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Foreword 

Robotics is undergoing a major transformation in scope and dimension. From a 

largely dominant industrial focus, robotics is rapidly expanding into human envi-

ronments and vigorously engaged in its new challenges. Interacting with, assist-

ing, serving, and exploring with humans, the emerging robots will increasingly 

touch people and their lives. 

Beyond its impact on physical robots, the body of knowledge robotics has pro-

duced is revealing a much wider range of applications reaching across diverse  

research areas and scientific disciplines, such as: biomechanics, haptics, neurosci-

ences, virtual simulation, animation, surgery, and sensor networks among others. 

In return, the challenges of the new emerging areas are proving an abundant 

source of stimulation and insights for the field of robotics. It is indeed at the inter-

section of disciplines that the most striking advances happen. 

The Springer Tracts in Advanced Robotics (STAR) is devoted to bringing to the 

research community the latest advances in the robotics field on the basis of their 

significance and quality. Through a wide and timely dissemination of critical re-

search developments in robotics, our objective with this series is to promote more 

exchanges and collaborations among the researchers in the community and con-

tribute to further advancements in this rapidly growing field. 

The volume edited by Jorge Solis and Kia Ng presents a collection of contribu-

tions in the new emerging field of social human-robot interaction. The coverage is 

on musical robots and interactive multimodal systems, which are expected to be-

come tools to preserve cultural heritage. The seven chapters in the first section fo-

cus on the analysis, modeling and understanding of musical performance and the 

development of novel interfaces for musical expression, while the other seven 

chapters in the second section concentrate on the design of automated instruments 

and anthropomorphic robots aimed at facilitating human-robot interaction from a 

musical viewpoint and proposing novel ways of musical expression. 

STAR is proud to welcome this first volume in the series dedicated to musical 

robotics! 

Naples, Italy Bruno Siciliano 

May 2011 STAR Editor 



Preface

The relation between humans and music has a long history dating from the antiq-

uity, during which poetry, dance and music were inseparable and constituted an 

important mean of communication of everyday life. During the golden era of au-

tomata, music also served as a tool for understanding the human motor control 

while performing highly skilful tasks. The subject area of this book is inherently 

inter- and trans-disciplinary. Recent advances in a wide range of subject areas that 

contributed to the developments and possibilities as presented in this book include 

computer science, multimodal interfaces and processing, artificial intelligence, 

electronics, robotics, mechatronics and beyond. 

Over recent decades, Computer Science research on musical performance is-

sues has been very much active and intense. For example, computer-based expres-

sive performance systems that are capable of transforming a symbolic musical 

score into an expressive musical performance considering time, sound and timbre 

deviations. At the same time, recent technological advances in robot technology, 

music content processing, machine learning, and others are enabling robots to 

emulate the physical dynamics and motor dexterity of musicians while playing 

musical instruments and exhibit cognitive capabilities for musical collaboration 

with human players. Nowadays, the research on musical robots opens many op-

portunities to study different aspects of humans. These include understanding hu-

man motor control, how humans create expressive music performances, finding 

effective ways of musical interaction, and their applications to education and  

entertainment.  

For several decades, researchers have been developing more natural interfaces 

for musical analysis and composition and robots for imitating musical perform-

ance. Robotics has long been a fascinating subject area, encompassing the dreams 

of science fiction and industry alike. Recent progress is shifting the focus of robot-

ics. Once it was confined to highly specialized industrial applications and now it 

infiltrates our everyday lives and living spaces. 

This book consists of a collection of scientific papers to highlight cutting edge 

research related to this interdisciplinary field, exploring musical activities, interac-

tive multimodal systems and their interactions with robots to further enhance  

musical understanding, interpretation, performance, education and enjoyment. It 

covers some of the most important ongoing interactive multimodal systems and 

robotics research topics. This book contains 14 carefully selected and reviewed 

contributions. The chapters are organized in two sections:  



X Preface

• The first section focuses on the development of multimodal systems to 

provide intuitive and effective human-computer interaction. From this, 

more advanced methods for the analysis, modeling and understanding of 

musical performance and novel interfaces for musical expression can be 

conceived.  

• The second section concentrates on the development of automated instru-

ments and anthropomorphic robots designed to study the human motor 

control from an engineering point of view, to better understand how to fa-

cilitate the human-robot interaction from a musical point of view and to 

propose novel ways of musical expression.  

The idea for this book has been formed over several meetings during related con-

ferences between the two editors, observing and involving the developments from 

a wider range of related research topics as highlighted here. We can still remember 

the initial discussions during the i-Maestro workshops and the International Com-

puter Music Conferences. We would like to take this opportunity to thank all au-

thors and reviewers for their invaluable contributions and thanks to Dr. Thomas 

Ditzinger from the Springer for his kind support and invaluable insights over the 

development of this book. We are grateful to many people including our families 

for their support and understanding, institutions and funding bodies (acknowl-

edged in separate Chapters) without whom this book would not be possible. We 

hope you will enjoy this book and find it useful and exciting. 

Tokyo, Leeds 

August 2010 

Jorge Solis  

Kia Ng 
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Chapter 1 

Musical Robots and Interactive Multimodal 
Systems: An Introduction 

Jorge Solis and Kia Ng 

1.1   Context 

As early as 17
th
 and 18

th 
centuries different researchers have been interested in study-

ing how humans are capable of playing different kinds of musical instruments as an 

approach to provide a credible imitation of life. As an early example, in 1738, 

Jacques de Vaucanson (1709-1782) developed the “Flute Player” automaton that 

mechanically reproduces the organs required for playing the flute and proposed its 

development as one way for understanding the human breathing mechanism.  

More recently, during the early 1960’s, industrial robots and autonomous mo-

bile robots became a reality. However the greatest engineering challenge of devel-

oping a robot with human-like shape still required further technological advances. 

Thanks to the progress in many related subject areas including robot technology, 

artificial intelligence, computation power, and others, the first full-scale anthro-

pomorphic robot, the Waseda Robot No.1 (WABOT-1), was developed by the late 

Prof. Ichiro Kato during the early 1980’s. Following this success, the first attempt 

at developing an anthropomorphic musical robot was carried out at the Waseda 

University in 1984. The Waseda Robot No. 2 (WABOT-2) was able of playing a 

concert organ. One year later, in 1985, the Waseda Sumimoto Robot 

(WASUBOT) built also by Waseda University, could read a musical score and 

play a repertoire of 16 tunes on a keyboard instrument. Prof. Kato argued that the 

artistic activity such as playing a keyboard instrument would require human-like 

intelligence and dexterity. 

The performance of any musical instrument is not well defined and far from a 

straightforward challenge due to the many different perspectives and subject areas. 

State-of-the-art development of interactive multimodal systems provides ad-

vancements which enable enhanced human-machine interaction and novel possi-

bilities for embodied robotic platforms. An idealized musical robot requires many 

different complex systems to work together; integrating musical representation, 

techniques, expressions, detailed analysis and control, for both playing and  

listening. It also needs sensitive multimodal interactions within the context of a 
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piece, interpretation and performance considerations, including: tradition, indi-

vidualistic and stylistic issues, as well as interactions between performers, and the 

list grows.  

Due to the inherent interdisciplinary nature of the topic, this book is a collec-

tion of scientific papers intended to highlight cutting edge research related to these 

interdisciplinary fields, exploring musical activities interactive multimedia and 

multimodal systems and their interactions with robots, to further enhance musical 

understanding, interpretation, performance, education and enjoyment.  

This book consists of 14 chapters with different key ideas, developments and 

innovations. It is dichotomized into two sections: 

I) Understanding elements of musical performance and expression 

II) Musical robots and automated instruments  

Additional digital resources of this book can be found online via: 
https://www.springer.com/book/978-3-642-22290-0 

1.2   Section I: Understanding Elements of Musical Performance 

and Expression 

The first section starts with the fundamentals of gesture, key requirements and in-

teractive multimedia systems to understand elements of musical performance. 

These concepts and systems contribute to the basis of playing gesture and the un-

derstanding of musical instrument playing. Different systems and interfaces have 

been developed to measure, model and analyse musical performance. Building on 

these advancements, further approaches for modeling, understanding and simula-

tion of musical performance as well as novel interfaces for musical expression can 

be conceived. These Chapters also present a range of application scenarios includ-

ing technology-enhanced learning. 

1.2.1   Chapter 2: Sound-Action Chunks in Music 

Most people will probably agree that there are strong links between the experience 

of music and sensations of body movement: we can readily observe musicians' 

body movements in performance, i.e. see so-called sound-producing movements. 

Furthermore: we can see people move to music in dancing, in walking, at concerts 

and in various everyday listening situations, making so-called sound-

accompanying movements. Such common observations and more systematic re-

search now converge in suggesting that sensations of body movement are indeed 

integral to musical experience as such. This is the topic of Chapter 2 which  

includes an overview of current research within the field as well as an overview of 

various aspects of music-related body movement. 

This Chapter proposes that sound-movement relationships are manifest at the 

timescale of the chunk, meaning in excerpts in the approximately 0.5 to 5 seconds 

range, forming what is called sound-action chunks. Focusing on sound-action 

chunks is useful because at this timescale we find many salient musical features: 

various rhythmical and textural patterns (e.g. dance rhythms and grooves) as well 
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as melodic, modal, harmonic and timbral (or 'sound') patterns are found at the 

chunk level, as are various expressive and emotive features (such as calm, agi-

tated, slow, fast, etc.). All these chunk-level musical features can be correlated 

with body movement features by carefully capturing and processing  

sound-producing and sound-accompanying movements as well as by extracting 

perceptually salient features from the sound. Needless to say, there are many tech-

nological and conceptual challenges in documenting such sound-action links, re-

quiring good interdisciplinary teamwork with contributions from specialists in 

musicology, music perception, movement science, signal processing, machine 

learning and robotics. 

1.2.2   Chapter 3: Automatic Music Transcription: From 

Monophonic to Polyphonic 

In order to provide natural and effective musical interaction, listening skill is 

paramount. This is investigated in Chapter 3 on audio analysis and transcription. 

Automatic music transcription is the process of analyzing a musical recorded sig-

nal, or a musical performance, and converting it into a symbolic notation or any 

equivalent representation concerning parameters such as pitch, onset time, dura-

tion and intensity. It is one of the most challenging tasks in the field of Music In-

formation Retrieval, and it is a problem of great interest for many fields and appli-

cations, from interactive music education to audio track recognition, music search 

on the Internet and via mobiles. This Chapter aims to analyze the evolution of mu-

sic understanding algorithms and models from monophonic to polyphonic, show-

ing and comparing the solutions. 

Music transcription systems are typically based on two main tasks: the pitch es-

timation and note tracking (associated to the retrieval of temporal information like 

onset times, note durations…). Many different techniques have been proposed to 

cope with these problems. For pitch estimation, the most recent approaches are of-

ten based on a joint analysis of the signal in the time-frequency domain, since 

simple spectral amplitude has revealed to be not sufficient to achieve satisfactory 

transcription accuracies. Many other models have been developed: auditory model 

based front ends, grouped in the Computational Auditory Scene Analysis, have 

been largely studied and applied in the 90s; however, the interest toward this ap-

proach has decreased. The most used techniques in recent literature are: Nonnega-

tive Matrix Factorization, Hidden Markov Models, Bayesian models, generative 

harmonic models and the use of jointed frequency and time information. Regard-

ing temporal parameter information, the detection of note onsets and offsets is of-

ten devolved upon detecting rapid spectral energy over time. Techniques such as 

the phase-vocoder based functions, applied to audio spectrogram, seem to be more 

robust with respect to peak-picking algorithms performed upon the signal enve-

lope. A strongly relevant and critical aspect is represented by the evaluation mod-

els and methods of the performance of music transcription systems. A remarkable 

effort to unify the different existing approaches and metrics has been done in these 

last years by the MIREX (Music Information Retrieval Evaluation eXchange) 

community. 
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1.2.3   Chapter 4: Multimodal Analysis of Expressive Gesture in 

Music Performance 

Research on expressive gesture became particularly significant in recent years and 

is especially relevant for music performance. It joins, in a cross-disciplinary per-

spective, theoretical and experimental findings from several disciplines, from psy-

chology to biomechanics, computer science, social science, and the performing 

arts.  

This Chapter presents a historical survey of research on multimodal analysis of 

expressive gesture and of how such a research has been applied to music perform-

ance. It introduces models, techniques, and interfaces developed in several  

research projects involving works carried out in the framework of the EyesWeb 

project, and provides an overview of topics and challenges for future research.  

Key results described in this Chapter include automatic systems that can clas-

sify gestures according to basic emotion categories (e.g., the basic emotions) and 

simple dimensional approaches (e.g., the valence-arousal space).  

The chapter also discusses current research trends involving the social dimen-

sion of expressive gesture which is particularly important for group playing. Inter-

esting topics include interaction between performers, between performers and 

conductor, between performers and audience. 

1.2.4   Chapter 5: Input Devices and Music Interaction 

In order to sense and understand the playing, input devices are one of the key  

requirements. This chapter discusses the conceptualization and design of digital mu-

sical instruments (DMIs).  While certain guiding principles may exist and be applied 

globally in the field of digital instrument design, the chapter seeks to demonstrate 

that design choice for DMIs depends on particular goals and constraints present in 

the problem domain.  Approaches to instrument design in 3 different contexts are 

presented: application to new music performance; use within specialized medical 

imaging environments; and interaction with virtual musical instruments. 

Chapter 5 begins with a short discussion on the idea of tangibility in instrument 

design and how this aspect of human interfacing has been handled in the computer 

interaction community vs. music-specific interface development.  It then builds on 

Rasmussen's typology of human information processing, a framework that divides 

human control into several categories of behaviour, and discusses how these  

categories can be applied to various types of musical interaction. 

This Chapter presents three use-cases corresponding to different development 

areas. First is a description of the motivations for the design of the T-Sticks,  

a family of cylindrical, hand-held digital musical instruments intended for live  

performance. Choices of sensing, mapping, sound synthesis and performance  

techniques are discussed. 
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The next example focuses on the design of the Ballagumi, a flexible interface 

created to be compatible with functional magnetic resonance imaging machines. 

This guided the choice and integration of sensors, as well as the design of the in-

strument body.  The Ballagumi provides a sound-controlling tool subjects can in-

teract with inside a scanner to help neuroscientists learn about the brain during 

musical creation. 

Finally the idea of virtual DMIs and their interaction through haptic force-

feedback devices is described.  A software tool for construction of virtual instru-

ments based on rigid body simulation is introduced, which can connect to audio 

programming environments for use with real-time sound synthesis. 

1.2.5   Chapter 6: Capturing Bowing Gesture: Interpreting 

Individual Technique 

The myriad of ways in which individual players control bowed string instruments to 

produce their characteristic expressive range and nuance of sound have long been a 

subject of great interest by teachers, aspiring students, and researchers. The physics 

governing the interaction between the bow and the string are such that the sound 

output alone does not uniquely determine the physical input used to produce it. 

Therefore, a sound recording alone may be viewed as an incomplete representation 

of the performance of a violin, viola, cello, or double bass. Furthermore, despite our 

detailed understanding of the physics of the bowed string family, until recently, the 

physical constraints of these instruments and the performance technique they require 

have prevented detailed study of the intricacies of live bowing technique. To-

day, advancements in sensor technology now offer the ability to capture the richness 

of bowing gesture under realistic, unimpeded playing conditions.   

This Chapter reviews the significance of the primary bowing parameters of bow 

force, bow speed, and bow-bridge distance (position along the length of the string) 

and presents a measurement system for violin to accurately capture these parame-

ters during realistic playing conditions. This system uses inertial, force and posi-

tion sensors for capturing right hand technique, and is optimized to be small, 

lightweight, portable and unobtrusive in realistic violin performances. Early inves-

tigations using this method elucidate the salient differences between standard 

bowing techniques, as well as reveal the diversity of individual players  

themselves. In addition to exploring how such studies may contribute to greater 

understanding of physical performance, a discussion of implications for gesture 

classification, virtual instrument development, performance archiving and bowed 

string acoustics is included. 
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1.2.6   Chapter 7: Interactive Multimedia for Technology-

Enhanced Learning with Multimodal Feedback 

Chapter 7 discusses an interactive multimedia system for music education. It 

touches on one of the key requirements for an idealized musical robot to serve as a 

teacher or a classmate to support the learning.  

In order to understand the gesture of a player and to offer appropriate feedback 

or interactions, such a system would need to measure and analyze the movement 

of the instrumental playing. There is a wide range of motion tracking technologies 

including sensor, video tracking and 3D motion capture (mocap) systems but this 

is not straightforward with traditional instruments such as the violin and cello. 

Currently, the majority of musical interfaces are mainly designed as tools for mul-

timedia performance and laboratory analysis of musical gesture. However, excit-

ing explorations in pedagogical applications have started to appear.  

This Chapter focuses on the i-Maestro 3D Augmented Mirror (AMIR) which 

utilizes 3D motion capture and sensor technologies to offer online and offline 

feedback for technology-enhanced learning for strings. It provides a survey on re-

lated pedagogical applications and describes the use of a mirror metaphor to pro-

vide a 3D visualization interface design including motion trails to visualise shapes 

of bowing movement. Sonification is also applied to provide another modality of 

feedback. 

Learning to play an instrument is a physical activity. If a student develops a bad 

posture early on this can be potentially damaging later in his/her musical career. 

The technologies discussed here may be used to develop and enhance awareness 

of body gesture and posture and to avoid these problems. This technology can be 

used to capture a performance in greater detail than to a video recording and has 

the potential to assist both teachers and students in numerous ways. 

A musical robot that can provide technology-enhanced learning with multimo-

dal analysis and feedback such as those discussed in this chapter would be able to 

contribute to musical education. Example works in this context such as the sys-

tems as described in Section II have proved beneficial. It will not only motivate 

interests and inspire learning for learner but may also provide critical analysis for 

professional performers. 

1.2.7   Chapter 8: Online Gesture Analysis and Control of Audio 

Processing 

This Chapter presents a framework for gesture-controlled audio processing. While 

this subject has been researched since the beginning of electronic and computer 

music, nowadays the wide availability of cost-effective and miniature sensors cre-

ates unprecedented new opportunities for such applications. Nevertheless the cur-

rent software tools available to handle complex gesture-sounds interactions remain 

limited. The framework we present aims to complement standard practices in ges-

ture-sound mapping, emphasizing particularly the role of time morphology, which 

seems too often neglected.  
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Chapter 8 describes an approach based on a general principle where gestures 

are assumed to be temporal processes, characterized by multi-dimensional tempo-

ral profiles. Our gesture analysis is divided into two stages to clearly separate low-

level processing that is specific to the sensor interface and high-level processing 

performed on temporal profiles. This high-level processing is based on a tool that 

we specifically developed for the analysis of temporal data in real-time, called the 

gesture follower. It is based on machine learning techniques, comparing the  

incoming dataflow with stored templates.  

This Chapter introduces the notion of temporal mapping, as opposed to spatial 

mapping, to insist on the temporal aspects of the relationship between gesture, 

sound and musical structures.  

The general framework can be applied to numerous data types, from movement 

sensing systems, sensors or sounds descriptors. The Chapter discusses a typical 

scenario experimented in music and dance performances, and installations. The 

authors believe that the methodology proposed can be applied with many other 

different paradigms and open a large field of experimentation which is currently 

being pursed. 

1.3   Section II: Musical Robots and Automated Instruments 

The second section consists of a collection of chapters that are focused on the de-

velopment of automated instruments and anthropomorphic robots designed as 

benchmarks to study the human motor control from an engineering point of view, 

to better understand how to facilitate the human-robot interaction from a musical 

point of view and to propose novel ways of musical expression. It addresses  

the fundamental concepts for mimicking the performance and interactions of  

musicians. 

1.3.1   Chapter 9: Automated Piano: Techniques for Accurate 

Expression of Piano Playing 

This Chapter introduces the research on the development of a superior automatic 

piano designed to accurately produce the soft tones of a desired performance. In 

particular, the evaluation of the technical and performance aspects of the proposed 

automatic instrument are stressed. Undoubtedly, the performance evaluation is not 

an easy task. In fact, it is rather difficult to evaluate the degree of excellence (i.e. 

whether it is a “good” performance or not), because such kinds of judgments are 

subjective, and individual preferences are developed by cumulative knowledge 

and experiences. Moreover, music is an expression of sound in time. Although a 

sequence of musical notes is arranged in a piece of music by time series, the im-

plicit relationship between sound and time depends on the performer. Of course, if 

sound and time are not appropriately correlated, the musical expressivity cannot 

be displayed. So, pianists continue to train to play “ideal” performances. Such a 

performance is created based on the particular “touch” of a pianist. Analysis of 

“touch” involves a variety of symbolic descriptions of what is performed, as well 
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as literal descriptions such as “lightly”, “heavily”, etc. that may be beyond the ca-

pacity of engineering to grasp. Therefore, the “touch” of a softened tone, which is 

difficult even for pianists, is discussed in this chapter. The development of an au-

tomatic piano and the analysis of piano’s action mechanism to produce soft tones 

are presented and discussed. 

1.3.2   Chapter 10: McBlare: A Robotic Bagpipe Player 

Chapter 3 presents McBlare, a robotic bagpipe player for the venerable Great 

Highland Bagpipe. There are relatively few woodwind robots, and experience has 

shown that controlling the air is always a critical and difficult problem. The  

bagpipe literature is unclear about the air regulation requirements for successful 

playing, so this work offers some new insights. McBlare shows that bagpipes are 

playable over the entire range with constant pressure, although the range of ac-

ceptable pressure is narrow and depends upon the reed. The finger mechanism of 

McBlare is based on electro-mechanical relay coils, which are very fast, compact 

enough to mount adjacent to tone holes, and inexpensive. This shows that the me-

chanics for woodwinds need not always involve complex linkages. One motiva-

tion for building robotic instruments is to explore new control methods. McBlare 

can be controlled by machine-generated MIDI files and by real-time gestural con-

trol. This opens new possibilities for composers and performers, and leads to new 

music that could not be created by human player. The chapter describes several 

modes of real-time gestural control that have been implemented. McBlare has 

been presented publicly at international festivals and conferences, playing both 

traditional bagpipe music and new compositions created especially for McBlare. 

1.3.3   Chapter 11: Violin Playing Robot and Kansei 

Chapter 4 focuses on the development of a violin-playing robot and the introduc-

tion of kansei. In order to build a robot that can produce good sounds and perform 

expressively, it is important to realize a tight human-robot interaction. Therefore, 

one of the purposes of this chapter is to develop an anthropomorphic violin play-

ing robot that can perform expressive musical sounds. In this chapter, an anthro-

pomorphic human sized manipulator for bowing is introduced. Also, interesting 

mechanisms of the left hand for fingering with three fingers are introduced.  

Although the robot is still under construction, both the right arm and the left hand 

will be connected and produce expressive sounds in the near future. The other 

purpose of this chapter is introduction and analysis of kansei in violin-playing. 

Kansei is a Japanese word similar in meaning to “sensibility,” “feeling,” “mood,” 

and so on. Recently many Japanese researchers in various fields such as robotics, 

human-machine interface, psychology, sociology, and so on, are focusing on kan-

sei. However, there is no research on musical robots considering kansei at the 

moment. To develop a robot that can understand and express human kansei is also  
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very important for smooth human-robot communication. For this purpose, kansei 

is defined and an information flow from musical notes to musical sounds  

including kansei is proposed. Based on the flow, some analyses of human violin-

playing were carried out and one of those results is discussed. 

1.3.4   Chapter 12: Wind Instrument Playing Humanoid Robots 

Chapter 5 presents the development of humanoid robots capable of playing wind 

instruments as an approach to study the human motor control from an engineering 

point of view; In particular, the mechanism design principles are discussed, as are 

the control strategies implemented for enabling an anthropomorphic flute robot 

and saxophone robot to play such instruments. 

In the first part of this Chapter, an overview of the development of flute-

playing robots is briefly introduced and the details of the development of an an-

thropomorphic flutist robot are given. This research is focused on enabling the  

robot to play a flute by accurately controlling the air beam parameters (width, an-

gle, velocity and length) by mechanically reproducing the following organs: lungs, 

lips, vocal cord, tongue, arms, fingers, neck, and eyes. All the mechanically simu-

lated organs are controlled by means of an auditory feedback controller. In order 

to quantitatively analyze the improvements of the robot’s performance a sound 

quality evaluation function has been proposed based on the analysis of the har-

monic structure of the flute’s sound. As a result, the developed flutist robot is ca-

pable of playing the flute to the level of proficiency comparable to that of an  

intermediate flute player.  

In the later part, an overview of the development of saxophone-playing robots 

is also introduced and the details on the development of an anthropomorphic sax-

ophonist robot are given. This research is focused on enabling the robot to play an 

alto saxophone by accurately controlling the air pressure and vibration of the sin-

gle reed. For this purpose, the following organs were mechanically reproduced: 

lungs, lips, tongue, arms and fingers. All the mechanically simulated organs are 

controlled by means of a pressure-pitch feed-forward controller. As a result, the 

developed saxophonist robot is capable of playing the saxophone to the level of 

proficiency comparable to that of a beginner saxophone player. 

1.3.5   Chapter 13: Multimodal Techniques for Human-Robot 

Interaction 

Chapter 6 makes contributions in the areas of musical gesture extraction, musical 

robotics and machine musicianship. However, one of the main novelties was com-

pleting the loop and fusing all three of these areas together. Using multimodal sys-

tems for machine perception of human interaction and training the machine how to 

use this data to “intelligently” generate a mechanical response is an essential  

aspect of human machine relationships in the future. The work in this chap-

ter presents research on how to build such a system in the specific genre of musi-

cal applications. The body of work described in this chapter is truly an artistic 
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venture calling on knowledge from a variety of engineering disciplines, musical 

traditions, and philosophical practices. Much of the research in the area of com-

puter music has primarily been based on Western music theory. This chapter fully 

delves into applying the algorithms developed in the context of North Indian clas-

sical music. Most of the key contributions of this research are based on exploring 

the blending of both these worlds. The goal of the work is to preserve and extend 

North Indian musical performance using state of the art technology including mul-

timodal sensor systems, machine learning and robotics. The process of achieving 

our goal involved strong laboratory practice with regimented experiments with 

large data sets, as well as a series of concert performances showing how the tech-

nology can be used on stage to make new music, extending the tradition of Hindu-

stani music. 

1.3.6   Chapter 14: Interactive Improvisation with a Robotic 

Marimba Player 

Chapter 7 describes a novel interactive robotic improvisation system for a ma-

rimba-playing robot named "Shimon". Shimon represents a major step forward in 

both robotic musicianship and interactive improvisation. The author’s previous 

robot, Haile, was a rhythm-only, robotic drummer engaging in a turn-based inter-

action with human musicians. In contrast, Shimon plays a melodic instrument, has 

four, instead of two percussion actuators, and is able to present a much larger ges-

tural and musical range than previous robots. Shimon employs a unique motor 

control system, taking into account the special requirements of a performing ro-

botic musician: dynamic range, expressive movements, speed, and safety. To 

achieve these aims, the system uses physical simulation, cartoon animation tech-

niques, and empirical modeling of actuator movements. The robot is also interac-

tive, meaning that it listens to a human musician play a live show, and improvises 

in real-time jointly with the human counterpart. In order to solve this seeming pa-

radox—being both responsive and  real-time, Shimon uses a novel anticipatory 

approach and uses a gesture-based method to music viewing visual performance 

(in the form of movement) and music generation as parts of the same core process. 

A traditional interactive music system abstracts the musical information away 

from its physical source and then translates it back to movements. By taking an 

embodied approach the movement and the music of the robot are one, making the 

stage performance a complete experience for both other musicians and the audi-

ence. Embodied cognition is gaining popularity both in the field of cognitive psy-

chology and in that of artificial intelligence. However, this is the first time that 

such an approach has been used for robotic musicianship. The authors evaluate 

their system in a number of human-subject studies, testing how robotic presence 

affects synchronization with musicians, as well as the audience's appreciation of 

the duo. The findings show a promising path to the better understanding of the 

role of the physical robot's "body" in the field of computer-generated interactive 

musicianship. 
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1.3.7   Chapter 15: Interactive Musical System for Multimodal 

Musician-Humanoid Interaction 

Finally, the last chapter introduces the concept and implementation of an interac-

tive musical system for multimodal musician-humanoid interaction. Up to now, 

several researchers from different fields of Human-Robot Interaction, Musical In-

formation Retrieval, etc. have been proposing algorithms for the development of 

interactive systems. However, Humanoid Robots are mainly equipped with sen-

sors that allow them to acquire information about their environment. Based on the 

anthropomorphic design of humanoid robots, it is therefore important to emulate 

two of the human's most important perceptual organs: the eyes and the ears. For 

this purpose, the humanoid robot integrates vision sensors in its head and aural 

sensors attached to the sides for stereo-acoustic perception. In the case of a musi-

cal interaction, a major part of the typical performance is based on improvisation. 

In these parts musicians take turns in playing solos based on the harmonies and 

rhythmical structure of the piece. Upon finishing his solo section, one musician 

will give a visual signal, a motion of the body or his instrument, to designate the 

next soloist. Another situation of the musical interaction between musicians is ba-

sically where the higher skilled musician has to adjust his/her own performance to 

the less skilled one. After both musicians get used to each other, they may musi-

cally interact. In this chapter, toward enabling the multimodal interaction between 

the musician and musical robot, the Musical-based Interaction System (MbIS) is 

introduced and described.  The MbIS has been conceived for enabling the interac-

tion between the musical robots (or/and musicians). The proposed MbIS is com-

posed by two levels of interaction that enables partners with different musical skill 

levels to interact with the robot. In order to verify the capabilities of using the 

MbIS, a set of experiments were carried out to verify the interactive capabilities of 

an anthropomorphic flute robot (introduced in Section II, Chapter 5). 

1.4   Future Perspectives 

Imagine an idealized integration of all these concepts and systems onto an anthro-

pometric robot. Will this produce a robotic musician capable of playing a musical 

instrument with expression, interacting with co-performers or teaching how to 

play the instrument? Obviously, there are many more layers and complex interac-

tions between the systems and many more challenging research avenues, including 

interpretations, imitations, expressions, interactions and beyond. 

At the time of writing, there remain a range of scientific research and technical 

issues (e.g. human motion analysis and synthesis, music perception, sensing and 

actuation technology, etc.) to be further studied to enable musical robots to ana-

lyze and synthesize musical sounds as musicians do, to understand and reason 

about music, and to adapt musical appreciation, interactivities and other related 

behaviors accordingly. Even though most of the existing musical robots are pre-

programmed or too complex to drive a “human-like” musical interaction, it is en-

visaged that future generation musical robots will be capable of mastering the 
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playing of several different instruments (i.e. a flute and also a saxophone). There 

are many more qualities and features to be explored. For example, it would be an 

important feature for future musical robots to be able to improve their own musi-

cal performance by analyzing the sound produced by its own and by listening and 

comparing with co-performers (human or other robots) with some kind of auto-

mated musical learning strategy. 

Currently, several research projects are focusing on producing robust computa-

tional models of music communication behavior (e.g. performing, composing, and 

listening to music). Such behavioral models, embedded in robotic platforms, will 

open new paradigms at the frontier between music content processing and robotics 

(see for example, the EURASIP Journal on Audio, Speech, and Music Processing, 

special issue on Music Content Processing by and for Robots, 2011).  

Musical appreciation, expression and development are inherently interdiscipli-

nary involving many different aspects of experiences and interactions. To further 

advance musicianship for robots, there are a wide range of relevant and inter-

related subject areas including emotional research, music appreciation quantifica-

tion, integration of music and dance, and many others. Research on emo-

tion/expression recognition/generation through musical sounds with musical  

robots is still in its infancy (see Section II, Chapter 3) and there is much exciting 

and necessary research to be carried out. Developments in entertainment robotics 

have been increasing for the past few years and fundamental issues for human-

robot musical interaction are starting to be addressed. It would be exciting to  

explore novel methods for the quantification of music appreciation to assure the 

effectiveness of the interaction. The combination of music with other performing 

arts (i.e. dance) may open new research paradigms on music behavior and plan-

ning (i.e. Human-robot mapping of motion capture data) to enhance the robot’s 

body movement and gesture to convey meaning and expressions.  

The list of related topics mentioned above is far from complete and the list con-

tinues to grow over time. Some of these issues are currently being explored by 

several different conferences, workshops and technical publications related to both 

Musical Robots and Multimodal Interactive Systems including IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS), IEEE International 

Symposium on Robot and Human Interaction Communication (RO-MAN), Inter-

national Conference on New Interfaces for Musical Expression (NIME), Interna-

tional Computer Music Conference (ICMC), Workshop on Robots and Musical 

Expressions (IWRME) and others. 

This is an exciting time! We have seen many scientific and technological de-

velopments that have transformed our life on many different levels. With the con-

tinuing advancements such as those discussed in this book, we look forward to 

continuing research and development to realize a musical robot who is capable of 

different musical skills and musicianship to play and teach music that can be ap-

plied in many different application scenarios to enrich our life with the expression 

of music. 
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Chapter 2 

Sound-Action Chunks in Music 

Rolf Inge Godøy* 

Abstract. One core issue in music production and perception is the relationship 
between sound features and action features. From various recent research, it seems 
reasonable to claim that most people, regardless of levels of musical expertise, 
have fairly good knowledge of the relationship between sound and sound 
production, as e.g. manifest in various cases of 'air instrument' performance and 
other spontaneous body movements to musical sound. The challenge now is to 
explore these sound-action links further, in particular at the micro-levels of 
musical sound such as in timbre and texture, and at the meso-levels of various 
rhythmical and contoural features. As suggested by the seminal work of Pierre 
Schaeffer and co-workers on so-called sonic objects several decades ago, 
perceptually salient features can be found on the chunk-level in music, meaning in 
fragments of sound-action in the approximately 0.5 to 5 seconds range. In this 
chapter, research on the emergence of sound-action chunks and their features will 
be presented together with some ideas for practical applications. 

2.1   Introduction 

Traditionally, musical sound has been produced by human action, such as by 
hitting, stroking, shaking, bowing, blowing, or singing, and it is really only with 
the advent of electronic instruments and playback technologies that we can 
dispense with most, or all, human actions in the production of musical sound. This 
may be an obvious observation, yet it is far from trivial when we consider the 
consequences of this dissociation of sound and action for the design and use of 
electronic musical instruments: loosing the link between action and sound also 
makes us loose one of the most important mental schemas for how we conceive 
of, and perceive, musical sound.  

Given that the sound source of electronic instruments is electronic circuitry 
requiring some kind of data input to produce and shape the sound, a major 
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challenge in the design and use of new musical instruments is to establish mental 
schemas for thinking and controlling musical sound features through what is 
rather abstract input data. One possible answer to this challenge is to try to 
correlate the input data of whatever synthesis model is used (e.g. additive, 
frequency modulation, subtractive, granular, etc.) with perceptually salient 
features of the output sound signal such as its overall dynamical envelopes and its 
stationary and transient spectral features, e.g. with labels such as 'inharmonic', 
'harmonic', 'white noise', 'pink noise' etc. [30]. Such labels on the output sound 
signal may be extended further into the metaphorical realm with attributes such as 
'wet', 'dry', 'smooth', 'rough', 'dark', 'bright', etc. [29].  

However, another and complimentary answer to this challenge is to extrapolate 
mental schemas of sound-action relationships from our past and presumably 
massive experiences of non-electronic musical instruments as well as everyday 
sonic environments, to new electronic instruments. It could in particular be 
interesting to see how what we perceive as somehow meaningful sound-action 
units, what could be called sound-action chunks, emerge in our experiences of 
music, and how general principles for sound-action chunk formation may be 
applied to novel means for producing musical sound. 

Actually, relating what we hear to mental images of how we assume what we hear 
is produced, is a basic phenomenon of auditory perception and cognition in general. 
In the field of ecological acoustics, it has been documented that listeners usually have 
quite accurate notions of how everyday and musical sounds are produced [9, 31], in-
cluding both the types of actions (e.g. hitting, scrubbing, stroking) and the materials 
(glass, wood, metal) as well as object shapes (plate, tube, bottle) involved. As to the 
perception of the actions involved in sound production, the claim of the so-called mo-

tor theory (and various variants of this theory) has for several decades been that audi-
tory perception, primarily in speech but also in other areas, is accompanied by mental 
simulations of the assumed sound-producing actions: when listening to language, 
there is a (mostly) covert simulation of the phonological gestures assumed to be at the 
cause of the sounds [6, 26]. And it has been documented that when people listen to 
music, there are similar activations of the motor-related areas of the brain, in 
particular in the case of expert musicians [22], but also in the case of novice 
musicians after a quite short period of training [1]. 

Dependent on level of expertise, these motor images of sound production may 
vary in acuity: a native speaker of a language, e.g. Chinese, will usually have 
much finer motor images of the various sounds of the Chinese language than a 
foreigner, yet the foreigner will be able to perceive, albeit coarsely, the difference 
between the phonological gestures of Chinese and another unfamiliar language, 
e.g. Russian. Likewise in music, we may see significant differences in the acuity 
of motor images of sound production between novices and experts, yet there are 
still correspondences in the motor images at overall or coarse levels of acuity [14]. 
According to the motor theory of perception, motor images are fairly robust yet 
also flexible because they are based on very general motor schemas, e.g. in our 
case, the differences between hitting and stroking, corresponding to the difference 
between the whole class of impulsive sounds, i.e. sounds with a rather abrupt 
beginning followed by a shorter or longer decay as in many percussion 
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instruments, and the whole class of sustained sounds, i.e. sounds that have a more 
gradual beginning followed by a relatively stable and enduring presence as in 
bowed and blown instruments. These main classes are quite distinct, yet 
applicable to very many variant instances (see section 2.2 below).  

In the so-called embodied view of perception and cognition [7, 8], motor schemas 
are seen as basic for all cognition, not only auditory perception. This means that all 
perception and reasoning, even rather abstract thinking, is understood as related to 
images of action. In our case, projecting images of sound-action relationships from 
past musical and environmental sonic experiences onto new musical instruments 
could be seen as a case of anthropomorphic, know-to-unknown, projection, and as a 
matter of basic functioning of our mental apparatus, what we see as a motormimetic 
element in music perception [10]. This includes both kinematic and effort-related 
images, raising some intriguing questions of how electronic instrument sounds, i.e. 
sounds produced without human effort, still can evoke subjective sensations of effort 
in our minds. For this reason, we shall now first have a look at some main types of 
music-related actions, then consider features of musical sound at different 
timescales, before we turn to principles of chunking and various sonic features 
within chunks, and at the end of the chapter present some ideas on how concepts of 
sound-action chunks can be put to use in practical contexts. 

2.2   Music-Related Actions  

We can see music-related actions both in the production of musical sound and in 
peoples' behavior when listening to music at concerts, in dance, and innumerable 
everyday situations. As suggested in [23] it could be useful then to initially 
distinguish between sound-producing and sound-accompanying actions.  

Sound-producing actions include both excitatory actions such as hitting, stroking, 
blowing, and modulatory or sound-modifying actions such as changing the pitch 
with the left hand on a string instrument or the mute position on a brass instrument, 
as well as in some cases selection actions such as pulling the stops on an organ. Also 
in this category of sound-producing actions we find various sound-facilitating or 
ancillary actions, actions that help avoid strain injury or help shape the rhythmical 
and/or articulatory expression of the music such as by making larger movement with 
wrists, elbows, shoulders, and even head and torso in piano performance. Related to 
this, we find various communicative actions that performers use variously to 
communicate within an ensemble or to communicate expressive intent to the 
audience, such as swaying the body, nodding the head, or making exaggerated or 
theatrical hand movements on the guitar before a downbeat [3, 38]. 

Sound-accompanying actions include all kinds of body movements that 
listeners may make to music, such as moving the whole body or parts of the body 
to the beat of the music, gesticulate to some feature of the music, or imitate sound-
producing actions of the music. This latter category can be seen in various 
instances of so-called air-instrument performance such as air-drums, air-guitar, 
and air-piano. Imitations of sound-producing actions are interesting in our context 
because they in many cases attest to quite extensive knowledge of sound 
production even by untrained listeners. Such cases of air instrument performances 
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by not formally trained listeners can be understood as a result of imitative 
behavior and learning, essential components of the abovementioned embodied 
view of perception and cognition. Another important element is the 
abovementioned variable acuity involved here: people who are not capable of 
playing percussion or guitar 'for real' still seem to have coarse, yet quite well 
informed, notions of how to hit and move between the drums and other 
instruments of an imaginary drum set, or of how to pluck the strings and move the 
left hand on the neck of an imaginary guitar. But also on a more general level, 
listeners seem to readily catch on to the kinematics of sound-production, e.g. the 
pitch-space of the keyboard, the amplitude of required movement, as well as the 
overall effort required to produce the sound in question [14]. Such general 
kinematic and dynamic correspondences between sound and movement can also 
be observed in dancers' spontaneous movements to musical sound, i.e. dancers 
tend to readily catch on to the overall mood and sense of motion afforded by the 
music, and in our observations we could hardly ever find any clear discrepancies 
between the overall features of the sound and the movements of the dancers [18]. 

The kinematic and effort-related action images afforded by the sounds can then 
be correlated with some basic sound-producing actions. Following the pioneering 
work of Pierre Schaeffer and associates [11, 33, 34], we have singled out these 
basic sound-action categories: 

 

• Impulsive sound-producing actions: besides resulting in sounds with the 
abovementioned envelope of an abrupt attack followed by a shorter or longer 
decay (dependent on the physics of the instrument in question), impulsive 
actions are distinguished by having a short peak of effort, typically as a fast 
movement towards an impact point, followed by relaxation. Sometimes also 
referred to as ballistic movement, impulsive sound-producing actions are 
typically based on so-called open loop motor control, meaning that the entire 
movement trajectory is preplanned and executed without feedback because it is 
so fast that continuous control and adjustment in the course of the trajectory 
would usually not be feasible, however this has been much debated in the 
motor control literature [5]. 

• Sustained sound-producing actions: typically resulting in the abovementioned 
more stable and enduring sound, this category requires continuous energy 
transfer, e.g. continuous motion of the bow on string instruments or continuous 
blowing on woodwind and brass instruments. As opposed to impulsive sound-
producing actions, sustained sound-producing actions are based on so-called 
closed loop motor control, meaning having continuous feedback control 
allowing for adjustment during the course of the sound. However, although 
there is this possibility of continuous control in sustained sound-producing 
actions, there is still the unanswered question as to how often such adjustments 
may occur for the simple reason that the musician has to listen to a certain 
segment of sound output in order to make a decision as to adjustment, hence 
that there in all likelihood is a discontinuous element here as well. 

• Iterative sound-producing actions denote fast and repeated actions such as in a 
tremolo, a trill, or a drum roll. Iterative sound-producing actions typically 
require movement and effort distinct from the two other categories because of 



2   Sound-Action Chunks in Music 17 
 

 

speed, meaning that the amplitude of the movement is small and the source of 
the movement may differ from that of slower movement e.g. as a fast trill on 
the keyboard driven by whole arm rotation (rather than by finger movement) or 
a fast tremolo on a string instrument driven by a wrist shaking (rather than 
elbow movement). 
 

Iterative sound-producing actions may be bordering onto sustained sound-
producing actions in cases where there is an overall continuous movement of an 
effector on a rough surface as in the case of the washboard or the maracas, and we 
may also observe categorical transitions between these and the other sound-
producing actions as well: changing the duration and/or density of the sound-
producing actions may result in so-called phase-transitions [19], e.g. if we shorten 
a sustained sound beyond a certain threshold it may switch to become an 
impulsive sound (i.e. go from a 'bow-like' sound to a 'percussive' sound), and 
conversely, if we lengthen an impulsive sound, it may switch to become a 
sustained sound. We may observe similar phase-transitions between impulsive and 
iterative sounds, and between sustained and iterative sounds, something that 
significantly affects the perceived internal textures of the sound.  

The point here is to realize that what is often referred to as sonic features are actu-
ally just as much action features, and that this also extends to the phenomenon of 
coarticulation. Coarticulation means the subsumption of otherwise distinct actions 
and sounds into more superordinate actions and sounds, entailing a contextual 
smearing of otherwise distinct actions and sounds, e.g. rapid playing of scales and 
arpeggios on the piano will necessitate finger movements included in superordinate 
action trajectories of the wrists, elbows, shoulders, and even whole torso, as well as 
entail a contextual smearing of the singular tones into superordinate contours of the 
scales or arpeggios. Coarticulation is a much-studied phenomenon in linguistics 
[21], but unfortunately not so well studied in music (see [16] for an overview). One 
essential element of coarticulation is that it concerns both the production and the 
perception of sound, hence that it clearly unites sound and action into units, into 
what we prefer to call sound-action chunks in music. 

Lastly, these different sound-producing actions may be combined in more 
complex musical textures, typically in the case of having a sustained background 
sound (e.g. as an accompaniment) combined with an iterative embellishment of 
the sustained sounds (e.g. as a tremolo texture added to the sustained tones), 
punctuated by impulsive sounds in the foreground of the texture. A listener may 
perceive such composite musical textures holistically, or may choose to 
intentionally focus on some aspect of the texture, e.g. the foreground melody or 
the drum pattern, and hence in dance and other movements to music we may see 
divergences in the gestural rendering of the music, and for this reason we may 
speak of rich gestural affordances of musical sound [13]. 

2.3   Features and Timescales  

The different action categories are distinguished by event duration and event 
density, as are also most other perceptually salient features of musical sound. It 
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could be useful then to have a look at some different sonic features and their 
corresponding timescales, in order to establish some more general principles for 
sound-action correspondences in music. 

Firstly, there is the well-known timescale for perceiving pitch and stationary 
timbral elements, ranging from approximately 20 to approximately 20000 events 
per second. This is the timescale for determining features such as pitched vs. non-
pitched, harmonic vs. inharmonic, noise and/or various degrees of noise, spectral 
peaks, formants, etc., i.e. features that are perceived as basically stationary in the 
course of sound fragments. Then there is the timescale of patterns at the less than 
20 events per second found in various kinds of textural fluctuations of the sound, 
e.g. as tremolo, vibrato, and other fluctuations in intensity, pitch, and timbre. At an 
even longer timescale, approximately in the 0.5 to 5 seconds range, we find 
perceptually significant features of the sound such as its overall dynamic envelope 
and its overall pitch and/or spectral evolution. This is what we call the chunk 
timescale, and this is also the timescale where we find significant style-
determining features of musical sound such as rhythmical and textural patterns, 
e.g. waltz, tango, disco, funk, as well as the associated sense of body motion and 
even mood and emotion, e.g. fast, slow, calm, agitated, etc. At yet longer 
timescales, i.e. at timescales significantly above the 5 seconds range, we typically 
find more formal features such as the build of whole tunes, sections, and 
movements. Considering the different timescale involved here, it could be 
convenient to suggest the following three categories in our context of sound-action 
chunks: 

 

• Sub-chunk timescale, typically the less than approximately 0.5 seconds 
timescale where features such as pitch and stationary timbral elements are 
perceived. At this timescale we also perceive various fast fluctuations in the 
sound such as tremolo, trill, and other pitch-related and timbre-related 
fluctuations, fluctuations that may be collectively referred to as 'grain' (see 
section 2.5 below). 

• Chunk timescale, the approximately 0.5 to 5 seconds timescale where we 
perceive the overall dynamic, pitch-related, and timbre-related envelopes of the 
sound, and various rhythmical and textural patterns, as well as melodic 
motives. This is in our context of sound-actions the most significant timescale, 
and probably in very many other contexts as well (see next section). 

• Supra-chunk timescale, ranging in duration from significantly above 5 seconds 
to several minutes and even hours. The perceptual and cognitive workings of 
large-scale forms seems to be a not well researched topic [4], however for our 
purposes, this timescale can be regarded as consisting of concatenations of 
several chunks in succession, resulting in extended sound-action scripts which 
may be perceived as having narrative or dramaturgical features. 

2.4   Chunking 

In the course of their work with a new and more universal music theory in the wake 
of the musique concrète in the 1950s and 1960s, Pierre Schaeffer and his co-workers 
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arrived at the conclusion that fragments of musical sound in approximately the 0.5 to 
5 seconds range, or what we here call the chunk timescale, ought to be the focus of 
music theory. Initially a technical necessity in the production of electroacoustic 
music in the days before the advent of the tape recorder, the focus on the sonic 
object allowed exploring subjectively experienced perceptually salient features of 
sound and developing criteria for selecting, processing, and combining sounds. By 
repeated listening to fragments of sound, it was found that several features that pre-
viously had no name in Western music theory could be distinguished and even be 
ordered into a conceptual taxonomic apparatus.  

The first part of this apparatus consists of a typology of sonic objects, a rough 
sorting of sounds according to their overall envelopes, i.e. the abovementioned 
categories of impulsive, sustained, and iterative sounds, as well as the three attribute 
categories of pitched, non-pitched, and variable, constituting a 3 x 3 matrix. A 
further differentiation of the internal features of the sonic objects was made with the 
so-called morphology of sonic objects where there is a progressive top-down 
differentiation of features based on harmonic content, pitch-related content, and 
various fast and slower fluctuations within the sonic objects (more on this below in 
section 2.5). The essential point is that such differentiations are only possible if we 
consider musical sound at the chunk-level: if we go to the supra-chunk level, we 
loose the possibility of capturing chunk-level features [2, 11, 33, 34]. 

As to the criteria for selecting chunks and chunk boundaries, Schaeffer and co-
workers stated that it is of course possible to make arbitrary cuts in any sound 
recording, but also possible to make more substance-based selections of chunks. 
Schaeffer's own suggestion was to use qualitative discontinuities in the sound to 
make 'natural' chunk boundaries as reflected in the abovementioned typology of 
sonic objects, i.e. that a sonic object is determined by its overall envelopes, as well 
as some additional criteria of suitability such as duration. The duration criterion 
point in the direction of generally accepted limits for attention spans, typically in 
the three seconds range, sometimes longer, sometimes shorter [28]. As pointed out 
by Pöppel, this approximately three seconds range also fits quite well with average 
durations of everyday actions as documented by the large-scale surveys of 
Schleidt and Kien [35], suggesting that there may be a mutual attuning of action 
and attention at this timescale.  

There are a number of other arguments from cognitive psychology and human 
movement science in favor of the timescale of the chunk as particularly significant 
(see [12] for an overview), however we can also from a purely music analysis 
point of view make a listing of the features that are manifest on the chunk-level, 
i.e. features that are not on the sub-chunk level, and features that are present, but 
not in focus, on the supra-chunk level: 

 

• Overall dynamic shape, meaning the perceived intensity envelope of the sound 
• Overall timbral shape, including the quasi-stationary elements, various fluctua-

tions, and the slower evolutions in the course of the sonic object 
• Overall pitch-related, modal, and tonal features, meaning pitched, non-pitched, 

fixed, variable, tonal center(s), modal patterns, harmonic patterns, etc. in short 
all features concerned with pitch and constellations of pitches, simultaneously 
and sequentially 
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• Overall rhythmical patterns, meaning various metrical patterns of different 
kinds of music such as tango, waltz, etc., or other non-dance patterns, both 
cyclical and non-cyclical 

• Overall textural patterns, with elements such as sustained, impulsive, iterative, 
and variously coarticulatory fused sounds, foreground, background, and other 
groupings in the sonic textures 

• Overall stylistic features, as various combinations of abovementioned chunk-
level features and as various clichés, i.e. typical figures and ornaments, within 
a style 

• Overall expressive, emotive features such as sense of movement, sense of 
effort, and sense of acceleration or deceleration, etc. 

 

 

 
 

Fig. 2.1 The sound-tracings of 9 different subjects of a bird chirp excerpt (top) and a 
spectrogram of the excerpt (bottom). The excerpt is from [34], CD3, track 13, and for 
details of these sound-tracings see [15, 18]. 
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In our sound-action context it is important to note that all these features may be 
conceptualized as action trajectories in multidimensional spaces. As an example, con-
sider the 9 different drawings of a bird chirp sound in Figure 2.1. These drawings 
were collected from a sound-tracing project were we asked 9 listeners with different 
levels of musical training to spontaneously draw on a digital tablet the movement 
shapes they associated with various sounds that were played back (see [15, 18] for 
details). Although there were differences in the subjects' drawings, there was a fair 
amount of consistency in the overall, chunk-level features for sounds with few 
concurrent features, but greater diversity for sounds with greater number of 
concurrent features. Needless to say, the two-dimensional surface of the digital tablet 
was a restriction for rendering the multidimensionality of the sounds, so we are now 
developing various multidimensional hand-held controllers as well as using an 
infrared motion capture system allowing more freedom of movement and hence more 
dimensions for rendering perceptually salient features as finger/hand/arm movements. 

