Λ∼(A) =
⋂

x∈A x where x is the

equivalence class of x with respect to ∼. So that in a crisp framework only
three different situations may occur. Namely:

• A �= ∅ and there exists x ∈ X such that A ⊆ x. In this case, Λ∼(A) = x.
(Λ∼(A) is the intersection of exactly one equivalence class x).

• Λ∼(A) = ∅ in any other situation with A �= ∅ (Λ∼(A) is then the intersec-
tion of two or more equivalence classes).

• Λ∼(∅) = X (Note that ∅ ⊆ x for all x ∈ X).

In other words, if a crisp subset A of X is contained in exactly one equivalence

class x of ∼, then Λ∼(A) = x. If A intersects more than an equivalence class

of E, then Λ∼(A) = ∅ and Λ∼(∅) = X .
This summarizes the situation in the crisp case. However, not such a trivial

discussion can give understanding enough in the fuzzy case, mainly due to
two reasons.

• First, there exist columns μy having their centers or prototypical elements

y outside X (as it states Theorem 3.39).
• Second, the map Λ2

E (which in the crisp case is a trivial one, fixing the

columns and sending X to ∅ and ∅ to X) plays here an important role as

will be seen later on in this section.

Some general properties concerning ΛE are:

Proposition 3.41. Given μ1, μ2 ∈ [0, 1]X, we have:

a) ΛE(μ1) ≥ ΛE(μ2) if μ1 ≤ μ2.
b) ΛE(μ1 ∨ μ2) = ΛE(μ1) ∧ ΛE(μ2).
c) ΛE(μ1 ∧ μ2) ≥ ΛE(μ1) ∨ ΛE(μ2).

Proof. Trivial.

Proposition 3.42. For μ ∈ [0, 1]X and α ∈ [0, 1],

a) ΛE (T (α, μ)) =
−→
T (α|ΛE(μ)).

b) ΛE(
−→
T (α|μ)) ≥ T (α, ΛE(μ)).
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Proof. a)

ΛE(T (α, μ))(x) = inf
y∈X

−→
T (T (α, μ(y))|E(y, x))

=
−→
T (α| inf

y∈X

−→
T (μ(y)|E(y, x)))

=
−→
T (α|ΛE(μ)(x))

for all x ∈ X .
b)

ΛE(
−→
T (α|μ))(x) = inf

y∈X

−→
T (

−→
T (α|μ(y))|E(y, x))

≥ T (α, inf
y∈X

−→
T (μ(y)|E(y, x)))

=
−→
T (α|ΛE(μ)(x))

for all x ∈ X .

The following two propositions establish the relation between Fix(ΛE) (the

set of fixed points of ΛE) and the columns of E.

Proposition 3.43. Fix(ΛE) ⊆ CE = PX .

Proof. Let μ ∈ [0, 1]X be a fixed point of ΛE , i.e. ΛE(μ) = μ.

Being ΛE(μ)(x) = infy∈X
−→
T (μ(y)|E(x, y)), then ΛE(μ) = μ implies that−→

T (μ(y)|E(x, y)) ≥ μ(x) for all y ∈ X or, equivalently, T (μ(x), μ(y)) ≤
E(x, y) for all y ∈ X .

On the other hand, ΛE(h) ∈ HE (see Proposition 3.47).

The set Fix(ΛE) will be characterized as the set of maximal elements of CE

in Theorem 3.58.

Proposition 3.44. Let μ be a normal fuzzy subset of X (i.e. ∃x0 ∈ X such
that μ(x0) = 1) ΛE(μ) = μ if and only if μ is a column μx of E.

Proof. If ΛE(μ) = μ, then μ ∈ CE (Proposition 3.43) and being μ a normal
fuzzy subset, we have μ = μx, for some x ∈ X .

Conversely, if μ = μx for some x ∈ X , then using Lemma 2.39

ΛE(μx)(y) = inf
z∈X

−→
T (μx(z)|E(z, y))

= inf
z∈X

−→
T (E(z, x)|E(z, y))

= E(x, y) = μx(y)

for all y ∈ X .

Proposition 3.44 characterizes only the columns of elements x ∈ X and it
cannot be extended to the whole set CE as it is shown in next example.
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Example 3.45. X = {x1, x2}, E(x1, x2) = 0, T an arbitrary t-norm. We define

the following extension of (X, E) : X �= X ∪ {y}, E(x1, y) = E(x2, y) = 0.
The column μY of y is (restricted to X), the constant fuzzy set μy(x1) =

μy(x2) = 0. So that ΛE(μy) = X i.e. ΛE(μy)(x1) = ΛE(μy)(x2) = 1.

However, there are also fixed points of ΛE that are not columns μx, x ∈ X .

Example 3.46. For a given n ∈ N, n ≥ 2, let us consider X =
{
0, 1

n ,
2
n , ..., n−1

n , 1
}

⊆ [0, 1], T the �Lukasiewicz t-norm and E defined by E(x, y) =
1 − |x − y| for all x, y ∈ X .

Let μ be the non-normal fuzzy subset defined by μ(x) = 1 −
∣∣ 3
2n − x

∣∣, x ∈
X . Obviously μ �= μx for all x ∈ X , and it is easy to check that ΛE(μ) = μ.

Let us now turn our attention to Im(ΛE). The map Λ2
E will play an essential

role and the main result concerning it will identify its fixed points with the

image of ΛE .
Let us start by noting that ΛE(μ) is always an extensional fuzzy subset,

for any μ ∈ [0, 1]X .

Proposition 3.47. Im(ΛE) ⊆ HE.

Proof. For any μ ∈ [0, 1]X , we have to prove that ΛE(μ) ∈ HE .

−→
T (ΛE(μ)(x1)|ΛE(μ)(x2)) =

−→
T ( inf

y∈X

−→
T (μ(y)|E(y, x1))| inf

z∈X

−→
T (μ(z)|E(z, x2)))

= inf
z∈X

−→
T ( inf

y∈X

−→
T (μ(y)|E(y, x1))|−→T (μ(z)|E(z, x2)))

≥ inf
z∈X

−→
T (

−→
T (μ(z)|E(z, x1))|−→T (μ(z)|E(z, x2)))

≥ inf
z∈X

−→
T (E(x1, y) |E(x2, y)) = E(x1, x2).

(Applying Lemmas 2.38, 2.39 and the T-transitivity of E).

In a similar way, we obtain
−→
T (ΛE(μ)(x2)|ΛE(μ)(x1)) ≥ E(x1, x2), and

therefore ET (ΛE(μ)(x1), ΛE(μ)(x2)) ≥ E(x1, x2), for all x1, x2 ∈ X , so that

ΛE(μ) ∈ HE .

At this point, it is not clear whether the set Im(ΛE) coincides with HE or,
on the contrary, it is strictly contained in HE .

To answer this question, we turn out our attention to the operator Λ2
E .

Proposition 3.48. Given μ1, μ2 ∈ [0, 1]X,

a) If μ1 ≤ μ2 then Λ2
E(μ1) ≤ Λ2

E(μ2)
b) Λ2

E(μ1 ∨ μ2) ≥ Λ2
E(μ1) ∨ Λ2

E(μ2)
c) Λ2

E(μ1 ∧ μ2) ≤ Λ2
E(μ1) ∧ Λ2

E(μ2).

Proof. Trivial.

Proposition 3.49. Λ2
E ≥ φE
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Proof. Given μ ∈ [0, 1]X , we have:

Λ2
E(μ)(x) = ΛE(ΛE(μ))(x)

= inf
y∈X

−→
T (ΛE(μ)(y) | E(y, x))

= inf
y∈X

−→
T ( inf

z∈X

−→
T (μ(z)|E(z, y))|E(y, x))

≥ inf
y∈X

sup
z∈X

−→
T (

−→
T (μ(z)|E(z, y))|E(y, x))

≥ sup
z∈X

inf
y∈X

−→
T (

−→
T (μ(z)|E(z, y))|E(y, x))

≥ sup
z∈X

T (μ(z), inf
y∈X

−→
T (E(y, z)|E(y, x)))

= sup
z∈X

T (μ(z), E(z, x)) = φE(μ)(x),

for all x ∈ X .

Corollary 3.50. Λ2
E(μ) ≥ μ, for all μ ∈ [0, 1]X.

Proof. Λ2
E(μ) ≥ φE(μ) ≥ μ.

Lemma 3.51. Given a column μx, x ∈ X and α ∈ [0, 1] we have:

a) Λ2(μx) = μx

b) If ν =
−→
T (α|μx) then Λ2

E(ν) = ν.

Proof

a) Trivial (see Proposition 3.44)
b) According to Proposition 3.42 and Proposition 3.44,

Λ2
E(ν) = ΛE(ΛE(

−→
T (α|μx)))

≤ ΛE(T (α, ΛE(μx)))

= ΛE(T (α, μx)) =
−→
T (α|ΛE(μx))

=
−→
T (α|μx) = ν.

On the other hand, Λ2
E(ν) ≥ ν (Corollary 3.50), so that Λ2

E(ν) = ν.

Lemma 3.52. Let (νi)i∈I be a family of fixed points of Λ2
E. Then

∧
i∈I νi is

also a fixed point of Λ2
E.

Proof. It follows from Λ2
E

(∧
i∈I νi

)
=
∧

i∈I(Λ
2
E(νi)) =

∧
i∈I νi (Proposition

3.48.a) and from Λ2
E(
∧

i∈I νi) ≥ ∧
i∈I νi (Corollary 3.50).

Proposition 3.53. Fix(Λ2
E) =Im(ΛE).
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Proof

a) Im(ΛE) ⊆ Fix(Λ2
E):

ΛE(μ(x)) = inf
y∈X

−→
T (μ(y)|E(x, y))

= inf
y∈X

−→
T (μ(y)|μy(x)).

For every y ∈ X , we can define a fuzzy subset νy in the following way:

νy(x) =
−→
T (μ(y)|μy(x)) that is of the form of Lemma 3.51.b and therefore

a fixed point of Λ2
E. ΛE(μ) = infy∈X νy which thanks to Lemma 3.52

belongs to Fix(Λ2
E) as well. So, Im(ΛE) ⊆ Fix (Λ2

E).
b) Fix (Λ2

E) ⊆ Im(ΛE): Given ν ∈ [0, 1]X such that Λ2
E(ν) = ν, then

ν ∈Im(ΛE) because

ν = Λ2
E(ν) = ΛE(ΛE(ν)).

As a consequence of Proposition 3.53 we can easily check that Im(ΛE) � HE ,
as it is shown in the next example:

Example 3.54. Let be X = {x1, x2, x3}, T the �Lukasiewicz t-norm, E the T -
indistinguishability operator defined by E(xi, xj) = 0 if i �= j and μ ∈ HE

defined by μ(x1) = 1, μ(x2) = 0.5 , μ(x3) = 0.
We have that ΛE(μ) = (0.5, 0, 0) and Λ2

E(μ) = (1, 0.5, 0.5) �= μ = (1, 0.5, 0)
and μ �∈Im(ΛE).

Corollary 3.55. Λ3
E = ΛE.

Proof. Consequence of Proposition 3.53.

Corollary 3.56. Λ2n
E = Λ2

E, Λ2n+1
E = ΛE with n ∈ N.

In particular, Λ2
E is a fuzzy closure operator and ImΛE is the set of closed

sets of a fuzzy topology.
In Proposition 3.43 we have proved that the set Fix(ΛE) of fixed points of

ΛE is contained in the set PX of fuzzy points of E. Now we will characterize
the fixed points of ΛE as exactly the maximal fuzzy points of E. Moreover,
given a fuzzy point μ, we can find a fixed point μ′ of ΛE with μ ≤ μ′.

Considering the natural T -indistinguishability operator ET (cf. Definition
3.79), we have an isometric embedding of (X, E) into (Fix(ΛE), ET ). Some

of its properties will be shown.

Lemma 3.57. Let E be a T -indistinguishability operator on X and μ ∈ HE.
ΛE(μ) ≥ μ if and only if μ ∈ PX .
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Proof

ΛE(μ)(x) = inf
y∈X

−→
T (μ(y)|E(x, y)) ≥ μ(x)

⇔ −→
T (μ(y)|E(x, y)) ≥ μ(x) ∀x, y ∈ X

⇔ T (μ(x), μ(y)) ≤ E(x, y) ∀x, y ∈ X.

The next Theorem characterizes the set of fixed points of ΛE .

Theorem 3.58. Let E be a T -indistinguishability operator on X. Fix(ΛE)
is the set of all fuzzy points μ ∈ PX which are maximal in PX .

Proof

a) Let μ be a fixed point of ΛE and μ′ ∈ PX with μ ≤ μ′.

μ(x) = inf
y∈Y

−→
T (μ(y)|E(x, y)) ≥ inf

y∈Y

−→
T (μ′(y)|E(x, y)) ≥ μ′(x).

So, μ = μ′.
b) Let μ be a fuzzy point not in Fix(ΛE). Then there exists x0 ∈ X with

μ(x0) < infy∈Y
−→
T (μ(y), E(x0, y)).

We can define a new fuzzy subset μ′ by

μ′(x) =

{
μ(x) if x �= x0

infy∈Y
−→
T (μ(y), E(x0, y)) otherwise.

μ′ is a fuzzy point and μ′ > μ which means that μ is not maximal in PX .

Using Zorn’s Lemma, we can see that every fuzzy point is contained in a fixed

point of ΛE .

Corollary 3.59. Given a fuzzy point μ, there exists a fixed point μ′ of ΛE

with μ ≤ μ′.

Proposition 3.60. Let E be a T -indistinguishability operator on a finite set
X and μ a non-normal fuzzy subset of X. ΛE(μ) = μ if and only if μ = μa

(a �∈ X) satisfying ∀x ∈ X ∃ux ∈ X such that
−→
T
(
E(a,ux)|E(x,ux)

)
=

E(x, a).

Proof
⇒) Let us suppose that ΛE(μ) = μ. In this case, μ ∈ CE (Proposition

3.43) and being μ(x) < 1 for all x ∈ X , we have that μ = μa, a �∈ X . Further

ΛE(μa)(x) = inf
y∈X

−→
T (μa(y)|E(y, x)) = μa(x)

which, being X finite, implies that for all x ∈ X there exists ux such that
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−→
T (μa(ux)|E(ux, x)) =

−→
T (E(a,ux)|E(x,ux))

= μa(x) = E(x, a).

⇐) Let μ = μa (a �∈ X) be a fuzzy subset satisfying that for all x there

exists ux such that
−→
T (E(a,ux)|E(x,ux)) = E(x, a). In this case

ΛE(μ)(x) = inf
y∈X

−→
T (μ(y)|E(y, x))

≥ inf
y∈X∪{a}

−→
T (μ(y)|E(y, x)) ≥ μ(x)

for all x ∈ X . On the other hand

inf
y∈X

−→
T (μ(y)|E(y, x)) ≤ −→

T (μ(ux)|E(x,ux))

=
−→
T (E(a,ux)|E(x,ux))

= E(x, a) = μ(x),

so that ΛE(μ)(x) = μ(x) for all x ∈ X .

This proposition can be easily extended to non-finite sets X by replacing the

condition ∀x ∈ X ∃ux ∈ X such that
−→
T (E(a,ux)|E(x,ux)) = E(x,ux) by

the more technical one

∀x ∈ X ∀ǫ ∈ [0, 1] ∃ux,ǫ such that
−→
T (E(a,ux,ǫ)|E(x,ux,ǫ)) < E(x, a) + ǫ.

The proof is similar to that of Proposition 3.44.
There is a nice relation between the couples of fuzzy subsets μ, μ′ of Im(ΛE)

which are one image of the other one that will be studied next. We shall call
μ and μ′ dual fuzzy subsets.

Proposition 3.61. Let μ be a fixed point of ΛE and α ∈ [0, 1]. If T (α, μ)

and
−→
T (α|μ) are in Im(ΛE), then they are dual fuzzy subsets.

Proof. It is a consequence of Proposition 3.42:
3.42 a) states that

ΛE(T (α, μ)) =
−→
T (α|μ)).

On the other hand,

ΛE(
−→
T (α|μ) = ΛE(

−→
T (α|ΛE(μ)) = Λ2

E(T (α, μ)) = T (α, μ),

where the last equality follows from Proposition 3.53.

If T is a continuous Archimedean t-norm with additive generator t, then
we can associate to T the quasi-arithmetic mean mt generated by t, i.e.

m(x, y) = t−1
(

t(x)+t(y)
2

)
for all x, y ∈ [0, 1] (cf. Definition 2.64). Then a

fixed point μ of Λ happens to be the quasi-arithmetic mean of the dual fuzzy
subsets T (α, μ) and

−→
T (α|μ).
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Proposition 3.62. Let μ be a fixed point of ΛE, α ∈ [0, 1] and T (α, μ) and−→
T (α|μ) dual non-normalized fuzzy subsets in Im(ΛE) with T a continuous
Archimedean t-norm with additive generator t. Then μ is the quasi-arithmetic
mean of these dual fuzzy subsets.

Proof

mt(T (α, μ),
−→
T (α|μ)) = t−1

(
T (α, μ) +

−→
T (α|μ)

2

)

= t−1

(
t
(
t[−1](t(α) + t(μ))

)
+ t

(
t[−1](t(μ) − t(α))

)

2

)

= t−1

(
(t(α) + t(μ) + t(μ) − t(α)

2

)
= μ.

This means in particular that these dual fuzzy subsets and μ generate the

same T -indistinguishability operator and the same T -preorder.
The fuzzy relation ET on [0, 1]X defined for all μ, μ′ ∈ [0, 1]X by

ET (μ, μ′) = inf
x∈X

ET (μ(x), μ′(x))

is a very important T -indistinguishability operator called the natural T -
indistinguishability operator on [0, 1]X (cf. Section 3.4).

Restricting ET to the set PX of fuzzy points of X , we have the following

result.

Proposition 3.63. Let E be a T -indistinguishability operator on X. If μ is
a fixed point of ΛE and μx is the column corresponding to the element x of
X, then

ET (μ, μx) = μ(x).

Proof

μ(y) = inf
z∈X

−→
T (μ(z)|E(y, z))

≥ inf
z∈X

−→
T (μ(z)|T (E(y, x), E(x, z)))

≥(∗) T (E(y, x), inf
z∈X

−→
T (μ(z)|E(x, z)))

= T (μx(y), μ(x))

where (∗) follows from Lemma 2.40.
Therefore

μ(x) ≤ −→
T (μx(y)|μ(y)).

On the other hand, since μ is a fuzzy point,

μx(y) = E(x, y) ≥ T (μ(x), μ(y))
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or, equivalently,
μ(x) ≤ −→

T (μ(y)|μx(y)).

μ(x) ≤ min(
−→
T (μx(y)|μ(y)),

−→
T (μ(y)|μx(y))) ∀x, y ∈ X

and therefore

μ(x) ≤ inf
y∈X

min(
−→
T (μx(y)|μ(y)),

−→
T (μ(y)|μx(y))) = ET (μx, μ).

But since

min(
−→
T (μx(x)|μ(x)),

−→
T (μ(x)|μx(x))) = μ(x),

we finally get our result.

Corollary 3.64. Let E be a T -indistinguishability operator on X. The map
τ : X → Fix(ΛE) defined by τ(x) = μx is an isometric embedding.

Proof. Trivial: ET (μx, μy) = μy(x) = μx(y) = E(x, y).

Corollary 3.65. Let E be a T -indistinguishability operator on X and μ, μ′

fixed points of ΛE. Then

ET (μ, μ′) ≥ T (μ(x), μ′(x)) ∀x ∈ X

Proof

ET (μ, μ′) ≥ T (ET (μ, μx), ET (μx, μ′)) = T (μ(x), μ′(x)).

Proposition 3.66. Let E be a T -indistinguishability operator on X and
μ, μ′ ∈ PX . Then

ET (μ, μ′) ≤ ET (ΛE(μ), ΛE(μ′)).

Proof

ΛE(μ)(x) = inf
y∈X

−→
T (μ(y)|E(x, y))

≥ inf
y∈X

T (
−→
T (μ(y))|μ′(y),

−→
T (μ′(y)|E(x, y)))

≥ T ( inf
y∈X

−→
T (μ(y)|μ′(y)), inf

y∈X

−→
T (μ′(y)|E(x, y)))

≥ T ( inf
y∈X

−→
T (μ(y)|μ′(y)), ΛE(μ′)(x))

and therefore,

−→
T (ΛE(μ′)(x)|ΛE(μ)(x)) ≥ inf

y∈X

−→
T (μ(y)|μ′(y)) ≥ ET (μ, μ′).

Similarly,

−→
T (ΛE(μ)(x)|ΛE(μ′)(x)) ≥ inf

y∈X

−→
T (μ′(y)|μ(y)) ≥ ET (μ, μ′)
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and

ET (ΛE(μ), ΛE(μ′)) ≥ ET (μ, μ′).

Let us conclude this section with a very simple example that gives a geomet-
rical interpretation of the maps and sets studied so far in this chapter.

Example 3.67. Let X = {a, b} and consider the T -indistinguishability oper-
ator E with E(a, b) = m. Every fuzzy subset μ of X can be identified with
the point (μ(a), μ(b)) of [0, 1]2.

HE , the set of extensional sets of E is then the region of [0, 1]2 defined by
the inequation

ET (x, y) ≥ m

and PX is the part of HE limited by the inequation

T (x, y) ≤ m.

If μ = (p, q), then ΛE(h) = (
−→
T (q|m),

−→
T (p|m)) and

Λ2
E(μ) = (

−→
T (

−→
T (p|m)|m),

−→
T (

−→
T (q|m)|m)).

If μ = (p, q) is not in HE and p > q, then φE(μ) = (p, T (m, p)) and

ψE(μ) = (
−→
T (q|m),

−→
T (p|m)). If p < q, then φE(μ) = (T (m, q), q) and

ψE(μ) = (
−→
T (q|m),

−→
T (p|m)).

Taking m = 0.4 and T the product t-norm, HE is the region of [0, 1]2

defined by the inequations

x − 0.4y ≥ 0

0, 4x − y ≥ 0

and PX is the part of this region below the hyperbola

xy = 0.4.

The fixed points of ΛE are the maximal elements of PX and therefore are the

points in this hyperbola.
If μ = (p, q), then ΛE(μ) = (min(1, 0.4

q ), min(1, 0.4
p )) and Λ2

E(μ) =

(max(p, 0.4), max(q, 0.4)). Fix(Λ2
E) = Im(ΛE) is the square

0.4 ≤ x ≤ 1

0.4 ≤ y ≤ 1.

In this set, the image under ΛE of a fuzzy subset bellow the hyperbola xy =
0.4 (i.e.: bellow Fix(ΛE)) is a point above it and vice versa, the hyperbola
being a kind of symmetry axis, which gives a clear picture of corollary 3.56.

Finally, if μ = (p, q) is not in HE and p > q ,then φE(μ) = (p, mp) and

ψE(μ) = (m
q , q); if p < q, then φE(μ) = (mq, q) and ψE(μ) = (p, m

p ). For

example, if μ = (0.1, 0.8), φE(μ) = (0.32, 0.8) and ψE(μ) = (0.1, 0.25) are
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Fig. 3.1 The effect of φE , ψE and ΛE

obtained by projecting μ to its closest edge of HE horizontally and vertically
respectively. See Figure 3.1.

3.3 Fuzzy Points and the Representation Theorem

In this section we are interested in finding when a family (μi)i∈I of fuzzy
subsets of X are columns of the T -indistinguishability operator they generate.

The first result tells that the T -indistinguishability operator on X gener-
ated by a family (μi)i∈I of fuzzy subsets of X is the greatest (less specific)
of such operators for which all the elements of the family are extensional.

Proposition 3.68. Let F = (μi)i∈I be a family of fuzzy subsets of X and
E the T -indistinguishability operator generated by this family (E(x, y) =
infi∈I Eμi

(x, y)). Then E is the greatest T -indistinguishability operator for
which all the fuzzy subsets of the family are extensional.

Proof. We already know that, since the elements of F are generators of E,
they also are extensional.

Let us prove that E is the greatest T -indistinguishability operators satis-
fying this property.

Let E′ be another T -indistinguishability operator with all the fuzzy subsets

of F extensional. Then E′ ≤ Eμi
for all i ∈ I and therefore E′ ≤ infi∈I Eμi

=
E.

Proposition 3.69. Let (μi)i∈I be a family of normal fuzzy subsets of X and
(xi)i∈I a family of elements of X such that μi(xi) = 1 for all i ∈ I. Then the
following two properties are equivalent.
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a) There exists a T -indistinguishability operator E on X such that

μi(x) = E(x, xi) ∀i ∈ I ∀x ∈ X.

b) For all i, j ∈ I,

sup
x∈X

T (μi(x), μj(x)) ≤ inf
y∈X

ET (μi(y), μj(y)).

Proof
a) ⇒ b) It suffices to prove

T (μi(x), μj(x)) ≤ ET (μi(y), μj(y))

for all i ∈ I, which is equivalent to prove

T (E(x, xi), E(x, xj)) ≤ ET (E(y, xi), E(y, xj)).

But from 2.51 we have

T (E(x, xi), E(x, xj)) ≤ E(xi, xj) ≤ ET (E(y, xi), E(y, xj)).

b) ⇐ a)

E(x, xi) ≤ Eμi
(x, xi) = ET (μi(x), μi(xi)) = ET (μi(x), 1) = μi(x).

We need to prove the other inequality μi ≤ E(x, xi), which is equivalent to
prove

μi(x) ≤ Eμj
(x, xi) = min(

−→
T (μj(x)|μj(xi)),

−→
T (μj(xi)|μj(x))) ∀j ∈ I.

(i)To prove μi(x) ≤ −→
T (μj(x)|μj(xi)) is equivalent to prove

T (μi(x), μj(x)) ≤ μj(xi) :

T (μi(x), μj(x)) ≤ sup
z∈X

T (μi(z), μj(z))

≤ inf
y∈X

ET (μi(y), μj(y))

≤ ET (μi(xi), μj(xi))

= ET (1, μj(xi)) = μj(xi).

(ii)To prove μi(x) ≤ −→
T (μj(xi)|μj(x)) is equivalent to prove

T (μi(x), μj(xi)) ≤ μj(x)

or equivalently
μj(xi) ≤ −→

T (μi(x)|μj(x)) :
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−→
T (μi(x)|μj(x)) ≥ ET (μi(x), μj(x))

≥ inf
y∈X

ET (μi(y), μj(y))

≥ sup
z∈X

T (μi(z), μj(z))

≥ T (μi(xi), μj(xi))

= T (1, μj(xi)) = μj(xi).

Corollary 3.70. Let (μi)i∈I be a family of normal fuzzy subsets of X and
(xi)i∈I a family of elements of X such that μi(xi) = 1 for all i ∈ I satisfying

sup
x∈X

T (μi(x), μj(x)) ≤ inf
y∈X

ET (μi(y), μj(y)).

for all i, j ∈ I. E = infi∈I Eμi
is the greatest T -indistinguishability operator

satisfying
μi(x) = E(x, xi) ∀i ∈ I, ∀x ∈ X.

Proof. The sets μi are extensional with respect to E. If a T -indistinguishability
E′ has the sets μi as columns, then they are also extensional with respect to
E′ because

T (E′(x, y), μi(x)) = T (E′(x, y), E′(x, xi) ≤ E′(y, xi)) = μi(y)

and from Proposition 3.68 the result follows.

Lemma 3.71. Let (μi)i∈I be a family of normal fuzzy subsets of X and
(xi)i∈I a family of elements of X such that μi(xi) = 1 for all i ∈ I sat-
isfying

sup
x∈X

T (μi(x), μj(x)) ≤ inf
y∈X

ET (μi(y), μj(y)).

for all i, j ∈ I. Then E = supi∈I Eμi is a T -indistinguishability operator on
X, where Eμi is the decomposable T -indistinguishabilty operator generated by
μi.

Proof. E is clearly reflexive and symmetric. Let us prove that it is also T -
transitive.

T (E(x, y), E(y, z)) = sup
i∈I,j∈I

T (μi(x), μi(y), μj(y), μj(z))

≤ sup
i∈I,j∈I

T (μi(x), (sup
s∈X

T (μi(s), μj(s))), μj(z))

≤ sup
i∈I,j∈I

T (μi(x), ( inf
s∈X

ET (μi(s), μj(s))), μj(z))

≤ sup
i∈I,j∈I

T (μi(x), ET (μi(x), μj(x)), μj(z))

≤ sup
i∈I,j∈I

T (μi(x),
−→
T (μi(x)|μj(x)), μj(z))
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≤ sup
i∈I,j∈I

T (μj(x), μj(z))

≤ sup
j∈I

T (μj(x), μj(z)) = E(x, z).

Proposition 3.72. Let (μi)i∈I be a family of normal fuzzy subsets of X and
(xi)i∈I a family of elements of X such that μi(xi) = 1 for all i ∈ I satisfying

sup
x∈X

T (μi(x), μj(x)) ≤ inf
y∈X

ET (μi(y), μj(y)).

for all i, j ∈ I. Then the T -indistinguishability operator E = supi∈I Eμi is
the smallest T -indistinguishability operator on X satisfying

μi(x) = E(x, xi) ∀i ∈ I, ∀x ∈ X.

Proof. We will first prove that E(x, xj) = μj(x).

E(x, xj) = sup
i∈I

T (μi(x), μi(xj)) ≥ T (μj(x), μj(xj)) = μj(x).

Let us prove the other inequality.

E(x, xj) = T (μj(xj), E(x, xj))

= sup
i∈I

T (μj(xj), μi(x), μi(xj))

≤ sup
i∈I

T (

(
sup
y∈X

T (μj(y), μi(y))), μi(x)

)

≤ sup
i∈I

T (

(
inf
y∈X

ET (μj(y), μi(y))), μi(x)

)

≤ sup
i∈I

T (ET (μj(x), μi(x)), μi(x))

≤ sup
i∈I

T (
−→
T (μi(x)|μj(x)), μi(x))

≤ μj(x).

Let us prove now the minimality of E.
If E′ satisfies E′(x, xj) = μj(x), then

E′(x, y) ≥ T (E(x, xi), E(xi, y)) = T (μi(x), μi(y)) ∀i ∈ I.

Therefore E′(x, y) ≥ supi∈I T (μi(x), μi(y)) = E(x, y).

3.4 Indistinguishability Operators Between Fuzzy
Subsets: Duality Principle

In many situations there is a need of measuring the similarity or indistin-
guishability between fuzzy subsets of a universe of discourse X . This can be
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done generalizing the natural indistinguishability operator ET . Also if there

is a T -indistinguishability operator defined on X , it can be useful to extend

it to the fuzzy subsets of X . In this section, these generalizations will be done

in the framework of the duality principle [108],[15].
Fuzzy set theory has a kind of asymmetry in the sense that while the fuzzy

subsets are vague, it is not the case with the elements of X . With the duality
principle, the elements of X can be seen as fuzzy sets acting on [0, 1]X and

this asymmetry can be overcome in some sense.

Definition 3.73. Let H be a family of fuzzy subsets of X. H separates points
if and only if for any x, y ∈ X with x �= y, there exists μ ∈ H such that
μ(x) �= μ(y).

Definition 3.74. Let H be a family of fuzzy subsets of X. The map BH :
X → H is defined for all x ∈ X by

BH(x) = μ(x).

BH(x) will also be indicated by = x∗∗(μ).

Proposition 3.75. BH is a one to one map if and only if H separates points.

Proof. ⇒) If BH is one to one, then for x �= y we have x∗∗ �= y∗∗. Therefore

there exists μ ∈ H such that x∗∗(μ) �= y∗∗(μ) and hence μ(x) �= μ(y).
⇐) If H separates points and x∗∗ = y∗∗, then x∗∗(μ) = y∗∗(μ) for all

μ ∈ H and therefore x = y.

Let us now introduce indistinguishability operators on the universes of dis-
course.

Definition 3.76. Let E, F be T -indistinguishability operators on X and Y
respectively. ϕ : X → Y is a homomorphism if and only if

F (ϕ(x1), ϕ(x2)) = E(x1, x2)

for all x1, x2 ∈ X.
If ϕ is a one to one map, then it is called a monomorphism and if in

addition it is onto, an isomorphism.

Definition 3.77. Let E, F be T -indistinguishability operators on X and Y
respectively. Y is an extension of X if and only if there exists a one to one
homomorphism ϕ : X → Y (cf. Definition 3.37).

Definition 3.78. Let E, F be two T -indistinguishability operators on X and
Y respectively. ϕ : X → Y is extensional if and only if

F (ϕ(x1), ϕ(x2)) ≥ E(x1, x2)

for all x1, x2 ∈ X.
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In this context, extensional fuzzy subsets with respect to a T -indistinguish-
ability operator E are exactly the extensional maps ϕ : X → [0, 1], where we

consider the natural T -indistinguishability operator ET on [0, 1].
Let us now extend the natural T -indistinguishability operator ET to the

set of fuzzy subsets.

Definition 3.79. Let X be a set and H ⊆ [0, 1]X a set of fuzzy subsets of X.
The natural T -indistinguishability operator on H is defined for all μ, ν ∈ H
by

ET (μ, ν) = inf
x∈X

ET (μ(x), ν(x)).

Proposition 3.80. The natural T -indistinguishability operator on H is in-
deed a T -indistinguishability operator.

Proof

ET (μ, ν) = inf
x∈X

ET (μ(x), ν(x)) = inf
x∗∗∈BH(X)

ET (x∗∗(μ), x∗∗(ν)).

Since x∗∗ are fuzzy subsets of H , ET is a T -indistinguishability operators by
the Representation Theorem.

The natural indistinguishability operator ET between fuzzy subsets is widely
used to compare them. To decide the degree in which two fuzzy subsets μ and

ν are indistinguishables we first compare all their images μ(x) and ν(x) with
the natural T -indistinguishability operator ET (ET (μ(x), ν(x)) and then the

infimum of these values are taken. From a logical point of view, this fuzzify
the sentence

μ and ν are equivalent or indistinguishable if and only if for all x ∈ X
μ(x) and ν(x) are.

Though it is the most natural way to compare fuzzy subsets, the use of the

infimum is very drastic and can produce dramatic effects. Let us suppose

for instance that μ and ν coincide in all points but one x0 and for that

particular one μ(x0) = 1 and ν(x0) = 0. then ET (μ, ν) = 0 which would not

be very reasonable in many real situations. In Chapter 8 some alternatives

are proposed.
Let us go back to the map φE .

Proposition 3.81. Let ET be the natural T -indistinguishability operator on
[0, 1]X and E a T -indistinguishability operator on X separating points. Then
φE : [0, 1]X → [0, 1]X is extensional.

Proof. We must prove that ET (φE(μ), φE(ν)) ≥ ET (μ, ν) for all μ, ν ∈
[0, 1]X .

Fixing x ∈ X ,
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−→
T (φE(μ)(x)|φE(ν)(x))

=
−→
T (sup

y∈X

T (E(x, y), μ(y))| sup
y∈X

T (E(x, y), ν(y)))

= inf
z∈X

−→
T (T (E(x, y), μ(y))| sup

y∈X

T (E(x, y), ν(y)))

≥ inf
z∈X

−→
T (T (E(x, y), μ(y))|T (E(x, y), ν(y)))

≥(∗) inf
z∈X

−→
T (μ(z)|ν(z))

≥ inf
z∈X

ET (μ(z), ν(z)) = ET (μ, ν)

where (∗) follows from Lemma 2.43.
Similarly we can obtain

−→
T (φE(ν)(x)|φE (μ)(x)) ≥ ET (μ, ν)

and therefore

ET (φE(μ)(x), φE(ν)(x)) ≥ ET (μ, ν).

Finally

inf
x∈X

ET (φE(μ)(x), φE(ν)(x)) = ET (φE(μ), φE(ν)) ≥ ET (μ, ν).

Proposition 3.82. Let E be a T -indistinguishability operator on a set X and
x, y ∈ X. Then E(x, y) = ET (φE({x}), φE({y})) = ET (μx, μy) where μx and
μy are the columns of E associated to x and y respectively.

Proof
ET (μx, μy) = inf

z∈X
ET (μx(z), μy(z))

= inf
z∈X

ET (E(x, z), E(y, z))

= inf
z∈X

ET (μz(x), μz(y))

= inf
z∈X

Eμz
(x, y) =(∗) E(x, y).

(*) follows because the columns of E are a generating family of E.

This proposition says that φE : X → HE (ET in HE) is a monomorphism
for any T -indistinguishability E.

If there is a T -indistinguishability E on X , then the most natural way to
extend it to fuzzy sets is inspired in the last result.

Definition 3.83. Let E be a T -indistinguishability operators on a set X. E
is extended to [0, 1]X by

E(μ, ν) = ET (φE(μ), φE(ν)).

for all fuzzy subsets μ, ν of X.
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Definition 3.84. The dual map of ϕ : X → Y is defined by

ϕT : [0, 1]Y → [0, 1]X

μ → ϕT (μ) = μ ◦ ϕ.

Lemma 3.85. Let E and F be T -indistinguishability operators on X and Y
respectively. If ϕ : X → Y is extensional, then ϕT : HF → HE is extensional.

Proof. If ϕ is extensional, then

ET (ϕT (ν1), ϕ
T (ν2)) = inf

x∈X
ET (ϕT (ν1)(x), ϕT (ν2)(x))

= inf
x∈X

ET (ν1 ◦ ϕ(x), ν2 ◦ ϕ(x))

≥ inf
y∈Y

ET (ν1(y), ν2(y)) = ET (ν1, ν2).

In fact, the reciprocal of the lemma is also true [13].

Proposition 3.86. Let E and F be T -indistinguishability operators on X
and Y respectively and ϕ : X → Y a homomorphism. Then there exists
f : Y → HE such that

1. f(Y ) ⊆ HE is a generating system of E.
2. f is extensional with respect to F and ET .
3. f(y1) = f(y2) if and only if F (y1, y) = F (y2, y) for all y ∈ ϕ(X).

Proof. Let us consider f = ϕT ◦ φF (i.e. f(y) = ϕT ◦ φF (y) = φF (y) ◦ ϕ, i.e.
f(y) = F (y, ϕ(x)) for all x ∈ X).

1.

inf
y∈Y

ET (f(y)(x1), f(y)(x2))

= inf
y∈Y

ET (F (y, ϕ(x1)), F (y, ϕ(x2)))

= F (ϕ(x1), ϕ(x2)) = E(x1, x2).

2. φF is a homomorphism and ϕT is extensional. Therefore f = ϕT ◦ f is
extensional.

3. ⇒) If f(y1) = f(y2), then for all x ∈ X

F (y1, ϕ(x)) = F (y2, ϕ(x))

and then

F|ϕ(X)×ϕ(X)(y1, y2) = inf
x∈X

ET (F (ϕ(x), y1), F (ϕ(x), y2)) = 1.

⇐) If F|ϕ(X)×ϕ(X)(y1, y2) = 1, the only possibility is F (ϕ(x), y1) =
F (ϕ(x), y2) for all x ∈ X and hence f(y1) = f(y2).
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Corollary 3.87. In the last proposition f is a homomorphism if and only if
φF (ϕ(X)) ⊆ HF is a generating family of F .

Proof

ET (f(y1), f(y2)) = inf
x∈X

ET (f(y1)(x), f(y2)(x))

= inf
x∈X

ET (F (y1, ϕ(x)), F (y2, ϕ(x)))

= F (y1, y2)

for all y1, y2 ∈ Y .

Let E be a T -indistinguishability operator on X and ϕ : X → X an isomor-
phism. We can consider the map

ϕ : φE(X) → φE(X)

φE(x) → ϕ(φE(x))

where

ϕ(φE(x)) : X → [0, 1]

u → ϕ(φE(x))(u) = φE(ϕ(x))(u).

Since φE is an isomomorphism, every element x of X can be identified with
its image φE {x}) = E(x, ·) and we can identify ϕ = ϕ.

Also ϕT is an isomorphism and we have the following commutative dia-
gram.

HE
ϕT

←−−−− HE
 ⏐⏐φE

 ⏐⏐φE

X
ϕ−−−−→ X

⏐⏐"φE

⏐⏐"φE

HE
ϕ−−−−→ HE

The next proposition shows the relation between ϕ and ϕT .

Proposition 3.88. With the preceding notations, ϕT = ϕ−1.

Proof. Since ϕT is a bijective map, we must see that

ϕT (φE(ϕ(x))) = φE(x)

for all x ∈ X .
For u ∈ X we have
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ϕT (φE(ϕ(x)))(u) = φE(ϕ(x))(ϕ(u))

= E(ϕ(x), ϕ(y))

= E(x,u) = φE(x)(u).

The fact that ϕT = ϕ−1 resembles a similar situation of orthogonal endo-
morphisms in Vector Spaces. Indeed, let us suppose that X = {x1, x2, ..., xn}
and H = {μ1, μ2, ..., μm} are finite sets of cardinality n and m respectively.
ϕ : H → [0, 1]X can be represented by a matrix M = (mij), i = 1, 2, ..., n,
j = 1, 2, ..., m with mij = ϕ(μj)(xi). Then the matrix of ϕ−1 = ϕT is MT ,
the transposed matrix of M . Indeed,

mij = ϕ(φE(xj))(xi) = φE(ϕ(xj))(xi) = E(xi, ϕ(xj))

and if N = (nij) is the matrix of ϕ−1 = ϕT ,

nij = ϕT (φE(xj))(xi) = φE(xj)(ϕ(xi)) = E(ϕ(xi), xj).

Therefore N = MT .
Let us end this chapter with another characterization of the fuzzy points

of a T -indistinguishability operator.
Given a T -indistinguishability operator E on a set X , we can consider

the set HE of extensional fuzzy subsets with respect to E, the natural T -
indistinguishability operator ET on HE and the operator φET

: [0, 1]HE
→

[0, 1]HE . The composition

φET
◦ φE : X → HET

⊆ [0, 1]HE

is a monomorphism.

Theorem 3.89. With the previous notations, μ ∈ HE is a fuzzy point if and
only if

φET
◦ φE(x)(μ) = x∗∗(μ).

Proof. ⇒) If μ is a fuzzy point, then there exists an extension (Y, F ) with
Y = X ∪ {y} of (X, E) with μ = F (y, ·).

