

Advanced Techniques in Logic Synthesis,
Optimizations and Applications

Sunil P. Khatri · Kanupriya Gulati

Editors

Advanced Techniques
in Logic Synthesis,
Optimizations
and Applications

123

Editors

Sunil P. Khatri
Department of ECE
333F WERC, MS 3259
Texas A&M University
College Station, TX 77843-3259,
USA
sunilkhatri@tamu.edu

Kanupriya Gulati
Intel Corporation
2501 NW 229th Ave
Hillsboro, OR 97124,
USA
kanupriya.gulati@intel.com

ISBN 978-1-4419-7517-1 e-ISBN 978-1-4419-7518-8
DOI 10.1007/978-1-4419-7518-8

Springer New York Dordrecht Heidelberg London

c© Springer Science+Business Media, LLC 2011
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The last few decades have seen a stupendous growth in the speed and complex-

ity of VLSI integrated circuits. This growth has been enabled by a powerful set

of electronic design automation (EDA) tools. The earliest EDA tools were two-

level logic minimization and PLA folding tools. Subsequently, EDA tools were

developed to address other aspects of the VLSI design flow (in addition to logic

optimization) such as technology mapping, layout optimization, formal verification.

However, research in logic synthesis and optimization continued to progress rapidly.

Some of the research in logic synthesis tools saw broader application, to areas far

removed from traditional EDA, and routinely continue to do so. While observing

the recent developments and publications in logic synthesis and optimization, we

felt that there was a need for a single resource which presents some recent signifi-

cant developments in this area. This is how the idea of this edited monograph came

about. We decided to cover some key papers in logic synthesis, optimization, and

its applications, in an effort to provide an advanced practitioner a single reference

source that covers the important papers in these areas over the last few years.

This monograph is organized into five sections, dealing with logic decomposi-

tion, Boolean satisfiability, Boolean matching, logic optimization, and applications

of logic techniques to special design scenarios. Each of the chapters in any section

is an expanded, archival version of the original paper by the chapter authors, with

additional examples, results, and/or implementation details.

We dedicate this book to the area of logic synthesis and hope that it can stimulate

new and exciting ideas which expand the contribution of logic synthesis to areas far

beyond its traditional stronghold of VLSI integrated circuit design.

College Station, Texas Sunil P. Khatri

Hillsboro, Oregon Kanupriya Gulati

v

Contents

1 Introduction . 1

Sunil P. Khatri and Kanupriya Gulati

1.1 Logic Decomposition . 2

1.2 Boolean Satisfiability . 3

1.3 Boolean Matching . 4

1.4 Logic Optimization . 4

1.5 Applications to Specialized Design Scenarios 5

References . 6

Part I Logic Decomposition

2 Logic Synthesis by Signal-Driven Decomposition 9

Anna Bernasconi, Valentina Ciriani, Gabriella Trucco, and Tiziano Villa

2.1 Introduction . 9

2.2 Decomposition Methods . 11

2.3 P-Circuits . 17

2.3.1 Synthesis Algorithms . 19

2.4 Multivariable Decomposition . 21

2.5 Experimental Results . 24

2.6 Conclusion . 28

References . 28

3 Sequential Logic Synthesis Using Symbolic Bi-decomposition 31

Victor N. Kravets and Alan Mishchenko

3.1 Introduction and Motivation . 31

3.2 Preliminary Constructs . 33

3.2.1 “Less-Than-or-Equal” Relation . 33

3.2.2 Parameterized Abstraction . 34

3.3 Bi-decomposition of Incompletely Specified Functions 35

3.3.1 OR Decomposition . 35

3.3.2 XOR Decomposition . 36

vii

viii Contents

3.4 Parameterized Decomposition . 37

3.4.1 OR Parameterization . 37

3.4.2 XOR Parameterization . 38

3.5 Implementation Details of Sequential Synthesis 39

3.5.1 Extraction of Incompletely Specified Logic 39

3.5.2 Exploring Decomposition Choices . 40

3.5.3 Synthesis Algorithm . 41

3.6 Experimental Evaluation . 42

3.7 Conclusions and Future Work . 44

References . 45

4 Boolean Factoring and Decomposition of Logic Networks 47

Robert Brayton, Alan Mishchenko, and Satrajit Chatterjee

4.1 Introduction . 47

4.2 Background . 48

4.3 General Non-disjoint Decompositions . 50

4.4 Rewriting K -LUT networks . 53

4.4.1 Global View . 53

4.4.2 Cut Computation . 54

4.4.3 Cuts with a DSD Structure . 56

4.4.4 Cut Weight . 56

4.4.5 Decomposition and Network Update 57

4.4.6 Finding the Maximum Support-Reducing

Decomposition . 58

4.4.7 Additional Details . 60

4.4.7.1 Using Timing Information to Filter Candidate

Bound Sets . 60

4.4.7.2 Restricting Bound Sets for Balanced

Decompositions . 60

4.4.7.3 Opportunistic MUX-Decomposition 60

4.5 Comparison with Boolean Matching . 61

4.6 Experimental Results . 62

4.7 Conclusions and Future Work . 64

References . 65

5 Ashenhurst Decomposition Using SAT

and Interpolation . 67

Hsuan-Po Lin, Jie-Hong Roland Jiang, and Ruei-Rung Lee

5.1 Introduction . 67

5.2 Previous Work . 69

5.3 Preliminaries . 69

5.3.1 Functional Decomposition . 70

5.3.2 Functional Dependency . 71

5.3.3 Propositional Satisfiability and Interpolation 71

5.3.3.1 Refutation Proof and Craig Interpolation 71

Contents ix

5.3.3.2 Circuit-to-CNF Conversion 72

5.4 Main Algorithms . 72

5.4.1 Single-Output Ashenhurst Decomposition 72

5.4.1.1 Decomposition with Known Variable Partition . 72

5.4.1.2 Decomposition with Unknown Variable

Partition . 75

5.4.2 Multiple-Output Ashenhurst Decomposition 79

5.4.3 Beyond Ashenhurst Decomposition 80

5.5 Experimental Results . 80

5.6 Chapter Summary . 84

References . 84

6 Bi-decomposition Using SAT and Interpolation 87

Ruei-Rung Lee, Jie-Hong Roland Jiang, and Wei-Lun Hung

6.1 Introduction . 87

6.2 Previous Work . 88

6.3 Preliminaries . 89

6.3.1 Bi-Decomposition . 89

6.3.2 Propositional Satisfiability . 90

6.3.2.1 Refutation Proof and Craig Interpolation 90

6.3.3 Circuit to CNF Conversion . 91

6.4 Our Approach . 91

6.4.1 OR Bi-decomposition . 91

6.4.1.1 Decomposition of Completely Specified

Functions . 91

6.4.1.2 Decomposition of Incompletely Specified

Functions . 97

6.4.2 AND Bi-decomposition . 97

6.4.3 XOR Bi-decomposition . 98

6.4.3.1 Decomposition of Completely Specified

Functions . 98

6.4.4 Implementation Issues . 101

6.5 Experimental Results . 101

6.6 Summary . 103

References . 104

Part II Boolean Satisfiability

7 Boundary Points and Resolution . 109

Eugene Goldberg and Panagiotis Manolios

7.1 Introduction . 109

7.2 Basic Definitions . 111

7.3 Properties . 112

x Contents

7.3.1 Basic Propositions . 112

7.3.2 Elimination of Boundary Points by Adding Resolvents . . . 113

7.3.3 Boundary Points and Redundant Formulas 115

7.4 Resolution Proofs and Boundary Points . 115

7.4.1 Resolution Proof as Boundary Point Elimination 116

7.4.2 SMR Metric and Proof Quality . 116

7.5 Equivalence Checking Formulas . 117

7.5.1 Building Equivalence Checking Formulas 118

7.5.2 Short Proofs for Equivalence Checking Formulas 119

7.6 Experimental Results . 120

7.7 Some Background . 122

7.8 Completeness of Resolution Restricted to Boundary Point

Elimination . 123

7.8.1 Cut Boundary Points . 123

7.8.2 The Completeness Result . 124

7.8.3 Boundary Points as Complexity Measure 125

7.9 Conclusions and Directions for Future Research 126

References . 126

8 SAT Sweeping with Local Observability Don’t-Cares 129

Qi Zhu, Nathan B. Kitchen, Andreas Kuehlmann, and Alberto

Sangiovanni-Vincentelli

8.1 Introduction . 129

8.2 Previous Work . 130

8.3 Preliminaries . 131

8.3.1 AND-INVERTER Graphs . 131

8.3.2 SAT Sweeping . 132

8.4 SAT Sweeping with Observability Don’t Cares 134

8.4.1 Motivating Example . 134

8.4.2 Observability Don’t Cares . 134

8.4.3 Algorithm . 137

8.4.4 Implementation . 139

8.4.5 Applications . 141

8.5 Results . 142

8.6 Conclusions . 146

References . 147

9 A Fast Approximation Algorithm for MIN-ONE SAT and Its

Application on MAX-SAT Solving . 149

Lei Fang and Michael S. Hsiao

9.1 Introduction . 149

9.2 Preliminaries . 151

9.3 Our Approach . 153

9.3.1 RelaxSAT . 153

9.3.2 Relaxation Heuristic . 155

Contents xi

9.3.3 Discussion on Computation Complexity 156

9.4 Experimental Results . 156

9.5 Application Discussion: A RelaxSAT-Based MAX-SAT Solver . . . 161

9.5.1 The New MAX-SAT Solver: RMAXSAT 163

9.5.2 Evaluation of MAX-SAT Solver . 165

9.6 Conclusions and Future Works . 168

References . 169

10 Algorithms for Maximum Satisfiability Using Unsatisfiable Cores . . . 171

Joao Marques-Sila and Jordi Planes

10.1 Introduction . 171

10.2 Background . 172

10.2.1 The MaxSAT Problem . 172

10.2.2 Solving MaxSAT with PBO . 173

10.2.3 Relating MaxSAT with Unsatisfiable Cores 173

10.3 A New MaxSAT Algorithm . 174

10.3.1 Overview . 175

10.3.2 The Algorithm . 175

10.3.3 A Complete Example . 176

10.4 Experimental Results . 178

10.5 Related Work . 180

10.6 Conclusions . 180

References . 181

Part III Boolean Matching

11 Simulation and SAT-Based Boolean Matching for Large Boolean

Networks . 185

Kuo-Hua Wang, Chung-Ming Chan, and Jung-Chang Liu

11.1 Introduction . 185

11.2 Background . 186

11.2.1 Boolean Matching . 186

11.2.2 Boolean Satisfiability . 187

11.2.3 And-Inverter Graph . 187

11.3 Detection of Functional Property Using S&S Approach 188

11.4 Definitions and Notations . 189

11.5 Simulation Approach for Distinguishing Inputs 190

11.5.1 Type-1 . 191

11.5.2 Type-2 . 192

11.5.3 Type-3 . 192

11.6 S&S-Based Boolean Matching Algorithm . 194

11.6.1 Our Matching Algorithm . 194

11.6.2 Recursive-Matching Algorithm . 194

xii Contents

11.6.3 Implementation Issues . 196

11.6.3.1 Control of Random Vector Generation 196

11.6.3.2 Reduction of Simulation Time 196

11.6.3.3 Analysis of Space Complexity and Runtime . . . 196

11.7 Experimental Results . 197

11.8 Chapter Summary . 200

References . 200

12 Logic Difference Optimization for Incremental Synthesis 203

Smita Krishnaswamy, Haoxing Ren, Nilesh Modi, and Ruchir Puri

12.1 Introduction and Background . 203

12.2 Previous Work . 205

12.3 DeltaSyn . 206

12.3.1 Phase I: Equivalence-Based Reduction 207

12.3.2 Phase II: Matching-Based Reduction 209

12.3.2.1 Subcircuit Enumeration . 210

12.3.2.2 Subcircuit Matching . 213

12.3.2.3 Subcircuit Covering . 217

12.3.3 Phase III: Functional Hashing-Based Reduction 218

12.4 Empirical Validation . 220

12.5 Chapter Summary . 224

References . 224

13 Large-Scale Boolean Matching . 227

Hadi Katebi and Igor Markov

13.1 Introduction . 227

13.2 Background and Previous Work . 229

13.2.1 Definitions and Notation . 230

13.2.2 And-Inverter Graphs (AIGs) . 230

13.2.3 Boolean Satisfiability and Equivalence Checking 231

13.2.4 Previous Work . 231

13.3 Signature-Based Matching Techniques . 232

13.3.1 Computing I/O Support Variables . 232

13.3.2 Initial refinement of I/O clusters . 233

13.3.3 Refining Outputs by Minterm Count 234

13.3.4 Refining I/O by Unateness . 234

13.3.5 Scalable I/O Refinement by Dependency Analysis 235

13.3.6 Scalable I/O Refinement by Random Simulation 235

13.3.6.1 Simulation Type 1 . 236

13.3.6.2 Simulation Type 2 . 236

13.3.6.3 Simulation Type 3 . 237

13.4 SAT-Based Search . 237

13.4.1 SAT-Based Input Matching . 238

Contents xiii

13.4.2 Pruning Invalid Input Matches by SAT

Counterexamples . 239

13.4.3 SAT-Based Output Matching . 240

13.4.4 Pruning Invalid Output Matches by SAT Counterexamples 241

13.4.5 Pruning Invalid I/O Matches Using Support Signatures . . . 241

13.4.6 Pruning Invalid Input Matches Using Symmetries 241

13.4.7 A Heuristic for Matching Candidates 242

13.5 Empirical Validation . 242

13.6 Chapter Summary . 246

References . 246

Part IV Logic Optimization

14 Algebraic Techniques to Enhance Common Sub-expression

Extraction for Polynomial System Synthesis . 251

Sivaram Gopalakrishnan and Priyank Kalla

14.1 Introduction . 251

14.1.1 Motivation . 252

14.1.2 Contributions . 253

14.1.3 Paper Organization . 253

14.2 Previous Work . 254

14.2.1 Kernel/Co-kernel Extraction . 254

14.3 Preliminary Concepts . 255

14.3.1 Polynomial Functions and Their Canonical

Representations . 255

14.3.2 Factorization . 257

14.4 Optimization Methods . 257

14.4.1 Common Coefficient Extraction . 258

14.4.2 Common Cube Extraction . 259

14.4.3 Algebraic Division . 260

14.5 Integrated Approach . 261

14.6 Experiments . 264

14.7 Conclusions . 265

References . 265

15 Automated Logic Restructuring with aSPFDs . 267

Yu-Shen Yang, Subarna Sinha, Andreas Veneris, Robert Brayton,

and Duncan Smith

15.1 Introduction . 267

15.2 Background . 269

15.2.1 Prior Work on Logic Restructuring 269

15.2.2 Sets of Pairs of Functions to Be Distinguished 269

15.3 Approximating SPFDs . 270

15.3.1 Computing aSPFDs for Combinational Circuits 271

xiv Contents

15.3.2 Computing aSPFDs for Sequential Circuits 273

15.3.3 Optimizing aSPFDs with Don’t Cares 274

15.3.3.1 Conflicts in Multiple Expected Traces 275

15.4 Logic Transformations with aSPFDs . 277

15.4.1 SAT-Based Searching Algorithm . 278

15.4.2 Greedy Searching Algorithm . 279

15.5 Experimental Results . 280

15.5.1 Logic Restructuring of Combinational Designs 280

15.5.2 Logic Restructuring of Sequential Designs 283

15.6 Summary . 285

References . 285

16 Extracting Functions from Boolean Relations Using SAT

and Interpolation . 287

Jie-Hong Roland Jiang, Hsuan-Po Lin, and Wei-Lun Hung

16.1 Introduction . 287

16.2 Previous Work . 290

16.3 Preliminaries . 290

16.3.1 Boolean Relation . 290

16.3.2 Satisfiability and Interpolation . 291

16.4 Our Approach . 292

16.4.1 Single-Output Relation . 292

16.4.1.1 Total Relation . 292

16.4.1.2 Partial Relation . 293

16.4.2 Multiple Output Relation . 294

16.4.2.1 Determinization via Expansion Reduction 294

16.4.2.2 Determinization via Substitution Reduction . . . 295

16.4.3 Deterministic Relation . 296

16.4.4 Function Simplification . 297

16.4.4.1 Support Minimization . 297

16.4.4.2 Determinization Scheduling 298

16.5 Experimental Results . 298

16.6 Chapter Summary . 305

References . 306

17 A Robust Window-Based Multi-node Minimization Technique

Using Boolean Relations . 309

Jeff L. Cobb, Kanupriya Gulati, and Sunil P. Khatri

17.1 Introduction . 309

17.2 Problem Definition . 311

17.3 Previous Work . 312

17.4 Preliminaries and Definitions . 314

17.4.1 BREL Boolean Relation Minimizer 316

Contents xv

17.5 Approach . 317

17.5.1 Algorithm Details . 318

17.5.1.1 Selecting Node Pairs . 318

17.5.1.2 Building the Subnetwork 320

17.5.1.3 Computing the Boolean Relation RY 321

17.5.1.4 Quantification Scheduling 322

17.5.1.5 Endgame . 324

17.6 Experimental Results . 324

17.6.1 Preprocessing Steps . 325

17.6.2 Parameter Selection . 325

17.6.2.1 Selecting α . 325

17.6.2.2 Selecting k1 and k2 . 327

17.6.2.3 Selecting thresh . 327

17.6.3 Comparison of the Proposed Technique with mfsw 328

17.6.4 Additional Experiments . 330

17.6.4.1 Running relation After mfsw 330

17.6.4.2 Running relation Twice . 331

17.6.4.3 Minimizing Single Nodes 331

17.6.4.4 Effects of Early Quantification 331

17.7 Chapter Summary . 332

References . 333

Part V Applications to Specialized Design Scenarios

18 Synthesizing Combinational Logic to Generate Probabilities:

Theories and Algorithms . 337

Weikang Qian, Marc D. Riedel, Kia Bazargan, and David J. Lilja

18.1 Introduction and Background . 337

18.2 Related Work . 341

18.3 Sets with Two Elements that Can Generate Arbitrary Decimal

Probabilities . 341

18.3.1 Generating Decimal Probabilities from the Input

Probability Set S = {0.4, 0.5} . 341

18.3.2 Generating Decimal Probabilities from the Input

Probability Set S = {0.5, 0.8} . 345

18.4 Sets with a Single Element that Can Generate Arbitrary Decimal

Probabilities . 348

18.5 Implementation . 351

18.6 Empirical Validation . 355

18.7 Chapter Summary . 356

References . 357

xvi Contents

19 Probabilistic Error Propagation in a Logic Circuit Using

the Boolean Difference Calculus . 359

Nasir Mohyuddin, Ehsan Pakbaznia, and Massoud Pedram

19.1 Introduction . 359

19.2 Error Propagation Using Boolean Difference Calculus 361

19.2.1 Partial Boolean Difference . 361

19.2.2 Total Boolean Difference . 362

19.2.3 Signal and Error Probabilities . 363

19.3 Proposed Error Propagation Model . 364

19.3.1 Gate Error Model . 364

19.3.2 Error Propagation in 2-to-1 Mux Using BDEC 367

19.3.3 Circuit Error Model . 369

19.4 Practical Considerations . 370

19.4.1 Output Error Expression . 370

19.4.2 Reconvergent Fanout . 371

19.5 Simulation Results . 373

19.6 Extensions to BDEC . 377

19.6.1 Soft Error Rate (SER) Estimation Using BDEC 377

19.6.2 BDEC for Asymmetric Erroneous Transition

Probabilities . 379

19.6.3 BDEC Applied to Emerging Nanotechnologies 379

19.7 Conclusions . 379

References . 380

20 Digital Logic Using Non-DC Signals . 383

Kalyana C. Bollapalli, Sunil P. Khatri, and Laszlo B. Kish

20.1 Introduction . 383

20.2 Previous Work . 386

20.3 Our Approach . 387

20.3.1 Standing Wave Oscillator . 387

20.3.2 A Basic Gate . 389

20.3.2.1 Multiplier . 389

20.3.2.2 Low-Pass Filter . 391

20.3.2.3 Output Stage . 391

20.3.2.4 Complex Gates . 392

20.3.3 Interconnects . 392

20.4 Experimental Results . 393

20.4.1 Sinusoid Generator . 393

20.4.2 Gate Optimization . 395

20.4.3 Gate Operation . 397

20.5 Conclusions . 399

References . 400

Contents xvii

21 Improvements of Pausible Clocking Scheme for High-Throughput

and High-Reliability GALS Systems Design . 401

Xin Fan, Milos̆ Krstić, and Eckhard Grass

21.1 Introduction . 401

21.2 Analysis of Pausible Clocking Scheme . 402

21.2.1 Local Clock Generators . 402

21.2.2 Clock Acknowledge Latency . 403

21.2.3 Throughput Reduction . 404

21.2.3.1 Demand-Output (D-OUT) Port to Poll-Input

(P-IN) Port Channel . 404

21.2.3.2 Other Point-to-Point Channels 406

21.2.3.3 Further Discussion on Throughput Reduction . . 406

21.2.4 Synchronization Failures . 407

21.2.4.1 �LClkRx < TLClkRx . 407

21.2.4.2 �LClkRx ≥ TLClkRx . 408

21.3 Optimization of Pausible Clocking Scheme . 409

21.3.1 Optimized Local Clock Generator . 409

21.3.2 Optimized Input Port . 410

21.3.2.1 Double Latching Mechanism 410

21.3.2.2 Optimized Input Port Controller 411

21.4 Experimental Results . 412

21.4.1 Input Wrapper Simulation . 412

21.4.2 Point-to-Point Communication . 415

21.5 Conclusions . 415

References . 416

Subject Index . 419

Contributors

Kia Bazargan University of Minnesota, Minneapolis, MN USA, kia@umn.edu

Anna Bernasconi Department of Computer Science, Universit‘a di Pisa, Pisa,

Italy, annab@di.unipi.it

Kalyana C. Bollapalli NVIDIA Corporation, San Jose, CA, USA,

kbollapalli@nvidia.com

Robert Brayton University of California, Berkeley, CA, USA,

brayton@eecs.berkeley.edu

Chung-Ming Chan Fu Jen Catholic University, Taipei County, Taiwan,

vicax95@csie.fju.edu.tw

Satrajit Chatterjee Strategic CAD Labs, Intel Corporation, Hillsboro, OR, USA,

satrajit.chatterjee@intel.com

Valentina Ciriani Department of Information Technologies, Universit‘a degli

Studi di Milano, Milano, Italy, valentina.ciriani@unimi.it

Jeff L. Cobb Texas Instruments, Sugar Land, TX USA, jcobb@ti.com

Xin Fan Innovations for High Performance Microelectronics, Frankfurt (Oder),

Brandenburg, Germany, fan@ihp-microelectronics.com

Lei Fang Microsoft Corporation, Redmond, WA, USA, lei.fang@microsoft.com

Eugene Goldberg Northeastern University, Boston, MA, USA,

eigold@ccs.neu.edu

Sivaram Gopalakrishnan Synopsys Inc., Hillsboro, OR, USA,

sivaram.gopalakrishnan@synopsys.com

Eckhard Grass Innovations for High Performance Microelectronics, Frankfurt

(Oder), Brandenburg, Germany, grass@ihp-microelectronics.com

Kanupriya Gulati Intel Corporation, Hillsboro, OR, USA,

kanupriya.gulati@intel.com

Michael S. Hsiao Virginia Tech, Blacksburg, VA, USA, mhsiao@vt.edu

xix

xx Contributors

Wei-Lun Hung National Taiwan University, Taipei, Taiwan,

b91076@csie.ntu.edu.tw

Jie-Hong Roland Jiang National Taiwan University, Taipei, Taiwan,

jhjiang@cc.ee.ntu.edu.tw

Priyank Kalla University of Utah, Salt Lake City, UT, USA, kalla@ece.utah.edu

Hadi Katebi University of Michigan, Ann Arbor, MI, USA,

hadik@eecs.umich.edu

Sunil P. Khatri Department of ECE, Texas A&M University, College Station, TX,

USA, sunilkhatri@tamu.edu

Laszlo B. Kish Department of ECE, Texas A&M University, College Station, TX,

USA, Laszlo.Kish@ece.tamu.edu

Nathan B. Kitchen University of Berkeley, Berkeley, CA, USA,

nbk@eecs.berkeley.edu

Victor N. Kravets IBM TJ Watson Research Center, Yorktown Heights, NY, USA,

kravets@us.ibm.com

Smita Krishnaswamy IBM TJ Watson Research Center, Yorktown Heights, NY,

USA, skrishn@us.ibm.com

Miloš Krstić Innovations for High Performance Microelectronics, Frankfurt

(Oder), Brandenburg, Germany, krstic@ihp-microelectronics.com

Andreas Kuehlmann Cadence Design Systems, Inc., San Jose, CA, USA,

kuehl@cadence.com

Ruei-Rung Lee National Taiwan University, Taipei, Taiwan,

r95943156@ntu.edu.tw

David J. Lilja University of Minnesota, Minneapolis, MN USA, lilja@umn.edu

Hsuan-Po Lin National Taiwan University, Taipei, Taiwan, centau-

ricog@hotmail.com

Jung-Chang Liu Fu Jen Catholic University, Taipei County, Taiwan,

binize97@csie.fju.edu.tw

Panagiotis Manolios Northeastern University, Boston, MA, USA,

bjchamb@ccs.neu.edu

Igor Markov University of Michigan, Ann Arbor, MI, USA,

imarkov@eecs.umich.edu

Joao Marques-Sila University College Dublin, Dublin, Ireland, jpms@ucd.ie

Alan Mishchenko Department of EECS, University of California, Berkeley, CA,

USA, alanmi@eecs.berkeley.edu

Contributors xxi

Nilesh Modi IBM TJ Watson Research Center, Yorktown Heights, NY, USA,

nilesh@ece.ucsb.edu

Nasir Mohyuddin Department of Electrical Engineering – Systems, University of

Southern California, Los Angeles, CA, USA, mohyuddi@usc.edu

Ehsan Pakbaznia Department of Electrical Engineering – Systems, University of

Southern California, Los Angeles, CA, USA, pakbazni@usc.edu

Massoud Pedram Department of Electrical Engineering – Systems, University of

Southern California, Los Angeles, CA, USA, pedram@usc.edu

Jordi Planes University de Lleida, Lleida, Spain, jplanes@diei.udl.cat

Ruchir Puri IBM TJ Watson Research Center, Yorktown Heights, NY, USA,

ruchir@us.ibm.com

Weikang Qian University of Minnesota, Minneapolis, MN, USA,

qianx030@umn.edu

Haoxing Ren IBM TJ Watson Research Center, Yorktown Heights, NY, USA,

haoxing@us.ibm.com

Marc D. Riedel University of Minnesota, Minneapolis, MN, USA,

mriedel@umn.edu

Alberto Sangiovanni-Vincentelli University of Berkeley, Berkeley, CA, USA,

alberto@eecs.berkeley.edu

Subarna Sinha Synopsys Inc., Mountain View, CA, USA,

subarna.sinha@synopsys.com

Duncan Smith Vennsa Technologies, Inc., Toronto, ON, Canada,

duncan.smith@vennsa.com

Gabriella Trucco Department of Information Technologies, Universit‘a degli

Studi di Milano, Milano, Italy, gabriella.trucco@unimi.it

Andreas Veneris University of Toronto, Toronto, ON, Canada,

veneris@eecg.utoronto.ca

Tiziano Villa Department of Computer Science, Universit‘a degli Studi di Verona,

Verona, Italy, tiziano.villa@univr.it

Kuo-Hua Wang Fu Jen Catholic University, Taipei County, Taiwan,

khwang@csie.fju.edu.tw

Yu-Shen Yang University of Toronto, Ontario, Canada, terry.yang@utoronto.ca

Qi Zhu Intel Corporation, Hillsboro, OR, USA, qi.dts.zhu@intel.com

Part I

Logic Decomposition

Under logic decomposition this book presents five research works. The first chapter

proposes hypergraph partitioning and Shannon decomposition-based techniques for

logic decomposition. The second chapter uses reachable state analysis and sym-

bolic decomposition to improve upon the synthesis of sequential designs. Fast

Boolean decomposition techniques employing a cut-based view of a logic network

and heuristic disjoint-support decompositions are presented in the third work. The

fourth approach performs Ashenhurst decomposition formulated using satisfiability,

Craigs interpolation, and functional dependency. This last chapter in this category

uses interpolation and incremental SAT solving to improve the quality of Boolean

function decomposition.

Chapter 2

Logic Synthesis by Signal-Driven Decomposition

Anna Bernasconi, Valentina Ciriani, Gabriella Trucco, and Tiziano Villa

Abstract This chapter investigates some restructuring techniques based on decom-

position and factorization, with the objective to move critical signals toward the

output while minimizing area. A specific application is synthesis for minimum

switching activity (or high performance), with minimum area penalty, where decom-

positions with respect to specific critical variables are needed (the ones of highest

switching activity, for example). In order to reduce the power consumption of the

circuit, the number of gates that are affected by the switching activity of critical

signals is maintained constant. This chapter describes new types of factorization that

extend Shannon cofactoring and are based on projection functions that change the

Hamming distance among the original minterms to favor logic minimization of the

component blocks. Moreover, the proposed algorithms generate and exploit don’t

care conditions in order to further minimize the final circuit. The related implemen-

tations, called P-circuits, show experimentally promising results in area with respect

to classical Shannon cofactoring.

2.1 Introduction

In recent years, power has become an important factor during the design phase.

This trend is primarily due to the remarkable growth of personal computing devices,

embedded systems, and wireless communications systems that demand high-speed

computation and complex functionality with low power consumption. In these appli-

cations, average power consumption is a critical design concern.

Low-power design methodologies must consider power at all stages of the design

process. At the logic synthesis level, logic transformations proved to be an effective

technique to reduce power consumption by restructuring a mapped circuit through

permissible signal substitution or perturbation [1]. A fundamental step in VLSI

design is logic synthesis of high-quality circuits matching a given specification. The

A. Bernasconi (B)

Department of Computer Science, Università di Pisa, Pisa, Italy

e-mail: annab@di.unipi.it

Based on [5], pp.1464–1469, 20–24 April 2009 c© [2009] IEEE.

S.P. Khatri, K. Gulati (eds.), Advanced Techniques in Logic Synthesis,

Optimizations and Applications, DOI 10.1007/978-1-4419-7518-8_2,
C© Springer Science+Business Media, LLC 2011

9

10 A. Bernasconi et al.

performance of the circuit can be expressed in terms of several factors, such as area,

delay, power consumption, and testability properties. Unfortunately, these factors

often contradict each other, in the sense that it is very difficult to design circuits

that guarantee very good performances with respect to all of them. In fact, power

consumption is often studied as a single minimization objective without taking into

account important factors such as area and delay.

In CMOS technology, power consumption is characterized by three components:

dynamic, short-circuit, and leakage power dissipation, of which dynamic power dis-

sipation is the predominant one. Dynamic power dissipation is due to the charge

and discharge of load capacitances, when the logic value of a gate output toggles;

switching a gate may trigger a sequence of signal changes in the gates of its output

cone, increasing dynamic power dissipation. So, reducing switching activity reduces

dynamic power consumption. Previous work proposed various transformations to

decrease power consumption and delay (for instance [11, 14, 16] for performance

and [1, 13, 15] for low power), whereby the circuit is restructured in various ways,

e.g., redeploying signals to avoid critical areas, bypassing large portions of a cir-

cuit. For instance, if we know the switching frequency of the input signals, a viable

strategy to reduce dynamic power is to move the signals with the highest switching

frequency closer to the outputs, in order to reduce the part of the circuit affected

by the switching activity of these signals. Similarly for performance, late-arriving

signals are moved closer to the outputs to decrease the worst-case delay.

The aim of our research is a systematic investigation of restructuring techniques

based on decomposition/factorization, with the objective to move critical signals

toward the output and avoid losses in area. A specific application is synthesis for

minimum switching activity (or high performance), with minimum area penalty.

Differently from factorization algorithms developed only for area minimization, we

look for decompositions with respect to specific critical variables (the ones of high-

est switching activity, for example). This is exactly obtained by Shannon cofactor-

ing, which decomposes a Boolean function with respect to a chosen splitting vari-

able; however, when applying Shannon cofactoring, the drawback is that too much

area redundancy might be introduced because large cubes are split between two

disjoint subspaces, whereas no new cube merging will take place as the Hamming

distance among the projected minterms do not change.

In this chapter we investigate thoroughly the more general factorization intro-

duced in [5], a decomposition that extends straightforward Shannon cofactoring;

instead of cofactoring a function f only with respect to single variables as Shan-

non does, we cofactor with respect to more complex functions, expanding f with

respect to the orthogonal basis x i ⊕ p (i.e., xi = p) and xi ⊕ p (i.e., xi �= p),

where p(x) is a function defined over all variables except xi . We study different

functions p(x) trading-off quality vs. computation time. Our factorizations modify

the Hamming distance among the on-set minterms, so that more logic minimization

may be performed on the projection of f onto the two disjoint subspaces xi = p and

xi �= p, while signals are moved in the circuit closer to the output. We then introduce

and study another form of decomposition, called decomposition with intersection,

where a function f is projected onto three overlapping subspaces of the Boolean

2 Logic Synthesis by Signal-Driven Decomposition 11

space {0, 1}n in order to favor area minimization avoiding cube fragmentation (e.g.,

cube splitting for the cubes intersecting both subspaces xi = p and xi �= p).

More precisely, we partition the on-set minterms of f into three sets: f |xi=p and

f |xi �=p, representing the projections of f onto the two disjoint subspaces xi = p

and xi �= p, and a third set I = f |xi=p ∩ f |xi �=p, which contains all minterms of

f whose projections onto xi = p and xi �= p are identical. Observe that each point

in I corresponds to two different points of f that could be merged in a cube, but

are split into the two spaces xi = p and xi �= p. Thus, we can avoid cube fragmen-

tation keeping the points in I unprojected. Moreover, given that the points in the

intersection I must be covered, we can project them as don’t cares in the two spaces

f |xi=p and f |xi �=p to ease the minimization of f |xi=p \ I and f |xi �=p \ I . Observe

that, while classical don’t care sets are specified by the user or are derived from the

surrounding environment, our don’t cares are dynamically constructed during the

synthesis phase.

The circuits synthesized according to these decompositions are called Projected

Circuits, or P-circuits, without and with intersection. We provide minimization algo-

rithms to compute optimal P-circuits and argue how augmenting P-circuits with at

most a pair of multiplexers guarantees full testability under the single stuck-at-fault

model. We also show that the proposed decomposition technique can be extended

and applied to move all critical signals, and not just one, toward the output, still

avoiding losses in area.

The chapter is organized as follows. Section 2.2 describes the new theory of

decomposition based on generalized cofactoring, which is applied in Section 2.3 to

the synthesis of Boolean functions as P-circuits. Section 2.4 extends the decompo-

sition from single to multiple variables. Experiments and conclusions are reported

in Sections 2.5 and 2.6, respectively.

2.2 Decomposition Methods

How to decompose Boolean functions is an ongoing research area to explore alter-

native logic implementations. A technique to decompose Boolean functions is

based on expanding them according to an orthogonal basis (see, for example [8],

section 3.15), as in the following definition, where a function f is decomposed

according to the basis (g, g).

Definition 2.1 Let f = (fon, fdc, foff) be an incompletely specified function and g

be a completely specified function, the generalized cofactor of f with respect to g

is the incompletely specified function co(f, g) = (fon.g, fdc + g, foff.g).

This definition highlights that in expanding a Boolean function we have two degrees

of freedom: choosing the basis (in this case, the function g) and choosing one com-

pletely specified function included in the incompletely specified function co(f, g).

This flexibility can be exploited according to the purpose of the expansion. For

instance, when g = xi , we have co(f, xi) = (fon.xi , fdc + x i , foff.xi). Notice

that the well-known Shannon cofactor fxi
= f (x1, . . . , (xi = 1), . . . , xn) is a

12 A. Bernasconi et al.

completely specified function contained in co(f, xi) = (fon.xi , fdc + x i , foff.xi)

(since fon.xi ⊆ fxi
⊆ fon.xi + fdc + x i = fon + fdc + x i); moreover, fxi

is the

unique cover of co(f, xi) independent from the variable xi .

We introduce now two types of expansion of a Boolean function that yield

decompositions with respect to a chosen variable (as in Shannon cofactoring),

but are also area-efficient because they favor minimization of the logic blocks so

obtained. Let f (X) = (fon(X), fdc(X), foff(X)) be an incompletely specified func-

tion depending on the set X = {x1, x2, . . . , xn} of n binary variables. Let X (i) be the

subset of X containing all variables but xi , i.e., X (i) = X \{xi }, where xi ∈ X . Con-

sider now a completely specified Boolean function p(X (i)) depending only on the

variables in X (i). We introduce two decomposition techniques based on the projec-

tions of the function f onto two complementary subsets of the Boolean space {0, 1}n
defined by the function p. More precisely, we note that the space {0, 1}n can be

partitioned into two sets: one containing the points for which xi = p(X (i)) and the

other containing the points for which xi �= p(X (i)). Observe that the characteristic

functions of these two subsets are (x i ⊕ p) and (xi ⊕ p), respectively, and that these

two sets have equal cardinality. We denote by f |xi=p and f |xi �=p the projections

of the points of f (X) onto the two subsets where xi = p(X (i)) and xi �= p(X (i)),

respectively. Note that these two functions only depend on the variables in X (i).

The first decomposition technique, already described in [12] and [6], is defined as

follows.

Definition 2.2 Let f (X) be an incompletely specified function, xi ∈ X , and p(X (i))

be a completely specified function. The (xi , p)-decomposition of f is the algebraic

expression

f = (x i ⊕ p) f |xi=p + (xi ⊕ p) f |xi �=p.

First of all we observe that each minterm of f is projected onto one and

only one subset. Indeed, let m = m1m2 · · ·mn be a minterm of f ; if mi =
p(m1, . . . , mi−1, mi+1, . . . , mn), then m is projected onto the set where xi =
p(X (i)), otherwise m is projected onto the complementary set where xi �=
p(X (i)). The projection simply consists in eliminating mi from m. For exam-

ple, consider the function f shown on the left side of Fig. 2.1 with fon =
{0000, 0001, 0010, 0101, 1001, 1010, 1100, 1101} and fdc = {0111}. Let p be the

simple Boolean function x2, and xi be x1. The Boolean space {0, 1}4 can be par-

titioned into the two sets x1 = x2 and x1 �= x2 each containing 23 points. The

projections of f onto these two sets are fon|x1=x2
= {000, 001, 010, 100, 101} ,

fdc|x1=x2
= ∅, and fon|x1 �=x2

= {101, 001, 010}, fdc|x1 �=x2
= {111}.

Second, observe that these projections do not preserve the Hamming distance

among minterms, since we eliminate the variable xi from each minterm, and two

minterms projected onto the same subset could have different values for xi . The

Hamming distance is preserved only if the function p(X (i)) is a constant, that is

when the (xi , p)-decomposition corresponds to the classical Shannon decomposi-

tion. The fact that the Hamming distance may change could be useful when f is

2 Logic Synthesis by Signal-Driven Decomposition 13

Fig. 2.1 An example of projection of the incompletely specified function f onto the spaces x1 =
x2 and x1 �= x2

represented in SOP form, as bigger cubes could be built in the projection sets. For

example, consider again the function f shown on the left side of Fig. 2.1. The points

0000 and 1100 contained in fon have Hamming distance equal to 2, and thus cannot

be merged in a cube, while their projections onto the space fon|x1=x2
(i.e., 000 and

100, respectively) have Hamming distance equal to 1, and they form the cube x3x4.

On the other hand, the cubes intersecting both subsets xi = p(X (i)) and

xi �= p(X (i)) are divided into two smaller subcubes. For instance, in our running

example, the cube x3x4 of function fon is split into the two sets x1 = x2 and x1 �= x2

forming a cube in fon|x1=x2
and one in fon|x1 �=x2

, as shown on the right side of

Fig. 2.1.

Observe that the cubes that end up to be split may contain pairs of minterms,

whose projections onto the two sets are identical. In our example, x3x4 is the cube

corresponding to the points {0001, 0101, 1001, 1101}, where 0001 and 1101 are

projected onto fon|x1=x2
and become 001 and 101, respectively, and 0101 and 1001

are projected onto fon|x1 �=x2
and again become 101 and 001, respectively. Therefore,

we can characterize the set of these minterms as I = f |xi=p ∩ f |xi �=p. Note that

the points in I do not depend on xi . In our example Ion = fon|x1=x2
∩ fon|x1 �=x2

=
{001, 010, 101}, and Idc = ∅.

In order to overcome the splitting of some cubes, we could keep I unprojected

and project only the points in f |xi=p \ I and f |xi �=p \ I , obtaining the expression

f = (x i ⊕ p)(f |xi=p \ I)+ (xi ⊕ p)(f |xi �=p \ I)+ I .