2.5   Sub-chunk Features 

When we zoom into the sub-chunk timescale, we find audio-frequency range 
features such as stationary pitch and stationary timbral features. It may be argued 
that also these features are related to mental images of actions by effector position 
and effector shape, e.g. as vocal folds tension and vocal tract shapes correlated to 
various timbral features (different formantic peaks, different degrees of white 
noise, etc.), or the imagined mute position on a brass instrument correlated to a 
particular timbre, the bow position and pressure on a string to a particular timbre 
on an imaginary violin, and even shapes and position of hands on an imaginary 
keyboard as correlated with the sounds of chords.  

But in addition to these more static postures, we also have a number of 
significant motion-dependent features at this sub-chunk level, features that could 
be summarized as textural features, and that apply to sounds from several different 
sources (instrumental, vocal, environmental, electronic) as long as they fit with 
general motor schemas. From Schaeffer's morphology of sonic objects, we shall 
just mention the following two main categories here: 

 

• Grain, meaning all kinds of perceived fast fluctuations in the sound, typically 
in pitch, intensity, or timbre. These fluctuations may be further differentiated 
with respect to their speed, amplitude, and relative position in the audible 
frequency range, as well as with respect to regularity/irregularity, non-
evolving/evolving, etc. In terms of action, grain is related to very fast 
movement like in a rapid tremolo, flatterzunge, vibrato, trill, or drum roll, or to 
movement made on a surface such as stroking over a washboard or another 
rough surface resulting in a dense series of sound onsets or sound modulations.  

• Allure (sometimes also rendered in English as gait or as motion), meaning slow 
kinds of fluctuation in the sound such as in a slow vibrato, a slower fluctuation 
in intensity or in timbral content as in the opening and closing of a wah-wah 
mute, or the undulating movement of a waltz accompaniment figure for that 
matter. 
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These sub-chunk classes of sound-actions are generic in the sense that they 
apply across different sounds and different sources, but where the unifying 
element is the general motor schemas that they are based on. Referring to the 
abovementioned general typological categories of impulsive, sustained, and 
iterative sounds, we see that for instance the morphological category of grain can 
be applied to both sustained friction sounds, e.g. to bowed string sounds and to 
surface scraping sounds, as well as to sustained blown sounds such as in the 
flatterzunge on a flute, applications that make sense both in sonic and action-
related respects. Likewise, an allure fluctuation in a sound may just as well be 
produced by slow left hand movements on a string instrument as by back-and-
forth movements on a DJ scratch turntable. Included in these morphological 
categories are also effects of coarticulation in the form of transitions between 
spectral shapes, as is extensively practiced by musicians on wind, brass, string 
instruments and in vocal performance, and as can also be simulated with so-called 
diphone synthesis [32]. 

2.6   Sound-Action Scripts 

From the overview of chunk level and sub-chunk level features of musical sound, 
it could be claimed that most of these features may be correlated with actions. 
This means that we can map out various action types, starting with general chunk-
level typological categories and principles of coarticulatory inclusion, and 
differentiate downwards into the action correlates of the most minute sub-chunk-
level features, thus think of music as not a matter of 'pure sound' but more as a 
matter of sound-action scripts. This means that music is also a choreography of 
sound-producing actions, and that this choreography could be the mental schemas 
at the basis for a general music theory, applicable equally well to making music 
with traditional instruments and new electronic instruments. 

This has consequences both for the input devices used and for the subsequent 
mapping of input data to whatever synthesis and/or sound-processing model that 
we might use. Ideally, input devices should somehow be designed so as to allow 
input actions that correspond more or less with the abovementioned sound-action 
couplings, e.g. a sustained sound should be the result of a sustained action, an 
impulsive sound the result of an impulsive action, a grain textural feature the 
result of small and rapid actions, etc., and also that different formantic timbral 
shapes should somehow be the result of different effector shapes. The significant 
amount of research and development concerned with new input devices that we 
see now testifies to this need for producing better and more 'intuitively' 
experienced input devices [27, 39]. 

But also in the mapping of input data to the synthesis and processing [37], the 
basic sound-action links outlined above could be useful in providing a more direct 
and intuitive link between actions and sonic features. In principle, any input data 
may be mapped to any control data, and this can be done according to the often-
mentioned schemes of one-to-one, one-to-many, many-to-many, and many-to-one 
types of mappings. However, it is possible to make mappings more in line with 
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previous non-electronic experiences, e.g. by mapping a control input for loudness 
to both the amplitude and the spectrum of a sound so that an increase in loudness 
control is not just an increase in amplitude, but also a shift in the spectrum of the 
sound towards more high-frequency components (e.g. by controlling the filter or 
the modulation index), resulting in a sound that is both louder and more brilliant. 

But the topic of mapping could also be seen as that of mapping the actions of 
one effector to that of another effector. This is known as motor equivalence and 
means that we may perform a task with another effector than we usually do [24], 
and in the case of musical sounds, e.g. imitate non-vocal sounds with our vocal 
apparatus, or with some suitable input device, try to imitate vocal sounds by a 
hand held device. In this perspective, one effector may be exchanged for another 
effector, provided we follow some general motor scheme and provided we have 
suitable input devices to transmit such actions. Taking the example of sustained 
friction sounds, this is a rather broad class of sound-producing actions including 
bowing (on strings as well as on plates and other objects, e.g. the musical saw) and 
scraping on any surface (cymbals, tamtams, or any surface, smooth or rough), 
where it may be possible to use a general purpose input device such as the 
Reactable to produce a whole class of different friction sounds [20]. Likewise, a 
hand held device generating accelerometer data may generate input to a generic 
impulsive sound generator for controlling a variety of percussion-like sounds. And 
lastly, marker position data of hand and arm movement in open space from an 
infrared motion capture system may be used as multidimensional control data for 
controlling timbral-formantic features, e.g. for imitating vocal sounds with hand 
movements.  

The main point is to try to enhance the relationship between what we do and the 
sonic results of what we do. But there are a number of impediments here, both of 
technical nature such as in the latency and in the poor resolution of some systems, 
as well as of more conceptual nature in the violation of traditional energy-transfer 
schemas and in the lack of haptic feedback. Also, there is the element of learning 
that has to be taken into account, and we need to know more about what happens 
with long-term practice on new musical instruments, long-term practice 
approaching the amount of time spent by musicians on mastering more traditional 
musical instruments. But all through this, having a motor-theory based 
understanding of sound-action chunks in music could be a strategy for improving 
the interfaces of new electronic instruments. 

2.7   Conclusion 

The relationship between music and movement has been a recurrent topic in 
Western writings on music since antiquity (see [36] for an overview and for some 
particularly interesting work on music-related body movement in 20th century). 
However, we have in the past decade seen a surge in research suggesting that 
music is an embodied phenomenon, and that music is actually a combination of 
sound and action [10, 25] (see in particular various chapters in [17] for 
information on current research directions within the field, and visit http://fourms. 
wiki.ifi.uio.no/Related_projects for an overview of relevant web-sites as well as 
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http://www.fourms.uio.no/ for information on our own present research). Also, it 
is now generally accepted that musical sound is perceptually multidimensional and 
works at multiple levels of resolution, and we believe there is much evidence for 
that what we here call the chunk-level and the sub-chunk level, are perceptually 
and strategically (with respect to both analytic concepts and control possibilities) 
the most significant. Combining the idea of chunk-level and sub-chunk-level with 
the embodied view of music perception and cognition, we end up with the idea of 
sound-action chunks in music, and from this idea we see a number of possible and 
fruitful developments in both our basic understanding of music and in various 
practical applications in music making. 
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Chapter 3 

Automatic Music Transcription:  
From Monophonic to Polyphonic 

Fabrizio Argenti, Paolo Nesi, and Gianni Pantaleo* 

Abstract. Music understanding from an audio track and performance is a key 

problem and a challenge for many applications ranging from: automated music 

transcoding, music education, interactive performance, etc. The transcoding of 

polyphonic music is a one of the most complex and still open task to be solved in 

order to become a common tool for the above mentioned applications. Techniques 

suitable for monophonic transcoding have shown to be largely unsuitable for 

polyphonic cases. Recently, a range of polyphonic transcoding algorithms and 

models have been proposed and compared against worldwide accepted test cases 

such as those adopted in the MIREX competition. Several different approaches are 

based on techniques such as: pitch trajectory analysis, harmonic clustering, bispec-

tral analysis, event tracking, nonnegative matrix factorization, hidden Markov 

model. This chapter analyzes the evolution of music understanding algorithms and 

models from monophonic to polyphonic, showing and comparing the solutions, 

while analysing them against commonly accepted assessment methods and formal 

metrics. 

3.1   Introduction 

Music Information Retrieval (MIR) is a multidisciplinary research field that has 

revealed a great increment in academic interest in the last fifteen years, although 

yet barely comparable to the commercial involvement grown around speech rec-

ognition. It must be noticed that music information is much more complex than 
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speech information, both from a physical (range of frequency analysis) and a se-

mantic (big number, high complexity and many abstraction levels of the possible 

queries) point of view. Automatic transcription is a specific task within MIR, and 

it is considered one of the most difficult and challenging problems. It is defined 

here as the process of both analyzing a musical recorded signal, or a musical per-

formance, and converting it into a symbolic notation (a musical score or sheet) or 

any equivalent representation concerning note parameters such as pitch, onset 

time, duration and intensity. 

A musical signal is generally understood as composed by a single or a mixture 

of approximately periodic, locally stationary acoustic waves. According to the 

Fourier representation, any finite energy signal is represented as the sum of an in-

finite number of sinusoidal components weighted by appropriate amplitude coeffi-

cients. A musical sound is a particular case where, ideally, frequency values of 

single harmonic components are integer multiples of the first one, called funda-

mental frequency (defined as F0, which is the perceived pitch). Many real instru-

ments, however, produce sounds which do not have exactly harmonically spaced 

partials. The phenomenon is called partial inharmonicity, and it was analytically 

described by Fletcher and Rossing [18], and brought to the attention of music tran-

scription research community by Klapuri [33]. 

A major distinctive cue in music transcoding is given by the number of voices a 

music piece consists of: there can be only one voice playing at each time; these 

cases are treated as a monophonic transcription task. On the contrary, if several 

voices are played simultaneously, we deal with a polyphonic transcription proc-

ess. The former is currently considered a resolved problem, while the latter is still 

far from being successfully settled, and additional difficulties arise in the presence 

of multi-instrumental contexts. In Figure 3.1, some examples of the spectral con-

tent of typical audio signals, are shown.  

Difficulties arise in polyphonic music transcription since two or more concur-

rent sounds may contain partials which share the same frequency values. This 

generates the well known problem of partials overlapping, which is one of the 

main reasons why simple amplitude spectral analysis is considered inadequate, if 

not joined to other signal processing techniques or a priori knowledge resources. 

Retaining the parallel between speech and music, music notation is mainly a set 

of instructions for a musical performance, rather than a representation of a musical 

signal; in the same way, written text is to be considered as the equivalent for 

speech. The main difference is that music information is much more multi-faceted, 

since it includes many different levels of information (note pitch, harmonic and 

rhythmic information, indications for expression, dynamics, ...). Besides, modular-

ity is a similar aspect observed also in the human brain [33], [47]. The human 

auditory system (the inner ear together with the part of the brain appointed to mu-

sic cognition) results to be the most reliable acoustic analysis tool [33].  
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Many efforts have been made to realize exhaustive reviews of automatic tran-

scription methods. Remarkable works are the ones by Rabiner [52] for mono-

phonic transcription, and by Bello [2], Klapuri [33], [34], Brossier [6] and Yeh 

[63] also for polyphonic transcription. However, it is difficult to categorize music 

transcription methods according to any single taxonomy, since human capability 

to achieve the comprehension of music transcription is understood as the sum of 

two different attitudes: bottom-up and top-down processing. This suggests a first 

boundary of classification, given by the following approaches: 

 

• Bottom-up processing, or the data-driven model, starts from low level elements 

(the raw audio samples) and it uses processing blocks to analyze and cluster 

these elements in order to gather the required information. 

• Top-down processing, or the prediction-driven model, starts from information 

at a higher level (based on external knowledge) and it uses such information to 

understand and explain elements at lower hierarchy levels (physical stimuli). 
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Fig. 3.1 Amplitude spectrum representation of some typical audio signals. Noteworthy is 

the increasing complexity of the spectral content, as the number of concurrent playing 

voices increases. 
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We have considered this, reported by Bello [2], as the most general categoriza-

tion criterion for the music transcription problem, since these two approaches are 

non-mutually-exclusive, and ideally contain all the other fields of codification we 

intend to review in the following. 

There are many reviews of automatic music transcription methods in litera-

ture, most of them present their own criteria, upon which the different front 

ends, used to obtain a useful mid-level representation of the audio input signal, 

are grouped together. One of the most commonly used criterion, adopted by 

Gerhard [20], Brossier [6] and Yeh [63], is based on a differentiation at signal 

analysis level: 

 

• Time domain analysis: systems belonging to this category process the audio 

waveform in order to obtain information about pitches (periodicities of the au-

dio signal) or onset times. In general, this family of methods is suitable for 

monophonic transcription. 

• Frequency domain analysis: methods belonging to this class vary from spectral 

analysis (FFT, cepstrum, multi-resolution filtering, Wavelet transform and re-

lated variants) to auditory models developed first in the 90s within the Compu-

tational Auditory Scene Analysis (CASA) framework [58], [16], [43], as well 

as many spectral matching or spectral features extraction techniques. 

Another classification concept is reported by Yeh [63], for whom music transcrip-

tion methods can be catalogued into two different approaches: 

• Iterative estimation: such principle refers to all the methods which iteratively 

estimate predominant F0, and subsequently cancel the residual harmonic pat-

tern of estimated notes from the observed spectrum, processing the residual un-

til a stop criterion is met; usually, a condition related to residual energy is 

adopted. The block diagram of this architecture is shown in Figure 3.2. 
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Fig. 3.2 Iterative F0 estimation and harmonic cancellation architecture, according to the 

system proposed by Klapuri [32]. 
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• Joint estimation: under this approach we find algorithms that jointly evaluate 

many hypotheses on F0 estimation, without involving any cancellation. These 

solutions include the use of salience functions or other knowledge source, in 

order to facilitate spectral peak-picking, and other frameworks like Martin's 

Blackboard architecture [41]. This framework is a problem-solving model, 

which integrates knowledge from different sources and allows the interaction of 

different parts of the model. An expert musical knowledge, integrated with sig-

nal processing and other physical, engineering or mathematical frameworks, is 

considered useful to accomplish the task of automatic music transcription. An-

other sub-group belonging to the Joint Estimation category is the spectral 

matching by parametric/non-parametric models, like Non-negative Matrix Ap-

proaches (NMA) including Non-negative Matrix Factorization (NMF), fre-

quently used in recent literature [62], [11], [61]. 

Another categorization regards statistical versus non statistical framework. The 

statistical-inference approach generally aims at jointly performing F0 estimation 

and tracking of temporal parameters (onsets and durations) from a time-frequency 

representation of the input signal. In these models, the quantities to be inferred are 

considered as a set of hidden variables. The probabilistic model relates these vari-

ables to the observation variable sequence (the input signal or a mid-level repre-

sentation) by using a set of properly defined parameters. Statistical frameworks 

frequently used for automatic music transcription are Bayesian networks [30], [8] 

or Hidden Markov Models (HMM) [56], [9]. 

Finally, another pivotal aspect is the evaluation of the transcription systems 

proposed so far.  

3.1.1   State of the Art 

In literature, a large variety of methods for both monophonic and polyphonic mu-

sic transcription has been realized. Some of these methods were based on time-

domain techniques like Zero Crossing Rate [44], or on autocorrelation function 

(ACF) in the time-domain [53], as well as parallel processing [23] or Linear Pre-

dictive Coding (LPC) analysis [38].  First attempts of performing polyphonic mu-

sic transcription started in the late 1970s, with the pioneering work of Moorer [45] 

and Piszczalski and Galler [49]. As time went by, the commonly-used frequency 

representation of audio signals as a front-end for transcription systems has been 

developed in many different ways, and several techniques have been proposed. 

Klapuri [32], [35] performed an iterative predominant F0 estimation and a subse-

quent cancelation of each harmonic pattern from the spectrum; Nawab [46] used 

an iterative pattern matching algorithm upon a constant-Q spectral representation. 

In the early 1990s, other approaches, based on applied psycho-acoustic models 

and also known as Computational Auditory Scene Analysis (CASA), from the work 

by Bregman [5], began to be developed. This framework was focused on the idea 

of formulating a computational model of the human inner ear system, which is  

known to work as a frequency-selective bank of passband filters; techniques based 
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on this model, formalized by Slaney and Lyon [58], were proposed by Ellis [16], 

Meddis and O’Mard [43], Tolonen and Karjalainen [60] and Klapuri [36]. Marolt 

[39], [40] used the output of adaptive oscillators as a training set for a bank of 

neural networks to track partials of piano recordings. A systematic and collabora-

tive organization of different approaches to the music transcription problem is the 

mainstay of the idea expressed in the Blackboard Architecture proposed by Martin 

[41]. More recently, physical [4] and musicological models, like average harmonic 

structure (AHS) extraction in [13], as well as other a priori knowledge [27], and 

possibly temporal information [3] have been joined to the audio signal analysis in 

the frequency-domain to improve transcription systems performances. Other 

frameworks rely on statistical inference, like hidden Markov models [55], [56], 

[9], Bayesian networks [30], [8] or Bayesian models [22], [14]. Others systems 

were proposed, aiming at estimating the bass line [57], or the melody and bass 

lines  in musical audio signals [24], [25]. Currently, the approach based on non-

negative matrix approximation [54], in different versions like nonnegative matrix 

factorization of spectral features [59], [62], [11], [61], has received much attention 

within the music transcription community. 

3.2   Methods Overview and Comparison 

In this section, a comparative review of some of the most important and cited mu-

sic transcription systems is proposed. This review is not meant as an exhaustive 

and omni-comprehensive work, although it covers a large part of the literature, 

starting from the first pioneering methods, realized at the end of the 70s, until 

nowadays. In Figure 3.3, a functional block diagram related to the general archi-

tecture of an automatic music transcription system, is shown. 
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Fig. 3.3 General architecture of an automatic music transcription system. 
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A Pre-Processing module is generally assigned to segment the input signal into 

frames, and to compute the mid-level representation (spectral analysis, auditory 

model based representation etc…). The retrieval of pitch information and note 

temporal parameters is usually performed by dedicated modules, referred to as 

Pitch Estimation and Time Information Estimation in Figure 3.3. To achieve 

better transcription accuracies, additional Knowledge Sources (har-

monic/instrumental models, training databases etc…) are often implemented in 

transcription systems, for many different purposes. Finally, a Post-Processing 

module groups all the detected note information and converts it into an appropriate 

output format (MIDI file, piano-roll or note parameters list). 

In the following, a multi-field classification is proposed through the use of a set 

of parameters which can be helpful to highlight the main characteristics and pecu-

liarities of different algorithms, without forcing a strict categorization, not even 

focusing on specific parts of the processing framework. The comparison summary 

is reported in Table 3.2. They are defined as follows: 

 

• Reference: this field contains the reference to the authors of each system. In 

past years, longer-term projects have been undertaken by Stanford university 

(Centre for Computer Research in Music and Acoustics, CCRMA in the Table 

3.2), University of Michigan (U-M), University of Tokyo (UT), National Insti-

tute of Advanced Industrial Science and Technology (AIST), Massachusetts In-

stitute of Technology (MIT), Queen Mary University of London (QMUL), 

University of Cambridge (CAM), Tampere/Helsinki University of Technology 

(TUT/HUT), and by the Institut de Recherche et Coordination Acoustique/ 

Musique (IRCAM) of Paris, France. Other names and abbreviations, refer ei-

ther to the name of the research projects, or to the commercial development of 

such systems (e.g., KANSEI, SONIC, YIN). 

• Year: the year of publication of the referenced papers. 

• System Input / Output: this field contains specifications, if they exist, on the 

input audio file, and it reports also the output format of the transcription proc-

ess, whether described in the referenced papers. 

• Pre-Processing and Mid-Level: a list of the signal processing techniques, used 

to obtain a useful front end. 

• Real time / Offline: this field specifies whether the system operates in real 

time or not. 

• Source Availability: this specifies if the source code is available, directly or 

web-linked. 

• Mono / Poly: this field shows if the system is mainly dedicated to monophonic 

or polyphonic transcription. 

• Time / Frequency: indicates if the signal processing techniques used by the al-

gorithm (which are listed in the Pre-Processing and Mid-Level categories de-

scribed above) operates either in the time or in the frequency domain. 
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• Pitch Estimation Knowledge: a brief description about the approaches and the 

knowledge used to extract pitch information. 

• Rhythm Info Extraction: in this field the techniques used to retrieve temporal 

information of estimated F0s (where this task is performed) are summarized. It 

is divided into two sub-fields: Onsets and Durations, as they are often esti-

mated with different strategies. 

• Evaluation Material: this section shortly reports, where described, the type of 

the dataset used for evaluation and the number of test files / samples. Evalua-

tion results are omitted. MIREX results are reported, for all those algorithms 

which participated in the past editions. The transcription output (MIDI file or 

piano-roll usually) is compared with a reference ground truth of the audio 

source data. For the evaluation of music transcription algorithms, MIREX tasks 

are defined as follows for Multiple F0 Estimation on a frame by frame basis. 

Performance measures are defined for this task: Precision, which is the portion 

of correct retrieved pitches for all the pitches retrieved for each frame, Recall: it 

is the ratio of correct pitches to all the ground truth pitches for each frame, Ac-

curacy: it is an overall measure of the transcription system performance, and 

the classical F-measure to assess the balance between false positives and false 

negatives. 

• Additional Notes: under this entry, any further noteworthy information, which 

cannot be classified according to the defined categories, is recalled. 

When the value of a certain parameter is missing, or information about one of the 

defined fields is not available in the referenced paper, the abbreviation N.A. is 

used in Table 3.2. In Table 3.1, other acronyms used in Table 3.2 are defined. 

Table 3.1 Definition of acronyms used in Table 3.2. 

Acc Accuracy IHC Inner Hair Cell 

ACF Autocorrelation Function IIR Infinite Impulse Response filter 

AHS Average Harmonic Structure MCMC Markov Chain Monte Carlo 

DFT Discrete Fourier Transform MF0E Multiple F0 Estimation MIREX task 

F0 Fundamental Frequency NN Neural Network 

FFT Fast Fourier Transform NT Note Tracking MIREX task 

FIR Finite Impulse Response filter PCM Pulse Code Modulation 

fs Sampling Frequency RWC Real World Computing database 

HMM Hidden Markov Models STFT Short Time Fourier Transform 

HTC Harmonic Temporal Clustering SVM Support Vector Machine 

HWR Half Wave Rectification   
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3.3   Review of Some Music Transcription Systems 

Goto (2000 and 2004): It was one of the first who proposed a transcription system 

(PreFEst, from "Predominant F0 Estimation") for real-world audio signals [24], 

[25], characterized by complex polyphony, presence of drum or percussion, and 

singing voice also. To achieve such a goal, the music scene description and the 

signal analysis are carried out at a more specific level, focusing on the transcrip-

tion of the melody and the bass line in musical fragments. The front end extracts 

instantaneous frequency components by using a STFT multi-rate filter bank, thus 

limiting the frequency regions of the spectrum with two band-pass filters. A prob-

ability density function is then assigned to each filtered frequency component; this 

function is a weighted combination of different harmonic-structure tone models. 

An Expectation-Maximization (EM) algorithm then estimates the model parame-

ters. The frequency value that maximizes the probability function is detected as a 

predominant F0. Finally, a multi-agent architecture is used to sequentially track F0 

peak trajectories, and to select the most stable ones; this operation is carried out by 

a salience detection and a dynamic thresholding procedures. 

 
Ryynänen and Klapuri (2005): This system [56] uses a probabilistic framework, a 

hidden Markov Model (HMM), to track note events. The multiple F0 estimator 

front end is based on auditory model: a 70-channel bandpass filter bank splits the 

audio input into sub-band signals which are later compressed, half-wave rectified 

and low-pass filtered with a frequency response close to 1/f. Short time Fourier 

Transform is then performed across the channels, and the obtained magnitude 

spectra are summed together into a summary spectrum. Predominant F0 estima-

tion, and cancelation from the spectrum of the harmonic set of detected F0 is per-

formed iteratively. Onset detection is also performed by observing positive energy 

variation in the amplitude of detected F0 values. The output of F0 estimator is fur-

ther processed by a set of three probabilistic models: a HMM note event model 

tracks the likelihood for each single detected note; a silence model detects tempo-

ral intervals where no notes are played; finally, a musicological model controls the 

transitions between note event and silence models. 

 

Bruno and Nesi (2005): The proposed system [7] processes the input audio signal 

through a Patterson-Meddis auditory model. A partial tracking module extracts the 

harmonic content, which is analyzed to estimate active pitches. Onset detection is 

performed by using a peak-picking algorithm on the signal envelope. Pitch track-

ing is carried on, for each note by a bank of neural networks. This network can be 

trained by a set of parameters describing several instrument models (concerning 

partial amplitude weights, frequency range etc.).  

 

Vincent, Bertin and Badeau (2008): They have proposed a system based on Non-

negative Matrix Factorization (NMF) [61]. By using this technique, the observed 

signal spectrogram (Y) is decomposed into a weighted sum of basis spectra (con-

tained in H) scaled by a matrix of weighting coefficients (W): WHY = . 
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Since the elements of Y are non-negative by nature, the NMF method approxi-

mates it as a product of two non-negative matrixes, W and H. 

The system uses a family of constrained NMF models, where each basis spec-

trum is a sum of narrow-band spectrum containing partials at harmonic or inhar-

monic frequencies. This ensures that the estimated basis spectra are pitched at 

known fundamental frequencies; such a condition is not always guaranteed if 

standard NMF models are applied without any of these constraints. The input sig-

nal is first pre-processed to obtain a representation similar to the Short-time Fou-

rier Transform, by performing an ERB-scale representation. Then, the parameters 

of the models are adapted by minimizing the residual loudness after applying the 

NMF model. Pitches, onsets and offsets of detected notes are transcribed by sim-

ply thresholding the amplitude sequence. The system has been evaluated in the 

MIREX 2007 framework: the two submitted versions reached average accuracies 

of 46.6% and 54.3% in the task 1 (multi-F0 estimation over 10 ms frames) and an 

average F-measure of 45.3% and 52.7% in the task 2 (note tracking). 

 

Chang, Su, Yeh, Roebel and Rodet (2008): In method [9], instantaneous spectra 

are obtained by FFT analysis. A noise level estimation algorithm is applied to en-

hance the peaks generated by sinusoidal components (produced by an unknown 

number of audio sources) with respect to noise peaks. Subsequently, a matching 

between a set of hypothetical sources and the observed spectral peaks is made, by 

using a score function based on the following three assumptions: spectral match 

with low inharmonicity, spectral smoothness and synchronous amplitude evolu-

tion. These features are based on physical characteristics generally showed by the 

partials generated by a single source. Musical notes tracking is carried out by ap-

plying a high order hidden Markov model (HMM) having two states: attack and 

sustain. This is a probabilistic framework aimed at describing notes evolution as a 

sequence of states evolving on a frame by frame basis. The goal is to estimate op-

timal note paths and the length of each note trajectory. Finally, the source streams 

are obtained by pruning the candidate trajectories, in order to maximize the likeli-

hood of the observed polyphony. The system has been evaluated within the 

MIREX 2007 framework, and improved versions were submitted to MIREX 2008 

and MIREX 2009 contests. Best multiple F0 estimation accuracy of 69% has been 

achieved in 2009 running (1
st
 ranked in task 1): this is currently the highest accu-

racy reached in all the MIREX editions for the first task. Best performance in the 

note tracking task was reached in 2008 edition, with an F-measure of 35.5% (1
st
 

ranked). 

 

Argenti, Nesi and Pantaleo (2009): This transcription method [1] has been pro-

posed by the authors of the present chapter. It has an original front-end: a con-

stant-Q bispectral analysis is actually applied to the input signal. The bispectrum 

belongs to the class of higher-order spectra (HOS), or polyspectra. They are de-

fined as the Fourier Transform of corresponding order cumulants, which are 

strictly related to statistical moments. The bispectrum, in particular, is also known 

as the third-order spectrum: it is a bivariate frequency function, ),( 21 ffB , capable 

of detecting nonlinear activities like phase or frequency coupling, for example 
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amongst the partials of a sound, or a mixture of sounds. Pitch estimation is per-

formed by harmonic pattern matching procedure in the bispectrum domain. In the 

spectrum domain, a monophonic musical signal is described as a comb-pattern of 

amplitude peaks, located at integer multiple values of the fundamental frequency. 

In the bispectrum domain, a monophonic sound composed of T partials generates 

a 2D pattern characterized by peaks positions. Two sounds presenting some collid-

ing partials generate spectral overlapping patterns; this is a well known problem-

atic situation that leads to detection errors in a pattern matching/correlation based 

method; besides, in an iterative pitch estimation and subtraction algorithm. The 

geometry of bispectral 2D pattern is useful in preserving information about over-

lapping partials. This is demonstrated by evaluation results, made on excerpts 

from the RWC database: a comparison between a spectral based and a bispectral 

based transcription system (both performing an iterative F0 estimation and har-

monic pattern extraction procedure) shows that the latter outperforms the former, 

with average F-measures of 72.1% and 57.8%, respectively. Onset detection are 

estimated using the Kullback-Leibler divergence, thus highlighting energy varia-

tions which are expected to be found at onset times. Note durations are estimated 

by thresholding the spectrogram envelope. The system has been evaluated in the 

MIREX 2009 framework: it has reached a 48.8% frame by frame F0 estimation 

accuracy (task 1); it has been 3
rd

 ranked in the mixed set note tracking (task 2a, 

with an F-measure of 22.7%), and 1
st
 ranked in the piano-only tracking note task 

(task 2b). 

3.4   Discussion and Conclusions 

From this review work some general aspects, concerning automatic music tran-

scription systems can be gathered. Automatic transcription of polyphonic music is 

one of the most challenging task in the MIR research field; in fact, this is to be 

considered as a conjunction of several tasks, which can be accomplished jointly or 

by using dedicated procedures. From this point of view, a modular architecture 

seems to be the most robust approach for a problem solution. Such a construct per-

fectly matches with Martin's idea of blackboard architecture [41]. 

While the human perceptual approach to music has been successfully studied 

and implemented through the Computational Auditory Scene Analysis (CASA), it 

is more difficult to code knowledge at higher levels of into a computational 

framework, since it must be consistent with experience, and it often needs training 

to avoid misleading or ambiguous decisions. Such knowledge is commonly repre-

sented by all those models which aim at reproducing human capabilities in fea-

tures extraction and grouping (e.g., harmony related models, musical key finding 

etc…). The experience of a well-trained musician can be understood as a greatly 

flexible and deep network of state-machine like hints, as well as complex match-

ing procedures. 

Review of music transcription systems in literature suggests that time-

frequency representation (usually performed through short-time Fourier trans-

form) of the signal is the most used front end, upon which pitch estimation and 

onset/offset detection strategies can be applied. Multi resolution spectrogram  
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representation (obtained by using constant-Q or wavelet transform) seems to be, in 

our opinion, the most suitable, since it fits properly the exponential spacing of 

note frequencies, and it also reduces computational load to achieve the desired 

time/frequency resolution. Auditory model based front ends have been largely 

studied and applied in the 90s; however, the interest toward this approach has de-

creased. Time domain techniques are becoming more and more infrequent, since 

they have provided poor performances in polyphonic contexts. 

With regards to pitch estimation strategies, the largely adopted class of spectral 

content peak-picking based algorithms has revealed to be not sufficient to achieve 

satisfactory transcription accuracies. Actually, amplitude thresholding in the spec-

trum domain, as well as simple harmonic pattern matching, leads to frequent false 

positive detection, if no other knowledge is applied. A large variety of models has 

been proposed to spectral analysis, and it is not easy to find out which is the best 

approach. The most used techniques in recent literature are: Nonnegative Matrix 

Factorization [59], [62], [61], Hidden Markov Models [55], [56], [9], Bayesian 

models [30], [21], [22], [14], generative harmonic models [8], and the use of 

jointed frequency and time information. 

Onset detection is often devolved upon detecting rapid spectral energy over time. 

Techniques such as the phase-vocoder based functions, applied to audio spectro-

gram, seem to be more robust with respect to peak-picking algorithms performed 

upon the signal envelope. Offset detection is still considered as of less perceptual 

importance. Statistical frameworks offer an interesting perspective in solving dis-

continuities in joint time-pitch information, typically yielded by lower processing 

levels techniques. On the contrary, other devices that usually reach a deep level of 

specialization, like neural networks, are more suitable for particular areas or subsets 

of automatic transcription; actually this kind of tool is often trained at recognizing 

specific notes or at inferring particular instrumental models [39]. 
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Chapter 4 

Multimodal Analysis of Expressive Gesture in 
Music Performance 

Antonio Camurri and Gualtiero Volpe* 

Abstract. This chapter focuses on systems and interfaces for multimodal analysis 

of expressive gesture as a key element of music performance. Research on expres-

sive gesture became particularly relevant in recent years. Psychological studies 

have been a fundamental source for automatic analysis of expressive gesture since 

their contribution in identifying the most significant features to be analysed. A fur-

ther relevant source has been research in the humanistic tradition, in particular 

choreography. As a major example, in his Theory of Effort, choreographer Rudolf 

Laban describes the most significant qualities of movement. Starting from these 

sources, several models, systems, and techniques for analysis of expressive ges-

ture were developed. This chapter presents an overview of methods for the analy-

sis, modelling, and understanding of expressive gesture in musical performance. It 

introduces techniques resulted from the research developed over the years by the 

authors: from early experiments of human-robot interaction in the context of mu-

sic performance up to recent set-ups of innovative interfaces and systems for ac-

tive experience of sound and music content. The chapter ends with an overview of 

possible future research challenges. 

4.1   Introduction 

This chapter presents methods and techniques for multimodal analysis of expres-

sive gesture in music performance. The chapter adopts an historical perspective, 

taking as reference and as a source for examples the research developed over years 
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at the formerly InfoMus Lab in Genova, Italy, nowadays the Casa Paganini – In-

foMus Research Centre. Starting from some pioneering studies and interfaces for 

expressivity in musical robots, it reviews models, techniques and interfaces devel-

oped along the years in several research projects, and it ends with an overview of 

topics and challenges for future research. 

Research on expressive gesture became particularly relevant in recent years 

(e.g. see the post-proceedings of Gesture Workshops 2003 [6], 2005 [22], 2007 

[39], and 2009 [26]). Several definitions of gesture exist in the literature. The most 

common use of the term is with respect to natural gesture, which is defined as a 

support to verbal communication. McNeill [34], in his well-known taxonomy, di-

vides the natural gestures generated during a discourse into four different catego-

ries: iconic, metaphoric, deictic, and beats. In a wider perspective Kurtenbach and 

Hulteen [28] define gesture as “a movement of the body that contains informa-

tion”. A survey and a discussion of existing definition of gesture can be found in 

[3]. In artistic contexts and in particular in the field of music and of performing 

arts, gesture is often not intended to denote things or to support speech as in the 

traditional framework of natural gesture, but the information it contains and con-

veys is related to the affective/emotional domain. Starting from this observation 

Camurri and colleagues [10, 12] considered gesture to be “expressive” depending 

on the kind of information it conveys: expressive gesture carries what Cowie et al. 

[18] call “implicit messages”, and what Hashimoto [23] calls KANSEI. That is, 

expressive gesture is responsible for the communication of information called ex-

pressive content. Expressive content is different and in most cases independent 

from, even if often superimposed to, possible denotative meaning. Expressive con-

tent concerns aspects related to feelings, moods, affect, and intensity of emotional 

experience. In this framework, expressive gesture is understood in a broad per-

spective, which is only partially related to explicit body movement. Expressive 

gesture is considered as the result of a juxtaposition of several dance, music, and 

visual gestures, but it is not just the sum of them, since it also includes the artistic 

point of view of the artist who created it, and it is perceived as a whole multimo-

dal stimulus by human spectators. In the particular case of music performance, ex-

pressive gestures include explicit non-functional gestures of performers, but also 

embodied experience of expressive sound and music content. 

Psychology has been a fundamental source for automatic analysis of expressive 

gesture since it identified the most significant features for analysis [2, 19, 49]. A 

further relevant source has been research in the humanistic tradition, in particular 

choreography. As a major example, choreographer Rudolf Laban described in his 

Theory of Effort the most significant qualities of movement [29, 30]. 

4.2   Pioneering Studies 

Pioneering studies on analysis of expressive gesture in complex music and dance 

performance scenarios date back to the Eighties. Taking as example the research 

carried out at InfoMus Lab (which was born in 1984), a significant pioneering work 

consisted of the interactive systems developed for the music theatre production 

Outis by the famous composer Luciano Berio (Teatro alla Scala, Milan, 1996): 
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starting from the research on interactive systems originated at InfoMus Lab in late 

eighties [5, 7], and from a fruitful collaboration with Nicola Bernardini and Alvise 

Vidolin, a real-time system was developed for on-stage gesture detection and the 

control of live electronics. Simplifying for sake of brevity, the request by the com-

poser was to obtain a perfect synchronisation between the orchestra, the movement 

of mimes on stage, and a few sections of live electronics, including the real-time 

activation and processing of synthetic percussion sounds based on the movements 

of the mimes. The solution was to give the orchestra conductor the responsibility to 

conduct also the gestures of the mimes on stage. Such gestures were detected and 

associated to specific activations and processing events on the live electronics. Spe-

cific sensor systems were also developed (e.g. floor sensitive areas on the stage) 

and custom electronics to connect such sensor signals to computers placed at a long 

distance (e.g. electronics to transmit MIDI signals on a few hundred meters dis-

tance cables). These electronics were also provided to Nicola Bernardini and Alvise 

Vidolin at Salzburg Festival in 1999 to set-up a remote live electronics for a music 

theatre opera by the composer Adriano Guarnieri. 

Another important exploitation of the research work at InfoMus Lab and, at the 

same time, a relevant source of inspiration for subsequent research (indeed, it 

originated the first consolidated public version of the software EyesWeb, about 

one year later) was the participation to the music theatre production Cronaca del 

Luogo again by Luciano Berio (Salszburg Festival, 1999). In this framework, In-

foMus Lab developed the interaction mechanisms for one of the major actors of 

the piece, Nino, played by David Moss. Nino is a character with a double person-

ality: one intelligent, crazy, and aggressive, and the other a sort of repository of 

knowledge, wisdom, and calmness. These two personalities are modelled by two 

different live-electronics contexts on his own voice, controlled by his movement. 

David Moss, according to his movement from one part to the other of the stage, 

had the possibility to change smoothly in real-time his voice from one character to 

the other. This was obtained with small sensors on his costume (FSRs), connected 

to a Wireless-Sensor-to-Midi system developed by the Lab, exploiting wireless 

microphone channels (modulating and demodulating MIDI signals). Further, a 

camera placed over the stage detected his overall movement, to recognise how he 

occupied the stage. This was used to change the degrees of intervention of the live 

electronics between the two contexts corresponding to the two characters. There-

fore, the actor had the possibility to manage a sort of morphing between the dif-

ferent characters, creating an interesting dialogue between the two Nino personali-

ties (see Figure 4.1). This was obtained with the first version of EyesWeb, which 

was refined and extended for this occasion. This experience was also a precious 

occasion to gather novel requirements for the subsequent version of the system. 

In this artistic project too, custom hardware systems were developed in order to 

achieve the needed robustness and effectiveness. A big problem was the tracking 

from a video-camera of the movement of the main character Nino on a large stage 

(about 30 m by 15 m, the Festspielhouse, Salzburg Festival), with huge lighting 

and scenery changes, and with a high number of other actors on the stage (see 

Figure 4.1a). InfoMus Lab developed, thanks to the collaboration with Matteo 

Ricchetti, an original method to solve the problem: the helmet he was wearing  
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(a part of his on stage costume) was endowed with a cluster of infrared LEDs 

flashing in synch and at half the rate of the infrared video-camera used for the mo-

tion tracking. Therefore, an algorithm was implemented in EyesWeb to detect a 

small blob which is present in one frame and not in the next one, and again present 

in the next one, and so on. This was an original and very effective technique to ob-

tain the position of Nino on stage in the case of such a noisy environment. 

 

 
(a) 

 (b) 

 

 

Fig. 4.1 David Moss during the rehearsals of Cronaca del Luogo (composer L. Berio, Salz-

burg Festival, 1999). (a) Moving from one side to the other of the stage he changes his per-

sonality. (b) The sensors on his hands allow him to control in real-time the processing of his 

voice by the movements of his hands. 

 
These are a few examples, among the many that InfoMus Lab experienced and 

still is experiencing at present days, of how the participation to artistic projects can 

stimulate novel developments in scientific and technological research. 

In the late Nineties, expressive gesture was also studied in the framework of 

human-robot interaction [8]. In an experimental set-up, a “theatrical machine” was 

developed for the performance of the music piece Spiral, by K. Stockhausen, for 
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one singer or player (in this performance, one trombone) endowed with a short 

wave radio. The radio, audio amplifier, and loudspeakers were installed on board 

of a robot navigating on the stage, thus creating effects of physical spatialisation 

of sound due to the movement of the robot during the performance (trombone: 

Michele Lo Muto, live electronics: Giovanni Cospito, Civica Scuola di Musica, 

Sezione Musica Contemporanea, Milano, June 1996). The movements of the robot 

depended on sound parameters and on the gesture of the trombone performer: for 

example, a high “energy” content in the trombonist’s gesture and a high sound 

spectral energy were stimuli for the robot to move away from the performer. 

Smooth and calm phrasing and movements were stimuli attracting the robot near 

and around the performer. Further, the robot sound and music outputs were part of 

the interaction process, i.e. the expressive gesture nuances and the sound produced 

by the performer influenced the robot, and vice-versa. 

For L’Ala dei Sensi (see Figure 4.2), a multimedia performance about human 

perception (director: Ezio Cuoghi, choreographer and dancer: Virgilio Sieni, 

Ferrara, Italy, November 1998), two episodes were developed concerning interac-

tive dance/music performance and making use of a small mobile robotic platform 

(a Pioneer 2 from Stanford Research Institute). The robot was equipped with sen-

sors, an on-board video projector, and a video-camera. Sensors allowed the robot 

to avoid collisions with the scenery and the dancers. In the main episode, initially 

the on-board video projector and the video-camera were directly controlled in 

real-time by the director (off-stage). He also used the images coming from the ro-

bot (the robot’s point of view) to mix them in real-time on a large screen. The di-

rector controlled the movements of the robot too. That is, the robot was a sort of 

passive companion of the dancer. At a certain point, the dancer plugged off the 

electric power cable of the robot. This was a specially important gesture: the robot 

came to life and a deeper dialogue with the dancer started. The dancer was 

equipped with two sensors on the palms of his hands. By acting on the first one, he 

was allowed to influence the robot towards one of two different styles of move-

ment: a kind of “ordered” movement (aiming at a direct, constant speed move-

ment) and a “disordered” type of movement. Through the second sensor the 

movement could be stopped and restarted. The dancer was also observed by a 

video-camera and his expressive gestures were a further stimulus for the robot, 

which was able to react by changing (morphing) its style of moving. 

 

  
(a) (b) 

Fig. 4.2 Collaborative human-robot interaction in the multimedia performance L’Ala dei Sensi 

(Ferrara, Italy, November 1998): (a) robot/dancer interaction, (b) example of visual feedback. 
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4.3   Multimodal Expressive Gesture Analysis toward 

Consolidation 

After these pioneering studies, in the framework of the European Project MEGA 

(Multisensory Expressive Gesture Applications, FP5, November 2000 – October 

2003) multimodal analysis of expressive gesture consolidated toward maturity. 

The concept of expressive gesture was better defined and a conceptual model for 

multimodal expressive gesture processing was developed [10, 12]. In the model, 

analysis of expressive gesture is understood as a process involving several layers 

of abstraction, and a multi-layered architecture is envisaged in which analysis is 

carried out by progressively extracting higher-level information from lower-level 

signals. A platform, EyesWeb (www.eyesweb.org), was developed as well as ap-

plications in several domains, including music. 

4.3.1   A Conceptual Model 

The multilayered conceptual model defined in MEGA consists of four layers (see 

Figure 4.3) and is considered under a multimodal perspective, i.e. it aims at inte-

grating analysis of audio, video, and sensor signals. Integration is tighter as far as 

analysis moves from lower to upper layers. 
 

 

 

Fig. 4.3 The conceptual framework for expressive gesture processing designed in the Euro-

pean Project MEGA (2000 – 2003). 

Layer 1 (Physical Signals) receives as input information captured by the sen-

sors of a computer system. Physical signals may have different formats strongly 

dependent on the kind of sensors that are used. For example, they may consist of  

 

Concepts and structures 

Mid-level features and maps 

Low-level features 

Physical signals 
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sampled signals from tactile, infrared sensors, signals from haptic devices, video 

frames, sampled audio signals, MIDI messages. In this context the word “sensors” 

is often related to both the physical sensors employed and to the algorithm used to 

extract a given set of low-level data. It is therefore possible to speak of “virtual 

sensors” or “emulated sensors”. For example, in the case of analysis of movement 

through video-cameras, a CCD camera can be an example of physical sensor, 

while the optical flow, the motion templates, or the positions of certain points in 

the frame sequence are examples of data extracted from “virtual sensors” imple-

mented by the cited algorithms. Layer 1 applies pre-processing, filtering, signal 

conditioning, and audio and video analysis techniques to the incoming rough data 

to obtain cleaner data and further signals derived from the rough input. For exam-

ple, in the case of video analysis of human movement, usually the following steps 

are needed: a background subtraction step for identifying the moving subjects and 

separating them from the background and a motion tracking step to follow the 

moving subjects across frames. Two types of output are generated: pre-processed 

images (e.g. the silhouettes of the moving subjects) and geometric data, such as 

trajectories of body parts (e.g. centre of gravity, limbs), the bounding rectangle 

(i.e. the smallest rectangle including the silhouette of a moving subject), the con-

tour, and the convex hull (i.e. the smallest polygon including the silhouette).  

Layer 2 (Low-level features) gets as input the pre-processed signals coming 

from Layer 1 and applies algorithms to extract a collection of low-level features. 

The employed techniques range from computer vision algorithms, to signal proc-

essing, to statistical techniques. The extracted low-level descriptors are features 

that psychologists, musicologists, researchers on music perception, researchers on 

human movement, and artists deemed important for conveying expressive content. 

In the case of analysis of expressive gesture in human movement, two significant 

examples [11] are (i) the amount of movement detected by the video-camera (Mo-

tion Index, formerly Quantity of Motion), computed as the normalised area (i.e. 

number of pixels) of a Silhouette Motion Image (SMI), i.e. an image carrying in-

formation about the variations of the silhouette shape and position in the last few 

frames, and (ii) the amount of contraction/expansion (Contraction Index), com-

puted as the ratio of the area of the bounding rectangle and the area of the silhou-

ette. Important features are those related to the Effort dimensions described in  

Rudolf Laban’s Theory of Effort [29, 30], e.g. directness (computed as the ratio of 

the length of the straight line joining the first and last point of the trajectory fol-

lowed by a moving subject and the length of the trajectory itself), impulsivity, and 

fluidity (both computed from the shape of the velocity profiles). In the case of mu-

sic, low-level features are related to tempo, loudness, pitch, articulation, spectral 

shape, periodicity, dynamics, roughness, tonal tension, and so on: a similar con-

ceptual framework and a taxonomy of audio features can be found in [31, 32].  

Notice that analogies can be found among features in movement and in music, e.g. 

amount of motion – loudness, contraction/expansion – melodic contour or spectral 

width, bounded, hesitant movement – roughness. 

Layer 3 (Mid-level features and maps) has two main tasks: segmenting expres-

sive gestures and representing them in a suitable way. Such a representation would  
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be the same (or at least similar) for gestures in different channels, e.g. for expres-

sive gestures in music and dance. Data from several different physical and virtual 

sensors are therefore likely to be integrated in order to perform such a step. Each 

gesture is characterised by the measures of the different features extracted in the 

previous step (e.g. speed, impulsiveness, directness, etc. for movement, loudness, 

roughness, tempo, etc. for music). Segmentation is a relevant problem at this level: 

the definition of expressive gesture does not help in finding precise boundaries. 

For example, a motion stroke (i.e. the time window from the start of a movement 

to its end) can be considered as an expressive gesture (and segmentation can be 

performed on the basis of the detected amount of motion). In fact, this is quite an 

arbitrary hypothesis: sub-phases of a motion phase (e.g. the phase of motion 

preparation) could also be considered as expressive gestures as well as sequences 

of motion and pause phases. Several possibilities are open for the common repre-

sentation Layer 3 generates as its output. For example, an expressive gesture can 

be represented as a point or a trajectory in a feature space. Clustering algorithms 

may then be applied in order to group similar gestures and to distinguish different 

ones. Another possible output is a symbolic description of the observed gestures 

along with measurements of several features describing them. For example, in the 

Expressive HiFi application [12] a bi-dimensional feature space was adopted hav-

ing the Motion Index and Fluidity as axes. 

Layer 4 (Concepts and structures) extracts high-level expressive content from 

expressive gestures. It can be organised as a conceptual network mapping the ex-

tracted features and gestures into (verbal) conceptual structures. For example, the 

focus can be on emotional labels (e.g. the basic emotions anger, fear, grief, and 

joy) or on dimensional approaches, such the well-known valence-arousal space, or 

other dimensional models [38, 43], or those especially developed for analysis and 

synthesis of expressive music performance, e.g. [16, 24, 48]. Other outputs in-

clude, for example, the Laban’s types of Effort such as “pushing”, “gliding”, etc 

[29, 30]. Machine learning techniques can be used at Layer 4, including statistical 

techniques like multiple regression and generalized linear techniques, fuzzy logics 

or probabilistic reasoning systems such as Bayesian networks, various kinds of 

neural networks (e.g. classical back-propagation networks, Kohonen networks), 

support vector machines, decision trees. For example, in [10] decision trees were 

used to classify expressive dance gestures according to emotional labels. 

The conceptual architecture sketched above is conceived for analysis (upward 

arrows). A similar structure can be employed also for synthesis (downward ar-

rows). Consider for example Layer 4: it may consist of a network in which expres-

sive content is classified in terms of the four basic emotions anger, fear, grief, and 

joy, depending on current measures of low and mid-level features. If, instead of 

considering the framework from a bottom-up perspective, a top-down approach is 

taken, an emotion a virtual performer wants to convey can be translated by a simi-

lar network structure in values of low and mid-level features to be applied to  

generated audio and/or visual content. 
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4.3.2   Implementation: The EyesWeb Platform 

The EyesWeb open platform ([9, 14], www.eyesweb.org) was designed at InfoMus 

Lab as a development and prototyping environment for both research and applica-

tions on multimodal analysis and processing of non-verbal expressive gesture, in-

cluding music performance. EyesWeb consists of a number of integrated hardware 

and software modules that can be easily interconnected and extended in a visual en-

vironment. It includes a development environment and a set of libraries of reusable 

software components (“blocks”) that can be assembled by the user in a visual lan-

guage to build applications (“patches”) as in common computer music languages 

(e.g. Max/MSP, pd). 

EyesWeb implements the above-sketched conceptual model and supports the 

user in experimenting computational models of non-verbal expressive communi-

cation and in mapping, at different levels, gestures from different modalities (e.g. 

human full-body movement, music) onto real-time generation of multimedia out-

put (e.g. sound, music, visual media, mobile scenery). It allows fast development 

and experiment cycles of interactive performance setups. EyesWeb supports the 

integrated processing of different streams of (expressive) data, such as music au-

dio, video, and, in general, gestural information. EyesWeb is an open platform, 

since users can extend it by building modules and use them in patches.  