In general

φET
◦ φE(x)(μ) = φET

(φE(x))(μ)

= ET (φE(x), μ)

= inf
z∈X

ET (φE(x)(z), μ(z))

= inf
z∈X

ET (E(x, z), μ(z)) ≤ μ(x).

Since μ(x) = F (y, x),

inf
z∈X

ET (E(x, z), μ(z)) = inf
z∈X

ET (F (x, z), F (y, z))
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≥ inf
z∈Y

ET (F (x, z), F (y, z))

= F (x, y) = μ(x)

since the columns of a T -indistinguishability operator are a generating family.
Therefore

φET
◦ φE(x)(μ) = μ(x) = x∗∗(μ).

⇐) Let us suppose that

φET
◦ φE(x)(μ) = inf

z∈X
ET (E(x, z), μ(z)) = μ(x) ∀x ∈ X.

Then, for all z ∈ X we have

−→
T (μ(z)|E(z, x)) ≥ ET (E(x, z), μ(z)) ≥ μ(x)

and therefore

T (μ(x), μ(z)) ≤ E(x, z).



4

Isometries between Indistinguishability
Operators

If we look at the definition and properties of T -indistinguishability operators,
we can see that they show very metric behaviour. This is because they are

a special case of a more general structure called Generalized metric spaces.
Generalized metric spaces were introduced by E. Trillas ([133],[3]) as a general
framework for dealing with different concepts of distance appearing in places

such as metric spaces, probabilistic metric spaces, lattice metrics, etc. The

idea is to valuate the map by defining the ’distance’ between objects in an
ordered semigroup, such that they are defined as follows:

Definition 4.1. Let X be a set, (M, ◦,≤) an ordered semi group with identity
element e and m a map m : X×X → M . (X, m) is called a generalized metric
space and m a generalized metric on X if and only if for all x, y, z ∈ X

1. m(x, x) = e
2. m(x, y) = m(y, x)
3. m(x, y) ◦ m(y, z) ≥ m(x, z).

m separates points if and only if

m(x, y) = e implies x = y.

Metric spaces are of course generalized metric spaces with (M, ◦,≤) =
(R+, +,≤).

Generalized metric spaces play a very important (hidden) role in fuzzy
logic because the interval [0, 1] with a t-norm T is an ordered semi group. 1 is
the identity element and the order ≤T associated with T is the reverse of the

usual order, such that 1 is the smallest element and 0 the greatest one. Thus,
we can see that a set X with a T -indistinguishability operator E is nothing

but a generalized metric space valued on ([0, 1], T,≤T ). This encapsulates the

very intuitive idea that two objects are similar, equivalent or indistinguishable
when they are close and allow us to look at T -indistinguishability operators

as similarities and distances at the same time.

J. Recasens: Indistinguishability Operator, STUDFUZZ 260, pp. 81–95.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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Another well-known object in fuzzy logic, S-metrics [139], are also general-
ized metric spaces. Here, the semi group is the unit interval with a t-conorm

S and the usual order.
This chapter will examine some geometric aspects of T -indistinguishability

operators specifically, some kinds of homomorphism between them, where a

homomorphism is defined by:

Definition 4.2. Given two t-norms T, T ′, a T -indistinguishability operator
E on a set X and T ′-indistinguishability E′ on X ′, a morphism ϕ between
E and E′ is a pair of maps ϕ = (h, f) such that the following diagram is
commutative

X × X
E−−−−→ [0, 1]

⏐⏐"h×h

⏐⏐"f

X ′ × X ′ E′

−−−−→ [0, 1]

(i.e. f(E(x, y)) = E′(h(x), h(y)) for all x, y ∈ X).
When h and f are bijective maps, ϕ is called an isomorphism.

Of all the possible types of homomorphism between indistinguishability op-
erators, we will be focused on the following special cases:

a) The maps f that transform a T -indistinguishability operator E into an-
other such operator with respect to same t-norm T . In the preceding no-
tation, this means taking X ′ = X , h = identity and T = T ′. This case will
be analyzed in Section 4.1.

b) The maps f that transform a T -indistinguishability operator E into E′,
another such operator with respect to a different t-norm T ′. Section 4.2
looks at this more general case, taking X = X ′, h =id and considering

an isomorphism f between T and T ′. Special attention is paid to the

generators or extensional fuzzy subsets of both E and E′.

Section 4.3 studies some aspects of the group associated to a T -indistin-
guishability operator E on X (i.e., the group of all bijective maps h : X → X
such that E(x, y) = E(h(x), h(y)) ∀x, y ∈ X).

The last section relates the T -indistinguishability operators to distances

in two ways.

• By relating them to S-metrics through strong negations, that are isomor-
phisms between T -indistinguishability operators and S-metrics.

• When T is a continuous Archimedean t-norm, the additive generators of

T give isomorphisms between T -indistinguishability operators and usual
distances.
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4.1 Maps between T-Indistinguishability Operators

In this section the maps in the unit interval changing a T -indistinguishability
operator into another one with respect to the same t-norm will be analyzed.

Definition 4.3. A metric transform is a sub-additive and non-decreasing
map s : [0,∞) → [0,∞) with s(0) = 0.

Lemma 4.4. A map s : [0,∞) → [0,∞) with s(0) = 0 is a metric transform
if and only if for all x, y, z ∈ [0, 1] such that x + y ≥ z, s(x) + s(y) ≥ s(z).

Proof. ⇒) If s is a metric transform, then for x + y ≥ z

s(x) + s(y) ≥ s(x + y) ≥ s(z).

⇐) Taking x + y = z, we have s(x) + s(y) ≥ s(z). Since s(0) = 0, s is
sub-additive.

On the other hand, if x ≥ y, then x + 0 ≥ y and s(x) + s(0) ≥ s(y).
Therefore, s is a non-decreasing map.

Proposition 4.5. Let E be a T -indistinguishability operator on a set X with
T a continuous Archimedean t-norm with an additive generator t and f a
map f : [0, 1] → [0, 1]. f ◦ E is a T -indistinguishability operator on X if and
only if there exists a metric transform s such that the restriction f|Im(E) of
f to the image of E satisfies

f|Im(E) = t[−1] ◦ s ◦ t.

Proof. Given x, y, z ∈ X , let E(x, y) = a, E(y, z) = b, E(x, z) = c, t(a) = u,
t(b) = v, t(c) = w.

⇒) If f ◦ E is a T -indistinguishability operator, then (f ◦ E) (x, x) = 1
and therefore f(1) = 1.

1) If T is strict Archimedean, then t(0) = +∞, t[−1](x) = t−1(x) and, since

E is T -transitive, t−1(t(a) + t(b)) ≤ c, or t(a) + t(b) ≥ t(c).
In a similar way, t ◦ f(a) + t ◦ f(b) ≥ t ◦ f(c).
Therefore, if u + v ≥ w, then

t ◦ f ◦ t−1(u) + t ◦ f ◦ t−1(v) ≥ t ◦ f ◦ t−1(w).

Defining s = t ◦ f ◦ t−1, it follows that s(0) = 0 and if u, v, w ∈ Im(E) and

u + v ≥ w, then s(u) + s(v) ≥ s(w).
2) If T is non-strict and t is an additive generator of T , then t[−1](x) = 0 if

x > t(0) and t[−1](x) = t−1(x) if x ≤ t(0).
If t(a) + t(b) ≤ t(0), then t(a) + t(b) ≥ t(c).
If t(a) + t(b) > t(0), since t(c) ≤ t(0) we also have t(a) + t(b) ≥ t(c).
Therefore, in any case t(a) + t(b) ≥ t(c).
In a similar way, t ◦ f(a) + t ◦ f(b) ≥ t ◦ f(c).
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If u, v, w ∈ Im(E) and u + v ≥ w, then

t ◦ f ◦ t[−1](u) + t ◦ f ◦ t[−1](v) ≥ t ◦ f ◦ t[−1](w).

Taking t ◦ f ◦ t[−1] = s, then f = t[−1] ◦ s ◦ t.

⇐) If f = t[−1]◦s◦t with s a metric transform, then f is a non-decreasing map

with f(1) = 1. Let us show that f ◦ E is a T -indistinguishability operator:

• Reflexivity. f ◦ E(x, x) = f(1) = 1.
• Symmetry is trivial.
• Transitivity.

a) If T is a strict continuous Archimedean t-norm, then t(a) + t(b) ≥ t(c).

T (f(a), f(b)) = t−1(t ◦ f(a) + t ◦ f(b))

= t−1
(
t ◦ t−1 ◦ s ◦ t(a) + t ◦ t−1 ◦ s ◦ t(b)

)

= t−1(s ◦ t(a) + s ◦ t(b)) ≤ t−1 ◦ s ◦ t(c) = f(c)

and therefore f ◦ E is T -transitive.
b) If T is a non-strict continuous Archimedean t-norm, then

T (f(a), f(b)) = t[−1](t(t[−1] ◦ s ◦ t)(a)) + t(t[−1] ◦ s ◦ t)(b))).

If (s ◦ t)(a) > t(0) or (s ◦ t)(b) > t(0), then
(
t[−1] ◦ s ◦ t

)
(a) = 0 or(

t[−1] ◦ s ◦ t
)
(b) = 0 and therefore T (f(a), f(b)) ≤ f(c).

Otherwise, we also get the inequality with the same arguments as in a).

Example 4.6. Let s : [0,∞) → [0,∞) be the map defined by s(x) = xα for all
x ∈ [0,∞) with 0 < α ≤ 1. s is a metric transform, since s(0) = 0 and

s(x + y) = (x + y)α ≤ xα + yα = s(x) + s(y).

If E is a T -indistinguishability operator on a set X with T the �Lukasiewicz
t-norm, t(x) = 1 − x an additive generator, then

E′(x, y) = f(E(x, y)) = (t−1 ◦ s ◦ t)(E(x, y)) = 1 − (1 − E(x, y))α

is also a T -indistinguishability operator on X .
Let T be the Product t-norm and t(x) = − lnx an additive generator

of T . If E is a T -indistinguishability operator on a set X , then E′(x, y) =
e−(− ln E(x,y))α

also is a T -indistinguishability operator on X .

Let us now study the maps that preserve min-indistinguishability operators.

Lemma 4.7. Let E be a min-indistinguishability operator on a set X. If for
x, y, z ∈ X E(x, y) ≤ E(y, z) ≤ E(x, z), then E(x, y) = E(y, z).



4.2 Indistinguishability Operators and Isomorphic t-Norms 85

Proof. Taking E(x, y) = a, E(y, z) = b, E(x, z) = c, due to the min-
transitivity we have min(a, b) ≤ c, min(b, c) ≤ a and min(a, c) ≤ b .

If a ≤ b ≤ c, the last two inequalities implies b ≤ a and a ≤ b and therefore

a = b.

Proposition 4.8. Let E be a min-indistinguishability operator on a set
X and f : [0, 1] → [0, 1] a map in the unit interval. f ◦ E is a min-
indistinguishability operator on X if and only if f(1) = 1 and f restricted to
Im(E) is a non-decreasing function.

Proof. If E is a min-indistinguishability operator, then given x, y, z ∈ X , we

can assume without loss of generality, and thanks to the preceding lemma,
that

E(x, y) = E(y, z) = a ≤ E(x, z) = c.

⇒) Since f ◦ E is also min-transitive, then f(a) ≤ f(c) and f is non-
decreasing on Im E. On the other hand, f(1) = f(E(x, x)) = 1.

⇐) f(1) = 1 implies the reflexivity on f ◦ E and symmetry is trivially
satisfied.

Since

a = min(E(x, y), E(y, z)) ≤ E(x, z) = c

and f is a non-decreasing map on Im E,

f(a) = min(f ◦ E(x, y), f ◦ E(y, z)) ≤ f ◦ E(x, z).

Since

a = min(E(x, z), E(x, y)) = E(y, z) = a

and also
a = min(E(x, z), E(y, z)) = E(x, y) = a,

in both cases min-transitivity is also satisfied by f ◦ E.

4.2 Indistinguishability Operators and Isomorphic
t-Norms

In this section, the relation between indistinguishability operators with re-
spect to isomorphic t-norms will be studied.

Definition 4.9. Two continuous t-norms T, T ′ are isomorphic if and only if
there exists a bijective map f : [0, 1] → [0, 1] such that f ◦ T = T ′ ◦ (f × f).

Isomorphisms f are continuous and increasing maps.
It is well known that all strict continuous Archimedean t-norms are iso-

morphic. In particular, they are isomorphic to the Product t-norm.
Also, all non-strict continuous Archimedean t-norms are isomorphic. In

particular, they are isomorphic to the �Lukasiewicz t-norm.
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The next proposition relates the isomorphisms of continuous Archimedean
t-norms with their additive generators.

Proposition 4.10. Let f be a bijective map f : [0, 1] → [0, 1], T , T ′ two
continuous Archimedean t-norms and t, t′ additive generators of T and T ′

respectively. If f is an isomorphism between T and T ′, then there exists α ∈
(0, 1] such that f = t′[−1](αt).

Proof. ∀x, y ∈ [0, 1], f(T (x, y)) = T ′(f(x), f(y))
or equivalently

f ◦ t[−1](t(x) + t(y)) = t′[−1]((t′ ◦ f)(x) + (t′ ◦ f)(y))

t[−1](t(x) + t(y)) = (f−1 ◦ t′[−1])((t′ ◦ f)(x) + (t′ ◦ f)(y)

which means that t′ ◦ f is also a generator of T . Since two generators of a

t-norm differ only by a multiplicative positive constant, t = k(t′ ◦ f) with
k > 0 and putting α = 1/k,

f = t′[−1]αt.

Example 4.11. The only automorphism of the �Lukasiewicz t-norm is the iden-
tity map.

Indeed, taking t(x) = 1−x, then f(x) = 1−α+α x and the only bijective

linear map in [0,1] is the identity.
The automorphisms of the Product t-norm are f(x) = xα with α > 0.
More general, the only automorphism of a non-strict Archimedean t-norm

is the identity map and for strict t-norms, every α > 0 produces an isomor-
phism fα with fα �= fβ if α �= β.

Lemma 4.12. If T, T ′ are two isomorphic t-norms, then their residuations
−→
T ,

−→
T ′ also are isomorphic.

Proof. If f ◦ T = T ′ ◦ (f × f), then for all x, y ∈ [0, 1],

f ◦ −→
T (x|y) = f(sup{α ∈ [0, 1] |T (α, x) ≤ y})

= sup{f(α) ∈ [0, 1] |f−1 ◦ T ′(f(α), f(x)) ≤ y}
= sup{f(α) ∈ [0, 1] |T ′(f(α), f(x)) ≤ f(y)}
=

−→
T ′(f(x)|f(y)).

Proposition 4.13. If E is a T -indistinguishability operator on a set X for
a given t-norm T and f is a continuous, increasing and bijective map f :
[0, 1] → [0, 1], then f ◦ E is a T ′-indistinguishability operator with T ′ =
f ◦ T ◦ (f−1 × f−1).

Proof. f ◦ E is trivially a reflexive and symmetric fuzzy relation on X . Since

E is T -transitive, for all x, y, z ∈ X it holds
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T (E(x, y), E(y, z)) ≤ E(x, z).

From this,

T (f−1 ◦ f ◦ E(x, y), f−1 ◦ f ◦ E(y, z)) ≤ f−1 ◦ f ◦ E(x, z),

f ◦ T (f−1 × f−1)(f ◦ E(x, y), f ◦ E(y, z)) ≤ f ◦ E(x, z)

and f ◦ E is T ′-transitive.

Under the assumptions of the preceding proposition, E and f ◦ E will be

called similar indistinguishability operators.

Example 4.14. Let E be a T -indistinguishability operator on a set X with
respect to a t-norm T and fα(x) = xα for some α > 0. Then fα ◦ E is a

Tα-indistinguishability operator on X with

Tα(x, y) =
(
T
(
x

1
α , y

1
α

))α

.

In particular, if T is the Product t-norm, then T ′ is also the Product t-norm

and if T = min, then T ′ = min (cf. Section 4.1).
If T is the �Lukasiewicz t-norm, then (Tα)α>0 is the Schweizer-Sklar family

of t-norms

Tα(x, y) =
(
max

(
x

1
α + y

1
α − 1, 0

))α

Therefore, given a Tα-indistinguishability operator Eα, it is easy to find a

similar Tβ-indistinguishability operator Eβ , (α, β > 0).

Example 4.15. Let E be a T -indistinguishability operator on a set X with
respect to a non-strict continuous Archimedean t-norm T with normalized
additive generator t. Taking f(x) = 1 − (t(x))α, α > 0, then

f ◦ E(x, y) = 1 − (t(E(x, y)))
α

is a Tα-indistinguishability operator where Tα is the non-strict Archimedean
t-norm

Tα(x, y) = 1 − min((1 − x
1
α ) + (1 − y)

1
α , 1)α.

Let us observe that, in this case, the family {Tα}α>0, known as Yager family,
is independent from the t-norm T , more precisely, from the generator t.

In particular, for α = 1, Tα is the �Lukasiewicz t-norm, and the operator

E1 = 1 − t(E) is always T1-transitive.

Lemma 4.16. Let T be a continuous t-norm and E a T -indistinguishability
operator on a set X. If μ is a generator of E and f a continuous, increasing
and bijective map f : [0, 1] → [0, 1], then f ◦ μ is a generator of the similar
T ′-indistinguishability operator f ◦ E.
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Proof. ∀x, y ∈ X, E(x, y) ≤ Eμ(x, y) =
−→
T (max(μ(x), μ(y))|min(μ(x), μ(y))).

f ◦ E(x, y) ≤ f ◦ −→
T (max(μ(x), μ(y))|min(μ(x), μ(y)))

= f ◦ −→
T (f−1 × f−1)(f ◦ max(μ(x), μ(y))|f ◦ min(μ(x), μ(y)))

=
−→
T ′(max(f ◦ μ(x), f ◦ μ(y))|min(f ◦ μ(x), f ◦ μ(y)))

which means that f ◦ μ is a generator of f ◦ E.

In a similar way, the next result can be proved.

Proposition 4.17. Let T be a continuous t-norm and E a T -indistinguish-
ability operator on a set X. If (μi)i∈I is a generating family of E and f a
continuous, increasing and bijective map f : [0, 1] → [0, 1], then (f ◦μi)i∈I is
a generating family of the similar T ′-indistinguishability operator f ◦ E.

Since the relation of being similar is symmetric, the following two results
hold:

Corollary 4.18. Similar indistinguishability operators have the same
dimension.

Corollary 4.19. With the preceding notations, (μi)i∈I is a basis of E if and
only if (f ◦ μi)i∈I is a basis of f ◦ E.

4.3 Isometries between Indistinguishability Operators

Definition 4.20. Given two sets X, Y and two T -indistinguishability opera-
tors E, F on X, Y respectively, a map τ : X → Y is an isometry if and only
if E(x, y) = F (τ(x), τ(y)) ∀x, y ∈ X.

Lemma 4.21. With the previous notations, given an isometry τ : X → Y ,
if F separates points, then E also separates points and τ is injective.

Proof. Trivial.

Lemma 4.22. Given a T -indistinguishability operator E on X, let us con-
sider the crisp relation on X : x ∼ y if and only if E(x, y) = 1. ∼ is an
equivalence relation and if μ is a generator of E, then the fuzzy relation E
defined by E(x̄, ȳ) = E(x, y) is a T -indistinguishability operator in the quo-
tient set X = X/ ∼ that separates points and μ̄ defined by μ̄(x̄) = μ(x) is a
generator of E.

Proof. Straightforward.

Before studying the isometries between indistinguishability operators, it is
convenient to analyze when two fuzzy sets μ, ν generate the same operator

(i.e. Eμ = Eν).
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Theorem 4.23. Let T be a continuous Archimedean t-norm, t a generator
of T and μ, ν fuzzy subsets of X. Eμ = Eν if and only if ∀x ∈ X one of the
following conditions holds:

a) t(μ(x)) = t(ν(x)) + k1 with k1 ≥ sup{−t(ν(x))|x ∈ X}
or

b) t(μ(x)) = −t(ν(x)) + k2 with k2 ≥ sup{t(ν(x))|x ∈ X}.
Moreover, if T is non-strict, then k1 ≤ inf{t(0) − t(ν(x)) | x ∈ X} and
k2 ≤ inf{t(0) + t(ν(x)) | x ∈ X}.

Proof. ⇒) Due to Lemma 4.22 we can suppose that μ is a one to one map.

Eμ(x, y) =
−→
T (max(μ(x), μ(y))|min(μ(x), μ(y)))

= t−1(t(min(μ(x), μ(y))) − t(max(μ(x), μ(y)))).

Eν(x, y) = t−1(t(min(ν(x), ν(y))) − t(max(ν(x), ν(y))))

where t[−1] is replaced by t−1 because all the values in brackets are between
0 and t(0).

If Eμ = Eν , then

t(min(μ(x), μ(y))) − t(max(μ(x), μ(y)))

= t(min(ν(x), ν(y))) − (t max(ν(x), ν(y))).

Therefore, t(μ(x))−t(μ(y)) = t(ν(x))−t(ν(y)) or t(μ(y))−t(μ(x)) = t(ν(x))−
t(ν(y)).

Let us fix y0 ∈ X and consider the map M(x) = t(μ(x)) − t(μ(y0)).
Taking k′ = t(ν(y0)), then M(x) = t(ν(x)) − k′ or M(x) = −t(ν(x)) + k′.
We need to prove that there does not exist x, y ∈ X with

M(x) = t(ν(x)) − k and M(y) = −t(ν(y)) + k (∗)

Suppose that there exist x, y ∈ X such that both equalities (*) hold. Since

M(y0) = 0, we can take x �= y0 and y �= y0, in this case

Eμ(x, y) = t−1(t(min(μ(x), μ(y))) − t(max(μ(x), μ(y))))

= t−1(t(min(μ(x), μ(y))) − t(μ(y0)) − (t(max(μ(x), μ(y))) − t(μ(y0))))

= t−1(max(M(x), M(y)) − min(M(x), M(y))).

Eν(x, y) = t−1(t(min(ν(x), ν(y))) − t(max(ν(x), ν(y)))) and since M(x) +
M(y) = t(ν(x)) − t(ν(y)), either

M(x) − M(y) = M(x) + M(y) and y = y0

or

M(x) − M(y) = −(M(x) + M(y)) and x = y0.
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So
t(μ(x)) = t(ν(x)) − t(ν(y0)) + t(μ(y0)) = t(ν(x)) + k1

or

t(μ(x)) = −t(ν(x)) + t(ν(y0)) + t(μ(y0)) = −t(ν(x)) + k2.

⇐) Trivial.

Example 4.24. If T is the �Lukasiewicz t-norm, with the previous notations

μ(x) = ν(x) + k with inf{1 − ν(x)} ≥ k ≥ sup
x∈X

{−ν(x)}

or

μ(x) = −ν(x) + k with inf
x∈X

{1 + ν(x)} ≥ k ≥ sup
x∈X

{ν(x)}.

Indeed, taking t(x) = 1 − x,

a)

1 − μ(x) = 1 − ν(x) + k1

with
sup{−1 + ν(x)|x ∈ X} ≤ k1 ≤ inf{ν(x)|x ∈ X}

and therefore

μ(x) = ν(x) + k

with
inf

x∈X
{1 − ν(x) ≥ k ≥ sup

x∈X

{−ν(x)}

or
b)

1 − μ(x) = −1 + ν(x) + k2

with
sup{1 − ν(x) | x ∈ X } ≤ k2 ≤ inf{2 − ν(x)|x ∈ X}

and therefore

μ(x) = −ν(x) + k

with
inf

x∈X
{1 + ν(x)} ≥ k ≥ sup

x∈X

{ν(x)}.

Example 4.25. If T is the product t-norm, then

μ(x) =
ν(x)

k
with k ≥ sup

x∈X

{ν(x)}

or

μ(x) =
k

ν(x)
with k ≤ inf

x∈X
{ν(x)}.
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Indeed, taking t(x) = − lnx,

a)

− lnμ(x) = − ln ν(x) + k1

with
k1 ≥ sup{ln ν(x) | x ∈ X}

and therefore

μ(x) =
ν(x)

k

with
k ≥ sup{ν(x)}

or
b)

− ln ν(x) = ln ν(x) + k2

with
k2 ≥ sup{− ln ν(x)|x ∈ X}

and therefore

μ(x) =
k

ν(x)

with
k ≤ inf

x∈X
{ν(x)}.

Theorem 4.26. Let T be the t-norm minimum and let μ be a fuzzy subset
of X such that there exists an element xM of X with μ(xM ) ≥ μ(x) ∀x ∈ X.
Let Y ⊂ X be the set of elements x of X with μ(x) = μ(xM ) and s =
sup{μ(x) such that x ∈ X − Y }. A fuzzy subset ν of X generates the same
T -indistinguishability operator than μ if and only if

∀x ∈ X − Y μ(x) = ν(x) and ν(y) = t with s ≤ t ≤ 1 ∀y ∈ Y.

Proof. It follows easily from the fact that

Eμ(x, y) =

{
min(μ(x), μ(y)) if μ(x) �= μ(y)
1 if μ(x) = μ(y).

The next theorem relates the previous results with the group of isometries of

a set X equipped with an indistinguishability operator.

Theorem 4.27. Let T be a continuous t-norm and Eμ the T -indistinguisha-
bility operator on X generated by the fuzzy subset μ of X. The map τ : X → X
is an isometry if and only if there exists a fuzzy subset ν of X with Eμ = Eν

and μ ◦ τ = ν.
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Proof

Eμ(x, y) = Eμ(τ(x), τ(y)) =

= ET (μ ◦ τ(x), μ ◦ τ(y)) = Eμ◦τ (x, y).

Corollary 4.28. Let T be a continuous t-norm and Eμ, Eν two T -indistin-
guishability operators on X, Y respectively generated by μ and ν. A bijective
map τ : X → Y is an isometry if and only if μ = v ◦ τ .

4.3.1 The Group of Isometries of ([0,1], ET)

The following universal property of the natural indistinguishability operator

ET gives special interest to its study.

Lemma 4.29. Let T be a continuous t-norm, Eμ the T -indistinguishability
operator on X generated by the one to one fuzzy subset μ of X and ET the
natural T -indistinguishability operator on [0, 1]. The membership function μ
is an isometry of X into [0, 1].

Proof. Trivial.

In fact, the preceding results can be translated to the language of categories
in such a way that ET is a final universal object:

Fixing a continuous t-norm T , let us consider the category C whose objects
are the pairs (X, μ) consisting of a set X and a fuzzy subset μ of X and with
morphisms τ : (X, μ) → (Y, ν), the isometries of (X, Eμ) → (Y, Eν) with
v ◦ τ = μ (so that the set of morphisms between two objects is either empty
or it contains only one map).

It is clear that (X, μ) and (Y, ν) are isomorphic if and only if Eμ = Eν ,
and Lemma 4.29 can now be expressed in the following way.

Proposition 4.30. In the category C, ([0, 1], id) is a final universal object.

Let us calculate the group of isometries of ([0, 1], ET ).

Theorem 4.31. Let T be a non-strict continuous Archimedean t-norm T and
t an additive generator of T . The group of isometries of ([0, 1], ET ) consists
of the identity and the strong negation generated by t.

Proof. ET is generated by the identity map id. From Theorem 4.23, using

the same notations and taking ν=id and X=[0,1], if follows that k1 = 0
and k2 = t(0), so that in the first case μ=id and in the second case μ(x) =
t−1(t(0) − t(x)). Since it has been shown that these are the only fuzzy sets

of [0,1] that generate ET , the result follows immediately from Theorem 4.27.
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Definition 4.32. Given a t-norm T and a ∈ [0, 1], the map ta : [0, 1] → [0, 1]
defined by ta(x) = T (a, x) will be called the T -translation by a.

Theorem 4.33. Let T be a strict continuous Archimedean t-norm. The group
of isometries of ([0, 1], ET ) is the set of T -translations of [0, 1] (i.e. {ta|a ∈
[0, 1]}).

Proof. Taking ν=id and X = [0, 1] in Theorem 4.23, it follows that k1 ≥ 0
and the other case cannot occur, since it would imply k2 = ∞.

So t(μ(x)) = t(x) + t(a), where t(a) = k1 and μ(x) = T (x, a).
Since t−1 : [0,∞] → [0, 1] is onto, every translation generates ET .
Once shown that the set of generators of ET consists of the set of transla-

tions, the result follows from Theorem 4.27.

Theorem 4.34. Let T be the t-norm minimum. The group of isometries of
([0, 1], ET ) consists of only the identity map.

Proof. It follows immediately from Theorem 4.26 and Theorem 4.27.

As a corollary of these theorems, we can answer an interesting question re-
lating indistinguishability operators and negations. In fuzzy logic ET can be

viewed as the biimplication in the sense that ET (x, y) expresses the degree of

equivalence between x and y. It seem reasonable to demand that the degree

of equivalence between elements coincide with the degree of their negations

(i.e. ET (x, y) = ET (ϕ(x), ϕ(y))). The following question arises therefore nat-
urally: When a negation is an isometry of ET ? The answer is given in the

following corollary.

Corollary 4.35. Given a continuous Archimedean t-norm T and a strong
negation ϕ, ϕ is an isometry of ET if and only if T is non-strict and T and
ϕ have a common generator.

4.4 T -Indistinguishability Operators and Distances

There are basically two ways of relating T -indistinguishability operators and

distances.

1. If ϕ is a strong negation, S the dual t-conorm of T with respect to ϕ and

E a T -indistinguishability operator on a set X , then m = ϕ ◦ E is an
S-metric on X (see Definition 4.37). In particular, if T is greater than or

equal to the �Lukasiewicz t-norm, then m is a pseudodistance on X that is
a distance if and only if E separates points. If T is the minimum t-norm,
then m is a pseudoultrametric as will be seen in Chapter 5.

2. If T is a continuous Archimedean t-norm and t an additive generator of

T , then E is a T -indistinguishability operator on a set X if and only if
d = t ◦ E is a pseudodistance on X and E separates points if and only if
d is a distance on X .
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4.4.1 T -Indistinguishability Operators and S-Metrics

Definition 4.36. Let T be a t-norm and ϕ a strong negation. Then S =
ϕ ◦ T ◦ ϕ is the dual t-conorm of T with respect to S. In this case (T, S, ϕ) is
called a De Morgan triplet.

Definition 4.37. Given a t-conorm S and a set X a map m : X×X → [0, 1]
is an S-pseudometric on X if and only if for all x, y, z ∈ X

1. m(x, x) = 0
2. m(x, y) = m(y, x)
3. S(m(x, y), m(y, z)) ≥ m(x, z).

m is an S-metric if and only if it also satisfies

m(x, y) = 0 implies x = y.

S-pseudometrics and T -indistinguishability operators are dual concepts. For

instance, there is a Representation Theorem for S-pseudometrics dual to
that of T -indistinguishability operators and generating families, dimension
and basis can be also defined. Also from an irreflexive and symmetric fuzzy
relation R the greatest S-metric among the ones smaller than or equal to R
can be built using the inf −S product.

Proposition 4.38. Let S, S′ be two t-conorms with S ≤ S′. If m is an
S-pseudometric on a set X, then m is also an S′-pseudometric.

Proof. Trivial.

Proposition 4.39. Let (T, S, ϕ) be a De Morgan triplet and X a set. E is
a T -indistinguishability operator on X if and only if m = ϕ ◦ E is an S-
pseudometric on X. E separates points if and only if m is an S-metric.

Proof. Trivial.

In fact, this last proposition states that ϕ is an isomorphism (of Generalized
metric spaces) between E and m.

Corollary 4.40. Let T be a t-norm greater than or equal to the t-norm of
�Lukasiewicz. E is a T -indistinguishability on a set X if and only if m = ϕ◦E
is a pseudodistance on X. E separates points if and only if m is a distance
on X.

4.4.2 T -Indistinguishability Operators and Distances

Proposition 4.41. Let T be a continuous Archimedean t-norm and t an ad-
ditive generator of T .
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1. If d is a pseudo distance on a set X, then E = t[−1] ◦ d is a T -
indistinguishability operator on X.

2. If E is a T -indistinguishability on X, then d = t ◦ E is a pseudo distance
on X.

d is a distance on X if and only if E separates points.

Proof

• Reflexivity. d(x, y) = 0 if and only if t[−1] ◦ d(x, y) = 1.
• Symmetry. d(x, y) = d(y, x) if and only if

E(x, y) = t[−1] ◦ d(x, y) = t[−1] ◦ d(y, x) = E(y, x).

• Transitivity.

d(x, y) + d(y, z) ≥ d(x, z) ⇔ t(E(x, y)) + t(E(y, z)) ≥ t(E(x, z)

⇔ t[−1] (t(E(x, y)) + t(E(y, z))) ≤ E(x, z)

⇔ T (E(x, y), E(y, z)) ≤ E(x, z).

• d(x, y) �= 0 when x �= y if and only if E(x, y) = t[−1] ◦ d(x, y) �= 1 when
x �= y.

This bijection is not canonical but depends o the generator t. The next propo-
sition relates the distances and indistinguishability operators generated by
different additive generators of a t-norm.

Proposition 4.42. Let T be a continuous Archimedean t-norm and t and u
two additive generators of T such that u = α · t with α > 0.

1. If d is a pseudo distance on a set X, E = t[−1] ◦ d and E′ = u[−1] ◦ d, then

for all x, y ∈ X, E′(x, y) = t[−1]
(

d(x,y)
α

)
.

2. If E is a T -indistinguishability operator on X, d = t ◦ E and d′ = u ◦ E,
then for all x, y ∈ X, d′(x, y) = α · t(E(x, y)).

Proof

1. If u = α · t, then u[−1](x) = t[−1]( x
α ) for all x ∈ [0, u(0)] and 1 . follows.

2. is trivial.
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Min-indistinguishability Operators and
Hierarchical Trees

min-indistinguishability operators are widely used in Taxonomy because they
are closely related to hierarchical trees. Indeed, given a min-indistinguishability
operator on a set X and α ∈ [0, 1], the α-cuts of E are partitions of X and if
α ≥ β, then the α-cut is a refinement of the partition corresponding to the

β-cut. Therefore, E generates an indexed hierarchical tree. Reciprocally, from

an indexed hierarchical tree a min-indistinguishability operator can be gener-
ated. These results follow from the fact that 1 − E is a pseudo ultrametric.
Pseudo ultrametrics are pseudodistances where, in the triangular inequality,
the addition is replaced by the more restrictive max operation. The topologies
generated by ultrametrics are very peculiar, since if two balls are non disjoint,
then one of them is included in the other one.

An important issue with respect to fuzzy relations is their storage, since in
some applications they can be defined on sets of very large cardinality. The

work [131] provides a very easy way to represent min-indistinguishability
operators, which will be discussed in Section 5.2.

One important combinatorial problem is determining how many essen-
tially different min-indistinguishability operators and therefore how many
essentially different hierarchical trees there are on a finite set of cardinality
n. This problem seems very difficult, and here we present the answer for

n ≤ 5.

5.1 Min-indistinguishability Operators and
Ultrametrics

Definition 5.1. A map m : X × X → R is a pseudo ultrametric if and only
if for all x, y, z ∈ X

1. m(x, x) = 0.
2. m(x, y) = m(y, x).
3. max(m(x, y), m(y, z)) ≥ m(x, z).

If m(x, y) = 0 implies x = y, then it is called an ultrametric.

J. Recasens: Indistinguishability Operator, STUDFUZZ 260, pp. 97–105.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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Pseudo ultrametrics are pseudo distances where the triangular inequality has

been strengthen replacing the addition by the maximum.
Ultrametric spaces have a very special behaviour.

Proposition 5.2. Let m be an ultrametric on X. Then

1. If B(x, r) denotes the ball of centre x and radius r and y ∈ B(x, r), then
B(x, r) = B(y, r). (All elements of a ball are its centre).

2. If two balls have non-empty intersection, then one of them is contained in
the other one.

Proof

1. If y ∈ B(x, r), then m(x, y) ≤ r. Now let z be in B(x, r). Then m(x, z) ≤ r
and

m(y, z) ≤ max(m(x, z), m(x, y)) ≤ r

which means that z ∈ B(y, r). If y ∈ B(x, r), then m(x, y) ≤ r. Now let z
be in B(y, r). Then m(y, z) ≤ r, and

m(x, z) ≤ max(m(y, z), m(x, y)) ≤ r.

So z ∈ B(x, r).
2. Let B(x, r)∩B(y, s) �= ∅ and s ≤ r. There exists z ∈ B(x, r)∩B(y, s) which

means m(z, x) ≤ r and m(y, z) ≤ s. Let t ∈ B(y, s). Then m(t, y) ≤ s.

m(t, x) ≤ max(m(x, z), m(z, t)) ≤ max(m(x, z), m(y, t), m(y, z)) ≤ r.

So t ∈ B(x, r).

Proposition 5.3. Let E be a fuzzy relation on a set X. E is a min-indistin-
guishability operator on X if and only if m = 1 − E is a pseudo ultrametric.

Proof

• Reflexivity and symmetry are trivial.
•

max(m(x, y), m(x, z)) ≥ m(x, z)

⇔ max(1 − E(x, y), 1 − E(x, z)) ≥ 1 − E(x, z)

⇔ 1 − min(E(x, y), E(x, z)) ≥ 1 − E(x, z)

⇔ min(E(x, y), E(x, z)) ≤ E(x, z).

Grom this proposition interesting results follow. One of them is that the

cardinality of Im(E) = {E(x, y)} is smaller than or equal to the cardinality
of X . In particular, if X is finite of cardinality n and E is identified with
a matrix, then the number of different entries of the matrix is less or equal
than n, which simplifies calculation and storage.
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Another important result relates to the α-cuts. Let us recall that for a

fuzzy relation on X and α ∈ [0, 1], the α-cut of E is the set Eα of pairs
(x, y) ∈ X × X such that E(x, y) ≥ α. Of course, if α ≥ β, then Eα ≤ Eβ .

Proposition 5.4. Let E be a fuzzy relation on X. E is a min-indistinguisha-
bility operator on X if and only if for each α ∈ [0, 1], the α-cut of E is an
equivalence relation on X.

Proof. ⇒) Trivial.
⇐) If E(x, y) = α and E(y, z) = β with α ≤ β, (x, y) and (y, z) belong to

the α-cut of E, which is an equivalence relation. Therefore (x, z) also belongs

to the α-cut of E and min(E(x, y), E(y, z)) ≤ E(x, z).

In fact, the last proposition also follows from Propositions 5.2 and 5.3.

5.2 Min-indistinguishability Operators and
Hierarchical Trees

Definition 5.5. A hierarchical tree of a finite set X is a sequence of parti-
tions A1, A2, ..., Ak of X such that every partition refines the preceding one.

A hierarchical tree is indexed if every partition Ai has associated a non-
negative number λi and λi < λi+1 for all i = 1, 2, ..., k − 1.

Proposition 5.6. Every min-indistinguishability operator E on a finite set
X generates an indexed hierarchical tree on X.

Proof. We can consider the α-cuts of E with α ∈ Im(E).

Reciprocally,

Proposition 5.7. Every indexed hierarchical tree A1, A2, ..., Ak of a finite
set X with λk = 1 generates a min-indistinguishability operator E on X.

Proof. If A1, A2, ..Ak is the set of partitions of the tree and λ1, λ2, ..., λk

the corresponding indexes, Let us define E in the following way: E(x, y) =
maxi=1,2,...,k {λi such that (x, y) ∈ Ai}.

Example 5.8. Let X = {a1, a2, a3, a4, a5} and E the min-indistinguishability
operator with matrix ⎛

⎜⎜⎜⎜⎝

1 0.5 0.2 0.2 0.2
0.5 1 0.2 0.2 0.2
0.2 0.2 1 0.2 0.2
0.2 0.2 0.2 1 0.7
0.2 0.2 0.2 0.7 1

⎞

⎟⎟⎟⎟⎠
.
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The corresponding tree is
a1, a2, a3, a4, a5

a4, a5

a4, a5

a5a4

a3

a3

a3

a1, a2

a2

a2

a1

a1

An important question with respect to indistinguishability operators is its
storage, since in many situations, the cardinality of the set and consequently
the dimension of its associated matrix can be very big. In this sense, in [131]
a nice representation of min-indistinguishability operators is provided.

Proposition 5.9. Let E be a min-indistinguishability operator on a finite set
X. The elements of X can be reordered in such a way that in every file of
the corresponding matrix the entries on the right of the diagonal are in non
ascending order. Then the matrix is said to be in its normal form.

The proof of this proposition is straightforward and can be found in [131].

Example 5.10. Let us consider the min-indistinguishability operator E on
X = {x1, x2, x3, x4, x5} with matrix E

⎛

⎜⎜⎜⎜⎝

x1 x2 x3 x4 x5

x1 1 0.3 0.7 0.2 0.8
x2 0.3 1 0.3 0.2 0.3
x3 0.7 0.3 1 0.2 0.7
x4 0.2 0.2 0.2 1 0.2
x5 0.8 0.3 0.7 0.2 1

⎞

⎟⎟⎟⎟⎠
.

After reordering the files and columns of E we obtain the matrix in its normal
form E′

⎛

⎜⎜⎜⎜⎝

x1 x5 x3 x2 x4

x1 1 0.8 0.7 0.3 0.2
x5 0.8 1 0.7 0.3 0.2
x3 0.7 0.7 1 0.3 0.2
x2 0.3 0.3 0.3 1 0.2
x4 0.2 0.2 0.2 0.2 1

⎞

⎟⎟⎟⎟⎠
.

Once the matrix is in its normal form, the sequence of the elements of X
with the entries on the right of the diagonal of the matrix placed in between
is called the representing sequence of the min-indistinguishability operator.

Example 5.11. The representing sequence of the preceding min-indistinguish-
ability operator is

x1 0.8 x5 0.7 x3 0.3 x2 0.2 x4.
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Reciprocally, from a representing sequence

xσ(1) s1 xσ(2) s2 xσ(3) ... xσ(n−1) sn−1 xσ(n)

where σ is a permutation of X a min-indistinguishability operator E = (aij)
on X can be generated it the following way:

E(xσ(i), xσ(j)) = aσ(i)σ(j) =

⎧
⎨

⎩

1 if i = j
min(si, si+1, ..., sj) if σ(i) ≤ σ(j)
min(sj , sj+1, ..., si) if σ(i) ≥ σ(j).