However, we are left with another possible drawback: some points of I could

also belong to cubes covering points of f |xi=p and/or f |xi �=p, and their elimination

could cause the fragmentation of these cubes. Thus, eliminating these points from

the projected subfunctions would not be always convenient. On the other hand, some

points of I are covered only by cubes entirely contained in I . Therefore keeping

them both in I and in the projected subfunctions would be useless and expensive.

In our example, since Ion = {001, 010, 101}, in fon|x1=x2
the points 001 and 101

14 A. Bernasconi et al.

are useful for forming, together with 000 and 100, the cube x3; instead the point

010 is useless and must be covered with an additional cube. The solution to this

problem is to project the points belonging to I as don’t cares for f |xi=p and f |xi �=p,

in order to choose only the useful points. We therefore propose the following more

refined second decomposition technique, using the notation h = (hon, hdc) for an

incompletely specified function h and its on-set hon and don’t care set hdc.

Definition 2.3 Let f (X) be an incompletely specified function, xi ∈ X , and p(X (i))

be a completely specified function. The (xi , p)-decomposition with intersection of

f = (fon, fdc) is the algebraic expression

f = (x i ⊕ p) f̃ |xi=p + (xi ⊕ p) f̃ |xi �=p + I,

where

f̃ |xi=p = (fon|xi=p \ Ion, fdc|xi=p ∪ Ion),

f̃ |xi �=p = (fon|xi �=p \ Ion, fdc|xi �=p ∪ Ion),

I = (Ion, Idc),

with Ion = fon|xi=p ∩ fon|xi �=p and Idc = fdc|xi=p ∩ fdc|xi �=p .

For our example, the projections of f become f̃ |x1=x2
= (fon|x1=x2

\Ion, fdc|x1=x2
∪

Ion) = ({000, 100}, {001, 010, 101}) and f̃ |x1 �=x2
= (fon|x1 �=x2

\ Ion, fdc|x1 �=x2
∪

Ion) = (∅, {111} ∪ {001, 010, 101}). The Karnaugh maps of this decomposition are

shown in Fig. 2.2.

Fig. 2.2 An example of projection with intersection of the function f of Fig. 2.1 onto the spaces

x1 = x2, x1 �= x2, and I

2 Logic Synthesis by Signal-Driven Decomposition 15

Observe that, fixing the function p and a variable x , these decompositions are

canonical. We now study these decomposition methods for some choices of the

function p.

Case p = 0.

As we have already observed, if p is a constant function, then the (xi , p)-

decomposition is indeed the classical Shannon decomposition: f = x i f |xi=0 +
xi f |xi=1. Recall that (x i ⊕ 0) is equivalent to x i , while (xi ⊕ 0) is equivalent to

xi . Also observe that choosing p = 1 we would get exactly the same form. For the

(xi , p)-decomposition with intersection we have the following particular form:

f = x i f̃ |xi=0 + xi f̃ |xi=1 + I.

Observe that in this particular case, the set I is

I = f (x1, . . . , xi−1, 0, xi+1, . . . , xn) ∩ f (x1, . . . , xi−1, 1, xi+1, . . . , xn).

This implies the following property.

Proposition 2.1 The characteristic function χI of I is the biggest subfunction of f

that does not depend on xi .

Proof Let χ1, . . . , χk be the subfunctions of f that do not depend on xi , and let χ

be their union, i.e., χ = χ1 + χ2 + · · · + χk . Observe that χ is still a subfunction

of f and it does not depend on xi . Therefore χ is the biggest subfunction that does

not depend on xi . We must show that χ = χI . First note that χI is one of the

functions χ1, . . . , χk . Suppose χI = χ j , with 1 ≤ j ≤ k. By construction, χ j is a

subfunction of χ . On the other hand, if χ(X) = 1, then there exists an index h such

that χh(X) = 1. Since χh does not depend on xi , we have

χh(x1, . . . , xi−1, 1, xi+1, . . . , xn) = χh(x1, . . . , xi−1, 0, xi+1, . . . , xn) = 1.

Moreover, since χh is a subfunction of f , on the same input X we have that

f (x1, . . . , xi−1, 1, xi+1, . . . , xn) = f (x1, . . . , xi−1, 0, xi+1, . . . , xn) = 1.

This implies that

χ j = f (x1, . . . , xi−1, 1, xi+1, . . . , xn) ∩ f (x1, . . . , xi−1, 0, xi+1, . . . , xn) = 1,

which means that χ is a subfunction of χ j . As χ j = χI , we finally have that χ = χI .

Note that if χI is equal to f , then f does not depend on xi . We conclude the

analysis of this special case observing how the (xi , 0)-decomposition, i.e., the clas-

sical Shannon decomposition, and the (xi , 0)-decomposition with intersection show

16 A. Bernasconi et al.

a different behavior when the subfunctions f |xi=0, f |xi=1, f̃ |xi=0, f̃ |xi=1 and the

intersection I are represented as sum of products. Consider a minimal sum of prod-

ucts SOP(f) for the function f . The number of products in SOP(f) is always less

than or equal to the overall number of products in the minimal SOP representations

for f |xi=0 and f |xi=1. This easily follows from the fact that each product in SOP(f)

that does not depend on xi is split into two products, one belonging to a minimal

SOP for f |xi=0 and the other belonging to a minimal SOP for f |xi=1. On the other

hand, the (xi , 0)-decomposition with intersection contains the same number of prod-

ucts as SOP(f), and its overall number of literals is less or equal to the number of

literals in SOP(f).

Theorem 2.1 An (xi , 0)-decomposition with intersection for a Boolean function f ,

where f̃ |xi=0, f̃ |xi=1, and I are represented as minimal sums of products, contains

an overall number of products equal to the number of products in a minimal SOP

for f and an overall number of literals less or equal to the number of literals in a

minimal SOP for f .

Proof First observe how we can build minimal SOP representations for f̃ |xi=0,

f̃ |xi=1, and I starting from a minimal SOP, SOP(f), for f . Indeed, the sum of

the projections of all products in SOP(f) containing the literal xi gives a minimal

SOP for f̃ |xi=1, the sum of the projections of all products in SO P(f) containing

the literal x i gives a minimal SOP for f̃ |xi=0, while all remaining products, that

do not depend on xi or x i , give a minimal SOP covering exactly the points in the

intersection I . The minimality of these SOPs follows from the fact that the (xi , 0)-

decomposition with intersection does not change the Hamming distance among the

minterms, so that no bigger cubes can be built in the projection sets.

Let us now analyze the overall number of literals in the (xi , 0)-decomposition

with intersection built from SOP(f). Let ℓSOP denote the number of literals in

SOP(f). The products in the SOP for I are left unchanged, so that their overall

number of literals ℓI is preserved. Suppose that r products in SOP(f) contain xi ,

and let ℓxi
denote their overall number of literals. The projection of these r products

forms a SOP for f̃ |xi=1, whose number of literals is equal to ℓxi
− r , as projecting

a product simply consists in eliminating xi from it. Analogously, if s products in

SOP(f) contain x i , and ℓx i
is their overall number of literals, the SOP for f̃ |xi=0

contains ℓx i
− s literals. Thus, the (xi , 0)-decomposition with intersection contains

exactly ℓI + ℓxi
− r + ℓx i

− s + 2 = ℓSOP − r − s + 2 literals, where the two

additional literals represent the characteristic functions of the projection sets.

Case p = x j .

For p = x j , with j �= i , the two decomposition techniques are based on the

projection of f onto the two complementary subspaces of {0, 1}n where xi = x j

and xi �= x j . For the (xi , x j)-decomposition we get the expression f = (x i ⊕
x j) f |xi=x j

+ (xi ⊕ x j) f |xi �=x j
, while the (xi , x j)-decomposition with intersection

is given by f = (x i ⊕ x j) f̃ |xi=x j
+ (xi ⊕ x j) f̃ |xi �=x j

+ I , where

2 Logic Synthesis by Signal-Driven Decomposition 17

f̃ |xi=x j
= (fon|xi=x j

\ Ion, fdc|xi=x j
∪ Ion),

f̃ |xi �=x j
= (fon|xi �=x j

\ Ion, fdc|xi �=x j
∪ Ion),

with Ion = fon|xi=x j
∩ fon|xi �=x j

and Idc = fdc|xi=x j
∩ fdc|xi �=x j

. These expressions

share some similarities with the EXOR Projected Sum of Products studied in [3].

In particular, if we represent the subfunctions as sums of products, the (xi , x j)-

decomposition corresponds to an EP-SOP form, while the (xi , x j)-decomposition

with intersection is only partially similar to an EP-SOP with remainder form [3].

The differences between the two expressions are due to the presence of don’t cares

in f̃ |xi=x j
and f̃ |xi �=x j

and to the fact that the intersection I does not depend on

the variable xi , while the remainder in an EP-SOP may depend on all the n input

variables. Also observe that, thanks to the presence of don’t cares, the (xi , x j)-

decomposition with intersection has a cost less or equal to the cost of an EP-SOP

with remainder.

Cases p = x j ⊕ xk and p = x j xk .

In general the function p used to split the Boolean space {0, 1}n may depend on

all input variables, but xi . In this chapter we consider only two special cases, based

on the use of two simple functions: an EXOR and an AND of two literals. The

partition of {0, 1}n induced by the EXOR function does not depend on the choice of

the variable complementations. Indeed, since x j ⊕ xk = x j ⊕ xk , and (x j ⊕ xk) =
x j⊕xk = x j⊕xk , the choices p = x j⊕xk and p = x j⊕xk give the same partition

of the Boolean space. On the contrary, the partition of {0, 1}n induced by the AND

function changes depending on the choice of the variable complementations, so that

four different cases must be considered:

1. p = x j xk , corresponding to the partition into the sets where xi = x j xk and

xi �= x j xk , i.e., xi = x j + xk ;

2. p = x j xk , corresponding to the partition into the sets where xi = x j xk and

xi �= x j xk , i.e., xi = x j + xk ;

3. p = x j xk , corresponding to the partition into the sets where xi = x j xk and

xi �= x j xk , i.e., xi = x j + xk ;

4. p = x j xk , corresponding to the partition into the sets where xi = x j xk and

xi �= x j xk , i.e., xi = x j + xk .

When the subfunctions are represented as SOPs, the resulting decomposition forms

share some similarities with the Projected Sum of Products (P-SOP) introduced

in [2]. Again, the two forms are different thanks to the presence of don’t cares in the

subfunctions and to the fact that the intersection I does not depend on xi .

2.3 P-Circuits

We now show how the decomposition methods described in Section 2.2 can be

applied to the logic synthesis of Boolean functions. The idea for synthesis is simply

18 A. Bernasconi et al.

to construct a network for f using as building blocks networks for the projection

function p, for the subfunctions f |xi=p, f |xi �=p, f̃ |xi=p, and f̃ |xi �=p, and a network

for the intersection I . Observe that the overall network for f will require an EXOR

gate for computing the characteristic functions of the projection subsets, two AND

gates for the projections, and a final OR gate.

The function p, the projected subfunctions, and the intersection can be synthe-

sized in any framework of logic minimization. In our experiments we focused on

the standard Sum of Products synthesis, i.e., we represented p, f |xi=p, f |xi �=p,

f̃ |xi=p, f̃ |xi �=p, and I as sums of products. In this way we derived networks

for f which we called Projected Circuit and Projected Circuit with Intersection,

in short P-circuits, see Fig. 2.3. If the SOPs representing p, f |xi=p, f |xi �=p,

f̃ |xi=p, f̃ |xi �=p, and I are minimal, the corresponding circuits are called Optimal

P-circuits. For instance, the function in Figs. 2.1 and 2.2 has minimal SOP form

x1x2x3 + x1x2x3 + x3x4 + x2x3x4, while its corresponding optimal P-circuit is

(x1 ⊕ x2)x3 + x3x4 + x2x3x4.

Fig. 2.3 P-circuit (left) and P-circuit with intersection (right)

The number of logic levels in a P-circuit varies from four to five: it is equal

to four when the SOP for p consists in just one product and it is equal to five

otherwise.

If we consider now the power consumption, we can observe in Fig. 2.3 that xi ,

i.e., the variable with the highest switching frequency, is connected near the output

of the overall logic network, thus triggering a sequence of switching events only for

the last four gates. In this way, the contribution of xi to the total power consumption

is limited. Finally, we observe that it is possible to apply this decomposition when

more than one variable switches with high frequency as shown in Section 2.4.

2 Logic Synthesis by Signal-Driven Decomposition 19

2.3.1 Synthesis Algorithms

We now describe two algorithms for computing optimal P-circuits, with and without

intersection. Both algorithms can be implemented using OBDD data structures [9]

for Boolean function manipulation and a classical SOP minimization procedure

(e.g., ESPRESSO [7]).

The heuristic that finds a P-circuit with intersection (in Fig. 2.4) first computes

the projections of the on-set and dc-set of f onto xi �= p and xi = p and their

intersections Ion and Idc. The on-set of the intersection, Ion, is subtracted from the

two on-sets (fon|xi �=p and fon|xi=p), and it is inserted in the two dc-sets (fdc|xi �=p

and fdc|xi=p). This step guarantees that only the useful points of the intersection are

covered in the SOP form of f |xi �=p and f |xi=p. Finally, the algorithm synthesizes

the projected functions and the intersection with a SOP minimizer, and a P-circuit is

then returned. The algorithm that computes a P-circuit without intersection is similar

to the former but does not take into account the intersection, as shown in Fig. 2.5.

Synthesis of P-Circuits with intersection

INPUT: Functions f and p, and a variable xi

OUTPUT: An optimal P-circuit for the (xi,p)-decomposition with intersection of f

NOTATION: let f = (fon , fdc), i.e., fon is the on-set of f, and fdc is the don’t care-set of f,

Ion
=

 fon|xi =p ∩ fon|xi=p;

Idc

=

fdc|xi=p ∩ fdc|xi=p;

f
(=)
on = fon|xi=p \ Ion;

f
(=)
on = fon|xi=p \ Ion;

f
(=)
dc = fdc|xi=p ∪ Ion;

f
(=)
dc = fdc|xi=p ∪ Ion;

MinSOP(=) = OptSOP(f
(=)
on , f

(=)
dc); // optimal SOP for f (=)

MinSOP(=) = OptSOP(f
(=)
on , f

(=)
dc); // optimal SOP for f (=)

MinSOPI = OptSOP(Ion,Idc); // optimal SOP for I = (Ion,Idc)
MinSOPp = OptSOP(p, /0); // optimal SOP for p

P-circuit = (xi ⊕MinSOPp)MinSOP(=)+(xi ⊕MinSOPp)MinSOP(=) +MinSOPI

return P-circuit

Fig. 2.4 Algorithm for the optimization of P-circuits with intersection

The complexity of the algorithms depends on two factors: the complexity of

OBDD operations, which is polynomial in the size of the OBDDs for the operands

f and p, and the complexity of SOP minimization. Exact SOP minimization is

superexponential in time, but efficient heuristics are available (i.e., ESPRESSO in the

heuristic mode).

The algorithms compute correct covers as proved in the following theorem.

Theorem 2.2 (Correctness) Algorithms in Figs. 2.4 and 2.5 compute a P-circuit C

that covers the input function f .

Proof Overloading the notation, let us denote with C the Boolean function that

corresponds to the circuit C . In both cases we have to show that fon ⊆ C ⊆ fon ∪

20 A. Bernasconi et al.

Synthesis of P-Circuits

INPUT: Functions f and p, and a variable xi

OUTPUT: An optimal P-circuit for the (xi,p)-decomposition of f

NOTATION: let f = (fon,fdc), i.e.,fon is the on-set of f

fon fon

(=)
= |xi=p;

fon
fon

(=)
= |

|

xi

xi

=p ;

fdc fdc

(=)
= = p;

fdc
fdc

(=)
= |xi=p ;

MinSOP(=) = OptSOP(fon

(=)
, fdc

(=)
); // optimal SOP for

MinSOP(=) = OptSOP(fon

(=)
, fdc

(=)
); // optimal SOP for

MinSOPp = OptSOP(p, /0) ; // optimal SOP for p

P-circuit = (xi ⊕MinSOPp)MinSOP(=)+(xi ⊕MinSOPp)MinSOP(=)

return P-circuit

f (=)

f (=)

and fdc is the don’t care-set of f,

Fig. 2.5 Algorithm for the optimization of P-circuits without intersection

fdc. We first consider the algorithm in Fig. 2.4 for the (xi , p)-decomposition with

intersection of f that outputs the circuit C .

Let y ∈ fon be the minterm y = y1, y2, . . . , yn , we show that y ∈ C . We

have two cases: (1) if yi = p(y1, . . . , yi−1, yi+1, . . . , yn) we have that, for the

synthesis algorithm, y is covered by (x i ⊕MinSOPp)MinSOP(=) or by MinSOPI ;

(2) if yi �= p(y1, . . . , yi−1, yi+1, . . . , yn) we have that, for the synthesis algorithm,

y is covered by (xi ⊕MinSOPp)MinSOP(�=) or by MinSOPI . Thus y is in C .

From the other side, let y be a point of C , we have to show that y is also in

fon ∪ fdc. We have two cases: (1) if y is covered by MinSOPI , then y is in both

f |xi=p and f |xi �=p, and – given that MinSOPI is synthesized with ESPRESSO – y

is in fon ∪ fdc; (2) if y is not covered by MinSOPI , then it is covered by (x i ⊕
MinSOPp)MinSOP(=) or (xi ⊕MinSOPp)MinSOP(�=). In both cases y must be in a

projected space that is synthesized with ESPRESSO.

Consider now the algorithm in Fig. 2.5 for the computation of a (xi , p)-

decomposition without intersection. In this case the intersection is not computed

thus each point of the function is simply projected onto one of the projecting spaces.

The thesis immediately follows.

Considering the Stuck-At Fault Model (SAFM), we now briefly discuss the testa-

bility of P-circuits in the case where p is a constant function (i.e., p = 0). A fault

in the Stuck-At Fault Model fixes exactly one input or one output pin of a node in a

combinatorial logic circuit C to constant value (0 or 1) independently of the values

applied to the primary inputs of the circuit. A node v in C is called fully testable, if

there does not exist a redundant fault with fault location v. If all nodes in C are fully

testable, then C is fully testable.

Theorem 2.3 From a given P-circuit we can obtain a circuit that is fully testable in

the SAFM by adding at most two more inputs and two multiplexers.

Proof The proof of this theorem follows directly from the testability proof in [4]

where the decomposed functions are synthesized in 2SPP form [10] instead of SOP

forms. 2SPP expressions are direct generalizations of SOP forms where we can

2 Logic Synthesis by Signal-Driven Decomposition 21

use EXORs of two literals instead of simple literals as inputs to the AND gates.

We note that the testability theorem in [4] still holds for any form that is prime and

irredundant. Since the SOP forms that we use for the synthesis of P-circuits have this

property, the thesis immediately follows. In the case of P-circuits with intersection,

the testable circuit that we obtain contains two MUXs before the inputs of the final

OR gate. One is between the outputs of the decomposed parts and the second is after

the output of the intersection. The MUXs are used to test the three single blocks of

the circuit separately. In the case of P-circuits without intersection, just one MUX

(between the outputs of the decomposed parts before the OR gate) is needed. In this

case the proof still holds since we can consider a P-circuit without intersection as a

special case of a P-circuit with intersection where the intersection is empty.

2.4 Multivariable Decomposition

In this section we show how our new decomposition technique can be extended from

one to more variables, so that it could be applied to move all critical signals, and not

just one, toward the output, still avoiding losses in area. A first naive solution for

extending our technique could be to apply recursively the decompositions, i.e.,

• compute a decomposition of the function under study with respect to the vari-

able with highest switching frequency among the variables in the set X =
{x1, . . . , xn}, say xi ;

• apply the same procedure to the functions f |xi=p and f |xi �=p or to the functions

f̃ |xi=p, f̃ |xi �=p and I (in case of decomposition with intersection), with respect

to the variable with highest switching frequency in the set X \ {xi };
• if needed, recursively repeat the same procedure on the subfunctions derived in

the previous decomposition step.

Observe that with this naive approach, the number of levels increases by three at

each decomposition step. Moreover, the critical signals have different distances from

the final output gate and their switching activity affects different portions of the cir-

cuit. In particular, the first variable selected is the one closest to the output, affecting

only the last four gates.

In order to keep the number of levels constant and independent from the number

of decomposition steps and to move all critical signals equally close to the output,

so that the number of gates affected by their switching activity can be maintained

constant, a different solution should be adopted. This solution is based on a “parallel

decomposition” in which the points of the function are simultaneously partitioned

and projected onto the 2k subspaces defined by the k critical variables. For ease of

exposition, we explain in detail only the case k = 2. The general case k > 2 can be

easily derived from it, but at the expense of a quite heavy notation.

Definition 2.4 Let f (X) be an incompletely specified Boolean function, xi , x j ∈ X ,

and pi and p j be two completely specified Boolean functions depending on all

variables in X \{xi , x j }. The [(xi , pi), (x j , p j)]-decomposition of f is the algebraic

expression

22 A. Bernasconi et al.

f = (x i ⊕ pi)(x j ⊕ p j) f | xi=pi
x j=p j

+ (x i ⊕ pi)(x j ⊕ p j) f | xi=pi
x j �=p j

+(xi ⊕ pi)(x j ⊕ p j) f | xi �=pi
x j=p j

+ (xi ⊕ pi)(x j ⊕ p j) f | xi �=pi
x j �=p j

.

The extension of the notion of decomposition with intersection will require the intro-

duction of five new subfunctions representing the overall intersection among the

four projections of f , and the four intersections between the projections of f |xi=pi

and f |xi �=pi
w.r.t. x j , and between the projections of f |x j=p j

and f |x j �=p j
w.r.t. xi ,

respectively. As for the decomposition w.r.t. one variable, the intersection sets will

be added as don’t cares to the projected subfunctions, in order to possibly improve

their minimal SOP forms.

Definition 2.5 Let f (X) be an incompletely specified Boolean function, xi , x j ∈ X ,

and pi and p j be two completely specified Boolean functions depending on all

variables in X \ {xi , x j }. The [(xi , pi), (x j , p j)]-decomposition with intersection of

f = (fon, fdc) is the algebraic expression

f = (x i ⊕ pi)(x j ⊕ p j) f̃ | xi=pi
x j=p j

+ (x i ⊕ pi)(x j ⊕ p j) f̃ | xi=pi
x j �=p j

+

(xi ⊕ pi)(x j ⊕ p j) f̃ | xi �=pi
x j=p j

+ (xi ⊕ pi)(x j ⊕ p j) f̃ | xi �=pi
x j �=p j

+

(x i ⊕ pi)I (i,=) + (xi ⊕ pi)I (i,�=) + (x j ⊕ p j)I (j,=) + (x j ⊕ p j)I (j,�=) + I,

where

f̃ | xi=pi
x j=p j

= (fon| xi=pi
x j=p j

\ (I (i,=)
on ∪ I

(j,=)
on ∪ Ion), fdc| xi=pi

x j=p j

∪ I (i,=)
on ∪ I

(j,=)
on ∪ Ion),

f̃ | xi=pi
x j �=p j

= (fon| xi=pi
x j �=p j

\ (I (i,=)
on ∪ I

(j,�=)
on ∪ Ion), fdc| xi=pi

x j �=p j

∪ I (i,=)
on ∪ I

(j,�=)
on ∪ Ion),

f̃ | xi �=pi
x j=p j

= (fon| xi �=pi
x j=p j

\ (I
(i,�=)
on ∪ I

(j,=)
on ∪ Ion), fdc| xi �=pi

x j=p j

∪ I
(i,�=)
on ∪ I

(j,=)
on ∪ Ion),

f̃ | xi �=pi
x j �=p j

= (fon| xi �=pi
x j �=p j

\ (I
(i,�=)
on ∪ I

(j,�=)
on ∪ Ion), fdc| xi �=pi

x j �=p j

∪ I
(i,�=)
on ∪ I

(j,�=)
on ∪ Ion),

with

Ion = fon| xi=pi
x j=p j

∩ fon| xi=pi
x j �=p j

∩ fon| xi �=pi
x j=p j

∩ fon| xi �=pi
x j �=p j

,

Idc = fdc| xi=pi
x j=p j

∩ fdc| xi=pi
x j �=p j

∩ fdc| xi �=pi
x j=p j

∩ fdc| xi �=pi
x j �=p j

,

I (i,=)
on = (fon| xi=pi

x j=p j

∩ fon| xi=pi
x j �=p j

) \ Ion , I
(i,=)
dc = (fdc| xi=pi

x j=p j

∩ fdc| xi=pi
x j �=p j

) ∪ Ion,

I
(i,�=)
on = (fon| xi �=pi

x j=p j

∩ fon| xi �=pi
x j �=p j

) \ Ion , I
(i,�=)

dc = (fdc| xi �=pi
x j=p j

∩ fdc| xi �=pi
x j �=p j

) ∪ Ion,

2 Logic Synthesis by Signal-Driven Decomposition 23

I
(j,=)
on = (fon| xi=pi

x j=p j

∩ fon| xi �=pi
x j=p j

) \ Ion , I
(j,=)

dc = (fdc| xi=pi
x j=p j

∩ fdc| xi �=pi
x j=p j

) ∪ Ion,

I
(j,�=)
on = (fon| xi=pi

x j �=p j

∩ fon| xi �=pi
x j �=p j

) \ Ion , I
(j,�=)

dc = (fdc| xi=pi
x j �=p j

∩ fdc| xi �=pi
x j �=p j

) ∪ Ion.

Observe that we do not consider the intersections between f | xi=pi
x j=p j

and f | xi �=pi
x j �=p j

and between f | xi=pi
x j �=p j

and f | xi �=pi
x j=p j

as these two pairs of projections belong to non-

adjacent subspaces and therefore there are no cubes split between them.

When the functions pi and p j , the four projected subfunctions, and the inter-

section sets are represented as minimal SOP forms, these two algebraic expressions

give rise to P-circuits without and with intersection, both of depth 5, exactly as in the

case of the decomposition w.r.t. a single variable. Moreover, the two critical signals

xi and x j are equally close to the output and their switching activity affects only a

constant number of gates, as pi , p j and the intersection sets do not depend on them.

The two circuits can be synthesized generalizing the algorithms shown in

Figs. 2.4 and 2.5 in a straightforward way.

For example, consider the function f shown on the left side of Fig. 2.1. Let

pi = 0, p j = 0, and xi and x j be x1 and x2, respectively. The Boolean space

{0, 1}4 can be partitioned into the four sets: (x1 = 0, x2 = 0), (x1 = 0, x2 = 1),

(x1 = 1, x2 = 0), and (x1 = 1, x2 = 1), each containing 22 points. The projections

of f onto these four sets are

fon| x1=0

x2=0

= {00, 01, 10} fdc| x1=0

x2=0

= ∅
fon| x1=0

x2 �=0

= {01} fdc| x1=0

x2 �=0

= {11}
fon| x1 �=0

x2=0

= {01, 10} fdc| x1 �=0

x2=0

= ∅
fon| x1 �=0

x2 �=0

= {00, 01} fdc| x1 �=0

x2 �=0

= ∅

The [(x1, 0), (x2, 0)]-decomposition of f thus determines the optimal P-circuit

x1x2(x3 + x4)+ x1x2x4 + x1x2(x3x4 + x3x4)+ x1x2x3, containing 16 literals.

Let us now consider the [(x1, 0), (x2, 0)]-decomposition with intersection. The

intersection sets are Ion = {01}, Idc = ∅, I
(i,=)
on = I

(i,�=)
on = I

(j,�=)
on = ∅, I

(j,=)
on =

{10}, I
(i,=)
dc = I

(i,�=)

dc = I
(j,=)

dc = I
(j,�=)

dc = {01}, and the projections become

f̃on| x1=0

x2=0

= {00} f̃dc| x1=0

x2=0

= {01, 10}

f̃on| x1=0

x2 �=0

= ∅ f̃dc| x1=0

x2 �=0

= {01, 11}

f̃on| x1 �=0

x2=0

= ∅ f̃dc| x1 �=0

x2=0

= {01, 10}

f̃on| x1 �=0

x2 �=0

= {00} f̃dc| x1 �=0

x2 �=0

= {01}

The corresponding P-circuit with intersection is now x1x2x3 + x1x2x3 + x2x3x4 +
x3x4, with 11 literals.

24 A. Bernasconi et al.

2.5 Experimental Results

In this section we report experimental results for the two decomposition methods

described in the previous sections. The methods have been implemented in C, using

the CUDD library for OBDDs to represent Boolean functions. The experiments have

been run on a Pentium 1.6 GHz CPU with 1 GB of main memory. The benchmarks

are taken from LGSynth93 [17]. We report in the following a significant subset of

the functions as representative indicators of our experiments.

In order to evaluate the performances of these new synthesis methods, we com-

pare area and delay of different versions of P-circuits with P-circuits based on the

classical Shannon decomposition, i.e., P-circuits representing (xi , 0)-decomposition

without intersection (referred as Shannon in Table 2.1). In particular we have con-

sidered P-circuits for the following choices of the projection function p:

• p = 0, decomposition with intersection (referred as Constant in Table 2.2);

• p = x j , decomposition without and with intersection (referred as VAR in

Tables 2.1 and 2.2);

• p = x j ⊕ xk , decomposition without and with intersection (referred as XOR in

Tables 2.1 and 2.2);

• p = x j xk , decomposition without and with intersection, choosing the com-

plementations of variables giving the best area (referred as AND in Tables 2.1

and 2.2).

After the projection, all SOP components of the P-circuits have been synthesized

with multioutput synthesis using ESPRESSO in the heuristic mode. Finally, to eval-

uate the obtained circuits, we ran our benchmarks using the SIS system with the

MCNC library for technology mapping and the SIS command map -W -f 3 -s.

In Tables 2.1 and 2.2 we compare the mapped area and the synthesis time

(in seconds) of P-circuits representing decomposition forms without intersection

(Table 2.1) and with intersection (Table 2.2) for a subset of the benchmarks. Due to

space limitation, the results shown refer only to decompositions with respect to the

first input variable, x0, of each benchmark. In the overall set of experiments we have

considered decompositions with respect to each input variable of each benchmark.

The results, reported in Fig. 2.6, are quite interesting: about 79% of P-circuits

based on the (xi , 0)-decomposition with intersection have an area smaller than

the P-circuits based on the classical Shannon decomposition, i.e., on the (xi , 0)-

decomposition without intersection; analogously, 32 and 59% of the P-circuits ben-

efit from the (xi , x j)-decomposition without and with intersection, respectively;

22 and 50% of the circuits benefit from the (xi , x j ⊕ xk)-decomposition without

and with intersection, respectively; and 28 and 58% of the circuits benefit from the

(xi , x j xk)-decomposition without and with intersection, respectively. These results

support the conclusion that decompositions with intersection provide better results,

and that the best choice for the projection function p is the simplest: p = 0.

Moreover synthesis for p = 0 with intersection is very efficient in computational

time, as shown in Fig. 2.7; in fact, about 80% of P-circuits based on the (xi , 0)-

decomposition with intersection have a synthesis time smaller than the synthesis

2 Logic Synthesis by Signal-Driven Decomposition 25

Table 2.1 Comparison of area and synthesis time of P-circuits representing (x0, p)-decomposition

forms for different choices of the projection function p without intersection

(x0, p)-Decomposition without intersection

Shannon VAR XOR AND

Benchmark (in/out) Area Time Area Time Area Time Area Time

add6 (12/7) 908 0.65 507 5.19 669 24.58 524 90.84

adr4 (8/5) 284 0.05 172 0.14 223 0.45 237 1.76

alu2 (10/8) 355 0.45 382 0.79 416 3.60 356 12.93

alu3 (10/8) 256 0.34 330 0.67 402 2.54 354 9.22

amd (14/24) 162 0.17 1694 1.24 1800 8.65 1747 30.31

apla (10/1) 379 0.12 371 0.58 467 3.19 398 9.11

b9 (16/5) 436 0.15 463 1.08 492 8.30 472 29.36

b12 (15/9) 227 0.11 306 0.55 401 4.27 340 15.90

br1 (12/8) 347 0.05 381 0.19 435 0.88 418 3.53

br2 (12/8) 281 0.03 314 0.18 377 0.97 337 3.30

dc2 (8/7) 249 0.05 279 0.13 337 0.40 276 1.45

dist (8/7) 891 0.11 1266 0.34 1202 0.95 946 3.77

dk17 (10/11) 263 0.10 250 0.38 291 1.82 230 6.85

dk48 (15/17) 263 0.23 284 1.65 288 14.73 276 46.21

ex7 (16/5) 436 0.12 463 1.04 492 8.30 472 29.07

exp (8/18) 824 0.09 873 0.30 947 0.96 1011 3.15

f51m (8/8) 497 0.09 706 0.21 640 0.64 528 2.24

inc (7/9) 237 0.05 287 0.11 364 0.25 316 1.17

l8err (8/8) 301 0.08 328 0.30 356 0.70 311 2.43

life (9/1) 267 0.06 252 0.21 298 0.60 267 2.56

m181 (15/9) 227 0.42 308 0.58 404 4.44 341 16.39

m2 (8/16) 808 0.08 919 0.21 1282 0.55 1043 1.93

m3 (8/16) 1042 0.08 1392 0.24 1638 0.71 1184 2.92

m4 (8/16) 2766 0.19 3286 0.96 2846 2.10 2271 6.93

max1024 (10/6) 2534 0.34 2511 1.97 2973 8.74 2642 30.72

max128 (7/24) 2373 0.08 2711 0.35 3219 0.91 2391 3.14

max512 (9/6) 1470 0.15 1607 0.64 1116 2.27 1227 8.09

mlp4 (8/8) 1113 0.15 1031 0.36 1292 1.13 997 4.12

mp2d (14/14) 355 0.09 435 0.61 508 4.47 455 16.49

p1 (8/18) 724 0.18 781 0.96 821 3.07 842 10.77

p3 (8/14) 587 0.22 524 0.52 559 1.64 548 5.90

p82 (5/14) 244 0.02 321 0.06 394 0.11 370 0.33

rd73 (7/3) 312 0.05 437 0.60 355 9.12 388 35.82

root (8/5) 416 0.05 594 0.14 393 0.50 385 1.91

spla (8/5) 2239 0.79 2570 7.88 3142 74.99 2886 273.75

sqr6 (6/12) 443 0.05 656 6.05 561 43.76 532 170.62

sym10 (10/1) 559 0.30 414 0.64 309 2.92 416 14.31

t1 (21/23) 905 0.83 951 3.52 1186 41.02 982 155.28

t2 (17/16) 501 0.06 589 0.65 686 6.37 618 22.95

t3 (12/8) 156 0.14 212 0.74 275 5.21 236 20.77

tial (14/8) 3430 5.33 3337 23.68 4062 159.84 3823 557.19

tms (8/16) 670 0.03 787 23.00 904 161.92 737 548.21

vtx1 (27/6) 430 0.09 445 1.89 501 32.57 585 107.74

x9dn (27/7) 530 0.22 528 2.23 595 30.62 548 116.64

Z5xp1 (7/10) 479 0.08 593 0.12 743 0.33 547 1.24

Z9sym (9/1) 464 0.17 288 0.33 267 1.15 371 6.07

26 A. Bernasconi et al.

Table 2.2 Comparison of area and synthesis time of P-circuits representing (x0, p)-decomposition

forms for different choices of the projection function p with intersection

(x0, p)-Decomposition with intersection

Constant VAR XOR AND

Benchmark (in/out) Area Time Area Time Area Time Area Time

add6 (12/7) 672 0.51 814 4.44 759 23.70 651 80.93

adr4 (8/5) 203 0.03 125 0.18 161 0.40 175 1.58

alu2 (10/8) 283 0.18 308 1.03 310 4.72 298 16.79

alu3 (10/8) 263 0.16 276 0.42 295 1.67 283 5.91

amd (14/24) 1012 0.12 1085 1.55 1202 10.88 1180 37.65

apla (10/1) 379 0.08 371 0.38 470 1.42 398 6.11

b9 (16/5) 327 0.20 360 0.81 393 5.17 364 19.74

b12 (15/9) 199 0.18 248 0.65 367 5.25 292 18.13

br1 (12/8) 347 0.02 381 0.18 435 0.87 418 3.47

br2 (12/8) 281 0.01 314 0.18 377 0.86 337 3.16

dc2 (8/7) 238 0.02 281 0.14 355 0.28 268 1.46

dist (8/7) 1036 0.09 1507 0.26 1373 0.69 1048 3.24

dk17 (10/11) 263 0.06 250 0.46 291 1.99 230 7.21

dk48 (15/17) 263 0.17 284 0.69 288 4.34 276 17.89

ex7 (16/5) 327 0.09 360 1.56 393 10.39 364 38.51

exp (8/18) 838 0.05 877 0.22 930 0.66 1035 3.01

f51m (8/8) 277 0.09 290 0.28 314 0.85 323 4.11

inc (7/9) 270 0.02 134 0.10 372 0.22 348 0.85

l8err (8/8) 355 0.03 337 0.18 450 0.68 354 2.48

life (9/1) 197 0.05 227 0.12 216 0.43 224 2.03

m181 (15/9) 199 0.08 252 0.68 341 6.65 288 29.20

m2 (8/16) 808 0.05 919 0.24 1282 0.48 1043 2.23

m3 (8/16) 1042 0.05 1392 0.26 1638 0.76 1184 3.53

m4 (8/16) 2163 0.14 2981 0.38 3683 1.22 2496 4.77

max1024 (10/6) 2980 0.25 3043 2.12 2977 10.13 2829 34.28

max128 (7/24) 2155 0.06 2259 0.23 2704 0.58 1975 1.97

max512 (9/6) 1346 0.12 1533 0.39 1351 1.45 1265 5.02

mlp4 (8/8) 908 0.08 917 0.30 1081 0.98 938 3.34

mp2d (14/14) 276 0.16 357 0.75 411 6.82 359 22.56

p1 (8/18) 711 0.20 777 1.18 847 3.74 818 13.66

p3 (8/14) 520 0.12 552 0.37 554 0.79 504 2.68

p82 (5/14) 229 0.02 313 0.06 372 0.10 343 0.31

rd73 (7/3) 332 0.02 577 0.69 496 8.78 464 33.63

root (8/5) 417 0.02 536 0.17 602 0.55 446 1.94

spla (8/5) 2428 0.73 2761 8.82 3249 84.11 3107 336.30

sqr6 (6/12) 333 1.59 429 4.49 437 40.35 370 124.48

sym10 (10/1) 568 0.27 529 0.96 551 3.90 554 16.81

t1 (21/23) 463 0.61 510 6.06 655 78.07 585 277.38

t2 (17/16) 358 0.05 406 0.88 469 9.80 416 22.33

t3 (12/8) 218 0.08 270 0.74 336 3.77 295 14.03

tial (14/8) 3368 3.29 3319 31.12 3952 215.08 3827 741.85

tms (8/16) 670 3.00 787 14.06 904 103.07 737 317.65

vtx1 (27/6) 390 0.14 499 3.03 486 50.57 524 171.45

x9dn (27/7) 412 0.19 401 4.26 457 57.18 418 217.77

Z5xp1 (7/10) 324 0.03 369 0.19 441 0.41 302 1.29

Z9sym (9/1) 379 0.17 391 0.64 395 1.68 393 9.28

2 Logic Synthesis by Signal-Driven Decomposition 27

Fig. 2.6 Percentage of P-circuits, over all the benchmarks, having smaller area than the P-circuits

based on Shannon decomposition

time of P-circuits based on the classical Shannon decomposition. When p is not

constant, synthesis is time consuming, since the algorithm must choose the best

combination of variables for p. In particular, 3 and 5% of the P-circuits benefit from

the (xi , x j)-decomposition without and with intersection, respectively; 2% of the

circuits benefit from the (xi , x j ⊕ xk)-decomposition both without and with inter-

section; and only 1% of the circuits benefit from the (xi , x j xk)-decomposition both

without and with intersection. Altogether, only 14% of the P-circuits achieve the

smallest area when implemented according to the classical Shannon decomposition.

The subset of results shown in Tables 2.1 and 2.2 reflects these percentages.

Fig. 2.7 Percentage of P-circuits, over all the benchmarks, having smaller synthesis time than the

P-circuits based on Shannon decomposition

28 A. Bernasconi et al.

2.6 Conclusion

In conclusion, we presented a new method to decompose Boolean functions via

complex cofactoring in the presence of signals with high switching activity. Exper-

imental results show that this decomposition yields circuits more compact than

those obtained with Shannon decomposition. This decomposition has the advantage

to minimize the dynamic power dissipation with respect to a known input signal

switching with high frequency. In future work, we plan to verify this property with a

transistor-level simulation of the circuits. Widely used data structures (i.e., OBDDs)

are based on Shannon decomposition. Thus a future development of this work could

be the definition of new data structures based on the proposed decomposition.