EyesWeb has been recently enhanced and re-engineered. A first collection of 

new features was introduced in version 4. These include the distinction between 

the kernel engine and the patch editor (i.e. the kernel does not rely on the user in-

terface for its proper working, thus allowing different interfaces to be provided to 

edit as well as to run patches), a new concept of clock for enhanced performance 

and synchronisation of multimodal data streams, a new layer of abstraction for de-

vices that adds the possibility to map the available physical hardware resources to 

virtual devices used by blocks, the availability of kernel objects for optimising the 

most crucial operations, the availability of a sub-patching mechanism. The current 

version (XMI, for eXtended Multimodal Interaction) enhances the support to 

processing of synchronised streams at different sampling rates (e.g. audio, video, 

biometric data). It has been ported to Linux and has been extended to work as 

server in complex distributed applications where several clients and servers col-

laborate in distributed analysis and processing of expressive content. 

A collection of libraries is integrated with or connected to EyesWeb. They in-

clude, for example, the EyesWeb Expressive Gesture Processing Library for ex-

traction of expressive cues and analysis of expressive content in human movement 

[11], modules for extraction of audio cues (including a real-time auditory model), 

modules for processing of time-series (e.g. both sensor signals or higher level ex-

pressive features). The EyesWeb XMI libraries have been recently extended with 

software modules for real-time analysis of affective social interaction, included in 

the novel EyesWeb Social Signal Processing Library [46]. The library operates on 

multidimensional time-series consisting of the temporal sequence of expressive 

feature vectors, and computes features such as a phase synchronisation index and 

a leadership index (see also Section 2.4). 
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4.3.3   Applications and Validation of Research on Interactive 

Systems 

The conceptual model and the techniques described above have been exploited in 

several applications to music and dance performance, as well as in applications for 

active experience of pre-recorded sound and music content. Different interfaces 

(e.g. full-body or tangible interfaces) and different techniques (e.g. either for full-

body gesture analysis or focusing on single body parts) have been used. 

For example, in the music piece Allegoria dell’opinione verbale (composer 

Roberto Doati, actress Francesca Faiella, live electronics Alvise Vidolin, writings 

Gianni Revello; see also [12]) performed for the first time in September 2001 at 

the opening concert of the season of Teatro La Fenice, Venice, the focus was on 

the analysis of the lips of the actress. The actress is on stage, seated on a stool, 

turned towards the left backstage (the audience sees her profile). A big screen pro-

jects her face in frontal view. A video-camera is placed hidden in the left part of 

the backstage, and is used both to project her face on the big screen and to capture 

her lips and face movements. The audience can therefore observe the movements 

of the actress’ face while listening to the piece and thus perceiving the overlapping 

and interaction of her movement with sound changes from the loudspeakers. The 

actress plays a text in front of the camera while the movements of her lips and face 

are processed (see Figure 4.4), in order to obtain expressive features used to re-

cord and process in real-time her voice and diffuse spatialised electroacoustic mu-

sic on four loudspeakers placed at the four corners of the auditorium in a standard 

electroacoustic music setup. The signals reproduced by the loudspeakers are only 

derived by the actress’ voice: former recordings of her voice, real-time recordings, 

and post-processing in real-time. 

In the music theatre production Un avatar del diavolo (composer Roberto 

Doati), performed at La Biennale di Venezia in September 2005 [13], a wooden 

chair (see Figure 4.5) was sensorised to transform it into a sensitive object. The in-

terface is the whole chair. Sensorisation was based on Tangible Acoustic Inter-

faces (TAI) technology. A TAI exploits the propagation of sound in a material to 

get information about where (i.e. location) and how (i.e. which expressive inten-

tion, e.g. softly, aggressively) an object is touched. A specific vocabulary of 

touching gestures by the actor on stage was defined with the composer and the di-

rector of the music theatre opera. In particular gestures were localised and ana-

lysed in real-time: the position where the chair is touched, the way it is touched 

(e.g. with hard and quick tapping-like movements or with light and smooth caress-

like movements) were detected. The chair could be touched through sitting on it 

(e.g. caressing the sides and legs), or while standing or moving around it and 

touching, tapping, caressing it in all its parts (see Figure 4.5a). The recognised po-

sitions, qualities, and types of tactile interaction were used to control in real-time 

sound generation and processing, as well as video-projections. The voice of an ac-

tress is the main sound produced and processed in real-time, depending on the 

high-level gestural information obtained from the actor. Figure 4.5b shows a snap-

shot of the live performance. 

 



4   Multimodal Analysis of Expressive Gesture in Music Performance 57

 

 

 

Fig. 4.4 The EyesWeb patch for the concert Allegoria dell’opinione verbale (composer 

Roberto Doati, actress Francesca Faiella). On the left, the lips of the actress as extracted by 

EyesWeb (bounding box in the top window). The movement of the lips of the actress is 

analysed in real-time and mapped onto the real-time processing of her voice. 

 

 
(a) (b) 

Fig. 4.5 The sensorised chair for the music theatre production Un avatar del diavolo:  

location and quality of the touch gestures are analysed and used for controlling sound  

processing in real-time. 
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In a more recent application – the interactive collaborative installation Mappe 

per Affetti Erranti, presented at the Festival della Scienza of Genova [15] – the 

expressive gestures performed by the users were analysed in order to control in 

real-time the reproduction of four expressive performances of the same music 

piece (a choral by J.S. Bach). The four expressive performances corresponded to 

the following expressive intentions: Happy/Joyful, Solemn, Intimate/Shy, and An-

gry/Aggressive. These were associated to the same four expressive intentions clas-

sified from the users’ expressive gestures. Analysis of expressive gesture was per-

formed by means of twelve expressive features: Motion Index (i.e. motor activity), 

computed on the overall body movement and on translational movement only; 

Impulsiveness; vertical and horizontal components of velocity of peripheral upper 

parts of the body; speed of the barycentre; variation of the Contraction Index; 

Space Occupation Area; Directness Index; Space Allure (inspired by the Pierre 

Schaeffer’s Morphology); Amount of Periodic Movement; and Symmetry Index. 

Such features were computed in real-time for each single user (a maximum of four 

users could experience the installation at the same time). Further features were 

also computed on the whole group of users, such as, for example, the contrac-

tion/expansion of the group. This perspective corresponds to Rudolf Laban’s Gen-

eral Space [30]. Classification was performed following a fuzzy-logic like ap-

proach. Such an approach had the advantage that it did not need a training set of 

recorded movement and it was also flexible enough to be applied to the movement 

of different kinds of users (e.g. adults, children, and elder people). Figure 4.6 

shows Mappe per Affetti Erranti experienced by a group of users and a couple of 

dancers during a dance performance. 

 

 
(a) (b) 

Fig. 4.6 Mappe per Affetti Erranti experienced by a group of users (a) and by two dancers (b). 

4.3.4   Scientific Experiments 

Besides the developments and applications involving the EyesWeb platform, the 

consolidation of the approaches to analysis of expressive gesture in music per-

formance also passed through the foundational research carried out with a collec-

tion of experiments aiming at assessing and validating models and techniques on 
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the one hand, and at investigating the mechanisms of expressive content commu-

nication in music performance on the other hand. 

For example, Castellano and colleagues [4] proposed an approach for affect 

recognition based on the dynamics of movement expressivity and validated it in 

the framework of music performance. The approach was inspired by theories from 

psychology [40] claiming that emotional expression is reflected to a greater extent 

in the timing of the expression than in absolute or average measures. By focusing 

on the dynamics of expressive motion cues, this approach addressed how motion 

qualities vary at different temporal levels. A mathematical model that allows for 

the extraction of information about the dynamics of movement expressivity was 

developed. The idea behind this model is to use information about temporal series 

of expressive movement features in a format that is suitable for feature vector-

based classifiers. The model provides features conveying information about the 

dynamics of movement expressivity, i.e. information about fluctuations and 

changes in the temporal profiles of features. Based on this model, the upper-body 

and head gestures in musicians expressing emotions were analysed. Results 

showed that features related to the timing of expressive motion features such as 

the Motion Index and velocity were more effective for the discrimination of affec-

tive states than traditional statistical features such as the mean or the maximum. 

For example, in an experiment a pianist was asked to play the same excerpt with 

different emotional expressive intentions: personal, sad, allegro, serene, and over-

expressive. The main aim was to verify whether these expressions could be distin-

guished based solely on the motor behaviour and which motion features are more 

emotion-sensitive. Analyses were done through an automatic system capable of 

detecting the temporal profile of two motion features: Motion Index of the upper 

body and velocity of the head. Results showed that these motion features were 

sensitive to emotional expression, especially the velocity of the head. Further, 

some features conveying information about their dynamics over time varied 

among expressive conditions allowing an emotional discrimination. 

Another experiment, carried out earlier in the MEGA Project, investigated the 

mechanisms responsible for the audience’s engagement in a musical performance, 

by analysing the expressive gesture of the music performer(s) [44]. The aim of this 

experiment was twofold: (i) individuating which auditory and visual features are 

mostly involved in conveying the performer’s expressive intentions, and (ii) as-

sessing the conceptual model and the techniques by comparing their performance 

to spectators’ ratings of the same musical performances. The research hypotheses 

combined hypotheses from Laban’s Theory of Effort with hypotheses stemming 

from performance research [17, 36] and from research on the intensity of emotion 

and tension in music and dance [27, 41, 42]. 

A professional concert pianist (Massimiliano Damerini) performed Etude Op.8 

No.11 by Alexandr Scriabin on a Yamaha Disklavier at a concert that was organ-

ised for the experiment’s purpose. He performed the piece first without audience 

in a normal manner and in an exaggerated manner, and then with the audience in a 

normal concert manner. Exaggerated means in this case with an increased empha-

sis in expressivity consistent with the style of performance of early 20th Century 

pianist style. The Scriabin’s Etude is a slow and lyrical piece in a late Romantic 



60 A. Camurri and G. Volpe

 

 

style that has a considerable number of modulations. The pianist performed on a 

grand coda piano (Yamaha Disklavier), which made it possible to register MIDI 

information of the performance. In addition, video was recorded from four sides 

(see Figure 4.7) and audio with microphones both near the instrument and in the 

environment. The video recordings from the left were presented to the participants 

of the experiment. The participants saw the performances on a computer screen 

and heard them over high-quality loudspeakers twice. At the first hearing, they in-

dicated the phrase boundaries in the music by pressing the button of the joystick. 

At the second hearing, they indicated to what extent they were emotionally  

engaged with the music by moving a MIDI-slider up and down. 

 

  

  

Fig. 4.7 The frontal, left, right, and top view of a pianist playing a Scriabin’s Etude. Analysis 

of expressive gesture from such videos was correlated with audience engagement measures. 

The analyses of the performance data suggested an opposite relation between 

emotional intensity and the performer’s posture. The pianist leaned forward for 

softer passages and backward for intensive passages. In addition it suggested a dif-

ferentiation in expressive means with tempo on one side and key-velocity and 

movement velocity on the other. When relating the performers data to the listen-

ers’ data, this differentiation in expressive means was confirmed. Tempo commu-

nicates phrase boundaries, while dynamics are highly predictive for the intensity 

of felt emotion. Hardly any evidence was found for movement features to influ-

ence listeners’ ratings. The sound seemed the primary focus of the participants and 

vision only subsidiary. The local phrase-boundaries indicated by tempo did not 

lead to release of emotional intensity. The modulation of dynamics over a larger 
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time-span communicates the overall form of the piece and, at that level, intensity 

did increase and decrease within phrases. 

4.4   A Shift of Paradigm and Novel Research Challenges 

Besides the work presented here, the importance of analysis of expressive gesture 

for the scientific community has grown in recent years and several systems were 

developed able to classify expressive qualities of gesture (see for example [1, 25]). 

Most of such systems, however, classify gestures according to basic emotion cate-

gories (e.g. the basic emotions) or simple dimensional approaches (e.g. the  

valence-arousal space), whereas the subtlest and more significant emotional ex-

pressions, such as empathy and emotional engagement, are still neglected. The last 

experiment discussed above goes in this direction: towards the analysis of the 

emotional engagement of an audience.  

Moreover, almost all of the existing systems are intended for a single user, 

whereas social interaction is neglected. Nevertheless, social interaction still is one 

of the most important factors in music performance (e.g. interaction between per-

formers, between performers and conductor, between performers and audience). 

Research on social interaction is thus a very promising direction. Current research, 

however, does not focus on the high-level emotional aspects, but rather on group 

cohesion and decision-making. In this framework, pioneering studies by Pentland 

[37] developed techniques to measure social signals in scenarios like salary nego-

tiation and friendship. Particular attention was also directed to the recognition of 

functional roles (e.g. the most dominant people) played during small-group meet-

ings [21]. These works are often based on laboratory experiments and do not ad-

dress the subtlest aspects such as empathy. Empathy, in fact, has been studied 

mainly in the framework of synthesis of (verbal) dialogues by virtual characters 

and embodied conversational agents (e.g. [20, 35]). Recently, the EU-ICT project 

SAME (www.sameproject.eu) developed techniques for social active listening to 

music by mobile devices, i.e. for allowing a group of users to mould collabora-

tively a pre-recorded music piece they are listening to. 

Music performance, indeed, is an ideal test-bed for the development of models 

and techniques for measuring creative social interaction in an ecologically valid 

framework. Music is widely regarded as the medium of emotional expression par 

excellence. Moreover, ensemble performance is one of the most closely synchro-

nised activities human beings engage in: it is believed that this ability from indi-

viduals and groups to entrain to music is unique only to humans and that, unlike 

speech, musical performance is one of the few expressive activities allowing  

simultaneous participation.  

According to such novel research challenges, during the last three years  

research at Casa Paganini - InfoMus focused on the analysis of famous string 

quartets and on duos of violin players. The ensembles Cuarteto Casal, Quartetto di 

Cremona, and Quartetto Prometeo have been involved initially in feasibility stud-

ies (e.g. to study and understand which multimodal features can explain their  

expressive social behaviour) and in experiments in occasion of their concerts at  

the Opera House of Genova. In addition, in collaboration with Ben Knapp  
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(SARC, Queen’s University, Belfast) and Carol Krumhansl measurements were 

carried out on duos of violinists participating in the International Violin Competi-

tion Premio Paganini in 2006, in the framework of the EU Summer School of the 

HUMAINE Network of Excellence. More recently, again in collaboration with the 

SARC colleagues, multimodal synchronised recordings of the Quartetto di  

Cremona were performed. Figure 4.8 shows snapshots from the experiments. 

 

  
(a) (b) 

Fig. 4.8 Experiments on joint music performance: (a) music duo performance in which the 

two musicians can communicate, also exchanging visual information, (b) the Quartetto di 

Cremona during the experiment. Each musician wears a white hat including a green passive 

marker and a 3-axis accelerometer, plus a 3-axis accelerometer on the back, and physio-

logical sensors. 

Using approaches based on Recurrence Quantification Analysis (RQA) and 

analysis of Phase Synchronisation (PS) [33, 50], several results emerged: for ex-

ample, in the case of a music duo performance, it was possible to evaluate how the 

visual and acoustic channels affect the exchange of expressive information during 

the performance and how positive emotion can affect the emergence of synchroni-

sation [45]. Moreover, foundations for a criterion to distinguish between parallel 

and reactive empathic outcomes were defined. Measures of the direction of PS 

confirmed the hypothesis on egalitarian distribution of dominance in a duo per-

formance.  

Preliminary results from the analysis of string quartets highlighted how the in-

duction of a positive emotion in one of the musicians of the group resulted in an 

increased synchronisation among musicians (in terms of heads movement), with 

respect to the no emotion induction condition. In the same experiment, the SARC 

colleagues found high physiological synchronisation with the structural changes in 

the music. Moreover, measures relating to performer mistakes, and the perceived 

difficulty of the music were found, which also strongly affect both intra- and inter-

personal synchronisation. 

A real-time implementation of these techniques resulted in the EyesWeb XMI 

Social Signal Processing Library [46], which was employed to develop applica-

tions for social active music listening experiences. For example, the Sync’n’Move 

application prototype, based on EyesWeb XMI and its extensions to Nokia S60 

mobile phones, enables users to experience novel forms of social interaction based 

on music and gesture [47]. Users move rhythmically (e.g. dance) while wearing 
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their mobiles. Their PS is extracted from their gesture (e.g. using the accelerome-

ter data from the mobiles) and used to modify in real-time the performance of a 

pre-recorded music. More specifically, every time users are successful in synchro-

nising among themselves, music orchestration and rendering is enhanced; while in 

cases of low synchronisation, i.e. poor collaborative interaction, the music gradu-

ally corrupts, looses sections and rendering features, until it becomes a very poor 

audio signal. 

The research challenges related to the analysis of subtle expressive qualities in 

a social dimension, such as, for example, empathy, are the focus of a project: the 

EU-ICT-FET Project SIEMPRE (Social Interaction and Entrainment using Music 

PeRformance Experimentation), started on May 2010. We believe that research on 

such topics will bring on the one hand new significant insights on the emotional 

mechanisms underlying expressive music performance and, on the other hand, will 

enable a novel generation of applications, exploiting the social impact of music 

performance in a broad range of application scenarios: entertainment, edutain-

ment, museum and cultural applications, therapy and rehabilitation, learning,  

social inclusion (young people, elderly). 
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Chapter 5 

Input Devices and Music Interaction  

Joseph Malloch, Stephen Sinclair, Avrum Hollinger, and Marcelo M. Wanderley* 

Abstract. This chapter discusses some principles of digital musical instrument 

design in the context of different goals and constraints.  It shows, through several 

examples, that a variety of conditions can motivate design choices for sensor 

interface and mapping, such as robustness and reliability, environmental constraints 

on sensor technology, or the desire for haptic feedback.  Details of specific hardware 

and software choices for some DMI designs are discussed in this context. 

5.1   What Is a DMI? 

Simply stated, a digital musical instrument (DMI) is tool or system for making 

music in which sound is synthesized digitally using a computer and the human 

interface is formed using some type of sensor technology. Whether the computer is 

physically embedded in the interface or a stand-alone general-purpose PC, a 

defining characteristic of DMIs is that the user interface and the sound production 

mechanism are conceptually (and often physically) separate; control and sound 

synthesis parameters must be artificially associated by mapping [25]. The 

synthesized sound is available to be experienced by an audience, but it also forms a 

channel of feedback for the performer/interactor. Visual displays (not discussed in 

this chapter) may also be used to provide additional feedback channels for the 

performer/interactor. Vibration or force actuators can be used to provide haptic 

feedback similar to the intrinsic vibrations produced by acoustic instruments, or 

expanded feedback which an acoustic system could not produce. The combination 

of audio and haptic feedback can even allow natural, nuanced interaction with 

virtual models of acoustic systems. 

There are a great many motivations for creating DMIs, but here we will focus 

on three main areas: DMIs for musical performance, DMIs for studying music 

cognition in special environments, and DMIs comprising haptic interfaces and 
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virtual models of acoustic systems. Some case studies from the Input Device and 

Music Interaction Laboratory (IDMIL) at McGill University are provided as 

examples. 

5.2   DMIs for Musical Performance 

Digital Musical Instruments allow us to perform music using sounds and types of 

musical control impossible with acoustic instruments, as well as enabling 

individuals who may not be able to use traditional instruments due to physical or 

mental handicaps to engage in live music-making. As can be seen from the 

interfaces presented at new music conferences every year, many different ideas 

and perspectives can form the inspiration for a new DMI. For example: 
 

• A specific posture, gesture, or series of gestures.  

• An activity, such as dance, or playing chess.  

• A type of sensing.  

• An object or collection of objects.  

• A particular musical composition.  

• An algorithm.  

• A question or problem.  
 

Any of these inspirations could result in an interesting and successful musical 

interface, but there are a number of issues which should be considered when 

conceiving and developing a new interface for making music. We will discuss a 

few of them below. 

5.2.1   Immersion vs. Physical Embodiment 

Fitzmaurice, Ishii and Buxton define a design space for “graspable user interfaces” 

[11] and articulate advantages of tangible interfaces over traditional WIMP 

interfaces
1
: graspable interfaces encourage bimanual interaction, and typically 

allow parallel input by the user; they leverage well-developed prehensile 

manipulation skills, and allow a variety of ways to perform the same task; and 

finally they supply “tactile confirmation” and “interaction residue.” 

Although these points are aimed at the general human-computer interaction 

(HCI) tangible user interface (TUI) community, they are completely relevant for 

the design of digital musical instruments. It is interesting that the NIME (New 

Interfaces for Musical Expression) community would think many of the points 

completely self-evident, since this community has followed a decidedly different 

path to the conceptualization and development of manipulable interfaces. There 

have been several classic (i.e. “objects on a table”) TUI projects in music (Musical 

Trinkets [30], the Reactable [17]) but for the most part the musical interface 

design problem has been approached from the perspective of augmenting or  
 

                                                           
1 Windows, Icons, Mouse, Pointer—referring to the standard graphical operating system desktop 

on personal computers. 
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Fig. 5.1 Model visualization based on Rasmussen’s typology of human information 

processing [21]. From left to right, the systems represented are less and less tolerant of 

interruption of the channels of control. 

 
emulating existing acoustic instruments, which obviously are already tangible, 

physically-embodied, single-purpose artifacts. In fact, much of the seminal work 

in DMI conceptualization and design has focused on reducing the traditional 

identification of interface as “object,” with Theremins, gloves, body sensors, etc., 

believing that one can “relieve the performer of the tedium of manipulation” [34]. 

Rovan and Hayward, among others, advocated using haptic feedback to bring 

back the tactile experience of playing an acoustic, vibrating musical instrument 

[34] while performing open-air gestures. This helps, but the user is still deprived 

of all the other TUI gains mentioned above, such as the leveraging of prehensile 

skill, embodiment of I/O, and “visual interaction residue.” The use of haptic 

interfaces for tangible interaction with virtual musical instruments is discussed in 

section 5.3.3. 

5.2.2   Mapping and Metaphor 

One issue faced by both designer and performer of gestural controllers is that 

connections between gesture and sound must be designed, since in the DMI idiom 

these relationships do not emerge from inherent properties of the building 

materials and playing technique [35]. While this allows unprecedented flexibility 

in terms of musical instrument design, the task of designing an instrument that will 

please performers and audiences can be somewhat daunting. Wessel and Wright 

proposed using explicitly chosen metaphors as a method for organizing and 

guiding interaction with computer-based instruments [39]. Metaphors discussed 

include different spatial pitch-arrangements, “timbre space,” “drag and drop,” 

“scrubbing,” “dipping,” and “catch and throw.” The authors make the important 

point that metaphors like these determine how we perceive and interact with the 

world around us and naturally should be considered carefully when designing new 

systems for control. 

This approach can be seen as parallel to the embedding of physical behaviour 

into audio and visual systems in virtual reality or games. There are not actually 
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physical laws at work inside the simulation, but modeling behaviour familiar to 

the user from their experience in the “real world” is logical and provides a basic 

level of environmental knowledge that the user can leverage to explore the system. 

5.2.3   Musical Control 

There is a huge variety of situations and interactions which might be termed 

“Musical Performance,” ranging from classical “virtuosic” performance on 

acoustic musical instruments to turntablism, mixing or live diffusion, to live 

coding of musical processes and sound synthesis. It is obvious that these different 

musical interactions present very different needs in terms of interface design, so 

we have found it essential to differentiate between the intentions of the creator, 

performer, and audience in order to establish contexts for discussing, designing, or 

evaluating DMIs.  

In particular we use a paradigm of interaction and musical context based on 

Rasmussen’s model of human information processing [33], previously used to aid 

DMI design in [8]. In Rasmussen’s model, interaction behaviours are described as 

being skill-, rule-, or model-based. Skill-based behaviour is defined as a real-time, 

continuous response to a continuous signal, whereas rule-based behaviour consists 

of the selection and execution of stored procedures in response to cues extracted 

from the system. Model-based behaviour refers to a level yet more abstract, in 

which performance is directed towards a conceptual goal, and active reasoning 

must be used before an appropriate action (rule or skill-based) is taken. Each of 

these modes is linked to a category of human information processing, 

distinguished by their human interpretation; that is to say, during various modes of 

behaviour, environmental conditions are perceived as playing distinct roles, which 

can be categorized as signals, signs, and symbols. 

Figure 5.1 shows a visualization we have developed for comparing and 

discussing musical devices based on Rasmussen’s framework [21]. Performance 

behaviours are represented on the top row, and performance contexts on the 

bottom row. Since these contexts and behaviours may be blurred or mixed, we 

have also included “interruption tolerance” as a horizontal axis, meaning the 

tolerance of the system to interruption of the channels of control between user and 

machine. For example, if the performer stops “playing” and leaves to get coffee, 

will the system be affected immediately, after some length of time, or not at all?
2
 

Skill-based behaviour is identified by [7] as the mode most descriptive of 

musical interaction, in that it is typified by rapid, coordinated movements in 

response to continuous signals. Rasmussen’s own definition and usage is 

somewhat broader, noting that in many situations a person depends on the 

experience of previous attempts rather than real-time signal input, and that human 

behaviour is very seldom restricted to the skill-based category. Usually an activity 

mixes rule and skill-based behaviour, and performance thus becomes a sequence 

of automated (skill-based) sensorimotor patterns. Instruments that belong to this 

                                                           
2 This idea has also been represented as “granularity of control” and later as “balance of power 

in performance” [29]; we feel that “interruption tolerance” is less subject to value-

judgements and conflicting interpretations. 
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mode of interaction have been compared more closely in several ways. The 

“entry-fee” of the device [39], allowance of continuous excitation of sound after 

an onset [20], and the number of musical parameters available for expressive 

nuance [9] may all be considered. 

During rule-based performance the musician’s attention is focused on 

controlling a process rather than a signal, responding to extracted cues and internal 

or external instructions. Behaviours that are considered to be rule-based are 

typified by the control of higher-level processes and by situations in which the 

performer acts by selecting and ordering previously determined procedures, such 

as live sequencing, or using “dipping” or “drag and drop” metaphors [39]. 

Rasmussen describes rule-based behaviour as goal-oriented, but observes that the 

performer may not be explicitly aware of the goal. Similar to the skill-based 

domain, interactions and interfaces in the rule-based area can be further 

distinguished by the rate at which a performer can effect change and by the 

number of task parameters available as control variables. 

The model domain occupies the left side of the visualization, where the amount 

of control available to the performer (and its rate) is determined to be low. It 

differs from the rule-based domain in its reliance on an internal representation of 

the task, thus making it not only goal-oriented but goal-controlled. Rather than 

performing with selections among previously stored routines, a musician 

exhibiting model-based behaviour possesses only goals and a conceptual model of 

how to proceed. She must rationally formulate a useful plan to reach that goal, 

using active problem-solving to determine an effectual course of action. This 

approach is thus often used in unfamiliar situations, when a repertoire of rule-

based responses does not already exist. 

By considering their relationship with the types of information described by 

Rasmussen, performance context can also be distributed among the interaction 

domains. The signal domain relates to most traditional instrumental performance, 

whether improvised or pre-composed, since its output is used at the signal-level 

for performance feedback. The sign domain relates to sequenced music, in which 

pre-recorded or pre-determined sections are selected and ordered. Lastly, the 

symbol domain relates to conceptual music, which is not characterized by its 

literal presentation but rather the musical context in which it is experienced. In this 

case, problem solving and planning are required; for example, conceptual scores 

may lack specific “micro-level” musical instructions but instead consist of a series 

of broader directives or concepts to be actively interpreted by the performer [6]. 

5.2.4   From the Lab to the Stage: Context, Repertoire, and 

Pedagogy 

A major issue in the use of new instruments is the lack of cultural context 

surrounding the instrument, since there is no pre-existing repertoire or 

performance practice. Distribution of audio and video recordings can help expose 

potential audiences to the new interface, but it traditionally takes decades or even 

centuries for a musical instrument to accumulate cultural baggage. 
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If the DMI is to be used in the context of performer-centric/weighted music 

(rather than interface-centric music such as glitch), the resilience of the interface 

under the demands of countless hours of practice and rehearsal must be 

considered. Interaction metaphors cultivated by the instrument-designer—or 

emergent metaphors based on the behaviour of the working system—may be 

detrimentally affected by breakage, or repair downtime, especially if the 

continuity of the metaphor depends on active feedback. For the performer to 

achieve maximal rapport with the DMI it needs to be very robust, since we want 

the performer to concentrate on gesture and sound rather than sensors and 

computers; “musical performance” rather than “laboratory experiment” [23]. The 

history of the development of the Continuum Fingerboard provides an interesting 

example of this search for robustness [13, 25]. 

A perennial temptation when writing pre-composed music for new DMIs is to 

notate the gestures required rather than the musical result desired. This seems to 

stem from two sources: the fact that new users/performers of the instrument will 

likely not know how to produce a notated sound or musical process, and the 

distraction of using new technology. We advocate using traditional notation 

whenever possible, however, as it allows vital room for performer interpretation, 

as well as avoiding overloading the performer with instructions. Adequate training 

and practice time will allow the performer to interpret the composer’s intentions 

correctly, aided by instructional material (documentation, video, audio) included 

with the score. 

5.3   Case Studies 

Following the above general remarks, the rest of this chapter will be devoted to 

providing some examples of digital musical instrument research and development 

carried out by the authors. 

5.3.1   Case Study: The T-Stick 

The T-Sticks are a family of digital musical instruments being developed in the 

IDMIL, in collaboration with performers and composers as part of the McGill 

Digital Orchestra Project [31]. Nearly twenty T-Stick prototypes have been 

completed, in tenor, alto, and soprano versions, allowing collaboration with 

multiple performers and composers, and use of the instrument in ensemble 

performances. The T-Stick project has several main motivations: 
 

• The T-Sticks are intended to form a family analogous to the orchestral 

string instruments, in which the basic construction, user interface, and 

interaction design are the same, but each subclass of T-Stick differs from 

its siblings in size, weight, and register. Seeing and hearing multiple T-

Sticks in ensemble works will help “parallelize” the task of providing 

context to the audience.  

 

 



5   Input Devices and Music Interaction 73

 

 

 
 
Fig. 5.2 Percussionist Fernando Rocha investigating the first prototype of the T-Stick, 

before the protective outer covering has been applied. 

 
• The physical interface should be robust enough that it could be practiced 

and performed on for hours every day without breaking or crashing. It is 

vital that the performers feel that they can work intensively with the 

interface without fear of breaking it.  

• The DMI should be comparable in simplicity to an electric guitar in terms 

of set-up time and electronic knowledge required. By doing this, the 

performer will hopefully think of their DMI as they would a traditional 

musical instrument, rather than as a “lab experiment.”  

• Excitation of sound should require physical energy expenditure by the 

performer.  

• Sensing and mapping of the performers gestures should be done in an 

integral, interrelated way such that any manipulation of the physical 

interface will affect the sound in an intuitive way (as excitation, 

modification, or selection [2]). Novice interaction should be guided by 

these relationships, as well as the appearance, feel, and weight of the 

interface, so that the performer can quickly construct a mental model of 

the control system.  

• The DMI should be designed for the use of expert users, rather than 

novices. To this end, more emphasis should be put on extending any 

“ceiling on virtuosity” than on lowering the “entry-fee” [39]. New users 
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should be able to produce sound from the DMI, but not necessarily what 

they would judge to be musical sound. In the context of the framework 

mentioned above, the DMI should fit into the skill/signal category, 

exhibit low interruption tolerance, low latency, and maximize the transfer 

of information (including sensor information) as signals rather than signs, 

events, or triggers.  

• The design of the system should aim to keep the performer’s focus on the 

sound and its relation to the entire physical object, rather than individual 

sensors. Technological concerns should be subsumed under performance 

or musical concerns (or appear to be such to the performer). As discussed 

by Rasmussen, the ability to focus on the task rather than the interface 

may improve with practice. 

5.3.1.1   Hardware 

The T-Stick is constructed using cylindrical plastic pipe as a structural base, with 

all sensors and electronics hidden inside. Its appearance to the performer is a 

simple cylinder, 60 to 120 cm long depending on the family member, and 5 cm in 

diameter. Some models require a USB cable for power and data communication to 

be plugged in to one end of the cylinder; others are wireless. 

An effort was made to sense all of the affordances of the interface. The entire 

length of the tube is equipped with capacitive multitouch sensing, allowing the 

interface to sense where and how much of its surface is being touched over time. 

A long force-sensing resistor (FSR) or custom paper force sensor [18] is 

positioned along one side of the tube and covered with thin compressible foam to 

suggest a squeezing affordance and provide proprioceptive feedback for an 

essentially isometric force sensor. Three-axis accelerometers are used to sense 

tilting, rolling, swinging and shaking; a piezoelectric contact microphone is 

bonded to the inside of the tube to sense deformation due to tapping, hitting, or 

twisting. A third revision of the hardware produced the “SpaT-Stick,” which 

includes a 3-axis magnetometer for direction sensing and was used to control 

sound spatialization in live performance. 

5.3.1.2   Mapping and Synthesis 

Mapping for the T-Stick was developed using the Digital Orchestra Tools (DOT), 

a communication protocol and suite of software tools for plug-and-play gesture 

signal processing and connection negotiation [22]. The parameter-space exposed 

for mapping is structured according to the gesture description interchange format 

(GDIF) proposal [16]; raw and preprocessed versions of the sensor data are 

included alongside extracted higher-level parameters corresponding to postures 

and gestures. 

Several software tools have been used to synthesize the voice of the T-Stick 

over the years, including granular and physical modeling techniques implemented 

in Cycling 74’s Max/MSP and the Sculpture synthesizer from Apple’s Logic Pro. 
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5.3.1.3   Performance Technique 

Based on the typology of musical gesture proposed in Cadoz and Wanderley [5], 

the various performance techniques used for the T-Stick can be broken down as 

follows: 
 

• excitation gestures: tapping, brushing, jabbing, swinging, and twisting  

• damping gestures: touching and holding, sometimes in a specific area 

(depending on mapping version)  

• modification gestures: tilting, rolling, touch location, surface coverage  

• selection gestures: choosing which pressure pad to activate  

• biasing gestures: specific grips, for example cradling the instrument with 

one arm.  

5.3.1.4   Repertoire and Performances 

Through its use in interdisciplinary university seminars and the three-year-long 

McGill Digital Orchestra Project [31], the T-Stick has already achieved rare 

progress in the transformation from technology demonstration to “real” 

instrument, with its own associated pedagogy and composed repertoire. To date, 

the T-Stick has been performed in concerts and demonstrations in Canada, Brazil, 

Portugal, Italy, and the USA. In total, six performers are preparing to perform or 

have already performed using the T-Stick, and three composers have now used the 

DMI in six written works, including a trio for two T-Sticks and another DMI and a 

piece for two T-Sticks with chamber ensemble. As a testament to the success of 

the design goals (specifically robustness and technical simplicity), several partner 

institutions are also using the T-Stick for artistic and research projects, including 

Casa da Música in Portugal, Universidade Federal de Minas Gerais in Brazil, and 

Aalborg University in Denmark. 

5.3.2   Case Study: An MRI-Compatible Musical Instrument 

Music performance involves coordinating motor activity while integrating auditory, 

visual, haptic, and proprioceptive feedback; the underlying neuropsychological 

mechanisms for this complex task are still poorly understood. Studies that 

investigate the neural activity of musicians and non-musicians as they perform 

musical tasks, such as audition and pitch discrimination or performance and motor 

learning, help neuroscientists better understand the function of specific brain areas 

and their connectivity. A prominent technique available to neuroscientists is 

functional magnetic resonance imaging (fMRI), which provides 3D images of the 

brain, enabling the correlation of action and thought with localized neural activity. 

Brain scans need to be correlated with measured behavioural changes if one is to link, 

for instance, motor learning and activation of specific neural centres. 
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Fig. 5.3 Initial interface prototype for the Ballagumi (left), showing optical sensor grid 

(right). 

 
The behavioural data or performance metrics of a musical task need to be 

electronically synchronized with the image acquisition for off-line analysis and 

real-time feedback, be it auditory or visual—thus the need for a DMI. The intense 

magnetic and radio-frequency (RF) fields generated by the scanner can adversely 

affect electronic devices, and conversely, electronic devices can interfere with 

image acquisition. In order to overcome these issues posed by ferromagnetic 

materials and current-carrying conductors, care must be taken to ensure MRI 

compatibility and special sensing methods are employed. 

As part of an ongoing collaborative research project at the IDMIL, CIRMMT, 

BRAMS, and the MNI
3
, several electronic MRI-compatible musical controllers 

were commissioned. These consisted of a piano keyboard [14], a cello-like 

interface (currently under development), and a novel flexible interface called the 

Ballagumi. 

5.3.2.1   The Ballagumi: A Flexible Interface 

The Ballagumi [15] consists of a flexible physical interface cast in silicone with 

embedded fibre optic flexion and pressure sensors and a self-contained hardware 

platform for signal acquisition, mapping, and synthesis. Its design was approached 

with a firm set of constraints and goals: 
 

• The instrument should be composed of a physical interface generating 

analogue signals with the purpose of controlling a physical modeling 

synthesizer.  

• The interface should be sensed in a holistic fashion encouraging a 

complex mapping with nuanced control of acoustic properties.  

• The instrument should be self-contained and not require an external 

computer for mapping and audio synthesis.  

• The physical interface should be compatible with magnetic resonance 

imaging (MRI) scanners in order for it to be used in neuroimaging studies. 

                                                           
3
 IDMIL: Input Devices and Music Interaction Laboratory, CIRMMT: Centre for 

Interdisciplinary Research in Music Media and Technology, BRAMS: International 

Laboratory for Brain, Music and Sound Research, MNI: Montreal Neurological Institute. 
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The novelty of this instrument for MRI studies is quite exciting as the subject 

has no preconceived notions of how to interact with the Ballagumi nor the 

auditory feedback presented, thus providing a totally unique opportunity to study 

motor learning of musical tasks.  

The Ballagumi was to have nuanced control of timbre, pitch, and amplitude, 

and to that end many sensors are used to collect information about the deformation 

of the instrument as a whole. Optical fibres are used to sense flexion and pressure 

and are distributed throughout the Ballagumi. While redundant sensing leads to 

coupled sensor responses, the coupling of acoustic properties of the sound is 

inherently coupled within the dynamical system, making the mapping section an 

equally important part of the equation. In order to draw users to the instrument, an 

organic form and a viscerally exciting material was necessary. While the winged 

bat or ray-like form is an idiosyncratic design, it provides the performer with 

affordances for striking, pushing, pulling, plucking, twisting, and stretching 

gestures. It is meant to sit on the lap to enable bi-manual control and allows the 

legs to provide support and leverage for manual manipulation. The silicone rubber 

material, as noted by Morris et al. [26], provides an engaging and continuous 

sensation of haptic feedback owing to its viscoelastic properties.  

5.3.2.2   Mapping and Synthesis 

Although a few different synthesis algorithms have been implemented, mapping 

strategies are still under development. A mapping system was designed to enable 

rapid prototyping of different mappings. The mapping structure takes sensor data 

from an on-board PSoC and ARM’s on-chip ADC, performs signal conditioning 

(ambient light compensation and signal difference operations), cubic scaling (for 

linearization or otherwise) for each signal independently, and from there synthesis 

parameters are computed as a linear combination of cooked data. 

For development purposes, the ARM can communicate with a PC over USB to 

query the namespace of the mapping sources (interface control signals) and 

destinations (synthesis parameters) using a command-line interface. Other 

commands allow the user to set scaling and mapping values as well as check 

sensor input values, assert calibration mode and save a mapping to memory. 

Three physical modeling synthesizers were implemented: a single neuron 

FitzHugh-Nagumo (FHN) model, a two-dimensional grid of FHN neurons 

connected with a Laplacian diffusion model, and the Ishizaka-Flanagan (IF) vocal 

fold model [15]. All of these models were first tested in Matlab, then Max/MSP 

externals were created. Finally, the C-code was implemented on the ARM 

microcontroller. While static parameters have been tested, and have yielded 

interesting results—especially in the case of the IF model—dynamically-

controlled mappings have yet to be explored fully. As a many-to-many mapping is 

likely required, some implicit mapping using computational neural networks are in 

progress, as is a PC-side communication layer for using the device with the 

IDMIL’s graphical mapping tools. 
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5.3.3   Case Study: Haptic Interaction with Virtual Models 

5.3.3.1   Virtual Musical Instruments 

A mapping concept that is sometimes used for digital musical instruments is the 

virtual musical instrument. Mulder [28] proposed that there may be advantages to 

using a representation of an object in virtual space for interaction with an input 

device, whose dynamic properties can in turn be used for control of sound. 

This concept brings to mind classical ideas of immersive virtual reality, in which 

the input device is not used to directly modulate input signals to a synthesis system, 

but is rather used for interaction with an environment. Sound synthesis is then 

generated based on this environment. In short, the design of virtual instruments can 

be seen as the design of digital musical instruments constructed in a virtual space 

and subject to the possibilities afforded by computer modeling. It is even possible, 

for example, to swap input devices entirely, keeping the virtual instrument constant. 

Since the virtual instrument may have a number of degrees of freedom that are 

more or less than the input device used to interact with it, the VMI can be seen as an 

M-to-N mapping layer. If the VMI implements physical dynamics, this mapping 

layer may even be time-variant, non-linear, and potentially quite complex. The 

ability for a musician to deal with a virtual instrument will be dependent on the input 

device used to interact with it and the demands the particular choice of VMI 

behaviour impose. On the other hand, the idea of representing mapping as an 

“object” can provide a player with a palpable metaphor which may help to 

understand and internalize otherwise abstract relationships (Fig. 5.4) [28]. 

 

 

Fig. 5.4 Abstract functional gesture-sound mapping (left) vs. mapping based on a virtual 

instrument layer (right). 

The concept of object in virtual instruments naturally brings forward an idea of 

tangibility. One wants to reach out and touch these virtual objects which are only 

manipulable through the restricted channels of the given input device. One can 

conceptually “push” on an object using a force sensor, for example, but not feel its 

inertia. A way of realising a more intimate and immediate connection with virtual 

objects is to add haptic feedback. 

Haptic technology, meaning the sense of touch, provides a means to synthesize 

vibrations and real forces by using actuators, such as DC motors, in response to 

human input. Using a high speed digital feedback loop that implements a 

simulation, it is possible to create the impression of walls, textures, and other 

effects. See for example [19] for a summary of such techniques. 

5.3.3.2   Physical Models 

The virtual musical instrument as described by Mulder was a geometric shape 

parameterized by signals generated at an input device [27]. However, just as Cook 
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pointed out that any physical object can be used as the basis for musical 

instrument design [10], so too can any virtual object modeled on the computer. A 

more or less obvious candidate is the physical model. 

In a physical model, a numerical simulation of a physical system is integrated 

through time. Physical models are exploited readily in computer graphics, for 

example, to create convincing visual effects, but it is also possible to use them for 

controlling or generating sound and haptic feedback. In fact, Cadoz proposed that 

modeling physical principles is the only way to maintain a coherent energetic 

relationship during simulated instrumental interaction [3]. 

Acoustic models can be simulated using techniques such as mass-spring 

interaction [4], modal synthesis [1, 12] or the digital waveguide [37], allowing for 

realistic sound and haptic feedback. However, for control over arbitrary synthesis 

parameters—that is, to use physics as a general-purpose mapping layer—we have 

found it interesting to make use of rigid body simulation. 

5.3.3.3   Rigid Body Virtual Instruments 

Rigid bodies can be a useful tool for modeling collections of solid objects. They 

are often used in video games, for example, to create stacks of boxes or brick 

walls which can be destroyed. A typical rigid body simulator allows a variety of 

geometric shapes or possibly arbitrary shapes based on triangle meshes, and can 

model hard constraints between them. Hard constraints allow stable stacking 

behaviour, modeling of various joint types, and contact handling that avoids inter-

penetration [40]. 

 

 

Fig. 5.5 A user interacting through a haptic device with a set of mutually constrained 

shapes in DIMPLE. Each object controls a frequency modulation synthesizer. The user is 

manipulating a Phantom Desktop haptic device from SensAble Technologies. 
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Using such a simulator, one can construct mechanical systems composed of 

rigid bodies that can be manipulated by an input device or a haptic interface. One 

can picture this process as designing a machine out of solid parts based on hinges, 

axles, and levers. Movement of the bodies and their intercollisions can then be 

used as continuous or event-based control signals for sound synthesis. 

We have designed a software system, called DIMPLE
4
 based on this idea which 

can be used to construct real-time virtual mechanisms to be probed with a haptic 

device, and communicates with several popular audio synthesis software packages 

[36]. 

Since haptics has different timing requirements than audio, it is typical in 

software systems to have a concurrent operating system thread or process called 

the servo loop which runs with high priority and whose sole responsibility is to 

calculate feedback forces and handle communication with the haptic device. The 

idea behind DIMPLE was to provide this loop as a real-time programmable rigid 

body engine. Objects and their properties can be created and accessed entirely 

using the Open Sound Control communication protocol [41], which is accessible 

to many popular audio programming environments. 

To date DIMPLE has been used with Pure Data [32], Max/MSP (Cycling ’74), 

SuperCollider [24], and ChucK [38]. Initially, it presents a window containing an 

empty background and a small 3D sphere representing the position of the haptic 

device handle. This object is called the cursor, or sometimes the proxy object. The 

user program sends messages to the DIMPLE process instructing it to instantiate 

shapes and constraints. 

These shape objects are immediately “touchable” by the haptic device, and 

respond to forces. This then provides some tools necessary for building 

mechanical contraptions that have a desired interactive behaviour. The audio 

environment can then send requests to DIMPLE for a given object property, such 

as position, velocity, applied forces and torques, or collisions, and use this data as 

control for synthesis parameters. 

5.4   Conclusions 

We have presented some motivations and design principles of digital musical 

instruments, and provided examples under various configurations of design 

constraints. Firstly, to explore the possibility of using sensor technology to fully 

capture the affordances of an object; secondly, to deal with the difficulties of strict 

design constraints in uncooperative environments; thirdly, to use actuated 

interfaces to manifest physical interaction with virtual objects. 

A topic that has not been fully covered here is the complexity of choices in 

mapping. As mentioned, for DMIs it is necessary to explicitly provide the 

connection to sound, and there are a myriad of ways to accomplish this goal. 

There may be no “best” answer to this problem for any particular situation, but 

ongoing research attempts to solidify some principles for mapping based on what 

                                                           
4 The Dynamically Interactive Musically PhysicaL Environment, available at 
  http://idmil.org/software/dimple 
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we know about human interaction, design, ergonomics, and, of course, the needs 

of musical composition and aesthetics. We encourage the interested reader to 

follow up the references presented in this chapter to get a more complete overview 

of these topics. 

Thanks to the Natural Sciences and Engineering Research Council of Canada 

and the Canadian Foundation for Innovation for funding of this work. 
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Chapter 6 

Capturing Bowing Gesture: Interpreting 
Individual Technique 

Diana S. Young* 

Abstract. Virtuosic bowed string performance in many ways exemplifies the in-

credible potential of human physical performance and expression. Today, a great 

deal is known about the physics of the violin family and those factors responsible 

for its sound capabilities. However, there remains much to be discovered about the 

intricacies of how players control these instruments in order to achieve their char-

acteristic range and nuance of sound. Today, technology offers the ability to study 

this player control under realistic, unimpeded playing conditions to lead to greater 

understanding of these performance skills. Presented here is a new methodology 

for investigation of bowed string performance that uses a playable hardware 

measurement system to capture the gestures of right hand violin bowing tech-

nique. This measurement system (which uses inertial, force, and electric field po-

sition sensors) was optimized to be small, lightweight, and portable and was in-

stalled on a carbon fiber violin bow and an electric violin to enable study of 

realistic, unencumbered violin performances. The application of this measurement 

system to the study of standard bowing techniques, including détaché, martelé, 

and spiccato, and to the study of individual players themselves, is discussed. 

6.1   Violin Performance 

One of the primary reasons that the violin is such a difficult instrument to master 

is that the playing techniques required of the left hand and the right hand are very 

different from each other (unlike other instruments, such as the piano, that are 

played with similar left and right hand techniques). The left hand of a violinist not 

only controls pitch (by stopping the string against the surface of the violin finger-

board, effectively shortening the string length), but also can control changes in 
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timbre by means of vibrato (small alterations in pitch). Good right hand technique 

requires an accomplished violinist to be proficient in a vast number of bowing  

methods (such as détaché, martelé, and spiccato) in order to obtain the range of 

expression demanded in standard repertoire [3, 12, 13]. 

Despite the formidable obstacles imposed by the difficult playing interface of the 

violin, many musicians still devote themselves to its pursuit, committing years to ob-

tain decent sound and decades to achieve mastery. As reward for this dedication, the 

violin offers tremendous range of tone color and expressive powers that are unsur-

passed. But violin playing technique is not just difficult to learn, it is also quite  

difficult to articulate for many despite important pedagogical work in documenting 

playing exercises, as well as postures, and physical instructions designed to improve 

many different techniques (e.g., [2, 10]). Of course, the difficulties of bowing tech-

nique find some explanation in the physics that govern the violin bow and strings 

(discussed in detail in [6]). This bow-string interaction is discussed below. 

6.2   The Bowed String 

The characteristic sound of a bowed string instrument is due to the phenomenon of 

Helmholtz motion, depicted in Figure 6.1. When Helmholtz motion is achieved by 

a player, the string forms a corner that travels in a parabolic path back and forth 

between the bridge and nut of the violin. When this corner is between the bridge 

and the bow, the string “slips” and moves in the direction opposite to that of the 

bow motion. When the corner is between the bridge and the nut, the string “sticks” 

to the bow hair and therefore moves with the same velocity as the bow. 
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Fig. 6.1 (a) illustrates the string in Helmholtz motion; (b) describes the string velocity dur-

ing the sticking and slipping intervals, from [9]. 

This characteristic “slip-stick” behavior, in which the string slips just once in its 

period, occurs because of the friction component inherent in bow-string interac-

tion. For a given bow-bridge distance, the achievement of Helmholtz motion (the 

goal of all bowed-string players) depends on the careful negotiation between bow 

speed and force. As described in [36], for steady bowing, a player must control the 

bow speed vbow , position β  (bow-bridge distance, normalized to the length be-

tween the bridge and nut of the violin, assuming an open string), and the normal 

force between the bow and the string F . If F  is too low, the bow will not stick to 

the string and will produce what is known as “surface sound”. If the force is too 
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high, the string does not release when the Helmholtz attack occurs, and the motion 

becomes raucous. From these two extremes, the range of force for normal play has 

been analyzed as follows: 

Focz =
2Z0vdqy

β(µs − µd)
                                           (6.1) 

Fokp =
Z2

0
vdqy

2β2R(µs − µd)
,                                         (6.2) 

where µ s  and µ d  are the static and dynamic friction coefficients, respectively. 

Z0  is the characteristic impedance of the string and R  indicates the equivalent of 

the rate of energy loss into the violin body. 
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Fig. 6.2 Schelleng diagram showing the region of playability between the minimum and 

maximum force required for normal violin playing, with respect to bow-bridge distance 

(bow speed is constant). 

For constant bow speed, the dependency between the remaining two parame-

ters, force and position (bow-bridge distance), in creating good tone may be illus-

trated in a two-dimensional plot. This visualization, first developed by Schelleng 

[26] and shown in Figure 6.2, outlines a region of “playability” wherein good tone 

is achieved. Note, this represents a strong idealization, as in any typical musical 

performance, the bow speed is continually varying. 

The key point of this discussion is that the relationship between bowing pa-

rameters and the sound they produce is quite complex due to the nonlinear friction 

mechanism described [11, 14, 37-38]. Unlike the case of the piano playing, in 

which key velocity is the primary physical input parameter, there is no invertible  

mapping between inputs and output. In fact, the situation is one of a “many-to-

one” mapping. This point concerning the mapping between the input bowing pa-

rameters and output sound can be further understood by considering a simple 
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model of a violin (or viola, cello, or double bass), which has a transverse bridge 

force given by [5]: 

F̂b(t) = Zb∆v(t)                                             (6.3) 

where Zb  is the bridge impedance, and Δv  is the difference in velocity of the in-

coming and outgoing traveling waves in the string at the bridge. In the regime of 

Helmholtz motion, Δv  is (to first approximation) a sawtooth function 

 with period T = 2l /c , l  is the length of the string including fin-

ger input and c  is the speed of the wave. The maximum of F̂b(t) has been deter-

mined to be 

F̂b,ocz =
Zb

β
vdqy                                              (6.4) 

The transverse bridge force is what drives the body of the instrument to produce the 

sound (a linear transformation given the frequency response of the body cavity). 

Equation 4 shows that there are multiple values of bow velocity and bow-bridge dis-

tance that can achieve the same transverse bridge force, and hence the Helmholtz 

motion. Therefore, though the sound may be predicted when the bowing parameters 

are known, it is not possible to determine the bowing parameters used from inspec-

tion of the audio result. (In consideration of this point, audio recordings of bowed 

string playing can be seen as rather incomplete representations, as they do not con-

tain all of the relevant information to reconstruct these performances.) 