The next Theorem summarizes these results.

Theorem 5.12. There is a bijection between the set of min-indistinguishabil-
ity operators on a set X and the set of representing sequences of X.

Another interesting question about min-indistinguishability operators is how
many essentially different such operators are there for a given n. Of course,
the problem is equivalent to finding how many different hierarchical trees are

there. It is a difficult combinatorial problem and the answer is only known
for small values of n. The first one who studied it was Riera in 1978 ([119])
and in [50] a step forward has been made.

First of all, let us clarify what we understand as essentially different

operators.

Lemma 5.13. The (crisp) relation ∼1 on the set of min-indistinguishability
operators on X defined by E ∼1 F if and only if there exists an increasing
map f : [0, 1] → [0, 1] such that f(E(x, y)) = F (x, y) for all x, y ∈ X is an
equivalence relation.

Proof. Trivial.

Lemma 5.14. The (crisp) relation ∼2 on the set of min-indistinguishability
operators on X defined by E ∼2 F if and only if there exists a permutation
σ : X → X such that F (x, y) = E(σ(x), σ(y)) is an equivalence relation.

Proof. Trivial.

Combining the two equivalence relations ∼1 and ∼2 we obtain the next def-
inition.

Definition 5.15. Two min-indistinguishability operators E and F on a finite
set X of cardinality n have the same structure if and only if there exists an
increasing map f : [0, 1] → [0, 1] and a permutation σ : X → X such that
F (x, y) = f(E(σ(x), σ(y))).

In order to determine the structures of min-indistinguishability operators the

following Proposition is needed [88].
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Proposition 5.16. For any min-indistinguishability operator E on a
finite set X of cardinality n there exists a decomposition E =
σ(E′(t; Cn1×n1

, Dn2×n2
)) (n1 + n2 = n) with

E′(t; Cn1×n1
, Dn2×n2

) =

(
Cn1×n1

(t)n1×n2

(t)n2×n1
Dn2×n2

)
.

where t is the smallest value of E, C and D are min-indistinguishability
operators and σ : X → X is a permutation.

Example 5.17. The min-indistinguishability operator E

⎛

⎜⎜⎝

x1 x2 x3 x4

x1 1 0.6 0.8 0.6
x2 0.6 1 0.6 0.7
x3 0.8 0.6 1 0.6
x4 0.6 0.7 0.6 1

⎞

⎟⎟⎠

can be decomposed into

C2×2 =

(
1 0.8
0.8 1

)

and

C2×2 =

(
1 0.7
0.7 1

)
.

If σ is the permutation (1, 3, 2, 4), then

E = σ(E′(0.6; C2×2, D2×2)).

We will calculate all structures for n ≤ 5 from the preceding decomposition.
n = 2.
There is only one structure

(
1 a
a 1

)
.

n = 3.
The decompositions with (n1 = 1, n2 = 2) and (n1 = 2, n2 = 1) represent

the same structure with the permutation σ = (3, 2, 1).

E′(t; C, D) =

⎛

⎝

(
1 a
a 1

)
(t)1×2

(t)2×1 1

⎞

⎠

where a ≥ t.
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There are two possibilities ⎛

⎝
1 a a
a 1 a
a a 1

⎞

⎠

and ⎛

⎝
1 a t
a 1 t
t t 1

⎞

⎠ .

with a > t.
n = 4.
The decompositions with (n1 = 1, n2 = 3) and (n1 = 3, n2 = 1) rep-

resent the same structure with the permutation σ = (4, 2, 3, 1). The min-
indistinguishability operators on sets of cardinality 4 are of two types.

• Decomposition of type (n1 = 3, n2 = 1):

⎛

⎜⎜⎝

⎛

⎝
1 a b
a 1 b
b b a

⎞

⎠ (t)1×3

(t)3×1 1

⎞

⎟⎟⎠

with a ≤ b ≤ t. Replacing each inequality by a strict one or by an equality
there are 4 possible structures.

• Decomposition with (n1 = 2, n2 = 2):

⎛

⎜⎜⎝

(
1 a
a 1

)
(t)2×2

(t)2×2

(
1 a
a 1

)

⎞

⎟⎟⎠

with a ≥ t, b ≥ t. The cases with b = t have already been counted in the

preceding decomposition. This gives 2 more structures.
There are therefore 6 different structures for n = 4.
n = 5.

• The decompositions with (n1 = 1, n2 = 4) and (n1 = 4, n2 = 1) represent

the same structure with the permutation σ = (5, 2, 3, 4, 1).
• The decompositions with (n1 = 2, n2 = 3): Let a ∈ C and b, c ∈ D. Then

a ≥ t

b ≥ c ≥ t.

Possible combinations of the values a, b, c:

1. a ≥ b ≥ c ≥ t. 23 different cases.
2. b ≥ a ≥ c ≥ t. 22 different cases. (The case a = b had already been

counted).
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3. b ≥ c ≥ a ≥ t. 2 more additional cases. (The case a = c has already been
counted and a = t has been counted in the preceding decomposition).

Summing up, the number of structures for n = 5 is 22.
The next table 5.1 summarizes these results.

Table 5.1 Number of structures

n Number of structures

1 1
2 1
3 2
4 6
5 22

Let us find the trees associated to each structure.
The next results are straightforward.

Proposition 5.18. Two min-indistinguishability operators E and F generate
the same non-indexed tree if and only if E ∼1 F .

Proposition 5.19. Two min-indistinguishability operators E and F generate
the same indexed tree except for permutations of the branches if and only if
E ∼2 F .

Proposition 5.20. Two min-indistinguishability operators E and F generate
the same non-indexed tree except for permutations of the branches if and only
if they are the same structure.

Therefore searching for the different structures is equivalent to searching the

different non-indexed trees except for permutations of their branches.
The tables 5.2 and 5.3 show the essentially different hierarchical trees for

n = 3 and n = 4.

Table 5.2 The 2 hierarchical trees for n = 3

A

DCB

A

E

F

B

DC
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Table 5.3 The 6 hierarchical trees for n = 4

A

EDCB

A

F

HG

D

E

B

C

A

F

G

B

EDC

A

E

H

JI

F

G

B

C

D

A

G

H

JI

B

E

F

C

D

A

E

GF

B

DC
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Betweenness Relations

As explained in Chapter 4, T -indistinguishability operators have a very im-
portant metric component. One consequence of this fact is that, if the t-norm

is continuous Archimedean, the operators generate metric betweenness rela-
tions and their structure can be studied in terms of the different types of

betweenness relations they produce. This chapter will revisit the three main
methods for building T -indistinguishability operators -with the sup−T prod-
uct, using the Representation Theorem and by constructing a decomposable
relation from a fuzzy subset- in relation to betweenness relations.

The structure of the betweenness relations generated by a T -indistinguish-
ability operator depends on the length (Definition 6.16 and dimension of the

operator. Since the length and dimension of a T -indistinguishability operator

are related to its generation via sup−T product and via the Representation
Theorem, respectively, betweenness relations are an ideal tool for linking

the two methods. For instance, in Section 6.5, they are used to prove the

equivalence between one dimensionality and maximality of the length. This
result can be generalized in the following rule of thumb:

The greater the dimension the smaller the length, and vice versa.

The betweenness relations generated by decomposable indistinguishability
operators are very special. They are called radial, meaning that there exists
exactly one element in between any other two. This kind of relations is also
characteristic of decomposable indistinguishability operators.

When a set has some additional structure, such as an operation or an
ordering relation, it seems reasonable to ask for a generated indistinguisha-
bility operators to be compatible with it. Section 6.4 will discuss this issue for

indistinguishability operators generated by fuzzy numbers on the real line.
It may happen that, due to some perturbations in the values of an indis-

tinguishability operator, some betweenness relations that would appear in
the original one are not present in the new distorted operator. To handle this
problem fuzzy betweenness relations are introduced that make it possible to
say that an element is more or less between two others.

J. Recasens: Indistinguishability Operator, STUDFUZZ 260, pp. 107–124.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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6.1 Betweenness Relations

The notion of metric betweenness relation appears in [94] where it is defined

as follows:

Definition 6.1. A (metric) betweenness relation on a set X is a ternary
relation B on X (i.e. B ⊆ X3) satisfying for all x, y, z ∈ X

1. (x, y, z) ∈ B ⇒ x �= y �= z �= x
2. (x, y, z) ∈ B ⇒ (z, y, x) ∈ B
3. (x, y, z) ∈ B ⇒ (y, z, x) /∈ B, (z, x, y) /∈ B
4. (x, y, z) ∈ B and (x, z, t) ∈ B ⇒ (x, y, t) ∈ B and (y, z, t) ∈ B.

If (x, y, z) ∈ B, then y is said to be between x and z.
If given any three elements of B, one of them is between the other two,

then the betweenness relation is called linear or total.
The idea of metric betweenness appeared in the study of metric spaces. If

d is a distance defined on a set X , the relation ”y is between x and z when
d(x, y) + d(y, z) = d(x, z)” satisfies the axioms of a betweenness relation and

Menger used these relations in the study of isometric embeddings of metric
spaces.

The fact that indistinguishability operators separating points define be-
tweenness relations (when T is a continuous Archimedean t-norm) provides

them with a metric flavour that facilitates their study from a metric point of

view.

Proposition 6.2. Let T be a continuous Archimedean t-norm and E a T -
indistinguishability operator separating points on a set X such that E(x, y) �=
0 for all x, y ∈ X. The ternary relation B on X defined by (x, y, z) ∈ B if
and only if x �= y �= z �= x and

T (E(x, y), E(y, z)) = E(x, z)

is a betweenness relation on X.

Proof

1. Trivial.
2. follows from the commutativity of T and the symmetry of E.
3. Let us prove for instance that if (x, y, z) ∈ B, then (y, z, x) /∈ B.

If T (E(y, z), E(z, x)) = E(y, x), then

T (E(y, z), E(z, x), E(y, z)) = T (E(y, x), E(y, z)) = E(x, z)

and therefore

T (E(y, z), E(y, z), E(x, z)) = E(x, z).

Since E(x, z) �= 0, this implies that T (E(y, z), E(y, z)) = 1 and also
E(y, z) = 1 contradicting the separability of E.
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4. Let us prove, for instance, that if (x, y, z) ∈ B and (x, z, t) ∈ B, then
(y, z, t) ∈ B.

E(x, t) = T (E(x, z), E(z, t))

= T (T (E(x, y), E(y, z)), E(z, t))

= T (E(x, y), T (E(y, z), E(z, t)))

and since

T (E(y, z), E(z, t)) ≤ E(y, t),

monotonicity of T assures that

E(x, t) ≥ T (E(x, y), E(y, t))

≥ T (E(x, y), T (E(y, z), E(z, t))) = E(x, t)

and therefore

T (E(x, y), E(y, t)) = T (E(x, y), (E(y, z), E(z, t)) �= 0.

Since E(x, y) �= 0,
E(y, t) = T (E(y, z), E(z, t)).

6.2 Linear Betweenness Relations and One
Dimensional Indistinguishability Operators

The structure of the betweenness relation generated by a T -
indistinguishability operator reflects its combinatorial complexity expressed

by its dimension.

Proposition 6.3. Let T be a continuous Archimedean t-norm and E a T -
indistinguishability operator separating points on X such that there exists
min{E(x, y) | x, y ∈ X} �= 0 for all x, y ∈ X. E is one dimensional if and
only if the betweenness relation B determined by E on X is linear.

Proof
⇒)
Let μ be a fuzzy set of X generating E (i.e. E = Eμ). Since E separates

points, μ is a one to one map and defines a total ordering on X .

x ≤μ y if and only if μ(x) ≤ μ(y).

If x <μ y <μ z, then

T (E(x, y), E(y, z))

= t[−1](t(t−1(t(μ(x)) − t(μ(y))) + t(t−1(t(μ(y)) − t(μ(z))))

= t[−1](t(μ(x)) − t(μ(z))) = E(x, z).
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⇐) Let a, b ∈ X be such that E(a, b) = min{E(x, y) | x, y ∈ X} and consider

the column μa of E.
If x, y ∈ X satisfy (a, x, y), then

E(a, y) = T (E(a, x), E(x, y))

and

E(x, y) =
−→
T (E(a, x)|E(a, y)) =

−→
T (μa(x)|μa(y))

and μa is a generator of E.

It is worth noting that in [13] a characterization theorem of one-dimensional
T-indistinguishability operators for general continuous t-norms is proved that

generalizes the previous result.

Corollary 6.4. Let T be a continuous Archimedean t-norm and E a T -
indistinguishability operator separating points on a finite set X of cardinality
n satisfying E(x, y) �= 0 ∀x, y ∈ X. E is one dimensional if and only if the
cardinality of B is 2 ·

(
n
3

)
.

Proof. Trivial. The factor 2 is due to the fact that if (x, y, z) ∈ B, then
(z, y, x) ∈ B.

The tight link between the betweenness relation defined by a T -indistinguish-
ability operator and its dimension is also shown in the next proposition.

Proposition 6.5. [116] Let T be a continuous Archimedean t-norm and E
be a T -indistinguishability operator separating points on a finite set X of
cardinality n satisfying E(x, y) �= 0 ∀x, y ∈ X. If E is bidimensional, then
the cardinality of B is greater than or equal to 2 ·T (n, 5, 3) where T (n, 5, 3) is

a Turán number that is conjectured to be 2 ·
(n

2

3

)
if n is even and

(n+1

2

3

)
+
(n−1

2

3

)

if n is odd [116] [43].

6.3 Radial Betweenness Relations and Decomposable
Indistinguishability Operators

Apart from linear betweenness relations, there is another simple kind of such

relations that we call radial: There is exactly a central element that is between
any other two. This is a very common structure that reflects the behaviour

of centralized systems where there is a central kernel that controls all infor-
mation and relations in the system. It turns out that these radial relations

characterize decomposable indistinguishability operators.

Definition 6.6. A betweenness relation B on a set X is called radial if and
only if there exists an element a ∈ X such that a is between any other two
elements of X and these are the only elements of B (i.e. (x, y, z) ∈ B if and
only if y = a). The element a is called the center of the betweenness relation.
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Proposition 6.7. Let T be a continuous Archimedean t-norm, E a T -indis-
tinguishability operator separating points on a finite set X of cardinality n
satisfying E(x, y) �= 0 ∀x, y ∈ X and B the betweenness relation generated
on X by E. E is decomposable if and only if B is radial or E can be extended
to a T -indistinguishability operator E on X = X ∪ {a} with a /∈ X in such
a way that the betweenness relation B generated on X by E is radial with
center a.

Proof
⇒)
Let E(x, y) = T (μ(x), μ(y)) if x �= y.

• If there exists x0 ∈ X such that μ(x0) = 1, then we are in the first case,
since

– given x, y ∈ X with x �= y �= x0 �= x,

T (E(x, x0), E(x0, y)) = T (T (μ(x), μ(x0)), T (μ(x0), μ(y)))

= T (μ(x), μ(y)) = E(x, y)

and therefore x0 is between any other two elements of X .
– If z �= x0 and x �= z �= y �= x, then

T (E(x, z), E(z, y)) = T (T (μ(x), μ(z)), T (μ(z), μ(y)))

= T (T (μ(z), μ(z)), T (μ(x), μ(y)))

= T (T (μ(z), μ(z)), E(x, y)) < E(x, y).

Therefore, z is not between x and y.

• If there exists no x0 ∈ X with μ(x0) = 1, then we can define the fuzzy
subset μ of X by μ(x) = μ(x) ∀x ∈ X and μ(a) = 1 and consider the

relation E on X generated by μ.

⇐)
If B is radial with center c, then the column μc of E generates E.
Indeed: if x �= c �= y �= x, then

E(x, y) = T (E(x, c), E(c, y)) = T (μc(x), μc(y)).

In the second case, E is generated by the fuzzy subset μ of X defined by
μ(x) = E(x, a) ∀x ∈ X .

6.4 Fuzzy Numbers and Betweenness Relations

From a fuzzy subset μ of a given universe the one dimensional indistinguisha-
bility operator Eμ and the decomposable operator Eμ can be generated, but

in both cases, we do not assume or take any structure on our universe into
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account. Nevertheless, it is common in fuzzy systems to deal with rich struc-
tures such as subsets of the real line, Rn or, more general, ordered sets. In
these cases we should be able to use the underlying structure while generating

indistinguishability operators.
In this section we give a way to obtain indistinguishability operators from

fuzzy numbers that generate betweenness relations compatible with the or-
dering of the real line. This can be applied to lattices and posets as well. The

obtained operators are between Eμ and Eμ.

Lemma 6.8. Eμ ≥ Eμ.

Proof. It is a consequence of ET (x, y) ≥ T (x, y).

Lemma 6.9. Let μ be a fuzzy subset of X and Eμ the T -indistinguishability
operator generated by μ. If μ(x) ≤ μ(y) then

T (Eμ(x, y), μ(y)) = μ(x).

Proof. If μ(x) ≤ μ(y) then

Eμ(x, y) =
−→
T (μ(y)|μ(x)).

Let us suppose that our fuzzy subset μ is normal with μ(a) = 1 and a one

to one map. Then Eμ(x, a) = ET (μ(x), μ(a)) = ET (μ(x), 1) = μ(x) for all
x ∈ X and the betweenness relation Bμ generated by Eμ is such that a is never

between any couple of elements of X . Moreover the betweenness relation is
linear compatible with the order in [0, 1] in the sense that if μ(x) ≤ μ(y) ≤
μ(z) then (x, y, z) ∈ Bμ.

Definition 6.10. A fuzzy number is a map μa : R → [0, 1] such that there
exists a ∈ R with μa(a) = 1, non decreasing in (−∞, a) and non increasing
in (a, +∞).

Being a fuzzy number μa a fuzzy subset of R, it generates two indistinguish-
ability operators Eμ and Eμ on R.

Nevertheless, it seems reasonable to impose a kind of compatibility with
the ordering of the real line and the betweenness relation generated by
the indistinguishability operator. This can be achieved with the following

definition.

Definition 6.11. Let μa be a fuzzy number. The fuzzy relation Ea associated
to μa is defined by

Ea(x, y) =

{
Eμa

(x, y) if x, y ≤ a or x, y ≥ a
Eμa(x, y) otherwise.

Proposition 6.12. The fuzzy relation Ea associated to a fuzzy number μa is
a T -indistinguishability operator.



6.4 Fuzzy Numbers and Betweenness Relations 113

Proof. Reflexivity and symmetry are trivial.
Transitivity:

a) If Ea(x, y) = Eμa
(x, y) and Ea(y, z) = Eμa

(y, z), then Ea(x, z) =
Eμa

(x, z) and transitivity follows.
b) If Ea(x, y) = Eμa(x, y) and Ea(y, z) = Eμa(y, z), then Ea(x, z) =

Eμa
(x, z). Since Eμa(x, y) ≤ Eμa

(x, y),

T (Ea(x, y), Ea(y, z)) ≤ T (Eμa
(x, y), Eμa

(y, z)) ≤ Eμa
(x, z).

c) If Ea(x, y) = Eμa
(x, y) and Ea(y, z) = Eμa(y, z) then Ea(x, z) =

Eμa(x, z).

T (Ea(x, y), Ea(y, z)) = T (Eμa
(x, y), Eμa (y, z))

= T (Eμa
(x, y), μa(y), μa(z)) (1)

If μ(x) ≤ μ(y) then, using Lemma 6.9,
(1) = T (μa(x), μa(z)) = Eμa(x, z).
If μ(y) ≤ μ(x) then, using Lemma 6.9,
(1) = T (μa(y), μa(z)) ≤ T (μa(x), μa(z)) = Eμa(x, z).

Proposition 6.13. Let T be a continuous Archimedean t-norm. The T -
indistinguishability operator Ea obtained from the fuzzy number μa is com-
patible with the ordering of the real line in the sense that if x ≤ y ≤ z,
then

T (Ea(x, y), Ea(y, z)) = Ea(x, z).

Proof. If x ≤ y ≤ z ≤ a or a ≤ x ≤ y ≤ z, it follows easily from the linearity
of the betweenness relation.

If x ≤ y ≤ a ≤ z or x ≤ a ≤ y ≤ z, it follows easily from the radial
betweenness relation.

Reciprocally,

Proposition 6.14. Let T be a continuous Archimedean t-norm and Ea the
T -indistinguishability operator obtained from the fuzzy number μa. If

T (Ea(x, y), Ea(y, z)) = Ea(x, z),

then
x ≤ y ≤ z or z ≤ y ≤ x.

Example 6.15. Let μ3 be the triangular fuzzy number [2,3,4] (Figure 6.1) and

T the �Lukasiewicz t-norm. The T -indistinguishability operators Eμ3
, Eμ3 and

E3 associated to μ3 are defined for all x, y ∈ R by
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Eμ3
(x, y) = 1 − |μ3(x) − μ3(y)|

Eμ3(x, y) =

{
max(μ3(x) + μ3(y) − 1, 0) if x �= y
1 otherwise

E3(x, y) =

{
1 − |μ3(x) − μ3(y)| if x, y ≤ 3 or x, y ≥ 3
max(μ3(x) + μ3(y) − 1, 0) otherwise.

(See Figures 6.2, 6.3 and 6.4).

Fig. 6.1 μ3

Fig. 6.2 Eµ3

It is interesting to note that with triangular and trapezoidal numbers, the

T -indistinguishability operator obtained when T is the �Lukasiewicz t-norm

is of dimension 2. For example, the previous E3 is the infimum of the T -
indistinguishability operators Eμ3

and Eμ where μ is the fuzzy subset of the

real line defined by

μ(x) =

⎧
⎨

⎩

0 if x ≤ 2.5
x − 2.5 if 2.5 ≤ x ≤ 3.5

1 if 3.5 ≤ x

μ and Eμ are displayed in Figures 6.5 and 6.6.
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Fig. 6.3 Eµ3

Fig. 6.4 E3

Fig. 6.5 μ
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Fig. 6.6 Eµ

6.5 The Length of an Indistinguishability Operator
and Betweenness Relations

Let us now introduce the notion of length of a T -indistinguishability operator

and study its relation with its dimension and decomposability.

Definition 6.16. Given a t-norm T and a T -indistinguishability operator E
on a set X , the length of E is the maximum k ∈ N (if it exists) such that there
exists a reflexive and symmetric fuzzy relation R on X with Rk−1 �= Rk = E
and length(E) = ∞ otherwise.

Note that length(E) ≥ 1, since E1 = E, and if X is finite of cardinality n,
then length(E) ≤ n − 1.

Lemma 6.17. Let R be a fuzzy relation on a finite set X, a, b ∈ X, T a
continuous t-norm and k a positive integer. Then

Rk(a, b) = sup
x2,...,xk∈X

T (R(a, x2), R(x2, x3), ..., R(xk, b)).

Proof. Let us prove the assertion by induction.
The assertion is trivially true for k = 1, 2. Suppose the result true for

k = n.

Rn+1(a, b) = (Rn ◦ R)(a, b)

= sup
xn+1∈X

T (Rn(a, xn+1), R(xn+1, b))

= sup
xn+1∈X

T ( sup
x2,...,xn∈X

T (R(a, x2), ..., R(xn, xn+1)), R(xn+1, b))

= sup
x2,...,xn+1∈X

T (R(a, x2), ..., R(xn+1, b)).
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The next lemma will be the cornerstone to relate length with dimension and

decomposability.
From now until the end of this section, T will be a continuous Archimedean

t-norm and E a T -indistinguishability operator on X separating points such

that E(x, y) �= 0 ∀x, y ∈ X .

Lemma 6.18. Let E be a T -indistinguishability operator on a finite set X
and B the betweenness relation defined by E. If length(E) = l, then there
exist x1, x2, ..., xl+1 ∈ X such that (xi, xj , xk) ∈ B if i < j < k.

Proof. If length(E) = l, then there exists a reflexive and symmetric fuzzy
relation R on X such that E = Rl > Rl−1. Therefore, there exist x1, xl+1 ∈ X
such that Rl(x1, xl+1) > Rl−1(x1, xl+1). On the other hand, by Lemma 6.17,

Rl(x1, xl+1) = T (R(x1, x2), R(x2, x3), ..., R(xl, xl+1)) (1)

for some x2, x3, ..., xl ∈ X .
Moreover,

Rj−i(xi, xj) = T (R(xi, xi+1), R(xi+1, xi+2), ..., R(xj−1, xj)) for all j > i, (2)

since

Rj−i(xi, xj) = T (R(xi, yi+1), R(yi+1, yi+2), ..., R(yj−1, xj))

> T (R(xi, xi+1), R(xi+1, xi+2), ..., R(xj−1, xj))

for some yi+1, ..., yj−1 ∈ X would contradict (1).
From this fact it follows that

E(xi, xj) = Rj−i(xi, xj) ∀j > i, (3)

since, if this were false, there would exist k > j − i such that

E(xi, xj) = Rk(xi, xj) > Rj−i(xi, xj)

and therefore,

Rk(xi, xj) = T (R(xi, y2), R(y2, y3), ..., R(yk, xj))

> T (R(xi, xi+1), ..., R(xj−1, xj))

for some y2, y3, ..., yk ∈ X .
Replacing

R(xi, xi+1), ..., R(xj−1, xj)

by
R(xi, y2), R(y2, y3), ..., R(yk, xj)
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in (1) we would have

Rm(x1, xl+1) > Rl(x1, xl+1)

contradicting the maximality of l.
Now, from (2) and (3) the result follows easily:
If i < j < k, then

T (E(xi, xj), E(xj , xk))

= T (R(xi, xi+1), ..., R(xj−1, xj), R(xj , xj+1), ..., R(xk−1, xk))

= Rk−i(xi, xk) = E(xi, xk)

and therefore (xi, xj , xk) ∈ B.

Lemma 6.19. Given a continuous Archimedean t-norm T , t an additive
generator of T , m ∈ N and a ∈]0, 1], there exists ∈ [0, 1[ such that
T (a, b, m..., b) �= 0.

Proof. For any x ∈ [0, 1], T (a, x, m..., x) = t[−1](t(a) + mt(x)).
If mt(x) < t(0) − t(a), then T (a, x, m..., x) �= 0.

Therefore, taking b > t−1(1−t(a)
m ) the lemma follows.

As a consequence of these two lemmas we can prove the following results.

Proposition 6.20. Let E b a T -indistinguishability operator on a finite set
X of cardinality n. E is one dimensional if and only if length(E) = n − 1.

Proof
⇒) Let us order the elements x1, x2, ..., xn ∈ X in such a way that

(xi, xj , xk) ∈ B if and only if i < j < k or k < j < i, where B denotes

the total betweenness relation on X generated by E.
Let a = E(x1, xn). Due to Lemma 6.19, there exists b ∈ [0, 1[ such that

T (a, b, n−2... , b) �= 0.
Let us define a reflexive and symmetric fuzzy relation R on X by

R(xi, xj) =

⎧
⎨

⎩

1 if i = j
E(xi, xj) if |i − j| = 1

T (E(xi, xj), b, k−1... , b) if |i − j| = k > 1

R satisfies Rn−2 �= Rn−1 = E.
⇐) From Lemma 6.18, the betweenness relation defined by E is linear and

therefore E is one dimensional.

Proposition 6.21. Let E be a T -indistinguishability operator on a finite set
X of cardinality n and length(E) = n − 2. Then E is bidimensional.
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Proof. From Lemma 6.18, all the elements of X but one (a ∈ X) form a

chain x1, x2, ..., xn ∈ X such that (xi, xj , xk) ∈ B if i < j < k.

Let us prove that the fuzzy subsets columns μx1
and μa generate E:

Given xi, xj ∈ X with i, j = 1, 2, ..., n − 1 and i < j

T (E(x1, xi), E(xi, xj)) = E(x1, xj)

or

T (μx1
(xi), E(xi, xj)) = μx1

(xj).

Therefore, since μx1
(xi) > μx1

(xj),

E(xi, xj) =
−→
T (μx1

(xi)|μx1
(xj)) = ET (μx1

(xi), μx1
(xj)).

On the other hand, given xi ∈ X i = 1, 2, ..., n − 1,

E(a, xi) = μa(xi) = ET (μa(a), μa(xi)).

So, the dimension of E is less or equal than 2. If E were one dimensional,
then the length of E would be n − 1 from the preceding theorem. Therefore,
the dimension of E is 2.

In the same way, the following result can be proved.

Proposition 6.22. Let E be a T -indistinguishability operator on a finite set
X of cardinality n and length(E) = k. Then the dimension of E is less or
equal than n − k.

Proposition 6.23. Let E be a T -indistinguishability operator on a finite set
X and B the betweenness relation defined by E on X. Then, length(E) = 1
if and only if B = ∅.

Proof. Lemma 6.18.

Proposition 6.24. If E is a decomposable T -indistinguishability operator on
a finite set X, then length(E) ≤ 2.

Proof. The betweenness relation B generated by E is empty or radial. If B
is empty, then length(E) = 1 by Proposition 6.23. If B is radial, then by
Lemma 6.18 length(E) ≤ 2.

It is interesting to note that these results cannot be generalized to non-
Archimedean t-norms, since in this case indistinguishability operators do not

define betweenness relations. For instance,

⎛

⎝
1 0.5 0.2
0.5 1 0.2
0.2 0.2 1

⎞

⎠
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and ⎛

⎝
1 0.2 0.2
0.2 1 0.2
0.2 0.2 1

⎞

⎠

are two min-indistinguishability operators of length 2 and the first one is one

dimensional while the second one has dimension two.

6.6 Fuzzy Betweenness Relations

Let us suppose that the values of a one-dimensional T -indistinguishability
operator are distorted by some noise. Then the betweenness relation gener-
ated by this new relation will probably be not linear and even can be empty.
This means that the definition of betweenness relation can not capture the

possibility of a relation to be ”almost” linear or -more generally speaking- is
not capable of dealing with points being ”more or less” between others.

In this section we fuzzify the definition of betweenness relation in order

to handle these situations. It will be proved that fuzzy betweenness rela-
tions can be generated by T -indistinguishability operators separating points

and, reciprocally, that every fuzzy betweenness relation generates such a T -
indistinguishability operator.

In this section T will be a continuous strict Archimedean t-norm.

Definition 6.25. A fuzzy betweenness relation with respect to a given strict
Archimedean t-norm T on a set X is a fuzzy ternary relation, i.e. a map

X × X × X → [0, 1]

(x, y, z) → xyz

satisfying the following properties for all x, y, z, t ∈ X

1. xxy = 1
2. xyz = zyx
3. a. T (xyz, xzt) ≤ xyt

b. T (xyz, xzt) ≤ yzt
4. If x �= y, then xyx < 1.

Lemma 6.26

1. If xyz = 1 and y �= z, then xzy < 1.
2. If xyz = 1 and x �= y, then zxy < 1.

Proof. From 6.25.3.b) and 6.25.4., it follows T (xyz, xzy) ≤ yzy < 1 and
therefore xzy < 1.

In a similar way, we can prove 2.

Corollary 6.27. If xyz = 1 and x �= y �= z �= x, then xzy < 1 and zxy < 1.
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Corollary 6.28. The crisp part of a fuzzy betweenness relation in the set of
triplets of different elements of X is a classical betweenness relation on X.

Proposition 6.29. Let T be a continuous strict Archimedean t-norm and E
a T -indistinguishability operator separating points on X with E(x, y) �= 0 for
all x, y ∈ X. Then the fuzzy ternary relation on X defined by

xyz =
−→
T (E(x, z)|T (E(x, y), E(y, z)))

is a fuzzy betweenness relation.

Proof

• 6.25.1.

xxy =
−→
T (E(x, y)|T (E(x, x), E(x, y)))

=
−→
T (E(x, y)|E(x, y)) = 1.

• 6.25.2. is immediate.
• 6.25.3.a) Applying the preceding definition to 6.25.3.a) we obtain the fol-

lowing inequality

T (
−→
T (E(x, z)|T (E(x, y), E(y, z))),

−→
T (E(x, t)|T (E(x, z), E(z, t))))

≤ −→
T (E(x, t)|T (E(x, y), E(y, t))).

In order to prove this inequality we can express it in terms of an additive

generator t of T . Then the mentioned inequality can be written as

t−1(t(
−→
T (E(x, z)|T (E(x, y), E(y, z))))

+t(
−→
T (E(x, t)|T (E(x, z), E(z, t)))))

≤ −→
T (E(x, t)|T (E(x, y), E(y, t))).

If we represent the t-norms and its residuation using t, applying t to both

sides of the inequality we obtain

t(E(x, y)) + t(E(y, z)) − t(E(x, z)) + t(E(x, z)) + t(E(z, t)) − t(E(x, t))

≥ t(E(x, y)) + t(E(y, t)) − t(E(x, t)).

Simplifying and applying t−1 to both sides, we finally obtain

t−1(t(E(y, z)) + t(E(z, t))) ≤ E(y, t).

The last inequality expresses the T -transitivity of E.
• 6.25.3.b) can be proved in a similar way as 6.25.3.a).
• 6.25.4. Since E(x, y) �= 0 for all x, y ∈ X , for x �= y we have

xyx =
−→
T (E(x, x)|T (E(x, y), E(x, y)))

= T (E(x, y), E(x, y)) < 1.
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It is worth noticing that given a fuzzy betweenness relation defined by means

of a T -indistinguishability operator E, since

xyx =
−→
T (E(x, x)|T (E(x, y), E(x, y))

= T (E(x, y), E(x, y)),

the T indistinguishability operator E can be recovered from the betweenness

relation: E(x, y) = xyx.
Moreover, the following Proposition 6.31 shows that every fuzzy between-

ness relation on a set X determines a T -indistinguishability operator E on X .

Lemma 6.30. For every three elements x, y, z of X the following inequality
holds.

xyx ≤ xyz.

Proof. From 6.25.3.a) it follows that

xyx = T (xyx, xxz) ≤ xyz.

Proposition 6.31. Let T be a continuous strict Archimedean t-norm and
f : [0, 1] → [0, 1] the function defined by

f(x) = y if and only if x = T (y, y) i.e. y = x
1
2

T .

If xyz is a fuzzy betweenness relation on a set X, then the fuzzy relations
E′ and E on X defined by E′(x, y) = xyx and E(x, y) = f(xyx) are T -
indistinguishability operators on X.

Proof. It is easy to prove that if E′ is a T -indistinguishability operator sepa-
rating points, then E is also such an operator. Therefore it is only necessary
to prove the proposition for E′.

• Reflexivity: E′(x, x) = xxx = 1 by 6.25.1.
• Symmetry:

E′(x, y) = xyx = T (xyx, xxy)

≤ yxy = E′(y, z)

by 6.25.3.b).
• Transitivity:

T (E′(x, y), E′(y, z)) = T (xyx, yzy)

≤ T (yxz, yzy)

≤ T (yxz, yzx)

≤ xzx = E′(x, z)

by Lemma 6.30.
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• Separability: If x �= y, then E′(x, y) = xyx < 1.

Remark. The initial fuzzy betweenness relation can be recovered via E as in
Proposition 6.29 if and only if E(x, y) �= 0 ∀x, y ∈ X .

If E is a T -indistinguishability operator on a finite set X of cardinality X with
high dimension but generating a fuzzy betweenness relation on X with many
values close to 1, then there will be a T -indistinguishability operator E′ on X
close to E defining a crisp betweenness relation on X with high cardinality,
this meaning that the dimension of E′ is small. In this case, instead of storing

E it will be preferable to store a basis of E′.

Example 6.32. Let T be the product t-norm and E the T -indistinguishability
operator on the set X = {1, 2, 3, 4, 5} of cardinality 5 given by the following

matrix ⎛

⎜⎜⎜⎜⎝

1 0.74 0.67 0.50 0.41
0.74 1 0.87 0.65 0.53
0.67 0.87 1 0.74 0.60
0.50 0.65 0.74 1 0.80
0.41 0.53 0.60 0.80 1

⎞

⎟⎟⎟⎟⎠
.

The associated fuzzy betweenness relation is given by the table 6.1.

Table 6.1 Fuzzy betweenness relation generated by E.

x y z xyz x y z xyz x y z xyz x y z xyz

1 2 3 0.96 2 3 1 0.79 3 4 1 0.55 4 5 1 0.66
1 2 4 0.96 2 3 4 0.99 3 4 2 0.55 4 5 2 0.65
1 2 5 0.96 2 3 5 0.98 3 4 5 0.99 4 5 3 0.65
1 3 2 0.79 2 4 1 0.44 3 5 1 0.37 5 1 2 0.57
1 3 4 0.99 2 4 3 0.55 3 5 2 0.37 5 1 3 0.46
1 3 5 0.98 2 4 5 0.98 3 5 4 0.65 5 1 4 0.26
1 4 2 0.44 2 5 1 0.29 4 1 2 0.57 5 2 1 0.96
1 4 3 0.55 2 5 3 0.37 4 1 3 0.45 5 2 3 0.77
1 4 5 0.98 2 5 4 0.65 4 1 5 0.26 5 2 4 0.46
1 5 2 0.29 3 1 2 0.57 4 2 1 0.96 5 3 1 0.98
1 5 3 0.37 3 1 4 0.45 4 2 3 0.76 5 3 2 0.98
1 5 4 0.66 3 1 5 0.46 4 2 5 0.43 5 3 4 0.56
2 1 3 0.57 3 2 1 0.96 4 3 1 0.99 5 4 1 0.98
2 1 4 0.57 3 2 4 0.76 4 3 2 0.99 5 4 2 0.98
2 1 5 0.57 3 2 5 0.77 4 3 5 0.56 5 4 3 0.99

The dimension of E is 3. Nevertheless it is close to the one-dimensional
T -indistinguishability operator E′ with matrix
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⎛

⎜⎜⎜⎜⎝

1 0.76 0.67 0.50 0.40
0.76 1 0.88 0.68 0.53
0.67 0.88 1 0.75 0.60
0.50 0.66 0.75 1 0.80
0.40 0.53 0.60 0.80 1

⎞

⎟⎟⎟⎟⎠

whose associated fuzzy betweenness relation is shown in table 6.2.

Table 6.2 Fuzzy betweenness relation generated by E′.

x y z xyz x y z xyz x y z xyz x y z xyz

1 2 3 1 2 3 1 0.78 3 4 1 0.56 4 5 1 0.64
1 2 4 1 2 3 4 1 3 4 2 0.56 4 5 2 0.64
1 2 5 1 2 3 5 1 3 4 5 1 4 5 3 0.64
1 3 2 0.78 2 4 1 0.43 3 5 1 0.36 5 1 2 0.58
1 3 4 1 2 4 3 0.56 3 5 2 0.36 5 1 3 0.45
1 3 5 1 2 4 5 1 3 5 4 0.64 5 1 4 0.25
1 4 2 0.43 2 5 1 0.28 4 1 2 0.58 5 2 1 1
1 4 3 0.56 2 5 3 0.36 4 1 3 0.45 5 2 3 0.78
1 4 5 1 2 5 4 0.64 4 1 5 0.25 5 2 4 0.43
1 5 2 0.28 3 1 2 0.58 4 2 1 1 5 3 1 1
1 5 3 0.36 3 1 4 0.45 4 2 3 0.78 5 3 2 1
1 5 4 0.64 3 1 5 0.45 4 2 5 0.43 5 3 4 0.56
2 1 3 0.58 3 2 1 1 4 3 1 1 5 4 1 1
2 1 4 0.58 3 2 4 0.78 4 3 2 1 5 4 2 1
2 1 5 0.58 3 2 5 0.78 4 3 5 0.56 5 4 3 1

The crisp part of the fuzzy betweenness relation generated by E′ is a linear

betweenness relation, since its cardinality is 2 ·
(
5
3

)
.
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Dimension and Basis

The Representation Theorem 2.54 states that every T -indistinguishability
operator on a universe X can be generated by a family of fuzzy subsets

of X . Nevertheless, there is no uniqueness in the selection of the family.
Different families, even having different cardinalities, can generate the same

operator. This point lends great interest to the theorem, since if we interpret

the elements of the family as degrees of matching between the elements of the

universe X and a set of prototypes, we can choose different features in order

to establish this matching, thereby giving different semantic interpretations

to the same T -indistinguishability operator.
Among the generating families of a T -indistinguishability operator E, the

ones with low cardinality are of special interest, since they have an easy se-
mantic interpretation and also because the information contained in the ma-
trix representing E can be packed into a few (and sometimes just one) fuzzy
subsets. Low-dimensional T -indistinguishability operators are especially de-
sirable since all of their information can be stored in a few fuzzy subsets.
These fuzzy subsets can be interpreted as the degrees of satisfiability of some

features or the degree of similarity to some prototypes. A small number of

fuzzy subsets will provide a better understanding of E.
This chapter studies minimal generating families (basis) and solves the

problem of finding them for the minimum and for continuous Archimedean t-
norms in finite universes. The case of the minimum is solved combinatorially,
whereas in the Archimedean case, a geometric interpretation of the set of

generators or extensional fuzzy subsets is exploded.
A reflexive and symmetric fuzzy relation can be an indistinguishability

operator for different t-norms. For example, if it is a T -indistinguishability
operator for a t-norm T , then it is also a T ′-indistinguishability operator

for any t-norm T ′ ≥ T . In Section 7.3 wed determine when a reflexive and

symmetric fuzzy relation is a one dimensional T -indistinguishability operator

for some continuous Archimedean t-norms.

J. Recasens: Indistinguishability Operator, STUDFUZZ 260, pp. 125–145.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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This chapter concludes with a method based on Saaty’s reciprocal matrices
to find a one dimensional T -indistinguishability operator close to a given one

for T the Product t-norm.

7.1 Dimension and Basis: The Archimedean Case

We deal with the problem of searching for a basis of a given T -indistinguish-
ability operator E with respect to a continuous Archimedean t-norm T . The

case when the t-norm is the minimum will be studied in the next section. Let

us recall that a basis of E is a generating family of E with its set if indexes

of the smallest cardinality (which is called the dimension of E).
A natural geometric representation of the set of generators HE of a T -

indistinguishability operator E defined on a set X will be exploded in order

to calculate explicitly a basis of E, provided that T is an Archimedean t-norm

and X finite.
HE will be identified with a geometric subset of [0, 1]X . When X is finite

of cardinality n and the t-norm is the product or the t-norm of �Lukasiewicz,
HE is a very simple polyhedron. We will see that a basis can be chosen with
all its elements in the edges of this polyhedron.