Acknowledgments Tiziano Villa gratefully acknowledges partial support from the COCONUT

EU project FP7-2007-IST-1-217069, and the CON4COORD EU Project FP7-ICT-2007.3.7.(c)

grant agreement nr. INFSO-ICT-223844.

References

1. Benini, L., Micheli, G.D.: Logic synthesis for low power. In: S. Hassoun, T. Sasao (eds.)

Logic Synthesis and Verification, pp. 197–223. Kluwer Academic Publishers Norwell, MA,

USA (2002)

2. Bernasconi, A., Ciriani, V., Cordone, R.: On projecting sums of products. In: 11th Euromicro

Conference on Digital Systems Design: Architectures, Methods and Tools. Parma, Italy (2008)

3. Bernasconi, A., Ciriani, V., Cordone, R.: The optimization of kEP-SOPs: Computational com-

plexity, approximability and experiments. ACM Transactions on Design Automation of Elec-

tronic Systems 13(2), 1–31 (2008)

4. Bernasconi, A., Ciriani, V., Trucco, G., Villa, T.: Logic Minimization and Testability of

2SPPP-Circuits. In: Euromicro Conference on Digital Systems Design (DSD). Patras, Greece

(2009)

5. Bernasconi, A., Ciriani, V., Trucco, G., Villa, T.: On decomposing Boolean functions via

extended cofactoring. In: Design Automation and Test in Europe. Nice, France (2009)

6. Bioch, J.C.: The complexity of modular decomposition of Boolean functions. Discrete Applied

Mathematics 149(1–3), 1–13 (2005)

7. Brayton, R., Hachtel, G., McMullen, C., Sangiovanni-Vincentelli, A.L.: Logic Minimization

Algorithms for VLSI Synthesis. Kluwer Academic Publishers Norwell, MA, USA (1984)

8. Brown, F.: Boolean Reasoning. Kluwer Academic Publishers, Boston (1990)

9. Bryant, R.: Graph based algorithm for Boolean function manipulation. IEEE Transactions on

Computers 35(9), 667–691 (1986)

10. Ciriani, V.: Synthesis of SPP three-level logic networks using affine spaces. IEEE Transactions

on CAD of Integrated Circuits and Systems 22(10), 1310–1323 (2003)

11. Cortadella, J.: Timing-driven logic bi-decomposition. IEEE Transactions on CAD of Inte-

grated Circuits and Systems 22(6), 675–685 (2003)

12. Kerntopf, P.: New generalizations of Shannon decomposition. In: International Workshop on

Applications of Reed-Muller Expansion in Circuit Design, pp. 109–118. Starkville, Missis-

sippi, USA (2001)

13. Lavagno, L., McGeer, P.C., Saldanha, A., Sangiovanni-Vincentelli, A.L.: Timed Shannon cir-

cuits: A power-efficient design style and synthesis tool. In: 32nd ACM/IEEE Conference on

Design automation, pp. 254–260. (1995)

2 Logic Synthesis by Signal-Driven Decomposition 29

14. McGeer, P.C., Brayton, R.K., Sangiovanni-Vincentelli, A.L., Sahni, S.: Performance enhance-

ment through the generalized bypass transform. In: ICCAD, pp. 184–187. Santa Clara, CA,

USA (1991)

15. Pedram, M.: Power estimation and optimization at the logic level. International Journal of

High Speed Electronics and Systems 5(2), 179–202 (1994)

16. Soviani, C., Tardieu, O., Edwards, S.A.: Optimizing sequential cycles through Shannon

decomposition and retiming. In: DATE ’06: Proceedings of the conference on Design,

Automation and Test in Europe, pp. 1085–1090. European Design and Automation Associ-

ation, 3001 Leuven, Belgium, Belgium (2006)

17. Yang, S.: Logic synthesis and optimization benchmarks user guide version 3.0. User Guide,

Microelectronics Center of North Carolina (1991)

Chapter 3

Sequential Logic Synthesis Using Symbolic
Bi-decomposition

Victor N. Kravets and Alan Mishchenko

Abstract In this chapter we use under-approximation of unreachable states of

a design to derive incomplete specification of combinational logic. The result-

ing incompletely specified functions are decomposed to enhance the quality of

technology-dependent synthesis. The decomposition choices are computed implic-

itly using novel formulation of symbolic bi-decomposition that is applied recur-

sively to decompose logic in terms of simple primitives. The ability of binary

decision diagrams to represent compactly certain exponentially large combinatorial

sets helps us to implicitly enumerate and explore variety of decomposition choices

improving quality of synthesized circuits. Benefits of the symbolic technique are

demonstrated in sequential synthesis of publicly available benchmarks as well as on

the realistic industrial designs.

3.1 Introduction and Motivation

Due to recent advances in verification technology [2] circuit synthesis of semi-

conductor designs no longer has to be limited to logic optimization of combi-

national blocks. Nowadays logic transformations may involve memory elements

which change design’s state encodings or its reachable state space and still be veri-

fied against its original description. In this chapter we focus on a more conservative

synthesis approach that changes sequential behavior of a design only in unreachable

states, leaving its intended “reachable” behavior unchanged. Unreachable states are

used to extract incomplete specification of combinational blocks and are applied as

don’t cares during functional decomposition to improve circuit quality.

To implement combinational logic of a design we rely on a very simple, yet com-

plete, form of functional decomposition commonly referred to as bi-decomposition.

V.N. Kravets (B)

IBM TJ Watson Research Center, Yorktown, NY

e-mail: kravets@us.ibm.com

Based on Kravets, V.N.; Mishchenko, A.; “Sequential logic synthesis using symbolic bi-

decomposition,” Design, Automation & Test in Europe Conference & Exhibition, 2009. DATE

’09, pp.1458–1463, 20–24 April 2009 c© [2009] IEEE.

S.P. Khatri, K. Gulati (eds.), Advanced Techniques in Logic Synthesis,

Optimizations and Applications, DOI 10.1007/978-1-4419-7518-8_3,
C© Springer Science+Business Media, LLC 2011

31

32 V.N. Kravets and A. Mishchenko

In general, for a given completely specified Boolean function its bi-decomposition

has form

f (x) = h(g1(x1), g2(x2))

where h is an arbitrary 2-input Boolean function. This decomposition is not unique

and its quality varies depending on selected subsets x1 and x2 that form possibly

overlapping (i.e., non-disjoint) partition of x. The problem of finding good bi-

decomposition has been studied in [1, 10, 18, 19, 21]. The main contribution of

the material in this chapter is symbolic formulation of bi-decomposition for incom-

pletely specified functions. The bi-decomposition is used as main computational

step in the prototype sequential synthesis tool and is applied recursively to imple-

ment logic of combinational blocks whose incomplete specification is extracted

from unreachable states of a design. Our symbolic formulation of bi-decomposition

finds all feasible solutions and picks the best ones, without explicit enumeration.

Computation of variable partitions in our symbolic formulation of bi-decompo-

sition favors implicit enumeration of decomposition subsets. They are represented

compactly with a binary decision diagram (BDD) [4] and are selected based on

optimization objective. Unlike previous approaches (e.g., [1, 23]) that rely on BDDs,

the decomposition is not checked explicitly for a variable partition and is solved

implicitly for all feasible partitions simultaneously utilizing fundamental property

of BDDs to share partial computations across subproblems. Thus, no costly enu-

meration that requires separate and independent decomposability checks is needed.

The technique was also used to tune greedy bi-decomposition when handling larger

functions.

To overcome limitations of explicit techniques authors in [14] proposed solu-

tion that uses a satisfiability solver [11]. Their approach is based on proving that

a problem instance is unsatisfied. The unsatisfiable core is then used to greedily

select partition of variables that induces bi-decomposition. Authors demonstrate

the approach to be efficient in runtime, when determining existence of non-trivial

decomposition. The experimental results on a selected benchmark set, however, are

primarily focused on the existence of decomposition and do not offer a qualitative

synthesis data.

The problem of using unreachable states of a design to improve synthesis and

verification quality has been studied before in various contexts. In general, these

algorithms either avoid explicit computation of unreachable states or first compute

them in pre-optimization stage. Approaches that do not explicitly compute unreach-

able states are mostly limited to incremental structural changes of a circuit and

rely on ATPG environment or induction [5, 8, 12] to justify a change. In contrast,

approaches that pre-compute subsets of unreachable states treat them as external

don’t cares [20] for re-synthesis of combinational logic blocks [6, 15]. In this chapter

we adopt the later approach as it offers more flexibility in logic re-implementation

through functional decomposition.

This chapter has the following structure. After brief introduction and moti-

vation preliminary constructs are given in Section 3.2. Section 3.3 describes

3 Sequential Logic Synthesis Using Symbolic Bi-decomposition 33

bi-decomposition existence requirements. They are used in Section 3.4 to formu-

late implicit computation of decomposition. Implementation details are described in

Section 3.5. Experimental results are given in Section 3.6. Section 3.7 gives con-

cluding remarks and possible directions for future work.

3.2 Preliminary Constructs

Basic constructs used by synthesis algorithms of the chapter are introduced in this

section.

3.2.1 “Less-Than-or-Equal” Relation

Computational forms constructed in this chapter rely on the partial order relation

between Boolean functions. Given functions f (x) and g(x), f (x) ≤ g(x) indicates

that f (x) precedes g(x) in the order. This “less-than-or-equal” relation (≤) between

the two functions can be expressed by one of the following three equivalent forms:

[f (x)⇒ g(x)] ≡ [f (x) ≤ g(x)] ≡ [f (x)+ g(x) = 1]

The relation imposes consistency constraint on constructed computational forms. It

allows us to represent incompletely specified Boolean functions in terms of intervals

[3], defined as

[l(x), u(x)] = { f (x)|l(x) ≤ f (x) ≤ u(x)}

Here interval represents a set of completely specified functions using its two distin-

guished members l(x) and u(x), known as upper and lower bounds, respectively. It

is non-empty (or consistent) if and only if l(x) ≤ u(x) is satisfied.

Example 3.1 Consider interval [x y, x + y] which represents an incompletely spec-

ified function. It is composed of four completely specified functions: x y, y, x ⊕ y,

and x + y. Each of them has a don’t care set represented by function x . �

Application of existential quantification ∃ and universal quantification ∀ to lower

and upper bounds of the interval enables convenient selection of its member func-

tions that are vacuous, i.e., independent in certain variables.

Example 3.2 Consider abstraction of x from the interval in Example 3.1:

[∃x(x y),∀x(x + y)]

The abstraction yields non-empty interval that is composed of a unique function that

is vacuous in x : [y, y]. Abstraction of y, however, results in empty interval since the

relation between its lower and upper bounds is not satisfied: [x, x] is empty. �

We will use notation ∇x[l(x), u(x)] to represent abstraction [∃xl(x),∀xu(x)].

34 V.N. Kravets and A. Mishchenko

3.2.2 Parameterized Abstraction

To determine subsets of variables whose abstraction preserves consistency of a

symbolic statement (or a formula) we use parameterized abstraction construct. It

parameterizes computational form with a set of auxiliary decision variables c that

are used to guide variable abstraction decisions. An assignment to c effects consis-

tency of a computational form and thereby determines feasibility of abstracting a

corresponding variable subset.

We use the “if-then-else” operator ITE(c, x, y) to encode effect of quantifying

variable subsets from a formula. Defined as cx + cy, the operator selects between

variables x and y depending on value of c. As stated, it provides a mechanism to

parameterize signal dependencies in a Boolean function. It can be also generalized

to the selection between functions. In particular, ITE(c, f (x), ∃x f (x)) encodes a

decision of existential quantification of x from f (x), similarly for the universal

quantification.

Example 3.3 We can parameterize abstraction of variable x from interval [x y, x+y]
using ITE operator and auxiliary variable cx as

[ITE(cx , ∃x(x y), x y), ITE(cx ,∀x(x + y), x + y)]

or equivalently [cx y + cx (x y), cx y + cx (x + y)]. Subsequent parameterization of y

transforms lower bound Lx = ITE(cx , ∃x(x y), x y) into Lxy = ITE(cy, ∃yLx , Lx).

The effect of decisions on c variables then has a form depicted in the tree below:

L xy

Lx ∃yLx

xy ∃x(xy) = y ∃y(xy) = x ∃xy(xy) = 1

cy cy

cx cx cx
cx

Parameterization of universal quantification has analogous application to an upper

bound of the interval, producing Uxy . �

We rely on consistency of the “less-than-or-equal” relation to find decomposition

of a Boolean function. In the example below it is illustrated determining feasible

abstraction of the interval variable subsets, and in finding its member functions with

smallest support (i.e., with fewest variables).

Example 3.4 For each assignment to c variables the consistency of relation ≤
between interval bounds in Example 3.3 determines existence of a function that

is independent of the corresponding variables. The tree expansion over decision

variables shows that there are only two feasible abstractions, marked with �:

Of the two, there is only one non-trivial abstraction ∇x[x y, x + y] and it yields

single member interval [y, y]. �

3 Sequential Logic Synthesis Using Symbolic Bi-decomposition 35

1 1 0 0

cy cy

cx
cx cx

cx

[xy, x+y] ∇x[xy, x+y]

= [y,y]

∇y[xy, x+y]

= [x, x]

∇xy[xy, x+y]

= [1, 0]

In a typical computational form, consistent assignment to the decision variables

must hold universally, independent of non-decision variables. We can therefore

compute characteristic function of consistent assignments implicitly, universally

abstracting non-decision variables.

Example 3.5 For the parameterized bounds Lxy and Uxy from Example 3.3 the char-

acteristic function of consistent assignments in [Lxy, Uxy] is computed implicitly as

∀x, y[Lxy, Uxy] ≡ ∀x, y[Lxy +Uxy = 1] ≡ cx cy + cx cy ≡ cy

The computed function states that abstraction of variable y yields an empty interval.

Therefore, the interval contains no function that is independent of y. �

3.3 Bi-decomposition of Incompletely Specified Functions

This section gives formal statement of bi-decomposition over 2-input decomposition

primitives, namely OR and XOR.

3.3.1 OR Decomposition

For a completely specified function f (x), the decomposition of this type is described

in terms of equation below:

f (x) = g1(x1)+ g2(x2) (3.1)

When function is incompletely specified with interval [l(x), u(x)] we need to make

sure that OR composition g1 + g2 is a member function of the interval.

Let x1 and x2 be signal subsets in which decomposition functions g1 and g2 are,

respectively, vacuous, i.e., are functionally independent. (The underline in xi indi-

cates that the computed gi is independent in these variables.) Vacuous in x1 function

g1 must not exceed largest member u(x) in all its minterm points, independent of

x1, i.e., relation g1(x1) ≤ ∀x1u(x) must be satisfied. Otherwise g1 is either not

contained in the interval or not independent of x1. Similarly, g2(x2) ≤ ∀x2u(x)

36 V.N. Kravets and A. Mishchenko

must hold. Thus, ∀x1u(x) and ∀x2u(x) give upper bounds on g1(x1) and g2(x2).

To ensure that the selection of g1 and g2 is “large enough” the following must

hold:

l(u) ≤ ∀x1u(x)+ x2u(x) (3.2)

The OR composition does not exceed u universally due to the “reducing” effect of

∀ on u. Thus, we can determine existence of the bi-decomposition limiting check

to relation in (3.2). This check provides necessary and sufficient condition for the

existence of OR decomposition and is a re-statement of the result from [17].

AND Decomposition. As indicated in [17], AND decomposition of f can be

obtained from OR decomposition utilizing dual property of the two gates. For an

incompletely specified function [l, u]we can find complemented g1 and g2 by estab-

lishing OR decomposability of the interval complement, derived as [l, u] = [u, l].

3.3.2 XOR Decomposition

We first describe XOR decomposability condition for a completely specified function

f (x). To derive an existence condition for the XOR decomposition

f (x) = g1(x1)⊕ g2(x2) (3.3)

requires partitioning of x1 and x2 into finer subsets. Let x1 and x2 be subsets of vari-

ables in which g1 and g2 are, respectively, vacuous, and let x3 be a set of variables

on which both decomposition functions depend. We can then state necessary and

sufficient condition for the existence of XOR decomposition as follows:

Proposition 3.1 XOR bi-decomposition

f (x) = g1(x2, x3)⊕ g2(x1, x3) (3.4)

exists if and only if

f (x1, x2, x3) �= f (y
1
, x2, x3) (3.5)

⇓
∀y

2
[f (x1, y

2
, x3) �= f (y

1
, y

2
, x3) (3.6)

We derived conditions in the above proposition when analyzing library require-

ments for an advanced technology [13]. In [14] authors recently and independently

stated analogous proposition in terms of the unsatisfiability problem. We therefore

show correctness of the above proposition giving only an information-theoretical

argument: For (3.4) to hold, it must be that all onset/offset minterms in f that cannot

be distinguished by g1 (3.5) must be distinguished by g2 (3.6).

3 Sequential Logic Synthesis Using Symbolic Bi-decomposition 37

For an incompletely specified function [l(x), u(x)] the consistency constrain

(3.5)⇒ (3.6) of Proposition 3.1 changes to

[l(x1, x2, x3) �= l(y
1
, x2, x3)] ∧ [h(x1, x2, x3) �= h(y

1
, x2, x3)]

⇓
∀y

2
[[l(x1, y

2
, x3) �= h(y

1
, y

2
, x3)] ∨ [h(x1, y

2
, x3) �= l(y

1
, y

2
, x3)]]

The above statement extends containment relation (3.5)⇒ (3.6) by reducing lower

bound (3.5) and increasing upper bound (3.6) as much as possible. The relation pro-

vides the condition for XOR bi-decomposition of incompletely specified functions,

previously unsolved problem [14].

3.4 Parameterized Decomposition

Section 3.3 decomposition checks assume that the x1 and x2 subsets are pre-

determined. Finding such feasible subsets, however, may not be straightforward

and depending on the objectives could potentially require an exponential search if

performed explicitly. Our solution to the problem is to perform the search implicitly,

formulating the problem symbolically and solving it by leveraging the capability of

binary decision diagrams to compactly represent certain combinatorial subsets.

3.4.1 OR Parameterization

We use (3.2) to find feasible OR decompositions implicitly. It is used to construct a

computational form that parameterizes the ∀ operation applied to variables x:

U ← u;

for each x ∈ x do

U ← I T E(cx , U,∀xU);

end for

Such iterative parameterization gives function U (c, x) that encodes the effect of

abstracting all variable subsets from u, where variable x is abstracted iff cx = 0.

The parameterized function U (c, x) can be used in (3.2) to encode possible sup-

ports to g1 and g2 in terms of the decision variables c1 and c2 :

l(x) ≤ U1(x, c1)+U2(x, c2) (3.7)

For any feasible assignment to c1 and c2, the above relation must hold universally,

irrespective of values on x. Thus, computational form

Bi(c1, c2) ≡ ∀x[l(x)+U1(x, c1)+U2(x, c2)] (3.8)

38 V.N. Kravets and A. Mishchenko

yields a characteristic function of all feasible supports for g1 and g2: it evaluates to

truth iff assignments to c1 and c2 induce feasible supports for g1 and g2.

We illustrate potentially scalable nature of BDDs to handle computation in (3.8)

decomposing multiplexer function for its various support sizes:

Max width Bi computation Best partition

Control Data BDD size Time(s) (|x1|, |x2|) No. of Choices

2 4 23 0.00 (4, 4) 6

3 8 43 0.01 (7, 7) 70

4 16 79 0.09 (12, 12) 12870

5 32 147 1.35 (21, 21) 6E8.0

6 64 279 20.56 (38, 38) 1.8E18

The above table gives results of the computation in terms of multiplexer widths,

BDD size and time required to compute Bi , and the best support sizes of g1 and

g2. As the table suggests, the amount of resources required in computation grows

moderately for smaller problem instances and is tolerable even for a larger function.

We point out that the exhaustive computational form (3.8) could be relaxed to

produce solution subsets to (3.7), instead of producing a complete solution. For

example, in place of (3.8) a specialized satisfiability procedure could be used to

produce solutions with additional optimization constraints. Specialized BDD-based

abstraction techniques that monitor resource consumption could be also deployed

to produce solution subsets. Another possibility is to rely on a greedy assignment

selection to c1 and c2 targeting disjoint subsets x1 and x2. More detailed discussion

on selecting best x1 and x2 is given later, in Section 3.5.

3.4.2 XOR Parameterization

To simplify presentation we compute characteristic function of all feasible sup-

port partitions for a completely specified function. As before, encoding of pos-

sible supports for g1 and g2 is performed using two sets of auxiliary variables

c1 and c2. Using c1, (3.5) is transformed into f (x) �= F1(x, y, c1), where F is

derived from f (x) replacing each of its variables xi with ITE(c1i , xi , yi). Similarly,

part f (x1, y
2
, x3) from (3.6) is parameterized with c2 to construct F ′2(x, y, c2). It

encodes selection of vacuous variables for g2. The last component f (y
1
, y

2
, x3)

is transformed into F ′′2 (x, y, c1, c2), replacing each variable in f (x) with ITE(c1i ·
c2i , xi , yi). Universally abstracting x and y variables gives representation of all fea-

sible supports for g1 and g2:

Bi(c1, c2) ≡ ∀x, y[(f �= F1)⇒ (F ′2 �= F ′′2)] (3.9)

We compare implicit computation of decomposition choices to a greedy algo-

rithm for the XOR decomposition, used by authors in [17, 22]. Starting from a seed

partition, the algorithm greedily extends support subsets calling XOR decomposabil-

3 Sequential Logic Synthesis Using Symbolic Bi-decomposition 39

ity check in its inner loop. Although efficient in general, the check has potentially

formidable runtime. The profile of its behavior on a 16-bit adder is given in the table

below; it is compared against our implicit computation:

Output Time(s)

Sum bit No. of Inputs Best part. Implicit [17] Check

s2 7 (2,5) 0.01 0.00

s4 11 (2,9) 0.06 0.13

s6 15 (2,13) 0.12 4.44

s8 19 (2,17) 0.13 71.05

.

.

.
.
.
.

s16 33 (2,31) 0.42 Time out

For a subset of sum-bit functions the table lists runtime for both techniques.

(The best part. column gives data generated by our implicit enumeration of feasible

partitions.) Although not typical, it is interesting that where a rather efficient greedy

check times out after an hour, an implicit exhaustive computation takes only 0.42 s.

In general, we can use best partition produced by the exhaustive implicit compu-

tation to evaluate and tune greedy algorithm or to improve some other approximate

technique.

3.5 Implementation Details of Sequential Synthesis

This section describes a sequential synthesis flow that first extracts incompletely

specified logic accounting for unreachable states in a design and then uses bi-

decomposition to synthesize technology-independent circuit.

3.5.1 Extraction of Incompletely Specified Logic

Unreachable states of a design form don’t cares for the combinational logic. Due

to the complexity of computing unreachable states even in designs of modest size,

incompletely specified combinational logic is extracted with respect to an approx-

imation of unreachable states. Unlike other partitioning approaches that try to pro-

duce a good approximation of unreachable states in reasonable time [10, 16], our

objective is to compute a good approximation with respect to support of individual

functions. A similar approach to approximate unreachable states using induction

was proposed in [7].

We perform state-space exploration with forward reachability analysis for over-

lapping subsets of registers. These subsets are selected using structural dependence

of next-state and primary outputs on the design latches. The selection tries to cre-

ate partitions maximizing accuracy of reachability analysis for present-state signals

supp_ps(f) output function f . In particular, the partitioning tries to meet the fol-

lowing goals:

40 V.N. Kravets and A. Mishchenko

• For each function f , present-state inputs supp_ps(f) are represented in at least

one partition.

• Each partition selects additional logic to maximize accuracy of reachability anal-

ysis.

After completing reachability analysis for a partition, an incomplete specifica-

tion of signals that depend on the partition latches becomes available in the form

of a interval notation. For each signal, its interval pre-processed with the ∇ oper-

ation eliminates vacuous variables, selecting a dependence on the least number of

variables. The interval is then used for performing bi-decomposition. Figure 3.1

exemplifies OR bi-decomposition applied to function f = ab+ac+bc of its output

signal. The bi-decomposition of [f · abc, f + abc] finds OR decomposition of f in

g1 = ab + bc simplifying the circuit.

f g
1
(a,b) +g

2
(b,c)

an unreachable state

state used as don’t care value

c cb ba a

Fig. 3.1 Bi-decomposition with unreachable states. State abc is used as a don’t care condition to

find OR decomposition that simplifies circuit

3.5.2 Exploring Decomposition Choices

The characteristic function Bi gives all feasible supports for decomposition func-

tions. Since the provided variety of choices could be very large, we restrict them

to a subset of desired solutions. The restriction targets minimization and balanced

selection of supports in decomposition functions. It is achieved symbolically, as

described below.

Let wi (c) be characteristic function of assignments to c that have weight i (i.e.,

have exactly i decision variables set to 1). For a given n = |c| it represents com-

binatorial subsets
(

n
i

)

. This function has compact representation in terms of BDDs.

Given a desired support size k1 = |x1| of g1, and of k2 = |x2| of g2, existence of the

decomposition is determined constraining Bi with its corresponding solution space:

3 Sequential Logic Synthesis Using Symbolic Bi-decomposition 41

Bi(c1, c2) · wk1
(c1) · wk2

(c2)

If the resulting function is not empty, then the desired decomposition exists. To

target balanced decomposition of a function we seek feasible k1 and k2 minimizing

max(k1, k2). Such simultaneous minimization of k1 and k2 balances supports x1 and

x2, favoring their disjoint selection. (This is in contrast to [14], where different cost

measures are used for each of the objectives.)

To avoid “trial-and-error” search for feasible support sizes we select desired k1

and k2 from a computed set of feasible pairs for g1 and g2. Suppose function κi (e)

encodes integer ki in terms of the e variables. Then function K (c, e) =
∑n

i=0 wi (c)·
κi (e) relates a decision variables assignment to integer encoding of the support size

it induces. This function is used within the computational form

Biκ(e1, e2) ≡ ∃c1c2[Bi(c1, c2) · K (c1, e1) · K (c2, e2)]

to generate all feasible size pairs (k1, k2).

The Biκ function should be post-processed to purge pairs that are dominated by

other, better solutions. For example, pair (3, 5) is dominated by pair (3, 4) since it

produces smaller distribution of supports between g1 and g2. Let gte(e, e′) describe

“greater-than-or-equal” relation between a pair of integers encoded with e and e′;
similarly, let equ describe the equality relation. We then define the dominance rela-

tion between bi-tuples ε ≡ (e1, e2) and ε′ ≡ (e′1, e′2) as

dom(ε, ε′) = gte(e1, e′1) · gte(e2, e′2) · equ(e1, e′1) · equ(e2, e′2)

Using this relation subtraction of the dominated solutions from Biκ is performed as

∀ε′[Biκ(ε′) ≤ Biκ(ε) · dom(ε, ε′)]

It states that if an assignment to ε′ is in Biκ (left-hand side of the relation), then its

dominated assignments to ε should be subtracted from Biκ (right-hand side of the

assignment).

To complete decomposition of a function we need to find functions g1 and g2. For

the OR decomposition, possible functions g1 and g2 can be deduced directly from

the corresponding existence condition (3.2), universally quantifying out variables

in which g1 and g2 are vacuous. To construct XOR decomposition functions we use

algorithm from [17].

3.5.3 Synthesis Algorithm

Our logic optimization algorithm selectively re-implements functions of circuit sig-

nals relying on bi-decomposition of extracted incompletely specified logic. The

pseudocode code in Algorithm 1 captures general flow of the optimization.

42 V.N. Kravets and A. Mishchenko

Algorithm 1 Logic optimization loop

create latch partitions of a design;

selectively collapse logic;

while (more logic to decompose) do

select a signal and its function f (x);

retrieve unreachable states u(x);

abstract vars from interval [f · u, f + u];
apply bi-decomposition to interval;

end while

The algorithm first creates overlapping partitions of a design. These partitions

are formed according to Section 3.5.2 and are typically limited to 100 latches.

Additional connectivity cost measures are used to control size of a partition. For

each partition computation of unreachable states is delayed until being requested by

a function that depends on its present-state signals. BDDs for computed reachable

states are then stored in a separate node space for each partition. When retrieving

unreachable states for a given support, their conjunctive approximation is brought

together to a common node space.

To re-decompose logic of a design the algorithm first creates functional repre-

sentation for selected signals in terms of their cone inputs or in terms of other

intermediate signals. The decision on whether to select a signal is driven by an

assessed impact of bi-decomposition on circuit quality: if it has potential to improve

variable partition, logic sharing, or timing over existing circuit structure, then signal

is added to a list of re-decomposition candidates.

The logic of candidate signals is processed in topological order until it is fully

implemented with simple primitives. This processing constitutes main loop of the

algorithm. After a signal and its function f (x) in the loop are selected, a set of

unreachable states u(x) are retrieved. This set is derived from reachability informa-

tion of partitions that f (x) depends on.

Before applying bi-decomposition to the incompletely specified function

[f (x) · u(x), f (x)+ u(x)]

the algorithm tries to abstract some of the interval variables while keeping it consis-

tent; this eliminates redundant inputs. The bi-decomposition is then applied target-

ing potential logic sharing and balanced partition of x, as described in Section 3.5.3.

From a generated set of choices, partition that best improves timing and logic shar-

ing is selected. Figure 3.2 illustrates bi-decomposition that benefits from logic shar-

ing. The transformation re-uses logic of g1, which was present in the network but

was not in the fanin of f .

3.6 Experimental Evaluation

From a suite of publicly available benchmarks we selected a subset of sequential

circuits and assessed effect of unreachable states on bi-decomposition. Three types

3 Sequential Logic Synthesis Using Symbolic Bi-decomposition 43

g2

g1
db

a

f

a
b c

f

e
d

Fig. 3.2 Bi-decomposition which benefits from re-using existing logic: node g1 is shared in the

f = g1 + g2 decomposition

of bi-decomposition were applied to functions of their output and next-state logic:

OR, AND, and XOR. They are evaluated in terms of their ability to reduce maximum

support of functions g1 and g2. Experiments with and without reachable state-space

analysis were performed.

The experimental results are given in Table 3.1. The table first lists circuit name,

along with its corresponding number of inputs/outputs and latches. Each circuit was

structurally pre-processed to remove cloned, dead, and constant latches. The #dec.

column gives number of functions for which non-trivial decomposition was identi-

fied. The average ratio between maximum support sizes of g1 and g2 and support

size of the function being decomposed is given in avg. reduct. column. Note that the

reduction of less than 0.5 (as in s713 and s838) indicates that both g1 and g2 tend to

be vacuous in some of the variables.

Table 3.1 Application of bi-decomposition to functions of next-state and output logic (without

and with state analysis)

Name
Original circuit No states With states

Input/output Latches #Dec. Avg. reduct. log2 states #Dec. Avg. reduct

s344 10/11 15 18 0.781 12 18 0.634

s526 3/6 21 21 0.775 14 21 0.556

s713 36/23 19 40 0.652 11 40 0.453

s838 36/2 32 33 0.540 5 33 0.088

s953 17/23 29 29 0.607 13 29 0.565

s1269 18/10 37 39 0.672 31 39 0.671

s5378 36/49 163 145 0.609 125 145 0.603

s9234 36/39 145 97 0.754 141 97 0.774

Average reduction: 0.673 0.54

The results are collected for two experiments: with and without state-space infor-

mation. The log2 of computed reachable states is also listed in the table. Computed

average reduction ratios suggest that decomposability of a function improves as the

number of unreachable states gets larger. The unreachable states did not contribute

44 V.N. Kravets and A. Mishchenko

much to s5378 largely because its logic is highly decomposable even in the absence

of state-space information. The runtime to compute reachable states for each of the

circuits did not exceed 1 min, requiring at most few seconds for circuits with 32 or

less latches. Computation of bi-decomposition was limited to 1 min per circuit.

We evaluate our Section 3.5.3 Algorithm 1 synthesizing technology-independent

netlists for a set of macro-blocks of a high-performance industrial design. Results

of the netlists optimized with bi-decomposition are given in Table 3.2. First four

columns list general parameters of each circuit, including number of gates it has

in its and/inv expansion. The circuits were first pre-processed using our in-house

tool, by optimizing it against publicly available mcnc.genlib library.

Table 3.2 Results of applying bi-decomposition in synthesis of industrial circuits

Name
Original circuit Pre-processed Algor. 1

Input/Output Latches AND Area Delay Area Delay

seq4 108/202 253 1845 3638 44.8 2921 41.9

seq5 66/12 93 925 1951 47.2 1807 41.6

seq6 183/74 142 811 1578 34.9 1487 36.0

seq7 173/116 423 3173 6435 52.4 5348 48.3

seq8 140/23 201 2922 6183 50.1 5427 48.8

seq9 212/124 353 3896 8250 56.0 6938 45.2

Average reduction: 0.88 0.94

An implementation of the algorithm was then applied to improve each of the

circuits. Columns Pre-processed and Algor. 1 compare area (which corresponds

to the number of literals) and delay (estimated with a load-dependent model) of

mapped netlists before and after running our algorithm. The additional area and

timing savings are due to the algorithm, with the average area and delay reductions

of 0.88 and 0.94, respectively. We attribute these gains to the algorithm’s ability to

implicitly explore reach arsenal of decomposition choices during bi-decomposition.

Optimization of each circuit was completed within 4 min of runtime.

3.7 Conclusions and Future Work

Extraction of incompletely specified logic using under-approximation of unreach-

able states in sequential designs offers valuable opportunity for reducing the cir-

cuit complexity. We developed a novel formulation of symbolic bi-decomposition

and showed that the extracted logic has better implementation, with substantial

area and delay improvements. The introduced symbolic bi-decomposition computes

decomposition choices implicitly and enables their efficient subsetting using BDDs.

Selecting best decomposition patterns during synthesis, we improved circuit quality

of publicly available and realistic industrial design. We are currently working on

ways to further maximize logic sharing through bi-decomposition and to apply it in

a re-synthesis loop of well-optimized designs.

3 Sequential Logic Synthesis Using Symbolic Bi-decomposition 45

References

1. Ashenhurst, R.L.: The decomposition of switching functions. Annals of Computation Labora-

tory, Harvard University 29, 74–116 (1959)

2. Baumgartner, J., Mony, H., Paruthi, V., Kanzelman, R., Janssen, G.: Scalable sequential equiv-

alence checking across arbitrary design transformations. In: Proceedings of ICCD, San Jose,

CA, pp. 259–266. (2006)

3. Brown, F.M.: Boolean Reasoning. Kluwer, Boston, MA (1990)

4. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Transactions

on Computers C-35(6), 677–691 (1986)

5. Case, M.L., Kravets, V.N., Mishchenko, A., Brayton, R.K.: Merging nodes under sequential

observability. In: Proceedings of DAC, Anaheim, CA, pp. 540–545. (2008)

6. Case, M.L., Mishchenko, A., Brayton, R.K.: Inductive finding a reachable state-space over-

approximation. In: IWLS, Vail, CO, pp. 172–179. (2006)

7. Case, M.L., Mishchenko, A., Brayton, R.K.: Cut-based inductive invariant computation. In:

IWLS, Lake Tahoe, CA, pp. 172–179. (2008)

8. Cheng, K.T., Entrena, L.A.: Sequential logic optimization by redundancy addition and

removal. In: Proceedings of ICCAD, San Jose, CA, pp. 310–315. (1993)

9. Cho, J., Hachtel, G., Macii, E., Poncino, M., Somenzi, F.: Automatic state decomposition

for approximate FSM traversal based on circuit analysis. IEEE Transactions on CAD 15(12),

1451–1464 (1996)

10. Cortadella, J.: Timing-driven logic bi-decomposition. IEEE Transactions on CAD 22(6),

675–685 (2003)

11. Een, N., Sorensson, N.: An extensible SAT-solver. In: Proceedings of SAT, Santa Margherita

Ligure, Italy, pp. 502–518. (2003)

12. van Eijk, C.: Sequential equivalence checking based on structural similarities. IEEE Transac-

tions on CAD 19(7), 814–819 (2000)

13. Kravets, V.N. et al.: Automated synthesis of limited-switch dynamic logic (LSDL) circuits.

Prior Art Database (ip.com) (March 2008)

14. Lee, R.-R., Jiang, J.-H., Hung, W.-L.: Bi-decomposing large Boolean functions via interpola-

tion and satisfiability solving. In: Proceedings of DAC, Anaheim, CA, pp. 636–641. (2008)

15. Lin, B., Touati, H., Newton, R.: Don’t care minimization of multi-level sequential networks.

In: Proceedings of ICCAD, San Jose, CA, pp. 414–417. (1990)

16. Mishchenko, A., Case, M.L., Brayton, R.K., Jang, S.: Scalable and scalable-verifiable sequen-

tial synthesis. In: Proceedings of ICCAD, San Jose, CA, pp. 234–241. (2008)

17. Mishchenko, A., Steinbach, B., Perkowski, M.: An algorithm for bi-decomposition of logic

functions. In: Proceedings of DAC, Las Vegas, NV, pp. 103–108. (2001)

18. Roth, J.P., Karp, R.: Minimization over Boolean graphs. IBM Journal of Research and Devel-

opment 6(2), 227–238 (1962)

19. Sasao, T., Butler, J.: On bi-decomposition of logic functions. In: IWLS, Tahoe City, CA,

(1997)

20. Savoj, H., Brayton, R.K.: The use of observability and external don’t cares for the simplifica-

tion of multi-level networks. In: Proceedings of DAC, Orlando, FL, pp. 297–301. (1990)

21. Stanion, T., Sechen, C.: Quasi-algebraic decomposition of switching functions. In: Proceed-

ings of the 16th Conference on Advance Research in VLSI, Ann Arbor, MI, pp. 358–367.

(1998)

22. Steinbach, B., Wereszczynski, A.: Synthesis of multi-level circuits using EXOR-gates. In:

Proceedings of IFIP WG 10.5 – Workshop on Application of the Reed-Muller Expansion in

Circuit Design, Chiba City, Japan, pp. 161–168. (1995)

23. Yang, C., Cieselski, M., Singhal, V.: BDS: A BDD-based logic optimization system. In: Pro-

ceedings of DAC, Los Angeles, CA, pp. 92–97. (2000)

Chapter 4

Boolean Factoring and Decomposition
of Logic Networks

Robert Brayton, Alan Mishchenko, and Satrajit Chatterjee

Abstract This chapter presents new methods for restructuring logic networks based

on fast Boolean techniques. The bases for these are (1) a cut-based view of a logic

network, (2) exploiting the uniqueness and speed of disjoint-support decomposi-

tions, (3) a new heuristic for speeding up computations, (4) extension for more

general decompositions, and (5) limiting local transformations to functions with

16 or less inputs, so that fast truth table manipulations can be used. The proposed

Boolean methods lessen the structural bias of algebraic methods, while still allowing

for high speed and multiple iterations. Experimental results on area reduction of

K-LUT networks, compared to heavily optimized versions of the same networks,

show an average additional reduction of 5.4% in LUT count while preserving delay.

4.1 Introduction

The traditional way of decomposing and factoring logic networks uses algebraic

methods. These represent the logic of each node as a sum of products (SOP) and

apply algebraic methods to find factors or divisors. Kerneling or two-cube division

is used to derive candidate divisors. These methods can be extremely fast if imple-

mented properly, but they are biased because they rely on an SOP representation of

the logic functions, from which only algebraic divisors are extracted. A long-time

goal has been to develop similarly fast methods for finding and using good Boolean

divisors, independent of any SOP form.

We present a new type of Boolean method, which uses as its underlying compu-

tation, a fast method for disjoint-support decomposition (DSD). This approach was

influenced by the efficient BDD-based computation of complete maximum DSDs

proposed in [6], but it has been made faster by using truth tables and sacrificing

R. Brayton (B)

Department of EECS, University of California, Berkeley, CA, USA

e-mail: brayton@eecs.berkeley.edu

This work is based on “Boolean factoring and decomposition of logic networks”, Robert Brayton,

Alan Mishchenko, and Satrajit Chatterjee, in Proceedings of the 2008 IEEE/ACM international

Conference on Computer-Aided Design, (2008) ACM, 2008.

S.P. Khatri, K. Gulati (eds.), Advanced Techniques in Logic Synthesis,

Optimizations and Applications, DOI 10.1007/978-1-4419-7518-8_4,
C© Springer Science+Business Media, LLC 2011

47

48 R. Brayton et al.

completeness for speed. However, this heuristic, in practice, tends to find the maxi-

mum DSDs. This fast computation is extended for finding Boolean divisors for the

case of non-disjoint-support decomposition.

Methods based on these ideas can be seen as a type of Boolean rewriting of

logic networks, analogous to rewriting of AIG networks [27]. AIG rewriting has

been successful, partly because it can be applied many times due to its extreme

speed. Because of this, many iterations can be used, spreading the area of change

and compensating for the locality of AIG-based transforms. Similar effects can be

observed with the new methods.