6.3   Measurement of Bowing Parameters 

Because violin bowing parameters cannot be determined from audio alone, they 

are the topic of keen research interest [1, 7-8, 27-29, 33, 39]. The primary motiva-

tion of the study described herein is to investigate the potential of physical meas-

urement of violin bowing dynamics to inform understanding of bowed string per-

formance, to answer such questions as: What do musicians do in order to achieve 

the sonic results they desire? How do they differ in their approaches to the same 

performance tasks? What are the actual limits of their physical capabilities? 

Accurate and reliable measurement of violin bowing gesture for use in the study 

of realistic performance presents many challenges. In designing the measurement 

system used in the bowing technique study presented here, the highest priority was 

the goal to maintain playability of the measurement system, so that the traditional 

bowing technique that is of interest in this work remains unimpaired to facilitate re-

lated research [43-45]. Therefore, great effort was spent to ensure that the electronics 

created are as small and light as possible, free from unnecessary wires that would 

constrain player movement, and that the bow itself remains comfortable to use. 

6.3.1   Sensing System 

The hardware sensing system shown in Figure 6.3 consists of four types of sen-

sors: force sensors (composed of foil strain gauges), accelerometers, gyroscopes, 

and an array of four electric field position sensors. 
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6.3.1.1   Force Sensing 

In order to sense the downward bow force (as in [41-42]), foil strain gauges from 

Vishay® Micro-Measurements [16] were used. These devices were chosen due to 

their large bandwidth (small capacitance and inductance) and negligible hystere-

sis. These features were both highly desired, as violin bowing exhibits rapid 

changes in force that must be accurately recorded. 

Two force sensors, each composed of four foil strain gauges, in full Wheatstone 

Bridge configuration, were installed on the carbon fiber bow stick and calibrated 

[43] in order to provide “downward” (normal to the string in standard playing po-

sition) and “lateral” (orthogonal to the string in standard playing position) force 

measurements. 

6.3.1.2   Acceleration and Angular Velocity Sensing 

To enable measurement of bow velocity and bow tilt with respect to the violin 

(which is often related to the area of bow hair in contact with the string) a combi-

nation of 3D acceleration sensing (as in [41-42], similar to that used in [24-25]) 

and 3D angular velocity sensing, comprising a six degrees of freedom (6DOF) in-

ertial measurement unit (IMU), is implemented within a bow sensing subsystem. 

In addition to this 6DOF IMU on the bow, an identical one is included in the vio-

lin sensing subsystem, as seen in Figure 6.3. Both of these 6DOF IMUs measure 

tilt with respect to gravity, and so pitch and roll angles between bow and violin 

can be accurately estimated (see below). 

Although the measurement system included two 6DOF IMUs that can be used 

to estimate the bow-bridge distance and bow velocity measurements, the errors on 

these two estimates increase quadratically with respect to time and linearly with 

respect to time, respectively, due to accumulating integration errors. Therefore, an 

additional position sensor was required to provide both accurate and precise esti-

mates of bow-bridge distance and bow velocity. 

6.3.1.3   Position and Velocity Sensing 

In order to improve the bow-bridge distance and bow velocity estimates, the origi-

nal electric field bow position sensor, first designed for use in the Hypercello pro-

ject and detailed in [22], and adopted in the earlier Hyperbow systems [41-42] was 

retained. The basic design of this sensor includes a resistive strip (composed of 

carbon-impregnated plastic from UPM [34]) extending from the frog of the bow to 

the tip. From either end of this resistive strip, square wave signals are transmitted. 

These signals are received by an antenna mounted behind the bridge of the violin, 

and their corresponding magnitudes are measured to estimate bow-bridge distance 

and tip-frog bow position ( x-axis and y-axis, respectively). 

6.3.2   Parameter Estimation 

Due to the growing errors in time from the drift in the accelerometer and gyro-

scope data, the linear acceleration and angular velocity estimates are refined using 

a Kalman filter (via an Extended Kalman Filter, as the update dynamics are 
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nonlinear) [4]. There are two main steps in any Kalman filter algorithm: the pre-

diction step and the update step. In the prediction step, the state of the system and 

its error covariance matrix are predicted using an a priori model. In the update 

step, the state and the error covariance are corrected using actual measurements 

and a Kalman gain matrix that minimizes the error covariance matrix. 

By applying Kalman Filtering, as well as proper sensor calibration techniques, 

the primary bowing parameters of bow force, bow velocity, and bow-bridge dis-

tance may be estimated, as seen in Figure 6.4. Here these three physical bowing 

parameters, as well as an approximation of bow tilt, are shown for a performance 

of martelé bowing technique. 
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Fig. 6.3 Hardware sensing system for violin bowing (lower inset), consisting of: two strain 

gauge force sensors to capture both downward and lateral bending in the bow stick; 3D accel-

eration and 3D angular velocity sensing on both the violin and the bow; an electric field sensor 

for each of the four violin strings. In this implementation [43], the bow sub-system remains 

wireless, as a Bluetooth® module is used for data communication to the violin and its power is 

supplied by a Lithium-ion battery. The violin sub-system is powered via the USB port, which 

also was used for data communication (of both the bow and violin data) to the computer. The 

gesture data was synchronized with the audio by recording the gesture data on an independent 

audio track with the recorded violin audio in the software application Pure Data (Pd). 
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Fig. 6.4 Estimates of bow force, bow velocity, bow tilt angle, and bow-bridge distance pa-

rameters produced during a performance of martelé bowing technique. 

6.4   Studying Bowing Technique 

The study of right hand bowing technique is often pursued by using measurement 

that incorporates an established global coordinate system, such as optical motion 

capture [7-8, 18-20, 27-28, 30-31, 33, 39]. Because the custom measurement system 

described above relies on local sensing only, it must be validated. In service of this, 

a study was conducted to determine if the system is capable of capturing the distinc-

tions between common bowing techniques. In this study, gesture and audio data 

generated by eight violinists performing six different bowing techniques on each of 

the four violin strings were recorded for later analysis. The details of the study pro-

tocol, experimental setup, and participants are discussed below. 

6.4.1   Study Protocol 

In this study each of the eight conservatory student participants was asked to per-

form repetitions of a specific bowing technique originating from the Western classi-

cal music tradition. To help communicate the kind of bowstroke desired, a musical 

excerpt (from a work of the standard violin repertoire) featuring each bowing tech-

nique was provided from [3]. In addition, an audio example of the bowing technique 

for each of the four requested pitches was provided to the player. The bowing tech-

nique was notated clearly on a score, specifying the pitch and string, tempo, as well 

as any relevant articulation markings, for each set of the recordings. 
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Two different tempos were taken for each of the bowing techniques (on each 

pitch). First, trials were conducted using a characteristic tempo for each individual 

bowing technique. Immediately following these, trials were conducted using one 

common tempo. Though the target trials were actually those that were conducted 

with the same tempo across all of the bowing techniques, it was found in early pi-

lot testing that requesting performances using the characteristic tempo first en-

abled the players to perform at the common tempo with greater ease. The tempos 

required for each bowing technique were provided by a metronome. In some 

cases, a dynamics marking was written in the musical example, but the partici-

pants were instructed to perform all of the bowstrokes at a dynamic level of mezzo 

forte. Participants were instructed to take as much time as they required to either 

play through the musical example and/or practice the technique before the start of 

the recordings to ensure that the performances would be as consistent as possible. 

Three performances of each bowing technique, comprising one trial, were  

requested on each of the four pitches (one on each string). During the first pre-

liminary set of recording sessions that were conducted in order to refine the ex-

perimental procedure, participants were asked to perform these bowing techniques 

on the “open” strings. (The rationale for this instruction was that the current meas-

urement system does not capture any information concerning the left hand  

gestures.) However, it was observed that players do not play as comfortably and 

naturally on “open” strings as when they incorporate left hand fingering. There-

fore, in the subsequent recording sessions that comprise the actual technique 

study, the participants were asked to perform the bowing techniques on the fourth 

interval above the open string pitch, with no vibrato. 

The bowing techniques included in this study are accented détaché, détaché  

lancé, louré, martelé, staccato, and spiccato. The study instructions for the ac-

cented détaché technique are shown in Figure 6.5. For this technique, the charac-

teristic tempo and the common tempo were the same (this common tempo was 

later used in for the subsequent bowing techniques, after trials using the character-

istic tempo for each technique were recorded). 

6.4.2   Experimental Setup 

In each trial of the bowing technique study, the physical gesture data were re-

corded simultaneously with the audio data produced in the performances of each 

technique. These gesture data were converted into an audio channel and combined 

into a multi-channel audio track with the recorded violin audio. By ensuring the 

audio and gesture capture delay was sufficiently small, all data could be main-

tained on an identical time base with no synchronization events required. The ex-

perimental setup was simple: custom violin bowing measurement system installed 

on a CodaBow® Conservatory™ violin bow [5] and the Yamaha SV-200 Silent 

Violin [40]; headphones (through which the participants heard all pre-recorded 

test stimuli and real-time sound of the test violin); M-Audio Fast Track USB audio 

interface [15]; Apple Macbook with a 2 GHz Intel Core Duo processor (OS X) 

running PureData (Pd) [23]. 
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Detaché

 
 

Fig. 6.5 This figure shows the study instructions for the accented détaché bowing tech-

nique, including a musical example from [3]. Participants were asked to perform each of 

the four lines three times (constituting one trial). 

6.5   Technique Study Results and Discussion 

The primary goal of the technique study was to determine whether the gesture data 

provided by the measurement system would be sufficient to recognize the differ-

ent six bowing techniques (accented détaché, détaché  lancé, louré, martelé, stac-

cato, and spiccato) played by the eight violinist participants.  

To begin this classification exploration, a subset of the gesture data provided by 

the measurement system was considered for the evaluations. Included in the 

analyses were data from the eight bow gesture sensors only: the downward and 

lateral forces; x, y, z acceleration; and angular velocity about the x, y, and z axes.  
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This data subset was chosen to explore the progress possible with the augmented 

bow alone (without the additional violin sensing subsystem), as this subsystem 

may easily be adapted to other instruments if shown to be sufficient. 

The k-Nearest-Neighbor (k-NN) algorithm was chosen for data classification, as 

it is one of the simplest machine learning algorithms and robust for well-

conditioned data. Compared to other supervised classification algorithms, such as 

Neural Networks (NN), Support Vector Machines (SVM) and decision trees, k-

NN has the advantages of a simple, clear, heuristic-free geometric interpretation 

which can be compute efficient for low-dimensional data sets, but the disadvan-

tage of not producing results with as high performance of some of the afore men-

tioned algorithms (especially SVM). In this study, the dimensionality of the  

gesture data vector used, 9152 (1144 samples in each time series x 8 gesture chan-

nels), was far too high. Therefore, the dimensionality of the gesture data set was 

first reduced before being input to the classifier. 

6.5.1   Data Preparation 

Before beginning any data analysis, the bow gesture data was visually inspected to 

search for obvious outliers. The data from each of the eight bow sensors (lateral 

force and downward force; x, y, z acceleration; and angular velocity about the x, y, 

and z axes), as well as the audio waveform produced, were plotted for each of the 

recorded files that comprise the bowing technique study. In all, there were 576 re-

corded files (8 players x 6 techniques x 4 strings x 3 performances of each) from 

the bowing technique study. Each recording included 16 instances of each bow-

stroke. For this exercise, the entire time-series length, 1144 samples, of each ges-

ture recording was used. The gesture data for each of the recordings were aligned 

with the start of the first attack in the audio. (This computation across the full data 

set was done in Matlab.) With the help of the audio example of each bowing tech-

nique and the metronome, the players in this study were able to produce highly  

repeatable bowing data. 

This precision is evidenced in Figure 6.6, which shows gesture data from three 

performances of one technique on the first individual string by the same player. 

This visual inspection was conducted for the player's performances of the same 

technique on each of the three remaining strings. Then, an overlay plot containing 

the data from all twelve examples (4 strings x 3 performances) of that player's 

technique was produced. This process was repeated once for each of the five other 

bowing techniques performed by that player. Then, the same was done for the data 

from each of the remaining seven players. 

The eight channels of bow gesture data as well as the audio waveform of each 

trial recording were inspected for gross inconsistencies, such as timing errors 

made by the violinists. Throughout this visual evaluation process, 22 of the origi-

nal 576 files (approximately 4%) were omitted and replaced with copies of files  
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in the same class (technique, player, string). After performing this inspection  

process, the raw gesture data (now aligned with the beginning of the first audio at-

tack of each recording and of the same length of 1144 samples), it was now possi-

ble to proceed to the dimensionality reduction phase of the analysis. 
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Fig. 6.6 Overlay plot for the 3 E string spiccato trials from player 3. The audio waveform, as 

well as the data from each of the 8 bow sensors is shown (length of each trial is 5.72 seconds). 
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6.5.2   Dimensionality Reduction 

In order to prepare the data for classification, the dimensionality of the raw data 

was first reduced. Principal Component Analysis (PCA), also known as the  

Karhunen-Loève transform, is one common technique used for this purpose [32]. 

PCA is a linear transform that transforms the data set into a new coordinate system 

such that the variance of the data vectors is maximized along the first coordinate 

dimension (known as the first principal component). That is, most of the variance 

is represented, or “explained”, by this dimension. Similarly, the second greatest 

variance is along the second coordinate dimension (the second principal compo-

nent), the third greatest variance is along the third coordinate dimension (the third 

principal component), et cetera. Because the variance of the data decreases with 

increasing coordinate dimension, higher components may be disregarded for simi-

lar data vectors, thus resulting in decreased dimensionality of the data set. In this 

case, because the number of data samples used is smaller than the dimension of 

the data, the Singular Value Decomposition (SVD) offers an efficient means of 

calculating the principal components. PCA was chosen because it is the optimal 

linear transform for minimizing the least squares of each principle component 

relative to the original data. That is, PCA will determine the best linear features 

that describe the data. 

Figure 6.7 shows one analysis made possible by the above dimensionality re-

duction algorithm. Here, a scatter plot represents the first 3 principal components 

corresponding to each of the 6 bowing techniques produced by one player partici-

pant. The clear visual separability between bowing techniques demonstrated by 

this exercise is taken as a strong indicator that technique classification may be 

successful. One important point is that while PCA will find the principal compo-

nents of the data to minimize the least square error, it rarely gives insight into 

what these components represent. As a result, while an effective technique, this 

prevented this analysis exercise from extracting any conceptually relevant high-

level features. 

6.5.3   Classification 

After computing the principal components produced by the SVD method above, 

the challenge of classifying the data was undertaken using the k-nearest-neighbor 

classifier. Specifically, Nabney's matlab implementation [17] was employed. 

6.5.3.1   Technique Classification 

The first classification exercise applied to the technique study bow data was an in-

spection of the performance of each individual player. 

After reducing the dimensionality of two-thirds of the data from a single  

player by computing the principal components using SVD, the k-NN algorithm 

was trained on the same two-thirds of the data in order to classify the remaining  
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one-third of the player's data. The number of nearest neighbors was maintained at 

one, while the number of principal components was increased from one to ten (the 

results given by using small numbers of components are only included to illustrate  

the trends in the results). Three-fold cross validation was performed by rotating 

the test/predict data three times. For each number of principal components, the 

mean and standard deviation of the cross-validation trials were computed to de-

termine the overall success of the technique classification for this intra-player 

case. 

This whole procedure was repeated for each of the other eight players. Good 

prediction rates for each player's gesture data were achieved for even low numbers 

of principal components. The results of this analysis for each individual player are 

shown in Figure 6.8, in which the effect of increasing the number of principal 

components on the overall classification success is clearly demonstrated. In fact, 

by increasing the number of principal components, very high predication rates 

were reached for each of the eight players, and for five of the eight players rates of 

over 90% were achieved using only three principal components. Of all of the eight 

violinists, only the gesture data provided by player 6 achieved a success rate sig-

nificantly less than 90% with four principal components as input to the classifier. 
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Fig. 6.7 Scatter plot of all six bowing techniques for player5: Accented détaché, détaché  

lancé, louré, martelé, staccato, spiccato. The axes correspond to the first three principal 

components. 
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Fig. 6.8 Mean recognition rates versus the number of principal components used, produced 

by using the k-NN method (with one nearest neighbor) with two-thirds of each player's ges-

ture data as training to predict the remaining third of that player's gesture data. 

After performing the intra-player analysis discussed above, the k-NN classifier 

was trained using two-thirds of the data from all of the players to classify the re-

maining one-third of all player data by technique. 

As in the intra-player case, the number of nearest neighbors was maintained as 

one, while the number of principal components was increased from one to ten. 

Again, three-fold cross validation was performed by rotating the training data 

three times and the three resultant classification rates were used to determine the 

mean and standard deviation of the overall classification success for this all-player 
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case. Table 6.1 shows the confusion matrix produced by training on two-thirds of 

the data from each of the eight players, predicting the remaining third of each 

player's data (with overall prediction of 95.3± 2.6%) with seven principal compo-

nents. The effect on the overall success of the number of principal components is 

clearly illustrated by Figure 6.9. Using seven or more principal components as in-

put to the k-NN algorithm, the mean classification rate is above 95%. 

Table 6.1 Training on two-thirds of the data from each of the eight players, predicting the 

remaining third of each player's data by technique (with overall prediction of 95.3± 2.6%) 

using seven principal components. 
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Fig. 6.9 Mean prediction rates produced by k-NN using two-thirds of the data from each of 

the eight players to predict the remaining one-third of all player data and increasing the 

principal components from one to ten. 
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6.5.3.2   Player Classification 

After demonstrating the potential of the gesture data collected by the bowing 

measurement system for use in technique classification, the k-NN classification 

algorithm was employed to explore classification by player [9, 35]. 

In this exploration, only one case, the all-player case, was addressed. Just as be-

fore in performing the technique classification with the data from all of the play-

ers, the k-NN classifier was implemented using two-thirds of the data from all of 

the players to classify by player the remaining one-third of data from all of the 

players. But this time, the classification was done by player. Once again, a 3-fold 

cross validation procedure, in which the training data set was rotated three times, 

was obeyed. For each training data set, the number of principal components input 

to the algorithm was increased from two to twenty. The overall classification re-

sults for each number of components used were determined as the mean and stan-

dard deviation of the classification rates achieved in each of the three cross-

validation trials (for each number of principal components used). 

With 12 principal components, a player classification rate of nearly 90% 

(89.1% to be exact) was reached, and with 18 principal components, an overall 

classification player rate of 94.2% is obtained. Again, the effect of increasing the 

number of principal components was clearly demonstrated, as illustrated in the 

plot in Figure 6.10. 
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Fig. 6.10 Mean classification rates of technique produced by k-NN using two-thirds of the 

data from each of the eight players to classify the remaining one-third the data, classifying 

by player. 
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6.6   Summary  

While the primary goal of the bowing technique study described above was to in-

vestigate the potential of the measurement system to provide sufficient informa-

tion to enable gesture recognition of traditional violin bowing techniques, in the 

course of this work it was discovered that in addition to facilitating this investiga-

tion, it also enabled the identification of players as well. These early results sug-

gest that this measurement method may be used to make quantitative comparisons 

between the techniques and styles of individual performers. 

By capturing individual physical bowing gesture with precision and accuracy, 

contributions may be made in many related fields of research. These include: real-

time gesture classification for use in live interactive performance; virtual instrument 

development using real player data to help test bowed string physical models; per-

formance archiving that includes complete gestural recordings to complement audio 

and video data to preserve the techniques of our living masters; bowed string acous-

tics, enabling studies of bow-string interaction in realistic performance scenarios; 

and new music pedagogies (for more discussion please see Chapter 6 [21]). 
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Chapter 7 

Interactive Multimedia for  
Technology-Enhanced Learning with 
Multimodal Feedback 

Kia Ng
1
 

Abstract. Musical performances are generally physically demanding with high 

degree of control (mental and motor) and accuracy. This chapter presents the  

i-Maestro (www.i-maestro.org) project which explored interactive multimedia en-

vironments for technology-enhanced music education. It discusses one of the key 

requirements for an interactive musical robot which is to analyze and provide 

feedback/interaction to a “performance”. This Chapter also serves as an example 

application of a musical robot in educational contexts. Music is not simply playing 

the right note at the right time. The multitude of interconnecting factors that influ-

ence and contribute to the nature of the playing is not easy to monitor nor analyze. 

Musical instrumentalists often use mirrors to observe themselves practicing. This 

Chapter briefly introduces the i-Maestro project and focuses on a gesture interface 

developed under the i-Maestro framework called the 3D Augmented Mirror 

(AMIR). AMIR captures, analyze and visualizes the performance in 3D. It offers a 

number of different analyses and feedback to support the learning and teaching of 

bowing technique and gesture.  

7.1   Introduction 

The i-Maestro project [19] explores novel solutions for music training in both the-

ory and performance, building on recent innovations resulting from the develop-

ment of computer and information technologies, by exploiting new pedagogical 

paradigms with cooperative and interactive self-learning environments, gesture in-

terfaces, and augmented instruments. The project specifically addresses training 

                                                           
Kia Ng 

ICSRiM – University of Leeds,  

School of Computing & School of Music, Leeds LS2 9JT, UK 

e-mail: k.c.ng@leeds.ac.uk, kia@kcng.org 
     www.kcng.org  



106 K. Ng

 

 

support for string instruments among the many challenging aspects of music edu-

cation. Starting from an analysis of pedagogical needs, the project developed ena-

bling technologies to support music performance and theory training, including 

tools based on augmented instruments, gesture analysis, audio analysis and proc-

essing, score following [10], symbolic music representation [2], cooperative sup-

port [3] and exercise generation [40]. 

This Chapter focuses on the i-Maestro 3D Augmented Mirror (AMIR) module 

which utilizes interactive multimedia technologies to offer online and offline 

feedback for technology-enhanced learning for strings. 

7.2   Related Background 

Instrumental gesture, body movement and posture are all significant elements of 

musical performance. The acquisition, analysis, and processing of these elements 

is part of an expanding area of research into new musical interfaces, which can be 

further grouped with research into Human-Machine Interaction (HMI). Over re-

cent years there has been a noticeable increase in the number of conferences, 

workshops and research workgroups related to this area such as the International 

Conference on New Interfaces for Musical Expression (NIME), International 

Computer Music Conference (ICMC), Digital Audio Effects Conference (DAFX), 

COST287-ConGAS, “Gesture Workshop” (International Workshop on Gesture in 

Human-Computer Interaction and Simulation) and others.  

Although there is a great deal of research in the area of new musical interfaces, 

the use of these interfaces in music pedagogy applications is at its beginning and 

of an experimental nature. The i-Maestro tools aim to build on innovations and 

technologies emerging from the fields and utilize them in a pedagogical context. A 

complete overview on all related areas would be beyond the scope and available 

space for this Chapter. Hence the following sub-sections review several selected 

issues and focus on a number of related pedagogical applications. 

7.2.1   Musical Gesture 

There is much speculation over a comprehensive definition of gesture in music 

[7], although a large part of current research into new musical interfaces deals in 

some way or the other with gesture. Sometimes confusion arises from the fact that 

gesture is often used in the description of musical content, for example the phrases 

in a lyrical interplay between two instruments might be referred to as gestures. In 

the context of i-Maestro we are interested in the physical gestures that are exhib-

ited by musicians during string performance. These can be defined as body, in-

strument and bow movements, which may be small or large (e.g. the movements 

of the body as a whole). 
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Cadoz & Wanderley [7] describe three classifications of physical musical gesture, 

which were originally proposed by Delalande [12]. Two of these classifications are  

relevant in the development of i-Maestro Tools: (1) Effective gestures; (2) Accom-

panist/Ancillary gestures. Effective gestures are those that are directly involved in 

the sound producing mechanism of the instrument (e.g. the bowing of a violin). An-

cillary gestures are those that are not directly involved with sound production, yet 

are related to the expression of musical features [11, 38, 39]. For example a violinist 

may shift his/her balance in relation to phrasing. 

Another classification proposed by Delalande [12] is figurative gesture, which 

he describes as “perceived by the audience but without a clear correspondence to 

a physical movement”.  

For i-Maestro, it is not only expressively meaningful movements that are rele-

vant. String instrument performance is a physical activity and performers often 

adopt unnecessary habitual movements that may have an adverse effect on the 

sound produced or even affect the performer’s health. These movements have lit-

tle or no connection to musical expression. For example, through discussions with 

several cello teachers in the i-Maestro User Group we have learnt that a common 

problem experienced by their students is to move the right shoulder whilst play-

ing, where it should, in their opinion, be relaxed and held back. According to the 

teachers, this movement can cause tension and pain in the short term and serious 

problems in the long term. Ancillary gestures, although part of a performer’s ex-

pressivity and individual style, may also have similarly undesirable side effects.  

The different approaches proposed in i-Maestro provide access to various types 

of physical musical gesture, and are thus complementary. For analyzing string per-

formance sensors allow for the direct measurement of bow dynamics while 3D 

motion capture allows for the measurement of body and bowing movements and 

the interactions between them.  

7.2.2   New Musical Interfaces 

Current developments in the field of new musical interfaces can generally be di-

vided into three categories:  

• Imitations of acoustic instruments. These types of controllers are the most 

common types of interface, which are often commercially available (e.g. MIDI 

wind controller). These instruments can be played using the same skills devel-

oped on acoustic instruments. Pedagogy generally follows traditional instru-

ment education.  

• Augmented Instruments: the augmentation of traditional acoustic instruments 

with new capabilities. Work in this field was pioneered in the 1980’s at the hy-

per-instrument Group at the MIT Media Lab. Recent developments related to 

augmented string instruments include IRCAM’s Augmented Violin project [4, 

35], the MIT Hyperbow [41, 42, 43] and others.  
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• Alternative Controllers: new interfaces that are not based on traditional in-

strument paradigms. These may be either physical or virtual devices (in the 

case of motion tracking systems). These types of interfaces are original con-

trollers which require learning new skills. Generally they are designed in a 

context of experimental music or new media/multimedia performance [26, 27]. 

Pedagogical applications are rare and of experimental nature, which can be ex-

plained partly by the community gap between music practitioners using such 

technologies and traditional music teachers. 
 

As well as in composition and performance, these new interfaces are being used in 

the study and measurement of musical gesture in order to better understand ele-

ments such as the playability of an instrument and differences in playing style. 

Rasamimanana [35] describes the characterization of bow strokes using an aug-

mented violin, Wanderley [39] provides a comprehensive study of the ancillary 

gestures of a clarinetist using 3D motion capture and Camurri et al. [8, 9] study 

the expressive gestures using EyesWeb computer vision software. 

7.2.3   Pedagogical Applications 

The majority of new musical interfaces are designed as tools for performance, stu-

dio based composition and laboratory analysis of musical gesture. However, there 

are several examples of the use of these technologies in pedagogical applications.  

One such example is provided by Mora et al. [24] who discuss a system to as-

sist piano pedagogy using 3D motion capture technology, focusing on its potential 

as a tool for self observation. They present evidence to support the use of video 

recording and playback of instrumental performance, stressing its positive effects 

on a learner’s skill acquisition and cognitive processes. The basic premise of the 

system is to capture and reconstruct the posture of a professional piano player so 

that it may be compared against the posture of a student.  An OpenGL 3D visuali-

zation of the “ideal” posture is overlaid on top of 2D video recordings of the stu-

dent’s recital. Video recordings are made from multiple angles and the 3D visuali-

zation can be rotated to match the camera angle. The motion capture of the 

professional pianist is performed using a large number of reflective markers 

placed all over the body. This provides enough information to make a detailed 

anatomical model of the performer’s skeleton.  

When the 3D skeleton is overlaid onto the video of the student, the proportions 

of each bone may be adjusted to match the student’s body, whilst still displaying 

the relevant information for posture adjustment. The new individualized skeleton 

can be saved. Once the comparison has been made, the authors suggest the en-

hancement and correction of the student’s posture by adjusting the height of the 

piano stool, adding a foot stool etc. in order to make the posture match that of the 

professional.  

Sturm & Rabbath [37] used 3D motion capture technology in a commercial in-

structional DVD for the double-bass, based on motion studies done at Ball State  
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University, Indiana, USA. It features several clips of 3D motion capture and many 

video recordings from different angles in order to illustrate various playing tech-

niques. Reflective markers are placed on the arms, hands and fingers of the per-

former, on the bow and on the instrument strings. 3D motion is shown in parallel 

to video footage, but is made out of small looped segments and is non-interactive. 

Baillie et al. [1] used a haptic model of violin and viola bowing to provide real-

time haptic feedback to help a student maintain the bow strokes midway between 

the bridge and the fingerboard. Using a force feedback device the authors simulate 

the sensation of bowing a string instrument but apply constraints so that the 

movement of the bow is limited. 

Ferguson [14] discusses several audio-analysis based “sonification studies” 

which use auditory feedback to help teach musical instrument skills. The examples 

presented include tools to aid the performer to study their intonation, vibrato, 

rhythmic accuracy, and control of dynamics. The sound of the instrument is ana-

lyzed using a microphone so it is necessary for the performer to wear headphones 

in order to avoid confusing the audio analysis algorithms with the sound of the 

sonification. The author suggests that with careful consideration it is possible to 

choose a sonification that may accompany the sound of the instrument. The stud-

ies presented deliver feedback in several different ways. One study is designed to 

help inform a student about their rhythmic accuracy. Rather than sonifying all 

data, the system only makes a sound when the user makes a mistake. It uses an in-

teresting approach which indicates the degree of deviation from the “correct” 

rhythm. The performer must play a rhythm in time with a fixed pulse. If they play 

a note ahead of the beat, the system plays a sound from the note-onset until the 

pulse. If they play behind the beat, the sound is emitted from the beat until the 

note-onset. 

The sonification of gesture data has been the focus of several systems which 

aim to help people to learn certain body movements through auditory feedback. 

Kapur et al. [20] present a technical framework for the sonification of 3D motion 

data. They discuss three preliminary case studies in which they use the motion 

capture data, one of which links continuous walking gestures to sound synthesis in 

order to aid proprioception in people with body movement related disabilities. 

They note that sonification is very effective at representing the speed of movement 

and suggest that using the auditory feedback from the system may help people 

with the motor co-ordination required in walking. The authors used several differ-

ent sonifications, mapping the raw position data and extracted features such as ve-

locity and acceleration to the parameters of additive and FM synthesis algorithms. 

A similar application of sonification is discussed in Ghez et al. [16] who sonify 

spatial location and joint motion to see if auditory signals can provide propriocep-

tive information normally obtained through muscle and joint receptors. Their  

approach to sonification is to control the timing of a melody using the subject’s 

arm movements. The subject develops proprioceptive control through auditory  

feedback. 
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Effenberg et al. [13] developed “MotionLab Sonify” which is a system for the 

sonification of human body movement based on 3D motion capture data. The sys-

tem uses standard kinematic data (marker position, velocity, acceleration) but also 

uses inverse dynamics algorithms to extract pseudo realistic kinetic data (the 

forces/torques in operation at certain joints). MotionLab is a framework for the 

playback and visualization of 3D motion capture data. MotionLab Sonify is a 

plug-in for the framework which processes 3D Motion data from a skeletal model 

and allows the processed data to be linked to MIDI pitch messages such as Note-

On/Note-Off and pitch bend. MIDI was chosen because the authors believe that 

extended periods of listening to simple synthesized tones such as sine waves is fa-

tiguing to the ear. They suggest that due to the wide range of well known sounds 

offered by MIDI, humans can adapt easily to these sounds. The MotionLab Sonify 

system includes a wizard for rapidly choosing which data to monitor and adjust 

the mapping of this data to midi parameters. The sonification may either be deliv-

ered using MIDI pitch bend on sustained sounds, or by adjusting the pitch using 

different midi note values. To address the problem of continuous sonification dur-

ing periods of little movement, the user may set a threshold underneath which val-

ues will not be sonified. 

Ho [17] developed a Violin Monitoring System designed to monitor four as-

pects of bowing technique (bow position, velocity, pressure and sounding point) to 

help violinists to solve the problem of “how to make a good sound”. The system 

used an violin augmented with strain gauge sensors on the tip and frog of the bow 

for measuring bow pressure, a resistive wire attached to the bow hairs for measur-

ing the bow position (the part of the bow that is used) bow velocity, and a “bow 

hook” and slide resistor for measuring the bow sounding point (point of contact in 

relation to bridge and base of fingerboard). The system also comprised a computer 

and A/D converter which displayed graphs of the sensor voltage readings in real 

time. Ho explains that the sensors gave a “strange and uncomfortable feel to the 

player” requiring extra effort in order to move the bow. She describes the process 

of using the system to iteratively improve performance by recording the output of 

the sensors and adjusting the technique based on what is shown. 

7.3   Augmented Mirror 

Musicians often use mirrors to study themselves practicing. More recently we 

have seen the increased use of video recording in music education as a practice 

and teaching tool. For the purpose of analyzing a performance these tools are not 

ideal since they offer a limited 2D perspective view of the performance. 

Using 3D Motion capture technology it is possible to overcome this limitation 

by visualizing the instrument and the performer in a 3D environment. Visualiza-

tion such as this can serve as a “3D Augmented Mirror” (AMIR) [28, 29, 30] to 

help students improve their technique and develop self awareness. It assists teach-

ers to identify and explain problems to students (see Fig. 7.1). 
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Fig. 7.1 i-Maestro 3D Augmented Mirror interface. 

By analyzing and processing 3D motion capture data it is possible to obtain 

comprehensive information about a performance. For example, in the case of a 

string player, we can analyze the different characteristics of bow movements and 

the relationships between the bow, the instrument and the body. This information 

can be extremely useful for both student and teacher. It can be used in real-time to 

provide instantaneous feedback about the performance and may also be used to 

make recordings for in-depth study after the performance has taken place [34]. 

Based on the pedagogical analysis, the i-Maestro AMIR tool has been devel-

oped to provide real-time gesture analysis and feedback with visualization and 

sonification using 3D motion capture and sensor technologies. 3D motion capture 

allows us to study the gesture and the posture of a performer in detail and is par-

ticularly appropriate for studying the movements involved in playing a string in-

strument. The system provides a tool for teachers and students to better understand 

and illustrate techniques/elements of the performance and to achieve learning  

objectives faster.  

At a basic level, the system allows real-time visualization of 3D data as well as 

the synchronized recording of motion capture data, video and audio data and ma-

nipulation on playback (looping, adjusted speed etc). At a more advanced level, 

the 3D motion capture data is processed to provide different analyses of the per-

formance, the results of which are displayed using visual and auditory feedback.  
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7.3.1   Pedagogical Context, Considerations and Requirements 

Through our experience, discussion with teachers and existing string pedagogy lit-

erature we identified areas of interest for analyzing string performance in relation 

to music practice training using 3D motion capture. In addition there are many 

properties of string performance that are not fully understood (and are debated by 

different methods and teachers) which may be clarified through motion analysis 

performed in the context of i-Maestro.  

We want to allow teachers and students to be able to study the performance in 

three dimensions both in real-time (online) and offline contexts (i.e. after having 

recorded a performance). Providing this means allowing various manipulations of 

the 3D environment including magnification, rotation, changing the (virtual) cam-

era location and viewpoint. The users should be able to slow down the playback 

and maintain synchronization with the audio and video recordings. There should 

also be the option to correct the pitch of the audio playback when the recording is 

slowed down, in order to always make clear reference to the musical piece. 

7.3.2   Motion Trajectories/Shapes of Bowing Movement 

Pedagogic literature on string/bowing technique often includes 2D illustrations of 

bowing movements. An early example of this can be seen in Percival Hodgson’s 

1934 book “Motion Study and Violin Bowing” [18], which uses an industrial engi-

neering process known as a “cyclegraph” to study the movements of a violinist’s 

bowing arm. This process involved placing a small light on the player’s hand and 

capturing the trajectories drawn by various bow movements in 2D using long expo-

sure photography. Using this primitive form of motion capture, Hodgson was able to 

prove that bowing motions trace curved rather than linear paths. The book presents 

many different musical excerpts and their corresponding cyclegraphs which illus-

trate a variety of shapes that are drawn by the bowing hand. The shapes range from 

simple ellipses and figures of eight, to complex, spiralling patterns. In the latter 

chapters of the book Hodgson uses this information to provide detailed instruction 

on various bowing techniques and issues. Other significant string pedagogy litera-

ture such as Paul Rolland’s “The teaching of action in string playing” [36] and 

Robert Gerle’s “The Art of Bowing Practice: The Expressive Bow Technique” [15] 

also use 2D images to illustrate 3D bowing shapes and trajectories. The importance 

of bowing shape has been noted by several teachers. For example, they have in-

formed us that they instruct their pupils to “make a figure of eight” shape. The pas-

sage in Fig. 7.2 displays the “figure of eight” shown in Fig. 7.3. 

 

 

Fig. 7.2 Excerpt from Bach's Partita No. 3 in E major. BMW 1006 (Preludio). 
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Fig. 7.3 “Figure of eight” motion trails of the above cross-string passage. 

Using 3D motion capture it is possible to trace the 3D trajectories drawn by 

bowing movements which can then be used by the teacher to or student to assess 

the quality of the bow stroke. This information is clearly useful in the context of a 

string lesson although the implications of different shapes are not certain at this 

stage, and may largely depend on the teacher’s preference. If the student is not 

playing the shape smoothly it may mean, for example, that they are making the 

performance difficult for themselves, reducing their freedom of movement. 3D 

motion capture provides a unique advantage here over 2D methods such as video 

tracking or Hodgson’s cyclegraph technique since movements of the bow can be 

isolated from movements of the body and visualized in their true 3D form. 

The i-Maestro system provides the user with the functionality to draw 3D mo-

tion trails from each marker, the length of which can be set in seconds. Trails may 

be drawn for one or several markers. It is also possible to freeze the trails, zoom in 

and study them for detailed analysis.  

Areas of interest lie in the analysis of the consistency of the trajectories/shapes 

that are drawn by the same bowing movements both by the same performer and by 

different performers, and in the automatic segmentation of shapes. Also we are in-

terested in extracting and studying features such as the shape’s orientation, 

smoothness and bounding volume and storing gesture shapes in a motion data  

repository/database so that multiple gestures can be compared.  

7.3.3   Common Practice Support Units and Feature 

Measurements 

In collaborations with pedagogical and requirement analysis with the user groups, 

several common key practice support units have been developed based on the 

AMIR framework. These include: 
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7.3.3.1   Angle of Bow in Relation to the Bridge 

This is a common topic for string instrument study also known as “parallel bow-

ing”. It is the student’s ability to play with the bow parallel to the bridge or, more 

accurately, perpendicular to the strings. This issue is mentioned in many bowing 

technique instruction books and has also been identified as a recurring problem 

that is observed by teachers. The natural tendency is to play without straight, par-

allel bow movement (following the natural movements of the joints) which is why 

this is something that students must work to correct for a long time. 

The bowing angles are calculated using the markers on the bow in relation to 

the local coordinate system on the bridge.  

Bowing parallel does not necessarily mean bowing linearly back and forth. At the 

beginning or end of the bow stroke, the bow may change angle and this is also likely 

if the piece requires the performer to play across several strings with one stroke. 

This must be accounted for when analyzing this data. Also, it should be noted that 

bowing parallel is not always necessary, and when watching an advanced performer 

they will often bow at a slight angle, especially when using different bowing tech-

niques, depending on the bow section in used. Nevertheless, when learning to play a 

string instrument, parallel bowing motion is one of the important trainings. 

 

Fig. 7.4 Diagram to show various measurements. 

7.3.3.2   Bow Height 

The position of bow in relation to the bridge and the base of the fingerboard is 

identified as bow height. Like the bowing angle (above), the point at which the 

bow meets the strings has a large effect on the tone production, and hence a moni-

toring and feedback of this feature will be useful. For example, to analyze the 

playing of “ponticello” (to bow close to the bridge) and “tasto” (to bow close to 

the fingerboard) techniques. 

This is monitored by a value to indicate the point on the instrument-y axis at which 

the bow crosses the centre plane (offset depending on the string being played), where 

the bridge is equal to zero and the base of the fingerboard is equal to one. 
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7.3.3.3   Bow Section 

This is to monitor which part of the bow that is used. Bowing technique literature 

often features exercises where the student must use a particular part of the bow, 

and several teachers have agreed on this approach which helps the student to learn 

to be economical and accurate in their bow movements. 

First, we track the contact point where the bow meets the string. Next, we 

measure the bowing magnitude, which is the distance in millimeters from the 

marker at the tip of the bow to the contact point. The bow section indicates  

the part of the bow that is being used as a factor of the bow length. By dividing the 

bowing magnitude by the length of the bow (or more accurately the length of the 

bow hair) we obtain a factor in the range 0 to 1. 

7.3.3.4   Bow Stroke Segmentation 

The segmentation of bow strokes is based on the bowing magnitude value:  
 

• The bow is moving up (up bow) if the current bowing magnitude is larger 

than the previous bowing magnitude 

• The bow is moving down (down bow) if the current bowing magnitude is 

smaller than the previous bowing magnitude 
 

In order to tell if the bow is not on the strings we infer: 
 

• The bow is not on the strings if both the markers at the tip and the tail of the 

bow are on one side of the centre plane. This would indicate that the whole 

bow is on one side of the centre plane. 

• The bow is not on the strings if the distance between the contact point to the 

finger board is greater than the finger board height constant, because that 

would indicate that the bow is above the strings. 
 

In some cases, the performer may play with the very bottom or very end of the bow 

hair. This may result in both markers being detected on one side of the centre plane. 

To get around this problem, we apply an offset the marker at the tip of the bow. 

7.3.3.5   Motion Properties 

By analyzing and understanding the distance travelled, velocity and acceleration 

of bow movements, we can obtain information about the regularity and consis-

tency of the gestures, which may be relevant in the production of good tone qual-

ity. This can be studied on a per stroke basis and/or over the duration of a per-

formance. Additionally, the distance travelled by markers on the bow can be used 

to analyze the consistency of bowing gestures. By segmenting the distance trav-

elled by each marker the users can study the different stages of the bow stroke to 

look at the consistency of the bow gesture. 

Bow velocity and acceleration are calculated by taking the first and second de-

rivatives of the bow magnitude. In contrast to taking these measurements from the 

position values of the bow markers, this method gives us information relevant to 
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the part of the bow that is actually producing sound. Using our current setup, we 

have found that these calculations often result in noisy data, which needs to be 

smoothed in order to be useful. We have found that taking an average of the val-

ues over ten frames provides a suitable tradeoff between smoothness of the data 

and timing resolution.  

The distance travelled is measured by accumulating the bow velocity value over 

successive frames. This analysis can be segmented by the bowing direction to 

compare the curve of distance travelled between bow strokes. 

7.3.3.6   Other Features and Measurements 

Other features and measurements include: 
 

• Joint angles – to monitor the angles between different parts of the performer’s 

body 

• Sensor channel – This is an addition to the motion capture based analyses. 

AMIR has also been designed to be ready to support analysis, visualization and 

sonification of sensor data. This could be used to record accelerometer data 

with AMIR or other kind of sensor data. One such example would be to meas-

ure the pressure with which a violinist grips the instrument, by placing a pres-

sure sensor beneath their chin rest. The data from this sensor could be sonified 

or visualized, to provide feedback that can help the student to avoid pain 

caused by “clamping” the instrument between the chin and the shoulder.  

7.3.3.7   Feature Clustering 

Using data from the extracted features and analyses above we developed an ap-

proach to visualize the similarity of bowing features in order to facilitate their 

study in relation to bowing technique and musical expression descriptors. Fig. 7.5 

shows an example visualization of bow strokes based on analysis of the bow-

velocity, bow-height, and bow-length features from a performance by linking each 

feature to one of the dimensions in the graph.  

 

Fig. 7.5 A 3D clustering visualization. 
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The visual feedback is a valuable way of looking at complex data sets, since it 

is both informative and easy to understand at the same time. Bow strokes played 

with a similar expression appear in the same area of the graph as clusters, and as a 

new stroke is added the matching cluster is highlighted to show that the stroke was 

similar. The more similar bow strokes are; the more compact the clusters will ap-

pear in the graph. We also indicate the distance from the centroid of the cluster. 

We implement this technique in such a way to provide an easy to understand, 

high-level interface to non-technical users like musicians and teachers to study the 

similarity of different bow strokes. As well as using this system to compare 

strokes to previous strokes in the performance, it is also possible to load in analy-

sis data sets from other recordings to facilitate the comparison between two  

performances. 

The k-Means clustering method is used to compute the mean of a particular 

dataset in order to study the differences in captured data for a range of these quali-

ties and to identification which bow stroke technique is being used in order to  

provide assessment support such as consistency measure. 

7.3.3.8   Further Calculations and Processing 

The different analysis objects can be used in an offline processing context to ex-

tract certain features from the overall performance data or any selected region of 

the capture data. For example we can calculate the mean of the distance travelled 

for each bow stroke in the capture or the range of a particular angle (e.g. the angle 

of the performer’s head with respect to the shoulders). The data for up and down 

bow strokes can be separated and a correlation of the data can be performed.  

The different types of offline statistics calculations we can perform on the vari-

ous types of analysis data include mean/average and standard deviation. 

In an offline context we create line graphs of a number of features to show the 

analysis on a per stroke basis. These line graphs are visualised and sonified after a 

performance has taken place. Using a signed line graph display it is possible to 

show a deviation from a base value. This can be used for example with the bow-

bridge angle to show the deviation from a parallel bow.  

One line graph we call a distance “displacement curve” which is a graph of the 

difference in distance travelled by the bow in comparison to a linear velocity 

stroke [21]. To calculate the displacement curve, we first accumulate the velocity 

for each frame in the bow stroke. This gives us 0,)( 1 ≥−= + tddtg tt
 which repre-

sents the distance travelled over the stroke. Next we subtract a normalised linear 

function 0,)( ≥= tttf , which leaves us 
0

( ) ( ) ( )

t

s t f u g u du= −∫  representing  

the displacement curve in relation to a linear-velocity bow stroke (see Fig. 7.6).  
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Fig. 7.6 Graph of the displacement curve for a bow stroke segment. 

The line graphs are useful to show how the velocity varies over the bow stroke. 

However, in some cases this could be too much information. By taking the stan-

dard deviation of the values from the bow stroke array it is possible to give a more 

general assessment of the feature for that stroke. For instance, in the case of the 

bowing angle, the standard deviation can provide an indication of the overall de-

gree of difference from a parallel bow. This is particularly relevant in order to 

simplify the sonification. 

7.3.4   Sonification in AMIR 

Features we sonify within the AMIR interface include: bow change (up/down), 

bow-bridge angle, bow height, which string, Bow section, bow velocity and accel-

eration, distance “displacement curve”. 

In our initial experiments with sonification of bow gesture analysis data, we at-

tempted to sonify continuously changing parameters in real-time, synchronous to 

the performance. We linked the bow-bridge angle to different parameters of a syn-

thesis patch and also investigated processing the sound of the instrument by apply-

ing distortions and harmonization to reflect changes in the extracted features. We 

found that when performing, continuous real-time auditory feedback was too dis-

tracting to the performer and difficult for them to interpret simultaneously with the 

instrument sound. For this reason we decided not to work further on continuous 

auditory feedback. We found that a much more useful and appropriate modality 

for real-time feedback is to inform the player using the simplest of auditory dis-

plays: an auditory alert/notification.  

7.3.4.1   Alerts 

We allow the user to set thresholds for certain parameters and when these thresh-

olds are crossed an alert is sounded. This informs the performer that certain crite-

ria have been met with minimum distraction.  For these alert notification sounds a 

simple electronic “beep” or an audio sample is used. AMIR consists of a selection 

of different notification samples appropriate for this purpose. 

The character of the notification can be changed depending on how frequently 

the threshold has been crossed. For example, if a player continuously repeats an 

error, the sound will increase in volume each time. If they start to improve and 

correct their error, the volume of the alert will decrease. We have used alert 
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sounds to monitor the bow angle, which string is played, the bowing height and 

the bow section. In each case the user defines an acceptable range for the parame-

ter using a visual interface. 

One significant issue with real-time sonification as described here is the latency 

of the alert. This is particularly important when the system is meant to be provid-

ing feedback on time-critical events such as the bowing rhythm or string cross-

ings. This is a situation when the 200 fps capture frequency of our motion capture 

system is not ideal, since it could introduce ~5ms latency in some cases. Also 

there is the latency of the network and the sound card used on the computer. Net-

work latency should be negligible on a cabled gigabit network.  

7.3.4.2   Sonified Line Graphs 

For offline analysis of the performance we explore the use of sonified line graphs 

[23] to display information about analysis features for each bow stroke. Sonified 

line graphs have been shown to be useful in a number of different situations and 

can help the visually impaired to interpret trends in data sets that would otherwise 

be difficult to access [6, 23]. 

To create the line graph, the continuous analysis parameters listed above are 

split into variable length 1D arrays based on the bowing segmentation, with each 

element in the array representing the analysis for one frame of motion data. For 

instance, a bow stroke that lasts one second will be represented by an array of two 

hundred elements when captured at 200fps. The line graph is visualised, and may 

be aligned with a waveform representation of the part of the audio recording that 

corresponds to the bow stroke (see Fig. 7.7). The graph may be sonified synchro-

nous to playback or alternatively, the user can step through the piece stroke by 

stroke.  

 

Fig. 7.7 Displacement curve visualization aligned to corresponding audio waveform. 

We have chosen to use pitch modulation of a synthesised waveform to sonify 

the line graph. For each bow stroke played in the performance, a fixed pitch tone 

is sounded from the left channel and a modulated pitch tone is sounded from the 

right. Spatial separation such as this should aid cognition, see [5]. In this way it is 

possible to hear the degree of deviation from the base pitch, which can be percep-

tually linked to the deviation of the analysis feature. We use a table-lookup oscil-

lator containing the waveform described by Neuwirth [25] which has been found 

to be particularly suitable for distinguishing pitch differences and easy to listen to 

in comparison to pure sine tones. An additive synthesis waveform was chosen 

over MIDI instrument sounds (as recommended in [6]) for a number of reasons. 
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Synthesising the tone in AMIR guarantees a stable fundamental frequency and can 

be more precisely controllable in terms of note onset and duration. This is impor-

tant for sonification that is synchronised with the playback of a recording. 

The tone can be adjusted so that it either equals the duration of the bow stroke, 

or is a fixed duration for each stroke.  The first option means that the feature in 

question can be temporally matched to the music being played, where as the sec-

ond option will give a more uniform representation of the stroke in comparison to 

other strokes. It should be noted that the playback of the recording may be slowed 

down and the duration of the sonified line graph is adjusted accordingly. This 

makes it possible to assess very fast strokes. 

The user may set the base pitch of the tone, for example they might set it to the 

tonic of the key of the passage that they are playing. The mapping of the modula-

tion can be changed, depending on the resolution to which the user wishes to study 

the performance, for example a very determined player could set the mapping to 

an extreme level in order to help him/her develop precise control of bowing 

movements. 

We have found that the features that are best suited to the line graph sonifica-

tion are the displacement curve, bowing height and the angle of the bow, since 

these can be represented as deviation from a base value. These features can natu-

rally be compared to a zero base value which would represent a) a linear-velocity 

stroke, b) a bowing with an equal distance between the fingerboard and bridge or 

c) bowing parallel to the bridge. Other features such as bow section, bow velocity 

and acceleration are not referenced against a base value. For these features only 

one tone is sounded since there is no base value. 

7.4   AMIR Validation 

To investigate quantitative measurements of the effectiveness of a new practice 

training tool and pedagogical scenario is a challenging and arguably musically du-

bious pursuit due to the vast number of factors involved and the highly subjective 

nature of music performance. We cannot measure a performance quantitatively as 

it involves many different aspects, interrelations and contexts. However we can 

measure a specific aspect of a performance quantitatively, for example, for bow-

ing technique we can look at the bow-bridge angle, usage of the correct part of the 

bow, amongst other things.  

Each instrumentalist is different in their playing style and in their pedagogical 

requirements. Likewise each piece of music demands different abilities from a 

player. For these reasons we designed the validation procedure so as to only com-

pare a student’s performance against their own performance of the same piece. 

The validation is designed with particular pieces that the subjects are working on 

and we use the measurements session by session to see the progress and improve-

ment focusing on specific features. 