Firstly we will define a (crisp) partial ordering on HE . The maximal ele-
ments of this partial ordering will play a special role, since the elements of

the edges are maximal.

Definition 7.1. Let E be a T -indistinguishability on a set X. In HE we
define the following relation ≤H

μ ≤H ν if and only if Eμ ≥ Eν .

where as always Eμ is the T -indistinguishability operator generated by μ
(Eμ(x, y) = ET (μ(x), μ(y))).

Lemma 7.2. ≤H is a reflexive and transitive relation.

Proof. Trivial.

We define an equivalence relation ∼ on HE in order to obtain a partial
ordering:

μ ∼ ν if and only if Eμ = Eν .

Definition 7.3. The quotient set HE/ ∼ will be denoted Hp
E and μ ∈ HE

will be called maximal if and only if its equivalence class μ is maximal
on Hp

E.

The next results show the relevance of maximal elements of HE .

Lemma 7.4. Let M be the set of maximal elements of HE . Then M is a
generating family of E.
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Proof. Trivial.

Proposition 7.5. Let (μi)i∈I be a generating family of E. Then there exists
a generating family (μ′

i)i∈I of maximal generators with the same index set.

Proof. Every μi is contained into a maximal one μ′
i.

Corollary 7.6. It is always possible to find a basis of maximal elements for
a given T -indistinguishability operator.

Let us order the elements of the finite set X (i.e., X = {a1, a2, ..., an}).
Then, every fuzzy subset μ of X can be identified with the point (μ(a1), μ(a2),
..., μ(an)) of [0, 1]n.

If μ is a generator of a given T -indistinguishability operator E on X , then
Eμ ≥ E or, in a more explicit way,

ET (μ(ai), μ(aj))) ≥ E(ai, aj) ∀i, j = 1, 2.....n.

Proposition 7.7. The set of generators of a T -indistinguishability operator
E on X is the solution of the following system of inequalities:

−→
T (max(xi, xj)|min(xi, xj)) ≤ E(ai, aj) 0 ≤ xi, xj ≤ 1 i, j = 1, 2, ..., n.

This system becomes especially simple for the Product, the minimum and

the �Lukasiewicz t-norms.

Proposition 7.8. If T is the Product t-norm, then HE is the polyhedron
solution of the system of inequalities

xi − E(ai, aj) · xj ≤ 0 0 ≤ xi, xj ≤ 1 i, j = 1, 2, ..., n.

Proposition 7.9. If T is the �Lukasiewicz t-norm, then HE is the polyhedron
solution of the system of inequalities

xi − xj ≤ 1 − E(ai, aj) 0 ≤ xi, xj ≤ 1 i, j = 1, 2, ..., n.

Proposition 7.10. If T is the minimum t-norm, then HE is the solution of
system of inequalities

min(xi, xj) ≥ E(ai, aj) xi �= xj 0 ≤ xi, xj ≤ 1 i, j = 1, 2, ..., n.

For the Product and the �Lukasiewicz t-norms the location of the elements of

a basis is relatively strict as it is shown in the following proposition.

Proposition 7.11. If T is the Product or the �Lukasiewicz t-norm, then the
elements of a basis of a T -indistinguishability operator E are located in the
(hyper) faces of HE.
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Proof. Let H = {μ1, μs, ..., μk} be a basis of E. If, for instance, μi does not

lie on any face of HE , then

Eμ(xi, xj) > E(xi, xj) 1 ≤ i < j ≤ n.

Therefore, the set H − {μi} will also be a basis of E, which contradicts the

minimality of the cardinality of H .

Proposition 7.12. If T is the product or the �Lukasiewicz t-norm, then it
is always possible to find a basis of E with all its elements on the edges
of HE.

Proof. Let H = {μ1, μ2, ..., μk} be a basis of E and let us suppose that μ1

belongs, for example, to t faces. The set H ′ = {μ′
1, μ2, ..., μk} obtained from

H by replacing μ′
1 by a fuzzy set situated in an edge and contained in these

t faces is also a basis of E. This replacement can be done for all μi ∈ H .

It is clear that the elements of a preceding basis belong to different edges

and, since the number of edges is finite, from Proposition 7.12 a method to
calculate a basis of E can be derived.

Procedure to calculate a basis of a T -indistinguishability E on a finite
set X(cardinality of X = n) for T the �Lukasiewicz or the Product t-norm:

1. Calculate the edges of the set HE .
2. Count = 1.
3. Build a set A obtained taking a generator from each edge of HE .
4. Define B(Count) = the set of subsets of A of Count elements.
5. Select a set H of B(Count) and build the T -indistinguishability operator

EH generated by H .
6. If EH = E then end.
7. Do step 5 and step 6 for all different elements of B(Count).
8. Count = Count + 1. Go to 4.

Example 7.13. Let us consider the Product-indistinguishability operator E
on a set X of cardinality 4 represented by the matrix

⎛

⎜⎜⎝

1 0.12 0.41 0.13
0.12 1 0.12 0.23
0.41 0.12 1 0.27

0.13 0.23 0.27 1

⎞

⎟⎟⎠

It can be shown that the cardinality of the set of the edges is bounded by
the number

(
2(n−1)

n−1

)
being n the cardinality of X . The set of edges in this

case is
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{(0.12 1.00 0.29 0.23), (0.41 0.12 1.00 0.52),
(0.12 1.00 0.25 0.92), (0.41 0.12 1.00 0.27),
(0.12 1.00 0.29 0.92), (0.66 0.23 0.27 1.00),
(0.12 1.00 0.12 0.44), (1.00 0.12 0.48 0.13),
(0.12 1.00 0.12 0.23), (1.00 0.12 0.41 0.13),
(0.13 0.23 0.32 1.00), (1.00 0.12 0.41 0.52),
(0.13 0.23 0.27 1.00), (1.00 0.12 1.00 0.27),
(0.29 1.00 0.12 0.44), (1.00 0.12 1.00 0.52),
(0.29 1.00 0.12 0.23), (1.00 0.57 0.41 0.13),
(0.35 1.00 0.85 0.23), (1.00 0.57 0.48 0.13)}

and a basis is

{(0.12 1.00 0.25 0.92), (0.29 1.00 0.12 0.23)}.

When the cardinality of the universe of discourse X is 3, there is a nice
geometric interpretation of these results.

Example 7.14. The set of generators HE of the Product-indistinguishability
operator E on X = {a1, a2, a3} with matrix

⎛

⎝
1 0.23 0.37

0.23 1 0.26
0.37 0.26 1

⎞

⎠

is the part of the pyramid with vertex on the origin of coordinates with edges

passing through the points A, B, C, D, E, F contained in [0, 1]3.

A = (0.37, 0, 26, 1) B = (1, 0.23, 0.86)
C = (1, 0.23, 0.37) D = (0.72, 1, 0.26)
E = (0.23, 1, 0.26) F = (0.23, 1, 0.61).

A basis of E is given by the two fuzzy subsets

B = (1, 0.23, 0.86) F = (0.23, 1, 0.61)

and E is bidimensional. See Figure 7.1.

Example 7.15. The set of generators HE of the T -indistinguishability opera-
tor E on X = {a1, a2, a3} (T the �Lukasiewicz t-norm) with matrix

⎛

⎝
1 0.32 0.42

0.32 1 0.36
0.42 0.36 1

⎞

⎠

is the part of the prism with edges parallel to the line x = y = z passing

through the points A, B, C, D, E, F contained in [0, 1]3.
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Fig. 7.1 HE of Example 7.14

A = (0.68, 0, 0.64) B = (0.68, 0, 0.1)
C = (0.58, 0.64, 0) D = (0, 0.68, 0.04)
E = (0, 0.68, 0.58) F = (0.06, 0, 0.64).

A basis of E is given by the two fuzzy subsets

A = (0.68, 0, 0.64) B = (0.68, 0, 0.1)

and E is bidimensional. See Figure 7.2.

The results obtained for the Product and the �Lukasiewicz t-norms can be

extended to any continuous Archimedean t-norm applying the results ob-
tained in Section 4.2 of Chapter 4. It has been proved there that if f is an
isomorphism between two t-norms T and T ′ and E is a T -indistinguishability
operator on a set X of dimension k having {μ1, μ2, ..., μk} as a basis, then
E′ = f ◦ E is a T ′-indistinguishability operator on X of dimension k and

{f ◦ μ1, f ◦ μ2, ..., f ◦ μk} is a basis of E′.
So let T be a continuous strict Archimedean t-norm and f an isomorphism

between T and the product t-norm. If E is a T -indistinguishability operator

on a finite set X , then E′ = f ◦ E is a Product-indistinguishability operator

and we can calculate its dimension k an a basis {μ1, μ2, ..., μk}. E has also
dimension k and

{
f−1 ◦ μ1, f

−1 ◦ μ2, ..., f
−1 ◦ μk

}
is a basis of E.
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Fig. 7.2 HE of Example 7.15

A similar result applies for non-strict continuous Archimedean t-norms,
since they are isomorphic to the �Lukasiewicz t-norm.

The geometric interpretation of the set HE also gives a new theoretical
method to obtain the transitive closure of a reflexive and symmetric relation
when the t-norm is continuous Archimedean. It is not an efficient method

and hence it is not appropriate for practical purposes. Its interest lies in the

geometric interpretation of the transitive closure and in its relation with HE .
We can restrict our study to the Product and the �Lukasiewicz t-norms.

Both cases are similar and we will only study the latter.
Let R be a reflexive and symmetric fuzzy relation on a finite set X =

{a1, a2, ..., an} of cardinality n and T the �Lukasiewicz t-norm. We will calcu-
late the set HR of generators of its T -transitive closure R.

Let us recall that R ≤ R and if E is another T -indistinguishability operator

on X satisfying R ≤ E, then R ≤ E.
According to Proposition 7.9, HR is the polyhedron solution of the system

of inequalities

xi − xj ≤ 1 − R(ai, aj) 0 ≤ xi, xj ≤ 1 i, j = l, 2, ..., n.

But this system is equivalent to

xi − xj ≤ 1 − R(ai, aj) 0 ≤ xi, xj ≤ 1 i, j = l, 2, ..., n.
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Therefore from R we can calculate the set HR and from here we can calculate

R finding a basis and then generating R from it.
Note that the inequalities

xi − xj < 1 − R(ai, aj) with R(ai, aj) < R(ai, aj)

are superfluous and therefore the numbers R(ai, aj) that are greater than
R(ai, aj) are Q-linear combination of the R(ai, aj) that coincide with their
respective R(ai, aj). Therefore, the more numbers R(ai, aj) different from

their corresponding R(ai, aj), the less edges will have HR and the smaller its
dimension. In other words,

The farther a reflexive and symmetric relation R is from its transitive closure
R, the smaller the dimension of R.

Note that this rule of thumb coincides with the one of the introduction of

Chapter 6.

7.2 Dimension and Basis: The Minimum t-Norm

The calculation of the dimension and a basis in the Archimedean case has

been of geometric nature. For the min-indistinguishability operators the cal-
culation will be combinatorial.

We will assume separability for all min-indistinguishability operators in
this section. Otherwise, if ∼ is the equivalence relation on a finite set X
x ∼ y if and only if E(x, y) = 1, then the induced similarity relation E on
the quotient set X/ ∼ separates points. Moreover, a fuzzy subset μ of X is
extensional with respect to E if and only if the induced fuzzy subset μ of X
is extensional with respect to E. So E and E have the same dimension and

(μi)i∈I is a basis of E if and only if (μi)i∈I is a basis of E.

Proposition 7.16. Let E be a min-indistinguishability operator on a finite
set X. E is one dimensional if and only if E has a column μx which is a one
to one map.

Proof
⇒) Let μ be a basis of E. μ is a one to one map since E separates points.

Let a ∈ X satisfy μ(a) = maxx∈X{μ(x)}. The fuzzy subset μ′ of X defined

by

μ′(x) =

{
μ(x) if x �= a
1 if x = a

is a column and a basis of E.
⇐) Let μx be a column of E which is one to one. Let us prove that

Eμx
= E. If y �= z, then

Eμx
(y, z) = Emin(μx(y), μx(z)) = min(μx(y), μx(z))

= min(E(x, y), E(x, z)) ≤ E(y, z).
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But since μx is extensional with respect to E, Eμx
≥ E and equality holds.

The following definitions will be useful for calculating the dimension and a

basis of a min-indistinguishability operator.

Definition 7.17. A column μx of a min-indistinguishability operator E on
a finite set X is maximal if and only if for any other column μy of E

| {μx(z), z ∈ X} | ≥ | {μy(z), z ∈ X} |

where |A| denotes the cardinality of the set A.

So a maximal column has a maximal number of different values. HM will
denote the set of maximal columns of E.

If μx is a maximal column and α ∈ {μx(y), y ∈ X}, then Xα is the subset

of X defined by Xα = {y ∈ X such that μx(y) = α} and |Xα| will be called
the frequency (fr(α)) of α in μx.

Definition 7.18. The order θ(μx) of a maximal column μx is the maximum
of the frequencies of the values in μx, i.e.

θ(μx) = max {fr(μx(y)), y ∈ X} .

Definition 7.19. The order θ(E) of a min-indistinguishability operator E on
a set X is the minimum of the orders of its maximal columns.

θ(E) = min {θ(μx), x ∈ X} .

Example 7.20. Let E be the min-indistinguishability operator on a set X
of cardinality 10 with the matrix 7.1. The maximal columns are printed in
boldface and their orders are all 7. Therefore the order of E is θ(E) = 7.

Table 7.1 Matrix E

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x1 1 0.10 0.24 0.10 0.10 0.10 0.10 0.10 0.12 0.10
x2 0.10 1 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
x3 0.24 0.10 1 0.10 0.10 0.10 0.10 0.10 0.12 0.10
x4 0.10 0.10 0.10 1 0.10 0.10 0.33 0.10 0.10 0.10
x5 0.10 0.10 0.10 0.10 1 0.42 0.10 0.10 0.10 0.17
x6 0.10 0.10 0.10 0.10 0.42 1 0.10 0.10 0.10 0.17
x7 0.10 0.10 0.10 0.33 0.10 0.10 1 0.10 0.10 0.10
x8 0.10 0.10 0.10 0.10 0.10 0.10 0.10 1 0.10 0.10
x9 0.12 0.10 0.12 0.10 0.10 0.10 0.10 0.10 1 0.10
x10 0.10 0.10 0.10 0.10 0.17 0.17 0.10 0.10 0.10 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Lemma 7.21. If (μi)i∈I is a generating family of a min-indistinguishability
operator on a set X, then there exists another family of generators (μ′

i)i∈I

with the same cardinality such that for any i ∈ I and x ∈ X μ′
i(x) ∈ Im(E).

The next proposition gives an upper bound to the dimension of a min-
indistinguishability operator E and allows us to build an algorithm for the

search of a basis of E.

Proposition 7.22. [63] If θ(E) is the order of a min-indistinguishability op-
erator on a set X and σ is the smallest natural number satisfying 2σ ≥ θ(E),
then dim(E) ≤ σ + 1.

From this proposition two algorithms will be developed. The second one is
simpler than the first one but gives a generating family of cardinality at most

dim(E) + 1, while the first one gives always a basis of E.
The first algorithm goes as follows

1. Compute the orders of the columns of E and select the maximal ones.
2. Compute the order θ(E) of E and the upper bound of the dimension

(σ + 1).
3. Select a maximal column μx whose order is θ(E).
4. Build σ + 1 column vectors μi of dimension n and initialize them with

1’s.
5. For any unrepeated value μx(y) in μx do μi(y) ← μx(y) for i from 1 to

σ + 1. Do this assignment for all unrepeated values in μx.
6. Select a repeated value α in μx and find its associate Xα.
7. For any pair xi, xj of elements of Xα such that E(xi, xj) = α′ �= α do

μ1(xi) = μ1(xj) ← α, μ2(xi ← 1, μ2(xj) ← α′.
8. For any element xr ∈ Xα not selected in the preceding step do μi(xr) ←

α for i = 1, 2, ..., until for any pair of elements xr , xs included in this step

there exists an i such that μi(xr) �= μi(xs).
9. If there exists in μx another repeated value, select it and go to step 6.

10. For any pair of elements x′, x′′ with different repeated values α, α′ such

that μi(x
′) = μi(x

′′), select j such that μj(x
′) = μj(x

′′) = 1 and do
μj(x

′) ← E(x′, x′′).
11. Delete all constant columns.
12. End.

In the next example, a basis for a given min-indistinguishability operator E
is found using the previous algorithm.

Example 7.23. Let E be the min-indistinguishability operator defined in Ex-
ample 7.20.

1. The maximal columns are the 3rd and 8th ones (printed in boldface), both

of order 2.
2. θ(E) = 2. The upper bound of the dimension is 2.
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3. We select, for example, the 8th column.
4. Build two initialized vectors.
5. List the unrepeated values like in table 7.2.
6. Select the repeated value α1 = 0.10, Xα1 = {x1, x10}. Do the same with

the value α2 = 0.13, Xα2 = {x7, x9}.
7. 8. 9. 10. Since E(x1, x10) = 0.25 �= 0.10, place them in the second column

and do the same with the value α2 = 0.13, because E(x7, x9) = 0.28 �= 0.13
See table 7.3.

Table 7.2

( x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

μ1 1 0.27 0.40 0.35 0.36 0.30 1 1 1 1
μ2 1 0.27 0.40 0.35 0.36 0.30 1 1 1 1

)

Table 7.3

( x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

μ1 0.10 0.27 0.40 0.35 0.36 0.30 0.13 1 0.13 1
μ2 0.25 0.27 0.40 0.35 0.36 0.30 0.28 1 1 1

)

The second algorithm following Proposition 7.22 is:

1. Counter ← 0, |X | = n ← N .
2. Compute the columns’ orders and select the maximal ones.
3. Compute the order θ(E) of E and calculate σ.
4. Select a maximal column μx of E whose order equals the order of E.
5. Counter ← Counter+1 (C = C + 1).
6. If C = 1, then build σ + 1 columns μi of dimension N , initialize them

with 1’s and do μ1(y) = μx(y) for any y ∈ X . Go to 7 otherwise.
7. Select a repeated value α of μx and find the set Xα associated to α.
8. If σ = 1 End.
9. Select the min-indistinguishability operator E′ = E|Xα, do E ← E′,

X ← Xα, N ← |Xα|.
10. If θ(E) = n − 1, then go to 13.
11. Do μC(y) ← μx(y) for any y ∈ X such that μx(y) �= α.
12. For any element x not being selected in 11 do μj(y) ← α for j = 1, 2, ...

until for any pair of elements xr, xs selected in this step there exists a j
with μj(xr) �= μj(xs) and C ≤ j ≤ σ + 1.

13. Select another repeated value and go to 5.
14. End.
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Example 7.24. In this example the algorithm calculates a basis for the min-
indistinguishability operator defined on a set X of cardinality 10 given in
Table 7.4.

Table 7.4 Matrix E

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x1 1 0.10 0.12 0.12 0.11 0.12 0.12 0.10 0.12 0.12
x2 0.10 1 0.10 0.10 0.10 0.10 0.10 0.22 0.10 0.10
x3 0.12 0.10 1 0.36 0.11 0.13 0.23 0.10 0.16 0.19
x4 0.12 0.10 0.36 1 0.11 0.13 0.23 0.10 0.16 0.19
x5 0.11 0.10 0.11 0.11 1 0.11 0.11 0.10 0.11 0.11
x6 0.12 0.10 0.13 0.13 0.11 1 0.13 0.10 0.13 0.13
x7 0.12 0.10 0.23 0.23 0.11 0.13 1 0.10 0.16 0.19
x8 0.10 0.22 0.10 0.10 0.10 0.10 0.10 1 0.10 0.10
x9 0.12 0.10 0.16 0.16 0.11 0.13 0.16 0.10 1 0.16
x10 0.12 0.10 0.19 0.19 0.11 0.13 0.19 0.10 0.16 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The maximal columns are the 3rd and the 4th,both of order 2. θ(E) = 2

and the upper bound to the dimension is also 2.
In this case the algorithm selects the basis of E shown in Table 7.5.

Table 7.5

( x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

μ1 0.12 0.10 0.36 1 0.11 0.13 0.23 0.10 0.16 0.19
μ2 0.12 0.22 0.36 1 0.11 0.13 0.23 1 0.16 0.19

)

Example 7.25. In this example the algorithm produces a set of generators of

cardinality dim(E) + 1. E is given in Table 7.6.

Table 7.6 Matrix E

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x1 1 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
x2 0.10 1 0.10 0.10 0.10 0.18 0.10 0.10 0.10 0.10
x3 0.10 0.10 1 0.17 0.17 0.10 0.17 0.23 0.17 0.23
x4 0.10 0.10 0.17 1 0.17 0.10 0.17 0.17 0.10 0.17
x5 0.10 0.10 0.17 0.17 1 0.10 0.17 0.17 0.10 0.17
x6 0.10 0.18 0.10 0.10 0.10 1 0.10 0.10 0.10 0.10
x7 0.10 0.10 0.17 0.17 0.17 0.10 1 0.17 0.10 0.17
x8 0.10 0.10 0.23 0.17 0.17 0.10 0.17 1 0.10 0.25
x9 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 1 0.10
x10 0.10 0.10 0.23 0.17 0.17 0.10 0.17 0.25 0.10 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The algorithm gives a set of three generators (Table 7.7) while Table 7.8
gives a basis of E.
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Table 7.7 A generating family of E with three fuzzy subsets

⎛

⎝

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

μ1 0.10 0.10 0.23 0.17 0.17 0.10 0.17 0.25 0.10 1
μ2 0.10 0.18 0.23 0.17 0.17 1 1 0.25 0.10 1
μ3 0.10 0.18 0.23 0.17 1 1 1 0.25 1 1

⎞

⎠

Table 7.8 A basis of E

( x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

ν1 1 0.10 0.23 1 0.17 0.10 0.17 0.25 0.10 1
ν2 0.10 0.18 0.23 0.17 1 1 0.17 0.25 0.10 1

)

7.3 One Dimensional Fuzzy Relations

A fuzzy relation E can be an indistinguishability operator for many t-norms.
For instance, if E is such an operator for a given t-norm T , then it trivially
is also a T ′-indistinguishability operator for any t-norm T ′ with T ′ ≤ T . The

dimension of E for different t-norms may vary and hence the number of fuzzy
subsets needed to generate the same operator changes for different t-norms.

The simplest case is when E can be generated by a single fuzzy set. In this
section an algorithm that allows us to decide if a given fuzzy relation is a one

dimensional T -indistinguishability operator for some Archimedean t-norm

and to find all t-norms with this property is provided. The procedure is based

on previous results in this chapter and in the betweenness relations gener-
ated by T -indistinguishability operators when T is a continuous Archimedean
t-norm.

Lemma 7.26. Let T be a continuous Archimedean t-norm and E a T -
indistinguishability operator on a set X. E separates points if and only if
for all x, y ∈ X, x �= y the columns μx and μy of E associated to them are
also different.

Proof.
⇒) 1 = E(x, x) �= E(y, x).
⇐) Let z ∈ X be such that E(x, z) �= E(y, z).
Since

T (E(x, y), E(y, z)) ≤ E(x, z)

and

T (E(x, y), E(x, z)) ≤ E(y, z),

E(x, y) = 1 would imply the equality between E(x, z) and E(y, z).

Lemma 7.27. Let E be a one dimensional T -indistinguishability operator on
set X, {μ} a basis of E and x, y ∈ X. E(x, y) = 1 if and only if μ(x) = μ(y).



138 7 Dimension and Basis

Proof. Trivial.

As it has been seen before, if E is a T -indistinguishability operator on a set

X , then the (crisp) relation on X defined by x ∼ y if and only if E(x, y) = 1
is an equivalence relation and the fuzzy relation E defined on X/ ∼ by
E(x, y) = E(x, y) is a T -indistinguishability operator that separates points.

Proposition 7.28. If E is one-dimensional generated by μ, then E is also
one-dimensional and generated by μ (where μ is defined by μ(x) = μ(x)).

Proof. If E = Eμ, then

E(x, y) = E(x, y) = Eμ(x, y)

= ET (μ(x), μ(y))

= ET (μ(x), μ(y)) = Eμ(x, y).

Due to this proposition we can restrict our study to operators that separate

points.
We will need the following Proposition 7.30 that states that for finite sets

linearity of a betweenness relation can be deduced from only some particular

elements of the betweenness relation.

Lemma 7.29. Let T be a continuous Archimedean t-norm, {μ} a basis of
a one dimensional T -indistinguishability operator E on a set X separating
points with E(x, y) �= 0 for all x, y ∈ X and B the linear betweenness relation
generated on X by E. (x, y, z) ∈ B if and only if μ(x) < μ(y) < μ(z) or
μ(z) < μ(y) < μ(x).

Proof. It is a consequence of Proposition 6.3.

Proposition 7.30. Let X = {x1, x2, ..., xn} be a finite set of cardinality n
and B a betweenness relation on X. If (x1, xi, xi+1) ∈ B for all i = 1, 2, ..., n−
1, then B is the linear betweenness relation

B = {(xi, xj , xk) ∈ X × X × X such that 1 ≤ i < j < k ≤ n

or 1 ≤ k < j < i ≤ n}.

Proof. Thanks to 6.1.2 it is only necessary to prove that (xi, xj , xk) ∈ B
when 1 ≤ i < j < k ≤ n. It will be done by induction on n.

If n ≤ 3, then the result is trivial.
Let us assume that the result is true for all sets of cardinality n − 1.
If B′ is the restriction of B to X − {xn}, then B′ is a linear betweenness

relation and therefore (xi, xj , xk) ∈ B when 1 ≤ i < j < k ≤ n − 1. It only
remains to prove that (xi, xj , xn) ∈ B if 1 ≤ i < j < n − 1.

Case a: i = 1.
If j = n− 1, then (x1, xn−1, xn) ∈ B since it is assumed in the hypothesis.
If j �= n − 1, then (x1, xj , xn−1) ∈ B′ ⊆ B and (x1, xn−1, xn) ∈ B.
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From 6.1.4 it follows that (x1, xj , xn) ∈ B.
Case b: i �= 1.
(x1, xi, xj) ∈ B′ ⊆ B and (x1, xj , xn) ∈ B as it is proved in Case a. From

6.1.4 it follows that (xi, xj , xn) ∈ B.

Proposition 7.31. Let T be a continuous Archimedean t-norm, E a one-
dimensional T -indistinguishability operator separating points on a finite set
X with E(x, y) �= 0 ∀x, y ∈ X and a, b a pair of elements of X such that
E(a, b) = min {E(x, y), x, y ∈ X}. Then

1. The pair (a, b) is unique.
2. The columns of a and b are basis of E.

Proof

1. Since E is one dimensional it is generated by a fuzzy subset μ. Let a, b ∈ X
be such that μ(a) = min{μ(x) | x ∈ X} and μ(b) = max{μ(x) | x ∈ X}. a
and b are unique because μ is a one to one map.

Let x, y ∈ X with x �= y and x, y �= a, b. Without loss of generality we

can assume that μ(x) > μ(y).

E(a, b) = ET (μ(a), μ(b)) =
−→
T (μ(b)|μ(a))

<
−→
T (μ(x)|μ(y)) = E(x, y).

2. a. μa generates E: Let μ be a basis of E and x ∈ X .

μa(x) = E(a, x) = Eμ(a, x)

= ET (μ(a), μ(x) =
−→
T (μ(x)|μ(a)).

Let x, y ∈ X , x �= y. We can assume without loss of generality that

μ(x) > μ(y).

Eμa
(x, y) = ET (μa(x), μa(y))

= ET (
−→
T (μ(y)|μ(a)),

−→
T (μ(x)|μ(a)))

=
−→
T (

−→
T (μ(y)|μ(a)),

−→
T (μ(x)|μ(a)))

=
−→
T (μ(x)|μ(y)) = Eμ(x, y) = E(x, y).

b. μb generates E: Let μ be a basis of E and x ∈ X .

μb(x) = E(b, x) = Eμ(b, x)

= ET (μ(b), μ(x) =
−→
T (μ(b)|μ(x)).

Let x, y ∈ X , x �= y. We can assume without loss of generality that

μ(x) > μ(y).
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Eμb
(x, y) = ET (μb(x), μb(y))

= ET (
−→
T (μ(b)|μ(x)),

−→
T (μ(b)|μ(y)))

=
−→
T (

−→
T (μ(b)|μ(x)),

−→
T (μ(b)|μ(y)))

=
−→
T (μ(x)|μ(y)) = Eμ(x, y) = E(x, y).

Proposition 7.32. Using the previous notations, let us order the elements
of X = {x1, x2, ..., xn} in such a way that x1 = a, xn = b and E(x1, xi) <
E(x1, xj) if and only if i > j. Then the betweenness relation B generated by
E in X is

(xi, xj , xk) ∈ B if and only if i < j < k or i > j > k.

Corollary 7.33. With the previous notations the following equalities hold.

T (E(xi, xj), E(xj , xk)) = E(xi, xk) i < j < k.

Note that if t is an additive generator of T and since E(x, y) �= 0 ∀x, y ∈ X ,
the preceding equalities are equivalent to

t(E(xi, xj)) + t(E(xj , xk)) = t(E(xi, xk)) i < j < k.

From Proposition 7.30 all these
(
n
3

)
equalities must be the consequence of the

n − 2 equalities

t(E(x1, xi)) + t(E(xi, xi+1)) = t(E(x1, xi+1)) i = 2, 3, ..., n − 1. (∗)

This means that all the entries of E are determined by E(x1, xi) and

E(xi, xi+1) i = 2, 3, ..., n − 1. Putting these ideas together, we obtain an
algorithm to decide when a given reflexive and symmetric fuzzy relation on a

finite set X of cardinality n with E(x, y) �= 0 ∀x, y ∈ X is a one-dimensional
T -indistinguishability operator for some continuous Archimedean t-norm T .
The algorithm also finds all continuous Archimedean t-norms with this
property.

1. Order the elements of X as in Proposition 7.32.
2. Define, if possible, a function

t : P = {E(x1, xi) such that i ∈ {2, 3, ..., n − 1}} ∪ {E(xi, xi+1)

such that i ∈ {2, 3, ..., n − 1}} → R+

such that ∀m, n ∈ P m < n ⇒ t(m) > t(n) and satisfying (*).
(If E is one-dimensional for some continuous Archimedean t-norm T ,

this is always possible following this order of assignment: t(E(x1, x2)),
t(E(x2, x3)), t(E(x1, x3)), t(E(x3, x4)), t(E(x1, x4)), .... If no such t exists,
then E is not one-dimensional for any continuous Archimedean t-norm T .)
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3. Extend t to Q = {E(xi, xj) such that 1 ≤ i < j ≤ n} applying Proposition
7.30 and Corollary 7.33.

4. If ∀m, n ∈ B m < n ⇒ t(m) > t(n), then E is one dimensional with
respect to any t-norm T having an additive generator interpolating the

images of Q. In any other case, E is not one-dimensional for any continuous

Archimedean t-norm.

Example 7.34. We will apply the preceding algorithm to the relation E on
the set X = {a, b, c, d, e} given by the following matrix:

⎛

⎜⎜⎜⎜⎝

a b c d e

a 1 0.87 0.77 0.54 0.49
b 0.87 1 0.9 0.67 0.62.
c 0.77 0.9 1 0.77 0.72

d 0.54 0.67 0.77 1 0.95
e 0.49 0.62 0.72 0.95 1

⎞

⎟⎟⎟⎟⎠
.

min {E(x, y), x, y ∈ X} = E(a, e) = 0.49.
Step 1. We order the elements of X in the following way:

a < b < c < d < e.

Step 2.

t(E(a, b)) = t(0, 87) = 10

t(E(b, c)) = t(0.9) = 5

t(E(a, c)) = t(0.77) = 10 + 5 = 15

t(E(c, d)) = t(0.77) = 15

t(E(a, d)) = t(0.54) = 15 + 15 = 30

t(E(d, e)) = t(0.95) = 2

t(E(a, e)) = t(0.49) = 30 + 2 = 32.

Step 3.

t(E(b, d)) = t(0.67) = t(E(b, c)) + t(E(c, d)) = 5 + 15 = 20

t(E(c, e)) = t(0, 72) = t(E(c, d)) + t(E(d, e)) = 15 + 2 = 17

t(E(b, e)) = t(0.62) = t(E(b, c) + t(E(c, e)) = 5 + 17 = 22.

Every decreasing map t : [0, 1] → [0,∞] that interpolates the preceding values

with t(1) = 0 is an additive generator of a continuous Archimedean t-norm

for which E is one-dimensional (see Figure 7.3).
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Fig. 7.3 Points to be interpolated by t in Example 7.34

It is quite obvious that every reflexive and symmetric fuzzy relation R on a

finite set X with R(x, y) �= 1 ∀x, y ∈ X with x �= y is an indistinguishability
operator for a suitable (maybe very small) continuous Archimedean t-norm.
Nevertheless, not all such fuzzy relations can be viewed as one dimensional
for every set of cardinality greater than 2.

Proposition 7.35. A reflexive and symmetric fuzzy relation R on a set X =
{a, b, c} of cardinality 3 is a one-dimensional indistinguishability operator that
separates points for some continuous Archimedean t-norm T if and only if
the minimum of R(a, b), R(b, c), R(a, c) is attained by only one of them.

Proof
⇒) Proposition 7.31.1.
⇐) We can assume without loss of generality that

R(a, c) < R(b, c) ≤ R(a, b).

In this case, we can assign arbitrary values

t(R(b, c)) > t(R(a, b)) if R(b, c) < R(a, b)

or

t(R((b, c)) = t(R(a, b)) if R(b, c) = R(a, b),

and define

t(R(a, c)) = t(R(a, b)) + t(R(b, c)).

Corollary 7.36. On every set X of cardinality greater than 2 there are re-
flexive and symmetric fuzzy relations R with R(x, y) �= 0 ∀x, y ∈ X that
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are not one-dimensional indistinguishability operators for any continuous
Archimedean t-norm.

Proof. It suffices to choose a relation R on X that restricted to a subset of

X of cardinality 3 does not satisfy the conditions of Proposition 7.35.

7.4 Approximating T -Indistinguishability Operators by
One Dimensional Ones

In this section, using some ideas of T.L. Saaty [124] a method to generate a

one dimensional T -indistinguishability operator close to a given one will be

provided.

Definition 7.37. An n × n real matrix A with entries aij > 0 1 ≤ i, j ≤ n
is reciprocal if and only if aij = 1

aji
∀i, j = 1, 2, ..., n. A reciprocal matrix is

consistent if and only if aik = aij · ajk ∀i, j = 1, 2, ..., n

In the sequel we will consider A as a map A : X × X → R+ with X =
{x1, x2, ..., xn} and aij = A(xi, xj).

Consistent reciprocal matrices are characterized by the following theorem.

Theorem 7.38. [124] An n × n real matrix A is reciprocal and consistent if
and only if there exists a fuzzy subset μ of X such that

aij =
μ(xi)

μ(xj)
∀i, j = 1, 2, ..., n.

The fuzzy subset μ will be called a generator of A and sometimes we will
write Aμ to stress this fact.

Reciprocal consistent matrices generate betweenness relations.

Proposition 7.39. Let A be a reciprocal consistent matrix on X with aij �= 1
if i �= j. A generates the following betweenness relation BA on X.

(xi, xj , xk) ∈ BA if and only if aik = aij · ajk and i �= j �= k �= i.

Proposition 7.40. Let Aμ be the reciprocal consistent matrix generated by
the fuzzy subset μ of X and Eμ the T -indistinguishability operator on X
generated by μ for T the product t-norm. The betweenness relations generated
by Aμ and by Eμ coincide. (i.e. BAµ

= BEµ
).

Proof. Let us order the elements of X in the following way: xi ≤ xj if and

only if μ(xi) ≤ μ(xj). Then

(xi, xj , xk) ∈ BEµ
⇔ E(xi, xj) · E(xj , xk) = E(xi, xk)

⇔ μ(xi)

μ(xj)
· μ(xj)

μ(xk)
=

μ(xi)

μ(xk)
⇔ aij · ajk = aik

⇔ (xi, xj , xk) ∈ BAµ
.
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For a given reciprocal matrix A, T.L Saaty obtains a consistent matrix A′

close to A. A′ is generated by an eigenvector associated to the greatest eigen-
value of A and fulfills the following properties.

• If A is already consistent, then A = A′.
• If A is a reciprocal positive matrix, then the sum of its eigenvalues is n.
• If A is consistent, then there exist a unique eigenvalue λmax = n different

from zero.
• Slight modifications of the entries of A produce slight changes to the entries

of A′.

If a T -indistinguishability operator is close to a one dimensional one, then it
almost generates a linear betweenness relation (the fuzzy betweenness relation
that generates is close to a crisp linear one (see Section 6.6 of Chapter6). This
suggests the following definition.

Definition 7.41. Let T be the Product t-norm. Given ǫ ∈ [0, 1], a T -indis-
tinguishability operator E is ǫ-one dimensional if and only if there exists a
total ordering ≤E in X such that for all x, y, z ∈ X with x ≤E y ≤E z the
following inequality holds.

|E(x, y) · E(y, z) − E(x, z)| < ǫ.

If E is an ǫ-one dimensional T -indistinguishability operator (T the Product t-
norm) defined on a set X of cardinality n and x1 ≤E x2 ≤E ... ≤E xn the total
ordering on X determined by E, then the following definition provides a useful
relation between reciprocal matrices and T -indistinguishability operators.

Definition 7.42. The matrix A defined by

A(xi, xj) =

{
E(xi, xj) if i ≤ j

1
E(xi,xj)

otherwise

will be called the ǫ-consistent reciprocal matrix associated to E.

Then in order to obtain a one dimensional T -indistinguishability operator E′

close to a given one E (T the Product t-norm), the following procedure can
be used:

• Find an ǫ > 0 for which E is ǫ-one dimensional.
• Calculate the ǫ-consistent reciprocal matrix A associated to E.
• Find an eigenvector μ of the greatest eigenvalue of A.
• E′ = Eμ.

Example 7.43. Let T be the Product t-norm and E the T -indistinguishability
operator on a set X of cardinality 5 given by the following matrix.
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E =

⎛

⎜⎜⎜⎜⎝

1 0.74 0.67 0.50 0.41
0.74 1 0.87 0.65 0.53
0.67 0.87 1 0.74 0.60
0.50 0.65 0.74 1 0.80
0.41 0.53 0.60 0.80 1

⎞

⎟⎟⎟⎟⎠
.

It is easy to verify that E is 0.1-one dimensional. Its associated 0.1-consistent

reciprocal matrix A is

A =

⎛

⎜⎜⎜⎜⎝

1 1.3514 1.4925 2.0000 2.4390
0.7400 1 1.1494 1.5385 1.8868

0.6700 0.8700 1 1.3514 1.6667

0.5000 0.6500 0.7400 1 1.2500
0.4100 0.5300 0.6000 0.8000 1

⎞

⎟⎟⎟⎟⎠
.

Its greatest eigenvalue is 5.0003 and an eigenvector for 5.0003 is

μ = (1, 0.76, 0.67, 0.50, 0.40).

This fuzzy set generates Eμ which is a one dimensional T -indistinguishability
operator close to E.

Eμ =

⎛

⎜⎜⎜⎜⎝

1 0.76 0.67 0.50 0.40
0.76 1 0.88 0.66 0.53
0.67 0.88 1 0.74 0.60
0.50 0.66 0.74 1 0.81
0.40 0.53 0.60 0.81 1

⎞

⎟⎟⎟⎟⎠
.

The results of this section can be easily generalized to continuous strict
Archimedean t-norms.

If T ′ is a continuous strict Archimedean t-norm, then it is isomorphic to the

Product t-norm T . Let f be this isomorphism. If E is a T ′-indistinguishability
operator, then f ◦ E is a T -indistinguishability operator. If f ◦ E is ǫ-one

dimensional, then we can find E′ one dimensional close to f ◦ E as before.
Since isomorphisms between continuous t-norms are continuous and preserve

dimensions, f−1 ◦ E′ is a one dimensional T ′-indistinguishability operator

close to E.
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Aggregation of Indistinguishability
Operators

In many situations, there can be more than one indistinguishability operator

or, more generally, a T -transitive relation defined on a universe. Let us sup-
pose, for example that we have a set of instances defined by some features.
We can generate an indistinguishability operator or a fuzzy preorder from

each feature. Also, we can have some prototypes, and again we can define

a relation from each of them in our universe. In these cases we may need

to aggregate the relations obtained. This is usually done by calculating their
minimum (or infimum). Although this has a very clear interpretation in fuzzy
logic since the infimum is used to model the universal fuzzy quantifier ∀, it
often leads to undesirable results in applications because the minimum has

a drastic effect. If, for example, two objects of our universe are very similar

or indistinguishable for all but one indistinguishability operator but are very
different for this particular operator, then the application of the minimum

will give this last measure all others will be forgotten. This can be reasonable
and useful if we need a perfect matching with respect to all of our relations,
but this is not the case in many situations. When we need to take all relations

into account in a less dramatic way, we need other ways of aggregating them.
Since if R and S are T -transitive fuzzy relations with respect to a t-norm T
then T (R, S) is also a T -transitive fuzzy relation, it seems at first glance that

this could be a good way to aggregate them. Nevertheless, if we aggregate in
this way, we obtain relations with very low values. In the case of non-strict
Archimedean t-norms, it is even worse, since in many cases almost all of the

values of the obtained relation are equal to zero. Therefore, other ways need

to be found.
In this chapter, quasi-arithmetic means and a special type of OWA op-

erators ([140], [142]) are used. Means and OWA operators can be thought

of as fuzzy quantifiers between the universal ∀ and the existential ∃ ones

([90]), and they can use all the values of our relations in order to obtain their
aggregation.