This chapter is organized as follows. Section 4.2 provides the necessary back-

ground on DSD as well as a cut-based view of logic networks. Section 4.3 shows

new results on extending DSD methods to non-disjoint decompositions. Section 4.4

looks at reducing the number of LUTs on top of a high-quality LUT mapping

and high-effort resynthesis. Section 4.5 compares the proposed decomposition to

Boolean matching. Section 4.6 presents experimental results. Section 4.7 concludes

the chapter and reviews future work.

4.2 Background

A Boolean network is a directed acyclic graph (DAG) with nodes corresponding to

logic gates and directed edges corresponding to wires connecting the gates. We use

the terms Boolean networks, logic networks, and circuits interchangeably. We use

the term K-LUT network to refer to Boolean networks whose nodes are K -input

lookup tables (K -LUTs).

A node n has zero or more fanins, i.e., nodes that are driving n, and zero or more

fanouts, i.e., nodes driven by n. The primary inputs (PIs) are nodes of the network

without fanins. The primary outputs (POs) are a specified subset of nodes of the

network.

An And-Inverter Graph (AIG) is a Boolean network whose nodes are 2-input

ANDs. Inverters are indicated by a special attribute on the edges of the network.

A cut of node n is a set of nodes, called leaves, such that

1. each path from any PI to n passes through at least one cut node and

2. for each cut node, there is at least one path from a PI to n passing through the

cut node and not passing through any other cut nodes.

Node n is called the root of C . A trivial cut of node n is the cut {n} composed of the

node itself. A non-trivial cut is said to cover all the nodes found on the paths from

the leaves to the root, including the root but excluding the leaves. A trivial cut does

not cover any nodes. A cut is K-feasible if the number of its leaves does not exceed

K . A cut C1 is said to be dominated if there is another cut C2 of the same node such

that C2 ⊂ C1.

A cover of an AIG is a subset R of its nodes such that for every n ∈ R, there

exists exactly one non-trivial cut C(n) associated with it such that

4 Boolean Factoring and Decomposition of Logic Networks 49

1. if n is a PO, then n ∈ R,

2. if n ∈ R, then for all p ∈ C(n) either p ∈ R or p is a PI, and

3. if n is not a PO, then n ∈ R implies there exists p ∈ R such that n ∈ C(p).

The last requirement ensures that all nodes in R are “used.”

In this chapter, we sometimes use an AIG accompanied with a cover to represent

a logic network. This is motivated by our previous work on AIG rewriting and tech-

nology mapping. The advantage of viewing a logic network as a cover of an AIG is

that different covers of the AIG (and thus different network structures) can be easily

enumerated using fast cut enumeration.

The logic function of each node n ∈ R of a cover is simply the Boolean func-

tion of n computed in terms of C(n), the cut leaves. This can be extracted easily

as a truth table using the underlying AIG between the node and its cut. The truth

table computation can be performed efficiently as part of the cut computation. For

practical reasons, the cuts in this chapter are limited to at most 16 inputs.1

A completely specified Boolean function F essentially depends on a variable

if there exists an input combination such that the value of the function changes

when the variable is toggled. The support of F is the set of all variables on which

function F essentially depends. The supports of two functions are disjoint if they

do not contain common variables. A set of functions is disjoint if their supports are

pair-wise disjoint.

A decomposition of a completely specified Boolean function is a Boolean net-

work with one PO that is functionally equivalent to the function. A disjoint-support

decomposition (DSD – also called simple disjunctive decomposition) is a decom-

position in which the set of nodes of the resulting network are disjoint. Because

of the disjoint supports of the nodes, the DSD is always a tree (each node has one

fanout). The set of leaf variables of any sub-tree of the DSD is called a bound set,

the remaining variables a free set. A single disjoint decomposition of a function

consists of one block with a bound set as inputs and a single output feeding into

another block with the remaining (free) variables as additional inputs. A maximal

DSD is one in which each node cannot be further decomposed by DSD.

It is known that internal nodes of a maximal DSD network can be of three types:

AND, XOR, and PRIME. The AND and XOR nodes may have any number of

inputs, while PRIME nodes have support three or more and only a trivial DSD.

For example, a 2:1 MUX is a prime node. A DSD is called simple if it does not

contain prime nodes.

Theorem 4.1 [4] For a completely specified Boolean function, there is a unique

maximal DSD (up to the complementation of inputs and outputs of the nodes).

There are several algorithms for computing the maximal DSD [6, 23, 38]. Our

implementation follows [6] but uses truth tables instead of BDDs for functional

manipulation.

1 The fast methods of this chapter are based on bit-level truth table manipulations and 16 is a

reasonable limit for achieving speed for this.

50 R. Brayton et al.

Definition 4.1 Given a maximal DSD, the set of all leaf variables of any sub-tree of

the DSD are said to be in a separate block.

Example 4.1 f = xy + z has x, y and x, y, z in separate blocks but not x, z.

4.3 General Non-disjoint Decompositions

A general decomposition has the form

F(x) = Ĥ(g1(a, b), · · · , gk(a, b), b, c)

If |b|=0, the decomposition is called disjoint or disjunctive and if k = 1, it is

called simple.

Definition 4.2 A function F has an (a, b)-decomposition if it can be written as

F(x) = H(D(a, b), b, c) where (a, b, c) is a partition of the variables x , |a| > 1,

and D is a single-output function.

An (a, b)-decomposition is simple but, in general, non-disjoint. It can also be

written as

F(x) = Ĥ(g1(a, b), . . . , g|b|+1(a, b), c)

where g1(a, b) = D, g2 = b1, g|b|+1 = b|b|. In this case, it is non-simple but

disjoint. For general decompositions, there is an elegant theory [35] on their exis-

tence. Kravets and Sakallah [19] applied this to constructive decomposition using

support-reducing decompositions along with a pre-computed library of gates.

In our case, since |a| > 1, an (a, b)-decomposition is support reducing. Although

less general, the advantage of (a, b)-decompositions is that their existence can be

tested much more efficiently (as far as we know) by using cofactoring and the fast

DSD algorithms of this chapter. Recent works use ROBDDs to test the existence of

decompositions, with the variables (a, b) ordered at the top of the BDD (e.g., see

[37] for an easy-to-read description).

The variables a are said to be in a separate block and form the bound set, the

variables c are the free set, and the variables b are the shared variables. If |b| = 0,

the decomposition is a DSD. D(a, b) is called a divisor of F .

A particular cofactor of F with respect to b may be independent of the variables

a; however, we still consider that a is (trivially) in a separate block in this cofactor.

We call such cofactors, bound set independent cofactors, or bsi-cofactors; otherwise

bsd-cofactors.

Example 4.2 If F = deb+ b̄c, then Fb̄ = c is independent of the bound variable set

a = (d, e) i.e., it is a bsi-cofactor.

A version of the following theorem can be found in [38] as Proposition 2 where

t = 1.

4 Boolean Factoring and Decomposition of Logic Networks 51

Theorem 4.2 A function F(a, b, c) has an (a, b)-decomposition if and only if each

of the 2|b| cofactors of F with respect to b has a DSD structure in which the variables

a are in a separate block.

Proof If: Suppose F has an (a, b)-decomposition. Then F(x) = H(D(a, b), b, c).

Consider a cofactor Fb j (x) with respect to a minterm of b j , say b j = b1b̄2b̄3b4, for

k = 4. This sets b = 1,0,0,1, giving rise to the function,

Fb j (a, c) = H(D(a, 1, 0, 0, 1), 1, 0, 0, 1, c) ≡ Hb j (Db j (a), c).

Thus this cofactor has a DSD with a separated. Note that if b j is bsi, then Hb j may

not depend on Db j .

Only if: Suppose all the b cofactors have DSDs with variables a in sep-

arate blocks. Thus Fb j (a, c) = H j (D j (a), c) for some functions H j and

D j . We can take D j (a) = 0 if b j is bsi. The Shannon expansion gives

F(a, b, c) =
2|b|−1∑

j=0

b j H j (D j (a), c). Define D(a, b) =
∑2|b|−1

j=0 b j D j (a) and

note that b j H j (D j (a), c) = b j H j

(
∑2|b|−1

m=0 bm Dm(a), c
)

. Thus, F(a, b, c) =
2|b|−1∑

j=0

b j H j

(
∑2|b|−1

m=0 bm Dm(a), c
)

= H(D(a, b), b, c). QED

In many applications, such as discussed in Section 4.4, the shared variables b are

selected first, and the bound set variables a are found next using Theorem 4.2 to

search for a largest set a that can be used.

x

g h x

y

e f

y

4-LUT

4-LUT

1

1

1

1 0

0

0

0 D

F

x

y

e f g h

0 1

1 1 0 0

F

Fig. 4.1 Mapping 4:1 MUX into two 4-LUTs

Example 4.3 Consider the problem of decomposing a 4:1 MUX into two 4-LUTs.

A structural mapper starting from the logic structure shown in Fig. 4.1 on the left

would require three 4-LUTs, each containing a 2:1 MUX. To achieve a more com-

pact mapping, we find an (a, b)-decomposition where a = (e, f, y) and b = x .

The free variables are c = (g, h). This leads to cofactors Fx̄ = ȳe + y f and

52 R. Brayton et al.

Fx = ȳg + yh. Both Fx̄ and Fx have a = (e, f, y) in a separate block.2 Thus,

D0 = ȳe + y f and D1 = y, while H0 = D0 and H1 = D̄1g + D1h. Thus we

can write F = x̄ H0 + x H1 = x̄(D0)+ x(D̄1g + D1h). Replacing D0 and D1 with

D = x̄(ȳe + y f) + x(y), we have F = x̄ D + x(D̄g + Dh). This leads to the

decomposition shown on the right of Fig. 4.1. As a result, a 4:1 MUX is realized by

two 4-LUTs.

We will use the notation f ∼= g to denote that f equals g up to complementation.

The following theorem characterizes the set of all (a, b)-divisors of a function F .

Theorem 4.3 Let F have an (a, b)-decomposition with an associated divisor

D(a, b) =
∑2|b|−1

j=0 D j (a). Then D
⌢

(a, b) =
∑2|b|−1

j=0 b j D
⌢

j (a) is also an (a, b)-

divisor if and only if D
⌢

j (a) ∼= D j (a),∀ j ∈ J , where J is the set of indices of

the bsd-cofactors of F.

Proof If: Define D
⌢

j (a) ∼= D j (a), j ∈ J and consider a function D
⌢

(a, b) =
∑2|b|−1

j=0 b j D
⌢

j (a) where D
⌢

j (a), j /∈ J is an arbitrary function. Since F =
H(D(a, b), b, c) =

∑2|b|−1
j=0 b j Hb j (D j (a), c), we can define

H
⌢

(D
⌢

(a, b), b, c) =
∑

j∈J1

b j Hb j (D
⌢

j (a), c)+
∑

j∈J2

b j Hb j (D
⌢

j (a), c)

where J1 is the set of indices where D j = D
⌢

j and J2 is the set of indices where

D j = D
⌢

j . Clearly, F(a, b, c) = H
⌢

(D
⌢

(a, b), b, c) and therefore D
⌢

(a, b) is an (a, b)-

divisor of F .

Only if: Assume that F = H(D(a, b), b, c) and F = H
⌢

(D
⌢

(a, b), b, c). Cofac-

toring each with respect to b j , j ∈ J , yields Fb j = Hb j (Db j (a), c) and Fb j =
H
⌢

b j (D
⌢

b j (a), c). Thus Fb j (a, c) has a DSD with respect to a, and by Theorem 4.1,

Db j (a) ∼= D
⌢

b j (a) for b j , j ∈ J . QED

Example 4.4 F = ab + b̄c = (ab + āb̄)b + b̄c The bsd-cofactors are {b} and the

bsi-cofactors are (b̄}. F has (a, b)-divisors D1 = ab and D2 = (ab + āb̄), which

agree in the bsd-cofactor b, i.e., D1
b(a) = D2

b(a). In addition, D3 = D1 = ā + b̄ is

a divisor because F = D3 + b̄c.

In contrast to the discussion so far, the next result deals with finding common

Boolean divisors among a set of functions.

Definition 4.3 A set of functions, {F1, · · · , Fn} is said to be (a, b)-compatible if

each has an (a, b)-divisor, and ∀ j ∈ J1 ∩ · · · ∩ Jn , D1
b j (a) ∼= D2

b j (a), where Ji is

the set of bsd b-cofactors of Fi .

2 In Fx = ȳg+ yh, the DSD is a trivial one in which each input (leaf variable) is a separate block.

Since the variables (e, f) do not appear in Fx , they can be considered as part of the separate block

containing y. Thus a = (e, f, y) appears in separate blocks of both Fx̄ and Fx .

4 Boolean Factoring and Decomposition of Logic Networks 53

Note that compatibility is not transitive, but if {F1, F2, F3} is pair-wise (a, b)-

compatible, then the set {F1, F2, F3} is (a, b)-compatible and by the next theorem,

they all share a common (a, b)-divisor.

Theorem 4.4 3 There exists a common (a, b)-divisor of {F1, · · · , Fn} if and only if

the set {F1, · · · , Fn} is pair-wise (a, b)-compatible.

Proof For simplicity, we show the proof for n = 2.

If: Suppose F1 and F2 are (a, b)-compatible. Then F1(a, b, c) = H1(D1(a, b), b, c)

and F2(a, b, c) = H2(D2(a, b), b, c) and D1
b j (a) ∼= D2

b j (a) for all bsd {b j } for both

F1 and F2. Define D̃b j (a) = D1
b j (a) for such b j . If b j is bsd for F1 and bsi for F2,

let D̃b j (a) = D1
b j (a). If b j is bsd for F2 and bsi for F1 let D̃b j (a) = D2

b j (a).

Otherwise, let D̃b j (a) = 0. Clearly, by Theorem 4.3, D̃(a, b) =
2|b|−1∑

j=0

b j D̃b j (a) is

an (a, b)-divisor of both F1 and F1.

Only if: Suppose a common (a, b)-divisor exists, i.e., F1(a, b, c) =
H1(D̃(a, b), b, c) and F2(a, b, c) = H2(D̃(a, b), b, c). Then both F1 and F1 have

(a, b)-divisors such that D1
b j (a) ∼= D2

b j (a) for j ∈ J1 ∩ J2, namely, D1 = D2 = D̃.

QED

Thus a common divisor of two functions with shared variable b can be found by

cofactoring with respect to b, computing the maximum DSDs of the cofactors, and

looking for variables a for which the associated cofactors are compatible.

4.4 Rewriting K -LUT networks

This section presents a new method for rewriting K -LUT networks based on the

ideas of Section 4.3, followed by a discussion of some implementation details and

experimental results.

4.4.1 Global View

The objective is to rewrite a local window of a K -LUT mapped network. The win-

dow consists of a root node, n, and a certain number of transitive fanin (TFI) LUTs.

The TFI LUTs are associated with a cut C . The local network to be rewritten consists

of the LUT for n plus all LUTs between C and n. Our objective is to decompose

the associated function of n, fn(C), expressed using the cut variables, into a smaller

number of LUTs. For convenience, we denote this local network Nn .

An important concept is the maximum fanout free cone (MFFC) of Nn . This is

defined as the set of LUTs in Nn , which are only used in computing fn(C). If node

3As far as we know, there is no equivalent theorem in the literature.

54 R. Brayton et al.

n were removed, then all of the nodes in MFFC(n) could be removed also. We

want to re-decompose Nn into fewer K -LUTs taking into account that LUTs not in

MFFC(n) must remain since they are shared with other parts of the network. Since

it is unlikely that an improvement will be found when a cut has a small MFFC(n),

we only consider cuts with no more than S shared LUTs. In our implementation S

is a user-controlled parameter that is set to 3 by default.

Given n and a cut C for n, the problem is to find a decomposition of fn(C)

composed of the minimum number N of K (or less) input blocks. For those Nn

where there is a gain (taking into account the duplication of the LUTs not in the

MFFC), we replace Nn with its new decomposition.

The efficacy of this method depends on the following:

• The order in which the nodes n are visited.

• The cut selected for rewriting the function at n.

• Not using decompositions that worsen delay.

• Creating a more balanced decomposition.

• Pre-processing to detect easy decompositions4.

4.4.2 Cut Computation

The cut computation for resynthesis differs from traditional cut enumeration for

technology mapping in several ways:

• Mapping is applied to an AIG, while resynthesis is applied to a mapped network.

• Mapping considers nodes in a topological order, while resynthesis may be applied

to selected nodes, for example, nodes on a critical path, or nodes whose neighbors

have changed in the last pass of resynthesis.

• During mapping, the size of a cut’s MFFC is not important (except during some

types of area recovery), while in resynthesis the size of a cut’s MFFC is the main

criterion to judge how many LUTs may be saved after resynthesis.

• Mapping for K-LUTs requires cuts of size K whereas for an efficient resynthesis

of a K-LUT network, larger cuts need to be computed (typically up to 16 inputs).

Given these observations, complete or partial cut enumeration used extensively

in technology mapping is not well-suited for resynthesis. Resynthesis requires a

different cut computation strategy that is top-down: cuts are computed separately

for each node starting with the trivial cut of the node and new cuts are obtained by

expanding existing cuts towards primary inputs.

The pseudo-code of the cut computation is given in Fig. 4.2. The procedure takes

the root node (root), for which the cuts are being computed, the limit on the cut

size (N), the limit on the number of cuts (M), and the limit on the number of

nodes duplicated when the computed cut is used for re-synthesized (S). The last

4 For example, it can be a MUX decomposition of a function with at most 2K − 1 inputs with

cofactors of input size K − 2 and K .

4 Boolean Factoring and Decomposition of Logic Networks 55

cutset cutComputationByExpansion (root, N, M, S)

{

markMffcNode(root);

cutset = { {node} };

for each cut in cutset {

for each leaf of cut

if (!nodeIsPrimaryInput(leaf))

expandCutUsingLeaf(cut, leaf, N, S, cutset);

}

filterCutsWithDSDstructure(cutset);

if (|cutset| > M) {

sortCutsByWeight(cutset);

cutset = selectCutsWithLargerWeight(cutset, M);

}

return cutset;

}

expandCutUsingLeaf (cut, leaf, N, S, cutset)

{

// check if the cut is duplication-feasible

if (!nodeBelongsToMffc(leaf) && numDups(cut) == S)

return;

// derive the new cut

cut_new = (cut \ leaf)
⋃

nodeFanins(leaf);

// check if the cut is N-feasible

if (numLeaves(cut_new)> N)

return;

// check if cut_new is equal to or dominated by any cut in cutset

// (also, remove the cuts in cutset that are contained in cut_new)

if (cutsetFilter(cutset, cut_new))

return;

// add cut_new to cutset to be expanded later

cutset = cutset
⋃

cut_new;

}

Fig. 4.2 Cut computation for resynthesis

number is the maximum number of nodes that can be covered by a cut, which are not

in the MFFC of the given node. Obviously, these nodes will be duplicated when the

cut’s function is expressed in terms of the cut leaves, using a set of new K-feasible

nodes after decomposition.

For each cut computed, two sets of nodes are stored: the set of leaves and the set

of nodes covered by the cut (these are the nodes found on the paths between the leaf

nodes and the root, excluding the leaves and including the root). Additionally, each

cut has a count of covered nodes that are not in the MFFC of the root. The value of

this is returned by procedure numDups.

Procedure expandCutUsingLeaf tries to expand the cut by moving a leaf to the

set of covered nodes and adding the leaf’s fanins to the set of leaves. If the leaf

belongs to the MFFC of the root and the number of duplicated nodes of the cut has

already saturated, the new cut is not constructed. If the resulting cut has more leaves

than is allowed by the limit, the new cut is not used. If the cut is equal or dominated

56 R. Brayton et al.

by any of the previously computed cuts, it is also skipped. Finally, if none of the

above conditions holds, the cut is appended to the resulting cutset. Later in the cut

computation, this cut, too, is used to derive other cuts.

The above procedure converges because of the limits on the cut size (N) and

the number of duplicated nodes (S), resulting in a set of cuts that are potentially

useful for resynthesis. A cut is actually used for resynthesis if both of the following

conditions are met: (a) the cut does not have a DSD-structure and (b) the cut has a

high enough weight. These conditions are described below.

4.4.3 Cuts with a DSD Structure

Some cuts are not useful for resynthesis because the network structure covered

by these cuts cannot be compacted. These are the cuts covering disjoint-support-

decomposable parts of the structure. For example, Fig. 4.3 shows a cut {a, b, c, d}
of node n. This cut covers node m whose fanins, c and d, are disjoint-support with

respect to the rest of the covered network structure which depends on a and b.

n

m

ba

c
d

e
f

Fig. 4.3 Illustration of a cut with DSD-structure

Cuts with a DSD-structure can be efficiently identified by a dedicated procedure.

These cuts can be skipped when attempting resynthesis, but they cannot be left out

during the cut computation because expanding them can lead to other useful cuts.

For example, expanding cut {a, b, c, d} shown in Fig. 4.3 with respect to leaf c

leads to a cut {a, b, d, e, f }, which does not have a DSD structure because node d

depends on node e.

4.4.4 Cut Weight

Some cuts should be skipped during resynthesis because they have little or no poten-

tial for improvement and should not be tried, given a tight runtime budget. To filter

out useless cuts and prioritize other cuts, the notion of cut weight is introduced.

The weight is computed for all cuts and only a given number (M) of cuts with high

enough weight is selected for resynthesis.

4 Boolean Factoring and Decomposition of Logic Networks 57

The weight of a cut is defined as follows:

cutWeight(c) = [numCovered(c)− numDups(c)]/numLuts(c)

where numLuts(c) = ceiling[(numLeaves(c)-1)/(K–1)].

The procedures numCovered and numDups return the total number of covered

nodes and the number of covered nodes not belonging to the MFFC of the root,

respectively. Procedure numLeaves return the number of cut leaves. Finally, num-

Luts computes the minimum number of K-LUTs needed to implement a cut of size

c, provided that the cut’s function has a favorable decomposition.

Intuitively, the weight of a cut shows how likely the cut will be useful in resyn-

thesis: the more nodes it saves and the less LUTs possibly needed to realize it, the

better the cut. The cuts whose weights are less than or equal to 1.0 can be skipped

because they give no improvement. If resynthesis with zero-cost replacements is

allowed, only the cuts with weight less than 1.0 are skipped.

4.4.5 Decomposition and Network Update

Figure 4.4 gives an overall pseudo-code of the proposed approach to resynthesis:

resynthesisByLutPacking(network, parameters)

{

// apply resynthesis to each node

for each node of network in topological order {

cutset = cutComputationByExpansion(node, parameters);

for each cut in cutset in decreasing order of cut weight {

// derive function of the cut as a truth table

F = cutComputeFunction(cut);

// iteratively decompose the function

while (suppSize(F) > K) {

boundset = findSupportReducingBoundSet(F, K);

if (boundset == NONE)

break;

F = functionDecompose(F, boundset);

}

// if F is decomposed, update and move to the next node

if (boundset != NONE) {

networkUpdate(network);

break;

}

}

}

}

Fig. 4.4 Overall pseudo-code of the proposed resynthesis

58 R. Brayton et al.

4.4.6 Finding the Maximum Support-Reducing Decomposition

The proposed algorithm works by cofactoring the non-decomposable blocks of the

DSD of F and using Theorem 4.2 to find a Boolean divisor and bound variables

a. The approach is heuristic and may not find a decomposition with the minimum

number (N) of K -input blocks. The heuristic tries to extract a maximum support-

reducing block at each step, based on the idea that support reduction leads to a good

decomposition. In fact, any optimum implementation of a network into K -LUTs

must be support reducing if any fanin of a block is support reducing for that block.

However, in general, it may not be the most support-reducing.

The approach is to search for common bound sets of the cofactor DSDs where

cofactoring is tried with respect to subsets of variables in the support of F . If all

subsets are attempted, the proposed greedy approach reduces the associated block

to a minimum number of inputs. However, in our implementation, we heuristically

trade-off the quality of the decomposition found versus the runtime spent in explor-

ing cofactoring sets. A limit is imposed on (a) the number of cofactoring variables,

and (b) the number of different variable combinations tried. Our experiments show

that the proposed heuristic approach usually finds a solution with a minimum num-

ber of blocks.

The pseudo-code in Fig. 4.5 shows how the DSD structures of the cofactors can

be exploited to compute a bound set leading to the maximum support reduction.

The procedure findSupportReducingBoundSet takes a completely-specified

function F and the limit K on the support size of the decomposed block. It returns

a good bound set, that is, a bound set leading to the decomposition with a maximal

support-reduction. If a support-reducing decomposition does not exist, the proce-

dure returns NONE.

First, the procedure derives the DSD tree of the function itself. The tree is used

to compute the set of all feasible bound sets whose sizes do not exceed K . Bound

sets of larger size are not interesting because they cannot be implemented using

K -LUTs. For each of the bound sets found, decomposition with a single output and

no shared variables is possible. If a bound set of size K exists, it is returned. If such

a bound set does not exist (for example, when the function has no DSD), the second

best would be to have a bound set of size K−1. Thus, the computation enters a loop,

in which cofactoring of the function with respect to several variables is tried, and

common support-reducing bound sets of the cofactors are explored.

When the loop is entered, cofactoring with respect to one variable is tried first.

If the two cofactors of the function have DSDs with a common bound set of size

K−1, it is returned. In this case, although the decomposed block has K variables,

the support of F is only reduced by K−2 because the cofactoring variable is shared

and the output of the block is a new input. If there is no common bound set of size

K−1, the next best outcome is one of the following:

1. There is a bound set of size K−2 of the original function.

2. There is a common bound set of size K−2 of the two cofactors with respect to

the cofactoring variable.

4 Boolean Factoring and Decomposition of Logic Networks 59

varset findSupportReducingBoundSet(function F, int K)

{

// derive DSD for the function

DSDtree Tree = performDSD(F);

// find K-feasible bound-sets of the tree

varset BSets[0] = findKFeasibleBoundSets(F, Tree, K);

// check if a good bound-set is already found

if (BSets[0] contains bound-set B of size K)

return B;

if (BSets[0] contains bound-set B of size K -1)

return B;

// cofactor F with respect to sets of variables and look for the largest

// support-reducing bound-set shared by all the cofactors

for (int V = 1; V ≤ K − 2; V++) {

// find the set including V cofactoring variables

varset cofvars = findCofactoringVarsForDSD(F, V);

// derive DSD trees for the cofactors and compute

// common K-feasible bound-sets for all the trees

set of varsets BSets[V] = {∅};
for each cofactor Cof of function F with respect to cofvars {

DSDtree Tree = performDSD(Cof);

set of varsets BSetsC =
computeBoundSets(Cof, Tree, K-V);

BSets[V] =mergeSets(BSets[V], BSetsC, K-V);

}

// check if at least one good bound-set is already found

if (BSets[V] contains bound-set B of size K-V)

return B;

// before trying to use more shared variables, try to find

// bound-sets of the same size with fewer shared variable

for (int M = 0; M ≤ V ; M++)

if (BSets[M] contains bound-set B of size K-V-1)

return B;

}

return NONE;

}

Fig. 4.5 Computing a good support-reducing bound set

3. There is a common bound set of size K−2 of the four cofactors with respect to

two variables.

The loop over M at the bottom of Fig. 4.2 tests for outcomes (1) and (2). If these are

impossible, V is incremented and the next iteration of the loop is performed, which

is the test for the outcome (3).

In the next iteration over V , cofactoring with respect to two variables is attempted

and the four resulting cofactors are searched for common bound sets. The process is

continued until a bound set is found, or the cofactoring with respect to K –2 variables

is tried without success. When V exceeds K –2 (say, V is K –1), the decomposition

is not support-reducing, because the composition function depends on shared K –1

variables plus the output of the decomposed block. In other words, the decomposi-

60 R. Brayton et al.

tion takes away K variables from the composition function and returns K variables.

In this case, NONE is returned, indicating that there is no support-reducing decom-

position.

Example 4.5 Consider the decomposition of function F of the 4:1 MUX shown in

Fig. 4.1 (left). Assume K = 4. This function does not have a non-trivial DSD; its

DSD is composed of one prime block. The set of K -feasible bound sets is trivial in

this case: { {⊘}, {a}, {b}, {c}, {d}, {x}, {y} }. Clearly, none of these bound sets

has size K or K –1. The above procedure enters the loop with V = 1. Suppose x

is chosen as the cofactoring variable. The cofactors are Fx̄ = ȳa + yb and Fx =
ȳc + yd. The K –1-feasible bound sets are {{⊘}, {a}, {b}, {y}, {a, b, y}}, and

{{⊘}, {c}, {d}, {y}, {c, d, y}}. A common bound set {a, b, y} of size K -1 exists.

The loop terminates and this bound set is returned, resulting in the decomposition

in Fig. 4.1 (right).

4.4.7 Additional Details

In this section, we briefly present several aspects of the proposed algorithm that

were not described above to keep that discussion simple.

4.4.7.1 Using Timing Information to Filter Candidate Bound Sets

Timing information, which can be taken into account by the algorithm, includes

the arrival times of the leaves of the cut and the required time of the root. During

decomposition, a lower bound on the root’s required time is computed and further

decomposition is not performed if this bound exceeds the required time. In this case,

the resynthesis algorithm moves on to the next cut of the root node. If the node has

no more cuts, the algorithm moves to the next node in a topological order.

The use of the timing information prunes the search space and therefore leads to

faster resynthesis. However, the gain in area may be limited due to skipping some

of the resynthesis opportunities as not feasible under the timing constraints.

4.4.7.2 Restricting Bound Sets for Balanced Decompositions

Experiments have shown that allowing all variables in the bound sets may lead to

unbalanced decompositions. Therefore, the variables that are allowed to be in the

bound sets are restricted to those that are in the transitive fanins cones of the prime

blocks. If the DSD trees of the cofactors do not have prime blocks, all variables are

allowed in the bound sets.

4.4.7.3 Opportunistic MUX-Decomposition

To further improve quality and runtime, a different type of decomposition is consid-

ered along with the DSD-based decomposition presented above. This decomposition

4 Boolean Factoring and Decomposition of Logic Networks 61

attempts to cofactor the function with respect to every variable and checks the sizes

of cofactors. If the smaller of the two cofactors has support size less than K–2 and

the larger one has size less than K, the function can be implemented using two

K-LUTs, one of which subsumes the smaller block together with the MUX, while

another is used as the larger block. This type of decomposition can often be found

faster than a comparable DSD.

4.5 Comparison with Boolean Matching

The proposed Boolean decomposition applied to rewriting of LUT networks is sim-

ilar to Boolean matching, which checks if a function can be implemented using a

LUT structure.

Boolean matchers can be compared using the following criteria:

• An average runtime needed to match a given K-variable function with a given

N-variable LUT structure (K ≤ N).

• An average success rate. This is the percentage of functions successfully

matched, out of the total number of functions, for which a match exists.

The following approaches to Boolean matching are known:

(1) Structural approach. [11, 29] Structural LUT-based technology mappers fall

into this category. This approach is incomplete because it requires the subject

graph of a Boolean function to match the LUT structure. It is fast but has a low

success rate. The actual rate may depend strongly on the function and the struc-

ture used. It our experiments with 16-input functions matched into structures

composed of 6-LUTs, the success rate was about 30%.

(2) SAT-based approach. [17, 21, 24, 36] This complete method is guaranteed to

find a match if it exists. It is also flexible because it can be customized easily to

different LUT structures. However, it is time-consuming and takes seconds or

minutes to solve 10-variable instances. When the problem is hard and a runtime

limit is used, this method becomes incomplete with the success rate depending

on the problem type. For example, [24] reports a success rate of 50% for 10-

variable functions with a 60 s timeout.

(3) NPN-equivalence-based approach. [1, 8, 9, 14]. This potentially complete

method pre-computes all NPN-classes of functions that can be implemented

using the given architecture. Although this method is relatively fast, it does not

scale well for functions above 9–12 inputs because of the large number of NPN

classes. It is restricted to a particular LUT structure and may not be feasible for

large/complex architectures with too many NPN-classes.

(4) Functional approach. [18, 25, 26, 39] This approach attempts to apply a

Boolean decomposition algorithm to break the function down into K -input

blocks. The runtime strongly depends on the number of inputs of the function,

the type of decomposition used, and how the decomposability check is imple-

mented. The completeness is typically compromised by the heuristic nature of

62 R. Brayton et al.

bound set selection [18] or fixing the variable order in the BDD [39] when

looking for feasible decompositions. Exhaustively exploring all bound sets, as

proposed in [26], can only be done for relatively small functions (up to 12

inputs).

The algorithm proposed in this chapter belongs to the last category. It uses prop-

erties of Boolean functions, such as DSD, to guide what K -input blocks to extract.

The completeness of this method is guaranteed by Theorem 4.1. In practice the com-

pleteness requires performing DSD for a large number of cofactors of the function.

Therefore, our current implementation limits the number of cofactors considered,

making the method fast but incomplete.

4.6 Experimental Results

The proposed algorithm is implemented in ABC [5] and is available as command

lutpack. Experiments targeting 6-input LUTs were run on an Intel Xeon 2-CPU

4-core computer with 8 GB of RAM. The resulting networks were verified using the

combinational equivalence checker in ABC (command cec) [28].

The following ABC commands are included in the scripts which were used to

collect experimental results, which targeted area minimization while preserving

delay:

• resyn is a logic synthesis script that performs five iterations of AIG rewriting [27]

trying to improve area without increasing depth.

• resyn2 is a script that performs 10 iterations of a more diverse set of AIG rewrit-

ings than those of resyn.

• choice is a script that allows for accumulation of structural choices; choice runs

resyn followed by resyn2 and collects three snapshots of the network during this

process: the original, the final, and the one after resyn, resulting in a circuit with

structural choices.

• if is an efficient FPGA mapper using priority cuts [31], fine-tuned for area recov-

ery (after a minimum delay mapping), and using subject graphs with structural

choices5.

• imfs is an area-oriented resynthesis engine for FPGAs [30] based on changing

a logic function at a node by extracting don’t cares from a surrounding window

and using Boolean resubstitution to rewrite the node function using possibly new

inputs.

• lutpack is the new resynthesis described in this section.

5 The mapper was run with the following settings: at most 12 6-input priority cuts are stored at

each node; five iterations of area recovery included three with area flow and two with exact local

area.

4 Boolean Factoring and Decomposition of Logic Networks 63

The benchmarks used in this experiment are 20 large public benchmarks from the

MCNC and ISCAS’89 suites used in previous work on FPGA mapping [11, 22, 29]6.

The following four experiments were performed:

• “Baseline” = (resyn; resyn2; if). This is a typical run of technology-independent

synthesis followed by the default FPGA mapping.

• “Choices” = resyn; resyn2; if; (choice; if)4.

• “imfs” = resyn; resyn2; if; (choice; if; imfs)4.

• “imfs+lutpack” = resyn; resyn2; if; (choice; if; imfs)4; (lutpack)2.

We use exponentiation to denote iteration, e.g., (com1; com2)3 means iterate

(com1; com2) three times.

Table 4.1 lists the number of primary inputs (“PIs”), primary outputs (“POs”),

registers (“Reg”), area calculated as the number of 6-LUTs (“LUT”) and delay cal-

culated as the depth of the 6-LUT network (“Level”). The ratios in the tables are the

ratios of geometric averages of values reported in the corresponding columns.

Table 4.1 Evaluation of resynthesis after technology mapping for FPGAs (K = 6)

Designs PI PO Reg
Baseline Choices imfs imfs+lutpack

LUT Level LUT Level LUT Level LUT Level

alu4 14 8 0 821 6 785 5 558 5 453 5

apex2 39 3 0 992 6 866 6 806 6 787 6

apex4 9 19 0 838 5 853 5 800 5 732 5

bigkey 263 197 224 575 3 575 3 575 3 575 3

clma 383 82 33 3323 10 2715 9 1277 8 1222 8

des 256 245 0 794 5 512 5 483 4 480 4

diffeq 64 39 377 659 7 632 7 636 7 634 7

dsip 229 197 224 687 3 685 2 685 2 685 2

ex1010 10 10 0 2847 6 2967 6 1282 5 1059 5

ex5p 8 63 0 599 5 669 4 118 3 108 3

elliptic 131 114 1122 1773 10 1824 9 1820 9 1819 9

frisc 20 116 886 1748 13 1671 12 1692 12 1683 12

i10 257 224 0 589 9 560 8 548 7 547 7

pdc 16 40 0 2327 7 2500 6 194 5 171 5

misex3 14 14 0 785 5 664 5 517 5 446 5

s38417 28 106 1636 2684 6 2674 6 2621 6 2592 6

s38584 12 278 1452 2697 7 2647 6 2620 6 2601 6

seq 41 35 0 931 5 756 5 682 5 645 5

spla 16 46 0 1913 6 1828 6 289 4 263 4

tseng 52 122 385 647 7 649 6 645 6 645 6

Geomean 1168 6.16 1103 5.66 716 5.24 677 5.24

Ratio1 1.000 1.000 0.945 0.919 0.613 0.852 0.580 0.852

Ratio2 1.000 1.000 0.649 0.926 0.614 0.926

Ratio3 1.000 1.000 0.946 1.000

The columns Baseline and Choices have been included to show that repeated

re-mapping has a dramatic impact over conventional mapping (Baseline). However,

the main purpose of the experiments is to demonstrate the additional impact of

6 In the above set, circuit s298 was replaced by i10 because the former contains only 24 6-LUTs.

64 R. Brayton et al.

command lutpack after a very strong synthesis flow. Thus we only focus on the

last line of the table, which compares lutpack against the strongest result obtained

using other methods (imfs). Given the power of imfs, it is somewhat unexpected that

lutpack can achieve an additional 5.4% reduction in area7.

This additional area reduction speaks for the orthogonal nature of lutpack over

imfs. While imfs tries to reduce area by analyzing alternative resubstitutions at each

node, it cannot efficiently compact large fanout-free cones that may be present in

the mapping. The latter is done by lutpack, which iteratively collapses fanout-free

cones with up to 16 inputs and re-derives new implementations using the minimum

number of LUTs.

The runtime of one run of lutpack was less than 20 s for any of the benchmarks

reported in Table 4.1. The total runtime of the experiments was dominated by imfs.

Table 4.1 illustrates only two passes of lutpack used for final processing; several

iterations of lutpack in the inner loop, e.g., (choice; if; imfs; lutpack)4 , often show

additional gains.

4.7 Conclusions and Future Work

This chapter presented an algorithm for Boolean decomposition of logic functions

targeting area-oriented resynthesis of K -LUT structures. The new algorithm, lut-

pack, is based on cofactoring and disjoint-support decomposition and is much faster

than previous solutions relying on BDDs and Boolean satisfiability. The algorithm

achieved an additional 5.4% reduction in area, when applied to a network obtained

by iterating high-quality technology mapping and another type of powerful resyn-

thesis based on don’t cares and windowing.

Future work might include the following:

• Extracting a common Boolean divisor from a pair of functions (using Theo-

rem 4.4).

• Computing all decompositions of a function and using them to find common

Boolean divisors among all functions of a logic network.

• Improving the DSD-based analysis, which occasionally fails to find a feasible

match and is the most time-consuming part.

• Exploring other data structures for cofactoring and DSD decomposition for func-

tions with more than 16 inputs. This would improve the quality of resynthesis.

Acknowledgments This work was supported in part by SRC contracts 1361.001 and 1444.001,

NSF contract CCF-0702668, and the California MICRO Program with industrial sponsors Actel,

Altera, Calypto, IBM, Intel, Intrinsity, Magma, Mentor Graphics, Synopsys (Synplicity), Tabula,

and Xilinx. The authors thank Stephen Jang, for his masterful experimental evaluation of the

7 Some readers may suspect that the result after imfs can be improved on easily. We invite them

to take the benchmarks and come up with a better result than that recorded in the imfs+lutpack

column.

4 Boolean Factoring and Decomposition of Logic Networks 65

proposed algorithm, Slawomir Pilarski and Victor Kravets, for their careful reading and useful

comments, and to an anonymous reviewer for pointing out critical errors in the original manuscript.

This work was performed while the third author was at Berkeley.

References

1. Abdollahi, A., Pedram, M.: A new canonical form for fast Boolean matching in logic synthesis

and verification. In: Proceedings of DAC ‘05, pp. 379–384.

2. Actel Corporation: ProASIC3 flash family FPGAs datasheet.

3. Altera Corporation: Stratix II device family data sheet.

4. Ashenhurst, R.L.: The decomposition of switching functions. Proceedings of International

Symposium on the Theory of Switching, Part I (Annals of the Computation Laboratory of

Harvard University, Vol. XXIX), Harvard University Press, Cambridge, 1959, pp. 75–116.

5. Berkeley Logic Synthesis and Verification Group, ABC: A System for Sequential Synthesis

and Verification, Release 70911. http://www.eecs.berkeley.edu/∼ alanmi/abc/ (2010)

6. Bertacco, V., Damiani, M.: The disjunctive decomposition of logic functions. In: Proceedings

ICCAD ’97, pp. 78–82.