By using different performers, and comparing their progress (improving spe-

cific aspects) achieved with and without using the i-Maestro technology, we be-

lieve we have created a fair test. 
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The validation sessions took place at the ICSRiM motion capture lab at the 

School of Music, University of Leeds. Test subjects were found through adverts 

placed in the University. Players were chosen mainly based on their availability 

(for the number of sessions and regular intervals). Ideally we would have liked to 

have been able to select a range of different abilities and ages, with the aim to col-

lect data for a selection of different players. Unfortunately we were limited by the 

availability of the test subjects.  

In total fifteen students were able to fully complete the six, hour long sessions 

that we required and commit to keeping up their practice. The participants ranged 

in ability and although all had achieved the equivalent to Trinity/ABSRM Grade 

8, not all had kept up their studies and level of standards. This is potentially a 

weakness in our test, but one that we had to make do with. 

7.4.1   Procedure 

To validate the Augmented Mirror scenario, we focus on two bowing features per-

tinent to each participant that can be analysed using AMIR. The player performs 

two passages from a piece (or two pieces) that are selected for suitability (by the 

subjects, with guidance from the validators). A specific section is chosen from 

each piece for the analysis and the player performs it three times in a row in order 

to increase the number of bow strokes used for the analysis, and therefore improve 

the reliability of the statistic. 

The player records the piece/s in a total of six sessions at roughly weekly inter-

vals, the first three are used to see how their performance changes when practicing 

without the help of the i-Maestro AMIR system. The improvement of playing 

technique may be measured by the changes of the percentages listed below be-

tween the recording sessions, which are calculated by manually observing the re-

cordings with the player and counting the errors in each of their two selected fea-

tures. The total number of bow strokes in the passage is counted and a percentage 

of bow strokes where there was an error related to the feature in question is calcu-

lated. The subjects were encouraged to be quite strict with their judgments. The 

fact that one player may judge the same playing differently to another does not af-

fect the validity of the results, since we only compare the player’s performances 

with their own performances – their judgments should hopefully stay the same be-

tween sessions. 

Players are instructed to practice at home as well as using the system, and to 

continue to focus on improving the two features. They are asked to maintain a 

consistent amount of practice between sessions, as best as possible, so as not to in-

fluence the results. 

The procedure is designed in this way in order to minimise the effects of the 

different levels of the participants and the different requirements and difficulties 

of the music pieces, including Debussy’s Cello concerto, Glasunow’s “Chant Du 

Menestrel, Bruch’s Violin Concert No. 1, Bach’s Partita No.3 and Mendelssohn’s 

Violin Concerto No. 2 in E minor, Op. 64. 
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7.4.2   Analysis 

The results of the summative validation have provided some interesting insights 

into the application of AMIR in a pedagogical scenario. In some cases the student 

continues to improve whilst they use the interactive feedback from the system. In 

other cases, the use of AMIR appears to bring a sudden awareness of the problem 

and they can react appropriately and resolve the technical issue quickly. After that, 

no further significant improvement can be easily achieved. In fact, in some cases 

the initial introduction of the tool disturbs the playing which can be seen by an in-

creased percentage of errors (e.g. Student D). In the subsequent session the student 

can adjust to the interactive feedback and take advantage of the support provided 

by AMIR.  
 

 

 

Fig. 7.8 Average % error for features for all students. 

From the comments received, it seems that the students are very enthusiastic 

about the system. It seemed that all the students involved got on well with the sys-

tem and quickly learnt how to use it. It was also clear to us that their performance 

improved as the sessions went on. Although we were controlling the set up and re-

cording procedure, we have no doubt that the students would have been able to do 

this, since they did not have any problems operating and understanding the other 

aspects, which are no more difficult really.   

7.5   Conclusions 

Learning to play an instrument is a physical activity. If a student develops a bad 

posture early on this can be potentially damaging later in his/her musical career. 

The technology discussed here may be used to develop and enhance awareness of 

body gesture and posture and to avoid these problems. This technology can be 

used to capture and analyze a performance in detail and has the potential to assist 

both teachers and students in numerous ways.  

AMIR has been successfully validated with a group of music student at the 

University of Leeds as well as several professional virtuosos. It has been found 

that 3D motion tracking, visualization and sonification can enhance the practicing 

of movement control by displaying/sonifying movement parameters that are not 

directly or objectively accessible to the student. For example, the perception of 

bow movement relative to the bridge may interfere with the student’s viewing per-

spective. 3D motion tracking can provide him/her with an objective recording of 
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movement. It adds to the visual feedback, which can be used in adapting the motor 

program to achieve a particular goal. 

The system can be used in different modalities, but has mainly been designed 

for use in a typical one to one instrumental lesson situation. The interaction model 

is therefore written to deal with this situation so the teacher is responsible for  

operating the system. The system could also be used by the student alone in a self-

learning environment, or even in a group lesson.    

This technology can also be used to capture current playing style (particularly 

body gesture and movements) beyond the typical audio visual recording. It is be-

ing used to capture and analyze multimodal data of musical performance for the 

contemporary performing arts test-bed of the CASPAR project [32, 33] which  

develops ontology modals to describe and represent the multimedia data their in-

ter-relationship which can be used for long term preservation [22] for future re-

performance, stylistic analysis and more generally a more detailed representation 

for the preservation of the performing arts. 
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Chapter 8 

Online Gesture Analysis and Control  
of Audio Processing 

Frédéric Bevilacqua, Norbert Schnell, Nicolas Rasamimanana,  

Bruno Zamborlin, and Fabrice Guédy
1
 

Abstract. This chapter presents a general framework for gesture-controlled audio 

processing. The gesture parameters are assumed to be multi-dimensional temporal 

profiles obtained from movement or sound capture systems. The analysis is based 

on machine learning techniques, comparing the incoming dataflow with stored 

templates. The mapping procedures between the gesture and the audio processing 

include a specific method we called temporal mapping. In this case, the temporal 

evolution of the gesture input is taken into account in the mapping process. We 

describe an example of a possible use of the framework that we experimented with 

in various contexts, including music and dance performances, music pedagogy and 

installations. 

8.1   Introduction 

The role of gesture control in musical interactive systems has constantly increased 

over the last ten years as a direct consequence of both new conceptual and new 

technological advances. First, the fundamental role of physical gesture in human-

machine interaction has been fully recognized, influenced by theories such as en-

action or embodied cognition [24]. For example, Leman laid out an embodied 

cognition approach to music [38], and, like several other authors, insisted on the 

role of action in music [27, 28 and 35]. These concepts resonate with the increased 

availability of cost-effective sensors and interfaces, which also drive the develop-

ment of new musical digital instruments where the role of physical gesture is cen-

tral. From a research perspective, important works have been reported in the 
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community at the NIME conferences (New Interfaces for Musical Expressions) 

since 2001.  

Using gesture-controlled audio processing naturally raises the question about 

the relationship between the gesture input data and the sound control parameters. 

This relationship has been conceptualized as a ”mapping” procedure between dif-

ferent input-output parameters. Several approaches of gesture-sound mapping 

have been proposed [1, 33, 34, 39, 63, 66 and 67]. The mapping can be described 

for low-level parameters, or for high-level descriptors that can be comprehended 

from a cognitive standpoint (perceived or semantic levels) [15, 32, 33 and 65]. 

Some authors also proposed to use emotional characteristics that could be applied 

to both gesture and sound [16 and 19].  

Most often in mapping procedures, the relationship is established as instantane-

ous, i.e. the input values at any given time are linked to output parameters [1, 23, 

34, 62 and 60]. The user must dynamically modify the control parameters in order 

to imprint any corresponding time behavior of the sound evolution. Similarly to 

traditional instruments, this might involve important practice to effectively master 

such a control. Nevertheless, mapping strategies that directly address the evolution 

of gesture and sound parameters, e.g. including advanced techniques of temporal 

modeling, are still rarely used. Modeling generally includes statistical measures 

over buffered data. While such methods, inspired by the “bag of words” approach 

using gesture features or “bag of frames” using sound descriptors [3], can be pow-

erful for a classification task, they might be unfit for real-time audio control where 

the continuous time sequence of descriptors is crucial. 

We present here a framework that we developed for gesture-controlled interac-

tive audio processing. By refining several prototypes in different contexts, music 

pedagogy, music and dance performances, we developed a generic approach for 

gesture analysis and mapping [6, 7, 10, 29, 30 and 52]. From a technical point of 

view, this approach is based on mapping strategies using gesture recognition tech-

niques, as also proposed by others [4, 5, 25 and 22]. Our approach is based on a 

general principle: the gestures are assumed to be temporal processes, characterized 

by temporal profiles. The gesture analysis is thus based on a tool that we specifi-

cally developed for the analysis of temporal data in real-time, called the gesture 

follower. Furthermore, we introduced the notion of temporal mapping, as opposed 

to spatial mapping, to insist on the temporal aspects of the relationship between 

gesture, sound and musical structures [10 and 54]. This distinction between spatial 

and temporal views of control was also pointed out by Van Nort [63]. Temporal 

mapping brings to focus the time evolution of the data rather than their absolute 

values for the design of musical interaction systems. This approach relies on the 

modeling of specific temporal profiles or behavior obtained through either a train-

ing process or set manually [11, 20, 23, 40, 51 and 53]. 

This chapter is structured as follows: first, we present the general architecture, 

followed by a description of the gesture recognition system and temporal mapping 

procedure; finally, we describe one possible interaction paradigm with this 

framework that was used in several different applications.  
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8.2   Gesture Capture and Processing 

The general architecture of our system is illustrated in Fig. 8.1. Similar to the de-

scription of digital musical instruments given by [66], we considered four distinct 

parts: gesture capture, gesture processing, mapping, and audio processing. The 

specific elements of the gesture analysis and mapping are described in detail in the 

next sections. Note that this architecture is supported by a set of software libraries 

that greatly facilitates its design and rapid prototyping [9, 56, 57 and 58], in pro-

viding tools for the storage and processing of time-based data, such as gesture and 

sound data. 

8.2.1   Gesture Capture System 

The system was designed for a broad range of input data, obtained from various 

heterogeneous capture systems (see [42] for a review). We cite below the different 

types of systems that we have involved in our projects, clearly illustrating the va-

riety of data types that can be taken into account. 

 
• 3D spatial data obtained using motion capture data 

• Image analysis parameters obtained from video capture 

• Gesture data obtained from inertial measurement units, including any combina-

tion of accelerometers, gyroscopes and magnetometers (obtained through proto-

types or commercial devices including game and mobile phone interface) 

• Gesture data obtained from sensors such as FSR (Force Sensing Resistor), 

bend, strain gauge, piezoelectric, Hall, optical, ultrasound sensors 

• Tablet and multitouch interfaces 

• Sliders and potentiometers 

• MIDI interfaces 

• Sound descriptors derived from sound capture 

• Any combination of the above 

 
Taking into account the heterogeneity of possible input data, the term “ges-

ture” can refer to completely different types of physical quantities. Nevertheless, 

any of these inputs can still be considered as multidimensional temporal data. In 

order to work efficiently with such different input, we separate the data stream 

analysis into two procedures: 1) the preprocessing that is specific to each input 

system and 2) the online temporal profile analysis that is generic (as illustrated 

in Figure 8.1). 
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Fig. 8.1 General architecture for gesture-controlled audio processing 
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8.2.2   Pre-processing 

The pre-processing procedure includes: 

 

• Filtering (e.g. low/high/band pass) 

• Re-sampling to ensure a constant sampling rate 

• Data fusion and dimension reduction (e.g. using Principal Component Analysis) 

• Normalization 

• Segmentation (optional) 

 

The pre-processing is designed specifically for a given gesture capture system, 

taking into account its particularities. The preprocessing should ensure that the da-

ta is formatted as a temporal stream of vectors x(t) of dimension M, regularly 

sampled over a time interval ∆t. Thus, the preprocessed data can be seen as series 

x1, x2, ..., xn. A recorded gesture from t  =  0 to t  =(N-1)∆t is stored in a matrix G 

of dimension N×M.  

8.2.3   Temporal Profiles Processing 

The processing is based on machine learning techniques, and thus requires pro-

ceeding in two steps. The first step corresponds to the training of the system using 

a database: this is called learning procedure. During this step, the system computes 

model parameters based on the database (described in the next section). The sec-

ond step is the online processing, which corresponds to the actual use of the sys-

tem during performance. During this step, the system outputs parameters used for 

the audio control. 

8.2.3.1   Modeling and Learning Procedure 

Let us first summarize our requirements. First, we need a very fine-grained time 

modeling system so that we can consider “gesture data” profiles at several time 

scales. This is desirable when dealing with musical gestures [39]. Second, for 

practical reasons, we wish to be able to use a single example in the learning proc-

ess. This is necessary to ensure that the gesture vocabulary can be set very effi-

ciently or easily adaptable to idiosyncrasies of a particular performer. We found 

that this requirement is of crucial importance when working in pedagogical or  

artistic contexts. 

These requirements led us to develop a hybrid approach between methods such 

as Hidden Markov Models (HMM), Dynamic Time Warping (DTW) and Linear 

Dynamic Systems (LDS) [41, 43, 46, 47, 61 and 68]. Interestingly, Rijko and co-

workers also working in a performing arts context, proposed similar approaches 

[48, 49 and 50].  

DTW is a common method for gesture recognition consisting in temporally 

aligning a reference and a test gesture, using dynamic programming techniques.  
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This allows for the computation of a similarity measure between different gestures 

that is invariant to speed variation. HMM have also been widely used for gesture 

recognition. They can also account for speed variations, while benefiting for a 

more general formalism. HMM allows for data modeling with a reduced number 

of hidden states, which can be characterized through a training phase with a large 

number of examples. While more effective, the standard HMM implementation 

might suffer from coarse time modeling. This might be improved using Semi-

Markov Model [21] or Segmental HMM [2, 12 and 13]. 

We proposed a method that is close to DTW, in the sense that we keep the us-

age simplicity of comparing the test gesture with a single reference example, as 

well as the advantage of applying fine-grained time warping procedure. Neverthe-

less, we present our method using an HMM formalism [47], for the convenience 

provided by a probabilistic approach. As such, our method is based on the forward 

procedure in order to satisfy our constraint of real-time computation, while stan-

dard DTW techniques require operating on completed gesture [5]. Nevertheless, to 

guarantee our requirements, i.e. a fine-grained time modeling and a simplified 

training procedure, we adopted a non-standard HMM implementation, previously 

described in [7, 8 and 10].  

We recall here only the main features of our implementations. Similar to exam-

ple-based methods, we associate each gesture template to a state-based structure: 

each data sample represents a “state” [14]. Furthermore, a probability density 

function is associated to each state, setting the observation probability of the data. 

This structure can then be associated to an HMM (Figure 8.2). 

 

 

Fig. 8.2 HMM structure associated to a gesture template 

The fact that the sampling rate is regular simplifies the learning procedure. In 

this case, all transition coefficients of the same type between states (a0=stay, 

a1=next, a2=skip, etc) must share identical values, which can be manually set using 
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prior knowledge. See [10] for choice examples in setting these transition probabil-

ity values.   

The learning procedure consists simply of recording at least one gesture, stored 

in a matrix G (N×M). Each matrix element is associated to the mean µ i of a nor-

mal probability function bi, corresponding to the observation probability function. 

Using several gesture templates corresponds to recording and storing of an array 

of Gk matrices.  

The value of the variance can also be set using prior knowledge. For example, 

prior experiments can establish typical variance values for a given type of gestures 

and capture systems. A global scaling factor, which operates on all the variance 

values, can be manually adjusted by the user. 

8.2.3.2   Online Processing: Time Warping and Likelihood Estimation 

The gesture follower operates in real-time on the input dataflow. The live input is 

continuously compared to the templates stored in the system using an HMM on-

line decoding algorithm. The gesture follower provides in real-time two types of 

parameters that are used in the mapping procedure.  

First, during the performance, it reports the time progression index of the live 

gesture given a pre-recorded template. This corresponds to computing the time 

warping during the performance as shown in Fig. 8.3. We call this procedure “fol-

lowing”, since it is similar to the paradigm of score following [21 and 59]. Note 

that as explained above, in the case of the gesture follower, the Markov chains are 

built based on recorded templates, while in the case of score following the Markov 

chains are built using a symbolic score.  

 

 

Fig. 8.3 Online time warping of the gesture profile 

Second it returns the likelihood value that can be interpreted as the probability 

of the observed gesture being generated by the template. This can be used as a si-

milarity measure between the gesture being performed and the templates [18]. 
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The decoding is computed using the forward procedure [47]. The state prob-

ability distribution αt(i) of a series of observations O1....Ot is computed as follows, 

considering the observation probability bi(Ot): 

 

1. Initialization 

α1 i( ) = π ibi O1( )                                             1≤ i ≤ N 

where πi is the initial state distribution. 

 

2. Induction 

bi Ot( )=
1

σi 2π
exp − Ot − µi( )
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where aij are the state transition probabilities (note that bi(Ot) is expressed here 

for the case M=1, the generalization to M>1 is straightforward)  
 

The time progression index and the likelihood associated to the observation se-

ries is updated at each new observation from the αi(t) distribution: 

time progression index(t)= argmax α t (i)[ ] 

( ) ( )
1

N

t

i

likelihood t iα
=

=∑  

These parameters are output by the system continuously, from the beginning of 

the gesture. The likelihood parameters are thus available before the end of the ges-

tures, which could allow for the determination of early recognition, as also pro-

posed by Mori [45]. 

Generally, the computation is run in parallel for k templates, returning k values 

of the time progression index and the likelihood. The argmax[likelihood(t)] re-

turns the likeliest template for the current gesture at time t.  

8.3   Temporal Mapping  

Different types of mappings have been identified, such as explicit or implicit map-

ping [63]. In explicit mapping, the mathematical relationships between input and 

output are directly set by the user. On the contrary, indirect mapping generally re-

fers to the use of machine learning techniques, implying a training phase to set pa-

rameters that are not directly accessed by the user [17, 22 and 25]. 
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As shown in Fig. 8.1,, our architecture includes both explicit and implicit types 

of mapping that are operated simultaneously. Explicit mapping has been largely 

discussed and is commonly used. We discuss below more specifically the implicit 

mapping used in conjunction with the gesture follower. Precisely, as discussed 

previously, we introduce a temporal mapping procedure by establishing relation-

ships between the gesture and audio temporal profiles. The temporal mapping can 

be seen as a synchronization procedure between the input gesture parameters and 

the sound process parameters. Technically, this is made possible by the use of the 

time progression index that the gesture follower provides continuously: the pacing 

of the gesture can therefore be synchronized with specific time processes.   

Fig. 8.4 illustrates a simple example of temporal mapping: two temporal pro-

files are mapped together, namely hand acceleration and audio loudness. Please 

note that hand acceleration and audio loudness were chosen here for the sake of 

clarity, and that any gesture data or audio processing parameters could be used. In 

this example the gesture data is composed of three phases illustrated by colored 

regions: one first phase (dark grey), an exact repetition of this first phase (dark 

grey), and a third different phase (light grey). The audio loudness data is struc-

tured differently: it is constantly increasing up to a maximum value, and then con-

stantly decreasing.  

The temporal mapping consists here in explicitly setting a relationship between 

these two temporal profiles: values of acceleration and loudness are linked to-

gether according to their history. The mapping is therefore dependant on a se-

quence of values rather than on independent single values. For example, vertical 

lines in Fig. 8.4 all indicate similar acceleration values. In particular, lines 1 and 3 

(resp. 2 and 4) have strictly identical values (all derivatives equal) as they corre-

spond to a repeated gesture. One can note that interestingly these identical gesture 

values are mapped to different audio values, as shown by the values pointed by 

lines 1 and 3 (resp. 2 and 4). In our case, the mapping clearly depends on the time 

sequencing of the different gesture values and must be considered as a time proc-

ess. While gesture reference profiles are generally directly recorded from capture 

systems, audio input profiles can be created by the user manually, or derived from 

other modeling procedures. For example, recorded bowing velocity profiles could 

be used as parameters to control physical models. Using the temporal mapping, 

these velocity profiles could be synchronized to any other gesture profile. This is 

especially interesting when the target velocity profile might be difficult to achieve, 

due to biomechanical constraints, or particularities in the response of the capture 

system (e.g., non linearities).  

This formalization of temporal mapping includes also the possibility to use par-

ticular temporal markers to trigger processes at specific times (generally associ-

ated with the use of cue-lists). For example, in Fig. 8.4, line 5 (as well as any 

other) could be used as such a marker. Therefore, temporal mapping can be ex-

tended to the control of a combination of continuous time profiles and discrete 

time events, synchronized to the input gesture data. 
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Fig. 8.4 Toy example of temporal mapping between hand acceleration audio loudness. 

Mapped gesture data is composed of three phases: one first phase (dark grey), a repetition 

of this first phase (dark grey) and a third different phase (light grey). Vertical lines indicate 

similar gesture values.  

Momeni and Henry previously described an approach that also intrinsically 

takes into account temporal processes in the mapping procedure. Precisely, they 

used physical models to produce dynamic layers of audio control [31 and 44]. In 

our approach, we rather leave users free to define any shape for the audio control, 

whether based on physical dynamics or designed by other means. 

8.4   Example Use with Phase-Vocoder Techniques  

The direct combination of the gesture follower with an advanced phase-vocoder sys-

tem [55] allows for the implementation of a set of applications where a gesture can 

control continuously the playing speed of an audio file [7 and 10]. In practice, this 

type of application can be efficiently built using the method illustrated in Fig. 8.5.  
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Fig. 8.5 Possible use of the general framework: the user first proposes a gesture while lis-

tening to the sound, and then play the sound with temporal and spatial variations. 

 

First, the user must record a gesture while listening to an audio file. This step is 

necessary for the system to learn a gesture template that is actually synchronous 

with the original audio recording. The audio recording and the gesture can be sev-

eral minutes long.  

The second step corresponds for the user to re-perform the “same gesture”, but 

introducing speed and intensity variations compared to the reference template. The 

gesture follower is used to temporally synchronize the gesture with the rendering 

of the audio file. In other words, the temporal mapping procedure allows for set-

ting a direct correspondence between the gesture time progression and the audio  
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time progression. The audio rendering is performed using a phase-vocoder, ensur-

ing that only the audio playback speed is changed while preserving the pitch and 

timbre of the original audio recording. 

This application allows for the design of a “conducting scenario”, where the 

gesture chosen by the user can be used to control the playing speed of a recording. 

From an application perspective, this could be applied to “virtual conducting” ap-

plications (see for example [36 and 37]. The advantage of our application resides 

in the fact that the gesture can be freely chosen by the user (e.g. dance move-

ments) by simply recording it once. Precisely, this application can accommodate 

directly both standard conducting gestures and original gestures invented by the 

user, which can lead to novel interaction design strategies. 

8.5   Conclusion 

We described a general framework for gesture-controlled audio processing which 

has been experimented with in various artistic and pedagogical contexts. It is 

based on an online gesture processing system, which takes into account temporal 

behavior of gesture data, and a temporal mapping procedure. The gesture process-

ing makes use of a machine learning technique, and requires pre-recorded gesture 

templates. Nevertheless, the learning procedure operates using a single recording, 

which makes the learning procedure simple and easily adaptable to various gesture 

capture systems. Moreover, our approach could be complemented using Segmen-

tal HMM [2, 12 and 13] or hierarchical HMM [26] in modeling transitions be-

tween gesture templates, which is missing in the current approach. This would al-

low for a higher structural level of sound control.  
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Chapter 9 

Automated Piano: Techniques for Accurate 
Expression of Piano Playing 

Eiji Hayashi 

Abstract. The challenge of developing an automated piano that accurately pro-

duce the soft tones of a desired performance which is a problem encountered by 

pianists themselves, led to a reconsideration of the touch involved in producing 

soft piano tones. For this purpose, the behavior of the piano’s action mechanism 

was measured and observed based on a weight effect which is one of the pianist’s 

performance techniques, and the accurate expression of soft tones was realized. 

Furthermore, although double-strikes by the hammer and non-musical sounds oc-

cur during the performance of soft tones, such sound effects were cancelable. This 

Chapter describes the development of a superior automated piano which is capable 

of reproducing a desired performance with expressive soft tones. The piano’s 

hardware and software have been developed, and the piano’s action mechanism 

has been analyzed with reference to the “touch.” This fundamental input wave-

form can be used to accurately and automatically reproduce a key touch based on 

performance information for a piece of classical music. The user can accurately 

create an emotionally expressive performance according to an idea without mov-

ing the body of the pianist. 

9.1   Introduction 

Automated pianos; including barrel-operated, roll-operated and reproducing  

pianos, were commonly manufactured in the late 19th and early 20th centuries  

[21, 23]. Called the “Pianista”; a pneumatically-operated piano, was made and pa-

tented by Fourneauz (a Frenchman) in 1863. The Pianola, manufactured in 1902 

by Aeolian Company, and the same company later made the Duo-Art reproducing 

piano in 1913. In America the Welte Mignon (M.Welte & Sons), the Duo-Art 

(Aeolian Company) and the Ampico (American Company) were famous reproduc-

ing piano called the big three. In Europe, the “Hupfield-Dea” and the “Philipps-

Duca” were well-known. The earlier models played back the notes by simply  

following the length of slits on a roll, which represented the actual length of the 
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notes to be played. They could not, however, vary the volume of the note being 

played. The reproducing pianos that followed in the early 1910's; however, fea-

tured volume control and those had considerably improved the ability to record 

and play back music compared to the earlier roll-operated pianos.  

In recent years, Yamaha has marketed a piano player, while Bösendorfer mar-

keted a computerized grand piano. Such pianos use optical sensors attached to the 

keys, hammers, and pedals, allowing performance information to be created from 

actual key, hammer, and pedal functions when the pianist performs. An actuator 

using a solenoid for the drive system is attached to the bottom of the rear edge of 

the key, enabling an automatic performance. The performances are characterized 

by a narrow dynamic range, due to the unstable reproduction of soft tones as well 

as difficulties playing the same key with fast repetitions. These automated pianos, 

often used in musical education or in the lounge of a hotel, are also used for the 

evaluation of automatic computer-generated performance in music-related  

research fields. 

Currently available commercial automated pianos have some limitations in re-

producing soft tones, resulting in difficulties to accurately reproduce the full range 

of expression of a complete performance. In addition, little experimental research 

has been done on the motions of the action of a grand piano [1, 2, 3 and 4], which 

has many individual parts, including the keys and hammers. A device that can 

more accurately reproduce a grand piano performance is desired. Furthermore, if 

the performance data of a gifted, deceased player can be obtained, it will also be-

come possible to reproduce that player’s live performances on an automated piano 

using the performance data. 

 

Fig. 9.1 Automated piano: FMT-I. 

The author has developed an enhanced automated piano with which a user can 

reproduce a desired performance. See Figure 9.1 [5, 6]. The piano’s hardware and 

software have been developed, and the piano’s action mechanism has been ana-

lyzed [7, 8]. The proposed automated piano employs feedback control to follow up 

an input waveform for a touch actuator which uses the position sensor of an eddy 

current for striking a key. This fundamental input waveform is used to accurately 

and automatically reproduce a key touch based on the performance information of 

a piece of classical music. 

In order to reproduce an accurate musical performance by an automated piano, 

the user may needs to edit thousands of notes in a score of music [9, 10, and 11]. 

However, since the automated piano can accurately reproduce music, the user can 

accurately create an emotionally expressive performance according to an idea 
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without having dexterity skills like a pianist. Since a user can create a desired  

expression with the automated piano, he or she can also make variations in the 

performance following repeated listening, allowing the user to make changes in 

their expressive performance.  

The automated piano was exhibited at EXPO 2005 held in Aichi (Japan) and 

The Great Robot Exhibition in National Museum of Nature and Science in 2007 

held in Tokyo (Japan), where the functions of the proposed system were demon-

strated. 

 

Fig. 9.2 Automated piano system. 

In addition, the author has developed an interactive musical editing system that 

utilizes a database to edit music more efficiently and user-friendly [24]. The pro-

posed system has been conceived so that it can search for similar phrases through-

out a musical score and evaluates the style of the performance. The method of 

searching for similar phrases uses Dynamic Programming (DP) matching.  

This chapter describes the automated piano, the behavior of the piano’s action, 

and the “touch” system, which allows the piano to achieve the stable reproduction 

and repetition of a soft tone on the same key. 

9.2   System Architecture of the Automated Piano 

The system is composed of a generalization/management control computer  

system, a control system, and an actuation system, as shown in Figure 9.2. The  
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touch actuator [12]; as shown in Figure 9.3 uses a non-contact displacement  

sensor (AEC: Gap sensor) which applies an eddy-current to ensure that a key is 

touched correctly. A PWM (Pulse Width Module) amplifier (Servo land corpora-

tion) which can output a maximum of 9 A was used for the touch actuator. To 

place the actuator unit for each of the 88 keys, the width was set to 23 mm less 

than that of a white key, which is about 23.5mm. To obtain rapid response, we use 

a lightweight rotor in the actuator, made by manufacturing an epoxy resin lami-

nated plate, and 2 coils of aluminum ribbon wire (1.4 x 0.25 mm) were embedded 

in the rotor, as shown in Figure 9.3. The developed touch actuator could realize 

high-speed response to a band width of 80 Hz. The pedaling actuator, as shown in 

Figure 9.4, was designed as a combination of a dc motor and a self-locking  

mechanism utilizing a worm gear and wheel. 

Sensor

Sensor Coil

Coil

Magnet

RotorTarget  plate

Hamm er head

Shank

Drop screw

Hamm er roller

Wippen

Jack

Repet it ion lever

 Wippen heel

Regul at ing button Backcheck

Capstan screw

Damper

St ring

Cushion cloth

Jack tail

 

                          (a) Arrangement on a grand piano                                    (b) touch actuator 

Fig. 9.3 Touch actuator. 

In the generalization/management control computer system, 90 sets of onboard 

computers supply an input waveform to several touches and pedal actuators simul-

taneously during musical reproduction. A dual-ported RAM was used for the in-

terface, allowing a high-speed transfer of data for creating a waveform.  

The proposed system and the user’s interface of the system are shown in  

Figures 9.5 and 1.6 [13, 14, 15, 22, 24], respectively. A user edits the performance 

information data using the editing software shown in Figure 9.6. The performance 

information data consists of the five parameters: tone, volume, the beginning time 

of the tone, the interval time of the tone and bar information. Those parameters are 

referred as: key, velo, step, gate, and bar, respectively. The user edits the music by 

changing these values in the performance information. 
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                     (a) Arrangement on a grand piano                            (b) View of pedal actuator 

Fig. 9.4 Pedal actuator. 

 

Fig. 9.5 Sketch of software for editing and reproducing. 

• Key: The key number corresponds to note number of MIDI from 21 to 108. 

• Velo: The velo shows key-depressing strength. The value of velo corre-

sponds to the velocity of MIDI from 0 to 127. 

• Gate: The gate time shows duration of sound. The unit of gate time is a mil-

lisecond, and it corresponds to the interval of time from note-on to note-off 

for a certain key in MIDI. 

• Step: The step time shows an interval between a given note and the next 

note. The unit of step time is a millisecond. 

• Bar: The bar information is convenient for the user to edit a piece of classi-

cal music. 
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Fig. 9.6 Application display of the editing support system. 

In order to assist the user in arranging music according to their intentions, a series 

of databases were implemented with information about the behavior of the piano’s ac-

tion, music theory, e.g., information about musical grammar and basic musical reinter-

pretation, and the user’s preferences regarding musical reinterpretation, as follows:  

• Behavior database: This database, which is used to build the dynamic cha-

racteristics of each key, has parameters describing the volume of the sound 
based on the analysis of the piano-action mechanism’s behavior (see Figure 
9.7). When the user reproduces the performance information data, the soft-
ware transforms it into the drive waveform. The author has created drive 
waveforms for the touch actuator for every key corresponding to the notes 
in the performance information data using this database.  

• Rules Database: This database has the architecture of the musical grammar 
that is necessary to interpret symbols in the musical notation. 

• Score Database: This database has symbols including notes, and time sig-
natures, rests, and so on in musical notation. Symbols were pulled together 
in order bar by bar, and also the bar symbols were arranged a time series. 

• Preference Database: This database stores the user’s preferences regarding 
performance characteristics. The expressions are defined by the relation-
ships between tempo and dynamic, and their basic data structures are  
described in the following section. 

9.3   Method of Transformation Process for Reproduction 

In order to create a drive waveform for the touch actuators, the author proposed to 

divide a key strike and its return to its original position into four regions, A-D as 

shown in Figure 9.7, and the result of the analysis was included in the behavior 

database for each key. The key strike was divided into the four sections as  

follows: 

• Section A: The duration of time between the moment when the key is 

struck and  the hammer strikes the strings. 

• Section B: The contact time of the hammer against the strings. 
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Fig. 9.7 General histories of key and hammer in the general touch case, since the hammer 

has an initial velocity at the escapement point, it independently breaks contact from other 

parts in the piano’s-action and strikes a string. The hammer keeps in contact with the string 

from first contact of the string until it breaks contact again. After that the hammer rebound-

ing from the string drops to the repetition lever, and the back check holds the hammer if the 

key is being held at the key’s bottom-most point. 
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Fig. 9.8 Translating method from performance information 
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• Section C: The time when the hammer and strings separate until the ham-

mer returns to its original position, or the time when the key is fully de-

pressed (section U) until the hammer returns to its back check, or until the 

hammer comes to rest on a repetition lever, depending on how the hammer 

is set up. At point “a” the hammer roller makes contact with the repetition 

lever, and the hammer pushes down the repetition lever. At point “b” the 

bottom of hammer head makes contact with the back check. Finally, at 

point “c” the hammer goes into a stall. 

• Section D: The time when the key is released until the hammer comes to 

rest at its original position by the influence of its gravity. If a key for the 

next touch is depressed again before “g” point in time, it is difficult to ob-

tain the desired sound, because the key separates from other parts during the 

term of d-e and f-g. 

204,204,204,41,39,35,33,27,45,34,17,63
199,199,199,48,42,36,34,29,48,38,23,62
194,194,194,48,42,36,34,29,48,38,23,61
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172,172,172,48,42,36,34,29,48,38,23,57
168,168,168,51,44,38,36,29,49,39,21,56
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Fig. 9.9 Sample of behavior database data. 
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Fig. 9.10 Piano’s- action mechanism 
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When the input waveform for the touch cannot be created, the input waveform 

is created using the data indicating an increased volume. It has been found that 

even if the music has a slow tempo, the desired performance cannot be achieved 

at the part of the performance that involves the repetition of the same key with a 

soft tone. 

The transformation processing method [5] creates an input waveform for the 

driving actuator from performance information, as shown in Figure 9.8. The input 

waveform for each touch is created for each key, referring to the data in the behav-

ior database describing the volume of the sound (Vo), as shown in Figure 9.9. The 

letters in Figure 9.8 correspond to the letters in Figure 9.9. 

9.4   Performance of Soft Tones 

With sufficient training, pianists can learn to understand the behavior of a piano’s 

action mechanism, which is a complex device made of wood, leather, and felt (see 

Figure 9.10). This mechanism allows the pianist to accurately control the dynam-

ics of his or her performance, even if small mistakes are made. 

The sound of many currently available automated pianos is inaccurate regard-

ing musical dynamics because the solenoid does not allow a key to be struck in a 

way that accurately mimics what occurs during a real performance. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9.11 Escapment in piano’s- action. 

9.4.1   The Piano’s - Action Mechanism 

When a key is depressed slowly, the wippen moves upward. In the initial move-

ment, the repetition lever pushes up the hammer roller (attached near the rotational 

center of the shank), and then the jack pushes up the hammer roller, and the ham-

mer head moves toward the string. As the key is depressed further, the jack tail 

reaches the regulating button (referred to as the "escapement point" in the follow-

ing discussion) as the hammer head comes within several millimeters of the string. 

After that, the jack is forced by the regulating button to rotate and disconnect itself 

from the hammer roller. This is referred to as the "escapement" in the following 

discussion (see Figure 9.11), and it becomes the end spot for the rising motion of 

Damper

Back Check

Regulating 
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the hammer. If the key is depressed extremely slowly, the hammer falls on the 

repetition lever without striking the string. In cases where the key is struck with 

the usual force, the hammer will have acquired sufficient velocity at the escape-

ment point to continue and strike the string. 

The suggested dynamic model of the piano’s action is shown in Figure 9.12. 

The relationship between the hammer string-striking speed and various touches, 

the dynamic response at constant speed, at constant acceleration, and a modified 

constant speed of key, are shown in Figures 9.13 – 1.15. Problems occur when 

there is a constant speed and a constant acceleration in soft tone less than about 1 

m/s of hammer string-striking speed, i.e., along a large gradient. This problem was 

solved by developing a touch of a modified constant speed. 

 

Fig. 9.12 Suggested piano’s action model. M is the mass of the hammer head, and K is the 

spring constant, which translates the elasticity of all the piano-action parts, including the 

elasticities of the key, the wippen, the hammer roller, and the shank, to the position of the 

hammer head. 
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Fig. 9.13 Relationship between the key speed and the hammer string-striking velocity. 
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In the piano’s action described in this section, the ω1 
and ω2 natural frequencies 

used in this analysis were 81.7 rad/s and 113 rad/s, respectively.  When the ham-

mer shank was clamped as shown in Figure 9.16, its natural frequency (f) was 

found to be approximately 440 rad/s. Based on this value, it can be predicted that 

the natural frequencies of the individual wooden parts that make up the action, ex-

cept for the felt found on the wippen heel and the hammer roller, are greater than 

the natural frequencies ω1 
and ω2. Furthermore, the natural frequency of the pi-

ano’s action (except for the felt), estimated by a series-type synthetic method, will 

be greater than the natural frequency of ω1 
and ω2. This indicates that the stiffness 

of the felt has a significant effect on the physical values of the piano’s action  

mechanism. 
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Fig. 9.14 Relationship between the key speed and the hammer string striking velocity. 
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Fig. 9.15 Relationship between the key acceleration and the hammer string striking velocity. 
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9.4.2   The Problem of Reproducing Soft Tones 

The creation of a soft tone appears to depend largely on the hammer’s behavior in 

section C after the hammer has struck the strings. In an actual performance, the 

portion marked with an asterisks in Figure 9.17, is increased greatly and the ham-

mer may approach the strings again, and a double- strike may be generated  

instantly as the hammer “bounces” against the string. 

The sound generated by such a movement differs from the one produced by the 

usual hammer strike. In this chapter, the double-strike sound during a soft sound will 

be called a “non-musical sound”. Although such a non-musical sound is faint, during 

a soft section of a performance such a sound will be clear. In an actual performance, 

dissonance is caused by a combination of various elements, such as tempo, the 

length of the sound between the notes, the strength with which notes are played, and 

the pedal operation. Therefore, when pianists hear dissonance, they will deal with it 

in terms of these factors. In the same way, the user of our automated piano can 

change performance data and they can erase the sound of the dissonance. 

 

Fig. 9.16 Free vibration of hammer clamped at center of rotation. 
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Fig. 9.17 Behaviors of key and hammer during a soft tone. 
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Although we thought until now that such a non-musical sound was peculiar to 

the developed automated piano, such sounds can be heard on the recordings of 

great pianists if listened to closely. 

An acoustic specialist told us that old master tapes that have not been processed 

after a performance allow the listener to really appreciate the performances of the 

great pianists of the past. Although recognizing non-musical sounds in a perform-

ance requires experience, such sounds can be discovered in the performances of 

Kempff, Gould, Backhaus, and Michelangeli. The parts of the performances, in 

which they generated such kind of sounds, were the same parts of the perform-

ances where we were taking pains to remove sounds. 

As an example, bars 5 to 7 of the score of Beethoven’s piano sonata No. 14, 

The Moonlight Sonata, are shown in Figure 9.18, and the sound waveforms of 

bars 5 and 7 are shown in Figure 9.19 (a) and (b), respectively. The difference be-

tween (a) and (b) is that (a) does not contain a non-musical sound, while (b) does. 

The place where the non-musical sound is generated is in the note (dotted half 

note: G#) marked by the arrows in (b). 

 

Fig. 9.18 Bars 5-7 from Beethoven’s Piano Sonata No.14, "Moonlight". 

 
 
 
 
 
 
 

(a) Sounds of G# in bars 5-6 

 
 
 
 
 
   
 
 

(b) Sounds of G# in bars 6-7 

Fig. 9.19 Sound waveforms of (a) G# in bars 5-6 and (b) G# in bars 6-7. 

*
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Actually, several people were asked to listen to the performance without first 

being informed of what to listen for on the first audition. We found that the differ-

ence in sound between (a) and (b) could not be recognized on the first trial. After 

being told what to listen for, after several auditions the non-musical sound could 

be recognized and the difference between the performances was noted. 

Though such sounds can be identified aurally, the difference between their 

presence and absence, as shown in Figure 9.19 (a) and (b), is not easily measured 

or analyzed electronically. Thus, we tried to clarify this sound based on the meas-

urement of the behaviors of the key and hammer. 

9.5   Behavior of the Piano’s Action during a Soft Tone 

In order to understand the non-musical sound, the author considered a behavior of 

the piano’s action again on a soft tone. The behavior of the piano’s action during 

the creation of a soft tone is shown in Figure 9.20. The behavior of the hammer 

describes a key velocity of 0.075 m/s and a hammer velocity of 0.6 m/s, at a vol-

ume of about mp - pp (mezzo piano to pianissimo). 

In the general touch case, since the hammer has an initial velocity at the es-

capement point, it independently breaks contact from other parts in the piano’s ac-

tion and strikes a string. The hammer keeps in contact with the string from first 

contact of the string until it breaks contact again. After that the hammer rebound-

ing from the string drops to the repetition lever, and the back check holds the 

hammer if the key is being held at the key’s bottom-most point.  

Along the hammer’s movement from the hammer breaks contact again, the 

hammer-roller touches the repetition lever, and then the hammer pushes down the 

repetition spring with the repetition lever by a power of the reaction when it re-

bounded from the string.  When the hammer roller pushes the repetition lever fur-

ther down, the lower side of the hammer comes into contact with the back check.  

The force of the hammer decreases by degrees as a consequence of the contact be-

tween the back check and the lower hammer head.  Finally, the back check holds 

the hammer. As the key is retained at its bottom-most point, the sound is sustained 

because the damper is released. 

The author opinions regarding the soft tone [17, 18 and 19] are as follows: 

• Section A: The velocities of the key and the hammer are slow, and the time 

between the key strike and the striking of the hammer is long, making the 

hammer strike the strings at a low velocity. 

• Section B and C: As shown in Figure 9.20, the hammer isn't fixed to the 

back check when the key is kept fully depressed, because the rebound  

velocity of the hammer is slow after it strikes the string. Consequently,  

the hammer comes to rest at a high position on the repetition lever  

(Figure 9.21). 

The rebounded hammer depresses the spring in the repetition lever  

because its force is less than the force to fix it by the back check. The 

hammer is then flipped by the back check. After that, according to the slow 

restoration of the spring, the hammer goes up with the repetition lever. 
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Since the hammer is not fixed to the back check after the hammer strikes 

the strings, the duration of section U until the hammer comes to rest stably 

on the repetition lever increases sharply. 

• Section D: The potential energy becomes large due to the high position, 

and the duration until the key and the hammer come to rest in their original 

position also increases. 
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Fig. 9.20 General behavior of a soft tone. 
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ity of the hammer. 

The height at which the hammer is fixed on the back check and the interval 

time of section U change according to the volume of sound. In the case of Figure 

9.21 for example, the interval time of section U reaches about 250 ms. Moreover, 

when the key is struck to produce a volume at which the hammer is fixed to the 

back check, the interval time of section U is about 20 to 80 ms; accordingly, the 
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behavior of the soft tone becomes unstable suddenly. However, if the time during 

which the key is depressed fully is shorter than the time of section U, a subsequent 

movement of the hammer will become unstable. Moreover, if the time of section 

U is considered, touches of the same key in which a soft tone is repeated will be 

affected greatly and it will become difficult during the next touch for the hammer 

to remain stable. This results in the next touch becoming louder than the desired 

sound, or generating a double-strike so that the hammer after striking the strings 

may float too much, as mentioned above. Furthermore, although a double-strike 

may not happen, a non-musical sound is produced since the hammer floats too 

near the string. In order to solve this problem, the author adopted a performance 

technique involving an after-touch based on the weight effect. 
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                      (a) 90% of the key’s range                      (b) 85% of the key’s range 
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                        (c) 82.5% of the key’s range                   (d) 80% of the key’s range 

Fig. 9.22 Histories of key and hammer when changing the movable distance of a key. 
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9.6   Touch after the Hammer Strikes the Strings 

A touch can be performed with either a direct stroke or an indirect stroke [20]. In 

the developed automated piano, the swing-stroke is performed in a condition in 

which the fingertip of the actuator remains constantly in contact with the surface 

of a key; this is equivalent to a direct swing-stroke. In case of a human player, it is 

necessary to touch the keys while balancing and feeling suitable elasticity to the 

force of the rebound of a key and a hammer; this is called the “weight effect.” If 

the touch after the hammer strikes the strings based on the weight effect is consid-

ered, a pianist carries out a suitable counteracting motion for the force of the 

hammer immediately after completing a swing-stroke. Such performance motions 

derive from a combination of the feeling and the experience of the pianist's arm, 

hand, and fingers and are an important part of the technique of a piano perform-

ance. Naturally they are difficult to mechanically emulate.  In the developed au-

tomated piano, before the key is fully depressed and after touch is completed, the 

effect was measured using the touch signal when held in this position. The key’s 

behaviors when held before being fully depressed are shown in Figure 9.22. 

As shown in the figures above, the hammer behavior of 82.5 - 85 % of a key 

range of movement comes to rest on the repetition lever quicker than the hammer 

behavior of other key range, and the hammer’s movement also comes to rest at its 

original position early in the subsequent section D. 

9.6.1   Discussion 

The author has inferred that in some case the hammer moves without involving 

the back check because the lower end of the hammer head is flipped by the back 

check after the hammer strikes the strings. 

If 82.5 - 85 % of the key’s range of movement is considered according to the 

piano action’s mechanism, the other end of the jack reaches the regulating bottom 

and a repetition lever reaches a drop screw. Since the back end of the key was not 

fully raised, the function in which the hammer is held to a back check was found 

to be unnecessary. Additionally, the author considers that the energy of the ham-

mer which caused it to rebound after it struck the strings was absorbable with the 

repetition lever and its spring at this position. The key must stay at 82.5 - 85 % of 

the key’s range within about 30 ms after the moments when the hammer rebounds 

from the string. 

A non-musical sound can be easily recognized during the soft tone sections of 

famous pianists’ performances. Therefore, in the performance of such a soft sound 

on an automated piano, it is necessary to reproduce the strength of the note and the 

interval between the notes appropriately, as a little stronger sound or a little slower 

tempo. 
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9.7   Experiment 

Based on the above results, the database of the behavior of each key was rewritten 

and the algorithm of the transformation process was changed. The experimental 

results regarding the repetition of a soft key strike were then evaluated. 

Figure 9.23a shows a reproduction in which a 90% range of movement was  

applied. The strength of the desired sound was reproducible in several repetitions, 

as were double-strikes and non-musical sounds. Figure 9.23b shows a reproduc-

tion applying an 85% range of movement. As the history of the hammer’s velocity 

when striking the strings shows, the volume of a desired sound could be  

reproduced without the generation of double-strikes or non-musical sounds. 
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                     (a) 90% of the key’s range                        (b) 85% of the key’s range of movement 

Fig. 9.23 Behavior of repetition of the same key. 

9.7.1   Discussion 

In order to express thoughts and emotions in a performance, it is necessary to ex-

tend the dynamic range, especially including soft tones. Using the method  
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described here, the author has been able to make remarkable progress in the  

performance of an extremely stable soft tone. When one listen the soft tones, we 

felt they were clear. 

A grand piano has a dynamic range of about 40 dB. Our automated piano has 

achieved a desired performance including representation of dynamics within a dy-

namic range of about 32 dB from fortississmo (fff) up to pianississimo (ppp). 

9.8   Conclusion 

The author has developed an actuators control system, four databases and a trans-

lation process that support the editing of a piece of computer music on our auto-

mated piano. The system could offer users performance data containing musical 

expression, making it easier for a user to edit performance data. In the perform-

ance of soft tones, an expression that a gentle touch is done with exquisite senses 

is suitable. Furthermore, the author has had the wonderful opportunity for a fa-

mous pianist, Ms. Ryoko Fukazawa, to give a lesson on the piano. Performances 

of the automated piano have very much improved. 

Pianists continue to train hard to play ideal performances due to the pitilessness 

that sounds cannot be muffled once they are produced. The moving distance of a 

key is approximately 10 millimeters. It is extremely difficult for pianists to create 

the ideal touch for each key within the range. Additionally, an interval between 

the initial input as a touch and producing sound will be different according to the 

produced sound strength, and will take approximately 0.02 to 0.2 seconds. The in-

terval is just a fraction of time considering a blink of the eyes takes 0.1 seconds.  

The concept of how to “touch” uses various symbolic descriptions of what to 

do, and we have encountered countless numbers of literal expressions such as 

lightly, heavily, airily, and other expressions that may be beyond understanding of 

engineer. The author believes that these words guided us to control the necessary 

motions during performance at the beginning stage of how to produce “touch” mo-

tions effectively for each key. Additionally, when the proposed automated piano is 

programmed to reproduce a musical performance, one can experience disappoint-

ment and joy due to other sounds besides the sounds created by touches, caused by 

touching the hammer to the strings, bouncing off sounds of the jack against the 

hammer roller, and interface sounds between parts. These sound effects may all be 

part of the “touch” activity. 

Although a user can certainly create a desired expression with the automated 

piano, he or she can also vary the performance after listening repeatedly and make 

changes in their expressive performance. A change brings interest to humans,  and 

humans will never lose interest as long as something is changing. Our findings 

suggest that a future robot will also need to have slight variations in their behavior 

to make interactions with them more pleasing. 
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Chapter 10 

McBlare: A Robotic Bagpipe Player 

Roger B. Dannenberg, H. Ben Brown, and Ron Lupish* 

Abstract. McBlare is a robotic bagpipe player developed by the Robotics Institute 
and Computer Science Department at Carnegie Mellon University. This project 
has taught us some lessons about bagpipe playing and control that are not obvious 
from subjective human experience with bagpipes. From the artistic perspective, 
McBlare offers an interesting platform for virtuosic playing and interactive con-
trol. McBlare plays a standard set of bagpipes, using a custom air compressor to 
supply air and electromechanical “fingers” to control the chanter. McBlare is 
MIDI controlled, allowing for simple interfacing to a keyboard, computer, or 
hardware sequencer. The control mechanism exceeds the measured speed of ex-
pert human performers. McBlare can perform traditional bagpipe music as well as 
experimental computer-generated music. One characteristic of traditional bagpipe 
performance is the use of ornaments, or very rapid sequences of up to several 
notes inserted between longer melody notes. Using a collection of traditional bag-
pipe pieces as source material, McBlare can automatically discover typical orna-
ments from examples and insert ornaments into new melodic sequences. Recently, 
McBlare has been interfaced to control devices to allow non-traditional bagpipe 
music to be generated with real-time, continuous gestural control. 

10.1   Introduction 

In 2004, Carnegie Mellon University’s Robotics Institute celebrated its twenty-

fifth anniversary. In preparations for the event, it was suggested that the festivities 
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should include a robotic bagpiper to acknowledge Carnegie Mellon’s Scottish 

connection
1
 using a Robotics theme. Members of the Robotics Institute set out to 

build a system that could play an ordinary, off-the-shelf traditional set of Highland 

Bagpipes with computer control. The system is now known as “McBlare”. 

Mechanized instruments and musical robots have been around for centuries.  [8] 

Although early mechanical instruments were usually keyboard-oriented, many 

other electro-mechanical instruments have been constructed, including guitars and 

percussion instruments [9, 10, 13]. Robot players have also been constructed for 

wind instruments including the flute [11, 12] and trumpet [1, 14]. 

There have been at least two other robotic bagpipe projects. Ohta, Akita, and 

Ohtani [7] developed a bagpipe player and presented it at the 1993 International 

Computer Music Conference. In this player, conventional pipes are fitted to a spe-

cially constructed chamber rather than using the traditional bag. Their paper de-

scribes the belt-driven “finger” mechanism and suggests some basic parameters as 

a starting point for the design: 
 

• 4 mm finger travel; 

• 20 ms total time to open and close tone hole; 

• 100 gf minimum closing force for tone holes. 
 