Section 8.1 will present maps that preserve transitivity in order to be

able to aggregate transitive relations. Section 8.2 will focus on the use of

J. Recasens: Indistinguishability Operator, STUDFUZZ 260, pp. 147–161.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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quasi-arithmetic means to aggregate transitive relations. If t is an additive

generator of a continuous Archimedean t-norm T , then the quasi-arithmetic
mean of a T -transitive fuzzy relation with respect to the mean generated by
t is also a T -transitive relation and does not depend on the selection of the

generator t. This gives reasonable results, since the values of the obtained

relations are a compromise between the values of the given ones and the

mean is closely related to the t-norm used to model the transitivity.
Using these results, given a T -transitive fuzzy relation R three families

((Rλ)λ∈[0,1], (λR)λ∈[0,1]) and (Rλ)λ∈[0,1]) will be generated using the mean
generated by t that will allow us to modify the values of R going from the

smallest fuzzy relation to the largest one depending on the value of the pa-
rameter λ.

One interesting apect of aggregation using quasi-arithmetic means is that

we can aggregate crisp relations and obtain fuzzy ones. This was first done

by Bezdek and Harris in [10],[54], who obtained indistinguishability operators

with respect to the �Lukasiewicz t-norm from crisp equivalence relations using

their weighted arithmetic means.
Section 8.3 will present another group of aggregation operators, sub addi-

tive OWA operators, for T -transitive fuzzy relations, when T is continuous

Archimedean, which are independent of the additive generator t of T . In ad-
dition to their usefulness and popularity, these operators offer an interesting

means of aggregation due to the relationship between OWA operators and

quantifiers ([142]). Thanks to this we will have a nice semantic interpretation
of the aggregation of T -transitive fuzzy relations using OWA operators.

In Section 8.4, the results will be extended to aggregate a non-finite family
of transitive relations. The obtained results will be applied to calculate the

degree of inclusion and similarity of fuzzy quantities (fuzzy subsets of an
interval of the real line).

8.1 Aggregating T -Transitive Fuzzy Relations

The most common way to aggregate a family of T -transitive fuzzy relations

is calculating their infimum, which also is a T -transitive relation (Proposi-
tion 2.12). This means that a couple (x, y) are related with respect to this
relation if and only if they are related with respect to all the relations of the

family since the infimum is used to model the universal quantifier ∀ in fuzzy
logic [54].

Nevertheless, in many situations this way of aggregating fuzzy relations

leads to undesirable results since the Infimum only takes the smaller value

for every couple into account and forgets or loses the information of the other

values.
A possibility to soften the previous proposition is replacing the Infimum

by the t-norm T as the following proposition shows.
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Proposition 8.1. Let R1, R2, ...Rn be n T -transitive fuzzy relations on a set
X. The relation R defined for all x, y ∈ X by

R(x, y) = T (R1(x, y), R2(x, y), ..., Rn(x, y))

is a T -transitive fuzzy relation on X.

Proof. ∀i = 1, 2, ..., n, T (Ri(x, y), Ri(y, z)) ≤ Ri(x, z).
Since T is non decreasing in both variables,

T (T (R1(x, y), R1(y, z)), T (R2(x, y), R2(y, z)), ..., T (Rn(x, y), Rn(y, z)))

≤ T (R1(x, z), R2(x, z), ..., Rn(x, z))

and due to the associativity and commutativity of T ,

T (T (R1(x, y), R2(x, y), ..., Rn(x, y)), T (R1(y, z), R2(y, z), ...Rn(y, z)))

≤ T (R1(x, z), R2(x, z), ..., Rn(x, z)).

If T is assumed to model the ’and’ connective, instead of using the fuzzy
quantifier ∀ (i.e. taking the infimum) we are saying that two elements x and

y are related by R if and only if they are related by R1 and R2... and Rn.
This way to aggregate relations has some advantages with respect to using

the minimum or infimum. For example, if we want to aggregate two relations

and one is twice as important as the other, we can count the most important

twice. But on the other hand, it can produce relations with very small values

and if the t-norm is non-strict Archimedean most of them will probably be 0.
So, more general ways to aggregate transitive relations are needed.

Definition 8.2. [113] Given a family T = (Ti)i=1,2,...,n of t-norms and a t-
norm T , a function f : [0, 1]n → [0, 1] is an operator that aggregates transitive
fuzzy relations with respect to T and T when, for any non-empty set X and
any arbitrary collection (Ri)i=1,2,...,n of fuzzy relations on X with Ri Ti-
transitive for all i = 1, 2, ..., n, the fuzzy relation R = f(R1, R2, ..., Rn) on X
is T -transitive.

Proposition 8.3 shows that in the continuous Archimedean case f can be

written in the form f = t[−1] ◦ s ◦ (t1 × t2 × ... × tn) with s : (R+)n
→ R+

a sub-additive map while Proposition 8.4 gives a sufficient condition for an
operator f to aggregate transitive relations. They generalize the results of

[113] (see also Proposition 4.5).

Proposition 8.3. Let f : [0, 1]n → [0, 1] be an operator that aggregates tran-
sitive fuzzy relations with respect to T = (Ti)i=1,2,...,n and T where T and the
members of T are continuous Archimedean t-norms with generators t, t1, ..., tn
respectively. Then f = t[−1] ◦ s ◦ (t1 × t2 × ... × tn) with s : (R+)n

→ R+ a
sub-additive map.
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Proof. The proof is very similar to the proof of Proposition 4.5.
For any transitive fuzzy relation Ri with respect to Ti, let Ri(x, y) = ai,

Ri(y, z) = bi and Ri(x, z) = ci and t(ai) = ui, t(bi) = vi, t(ci) = wi. Since f
aggregates transitive fuzzy relations,

T (f(a1, a2, ..., an), f(b1, b2, ..., bn)) ≤ f(c1, c2, ..., cn)

or

t(f(a1, a2, ..., an)) + t(f(b1, b2, ..., bn)) ≥ t(f(c1, c2, ..., cn))

and

t(f(t
[−1]
1 (u1), t

[−1]
2 (u2), ..., t

[−1]
n (un))) + t(f(t

[−1]
1 (v1), t

[−1]
2 (v2), ..., t

[−1]
n (vn)))

≥ t(f(t
[−1]
1 (w1), t

[−1]
2 (w2), ..., t

[−1]
n (wn))).

Putting s = t ◦ f ◦ (t
[−1]
1 × t

[−1]
2 × ... × t

[−1]
n ), s is sub-additive and f =

t[−1] ◦ s ◦ (t1 × t2 × ... × tn).

Proposition 8.4. Let f : [0, 1]n → [0, 1] be a map and T, T1, T2, ..., Tn con-
tinuous Archimedean t-norms with additive generators t, t1, t2, ..., tn respec-
tively. If there exists a non decreasing sub-additive map s : (R+)n

→ R+ such
that f = t[−1] ◦ s ◦ (t1 × t2 × ... × tn), then f aggregates transitive relations.

Proof. The proof is very similar to the proof of Proposition 4.5.

Corollary 8.5. [113] Let f : [0, 1]n → [0, 1] be a map and T, T1, T2, ..., Tn

continuous Archimedean t-norms with additive generators t, t1, t2, ..., tn re-
spectively. If there exists a metric transform s : (R+)n

→ R+ such that
f = t[−1] ◦ s ◦ (t1 × t2 × ... × tn), then f aggregates indistinguishability oper-
ators and fuzzy preorders.

Proof. Since s is a metric transform, reflexivity is also assured and symmetry
is trivially preserved.

As it is pointed out in [113],[114], this way to aggregate relations is not

canonical, in the sense that it depends in general on the particular selection of

the additive generators of the t-norms. This means that aggregating the same

relations using the same sub-additive map s we can obtain different results,
which does not seem a very intuitive property for aggregating relations. Let

us investigate when the obtained relation does not depend on the selection of

the generator (i.e. it is canonical) in the case when all the t-norms coincide.

Proposition 8.6. Let f = t[−1] ◦s◦ (t× t× ...× t) be a map that aggregates n
T -transitive relations (s : (R+)n

→ R+). f does not depend on the particular

generator t of T if and only if ∀α > 0 and ∀ →
x∈ (R+)n s(α

→
x) = αs(

→
x ).
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Proof
⇒)
Two additive generators t and t′ of T differ by a positive multiplicative

constant α. Therefore t′(x) = αt(x) and t′[−1](x) = t[−1]( y
α ).

Let (x1, x2, ..., xn) ∈ [0, 1]n

If t[−1](s(t(x1), t(x2), ..., t(xn))) = t[−1]( s(α(t(x1),t(x2),...,t(xn))
α ), then

αs((t(x1), t(x2), ..., t(xn))) = s(αt((t(x1), t(x2), ..., t(xn)))

and putting (t(x1), t(x2), ..., t(xn)) =
→
y ,

αs(
→
y ) = s(α

→
y ) ∀α > 0, ∀ →

y∈ [0, t(0)]n.

Since for every (x1, x2, ..., xn) ∈ (R+)n we can find a generator t with t(0) >

xi i = 1, 2, ..., n, s(α
→
x) = αs(

→
x ) in all (R+)n.

⇐ )
Trivial.

Corollary 8.7. Let f = t[−1] ◦ s ◦ (t × t × ... × t) be a map that aggregates
n T -transitive relations (s : (R+)n

→ R+) with s a linear map. Then f does
not depend on the particular generator t of T .

For n = 1 we get the following result.

Corollary 8.8. The only canonical preserving transitivity operators are the
automorphisms of the continuous Archimedean t-norm T .

Proof. If n = 1 in the last proposition, then s is a linear map s(x) = αx and

f = t[−1]αt. (cf. Propositions 4.5 and 4.10).

Finally, the operators aggregating min-transitive fuzzy relations are non de-
creasing maps.

Proposition 8.9. [113], [114] A map f : [0, 1]n → [0, 1] aggregates min-
transitive fuzzy relations if and only if f is a non decreasing map.

8.2 Aggregating T -Transitive Fuzzy Relations Using
Quasi-arithmetic Means

From Corollary 8.7 an operator f : [0, 1]n → [0, 1] preserving T -transitivity of

the form f = t[−1] ◦ s ◦ t with s a linear map is canonical. If s(x1, x2, ...xn) =
p1x1 + p2x2 + ... + pnxn then f has the form

f(x1, x2, ..., xn)= t[−1](p1t(x1)+p2t(x2)+...+pnt(xn))) with p1, p2, ..., pn > 0.

If we take s(x1, x2, ..., xn) = x1+x2+...+xn (i.e.: pi = 1 for all i = 1, 2, ..., n),
then we aggregate using the t-norm T and recover Proposition 8.1.
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Taking s(x1, x2, ..., xn) = (x1 + x2 + ... + xn)/n (i.e.: pi = 1/n for all
i = 1, 2, ..., n), then we get arithmetic means, and choosing s(x1, x2, ..., xn) =
p1x1 + p2x2 + ... + pnxn with

∑n
i=1 pi = 1 we obtain weighted means.

So means are canonical operators preserving T -transitivity and from a

family of relations they give as a result a relation with values between the

greatest and the lowest ones of the family. Therefore they seem a good way
to aggregate T -transitive relations.

Since the additive generator of a continuous Archimedean t-norm is a

decreasing map t : [0, 1] → R, this gives a way to generate a quasi-arithmetic
mean mt associated to a continuous Archimedean t-norm. Next we will show
that this gives is a natural bijection between continuous Archimedean t-norms

and quasi-arithmetic means.

Lemma 8.10. Let t, t′ : [0, 1] → R be two continuous strict monotonic maps
differing only by an additive constant. Then mt = mt′ .

Proof. If t′ = t + a, then

mt′(x, y) = t′−1(
t′(x) + t′(y)

2
)

= t−1(
t(x) + a + t(y) + a

2
− a)

= t−1(
t(x) + t(y)

2
) = mt(x, y).

Lemma 8.11. Let t : [0, 1] → R be a continuous strict monotonic map. Then
mt = m−t.

Proof

m−t(x, y) = (−t)−1(
(−t)(x) + (−t)(y)

2
)

= t−1(−−t(x) − t(y)

2
)

= t−1(
t(x) + t(y)

2
) = mt(x, y).

Lemma 8.12. Let t : [0, 1] → R be a continuous strict monotonic map and
α > 0. Then mt = mαt.

Proof

mαt(x, y) = (αt)−1(
(αt)(x) + (αt)(y)

2
)

= t−1(
αt(x) + αt(y)

2α
)

= t−1(
t(x) + t(y)

2
) = mt(x, y).
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As a consequence of these three lemmas the following result follows

Proposition 8.13. The map assigning to every continuous Archimedean t-
norm T with additive generator t the quasi-arithmetic mean mt generated by
t is a canonical bijection between the set of continuous Archimedean t-norms
and continuous quasi-arithmetic means.

It is straightforward to extend the previous proposition to more than two
variables and to weighted quasi-arithmetic means.

Weighted quasi-arithmetic means are defined in the following way.

Definition 8.14. Let p1, p2, ..., pn be positive numbers such that
∑n

i=1 pi =
1. pi are called weights. The quasi-arithmetic mean of x1, x2, ..., xn ∈ [0, 1]
with weights p1, p2, ..., pn generated by t, a continuous strict monotonic map
t : [0, 1] → [−∞,∞], is

mt(x, y) = t−1

(∑n
i=1 pi · t(xi)

n

)
.

By the use of weighted quasi-arithmetic means, if we have two (or more)
T -transitive fuzzy relations R and S, we can create families of T -transitive

fuzzy relations depending on one or more parameters allowing us to go from

R to S. This gives interesting results if one of them is a crisp special one. We

will study the cases when one of them is the crisp equality Id, the smallest
relation 0 with all entries equal to 0 or the greatest one 1 with all entries
equal to 1 in our universe. This means to consider the following families
(Rλ)λ∈[0,1], (λR)λ∈[0,1] and (Rλ)λ∈[0,1] for a given T -transitive fuzzy relation
R on a set X :

Definition 8.15. Let R be a T -transitive fuzzy relation on a set X with T
a continuous Archimedean t-norm and t an additive generator of T . The
families (Rλ)λ∈[0,1], (λR)λ∈[0,1] and (Rλ)λ∈[0,1] are defined by

Rλ = t[−1](λt(R) + (1 − λ)t(Id))
λR = t[−1](λt(R) + (1 − λ)t(0))

Rλ = t[−1](λt(R) + (1 − λ)t(1)) = t[−1](λt(R)).

a) (Rλ)λ∈[0,1] goes from R when λ = 1 to 1 when λ = 0.
b) (Rλ)λ∈[0,1] goes from R when λ = 1 to Id when λ = 0 if T is a non-

strict Archimedean t-norm. If T is strict, then Rλ(x, y) = 0 if x �= y and

Rλ(x, x) = t−1(λt(R(x, x)) ∀λ ∈ [0, 1) and we define R1 = R.
c) If T is non-strict, then (λR)λ∈[0,1] goes from R when λ = 1 to 0 when

λ = 0. If T is strict, then λR = 0 ∀λ ∈ [0, 1) and we define 1R = R.
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Example 8.16. a) If R is a fuzzy relation transitive with respect to the

�Lukasiewicz t-norm, then

Rλ(x, y) =

{
λR(x, y) if x �= y
λR(x, y) + 1 − λ if x = y.

Rλ(x, y) = λR(x, y) + 1 − λ
λR(x, y) = λR(x, y).

b) If R is a fuzzy relation transitive with respect to the Product t-norm, then

Rλ(x, y) = (R(x, y))λ.

These families can be combined to obtain (Rλ,μ,ρ)λ,μ,ρ∈[0,1]:

Rλ,μ,ρ = t[−1]((1 − λ − μ − ρ)t(R) + λt(Id) + μt(0) + ρt(1))

Example 8.17. If R is a fuzzy relation transitive with respect to the

�Lukasiewicz t-norm T , then

Rλ,μ,ρ =

{
(1 − λ − μ − ρ)R(x, y) + ρ if x �= y
(1 − λ − μ − ρ)R(x, y) + ρ + λ if x = y.

For λ = 0 we obtain that a linear change of a T -transitive relation R → αR+β
with α + β = 1 produces a T -transitive relation.

If R is a one dimensional T -indistinguishability operator or fuzzy T -preorder,
we obtain the following results.

Proposition 8.18. Let Pμ be the one dimensional fuzzy T -preorder on a set
X with T the Product t-norm generated by the fuzzy subset μ of X. Then
(Pμ)λ = Pμλ (i.e.: (Pμ)λ is the one dimensional fuzzy T -preorder generated
by the fuzzy subset μλ of X).

Proof

(Pμ)λ(x, y) = (Pμ(x, y))λ = min(1,
μ(y)

μ(x)
)λ

= min(1,
μ(y)λ

μ(x)λ
) = Pμλ(x, y).

Similarly,

Proposition 8.19. Let Eμ be the one dimensional fuzzy T -
indistinguishability operator on a set X with T the Product t-norm
generated by the fuzzy subset μ of X. Then (Eμ)λ = Eμλ (i.e.: (Eμ)λ is the
one dimensional fuzzy T -indistinguishability operator generated by μλ).
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Proof

(Eμ)λ(x, y) = Eμ(x, y)λ = min(
μ(x)

μ(y)
,
μ(y)

μ(x)
)λ

= min(
μ(x)λ

μ(y)λ
,
μ(y)λ

μ(x)λ
) = Eμλ(x, y).

It is worth noticing that there are no similar results to the two previous ones

for non-strict continuous Archimedean t-norms.
Aggregating using quasi-arithmetic means and weighted means allow us

to obtain fuzzy relations from crisp ones. This was first done by Bezdek and

Harris, who calculated the weighted arithmetic means of crisp equivalence

relations in order to obtain hard partitions [10]. Their results can be reinter-
preted in this more general framework and extended so that transitive crisp
relations can be aggregated in order to obtain T -transitive relations with
respect to general non-strict continuous Archimedean t-norms.

8.3 Aggregating T -Transitive Fuzzy Relations Using
OWA Operators

OWA operators were introduced by Yager ([140]) and have been used in
many applications where there is a need to joint the information contained

in more than one fuzzy set. There are in general operators related to the

weighted arithmetic mean and therefore to the �Lukasiewicz t-norm, but as

we will see in this section, the same idea can be generalized to any continuous

Archimedean t-norm.
OWA operators are very interesting non linear solutions of the functional

equation αs(
→
x ) = s(α

→
x). Therefore, thanks to Proposition 8.6 some of them

could be suitable to aggregate T -transitive fuzzy relations (for T a continuous

Archimedean t-norm) since the result would be independent of the generator

of the t-norm used (i.e. they could generate canonical aggregation operators).
Actually, we will prove that sub-additive OWA operators are.

Definition 8.20. An OWA operator is a mapping s : Rn
→ R that has

associated a vector of weights (p1, p2, ..., pn) such that pi ∈ [0, 1] ∀i = 1, 2, ..., n
and

∑n
i=1 pi = 1 where s(x1, x2, ..., xn) =

∑n
i=1 pix(i) where x(i) is the ith

largest of the xi.

Not all OWA operator will aggregate T -transitive fuzzy relations since as

proved in Proposition 8.3 they have to be sub-additive maps. Since OWA
operators are non decreasing maps, thanks to Proposition 8.4 this will be a

sufficient condition as well.

Proposition 8.21. Let s : Rn
→ R be the OWA operator with weights

(p1, p2, ..., pn). s is a sub-additive map if and only if pi ≥ pj for i < j.
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Proof
⇒) Let us fix i < n. For every a and b with a > b we can consider the

vectors
→
x= (x1, x2, ..., xn) and

→
y = (y1, y2, ..., yn) defined by

x1 = x2 = ... = xi = a, xi+1 = ... = xn = b

and

y1 = y2 = ... = yi−1 = a, yi = b, yi+1 = a, yi+2, = ... = yn = b.

s(
→
x +

→
y ) and s(

→
x)+s(

→
y ) differ only in the ith and the (i+1)th coordinates.

The difference is

(a + b)pi + (a + b)pi+1 − 2api + 2bpi+1.

If s is sub-additive, then

(a + b)pi + (a + b)pi+1 ≤ 2api + 2bpi+1 ∀a > b

Putting c = a − b, this is equivalent to

2bpi + cpi + 2bpi+1 + cpi+1 ≤ 2bpi + 2cpi + 2bpi+1

which is satisfied if and only if pi ≥ pi+1.
⇐) Trivial.

As a corollary we obtain the following proposition which characterizes the

operators that aggregate T -transitive relations generated by OWA operators:

Proposition 8.22. Let s : Rn
→ R be the OWA operator with weights

(p1, p2, ..., pn) and t an additive generator of a continuous Archimedean t-
norm T . f = t[−1] ◦ s ◦ t aggregates T -transitive fuzzy relations if and only if
pi ≥ pj for i < j.

It is interesting to note that since t is a decreasing map, we are giving more

importance to small values and in this sense they are aggregations softening

the aggregation using the minimum. In fact, the minimum is achieved taking

p1 = 1 and pi = 0 ∀i = 2, ..., n and this gives an alternative proof to the fact

that the minimum of T -transitive relations is also a T -transitive relation.

Example 8.23. Let us consider the two T -indistinguishability operators E1

and E2 on X = {x, y, z} (T the �Lukasiewicz t-norm) defined by the following

matrices:

E1 =

⎛

⎝

x y z

x 1 0.2 0.8
y 0.2 1 0.4
z 0.8 0.4 1

⎞

⎠
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E2 =

⎛

⎝

x y z

x 1 0.6 0.4
y 0.6 1 0.8
z 0.4 0.8 1

⎞

⎠

If we consider the OWA operator with parameters p1 = 3/4 and p2 = 1/4,
we obtain the T -indistinguishability operator E with matrix

E =

⎛

⎝
1 0.3 0.5

0.3 1 0.5
0.5 0.5 1

⎞

⎠ .

The arithmetic mean of E1 and E2 is

m(E1, E2) =

⎛

⎝
1 0.4 0.6

0.4 1 0.6
0.6 0.6 1

⎞

⎠ ,

the minimum is

min(E1, E2) =

⎛

⎝
1 0.2 0.4

0.2 1 0.4
0.4 0.4 1

⎞

⎠

and the aggregation using T is

T (E1, E2) =

⎛

⎝
1 0 0.2
0 1 0.2

0.2 0.2 1

⎞

⎠ .

8.4 Aggregating a Non-finite Number of T -Transitive
Fuzzy Relations

In some cases we have to aggregate a non-finite number of relations. Suppose

that we have a family of T -transitive relations (Ri)i∈[a,b] on a set X with the

indices in the interval [a, b] of the real line and that for every couple (x, y)
of X the map f(x,y) : [a, b] → R defined by f(x,y)(i) = Ri(x, y) is integrable
in some sense. Then we can replace the map s used to aggregate the fuzzy
relation in the finite case by a map related to the integration of the family.

Definition 8.24. With the previous notations, the aggregation of the family
(Ri)i∈[a,b] with respect to a continuous Archimedean t-norm T with additive
generator t is the fuzzy relation R defined for all x, y ∈ X by

R(x, y) = t[−1](

∫ b

a

t(Ri(x, y))di)

Proposition 8.25. This definition is independent of the generator of T .
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Proof. If t′ = αt is another additive generator of T , then

t′[−1](

∫ b

a

t′(Ri(x, y))di)

= t[−1](

∫ b

a αt(Ri(x, y))di

α
)

= t[−1](

∫ b

a

t(Ri(x, y))di).

Definition 8.24 is the continuous version of Proposition 8.1 and it allow us to
aggregate continuous families of T -transitive fuzzy relations using the given
t-norm T . With more reason than in the finite case, we will obtain very low
values for R(x, y) in general and if the t-norm is non-strict, then it is most

likely that most of them be zero. Therefore, we need to find an aggregation
generalizing the quasi-arithmetic mean of the finite case:

Definition 8.26. With the previous notations, the mean aggregation of the
family (Ri)i∈[a,b] with respect to T is the fuzzy relation R defined for all
x, y ∈ X by

R(x, y) = t[−1](
1

b − a

∫ b

a

t(Ri(x, y))di)

This definition is also independent of the generator of T , thanks to the lin-
earity of integration.

Probably the most important necessity of aggregating a non finite family of

fuzzy relations is when we need to compare two fuzzy subsets μ and ν of our

universe X (i.e.: calculating their degree of similarity or indistinguishability
or calculating the degree in which one is contained in the other.)

Again, one of the most popular ways is to compare μ(x) and ν(x) for all

x ∈ X using ET or
−→
T and then taking the infimum of all the results.

Definition 8.27. Let μ, ν be two fuzzy subsets of a set X and T a t-norm.
The degree of similarity ET (μ, ν) between μ and ν is defined by

ET (μ, ν) = inf
x∈X

ET (μ(x), ν(x)).

(cf. Definition 3.79).

This definition fuzzifies the crisp equality between two subsets A and B
of X :

A = B if and only if ∀x ∈ X x ∈ A ⇔ x ∈ B.

Definition 8.28. Let μ, ν be two fuzzy subsets of a set X. The degree of
inclusion PT (μ, ν) of μ into ν is defined by
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PT (μ, ν) = inf
x∈X

−→
T (μ(x), ν(x)).

This definition fuzzifies the inclusion of a crisp subset A into a crisp subset

B of X :
A ⊆ B if and only if ∀x ∈ X x ∈ A ⇒ x ∈ B.

Lemma 8.29. Given a t-norm T and an element x of a set X, the relation
P x

T defined on the set of fuzzy subsets of X by

P x
T (μ, ν) =

−→
T (μ(x)|ν(x)).

is a T -preorder.

Corollary 8.30. Given a t-norm T and a set X, the relation PT defined on
the set of fuzzy subsets of X is a T -preorder.

Both definitions suffer from the drastic effect of the infimum. For example,
if we have two fuzzy subsets μ, ν of a set X with μ(x) = ν(x) for all x ∈ X
except for a value x0 for which μ(x0) = 1 and ν(x0) = 0, then ET (μ, ν) = 0
and PT (μ, ν) = 0 which means that both subsets are considered completely
different or dissimilar and that μ can not be seen contained in ν at any
degree. An average of the values obtained for every x ∈ X seems a suitable
alternative.

Definition 8.31. Let μ, ν be two integrable fuzzy subsets of an interval [a, b]
of the real line. The averaging degree of similarity or indistinguishability
EA

T (μ, ν) between μ and ν with respect to a continuous Archimedean t-norm
T with additive generator t is defined by

EA
T (μ, ν) = t[−1]

(
1

b − a

∫ b

a

t(ET (μ(x), ν(x)))dx

)
.

Proposition 8.32. The fuzzy relation EA
T defined on the set of integrable

fuzzy subsets FI[a,b]of an interval [a, b] of the real line is a T -indistinguish-
ability operator and does not depend on the selection of the additive generator
t of the t-norm.

Proof. It is trivial to prove that EA
T is a reflexive and symmetric fuzzy

relation.
Let us prove that it is T -transitive.
Let μ, ν, ρ ∈ FI[a,b].

T (EA
T (μ, ρ), EA

T (ρ, ν)

= t[−1](t ◦ t[−1](
1

b − a

∫ b

a

t(ET (μ(x), ρ(x)))dx)

+ t ◦ t[−1](
1

b − a

∫ b

a

t(ET (ρ(x), ν(x)))dx))
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= t[−1](
1

b − a

∫ b

a

t(ET (μ(x), ρ(x)))dx +
1

b − a

∫ b

a

t(E(ρ(x), ν(x)))dx)

= t[−1](
1

b − a

∫ b

a

(t(ET (μ(x), ρ(x))) + t(ET (ρ(x), ν(x))))dx).

t(ET (μ(x), ρ(x))) + t(ET (ρ(x), ν(x))) ≥ t(ET (μ(x), ν(x))) ∀x ∈ X

and therefore

∫ b

a

(t(ET (μ(x), ρ(x))) + t(ET (ρ(x), ν(x))))dx ≥
∫ b

a

(t(ET (μ(x), ν(x))))dx

So, since t[−1] is a non increasing map, we get

T (EA
T (μ, ρ), EA

T (ρ, ν) ≤ EA
T (μ, ν).

Definition 8.33. Let μ, ν be two integrable fuzzy subsets of an interval [a, b]
of the real line. The averaging degree of inclusion PA

T (μ, ν) of μ into ν is
defined by

PA
T (μ, ν) = t[−1]

(
1

b − a

∫ b

a

t(P x
T (μ, ν))dx

)
.

or equivalently

PA
T (μ, ν) = t[−1]

(
1

b − a

∫ b

a

t(
−→
T (μ(x)|ν(x)))dx

)
.

Proposition 8.34. The fuzzy relation PA
T defined on the set of integrable

fuzzy subsets of an interval [a, b] of the real line is a fuzzy T -preorder and
does not depend on the selection of the additive generator t of the t-norm.

With these definitions, the degrees of indistinguishability and inclusion of the

two fuzzy subsets after Corollary 8.30 are 1, which is a very intuitive result.

Example 8.35. Let us consider the two fuzzy subsets μ and ν of the interval
[0, 2] defined by μ(x) = 1/2 and ν(x) = x/2 ∀x ∈ [0, 2]. Let Tα be the

Yager family of t-norms (Tα(x, y) = 1 − min(1, (1 − x)α + (1 − y)α)
1
α and

tα(x) = (1 − x)α a generator of Tα with α ∈ (0,∞)).
a) −→

T α(x|y) = min(1 − ((1 − y)α − (1 − x)α)
1
α , 1)

which implies that

P x
Tα

(μ, ν)) = min(1 − ((1 − ν(x))α − (1 − μ(x))α)
1
α ), 1)

=

{
1 if x > 1

1 − ((1 − x
2 )α − (1

2 )α)
1
α if x ≤ 1.
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and therefore

PA
T (μ, ν) = t[−1](

1

2
(

∫ 1

0

((1 − x

2
)α − (

1

2
)α)dx) +

∫ 2

1

t(1)dx))

= t−1(− (1
2 )α+1

α + 1
− (

1

2
)α+1 +

1

α + 1
)

= 1 − (− (1
2 )α+1

α + 1
− (

1

2
)α+1 +

1

α + 1
)

1
α .

b)

ETα
(x, y) = 1 − |(1 − y)α − (1 − x)α| 1

α

which implies that

Ex
Tα

(μ, ν)) = 1 − |(1 − ν(x))α − (1 − μ(x))α| 1
α

=

{
1 − ((1

2 )α − 1 − x
2 )α)

1
α if x > 1

1 − ((1 − x
2 )α − (1

2 )α)
1
α if x ≤ 1.

and therefore

EA
Tα

(μ, ν) = t[−1](
1

2
(

∫ 1

0

((1 − x

2
)α − (

1

2
)α)dx) +

∫ 2

1

((
1

2
)α − (1 − x

2
)α)dx))

= t−1(
1 − (1

2 )α

α + 1
) = 1 − (

1 − (1
2 )α

α + 1
)

1
α .

If α = 1, then Tα is the �Lukasiewicz t-norm T and in this case the previous

formulas give PA
T (μ, ν) = 7/8 and EA

T (μ, ν) = 3/4 whereas using the infimum

to aggregate we obtain PT (μ, ν) = ET (μ, ν) = 1/2.
It is interesting to notice that when α → ∞ then the Yager family tends

to the minimum t-norm. If we calculate the limits of PA
T (μ, ν) and EA

T (μ, ν)
when α → ∞ we obtain limα→∞ PA

T (μ, ν) = limα→∞ EA
T (μ, ν) = 0 which

coincide with Pmin(μ, ν) and Emin(μ, ν).
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Making Proximities Transitive

A proximity matrix or relation on a finite universe X is a reflexive and sym-
metric fuzzy relation R on X . In many applications, for coherence-imposition
or knowledge-learning reasons, transitivity of R with respect to a t-norm

T is required. T -transitive approximation methods for proximities are es-
pecially useful in many artificial intelligence areas such as fuzzy cluster-
ing [98], non-monotonic reasoning [24], fuzzy database modelling [86] [128],
decision-making and approximate reasoning [27] applications. In these cases,
R must be replaced by a new relation E that also satisfies transitivity, i.e.
T -indistinguishability operators. Of course, it is desirable that E be as close

as possible to R. This chapter presents three reasonable -i.e. easy and rapid-
ways to find close transitive relations to R when the t-norm is continuous

Archimedean,as well as a fourth method for the minimum t-norm.
There are, of course, several ways to calculate the closeness of two fuzzy

relations, many of them related to some metric. In this chapter, we propose a

way that is related to the natural indistinguishability operator ET associated

with T , such that the degree of closeness or similarity between two fuzzy re-
lations R and S is calculated by aggregating the similarity of their respective

entries using the quasi-arithmetic mean generated by an additive generator

of T .
In addition, the Euclidean metric will be used as an alternative method to

compare fuzzy relations.
Trying to find the closest E to R can be very expensive. Indeed, if n is the

cardinality of the universe X , the transitivity of T -indistinguishability oper-
ators can be modelled by 3 ·

(
n
3

)
inequalities, and they lie in the region of the(

n
2

)
-dimensional space defined by them. The calculation of E becomes, then,

a non-linear programming problem. For the �Lukasiewicz t-norm, and using

the Euclidean distance to compare fuzzy relations, the problem is a classical
quadratic non-linear programming one, and standard methods can be used

to solve it. Also, for the Product t-norm, standard non-linear programming

algorithms can be used [5]. For other Archimedean t-norms or distances, in

J. Recasens: Indistinguishability Operator, STUDFUZZ 260, pp. 163–176.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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order to measure the similarity between fuzzy relations, simpler methods are

required to find an E that is close to R.
Usually, the proximity relation R is approximated by its transitive closure

R, by one of its transitive openings, or by using the Representation Theorem

to obtain, in this case, a T -indistinguishability operator R smaller than or

equal to R. All of the values of the transitive closure are greater than or

equal to the corresponding values of R, while all of the values of the transitive

openings and R are smaller than or equal to the corresponding values of R.
Methods for finding T -indistinguishability operators with some values greater

and some values smaller than those of R will generate better approximations

of R.
It appears reasonable to aggregate R and a transitive opening B or R to

obtain a new T -indistinguishability operator closer to R than R, B or R.
Section 9.1 will explore this idea.

If E is a T -indistinguishability operator, then the powers E(p) p > 0 of E
with respect to the t-norm T are T -indistinguishability operators as well (see
Section 9.2 for the definition of E(p)). This allows us to increase or decrease

the values of E, since E(p) ≤ E(q) for p ≥ q. So, we can decrease the values

of the transitive closure or increase the values of an operator smaller than R
to find better approximations of it. Section 9.2 is devoted to this idea.

In Section 9.3, non linear programming techniques are applied to find the

closest T -indistinguishability operator to a given proximity with respect to
the Euclidean distance for the Product and the �Lukasiewicz t-norms.

The methods used for Archimedean t-norms cannot be applied to the min-
imum t-norm. Section 9.4 provides an easy algorithm for computing better

approximations of a fuzzy relation by a min-indistinguishability operator than
its transitive closure or its transitive openings.

9.1 Aggregating the T -Transitive Closure and a
T -Indistinguishability Operator Smaller Than or
Equal to R

Given a proximity relation R on X , if T -transitivity is required, it is necessary
to replace it by a T -indistinguishability operator E. In this case, we want to
find E as close as possible to R, where the closeness or similarity between
fuzzy relations can be defined in many different ways.

Let X be a finite set of cardinality n. Ordering its elements linearly, we can
view the fuzzy subsets of X as vectors: X = {x1, ..., xn} and a fuzzy set μ is
the vector (μ(x1), ..., μ(xn)). A proximity relation R on X can be represented

by a matrix (also called R) determined by the
(
n
2

)
entries rij 1 ≤ i < j ≤ n

of R above the diagonal.

Proposition 9.1. Let E = (eij)i,j=1,...,n be a proximity matrix on a set X of
cardinality n and T a continuous Archimedean t-norm with additive generator
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t. E is a T -indistinguishability operator if and only if for all i, j, k 1 ≤ i <
j < k ≤ n

t(eij) + t(ejk) ≥ t(eik)

t(eij) + t(eik) ≥ t(ejk)

t(eik) + t(ejk) ≥ t(eij).

Given a proximity matrix R, we must then search for (one of) the closest

matrices E to R satisfying the last 3 ·
(
n
3

)
inequalities, which is a non-linear

programming problem. This is a hard problem in general though for the

�Lukasiewicz and the Product t-norms and the Euclidean distance well known
algorithms can be applied (see Section 9.3).

In this and the next sections we propose alternative methods to obtain
not the best but reasonably good approximations of proximity relations by
T -indistinguishability operators when T is a continuous Archimedean t-norm.

Given a continuous monotonic map t : [0, 1] → [−∞,∞] and p, q positive

integers with p + q = 1, the weighted quasi-arithmetic mean mp,q
t generated

by t and with weights p and q of x, y ∈ [0, 1] is

mp,q
t (x, y) = t−1 (p · t(x) + q · t(y)) .

In Chapter 8 it has been proved that if E, E′ are T -indistinguishability oper-
ators for T a continuous Archimedean t-norm with additive generator t, and

mp,q
t the weighted quasi-arithmetic mean generated by t, then mp,q

t (E, E′)
is a T -indistinguishability operator. Thanks to this result, given a prox-
imity matrix R we can calculate its transitive closure R and a smaller T -
indistinguishability operator than R, for example R obtained by its columns

using the Representation Theorem and find the weights p, 1−p to obtain the

closest average of R and R to R.
The similarity between two fuzzy relations on X will be calculated in the

following way.

Definition 9.2. Let T be a continuous Archimedean t-norm with additive
generator t and R, S two fuzzy relations on a finite set X of cardinal-
ity n. The degree DS(R, S) of similarity or closeness between R and S is
defined by

DS(R, S) = t−1

(∑
1≤i,j≤n |t(rij) − t(sij)|

n2

)
.

Proposition 9.3. DS is a T -indistinguishability operator on the set of fuzzy
relations on X.

Corollary 9.4. Let R = (rij) be a proximity matrix on a finite set X of
cardinality n, T a continuous Archimedean t-norm with additive generator t,
R = (ri,j) its transitive closure, R = (rij) the T -indistinguishability op-
erator obtained from R with the Representation Theorem, p ∈ [0, 1] and
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mp,1−p
t (R, R) the T -indistinguishability operator quasi-arithmetic mean of R

and R with weights p and 1 − p. Then

DS(R, mp,1−p
t (R, R)) =

t−1

(∑
1≤i,j≤n

∣∣p · t(rij) + (1 − p) · t(rij) − t(rij)
∣∣

n2

)
.

We are looking for the value or values of p that maximize the last equality.
Since t−1 is a decreasing map, this is equivalent to minimize

∑

1≤i,j≤n

∣∣p · t(rij) + (1 − p) · t(rij) − t(rij)
∣∣

and, since R is reflexive and symmetric, is equivalent to minimize

f(p) =
∑

1≤i<j≤n

∣∣p · t(rij) + (1 − p) · t(rij) − t(rij)
∣∣

Since each summand of f is a concave function, so is f . Since furthermore

f is piecewise linear, its set of minima consists of a single point or a closed

interval.

Proposition 9.5. The computation of the T -indistinguishability operator
mp,q

t (R, R) with maximum DS(R, mp,q
t (R, R)) can be done taking O(n3) time

complexity.

Proof. The computation of R and R can be done in O(n3) complexity time

[101].
The addition (aggregation of distances) takes O(n2) time complexity.
The minimization of f(p) takes at most O(n2) time complexity.
So the most complex part of this process is the computation of R and R,

which still takes O(n3) complexity time.

Example 9.6. Let X be a set of cardinality 7 and R the proximity relation
given by

R =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0.3 0.3 0.1 0.3 0.4
1 1 0.6 0.4 0.5 0.4 0.2
0.3 0.6 1 0.1 0.3 0.2 0.5
0.3 0.4 0.1 1 1 1 1
0.1 0.5 0.3 1 1 1 1
0.3 0.4 0.2 1 1 1 1
0.4 0.2 0.5 1 1 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then, for T the �Lukasiewicz t-norm,
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R =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0.6 0.4 0.5 0.4 0.4
1 1 0.6 0.5 0.5 0.5 0.5
0.6 0.6 1 0.5 0.5 0.5 0.5
0.4 0.5 0.5 1 1 1 1
0.5 0.5 0.5 1 1 1 1
0.4 0.5 0.5 1 1 1 1
0.4 0.5 0.5 1 1 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

R =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0.6 0.3 0.1 0.1 0.1 0.1
0.6 1 0.3 0.2 0.1 0.2 0.2
0.3 0.3 1 0.1 0.1 0.1 0.1
0.1 0.2 0.1 1 0.8 0.9 0.6
0.1 0.1 0.1 0.8 1 0.8 0.7
0.1 0.2 0.1 0.9 0.8 1 0.7
0.1 0.2 0.1 0.6 0.7 0.7 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

f(p) = |0.4p| + |0.3p − 0.3| + |0.3p − 0.1| + |0.4p − 0.4|
+ |0.3p − 0.1| + |0.3p| + |0.3p| + |0.3p − 0.1| + |0.4p| + |0.3p − 0.1|
+ |0.3p − 0.3| + |0.4p − 0.4| + |0.4p − 0.2| + |0.4p − 0.3| + |0.4p|
+ |0.2p| + |0.1p| + |0.4p| + |0.2p| + |0.3p| + |0.3p|

which attains its minimum for p = 1
3 .

A good T -transitive approximation of R (for T the �Lukasiewicz t-norm) is
then

m
1
3

, 2
3

t (R, R) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0.733 0.4 0.2 0.233 0.2 0.2
0.733 1 0.4 0.3 0.233 0.3 0.3
0.4 0.4 1 0.233 0.233 0.233 0.233
0.2 0.3 0.233 1 0.867 0.933 0.733
0.233 0.233 0.233 0.867 1 0.867 0.8
0.2 0.3 0.233 0.933 0.867 1 0.8
0.2 0.3 0.233 0.733 0.8 0.8 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The degree of closeness between two fuzzy relations can also be calculated

using the Euclidean distance.

Definition 9.7. Let R = (rij) and S = (sij) be two fuzzy relations on a finite
set X of cardinality n. The Euclidean distance D between R and S is

D(R, S) =

⎛

⎝
∑

1≤i,j≤n

(rij − sij)
2

⎞

⎠

1
2

Proposition 9.8. Let R = (rij) be a proximity matrix on a finite set
X of cardinality n, T a continuous Archimedean t-norm with additive
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generator t, R = (ri,j) its transitive closure, R = (rij) the T -
indistinguishability operator obtained from R with the Representation The-
orem, p ∈ [0, 1] and mp,1−p

t (R, R) the T -indistinguishability operator quasi-
arithmetic mean of R and R with weights p and 1 − p. Then

D(R, mp,1−p
t (R, R)) =

⎛

⎝
∑

1≤i,j≤n

(
t−1

(
p · t (rij) + (1 − p) · t

(
rij

))
− t(rij)

)2
⎞

⎠

1
2

.