7. Brayton, R., McMullen, C.: The decomposition and factorization of Boolean expressions. In:

Proceedings ISCAS ‘82, pp. 29–54.

8. Chai, D., Kuehlmann, A.: Building a better Boolean matcher and symmetry detector. In: Pro-

ceedings DATE ‘06, pp. 1079–1084.

9. Chatterjee, S., Mishchenko, A., Brayton, R.: Factor cuts. In: Proceedings ICCAD ’06,

pp. 143–150.

10. Chatterjee, S., Mishchenko, A., Brayton, R., Wang, X., Kam, T.: Reducing structural bias in

technology mapping. In: Proceedings ICCAD ’05, pp. 519–526.

11. Chen, D., Cong, J.: DAOmap: A depth-optimal area optimization mapping algorithm for

FPGA designs. In: Proceedings ICCAD ’04, pp. 752–757.

12. Cong, J., Wu, C., Ding, Y.: Cut ranking and pruning: Enabling a general and efficient FPGA

mapping solution. In: Proceedings FPGA’99, pp. 29–36.

13. Curtis, A.: New approach to the design of switching circuits. Van Nostrand, Princeton, NJ

(1962)

14. Debnath, D., Sasao, T.: Efficient computation of canonical form for Boolean matching in large

libraries. In: Proceedings ASP-DAC ‘04, pp. 591–596.

15. Farrahi, A., Sarrafzadeh, M.: Complexity of lookup-table minimization problem for FPGA

technology mapping. IEEE TCAD, 13(11), 319–1332 (Nov. 1994)

16. Files, C., Perkowski, M.: New multi-valued functional decomposition algorithms based on

MDDs. IEEE TCAD, 19(9), 1081–1086 (Sept. 2000)

17. Hu, Y., Shih, V., Majumdar, R., He, L.: Exploiting symmetry in SAT-based Boolean matching

for heterogeneous FPGA technology mapping. In: Proceedings ICCAD ’07.

18. Kravets, V.N.: Constructive multi-level synthesis by way of functional properties. PhD thesis.

University of Michigan, 2001.

19. Kravets, V.N., Sakallah, K.A.: Constructive library-aware synthesis using symmetries. In: Pro-

ceedings of DATE, pp. 208–213 (March 2000)

20. Lehman, E., Watanabe, Y., Grodstein, J., Harkness, H.: Logic decomposition during technol-

ogy mapping. IEEE TCAD, 16(8), 813–833 (1997)

21. Ling, A., Singh, D., Brown, S.: FPGA technology mapping: A study of optimality. In: Pro-

ceedings of DAC ’05, pp. 427–432.

22. Manohara-rajah, V., Brown, S.D., Vranesic, Z.G.: Heuristics for area minimization in LUT-

based FPGA technology mapping. In: Proceedings of IWLS ’04, pp. 14–21

23. Matsunaga, Y.: An exact and efficient algorithm for disjunctive decomposition. In: Proceed-

ings of SASIMI ’98, pp. 44–50

66 R. Brayton et al.

24. Minkovich, K., Cong, J. An improved SAT-based Boolean matching using implicants for LUT-

based FPGAs. In: Proceedings of FPGA’07.

25. Mishchenko, A., Sasao, T.: Encoding of Boolean functions and its application to LUT cascade

synthesis. In: Proceedings of IWLS ’02, pp. 115–120.

26. Mishchenko, A., Wang, X., Kam, T.: A new enhanced constructive decomposition and map-

ping algorithm. In: Proceedings of DAC ’03, pp. 143–148.

27. Mishchenko, A., Chatterjee, S., Brayton, R.: “DAG-aware AIG rewriting: A fresh look at

combinational logic synthesis. In: Proceedings of DAC’06, pp. 532–536.

28. Mishchenko, A., Chatterjee, S., Brayton, R., Een, N.: “Improvements to combinational equiv-

alence checking,” In: Proceedings of ICCAD ’06, pp. 836–843.

29. Mishchenko, A., Chatterjee, S., Brayton, R.: Improvements to technology mapping for LUT-

based FPGAs. IEEE TCAD, 26(2), 240–253 (Feb 2007)

30. Mishchenko, A., Brayton, R., Jiang, J.-H.R., Jang, S.: Scalable don’t care based logic opti-

mization and resynthesis. In: Proceedings of FPGA’09, pp. 151–160.

31. Mishchenko, A., Cho, S., Chatterjee, S., Brayton, R.: Combinational and sequential mapping

with priority cuts. In: Proceedings of ICCAD ’07.

32. Mishchenko, A., Chatterjee, S., Brayton, R.: Fast Boolean matching for LUT structures. ERL

Technical Report, EECS Deptartment, UC Berkeley.

33. Pan, P., Lin, C.-C.: A new retiming-based technology mapping algorithm for LUT-based

FPGAs. In: Proceedings of FPGA ’98, pp. 35–42

34. Perkowski, M., Marek-Sadowska, M., Jozwiak, L., Luba, T., Grygiel, S., Nowicka, M., Malvi,

R., Wang, Z., Zhang, J.S.: Decomposition of multiple-valued relations. In: Proceedings of

ISMVL’97, pp. 13–18

35. Roth, J.P., Karp, R.: Minimization over Boolean graphs. IBM Journal of Research and Devel-

opment 6(2), 227–238 (1962)

36. Safarpour, S., Veneris, A., Baeckler, G., Yuan, R.: Efficient SAT-based Boolean matching for

FPGA technology mapping.’ In: Proceedings of DAC ’06

37. Sawada, H., Suyama, T., Nagoya, A.: Logic synthesis for lookup tables based FPGAs using

functional decomposition and support minimization. In: Proceedings of ICCAD, pp. 353–358,

(1995)

38. Sasao, T., Matsuura, M.: DECOMPOS: An integrated system for functional decomposition.

In: Proceedings of IWLS‘98, pp. 471–477

39. Vemuri, N., Kalla, P., Tessier, R.: BDD-based logic synthesis for LUT-based FPGAs. ACM

TODAES 7, 501–525 (2002)

40. Wurth, B., Schlichtmann, U., Eckl, K., Antreich, K.: Functional multiple-output decomposi-

tion with application to technology mapping for lookup table-based FPGAs. ACM Transac-

tions on Design Automation of Electronic Systems 4(3), 313–350 (1999)

Chapter 5

Ashenhurst Decomposition Using SAT
and Interpolation

Hsuan-Po Lin, Jie-Hong Roland Jiang, and Ruei-Rung Lee

Abstract Functional decomposition is a fundamental operation in logic synthesis to

facilitate circuit transformation. Since the first formulation by Ashenhurst in 1959,

functional decomposition has received much attention and has been generalized and

studied to some extent. Recent practical approaches to functional decomposition

relied on the well-studied data structure binary decision diagram (BDD), which,

however, is known to suffer from the memory explosion problem and thus not

scalable to decompose large Boolean functions. In these BDD-based approaches,

variable partitioning, a crucial step in functional decomposition, has to be specified a

priori and often restricted to few bound set variables. Moreover, non-disjoint decom-

position requires substantial sophistication in formulation. This report shows that,

when Ashenhurst decomposition (the simplest and preferable functional decompo-

sition) is considered, both single- and multiple-output decomposition can be com-

puted with satisfiability solving, Craig interpolation, and functional dependency.

Variable partitioning can be automated and integrated into the decomposition pro-

cess without the bound set size restriction. The computation naturally extends to

non-disjoint decomposition. Experimental results show that the proposed method

can effectively decompose functions with up to 300 input variables.

5.1 Introduction

Functional decomposition [1, 6, 11] aims at decomposing a Boolean function into

a network of smaller sub-functions. It is a fundamental operation in logic synthesis

and has various applications to FPGA synthesis, minimization of circuit communi-

cation complexity, circuit restructuring, and other contexts. The most widely applied

area is perhaps FPGA synthesis, especially for the look-up table (LUT)-based FPGA

J.-H.R. Jiang (B)

National Taiwan University, Taipei Taiwan

e-mail: jhjiang@cc.ee.ntu.edu.tw

This work is based on an earlier work: To SAT or not to SAT: Ashenhurst decomposition in a

large scale, in Proceedings of the 2008 IEEE/ACM International Conference on Computer-Aided

Design, ISBN ISSN:1092-3152, 978-1-4244-2820-5 (2008) c© ACM, 2008.

S.P. Khatri, K. Gulati (eds.), Advanced Techniques in Logic Synthesis,

Optimizations and Applications, DOI 10.1007/978-1-4419-7518-8_5,
C© Springer Science+Business Media, LLC 2011

67

68 H.-P. Lin et al.

architecture, where each LUT can implement an arbitrary logic function with up

to five or six inputs. Because of the input-size limitation of each LUT, a Boolean

function to be realized using LUTs has to be decomposed into a network of sub-

functions each conforming to the input-size requirement. Since FPGAs became a

viable design style and highly optimized BDD packages were available, BDD-based

functional decomposition [3, 13] has been intensively studied over the previous two

decades. A comprehensive introduction to this subject is available in [19].

Most prior work on functional decomposition used BDD as the underlying data

structure. By ordering variables in some particular way, BDD can be exploited for

the computation of functional decomposition. Despite having been a powerful tool,

BDD poses several limitations: First, BDDs are very sensitive to variable ordering

and suffer from the notorious memory explosion problem. In representing a Boolean

function, a BDD can be of large size (in the worst case, exponential in the number

of variables). It is even more so when special variable ordering rules need to be

imposed on BDDs for functional decomposition. Therefore it is typical that a func-

tion under decomposition can have just a few variables. Second, variable partition-

ing needs to be specified a priori and cannot be automated as an integrated part of

the decomposition process. In order to effectively enumerate different variable parti-

tions and keep BDD sizes reasonably small, the set of bound set variables cannot be

large. Third, for BDD-based approaches, non-disjoint decomposition cannot be han-

dled easily. In essence, decomposability needs to be analyzed by cases exponential

in the number of joint (or common) variables. Finally, even though multiple-output

decomposition [22] can be converted to single-output decomposition [9], BDD sizes

may grow largely in this conversion.

The above limitations motivate the need for new data structures and compu-

tation methods for functional decomposition. We show that, when Ashenhurst

decomposition [1] is considered, these limitations can be overcome through sat-

isfiability (SAT)-based formulation. Ashenhurst decomposition is a special case

of functional decomposition, where, as illustrated in Fig. 5.1, a function f (X) is

decomposed into two sub-functions h(X H , XC , xg) and g(XG, XC) with f (X) =
h(X H , XC , g(XG, XC)). For general functional decomposition, the function g can

be a functional vector (g1, . . . , gk) instead. It is this simplicity that makes Ashen-

hurst decomposition particularly attractive in practical applications.

The enabling techniques of our method, in addition to SAT solving, include Craig

interpolation [5] and functional dependency [10]. Specifically, the decomposability

of function f is formulated as SAT solving, the derivation of function g is by Craig

interpolation, and the derivation of function h is by functional dependency.

Fig. 5.1 Ashenhurst decomposition

5 Ashenhurst Decomposition Using SAT and Interpolation 69

Compared with BDD-based methods, the proposed algorithm is advantageous in

the following aspects. First, it does not suffer from the memory explosion problem

and is scalable to large functions. Experimental results show that Boolean functions

with more than 300 input variables can be decomposed effectively. Second, variable

partitioning need not be specified a priori and can be automated and derived on

the fly during decomposition. Hence the size of the bound set variables XG need

not be small. Third, it works for non-disjoint decomposition naturally. Finally, it

is easily extendable to multiple-output decomposition. Nonetheless, a limitation

of the method is its expensive generalization to functional decomposition beyond

Ashenhurst’s special case.

A scalable decomposition method may be beneficial to modern VLSI design.

For example, the dominating interconnect delays in nanometer IC design may be

reduced by proper decomposition at the functional level; complex system realization

using FPGAs or 3D ICs may require a design being decomposed at the chip level.

On the other hand, the scalability of the proposed method may provide a global

view on how a large function can be decomposed. Accordingly, hierarchical and

chip-level logic decomposition might be made feasible in practice. In addition, our

results may possibly shed light on scalable Boolean matching for heterogeneous

FPGAs as well as topologically constrained logic synthesis [20].

5.2 Previous Work

Aside from BDD-based functional decomposition [19], we compare some related

work using SAT. In bi-decomposition [14], a function f is written as f (X) =
h(g1(X A, XC), g2(X B, XC)) under variable partition X = {X A|X B |XC }, where

function h is known a priori and is of special function types (namely, two-input

OR, AND, and XOR gates) while functions g1 and g2 are the unknown to be

computed. In contrast, the complication of Ashenhurst decomposition f (X) =
h(X H , XC , g(XG, XC)) comes from the fact that both functions h and g are

unknown. The problem needs to be formulated and solved differently while the

basic technique used is similar to that in [14].

FPGA Boolean matching, see, e.g., [4], is a subject closely related to functional

decomposition. In [15], Boolean matching was achieved with SAT solving, where

quantified Boolean formulas were converted into CNF formulas. The intrinsic expo-

nential explosion in formula sizes limits the scalability of the approach. Our method

may provide a partial solution to this problem, at least for some special PLB config-

urations.

5.3 Preliminaries

As conventional notation, sets are denoted by upper-case letters, e.g., S; set ele-

ments are in lower-case letters, e.g., e ∈ S. The cardinality of S is denoted by

|S|. A partition of a set S into Si ⊆ S for i = 1, . . . , k (with Si ∩ S j =
∅, i �= j , and

⋃

i Si = S) is denoted by {S1|S2| . . . |Sk}. For a set X of Boolean

70 H.-P. Lin et al.

variables, its set of valuations (or truth assignments) is denoted by [[X]], e.g.,

[[X]] = {(0, 0), (0, 1), (1, 0), (1, 1)} for X = {x1, x2}.

5.3.1 Functional Decomposition

Definition 5.1 Given a completely specified Boolean function f , variable x is a

support variable of f if fx �= f¬x , where fx and f¬x are the positive and negative

cofactors of f on x , respectively.

Definition 5.2 A set { f1(X), . . . , fm(X)} of completely specified Boolean func-

tions is (jointly) decomposable with respect to some variable partition X =
{X H |XG |XC } if every function fi , i = 1, . . . , m, can be written as

fi (X) = hi (X H , XC , g1(XG , XC), . . . , gk(XG, XC))

for some functions hi , g1, . . . , gk with k < |XG |. The decomposition is called

disjoint if XC = ∅ and non-disjoint otherwise.

It is known as single-output decomposition for m = 1 and multiple-output decompo-

sition for m > 1. Note that, in multiple-output decomposition, functions h1, . . . , hm

share the same functions g1, . . . , gk . For k = 1, the decomposition is known as the

so-called Ashenhurst decomposition [1].

Note that, for |XG | = 1, there is no successful decomposition because of the

violation of the criterion k < |XG |. On the other hand, the decomposition trivially

holds if XC ∪ XG or XC ∪ X H equals X . The corresponding variable partition

is called trivial. We are concerned about decomposition under non-trivial variable

partition and furthermore focus on Ashenhurst decomposition.

The decomposability of a set { f1, . . . , fm} of functions under the variable parti-

tion X = {X H |XG |XC } can be analyzed through the so-called decomposition chart,

consisting of a set of matrices, one for each member of [[XC]]. The rows and columns

of a matrix are indexed by {1, . . . , m} × [[X H]] and [[XG]], respectively. For i ∈
{1, . . . , m}, a ∈ [[X H]], b ∈ [[XG]], and c ∈ [[XC]], the entry with row index (i, a)

and column index b of the matrix of c is of value fi (X H = a, XG = b, XC = c).

Proposition 5.1 (Ashenhurst [1], Curtis [6], and Karp [11]) A set { f1, . . . , fm} of

Boolean functions is decomposable as

fi (X) = hi (X H , XC , g1(XG , XC), . . . , gk(XG, XC))

for i = 1, . . . , m under variable partition X = {X H |XG |XC } if and only if, for

every c ∈ [[XC]], the corresponding matrix of c has at most 2k column patterns (i.e.,

at most 2k different kinds of column vectors).

5 Ashenhurst Decomposition Using SAT and Interpolation 71

5.3.2 Functional Dependency

Definition 5.3 Given a Boolean function f : B
m → B and a vector of Boolean

functions G = (g1(X), . . . , gn(X)) with gi : B
m → B for i = 1, . . . , n, over the

same set of variable vector X = (x1, . . . , xm), we say that f functionally depends

on G if there exists a Boolean function h : Bn → B, called the dependency function,

such that f (X) = h(g1(X), . . . , gn(X)). We call functions f , G, and h the target

function, base functions, and dependency function, respectively.

Note that functions f and G are over the same domain in the definition; h need not

depend on all of the functions in G.

The necessary and sufficient condition of the existence of the dependency func-

tion h was given in [8]. Moreover a SAT-based computation of functional depen-

dency was presented in [10]. It forms an important ingredient in part of our formu-

lation.

5.3.3 Propositional Satisfiability and Interpolation

Let V = {v1, . . . , vk} be a finite set of Boolean variables. A literal l is either a

Boolean variable vi or its negated form ¬vi . A clause c is a disjunction of literals.

Without loss of generality, we shall assume that there are no repeated or comple-

mentary literals in the same clause. A SAT instance is a conjunction of clauses,

i.e., in the so-called conjunctive normal form (CNF). An assignment over V gives

every variable vi a Boolean value either true or false. A SAT instance is satisfiable

if there exists a satisfying assignment such that the CNF formula evaluates to true.

Otherwise it is unsatisfiable. Given a SAT instance, the satisfiability (SAT) problem

asks whether it is satisfiable or not. A SAT solver is a designated program to solve

the SAT problem.

5.3.3.1 Refutation Proof and Craig Interpolation

Definition 5.4 Assume literal v is in clause c1 and ¬v in c2. A resolution of clauses

c1 and c2 on variable v yields a new clause c containing all literals in c1 and c2

except for v and ¬v. The clause c is called the resolvent of c1 and c2 and variable v

the pivot variable.

Proposition 5.2 A resolvent c of c1 and c2 is a logical consequence of c1 ∧ c2, that

is, c1 ∧ c2 implies c.

Theorem 5.1 (Robinson [18]) For an unsatisfiable SAT instance, there exists a

sequence of resolution steps leading to an empty clause.

Theorem 5.1 can be easily proved by Proposition 5.2 since an unsatisfiable SAT

instance must imply a contradiction. Often only a subset of the clauses, called an

unsatisfiable core, of the SAT instance participate in the resolution steps leading to

an empty clause.

72 H.-P. Lin et al.

Definition 5.5 A refutation proof Π of an unsatisfiable SAT instance S is a directed

acyclic graph (DAG) Γ = (N , A), where every node in N represents a clause which

is either a root clause in S or a resolvent clause having exactly two predecessor

nodes and every arc in A connects a node to its ancestor node. The unique leaf of Π

corresponds to the empty clause.

Theorem 5.2 (Craig Interpolation Theorem [5]) Given two Boolean formulas ϕA

and ϕB , with ϕA∧ϕB unsatisfiable, then there exists a Boolean formula ψA referring

only to the common variables of ϕA and ϕB such that ϕA ⇒ ψA and ψA ∧ ϕB is

unsatisfiable.

The Boolean formula ψA is referred to as the interpolant of ϕA with respect to

ϕB . Some modern SAT solvers, e.g., MiniSat [7], are capable of constructing an

interpolant from an unsatisfiable SAT instance [16]. Detailed exposition on how

to construct an interpolant from a refutation proof in linear time can be found in

[12, 16, 17]. Note that the so-derived interpolant is in a circuit structure, which can

then be converted into the CNF as discussed below.

5.3.3.2 Circuit-to-CNF Conversion

Given a circuit netlist, it can be converted to a CNF formula in such a way that the

satisfiability is preserved. The conversion is achievable in linear time by introducing

some intermediate variables [21].

5.4 Main Algorithms

We show that Ashenhurst decomposition of a set of Boolean functions { f1, . . . , fm}
can be achieved by SAT solving, Craig interpolation, and functional dependency.

Whenever a non-trivial decomposition exists, we derive functions hi and g automat-

ically for fi (X) = hi (X H , XC , g(XG , XC)) along with the corresponding variable

partition X = {X H |XG |XC }.

5.4.1 Single-Output Ashenhurst Decomposition

We first consider Ashenhurst decomposition for a single function f (X) =
h(X H , XC , g(XG, XC)).

5.4.1.1 Decomposition with Known Variable Partition

Proposition 5.1 in the context of Ashenhurst decomposition of a single function can

be formulated as satisfiability solving as follows.

Proposition 5.3 A completely specified Boolean function f (X) can be expressed

as h(X H , XC , g(XG , XC)) for some functions g and h if and only if the Boolean

5 Ashenhurst Decomposition Using SAT and Interpolation 73

formula

(f (X1
H , X1

G , XC) �≡ f (X1
H , X2

G , XC)) ∧
(f (X2

H , X2
G , XC) �≡ f (X2

H , X3
G , XC)) ∧

(f (X3
H , X3

G , XC) �≡ f (X3
H , X1

G , XC)) (5.1)

is unsatisfiable, where a superscript i in Y i denotes the i th copy of the instantiation

of variables Y .

Observe that formula (5.1) is satisfiable if and only if there exists more than two

distinct column patterns in some matrix of the decomposition chart. Hence its unsat-

isfiability is exactly the condition of Ashenhurst decomposition.

Note that, unlike BDD-based counterparts, the above SAT-based formulation of

Ashenhurst decomposition naturally extends to non-disjoint decomposition. It is

because the unsatisfiability checking of formula (5.1) essentially tries to assert that

under every valuation of variables XC the corresponding matrix of the decomposi-

tion chart has at most two column patterns. In contrast, BDD-based methods have

to check the decomposability under every valuation of XC separately.

Whereas the decomposability of function f can be checked through SAT solving

of formula (5.1), the derivations of functions g and h can be realized through Craig

interpolation and functional dependency, respectively, as shown below.

To derive function g, we partition formula (5.1) into two sub-formulas

ϕA = f (X1
H , X1

G , XC) �≡ f (X1
H , X2

G , XC) and (5.2)

ϕB = (f (X2
H , X2

G , XC) �≡ f (X2
H , X3

G , XC)) ∧
(f (X3

H , X3
G , XC) �≡ f (X3

H , X1
G , XC)) (5.3)

Figure 5.2 shows the corresponding circuit representation of formulas (5.2) and

(5.3). The circuit representation can be converted into a CNF formula in linear time

[21] and thus can be checked for satisfiability.

Fig. 5.2 Circuit representing the conjunction condition of formulas (5.2) and (5.3)

74 H.-P. Lin et al.

Lemma 5.1 For function f (X) decomposable under Ashenhurst decomposition

with variable partition X = {X H |XG |XC }, the interpolant ψA with respect to ϕA of

formula (5.2) and ϕB of formula (5.3) corresponds to a characteristic function such

that,

(i) for ϕA satisfiable under some c ∈ [[XC]], ψA(b1, b2, c) = 1 with b1 ∈ [[X1
G]]

and b2 ∈ [[X2
G]] if and only if the column vectors indexed by b1 and b2 in the

matrix of c of the decomposition chart of f are different;

(ii) for ϕA unsatisfiable under some c ∈ [[XC]], there is only one column pattern in

the matrix of c of the decomposition chart of f ; and

(iii) for unsatisfiable ϕA, variables XG are not the support variables of f and thus

{X H |XG |XC } is a trivial variable partition for f .

Figure 5.3a illustrates the relation characterized by interpolant ψA(X1
G , X2

G , c)

for some c ∈ [[XC]]. The left and right sets of gray dots denote the elements of [[X1
G]]

and [[X2
G]], respectively. For function f to be decomposable, there are at most two

equivalence classes for the elements of [[X i
G]] for i = 1, 2. In the figure, the two

clusters of elements in [[X i
G]] signify two equivalence classes of column patterns

indexed by [[X i
G]]. An edge (b1, b2) between b1 ∈ [[X1

G]] and b2 ∈ [[X2
G]] denotes

that b1 is not in the same equivalence class as b2, i.e., ψA(b1, b2, c) = 1. For exam-

ple, p and r in the figure are in different equivalence classes and ψA(p, r, c) = 1,

whereas p and q are in the same equivalence class and ψA(p, q, c) = 0. Essentially

the set of such edges is characterized by the equivalence relation ψA(X1
G , X2

G , c).

So every element in one equivalence class of [[X1
G]] is connected to every element

in the other equivalence class of [[X2
G]], and vice versa, in Fig. 5.3a.

… …

X1
G X1

GX2
G X2

G

… …

(a) (b)

p

q

r

s

p

q

r

s

p

q

r

s

p

q

r

s

Fig. 5.3 (a) Relation characterized by ψA(X1
G , X2

G , c) for some c ∈ [[XC]]; (b) relation after

cofactoring ψA(X1
G = p, X2

G , c) with respect to some p ∈ [[X1
G]]

We next show how to extract function g from the interpolant ψA.

Lemma 5.2 For an arbitrary a ∈ [[X1
G]], the cofactored interpolant ψA(X1

G =
a, X2

G , XC) is a legal implementation of function g(X2
G, XC).

After renaming X2
G to XG , we get the desired g(XG, XC).

5 Ashenhurst Decomposition Using SAT and Interpolation 75

Consider Fig. 5.3. After cofactoring ψA(X1
G , X2

G , c) with respect to p ∈ [[X1
G]],

all the edges in Fig. 5.3a will disappear except for the ones connecting p with

the elements in the other equivalence class of [[X2
G]] as shown in Fig. 5.3b. Hence

ψA(p, X2
G , c) can be used as an implementation of g function.

So far we have successfully obtained function g by interpolation. Next we need

to compute function h. The problem can be formulated as computing functional

dependency as follows. Let f (X) be our target function; let function g(XG, XC)

and identity functions ıx (x) = x , one for every variable x ∈ X H ∪ XC , be our

base functions. So the computed dependency function corresponds to our desired h.

Since functional dependency can be formulated using SAT solving and interpolation

[10], it well fits in our computation framework.

Remark 5.1 For disjoint decomposition, i.e., XC = ∅, we can simplify the derivation

of function h, without using functional dependency.

Given two functions f (X) and g(XG) with variable partition X = {X H |XG}, we

aim to find a function h(X H , xg) such that f (X) = h(X H , g(XG)), where xg is the

output variable of function g(XG). Let a, b ∈ [[XG]] with g(a) = 0 and g(b) = 1.

Then by Shannon expansion

h(X H , xg) = (¬xg ∧ h¬xg (X H)) ∨ (xg ∧ hxg (X H))

where h¬xg (X H) = f (X H , XG = a) and hxg (X H) = f (X H , XG = b). The

derivation of the offset and onset minterms is easy because we can pick an arbitrary

minterm c in [[XG]] and see if g(c) equals 0 or 1. We then perform SAT solving on

either g(XG) or ¬g(XG) depending on the value g(c) to derive another necessary

minterm.

The above derivation of function h, however, does not scale well for decom-

position with large |XC | because we may need to compute h(X H , XC = c, xg),

one for every valuation c ∈ [[XC]]. There are 2|XC | cases to analyze. Consequently

when common variables exist, functional dependency may be a better approach to

computing h.

The correctness of the so-derived Ashenhurst decomposition follows from

Lemma 5.2 and Proposition 5.1, as the following theorem states.

Theorem 5.3 Given a function f decomposable under Ashenhurst decomposition

with variable partition X = {X H |XG |XC }, then f (X) = h(X H , XC , g(XG, XC))

for functions g and h obtained by the above derivation.

5.4.1.2 Decomposition with Unknown Variable Partition

The previous construction assumes that a variable partition X = {X H |XG |XC } is

given. We show how to automate the variable partition within the decomposition

process of function f . A similar approach was used in [14] for bi-decomposition of

Boolean functions.

For each variable xi ∈ X we introduce two control variables αxi
and βxi

. In

addition we instantiate variable X into six copies X1, X2, X3, X4, X5, and X6. Let

76 H.-P. Lin et al.

ϕA = (f (X1) �≡ f (X2)) ∧
∧

i

((x1
i ≡ x2

i) ∨ βxi
) (5.4)

and

ϕB = (f (X3) �≡ f (X4)) ∧ (f (X5) �≡ f (X6)) ∧
∧

i

(((x2
i ≡ x3

i) ∧ (x4
i ≡ x5

i) ∧ (x6
i ≡ x1

i)) ∨ αxi
) ∧

∧

i

(((x3
i ≡ x4

i) ∧ (x5
i ≡ x6

i)) ∨ βxi
) (5.5)

where x
j

i ∈ X j for j = 1, . . . , 6 are the instantiated versions of xi ∈ X . Observe

that (αxi
, βxi

) = (0, 0), (0, 1), (1, 0), and (1, 1) indicate that xi ∈ XC , xi ∈ XG ,

xi ∈ X H , and xi can be in either of XG and X H , respectively.

In SAT solving the conjunction of formulas (5.4) and (5.5), we make unit

assumptions [7] on the control variables. Similar to [14] but with a subtle differ-

ence, we introduce the following seed variable partition to avoid trivial variable

partition and to avoid |XG | = 1. For the unit assumption, initially we specify three

distinct variables with one, say, x j , in X H and two, say, xk, xl , in XG and specify

all other variables in XC . That is, we have (αx j
, βx j

) = (1, 0), (αxk
, βxk

) = (0, 1),

(αxl
, βxl

) = (0, 1), and (αxi
, βxi

) = (0, 0) for i �= j, k, l.

Lemma 5.3 For an unsatisfiable conjunction of formulas (5.4) and (5.5) under a

seed variable partition, the final conflict clause consists of only the control vari-

ables, which indicates a valid non-trivial variable partition.

If the conjunction of formulas (5.4) and (5.5) is unsatisfiable under a seed vari-

able partition, then the corresponding decomposition (indicated by the final conflict

clause) is successful. Otherwise, we should try another seed variable partition. For a

given function f (X) with |X | = n, the existence of non-trivial Ashenhurst decom-

position can be checked with at most 3 · Cn
3 different seed partitions.

Rather than just looking for a valid variable partition, we may further target one

that is more balanced (i.e., |X H | and |XG | are of similar sizes) and closer to dis-

joint (i.e., |XC | is small) by enumerating different seed variable partitions. As SAT

solvers usually refer to a small unsatisfiable core, the returned variable partition is

desirable because |XC | tends to be small. Even if a returned unsatisfiable core is

unnecessarily large, the corresponding variable partition can be further refined by

modifying the unit assumption to reduce the unsatisfiable core and reduce |XC | as

well. The process can be iterated until the unsatisfiable core is minimal.

After automatic variable partition, functions g and h can be derived through a

construction similar to the foregoing one. The correctness of the overall construction

can be asserted.

Theorem 5.4 For a function f decomposable under Ashenhurst decomposition, we

have f (X) = h(X H , XC , g(XG , XC)) for functions g and h and a non-trivial vari-

able partition X = {X H |XG |XC } derived from the above construction.

5 Ashenhurst Decomposition Using SAT and Interpolation 77

Fig. 5.4 Circuit to be decomposed

Example 5.1 To illustrate the computation, consider the circuit of Fig. 5.4. The first

step is to derive a valid variable partition. To exclude trivial partition, suppose we

force variables a and b in XG and d in X H . Then the assignments along with the

assignments of the other variables, i.e., c and e, in XC form a seed variable parti-

tion. These conditions can be specified by unit assumption setting control variables

(αa, βa) = (αb, βb) = (0, 1), (αd , βd) = (1, 0), and (αc, βc) = (αe, βe) = (0, 0).

Solving the conjunction of formulas (5.4) and (5.5) under the unit assumption results

in an unsatisfiable result. It indicates that the seed partition is valid. Furthermore

suppose the returned conflict clause is (αa∨αb∨αc∨βc∨βd∨βe). It corresponds to

a valid partition suggesting that c ∈ XC , a, b ∈ XG , and d, e ∈ X H . For illustration

convenience, the decomposition chart of the circuit under this variable partition is

given in Fig. 5.5.

Given a valid variable partition, the second step is to derive the corresponding g

function. In turn, an interpolant can be derived from the unsatisfiability proof of the

conjunction of formulas (5.2) and (5.3). Suppose the derived interpolant is

ψA = ¬a1b1¬c1a2¬b2¬c2 ∨ a1¬b1¬c1¬a2¬c2 ∨ a1¬c1¬a2b2¬c2 ∨
¬b1c1¬a2b2c2 ∨ a1c1¬a2b2c2 ∨ ¬a1b1c1¬b2c2 ∨ ¬a1b1c1a2c2

Then the Boolean relation characterized by the interpolant can be depicted in

Fig. 5.6a, where the solid and dashed circles indicate different column patterns

in the decomposition chart of Fig. 5.5. Note that, when c = 0, there is only one

78 H.-P. Lin et al.

Fig. 5.5 Decomposition chart

column pattern in the decomposition chart as shown in Fig. 5.5. In effect both for-

mulas (5.2) and (5.3) are themselves unsatisfiable when c = 0. Hence the interpolant

under c = 0 is unconstrained and can be arbitrary. On the other hand, when c = 1,

the interpolant corresponds to the Boolean relation characterizing different column

patterns of the decomposition chart as indicated in Fig. 5.6. By cofactoring the

interpolant with (a1 = 0, b1 = 0), we obtain a legal implementation of function

g(a, b, c) after renaming variables a2 to a, b2 to b, and c1 and c2 to c. Note that the

Fig. 5.6 (a) Relation characterized by interpolant and (b) cofactored relation

5 Ashenhurst Decomposition Using SAT and Interpolation 79

derivation of the g function is not unique, which depends on the cofactoring values

of (a1, b1).

Finally the third step is to derive the h function using functional dependency com-

putation. In the computation, as shown in Fig. 5.7a the base functions include the

obtained g function and identity functions each representing a variable in X H ∪ XC .

Furthermore the original f function in Fig. 5.4 is considered as the target func-

tion. Under such arrangement, the computed dependency function is what we desire

for the h function. In this example the derived h function is shown in Fig. 5.7b.

Therefore after Ashenhurst decomposition, f (a, b, c, d, e) can be re-expressed by

h(d, e, c, g(a, b, c)) with g and h functions derived above.

Fig. 5.7 (a) Base functions for functional dependency computation and (b) computed dependency

function

5.4.2 Multiple-Output Ashenhurst Decomposition

So far we considered single-output Ashenhurst decomposition for a single function

f . We show that the algorithm is extendable to multiple-output Ashenhurst decom-

position for a set { f1, . . . , fm} of functions.

Proposition 5.1 in the context of Ashenhurst decomposition of a set of functions

can be formulated as satisfiability solving as follows.

Proposition 5.4 A set { f1(X), . . . , fm(X)} of completely specified Boolean func-

tions can be expressed as

fi (X) = hi (X H , XC , g(XG, XC))

for some functions hi and g with i = 1, . . . , m if and only if the Boolean formula

80 H.-P. Lin et al.

(

∨

i

fi (X1
H , X1

G , XC) �≡ fi (X1
H , X2

G , XC)

)

∧
(

∨

i

fi (X2
H , X2

G , XC) �≡ fi (X2
H , X3

G , XC)

)

∧
(

∨

i

fi (X3
H , X3

G , XC) �≡ fi (X3
H , X1

G , HC)

)

(5.6)

is unsatisfiable.

Since the derivation of functions g and hi and automatic variable partitioning are

essentially the same as the single-output case, we omit the detailed exposition.

5.4.3 Beyond Ashenhurst Decomposition

Is the above algorithm extendable to general functional decomposition, namely,

f (X) = h(X H , XC , g1(XG , XC), . . . , gk(XG , XC))

for k > 1? The answer is yes, but with prohibitive cost. Taking k = 2, for exam-

ple, we need 20 copies of f to assert the non-existence of 5 different column pat-

terns for every matrix of a decomposition chart, in contrast to the 6 for Ashenhurst

decomposition shown in Fig. 5.2. This number grows in 2k(2k + 1). Aside from

this duplication issue, the derivation of functions g1, . . . , gk and h may involve

several iterations of finding satisfying assignments and performing cofactoring. The

number of iterations varies depending on how the interpolation is computed and can

be exponential in k. Therefore we focus mostly on Ashenhurst decomposition.

5.5 Experimental Results

The proposed approach to Ashenhurst decomposition was implemented in C++

within the ABC package [2] and used MiniSAT [7] as the underlying solver. All

the experiments were conducted on a Linux machine with Xeon 3.4 GHz CPU and

6 GB RAM.

Large ISCAS, MCNC, and ITC benchmark circuits were chosen to evaluate the

proposed method. Only large transition and output functions (with no less than 50

inputs in the transitive fanin cone) were considered. We evaluated both single-output

and two-output Ashenhurst decompositions. For the latter, we decomposed simul-

taneously a pair of functions with similar input variables. For a circuit, we heuris-

tically performed pairwise matching among its transition and output functions for

decomposition. Only function pairs with joint input variables no less than 50 were

5 Ashenhurst Decomposition Using SAT and Interpolation 81

decomposed. Note that the experiments target the study of scalability, rather than

comprehensiveness as a synthesis methodology.

Tables 5.1 and 5.2 show the decomposition statistics of single-output and two-

output decompositions, respectively. In these tables, circuits to be decomposed are

listed in column 1. Columns 2 and 3 list the numbers of instances (i.e., functions for

single-output decomposition and function pairs for two-output decomposition) with

no less than 50 inputs and the ranges of the input sizes of these instances, respec-

tively. Column 4 lists the numbers of instances that we cannot find any successful

variable partition within 60 s or within 1500 seed variable partitions. Column 5 lists

the numbers of instances that are decomposable but spending over 30 s in SAT solv-

ing for the derivation of function g or h. Columns 6 and 7 list the numbers of suc-

cessfully decomposed instances and the ranges of the input sizes of these instances,

respectively. Columns 8 and 9 list the average numbers of tried seed partitions in

60 s and the average rates hitting valid seed partitions. Column 10 shows the aver-

age CPU times spending on decomposing an instance. Finally, Column 11 shows

the memory consumption. As can be seen, our method can effectively decompose

functions or function pairs with up to 300 input variables.

Table 5.1 Single-output Ashenhurst decomposition

Circuit #func #var #fail #SAT_TO #succ #var_succ #VP_avg rate_valid-VP time_avg (s) mem (Mb)

b14 153 50–218 0 108 45 50–101 1701 0.615 144.22 90.01

b15 370 143–306 0 51 319 143–306 1519 0.917 96.62 107.20

b17 1009 76–308 0 148 861 76–308 1645 0.904 87.12 125.84

C2670 6 78–122 0 1 5 78–122 1066 0.835 83.80 58.91

C5315 20 54–67 0 4 16 54–67 3041 0.914 50.90 51.34

C7552 36 50–194 0 2 34 50–194 1350 0.455 64.38 36.65

s938 1 66–66 0 0 1 66–66 3051 0.726 19.03 24.90

s1423 17 51–59 0 0 17 51–59 3092 0.723 13.66 25.34

s3330 1 87–87 0 0 1 87–87 3336 0.599 58.30 27.75

s9234 13 54–83 0 0 13 54–83 3482 0.857 37.86 35.33

s13207 3 212–212 0 0 3 212–212 569 0.908 70.26 50.62

s38417 256 53–99 6 72 178 53–99 1090 0.523 103.33 136.04

s38584 7 50–147 0 0 7 50–147 1120 0.924 47.13 51.56

Table 5.2 Two-output Ashenhurst decomposition

Circuit #pair #var #fail #SAT_TO #succ #var_succ #VP_avg rate_valid-VP time_avg (s) mem (Mb)

b14 123 50–223 18 65 40 50–125 1832 0.568 96.86 226.70

b15 201 145–306 0 31 170 145–269 1176 0.845 113.86 224.07

b17 583 79–310 0 88 495 79–308 676 0.824 103.12 419.35

C2670 5 78–123 0 1 4 78–123 254 0.724 66.95 55.71

C5315 11 56–69 0 2 9 56–69 370 0.594 59.20 60.05

C7552 21 56–195 0 2 19 56–141 188 0.465 89.57 78.67

s938 1 66–66 0 0 1 66–66 3345 0.720 61.24 34.77

s1423 14 50–67 0 0 14 50–67 3539 0.591 55.34 45.66

s3330 1 87–87 0 0 1 87–87 1278 0.423 66.83 47.43

s9234 12 54–83 0 0 12 54–83 2193 0.708 48.11 55.15

s13207 3 212–228 0 0 3 212–228 585 0.700 93.36 118.03

s38417 218 53–116 13 30 175 53–116 689 0.498 109.06 319.48

s38584 9 50–151 0 0 9 50–151 1656 0.713 46.17 207.78

82 H.-P. Lin et al.

Fig. 5.8 Best variable partition found in 60 s – without minimal UNSAT core refinement

Fig. 5.9 Best variable partition found in 60 s – with minimal UNSAT core refinement

We measure the quality of a variable partition in terms of disjointness, indicated

by |XC |/|X |, and balancedness, indicated by ||XG | − |X H ||/|X |. The smaller the

values are, the better a variable partition is. Figures 5.8 and 5.9 depict, for each

decomposition instance, the quality of best variable partition found within 60 s1 in

terms of the above two metrics, with emphasis on disjointness. A spot on these

two figures corresponds to a variable partition for some decomposition instance.