Sergi Jorda also describes bagpipes used in his work, consisting of single pitch-

ed pipes that can only be turned on and off [4]. In a separate email communica-

tion, Jorda indicated that “Pressure is very tricky” and may depend on humidity, 

temperature and other factors. In contrast to previous efforts, the Carnegie Mellon 

project decided to use off-the-shelf bagpipes to retain the traditional bagpipe look 

and playing characteristics. 

Additional basic information was obtained by meeting with Alasdair Gillies, 

CMU Director of Piping, and Patrick Regan, a professional piper. These experts 

were observed and videotaped to learn about the instrument and playing tech-

niques. From slow-motion video (25% speed) the fastest fingering appeared to be 

about 15 Hz. Required finger pressure on the chanter appeared to be very light. 

We noted breathing cycle periods of about 4 seconds, and measured the time to 

exhaust the air from the bag playing a low A: 12 seconds; and a high A: 8 seconds. 

(However, we now know that the lower pitches actually use a higher air flow at a 

given air pressure.) The numbers give a rough indication of the air flow require-

ment: between 0.045 and 0.07 cubic meters per minute (1.6 and 2.5 cubic feet per 

minute), based on a measured bag volume of 0.0093 cubic meters (0.33 cubic 

feet). Alasdair said he maintains a pressure of 32" water column (7.9 kPa or 1.15 

PSI) in the bag. Soshi Iba, experienced piper and then PhD candidate in Robotics, 

also provided substantial input and served as a primary test subject, and the third 

author who joined the project later is also an accomplished piper. 

The next section presents an overview of McBlare, beginning with a brief de-

scription of bagpipes and how they work. There are two major robotic components 

                                                           
1 Andrew Carnegie, who founded Carnegie Mellon (originally the Carnegie Institute of 

Technology), was born in Scotland. The University has an official tartan, the School of 

Music offers a degree in bagpipe performance, and one of the student ensembles is the 

pipe band. 
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of McBlare: the air supply, and the chanter control, which are described in follow-

ing sections. One of the major difficulties we encountered has been properly set-

ting up the bagpipes and coaxing them into playing the full melodic range reliably. 

The final two sections report on our findings, current status, and some recent de-

velopments in interactive music control of McBlare. 

10.2   Bagpipes 

Bagpipes are some of the most ancient instruments, and they exist in almost all 

cultures. There are many variations, but the most famous type is the Highland 

Bagpipes (see Figure 10.1), and this is the type played by McBlare. There are 

three long, fixed pipes called drones. Two tenor drones are tuned to the same 

pitch, which is traditionally called A, but which is closer to Bb4. The third drone 

(bass drone) sounds an octave lower. Drones each use a single reed, traditionally a 

tongue cut into a tube of cane, more recently a cane or artificial tongue attached to 

a hollow body of plastic or composite material. The fourth pipe is the chanter, or 

melody pipe. The chanter is louder than the drones and uses a double reed, similar 

in size to a bassoon reed, but shorter in length and substantially stiffer.  Unlike a 

bassoon reed, however, it is constructed around a small copper tube, or “staple”.  

 

Fig. 10.1 Traditional Highland Bagpipes. 

The chanter (lower left of Fig. 10.1) has sound holes that are opened and closed 

with the fingers, giving it a range from G4 to A5 (as written). All four pipes are  

inserted into the bag, a leather or synthetic air chamber that is inflated by the play-

er’s lung power through a fifth pipe, the blowstick or blowpipe (pointing to the 



168 R.B. Dannenberg, H.B. Brown, and R. Lupish

 

upper left of Fig. 10.1). This tube has a one-way check-valve, so the player can 

take a breath while continuing to supply air to the reeds by squeezing the bag  

under his or her arm to regulate pressure.  

Reeds at rest are slightly open, allowing air to pass through them. As pressure 

increases and air flow through the open reed increases in response, the Bernoulli 

effect decreases the pressure inside the reed, eventually causing the reed to close. 

The resulting loss of airflow reduces the pressure drop inside the reed, and the 

reed reopens. When things are working properly, the pressure fluctuations that 

drive the reed are reinforced by pressure waves reflected from the open end of the 

pipe, thus the oscillation frequency is controlled by the pipe length. The acoustic 

length of the chanter is mainly determined by the first open sound hole (i.e., the 

open sound hole nearest to the reed), allowing the player to control the pitch. For 

more technical details, see Guillemain’s article on models of double-reed wind  

instruments [3]. 

It should be noted that the bagpipe player’s lips are nowhere near the reeds of 

the bagpipe, unlike the oboe, bassoon, or clarinet. The bagpipe player’s lips mere-

ly make a seal around the blowstick when inflating the bag. The reeds are at the 

ends of the four pipes where they enter the bag (see Fig. 10.1). 

Pressure regulation is critical. It usually takes a bit more pressure to start the 

chanter oscillating (and more flow, since initially, the reeds are continuously 

open). This initial pressure tends to be around 8.3 kPa (1.2 pounds per square 

inch). Once started, the chanter operates from around 5.5 to 8.3 kPa (0.8 to 1.2 

psi). The drone reeds take considerably less pressure to sound than does the chan-

ter reed, and drones operate over a wider pressure range, so it is the chanter reed 

that determines the pressure required for the overall instrument. Unfortunately, the 

chanter tends to require lower pressure at lower pitches and higher pressure at 

higher pitches. At the low pitches, too high a pressure can cause the pitch to jump 

to the next octave or produce a warbling multiphonic effect (sometimes called 

“gurgling”). If insufficient pressure is maintained on the chanter reed for the high-

er pitches, it will cease vibrating (referred to as “choking”). Thus, there is a very 

narrow pressure range in which the full pitch range of the chanter is playable at a 

fixed pressure. Furthermore, pressure changes affect the chanter tuning (much 

more than the drones), so the chanter intonation can be fine-tuned with pressure 

changes.  Typically, this is not done; rather, experienced pipers carefully attempt 

to adjust the stiffness and position of the reed in the chanter so as to be able to 

play the full 9-note range of the chanter with little or no pressure variation. 

In some informal experiments, we monitored air pressure using an analog pres-

sure gauge while an experienced player performed. We observed that air pressure 

fluctuated over a range from about 6.2 to 7.6 kPa (0.9 to 1.1 psi), with a tendency 

to use higher pressure in the upper register. Because of grace notes and some fast 

passages, it is impossible to change pressure with every note, and we speculate 

that players anticipate the range of notes and grace notes to be played in the near 

future and adjust pressure to optimize their sound and intonation. 
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Whether pressure should be constant or not is not well understood, although 

constant pressure is generally considered the ideal. For example, Andrew Lenz’s  

“bagpipejourney” web site described how to construct and use a water manometer. 

He says “Theoretically you should be playing all the notes at the same pressure, 

but it's not uncommon for people to blow harder on High-A [5].” 

10.3   The McBlare Robot 

From a scientific and engineering perspective, the main challenge of building a 

robot bagpipe player was lack of information. How critical is pressure regulation? 

How fast do “fingers” need to operate? Is constant pressure good enough, or does 

pressure need to change from low notes to high notes? Is a humidifier necessary? 

Building and operating McBlare has provided at least partial answers to these and 

other questions. 

 

Fig. 10.2 System diagram of McBlare. 

Our bagpipe-playing robot, McBlare, uses a computer system to control elec-

tro-mechanical “fingers” that operate the chanter, and an air compressor and regu-

lator to provide steady air pressure and flow to the bag. The system is diagramed 

in Figure 10.2. High-level control is provided via MIDI from a laptop computer  

(a MIDI keyboard may be substituted for direct control). MIDI is decoded by a 

microcontroller to drive 8 fingers (thus, McBlare has 8 degrees of freedom). The 

air supply uses a standard mechanical diaphragm-based pressure regulator and 

sends air to the bag via the blowstick. The pump is about 700mm wide, 300mm 

deep, and 400mm high. The chanter (a standard chanter) is about 330mm long 

(not counting the reed), and the minimum “finger” and tone hole spacing is about 

19mm. The air supply and chanter control are describe in more detail below. 
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10.3.1   The Air Supply 

McBlare uses a custom-built air compressor. A 1/16 HP, 115VAC electric motor 

drives a gearbox that reduces the speed to about 250 rpm. Two 76 mm (3”) diame-

ter air pump cylinders, salvaged from compressors for inflatable rafts, are driven 

in opposition so that they deliver about 500 pump strokes per minute (see  

Figure 10.3). The radius of the crank arm driving the cylinders is adjustable from 

15 mm to 51 mm (0.6” to 2.0”); we found that the smallest radius provides ade-

quate air flow, calculated to be 0.034 cubic meters per minute (1.2 cubic feet per 

minute1

2
). The air flow exhibits considerable fluctuation because of the pumping 

action of the cylinders. A small air storage tank sits between the pump and the 

pipes and helps to smooth the air pressure. Moreover, a high flow-rate, low pres-

sure regulator drops the tank pressure of about 35 kPa (5 psi) down to a suitable 

bagpipe pressure. The pressure ripple on the bagpipe side of the regulator is a few 

percent with a frequency of about 8 Hz. This gives McBlare a barely audible “vi-

brato” that can be detected by listening carefully to sustained notes. The wavering 

pitch and amplitude might be eliminated with a rotary pump or a large storage 

tank, but the effect is so slight that even professional players rarely notice it. 

 

Fig. 10.3 The McBlare air compressor. Electric motor (not visible) drives eccentric (center) 

through a gearbox. Eccentric drives two air pump cylinders (right and left) in opposition. 

The bagpipes are connected with a rubber hose that slips over the same tube 

that a human performer would blow into (the blowstick). By blowing in air at a 

constant, regulated pressure, we can maintain pressure without squeezing the bag. 

(Earlier designs called for a mechanical “squeezer” but at 7 kPa (1 psi), a squeezer 

in contact with many square inches would have to be very powerful, adding sig-

nificantly to McBlare’s weight and complexity.) 

Pressure regulation is adjusted manually using pump crank arm radius to con-

trol the rough flow rate, a bleed valve on the tank to relieve tank pressure that 

could stall the motor, and the pressure regulator. Fine adjustments are typically re-

quired using the pressure regulator to find the “sweet spot” where the lowest note 

sounds without gurgling and the highest note does not cut out. 

                                                           
1

  

2 This is less than the 0.045-0.07 cubic meters per minute based on bag deflation measurements 

above. This may be due to differences in instruments and/or measurement errors. 
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The original reason to construct the pump was that such a powerful, low-

pressure, high-volume pump is not readily available. The pistons were used rather 

than a rotary pump simply because they were available as salvage parts. After 

constructing the air compressor, we did locate an off-the-shelf rotary compressor 

that also works well, but is certainly not as fun to watch as the crank-and-cylinder 

pump. 

10.3.2   The Chanter Control 

The chanter requires “fingers” to open and close sound holes. Analysis of video 

indicates that bagpipers can play sequences of notes at rates up to around 25 notes 

per second. Human players can also uncover sound holes slowly or partially, using 

either an up-down motion or a sideways motion. The design for McBlare restricts 

“fingers” to up-and-down motion normal to the chanter surface. Fortunately, this 

is appropriate for traditional playing. The actuators operate faster than human 

muscles, allowing McBlare to exceed the speed of human pipers. 

McBlare’s “fingers” are modified electro-mechanical relays (see Figure 10.4). 

Small coils pull down a metal plate, which is spring loaded to return. Lightweight 

plastic tubes extend the metal plate about 3 cm, ending in small rubber circles de-

signed to seal the sound hole. The length of travel at the sound hole is about 2.5 

mm, and the actuators can switch to open or closed position in about 8 ms. The 

magnet coils consume about 1W each, enough to keep the mechanism warm, but 

not enough to require any special cooling. The magnet mechanism has the benefi-

cial characteristic that the finger force is maximum (around 100 gf) with the mag-

net closed, the point at which finger force is needed for sealing the tone hole.  

The whole “hand” assembly is designed to fit a standard chanter, but the indi-

vidual finger units can be adjusted laterally (along the length of the chanter) and 

vertically. The lateral adjustment accommodates variations in hole spacing. The 

vertical adjustment is critical so that the magnet closure point corresponds to the 

point of finger closure. 

The actuator current is controlled by power transistors, which in turn are con-

trolled by a microcontroller. The microcontroller receives MIDI, decodes MIDI 

note-on messages to obtain pitch, and then uses a table lookup to determine the 

correct traditional fingering for that pitch. The full chromatic scale is decoded, al-

though non-standard pitches are not in tune. MIDI notes outside of the bagpipe 

range are transposed up or down in octaves to fall inside the bagpipe range. Addi-

tional MIDI commands are decoded to allow individual finger control for non-

standard fingerings. For example, an E will sound if the highest 3 tone holes (high 

A, high G, and F#) are closed and the E tone hole is open. The standard fingering 

also closes the D, C#, and B and opens the low A tone holes, but in fact, any of the 

16 combinations of these 4 lowest tone holes can be used to play an E. Each com-

bination has a subtle effect on the exact pitch and tone quality. 
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Fig. 10.4 Chanter is mounted on aluminum block along with electromagnetic coils that 

open and close sound holes using rubber pads at the end of lightweight plastic tubes. 

Grace notes, which are fast notes played between the notes of a melody (see 

“Ornamentation,” below), are traditionally played by simply lifting one finger 

when possible, taking advantage of alternate fingerings, but since McBlare has 

very fast and precisely coordinated “fingers,” we use standard fingerings for all 

notes including grace notes. In principle, we could send special MIDI commands 

to control individual fingers to achieve the same fingerings used by human pipers. 

10.4   McBlare in Practice 

McBlare is supported by a lightweight tripod that folds (see Figure 10.5) and the 

entire robot fits into a special airline-approved case for the pump and a suitcase for 

the remainder, making travel at least manageable. The chanter control works ex-

tremely well. The speed allows for authentic-sounding grace notes and some very 

exciting computer-generated sequences. The maximum measured rate is 16ms per 

up/down finger cycle, which allows 125 notes per second in the worst case. The 

chanter control is also compact, with the mechanism attached directly to and sup-

ported by the chanter.  

We developed a small laptop-based program to play useful sequences for tun-

ing and pressure adjustment. The user can then select and play a tune from a MIDI 

file. The program can also record sequences from a keyboard and add ornamenta-

tion as described below. 

As might be expected, there is considerable mechanical noise generated by the 

air compressor. In addition, the electro-mechanical chanter “fingers” make click-

ing sounds. However, the chanter is quite loud, and few people notice the noise 

once the chanter begins to play! We attempted to quantify this with a sound level 

meter. At 1m, McBlare generates an SPL of about 102dB outdoors, whereas the 

pump alone generates about 76dB. Thus, the pump noise is about 26dB down 

from the continuous bagpipe sounds. The bagpipe SPL varies a few dB with direc-

tion, pitch, and perhaps phasing among the drones, so this should be taken only as 

a rough estimate. 
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Fig. 10.5 McBlare ready for performance. 

In our original work, we reported difficulty covering the full range of pitches 

from G4 to A5 [2]. More recently, we have found that the combination of good 

pressure regulation, eliminating even the slightest leak from closed tone holes, and 

a good reed (all three being critical) enable good performance across the full pitch 

range. A method to humidify the air has been strongly suggested by a number of 

bagpipe players. Although we have tried various approaches, we have been unable 

to achieve any solid improvements by raising the humidity, supporting a conclu-

sion that humidity is at most of secondary importance after pressure regulation, 

the reeds, and sealing the tone holes. It should be noted, however, that humidity is 

hard to control and study, so we cannot rule out the importance of humidity. In 

particular, we suspect that humidity might affect the timbral quality of the chanter. 

Note also that another category of bagpipe is played by bellows and hence is not 

subject to the naturally humid breath of player, indicating that “dry” playing is at 

least in the realm of “normal” bagpipe playing. The adjustment of reeds to play 

well and reliably in the resulting dry environment is the subject of much discus-

sion. Perhaps McBlare can someday serve as a testbed for comparing reeds in dry 

vs. humid playing conditions. 
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10.4.1   Ornamentation 

The use of quick flourishes of notes (“grace notes”) between longer notes of a 

melody (ornamentation) is a characteristic of bagpipe music. Without ornaments, 

all bagpipe tunes would be completely “legato,” lacking any strong rhythm. In 

particular, if a melody contains two or more repeated notes, ornamentation is es-

sential: since the chanter never stops sounding, there is no other way to signal a 

separation between the two notes. Ornaments are also used for rhythmic emphasis. 

There are some basic principles used for ornamenting traditional highland bag-

pipe tunes, so a hand-coded, rule-based approach might allow ornaments to be 

added automatically to a given melody. Instead, we have implemented a simple 

case-based approach using a small database of existing bagpipe melodies in stan-

dard MIDI file format, complete with ornaments. Typical ornament sequences are 

automatically extracted from the database and then inserted into new melodies  

using the following procedure. 

The first step is to build a collection of typical ornaments. Ornaments are de-

fined as a sequence of one or more notes with durations less than 0.1s bounded by 

two “melody” notes with durations greater than 0.1s. A table is constructed in-

dexed by the pitches of the two longer, or “melody” notes. For example, there is 

one entry in the table for the pair (E4, D4). In this entry are all of the ornaments 

found between melody pitches E4 and D4. The database itself comes from standard 

MIDI files of bagpipe performances collected from the Web. These appear to be 

mostly produced by music editing software, although actual recordings from MIDI 

chanters could be used instead. 

The second step uses the table to obtain ornaments for a new, unornamented 

melody. For each note in the melody (except for the last), the pitch of the note and 

the following note are used to find an entry in the table. If no entry is found, no 

ornaments are generated. If an entry exists, then it will be a list of ornaments. An 

element of the list, which is a sequence of short notes, is chosen at random. The 

melody note is shortened by the length of the ornament sequence (something that 

human players do automatically to maintain the rhythm) and the ornament notes 

are inserted between the melody note and the next note. 

There are many obvious variations on this approach. For example, the ornament 

could be chosen based also on the length of the melody note so that perhaps 

shorter ornaments would be chosen for shorter notes. One option in our system is 

to choose ornaments of maximal length to exaggerate the ornamentation. (In tradi-

tional practice, longer ornaments, or “doublings,” are often used to create a 

stronger rhythmic emphasis.) 

10.4.2   Gestural Control 

The use of MIDI control makes it possible to adapt all sorts of controllers to 

McBlare, including keyboards (which are very useful for experimentation), novel 

sensors, or even MIDI bagpipe controllers [6]. In our exploration of robot per-

formance practice with McBlare, we wrote real-time software to enable the pipes 
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to be played using a Nintendo Wii game controller (see Figure 10.6). The Wii con-

troller contains a 3-axis accelerometer and a variety of buttons. The accelerome-

ters can sense rapid acceleration in any direction. Because gravitation provides an 

absolute reference, the Wii controller can also sense orientation in 2 dimensions: 

left to right rotation (roll) and up to down rotation (elevation). The Wii controller 

provides multiple degrees of freedom, discrete buttons as well as continuous con-

trols, wireless operation, and low cost, but certainly other controllers and inter-

faces could be developed. 

One mode of control uses orientation to provide two parameters to a music 

generation algorithm. The roll axis controls note density, and the elevation axis 

controls interval size. The generation algorithm creates notes that fall on equally 

spaced rhythmic boundaries. At every boundary, a new note is generated with a 

probability determined by the roll parameter. As the controller is rotated clockwise 

from left to right, the probability of a new note increases, so the density of notes 

increases. At the extreme ranges of roll, the tempo is slowly decreased or in-

creased. Each new note has a pitch determined as a random offset from the current 

pitch. The random offset is scaled by the elevation axis so that larger intervals 

tend to be generated with higher elevation. (Of course, the next pitch is also lim-

ited to the fixed range of the bagpipes.) This gives the user (performer) the ability 

to create and control a variety of melodic textures at virtuosic speeds. 

After each new note is generated in this mode, we automatically insert orna-

mentation as described in the previous section. The ornamentation adds to the vir-

tuosity and gives the performance a more idiomatic character. 

 

Fig. 10.6 McBlare operated by the first author using a Nintendo Wii controller.  
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A second mode of operation simply maps the elevation to pitch, allowing the 

user to run up and down scales and even play melodies in a “theremin-like”  

manner. 

Finally, a third mode integrates the side-to-side acceleration sensor and maps 

the integral to pitch. The integral is clamped to a minimum and maximum to keep 

it in range. This allows pitch change to be directed by the user and correlated 

closely to the user’s gestures. In addition, rotating the controller slightly right or 

left (the roll axis) will bias the accelerometer positively or negatively with gravity, 

causing the integral (and pitch) to drift upward or downward, respectively. There 

is no absolute position reference, so this mode does not allow the user to play a 

specific melody with any accuracy. 

Buttons on the controller allow the performer to switch modes at any time. The 

combination of modes gives the performer access to a variety of musical textures 

and mappings of physical gesture to control. Although this control is not suitable 

for traditional music (and it is hard to imagine a better interface for traditional 

bagpipe music than human fingers and tone holes), the approach does offer new 

modes of music generation and interaction that would be extremely difficult or 

impossible using traditional means. 

10.5   Conclusion and Future Work 

McBlare is interesting for both scientific and artistic reasons. From the scientific 

perspective, McBlare allows for careful study of the behavior of bagpipes. For ex-

ample, we have found that there is a very narrow range of pressure that allows the 

chanter to play its full range properly. This would explain the tendency for pipers 

to boost the pressure slightly for higher notes, but it also confirms the possibility 

of playing with constant pressure as advocated by expert players. McBlare offers a 

controlled environment for examining the effects of reed adjustments, humidity, 

and adjustments to tone holes. We have also recorded McBlare’s chanter playing 

all 256 possible fingerings. Further analysis of these recordings may uncover some 

interesting new timbral and microtonal opportunities for bagpipe players. 

Artistically, McBlare (and robotic instruments in general) offers a way for 

computers to generate or control music without loudspeakers. The three-

dimensional radiation patterns of acoustic instruments, the sheer loudness of high-

land bagpipes, and visibility of the means of sound production are important dif-

ferences between McBlare and sound synthesis combined with loudspeakers. 

Aside from these physical differences, there is something about robotic instru-

ments that captures the imagination in a way that must be experienced to be ap-

preciated. The human fascination with automatons and the ancient tradition of 

bagpipes combine powerfully in McBlare, which has been featured not only in 

concerts but as a museum installation. Interactive control of McBlare leads to a 

unique and fascinating instrument. 

One obvious difference between McBlare and human pipers is that humans can 

use their arms to rapidly apply pressure to the bag to start the pipes singing and re-

lease the pressure quickly to stop. McBlare, on the other hand, takes time to build 

up pressure. The chanter typically will not start until the optimum pressure is 
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reached, but a chanter that is not in oscillation offers less air resistance, which in 

turn causes a pressure drop. The pressure drop inhibits the chanter from starting.  

This feedback process makes the bagpipes somewhat unstable and reluctant to 

start: until the chanter starts sounding, the lowered pressure will inhibit the chanter 

from starting. Usually, the (human) McBlare operator intervenes and speeds up 

the process by temporarily raising the system pressure until the chanter starts. At 

this point, one or more drones might be overblowing and need to be manually re-

started. This all takes less than a minute, but is something a human can accomplish 

in seconds. 

A more advanced system might sense when the chanter is sounding and auto-

matically raise the pressure to restart the chanter when it stops. One could then go 

even further by automatically adjusting the pressure to eliminate “gurgling” on 

low notes (pressure is too high) or stopping vibration on high notes (pressure is 

too low). Since all of this would add weight and complexity, we will probably 

keep McBlare in its current configuration. 

Bagpipes and drums are a traditional combination, and we plan to work on a 

robotic drum to play along with McBlare. With computer control, hyper-virtuosic 

pieces, complex rhythms, and super-human coordination will be possible. Exam-

ples include playing 11 notes in the time of 13 drum beats or speeding up the 

drums while simultaneously slowing down the bagpipes, ending together in phase. 

In order to explore the musical possibilities, we hope to create a website where 

composers can upload standard MIDI files for McBlare. We will then record per-

formances and post them for everyone to enjoy. 
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Chapter 11 

Violin Playing Robot and Kansei 

Koji Shibuya* 

Abstract. Kansei is a Japanese word similar in meaning to “sensibility,” “feeling,” 

“mood,” etc. Although kansei seems to affect musical instrument playing greatly, 

many musical instrument playing robots do not utilize kansei very well. Violin 

playing has been chosen as an example because it is very difficult, and it seems 

that kansei affects it more clearly than other musical instruments. First, in this 

chapter, a violin playing-robot is introduced and the sounds produced by the robot 

are analyzed and discussed. The robot consists of an anthropomorphic right arm 

offering 7 degrees of freedom (DOF) with a simple hand that grasps a bow. By us-

ing the arm, the robot can produce various sounds. The left hand fingers of the ro-

bot which are under development are presented next. After that, the information 

flow of a violin-playing robot from musical notes to sounds considering kansei is 

proposed. As a first approach, in the flow, timbre is regarded as kansei informa-

tion, and kansei mainly affects processes that determine sound data from musical 

notes. Then, human violinists' kansei is analyzed based on the flow. It has been 

found that bow force and sounding point play important roles in determining tim-

bre that results from human kansei.  

11.1   Introduction 

Violin playing is a very difficult task not only for humans but also for robots.  

Human violinists have to practice the violin for a very long period, usually begin-

ning in childhood. To become a good violinist, two skills are required. One is the 

physical skill usually called “technique.” The other is kansei (or kansei skill). 

Kansei, explained later, is a Japanese word and similar in meaning to “sensibility,” 

“feeling,” “mood,” etc. Both skills are equally important for musical instrument 

playing. As one approach to understand these skills, the implementation of  
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computer music approaches have been demonstrated to be capable of generating 

high-quality human-like performances based on examples of human performers 

[1]. However, all of these systems have tested only by computer systems or MIDI-

enabled instruments which limited the unique experience of a live performance. 

To investigate physical skills, the author proposed to develop a violin-playing 

robot. If a robot is to play the violin very well, which requires dexterous arm and 

hand motion, robot technology must progress greatly. There are some studies on 

violin-playing robots. Kajitani built a violin-playing robot, a recorder-playing ro-

bot, and a cello-playing robot and created an ensemble with them [2]. Also Sobh 

and Wange built a unique violin-playing mechanism with two bows for one violin 

[3]. The right arms of the two robots mentioned above are not anthropomorphic. 

Furthermore, their left hands use many solenoids for fingering. Shimojo built a vi-

olin-playing robot for bowing using an industrial robot with 7-DOF (Mitsubishi 

Heavy Industries Ltd., PA-10) [4]. The robot is slightly larger than a human. Al-

though Toyota Motor Corporation built a violin-playing robot, its arm has only 6-

DOF [5]. In robotics, it is said that humans have seven joints. Thus, Toyota’s  

robot is not anthropomorphic in the strict sense of the word. However, from a 

technical point of view, the author believes that Toyota’s robot is the best violin-

playing robot at present. However, Toyota’s robot does not focus on human kan-

sei. Their aim in building such a robot is only to demonstrate their technology. 

They wanted to build service and nursing robots with the technology developed 

for the violin-playing robot. Instead the proposed robot in this research has a right 

arm with 7-DOF for bowing, and left-hand fingers for fingering. Because a violin 

fits a human body, the robot must be anthropomorphic. 

The purpose of building the violin-playing robot is not only to study the physical 

skill but also to reveal the role of kansei in the process of determining body motion. 

Because many readers may not be familiar with the word “kansei,” it shall be briefly 

explained here. Recently, many Japanese researchers in many fields such as phi-

losophy, psychology, medical science, and robotics have focused on kansei. The Ja-

pan Society of Kansei Engineering (JSKE) was established in 1998 [6]. The society 

publishes an English journal (“Kansei Engineering International”), in which some 

articles discuss the relationship between robots and kansei. In particular, in 2009, a 

special issue on “KANSEI Robotics” was published [7], in which kansei technology 

and human-robot interaction were discussed [8, 9]. 

Because kansei is a vague word, in this chapter the author defined kansei as  

follows: Kansei is the human ability to process and express complex information 

such as human facial expressions or voice. Suppose that two violinists play the 

same musical notes. The produced sounds may be different from each other be-

cause the target sound that is determined through their kansei is different. This 

means that bowing parameters such as bow force and bow speed to produce the 

sound are also different. Thus, the role of kansei in the process of determining 

human body motion must be considered. Therefore, a set of experiments were car-

ried out to reveal the role of kansei in determining human motion planning. 

This chapter is organized as follows. Firstly, features of the violin and violin 

playing are introduced. Secondly, the violin-playing robot developed in my labo-

ratory is introduced. Then, kansei in violin playing is discussed. To investigate 
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kansei in a motion planning, an information flow in violin playing is proposed. 

Based on the flow, some experiments have been conducted, and the relationship 

between kansei and violin playing is discussed.  

11.2   Features of the Violin and Violin playing 

Figure 11.1 shows the names of each part of a violin and a bow. A violin has four 

strings: “G,” “D,” “A,” and “E.” The ends of each string are connected to a peg 

and a tail piece, and the bridge supports the strings. Violinists usually put their 

chin on the chin rest and pin the violin between their chin and shoulder. 

A bow consists of three parts: stick, hair and frog. The hair is horse hair. We 

can adjust the tension of the hair by rotating the screw, which changes the position 

of the frog. To regulate friction between hair and strings, violinists must apply an 

appropriate quantity of rosin to the hair.  

We can divide violin playing into three tasks: bowing, fingering and holding a vio-

lin. Bowing and fingering are much more important than holding because those tasks 

affect sounds directly. In bowing; bow force, bow speed and sounding point are sig-

nificant parameters that determine the parameters of produced sounds, such as vol-

ume and timbre. The sounding point is the position at which the bow touches a string.  

 

Fig. 11.1 Names of each part of a violin and a bow. 
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11.3   Violin-Playing Robot 

In order the proposed research, an anthropomorphic robot arm for bowing was  

developed. Shimojo et al. use a commercial 7-DOF manipulator [7], but the robot 

is larger than typical human size. The author suspects that there are some difficul-

ties in performing bowing motion because of the size differences. Therefore, the 

author aims to build a human sized robot. Also, a left hand with three fingers has 

been developed recently. In this section, the robot arm and the left hand are  

introduced. 

11.3.1   Hardware of the Right Arm for Bowing 

Figure 11.2 shows the right robot arm for bowing. The number of degrees of free-

dom in the shoulder, elbow, and wrist joint is three, one and three, respectively, as 

shown in Fig. 11.3. In the figure, circles, pairs of triangles and rectangles represent 

the joints of the robot. A circle represents a top view of a cylinder. A pair of trian-

gles represents a side view of two circular cones. Also a rectangle represents a 

side view of a cylinder. All the icons represent directions of the rotation as shown 

in Fig. 11.3. Therefore, this robot has 7-DOF, and the movement ranges of all 

joints were determined based on those of humans, as shown in Table 11.1. Also, 

Table 11.1 shows directions of each joint. The lengths between shoulder and el-

bow joints and between elbow and wrist joints are approximately 262 and 304 

mm, respectively. Therefore, the size of the robot is almost the same as an adult 

human. A DC motor with an encoder drives each joint, and a personal computer 

and servo amplifiers control all joint movements. The robot arm is controlled in 

position and velocity (force control is not implemented as no force sensors are 

used).  

 

Fig. 11.2 Photograph of right robot arm. 
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Fig. 11.3 Link model of right arm. 

Table 11.1 Movement ranges of all joints. 

Joint 
Joit  

Number 

Direction of 

 Rotation 
Angle [deg] 

Flexion 145 
#1 

Extension 50 

Abduction 90 
#2 

Adduction 20 

Inner rotation 90 

Shoulder 

#3 
Outer rotation 45 

Flexion 145 
Elbow #4 

Extension 5 

Pronation 90 
#5 

Supination 90 

Flexion 90 
#6 

Extension 70 

Abduction 30 

Wrist 

#7 
Adduction 55 
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The proposed robot uses photoelectric switches to obtain absolute joint angles. 

Figure 11.4 shows an example of the sensor arrangement in joint #3. The top of 

the upper arm axis was cut in a semicircular shape. This part will interrupt or pass 

light based on the specific absolute joint angle. The robot includes photoelectric 

sensors with similar mechanisms on all joints. Every time after the power is 

switched on; the control system uses these sensors to obtain the correct absolute 

joint angles. 

Also, the robot is includes a hand and attached to the end of the arm. The hand 

is a simple gripper that only grips a bow, as shown in Fig. 11.5. Although the au-

thor believes that hands for controlling bow movement should be anthropomor-

phic, it is too difficult to make a five-fingered hand with many joints. Therefore, 

the robot includes a simple gripper. 

 

Fig. 11.4 Photoelectric switch installed in the #3 joint. 

         

                                      (a) Frontal view                                (b) Side view 

Fig. 11.5 Photograph of hand for grasping bow. 
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11.3.2   Bowing Motion by Right Arm 

The robot can produce a single sound without fingering. The path of its hand is a 

straight line orthogonal to the strings. We can obtain reference angles by solving the 

robot's inverse kinematics. To solve it, a constraint is needed due to a redundant de-

gree of freedom. The results of our previous analyses on human violinist's move-

ments clarified that the movements of joint #3 of the human violinists were smaller 

than the other joints. Therefore, the author considered fixing the joint angular veloc-

ity of #3, when solving inverse kinematics. From the solved data, the patterns of al 

angular velocities are computed and then sent to the servo amplifiers. 

Also, after playing one string, the robot can play another string except the E 

string. For example, this robot can play the D string in up bow after playing the G 

string in down bow. This motion is calculated as follows. First, two straight lines 

for playing two strings are calculated. Then, the end point of one line and the start-

ing point of the other line are connected in a straight line. Obtained lines are the 

trajectory of the hand. Finally, all the angular velocities of the arm joints are  

calculated by the previously mentioned method. 

11.3.3   Sound Analysis 

(1) Single sound 

Figure 11.6 shows the sound data of the D string. Because undulations cannot 

be observed, it is possible to conclude that the sound is relatively good. Also,  

Figure 11.7 shows the sound data of the G string and D string. It is found that the  

robot plays the two strings correctly. 

 

Fig. 11.6 Sound data of D string. 
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Fig. 11.7 Sound data of G and D strings. 

11.3.4   Hardware of the Left Hand with Three Fingers for 

Fingering 

Recently, the author is developing a left hand with three fingers for fingering.  

Figure 11.8 shows a photograph of the hand. This left hand has three fingers. Usu-

ally, human violinists use four fingers, except the thumb, for pushing the strings. 

However, a robotic four-fingered left hand is too big. Therefore, the left hand has 

three fingers, which are installed oblique the strings, as human violinists usually do. 

Each finger has two joints and they are actuated by D.C. motors and rack-and-

pinion mechanisms, as shown in Fig. 11.9. Motors 1 and 2 drive the arms 1 and 2 

respectively. By driving motor 1, rack 1 is moved, which makes pinions 1 and 3 

move. The gear ratio of pinions 1 and 3 is 2:1. As a result, the finger tip moves 

downward or upward to push or release the string. Also, motor 2 drives rack 2 and 

pinion 2, which is separated from pinion 1. This makes the fingertip move forward 

or backward and can change the strings to be pushed. The fingertips are covered 

with rubber. 

Therefore, by using this hand, the robot can play simple scales or simple music. 

At present, fingerings of a few bars of "Mary Had a Little Lamb," and "Twinkle, 

Twinkle, Little Star" are achieved with bowing by human arm. The latter have to 

use two different stings (E and A). Unfortunately, some pitches are not strictly 

correct. To address this problem, we have to develop a left arm that can move the 

hand. Also, at the present due to its complexity, the control of the right arm and 

left hand are not coordinated. 
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Fig. 11.8 Photograph of the left-hand fingers. 

 

Fig. 11.9 Mechanism of a single finger. 
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11.4   Violin Playing and Kansei 

This section the relationship between kansei and human body motion is explained. 

It is a key concept of this study. 

The author believes that professional musicians, including violinists, change 

their performance based on the timbre or sound color that they want to produce 

because producing good timbre is very important. For instance, when they want to 

produce “bright” sounds, they choose such parameters as bow force, bow speed, 

and sounding point, which can represent such timbre. Humans evaluate timbre 

through their sensibility, in other words, kansei. From the above discussion, after 

concluding that kansei affects violin playing, kansei has been taken into account 

when developing the violin-playing robot. 

11.5   Information Flow in Violin Playing Considering Kansei 

This section, discusses how kansei affects human motion and the information flow 

from musical notes to sounds in violin playing shown in Fig. 11.10. The flow is 

divided into three parts: task planning, motion planning, and playing. Each of the 

parts is discussed in the following sections. 

11.5.1   Task Planning 

The task planning determines bowing and fingering parameters such as bow force, 

bow speed, sounding point, positions of the left-hand fingers and so on. 

In almost all cases, musical notes are the fundamental information for musical 

instrument performance. Musical notes contain information about notes that 

should be produced. From the musical notes, the task planning derives images of 

sounds. "Images" means mental impression of the sounds for the musical notes, 

which can be expressed only by words or sentences.  

Then, the task planning determines note information and timbre from the im-

ages. Note information consists of pitch, length and strength of a sound, which can 

be expressed numerically by physical parameters, such as frequency and time. We 

can consider timbre as kansei information because its expression is difficult by 

physical parameters. Because musical notes lack information on timbre, violinists 

need to create that through their kansei. Also, human evaluate timbre through their 

kansei. Finally, violinists determine bowing and fingering parameters from them. 
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Fig. 11.10 Information flow in violin playing. 

11.5.2   Motion Planning 

Motion planning determines body movements, which must satisfy bowing and 

fingering parameters determined in the task planning. The author believes that the 

kinematics and dynamics of the human body play a key role in this process. 

11.5.3   Playing 

In the playing process, violinists or violin-playing robot move their body based on 

the information derived from the motion planning to produce sounds. Violinists 

evaluate the sounds and change timbre and bowing and fingering parameters 

through kansei.  

From the above discussion, kansei will mainly affect task planning because 

timbre is only used in task planning, which was partially confirmed through analy-

sis of human playing [10]. 
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11.6   Analysis of Human Kansei 

Based on the proposed information flow (Fig. 11.10), the author analyzed human 

kansei [11-13]. In those analyses, the relationship between timbre and bowing pa-

rameters represents the main focus. This section discusses one of the examples of 

the analyses. 

11.6.1   Experiment 

The objective of the analysis is to clarify the relationships between timbre and 

bowing and fingering parameters. In the experiment, three professional violinists 

played a melody shown in Fig. 11.11. They imagined eleven timbres shown in  

Table 11.2 before playing, and produced sounds according to these images. We 

performed the experiment three times to ensure reproducibility. 

To measure the bow force, the author mounted strain gauges on the bow. Bow 

speed, and sounding point were measured by a 3D video tracker system that could 

calculate 3D positions of specified points. Fingering motion was also observed 

from videos. 

Table 11.2 Timbres used in experiment 

Bright Dark 

Lucid  

Powerful Feeble 

Abundant Barren 

Heavy Light 
 

 

Fig. 11.11 Melody used in experiment. 

11.6.2   Results 

The author analyzed the relationships between timbre and three bowing parame-

ters using averaged bow force, bow speed and sounding point data. A clear rela-

tionship among timbre and bow force and sounding point was found. However, no 

relationship between bow speed and timbre were found. 

Then, a more detailed analysis of the relationship between bow force and 

sounding point in each timbre was done. Figure 11.12 shows the results. The ver-

tical axis represents averaged sounding point and the horizontal axis represents 



11   Violin Playing Robot and Kansei 191

 

 

averaged bow force. From this figure, we can see that the directions of the lines 

that connect plots of opposite timbres, such as "bright" and "dark," are markedly 

downward except for a few timbres. This means that when professional violinists 

use strong bow force, the sounding point is near the bridge. It can be concluded 

that bow force has a strong relationship with sounding point, and violinists change 

those parameters according to timbre. 

 

Fig. 11.12 Relationships between sounding point and bow force. 

Lastly, the author analyzed the fingering pattern and found three fingering  

patterns. However, the change of fingering pattern for each violinist was not the 

same. Particularly, one violinist used only one fingering pattern among the three, 

while the other two subjects changed fingering pattern according to timbre. This 

suggests that violinists change fingering pattern according to timbre, but the  

strategy of changing fingering patterns is different for each violinist.  

From the above results, we may conclude that violinists change bow force, 

sounding point and fingering pattern mainly according to the timbre they imagine. 
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11.7   Conclusion and Future Works 

In this chapter, first, the author introduced the right arm and left hand of the  

violin-playing robot developed in my laboratory and its sound data were shown. 

Then, an information flow of violin playing considering kansei has been proposed. 

Based on the flow, the author analyzed the relationship between timbre and bow-

ing parameters. As a result, it was found that that timbre affects bow force and 

sounding point. Although these two discussions seem to be disconnected, these 

will be connected tightly in future work.  

Also, the following points should be addressed as future works. First, the left 

arm of the robot with seven joints should be built and coordinated motions of both 

arms and left fingers should be planned to achieve producing more expressive 

sounds. Second, an algorithm to convert musical notes to robot motion, which in-

cludes kansei information, should be constructed. From the results, the author 

want to consider the roles of kansei in motion planning of both human and robots. 
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Chapter 12 

Wind Instrument Playing Humanoid Robots 

Jorge Solis and Atsuo Takanishi* 

Abstract. Since the golden era of automata (17th and 18th centuries), the devel-

opment of mechanical dolls served as a mean to understand how the human brain 

is able of coordinating multiple degrees of freedom in order to play musical in-

struments. A particular interest was given to wind instruments as a research ap-

proach since this requires the understanding of human breathing mechanisms. 

Nowadays, different kinds of automated machines and humanoid robots have been 

developed to play wind instruments. In this chapter, we will detail some issues re-

lated to the development of humanoid robots and the challenges in their design, 

control and system integration for playing wind instruments. 

12.1   Introduction 

The development of wind instrument playing automated machine and humanoid 

robots has interested the researchers since the golden era of automata up to today. 

As an example, we may find some classic examples of automata displaying hu-

man-like motor dexterities to play instruments such as the “Flute Player” [18]. In 

addition, we find the first attempt to develop an anthropomorphic musical robot, 

the WABOT-2. The WABOT-2 was capable of playing a concert organ, built by 

the late Prof. Ichiro Kato [6]. In particular, Prof. Kato argued that the artistic activ-

ity such as playing a keyboard instrument would require human-like intelligence 

and dexterity. Compared to other kinds of instruments (i.e. piano, violin, etc.), the 

research on wind instruments have interested researchers from the point of view of 

human science (i.e. study of breathe mechanism), motor learning control  

(i.e. coordination and synchronization of several degrees-of-freedom), musical  
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engineering (i.e. modeling of sound production.), etc. In this chapter, an overview 

of different kinds of automated machines and humanoid robots designed for play-

ing wind instruments (flute and saxophone) will be presented. In particular, their 

mechanism design principles and the control strategies implemented for playing 

musical instruments will be detailed. 

12.2   Flute and Saxophone Sound Production 

The sound of wind instruments is a self-excited oscillation [1]. The sound produc-

tion system comprises three major elements: energy source, generator, and sound 

resonator. The sound generator includes the dynamics of reed vibration and air 

flowing through a reed aperture for reed woodwind instruments. The sound reso-

nator is related to the air-column resonance of the instruments. In a single reed 

woodwind instrument, a flow modulated by the reed in the generator enters the 

resonator and excites an oscillation of the air column. As a response, the resonator 

generates sound pressure at the entrance and it acts as an external force on the reed 

and influences the oscillation. In this manner, the sound production system forms 

a feedback loop. If the loop gain becomes positive and overcomes losses such as 

the acoustic radiation, the system yields a self-excited oscillation or sounding. In 

order to develop musical performance humanoid robots, we are required to under-

stand in detail the principle of sound production of the instrument as well as the 

mechanism of humans to control different kinds of properties of the sound. In par-

ticular, in this section, we will provide a general overview of the differences in the 

principles of sound production between the flute and the saxophone.  

a)  b)  

Fig. 12.1 Principle of sound production: a) flute; b) saxophone. 
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The flute is an air reed woodwind which, due to the absence of a reed, is driven 

by an air beam characterized by the length, thickness, angle and velocity [2]. 

Slight changes of any of these parameters are reflected in the pitch, volume, and 

tone of the flute sound (Figure 12.1a). On the other hand, acoustically speaking, 

the saxophone is very similar to the clarinet, except that the conical bore of the 

saxophone resonates at multiples of the lowest resonance frequency whereas the 

clarinet resonates at odd multiples [11]. When a player blows on a saxophone;  

the reed acts as a pressure-operated valve in such a manner that the flow of air into 

the mouthpiece is increased and decreased as the acoustical pressure difference 

between the mouthpiece cavity and the player’s mouth rises and falls. This pres-

sure is then adjusted to suit the note being played. In Fig. 12.1b, the principle of 

sound production of single reed instruments is shown; where d and z represent the 

displacement and open-range of the reed respectively. P and p are the pressure of 

player’s mouth and pressure mouthpiece cavity. Finally, Uf and U are the volume 

flow at the mouth piece and after it respectively. 

12.3   Wind Instrument-Playing Anthropomorphic Robots  

12.3.1   Flute-Playing Robots 

During the golden era of automata, the “Flute Player” developed by Jacques de 

Vaucanson was designed and constructed as a means to understand the human 

breathing mechanism [4]. Vaucanson presented “The Flute Player” to the Acad-

emy of Science in 1738 (Figure 12.2a). For this occasion he wrote a lengthy report 

carefully describing how his flutist can play exactly like a human. The design 

principle was that every single mechanism corresponded to every muscle [18]. 

Thus, Vaucanson had arrived at those sounds by mimicking the very means by 

which a man would make them. Nine bellows were attached to three separate 

pipes that led into the chest of the figure. Each set of three bellows was attached to 

a different weight to give out varying degrees of air, and then all pipes joined into 

a single one, equivalent to a trachea, continuing up through the throat, and 

widening to form the cavity of the mouth. The lips, which bore upon the hole of 

the flute, could open and close; and move backwards or forwards. Inside the 

mouth was a moveable metal tongue, which governed the air-flow and created 

pauses. 

More recently, the “Flute Playing Machine” developed by Martin Riches was 

designed to play a specially-made flute somewhat in the manner of a pianola, ex-

cept that all the working parts are clearly visible [9]. The Flute Playing Machine 

(Figure 12.2b) is composed of an alto flute, blower (lungs), electro-magnets (fin-

gers) and electronics. The design principle is basically transparent in a double 

sense. The visual scores can be easily followed so that the visual and acoustic in-

formation is synchronized. The pieces it plays are drawn with a felt tip pen on 

long transparent music roll which are then optically scanned by the photo cells of 

a reading device. The machine has a row of 15 photo cells which read felt-tip pen 

markings on a transparent roll. Their amplified signals operate the 12 keys of the 
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flute and the valve which controls the flow of air into the embouchure. The two 

remaining tracks may be used for regulating the dynamics or sending timing sig-

nals to a live performer when performing a duet. 

a) b)  

c)  

Fig. 12.2 Examples of automated machines and humanoid robots for emulating the flute 

playing: a) Flute Player (adapted version from the illustration done by Doyon and Liaigre); 

b) Flute-Playing Machine (courtesy by Martin Riches1); c) Anthropomorphic Waseda Flut-

ist Robot. 

The authors have developed an Anthropomorphic Waseda Flutist Robot to un-

derstand the human motor control from an engineering point of view (Figure 

12.2c). In the next sub-sections, the technical details of the mechanism design and 

musical performance control strategies will be detailed. 

                                                           
1 Photography by Hermann Kiessling, collection of the Berlinische Galerie, State Museum of 

Modern Art, Photography, and Architecture. 
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12.3.1.1   Anthropomorphic Waseda Flutist Robot 

Since 1990, the research on the development of the anthropomorphic Waseda 

Flutist Robot has been focused on mechanically emulating the anatomy and 

physiology of the organs involved during the flute playing. As a result of this  

research, in 2007, the Waseda Flutist Robot No. 4 Refined IV (WF-4RIV) was de-

veloped. The WF-4RIV has a total of 41-DOFs and it is composed of the follow-

ing simulated organs [13]: lungs, lips, tonguing, vocal cord, fingers, and other 

simulated organs to hold the flute (i.e. neck and arms).  The WF-4RIV has a 

height of 1.7 m and a weight of 150 kg. In particular, the WF-4RIV improved the 

mechanical design of the artificial lips (to produce more naturally the shape of 

human lips so that more natural sounds can be produced), the tonguing mechanism 

(to reproduce the double tonguing so that smoother transitions between notes can 

be done), the vibrato (to add more natural vibrations to the air beam), and the lung 

system (to enhance the air flow efficiency). In the following sub-sections, we will 

focus in providing the technical design details of such mechanisms and the  

implementation of the musical performance control system. 

12.3.1.2   Mechanical Design of the WF-4RIV 

One of the most complicate organs to mechanically reproduce is the shape of the 

lips. In fact; the previous version of the lips mechanism was composed of 5-DOFs 

which basically were used to control the parameters of the air stream. Moreover, 

the artificial lips were made of EPDM rubber (ethylene-propylenediene-monomer 

rubber). However, the EPDM rubber could not simulate the elasticity properties of 

human lips. From our discussions with a professional flutist, a more accurate con-

trol of the shape of lips and higher elasticity of the artificial lips are important is-

sues that may contribute in improving the robot’s playing. For that reason, the lips 

mechanism of WF-4RIV was simplified and designed by 3-DOFs (Figure 12.3a) 

to realize an accurate control of the motion of the superior lip (control of air-

stream’s thickness), inferior lip (control of airstream’s angle) and sideway lips 

(control of airstream’s length). The artificial lip is made of a thermoplastic rubber 

named “Septon” (Kuraray Co. Ltd., Japan). The Septon was selected due to its 

high stiffness (19.85 kPa measured at a measuring temperature of 23
o
C at a tensile 

rate of 500 mm/min according to JIS K-6251) and low hardness (can be easily de-

signed between 30 A and 80 A hardness). In order to change the shape of the arti-

ficial lips, an array of pins were placed on four places (top, bottom and sideways).   
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a)   

b)  

c)  

Fig. 12.3 Mechanism detail of the WF-4RIV: a) The lip mechanism controls the length, 

thickness and angle of the airstream; b) The lung mechanism controls the speed of the air-

stream; c) The artificial vocal cord adds vibrations to the airstream. 
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On the other hand, the reproduction of the lung system was previously imple-

mented by using two vane mechanisms which were controlled by an AC motor. 

The breathing process was controlled by a couple of valve mechanisms which 

were located behind the robot. The use of vane mechanisms effectively reduced 

the mechanical noise during the breathing process; however, we detected low air 

conversion efficiency (51%) due to the loss of air coming from the lungs to the lip. 

This problem also inhibits the production of a natural vibrato as little air arrives to 

the vibrato mechanism (vocal cord). Therefore, we designed a new lung mecha-

nism for the WF-4RIV which is more air-tight during the breathing process. The 

lung system of the WF-4RIV is composed by two acrylic cases, which are sealed 

(Figure 12.3b). Each of the cases contains a bellow which is connected to an inde-

pendent crank mechanism. The crank mechanism is controlled by using an AC 

motor so that the robot can breathe air in into the acrylic cases and breathe air out 

from them by controlling the speed of motion of the bellow. Moreover, the oral 

cavity of WF-4RIV is composed by a clamped plate (located at the front) and a 

coupler (located at the rear). The clamped plate is where the artificial lips of the 

robot are attached, and the coupler connects to a tube with the air flow coming 

from the throat mechanism. Inside the oral cavity, a simulated tongue was  

installed.  

The reproduction of the vibrato mechanism was previously implemented by a 

voice coil motor which presses directly on a tube to add vibrations to the air beam 

passing through this mechanism. However, human uses a more complicated 

mechanism to produce a vibrato. In fact, by observing the laryngeal movement 

while playing a wind instrument using a laryngo-fiberscope, it has been demon-

strated that the shape of the vocal cord of the flutist differs according to the level 

of expertise [10]. Therefore, we believe that the aperture control of the glottis 

plays a key role in producing a human-like vibrato which will help in producing a 

performance with expressiveness. As a result, the vocal cord of the WF-4RIV is 

composed by 1-DOF and the artificial glottis was also made of Septon. In order to 

add vibration to the incoming air stream, a DC motor linked to a couple of gears 

was used (Figure 12.3c). The gears are connected to each both sides of the vocal 

folds by links. This design enables the control of the amplitude and frequency of 

the aperture of the glottis (after the addition of vibrations to the air stream, it is 

then directed to the robot’s oral cavity through a tube).  