Proposition 9.9. Let T be the �Lukasiewicz t-norm and R a proximity on a
set X of cardinality n. The closest mp,1−p

t (R, R) to R is attained for

p =

∑
1≤i<j≤n

(
rij − rij

) (
rij − rij

)

∑
1≤i<j≤n

(
rij − rij

)2

Proof. Due to symmetry and reflexivity, it is enough to minimize

f(p) =
∑

1≤i<j≤n

(
p
(
rij − rij

)
+ rij − rij

)2
.

f ′(p) = 2
∑

1≤i<j≤n

(
p
(
rij − rij

)
+ rij − rij

) (
rij − rij

)
= 0

and

p =

∑
1≤i<j≤n

(
rij − rij

) (
rij − rij

)

∑
1≤i<j≤n

(
rij − rij

)2 .

Example 9.10. Let X be a set of cardinality 4 and R the proximity relation
on X given by

R =

⎛

⎜⎜⎝

1 0.8 0.2 0.4
0.8 1 0.7 0.1
0.2 0.7 1 0.6
0.4 0.1 0.6 1

⎞

⎟⎟⎠ .

If T is the �Lukasiewicz t-norm, the closest T -indistinguishability operator of

the type mp,1−p
t (R, R) (with respect to the Euclidean distance) is attained

for p = 0.6388889.
A good T -approximation of R is then

⎛

⎜⎜⎝

1 0.6917 0.3917 0.3639
0.6917 1 0.5917 0.2278

0.3917 0.5917 1 0.5278

0.3639 0.2278 0.5278 1

⎞

⎟⎟⎠ .
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9.2 Applying a Homotecy to a T -Indistinguishability
Operator

In this section, the fact that the power of a T -indistinguishability operator

in the sense of Definition 9.13 is again a T -indistinguishability operator will
be exploited to modify the entries of R or R to find a better approximation
of R.

Definition 9.11. Given a t-norm T , T (

n times︷ ︸︸ ︷
x, x, ...x) -the n-th power of x- will

be denoted by x
(n)
T or simply by x(n) if the t-norm is clear.

The n-th root x
( 1

n
)

T of x with respect to T is defined by

x
( 1

n
)

T = sup{z ∈ [0, 1] | z
(n)
T ≤ x}

and for m, n ∈ N, x
( m

n
)

T =
(
x

( 1
n

)

T

)(m)

T
.

Lemma 9.12. [83] If k, m, n ∈ N, k, n �= 0 then x
( km

kn
)

T = x
( m

n
)

T .

The powers x
( m

n
)

T can be extended to irrational exponents in a straightforward

way.

Definition 9.13. If r ∈ R+ is a positive real number, let {an}n∈N be a se-
quence of rational numbers with limn→∞ an = r. For any x ∈ [0, 1], the power

x
(r)
T is

x
(r)
T = lim

n→∞
x

(an)
T .

Continuity assures the existence of the last limit and independence of the

sequence {an}n∈N.

Proposition 9.14. Let T be a continuous Archimedean t-norm with additive
generator t, x ∈ [0, 1] and r ∈ R+. Then

x
(r)
T = t[−1](rt(x)).

Proof. Due to the continuity of t we need to prove it only for rational r.

If r is a natural number m, then trivially x
(m)
T = t[−1](mt(x)).

If r = 1
n with n ∈ N, then x

( 1
n

)

T = z with z
(n)
T = x or t[−1](nt(z)) = x and

x
( 1

n
)

T = t[−1]
(

t(x)
n

)
.

For a rational number m
n ,

x
( m

n
)

T =
(
x

( 1
n

)

T

)(m)

T
= t[−1]

(m

n
t(x)

)
.
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Proposition 9.15. Let T be a continuous t-norm, E a T -indistinguishability
operator on X and p > 0. Then E(p) is a T -indistinguishability operator.

Proof

• If n ∈ N, then E(n) is a T -indistinguishability operator as a consequence

of Proposition 8.1.
• If n ∈ N, then E( 1

n
) is a T -indistinguishability operator:

Reflexivity ans symmetry are trivial.
Transitivity: If E( 1

n
) = F , then F (n) = E. Since E is a T -indistinguish-

ability operator, ∀x, y, z ∈ X

F (n)(x, z) ≤ T (F (n)(x, y), F (n)(y, z)) = (T (F (x, y), F (y, z)))(n).

(F (n)(x, z))(
1
n

) ≤ ((T (F (x, y), F (y, z)))(n))(
1
n

)

and from Lemma 9.12

F (x, z) ≤ T (F (x, y), F (y, z)).

• If m, n ∈ N, then E( m
n

) is a T -indistinguishability operator: Indeed,
E( m

n
) = (E( 1

n
))(m).

• Continuity assures the result for any positive real number p.

We will say that E(p) is obtained from E by a homotecy of power p.

Example 9.16

• If T is a continuous Archimedean t-norm with additive generator t and E
a T -indistinguishability operator, then t[−1] (p · t(E)) is a T -indistinguish-
ability operator.

• If T is the �Lukasiewicz t-norm and E a T -indistinguishability operator,
then max(0, 1 − p + p · E) is a T -indistinguishability operator.

• If T is the Product t-norm and E a T -indistinguishability operator, then
Ep is a T -indistinguishability operator.

Let R = (rij) be a proximity matrix on a set X of cardinality X , p > 0
and E = (eij) a T -indistinguishability operator on X with T a continuous

Archimedean t-norm with additive generator t. Then

DS(R, E(p)) = t−1

(∑
1≤i,j≤n |t(rij) − p · t(eij))|

n2

)
.

To maximize the previous expression is equivalent to minimize

∑

1≤i,j≤n

|t(rij) − p · t(eij))| .
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Since R is reflexive and symmetric, this is equivalent to minimize

g(p) =
∑

1≤i<j≤n

|t(rij) − p · t(eij))| .

g is a sum of concave functions in [0, 1] and therefore has one minimum or a

close interval of minima.

Example 9.17. Let us consider the same matrix of Example 9.10.

R =

⎛

⎜⎜⎝

1 0.8 0.2 0.4
0.8 1 0.7 0.1
0.2 0.7 1 0.6
0.4 0.1 0.6 1

⎞

⎟⎟⎠ .

Then, for T the �Lukasiewicz t-norm,

R =

⎛

⎜⎜⎝

1 0.5 0.2 0.3
0.5 1 0.4 0.1
0.2 0.4 1 0.4
0.3 0.1 0.4 1

⎞

⎟⎟⎠ .

g(p) = |0.5 · p − 0.2| + |0.8 · p − 0.8| + |0.7 · p − 0.6|+
|0.6 · p − 0.3| + |0.9 · p − 0.9| + |0.6 · p − 0.4|

which attains its minimum for p = 0.857.
A good approximation of R is then

R(0.857) =

⎛

⎜⎜⎝

1 0.5715 0.3144 0.4001
0.5715 1 0.4858 0.2287

0.3144 0.4858 1 0.4858

0.4001 0.2287 0.4858 1

⎞

⎟⎟⎠ .

If we consider the Euclidean distance between R and the power E(p) of a

T -indistinguishability operator E = (eij), then we can prove the following

result.

Proposition 9.18

D(R, E(p)) =

⎛

⎝
∑

1≤i,j≤n

(
t−1 (p · t (eij)) − rij

)2
⎞

⎠

1
2

.

Example 9.19 Continuing the last example, D(R, R
(p)

) attains its maximum

for p = 1.208633 and D(R, R(p)) for p = 0.821306.
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Good approximations of R are therefore

R
(1.208633)

=

⎛

⎜⎜⎝

1 0.7583 0.3957 0.2748

0.7583 1 0.6374 0.1540
0.3957 0.6374 1 0.5165
0.2748 0.1540 0.5165 1

⎞

⎟⎟⎠ .

and

R(0.821306) =

⎛

⎜⎜⎝

1 0.8357 0.5893 0.5072

0.8357 1 0.7536 0.4251
0.5893 0.7536 1 0.6715
0.5072 0.4251 0.6715 1

⎞

⎟⎟⎠ .

9.3 Using Non-linear Programming Techniques

As it was shown previously, trying to find the best approximation to a given
proximity relation becomes a non-linear programming problem.

The inequalities of Proposition 9.1 are especially simple for the �Lukasiewicz
and the Product t-norms. This will allow us to find the best approximation
of a given proximity for these two t-norms with respect to the Euclidean
distance.

Proposition 9.20. Let E = (eij)i,j=1,...,n be a proximity matrix on a set
X of cardinality n. E is a T -indistinguishability operator where T is the
�Lukasiewicz t-norm if and only if for all i, j, k 1 ≤ i < j < k ≤ n

eij + ejk − eik ≤ 1

eij + eik − ejk ≤ 1

eik + ejk − eij ≤ 1.

Proposition 9.21. Let E = (eij)i,j=1,...,n be a proximity matrix on a set X
of cardinality n. E is a T -indistinguishability operator where T is the Product
t-norm if and only if for all i, j, k 1 ≤ i < j < k ≤ n

eij · ejk ≤ eik

eij · eik ≤ ejk

eik · ejk ≤ eij .

Let R = (rij)i,j=1,...,n be a proximity relation on a set X of cardinality n.
If we want to find the best approximation of R by a T -indistinguishability
operator E = (eij)i,j=1,...,n with respect to the Euclidean distance we must

minimize

D(R, E) =

√∑

i<j

(eij − rij)2.
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This is equivalent to minimize

f(R, E) =
∑

i<j

(eij − rij)
2

where eij i, j = 1, ..., n are subject to the conditions of Proposition 9.1.

Proposition 9.22. Let R = (rij)i,j=1,...,n be a proximity relation on a set X
of cardinality n. The closest T -indistinguishability operator to R with respect
to the Euclidean distance when T is the �Lukasiewicz t-norm is the solution
of minimizing

f(R, E) =
∑

i<j

(eij − rij)
2

where eij i, j = 1, ..., n are subject to the linear inequalities of Proposition
9.20.

This is a standard quadratic linear problem and there are some algorithms

to solve it [5].

Example 9.23. Let us consider the matrix

R =

⎛

⎜⎜⎝

1 0.8 0.2 0.4
0.8 1 0.7 0.1
0.2 0.7 1 0.6
0.4 0.1 0.6 1

⎞

⎟⎟⎠

of Example 9.10. The closest E = (eij)i,j=1,...,4 must minimize

f(R, E) = (eij − 0.8)2 + (eij − 0.2)2 + (eij − 0.4)2+

(eij − 0.7)2 + (eij − 0.1)2 + (eij − 0.6)2

subject to the conditions of Proposition 9.20.
The matrix E is

E =

⎛

⎜⎜⎝

1 0.65 0.225 0.4
0.65 1 0.575 0.225
0.225 0.575 1 0.575
0.4 0.225 0.575 1

⎞

⎟⎟⎠ .

The distance between E and R is 0.234521, the distance between R and

mt(R, R) with p = 0.638889 (Example 9.10) is 0.288194, the distance be-
tween R and the best homotecy of its transitive closure is 0.263665 and the

distance between R and the best homotecy of the relation obtained by the

Representation Theorem is 0.527253 (Example 9.19).

A similar result to Proposition 9.22 can be obtained for the Product t-norm.

Proposition 9.24. Let R = (rij)i,j=1,...,n be a proximity relation on a set X
of cardinality n. The closest T -indistinguishability operator to R with respect
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to the Euclidean distance when T is the Product t-norm is the solution of
minimizing

f(R, E) =
∑

i<j

(eij − rij)
2

where eij i, j = 1, ..., n are subject to the inequalities of Proposition 9.21.

9.4 The Minimum t-Norm

In this section we present a simple algorithm to find a min-indistinguishability
operator close to a given proximity relation which is closer than its transitive

closure or any of its transitive openings.
Let us recall from Chapter 5 that if E is a min-indistinguishability operator

on a finite universe X of cardinality n, then the number of different entries
of the matrix representing E is smaller than or equal to n.

The algorithm to approximate proximities by min-indistinguishability op-
erators is based on the following result.

Proposition 9.25. Let E be a min-indistinguishability operator on a finite
universe X of cardinality n and a1 < a2 < ... < ak = 1 (k ≤ n) the entries of
E. If we replace the entries by a′

1 ≤ a′
2 ≤ ... ≤ a′

k = 1 respectively, we obtain
a new min-indistinguishability operator on X.

Proof. Reflexivity and symmetry are trivial.
Transitivity: if min(ai, aj) ≤ ak, then min(a′

i, a
′
j) ≤ a′

k.

The idea for finding a similarity relation close to a given proximity R is then
very easy. We can calculate the min-transitive closure R of R and then we

can modify the entries of R in order to minimize some distance to R or to
maximize some similarity measure to R. Of course, we can calculate a transi-
tive opening or the similarity relation obtained from R by the Representation
Theorem instead of the transitive closure.

Nevertheless, the procedure is not straightforward as it is shown in the

following two examples.

Example 9.26. Let us consider the proximity with matrix

R =

⎛

⎜⎜⎝

1 0.7 0.3 1
0.7 1 0.4 0.7
0.3 0.4 1 0.8
1 0.7 0.8 1

⎞

⎟⎟⎠ .

Its min-transitive closure is

R =

⎛

⎜⎜⎝

1 0.7 0.8 1
0.7 1 0.7 0.7
0.8 0.7 1 0.8
1 0.7 0.8 1

⎞

⎟⎟⎠ .
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If we replace the entries with values 0.7 and 0.8 of R by a and b respectively in
order to minimize the Euclidean distance D between R and the new matrix,
we must minimize

f(a, b) = (a − 0.7)2 + (a − 0.4)2 + (a − 0.7)2

+ (b − 0.8)2 + (b − 0.3)2.

∂f

∂a
= 2(a − 0.7) + 2(a − 0.4) + 2(a − 0.7) = 0

∂f

∂b
= 2(b − 0.8) + 2(b − 0.3) = 0

and

a =
0.7 + 0.7 + 0.4

3
= 0.6

b =
0.8 + 0.3

2
= 0.55

obtaining ⎛

⎜⎜⎝

1 0.6 0.55 1
0.6 1 0.6 0.6
0.55 0.6 1 0.55
1 0.6 0.55 1

⎞

⎟⎟⎠

which is not min-transitive and therefore not a min-indistinguishability
operator.

The same problem may occur with approximations from below.
A possible solution in these cases is replacing the ”wrongly ordered” entries

by a unified value. For instance, in Example 9.26 the entries 0.6 and 0.55 can
be replaced by 3·0.6+2·0.55

5 = 0.58. Note that, thanks to the next lemma,
among all possible values 0.58 is the one who minimizes the distance between
the obtained matrix and R.

Lemma 9.27. Let P = (x1, x2, ..., xn) ∈ Rn. The closest point Q to P
with respect to the Euclidean distance of the form (a, a, ..., a) satisfies a =
x1+x2+...+xn

n .

Proof. We want to minimize d(P, Q) =

√
(a − x1)2 + (a − x2)2 + ... + (a − xn)2

which is equivalent to minimize

f(a) = (a − x1)
2 + (a − x2)

2 + ... + (a − xn)2.
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The solution of

f ′(a) = 2(a − x1) + 2(a − x2) + ... + 2(a − xn) = 0

is

a =
x1 + x2 + ... + xn

n
.

The algorithm to find a close min-indistinguishability operator to a given
proximity relation R on a universe of cardinality n goes then as follows.

1. Calculate the min-transitivity closure R or a lower approximation of R.
2. Order the entries a1 < a2 < ... < ak = 1 (k ≤ n) of R.
3. Replace every ai by the weighted arithmetic mean a′

i of the entries of R
that are in the same place than ai.

4. If a′
1 ≤ a′

2 ≤ ... ≤ a′
k = 1, then the desired similarity relation E is

obtained by replacing the entries a1, a2, ..., ak of R by a′
1 ≤ a′

2 ≤ ... ≤ a′
k

respectively.
5. Else, for every maximal chain C = {a′

i, a
′
i+1, ..., a

′
i+j} with a′

i > a′
i+j ,

replace all the elements of C by the weighted mean aC of them, weighting

every a′
l of C by the number of entries of R that correspond a′

l. Replacing

the elements of C by aC in E the desired min-indistinguishability operator

is obtained.
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Fuzzy Functions

Fuzzy functions fuzzify the concept of a function between two universes. They
have been used in various fields, including vague algebras [37], fuzzy numbers

[71], vague lattices and quantum mechanics, and have proven useful to the

understanding of approximate reasoning [38], the analysis of input/output

systems, fuzzy interpolation [38], [14] and reasoning based on fuzzy rules [80].
When fuzzy functions are used, it is assumed that the uncertainty (or

fuzziness) of the domain and the image appears or is modelled by a fuzzy
equivalence relation or indistinguishability operator. The presence of an in-
distinguishability operator on a universe determines its granules, and fuzzy
functions are compatible with the granularity of the domain and the image

in the sense that, roughly speaking, they map granules to granules.
Extensional crisp functions generate fuzzy functions in a very natural way

and, reciprocally, crisp functions can be generated from a fuzzy function. This
aspect will be explored after some definitions concerning fuzzy functions and

extensionality are presented.
We will prove the existence of maximal fuzzy functions and demonstrate

that every fuzzy function is contained in (at least) a maximal one. The interest

of the result lies in the fact that maximal fuzzy functions deal with large

granules and manage the largest amount of uncertainty, which justifies their
prudent use in some situations.

In the 1970s, researchers studied a very interesting kind of fuzzy function,
in which the domain did not present uncertainty. This means that crisp equal-
ity is the indistinguishability operator of the domain. These functions will be

revisited within the framework of the general definition of fuzzy function.

10.1 Fuzzy Functions

In this section the definition of fuzzy function and extensionality will be given
and some consequences of them are explained.

J. Recasens: Indistinguishability Operator, STUDFUZZ 260, pp. 177–188.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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A fuzzy function between X and Y is a fuzzy relation R : X × Y →

[0, 1] that is compatible with the granularity on these sets generated by T -
indistinguishability operators defined on them. R(x, y) is interpreted as the

degree in which y is the image of x.

Definition 10.1. Let E and F be two T -indistinguishability operators on X
and Y , respectively. A fuzzy relation R ∈ [0, 1]X×Y is called extensional with
respect to E and F if and only if

T (R(x, y), E(x, x′), F (y, y′)) ≤ R(x′, y′)

is satisfied for all x, x′ ∈ X, and for all y, y′ ∈ Y .

Definition 10.2. Let E and F be two T -indistinguishability operators on X
and Y respectively and let a fuzzy relation R ∈ [0, 1]X×Y be extensional with
respect to E and F . Then

1. R is called a partial fuzzy function or partial fuzzy map if and only if

T (R(x, y), R(x, y′)) ≤ F (y, y′)

is satisfied for all x ∈ X and for all y, y′ ∈ Y .
2. A fuzzy relation R ∈ [0, 1]X×Y is said to be fully defined if and only if it

fulfills the condition

∨

y∈Y

R(x, y) = 1 for all x ∈ X.

3. A fully defined partial fuzzy function is called a fuzzy function.
4. A partial fuzzy function R is called a perfect fuzzy function with respect to

E and F if and only if it satisfies the condition

∀ x ∈ X∃y ∈ Y such that R(x, y) = 1.

Definition 10.3. Let E and F be two T -indistinguishability operators on X
and Y respectively. A fuzzy relation R ∈ [0, 1]X×Y is called a strong fuzzy
function with respect to E and F if and only if R satisfies the condition
10.2.4 and the condition

T (R(x, y), R(x′, y′), E(x, x′)) ≤ F (y, y′)

for all x, x′ ∈ X and for all y, y′ ∈ Y .

Extensionality of a crisp function f : X → Y with respect to T -
indistinguishability operators defined on X and Y is a central property for

f . It is in fact a Lipschitzian property of f .
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Definition 10.4. Let E and F be two T -indistinguishability operators on X
and Y respectively and f : X → Y a crisp function. f is called extensional
with respect to E and F if and only if

E(x, x′) ≤ F (f(x), f(x′))

holds for all x, x′ ∈ X.(cf. Definition 3.78).

An extensional function f generates a fuzzy function Rf in a very natural
way and reciprocally every fuzzy function R generates at least an extensional
function fR.

Proposition 10.5. Let E and F be two T -indistinguishability operators on
X and Y respectively.

a) For a given (crisp) function f : X → Y extensional with respect to E and
F a fuzzy relation R ∈ [0, 1]X×Y which satisfies the condition

R(x, f(x)) = 1 and R(x, y) ≤ F (f(x), y) (1)

for all x ∈ X, y ∈ Y is a strong fuzzy function with respect to E and F .
b) Conversely, for a given strong fuzzy function R ∈ [0, 1]X×Y with respect

to E and F there exists an ordinary function f : X → Y extensional with
respect to E and F satisfying the condition (1).

Proof

a) It is clear that R(x, y) satisfies 10.2.4.
Using the extensionality of f and taking (1) into account,

T (R(x, y), R(x′, y′), E(x, x′))

≤ T (F (f(x), y), f(f(x′), y′), F (f(x), f(x′)))

≤ T (F (f(x), y), F (f(x), y′)) ≤ F (y, y′)

for all x, x′ ∈ X and y, y′ ∈ Y . Therefore R is a strong fuzzy function.
b) For a given strong fuzzy function R ∈ [0, 1]X×Y with respect to E and

F let us consider the subset H = {(x, y) | R(x, y) = 1} of X × Y . For

each x ∈ X , let Hx = {y ∈ Y | (x, y) ∈ H}. By 10.2.4, for each x ∈ X ,
∃y ∈ Y such that (x, y) ∈ H , i.e. Hx �= ∅. Therefore, by the axiom of

choice, the family {Hx | x ∈ X} of all subsets Hx of Y has a choice set

C, i.e. C has one and only one element from each subset Hx of Y . Then,
if we define the function f : X → Y such that f(x) ∈ Hx ∩ C for each

x ∈ X , it is obvious that f : X → Y is well-defined. By the definition of f ,
since R(x, f(x)) = 1 ∀x ∈ X , and using the fact that R is a strong fuzzy
function, we see that

E(x, x′) = T (R(x, f(x)), R(x′, f(x′)), E(x, x′))

≤ F (f(x), f(x′)) ∀x, x′ ∈ X,
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i.e. f is an extensional function with respect to E and F . Then, exploiting

the fact that R(x, f(x)) = 1 ∀x ∈ X , we also have

R(x, y) = T (R(x, y), R(x, f(x)), E(x, x))

≤ F (f(x), y), ∀x ∈ X, ∀y ∈ Y.

Proposition 10.6. A perfect fuzzy function is a strong fuzzy function.

Proof

T (R(x, y), R(x′, y′)), E(x, y)) ≤ T (R(x′, y), R(x′, y′)) ≤ F (y, y′).

Proposition 10.7. Let E and F be two T -indistinguishability operators on
X and Y respectively.

a) For a given ordinary function f : X → Y extensional with respect to E
and F a fuzzy relation R ∈ [0, 1]X×Y defined by the formula

R(x, y) = F (f(x), y), ∀x ∈ X ∀y ∈ Y (2)

is a perfect fuzzy function with respect to E and F .
b) Conversely, for a given perfect fuzzy function R ∈ [0, 1]X×Y with respect

to E and F there exists an ordinary function f : X → Y extensional with
respect to E and F fulfilling the equality (2).

Proof. a) R clearly verifies 10.2.4, since R(x, f(x)) = F (f(x), f(x)) = 1.
Thanks to Proposition 10.5, R is a strong fuzzy function.
Let us show that R is extensional with respect E and F . From the exten-
sionality of f and (2) for all x, x′ ∈ X and y, y′ ∈ Y we obtain

T (R(x, y), E(x, x′), F (y, y′)) ≤ T (F (f(x), y), F (f(x′), f(x), F (y, y′))

≤ F (f(x′), y′) = R(x′, y′).

b) From Proposition 10.6, R is a strong fuzzy function and hence from Propo-
sition 10.5 there exists an extensional function f : X → Y extensional with
respect to E and F satisfying (1). Using this property and the extension-
ality of R, we obtain

F (f(x), y) = T (R(x, f(x)), F (f(x), y)) ≤ R(x, y).

Therefore R(x, y) = F (f(x), y).

In Chapter 11 we will need to deal with partial crisp functions, i.e. with
functions f : X → Y whose domain (dom(f)) is a subset of X . In this case,
the fuzzy function generated by f is slightly more complicated.

Proposition 10.8. Let E and F be T -indistinguishability operators on X
and Y respectively and f : X → Y a partial function with domain dom(f).
The relation Rf defined by
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Rf (x, y) = sup
x′∈ dom(f)

T (E(x, x′), F (f(x′), y))

is a partial fuzzy function.

Proof. Let us first prove that Rf is extensional.

T (Rf (x, y), E(x, x′)) = sup
x′′∈ dom(f)

T (E(x, x′′), E(x, x′), F (y, f(x′′)))

≤ sup
x′′∈ dom(f)

T (E(x′, x′′), F (y, f(x′′)))

= Rf (x′, y).

T (Rf(x, y), F (y, y′)) = sup
x′∈ dom(f)

T (E(x, x′), F (y, f(x′′)), F (y, y′))

≤ sup
x′∈ dom(f)

T (E(x, x′), F (y′, f(x′)))

= Rf (x, y′).

Let us now prove 10.2.1.

T (Rf(x, y), Rf (x, y′))

= sup
x′,x′′∈ dom(f)

T (E(x, x′), F (y, f(x′)), E(x, x′′), F (y, f(x′′)))

≤ sup
x′,x′′∈ dom(f)

T (E(x′, x′′), F (y, f(x′)), F (y, f(x′′)))

≤ sup
x′,x′′∈ dom(f)

T (F (f(x′), f(x′′)), F (y, f(x′), F (y, f(x′′)))

≤ F (y, y′).

Note that if the domain of f is X , then we recover the previous fuzzy function
Rf (x, y) = F (y, f(x)). Indeed, in this case,

Rf (x, y) = sup
x′∈X

T (E(x, x′), F (y, f(x′)))

≤ sup
x′∈X

T (F (f(x), f(x′)), F (y, f(x′)))

≤ F (f(x), y).

But for x′ = x we obtain the equality.

Definition 10.9. Let E and F be two T -indistinguishability operators on X
and Y respectively.

1. For a given function f : X → Y extensional with respect to E and F the
perfect fuzzy function R ∈ [0, 1]X×Y with respect to E and F given by the
formula Rf (x, y) = F (f(x), y)) is called an E − F vague description of f ,
and it is denoted by vag(f).
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2. For a given perfect (strong) fuzzy function R ∈ [0, 1]X×Y with respect to
E and F , an ordinary function f : X → Y extensional with respect to
E and F satisfying Rf (x, y) = F (f(x), y)) (R(x, f(x)) = 1, Rf (x, y) ≤
F (f(x), y))) is called an ordinary description of R.

The set of all ordinary descriptions of R is denoted by ORD(R).

ORD(R) has more than one element in general but if F separates points,
then there is only a function f in ORD(R). In this case we will simply denote

f = ord(R).

Proposition 10.10. Let E and F be two T -indistinguishability operators on
X and Y respectively, f : X → Y an extensional with respect to E and F , R ∈
[0, 1]X×Y a perfect fuzzy function with respect to E and F and S ∈ [0, 1]X×Y

a strong fuzzy function with respect to E and F . The following properties are
satisfied:

1. S ≤ ∧
g∈ORD(S)vag(g)

2. R = vag(g), ∀g ∈ ORD(R)
3. f ∈ ORD(vag(f))
4. If F separates points, then

a. S ≤ vag(ord(S))
b. R = vag(ord(R))
c. f = ord(vag(f)).

Proof. It follows directly from the definitions of vag(f) and ord(R), ord(S).

For the sake of simplicity, until the end of this chapter we will assume that

all T -indistinguishability operators separate points.
Going back to Definition 10.1, it simply states that R (as a fuzzy subset

of X × Y ) is extensional with respect to the T -indistinguishability E × F on
X × Y defined by

(E × F ) ((x, y), (x′, y′)) = T (E(x, x′), F (y, y′)) .

It can be split into two parts:

a) T (E(x, x′), R(x, y)) ≤ R(x′, y)
b) T (F (y, y′), R(x, y)) ≤ R(x, y′).

a) expresses that fixing y0 ∈ Y the fuzzy subset R(·, y0) of X is extensional
with respect to E while b) states that fixing x0 ∈ X , the fuzzy subset R(x0, ·)
of Y is extensional with respect to F .

The next proposition translates a) when X and Y are the unit interval
and the T -indistinguishability operators powers of the natural one with T a

continuous Archimedean t-norm.
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Proposition 10.11. Let T be a continuous Archimedean t-norm with addi-
tive generator t and R a fuzzy function on [0, 1] × [0, 1], the first interval

endowed with the T -indistinguishability operator E
(k)
T and the second one

with E
(l)
T .

a) For any y0 ∈ Y t ◦ R(·, y0) is an (E
(k)
T , ET )-extensional function.

b) For any x0 ∈ X t ◦ R(x0, ·) is an (E
(l)
T , ET )-extensional function.

Proof. a)

t−1(t(t−1(k |t(x) − t(x′)|) + t(R(x, y0))) ≤ R(x′, y0)

and

k |t(x) − t(x′)| ≥ t(R(x′, y0)) − t(R(x, y0)).

Similarly,
k |t(x) − t(x′)| ≥ t(R(x, y0)) − t(R(x′, y0))

and hence

k |x − x′| ≥ |t(R(x′, y0)) − t(R(x, y0))| .
Therefore,

t−1 (k |x − x′|) ≤ t−1 (|t(R(x′, y0)) − t(R(x, y0))|)

and

E
(k)
T (x, x′) ≤ ET (R(x′, y0), R(x, y0)).

b) is similar to a).

10.2 Composition of Fuzzy Functions

In this section the composition of fuzzy functions and some properties related

to injectivity, exhaustivity and bijectivity will be studied.

Definition 10.12. Let E, F , G be T -indistinguishability operators on X, Y
and Z respectively and R ∈ [0, 1]X×Y and S ∈ [0, 1]Y ×Z fuzzy relations. The
composition S ◦ R is the fuzzy relation on X × Z defined for all x ∈ X and
z ∈ Z by

(S ◦ R)(x, z) = sup
y∈Y

T (R(x, y), S(y, z)).

Proposition 10.13. If R and S are perfect (strong) fuzzy functions, then
S ◦ R is a perfect (strong) fuzzy function.

Proof. a) Let R and S be strong fuzzy functions. For any x, x′ ∈ X , y, y′ ∈ Y ,
z, z′ ∈ Z
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T (R(x, y), S(y, z), R(x′, y′), S(y′, z′), E(x, x′))

≤ T (F (y, y′), S(y, z), S(y′, z′)) ≤ G(z, z′).

Therefore

T ((S ◦ R)(x, z), (S ◦ R)(x′, z′), E(x, x′))

= T (sup
y∈Y

T (R(x, y), S(y, z)), sup
y′∈Y

T (R(x, y′), S(y′, z)), E(x, x′))

= sup
y,y′∈Y

T (R(x, y), S(y, z), (R(x, y′), S(y′, z), E(x, x′)) ≤ G(z, z′).

b) Let R and S be perfect fuzzy functions. For any x, x′ ∈ X , y, y′ ∈ Y ,
z, z′ ∈ Z

(i)Extensionality.

T (R(x, y), S(y, z), E(x, x′), G(z, z′))

= T (R(x, y), S(y, z), E(x, x′), F (y, y), G(z, z′))

≤ T (R(x′, y), S(y, z), G(z, z′))

= T (R(x′, y), S(y, z), F (y, y), G(z, z′))

≤ T (R(x′y), S(y, z′))

≤ sup
y′′∈Y

T (R(x′y′′), S(y′′, z′)) = (S ◦ R)(x′, z′).

Therefore

T ((S ◦ R)(x, z), E(x, x′), G(z, z′))

= T (sup
y∈Y

T (R(x, y), S(y, z)), E(x, x′), G(z, z′))

= sup
y∈Y

T (R(x, y), S(y, z), E(x, x′), G(z, z′)) ≤ (S ◦ R)(x′, z′).

(ii)S ◦ R is a partial fuzzy function.

T (R(x, y), S(y, z), R(x, y′), S(y′z′))

≤ T (F (y, y′), S(y, z), S(y′, z′)) ≤ G(z, z′).

The last inequality follows from the fact that since S is a perfect fuzzy
function, it is also a strong fuzzy function. Therefore,

T ((S ◦ R)(x, z), (S ◦ R)(x, z′))

= T (sup
y∈Y

T (R(x, y), S(y, z)), sup
y′∈Y

T (R(x, y′), S(y′, z))

= sup
y,y′∈Y

T (R(x, y), S(y, z), R(x, y′), S(y′, z)) ≤ G(z, z′).
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(iii)∀x ∈ X ∃z ∈ Z such that (S ◦ R)(x, z) = 1.
Given x ∈ X , there exists y1 ∈ Y and z ∈ Z with R(x, y1) = 1 and

R(y1, z) = 1.

(S ◦ R)(x, z) = sup
y∈Y

T (R(x, y), S(y, z))

≥ T (R(x, y1), S(y1, z)) = T (1, 1) = 1.

Definition 10.14. Let E and F be T -indistinguishability operators on X and
Y respectively, x, x′ ∈ X and y, y′ ∈ Y .

a) A perfect fuzzy function R ∈ [0, 1]X×Y is one to one if and only if

T (R(x, y), R(x′, y)) ≤ E(x, x′).

b) A strong fuzzy function R ∈ [0, 1]X×Y is one to one if and only if

T (R(x, y), R(x′, y′), F (y, y′)) ≤ E(x, x′).

c) A perfect or strong fuzzy function is surjective if and only if

∀y ∈ Y ∃x ∈ X such that R(x, y) = 1.

d) A perfect or strong fuzzy function is bijective if and only if it is one to one
and surjective.

Definition 10.15. The inverse R−1 of a fuzzy relation R on X × Y is the
fuzzy relation on Y × X defined for all x ∈ X, y ∈ Y by

R−1(y, x) = R(x, y).

Proposition 10.16. Let E and F be T -indistinguishability operators on X
and Y respectively and R a fuzzy relation on X × Y . R is a perfect (strong)
fuzzy function if and only if R−1 is a perfect (strong) fuzzy function.

Proposition 10.17. If R is a bijective perfect fuzzy function, then

R−1 ◦ R = E and R ◦ R−1 = F.

Proof. a) R−1 ◦ R = E: For all x, x′ ∈ X and y ∈ Y ,

T (R(x, y), R−1(y, x′)) = T (R(x, y), R(x′, y)) ≤ E(x, x′)

and from this,

(R−1 ◦ R)(x, x′) = sup
y∈Y

T (R(x, y), R−1(y, x′)) ≤ E(x, x′).

On the other hand, there exists a function f : X → Y with R(x, y) =
F (f(x), y) and hence
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E(x, x′) = T (E(x, x′), R(x′, f(x′))

≤ R(x, f(x′))

= T (R(x, f(x′)), R(x′, f(x′))

= T (R(x, f(x′)), R−1(f(x′), x′))

≤ sup
y∈Y

T (R(x, y), R−1(y, x′))

= (R−1 ◦ R)(x, x′).

b) R ◦R−1 = F : Since R−1 is a perfect fuzzy function and R = (R−1)−1, the

proof of b) is the same as the proof of a).

10.3 Maximal Fuzzy Functions

Maximal fuzzy functions handle the greatest uncertainty in the sense that

the granules are of the greatest possible size. Among them, perfect fuzzy
functions are very natural, since in many cases we know, for example, that

the image of an element x is y, which means that the fuzzy subset R(x, ·) is
normal and R(x, y) = 1.

Let us prove that the set of fuzzy functions contains maximal elements.

Proposition 10.18. Let A be the set of partial fuzzy functions on X × Y
with E and F T -indistinguishability operators on X and Y respectively. A
has maximal elements.

Proof. If (Ri)i∈I is a chain of partial fuzzy functions on X × Y , then the

fuzzy relation R = supi∈I Ri is a partial fuzzy function.
Applying Zorn’s lemma, A has maximal elements.

Corollary 10.19. Every partial fuzzy function on X×Y with E and F T -in-
distinguishability operators on X and Y respectively is contained in a maximal
partial fuzzy function on X × Y .

Example 10.20. Let T be the Product t-norm, X = {a, b}, Y = {c, d}, E
the T -indistinguishability operator on X defined by E(a, b) = 1

2 , F the T -
indistinguishability operator on Y defined by F (c, d) = 1

2 and R the partial
fuzzy function on X × Y defined by R(x, y) = 1

2 for all x ∈ X y ∈ Y . R
is not maximal and is contained in, for example, the maximal partial fuzzy
function R̄ with R̄(x, y) = 1√

2
∀x ∈ X , ∀y ∈ Y .

It is trivial to see that R̄ is a partial fuzzy function from X to Y . R̄ is indeed

maximal since if R′ were a partial fuzzy function from X to Y with R′ > R̄,
then there would exist an element of X and an element of Y (without loss of

generality we can assume that they are a and c) with R′(a, c) > 1√
2
. But then

T (R′(a, c), R′(a, d)) would be greater than 1
2 = F (c, d) contradicting 10.2.1.

In fact, it is easy to prove that the fuzzy subsets R̄(a, ·) and R̄(b, ·) are

maximal fuzzy points of Y . Next proposition generalizes this result.
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Proposition 10.21. Let R be a partial fuzzy function on X ×Y with E and
F T -indistinguishability operators on X and Y respectively. If for all x ∈ X
R(x, ·) is a maximal fuzzy point of Y , then R is a maximal partial fuzzy
function.

Corollary 10.22. Let R be a perfect fuzzy function on X ×Y with E and F
T -indistinguishability operators on X and Y respectively. Then for all x ∈ X
R(x, y) = F (yx, y).

In other words, R(x, ·) is a maximal fuzzy point of Y for every x ∈ X .

10.4 Classical Fuzzy Functions

Let us consider the special case of fuzzy function in which the equality on the

domain is the crisp equality. The first attempts to fuzzify the idea of function
between two sets assumed this condition in many cases [32]. The elements

of the domain are considered crisp and completely distinguishable between
them and there is only vagueness or uncertainty in their images.

Classical fuzzy functions appear in many contexts, since many times we

know exactly the elements of our domain and are completely distinguishable.
Then we only are uncertain about which exact image each elements of the

domain has.

Definition 10.23. A classical partial fuzzy function R is a partial fuzzy func-
tion on X × Y with E the classical equality on X (E(x, x′) = 0 if x �= x′)
and F a T -indistinguishability operator on Y .

Proposition 10.24. A fuzzy subset R on X × Y is a classical partial fuzzy
function on X ×Y with F a T -indistinguishability operator on Y if and only
if R(x, ·) is a fuzzy point of Y with respect to F for all x ∈ X.

Proof. Extensionality of R is

T (F (y, y′), R(x, y)) ≤ R(x, y′)

for all x ∈ X , y, y′ ∈ Y , which is equivalent to say that R(x, ·) is extensional
with respect to F . The condition 10.2.1

T (R(x, y), R(x, y′) ≤ F (y, y′)

also expresses that R(x, ·) is a fuzzy point for all x ∈ X .

From a classical fuzzy function on X × Y we have a function f : X → F(Y )
where F(Y ) is the set of fuzzy subsets of Y by simply defining f(x) = R(x, ·).

Reciprocally,
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Proposition 10.25. Let f : X → Y [0,1] be a function from X to the set
Y [0,1] of fuzzy subsets of Y and R the fuzzy subset of X × Y defined by
R(x, y) = (f(x)) (y) for all x, y ∈ X × Y . R is a classical partial fuzzy
function on X ×Y with F a T -indistinguishability operator on Y if and only
if for all x ∈ X R(x, ·) is a fuzzy point of Y .

Corollary 10.26. With the previous notations, R is a maximal classical par-
tial fuzzy function if and only if the fuzzy points R(x, ·) are maximal.

This corollary allows us to construct maximal classical partial fuzzy functions

containing a given classical partial fuzzy function.

Corollary 10.27. Let R be a classical partial fuzzy function on X × Y with
F a T -indistinguishability operator on Y . For all x ∈ X let R̄(x, ·) be a
maximal fuzzy point of Y containing R(x, ·). Then R̄ is a maximal partial
classical fuzzy function on X × Y containing R.

Example 10.28. Let X = Y = R be the real line, T the �Lukasiewicz t-norm,
F the T -indistinguishability operator on R defined by F (x, y) = max(0, 1 −
|x − y|) for all x, y ∈ R, f : R → R a function and R the classical partial
fuzzy function on [0, 1] × [0, 1] defined by R(x, y) = max(0, α − α |y − f(x)|)
for a given α ∈ [0, 1). R is not maximal and is contained in for example the

classical partial maximal function R̄(x, y) = max(0, 1 − |y − f(x)|), which is
also perfect. The corresponding extensional function fR̄ is f .

Note that if the T -indistinguishability E on X is the classical equality,
then every function f : X → Y is extensional. Also R̄(x, y) is maximal since

it is perfect.
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Indistinguishability Operators and
Approximate Reasoning

In approximate reasoning, imprecise conclusions are inferred from imprecise
premises. The typical way to do this is by using IF-THEN rules of the form

If x is A, then y is B.

A and B are modelled by fuzzy subsets μA and νB, respectively, and the

conditions x is A and y is B are measured by μA(x) and νB(y).
This chapter presents two approaches to approximate reasoning based on

indistinguishability operators.
The first one is based on extensionality and deals with the following scheme

(Generalized Modus Ponens):

If x is A, then y is B

x is A′

y is B′

Although there are many ways to interpret the scheme, in the next

section approximate reasoning will be based on the concept of proximity
or similarity [16]:

If A′ is close (or similar) to A, then B′ must be close (or similar) to B.

The second approach is based on [80], where fuzzy functions are used to inter-
pret approximate reasoning and Mamdani fuzzy controllers in their context.

Consider a family of fuzzy rules of the following form:

If x is Ai, then y is Bi i = 1, 2, ..., n

where the linguistic terms Ai and Bi are modelled by the fuzzy subsets μAi

of X and νBi
of Y .