Figs. 5.8 and 5.9 show the variable partition data without and with further minimal

1 The search for a best variable partition may quit before 60 s if both disjointness and balancedness

cannot be improved in consecutive 1500 trials.

5 Ashenhurst Decomposition Using SAT and Interpolation 83

unsatisfiable (UNSAT) core refinement2, respectively. Since a final conflict clause

returned by a SAT solver may not reflect a minimal UNSAT core, very likely we can

further refine the corresponding variable partition. Suppose the variable partition is

X = {X H |XG |XC } before the refinement. We iteratively and greedily try to move a

common variable of XC into XG or X H , if available, making the new partition more

balanced as well. The iteration continues until no such movement is possible. On the

other hand, for a variable x with control variables (αx , βx) = (1, 1), indicating x can

be placed in either of X H and XG , we put it in the one such that the final partition

is more balanced. Comparing Figs. 5.8 and 5.9, we see that minimal UNSAT core

refinement indeed can substantially improve the variable partition quality. Specifi-

cally, the improvement is 42.37% for disjointness and 5.74% for balancedness.

Figure 5.10 compares the qualities of variable partitioning under four different

efforts. In the figure, “1st” denotes the first-found valid partition and “tsec” denotes

the best found valid partition in t seconds. The averaged values of |XC |/|X | and

||XG | − |X H ||/|X | with and without minimal UNSAT core refinement are plotted.

In our experiments, improving disjointness is preferable to improving balancedness.

These two objectives, as can be seen, are usually mutually exclusive. Disjointness

can be improved at the expense of sacrificing balancedness and vice versa. The

figure reveals as well the effectiveness of the minimal UNSAT core refinement in

Fig. 5.10 Variable partition qualities under four different efforts

2 For every decomposition instance, the UNSAT core refinement is applied only once to the best

found variable partition. The CPU times listed in Tables 5.1 and 5.2 include those spent on such

refinements.

84 H.-P. Lin et al.

improving disjointness. It is interesting to note that, on average, 1337 seed partitions

are tried in 60 s, in contrast to 3 seed partitions tried to identify the first valid one.

Practical experience suggests that the AIG sizes and levels of the composition

functions g and h are typically much larger than those of the original function f by

an order of magnitude, despite the reduction of support variables. How to minimize

interpolants effectively becomes an important subject for our method to directly

benefit logic synthesis.

5.6 Chapter Summary

A new formulation of Ashenhurst decomposition was proposed based on SAT solv-

ing, Craig interpolation, and functional dependency. Traditionally difficult non-

disjoint and multiple-output decompositions can be handled naturally. Moreover

variable partition need not be specified a priori and can be embedded in the decom-

position process. It allows effective enumeration over a wide range of partition

choices, which is not possible before. Although Ashenhurst decomposition is a

special case of functional decomposition, its simplicity is particularly attractive and

preferable.

Because of its scalability to large designs as justified by experimental results,

our approach can be applied at a top level of hierarchical decomposition in logic

synthesis, which may provide a global view on optimization. It can be a step forward

toward topologically constrained logic synthesis.

For future work, how to perform general functional decomposition and how

to minimize interpolants await future investigation. Also the application of our

approach to FPGA Boolean matching can be an interesting subject to explore.

References

1. Ashenhurst, R.L.: The decomposition of switching functions. Computation Laboratory 29,

74–116 (1959)

2. Berkeley Logic Synthesis and Verification Group: ABC: A system for sequential synthesis and

verification (2005). http://www.eecs.berkeley.edu/∼alanmi/abc/(2008)

3. Chang, S.C., Marek-Sadowska, M., Hwang, T.T.: Technology mapping for TLU FPGA’s based

on decomposition of binary decision diagrams. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems 15(10), 1226–1236 (1996)

4. Cong, J., Hwang, Y.Y.: Boolean matching for LUT-based logic blocks with applications

to architecture evaluation and technology mapping. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems 20(9), 1077–1090 (2001)

5. Craig, W.: Linear reasoning: A new form of the Herbrand-Gentzen theorem. Journal of Sym-

bolic Logic 22(3), 250–268 (1957)

6. Curtis, A.: A New Approach to the Design of Switching Circuits. Van Nostrand, Princeton,

NJ (1962)

7. Eén, N., Söensson, N.: An extensible SAT-solver. In: Proceedings of International Confer-

ence on Theory and Applications of Satisfiability Testing pp. 502–518. Santa Margherita

Ligure, Italy (2003)

5 Ashenhurst Decomposition Using SAT and Interpolation 85

8. Jiang, J.H.R., Brayton, R.K.: Functional dependency for verification reduction. In: Proceed-

ings of the International Conference on Computer Aided Verification, pp. 268–280. Boston,

MA, USA (2004)

9. Jiang, J.H.R., Jou, J.Y., Huang, J.D.: Compatible class encoding in hyper-function decomposi-

tion for FPGA synthesis. In: Proceedings of the Design Automation Conference, pp. 712–717.

San Francisco, CA, USA (1998)

10. Jiang, J.H.R., Lee, C.C., Mishchenko, A., Huang, C.Y.: To SAT or Not to SAT: Scalable explo-

ration of functional dependency. IEEE Transactions on Computers 59(4), 457–467 (2010)

11. Karp, R.M.: Functional decomposition and switching circuit design. Journal of the Society for

Industrial and Applied Mathematics 11(2), 291–335 (1963)

12. Krajicek, J.: Interpolation theorems, lower bounds for proof systems, and independence results

for bounded arithmetic. Journal of Symbolic Logic 62(2), 457–486 (1997)

13. Lai, Y.T., Pan, K.R., Pedram, M.: OBDD-based function decomposition: Algorithms and

implementation. IEEE Transactions on Computer Aided Design of Integrated Circuits and

Systems 15(8), 977–990 (1996)

14. Lee, R.R., Jiang, J.H.R., Hung, W.L.: Bi-decomposing large Boolean functions via inter-

polation and satisfiability solving. In: Proceedings of the Design Automation Conference,

pp. 636–641. Anaheim, CA, USA (2008)

15. Ling, A., Singh, D., Brown, S.: FPGA technology mapping: A study of optimality. In: Pro-

ceedings of the Design Automation Conference, pp. 427–432. San Diego, CA, USA (2005)

16. McMillan, K.L.: Interpolation and SAT-based model checking. In: Proceedings of the Interna-

tional Conference on Computer Aided Verification, pp. 1–13. Boulder, CO, USA (2003)

17. Pudlak, P.: Lower bounds for resolution and cutting plane proofs and monotone computations.

Journal of Symbolic Logic 62(3), 981–998 (1997)

18. Robinson, J.A.: A machine-oriented logic based on the resolution principle. Journal of the

ACM 12(1), 23–41 (1965)

19. Scholl, C.: Functional Decomposition with Applications to FPGA Synthesis. Dordrecht, The

Netherlands (2001)

20. Sinha, S., Mishchenko, A., Brayton, R.K.: Topologically constrained logic synthesis. In: Pro-

ceedings of the International Conference on Computer Aided Design, pp. 679–686. San Jose,

CA, USA (2002)

21. Tseitin, G.: On the complexity of derivation in propositional calculus. In: A.O. Slisenko (ed.)

Studies in Constructive Mathematics and Mathematical Logic, Part II, vol. 8, p. 280. Serial

Zap. Nauchn. Sem. LOMI. Nauka, Leningrad (1968)

22. Wurth, B., Schlichtmann, U., Eckl, K., Antreich, K.: Functional multiple-output decom-

position with application to technology mapping for lookup table-based FPGAs. ACM

Transactions on Design Automation of Electronic Systems 4(3), 313–350 (1999)

Chapter 6

Bi-decomposition Using SAT and Interpolation

Ruei-Rung Lee, Jie-Hong Roland Jiang, and Wei-Lun Hung

Abstract Boolean function bi-decomposition is a fundamental operation in

logic synthesis. A function f (X) is bi-decomposable under a variable partition

X A, X B , XC on X if it can be written as h(f A(X A, XC), fB(X B, XC)) for some

functions h, f A, and fB . The quality of a bi-decomposition is mainly determined

by its variable partition. A preferred decomposition is disjoint, i.e., XC = ∅, and

balanced, i.e., |X A| ≈ |X B |. Finding such a good decomposition reduces com-

munication and circuit complexity and yields simple physical design solutions.

Prior BDD-based methods may not be scalable to decompose large functions due

to the memory explosion problem. Also as decomposability is checked under a

fixed variable partition, searching a good or feasible partition may run through

costly enumeration that requires separate and independent decomposability check-

ings. This chapter proposes a solution to these difficulties using interpolation and

incremental SAT solving. Preliminary experimental results show that the capacity

of bi-decomposition can be scaled up substantially to handle large designs.

6.1 Introduction

Functional decomposition [1, 7] is a fundamental operation on Boolean functions

that decomposes a large function f on variables X into a set of small subfunctions

h, g1, . . . , gm with f (X) = h(g1(X), . . . , gm(X)), often m < |X |. It plays a piv-

otal role in the study of circuit and communication complexity and has important

applications on multilevel and FPGA logic synthesis. Extensive research has been

published on this subject, see, e.g., [15] for an introduction.

When m = 2, the decomposition is known as bi-decomposition [4, 5, 11, 14, 16],

the simplest non-trivial case, yet the most widely applied since a logic netlist is often

J.-H.R. Jiang (B)

National Taiwan University, Taipei, Taiwan

e-mail: jhjiang@cc.ee.ntu.edu.tw

This work is based on an earlier work: Bi-decomposing large Boolean functions via inter-

polation and satisfiability solving, in Proceedings of the 45th Annual Design Automation

Conference, ISBN ISSN:0738-100X , 978-1-60558-115-6 (2008) c© ACM, 2008. DOI=

http://doi.acm.org/10.1145/1391469.1391634

S.P. Khatri, K. Gulati (eds.), Advanced Techniques in Logic Synthesis,

Optimizations and Applications, DOI 10.1007/978-1-4419-7518-8_6,
C© Springer Science+Business Media, LLC 2011

87

88 R.-R. Lee et al.

expressed as a network of two-fanin gates. A primary issue of bi-decomposition is

variable partition. For f (X) = h(f A(X A, XC), fB(X B, XC)), the variable parti-

tion {X A, X B , XC } on X (i.e., X A, X B, XC are pairwise disjoint and X A ∪ X B ∪
XC = X) mainly determines the decomposition quality. A particularly desirable

bi-decomposition is disjoint, i.e., |XC | = 0, and balanced, i.e., |X A| ≈ |X B |.
Figure 6.1 shows the general circuit topology of bi-decomposition. An ideal bi-

decomposition reduces circuit and communication complexity and in turn simplifies

physical design. Effective approaches to bi-decomposition can be important not only

in large-scale circuit minimization but also in early design closure if combined well

with physical design partitioning.

XA

f
hXB

XC

XA

XB

XC

fA

fB

Fig. 6.1 Bi-decomposition

Modern approaches to bi-decomposition, such as [11], were based on BDD

data structure for its powerful capability supporting various Boolean manipulations.

They are, however, not scalable to handle large Boolean functions due to the com-

mon memory explosion problem. Furthermore, the variable partition problem can-

not be solved effectively. Because decomposability is checked under a fixed variable

partition, searching a good or even feasible partition may run through costly enu-

meration that requires separate and independent decomposability checkings.

To overcome these limitations, this chapter proposes a solution based on sat-

isfiability (SAT) solving. The formulation is motivated by the recent work [9],

where a SAT-based formulation made the computation of functional dependency

scalable to large designs. Our main results include (1) a pure SAT-based solution to

bi-decomposition, (2) subfunction derivation by interpolation and cofactoring, and

(3) automatic variable partitioning by incremental solving under unit assumptions.

Thereby the scalability of bi-decomposition and the optimality of variable partition

can be substantially improved. Experiments show promising results on the scalabil-

ity of bi-decomposition and the optimality of variable partitioning.

6.2 Previous Work

There has been several bi-decomposition methods developed over the past two

decades. Among them, the efforts [4, 16] laid the early formulation of (AND,

OR, and XOR) bi-decomposition. Bi-decomposition through irredundant sum-of-

products expression and positive polarity Reed–Muller expression was studied in

6 Bi-decomposition Using SAT and Interpolation 89

[14]. Its capacity is limited due to the expensiveness of representing functions

in these expressions. Later BDD-based improvements were actively pursued. For

example, a BDD-based approach to bi-decomposing multiple-output incompletely

specified functions was proposed in [11]. On the other hand, logic bi-decomposition

may have different optimization objectives, e.g., support minimization [18], timing

minimization [5]. An effective BDD-based disjoint-support decomposition was pro-

posed in [3]. The computation complexity is polynomial in the BDD size, and the

decomposition is not restricted to bi-decomposition. However, the decomposition

was done with respect to the BDD structure for a fixed variable ordering. As BDD-

based methods suffer from the memory explosion problem, they are not scalable to

decompose large Boolean functions.

In comparison with the closest work [11], in addition to the scalability and

variable partitioning issues, we focus on strong decomposition (namely, X A and

X B cannot be empty), whereas [11] gave a more general approach allowing weak

decomposition (namely, X A or X B can be empty). Moreover, as don’t cares are

better handled in BDD than in SAT, they were exploited in [11] for logic sharing.

6.3 Preliminaries

As conventional notation, sets are denoted in upper-case letters, e.g., S; set elements

are in lower-case letters, e.g., e ∈ S. The cardinality of S is denoted as |S|. A parti-

tion of a set S into Si ⊆ S for i = 1, . . . , k (with Si∩S j = ∅, i �= j , and
⋃

i Si = S)

is denoted as {S1|S2| . . . |Sk}. For a set X of Boolean variables, its set of valuations

(or truth assignments) is denoted as [[X]], e.g., [[X]] = {(0, 0), (0, 1), (1, 0), (1, 1)}
for X = {x1, x2}.

6.3.1 Bi-Decomposition

Definition 6.1 Given a completely specified Boolean function f , variable x is a

support variable of f if fx �= f¬x , where fx and f¬x are the positive and negative

cofactors of f on x , respectively.

Definition 6.2 An incompletely specified function F is a 3-tuple (q, d, r), where the

completely specified functions q, d, and r represent the onset, don’t care set, and

offset functions, respectively.

Definition 6.3 A completely specified function f (X) is 〈OP〉 bi-decomposable, or

simply 〈OP〉-decomposable, under variable partition X = {X A|X B |XC } if it can

be written as f (X) = f A(X A, XC) 〈OP〉 fB(X B, XC), where 〈OP〉 is some binary

operator. The decomposition is called disjoint if XC = ∅ and non-disjoint otherwise.

Note that bi-decomposition trivially holds if X A ∪ XC or X B ∪ XC equals X . The

corresponding variable partition is called trivial. We are concerned about non-trivial

90 R.-R. Lee et al.

bi-decomposition. In the sequel, a binary operator 〈OP〉 can be OR2, AND2, and

XOR. Essentially OR2-, AND2-, and XOR-decompositions form the basis of all types

of bi-decompositions because any bi-decomposition is simply one of the three cases

with some proper complementation on f , f A, and/or fB .

6.3.2 Propositional Satisfiability

Let V = {v1, . . . , vk} be a finite set of Boolean variables. A literal l is either a

Boolean variable vi or its negation ¬vi . A clause c is a disjunction of literals. With-

out loss of generality, we shall assume that there are no repeated or complementary

literals appearing in the same clause. A SAT instance is a conjunction of clauses,

i.e., in the so-called conjunctive normal form (CNF). In the sequel, a clause set

C = {c1, . . . , ck} shall mean to be the CNF formula c1 ∧ · · · ∧ ck . An assignment

over V gives every variable vi a Boolean value either 0 or 1. A SAT instance is sat-

isfiable if there exists a satisfying assignment such that the CNF formula evaluates

to 1. Otherwise it is unsatisfiable.

6.3.2.1 Refutation Proof and Craig Interpolation

Definition 6.4 Assume literal v is in clause c1 and ¬v in c2. A resolution of clauses

c1 and c2 on variable v yields a new clause c containing all literals in c1 and c2

except for v and ¬v. The clause c is called the resolvent of c1 and c2 and variable v

the pivot variable.

Theorem 6.1 (Robinson [13]) For an unsatisfiable SAT instance, there exists a

sequence of resolution steps leading to an empty clause.

Often only a subset of the clauses of a SAT instance participates in the resolution

steps leading to an empty clause.

Definition 6.5 A refutation proof Π of an unsatisfiable SAT instance C is a directed

acyclic graph (DAG) Γ = (N , A), where every node in N represents a clause which

is either a root clause in C or a resolvent clause having exactly two predecessor

nodes, and every arc in A connects a node to its ancestor node. The unique leaf of

Π corresponds to the empty clause.

Modern SAT solvers (e.g., MiniSat [8]) are capable of producing a refutation proof

from an unsatisfiable SAT instance.

Theorem 6.2 (Craig Interpolation Theorem [6]) For any two Boolean formulas φA

and φB with φA∧φB unsatisfiable, then there exists a Boolean formula φA′ referring

only to the common input variables of φA and φB such that φA ⇒ φA′ and φA′ ∧φB

is unsatisfiable.

The Boolean formula φA′ is referred to as the interpolant of φA and φB . We shall

assume that φA and φB are in CNF. So a refutation proof of φA ∧ φB is available

from a SAT solver. How to construct an interpolant circuit from a refutation proof

in linear time can be found in, e.g., [10].

6 Bi-decomposition Using SAT and Interpolation 91

6.3.3 Circuit to CNF Conversion

Given a circuit netlist, it can be converted to a CNF formula in such a way that

the satisfiability is preserved [17]. The conversion is achievable in linear time by

introducing extra intermediate variables. In the sequel, we shall assume that the

clause set of a Boolean formula φ (similarly ¬φ) is available from such conversion.

6.4 Our Approach

6.4.1 OR Bi-decomposition

We show that OR2-decomposition can be achieved using SAT solving. Whenever

a non-trivial OR2-decomposition exists, we obtain a feasible variable partition and

the corresponding subfunctions f A and fB .

6.4.1.1 Decomposition of Completely Specified Functions

Decomposition with Known Variable Partition

Given a function f (X) and a non-trivial variable partition X = {X A|X B |XC }, we

study if f can be expressed as f A(X A, XC) ∨ fB(X B, XC) for some functions f A

and fB .

The following proposition lays the foundation of OR2-decomposition.

Proposition 6.1 (Mischenko et al. [11]) A completely specified function f (X) can

be written as f A(X A, XC)∨ fB(X B, XC) for some functions f A and fB if and only

if the quantified Boolean formula

f (X) ∧ ∃X A.¬ f (X) ∧ ∃X B .¬ f (X) (6.1)

is unsatisfiable.

It can be restated as follows.

Proposition 6.2 A completely specified function f (X) can be written as

f A(X A, XC)∨ fB(X B, XC) for some functions f A and fB if and only if the Boolean

formula

f (X A, X B, XC) ∧ ¬ f (X ′A, X B , XC) ∧ ¬ f (X A, X ′B , XC) (6.2)

is unsatisfiable, where variable set Y ′ is an instantiated version of variable set Y .

By renaming quantified variables, the quantifiers of Formula (6.1) can be removed.

That is, Formula (6.1) can be rewritten as the quantifier-free formula of (6.2) because

existential quantification is implicit in satisfiability checking. Note that the comple-

mentations in Formulas (6.1) and (6.2) need not be computed. Rather, the comple-

mentations can be achieved by adding inverters in the corresponding circuit before

92 R.-R. Lee et al.

circuit-to-CNF conversion or alternatively by asserting the corresponding variables

to be false in SAT solving.

The decomposability of a function under OR2-decomposition can be explained

through the visualization of a decomposition chart, which consists of 2|XC | two-

dimensional tables corresponding to the valuations of XC , whereas each table has its

columns and rows indexed by the valuations of X A and X B , respectively. An entry in

the decomposition chart corresponds to the function value under the corresponding

valuations of X A, X B , and XC . A function is decomposable if and only if, for every

1-entry in a table of the decomposition chart, its situated column and row cannot

contain 0-entries. (It is because this 1-entry after bi-decomposition must result from

f A = 1 or fB = 1 under the corresponding valuation of X . Moreover f A = 1 and

fB = 1 in turn make the entire column and row, respectively, valuated to 1.)

To illustrate, Fig. 6.2 shows that function f (a, b, c, d) = ¬ab ∨ c¬d under

variable partition X A = {a, b}, X B = {c, d}, and XC = ∅ is OR2-decomposable

with f A(X A) = ¬ab and fB(X B) = c¬d. In contrast, Fig. 6.3 shows that function

f (a, b, c, d) = ¬ab ∨ c¬d ∨ a¬bc under the same variable partition is not OR2-

decomposable because of the problematic 1-entry of (a, b, c, d) = (1, 0, 1, 1). In

this case, Formula (6.2) is satisfiable. Note that, in Formula (6.2), f (X A, X B, XC)

0 1 0 0

0 1 0 0

1 1 1 1

0 1 0 0

00 01 10 11

00

01

10

11

XA
XB

0 1 0 0fA(XA)

0

0

1

0

fB(XB)

f(XA,XB)

Fig. 6.2 A function decomposable subject to OR2-decomposition

0 1 0 0

0 1 0 0

1 1 1 1

0 1 1 0

00 01 10 11

00

01

10

11

XA
XB

0 1 ? 0fA(XA)

0

0

1

?

fB(XB)

f(XA, XB)

Fig. 6.3 A function not decomposable subject to OR2-decomposition

6 Bi-decomposition Using SAT and Interpolation 93

asserts that there exists a 1-entry in the decomposition chart; ¬ f (X ′A, X B, XC)

and ¬ f (X A, X ′B , XC) assert that there exist 0-entries in the row and column

where the 1-entry situates, respectively. The satisfiability indicates that the function

f (a, b, c, d) = ¬ab∨c¬d∨a¬bc is not decomposable under the specified variable

partition.

A remaining problem to be resolved is how to derive f A and fB . We show that

they can be obtained through interpolation from a refutation proof of Formula (6.2).

Consider partitioning the clause set of Formula (6.2) into two subsets CA and CB

with CA the clause set of

f (X A, X B, XC) ∧ ¬ f (X ′A, X B, XC) (6.3)

and CB the clause set of

¬ f (X A, X ′B, XC) (6.4)

Then the corresponding interpolant corresponds to an implementation of f A.

Figure 6.4 depicts the construction to derive f A according to the above formulas.

XC

XB

XA

1

CA CB

f

0

f

XB'XA'

0

f

Fig. 6.4 The construction of f A

On the other hand, to derive fB we perform a similar computation, but now with

CA the clause set of

f (X A, X B , XC) ∧ ¬ f A(X A, XC) (6.5)

and CB the clause set of

¬ f (X ′A, X B, XC) (6.6)

Then the corresponding interpolant corresponds to an implementation of fB . The

construction to derive fB is shown in Fig. 6.5.

94 R.-R. Lee et al.

XC

XA

XB

1

CA CB

f

0

fA

XA'

0

f

Fig. 6.5 The construction of fB

We show the correctness of the above construction.

Theorem 6.3 For any OR2-decomposable function f under variable partition X =
{X A|X B |XC }, we have f (X) = f A(X A, XC)∨ fB(X B, XC) for f A and fB derived

from the above construction.

Proof To show that the interpolant obtained from the unsatisfiable conjunction of

Formulas (6.3) and (6.4) indeed corresponds to f A, observe that X A and XC vari-

ables are the only common variables shared by Formulas (6.3) and (6.4). Moreover,

Formula (6.3) (respectively, Formula (6.4)), for every valuation on XC , characterizes

the set of valuations on X A that must be in the onset (respectively, offset) of f A. As

the interpolant is an over-approximation of the onset and disjoint from the offset,

it is a valid implementation of f A. On the other hand, X B and XC variables are

the only common variables shared by Formulas (6.5) and (6.6). They, respectively,

corresponds to the care onset and care offset of fB , where f A sets the don’t care con-

dition of fB . Therefore, the interpolant obtained from the unsatisfiable conjunction

of Formulas (6.5) and (6.6) is a valid implementation of fB .

Remark 6.1 An interpolant itself is in fact a netlist composed of OR2 and AND2

gates [10]. The “bi-decomposed” netlist, however, may contain some amount of

redundancy; moreover, variable partitioning is not used in its derivation.

Decomposition with Unknown Variable Partition

The previous construction assumes that a variable partition X = {X A|X B |XC } is

given. We further automate variable partition in the derivation of f A and fB as

follows. For each variable xi ∈ X , we introduce two control variables αxi
and βxi

.

In addition we instantiate variables X into X ′ and X ′′. Let CA be the clause set of

6 Bi-decomposition Using SAT and Interpolation 95

f (X) ∧ ¬ f (X ′) ∧
∧

i

((xi ≡ x ′i) ∨ αxi
) (6.7)

and CB be the clause set of

¬ f (X ′′) ∧
∧

i

((xi ≡ x ′′i) ∨ βxi
) (6.8)

where x ′ ∈ X ′ and x ′′ ∈ X ′′ are the instantiated versions of x ∈ X . Observe that

(αxi
, βxi

) = (0, 0), (0, 1), (1, 0), and (1, 1) indicate xi ∈ XC , xi ∈ X B, xi ∈ X A,

and xi can be in either of X A and X B , respectively.

In SAT solving the conjunction of Formulas (6.7) and (6.8), we make unit

assumptions [8] on the control variables. Under an unsatisfiable unit assumption, the

SAT solver will return a final conflict clause consisting of only the control variables.

Notice that every literal in the conflict clause is of positive phase because the conflict

arises from a subset of the control variables set to 0. It reveals that setting to 0 the

control variables present in the conflict clause is sufficient, making the whole for-

mula unsatisfiable. Hence setting to 1 the control variables absent from the conflict

clause cannot affect the unsatisfiability. The more the control variables can be set to

1, the better the bi-decomposition is because |XC | is smaller. In essence, this final

conflict clause indicates a variable partition X A, X B, XC on X . For example, the

conflict clause (αx1
+ βx1

+ αx2
+ βx3

) indicates that the unit assumption αx1
= 0,

βx1
= 0, αx2

= 0, and βx3
= 0 results in unsatisfiability. It in turn suggests that

x1 ∈ XC , x2 ∈ X B , and x3 ∈ X A.

To see how the new construction works, imagine setting all the control variables

to 0. As SAT solvers tend to refer to a small subset of the clauses relevant to a

refutation proof, it may return a conflict clause with just a few literals. It in effect

conducts a desirable variable partition. This perception, unfortunately, is flawed

in that SAT solvers are very likely to return a conflict clause that consists of all

the control variables reflecting the trivial variable partition XC = X . In order to

avoid trivial variable partitions, we initially specify two distinct variables xa and

xb to be in X A and X B , respectively, and all other variables in XC , that is, having

(αxa , βxa) = (1, 0), (αxb
, βxb

) = (0, 1), and (αxi
, βxi

) = (0, 0) for i �= a, b in

the unit assumption. We call such an initial variable partition as a seed variable

partition. If the conjunction of Formulas (6.7) and (6.8) is unsatisfiable under a seed

partition, then the corresponding bi-decomposition is successful. As SAT solvers

often refer to a small unsatisfiable core, the returned variable partition is desirable

because |XC | tends to be small. Otherwise, if the seed partition fails, we should try

another one. For a given function f (X) with |X | = n, the existence of non-trivial

OR2-decomposition can be checked with at most (n − 1) + · · · + 1 = n(n − 1)/2

different seed partitions. On the other hand, we may enumerate different variable

partitions using different seed partitions to find one that is more balanced and closer

to disjoint. Even from a successful seed partition, we may further refine the returned

variable partition by reducing the corresponding unsatisfiable core. The process can

be iterated until the unsatisfiable core is minimal.

96 R.-R. Lee et al.

Lemma 6.1 For an unsatisfiable conjunction of Formulas (6.7) and (6.8) under a

seed variable partition, the final conflict clause contains only the control variables,

which indicates a valid non-trivial variable partition.

Proof The values of control variables are specified in the unit assumption as if

they are in the first decision level. In solving an unsatisfiable instance, both 0 and

1 valuations of any other variable must have been tried and failed, and only the

control variables are not valuated in both cases. Because unit assumption causes

unsatisfiability, the final learned clause indicates the conflict decisions made in the

first decision level. On the other hand, as discussed earlier this clause corresponds

to a valid variable partition, which is non-trivial since |X A|, |X B | ≥ 1 due to the

seed variable partition.

Theorem 6.4 asserts the correctness of the construction.

Theorem 6.4 For any OR2-decomposable function f , we have f (X) =
f A(X A, XC) ∨ fB(X B, XC) for f A, fB and a non-trivial variable partition X =
{X A|X B |XC } derived from the above construction.

Proof Given an unsatisfiable conjunction of Formulas (6.7) and (6.8) under a seed

variable partition, by Lemma 6.1 the final learned clause indicates which variables

assigned in XC are unnecessary and can be placed in X A or X B instead. The resul-

tant partition is indeed a non-trivial variable partition. Under the obtained variable

partition, Theorem 6.3 is applicable, and functions f A and fB can be obtained.

One might speculate about whether (αx , βx) = (1, 1) is possible as it tends to

suggest that x can be in either of X A and X B . To answer this question, we study the

condition that xi can be in either of X A and X B .

Lemma 6.2 (Saso and Butler [14]) If f is bi-decomposable under some vari-

able partition, then the cofactors fx and f¬x for any variable x are both bi-

decomposable under the same variable partition.

Proof The lemma follows from the fact that cofactor and Boolean operations, such

as ∧,∨,¬, commute.

The converse, however, is not true. The following theorem gives the condition that

x can be in either of X A and X B .

Theorem 6.5 Let X = {Xa |Xb|XC |{x}} for some x ∈ X. A function f =
f A(X A, XC) ∨ fB(X B, XC) can be bi-decomposed under variable partition {Xa ∪
{x}|Xb|XC } as well as under variable partition {Xa |Xb ∪ {x}|XC } if and only

if both fx and f¬x are themselves OR2-decomposable under variable partition

{Xa |Xb|XC } and also (fx �≡ 1 ∧ f¬x �≡ 1)⇒ (fx ≡ f¬x) under every c ∈ [[XC]].

Proof (�⇒) For bi-decomposable f , the bi-decomposability of fx and f¬x fol-

lows from Lemma 6.2. On the other hand, assume by contradiction that (fx �≡
1 ∧ f¬x �≡ 1) ⇒ (fx ≡ f¬x) does not hold under every c ∈ [[XC]], i.e.,

(fx �≡ 1 ∧ f¬x �≡ 1) ∧ (fx �≡ f¬x) under some c ∈ [[XC]]. Since fx �≡ f¬x ,

6 Bi-decomposition Using SAT and Interpolation 97

assume without loss of generality that there exists some ma ∈ [[Xa]] and mb ∈ [[Xb]]
such that fx (ma, mb, c) = 0 and f¬x (ma, mb, c) = 1. Then, f¬x (ma, Xb, c) ≡ 1

since x can be in Xa and f is OR2-decomposable. Also, f¬x (ma, Xb, c) ≡ 1 implies

f¬x (Xa, Xb, c) ≡ 1 since x can be in Xb and f is OR2-decomposable. It contradicts

with the assumption that f¬x (Xa, Xb, c) �≡ 1.

(⇐�) Consider under every c ∈ [[XC]]. For fx ≡ f¬x , x is not a support variable

of f and thus can be redundantly placed in X A or X B . On the other hand, for fx �≡
f¬x , at least one of fx and f¬x is a tautology. If fx ≡ 1, f is OR2-decomposable

no matter x ∈ X A or x ∈ X B since f¬x is OR2-decomposable. Similarly, if f¬x ≡
1, f is OR2-decomposable. Hence x can be in either of X A and X B in the OR2-

decomposition of f .

That is, under every c ∈ [[XC]] either x is not a support variable of f , or fx or f¬x

equals constant 1. It is interesting to note that only the former can make (αx , βx) =
(1, 1). Whenever the latter happens, (αx , βx) equals (0, 1), (1, 0), or (0, 0) if the

solver is unable to identify a minimal unsatisfiable core. To see it, consider fx ≡ 1

(similar for f¬x ≡ 1) and f¬x �≡ fx under some c ∈ [[XC]]. If (αx , βx) = (1, 1),

Formula (6.2) reduces to

(∃x . f (Xa, Xb, c, x)) ∧ ¬(∀x . f (X ′a, Xb, c, x)) ∧
¬(∀x . f (Xa, X ′b, c, x))

= 1 ∧ ¬ f¬x (X ′a, Xb, c) ∧ ¬ f¬x (Xa, X ′b, c)

which is satisfiable because f¬x �≡ 1 under c. Hence (αx , βx) = (1, 1) only if x is

not a support variable of f .

6.4.1.2 Decomposition of Incompletely Specified Functions

Proposition 6.2 can be generalized for incompletely specified functions as follows.

Proposition 6.3 Given an incompletely specified function F = (q, d, r), there

exists a completely specified function f with f (X) = f A(X A, XC) ∨ fB(X B, XC),

q(X)⇒ f (X), and f (X)⇒ ¬r(X) if and only if the Boolean formula

q(X A, X B , XC) ∧ r(X ′A, X B, XC) ∧ r(X A, X ′B , XC) (6.9)

is unsatisfiable.

The derivations of f A and fB can be computed in a way similar to the aforemen-

tioned construction. We omit the detailed exposition to save space.

6.4.2 AND Bi-decomposition

Proposition 6.4 (Saso and Butler [14]) A function f is AND2-decomposable if and

only if ¬ f is OR2-decomposable.

98 R.-R. Lee et al.

By decomposing ¬ f as f A ∨ fB , we obtain f = ¬ f A ∧¬ fB . Hence our results on

OR2-decomposition are convertible to AND2-decomposition.

6.4.3 XOR Bi-decomposition

6.4.3.1 Decomposition of Completely Specified Functions

Decomposition with Known Variable Partition

We formulate the XOR-decomposability in the following proposition, which differs

from prior work [16] and is more suitable for SAT solving.

Proposition 6.5 A function f can be written as f (X) = f A(X A, XC) ⊕
fB(X B, XC) for some functions f A and fB under variable partition X =
{X A|X B |XC } if and only if

(f (X A, X B, XC) ≡ f (X A, X ′B , XC)) ∧
(f (X ′A, X B , XC) �≡ f (X ′A, X ′B , XC)) (6.10)

is unsatisfiable. Furthermore, f A = f (X A, 0, XC) and fB = f (0, X B , XC) ⊕
f (0, 0, XC) or alternatively f A = ¬ f (X A, 0, XC) and fB = f (0, X B, XC) ⊕
¬ f (0, 0, XC).

Proof We show that the proposition is true for every valuation c ∈ [[XC]].
(�⇒) Observe that, for f is XOR-decomposable under variable partition X =

{X A|X B |XC }, then either f (a1, X B , c) ≡ f (a2, X B , c) or f (a1, X B , c) ≡
¬ f (a2, X B , c) for any a1, a2 ∈ [[X A]] and also either f (X A, b1, c) ≡ f (X A, b2, c)

or f (X A, b1, c) ≡ ¬ f (X A, b2, c) for any b1, b2 ∈ [[X B]]. If Formula (6.10) is

satisfiable, the property is violated.

(⇐�) If Formula (6.10) is unsatisfiable, then for every c ∈ [[XC]] either

f (a1, X B , c) ≡ f (a2, X B, c) or f (a1, X B , c) ≡ ¬ f (a2, X B , c) for any

a1, a2 ∈ [[X A]] and also either f (X A, b1, c) ≡ f (X A, b2, c) or f (X A, b1, c) ≡
¬ f (X A, b2, c) for any b1, b2 ∈ [[X B]]. We can simply choose f (X A, 0, c) as

f A(X A, c). However, in choosing function f (0, X B , c) as fB(X B, c), we need to

make f A(0, c) ⊕ fB(0, c) consistent with f (0, 0, c). Hence we have fB(X B, c) =
f (0, X B , c)⊕ f A(0, c). On the other hand, for any f = g ⊕ h, f = ¬g ⊕¬h. We

can alternatively let f A(X A, c) = ¬ f (X A, 0, c) and fB(X B, c) = f (0, X B , c) ⊕
¬ f A(0, c).

Since the arguments are universally true for every c ∈ [[XC]], the theorem fol-

lows. Accordingly interpolation is not needed in computing f A and fB in XOR-

decomposition.

The decomposability of a function under XOR-decomposition can be analyzed

using a decomposition chart, similar to that under OR2-decomposition. A function

is XOR-decomposable if and only if any two columns (rows) in each table of its

decomposition chart are either identical or complementary to each other. It is due to

6 Bi-decomposition Using SAT and Interpolation 99

1 0 1 1

1 0 1 1

0 1 0 0

1 0 1 1

00 01 10 11

00

01

10

11

XA
XB

1 0 1 1fA(XA)

0

0

1

0

fB(XB)

f(XA, XB)

Fig. 6.6 A function decomposable subject to XOR-decomposition

the fact that, for every variable valuation, f A⊕ fB = ¬ f A if fB = 1 and f A⊕ fB =
f A if fB = 0 (likewise f A ⊕ fB = ¬ fB if f A = 1 and f A ⊕ fB = fB if f A = 0).

To illustrate, Fig. 6.6 shows that function f (a, b, c, d) = a¬c ∨ ad ∨ ¬b¬c ∨
¬bd ∨ ¬abc¬d under variable partition X A = {a, b}, X B = {c, d}, and XC = ∅ is

XOR-decomposable with f A(X A) = a ∨ ¬b and fB(X B) = c¬d. Observe that, in

this figure, any two columns (respectively, rows) in decomposition chart are either

identical or complementary to each other, that is, either f (a1, X B) ≡ f (a2, X B)

or f (a1, X B) ≡ ¬ f (a2, X B) for any a1, a2 ∈ [[X A]] (respectively, f (X A, b1) ≡
f (X A, b2) or f (X A, b1) ≡ ¬ f (X A, b2) for any b1, b2 ∈ [[X B]]).

Decomposition with Unknown Variable Partition

The XOR-decomposition of Proposition 6.5 assumes that a variable partition is

given. We further automate variable partition as follows. For each variable xi ∈ X ,

we introduce two control variables αxi
and βxi

. In addition we instantiate variables

X into X ′, X ′′, and X ′′′. We modify Formula (6.10) as

(f (X) ≡ f (X ′)) ∧ (f (X ′′) �≡ f (X ′′′)) ∧
∧

i

(((xi ≡ x ′′i) ∧ (x ′i ≡ x ′′′i)) ∨ αxi
) ∧

∧

i

(((xi ≡ x ′i) ∧ (x ′′i ≡ x ′′′i)) ∨ βxi
) (6.11)

By Formula (6.11), an automatic variable partition can be obtained from a seed

partition, similar to what we have in OR2-decomposition.

The correctness of the construction is asserted as follows.

Theorem 6.6 For any XOR-decomposable function f , we have f (X) =
f A(X A, XC)⊕ fB(X B, XC) for f A, fB , along with a non-trivial variable partition

X = {X A|X B |XC } derived from the above construction.

Proof The proof relies on Proposition 6.5 and is similar to that of Theorem 6.4. We

omit the detailed exposition.

100 R.-R. Lee et al.

To see whether (αx , βx) = (1, 1) is possible or not for some variable x , we study

the condition that x can be in either of X A and X B .

Theorem 6.7 Let X = {Xa |Xb|XC |{x}} for some x ∈ X. A function f =
f A(X A, XC)⊕ fB(X B, XC) can be bi-decomposed under variable partition {Xa ∪
{x}|Xb|XC } as well as under variable partition {Xa |Xb ∪ {x}|XC } if and only

if both fx and f¬x are themselves XOR-decomposable under variable partition

{Xa |Xb|XC } and also (fx ≡ f¬x) ∨ (fx ≡ ¬ f¬x) under every c ∈ [[XC]].
Proof (�⇒) For f bi-decomposable, fx and f¬x are bi-decomposable as well by

Lemma 6.2. On the other hand, assume by contradiction that (fx ≡ f¬x) ∨ (fx ≡
¬ f¬x) does not hold under every c ∈ [[XC]], i.e., (fx �≡ f¬x)∧ (fx �≡ ¬ f¬x) under

some c ∈ [[XC]]. Hence assume without loss of generality that fx (ma1
, mb1

, c) =
0, fx (ma2

, mb2
, c) = 0, and f¬x (ma1

, mb1
, c) = 0, f¬x (ma2

, mb2
, c) = 1

for ma1
, ma2

∈ [[Xa]], mb1
, mb2

∈ [[Xb]]. Two cases fx (ma1
, mb2

, c) = 0

and fx (ma1
, mb2

, c) = 1 need to be analyzed. If fx (ma1
, mb2

, c) = 0, then

fx (ma1
, mb2

, c) = fx (ma2
, mb2

, c) infers fx (ma2
, mb1

, c) = 0, f¬x (ma1
, mb2

, c) =
0, and f¬x (ma2

, mb1
, c) = 1 for x ∈ X A due to the XOR-decomposability of

f . It contradicts with the XOR-decomposability of f under x ∈ X B . Likewise

fx (ma1
, mb2

, c) = 1 leads to a contradiction. Thus (fx ≡ f¬x) ∨ (fx ≡ ¬ f¬x)

under every c ∈ [[XC]].
(⇐�) Consider under every c ∈ [[XC]]. For fx and f¬x XOR-decomposable with

fx ≡ f¬x or fx ≡ ¬ f¬x , Formula (6.10) is unsatisfiable for either case of x ∈ X A

and x ∈ X B . That is, f is XOR-decomposable no matter x ∈ X A or x ∈ X B .