12.3.1.3   Musical Performance Control of the WF-4RIV 

As it has been previously detailed, different organs have several functions during 

flute playing. The motor control of such organs are basically the result of an accu-

rate coordination of contracting muscles and the correct positioning of the embou-

chure hole of the flute with respect to the lips. Human beings have a large and 

complex set of muscles that can produces dynamic changes of those organs. Due 

to such a complexity, human players perform different scores several times to im-

prove the accuracy control and synchronization of the organs. For each single 

note, humans listen and evaluate the sound quality. If the quality is not acceptable, 

they adjust some parameters until the produced sound is acceptable. 
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Inspired by this principle, the control strategy for the WF-4RIV has been im-

plemented by defining an Auditory Feedback Control System (AFCS) [14]. The 

AFCS it is composed by three main modules (Figure 12.4): Expressive Music 

Generator (ExMG), Feed Forward Air Pressure Control System (FFAiPC) and 

Pitch Evaluation System (PiES). The ExMG aims to output musical information 

required to produce an expressive performance from a nominal score. For this 

purpose, a set of musical performance rules (which defines the deviations intro-

duced by the performer) are defined (offline). The process of modeling the expres-

siveness features of the flute performance from the performance of a professional 

flutist is done by means of Artificial Neural Networks (ANN) [3]. In particular, 

three different musical parameters were considered: duration rate, vibrato fre-

quency and vibrato amplitude. For each of the networks, a number of inputs were 

defined based on the music computer research as follows: Duration rate (14 in-

puts); Vibrato duration (19 inputs) and Vibrato frequency (18 inputs). We have 

experimentally determined different numbers of hidden layers for each of them. In 

particular, seven units were defined for the duration rate, five units for the vibrato 

frequency and 17 units for the vibrato amplitude. In order to train the ANN, the 

back-propagation algorithm was considered. This kind of supervised learning in-

corporates an external teaching signal (the performance of a professional flutist 

has been used). 

During learning, the weight vectors (Wi) are updated using Eq. (12.1); where 

E(t)is the error between the actual output yk and the teaching signal dk computed 

as Eq. (12.2), and η is the learning rate (which affects network learning speed). 

There are a few techniques to select this parameter so that we have experimentally 

determined it (η =0.75). The ANN was trained to learn the extracted performance 

rules obtained from the analysis of the professional flutist performance. Based on 

the previous setting of the ANN, the duration rate converges at 148 steps, the vi-

brato frequency at 72 steps and the vibrato amplitude at 49 steps. The output data 

from the ExMG (i.e. note duration, vibrato frequency, vibrato duration, attacking 

time and tonguing) is then sent directly to the robot’s control system by sending 

MIDI messages from a sequencer device (personal computer). As a result, the flut-

ist robot is capable of performing a musical performance with expressiveness. 
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Fig. 12.4 Block diagram of the auditory feedback control system implemented for the WF-

4RIV. 

However, it is important to consider that music is not defined by a set of inde-

pendent events sent trough the MIDI data. In fact, musical sounds are continu-

ously produced by taking into consideration adjacent notes. Human players may 

need to adjust some dynamic parameters during the performance. Therefore, the 

FFAiPC uses a feed-forward control system to control the air pressure coming out 

from the lungs. For this purpose, the inverse model of the lung system is computed 

to control of the air pressure during the attack time. In order to implement the 

feed-forward control system of the air pressure from the lungs, the Feedback Error 

Learning approach has been implemented which it is also based on the use of an 

ANN. The feedback error learning is a computational theory of supervised motor 

learning [7], which is inspired by the central nervous system.  In the case of the 

WF-4RIV, there are 9 input layers units, 5 hidden layer units and a single output 

layer unit. The output signal is the air pressure and the teaching signal is the data 

collected from a pressure sensor placed inside the artificial lungs. In order to pro-

duce the inverse model, a total of 179 learning steps were required. 

Finally, in order to evaluate the flute sound produced by the robot, the PES has 

been implemented in order to detect both the pitch of the flute sound as well 

evaluation its quality. The PES is designed to estimate the pitch or fundamental 

frequency of a musical note. In the case of the WF-4RIV, the Cepstrum method 

has been implemented because it is the most popular pitch tracking method in 

speech and as it can be computed in real-time [5]. The Cepstrum is calculated by 

taking the Short-Fourier Transform (STFT) of the log of the magnitude spectrum 

of sound frame (frame size of 2048, 50% of overlapping at 44.1Hz). However, this 

method presents the problem of deciding how to divide the frequency. Therefore, 

the MIDI data of the score is used along to synchronize the output obtained from 

the implemented Cepstrum method. 

After the detection of the pitch, it is possible to evaluate the quality of the sound 

by using the Eq. (12.3); which it is based on the experimental results done by Ando 

[2]. The weighting coefficients w1 and w2 have been experimentally determined (1.0 

and 0.5 respectively). Basically, by using the proposed PES, the WF-4RIV is able of 

autonomously detect when a note was incorrectly played. Therefore, during a  

performance, when a note is incorrectly played, the AFS automatically puts a mark 

to indicate to the performance control system to adjust the required parameters.  
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In particular, the lip’s shape and lung velocity are modified based on the “General 

Position” proposed and detailed in [12], which is an algorithm that automatically 

finds the optimal parameter values by adjusting (based on an orthogonal table) the 

lip’s shape and lung’s velocity while continuously blowing a simple etude until all 

the notes are produced with a uniform sound quality. 

 

( ) ( )
Volume

LLwHMw
EvalF oe −⋅+−⋅

= 21                           (12.3) 

M: Harmonic level [dB]    Le: Even-harmonics level [dB]    H: Semi-Harmonics level [dB]         

Lo: Odd-harmonics level [dB]    Volume: Volume [dB]    w1, w2: Weighting Coefficients 

a)  

b)  

Fig. 12.5 Experimental results to compare the musical performance among the robot  

versions and a professional flautist: a) The sound volume; b) the pitch. 
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12.3.1.4   Musical Performance Evaluation of the Flutist Robot 

In this experiment, we have verified the improvements of the musical performance 

of the Waseda Flutist Robot. For this purpose, we have programmed the previous 

version (WF-4RIII) and the improved one (WF-4RIV) to perform the traditional 

folklore Japanese song “Sakura”, and compare with the performance of a profes-

sional flutist player in terms of sound volume and pitch. The experimental results 

are shown in Figure 12.5. As we may observe, the dynamic changes in the sound 

volume are considerably improved on the performance of the WF-4RIV thanks to 

the mechanical improvements done on the lip and tonguing mechanisms (Figure 

12.5a). Furthermore, the improved control system implemented for the WF-4RIV 

enabled the robot to produce more stable tones compared with the WF-4RIII  

(Figure 12.5b). 

However; even though the WF-4RIV is able to reproduce more naturally the vi-

brato, there are still considerable differences both in terms of sound volume and 

pitch (especially during note transitions) with respect to the professional human 

player. This issue may be related to the way the proposed control system has been 

implemented (see Figure 12.4). Actually, the PES has been designed to evaluate 

exclusively steady tones so that during note transitions, the proposed control could 

not adjust accurately the mechanical parameters (i.e. lip’s shape, lung velocity, 

etc.). 

12.3.2   Saxophone-Playing Robots 

One of the first attempts to develop a saxophone-playing robot was done by Taka-

shima at Hosei University [17]. His robot; named APR-SX2, is composed of three 

main components (Figure 12.6a): mouth mechanism (as a pressure controlled os-

cillating valve), the air supply mechanism (as a source of energy), and fingers (to 

make the column of air in the instrument shorter or longer). The artificial mouth 

consisted of flexible artificial lips and a reed pressing mechanism. The artificial 

lips were made of a rubber balloon filled with silicon oil with the proper viscosity. 

The air supplying system (lungs) consists of an air pump and a diffuser tank with a 

pressure control system (the supplied air pressure is regulated from 0.0 MPa to 

0.02 MPa). The APR-SX2 was designed under the principle that the instrument 

played by the robot should not be changed. A total of twenty-three fingers were 

configured to play the saxophone’s keys (actuated by solenoids), and a modified 

mouth mechanism was designed to attach it to the mouthpiece, no tonguing 

mechanism was implemented (normally reproduced by the tongue motion). The 

control system implemented for the APR-SX2 is composed by one computer dedi-

cated to the control of the key-fingering, air pressure and flow, pitch of the tones, 

tonguing, and pitch bending. In order to synchronize all the performance, the mu-

sical data was sent to the control computer through MIDI in real-time. In particu-

lar, the SMF format was selected to determine the status of the tongue mechanism 

(on or off), the vibrato mechanism (pitch or volume), and pitch bend (applied 

force on the reed). 
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More recently, an Anthropomorphic Saxophonist Robot developed by the au-

thors, increased the understanding of the human motor control, from an engineer-

ing point of view, by mechanically reproducing the human organs involved during 

saxophone playing (Figure 12.6b). In the next sub-sections, the technical details of 

the mechanism design and control strategies will be detailed. 

12.3.2.1   Anthropomorphic Waseda Saxophonist Robot 

In 2009, the Waseda Saxophonist Robot No.2 (WAS-2) was developed at Waseda 

University [15]. The WAS-2 is composed by 22-DOFs that reproduce the physiol-

ogy and anatomy of the organs involved during the saxophone playing as follows 

(Figure 12.6b): 3-DOFs to control the shape of the artificial lips, 16-DOFs for the 

human-like hand, 1-DOF for the tonguing mechanism, and 2-DOFs for the lung 

system. In the following sub-sections, we will focus in providing the technical  

design details of such mechanisms and the implementation of the musical  

performance control system. 

a)  b)  

Fig. 12.6 Examples of saxophone playing automated machines and humanoid robots: a) 

APR-SX2 (courtesy by Suguru Takashima); b) WAS-2. 

12.3.2.2   Mechanical Design of the WAS-2 

The previous mouth mechanism was designed with 1-DOF in order to control the 

vertical motion of the lower lip. Based on the up/down motion of the lower lip, it 

became possible to control the pitch of the saxophone sound. However, it is diffi-

cult to control the sound pressure by means of 1-DOF. Therefore, the mouth 

mechanism of the WAS-2 consists of 2-DOFs designed to control the up/down 

motion of both lower and upper lips (Figure 12.7a). In addition, a passive 1-DOF 

has been implemented to modify the shape of the side-way lips. The artificial lips 

were also made of Septon. In particular, the arrangement configuration of the lip 

mechanism is as follows: upper lip (rotation of the motor axis is converted into 

vertical motion by means of a timing belt and ball screw to avoid the leak of air 
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flow), lower lip (a timing belt and ball screw so that the rotational movement of 

the motor axis is converted into vertical motion to change the amount of pressure 

on the reed) and sideway lip. On the other hand, the tonguing mechanism is shown 

in Fig. 12.7b. The motion of the tongue tip is controlled by a DC motor which is 

connected to a link attached to the motor axis. In such a way, the air flow can be 

blocked by controlling the motion of the tongue tip. Thanks to this tonguing 

mechanism of the WAS-2, the attack and release of the note can be reproduced. 

a)   

b)  

Fig. 12.7 Mechanism details of the WAS-2: a) Mouth mechanism; b) Tonguing mechanism. 

Regarding the WAS-2 air source, a DC servo motor has been used to control 

the motion of the air pump diaphragm; which it is connected to an eccentric crank 

mechanism (Figure 12.8a). This mechanism has been designed to provide a mini-

mum 20 L/min air flow and a minimum pressure of 30kPa. In addition, a DC 

servo motor has been designed to control the motion of an air valve so that the de-

livered air by the air pump is effectively rectified. Finally, the finger mechanism 

of the WAS-2 is composed of 16-DOFs to push the correspondent keys from A#2 
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to F#5 (Figure 12.8b). In order to reduce the weight on the hand part, the actuation 

mechanism uses a wire and pulley attached to the RC motor axis. RS-485 commu-

nication protocol has been used to control the motion of each single finger. 

a)   

b)  

Fig. 12.8 Mechanism details of the WAS-2: a) Lung mechanism; b) Human-like hand. 

12.3.2.3   Musical Performance Control of the WAS-2 

The control system implemented on the WAS-2 is also integrated by a PC Control 

and a PC Sequencer (Figure 12.9). The PC Control is used to acquire and process 

the information from each of the degrees of freedom of the saxophonist robot as 

well as controlling the air flow/pressure to produce the desired sound. The PC 

Control has as inputs the MIDI data and Music Pattern Generator (calibration 

data). The Music Pattern Generator is designed to output the calibration parame-

ters required in order to produce the desired saxophone sound. Inspired on the 

principle of sound production of single-reed instruments, the WAS-2 requires the 

control of the following parameters [16]: lower lip’s position, valve closing rate, 

air flow, and pressure. In particular, the accurate control of the lower lip’s position 

and air pressure is required during saxophone performance. 
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a)  

b)  

Fig. 12.9 The control system implemented for the WAS-2: a) The block diagram imple-

mented for the WAS-2; b) Detail of the air pressure controller. 

The previously implemented control system for the robot was based on a cas-

cade feedback control system to assure the accuracy of the air pressure during a 

musical performance. Basically, air pressure is controlled based on the measure-

ments of the pressure sensed at the output of the air pump and the position of the 

lower lips, the air pressure was been controlled. However; during the attack time, 

the target air pressure is reached around 100ms later during a musical perform-

ance. Basically, the signal of the note to be played is sent to the control system 

through a MIDI message. As soon as message of a note change is received, the air 

pressure, as well as the position of the lower lips is adjusted. Thus, a delay on the 

control of the air pressure (during the attack time) was observed. 
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a)  

b)  

Fig. 12.10 Experimental results to compare the musical performance among the robot ver-

sions and a professional saxophonist: a) The sound volume; b) The pitch. 

Actually, if we analyze the performance of a human playing the saxophone, the 

distance between the lungs and the oral cavity are a few dozens of centimeters. 

This distance provokes the existence of dead-time. However, musicians when 

playing a musical performance, in order to avoid any delay on the adjustment of 

the air pressure located inside the oral cavity, control the required parameters of 

the lungs and the mouth before the notes change. In order to assure the accurate 

control of the air pressure, an improved control system has been implemented for 

the WAS-2 (Figure 12.9a). In particular, a feed-forward error learning control sys-

tem with dead-time compensation was implemented (Figure 12.9b). The inputs of 

the ANN are defined as follows: pressure reference, note, and lower/upper lips  

position. For this case, a total of six hidden units were used (experimentally de-

termined). The output is the position of the air valve. The system is trained to pro-

duce the required air pressure to blow a sound. In addition, a dead-time factor  
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(referred as e
sL

; which is an element to predict how changes made now by the 

controller will affect the controlled variable in the future) is introduced to  

compensate the delay during the attack time [8]. 

12.3.2.4   Musical Performance Evaluation 

In this experiment, we have focused on verifying the musical performance im-

provements of the Waseda Saxophonist Robot. For this purpose, we have pro-

grammed the previous version (WAS-1) and the improved one (WAS-2) to per-

form the Moonlight Serenade composed by Glenn Miller and compared them with 

the performance of a professional saxophone player in terms of sound volume and 

pitch. The experimental results are shown in Figure 12.9. As we may observe, the 

dynamic changes on the sound volume have been relatively improved on the per-

formance of WAS-2 thanks to the mechanical improvements done in the mouth 

and finger mechanisms (Figure 12.10a). Furthermore, the improved control system 

implemented on the WAS-2 enabled the robot to produce more stable tones com-

pared with the WAS-1 (Figure 12.10b). 

However, if we compare the musical performance of the WAS-2 to that of the 

professional player, we can still observe significant differences (particularly in  

the dynamic changes on the sound volume). This issue may be related to the way 

the mechanical parameters are controlled (see Figure 12.9). In fact, we may notice 

that the air pressure, lip positioning and fingering activation are controlled sepa-

rately and synchronized by means of the MIDI clock signal. 

12.4   Conclusions and Future Work 

The mechanism design and performance control of wind instrument-playing of 

automated machines and humanoid robots pose different kind of challenging is-

sues from the point of view of motor control learning and music technology. In 

this chapter, different approaches were introduced for the development of robots 

able to play the flute and saxophone. More recently, the authors have focused on 

analyzing the internal motion of the human organs while playing wind instruments 

by means of imaging data (i.e. MRI, CT-Scan, etc.). From this, the mechanical de-

sign of the anthropomorphic wind playing robots could be improved to enable the 

robot to produce a more natural sound. Furthermore, intelligent control system 

strategies will be tested and improved to enhance the musical expressiveness of 

the robot. 

Regarding the development of automated machines, we expect that novel ways 

of expression will be introduced thanks to the simplicity of their mechanical de-

sign and the implementation of music engineering and artificial intelligence. The 

development of humanoid robots will certainly contribute not only to the better 

understanding of the mechanisms of human musical performance, but also in de-

veloping higher-skilled robots that can reproduce different kinds of human-skills 

(i.e. playing the flute as well as the saxophone, Musician-Humanoid Interaction 

(MHI), etc.). 
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Chapter 13 

Multimodal Techniques for Human/Robot 
Interaction 

Ajay Kapur* 

Abstract. Is it possible for a robot to improvise with a human performer in real-

time? This chapter describes a framework for interdisciplinary research geared 

towards finding solutions to this question. Custom built controllers, influenced by 

the Human Computer Interaction (HCI) community, serve as new interfaces to 

gather musical gestures from a performing artist. Designs on how to modify a si-

tar, the 19-stringed North Indian string instrument, with sensors and electronics 

are described. Experiments using wearable sensors to capture ancillary gestures of 

a human performer are also included. A twelve-armed solenoid-based robotic 

drummer was built to perform on a variety of traditional percussion instruments 

from around India. The chapter describes experimentation on interfacing a human 

sitar performer with the robotic drummer. Experiments include automatic tempo 

tracking and accompaniment methods. This chapter shows contributions in the ar-

eas of musical gesture extraction, musical robotics and machine musicianship. 

However, one of the main novelties was completing the loop and fusing all three 

of these areas together into a real-time framework. 

13.1   Introduction 

There are many challenges in interfacing a human with a mechanical device con-

trolled by a computer. Many methods have been proposed to address this problem, 

usually including sensor systems for human perception and simple robotic mecha-

nisms for actuating the machine’s physical response. Conducting this type of  

experiments in the realm of music is obviously challenging, but fascinating at the 

same time. This is facilitated by the fact that music is a language with traditional 
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rules, which must be obeyed to constrain a machine’s response. Therefore the 

evaluation of successful algorithms by scientists and engineers is feasible. More 

importantly, it is possible to extend the number crunching into a cultural exhibi-

tion, building a system that contains a novel form of artistic expression that can be 

used on stage. 

The goal of this research is to make progress towards a system for combining 

human and robotic musical performance. We believe that in order for such a sys-

tem to be successful it should combine ideas from the frequently separate research 

areas of music robotics, hyperinstruments, and machine musicianship. 

The art of building musical robots has been explored and developed by musi-

cians and scientists [1-6] . A recent review of the history of musical robots is de-

scribed in Kapur [7]. The development of hyperinstruments plays a crucial role in 

obtaining data from the human’s performance. Work and ideas by Machover [8] 

and Trueman [9] have greatly influenced the development of the interface and 

sensors described in this chapter. The area of machine musicianship is another part 

of the puzzle. Robert Rowe (who also coined the term machine musicianship) de-

scribes a computer system which can analyze, perform and compose music based 

on traditional music theory [10]. Other systems which have influenced the com-

munity in this domain are Dannenberg’s score following system [11], George 

Lewis’s Voyager [12], and Pachet’s Continuator [13]. 

There are few systems that have closed the loop to create a real live hu-

man/robotic performance system. Audiences who experienced Mari Kimura’s  

recital with the LEMUR GuitarBot [14] can testify to its effectiveness. Gil Wein-

berg’s robotic drummer Haile [15] continues to grow in capabilities to interact 

with a live human percussionist [16]. Trimpins performance with Kronos Quartet 

as portrayed in the documentary “Trimpin: The Sound of Invention” was one of 

the greatest success stories in the field.   

This chapter describes a human-robot performance system based on North In-

dian classical music, drawing theory from ancient tradition to guide aesthetic and 

design decisions. Section 13.2 describes the revamped hyperinstrument, known as 

the Electronic Sitar (ESitar). Section 13.3 describes the design of wearable sensors 

for multimodal gesture extraction. Section 13.4 describes the building of the ro-

botic Indian drummer, known as MahaDeviBot. Section 13.5 describes experimen-

tation and algorithms toward “intelligent” multimodal machine musicianship.  

Section 13.5 discusses the system used live in various musical performance sce-

narios. Section 13.6 contains conclusions and future work. 

13.2   The Electronic Sitar 

Sitar is Saraswati’s (the Hindu Goddess of Music) 19-stringed, gourd shelled, tra-

ditional North Indian instrument. Its bulbous gourd (Figure 13.1), cut flat on the 

top, is joined to a long-necked, hollowed, concave stem that stretches three feet 

long and three inches wide. The typical sitar contains seven strings on the upper 

bridge, and twelve sympathetic strings below, all tuned by tuning pegs. The upper 

strings include rhythm and drone strings, known as chikari. Melodies, which are 
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primarily performed on one of the upper-most strings, induce sympathetic reso-

nant vibrations in the corresponding sympathetic strings below. The sitar can have 

up to 22 moveable frets, tuned to the notes of a Raga (the melodic mode, scale, 

order, and rules of a particular piece of Indian classical music) [18, 19]. The sitar is 

a very sophisticated and subtle instrument, which can create vocal effects with in-

credible depths of feeling, making it a challenging digital controller to create. The 

initial work on transforming the sitar into a hyperinstrument is described in [17], 

which serves as a source to gain a more detailed background on traditional sitar 

performance technique, the sitar’s evolution with technology, and initial experi-

mentation and design in building a controller out of a sitar. 

 

Fig. 13.1 A traditional Sitar. 

13.2.1   Traditional Sitar Technique 

It is important to understand the traditional playing style of the sitar to compre-

hend how our controller captures its hand gestures. It should be noted that there 

are two main styles of sitar technique: Ustad Vilayat Khan’s system and Pandit 

Ravi Shankar’s system. The main differences between the styles are that Ustad Vi-

layat Khan performs melodies on the higher octaves, eliminating the lowest string 

from the instrument, whereas Pandit Ravi Shankar’s style has more range, and 

consequently melodies are performed in the lower octaves [20]. The ESitar is 

modeled on the Vilayat Khan’s system or gharana.  

A performer generally sits on the floor in a cross-legged fashion. Melodies are 

performed primarily on the outer main string, and occasionally on the copper 

string. The sitar player uses his left index finger and middle finger, as shown in 

Figure 13.2a, to press the string to the fret for the desired note. In general, a pair of 

frets are spaced a half-step apart, with the exception of a few that are spaced by a 

whole. The frets are elliptically curved so the string can be pulled downward, to 

bend to a higher note. This is how a performer incorporates the use of shruti (mi-

crotones). 

On the right index finger, a sitar player wears a ring like plectrum, known as a 

mizrab, shown in Figure 13.2b. The right hand thumb remains securely on the 

edge of the dand (shaft of instrument) as shown on Figure 13.2c, as the entire right 

hand gets pulled up and down over the main seven strings, letting the mizrab 

strum the desired melody. An upward stroke is known as Dha and a downward 

stroke is known as Ra [19, 20].  
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                         (a)                                              (b)                                       (c) 

Fig. 13.2 Traditional Sitar Playing Technique. 

13.2.2   The MIDI Sitar Controllers 

With the goal of capturing a wide variety of gestural input data, the ESitar control-

ler combines several different families of sensing technology and signal process-

ing methods. Three ESitar’s were constructed: ESitar 1.0 in 2003, ESitar 2.0 in 

2006, and ESitar 3.0 in 2009. The methods used in all three will be described in-

cluding microcontroller platforms, different sensors systems and algorithms.  

Each version of the ESitar used a different Microcontroller from  the Atmel
1
  

AVR [22], PIC
2
 microchip, and the Arudino MEGA

3
. The first ESitar was en-

cased in a controller box as seen in Figure 13.3, with three switches, shaft encod-

ers, and potentiometers used to trigger events, toggle between modes, and fine 

tune settings. The box also has an LCD to display controller data and settings to 

the performer, enabling him/her to be completely detached from the laptops run-

ning sound and graphic simulations. In the second version, a major improvement 

was encasing the microchip, power regulation, sensor conditioning circuits, and 

MIDI out device in a box that fits behind the tuning pegs on the sitar itself. This 

reduces the number of wires, equipment, and complication needed for each per-

formance. This box also has two potentiometers, six momentary buttons, and four 

push buttons for triggering and setting musical parameters. In the third version, the 

entire microchip was embedded inside the sitar itself, with USB access and a ¼ 

inch jack for audio output.  

 

                                                           
1 http://www.atmel.com/ (January 2010) 
2 http://www.microchip.com/ (January 2010) 
3 http://arduino.cc/en/Main/ArduinoBoardMega (Feb 2010) 
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Fig. 13.3 Atmel Controller Box Encasement of ESitar 1.0 (left, middle). PIC Controller 

Box Encasement on ESitar 2.0 (right). 

Gesture Capturing 

The controller captures gesture data including the depressed fret number, thumb 

pressure, 3 axes of the performer’s head tilt, and 3 axes of the sitar’s tilt. 

Fret Detection 

The currently played fret is deduced using an exponentially distributed set of resis-

tors which form a network interconnecting in series each of the frets on the ESitar 

(Figure 13.4). When the fingers of the left hand depress the string to touch a fret 

(as shown in Figure 13.2a), current flows through the string and the segment of the 

resistor network between the bottom and the played fret. The voltage drop across 

the in-circuit segment of the resistor network is digitized by the microcontroller. 

Using a lookup table it maps that value to a corresponding fret number and sends 

it out as a MIDI message. This design is inspired by Keith McMillan’s Zeta  

Mirror 6 MIDI Guitar [23].  

The ESitar used a modified resistor network for fret detection based on more 

experimentation. Military grade resistors at 1% tolerance were used in this new 

version for more accurate results. Soldering the resistors to the pre-drilled holes in 

the frets provided for a more reliable connection that does not have to be  

re-soldered at every sound check! 

As mentioned above, the performer may pull the string downward, bending a 

pitch to a higher note (for example play a Pa [5
th
] from the Ga [major 3

rd
] fret). 

To capture this additional information that is independent of the played fret, we 

fitted the instrument with a piezo pick-up whose output was fed into a pitch detec-

tor. For initial experiments, the pitch detector was implemented in a pure data 

[24] external object using an auto-correlation based method [25]. The pitch detec-

tion is bounded below by the pitch of the currently played fret and allows a range 

of eight semi-tones above. This system was later ported to a real time system in 

ChucK programming language.  
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Fig. 13.4 The network of resistors on the frets of the ESitar 1.0 (left, middle). The ESitar 

2.0 full body view (right).  

Mizrab Pluck Direction 

We are able to deduce the direction of a mizrab stroke using a force sensing resis-

tor (FSR), which is placed directly under the right hand thumb, as shown in  

Figure 13.5. As mentioned before, the thumb never moves from this position 

while playing. However, the applied force varies based on mizrab stroke direction. 

A Dha stroke (upward stroke) produces more pressure on the thumb than a Ra 

stroke (downward stroke). We send a continuous stream of data from the FSR via 

MIDI, because this data is rhythmic in time and can be used compositionally for 

more then just deducing pluck direction.  

  

Fig. 13.5 FSR sensor used to measure thumb pressure on ESitar 1.0 (left) and ESitar 2.0 

(right). 

3-axes Sitar Tilt 

In the ESitar 2.0, there is a 3-axis accelerometer embedded in the controller box at 

the top of the neck, to capture ancillary sitar movement, as well as serve as yet an-

other means to control synthesis and audio effect parameters. This sensor can be 

used to derive data for performer’s posture with their instrument, as well as intri-

cacies about playing technique such as jerk detection to help evaluate the begin-

ning and end of melodic phrasing. In ESitar 3.0, the accelerometer is embedded 

inside the body of the instrument itself, achieving similar results.  
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13.3   Wearable Sensors 

The motion of the human body is a rich source of information, containing intrica-

cies of musical performance which can aid in obtaining knowledge about intention 

and emotion through human interaction with an instrument. Proper posture is also 

important in music performance for musician sustainability and virtuosity. Build-

ing systems that could aid as pedagogical tools for training with correct posture is 

useful for beginners and even masters.  This section explores a variety of tech-

niques for obtaining data from a performing artist by placing sensors on the  

human body. There are two ways in which we have tried to gather data from the 

human musician: (1) a wearable sensor package to obtain acceleration data, (2) a 

wireless sensor package system that obtains orientation data.   

The design of the KiOm [28] (Figure 13.6) was built using a Kionix KXM52-

1050
4
 three-axis accelerometer. The three streams of analog gesture data from the 

sensor is read by the internal ADC of the Microchip PIC
5
. These streams are con-

verted to MIDI messages for capturing gesture signals. 

  

Fig. 13.6 The KiOm Circuit Boards and Encasement (left, middle).  Wireless Inertial Sensor 

Package (WISP) (right). 

Our paradigm is to keep traditional instrument performance technique, while 

capturing both the amplified acoustic signal and the gesture sensor data. A similar 

paradigm is that of the hyperinstrument [8, 17] where an acoustic instrument is 

augmented with sensors. In our approach, any performer can wear a low-cost sen-

sor while keeping the acoustic instrument unmodified, allowing a more accessible 

and flexible system. This technique is particularly useful in sitar performance. A 

KiOm is attached to the head of the sitar player as an easy way to control and trig-

ger different events in the performance [26]. This would be a useful addition to 

almost any controller as a replacement for foot pedals, buttons, or knobs. It is par-

ticularly useful in this system as a sitar player’s hands are always busy, and cannot 

use his/her feet due to the seated posture. 

The Wireless Inertial Sensor Package (WISP) [29], designed by Bernie Till and 

the Assistive Technology Team at University of Victoria, is a miniature Inertial 

Measurement Unit (IMU) specifically designed for the task of capturing human 

body movements. It can equally well be used to measure the spatial orientation of 

                                                           
4 http://www.kionix.com/ (February 2005) 
5 http://www.microchip.com/ (February 2005) 
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any kind of object to which it may be attached. Thus the data from the WISP pro-

vides an intuitive method to gather data from a musical performer. The KiOm’s 

has the disadvantage of being heavy and having wires that connect to the com-

puter, certainly putting constraints on a musician. With the wireless WISP, the per-

former is free to move within a radius of about 50m with no other restrictions im-

posed by the technology such as weight or wiring. The KiOm and WISP are used 

in multimodal experiments discussed later in the chapter. 

13.4   MahaDeviBot – Robotic Percussionist 

Mechanical systems for musical expression have developed since the 19
th

 Century. 

Before the phonogram, player pianos and other automated devices were the only 

means of listening to compositions, without the presence of live musicians. The 

invention of audio recording tools eliminated the necessity and progression of 

these types of instruments. In modern times, with the invention of the microcon-

troller and inexpensive electronic actuators, mechanical music is being revisited 

by many scholars and artists.  

Musical robots have come at a time when tape pieces and laptop performances 

have left some in the computer music audiences wanting more interaction and 

physical movement from the performers [31]. The research in developing new  

interfaces for musical expression continues to bloom as the community is now be-

ginning to focus on how actuators can be used to raise the bar even higher, creat-

ing new mediums for creative expression. Robotic systems can perform tasks not 

achievable by a human musician. Speakers, no matter how many directions they 

point, can never replace the sound of a bell being struck on stage with its acoustic 

resonances with the concert hall. The use of robotic systems as pedagogical im-

plements is also proving to be significant. Indian classical students practice to a 

Tabla box with pre-recorded drum loops. The use of robotic strikers, performing 

real acoustic drums gives the students a more realistic paradigm for concentrated 

rehearsal.  

The development of the MahaDeviBot as a paradigm for various types of sole-

noid-based robotic drumming is described. The MahaDeviBot serves as a mechani-

cal musical instrument that extends North Indian musical performance scenarios, 

while serving as a pedagogical tool to keep time and help portray complex rhythmic 

cycles to novice performers in a way that no audio speakers can ever emulate. This 

section describes the design strategies for the MahaDeviBot, including four different 

methods for using solenoids for rhythmic events. There are four different designs 

proposed, and appropriately named by the inventor: Kapur Fingers, Singer Hammer, 

Trimpin Hammer and Trimpin BellHop are described.  
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13.4.1   Design 

Kapur Fingers 

The Kapur Fingers involve modifications of a push solenoid. One issue with the 

off-the-shelf versions of the solenoids is that during use they click against them-

selves making lots of mechanical sound. A key goal for a successful music robotic 

system is to reduce the noise of its parts so it does not interfere with the desired 

musical sound. Thus the push solenoids were reconfigured to reduce noise. The 

shaft and inner tubing were buffed with a wire spinning mesh using a Dremel hand 

power tool. Then protective foam was placed toward the top of the shaft to stop 

downward bounce clicking. Rubber grommets were attached in order to prevent 

upward bounce-back clicking (Figure 13.7). The grommets were also used to 

simulate the softness of the human skin when striking the drum as well as to  

protect the drum skin. 

 

Fig. 13.7 Kapur Finger using a grommet and padding. 

Singer Hammer 

The Singer Hammer is a modified version of the Eric Singer’s ModBot [32]. The 

mechanism strikes a drum using a steel rod and ball (Figure 13.8). A pull solenoid 

is used to lift a block to which the rod is attached. A ball joint system was added 

to connect the solenoid to the bar for security and reliability of strokes. The trade-

off was that it added some mechanical noise to the system. The MahaDeviBot has 

four Singer Hammers striking a variety of frame drums.  

 

Fig. 13.8 Singer Hammer with added ball-joint striking mechanism. 
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Trimpin Hammer 

The Trimpin Hammer is a modified version of Trimpin’s variety of percussion  

instruments invented over the last 20 years [33].  Its key parts include female and 

male rod ends, and shaft collars. This is a very robust system that involves using a 

lathe to tap the shaft of the solenoid so a male rod end can be secured. This is a 

mechanically quiet device, especially with the added plastic stopper to catch the 

hammer on the recoil. These devices are used to strike frame drums, gongs, and 

even bells as shown in Figure 13.9. 

  

Fig. 13.9 Trimpin Hammer modified to fit the MahaDeviBot schematic.  

Trimpin BellHop 

The Trimpin BellHop is a modified version of technology designed for Trimpin’s 

ColoninPurple, where thirty such devices were used to perform modified xylo-

phones suspended from the ceiling of a gallery. These are made by modifying a 

pull solenoid by extending the inner tubing so that the shaft can be flipped upside 

down and triggered to hop out of the front edge and strike a xylophone or Indian 

bell (as shown in Figure 13.10).  These, too, are mechanically quiet and robust.  

   

Fig. 13.10 Trimpin BellHop outside shell tubing (left) and inside extended tubing (middle). 

Trimpin BellHops used on MahaDeviBot (right).   

Head 

The headpiece of the MahaDeviBot is a robotic head that can bounce up and down 

at a given tempo (Figure 13.11). This was made using a pull solenoid attached to a 

pipe. Two masks are attached to either side and recycled computer parts from  
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ten-year old machines that have no use in our laboratories anymore visualize the 

brain. In performance with a human musician, the head serves as a visual feedback 

cue to inform the human of the machine-perceived tempo at a given instance in 

time.  

     

Fig. 13.11 The bouncing head of MahaDeviBot (left). MahaDeviBot hanging in REDCAT 

Walt Disney Concert Hall, Los Angeles 2010 (right).  

This section described in detail the various design strategies used to build the 

final version of the robotic Indian drummer. As an example of how these tradeoffs 

can influence robotic design for musical performance, the four designs are inte-

grated into MahaDeviBot in the following ways: The Kapur Fingers are added to a 

drum with the Singer Hammer to allow large dynamic range and quick rolls from 

one frame drum. The Trimpin Hammer is used to perform drum rolls and is used 

for robotic Tabla performance. The Trimpin BellHop is used to strike bells and 

other instruments where volume is important and which will not be struck at high 

rates. A solo melodic artist can now tour the world with a robotic drummer to ac-

company if software is “intelligent” enough to keep the interest of the audience. 

The next section discusses our pursuits in this direction.  

13.5   Machine Musicianship 

The “intelligence” of interactive multimedia systems of the future will rely on cap-

turing data from humans using multimodal systems incorporating a variety of  

environmental sensors. Research on obtaining accurate perception about human 

action is crucial in building “intelligent” machine response. This section describes 

experiments testing the accuracy of machine perception in the context of music 

performance. The goal of this work is to develop an effective system for human-

robot music interaction. We look at two methods in this section: (1) Multimodal 

Tempo Tracking and (2) Multimodal Rhythmic Accompaniment.  
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13.5.1   Multimodal Tempo Tracking 

This section describes a multimodal sensor capturing system for traditional sitar 

performance. As described before, sensors for extracting performance information 

are placed on the instrument. In addition wearable sensors are placed on the hu-

man performer. The MahaDeviBot is used to accompany the sitar player. In this 

section, we ask the question: How does one make a robot perform in tempo with 

the human sitar player?  

Analysis of accuracy of various methods of achieving this goal is presented. 

For each signal (sensors and audio) we extract onsets that are subsequently proc-

essed by Kalman filtering [34] for tempo tracking [35]. Late fusion of the tempo 

estimates is shown to be superior to using each signal individually. The final result 

is a real-time system with a robotic drummer changing tempo with the sitar  

performer in real-time.   

The goal of this section is to improve tempo tracking in human-machine inter-

action. Tempo is one of the most important elements of music performance and 

there has been extensive work in automatic tempo tracking on audio signals [36]. 

We extend this work by incorporating information from sensors in addition to the 

audio signal. Without effective real-time tempo tracking, human-machine per-

formance has to rely on a fixed beat, making it sound dry and artificial. The area 

of machine musicianship is the computer music communities’ term for machine 

perception. Our system evolves the state-of-the-art different as it involves a mul-

timodal sensor design to obtain improved accuracy for machine perception.  

There are four major processing stages in our system. A block diagram of the 

system is shown in Figure 13.12. In the following subsection we describe each 

processing stage from left to right. In the acquisition stage performance informa-

tion is collected using audio capture, two sensors on the instrument and a wearable 

sensor on the performer’s body. Onsets for each separate signal are detected after 

some initial signal conditioning. The onsets are used as input to four Kalman fil-

ters used for tempo tracking. The estimated beat periods for each signal are finally 

fused to provide a single estimate of the tempo.  

 

Fig. 13.12 Multimodal Sensors for Sitar Performance Perception. 
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For our experiments we recorded a data set of a performer playing the ESitar 

with a WISP on the right hand. Audio files were captured at a sampling rate of 

44100 Hz. Thumb pressure and fret sensor data synchronized with audio analysis 

windows were recorded with Marsyas at a sampling rate of 44100/512 Hz using 

MIDI streams from the ESitar. Orientation data for the Open Sound Control 

(OSC) [30] streams of the WISP were also recorded.   

While playing, the performer listened to a constant tempo metronome through 

headphones. 104 trials were recorded, with each trial lasting 30 seconds. Trials 

were evenly split into 80, 100, 120, and 140 BPM, using the metronome con-

nected to the headphones. The performer would begin each trial by playing a scale 

at a quarter note tempo, and then a second time at double the tempo. The rest of 

the trial was an improvised session in tempo with the metronome. 

Figure 13.13 shows the percentages of frames for which the tempo was cor-

rectly estimated. Tempo estimates are generated at 86Hz resulting in approxi-

mately 2600 estimates/30 second clip in the dataset. From the percentages of  

Fig. 13.13, we can conclude that when using a single acquisition method, the 

WISP obtained the best results at slower tempos, and the audio signal was best for 

faster tempos. Overall, the audio signal performed the best as a single input, 

whereas the fret data provided the least accurate information.  

When looking carefully through the detected onsets from the different types of 

acquisition methods, we observed that they exhibit outliers and discontinuities at 

times. To address this problem we utilize a late fusion approach where we con-

sider each acquisition method in turn for discontinuities. If a discontinuity is 

found, we consider the next acquisition method, and repeat the process until either 

a smooth estimate is obtained or all acquisition methods have been exhausted. 

When performing late fusion the acquisition methods are considered in the order 

listed on bottom half of Figure 13.13.  

Tempo (BPM) 
Signal 

80 100 120 140 

Audio 46% 85% 86% 80% 

Fret 27% 27% 57% 56% 

Thumb 35% 62% 75% 65% 

WISP 50% 91% 69% 53% 

LATE FUSION:     

Audio/WISP/Thumb/Fret 45% 83% 89% 84% 

Audio/WISP/Thumb 55% 88% 90% 82% 

Audio/ WISP 58% 88% 89% 72% 

Audio/Thumb 57% 88% 90% 80% 

WISP/Thumb 47% 95% 78% 69% 

Fig. 13.13 Comparison of Acquisition Methods. 
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By fusing the acquisition methods together, we are able to get more accurate 

results. At 80 BPM, by fusing the information from WISP and the audio streams, 

the algorithm generates more accurate results then either signal on its own.  When 

all the sensors are used together, the most accurate results are achieved at 140 

BPM, proving that even the fret data can improve accuracy of tempo estimation. 

Overall, the information from the audio fused with the thumb sensor was the 

strongest.  

13.5.2   Rhythmic Accompaniment 

Traditional Indian Classical music has been taught with the aid of an electronic 

Tabla box, where students can practice along with pre-recorded theka loops 

(rhythmic cycles). This allows the performer to select any time cycle and rehearse 

at a variable tempo. The main problem with this system is that one beat repeats 

over and over again, which is boring and not realistic for a true performance situa-

tion. This motivated the work explored in this section of generating an interactive 

rhythm accompaniment system that would evolve based on human input. We will 

present a software framework to generate machine driven performance using a da-

tabase structure for storing “memory” of “what to perform”. This application  

introduces a new level of control and functionality to the modern North Indian 

musician with a variety of flexible capabilities, and a new performance scenarios 

using custom written software designed to interface the ESitar with MahaDeviBot.  

The Music Information Retrieval (MIR) community
6
 inspired our initial frame-

work and experimentation for this approach. The goal of this system is to generate 

a variety of rhythmic accompaniment that evolves over time based on human per-

formance by using sensors to query databases of pre-composed beats. To achieve 

this, symbolic event databases (shown in Figure 13.14) for each robotic instrument 

were filled with rhythmic phrases and variations. During performance, at any 

given time, queries are generated by sensor data captured from the human per-

former. As this software is written in ChucK [27], it was easy for the databases to 

be time and tempo locked to each other to allow for multiple permutations and 

combinations of rhythm. Figure 13.14 shows an example of how the system can 

be mapped. In this case, thumb pressure from the ESitar queries what rhythm ro-

botic instrument 1 (Dha strokes) will mechanically play on the low frame drum. It 

is possible to generate a large number of combinations and permutations of 

rhythms by accessing patterns in each database. This proved to be a successful 

technique for performances on stage
7
. 

 

                                                           
6 http://www.ismir.net/ (January 2007) 
7 Videos Available at: http://www.karmetik.com  

  (Technology å Robotics Department) 



13   Multimodal Techniques for Human/Robot Interaction 229

 

 

Fig. 13.14 Symbolic MIR-based approach showing how ESitar sensors are used as queries 

to multiple robotic drum rhythm databases. 

One issue to address is how the queries are generated. In order to provide addi-

tional information for queries the derivatives and second derivatives of each sen-

sor data stream are also utilized. Also there are more advanced feature extraction 

methods, for example obtaining interonset interval values between peaks of the 

thumb pressure data. There are many algorithms that can be explored; however, 

the main philosophical question is whether the human should have full control of 

the machine’s performance (Figure 13.15). 

   

Fig. 13.15 MahaDeviBot being controlled with the ESitar at NUS Arts Festival in Singa-

pore and NIME 2007 in New York City. 

13.6   Conclusion and Future Work 

The body of work described in this chapter was truly an artistic venture calling on 

knowledge from a variety of engineering disciplines, musical traditions, and phi-

losophical practices. It also called on the collaborations and expertise of many 

professionals, professors and students. The goal of the work was to preserve and 

extend North Indian musical performance using state of the art technology includ-

ing multimodal sensor systems, machine learning and robotics. The process of 

achieving our goal involved strong laboratory practice with regimented experi-

ments with large data sets, as well as a series of concert performances showing 

how the technology can be used on stage to make new music, extending the tradi-

tion of Hindustani music. 
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Overall, our main motivation in using a robotic system was our discontent for 

hearing rhythmic accompaniment through a set of speakers. In is our opinion, trig-

gering pre-recorded samples does not have enough expressiveness, and physical 

models to-date do not sound real enough. However, having a machine perform 

acoustic instruments using mechanical parts has its disadvantages. We must tune 

the machines’ instruments for every show, which would not be necessary if we 

were just triggering “perfect” samples. Also, because of the nature of any me-

chanical system, there are imperfections in event timings based on varying spring 

tension, speed and strength of previous strikes. However, this produces more real-

istic rhythms, as humans also have imperfections when actually “grooving”.  

Our experimentation with robotic systems for musical performance brought 

many familiar yet new challenges to working with sensors. A set of allen 

wrenches, screw drivers, plyers, a Calliper and a Dremel are carted to each per-

formance along with a box set of extra springs, screws, washers, and spare parts. 

Our first designs had frameworks made of wood. This obviously is too heavy a 

material, and using aluminum is ideal because of its sturdiness and lightweight. 

However, we learned from our initial prototypes that welding anything would be a 

mistake. All parts should be completely modular to allow for changes in the fu-

ture. Thus designing our robots out of 20/20 T-slotted aluminum was a perfect ma-

terial to accomplish all our goals of sustainability, modularity, mobility and  

professional appearance. 

This research lays the ground work for future work in building a Machine Or-

chestra, with multiple robotic instruments on stage performing with multiple elec-

tronic musicians using multimodal sensor enhanced instruments. Algorithms will 

need to generalized to work with a variety of interfaces and musicians and robots 

will all need to be networked together in order to communicate with one another.   

It is our belief that eventually, as ubiquitous computing prevails, every musical 

instrument will be enhanced with sensors and every musician will use a computer 

to amplify or manipulate their sound, and have automatic analysis of their real-

time performance. Though musical robotics as presented in this chapter have a 

very particular aesthetic motivation, we do believe that more common entertain-

ment robotic systems will become omnipresent for moving speakers, micro-

phones, lights, projections and even digital displays for reading music.  
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Chapter 14 

Interactive Improvisation with a Robotic 
Marimba Player 

Guy Hoffman and Gil Weinberg* 

Abstract. Shimon is an improvisational robotic marimba player that listens to 

human co-players and responds musically and choreographically based on analy-

sis of musical input. The paper discusses the robot’s mechanical and motion con-

trol and presents a novel interactive improvisation system based on the notion of 

physical gestures. Our system uses anticipatory action to enable real-time impro-

vised synchronization with the human player. It was implemented on a full-length 

human-robot Jazz duet, displaying coordinated melodic and rhythmic human-

robot joint improvisation. We also describe a study evaluating the effect of visual 

cues and embodiment on one of our call-and-response improvisation module. Our 

findings indicate that synchronization is aided by visual contact when uncertainty 

is high. We find that visual coordination is more effective for synchronization in 

slow sequences compared to faster sequences, and that occluded physical presence 

may be less effective than audio-only note generation. 

14.1   Introduction 

This paper describes Shimon, an interactive robotic marimba player. Shimon  

improvises in real-time while listening to, and building upon, a human pianist's 

performance. We have built Shimon as a new research platform for Robotic Musi-

cianship (RM). As part of this research, we use the robot to evaluate some of the 

core claims of RM. In particular, we test the effects of embodiment, visual con-

tact, and acoustic sound on musical synchronization and audience appreciation. 

                                                           
Guy Hoffman 
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We also introduce a novel robotic improvisation system. Our system uses a ges-

ture-centric framework, based on the belief that musicianship is not merely a  

sequence of notes, but choreography of movements. These movements result in 

musical sounds, but also perform visually and communicatively with other band-

members and the audience. Our system was implemented on a full-length human-

robot Jazz duet, displaying highly coordinated melodic and rhythmic human-robot 

joint improvisation. We have performed with the system in front of a live public 

audience. 

14.1.1   Robotic Musicianship 

We define RM to extend both the tradition of computer-supported interactive mu-

sic systems, and that of music-playing robotics [19]. Most computer-supported in-

teractive music systems are hampered by not providing players and audiences with 

physical cues that are essential for creating expressive musical interactions. For 

example, in humans, motion size often corresponds to loudness, and gesture loca-

tion to pitch. These cues provide visual feedback and help players anticipate and 

coordinate their playing. They also create a more engaging experience for the au-

dience by providing a visual connection to the sound. Most computer-supported 

interactive music systems are also limited by the electronic reproduction and am-

plification of sound through speakers, which cannot fully capture the richness of 

acoustic sound [15]. On the other hand, research in musical robotics focuses most-

ly on the physics of sound production, and rarely addresses perceptual and interac-

tive aspects of musicianship, such as listening, analysis, improvisation, or interac-

tion. Most such devices can be classified into two groups: robotic musical 

instruments, which are mechanical constructions that can be played by live musi-

cians or triggered by pre-recorded sequences [3, 16]; or anthropomorphic musical 

robots that attempt to imitate human musicians [17, 18]. Some systems use the 

human's performance as a user-interface to the robot's performance [14]; and only 

a few attempts have been made to develop perceptual, interactive robots that are 

controlled by autonomous methods [1]. In contrast, in previous work, we have de-

veloped a perceptual and improvisatory robotic musician in the form of Haile, a 

robotic drummer [19]. However, Haile's instrumental range was percussive and 

not melodic, and its motion range was limited to a small space relative to the ro-

bot's body, hindering the effectiveness of visual cues. We have addressed these 

limitations with Shimon, presented here, a robot that plays a melodic instrument—

a marimba—and does so by covering a larger and visible range of movement [20]. 

We build on these traits, developing an expressive motion-control system as well 

as a gesture-based improvisation framework, as described in this paper. 

14.2   Physical Structure 

Several considerations informed the physical design of Shimon: we wanted large 

movements for visibility, as well as fast movements for virtuosity. Another goal 
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was to allow for a wide range of sequential and simultaneous note combinations. 

The resulting design was a combination of fast, long-range, linear actuators, and 

two sets of rapid parallel solenoids, split over both registers of the instrument. 

 

Fig. 14.1 Overall view of the robotic marimba player Shimon. 

The physical robot is comprised of four arms, each actuated by a voice-coil lin-

ear actuator at its base, and running along a shared rail, in parallel to the ma-

rimba's long side. The robot's trajectory covers the marimba's full 4 octaves  

(Fig 14.1). The linear actuators are based on a commercial product by IAI and are 

controlled by a SCON trajectory controller. They can reach an acceleration of 3g, 

and—at top speed—move at approximately one octave per 0.25 seconds.  The 

arms are custom-made aluminum shells housing two rotational solenoids each. 

The solenoids control mallets, chosen with an appropriate softness to fit the area 

of the marimba that they are most likely to hit. Each arm contains one mallet for 

the bottom-row (“white”) keys, and one for the top-row (“black”) keys. Shimon 

was designed in collaboration with Roberto Aimi of Alium Labs. 

14.3   Motor Control 

A standard approach for musical robots is to handle a stream of MIDI notes and 

translate them into actuator movements that produce those notes. In Shimon's 

case, this would mean a note being converted into a slider movement and a subse-

quent mallet strike. Two drawbacks of this method are (a) an inevitable delay  

between activation and note production, hampering truly synchronous joint musi-

cianship, and (b) not allowing for expressive control of gesture-choreography, in-

cluding tonal and silent gestures. We have therefore separated the control for the 

mallets and the sliders to enable more artistic freedom in the generation of musical 

and choreographic gestures, without compromising immediacy and safety. This 

section describes the two control systems designed for safe artistic expression. 
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14.3.1   Mallets 

The mallets are struck using rotational solenoids responding to a MIDI interface. 

Eight MIDI notes are mapped to the eight mallets, and the MIDI NOTE_ON and 

NOTE_OFF messages are used to activate and deactivate the solenoid. Given this 

electro-mechanical setup, we want to be able to achieve a large dynamic range of 

striking intensities. We also want to be able to strike repeatedly at a high note rate.  