These fuzzy rules are considered as patches of an unknown fuzzy function.
From this fuzzy function, a control function is desired. Section 11.2 is devoted

to this approach.

J. Recasens: Indistinguishability Operator, STUDFUZZ 260, pp. 189–199.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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11.1 Extensional Approach to Approximate Reasoning

Given a fuzzy IF-THEN rule

If x is A, then y is B,

we want to extend it to new rules of the form

If x is A′, then y is B′,

where A′ is similar in some sense to A and A, A′ are modelled by fuzzy
subsets μA, μ of a universe of discourse X and B, B′ by fuzzy subsets νB, ν
of a universe of discourse Y .

The most usual way to infer B′ from A′ is using the compositional rule of

inference (CRI).

Definition 11.1. From the scheme

If x is A, then y is B

x is A′

y is B′

B′ is obtained by the compositional rule of inference (CRI) in the following
way

CRI(μ)(y) = ν(y) = sup
x∈X

T (RAB(x, y), μ(x))

for all y ∈ Y , where RAB is a fuzzy relation (i.e. a fuzzy subset of X × Y )
and T a t-norm.

A number of fuzzy relations RAB have been used to model the relation be-
tween A and B. The most common ones are

• RAB(x, y) = min(μA(x), μB(y)) (Mamdani)
• RAB(x, y) = T (μA(x), μB(y)) (Mamdani with a t-norm T )

• RAB(x, y) =
−→
T (μA(x)|μB(y)) (Residuation based).

In an inference process based on the fuzzy IF-THEN rule ’If x is A, then y
is B’, we expect that if A′ ⊆ A′′, then the set consequence of A′ be included

in the consequence of A′′.

Definition 11.2. A map C : [0, 1]X → [0, 1]Y is an inference operator if and
only if it preserves the ordering:

μ ≤ μ′ ⇒ C(μ) ≤ C(μ′).

Definition 11.3. A map C : [0, 1]X → [0, 1]Y is an extensional operator if
and only if

ET (μ, μ′) ≤ ET (C(μ), C(μ′)).

(cf. Definition 10.4).
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It happens that CRI is an extensional inference operator for any continuous

t-norm and any relation RAB.

Proposition 11.4. For any continuous t-norm T and any fuzzy relation
RAB : X × Y → [0, 1] the CRI is an extensional inference operator.

Proof. Monotonicity of T and sup assures that CRI is an inference operator.
In order to see that CRI is extensional we must prove that given μ, μ′ ∈

[0, 1]X , we have ET (μ, μ′) ≤ ET (ν, ν′) where ν =CRI(μ) and ν′ =CRI(μ′).
Given y ∈ Y ,

−→
T (ν(y)|ν′(y)) =

−→
T (CRI(μ)(y)|CRI(μ′)(y))

=
−→
T (sup

x∈X

T (μ(x), RAB(x, y))| sup
x∈X

T (μ′(x), RAB(x, y)))

= inf
x∈X

−→
T (T (μ(x), RAB(x, y))| sup

z∈X

T (μ′(z), RAB(z, y)))

≥ inf
x∈X

−→
T (T (μ(x), RAB(x, y))|T (μ′(x), RAB(x, y)))

≥(∗) inf
x∈X

−→
T (μ(x)|μ′(x))

≥ inf
x∈X

min
(−→

T (μ(x)|μ′(x)),
−→
T (μ′(x)|μ(x))

)

= inf
x∈X

E(μ(x), μ′(x)) = ET (μ, μ′)

where (*) follows from Corollary 2.46.
Similarly we can prove

−→
T (ν′(y)|ν(y)) ≥ ET (μ, μ′)

and therefore

ET (ν(y), ν′(y)) = min(
−→
T (ν(y)|ν′(y)),

−→
T (ν′(y)|ν(y)))

≥ ET (μ, μ′).

Finally,
ET (ν, ν′) = inf

y∈Y
ET (ν(y), ν′(y)) ≥ ET (μ, μ′).

This result shows that CRI is an extensional inference operator despite the

fuzzy relation RAB used. In particular, it explains why the Mamdani fuzzy
relation can be used in approximate reasoning and especially in fuzzy control.

Another example of an extensional inference operator is obtained from a

crisp map f using the extension principle [143].

Definition 11.5. Let f : X → Y be a crisp function between X and Y . f is
extended to f∗ : [0, 1]X → [0, 1]Y by the extension principle in the following
way.

f∗(μ)(y) =

{
supx∈X,y=f(x) {μ(x)} if

{
f−1(y)

}
�= ∅

0 otherwise.
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Proposition 11.6. The map f∗ : [0, 1]X → [0, 1]Y obtained from f : X →

Y by the extension principle is an extensional inference operator for every
continuous t-norm T .

Proof. It is trivial to prove that f∗ is an inference operator.
Let us prove that f∗ is extensional.
Given y ∈ Y ,

−→
T (f∗(μ)(y)|f∗(μ′)(y)) =

−→
T ( sup

x∈{f−1(y)}
μ(x)| sup

x∈{f−1(y)}
μ′(x))

= inf
x∈{f−1(y)}

−→
T (μ(x)| sup

z∈{f−1(y)}
μ′(z))

≥ inf
x∈{f−1(y)}

−→
T (μ(x)|μ′(x))

≥ inf
x∈X

−→
T (μ(x)|μ′(x))

≥ inf
x∈X

ET (μ(x), μ′(x)) = ET (μ, μ′).

Similarly we can prove

−→
T (f∗(μ′)(y)|f∗(μ)(y)) ≥ ET (μ, μ′)

and therefore

ET (f∗(μ)(y), f∗(μ′)(y)) ≥ ET (μ, μ′).

Finally,
ET (f∗(μ), f∗(μ′)) ≥ ET (μ, μ′).

Let us introduce the natural inference operator (NIO) that is optimal in the

sense of Theorem 11.8.

Definition 11.7. Given the rule ’If x is A, then y is B’, with μA and νB

fuzzy subsets of X and Y respectively, the natural inference operator (NIO)

CAB : [0, 1]X → [0, 1]Y

μ → CAB(μ) = ν

is defined by

CAB(μ)(y) = ν(y) =
−→
T ( inf

x∈X

−→
T (μ(x)|μA(x))|νB(y)).

Theorem 11.8. The NIO CAB satisfies

1. CAB is an inference operator.
2. νB ≤ CAB(μ) for all μ ∈ [0, 1]X. Moreover, if μ ≤ μA, then CAB(μ) = νB.

3. CAB interpolates the rule If x is A, then y is B (i.e. CAB(μA) = νB).
4. CAB is extensional.
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5. CAB is the least specific (the greatest) operator satisfying the preceding
properties.

Proof

1. It is a consequence of the monotonicity of the t-norm T and the infimum.
2. For any x, y ∈ [0, 1],

−→
T (x|y) ≥ y.

Therefore, given μ ∈ [0, 1]X , for all y ∈ Y

CAB(μ)(y) = ν(y) =
−→
T ( inf

x∈X

−→
T (μ(x)|μA(x))|νB(y)) ≥ νB(y).

If μ ≤ μA,

CAB(μ)(y) = ν(y)

=
−→
T ( inf

x∈X

−→
T (μ(x)|μA(x))|νB(y))

=
−→
T (1|νB(y) = νB(y)

for all y ∈ T .
3. It follows from 2.
4. For μ, μ′ ∈ [0, 1]X , let ν = CAB(μ) and ν′ = CAB(μ′).

We must prove

ET (μ, μ′) ≤ ET (ν, ν′).

Given y ∈ Y ,

−→
T (ν′(y)|ν(y))

=
−→
T (

−→
T ( inf

x∈X

−→
T (μ(x)|μA(x))|νB(y))|−→T ( inf

x∈X

−→
T (μ′(x)|μA(x))|νB(y)))

≥(∗)
−→
T ( inf

x∈X

−→
T (μ′(x)|μA(x))| inf

x∈X

−→
T (μ(x)|μA(x)))

= inf
x∈X

−→
T ( inf

z∈X

−→
T (μ′(z)|μA(z))|−→T (μ(x)|μA(x)))

≥ inf
x∈X

−→
T (

−→
T (μ′(x)|μA(x))|−→T (μ(x)|μA(x)))

≥(∗∗) inf
x∈X

−→
T (μ(x)|μ′(x))

≥ inf
x∈X

min(
−→
T (μ(x)|μ′(x)),

−→
T (μ′(x)|μ(x)))

= inf
x∈X

ET (μ(x), μ′(x)) = ET (μ, μ′)

where (*) and (**) are consequence of Corollary 2.46.
Similarly we can prove

−→
T (ν(y)|ν′(y)) ≥ ET (μ, μ′).
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Therefore

ET (ν(y), ν′(y)) = min(
−→
T (ν(y)|ν′(y)),

−→
T (ν′(y)|ν(y))) ≥ ET (μ, μ′).

Finally,
ET (ν, ν′) = inf

y∈Y
ET (ν(y), ν′(y)) ≥ ET (μ, μ′).

5. Let D : [0, 1]X → [0, 1]Y be an operator satisfying the preceding properties.
Given μ ∈ [0, 1]X we want to prove that D(μ) ≤ CAB(μ).

Let μ′ be the fuzzy subset of X defined for all x ∈ X by μ′(x) =
max(μA(x), μ(x)).

Since μA ≤ μ′,

ET (μ′, μA) = inf
x∈X

ET (μ′(x), μA(x))

= inf
x∈X

−→
T (μ′(x)|μA(x)).

Since D satisfies 2., 3. and 4.,

inf
y∈Y

−→
T (D(μ′)(y)|νB(y))

= inf
y∈Y

min(
−→
T (D(μ′)(y)|νB(y)),

−→
T (νB(y)|D(μ′)(y)))

= inf
y∈Y

ET (D(μ′)(y), νB(y))

= ET (D(μ′)|νB)

= ET (D(μ′)|D(μA))

≥ ET (μ′, μA)

= inf
x∈X

−→
T (μ′(x)|μA(x)).

Therefore, for all y ∈ Y ,

−→
T (D(μ′)(y)|νB(y)) ≥ inf

x∈X

−→
T (μ′(x)|μA(x)).

As a consequence of Lemma 2.41,

D(μ′)(y) ≤ sup{α ∈ [0, 1] such that
−→
T (α|νB(y)) ≥ inf

x∈X

−→
T (μ′(x)|μA(x)}

=
−→
T ( inf

x∈X

−→
T (μ′(x)|μA(x))|νB(y))

and hence

D(μ′) ≤ CAB(μ′).

But since μ′ = max(μ, μA) and CAB is an inference operator,

CAB(μ′) = (μ ∨ μA)

= CAB(μ) ∨ CAB(μA) = CAB(μ).
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Also since D satisfies 1. and μ ≤ μ′, we have D(μ) ≤ D(μ′) obtaining

D(μ) ≤ D(μ′) ≤ CAB(μ′) = CAB(μ).

11.2 Approximate Reasoning, Fuzzy Control and
Fuzzy Functions

In this section, the preceding ideas are specialized to fuzzy control.
Let us first recall how fuzzy control works.

(1)There is a finite family of fuzzy rules

Ri : If x is Ai, then y is Bi i = 1, 2, ..., n

where Ai and Bi are modelled by fuzzy subsets μAi
and νBi

of the universes

X and Y respectively (usually subsets of R or Rn), x is Ai and y is Bi

are expressed by μAi
(x) and νBi

(y) respectively and for every rule Ri the

fuzzy relation Ri that relates x and y is generated by μAi
and νBi

. The

most usual obtained relations are

a) RTi
(x, y) = T (μAi

(x), νBi
(y)) (Mamdani type)

or

b) R→i
(x, y) =

−→
T (μAi

(x)|νBi
(y)) (generated by the residuation of a t-

norm).

(2)Given x ∈ X , for every rule Ri a fuzzy subset νx,i of Y is computed by

νx,i(y) = Ri(x, y). (1)

If RTi
are of Mamdani type,this means that

νx,i(y) = T (μAi
(x), νBi

(y))

and for the residuation type relations R→i
,

νx,i(y) =
−→
T (μAi

(x)|νBi
(y)).

(3)The fuzzy rules are combined to obtain a final fuzzy subset νx in the

following way

νx(y) = max {νx,i, i = 1, 2, ..., n} (2)

for the Mamdani type relations and

νx(y) = min {νx,i, i = 1, 2, ..., n} (3)

for the residuation type relations.
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They correspond to considering the fuzzy relations

RT = max {RTi
, i = 1, 2, ..., n}

and

R→ = min {R→i
, i = 1, 2, ..., n}

respectively.
(4)Finally, a defuzzification method finds a precise yx ∈ Y and a control map

f : x → f(x) = yx is obtained.

In this context, the fuzzy rules are considered as patches of a fuzzy function
and from these patches a crisp function is wanted.

Suppose now that T -indistinguishability operators E and F are defined

on X and Y respectively. In this case the fuzzy subsets μAi
and νBi

should
be extensional with respect to E and F respectively since only extensional
fuzzy subsets can be observed when the indistinguishability operator is taken
into account (see Chapter 3). In this case, the relations RT and R→ are

extensional.

Proposition 11.9. Let E and F be T -indistinguishability operators on X
and Y respectively and the fuzzy subsets μAi

, νBi
, i = 1, 2, ..., n extensional

with respect to E and F respectively. Then the fuzzy relations RT and R→
are extensional with respect to E and F .

Proof. RT is trivially extensional since the fuzzy subsets are.
Let us prove that R→ is also extensional.

νBi
(y) ≥ T (μAi

(x),
−→
T (μAi

(x)|νBi
(y)))

≥ T (μAi
(x′), E(x, x′),

−→
T (μAi

(x)|νBi
(y))).

which is equivalent to

T (E(x, x′),
−→
T (μAi

(x)|νBi
(y))) ≤ −→

T (μAi
(x′)|νBi

(y)).

Taking the minimum over all i = 1, 2, ..., n we get

T (E(x, x′), R→(x, y)) ≤ R→(x′, y). (4)

T (R→(x, y), F (y, y′)) ≤ min
i=1,2,...,n

(T (
−→
T (μAi

(x)|νBi
(y)), F (y, y′))) (5)

≤ min
i=1,2,...,n

−→
T (μai

(x)|T (νBi
(y), F (y, y′)))

≤ min
i=1,2,...,n

−→
T (μai

(x)|νBi
(y′)).

(4) and (5) prove the extensionality of R→.
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Also every element x must be replaced by the less specific extensional fuzzy
subset containing it in order to be observable with respect to E. This subset

is φE({x}) = μx = E(x, ·) the column associated to x.
If the fuzzy subsets μAi

satisfy the conditions of Proposition 3.69, then
they are also columns of E.

Proposition 11.10. Let E and F be T -indistinguishability operators on X
and Y respectively, the fuzzy subset μA a column of E and x′ ∈ X. The fuzzy
subset ν of Y obtained by the column μx′ associated to x′ by CRI when RAB =
T (μA, νB) or RAB =

−→
T (μA|νB) coincide with (1) (ν(y) = RAB(x′, y))).

Proof

• Mamdani type:

CRI(μx′)(y) = ν(y) = sup
z∈X

T (μx′(z), RAB(z, y))

= sup
z∈X

T (E(x′, z), E(x, z), ν(y))

=(∗) T (E(x, x′), ν(y))

= T (μx(x′), ν(y)) = RAB(x′, y).

(*) follows from the T -transitivity of E:

T (E((x′, z), E(x, z)) ≤ E(x, x′)

and for z = x′ equality holds.
• Residuation type:

CRI(μx′)(y) = ν(y) = sup
z∈X

T (μx′(z), RAB(z, y))

= sup
z∈X

T (E(x′, z),
−→
T (E(x, y)|ν(y)).

Taking z = x′,

sup
z∈X

T (E(x′, z),
−→
T (E(x, y)|ν(y))

≥ −→
T (E(x, x′)|ν(y) = RAB(x′, y).

On the other hand,

sup
z∈X

T (E(x′, z),
−→
T (E(x, y)|ν(y))

≤(∗) sup
z∈X

−→
T (

−→
T (E(x′, z)|E(x, z)|ν(y))

≤(∗∗) sup
z∈X

−→
T (E(x, x′)|ν(y))

≤ −→
T μx(x′)|ν(y)) = RAB(x′, y).
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(*) follows from Lemma 2.42.

(**) follows from the T -transitivity of E and from the fact that
−→
T is non

increasing with respect to the first variable.

Corollary 11.11. Let E and F be T -indistinguishability operators on X and
Y respectively, the fuzzy subsets μAi

columns of E and x′ ∈ X. The fuzzy
subset ν of Y obtained by the column μx′ associated to x′ by CRI with RT

and with R→ coincide with (2) and (3) respectively.

These results justify the outputs ν obtained in fuzzy control after the process

of fuzzification (obtaining φE({x′}) = E(x′, ·)) and applying the CRI after-
ward when there is a T -indistinguishability operator E on X and the fuzzy
subsets μAi

are columns of E (i.e. they are the fuzzification of precise values

on X).

Proposition 11.12. Let E, F be two T -indistinguishability operators on X
and Y respectively such that the fuzzy subsets μAi

and νBi
are the columns as-

sociated to the points xi and yi respectively. If the partial function f(xi) = yi

is extensional with respect to E and F , then RT is a partial fuzzy function
and RT = Rf where Rf (x, y) = supi=1,2,...,n T (E(x, xi), F (y, yi)) (Proposi-
tion 10.8.).

Proof.

RT (x, y) = sup
i=1,2,...,n

T (μAi
, νBi

)

= sup
i=1,2,...,n

T (E(x, xi), F (y, yi))

= Rf (x, y).

Theorem 11.13. Let E, F be two T -indistinguishability operators on X and
Y respectively such that the fuzzy subsets μAi

and νBi
are the columns as-

sociated to the points xi and yi respectively and f : X → Y an extensional
function with respect to E and F . Let fD be the partial function with domain
D = {x1, x2, ..., xn} defined as the restriction of f to D (i.e. fD(xi) = f(xi)).
Then

RT = RfD
≤ Rf ≤ R→.

Proof. The first equality has been proved in Proposition 11.12. The first

inequality is obvious. Let us prove the last inequality.

T (E(x, xi), F (y, f(x)) ≤ T (F (f(x), f(xi)), F (y, f(x))) ≤ F (y, f(xi))

or

F (y, f(x)) ≤ −→
T (E(x, xi)|F (y, f(xi)) =

−→
T (μAi

(x)|νBi
(y)).

Therefore

Rf (x, y) = F (y, f(x)) ≤ min
i=1,2,...,n

−→
T (μAi

(x)|νBi
(y)) = R→.
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The last theorem gives upper and lower bounds to the fuzzy control function
f . Indeed, from the rules a partial function fD is obtained and the control
function f must interpolate the values of fD. Then RT and R→ are bounds

to the partial fuzzy function generated by the desired control function f .
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Vague Groups

In the crisp case, if (G, ◦) is a set with an operation ◦ : G × G → G and ∼ is
an equivalence relation on G, then ◦ is compatible with ∼ if and only if

a ∼ a′ and b ∼ b′ implies a ◦ b ∼ a′ ◦ b′.

In this case, an operation ◦̃ can be defined on G = G/ ∼ by

a◦̃b = a ◦ b

where a and b are the equivalence classes of a and b with respect to ∼.
Demirci generalized this idea to the fuzzy framework by introducing the

concept of vague algebra, which basically consists of fuzzy operations com-
patible with given indistinguishability operators [37].

As an example of vague algebra, this chapter will examine the idea of vague

groups and how they relate to fuzzy subgroups.
Fuzzy subgroups were introduced by Rosenfeld [120] as a natural general-

ization of the subgroup concept and have since been widely studied. Demirci
later on introduced T -vague groups by forcing the operation of the group to
be compatible with a given indistinguishability operator E.

In this chapter, the notion of T -vague group will be introduced, and it will
be shown that T -vague groups can be viewed as the natural fuzzy general-
ization of quotient groups. When E separates points, then a T -vague group

can be thought of as a quotient group of a given group (G, ◦) by a normal
fuzzy subgroup μ of G, with its core consisting of only the identity element

of G.
There is a close relationship between fuzzy subgroups and T -vague groups.

Indeed, we can firstly associate a T -indistinguishability operator E(μ) with
every fuzzy subgroup μ. Normal fuzzy subgroups of (G, ◦) are defined as fuzzy
subgroups μ satisfying μ(a ◦ b) = μ(b ◦ a)∀a, b ∈ X (Definition 12.22) and the

most interesting result relating μ and Eμ) is Theorem 12.27, which, roughly
speaking, states that the operation of the group is compatible with the

J. Recasens: Indistinguishability Operator, STUDFUZZ 260, pp. 201–215.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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T -indistinguishability operator Eμ) if and only if μ is a normal fuzzy sub-
group of G.

Fuzzy subgroups and T -vague groups are related by the fact that given a

normal fuzzy subgroup μ of G, G with the operation ◦̃(a, b, c) = E(a ◦ b, c) is
a T -vague group and, reciprocally, for every T -vague group there exists a T -
indistinguishability operator E that is invariant under translations such that

◦̃(a, b, c) = E(a◦b, c). It will be proved that a T -indistinguishability operator

E is the operator associated with a normal fuzzy subgroup if and only if E
is invariant under translations, meaning that all its classes differ only by a

translation factor. Therefore, we will have natural bijections between the sets

of normal fuzzy subgroups, T -indistinguishability operators invariant under

translations and T -vague groups of a group (G, ◦). In particular, T -vague

groups can be thought of as the fuzzy counterparts of crisp quotient groups.
Section 12.4 is devoted to the case of the real line (R, +). Given a con-

tinuous Archimedean t-norm or the minimum t-norm, the normal fuzzy sub-
groups that also are fuzzy numbers are completely characterized, as well as

the admissible T -indistinguishability operators and their corresponding T -
vague groups. Two examples on the chapter show that these kind of results
can give insight to some useful tools in fuzzy systems:

• In Example 12.46 triangular fuzzy numbers are seen as elements of R/μ
the quotient of the real line modulo a triangular symmetric fuzzy number

centered at 0, which is in fact a normal fuzzy subgroup of R with respect

to the �Lukasiewicz t-norm.
• Example 12.47 develops the idea of being a vague multiple of a given

integer number.

12.1 Fuzzy Subgroups and T -Vague Groups

This section contains some definitions and properties related to fuzzy sub-
groups and T -vague groups. Some properties of T -vague operations are also
stated so that T -vague groups could be set in their context.

Definition 12.1. Let (G, ◦) be a group and μ a fuzzy subset of G. μ is a
T -fuzzy subgroup of G if and only if

T (μ(a), μ(b)) ≤ μ(a ◦ b−1) ∀a, b ∈ X.

Proposition 12.2. Let (G, ◦) be a group, e its identity element and μ a fuzzy
subset of G such that μ(e) = 1. Then μ is a T -fuzzy subgroup of G if and
only if ∀a, b ∈ X the following properties hold

a) μ(a) = μ(a−1)
b) T (μ(a), μ(b)) ≤ μ(a ◦ b).
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Proof
⇒)

a) If μ is a T -fuzzy subgroup with μ(e) = 1, then

μ(a) = T (μ(e), μ(a)) ≤ μ(a−1).

By symmetry, μ(a) = μ(a−1) holds.
b) T (μ(a), μ(b)) = T (μ(a), μ(b−1)) ≤ μ(a ◦ b).

⇐) T (μ(a), μ(b)) = T (μ(a), μ(b−1)) ≤ μ(a ◦ b−1).

Definition 12.3. The core H of a fuzzy subset μ of a set G is the set of
elements a of G such that μ(a) = 1.

Proposition 12.4. Let (G, ◦) be a group, e its identity element and μ a fuzzy
subgroup of X such that μ(e) = 1. Then the core H of μ is a subgroup of G.

Proof. Let a, b ∈ H .

1 = T (μ(a), μ(b)) = T (μ(a), μ(b−1)) ≤ μ(a ◦ b−1)

and therefore a ◦ b−1 ∈ H .

T -vague algebras were introduced by Demirci in [35] considering fuzzy op-
erations compatible with given T -fuzzy equalities and an extensive study of

vague operations and T -vague groups can be found in [34],[35].

Definition 12.5. A fuzzy binary operation on a set G is a map ◦̃ : G × G ×
G → [0, 1].

◦̃(a, b, c) is interpreted as the degree in which c is a ◦ b.

Definition 12.6. Let E be T -indistinguishability operators on G. A vague
binary operation on G is a perfect fuzzy map ◦̃ from G×G to G where in G×G
the T -indistinguishability operator G(E, E) defined for all a, a′, b, b′ ∈ X by

G(E, E)((a, b), (a′, b′)) = T (E(a, a′), E(b, b′))

is considered.

In a more explicit way, Definition 12.6 states that

a) T (◦̃(a, b, c), E(a, a′), E(b, b′), E(c, c′)) ≤ ◦̃(a′, b′, c′).
b) T (◦̃(a, b, c), ◦̃(a, b, c′)) ≤ E(c, c′).
c) For all a, b ∈ G there exists c ∈ G such that ◦̃(a, b, c) = 1.

These conditions fuzzify the idea of compatibility between a binary operation
and an equivalence relation on a set.
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• Condition a) states that if c is the (vague) result of operating a and b
and a′, b′, c′ are indistinguishable from a, b, c, then c′ is the vague result of

operating a′ and b′.
• b) asserts that if c and c′ are vague results of the operation a◦b, then they

are indistinguishable.
• c) says that for every a and b there exists c that is exactly the result of

operating a with b.

Definition 12.7. Let ◦̃ be a T -vague binary operation on G with respect to
a T -indistinguishability operator E on G. Then (G, ◦̃) is a T -vague group if
and only if it satisfies the following properties.

1. Associativity. ∀a, b, c, d,m, q, w,∈ X

T (◦̃(b, c, d), ◦̃(a, d, m), ◦̃(a, b, q), ◦̃(q, c,w)) ≤ E(m, w)).

2. Identity. There exists a (two sided) identity element e ∈ G such that

T (◦̃(e, a, a), ◦̃(a, e, a)) = 1

for each a ∈ G.
3. Inverse. For each a ∈ G there exists a (two-sided) inverse element a−1 ∈ G

such that
T (◦̃(a−1, a, e), ◦̃(a, a−1, e)) = 1.

A T -vague group is Abelian or commutative if and only if

∀a, b,m, w ∈ G, T ((◦̃(a, b,m), ◦̃(b, a,w))) ≤ E(m, w)).

For a given T -vague group (G, ◦̃), the identity and the inverse element a−1

of each a ∈ G are not unique in general.

Proposition 12.8. Let (G, ◦̃) be a T -vague group with respect to E. Then,

1. If e, e′ are two identities of (X, ◦̃), then E(e, e′) = 1.
2. If b, b′ are two inverse elements of a ∈ G with respect to an identity

element of e of (G, ◦̃), then E(b, b′) = 1.
3. If E(a1, a2) = 1, then b ∈ G is an inverse element of a1 ∈ G with respect

to an identity element e of (G, ◦̃) if and only if b is an inverse element of
a2 ∈ G with respect to e.

4. If b is an inverse element of a ∈ G with respect to a given identity element
e of (G, ◦̃), then b is an inverse element of a with respect to all identity
elements of (G, ◦̃).

5. If b, b′ are inverse elements of a ∈ X with respect to the identity elements
e, e′ respectively, then E(b, b′) = 1.

6. If E separates points, then the identity and the inverse elements of (G, ◦̃)
are unique.
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Proof

1. Since e and e′ are identity elements of the T -vague group, ◦̃(e, e′, e) = 1
and ◦̃(e, e′, e′) = 1.
1 = T (◦̃(e, e′, e), ◦̃(e, e′, e′), E(e, e), E(e′, e′)) ≤ E(e, e′) and therefore

E(e, e′) = 1.
2. Due to the associativity of ◦̃,

1 = T (◦̃(b, a, e), ◦̃(e, b′, b′), ◦̃(a, b′, e), ◦̃(b, e, b)) ≤ E(b′, b).

3.

1 = T (◦̃(a1, b, e), E(a1, a2)) ≤ ◦̃(a2, b, e).

Also,
1 = T (◦̃(b, a1, e), E(a1, a2)) ≤ ◦̃(b, a2, e).

4.

1 = ◦̃(b, a, e) = T (◦̃(b, a, e), E(e, e′)) ≤ ◦̃(b, a, e′).

Also,
1 = ◦̃(a, b, e) = T (◦̃(a, b, e), E(e, e′)) ≤ ◦̃(a, b, e′).

5. It is a straightforward consequence of 1. and 4.
6. 1. and 2. assure the uniqueness of the identity and the inverse elements

respectively.

Let us recall that if E is a T -indistinguishability operator on a set G, then
the (crisp) relation ∼E on G defined by a ∼E b if and only if E(a, b) = 1 is
an equivalence relation. The fuzzy relation Ē on G/ ∼E defined by Ē(ā, b̄) =
E(a, b) is a T -indistinguishability operator that separates points.

Proposition 12.9. Let (G, ◦̃) be a T -vague group with respect to a T -in-
distinguishability operator E. In the quotient set G/ ∼E let us consider the
operation ◦̄ defined for all ā, b̄, c̄ ∈ G/ ∼E by ā◦̄b̄ = c̄ if and only if ◦̃(a, b, c) =
1. Then ◦̄ is well defined.

Proof. We need to show that

a) If a ∼E a′, b ∼E b′, c ∼E c′ and ◦̃(a, b, c) = 1, then ◦̃(a′, b′, c′) = 1.
b) If a ∼E a′, b ∼E b′, ◦̃(a, b, c) = 1 and ◦̃(a′, b′, c′) = 1, then c ∼E c′.
To prove a) is trivial using the transitivity of ◦̃ and b) is trivial since ◦̃ is

a T -vague operation.

Corollary 12.10. (G/ ∼E, ◦̄) is a group.

Corollary 12.11. With the same notations as before (G/ ∼E, ˜̄◦) is a T -vague
group with respect to Ē where ˜̄◦(ā, b̄, c̄) = ◦̃(a, b, c) ∀a, b, c ∈ G.
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Therefore from every T -vague group we can define another T -vague group

with respect to a separable T -indistinguishability operator and go back to
the definition of T -vague group given in [34], [35] where separability of the

T -indistinguishability operator was required.

12.2 Normal Fuzzy Subgroups and
T -Indistinguishability Operators

In the crisp case, given a subgroup H of a group (G, ◦) the relation ∼ on G
defined by a ∼ b if and only if a ◦ b−1 ∈ H is an equivalence relation. The

operation ◦ of G is compatible with ∼ if and only if H is a normal subgroup

of G.
In this Section we will generalize these results to T -fuzzy subgroups and

T -indistinguishability operators.

Definition 12.12. Let ◦ be a binary operation on G, and E a T -indistin-
guishability operator on G. E is regular with respect to ◦ if and only if

E(a, b) ≤
∧

c∈G
E(a ◦ c, b ◦ c) ∧ E(c ◦ a, c ◦ b), ∀a, b ∈ G.

Definition 12.13. Let ◦ be a binary operation on G and E a T -indistin-
guishability operator on G. E is invariant under translations with respect to
◦ if and only if

a)

E(a, b) = E(c ◦ a, c ◦ b) (left invariant)

and
b)

E(a, b) = E(a ◦ c, b ◦ c) (right invariant),

∀a, b, c ∈ G.

Proposition 12.14. Let (G, ◦) be a group and E a T -indistinguishability
operator on G. Then E is regular with respect to ◦ if and only if E is invariant
under translations with respect to ◦.
Proof. ⇒) Suppose that E is regular with respect to ◦. Then, we have

E(a, b) ≤
∧

c∈X
E(a ◦ c, b ◦ c) ∧ E(c ◦ z, c ◦ b),

i.e.,

E(a, b) ≤ E(a ◦ c, b ◦ c) and E(a, b) ≤ E(c ◦ a, c ◦ b), ∀a, b, c ∈ G.

Since the inequalities are valid for all a, b, c ∈ G, directly imply that
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E(a ◦ c, b ◦ c) ≤ E((a ◦ c) ◦ d, (b ◦ c) ◦ d)

and

E(c ◦ a, c ◦ b) ≤ E(d ◦ (c ◦ a), d ◦ (c ◦ b)), ∀a, b, c, d ∈ G.

Choosing d = c−1 we get

E(a ◦ c, b ◦ c) ≤ E((a ◦ c) ◦ c−1, (b ◦ c) ◦ c−1) = E(a, b)

and

E(c ◦ a, c ◦ b) ≤ E(c−1 ◦ (c ◦ a), c−1 ◦ (c ◦ c)) = E(a, b).

Therefore we have got

E(a, b) ≤ E(a ◦ c, b ◦ c) ≤ E(a, b) and

E(a, b) ≤ E(c ◦ a, c ◦ b) ≤ E(a, b).

⇐) Trivial.

Proposition 12.15. Let T -indistinguishability operator E on G. A binary
operation ◦ on G is an extensional function with respect to G(E, E) on G×G
and E on G if and only if E is regular with respect to ◦.

Proof
⇒) If ◦ is an extensional function with respect to G(E, E) on X × X and

E on X , then

G(E, E)((a, c), (b, d)) = T (E(a, b), E(c, d)) ≤ E(a ◦ c, b ◦ d).

From this,

E(a, b) = T (E(a, b), E(c, c)) ≤ E(a ◦ c, b ◦ c) and

E(a, b) = T (E(c, c), E(a, b)) ≤ E(c ◦ a, c ◦ b).

E(a, b) ≤ E(a ◦ c, b ◦ c) ∧ E(c ◦ a, c ◦ b) ∀a, b, c ∈ G. Therefore

E(a, b) ≤
∧

c∈G

E(a ◦ c, b ◦ c) ∧ E(c ◦ a, c ◦ b).

⇐) If E is regular with respect to ◦, then

E(a, b) ≤ E(a ◦ c, b ◦ c) and

E(a, b) ≤ E(c ◦ a, c ◦ b) ∀a, b, c ∈ G.

Hence

G(E, E)((a, c), (b, d)) = T (E(a, b), E(c, d))

≤ T (E(a ◦ c, b ◦ c), E(b ◦ c, b ◦ d)

≤ E(a ◦ c, b ◦ d)).
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Corollary 12.16. Let (G, ◦) be a group and E a T -indistinguishability op-
erator on G. ◦ is an extensional function with respect to G(E, E) on G × G
and E on G if and only if E is invariant under translations with respect to ◦.

Proof. It is a consequence of Proposition 12.14 and Proposition 12.15.

Definition 12.17. Let μ be a T -fuzzy subgroup of (G, ◦) with μ(e) = 1 where
e is the identity element of G. The fuzzy relation E(μ) on G defined by

E(μ)(a, b) = μ(a ◦ b−1) ∀a, b ∈ G

is the T -indistinguishability operator associated to μ.

Proposition 12.18. E(μ) on G is a T -indistinguishability operator on G.

Proof

a) Reflexivity. Given a ∈ G, E(μ)(a, a) = μ(a ◦ a−1) = μ(e) = 1.
b) Symmetry.

E(μ)(a, b) = μ(a ◦ b−1)

= μ((a ◦ b−1)−1)

= μ(b ◦ a−1) = E(μ)(b, a).

c) Transitivity.

T (E(μ)(a, b), Eμ(b, c)) = T (μ(a ◦ b−1), μ(b ◦ c−1))

≤ μ(a ◦ b−1 ◦ b ◦ c−1)

= μ(a ◦ c−1) = E(μ)(a, c).

Lemma 12.19. E(μ)(a, b) = E(μ)(e, a ◦ b−1) ∀a, b ∈ G.

Proof. Trivial.

Reciprocally,

Proposition 12.20. Let E be a T -indistinguishability operator on a group
(G, ◦) with identity element e such that for all a, b ∈ G E(a, b) = E(e, a◦b−1).
Then the column μe of E is a T -fuzzy subgroup of G with μe(e) = 1.

Proof

a)

T (μe(a), μe(b)) = T (E(e, a), E(e, b))

≤ E(a, b) = E(e, a ◦ b−1)

= μe(a ◦ b−1).
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b) μe(e) = E(e, e) = 1.

Corollary 12.21. Let (G, ◦) be a group with identity element e. There ex-
ists a bijection between the set of T -fuzzy subgroups of G and the set
of T -indistinguishability operators on G satisfying Lemma 12.19 mapping
every T -fuzzy subgroup μ of G into its associated T -indistinguishability
operator E(μ).

The following definition fuzzifies the concept of normal subgroup. It will be

one of the cornerstones of the chapter.

Definition 12.22. A T -fuzzy subgroup μ of a group (G, ◦) with identity el-
ement e is called a normal T -fuzzy subgroup if and only if μ(e) = 1 and
μ(a ◦ b) ≤ μ(b ◦ a) ∀a, b ∈ G.

NB. Clearly, if μ is a normal T -fuzzy subgroup, then by symmetry μ(a ◦ b) =
μ(b ◦ a) ∀a, b ∈ G.

Proposition 12.23. The core N of a normal T -fuzzy subgroup μ of a group
(G, ◦) is a normal subgroup of G.

Proof

a) Proposition 12.4 assures that N is a subgroup of G.
b) ∀a, b ∈ G if a ◦ b ∈ N , then b ◦ a ∈ N . Therefore N is a normal subgroup

of G.

Proposition 12.24. Let (G, ◦) be a group with identity element e and μ a
normal T -fuzzy subgroup of G with μ(e) = 1. The associated T -indistinguish-
ability operator E(μ) of μ is invariant under translations.

Proof. Let a, b, k be elements of G.

E(μ)(a, b) = μ(a ◦ b−1) = μ(a ◦ k ◦ k−1 ◦ b−1) = E(μ)(a ◦ k, b ◦ k).

E(μ)(a, b) = μ(a ◦ b−1) = μ(b−1 ◦ a) = μ(b−1 ◦ k−1 ◦ k ◦ a)

= μ(k ◦ a ◦ b−1 ◦ k−1) = E(μ)(k ◦ a, k ◦ b).

Reciprocally,

Proposition 12.25. Let (G, ◦) be a group with identity element e, μ
a T -fuzzy subgroup of G with μ(e) = 1 and E(μ) its associated T -
indistinguishability operator. If E(μ) is invariant under translations, then μ
is a normal T -fuzzy subgroup of G.

Proof

∀a, b ∈ G μ(a ◦ b) = E(μ)(e, a ◦ b−1) = E(μ)(b, a) =

= E(μ)(b ◦ a−1, e)

= E(μ)(e, b ◦ a−1) = μ(b ◦ a).
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Corollary 12.26. Let G, ◦) be a group. There is a bijection between the nor-
mal fuzzy subgroups of G and the set of T -indistinguishability operators on
G invariant under translations with respect to ◦.

The following theorem links normality of a T -fuzzy subgroup μ with compat-
ibility with respect to its associated T -indistinguishability operator E(μ).

Theorem 12.27. Let (G, ◦) be a group with identity e, μ a T -fuzzy subgroup
of G with μ(e) = 1 and E(μ) its associated T -indistinguishability operator.
Then, ◦ is extensional with respect to G(E(μ), E(μ)) and E(μ) if and only if μ
is normal.

Proof. This is an immediate consequence of Proposition 12.24, Proposition
12.25 and Corollary 12.16.

12.3 Normal T -Fuzzy Subgroups and T -Vague Groups

The results of this section will allow us to interpret a T -vague group as the

quotient of a group modulo a normal T -fuzzy subgroup.

Proposition 12.28. Let E be a regular T -indistinguishability operator G
with respect to a binary operation ◦ on G.

a) A fuzzy relation ◦̃ : G × G × G → [0, 1] satisfying the properties

◦̃(x, y, x ◦ y) = 1

and
◦̃(x, y, z) ≤ E(x ◦ y, z) for all x, y, z ∈ G,

is a T -vague binary operation on G with respect to G(E, E) on G×G and
E on X.

b) Furthermore, if (G, ◦) is a semigroup, then (G, ◦̃) is a T -vague semigroup
(i.e. it satisfies the associative property of Definition 12.7).

Proof. a) Since E is regular with respect to ◦, ◦ is an extensional function
with respect to G(E, E) and E thanks to Proposition 12.15. Thus, from

Proposition 10.5 ◦̃ is a T -vague binary operation.
b) Associativity. Let (G, ◦) be a semigroup. Using the associativity of ◦ and

the regularity of E,

T (◦̃(b, c, d), ◦̃(a, d, m), ◦̃(a, b, q), ◦̃(q, c,w))

≤ T (E(b ◦ c, d), E(a ◦ d, m), E(a ◦ b, q), E(q ◦ c, w))

≤ T (E(a ◦ (b ◦ c) ◦ a ◦ d), E(a ◦ d, m), E((a ◦ b) ◦ c, q ◦ c), E(q ◦ c, w))

≤ T (E(a ◦ (b ◦ c) ◦ m), E((a ◦ b) ◦ c, w))

≤ E(m, w) ∀a, b, c, d,m, q, w ∈ G.
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Proposition 12.29. Let (G, ◦) be a group and E a T -indistinguishability
operator on G invariant under translations with respect to ◦. Then for the
fuzzy relation ◦̃ : G × G× G → [0, 1] defined by ◦̃(x, y, z) = E(x ◦ y, z) for all
x, y, z ∈ G, (G, ◦̃) is a T -vague group with respect to E.

Proof

a) Associativity. Proposition 12.14 and Proposition 12.28 directly give that

(G, ◦̃) is a T -vague semigroup with respect to E.
b) Identity. Let e be the identity element of (G, ◦). ∀a ∈ G

◦̃(a, e, a) = E(a ◦ e, a) = E(a, a) = 1.

Also
◦̃(e, a, e) = E(e ◦ a, a) = 1.

c) Inverse. Let a−1 be the inverse element of a in (G, ◦).

◦̃(a−1, a, e) = E(a−1 ◦ a, e) = E(e, e) = 1

and

◦̃(a, a−1, e) = E(a ◦ a−1, e) = E(e, e) = 1.

Corollary 12.30. Let (G, ◦) be a group with identity element e, μ a nor-
mal T -fuzzy subgroup of (G, ◦) with μ(e) = 1 and E(μ) its associated T -
indistinguishability operator on G. If ◦̃ : G × G × G → [0, 1] is defined for
all a, b, c ∈ G by ◦̃(a, b, c) = μ(a ◦ b ◦ c−1) = E(μ)(a ◦ b, c), then (G, ◦̃) is a
T -vague group.