Under the flexible partition for variable x , Formula (6.10) reduces to

(∃x . f (Xa, Xb, XC , x) ≡ ∃x . f (Xa, X ′b, XC , x)) ∧
(∃x . f (X ′a, Xb, XC , x) �≡ ∃x . f (X ′a, X ′b, XC , x)) (6.12)

If fx ≡ f¬x , the unsatisfiability of Formula (6.10) implies the unsatisfiability of

Formula (6.12). On the other hand, if fx ≡ ¬ f¬x , ∃x . f is a constant-1 function and

thus Formula (6.12) is unsatisfiable. Hence (αx , βx) = (1, 1) is possible even if x is

a support variable of f . In this case, we can first decompose f as f = x ⊕ f¬x or

equivalently ¬x ⊕ fx . Moreover, it can be generalized as follows.

Corollary 6.1 For an XOR-decomposable function f , suppose xi , for i = 1, . . . , k,

are the support variables of f with (αxi
, βxi

) = (1, 1) after variable partition. Then

f can be decomposed as

f = x1 ⊕ · · · ⊕ xk ⊕ f¬x1···¬xk
(6.13)

Further, for Xa = {x | (αx , βx) = (1, 0)}, Xb = {x | (αx , βx) = (0, 1)}, and

XC = {x | (αx , βx) = (0, 0)}, then

f = x1 ⊕ · · · ⊕ xk ⊕ f A(Xa, XC)⊕ fB(Xb, XC) (6.14)

with f A and fB derived from the previous construction.

6 Bi-decomposition Using SAT and Interpolation 101

Proof Since fx ≡ ¬ f¬x implies (fl)x ≡ ¬(fl)¬x for some literal l �= x,¬x ,

we can successively decompose f as Formula (6.13). Moreover, for (αxi
, βxi

) =
(1, 1), i = 1, . . . , k, the unsatisfiability of Formula (6.11) is independent of vari-

ables xi . Thus, f¬x1···¬xk
= f A(Xa, XC)⊕ fB(Xb, XC).

6.4.4 Implementation Issues

When disjoint variable partitioning is concerned, it corresponds to computing a

minimum unsatisfiable core. Incremental SAT solving is useful in finding a good

minimal unsatisfiable core, see, e.g., [12]. In our implementation, a variable of XC is

greedily moved to either of X A and X B favoring the small one. The process iterates

until no more reduction can be made on XC .

When balanced variable partitioning is concerned, SAT solvers usually tend to

make decisions in a descending priority order based on variable IDs. From empir-

ical experience, this bias makes variable partition unbalanced. To overcome, we

interleave the variable IDs of X ′ and those of X ′′ of Formulas (6.7) and (6.8) for

OR2- and AND2-decomposition and interleave those of Formula (6.11) for XOR-

decomposition. For example, assume that variables x ′i , x ′′i , x ′i+1, and x ′′i+1 are origi-

nally of IDs 100, 200, 101, and 201, respectively. We rename them to 100, 200, 201,

and 101, respectively. This shuffling makes variable partitioning more balanced.

6.5 Experimental Results

The algorithms were implemented in C++ in ABC [2] with MiniSAT [8] as the

underlying solver. All experiments were conducted on a Linux machine with Xeon

3.4 GHz CPU and 6 Gb RAM.

Two sets of experiments were designed to demonstrate the scalability of bi-

decomposition and the optimality of variable partitioning. Only circuits containing

output functions with large support sizes (≥30) were chosen from the ISCAS, ITC,

and LGSYNTH benchmark suites.1 To show the efficiency of decomposing large

functions, Table 6.1 shows the results of OR2- and XOR-decompositions on the out-

put functions of the listed circuits. As can be seen, functions with up to 200 inputs,

such as i2, can be decomposed effectively. It may not be the case using BDD-based

methods.

To measure the quality of a variable partition, we use two metrics: |XC |/|X |
for disjointness and ||X A| − |X B ||/|X | for balancedness. The smaller they are, the

better a partition is. In particular, we prefer disjointness to balancedness since the

former yields better variable reduction. Experience suggests that |XC |/|X | very

often can be maximally reduced within the first few enumerations while keeping

||X A| − |X B ||/|X | as low as possible. Figure 6.7 shows how these two values

1 Sequential circuits are converted to combinational ones by replacing register inputs and outputs

with primary outputs and inputs, respectively.

102 R.-R. Lee et al.

Table 6.1 Bi-decomposition of PO functions

OR2-decomposition XOR-decomposition

Circuit #In #Max #Out #Dec #Slv Time (s) Mem (Mb) #Dec # Slv Time (s) Mem (Mb)

b04c 76 38 74 49 3878 12.26 19.35 49 2714 28.82 20.02

b07c 49 42 57 14 12985 27.59 22.3 39 601 5.43 18.72

b12c 125 37 127 80 12526 25.14 23.32 84 4862 19.22 26.93

C1355 41 41 32 0 26240 354 20.32 – – TO –

C432 36 36 7 7 102 13.15 18.54 0 3654 197.81 17.46

C880 60 45 26 16 222 8.36 20.72 11 4192 83.08 18.72

comp 32 32 3 0 1488 2.61 15.86 1 1014 13.69 16.9

dalu 75 75 16 1 26848 352.87 24.14 16 210 26.59 19.68

e64 65 65 65 0 45760 17.98 22.91 0 45760 388.18 24.37

i2 201 201 1 1 1 1.07 18.6 1 34 2.16 18.59

i3 132 32 6 6 82 0.96 16.32 0 1986 9.28 16.36

i4 192 47 6 4 6 0.58 16.08 0 4326 60.04 16.54

k2 45 45 45 33 1071 17.51 22.33 33 612 5.29 20.71

my_adder 33 33 17 0 3656 2.61 18.05 16 577 4.92 17.32

o64 130 130 1 1 1 0.36 16.17 0 8385 623.43 16.12

pair 173 53 137 119 4429 20.63 21.56 101 5676 41.81 21.61

rot 135 63 107 49 19927 65.97 23.21 46 4975 59.23 21.96

s1423c 91 59 79 26 42744 121.49 27.17 68 7281 161.98 20.25

s3330c 172 87 205 60 2941 9.42 23.09 71 3135 16.45 21.87

s3384c 226 48 209 76 12685 28.16 30.21 147 2467 24.95 21.33

s6669c 322 49 294 101 24423 198.14 29.13 176 3120 279.03 22.87

s938c 66 66 33 1 5985 2.81 19.86 33 426 4.49 16.28

too_large 38 36 3 3 22 9.89 19.87 2 629 33.38 18.4

#In: number of PIs; #Max: maximum number of support vars in POs; #Out: number of POs; #Dec:

number of decomposable POs; #Slv: number of SAT solving runs; TO: time out at 1500 s

Fig. 6.7 |XC |/|X | and ||X A| − |X B ||/|X | in the enumeration of variable partitions in OR2-

decomposition

change in enumerating different variable partitions under OR2-decomposition on

some sample circuits, where every variable partition corresponds to two markers in

the same symbol, one in black and the other in gray.

6 Bi-decomposition Using SAT and Interpolation 103

It is interesting to note that OR2- and XOR-decompositions exhibit very different

characteristics in variable partitioning. Figures 6.8 and 6.9 show the difference. In

these two plots, a marker corresponds to a first found valid variable partition in

decomposing some function. As can be seen, the decomposition quality is generally

good in OR2-decomposition, but not in XOR-decomposition. This phenomenon is

because XOR-decomposable circuits, e.g., arithmetic circuits, possess some regular

structures in their functionality. This regularity makes disjointness and balancedness

mutually exclusive in variable partitioning.

Fig. 6.8 Variable partition in OR2-decomposition

Fig. 6.9 Variable partition in XOR-decomposition

6.6 Summary

We showed that the bi-decomposition of a Boolean function can be achieved

through SAT solving. Interpolation (respectively, cofactoring) turned out playing an

essential role in the computation of OR2- and AND2-decompositions (respectively,

104 R.-R. Lee et al.

XOR-decomposition). The formulation much extends the capacity of bi-

decomposition for large functions. In addition, we automated the search of dis-

joint (respectively, balanced) variable partition by finding a minimal unsatisfi-

able core with incremental SAT solving under unit assumptions (respectively, by

shuffling variable IDs for an unbiased decision order). Experiments show promis-

ing results on the scalability of bi-decomposition and the optimality of variable

partitioning.

Although the SAT-based method has its strengths in dealing with large func-

tions and in automating variable partitioning, it is weak in handling don’t cares

when compared with BDD-based approaches. Future work on hybrid approaches

combining SAT and BDD may exploit more don’t cares for better decomposition

of large functions. Also, an outstanding open problem remains to be solved is the

XOR-decomposition of incompletely specified functions using SAT solving.

References

1. Ashenhurst, R.L.: The decomposition of switching functions. Computation Laboratory 29,

74–116 (1959)

2. Berkeley Logic Synthesis and Verification Group: ABC: A system for sequential synthesis and

verification (2005). http://www.eecs.berkeley.edu/∼alanmi/abc/ (2007)

3. Bertacco, V., Damiani, M.: The disjunctive decomposition of logic functions. In: Proceedings

of the International Conference on Computer Aided Design, pp. 78–82. San Jose (1997)

4. Bochmann, D., Dresig, F., Steinbach, B.: A new decomposition method for multilevel cir-

cuit design. In: Proceedings of the European Design Automation Conference, pp. 374–377.

Amsterdam, The Netherlands (1991)

5. Cortadella, J.: Timing-driven logic bi-decomposition. IEEE Transactions on Computer Aided

Design of Integrated Circuits and Systems 22(6), 675–685 (2003)

6. Craig, W.: Linear reasoning: A new form of the Herbrand-Gentzen theorem. Journal of Sym-

bolic Logic 22(3), 250–268 (1957)

7. Curtis, A.: A New Approach to the Design of Switching Circuits. Van Nostrand, Princeton,

NJ (1962)

8. Eén, N., Söensson, N.: An extensible SAT-solver. In: Proceedings of International Conference

on Theory and Applications of Satisfiability Testing, pp. 502–518. Santa Margherita Ligure,

Italy (2003)

9. Lee, C.C., Jiang, J.H.R., Huang, C.Y., Mishchenko, A.: Scalable exploration of functional

dependency by interpolation and incremental SAT solving. In: Proceedings of the International

Conference on Computer Aided Design, pp. 227–233. San Jose (2007)

10. McMillan, K.L.: Interpolation and SAT-based model checking. In: Proceedings of the Interna-

tional Conference on Computer Aided Verification, pp. 1–13. Boulder, CO, USA (2003)

11. Mishchenko, A., Steinbach, B., Perkowski, M.A.: An algorithm for bi-decomposition of logic

functions. In: Proceedings of the Design Automation Conference, pp. 103–108. Las Vegas,

Nevada, USA (2001)

12. Oh, Y., Mneimneh, M., Andraus, Z., Sakallah, K., Markov, I.: Amuse: A minimally

unsatisfiable subformula extractor. In: Proceedings of the Design Automation Conference,

pp. 518–523. San Diego, CA, USA (2004)

13. Robinson, J.A.: A machine-oriented logic based on the resolution principle. Journal of the

ACM 12(1), 23–41 (1965)

14. Sasao, T., Butler, J.: On bi-decomposition of logic functions. In: Proceedings of the Interna-

tional Workshop on Logic Synthesis Tahoe City, CA, USA (1997)

6 Bi-decomposition Using SAT and Interpolation 105

15. Scholl, C.: Functional Decomposition with Applications to FPGA Synthesis. Kluwer Dor-

drecht, The Netherlands (2001)

16. Steinbach, B., Wereszczynski, A.: Synthesis of multi-level circuits using EXOR-gates. In: Pro-

ceedings of IFIP Workshop on Applications of the Reed-Muller Expansion in Circuit Design,

pp. 161–168. Makuhari, Japan (1995)

17. Tseitin, G.: On the complexity of derivation in propositional calculus. In: A.O. Slisenko (ed.)

Studies in Constructive Mathematics and Mathematical Logic, Part II, vol. 8, p. 280. Serial

Zap. Nauchn. Sem. LOMI. Nauka, Leningrad (1968)

18. Yamashita, S., Sawada, H., Nagoya, A.: New methods to find optimal nondisjoint bidecompo-

sitions. In: Proceedings of the Design Automation Conference, pp. 59–68. San Francisco, CA,

USA (1998)

Part II

Boolean Satisfiability

In the area of Boolean satisfiability, four research works are presented. The first

chapter in this category studies the use equivalence checking formulas to compare

unsatisfiability proofs built by a conflict-driven SAT-solver. The details of a SAT-

sweeping approach that exploits local observability don’t-cares (ODCs) to increase

the number of vertices merged for logic optimization are presented in the second

chapter. The next chapter proposes an approximation of MIN ONE SAT problem

(which is the satisfying assignment with minimum number of ones). The last chapter

presents a solution to MaxSAT (the problem of statisfying the maximum number of

clauses in the original formula) using unsatisfiable cores.

Chapter 7

Boundary Points and Resolution

Eugene Goldberg and Panagiotis Manolios

Abstract We use the notion of boundary points to study resolution proofs. Given

a CNF formula F , an l(x)-boundary point is a complete assignment falsifying only

clauses of F having the same literal l(x) of variable x . An l(x)-boundary point

p mandates a resolution on variable x . Adding the resolvent of this resolution to

F eliminates p as an l(x)-boundary point. Any resolution proof has to eventually

eliminate all boundary points of F . Hence one can study resolution proofs from

the viewpoint of boundary point elimination. We use equivalence checking formu-

las to compare proofs of their unsatisfiability built by a conflict-driven SAT-solver

and very short proofs tailored to these formulas. We show experimentally that in

contrast to proofs generated by this SAT-solver, almost every resolution of a spe-

cialized proof eliminates a boundary point. This implies that one may use the share

of resolutions eliminating boundary points as a metric of proof quality. We argue

that obtaining proofs with a high value of this metric requires taking into account

the formula structure. We show that for any unsatisfiable CNF formula there always

exists a proof consisting only of resolutions eliminating cut boundary points (which

are a relaxation of the notion of boundary points). This result enables building res-

olution SAT-solvers that are driven by elimination of cut boundary points.

This chapter is an extended version of the conference paper [9].

7.1 Introduction

Resolution-based SAT-solvers [3, 6, 10, 12, 13, 15, 16] have achieved great success

in numerous applications. However, the reason for this success and, more generally,

the semantics of resolution are not well understood yet. This obviously impedes

E. Goldberg (B)

Northeastern University, Baston, MA, USA

e-mail: eigold@ccs.neu.edu

This work is based on “Boundary Points and Resolution”, Eugene Goldberg, in Proceedings of the

2009 the 12th International Conference on Theory and Applications of Satisfiability Testing ACM,

2009.

S.P. Khatri, K. Gulati (eds.), Advanced Techniques in Logic Synthesis,

Optimizations and Applications, DOI 10.1007/978-1-4419-7518-8_7,
C© Springer Science+Business Media, LLC 2011

109

110 E. Goldberg and P. Manolios

progress in SAT-solving. In this chapter, we study the relation between the resolution

proof system [2] and boundary points [11]. The most important property of bound-

ary points is that they mandate particular resolutions of a proof. So by studying the

relation between resolution and boundary points one gets a deeper understanding of

resolutions proofs, which should lead to building better SAT-solvers.

Given a CNF formula F , a non-satisfying complete assignment p is called an

l(x)-boundary point, if it falsifies only the clauses of F that have the same literal

l(x) of variable x . The name is due to the fact that for satisfiable formulas the set of

such points contains the boundary between satisfying and unsatisfying assignments.

If F is unsatisfiable, for every l(x)-boundary point p there is a resolvent of two

clauses of F on variable x that eliminates p. (That is, after adding such a resolvent

to F , p is not an l(x)-boundary point anymore.) On the contrary, for a non-empty

satisfiable formula F , there is always a boundary point that cannot be eliminated by

adding a clause implied by F .

To prove that a CNF formula F is unsatisfiable it is sufficient to eliminate all

its boundary points. In the resolution proof system, one reaches this goal by adding

to F resolvents. If formula F has an l(x)-boundary point, a resolution proof has

to have a resolution operation on variable x . The resolvents of a resolution proof

eventually eliminate all boundary points. We will call a resolution mandatory if it

eliminates a boundary point of the initial formula F that has not been eliminated by

adding the previous resolvents. (In [9] such a resolution was called boundary.)

Intuitively, one can use the Share of Mandatory Resolutions (SMR) of a proof as

a metric of proof quality. The reason is that finding mandatory resolutions is not an

easy task. (Identification of a boundary point is computationally hard, which implies

that finding a mandatory resolution eliminating this point is not easy either.) How-

ever, finding mandatory resolutions becomes much simpler if one knows subsets of

clauses of F such that resolving clauses of these subsets eliminate boundary points.

(An alternative is to try to guess these subsets heuristically.) Intuitively, such subsets

have a lot to do with the structure of the formula. So the value of SMR may be used

to gauge how well the resolution proof built by a SAT-solver follows the structure

of the formula.

We substantiate the intuition above experimentally by comparing two kinds of

proofs for equivalence checking formulas. (These formulas describe equivalence

checking of two copies of a combinational circuit.) Namely, we consider short

proofs of linear size particularly tailored for equivalence checking formulas and

much longer proofs generated by a SAT-solver with conflict-driven learning. We

show experimentally that the share of boundary resolution operations in high-quality

specialized proofs is much greater than in proofs generated by the SAT-solver.

Generally speaking, it is not clear yet if for any irredundant unsatisfiable formula

there is a proof consisting only of mandatory resolutions. However, as we show in

this chapter, for any unsatisfiable formula F there always exists a proof where each

resolution eliminates a cut boundary point. The latter is computed with respect to

the CNF formula FT consisting of clauses of F and their resolvents that specify

a cut T of a resolution graph describing a proof. (Formula FT is unsatisfiable for

any cut T .) The notion of a cut boundary point is a relaxation of that of a boundary

7 Boundary Points and Resolution 111

point computed with respect to the initial formula F . Point p that is boundary for

FT may not be boundary for F . Proving that resolution is complete with respect to

elimination of cut boundary points enables building SAT-solvers that are driven by

cut boundary point elimination. Another important observation is that the metric that

computes the share of resolutions eliminating cut boundary points is more robust

than SMR metric above. Namely, it can be also applied to the formulas that do not

have proofs with a 100% value of the SMR metric.

The contributions of this chapter are as follows. First, we show that one can

view resolution as elimination of boundary points. Second, we introduce the SMR

metric that can be potentially used as a measure of proof quality. Third, we give

some experimental results about the relation between SMR metric and proof qual-

ity. Fourth, we show that resolution remains complete even when it is restricted to

resolutions eliminating cut boundary points.

This chapter is structured as follows. Section 7.2 introduces main definitions.

Some properties of boundary points are given in Section 7.3. Section 7.4 views a

resolution proof as a process of boundary point elimination. A class of equivalence

checking formulas and their short resolution proofs are described in Section 7.5.

Experimental results are given in Section 7.6. Some relevant background is recalled

in Section 7.7. In Section 7.8 we show that for any unsatisfiable formula there is

proof consisting only of resolutions eliminating cut boundary points. Conclusions

and directions for future research are listed in Section 7.9.

7.2 Basic Definitions

Definition 7.1 A literal of a Boolean variable x (denoted as l(x)) is a Boolean func-

tion of x . The identity and negation functions (denoted as x and x , respectively) are

called the positive literal and negative literal of x , respectively. We will denote l(x)

as just l if the identity of variable x is not important.

Definition 7.2 A clause is the disjunction of literals where no two (or more) literals

of the same variable can appear. A CNF formula is the conjunction of clauses. We

will also view a CNF formula as a set of clauses. Denote by Vars(F) (respectively,

Vars(C)) the set of variables of CNF formula F (respectively, clause C).

Definition 7.3 Given a CNF formula F(x1, . . . , xn), a complete assignment p (also

called a point) is a mapping {x1, . . . , xn} → {0, 1}. Given a complete assignment p

and a clause C , denote by C(p) the value of C when its variables are assigned by p.

A clause C is satisfied (respectively, falsified) by p if C(p) = 1 (respectively, C(p)

= 0).

Definition 7.4 Given a CNF formula F, a satisfying assignment p is a complete

assignment satisfying every clause of F . The satisfiability problem (SAT) is to find

a satisfying assignment for F or to prove that such an assignment does not exist.

Definition 7.5 Let F be a CNF formula and p be a complete assignment. Denote by

Unsat(p, F) the set of all clauses of F falsified by p.

112 E. Goldberg and P. Manolios

Definition 7.6 Given a CNF formula F , a complete assignment p is called an l(xi)-

boundary point, if Unsat(p,F) �= ∅ and every clause of Unsat(p,F) contains literal

l(xi).

Example 7.1 Let F consist of five clauses: C1 = x2, C2 = x2 ∨ x3, C3 = x1 ∨ x3,

C4 = x1 ∨ x3, C5 = x2 ∨ x3. Complete assignment p1 = (x1 = 0, x2 = 0, x3 = 1)

falsifies only clauses C1, C4. So Unsat(p1, F) = {C1, C4}. There is no literal shared

by all clauses of Unsat(p1,F). Hence p1 is not a boundary point. On the other hand,

p2 = (x1 = 0, x2 = 1, x3 = 1) falsifies only clauses C4, C5 that share literal x3. So

p2 is a x3-boundary point.

7.3 Properties

In this section, we give some properties of boundary points.

7.3.1 Basic Propositions

In this section, we prove the following propositions. The set of boundary points

contains the boundary between satisfying and unsatisfying assignments (Proposi-

tion 7.1). A CNF formula without boundary points is unsatisfiable (Proposition 7.2).

Boundary points come in pairs (Proposition 7.3).

Definition 7.7 Denote by Bnd_pnts(F) the set of all boundary points of a CNF for-

mula F . We assume that an l(xi)-boundary point p is specified in Bnd_pnts(F) as

the pair (l(xi),p). So the same point p may be present in Bnd_pnts(F) more than

once (e.g., if p is an l(xi)-boundary point and an l(x j)-boundary point at the same

time).

Proposition 7.1 Let F be a satisfiable formula whose set of clauses is not empty. Let

p1 and p2 be two complete assignments such that (a) F(p1) = 0, F(p2) = 1; (b)

p1 and p2 are different only in the value of variable xi . Then p1 is an l(xi)-boundary

point.

Proof Assume the contrary, i.e., Unsat(p1,F) contains a clause C of F that does not

have variable xi . Then p2 falsifies C too and so p2 cannot be a satisfying assignment.

A contradiction.

Proposition 7.1 means that Bnd_pnts(F) contains the boundary between satisfying

and unsatisfying assignments of a satisfiable CNF formula F .

Proposition 7.2 Let F be a CNF formula that has at least one clause.

If Bnd_pnts(F) = ∅, then F is unsatisfiable.

Proof Assume the contrary, i.e., Bnd_pnts(F) = ∅ and F is satisfiable. Since F

is not empty, one can always find two points p1 and p2 such that F(p1) = 0 and

F(p2) = 1 and that are different only in the value of one variable xi of F . Then

according to Proposition 7.1, p1 is an l(xi)-boundary point. A contradiction.

7 Boundary Points and Resolution 113

Proposition 7.3 Let p1 be an l(xi)-boundary point for a CNF formula F. Let p2 be

the point obtained from p1 by changing the value of xi . Then p2 is either a satisfying

assignment or a l(xi)-boundary point.

Proof Reformulating the proposition, one needs to show that Unsat(p2,F) either

is empty or contains only clauses with literal l(xi). Assume that contrary, i.e.,

Unsat(p2,F) contains a clause C with no literal of xi . (All clauses with l(xi) are

satisfied by p2.) Then C is falsified by p1 too and so p1 is not an l(xi)-boundary

point. A contradiction.

Definition 7.8 Proposition 7.3 means that for unsatisfiable formulas every xi -

boundary point has the corresponding x i -boundary point (and vice versa). We will

call such a pair of points twin boundary points in variable xi .

Example 7.2 The point p2 = (x1 = 0, x2 = 1, x3 = 1) of Example 7.1 is a x3-

boundary point. The point p3 = (x1 = 0, x2 = 1, x3 = 0) obtained from p2 by

flipping the value of x3 falsifies only clause C2 = x2 ∨ x3. So p3 is an x3-boundary

point.

7.3.2 Elimination of Boundary Points by Adding Resolvents

In this section, we prove the following propositions. Clauses of a CNF formula F

falsified by twin boundary points can be resolved (Proposition 7.4). Adding such

a resolvent to F eliminates these boundary points (Proposition 7.5). Adding the

resolvents of a resolution proof eventually eliminates all boundary points (Proposi-

tion 7.6). An l(xi)-boundary point can be eliminated only by a resolution on variable

xi (Proposition 7.7). If formula F has an l(xi)-boundary point, any resolution proof

that F is unsatisfiable has a resolution on variable xi (Proposition 7.8).

Definition 7.9 Let C1 and C2 be two clauses that have opposite literals of variable

xi (and no opposite literals of any other variable). The resolvent C of C1 and C2 is

the clause consisting of all the literals of C1 and C2 but the literals of xi . The clause

C is said to be obtained by a resolution operation on variable xi . C1 and C2 are

called the parent clauses of C .

Proposition 7.4 Let p1 and p2 be twin boundary points of a CNF formula F in vari-

able xi . Let C1 and C2 be two arbitrary clauses falsified by p1 and p2, respectively.

Then (a) C1, C2 can be resolved on variable xi ; (b) C(p1) = 0, C(p2) = 0 where

C is the resolvent of C1 and C2.

Proof Since C1(p1) = 0, C2(p2) = 0, and p1 and p2 are twin boundary points in

xi , C1 and C2 have opposite literals of variable xi . Since p1 and p2 are different only

in the value of xi , clauses C1 and C2 cannot contain opposite literals of a variable

other than xi . (Otherwise, p1 and p2 had to be different in values of at least two

variables.) Since p1 and p2 are different only in the value of xi , they both set to 0

all the literals of C1 and C2 but literals of xi . So the resolvent C of C1 and C2 is

falsified by p1 and p2.

114 E. Goldberg and P. Manolios

Example 7.3 Points p2 = (x1 = 0, x2 = 1, x3 = 1) and p3 = (x1 = 0, x2 =
1, x3 = 0) from Examples 7.1 and 7.2 are twin boundary points in variable x3.

Unsat(p2, F) = {C4, C5} and Unsat(p3, F) = {C2}. For example, C4 = x1 ∨ x3

can be resolved with C2 = x2 ∨ x3 on variable x3. Their resolvent C = x1 ∨ x2 is

falsified by both p2 and p3.

Proposition 7.5 Let p1 and p2 be twin boundary points in variable xi and C1 and

C2 be clauses falsified by p1 and p2, respectively. Then adding the resolvent C of

C1 and C2 to F eliminates the boundary points p1 and p2. That is, pairs (xi , p1) and

(x i , p2) are not in the set Bnd_pnts(F∧C) (here we assume that p1 is an xi -boundary

point and p2 is a x i -boundary point of F).

Proof According to Proposition 7.4, any clauses C1 and C2 falsified by p1 and p2,

respectively, can be resolved on xi and p1 and p2 falsify the resolvent C of C1 and

C2. Since clause C does not have a literal of xi , p1 is not an xi -boundary point and

p2 is not a x i -boundary point of F ∧ C .

Proposition 7.6 If a CNF formula F contains an empty clause, then Bnd_pnts(F) =
∅.

Proof For any complete assignment p, the set Unsat(p,F) contains the empty clause

of F . So p cannot be an l-boundary point.

Proposition 7.6 works only in one direction, i.e., if Bnd_pnts(F) = ∅, it does not

mean that F contains an empty clause. Proposition 7.6 only implies that, given an

unsatisfiable formula F for which Bnd_pnts(F) is not empty, the resolvents of any

resolution proof of unsatisfiability of F eventually eliminate all the boundary points.

Proposition 7.7 Let F be a CNF formula and p be an l(xi)-boundary point of F.

Let C be the resolvent of clauses C1 and C2 of F that eliminates p (i.e., (l(xi), p) is

not in Bnd_pnts(F ∧ C)). Then C is obtained by resolution on variable xi . In other

words, an l(xi)-boundary point can be eliminated only by adding to F a resolvent

on variable xi .

Proof Assume the contrary, i.e., adding C to F eliminates p and C is obtained

by resolving C1 and C2 on variable x j , j �= i . Since C eliminates p as an l(xi)-

boundary point, it is falsified by p and does not contain l(xi). This means that neither

C1 nor C2 contains variable xi . Since C is falsified by p, one of the parent clauses,

say clause C1, is falsified by p too. Since C1 does not contain literal l(xi), p is not

an l(xi)- boundary point of F . A contradiction.

Proposition 7.8 Let p be an l(xi)-boundary point of a CNF formula F. Then any

resolution derivation of an empty clause from F has to contain a resolution opera-

tion on variable xi .

Proof According to Proposition 7.6, every boundary point of F is eventually

eliminated in a resolution proof. According to Proposition 7.7, an l(xi)-boundary

point can be eliminated only by adding to F a clause produced by resolution on

variable xi .

7 Boundary Points and Resolution 115

7.3.3 Boundary Points and Redundant Formulas

In this section, we prove the following propositions. A clause C of a CNF formula

F that has a literal l and is not falsified by an l-boundary point of F is redundant

in F (Proposition 7.9). If F does not have any l(xi)-boundary points, all clauses

depending on variable xi can be removed from F (Proposition 7.10). If p is an

l(xi)-boundary point of F , it is also an l(xi)-boundary point of every unsatisfiable

subset of clauses of F .

Definition 7.10 A clause C of a CNF formula F is called redundant if F\{C} → C .

Proposition 7.9 Let C be a clause of a CNF formula F. Let l be a literal of C. If no

l-boundary point of F falsifies C, then C is redundant.

Proof Assume the contrary, i.e., C is not redundant. Then there is an assignment

p such that C is falsified and all the other clauses of F are satisfied. Then p is an

l-boundary point. A contradiction.

Importantly, Proposition 7.9 works only in one direction. That is, the fact that a

clause C is redundant in F does not mean that no boundary point of F falsifies

C . Let CNF formula F(x1, x2) consist of four clauses: x1, x1, x1 ∨ x2, x1 ∨ x2.

Although the clause x1 is redundant in F , p = (x1 = 0, x2 = 0) is an x1-boundary

point falsifying x1 (and x1 ∨ x2). The resolvent of clauses x1 and x1 eliminates p as

a boundary point.

Proposition 7.10 Let a CNF formula F have no l(xi)-boundary points. Then remov-

ing the clauses containing xi or x i from F does not change F (functionally).

Proof Let C be a clause of F with a literal l(xi). Then according to Proposition 7.9

C is redundant in F and so its removal does not change the Boolean function speci-

fied by F . Removing C from F cannot produce an l(xi)-boundary point in F \ {C}.
So Proposition 7.9 can be applied again to any of the remaining clauses with xi or

x i (and so on).

Proposition 7.11 Let F be an unsatisfiable formula. Let p be an l(xi)-boundary

point of F and F ′ be an unsatisfiable subset of clauses of F. Then p is an l(xi)-

boundary point of F ′.

Proof Since F ′ ⊆ F then Unsat(p,F ′) ⊆ Unsat(p,F). Since F ′ is unsatisfiable,

Unsat(p,F ′) �= ∅.

7.4 Resolution Proofs and Boundary Points

In this section, we view construction of a resolution proof as a process of boundary

point elimination and give a metric for measuring proof quality.

116 E. Goldberg and P. Manolios

7.4.1 Resolution Proof as Boundary Point Elimination

First, we define the notion of a resolution proof [2] and a boundary resolution.

Definition 7.11 Let F be an unsatisfiable formula. Let R1, . . . , Rk be a set of

clauses such that (a) each clause Ri is obtained by resolution operation where a

parent clause is either a clause of F or the resolvent of a previous resolution opera-

tion; (b) clauses Ri are numbered in the order they are derived; (c) Rk is an empty

clause. Then the set of resolutions that produced the resolvents R1, . . . , Rk is called

a resolution proof . We assume that this proof is irredundant, i.e., removal of any

non-empty subset of these k resolvents breaks condition (a).

Definition 7.12 Let {R1, . . . , Rk} be the set of resolvents forming a resolution proof

that a CNF formula F is unsatisfiable. Denote by Fi the CNF formula that is equal

to F for i = 1 and to F ∪ {R1, . . . , Ri−1} for i = 2, . . . , k. We will say that the i th

resolution (i.e., one that produces resolvent Ri) is non-mandatory if Bnd_pnts(Fi)

= Bnd_pnts(Fi+1). Otherwise (i.e., if Bnd_pnts(Fi) ⊂ Bnd_pnts(Fi+1), because

adding a clause cannot create a boundary point), i th resolution is called mandatory.

So a resolution operation is mandatory if adding Ri to Fi eliminates a boundary

point.

In Section 7.3, we showed that eventually all the boundary points of a CNF for-

mula F are removed by resolvents. Importantly, an l(xi)-boundary point mandates

a resolution on xi . Besides, as we showed in Section 7.3.3, even redundant clauses

can be used to produce new resolvents eliminating boundary points. It is important

because all clauses derived by resolution (e.g., conflict clauses generated by modern

SAT-solvers) are redundant. So the derived clauses are as good as the original ones

for boundary point elimination.

A natural question arises about the role of non-mandatory resolutions. When

answering this question it makes sense to separate redundant and irredundant formu-

las. (A CNF formula F is said to be irredundant if no clause of F is redundant, see

Definition 7.10.) For a redundant formula, one may have to use non-mandatory res-

olutions. (In particular, a heavily redundant formula may not have boundary points

at all. Then every resolution operation is non-mandatory.) For irredundant formulas

the situation is different.

Proposition 7.12 Let F be an irredundant formula of m clauses. Then F has at least

d boundary points where d is the number of literals in F.

Proof Let C be a clause of F . Then there is a complete assignment p falsifying C

and satisfying the clauses of F \ {C}. This assignment is an l-boundary point where

l is a literal of C .

7.4.2 SMR Metric and Proof Quality

Intuitively, to efficiently build a short proof for an unsatisfiable CNF formula F , a

resolution-based SAT-solver has to find mandatory resolutions as soon as possible.

Otherwise, a lot of non-mandatory resolutions may be generated that would not have

7 Boundary Points and Resolution 117

been necessary had mandatory resolutions been derived early. (In particular, as we

show in experiments, an entire proof may consist only of mandatory resolutions.)

This implies that the Share of Mandatory Resolutions (SMR) of a proof can be

used as a proof quality metric. Generation of proofs with a high value of SMR most

likely requires a good knowledge of the formula structure. The reason is as follows.

Finding a mandatory resolution suggests identification of at least one boundary point

this resolution eliminates. But detection of boundary points is hard. (Finding an

l(xi)-boundary point of formula F reduces to checking the satisfiability of the set of

clauses F\ { the clauses of F with l(xi)}, see Section 7.6.) Identification of manda-

tory resolutions without looking for boundary points of F requires the knowledge of

“special” subsets of clauses of the current formula F . (These special subsets should

contain clauses whose resolutions produce resolvents eliminating boundary points.)

Intuitively, such subsets can be identified if the formula structure is known. This

intuition is substantiated experimentally in Section 7.6.

The simplest example of information about the formula structure is to identify

a small unsatisfiable core. Even if the initial unsatisfiable CNF formula F to be

solved is irredundant, an unsatisfiable subformula of F inevitably appears due to the

addition of new clauses. (In particular, one can view an empty clause as the small-

est unsatisfiable subformula of the final CNF formula.) Let F1 be an unsatisfiable

subformula of F . Then no l(xi)-boundary point exists if xi is in Vars(F)\Vars(F1).

(The set of clauses falsified by any point p contains at least one clause C of F1

and xi /∈ Vars(C).) So any resolution on a variable of Vars(F)\Vars(F1) is non-

mandatory.

The appearance of unsatisfiable subformulas may lead to increasing the share

of non-mandatory resolutions in the final proof. For example, instead of deriving

an empty clause from F1, the SAT-solver may first derive some clauses having

variables of Vars(F1) from clauses of F\F1. It is possible since clauses of F\F1

may contain variables of Vars(F1). When deriving such clauses the SAT-solver may

use (non-mandatory) resolutions on variables of Vars(F)\Vars(F1), which leads to

redundancy of the final proof.

Unfortunately, we do not know yet if, given an unsatisfiable irredundant CNF

formula, there is always a proof consisting only of mandatory resolutions (and so

having a 100% value of SMR metric). Hence a low value of the SMR metric for a

CNF formula F may mean that the latter does not have a “natural” proof in the res-

olution proof system (see Section 7.8). However, as we show in Section 7.8, for any

unsatisfiable formula there always exists a proof where each resolution eliminates

a cut boundary point. So, for measuring proof quality one can also use the share of

cut mandatory resolutions (i.e., resolutions eliminating cut boundary points). This

metric should be more robust than SMR in the sense that it should work even for

formulas that do not have proofs with a 100% value of SMR metric.

7.5 Equivalence Checking Formulas

In this section, we introduce the formulas we use in the experimental part of this

chapter. These are the formulas that describe equivalence checking of two copies

118 E. Goldberg and P. Manolios

of a combinational circuit. In Section 7.5.1 we show how such formulas are con-

structed. In Section 7.5.2, we build short proofs of unsatisfiability particularly tai-

lored for equivalence checking formulas.

7.5.1 Building Equivalence Checking Formulas

Let N and N∗ be two single-output combinational circuits. To check their functional

equivalence one constructs a circuit called a miter (we denote it as Miter(N , N∗)).
It is a circuit that is satisfiable (i.e., its output can be set to 1) if and only if N and N∗

are not functionally equivalent. (N and N∗ are not functionally equivalent if there

is an input assignment for which N and N∗ produce different output values.) Then

a CNF formula FMiter is generated that is satisfiable if and only if Miter(N , N∗) is

satisfiable. In our experiments, we use a miter of two identical copies of the same

circuit. Then Miter(N , N∗) is always unsatisfiable and so is CNF formula FMiter.

Example 7.4 Figure 7.1 shows the miter of copies N and N∗ of the same circuit.

Here g1, g∗1 are OR gates, g2, g∗2 are AND gates, and h is an XOR gate (implement-

ing modulo-2 sum). Note that N and N∗ have the same set of input variables but

different intermediate and output variables. Since g2⊕ g∗2 evaluates to 1 if and only

if g2 �= g∗2 , and N and N∗ are functionally equivalent, the circuit Miter(N , N∗)
evaluates only to 0.

A CNF formula FMiter whose satisfiability is equivalent to that of Miter(N , N∗)
is formed as FN ∧ F∗N ∧ Fxor ∧ h. Here FN and F∗N are formulas specifying the

functionality of N and N∗, respectively. The formula Fxor specifies the functionality

of the XOR gate h, and the unit clause h forces the output of Miter(N , N∗) to be

set to 1. Since, in our case, the miter evaluates only to 0, the formula FMiter is

unsatisfiable.

Fig. 7.1 Circuit Miter(N , N∗)

7 Boundary Points and Resolution 119

Formulas FN and F∗N are formed as the conjunction of subformulas describing

the gates of N and N∗. For instance, FN = Fg1
∧ Fg2

where, for example, Fg1
=

(x1∨ x2∨g1)∧ (x1∨g1)∧ (x2∨g1) specifies the functionality of an OR gate. Each

clause of Fg1
rules out some inconsistent assignments to the variables of gate g1. For

example, the clause (x1∨x2∨g1) rules out the assignment x1 = 0, x2 = 0, g1 = 1.

7.5.2 Short Proofs for Equivalence Checking Formulas

For a CNF formula FMiter describing equivalence checking of two copies N , N∗ of

the same circuit, there is a short resolution proof that FMiter is unsatisfiable. This

proof is linear in the number of gates in N and N∗. The idea of this proof is as

follows. For every pair gi , g∗i of the corresponding gates of N and N∗, the clauses

of CNF formula Eq(gi , g∗i) specifying the equivalence of variables gi and g∗i are

derived where Eq(gi , g∗i) = (gi∨g∗i)∧(gi∨g∗i). These clauses are derived according

to topological levels of gates gi , g∗i in Miter(N , N∗). (The topological level of a

gate gi is the length of the longest path from an input to gate gi measured in the

number of gates on this path.) First, clauses of Eq(gi , g∗i) are derived for all pairs of

gates gi , g∗i of topological level 1. Then using previously derived Eq(gi , g∗i), same

clauses are derived for the pairs of gates g j , g∗j of topological level 2 and so on.