Since we can only control the solenoids in an on/off fashion, the striking intensity 

is a function of two parameters: (a) the velocity gained from the distance traveled; 

and (b) the length of time the mallet is held on the marimba key.  We therefore 

need to maintain a model of the mallet position for each striker. In order to do so, 

we have empirically sampled sound intensity profiles for different solenoid activa-

tion lengths, and used those to build a model for each striker. This model includes 

four parameters:  (i) the mean travel time from the rest position to contact with the 

key; (ii) the mean travel time from the down position back to the rest position; (iii) 

the hold duration that results in the highest intensity note for that particular mallet; 

and (iv) the duty cycle that results in the highest intensity note for that mallet, 

when it starts from the resting position.  

 

Fig. 14.2 Duty-Cycle computation based on mallet position model. 

Using this model, each of the eight mallet control modules translates a combi-

nation of desired auditory intensity and time of impact into a solenoid duty cycle. 

Intuitively—the lower a mallet is at request time, the shorter the duty cycle needs 

to be to achieve impact, and to prevent muting of the key through a prolonged 

holding time. An estimated position is thus dynamically maintained based on the 

triggered solenoid commands, and the empirical mallet model (Fig. 14.2). The de-

scribed system results a high level of musical expressivity, since it (a) maintains a 

finely adjustable dynamic striking range, and (b) allows for high-frequency repeti-

tions for the same mallet, during which the mallet does not travel all the way up to 

the resting position. 
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14.3.2   Sliders 

The horizontally moving sliders are four linear carriages sharing a rail and actu-

ated through voice coil actuators under acceleration- and velocity-limited trape-

zoid control.  There are two issues with this control approach. (a) a mechanical 

and non-expressive (“robotic”, so to speak) movement quality associated with the 

standard fire-and-forget motion control approach, and (b) collision-avoidance, 

since all four arms share one rail. To tackle these issues, we chose to take an ani-

mation approach to the gesture control. Based on our experience with other ex-

pressive robots [5, 6] we use a high-frequency controller that updates the absolute 

position of each slider at a given frame rate. This controller is fed position data for 

all four arms at a lower frequency, based on higher-level movement considera-

tions. This approach has two main advantages: (a) for each of the robotic arms, we 

are able to generate a more expressive spatio-temporal trajectory than just a trape-

zoid, as well as add animation principles such as ease-in, ease-out, anticipation, 

and follow-through [11]; and (b) since the position of the sliders is continuously 

controlled, collisions can be avoided at the position request level. An intermediate 

layer handles the slider position requests and generates the positions for each of 

the four sliders, while maintaining collision safety. Responding to position re-

quests, it uses a combination of Proportional Integral Derivative (PID) control for 

each slider, with a simulated spring system between sliders, to update the position 

of all four sliders during an update cycle (Fig 14.3). For each position request, we 

calculate the required PID force, and add a force exerted by “virtual springs”, 

which helps prevent collisions and moves unlocked sliders out of the way. The re-

sult of this control approach is a system that is both safe—carriages will never col-

lide and push each other out of the way—and expressive.  

 
Fig 14.3. Interaction between PID control and simulated spring model. 
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14.4   Gestures and Anticipation 

A main innovation of this paper is modeling interactive musical improvisation as 

gestures. Using gestures as the building blocks of musical expression is appropri-

ate for robotic musicianship, as it puts the emphasis on physical movement instead 

of on the sequencing of notes. This is in line with an embodied view of human-

robot interaction [4].  Gestures separately control the timing of the mallet strikers 

and the movement of the sliders. They can take many forms, from a simple “go-to 

and play” gesture for a single note, to a more complex improvisation gesture, as 

described below. 

14.4.1   Anticipatory Action 

In order to allow for real-time synchronous non-scripted playing with a human 

counterpart, we also take an anticipatory approach, dividing gestures into prepara-

tion and follow-through. This principle is based on a long tradition of perform-

ance, such as ensemble acting [13], and has been explored in our recent work, 

both in the context of human-robot teamwork [7], and for human-robot joint thea-

ter performance [6]. By separating the potentially lengthy preparatory movement 

from an almost instant follow-through, we can achieve a high level of synchroni-

zation and beat keeping without relying on a full-musical-bar delay of the system. 

This separation will also enable us, in the future, to explore different anticipatory 

strategies for synchronized playing.  

14.5   Improvisation 

Implementing this gesture-based approach, we have developed a Jazz improvisa-

tion system, which we employed in a human-robot joint performance. In our  

system, a performance is made out of interaction modules, each of which is an in-

dependently controlled phase in the performance. It is continuously updated until 

the part's end condition is met. This is usually a perceptual condition, but can also 

be a pre-set amount of bars to play. 

Fig 14.4 shows the general structure of an interaction module. It contains a 

number of gestures, which are either triggered directly, or registered, to play based 

on the current beat, as managed by the beat keeper. Gestures are selected and af-

fected by information coming in from percepts, which analyze input from the ro-

bot's sensory system. These percepts can include, for example, a certain note den-

sity, or the triggering of a particular phrase or rhythm. While there are a number of 

sensory modules possible, we are using a MIDI sensory input, responding to the 

notes from a MIDI-enabled electric piano. On top of this sensor, we developed 

several perceptual modules described later in this section. Common to all parts, 

and continuously running is the Beat Keeper module, which serves as an adjust-

able metronome that can be dynamically set and reset during play. The Beat 

Keeper interacts with the system by calling registered callback functions in the 

modules and gestures making up the performance. 
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Fig 14.4 Schematic interaction module for each phase of the performance. 

14.5.1   Interaction Module I: Call-and Response 

The first interaction module is the call-and-response module. In this module, the 

system responds to a musical phrase with a set-beat chord sequence. The chal-

lenge is to be able to respond in time and play on a synchronized beat to that of the 

human player.  This module makes use of the anticipatory structure of gestures. 

During the sequence detection phase, the robot prepares the chord gesture. When 

the phrase is detected, the robot can strike the response almost instantly, resulting 

in a highly meshed musical interaction. This module includes two kinds of ges-

tures:  (i) Simple chord gestures—select an arm configuration based on a given 

chord during the preparation stage, and strike the prepared chord in the follow-

through stage; and (ii) Rhythmic chord gestures—which are similar to the simple 

chord gestures in preparation, but during follow-through will strike the mallets in 

a preset pattern. This can be an arpeggiated sequence, or any other rhythmic struc-

ture. The robot adapts to the call phrase using a simultaneous sequence spotter and 

beat estimator percept. Using an on-beat representation of the sequences that are 

to be detected, we use a Levenshtein distance metric [12] with an allowed distance 

of d=1 to consider a phrase detected. Naturally, we do not allow the last note in 

the phrase to be deleted for the purposes of comparison, as this would invalidate 

the synchronization. At that stage, the beat estimator will estimate both the played 

beat based on the duration of the sequence, and the beat synchronization based on 

the time of the last note played. These are transmitted to the beat keeper, which 

will execute a sequence of simple and rhythmic chords, as beat callbacks. The re-

sult is an on-sync, beat-matched call-and-response pattern, a common interaction 

in a musical ensemble. 
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14.5.2   Interaction Module II: Opportunistic Overlay 

Improvisation 

A second type of interaction module is the opportunistic overlay improvisation. 

This interaction is centered on the choreographic aspect of movement with the 

notes appearing as a side effect of the performance. The intention of this module is 

to play a relatively sparse improvisation that is beat-matched, synchronized, and 

chord-adaptive to the human's playing. The central gesture in this module is a 

rhythmic movement gesture that takes its synchronization from the currently ac-

tive beat in the beat keeper module. This beat is updated through a beat detection 

percept tracking the beat of the bass line in the human playing.  In parallel, a chord 

classification percept is running, classifying the currently played chord by the hu-

man player. Without interrupting the choreographic gesture, this interaction mod-

ule attempts to opportunistically play notes that belong to the currently detected 

chord, based on a preset rhythmic pattern. If the rhythmic pattern is in a ”beat” 

state, and one or more of the mallets happen to be in a position to play a note from 

the detected chord, those mallets strike.  Since both the choreographic gesture and 

the rhythmic strike pattern are activated through a shared beat keeper, the result is 

a confluence of two rhythms and one chord structure, resulting in a novel improvi-

sational gesture which is highly choreographic, can only be conceived by a  

machine, and is tightly synchronized to the human's playing. 

14.5.3   Interaction Module III: Rhythmic Phrase-Matching 

Improvisation 

The third interaction module that we implemented is a rhythmic phrase-matching 

improvisation module. As in the previous section, this module supports improvisa-

tion that is beat- and chord-synchronized to the human player. In addition, it at-

tempts to match the style and density of the human player, and generate improvi-

sational phrases inspired by the human playing. Beat tracking and chord 

classification is done in a similar fashion as the in the opportunistic overlay im-

provisation: The timing and pitch of the bass notes are used for detecting the beat, 

for synchronizing the downbeats of the human's playing, and for chord classifica-

tion.  In addition, this module uses a decaying-history probability distribution to 

generate improvisational phrases that are rhythm-similar to phrases played by the 

human. The main gesture of this part selects—in each bar—one of the arm  

positions that correspond to the currently classified chord. This is the gesture's an-

ticipatory phase. When in position, the gesture then plays a rhythmic phrase 

tempo- and sync-matched to the human's performance. Each arm plays a different 

phrase. Specifically, arm i plays a phrase based on a probabilistic striking pattern, 

which can be described as a vector of probabilities 
 

   pi = {p
i
0   p

i
0  

….  
p

i
k}                     (14.1) 

 



14   Interactive Improvisation with a Robotic Marimba Player 241

 

where k is the number of quantizations made. E.g.—on a 4/4 beat with 1/32 note 

quantization, k=32. Thus, within each bar, arm i will play at time j with a probabil-

ity of p
i
j. This probability is calculated based on the decayed history of the human 

player's quantized playing patterns of the human player. The system listens to the 

human player's last beat's improvisation, quantizes the playing into k bins, and 

then attempts to cluster the notes in the phrase into the number of arms which the 

robot will use. This clustering is done on a one-dimensional linear model, using 

only the note pitch as the clustering variable. Once the clusters have been as-

signed, we create a human play vector  
 

hi = {h
i
k} = {1 if a note in cluster I was played at time k,  0 otherwise}      (14.2) 

 

The probability p
i
j  is then updated inductively as follows, where lambda is the 

decay parameter 

   p
i
0 = h

i
0 λ + p

i
j (1- λ)            (14.3) 

 

Fig 14.5 A live performance using Shimon’s gesture-based improvisation system described 

was held on 4/17/09 in Atlanta, GA, USA. 

The result is an improvisation system, which plays phrases influenced by the 

human player's rhythm, phrases, and density. For example, if the human plays a 

chord rhythm, then the vectors hi would be identical or near identical for all clus-

ters, resulting in a robot improvisation that will be close to a chord rhythm. How-

ever, there is variance in the robot's playing since it is using the human phrases as 

a probability basis, therefore changing the pattern that the human plays. Also, 

since the arm positions change according to the current harmonic lead of the hu-

man, and the robot's exploration of the chord space, the phrases will never be a 

precise copy of the human improvisation but only rhythmically inspired.  
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Moreover, as the probability vectors mix with data from earlier history, the current 

playing of the robot is always a combination of all the previous human plays. The 

precise structure of the robot's memory depends on the value of lambda. Another 

example would be the human playing a 1–3–5 arpeggio twice in one bar. This 

would be clustered into three clusters, each of which would be assigned to one of 

the arms of the robot, resulting in a similar arpeggio in the robot's improvisation.  

An interesting variation on this system is to re-assign clusters not according to 

their original note-pitch order. This results in the maintenance of the rhythmic 

structure of the phrase but not the melodic structure. In the performance described 

below, we have actually used only two clusters and assigned them to crossover 

arms, i.e. cluster 0 to arms 0 and 2 and cluster 1 to arms 1 and 3.  Note that this 

approach maintains our focus on gestures as opposed to note sequences, as the 

clustering records the human's rhythmic gestures, matching different spatial activ-

ity regions to probabilities, which are in turn used by the robot to generate its own 

improvisation. Importantly—in both improvisation modules—the robot never 

maintains a note-based representation of the keys it is about to play. This is in line 

with our embodied music approach. 

14.6   Evaluation: Embodiment in Robotic Musicianship 

In our laboratory, we use Shimon as a research platform to evaluate core hypothe-

ses of Robotic Musicianship (RM). As mentioned in the Introduction, one of the 

potential benefits of RM over other computer-supported interactive music systems 

is the generation of music-related physical and visual cues to aid joint musician-

ship. This could, for example, enable better synchrony through the use of anticipa-

tion of the robot’s moves on the human's part. In addition, embodiment in  

human-robot interaction has been explored and usually been shown to have a sig-

nificant effect on non-temporal interaction and subjects' reported perception of the 

robot [2. 10]. Similarly, a robot musician's physical presence could inspire human 

musicians to be more engaged in the joint activity. The robot's physical movement 

could also have choreographic and aesthetic effects on both players and audience. 

And the acoustic sound produced by the robot could similarly contribute to the en-

joyment of the musical performance.  We tested some of these hypotheses in a 

number of experiments using Shimon as an experimental platform. In this paper, 

we discuss the effects of physical embodiment and visual contact on joint  

synchronization and audience appreciation.  
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Fig 14.6 Experimental setup showing the human pianist on the right, and the robotic ma-

rimba player Shimon on the left. 

14.6.1   Embodiment and Synchronization 

In the human-robot musical synchronization case, we predict that human musi-

cians take advantage of the physical presence of the robot in order to anticipate the 

robot's timing, and thus coordinate their playing with that of the robot. However, 

due to the auditory and rhythmic nature of music, human musicians have also been 

known to be able to play with no visual cues, and without any physical co-

presence. We thus tested to what extent robot embodiment aids in synchroniza-

tion, and to what extent this effect can be related to the visual connection between 

the human and the robot.  

14.6.1.1   Experimental Design 

We conducted a preliminary 3x2 within-subject study manipulating for level of 

embodiment and robot accuracy. Six experienced pianists from the Georgia Tech 

Music Department were asked to play the call-and-response segment from “Jordu” 

described above, jointly with a robotic musician. The interaction starts by the pi-

anist playing the 7-note introductory phrase on a grand piano. The robot detects 

the tempo and bar sync of the phrase and responds in a rhythmic three-chord pat-

tern on the marimba. The pianists were asked to synchronize a single bass note 

with each of the robot's chord, as best as they could. Each pianist repeated the se-

quence 90 times. They were asked to play at a variety of tempos, without specify-

ing the precise tempo to play in. The timing of the human's playing was recorded 

through a MIDI interface attached to the grand piano, and the robot's playing time 

was also recorded, both to millisecond precision. MIDI delays were accounted for.  

Manipulation I: Precision: In the first half of the sequences (the PRECISE condi-

tion), the robot was programmed to play its response in the precise tempo of the 
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human's call phrase. In this condition, the pianists were informed that the robot 

will try to match their playing precisely. In second half of the sequences (the 

IMPRECISE condition), the robot was programmed to play its response either on 

tempo and on-beat to the human's call phrase, slightly slower than the human's in-

troduction phrase, or slightly faster. The pianists were informed that the robot 

might play slightly off their proposed beat, but that its response will be consistent 

throughout each individual response sequence. Also, the pianists were asked to try 

to synchronize their playing with the actual notes of the robot, and not with their 

own “proposed” tempo and beat.  Manipulation II: Embodiment: Within each half 

of the trials—for a third of the interaction sequences (the VISUAL condition), the 

pianists were playing alongside the robot to their right, enabling visual contact 

with the robot (as shown in Figure 14.6). In another third of the interaction se-

quences (the AUDITORY condition), the robot is physically present, but separated 

from the human musician by a screen. In this condition, the human player can hear 

the robot move and play, but not see it.  The remaining third of the interaction se-

quences (the SYNTH condition), the robot does not move or play. In this condi-

tion, the human player hears a synthesized marimba play over a set of headphones. 

In both the AUDITORY and the SYNTH condition there is no visual contact with 

the robot; in both the VISUAL and the AUDITORY condition there is an acoustic 

note effect indicating the presence of a physical instrument and a physical player, 

and in addition, the robot's motor noise can indicate to the pianist that the robot is 

in motion. The order of the conditions was randomized for each subject. 

14.6.1.2   Results 

We analyze the (signed) delay and (absolute) offset error between pianist and  

robot for each of the response chords. In particular, we analyze the offset sepa-

rately for the first, second, and third chord. This is due to the different musical role 

each chords plays: the first chord occurs an eighth beat after the introductory 

phrase, so that the pianists can easily synchronize with the robot by simply playing 

according to their original tempo. The second chord reveals the robot's perceived 

tempo, and its temporal placement may vary, in particular in the IMPRECISE 

condition. Since all three chords play at a fixed tempo, the temporal placement of 

the third chord can be implied by the interval between the first and the second 

chord, in which case the synchronization can, again, be implied by rhythm alone. 

We thus expect that the first chord will be the most synchronized, with the second 

chord being the most difficult to synchronize. Testing this hypothesis we find that 

the absolute delays for each of the three chords are indeed significantly different, 

at a confidence of p < 0.001, across all six conditions. The offsets for the first 

chord are the lowest (49.35ms), those of the second chord are significantly more 

offset (116.16ms), and the offsets for the third chord are lower than the second, 

but not as low as the first (67.79ms).  PRECISE Condition: Comparing the mean 

offset between pianist and robot in the PRECISE condition, we find no significant 

difference between the three embodiment conditions, and in particular, we find no 

advantage to visual contact with the robot.  That said, the AUDITORY condition 

has a slightly higher error rate, as well as scatter, than either of the other two  

conditions.  
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IMPRECISE Condition: In contrast, when the robot intentionally changes the 

detected tempo of the introductory phrase, we expect to detect a larger difference 

in synchronization between embodiment conditions.  Fig 14.7 shows the mean and 

standard error for all trials in the IMPRECISE condition. For the first and third 

chord, we see no difference between the embodiment conditions, indicating that, 

indeed, the human musicians can use the auditory and rhythmic cues to synchro-

nized these two chords. In particular, it is notable that the first two chords are 

enough for the subjects to synchronize the third chord based on the same interval. 

However, for the second chord—the timing of which has some uncertainty—the 

offset is smaller for the VISUAL condition compared to both non-visual condi-

tions. This difference is nearly significant:  VISUAL: 129.32 +/- 10.01 ms; other 

conditions: 162.80 +/- 13.62 ms, T(182)=-1.66, p=0.09,  suggesting that visual 

cues are indeed used to synchronize the unpredictably-timed event. The “offset” 

discussed above is the absolute error between the human's key-hit and the robot's 

marimba-strike. The effect of visual contact is more apparent when looking at the 

sign of the error: evaluating the signed delay, we find a significant difference be-

tween the VISUAL and the other two conditions (Fig 14.8): VISUAL: 16.78 +/- 

19.11 ms; other conditions: -75.21 +/- 18.95  ms, T(182)=3.10, p < 0.01 **. In 

particular, we find that trials in the VISUAL condition to be delayed with respect 

to the robot, whereas the trials in the non-visual conditions pre-empt the robot's 

playing, indicating that pianists react to the robot's movement when they can see 

it, but try to anticipate the robot's timing when they cannot see it. 

 

Fig. 14.7 Mean offset in milliseconds between pianist and robot in IMPERCISE condition. 

Effects of tempo: We also find that the benefits of the visual connection  

increase at slower playing tempos. While the AUDITORY condition is signifi-

cantly more error-prone in trials under 100 BPM, than in trials over 100 BPM 

(234.54 +/- 56.25 ms [slow] vs. 131.25 +/- 10.75 ms [fast]; T(57)=2.14, p < 0.05 

*), the errors in the VISUAL condition is not affected by the decrease in tempo 

(138.59 +/- 17.62 ms [slow] vs. 119.43 +/- 11.54 ms [fast]; T(60)=0.94). As 
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above, the effect on the SYNTH condition is similar to the AUDITORY condition, 

but less pronounced. In addition, we find that the significant advantage for the 

VISUAL condition over the SYNTH condition is mainly due to the trials in which 

the robot played slower than expected. In those cases (Figure 14.9), the visual con-

dition caused a significantly lower error on the human's part: VISUAL: 121.42 +/- 

5.39 ms; SYNTH: 181.56 +/- 16.57 ms; T(57)=2.66, p < 0.01 **. 

 

Fig. 14.8 Mean delay in milliseconds between pianist and robot in IMPERCISE condition. 

     

Fig. 14.9 Mean offset in milliseconds between pianist and robot in IMPECISE condition for 

trials in which the robot slowed down compared to the human’s “call” phrase. 

14.6.1.3   Discussion 

In our preliminary tests, we find that visual contact with the robot contributes only 

partially to the degree of synchronization in a call-and-response interaction. The 
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effect of embodiment without visual contact, compared to a disembodied musi-

cian, seems to be even less pronounced, and sometimes detrimental. In the case 

where the robot does not intentionally change the tempo, we see no difference be-

tween any of the three conditions. We believe that this is due to the fact that the 

robot precisely follows the pianist's rhythm, allowing for perfect synchronization 

simply by playing along in the same rhythm, without any input from the robot.  In 

the case where the robot slightly alters the tempo in response to the human's play-

ing, we find that the pianists' ability to synchronize with the robot is significantly 

reduced. For the second chord (in which there is an uncertainty in timing), visual 

contact reduces the error compared to the auditory and synthesized condition. In 

particular, visual contact allows the pianists to react to the robot instead of pre-

empting the timing of their playing. This indicates that the pianists use the visual 

cues to time their playing.  By the third chord, the human players seem to be able 

to achieve a high level of synchronization regardless of the embodiment of the ro-

bot. This may indicate that they resort again to an internal rhythmic cue based on 

the first two chords. We also find that visual contact is more crucial during slow 

trials, and during trials in which the robot slows down, possibly suggesting that 

visual cues are slow to be processed and do not aid much in fast sequences. For 

example, it may be that during fast sequences, the pianists did not have time to 

look at the robot. Another explanation is that their internal beat keeping is more 

accurate over short time spans. In general, it seems that pianists use visual infor-

mation when they can, but can resort to rhythmic and auditory cues when neces-

sary and possible. Interestingly, it seems that the synthesized condition is less er-

ror-prone than the present-but-screened (AUDITORY) condition. This may be due 

to the fact that the pianists try to use the existing motor noise from the robot is as a 

synchronization signal, but find it to be unreliable or distracting.  

14.6.2   Visual Contact and Audience Appreciation 

We also tested the effects of visual contact on audience appreciation. In this ex-

periment, we filmed two pianists playing in two different improvisation settings 

each with the robot. We wanted to test how visual contact affects joint improvisa-

tion as judged by an audience. The physical setup was similar to the previous ex-

periment, and the conditions were similar to two of those in the “Embodiment” 

manipulation, namely VISUAL and AUDITORY.  

14.6.2.1   Experimental Setup 

The pianists' sessions were videotaped, and from each session, a 30 second clip 

was extracted by choosing the 30 seconds after the first note that the robot or 

computer played.  We posted these video clips onto a dedicated website, and 

asked an online audience to rate the clips on eleven scales. Each scale was a 

statement, such as “The robot played well”, “the duo felt like a single unit”, etc 

(see: Table 14.1 for all scales). The subjects were asked to rate the statement on a  

7-point Likert scale between “Not at all” (1) and “Very much” (7). Subjects 
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watched an introductory clip familiarizing them with the robot, and could play and 

stop the clip as many times as they liked.   

For each pianist, the order of conditions was randomized, but the conditions 

were grouped for each pianist, to allow for comparison and compensation of each 

pianist's style.   

In this preliminary study, we collected 30 responses, out of which 21 were 

valid, in the sense that subjects rates all performances of at least one pianist. The 

age of the respondents ranged between 25 and 41, and 58% identified as female. 

14.6.2.2   Results 

In order to compensate for each pianist's style, we evaluated the difference be-

tween conditions for each subject and each pianist. We then combined the results 

for both pianists across all subjects. 

Table 14.1 shows the results of comparing the VISUAL condition to the 

AUDITORY condition. This comparison indicates the effect of visual contact be-

tween the pianist and the machine.  

Table 14.1 Effects of visual contact on audience appreciation of a number of scales. T numbers 

indicate 1-sample T-Test with mean(x) =0 as the null hypothesis. * p < 0.05;  ** p< 0.01;    *** 

p<0.001. 
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14.6.2.3   Effects of Visual Contact 

We found a significant difference in audience appreciation of the improvisation 

session between the visual-contact and occluded conditions, on all scales but one 

(overall enjoyment). Specifically, we find that, even though the robot uses the 

same improvisation algorithm in all conditions, audiences felt that in the VISUAL 

condition the robot played better, more like a human, was more responsive, and 

seemed inspired by the human.  In addition, we find that the human player, too, 

was rated as more responsive to the machine, and as more inspired by the robot. 

The overall rating of the duo as being well synchronized, coordinated, connected, 

coherent, and communicating was also significantly higher in the VISUAL  

condition. 

These findings indicate that visual contact between human and robot contrib-

utes significantly to the audience's appreciation of robotic musicianship. 

14.7   Live Performance 

We have used the described robot and gesture-based improvisation system in a 

live performance before a public audience (as shown in Figure 14.5). The show 

occurred on April 17 2009 in Atlanta, GA, USA. The performance was part of an 

evening of computer music and was sold-out to an audience of approximately 160 

attendants. It was structured around “Jordu”, a Jazz standard by Duke Jordan. The 

first part was an adaptive and synchronized call-and-response, in which the pianist 

would prompt the robot with a number of renditions of the piece's opening phrase. 

The robot detected the correct phrase and, using preparatory gesture responded on 

beat. A shorter version of this interaction was repeated between each of the subse-

quent performance segments.  The second phase used the introduction's last de-

tected tempo to play a fixed-progression accompaniment to the human's improvi-

sation. Then the robot started playing in opportunistic overlay improvisation 

taking tempo and chord cues from the human player while repeating an “opening-

and-closing” breathing-like gesture, over which the rhythmic improvisation was 

structured. The next segment employed rhythmic phrase-matching improvisation, 

in which the robot adapted to the human's tempo, density, style, chord progres-

sion, and rhythmic phrases. Our gesture-based anticipatory approach enabled the 

robot to adapt without noticeable delay while maintaining an overall uninterrupted 

visual motion arc, and seem to be playing in interactive synchrony with the human 

player. An interesting result of this improvisation was a constant back-and-forth 

inspiration between the human and the robotic player. Since the robot's phrases 

were similar, but not identical to the human's phrases, the human picked up the 

variations, in return influencing the robot's next iteration of rhythms. Finally, a 

pre-programmed crescendo finale led to the end-chord, which was an anticipatory 

call-and-response, resulting in a perceived synchronous end of the performance. 

The overall performance lasted just under seven minutes. Video recordings of the 

performance [8, 9] were widely covered to acclaim by the press and viewed by an 

additional audience of approximately 40,000 online. 
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14.8   Conclusion and Future Work 

We presented Shimon, an interactive improvisational robotic marimba player de-

veloped for research in Robotic Musicianship. We discussed the musically and 

visually expressive motor-control system, and a gesture-based improvisation sys-

tem. The design of these systems stems from our belief, that musical performance 

is as much about visual choreography and visual communication, as it is about to-

nal music generation. We have implemented our system on a full human-robot 

Jazz performance, and performed live with a human pianist in front of a public 

audience. We are currently underway in an audience evaluation of gesture-based 

vs. algorithmic improvisation. Additionally, we are developing a novel predictive 

anticipatory system to allow the robot to use past interactions to generate prepara-

tory gestures, based on our findings on anticipatory human-robot interaction [5, 7]. 

We also use Shimon to empirically study some of the core hypotheses of Robotic 

Musicianship. In this paper we evaluated the effect of embodiment on human-

robot synchronization. In a preliminary study we found that visual contact ac-

counts for some of the capability to synchronize to a fixed-rhythm interaction. 

However, we also found that humans can compensate for lack of visual contact 

and use rhythmic cues in the case where visual contact is not available. Visual 

contact is more valuable when the robot errs or changes the interaction tempo. It is 

also more valuable in slow tempos and delays, suggesting that using visual infor-

mation in musical interaction is a relatively slow mechanism, or that the human’s 

internal capability to beat-match is more accurate in faster tempos. In addition, our 

findings indicate that a visually occluded, but present, robot is distracting and does 

not aid in synchronization, and may even detract from it. In a study evaluating the 

effects of visual contact on audience appreciation, we find that visual contact in 

joint Jazz improvisation makes for a performance in which audiences rate the ro-

bot as playing better, more like a human, as more responsive, and as more inspired 

by the human. They also rate the duo as better synchronized, more coherent, 

communicating, and coordinated; and the human as more inspired and more re-

sponsive.  

We plan to extend these preliminary studies to a wider audience, and in particu-

lar to also test them with subjects in a live audience. We are also currently adding 

a socially expressive head to Shimon. This will allow an additional channel of 

embodied and gesture-based communication, and adds a visual modality to the ro-

bot’s perceptual system. We hope to extend the research described here by further 

testing the use of full-body robotic gestures and visual communication on syn-

chronization and joint musical interaction.  
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Chapter 15 

Interactive Musical System for Multimodal 
Musician-Humanoid Interaction 

Jorge Solis, Klaus Petersen, and Atsuo Takanishi* 

Abstract. The research on Humanoid Robots designed for playing musical in-

struments has a long tradition in the research field of robotics. During the past 

decades, several researches are developing anthropomorphic and automated ma-

chines able to create live musical performances for both understanding the human 

itself and for creating novel ways of musical expression. In particular, Humanoid 

Robots are being designed to roughly simulate the dexterity of human players and 

to display higher-level of perceptual capabilities to enhance the interaction with 

musical partners. In this chapter, the concept and implementation of an interactive 

musical system for multimodal musician-humanoid interaction is detailed. 

15.1   Introduction 

The research on musical robots has a long tradition since the golden era of auto-

mata. More recently, thanks to the technological advances on power computation, 

Musical Information Retrieval (MIR), Robot Technology (RT), etc. several  

researchers have been focusing on development of anthropomorphic robots  

[18, 21, 22, 24, 25] and interactive automated instruments [3, 4,13, 14, 17] capable 

of interacting with musical partners. 
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In particular, automated instruments have been developed as an approach to in-

troduce novel ways of musical expression. For this purpose, the term machine mu-

sicianship has been introduced as actuated mechanical sound generators controlled 

by computer musical models, perception and interaction algorithms [14]. More re-

cently, the term robotic musicianship has been also introduced as the combination 

of a musical performance robot with perceptual and interaction capabilities [26]. 

On the other hand, Humanoid Robots capable of playing musical instruments 

have been developed as an approach to understand better the principles of human-

robot interaction by emulating both the human dexterity required to perform an in-

strument and the intelligence to enable the interaction with musical partners at the 

same logical level of perception (this requires the robot to process both aural and 

visual information). The first attempt of developing an anthropomorphic musical 

robot was done by Waseda University in 1984 by the late Prof. Ichiro Kato. In 

particular, the WABOT-2 was capable of playing a concert organ. Then, in 1985, 

the WASUBOT built also by Waseda, could read a musical score and play a reper-

toire of 16 tunes on a keyboard instrument [5].  

Even several humanoid musical performance robots have been developed up to 

now, very little research on Musician-Humanoid Interaction (MHI) has been done. 

Therefore; in this chapter, the preliminary efforts done towards implementation a 

novel musical interaction system is presented.  

15.2   Musical-Based Interaction System 

15.2.1   Design Concept 

Conventionally, the Musical Performance Humanoid Robots (MP-HRs) are 

mainly equipped with sensors that allow them to acquire information about its en-

vironment. Based on the anthropomorphic design of humanoid robots, it is there-

fore important to emulate two of the human's most important perceptual organs: 

the eyes and the ears. For this purpose, the humanoid robot integrates in its head, 

vision sensors (i.e. CCD cameras) and aural sensors (i.e. microphones) attached to 

the sides for stereo-acoustic perception. In the case of a musical interaction, a ma-

jor part of the typical performance (i.e. Jazz) is based on improvisation. In these 

parts musicians take turns in playing solos based on the harmonies and rhythmical 

structure of the piece. Upon finishing his solo section, one musician will give a 

visual signal, a motion of the body or his instrument, to designate the next soloist. 

Another situation of the musical interaction between musicians, is basically where 

the higher skilled musician has to adjust his/her own performance to the less 

skilled one. After both musicians get used to each other, they may musically  

interact. 

Toward enabling the multimodal interaction between the musician and MP-

HRs, the Musical-based Interaction System (MbIS) is introduced and described.  

The MbIS has been conceived for enabling the interaction between the MP-HRs 

(or/and musicians); as it is shown in Fig. 15.1. The proposed MbIS is composed 
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by two levels of interaction that enables partners with different musical skill levels  

to interact with the MP-HR: intermediate-based and advanced-based level of  

interaction. 

 

Fig. 15.1 The principle of the Musical-Based Interaction System for Musical Playing-

Instrument Humanoid Robots. By implementing such a system, different kind of humanoid 

musical performance robots (and/or human musicians) may interact. 

15.2.2   Musician-Humanoid Interaction 

Until now, several researchers from different fields of Human-Robot Interaction 

[16], Musical Information Retrieval [7], etc. have been proposing algorithms for 

the development of interactive systems. Based on such research fields, different 

kinds of automated instruments and robotic players have been introduced (refer 

Chapters 9–14). However, when we talk at the level of humanoid robot, we are 

talking about not just analyzing the human performance, but also we are required 

to map those musical parameters into control parameters of the robot (from per-

ception to action). This means that we are also required to take into account the 

physical constraints of the robot. Due to the complexity of doing this task, it is 

important to consider the inherent properties of the human players so that MP-HRs 

can interact at the same level of perception as musicians do. From this long-term 

research approach, it is more feasible to understand (from a scientific point of 

view) how humans can actually interact in musical terms. Of course, new ways of 

musical expressions can be discovered that otherwise would not be conceived by 

means of traditional methods. 

Based on the above considerations, the system implementation of the MbIS is 

composed by different levels of interaction which makes it usable for musicians 

with different levels of skill [19]. In order to define the musician partner of each of 
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the proposed levels of interaction, it is possible to relate the way the musicians are 

classified based on the level of expertise: Beginner (no prior experience with the 

musical instrument), Intermediate (a fair amount of experience with the basics of 

the instrument), Advanced (proficient traditional musicians) and Master (mastery 

of the instrument-playing technique). As a result, the MbIS has been proposed to 

include two-levels of interaction (Figure 15.2): intermediate-based and advanced-

based levels of interaction. The intermediate-based level of interaction is designed 

to provide easy-to-learn controllers which have a strong resemblance to estab-

lished musical environment (i.e. studio equipment). On the other hand, the ad-

vanced-based level of interaction allows for free control of the performance pa-

rameters. However, it also requires previous experience in robot-human 

interaction (i.e. certain initialization procedures to calibrate the software are re-

quired). Moreover, it is important to keep in mind that the humanoid musical per-

formance robot is a complex system. It bears several limitations (as human players 

may have while playing instruments), which on the one hand are related to its 

shape and on the other hand are implied by its technical complexity. For this rea-

son, the musician partner is also required to gain a substantial knowledge about 

the MP-HR. As a result, the musician partner can progressively go from the inter-

mediate-based interaction to the advanced one. 

 

Fig. 15.2 In order to implement the MbIS for enabling musician-humanoid interaction, the 

proposed system is composed by two different levels of interaction. 

The intermediate-based level of interaction is designed to process both visual and 
aural channels. Regarding the visual channel processing, the MP-HR should be able 
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of processing visual cues from the musical partner. In order to facilitate its interac-
tion with intermediate level players, a common technology found in music studios 
has been proposed. In particular, virtual buttons and faders have been designed as 
tools for interaction so that the musician can learn how to intuitively use them (no 
previous knowledge is required). In order to implement such virtual buttons and fad-
ers, it is required to detect the movements of the user by image processing. In par-
ticular, the instrument tracking method has been implemented to recognize areas of 
motion for activating the proposed controls. A low-level gesture is then used to trig-
ger those controls to activate different kinds of melody patterns. On the other hand, 
the aural processing of the MP-HR analyzes the timing of a tone sequence. From 
this analysis, the recognized tempo is matched with a library of timing patterns that 
are previously stored on the robot’s memory. Therefore, the recognition tempo 
method determines the best matching pattern and passes this information on to the 
mapping module, in order to generate an output performance by the robot.  

The advanced-based level of interaction requires more experience in working 
interactively with the robot, but also allows for more advanced interaction controls 
during the musical performance. Regarding the visual processing, the MP-HR is 
capable of tracking the instrument posture (if the musician is holding a wind in-
strument, he/she can adjust two musical parameters at the same time, one by mov-
ing the instrument sideways and the other one by bending the instrument closer or 
further away from the robot). This high-level gesture is recognized and then it is 
used to modulate a particular musical parameter (i.e. amplitude of the vibrato, etc.) 
of the robot’s performance. On the other hand, the aural processing of the MP-HR, 
the musician is allowed to select a harmony pattern for playing with the robot. For 
this, the robot analyzes the tonal content of the sequence played by the musician 
partner. Then, by means of the harmony recognition module, the MP-HR activates 
the correspondent rhythm and melody pattern. 

15.3   Implementation Details 

15.3.1   Vision Perception 

15.3.1.1   Instrument Motion Tracking 

The instrument motion tracking detects the movements of the wind instrument 

hold by the musician partner. If we have a continuous stream of video images, for 

every frame a difference image with the previous frame can be computed. In par-

ticular, a threshold can be defined to determine the changes from one frame to the 

next. This preliminary output can then be filtered by computing the running aver-

age over several of these images [27]. Due to the simplicity on its implementation, 

a robust tracking performance can be achieved while any musician without  

knowledge of vision processing can intuitively use it (due to its simplicity, no 

calibration procedure is required). 

For this purpose, the proposed motion tracking algorithm is inspired by an inter-

face extension called Eyetoy [23]. It enables players to control games by movements 

of their body in front of a small camera connected to the gaming console. In the case 

of the MbIS, it is required to extract the information about the musician partner’s 
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movement in a deliberate environment [9]. A related method called delta framing is 

employed in video compression [10]. Thus, if we have a continuous stream of video 

images, for every frame we calculate a difference image with the previous frame by 

using Eq. (15.1). By applying a threshold into the resulting image, a b/w bitmap of 

the parts in the video image that have changed from one frame to the next can be eas-

ily computed as Eq. (15.2). Finally, the result is filtered by running average over  

several of these images, as it is shown in Eq. (15.3). 

cpr ppp −=                                                       (15.1) 

pr: absolute difference for the resulting pixel 

pp: pixel at the same position in the previous image 

pc: same pixel in the current image 
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pr: threshold pixel value 

tr : threshold level 

pc: same pixel in the current image 

cpr ppp ∗−+∗= )1( αα                                      (15.3) 

pr: average for the resulting pixel 

pp: pixel at the same position in the previous difference image 

pc: same pixel in the current image 

α: Averaging factor 

 

Fig. 15.3 Implementation of virtual buttons and faders resemble music studio controllers 

that can be manipulated by tracking the instrument motion. 



15   Interactive Musical System for Multimodal Musician-Humanoid Interaction 259

 

By tracking the motion of the instrument, it is possible to define sensitive re-

gions within the robot’s gaze [9]. In music production, composers use switches 

and faders to control their electronic musical instruments, so it is possible to 

model such controls within the image space (Figure 15.3). The first controller is a 

simple virtual push-button, in functionality similar to a drum pad of an Akai MPC 

drum machine [1]. Such push button can be positioned anywhere in the video im-

age. If a push button is triggered, a previously defined MIDI signal is sent to the 

MP-HR. The second controller is a virtual fader that can be used to continuously 

set a controller value. In this case, the position of a fader can be changed for  

example by a motion of the hand. For each change of the fader position, a MIDI 

controller message is sent to the robot. The fader slowly resets itself to a default 

position after it has been manipulated like a mechanical fader. This prevents a 

fader from remaining in an erroneous position that might have resulted from back-

ground noise. A fader can be deliberately positioned in the image and orientated in 

any angle to allow the user to easily adjust it to his control requirements and  

physical constraints. 

15.3.1.2   Instrument Posture Tracking 

The instrument posture tracking determines the orientation of the wind instrument 

hold by the musician partner. For this purpose, the color histogram matching [15] 

and particle tracking [2] were implemented. The combination of the two methods 

is an established way to follow an object with a certain color profile. The system is 

initialized manually by defining the starting positions of the player's hands (thus, 

further calibration process is not required). For the computation of the 3D data, the 

algorithm makes use of a stereo image mapping technique. Instead of calculating 

the complete depths map of the scene, four patches are found by the particle 

tracker. This approach saves resources due to the limited number of points being 

calculated. After the x-y-axis coordinates of the image patches are determined, the 

distance of a patch from the camera is computed. To achieve this, the difference 

between the x-position from the left camera image) and the x-position from the 

right camera image is computed. The larger the difference, the closer the patch is 

located to the camera.  

In order to model the shape of the instrument (i.e. flute, saxophone, etc.) to be 

tracked, a simple line can be considered. The hands of the player are located on 

two spots along that line. The average of the position of the hands is recorded as 

the center position of the instrument. Similarly, the orientation can be computed 

by considering a line drawn from the center of one hand to the center of the other. 

The inclination of the line is the orientation of the instrument. There is no ambigu-

ity about the position, as normally a player would not hold the instrument upside 

down. From the 2D coordinates of the four hand particles, the relative position, in-

clination and rotational angle of the instrument are computed. To compute the 

depth values of both hands, the z-transformation can be used, as it is shown in  

Eq. (15.4) and (15.5). Where, Δxp is the distance between the x-coordinate of the 

patch in the left camera image (xpl) and the right camera image (xpr). Accordingly, z 

denominates the z-coordinate of the patch. The constant α is defined to adjust the 



260 J. Solis, K. Petersen, and A. Takanishi

 

value of Δz for further calculations. Inclination and rotational angle are obtained 

by transforming the Cartesian coordinates resulting from the object tracking into a 

cylindrical system.  

,prplp xxx −=Δ                                                  (15.4) 

α∗
Δ

=
px

z
1

                                                 (15.5) 

Although new object coordinates are adapted only from the particle with the 

highest likelihood (the particle filter method works recursively), the information 

about the other particles is not lost (Figure 15.4). A particle with an initially lower 

than maximum likelihood is not discarded, but it can still propagate to gain more 

likelihood later. However, research on particle filters has shown that in case all 

particles are kept for the whole tracking run, all but one particle tend to be de-

graded to probabilities close to zero. There are several ways to counteract this be-

havior [2]. One of those approaches is the re-sampling method. After each new 

predict-update cycle, particles with a probability lower than a certain threshold are 

exchanged for newly initialized particles. This threshold, as well as the optimum 

number of particles to be used, can be manually determined. 

 

Fig. 15.4 Principle of the particle filter tracking implemented on the MbIS for tracking the 

orientation of a wind instrument hold by the musician partner. 

15.3.2   Aural Perception 

15.3.2.1   Timing Tracking 

The timing tracking extracts the rhythmic information from the sound produced by 

the performance of the musician partner. The proposed algorithm basically deter-

mines the best matching candidate from a library of timing patterns that are saved 

as previous knowledge in the humanoid musical robot. For this purpose, in the 

sound waveform, separate notes are represented as distinguishable amplitude 

peaks. Such peaks are removed by using on Eq. (15.6). The duration of one tone 

impulse naturally is longer than a certain minimum time. In order to prevent very 

short noise peaks from falsely triggering, the sound wave is filtered by a running 

average calculation.  
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a)  

b)  

Fig. 15.5 Timing tracking recognition and mapping: a) Example of the histogram con-

structed for the timing tracking algorithm; b) Rhythm patter recognition. 

The rhythm patterns have a certain length. To identify the most recently played 

pattern, it is not required all the previous sound inputs. Instead, a window is used 

so that it always contains only the most up-to-date part of the recorded music in-

formation. This window continuously slides forward as new data is acquired. The 

size of the window is the length of the longest rhythm pattern in the robot‘s pat-

tern library. Regardless of which pattern is currently played by the musician part-

ner, it will always completely fit inside the window. Each positive edge of the 

threshold sound wave in the time window represents a rhythmic pulse. To charac-

terize the timing of this sequence of pulses as a whole, the time differences be-

tween adjacent pulses is computed [8]. By using this information, a histogram can 

be constructed with one bin representing one certain time difference (both axis of 

the histogram a normalized). This histogram is then compared to the histograms of 

the timing patterns in the library of the robot (Figure 15.5b). The similarity be-

tween two histograms is determined using the Bhattacharyya coefficient [6]. Such 

coefficient is computed by using Eq. (15.7); where p
i
 is the histogram of one  

library pattern, q resembling the sampled rhythm pattern and m express the histo-

gram size. The best matching library pattern is identified by analyzing at its Bhat-

tacharyya difference (Figure 15.5b). To prevent patterns from being falsely  

detected, a threshold has been defined. If the result of the pattern comparisons 

falls below this threshold, the robot does not recognize the input as a known 
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rhythm. The result of the rhythmic analysis is therefore the best match from the 

rhythm pattern library. 
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Fig. 15.6 Example of the histogram constructed for the pitch tracking algorithm. 

15.3.2.2   Pitch Tracking 

The pitch tracking extracts the harmonic components of the sound produced by the 

performance of the musician partner. In this case, the pitch information is recov-

ered from the input data stream by applying a discrete short-time Fast Fourier 

Transformation (SFFT). For each sampled sound data (1024 sampled points), a 

Hann windowing function has been applied to smoothen the spectral leakage as it 

is shown in Eq. (15.8). Similar to the timing analysis, a running average was ap-

plied to adjacent frequency spectra with a threshold operation to reduce noise. If 

the threshold amplitude is retained by one or more peaks of the spectrum for long 

enough (not to be suppressed by the low-pass filter), the peak with the highest 

amplitude is identified as fundamental frequency. A recently registered pitch is 

approximated by the twelve-tone system note with the closest frequency. The val-

ue of this note is queued into the sequence window. When looking for harmonic 

information, the previous past data is considered only for the number of notes con-

tained in the longest library pattern. The note information in the sequence window 

is gathered by generating a histogram from the pitch values (Figure 15.6). Again 

we match this histogram to the library histogram in order to find the best match. 

Information regarding which pattern was recognized is then forwarded to the map-

ping module. 
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wi: resulting amplitude for sample i 

ai: input amplitude indexed with i 

N: number of samples in the window 

15.3.3   Musical Mapping 

The mapping module translates the perceptual information (recognized through 

the interaction with the musician partner) into robot’s actions (in musical terms). 

This output should make musical sense in a way that the musician can express 

himself/herself as freely as possible, while at the same time considering the physi-

cal limitations of the MP-HR. Due to the design complexity of the robot, we may 

observe different limitations such as: air volume of the lung, playing speed, modu-

lation of other performance parameters (i.e. vibrato frequency), etc. The humanoid 

musical performance robot is a complex mechanical construction, built in order to 

emulate the human way of playing the flute. It thus naturally bears similar limita-

tions to a human. It is important that when controlling or interacting with the  

humanoid, the musician does not drive the robot into these limitations, risking 

physical damage of the machine and leading to unnatural performance behavior. 

When the MP-HR processes the data coming from the musician partner through 

the visual channel, we may possibly map this data directly onto a musical per-

formance parameter. This relationship can be formulated as Eq. (15.9). This equa-

tion contains the constant k representing a scaling factor to resize the sensor value 

I(t) to an appropriate output value A. For example, given a virtual fader (imple-

mented for the intermediate-based level interaction system), the maximum and 

minimum value of this control are predefined. Using that information, it is possi-

ble to condition k accordingly, so that the maximum input from the fader will 

never exceed the acceptable range for the performance parameter. However, some 

limitations of the robot are not time-constant. The capability of the robot to create 

an air-beam in order to play the wind playing-instrument, it will depend on the air 

volume left in the lung. Taking this into account we add time-dependence to k; as 

it is shown in Eq. (15.10). The parameter TBreathing indicates the duration that there 

will be air remaining in the lung, and thus a tone can be produced. The Eq. (15.11) 

expresses that the intended output of the humanoid musical performance robot 

needs to be conditioned with the breathing status of the lung. If the lung becomes 

empty, the equation constant k(t) is set to zero. 

)()( tIktA ∗=                                                       (15.9)  

)()()( tItktA ∗=                                                (15.10) 
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15.4   Preliminary Interaction Experiments with Musicians 

In this section, the experiments carried out are focused on verifying the capabili-

ties of the Advanced Level of the MbIS to enable musicians to interact with the 

WF-4RIV. 

At first, the vision module has been tested. In this experiment, a musician has 

been asked to move the instrument in front of the robot camera and the instrument’s 

orientation has been recorded in real-time meanwhile the vibrato amplitude of the 

robot sound is changed. The experimental results are shown in Figure 15.7. As a first 

approach, in order to keep the analysis as simple as possible only one tone is played. 

Basically, the average volume of the sound output becomes higher with less vibrato 

effect as the amount of air streaming through the glottis mechanism of the robot, 

which controls the vibrato; it is at these times higher and produces louder volume. 

As we may observe in the graph, the vibrato oscillates over this average value and 

changes its amplitude according to the orientation value calculated by the particle 

tracking algorithm (a related video can be accessed at [11]).  

Finally, the aural module has been tested. In this experiment, a musician has 

been asked to choose between sequence A and sequence B of the My Favorite 

Things composed by John Coltrane. A graph of the results of this advanced inter-

action level aural recognition experiment is shown in Fig. 15.8.  The robot gener-

ates an answer for each of the melodic questions posed to it by the musician, this 

time reproducing rhythm and melody. The pitch plot in Fig. 15.8b shows that the 

robot successfully imitates the phrases that are played by its partner. The flutist 

robot uses the patterns that are saved in its library. As the robot plays with the se-

quenced timing there are slight differences between the timing of one pattern of 

the same type played by the robot and one played the human musician. The an-

swer from the robot follows 0.5s after the musician has played a pattern. This is 

the duration of silence that is necessary for the robot to detect if the player has  

finished one phrase and starts searching for matching patterns its library. The his-

togram analysis of the aural recognition system tolerates such inaccuracies. The 

system always picks the library pattern as an answer to the input from the musi-

cian that fits closest. So, as long as the timing does not differ as much as to make 

the histogram of one pattern more similar to an incorrect library pattern the  

recognition is done correctly (a related video can be accessed at [12]). 
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Fig. 15.7 Experimental results while interacting with the WF-4RIV meanwhile the musi-

cian’s instrument orientation adjusts the vibrato amplitude of the robot’s sound output (BP: 

Breathing Point). 

The experimental results show the characteristics of the advanced level interac-

tion system. They detail the functionality of the advanced level interaction mode, 

confirming that the system allows the user to control the musical performance of 

the robot in the intended way. What we saw from the advanced level interaction 

system graph as well is that there are certain systematical restrictions that need to 

be considered when using the system. The foremost limitation here is the breath-

ing-in, breathing-out rhythm of the lung. This behavior can as usual be observed 

in the volume plot of the robot output (Figure 15.8d). During the time the robot is 

breathing out, a tone is generated, that can be manipulated by the user utilizing the 

controls provided by the interaction system. However, when the robot is breathing 

in, naturally, no tone is produced, which means that the user has to take a forced 

break in his control scheme. To be prepared for these interruptions in the flutist 

robot’s play, the musician has to adapt his musical material in a way that is similar 

to creating musical material for a human (as a human does). 
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Fig. 15.8 Recorded input and output of the aural processing of the advanced level interac-

tion system: a) is the pitch analysis plot of the musician’s phrases, b) the amplitude plot of 

these patterns, c) the pitch analysis plot of the flute robot’s response and d) the amplitude 

plot of that response. 

15.5   Conclusions and Future Work 

The musician-humanoid interaction research poses different kind of challenging 

issues from the point of view of human-robot interaction, aural/vision processing, 

perception, etc. In this chapter, the recent research efforts to implement a Musical-

based Interaction System for Humanoid Musical Performance Robots were  

introduced. In particular, such a proposed system includes perceptual models to 

process incoming information (visual and aural) and mapping models to activate  

different behaviors on the robot. More recently, the authors have been focused on 

implementing sensor fusion methods and advanced mapping strategists into the 

MbIS to enable the flutist robot to interact more naturally with musicians.  
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From this research approach, we expect that the human musical interaction can 

be studied in detail from an engineering point of view by performing longer ex-

periments under controlled conditions. On the other hand, the implementation of 

the MbIS into humanoid robots will certainly contribute for the better understand-

ing of mechanism of human musical performance as well as for developing 

higher-skilled robots that can naturally interact with humans at the same level of 

perception. 
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