Proof. E(μ) is invariant under translations, since μ is a normal fuzzy sub-
group. Then the result is a consequence of Proposition 12.29.

Proposition 12.31. Let (G, ◦̃) be a T -vague group with respect to E and
◦ ∈ ORD(◦̃). Then,

a) ◦̃(x, y, z) = E(x ◦ y, z) ∀x, y, z ∈ G.
b) ◦ is extensional with respect to G(E, E) and E.
c) E is invariant under translations with respect to ◦.

Proof

a) is an immediate consequence of Proposition 10.10.2.
b) is also obvious from Proposition 10.7.
c) follows from 2. and Corollary 12.16.

Lemma 12.32. Let (G, ◦̃) be a T -vague group with respect to E and ◦ ∈
ORD(◦̃). Then E(a, b) = E(e, a ◦ b−1) for each identity e of (G, ◦̃) and for
each a, b ∈ G.
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Proof

E(a, b) = T (◦̃(a, b−1, a ◦ b−1), ◦̃(b, b−1, e), E(a, b), E(b−1, b−1))

≤ E(e, a ◦ b−1).

E(e, a ◦ b−1) = T (◦̃(e, b, b), ◦̃(a ◦ b−1, b, a), E(e, a ◦ b−1), E(b, b))

≤ E(a, b).

At this point, given a group (G, ◦) we have bijective maps between
their T -vague groups, their T -fuzzy normal subgroups and their T -
indistinguishability operators invariant under translations and a simple way
to generate two of them knowing the other one: For instance, ◦̃(a, b, c) =
E(a ◦ b, c) = μ(a ◦ b ◦ c−1).

In [34], [35] homomorphisms between T -vague groups have been studied.
In this Section we will use them to show that T -vague groups are in fact the

fuzzy generalization of quotient groups and that if f is a homomorphism from

(G, ◦) to (G, ◦̃), then the kernel of f is precisely the normal fuzzy subgroup

associated to (G, ◦̃).

Definition 12.33. Let (G, ◦̃) and (H, ⋆̃) be two T -vague groups with respect
to the T -indistinguishability operators E and F respectively. A map f : G →

H is a homomorphism from G onto H if and only if

◦̃(a, b, c) ≤ ⋆̃(f(a), f(b), f(c)) ∀a, b, c ∈ G.

Proposition 12.34. Let (G, ◦̃) and (G, ⋆̃) be two T -vague groups with respect
to the T -indistinguishability operators E and F respectively such that E ≤ F .
Then the identity map id : G → G is a homomorphism from (X, ◦̃) onto
(X, ⋆̃).

Proof. It is an easy consequence of Proposition 12.31.

It is clear that a crisp group (G, ◦) is a T -vague group defining ◦(a, b, c) = 1
if a ◦ b = c and 0 otherwise, and considering the crisp equality as the T -
indistinguishability operator.

Corollary 12.35. Let (G, ◦̃) be a T -vague group with respect to a T -indistin-
guishability operator E and ◦ ∈ ORD(◦̃). Then the identity map id : G → G
is a homomorphism from (G, ◦) onto (G, ◦̃).

Definition 12.36. Let f : G → H be a homomorphism from (G, ◦̃) onto
(H, ⋆̃). The kernel of f is the fuzzy subset μ of G defined by μ(a) =
E(f(a), e) ∀a ∈ G where e is an identity element of (H, ⋆̃).

Proposition 12.37. Let (G, ◦̃) be a T -vague group with respect to a T -
indistinguishability operator E and ◦ ∈ ORD(◦̃). The kernel of the identity
map id : G → G is the normal T -fuzzy subgroup of G associated to (G, ◦̃).
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12.4 The Vague Real Line

In fuzzy control and other fuzzy systems it is usual to model the values of

the linguistic variables by fuzzy numbers. Fuzzy numbers can be thought as

equivalence classes of a indistinguishability operator in the sense that fuzzy
numbers are needed because the equality used in the real line is not crisp due

to lack of accuracy and vagueness. In many applications, fuzzy numbers of

the same shape are used so that they only differ by a translation which means

that the indistinguishability operator is invariant under translations. For this
reason, it is interesting to determine when a T -indistinguishability operator

on the real line is invariant under translations and has fuzzy numbers as their
columns. In this section these relations will be characterized for the minimum

and continuous Archimedean t-norms. As a corollary, fuzzy numbers that

are also normal fuzzy subgroups of (R, +) and their corresponding T -vague

groups will be characterized in these cases.
Let us remember that a fuzzy number is a map μa : R → [0, 1] such that

there exists a ∈ R with μa(a) = 1 and non decreasing in (−∞, a) and non
increasing in (a, +∞) (Definition 6.10).

Definition 12.38. A T -indistinguishability operator on R is admissible if
and only if its columns or singletons are fuzzy numbers.

Lemma 12.39. Let E be an T -indistinguishability operator on (R, +) invari-
ant under translations. Then for every a ∈ R and n ∈ N

T (E(0, a), E(0, na)) ≤ E(0, (n + 1)a).

Proof. Trivial, since the column of E corresponding to 0 is a T -fuzzy
subgroup.

Theorem 12.40. Let T be the minimum t-norm. E is a T -
indistinguishability operator on (R, +) admissible and invariant under
translations if and only if there exists k ∈ [0, 1] such that

E(a, b) =

{
1 if a = b
k otherwise.

Proof. Let a > 0. From Lemma 12.39

min(E(0, a), E(0, na)) ≤ E(0, (n + 1)a) ∀n ∈ N

and since E is admissible, min(E(0, a), E(0, na)) = E(0, na) so that

E(0, na) ≤ E(0, (n + 1)a).

But since E is admissible, E(0, na) ≥ E(0, (n + 1)a).
Therefore E(0, na) = E(0, (n + 1)a) ∀a > 0, ∀n ∈ N . Due to the mono-

tonicity of E(0, ·) in (0, +∞), E(0, ·) must be constant in this interval.
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A similar argument works with a < 0 for (−∞, 0).
Now the result follows applying the invariance under translations of E.

Corollary 12.41. A fuzzy number μ is a normal min-fuzzy subgroup of
(R, +) if and only if there exists k ∈ R such that

μ(b) =

{
1 if b = 0
k otherwise.

Corollary 12.42. The T -vague group (R, +̃) with respect to the min-indis-
tinguishability operator E defined by E(a, b) = k if a �= b is

+̃(a, b, c) =

{
1 if a + b = c
k otherwise.

Theorem 12.43. Let T be a continuous Archimedean t-norm with generator
t. E is an admissible and invariant under translations T -indistinguishability
operator on (R, +) if and only if there exists a map F : R → R which is non
decreasing and subadditive in R+ with F (0) = 0 and F (a) = F (−a) ∀a ∈ R
such that E(a, b) = t[−1] ◦ F (b − a).

Proof
⇒) If E is invariant under translations, then

T (E(0, a), E(0, c)) ≤ E(0, a + c)

since the column of E corresponding to 0 is a T fuzzy subgroup. This in-
equality can be rewritten as

t[−1](t(E(0, a)) + t(E(0, c))) ≤ E(0, a + c)

or

t(E(0, a)) + t(E(0, c)) ≥ t(E(0, a + c)).

If F is defined by F (x) = t(E(0, x)), then F (a) + F (b) ≥ F (a + b) and

F (0) = 0, F (x) = F (−x) and is non decreasing in (0, +∞).
E(0, a) = t[−1](F (a)) and E(a, b) = E(0, b − a) = t[−1](F (b − a)).
⇐). Trivial.

Corollary 12.44. Let T be a continuous Archimedean t-norm with generator
t. A fuzzy number μa is a normal T -fuzzy subgroup of (R, +) if and only if
there exists a map F : R → R which is non decreasing and subadditive in R+

with F (0) = 0 and F (x) = F (−x) ∀x ∈ R such that μ(a) = t[−1] ◦ F (a).

Corollary 12.45. Let T be a continuous Archimedean t-norm with generator
t. and +̃ : R × R × R → [0, 1]. (R, +̃) is a T -vague group with respect to an
admissible T -indistinguishability operator E if and only if there exists a map
F : R → R which is non decreasing and subadditive in R+ with F (0) = 0 and
F (a) = F (−a) ∀a ∈ R such that +̃(a, b, c) = t[−1] ◦ F (a + b − c).
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This section ends with two examples illustrating the results of the chapter.
The first one specifies the last results to triangular numbers while the second

one is a first attempt to define the property of being a vague multiple of an
integer.

Example 12.46. Let μ be a symmetric triangular number centered in 0. (i.e.
μ = [−k, 0, k] for some k ∈ R). Taking F (x) = |x/k| and t = 1 − x in
Corollary 12.44, μ is a normal T -fuzzy subgroup of (R, +), where T stands

for the �Lukasiewicz t-norm.
The associated T -indistinguishability operator E(μ) defined by E(μ)(a, b) =

μ(a − b) is separable and invariant under translations and therefore all their
columns (i.e. all lateral classes of μ) are triangular numbers of the same shape.

The T -vague group associated to μ is (R, +̃) where

+̃(a, b, c) = μ(a + b − c) = E(e, a + b − c).

This means that the vague sum of two numbers a and b is the symmetric
triangular number translated of μ and centered in a + b.

The following example considers the possibility of being a vague multiple of

an integer.

Example 12.47. Given an integer number a and a symmetric triangular num-
ber μ centered at 0 and with its core reduced to {0}, let us consider for each

multiple na of a the fuzzy number μna centered at na and translated of μ
(i.e. μna(b) = μ(na − b)). Let us define the fuzzy set μ◦

a
by

μ◦

a
(b) = sup

n∈Z

μna(b) ∀b ∈ R.

μ◦

a
is a normal T -fuzzy subgroup of (R, +) (T the �Lukasiewicz t-norm) and

μ◦

a
(b) is the degree of b being multiple of a.

The core of μ◦

a
is the subgroup (a) of multiples of a.

The associated T -vague group of μ◦

a
can be thought as the fuzzification of

the quotient group Z/(a) of the integer numbers modulo a.
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Finitely Valued Indistinguishability
Operators

The literature contains examples of indistinguishability operators valued in
more general structures than the unit interval endorsed by a t-norm. In [60]
[58], for example, indistinguishability operators are studied under category
theory. In [23], the unit interval was generalized to GL-monoids. These gen-
eralizations are very useful, because they simplify the study of some specific

cases. For example, many of the results found in this chapter about finitely
valued indistinguishability operators can be proved in exactly the same way
as in the unit interval case because both are GL-monoids.

Indistinguishability operators have also been studied in specific frameworks.
For instance, in [115] indistinguishability operators valued on probabilistic

metric spaces were studied and a Representation Theorem similar to 2.54 was

proved for them.
Interval-valued indistinguishability operators have also been studied ([51]).

The cited study introduced a new concept of transitivity, called weak tran-
sitivity, that coincides with classical T -transitivity for [0, 1] valued indistin-
guishability operators but does not in general. (A fuzzy interval-valued rela-
tion R on X is weak transitive if and only if for every x, y ∈ X there does not

exist z ∈ X such that T (R(x, z), R(z, y)) > R(x, y), where T is a generalized
t-norm defined on the set of intervals of [0, 1]). This is an example of how a

concept can be developed in specific domains.
Finite-valued indistinguishability operators are another very interesting

kind of operators. This is because in most situations, the properties of ob-
jects are divided according to a finite set of linguistic labels such as very
small, small, medium, big and very big. A finite valued t-norm T makes it
possible to calculate with these labels directly and obtain, for example, the

result of T (small, very big) as another linguistic label. This chapter is de-
voted to the study of such indistinguishability operators. Some preliminaries
on finite-valued t-norms are provided in Section 13.1 in order to make this dis-
cussion self-contained. Section 13.2 presents some properties of finite-valued

indistinguishability operators. In particular, the Representation Theorem is
generalized to these operators. Section 13.3 is about additive generators of

J. Recasens: Indistinguishability Operator, STUDFUZZ 260, pp. 217–229.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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finite-valued t-norms. Unlike t-norms valued in [0, 1], most finite-valued t-
norms have additive generators. A new pseudoinverse is defined in order to
generate their residuation. The results are applied in Section 13.4 to find

the dimension and a basis of finite-valued indistinguishability operators by
solving some systems of Diophantine inequalities. The results can be applied
to find the dimension and a basis of usual [0, 1]-valued T -indistinguishability
operators, and new algorithms for doing this are provided (Section 13.5).

Finite-valued t-norms

In fuzzy logic, the logical conjunction is modelled by a t-norm. In this way
infinitely valued logics are obtained in which the truth degree of a proposition
is a number between 0 and 1. In fuzzy systems, t-norms are also used to model
the intersection of fuzzy subsets that are valued in the unit interval.

In many cases, assigning an exact and precise value between 0 and 1 is not

realistic because, due to linguistic vagueness or lack of precision in the data

this assignment is necessarily imprecise. It would be more reasonable in these

cases to consider only a totally ordered finite chain (that can be identified

with a finite subset of [0,1]) in order to valuate the fuzzy concepts.
The study of operators defined on a finite chain L is of great interest,

especially because reasoning is usually done by using linguistic terms or labels
that are totally ordered. For instance, the size of an object can be granularized
into very small, small, average, big, very big. If an operator T is defined on
this set, then we will be able to combine these labels in order to obtain
for example T (average, very big). The calculations are simplified greatly by
addressing the problem of combining labels in this way, since there is no need

to assign numerical values to them or to identify them with an interval or

with a fuzzy subset.
Finite chains are also useful in cases in which the values are discrete by na-

ture or by discretization. On a customer-satisfaction survey respondents may
be asked to describe their satisfaction with a service using natural number

from 0 to 5 or labels ranging from not at all satisfied to very satisfied.
In this line, various authors have translated t-norms and t-conorms to

finite chains ([92], [93]) and have obtained interesting theoretical results.

Finite-valued Indistinguishability Operators

In almost all situations, human beings categorize or granularize the properties
or features of objects into a finite set L of linguistic labels that can be lin-
early ordered. These properties can be evaluated on L in a natural way and,
consequently, the fuzzy subsets of the universe of discourse are also valued

on L.
Likewise, the degree of similarity, equivalence or indistinguishability be-

tween two objects is not a numerical value between 0 and 1, but rather an
element of L that can be interpreted as rather, very much, etc.
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Indistinguishability operators valued in finite chains seem to be very inter-
esting tools that will allow us to study the similarity between objects while
taking into account the granularity generated by L and obtain an interpre-
tation of the calculation on the chain.

13.1 Preliminaries

This section contains some definitions and results on finite valued t-norms

that will be needed on this chapter.
Let L = be a finite totally ordered set with minimum e and maximum u.

Definition 13.1. A binary operation T : L × L → L is a t-norm if and only
if for all x, y, z ∈ L

1. T (x, y) = T (y, x)
2. T (T (x, y), z) = T (x, T (y, z))
3. T (x, y) ≤ T (x, z) whenever y ≤ z
4. T (x,u) = x

The set of t-norms on a finite chain depends only on its cardinality. For

this reason we will only consider the chains L = {0, 1, ..., n} and L′ = {0 =
0
n , 1

n , 2
n , ..., n

n = 1}.

Example 13.2

1. The minimum t-norm on L is defined by

T (i, j) = min(i, j) ∀i, j ∈ L.

2. The �Lukasiewicz t-norm on L is defined by

T (i, j) = max(i + j − n, 0) ∀i, j ∈ L.

Smooth t-norms on finite chains are the equivalent of continuous ones defined

on [0, 1].

Definition 13.3. [93]

• A map f : L → L is smooth if and only if

0 ≤ f(i + 1) − f(i) ≤ 1 for all i ∈ L.

• A map f : L × L → L is smooth if and only if it is smooth with respect to
both variables.

Definition 13.4. [93] A t-norm T on L is divisible if and only if for all
i, j ∈ L with i ≤ j there exists k ∈ L such that

i = T (j, k).
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Smoothness and divisibility are equivalent concepts for finite valued t-norms.

Proposition 13.5. [93] A t-norm on L is smooth if and only if it is divisible.

The next proposition characterizes all smooth t-norms on L as particular

ordinal sums of copies of the t-norm of �Lukasiewicz.

Proposition 13.6. [93] A t-norm T on L is smooth if and only if there exists
J = {0 = i0 < i1 < ... < im = n} ⊆ L such that

T (i, j) =

{
max(ik, i + j − ik) if i, j ∈ [ik, ik+1] for some ik ∈ J
min(i, j) otherwise.

T is said to be an ordinal sum and will be represented by T =< 0 =
i0, i1, ...im = n >.

13.2 Finitely Valued Indistinguishability Operators

The Representation Theorem of indistinguishability operators was first

proved by Ovchinnikov for the Product t-norm [105], then it was general-
ized to continuous t-norms by Valverde in [139] and in [23] it is noticed that

it is also true for GL-monoids. Since finite valued t-norms are such monoids,
the Representation Theorem also applies to finitely valued indistinguishabil-
ity operators.

This section adapts the basic definitions and properties of indistinguish-
ability operators to the finite valued case. In particular, the Representation
Theorem and the idea of extensionality are reformulated. Also the concepts

of dimension and basis of an indistinguishability operator are considered and

the characterization of the set of extensional fuzzy subsets with respect to
an indistinguishability operator is adapted to the context of finite valued

t-norms.

Definition 13.7. Let T be a t-norm on L. Its residuation
−→
T is defined by

−→
T (i|j) = max{k ∈ L | T (i, k) ≤ j}.

Example 13.8

1. If T is the �Lukasiewicz t-norm on L, then
−→
T (i|j) = max(0, n − i + j) for

all i, j ∈ L.

2. If T is the Minimum t-norm on L, then
−→
T (i|j) =

{
j if i > j
n otherwise.

Proposition 13.9. Let T =< 0 = i0, i1, ...im = n > be a smooth t-norm on
L. Its residuation

−→
T is

−→
T (i|j)=

⎧
⎨

⎩

n if i ≤ j
max(ik, ik+1 − i + j) if i, j ∈ [ik, ik+1] for some ik ∈ J and i > j
j otherwise.
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Definition 13.10. The biresiduation ET associated to a given t-norm T on
L is defined by

ET (i, j) = T (
−→
T (i|j),−→T (j|i)) = min(

−→
T (i|j),−→T (j|i)).

Example 13.11

1. If T is the �Lukasiewicz t-norm on L, then ET (i, j) = n − |i − j| for all
i, j ∈ L.

2. If T is the Minimum t-norm, then ET (i, j) =

{
min(i, j) if i �= j
n otherwise.

Proposition 13.12. Let T =< 0 = i0, i1, ...im = n > be a smooth t-norm on
L. Its biresiduation ET is

ET (i, j) =

⎧
⎨

⎩

n if i = j
ik+1 − |i − j| if i, j ∈ [ik, ik+1] for some ik ∈ J and i �= j
min(i, j) otherwise.

−→
T and ET are special kind of T -preorders and T -indistinguishability
operators.

Definition 13.13. Let T be a t-norm on L. A T -preorder P on a set X is a
fuzzy relation P : X × X → L satisfying for all x, y, z ∈ X

1. P (x, x) = n (Reflexivity)
2. T (P (x, y), P (y, z)) ≤ P (x, z) (T -transitivity).

Definition 13.14. Let T be a t-norm on L.A T -indistinguishability operator
E on a set X is a fuzzy relation E : X ×X → L satisfying for all x, y, z ∈ X

1. E(x, x) = n (Reflexivity)
2. E(x, y) = E(y, x) (Symmetry)
3. T (E(x, y), E(y, z)) ≤ E(x, z) (T -transitivity).

Proposition 13.15. The residuation
−→
T of a t-norm T on L is a T -preorder

on L.

Proposition 13.16. The biresiduation ET of a t-norm T on L is a T -
indistinguishability operator on L.

Lemma 13.17. Let T be a t-norm on L and μ an L-fuzzy subset of X (i.e.,
μ : x → L). The fuzzy relation Eμ on X defined for all x, y ∈ X by

Eμ(x, y) = ET (μ(x), μ(y))

is a T -indistinguishability operator.
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Theorem 13.18. Representation Theorem for T -indistinguishability opera-
tors. Let R be a fuzzy relation on a set X and T a t-norm on L. R is a
T -indistinguishability operator if and only if there exists a family (μi)i∈I of
L-fuzzy subsets of X such that for all x, y ∈ X

R(x, y) = inf
i∈I

Eμi
(x, y).

(μi)i∈I is called a generating family of R and an L-fuzzy subset that belongs

to a generating family of R is called a generator of R.
A similar result holds for T -preorders.
As in the [0, 1] valued case, extensional L-fuzzy subsets with respect to

a finitely valued T -indistinguishability operator E play a central role since

they are the only observable sets taking E into account.
Extensional sets with respect to a T -indistinguishability operator coincide

with their generators, as is stated in Proposition 13.20.

Definition 13.19. Let T be a t-norm on L, E a T -indistinguishability oper-
ator on a set X and μ an L-fuzzy subset of X. μ is extensional with respect
to E if and only if for all x, y ∈ X

T (E(x, y), μ(x)) ≤ μ(y).

HE will denote the set of all extensional L-fuzzy subsets with respect to E.

It can be proved that an L-fuzzy subset is extensional with respect to a

T -indistinguishability operator E if and only if it is a generator of E.

Proposition 13.20. Let T be a t-norm on L, E a T -indistinguishability op-
erator on a set X and μ an L-fuzzy subset of X. μ is extensional with respect
to E if and only if Eμ ≥ E.

In the same way as in the [0, 1] valued case, the concepts of generating family,
dimension and basis can be defined.

Definition 13.21. Let T be a t-norm on L and E a T -indistinguishability
operator on X. The dimension of E is the minimum of the cardinalities of
the generating families of E in the sense of the Representation Theorem. A
generating family with this cardinality is called a basis of E.

In Section 13.4 an algorithm to find dimensions and basis of T -indistinguish-
ability operators for an additively generated t-norm T on L will be provided.

13.3 Additive Generators

Many of the t-norms on a finite chain L can be additively generated. In
particular, it can be proved that all smooth t-norms on L - including the
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minimum t-norm and all ordinal sums - have an additive generator. A t-
norm T on L with additive generator f can then be generated combining

f with its pseudoinverse f
(−1)
+ . A new pseudoinverse f

(−1)
− will be useful

to generate
−→
T and ET . These representations will provide us in the next

Section 13.4 with a technique to find the dimension and a basis of a finitely
valued T -indistinguishability operator E as well as its set HE of generators

or extensional sets when T has an additive generator.

Definition 13.22. Let f : L → [0,∞) be a strictly decreasing function with
f(n) = 0.

• The pseudo inverse f
(−1)
+ : [0,∞) → L of f is defined by

f
(−1)
+ (t) = min{i ∈ L; f(i) ≤ t} = min f−1([0, t]).

• The pseudo inverse f
(−1)
− : (−∞,∞) → L of f is defined by

f
(−1)
− (t) =

{
max{i ∈ L; f(i) ≥ t} = max f−1([t, n]) if t ≥ 0
n otherwise.

The first pseudo inverse f
(−1)
+ was first defined in [93]. f

(−1)
− is a new pseudo

inverse introduced here in order to generate the residuation and biresiduation
of a t-norm on L.

Definition 13.23. [93] Let T be a t-norm on L. T is generated by a strictly
decreasing function f : L → [0,∞) with f(n) = 0 if and only if

T (i, j) = f
(−1)
+ (f(i) + f(j)) for all i, j ∈ L.

f is called an additive generator of T and we will write T = 〈f〉.

For an additive generator f we will indicate f = (a0, a1, a2, ..., an = 0) where

ai = f(i), i ∈ L.

Example 13.24

• An additive generator of the t-norm of �Lukasiewicz on L is (n, n − 1, n −
2, ..., 1, 0).

• An additive generator of the minimum t-norm on L is (2n − 1, 2n−1 −
1, 2n−2 − 2, ..., 7, 3, 1, 0).

The next results present some intersting properties of additive generators.

Proposition 13.25. [93] Let f = (a0, a1, a2, ..., an = 0) and g =
(b0, b1, b2, ..., bn = 0) be strictly decreasing functions on L. Then 〈f〉 = 〈g〉 if
and only if for all i, j, k ∈ L with k �= 0,
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1. ai + aj ≥ a0 ⇒ bi + bj ≥ 0
2. ak ≤ ai + aj < ak−1 ⇒ bk ≤ bi + bj < bk−1.

Corollary 13.26. [93] If f : L → [0,∞) is a strictly decreasing function with
f(n) = 0 and λ > 0, then 〈f〉 = 〈λf〉.

Of course, the reciprocal of the corollary is not true.

Proposition 13.27. [93] If T is a t-norm on L with additive generator, then
we can find an additive generator f of T with Ran f ∈ Z+.

Proposition 13.28. [93] Al smooth t-norms on L have an additive genera-
tor.

For additively generated t-norms we have representations for their residua-
tions and biresiduations.

Proposition 13.29. Let T be a t-norm on L with additive generator f . Then

−→
T (i|j) = f

(−1)
− (f(j) − f(i)) for all i, j ∈ L.

Proof. Given i, j ∈ L,

−→
T (i|j) = max{k ∈ L | T (i, k) ≤ j}

= max{k ∈ L | f
(−1)
+ (f(i) + f(k)) ≤ j}

= f
(−1)
− (f(j) − f(i)) .

Proposition 13.30. Let T be a t-norm on L with additive generator f . Then

ET (i, j) = f
(−1)
− (|f(i) − f(j)|) for all i, j ∈ L.

Proof

ET (i, j) = min(
−→
T (i|j),−→T (j|i))

= min(f
(−1)
− (f(j) − f(i)) , f

(−1)
− (f(i) − f(j)))

= f
(−1)
− (|f(i) − f(j)|) .

13.4 Dimension and Basis of an Indistinguishability
Operator

In this section a method to calculate the dimension an a basis of a

T -indistinguishability operator E on a finite set X when T , a t-norm on
L, can be additively generated willbe given.

Also a characterization of the T -transitive closure of a reflexive and sym-
metric fuzzy relation will be provided.

Let μ be an L-fuzzy subset of a finite set X = {r1, r2, ..., rs} of cardinality
s. We will write μ = (q1, q2, ..., qs) when μ(ri) = qi, i = 1, 2, ..., s.
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An L-fuzzy subset μ of X is a generator of E if and only if Eμ(ri, rj) ≥
E(ri, rj) for all i, j = 1, 2, ..., s. If T has f as an additive generator, then this
condition can be written as

f
(−1)
− (|f(μ(ri)) − f(μ(rj))|) ≥ E(ri, rj) for all i, j = 1, 2, ..., s

or

|f(μ(ri)) − f(μ(rj))| ≤ f(E(ri, rj)) for all i, j = 1, 2, ..., s.

This is equivalent to

f(μ(ri)) − f(μ(rj)) ≤ f(E(ri, rj)) for all i, j = 1, 2, ..., s.

Proposition 13.31. Let T be a t-norm on L with additive generator f and
E a T -indistinguishability operator on a finite set X of cardinality s. An
L-fuzzy subset μ = (x1, x2, ..., xs) is a generator of E if and only if

f(xi) − f(xj) ≤ f(E(ri, rj)) for all i, j = 1, 2, ..., s.

In other words, HE is the subset of Ls of solutions of the last system of

Diophantine inequalities.

Example 13.32. If T is the �Lukasiewicz t-norm on L, then the last system of

inequalities becomes

xi − xj ≤ n − E(ri, rj) for all i, j = 1, 2, ..., s.

Example 13.33. If T is the minimum t-norm on L, then the last system of

inequalities becomes

2n−xi − 2n−xj ≤ 2n−E(ri,rj) − 1 for all i, j = 1, 2, ..., s.

Example 13.34. The following fuzzy relation E on X = {r1, r2, r3, r4} is a

min-indistinguishability operator with L = {0, 1, 2}.

E =

⎛

⎜⎜⎝

2 1 0 0
1 2 0 0
0 0 2 1
0 0 1 2

⎞

⎟⎟⎠ .

An L-fuzzy subset (x1, x2, x3, x4) of X is a generator of E if and only if it
satisfies the following system of Diophantine inequations.

22−x1 − 22−x1 ≤ 22−1 − 1 = 1

22−x1 − 22−x3 ≤ 22 − 1 = 3

22−x1 − 22−x4 ≤ 3

22−x2 − 22−x1 ≤ 1
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22−x2 − 22−x3 ≤ 3

22−x2 − 22−x4 ≤ 3

22−x3 − 22−x1 ≤ 3

22−x3 − 22−x2 ≤ 3

22−x3 − 22−x4 ≤ 1

22−x4 − 22−x1 ≤ 3

22−x4 − 22−x2 ≤ 3

22−x4 − 22−x3 ≤ 1

HE has 26 elements:

HE = {(2, 2, 2, 2), (2, 2, 2, 1), (2, 2, 1, 2), (2, 2, 1, 1), (2, 2, 0, 0),

(2, 1, 2, 2), (2, 1, 2, 1), (2, 1, 1, 2), (2, 1, 1, 1), (2, 2, 0, 0),

(2, 1, 0, 0), (1, 2, 2, 2), (1, 2, 2, 1), (1, 2, 1, 2), (1, 2, 1, 1),

(1, 2, 0, 0), (1, 1, 2, 2), (1, 1, 2, 1), (1, 1, 1, 2), (1, 1, 1, 1),

(1, 1, 0, 0), (0, 0, 1, 2), (0, 0, 2, 1), (0, 0, 2, 2), (0, 0, 1, 1), (0, 0, 0, 0)}

E has dimension 2 and {(1, 2, 0, 0), (0, 0, 1, 2)} is a basis of E.

The next result shows when two L-fuzzy subsets generate the same T -
indistinguishability operator, T an L valued t-norm with additive generator.
The proof is very similar to the proof of Theorem 4.23 in Chapter 4.

Proposition 13.35. Let μ, ν be two L-fuzzy subsets of X and T a t-norm
on L with additive generator f . Eμ = Eν if and only if ∀x ∈ X one of the
following conditions holds:

1. f(μ(x)) = f(ν(x))+k1 with min{f(0)−f(ν(x)) ≤ k1 ≥ max{−f(ν(x))|x ∈
X}

2. f(μ(x)) = −f(ν(x))+k2 with min{f(0)+f(ν(x)) ≤ k2 ≥ max{f(ν(x))|x ∈
X}.

Proposition 13.36. Let T be a t-norm on L with additive generator f and
E a T -indistinguishability operator on X. Then f ◦ E is a pseudometric

on X. Reciprocally, if m is a pseudometric on X, then f
(−1)
− ◦ m is a T -

indistinguishability operator on X.
E is a min-indistinguishability operator if and only if f ◦ E is a pseudo

ultrametric.

This section ends with a characterization of the T -transitive closure (T a

t-norm valued on L) of a reflexive and symmetric fuzzy relation using the set

of its extensional L-fuzzy subsets or generators.

Proposition 13.37. Let T be a t-norm on L, X a finite set and R a prox-
imity relation on X valued on L. The transitive closure R of R is the T -
indistinguishability operator on X valued on L having as extensional sets the
set HR of L-fuzzy subsets μ of X with Eμ ≥ R.
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Proof

μ ∈ HR if and only if Eμ ≥ R ≥ R.

Example 13.38. Let us consider the proximity relation R on X = {x1, x2, x3}
valued on L = {0, 1, 2, 3} with matrix

R =

⎛

⎝
3 2 0
2 3 2

0 2 3

⎞

⎠ .

For the �Lukasiewicz t-norm, an L-fuzzy subset (x1, x2, x3) of X is in HR if
and only if it satisfies the following Diophantine system of inequations.

x1 − x2 ≤ 3 − R(x1, x2) = 3 − 2 = 1

x2 − x1 ≤ 1

x1 − x3 ≤ 3

x3 − x1 ≤ 3

x2 − x3 ≤ 1

x3 − x2 ≤ 1.

HR = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (0, 1, 2), (1, 0, 0), (1, 0, 1),

(1, 1, 0), (1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (1, 2, 3), (2, 1, 1),

(2, 1, 2), (2, 2, 1), (2, 2, 2), (2, 2, 3), (2, 3, 2), (2, 3, 3), (3, 2, 1),

(3, 2, 2), (3, 2, 3), (3, 3, 2), (3, 3, 3), (3, 3, 4), (3, 4, 3), (3, 4, 4),

(4, 3, 2), (4, 3, 3), (4, 3, 4), (4, 4, 3), (4, 4, 4)}.

The T -transitive closure R of R is generated by HR and its matrix is

R =

⎛

⎝
4 3 2

3 4 3
2 3 4

⎞

⎠ .

It has dimension 1 and {(0, 1, 2)} is a basis of R.

13.5 Approximation of Indistinguishability Operators
Valued on [0,1] by Finitely Valued Ones

The problem of finding the dimension and a basis of a T -indistinguishability
operator on a finite set X for a continuous t-norm T on [0,1] has been treated

in Chapter 7.
For practical purposes, if X is finite we can assume that the entries

of a T -indistinguishability operator are rational numbers, since in many
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cases the data come from inexact measurements and also because every T -
indistinguishability operator can be approximated by another one with ra-
tional entries with as much accuracy as desired.

Having this in mind, the results obtained in the previous sections will be

used to find the dimension and a basis of a T -indistinguishability operator as

close as needed to a given one for T the minimum, the �Lukasiewicz t-norm or

any ordinal sum of finite copies of the �Lukasiewicz t-norm with no segments

of idempotent elements on the diagonal.

Definition 13.39. Let R and S be two fuzzy relations on a finite set X. The
distance ‖R − S‖ between R and S is

‖R − S‖ = max(|R(x, y) − S(x, y)| x, y ∈ X).

Lemma 13.40. Let r be a positive real number and n a positive integer.
There exists a rational number q = a

n with q ≤ r and r − q ≤ 1
n .

Proof. 0 ≤ r − q ≤ 1
n is equivalent to nr − 1 ≤ a ≤ nr. Take a the natural

number satisfying both inequalities.

Proposition 13.41. Let T be an ordinal sum on [0, 1] of a finite number of
�Lukasiewicz copies on the boxes [ai−1, ai]

2, i = 1, 2, ..., t with 0 = a0 < a1 <
a2 < ... < at = 1, ai = bi

n , bi ∈ Z for i = 0, .., t and n a fixed integer. Let
R a proximity relation on a finite set X its entries fractions with divisor n
(i.e., R(x, y) =

sxy

n with sxy an integer for all x, y ∈ X). Then the entries of
its T -transitive closure are fractions with divisor n as well.

Proof. The T -transitive closure of R can be obtained using the sup−T prod-
uct than involves only sums, subtractions, the maximum and the minimum.

Proposition 13.42. Let T be an ordinal sum on [0, 1] as in the preceding
proposition, E a T -indistinguishability operator on a finite set X and n ∈ N.
There exists a T -indistinguishability operator E′ on X smaller than or equal
to E with all its entries fraction numbers with denominator n and such that
‖E − E′‖ < 1

n .

Proof. Let a1, a2, ..., ap be the entries of E different from 1. We can find

a′
1, a

′
2, ..., a

′
p rational numbers with denominator n such that ai − a′

i < 1
n

and a′
i ≤ ai for all i = 1, 2, ..., p. Replacing the entries a1, a2, ..., ap of E

by a′
1, a

′
2, ..., a

′
p respectively, we obtain a new reflexive and symmetric fuzzy

relation E′′ with all its entries rational numbers with denominator n and

satisfying ‖E−E′′‖ < 1
n . E′′ may not be T -transitive. Its T -transitive closure

E′ is between E and E′′; therefore ‖E − E′‖ < 1
n . Moreover, thanks to

Proposition 13.41, the entries of E′ are rational numbers with denominator n.

This proposition allows us to calculate the dimension and a basis of a T -
indistinguishability operator E on a finite set X when T is the minimum
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t-norm or an ordinal sum of a finite number of �Lukasiewicz t-norms with
covers the diagonal with as much precision as needed.

Indeed, we can consider the T -indistinguishability operator E′ obtained

in the last proposition as a T -indistinguishability operator valued on L′ =
{0, 1

n , 2
n , ..., n

n = 1} so that we can calculate the dimension and a basis of E′

(as a T -indistinguishability operator with T valued on L′). It is also a basis
of E′ as a T -indistinguishability operator with T valued on [0, 1].

Example 13.43. Let E be the min-indistinguishability operator on X = {x1,
x2, x3, x4} with matrix

E =

⎛

⎜⎜⎜⎝

1
√

3
3 0 0√

3
3 1 0 0

0 0 1
√

3
3

0 0
√

3
3 1

⎞

⎟⎟⎟⎠
.

The matrix

E =

⎛

⎜⎜⎝

1 1
2 0 0

1
2 1 0 0
0 0 1 1

2
0 0 1

2 1

⎞

⎟⎟⎠

is a min-indistinguishability operator on X with ‖E − E′‖ ≤ 1
2 . This E′,

considering the minimum t-norm on L, has been studied in Example 13.34.
So E′ as a T -indistinguishability operator valued on [0, 1] has also dimension
2 and a basis of E′ is {(1

2 , 1, 0, 0), (0, 0, 1
2 , 1)}.
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Appendix

Some Properties on t-Norms

This is a very short introduction to the basic properties of continuous t-norms.
For more information about t-norms I suggest the book [83].

Definition A.1. A continuous t-norm is a map T : [0, 1]× [0, 1] → [0, 1] such
that for all x, y, z ∈ [0, 1] satisfies

1. T (T (x, y), z)) = T (x, T (y, z)) (Associativity)
2. T (x, y) = T (y, x) (Commutativity)
3. T (1, x) = x
4. T is a non-decreasing map
5. T is a continuous map.

NB. Commutativity can be derived from the other properties though the

proof is not trivial.

Example A.2

1. The minimum t-norm min defined by min(x, y) for all x, y ∈ [0, 1].
2. The t-norm of �Lukasiewicz defined by T (x, y) = max(0, x + y − 1).
3. The Product t-norm T (x, y) = x · y.

It is trivial to prove that the minimum t-norm is the greatest t-norm.

Definition A.3. For a t-norm T x ∈ [0, 1] is an idempotent element if and
only if T (x, x) = x. E(T ) will be the set of idempotent elements of T .

Definition A.4. A t-norm T is Archimedean if and only if E(T ) = {0, 1}.

Example A.5. The t-norms Product and �Lukasiewicz are Archimedean t-
norms, while the minimum t-norm is not.
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Definition A.6. For a t-norm T , x ∈ [0, 1] is nilpotent if and only if
there exists n ∈ N such that T n(x) = 0. Nil(T ) will be the set of nilpo-
tent elements of T .

(T n is defined recursively: T n(x) = T (T n−1(x), x)).

Theorem A.7. If a t-norm T is continuous Archimedean, then Nil(T ) is
[0, 1) or {0}. In the first case, T is called non-strict Archimedean. In the
second case, T is called strict Archimedean.

Definition A.8. Two t-norms T , T ′ are isomorphic if and only if there exists
a bijective map f : [0, 1] → [0, 1] such that

(f ◦ T )(x, y) = T ′(f(x), f(y))

Theorem A.9

• All continuous strict Archimedean t-norms are isomorphic to the Product
t-norm.

• All continuous non-strict Archimedean t-norms are isomorphic to the
t-norm of �Lukasiewicz.

Theorem A.10. Ling’s Theorem
A continuous t-norm T is Archimedean if and only if there exists a con-

tinuous and strictly decreasing function t : [0, 1] → [0,∞) with t(1) = 0 such
that

T (x, y) = t[−1](t(x) + t(y))

where t[−1] is the pseudo inverse of t, defined by

t[−1](x) =

{
t−1(x) if x ∈ [0, t(0)]
0 otherwise.

T is strict if t(0) = ∞ and non-strict otherwise. t is called an additive gen-
erator of T and two generators of the same t-norm differ only by a positive
multiplicative constant.

Example A.11

1. t(x) = 1 − x is an additive generator of the t-norm of �Lukasiewicz.
2. t(x) = − log(x) is an additive generator of the Product t-norm.

Theorem A.12. Given a continuous t-norm T there exists a set of at most
denombrable disjoint open intervals (ai, bi) such that in every set [ai, bi] ×
[ai, bi] the t-norm is a reduced copy Ti of an Archimedean t-norm and outside
these sets the t-norm coincides with the minimum one. T is then called an
ordinal sum of Ti.
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d’indistingibilitat. Aplicació al raonament aproximat. Ph.D. Dissertation,
UPC, In Catalan (1997)

14. Boixader, D.: T-indistinguishability operators and approximate reasoning via
CRI. In: Dubois, D., Klement, E.P., Prade, H. (eds.) Fuzzy Sets, Logics and
Reasoning about Knowledge, pp. 255–268. Kluwer Academic Publishers, New
York (1999)

15. Boixader, D., Jacas, J.: Generators and Dual T -indistinguishabilities. In:
Bouchon-Meunier, B., Yager, R.R., Zadeh, L.A. (eds.) Fuzzy Logic and Soft
Computing, pp. 283–291. World Scientific, Singapore (1995)

16. Boixader, D., Jacas, J.: Extensionality based approximate reasoning. Interna-
tional Journal of Approximate Reasoning 19, 221–230 (1998)

17. Boixader, D., Jacas, J., Recasens, J.: Fuzzy equivalence relations: advanced
material. In: Dubois, D., Prade, H. (eds.) Fundamentals of Fuzzy Sets, pp.
261–290. Kluwer Academic Publishers, New York (2000)



234 References

18. Boixader, D., Jacas, J., Recasens, J.: Upper and lower approximation of fuzzy
sets. Int. J. of General Systems 29, 555–568 (2000)

19. Boixader, D., Jacas, J., Recasens, J.: Searching for meaning in defuzzification.
Int. J. Uncertainty, Fuzziness and Knowledge-based Systems 7, 475–482 (1999)

20. Boixader, D., Jacas, J., Recasens, J.: A characterization of the columns of a
T-indistinguishability operator. In: Proc. FUZZ IEEE 1998 Conference, An-
chorage, pp. 808–812 (1998)

21. Bou, F., Esteva, F., Godo, L., Rodŕıguez, R.: On the Minimum Many-Valued
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