Eventually, the clauses of Eq(gs, g∗s) relating the output variables gs , g∗s of N and

N∗ are derived. Resolving the clauses of Eq(gs, g∗s) and the clauses describing the

XOR gate, the clause h is derived. Resolution of h and the unit clause h of FMiter

produces an empty clause.

Example 7.5 Let us explain the construction of the proof using the CNF FMiter from

Example 7.4. Gates g1, g∗1 have topological level 1 in Miter(N , N∗). So first, the

clauses of Eq(g1, g∗1) are obtained. They are derived from the CNF formulas Fg1

and Fg∗1
describing gates g1 and g∗1 . That the clauses of Eq(g1, g∗1) can be derived

from Fg1
∧ Fg∗1

just follows from the completeness of resolution and the fact that

Eq(g1, g∗1) is implied by the CNF formula Fg1
∧ Fg∗1

. (This implication is due to the

fact that Fg1
and Fg∗1

describe two functionally equivalent gates with the same set

of input variables.) More specifically, the clause g1 ∨ g∗1 is obtained by resolving

the clause x1 ∨ x2 ∨ g1 of Fg1
with the clause x1 ∨ g∗1 of Fg∗1

and then resolving the

resolvent with the clause x2 ∨ g∗1 of Fg∗1
. In a similar manner, the clause g1 ∨ g∗1 is

derived by resolving the clause x1∨ x2∨ g∗1 of Fg∗1
with clauses x1∨ g1 and x2∨ g1

of Fg1
.

Then the clauses of Eq(g2, g∗2) are derived (gates g2, g∗2 have topological level

2). Eq(g2, g∗2) is implied by Fg2
∧ Fg∗2

∧ Eq(g1, g∗1). Indeed, g2 and g∗2 are function-

ally equivalent gates that have the same input variable x3. The other input variables

g1 and g∗1 are identical too due to the presence of Eq(g1, g∗1). So the clauses of

Eq(g2, g∗2) can be derived from clauses of Fg2
∧ Fg∗2

∧ Eq(g1, g∗1) by resolution.

Then the clause h is derived as implied by Fxor∧ Eq(g2, g∗2) (an XOR gate produces

output 0 when its input variables have equal values). Resolution of h and h produces

an empty clause.

120 E. Goldberg and P. Manolios

7.6 Experimental Results

The goal of experiments was to compare the values of SMR metric (see Sec-

tion 7.4.2) for two kinds of proofs of different quality. In the experiments we used

formulas describing the equivalence checking of two copies of combinational cir-

cuits. The reason for using such formulas is that one can easily generate high-quality

specialized proofs of their unsatisfiability (see Section 7.5). In the experiments we

compared these short proofs with the ones generated by a well-known SAT-solver

Picosat, version 913 [3].

We performed the experiments on a Linux machine with Intel Core 2 Duo CPU

with 3.16 GHz clock frequency. The time limit in all experiments was set to 1 h.

The formulas and specialized proofs we used in the experiments can be downloaded

from [17].

Given a resolution proof R of k resolutions that a CNF formula F is unsatisfiable,

computing the value of SMR metric of R reduces to k SAT-checks. In our experi-

ments, these SAT-checks were performed by a version of DMRP-SAT [8]. Let Fi

be the CNF formula F ∪ {R1, . . . , Ri−1} where {R1, . . . , Ri−1} are the resolvents

generated in the first i − 1 resolutions. Let C1 and C2 be the clauses of Fi that

are the parent clauses of the resolvent Ri . Let C1 and C2 be resolved on variable

x j . Assume that C1 contains the positive literal of x j . Checking if i th resolution

eliminates an x j -boundary point can be performed as follows. First, all the clauses

with a literal of x j are removed from Fi . Then one adds to Fi the unit clauses that

force the assignments setting all the literals of C1 and all the literals of C2 but the

literal x j to 0. Denote the resulting CNF formula by Gi .

If Gi is satisfiable then there is a complete assignment p that is falsified by C1

and maybe by some other clauses with literal x j . So p is an x j -boundary point of Fi .

Since p falsifies all the literals of C2 but x j , it is falsified by the resolvent of C1 and

C2. So the satisfiability of Gi means that i th resolution eliminates p and so this res-

olution is mandatory. If Gi is unsatisfiable, then no x j -boundary point is eliminated

by i th resolution. All boundary points come in pairs (see Proposition 7.3). So no

x j -boundary point is eliminated by i th resolution either. Hence the unsatisfiability

of Gi means that the i th resolution is non-mandatory.

Table 7.1 shows the value of SMR metric for the short specialized proofs. The

first column gives the name of the benchmark circuit whose self-equivalence is

Table 7.1 Computing value of SMR metric for short specialized proofs

Name #Vars #Clauses #Resolutions SMR (%) Time (s)

c432 480 1, 333 1, 569 95 1.4

9symml 480 1, 413 1, 436 100 0.6

mlp7 745 2, 216 2, 713 100 1.3

c880 807 2, 264 2, 469 100 3.8

alu4 2, 369 7, 066 8, 229 96 43

c3540 2, 625 7, 746 9, 241 97 137

x1 4, 381 12, 991 12, 885 97 351

dalu 4, 714 13, 916 15, 593 84 286

7 Boundary Points and Resolution 121

described by the corresponding CNF formula. The size of this CNF formula is given

in the second and third columns. The fourth column of Table 7.1 gives the size of

the proof (in the number of resolutions). The fifth column shows the value of SMR

metric, and the last column of Table 1 gives the run time of computing this value.

These run times can be significantly improved if one uses a faster SAT-solver and

tunes it to the problem of computing the SMR metric. (For example, one can try to

share conflict clauses learned in different SAT-checks.)

Looking at Table 7.1 one can conclude that the specialized proofs have a very

high value of SMR metric (almost every resolution operation eliminates a boundary

point). The only exception is the dalu formula (84%). The fact that the value of SMR

metric for dalu and some other formulas is different from 100% is probably due to

the fact that the corresponding circuits have some redundancies. Such redundancies

would lead to redundancy of CNF formulas specifying the corresponding miters,

which would lower the value of SMR metric.

The values of SMR metric for the proofs generated by Picosat are given in

Table 7.2. The second column gives the size of resolution proofs generated by

Picosat. When computing the size of these proofs we removed the obvious redun-

dancies. Namely, the derivation of the conflict clauses that did not contribute to the

derivation of an empty clause was ignored. The third column shows the value of

SMR metric, and the last column gives the run time of computing this value. In the

case the computation did not finish within the time limit, the number in parentheses

shows the percent of the resolution operations processed before the computation

terminated.

Table 7.2 Computing value of SMR metric for proofs generated by Picosat

Name #Resolutions SMR (%) Run time (s) (% of proof finished)

c432 19, 274 41 75

9symml 12, 198 47 28

mlp7 7, 253, 842 60 >1 h (1.2)

c880 163, 655 17 >1 h (72)

alu4 672, 293 41 >1 h (12)

c3540 3, 283, 170 29 >1 h (2.7)

x1 92, 486 45 >1 h (84)

dalu 641, 714 33 >1 h (6.9)

Table 7.2 shows that the size of the proofs generated by Picosat is much larger

than that of specialized proofs (Table 7.1, fourth column). Importantly, the value

of SMR metric we give for the formulas for which computation was terminated

due to exceeding the time limit is higher than it should be. Typically, the later a

resolution occurs in a resolution proof, the more likely it is that this resolution

is non-mandatory. So the early termination of SMR metric computation ignored

resolutions with the highest chances to be non-mandatory.

The intuition above is confirmed by the results of Table 7.3. To reach later res-

olutions we sampled four largest resolution proofs; that is, we checked only every

kth resolution whether it was mandatory. The value of k is shown in the second

122 E. Goldberg and P. Manolios

Table 7.3 Using sampling to

compute SMR metric for

Picosat proofs

Name Sampling rate SMR (%) Proof processed (%)

mlp7 100 18 11

alu4 10 29 36

c3540 100 11 26

dalu 10 37 26

column. The next column gives the value of SMR metric computed over the set of

sampled resolutions. The part of the proof covered by sampling within the 1-h time

limit is shown in the last column. It is not hard to see that taking into account later

resolutions significantly reduced the value of SMR metric for three proofs out of

four.

Summing up, one can conclude that for the formulas we considered in experi-

ments, the proofs of poorer quality (generated by Picosat) have lower values of SMR

metric. This substantiates the reasoning of Section 7.4 that not taking into account

the formula structure leads to generation of proofs with a low value of SMR metric.

On the contrary, picking “right” subsets of clauses to be resolved with each other,

i.e., closely following the formula structure, leads to generation of proofs with a

high value of SMR metric.

7.7 Some Background

The notion of boundary points was introduced in [11] where they were called essen-

tial points. (We decided to switch to the term “boundary point” as more precise.)

Boundary points were used in [11] to help a SAT-solver prune the search space.

If the subspace xi =0 does not contain a satisfying assignment or an xi -boundary

point, one can claim that the symmetric subspace xi =1 cannot contain a satisfying

assignment either (due to Proposition 7.3). The same idea of search pruning was

independently described in [14] and implemented in the SAT-solver Jerusat. The

ideas of search pruning introduced in [11] were further developed in [5].

In [7], we formulate two proof systems meant for exploring the 1-neighborhood

of clauses of the formula to be solved. The union of the 1-neighborhoods of these

clauses is essentially a superset approximation of the set of boundary points. To

prove that a formula is unsatisfiable it is sufficient to eliminate all boundary points

(Proposition 7.2). The proof systems of [7] show that one can eliminate all boundary

points without generation of an empty clause. So resolution can be viewed as a

special case of boundary point elimination.

The results of this chapter can also be considered as an approach to improv-

ing automatizability of resolution [4]. General resolution is most likely non-

automatizable [1]. This means that finding short proofs cannot be done efficiently

in general resolution. A natural way to mitigate this problem is to look for restricted

versions of general resolution that are “more automatizable,” i.e., that facilitate

finding good proofs. Intuitively, mandatory resolutions is a tiny part of the set of

all possible resolutions. So the restriction of resolutions to mandatory ones (or cut

7 Boundary Points and Resolution 123

mandatory ones, see Section 7.8) can be viewed as a way to make it easier to find

good proofs.

7.8 Completeness of Resolution Restricted to Boundary Point

Elimination

In this section, we show that, given a CNF formula (irredundant or not), there always

exists a proof consisting only of resolutions that eliminate so-called cut boundary

points. (This result was not published in [9].) The importance of this result is that it

enables SAT-solvers to use (cut) boundary point elimination for building resolution

proofs.

7.8.1 Cut Boundary Points

Let F be a CNF formula and resolvents R1, . . . , Rk form a proof R that F is unsat-

isfiable. So far we considered elimination of boundary points of the original CNF

formula F (by adding resolvents Ri). Now we introduce the notion of a cut boundary

point.

Denote by G R a DAG (called a resolution graph) specified by proof R. The nodes

of G R correspond to the clauses of F (the sources of G R) and resolvents R1, . . . , Rk

(the empty clause Rk being the sink of G R). Graph G R has an edge directed from

n1 to n2 if and only if n2 corresponds to a resolvent and n1 corresponds to a parent

clause of this resolvent.

Denote by T a cut of G R , i.e., a set of nodes such that every path from a source

to the sink of G R has to go through a node of T . Denote by FT the CNF formula

that consists of the clauses corresponding to the nodes of cut T . (If cut T consists

of the sources of G R , then FT is the initial formula F .) Formula FT is unsatisfiable

for any cut T . Indeed, the resolutions corresponding to the nodes located between

the nodes of T and this sink of G R form a proof that FT is unsatisfiable. In terms of

Definition 7.12, FT is a subset of Fi for some i ≤ k where Fi = F ∪ R1 ∪ . . . ∪ Ri .

(Since Fi is redundant, one can remove some clauses of Fi without breaking its

unsatisfiability.)

Definition 7.13 Let T be a cut of a proof G R that a CNF formula F is unsatisfiable.

Let p be an l-boundary point for FT (i.e., p ∈ Bnd_pnts(FT)). We will call p an

l-boundary point with respect to cut T or just cut boundary point.

Note that Vars(Fi) = Vars(F) and Vars(FT) ⊆ Vars(F). For the sake of sim-

plicity, we will assume that if p is a boundary point for FT , the variables of

Vars(F)\Vars(FT) are assigned in p (even though these assignments cannot affect

satisfying or falsifying a clause of FT). Importantly, since FT is only a subset of Fi ,

a point p that is l-boundary for FT may not be such for Fi .

124 E. Goldberg and P. Manolios

Note that if F is an irredundant CNF formula, all resolution graphs G R have the

same cut T consisting only of the nodes that are sources of G R . (For such a cut,

FT = F .)

7.8.2 The Completeness Result

In this section, we describe the procedure gen_proof that, given an unsatisfiable

CNF formula F , builds a resolution proof where every resolution eliminates a cut

boundary point. This means that the resolution proof system remains complete even

if it is restricted only to the resolution operations that eliminate cut boundary points.

The pseudocode of gen_proof is shown in Fig. 7.2. In the outer while loop,

gen_proof processes variables of F one by one. First, a variable xi to be processed is

chosen by the function pick_variable. Then all l(xi)-boundary points are eliminated

by gen_proof in the inner while loop. (Finding and elimination of l(xi)-boundary

points are performed by procedures find_bp and elim_bp, respectively.)

Fig. 7.2 gen_proof generates

a proof where every

resolution eliminates a cut

boundary point

To eliminate an l(xi)-boundary point, the resolvent C of parent clauses Cxi
and

Cx i
is generated. Here Cxi

∈ Fxi
and Cx i

∈ Fx i
where Fxi

and Fx i
are the clauses of

F having literals xi and xx i
, respectively. If C is an empty clause, gen_proof stops

and returns the resolution graph G R specifying a proof that F is unsatisfiable. (G R

may contain nodes corresponding to resolvents that are not on a path leading from

a source to the empty clause. So, the procedure rem_redundant is called to remove

the parts of G R corresponding to redundant resolution operations.) Otherwise, a new

l(xi)-boundary point is looked for. When all l(xi)-boundary points are eliminated,

the clauses Fxi
and Fx i

are removed from F and proof_gen leaves the inner loop.

That the proof_gen procedure is sound follows from the soundness of the res-

olution proof system. The proof_gen procedure is also complete. The number of

l(xi)-boundary points is finite and monotonically decreases in the process of adding

resolvents C to F . So after a finite number of steps, all l(xi)-boundary points are

eliminated from the current formula F . At this point, the clauses of F containing

7 Boundary Points and Resolution 125

xi or x i are removed from F , which does affect its unsatisfiability (see Proposi-

tion 7.10). After processing all the variables, an empty clause is inevitably derived

(because the resulting formula has no variables and has to be functionally equivalent

to the original formula F that is unsatisfiable).

Let us show that every resolution operation of the proof G R produced by

gen_proof eliminates a cut boundary point. Let C be a resolvent on variable xi pro-

duced from parent clauses Cxi
and Cx i

in the inner loop of the gen_proof procedure.

By construction, C eliminates an l(xi)-boundary point p of the current formula F .

The nodes corresponding to F form a cut of G R (because every resolvent produced

in the future is a descendent of clauses of F). The elimination of redundant nodes

of G R by the procedure rem_redundant of gen_proof does not change much. If the

resolvent C turns out to be redundant, then whether or not adding C to F elimi-

nates a cut boundary point is irrelevant. If the resolvent C stays in the proof, it still

eliminates the same l(xi) boundary p (according to Proposition 7.11).

Summarizing, each resolution of the proof specified by the graph G R built by

gen_proof eliminates a cut boundary point. (The cut corresponding to a resolution

is specified by the formula F at the time this resolution was performed minus some

redundant clauses identified by rem_redundant.)

7.8.3 Boundary Points as Complexity Measure

The existence of an l(xi)-boundary point of a CNF formula F implies dependency

of F on variable xi . In this subsection, we argue that in the context of resolution

proofs, Bnd_pnts(F) is a more precise complexity measure than Vars(F). Besides,

we introduce the notion of natural resolution proofs.

Let resolution graph G R specify a proof that a CNF formula F is unsatis-

fiable. Such a proof can be represented as a sequence of unsatisfiable formulas

FT1
, . . . , FTm corresponding to cuts T1, . . . , Tm of G R . We assume that FT1

= F

and FTm consists only of an empty clause and that Ti ≤ T j if i ≤ j . (The partial

order Ti ≤ T j holds iff there is no path from a source to the sink of G R such that a

node of T j appears on this path before a node of Ti .)

It is natural to expect that formulas FTi
are getting easier to solve as the value of

i grows and eventually the trivial formula Fm is derived. Note that in terms of the

number of variables this is true because Ti ≤ T j → Vars(Ti) ⊆ Vars(T j). However,

in terms of boundary points this is, in general, not true. For example, it is possible

that Bnd_pnts(FTi
) is not a subset of Bnd_pnts(FT j

) even though Ti ≤ T j . The

reason is that FT j
is obtained from FTi

by adding and removing some clauses. The

removal of a clause C from FTi
may lead to appearance of a new l(xs)-boundary

point p where xs /∈ Vars(C). This means that FT j
in some aspect depends on xs

stronger than FTi
(because a resolution on variable xs is mandated by p).

The observation above implies that boundary points provide a more precise way

to measure formula complexity than just computing the set of variables on which

the formula depends. It would be interesting to find classes of formulas for which

126 E. Goldberg and P. Manolios

there exist resolution proofs where the complexity of formulas FTi
monotonically

reduces in terms of Bnd_pnts(FTi
). Intuitively, this is possible if the proof structure

follows the natural structure of the formula. So such proofs can be called natural.

On the other hand, there may be a class of formulas for which natural resolution

proofs do not exist (due to the fact that the structure of any resolution proof does not

agree with that of a formula from this class).

7.9 Conclusions and Directions for Future Research

We show that a resolution proof can be viewed as the process of boundary point

elimination. We introduce the SMR metric that is the percent of resolutions of

the proof that eliminate boundary points (mandatory resolutions). This metric can

be used for gauging proof quality. We experimentally show that short specialized

proofs for equivalence checking formulas have high values of SMR metric. On the

other hand, values of this metric for proofs generated by a SAT-solver with conflict-

driven learning are low. As we argue in Section 7.4, this may be attributed to not

taking into account the formula structure 1.

The idea of treating resolution as boundary proof elimination has many interest-

ing directions for research. Here are a few of them.

1. Studying the quality of proofs consisting only of resolutions eliminating cut

boundary points. (We showed the existence of such proofs for every CNF for-

mula but have not made any claims about their quality.)

2. Studying further the relation between the value of SMR metric for resolution

proofs obtained by SAT-solvers and their ability to take into account the formula

structure.

3. Building SAT-solvers based on the idea of (cut) boundary point elimination.

4. Finding the classes of formulas for which “natural” proofs exist, i.e., proofs for

which the complexity of cut CNF formulas monotonically decreases (in terms of

cut boundary points).

References

1. Alekhnovich, M., Razborov, A.: Resolution is not automatizable unless w[p] is tractable.

SIAM Journal on Computing 38(4), 1347–1363 (2008)

2. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: A. Robinson, A. Voronkov

(eds.) Handbook of Automated Reasoning, vol. I, chap. 2, pp. 19–99. North-Holland Elsevier

Science (2001)

3. Biere, A.: Picosat essentials. Journal of Substance Abuse Treatment 4(2–4), 75–97 (2008)

4. Bonet, L., Pitassi, T., Raz, R.: On interpolation and automatization for Frege systems. SIAM

Journal of Computing 29(6), 1939–1967 (2000)

5. Babic, D., Bingham, J., Hu, A.: Efficient sat solving: Beyond supercubes. In: Design Automa-

tion Conference, pp. 744–749. Anaheim, California, USA (2005)

6. Eén, N., Sörensson, N.: An extensible sat-solver. In: Proceedings of SAT, pp. 502–518. Santa

Margherita Ligure, Italy (2003)

7 Boundary Points and Resolution 127

7. Goldberg, E.: Proving unsatisfiability of CNFs locally. Journal of Automated Reasoning 28(4),

417–434 (2002)

8. Goldberg, E.: A decision-making procedure for resolution-based sat-solvers. In: Proceedings

of SAT-08, pp. 119–132. Guangzhou, China (2008)

9. Goldberg, E.: Boundary points and resolution. In: Proceedings of SAT-09, pp. 147–160.

Swansea, Wales, United Kingdom (2009)

10. Goldberg, E., Novikov, Y.: Berkmin: A fast and robust sat-solver. Discrete Applied Mathemat-

ics 155(12), 1549–1561 (2007). Doi: http://dx.doi.org/10.1016/j.dam.2006.10.007

11. Goldberg, E., Prasad, M., Brayton, R.: Using problem symmetry in search based satisfiability

algorithms. In: Proceedings of DATE ’02, pp. 134–141. Paris, France (2002)

12. Marques-Silva, J., Sakallah, K.: Grasp—A new search algorithm for satisfiability. In: Proceed-

ings of ICCAD-96, pp. 220–227. Washington, DC (1996)

13. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient

sat solver. In: Design Automation Conference-01, pp. 530–535. New York, NY (2001). Doi:

http://doi.acm.org/10.1145/378239.379017

14. Nadel, A.: Backtrack search algorithms for propositional logic satisfiability: Review and inno-

vations. Master’s thesis, The Hebrew University (2002)

15. Zhang, H.: Sato: An efficient propositional prover. In: Proceedings of CADE-97, pp. 272–275.

Springer, London (1997)

16. Ryan, L.: The siege sat-solver. http://www.cs.sfu.ca/˜cl/software/siege (2010)

17. Goldberg, E.: Benchmarks. http://eigold.tripod.com/benchmarks/book2010.tar.gz (2010)

Chapter 8

SAT Sweeping with Local Observability
Don’t-Cares

Qi Zhu, Nathan B. Kitchen, Andreas Kuehlmann,

and Alberto Sangiovanni-Vincentelli

Abstract Boolean reasoning is an essential ingredient of electronic design automa-

tion. AND-INVERTER graphs (AIGs) are often used to represent Boolean functions

but have a high degree of structural redundancy. SAT sweeping is a method for

simplifying an AIG by systematically merging graph vertices from the inputs toward

the outputs using a combination of structural hashing, simulation, and SAT queries.

Due to its robustness and efficiency, SAT sweeping provides a solid algorithm for

Boolean reasoning in functional verification and logic synthesis. In previous work,

SAT sweeping merges two vertices only if they are functionally equivalent. In

this chapter we present a significant extension of the SAT-sweeping algorithm that

exploits local observability don’t-cares (ODCs) to increase the number of vertices

merged. We use a novel technique to bound the use of ODCs and thus the compu-

tational effort to find them, while still finding a large fraction of them. Our reported

results based on a set of industrial benchmark circuits demonstrate that the use of

ODCs in SAT sweeping results in significantly more graph simplification with great

benefit for Boolean reasoning with a moderate increase in computational effort.

8.1 Introduction

Boolean reasoning is a key part of many tasks in computer-aided circuit design,

including logic synthesis, equivalence checking, and property checking. Circuit

graphs such as AND-INVERTER graphs (AIGs) [8] are often used to represent

Q. Zhu (B)

Intel Corporation, Hillsboro, OR, USA

e-mail: qi.dts.zhu@intel.com

This work is based on an earlier work: SAT sweeping with local observability don’t-cares, in

Proceedings of the 43rd Annual Design Automation Conference, ISBN:1-59593-381-6 (2006) c©
ACM, 2006. DOI= http://doi.acm.org/10.1145/1146909.1146970.
This chapter is an extended version of [20]. The added content includes examples, a proof, details

of the algorithm flow and implementation, discussion of applications, and explanation of the exper-

imental results.

S.P. Khatri, K. Gulati (eds.), Advanced Techniques in Logic Synthesis,

Optimizations and Applications, DOI 10.1007/978-1-4419-7518-8_8,
C© Springer Science+Business Media, LLC 2011

129

130 Q. Zhu et al.

Boolean functions because their memory complexity compares favorably with other

representations such as binary decision diagrams. In many Boolean reasoning prob-

lems, circuit graphs have a high degree of structural redundancy [9]. The redundancy

can be reduced by the application of SAT sweeping [7]. SAT sweeping is a method

for simplifying an AND-INVERTER graph by systematically merging graph vertices

from the inputs toward the outputs using a combination of structural hashing, sim-

ulation, and SAT queries. Due to its robustness and efficiency, SAT sweeping pro-

vides a solid algorithm for Boolean reasoning in functional verification and logic

synthesis.

In previous work, SAT sweeping merges two vertices only if they are function-

ally equivalent. However, functional differences between vertices are not always

observable at the outputs of a circuit. This fact can be exploited to increase the

number of vertices merged. In this chapter we present a significant extension of

the SAT-sweeping algorithm that uses observability don’t-cares (ODCs) for greater

graph simplification. Taking observability into account not only increases the effec-

tiveness of SAT sweeping but also increases its computational expense. In order to

find a balance between effectiveness and efficiency, we introduce the notion of local

observability, in which only paths of bounded length are considered.

When observability is taken into account, the equivalence-class refinement

approach of the original SAT-sweeping algorithm cannot be used. We introduce

a new method of comparing simulation vectors to identify merging candidates.

Although the number of comparisons is theoretically quadratic, on average near-

linear complexity is observed in our results.

SAT sweeping interleaved with SAT queries to check a property can be utilized

as an efficient engine for equivalence and bounded property checking [7, 9] (see also

Section 8.4.5). Similarly, SAT sweeping can be applied to perform the equivalence-

class refinement in van Eijk’s algorithm for sequential equivalence checking [4]. In

each iteration it can prove or disprove the functional equivalences of the candidates.

In all these applications, the use of ODCs for SAT sweeping described in this chapter

can increase the number of vertices merged and thus improve their overall reasoning

power.

This chapter is structured as follows: Previous work is discussed in Section 8.2.

Section 8.3 introduces some preliminary concepts, including AIGs and SAT sweep-

ing. Section 8.4 explains the details of SAT sweeping with local ODCs. Section 8.5

presents the experimental results, and Section 8.6 contains conclusions.

8.2 Previous Work

The combined application of random simulation and satisfiability queries for finding

functionally equivalent circuit components has been proposed in multiple publica-

tions [2, 6, 10–12]. A particular implementation on AIGs that combines these meth-

ods with structural hashing and circuit rewriting was described in [7] for simplifying

the transition relation for bounded model checking (BMC).

8 SAT Sweeping with Local Observability Don’t-Cares 131

In [16] the use of observability don’t-cares was proposed to simplify the function-

ality of internal circuit nodes by exploiting non-observability of their input assign-

ments [16]. Using BDDs for their representation, the don’t-cares are systematically

computed from the outputs toward the inputs and then applied for node resynthesis.

Recently, SAT-based methods have been suggested for the same application [13, 14].

To reduce the huge computational cost of computing ODCs, existing methods use

compatible ODCs [3, 18] to avoid frequent recomputations or windowing [17] to

limit the problem size. In contrast, the ODC-based SAT sweeping method presented

in this chapter encodes observability conditions directly in the check for mergeabil-

ity of two vertices. Random simulation is utilized to effectively reduce the number

of merge candidates. Furthermore, our approach is made robust by limiting the path

length considered for observability.

Other previous work utilizes ODCs for CNF-based SAT checking. In [15] addi-

tional clauses which encode ODC conditions are added to the CNF formula of the

circuit with the goal to improve the solver performance. In [5], a similar approach is

presented that also introduces additional literals. The aim of both these approaches

is to speed up the SAT search, whereas our method is targeted to simplify the cir-

cuit representation itself. This simplification can be used in multiple application

domains, including equivalence checking [9], property verification [7], or logic syn-

thesis.

8.3 Preliminaries

For completeness, this section briefly outlines the concept of AND-INVERTER

graphs and the SAT-sweeping algorithm.

8.3.1 AND-INVERTER Graphs

Let C = (V, E) denote an AIG with the set of vertices V = {v0}∪ X ∪G and set of

directed edges E ⊆ V×V . Vertex v0 represents the logical constant 0, X is the set of

inputs, G is the set of AND gates, and O ⊆ G is the set of outputs. v0 and all inputs

v ∈ X have no predecessors, whereas the gates g ∈ G have exactly two incoming

edges denoted by right(g) and left(g). Let ref (e) denote the source vertex of edge

e and FO(v) be the set of successor vertices of v, i.e., v′ ∈ FO(v) ⇔ (v, v′) ∈
E . TFO(v) refers to the set of vertices in the transitive fanout of v. Moreover, let

other(v′, v) denote the incoming edge of vertex v′ ∈ FO(v) which does not come

from v, i.e.,

other(v′, v) =
{

right(v′) if v = ref (left(v′))
left(v′) if v = ref (right(v′))

(8.1)

For the definition of the AIG semantics, we assume that each input v ∈ X is

assigned a Boolean variable xv and each gate v ∈ G computes the conjunction of

132 Q. Zhu et al.

the incoming edge functions. For each edge e ∈ E an attribute inv(e) is used to

indicate whether the function of the source vertex is complemented. More formally,

the functions of a vertex v ∈ V and an edge e ∈ E of an AIG are defined as follows:

f (v) =

⎧

⎨

⎩

0 if v = v0

xv if v ∈ X

f (left(v)) ∧ f (right(v)) otherwise

f (e) = f (ref (e))⊕ inv(e)

(8.2)

Figure 8.1 illustrates part of an AIG. Inverted edges are shown with dots. v1, v2,

v3, and v4 are inputs; their functions are x1, x2, x3, and x4, respectively. The function

of v9 is (¬ x1∧x2)∧x3 = ¬ x1∧x2∧x3. The function of the inverted edge (v10, v13)

is ¬((¬ x1 ∧ x2) ∧ (x2 ∧ x3)) = ¬(¬ x1 ∧ x2 ∧ x3) = x1 ∨ ¬ x2 ∨ ¬ x3. Note that

f ((v10, v13)) is also the complement of v9’s function, so this AIG is redundant.

Fig. 8.1 Example of

AND-INVERTER graph:

f (v1) = x1, f (v2) = x2,

f (v3) = x3, f (v4) = x4,

f (v9) = (¬ x1 ∧ x2) ∧ x3;

f (v11) = (x2 ∧ ¬ x4)

∧ (x3 ∧ ¬ x4);

f ((v10, v13)) = ¬(¬ x1 ∧ x2)

∧ (x2 ∧ x3)

v13

v11

v7

v8

v4

v3

v2

v1 v5 v9

v12

v10v6x2

x3

x4

x1

inv(e) = FALSE

inv(e) = TRUE

8.3.2 SAT Sweeping

Algorithm 2 outlines the basic flow of the SAT-sweeping algorithm as presented

in [7]. The goal of the algorithm is to systematically identify all pairs of functionally

equivalent vertices and merge them in the graph. For this the algorithm uses a clas-

sical partition refinement approach using a combination of functional simulation,

SAT queries, and structural hashing. For simplicity, Algorithm 2 does not outline

the handling of equivalence modulo complementation, i.e., the assignment of two

vertices to the same equivalence class if their simulation vectors are identical or

complements.

In Algorithm 2 we denote by F(v) the simulation vector of vertex v. The value

of F(v) is computed by bitwise application of the semantics given in (8.2).

8 SAT Sweeping with Local Observability Don’t-Cares 133

During the first iteration of the outer loop the randomly initialized input vectors

are simulated to generate a first partitioning of the graph vertices into equivalence

classes {V1, V2, . . . , Vc}. To refine the initial partitioning, a SAT solver is applied

to check for functional equivalence of the shallowest vertices in all shallow classes

containing more than one vertex. If they are indeed functionally equivalent, they

are merged. Otherwise, the simulation vectors are updated with the counterexample

given by the satisfying input values. This ensures that this class is broken apart dur-

ing the next iteration. The reader is referred to [7] for more implementation details

on the SAT-sweeping algorithm.

Algorithm 2 Basic SAT Sweeping

1: {Given: AIG C = (V, E) with inputs X}

2: randomly initialize simulation vectors F(x) for all x ∈ X

3: Classes := {V } {Initially all vertices in single class}

4: loop

5: simulate C to update all simulation vectors F(v)

6: refine all classes Vi s.t. ∀u, v ∈ Vi : F(u) = F(v)

7: if ∀i : |Vi | = 1 ∨ (Used Resource > ResourceLimit) then

8: return

9: else

10: for all shallow classes i with |Vi | > 1 do

11: v := argminv′∈Vi
LEVEL(v′)

12: u := argminu′∈Vi \{v} LEVEL(u′)
13: res := SAT-CHECK (f (u)⊕ f (v))

14: if res = S AT then

15: extend simulation vectors F(x) by SAT counterexample

16: else if res = U N S AT then {u and v equivalent}

17: MERGE (u, v)

18: remove u from Vi {v is representative of u in Vi }

19: end if

20: end for

21: end if

22: end loop

When SAT sweeping is applied to the AIG in Fig. 8.1, v9 and v10 are identified

as functionally equivalent and merged, resulting in the graph shown in Fig. 8.2. The

Fig. 8.2 Subgraph of AIG

from Fig. 8.1 after SAT

sweeping: v10 is merged onto

v9

v13

v3

v2

v1 v5 v9

v12

v6 v10

134 Q. Zhu et al.

outputs of v10 are moved to v9. The rest of the AIG is unchanged; no other vertices

can by merged by basic SAT sweeping.

8.4 SAT Sweeping with Observability Don’t Cares

8.4.1 Motivating Example

Functional equivalence is a sufficient condition to prevent changes in overall cir-

cuit behavior when vertices are merged. However, it is not a necessary condition.

Some functional differences between vertices are never observed at the outputs of

the circuit. For example, in Fig. 8.1 v6 and v8 are not functionally equivalent, since

f (v6) = x2 ∧ x3 and f (v8) = x3 ∧ x̄4. However, their values only differ when

x3 = 1 and x2 = x4, which implies f (v7) = 0. Since v7 provides a controlling

value to the input of v11, this difference is not observable for v8. Therefore, v8 can

safely be merged onto v6.

8.4.2 Observability Don’t Cares

For a given AIG, the observability obs(v) of a vertex v ∈ V that has no reconverging

path in its transitive fanout, denoted by TFO(v), is defined as follows:

obs(v) =
{

1 if v ∈ O
∨

v′∈FO(v)

(

obs(v′) ∧ f (other(v′, v))
)

otherwise
(8.3)

In other words, the value of vertex v is not observable iff for each of its fanouts either

the value of the fanout vertex itself is not observable or its other input evaluates to

0, thus blocking the logical path.

In the presence of reconvergent paths beginning at v, the recursive computation

of obs(v) given in (8.3) may lead to incorrect results [18]. It may exclude input

assignments for which a change of the value at v can propagate to an output through

simultaneous switching of multiple paths. An example is shown in Fig. 8.3, where

Fig. 8.3 Example of AIG for

which (8.3) is incorrect
x4

v4

v3

x2
v2

x1
v1

v7

v5

v6

x3 v8

8 SAT Sweeping with Local Observability Don’t-Cares 135

vertex v2 has two paths to vertex v7. Assuming v7, v8 ∈ O , the observability of v2

according to (8.3) is computed as follows:

obs(v2) = (obs(v5) ∧ x1) ∨ (obs(v6) ∧ x3)

= (obs(v7) ∧ f (v6) ∧ x1)

∨
(
(

(obs(v7) ∧ f (v5)) ∨ (obs(v8) ∧ f (v4))
)

∧ x3

)

= (1 ∧ x2 ∧ x3 ∧ x1) ∨
(
(

(1 ∧ x1 ∧ x2) ∨ (1 ∧ x4)
)

∧ x3

)

= (1 ∧ x2 ∧ x3 ∧ x1) ∨ (1 ∧ x1 ∧ x2 ∧ x3) ∨ (1 ∧ x4 ∧ x3)

= (x1 ∧ x2 ∧ x3) ∨ (x3 ∧ x4)

The result implies that when x2 = x4 = 0, v2 is not observable. This is incorrect; a

change from x2 = 0 to x2 = 1 actually is observable when x1 = x3 = 1.

To avoid false ODCs of this kind, we use the following modified definition of

obs(v) which overapproximates the observability for reconverging structures:

obs(v) = obs(v, v)

obs(v, u) =
{

1 if v ∈ O
∨

v′∈FO(v)

(

obs(v′, u) ∧ g(other(v′, v), u)
)

otherwise

g(v, u) =
{

1 if v = u or v ∈ TFO(u)

f (v) otherwise

(8.4)

By using the auxiliary function g(v, u), we sensitize paths from v conservatively:

Effectively, we prevent any vertex in the transitive fanout of v from blocking the

propagation of v’s value. When we apply this definition to the example in Fig. 8.3,

we get the following:

obs(v2) = obs(v2, v2)

= (obs(v5, v2) ∧ x1) ∨ (obs(v6, v2) ∧ x3)

= ((obs(v7, v2) ∧ g(v6, v2)) ∧ x1)

∨
(
(

(obs(v7, v2) ∧ g(v5, v2)) ∨ (obs(v8, v2) ∧ x4)
)

∧ x3

)

= (1 ∧ 1 ∧ x1) ∨
(
(

(1 ∧ 1) ∨ (1 ∧ x4)
)

∧ x3

)

= (1 ∧ 1 ∧ x1) ∨ (1 ∧ x3) ∨ (1 ∧ x4 ∧ x3)

= x1 ∨ x3 ∨ x4

The result is an overapproximation to the exact observability of (x1∧x3)∨(x3∧x4).
The concept of k-bounded observability or local observability is based on limit-

ing the length of the paths being considered for observability to reduce the effort for
its computation. The approximate k-bounded observability, obs(v, k), is defined as
follows

136 Q. Zhu et al.

obs(v, k) = obs(v, v, k)

obs(v, u, k) =
{

1 if v ∈ O or k = 0
∨

v′∈FO(v)

(

obs(v′, u, k − 1) ∧ g(other(v′, v), u)
)

otherwise

(8.5)

For example, for k = 0 vertex v is always observable, whereas obs(v, 1) considers

only the possible blockings at the immediate fanouts of v.

Clearly, every input assignment that results in obs(v, k) = 0 is an ODC for v.

The idea of using local observability in SAT sweeping is to exploit the fact that

v can be merged onto u if the functions of u and v are equal for all k-bounded

observable input assignments, i.e., u and v have to be equal only if obs(v, k) = 1.

More formally

Theorem 8.1 For a given k, vertex v can be merged onto vertex u if, for every input

assignment,

f (u) = f (v) ∨ obs(v, k) = 0.

Proof We begin by proving the unbounded version of the theorem using the defini-

tion of obs(v) in (8.4).

Clearly, for input assignments with f (u) = f (v), the values at the outputs do

not change. For each remaining input assignment, suppose that obs(v) = 0. If we

expand the recursion in (8.4) and distribute the conjunctions, we get a formula in

disjunctive normal form with a disjunct for every path from v to an output. Formally,

let P(v) be the set of paths from v to the vertices in O , where each path p ∈ P(v)

is a sequence of edges. Then the expansion is

obs(v) =
∨

p∈P(v)

∧

(y,z)∈p

g(other(z, y), v) (8.6)

Since obs(v) = 0, the value of the disjunct for each path must be 0, so each path

contains some edge (y, z) such that g(other(z, y), v) = 0. That is, the side input of

z has value 0. Let w denote the side input; i.e., w = other(z, y). By the definition

of g, the vertex w cannot be in the transitive fanout of v or else g(w, v) would be

1. Therefore, the value of w does not depend on v, and its value is not changed by

merging v to u. Both before and after the merge, w blocks propagation along the

path. Since every path from v to an output is blocked by some such w, the outputs

must all have the same values after merging as before.

The argument using the bounded observability is the same. The only difference is

that the expanded formula has only the first k terms from each conjunction in (8.6),

so each path must be blocked within k levels from v. ⊓⊔

8 SAT Sweeping with Local Observability Don’t-Cares 137

8.4.3 Algorithm

The criterion for merging two vertices exploiting observability don’t-cares as given

in Theorem 8.1 can be evaluated using a combination of random simulation and

SAT queries, similar to the criterion of functional equivalence used in Algorithm 2.

The challenge here is that the equivalence-class refinement method cannot be used,

because the merging criterion of Theorem 8.1 is not an equivalence relation: It is

neither symmetric nor transitive, so it is not possible to define equivalence classes of

vertices such that each member of a class can be merged onto any other member. For

example, in the graph in Fig. 8.1, v8 can be merged onto v6 as stated in Section 8.4.1,

but v6 cannot be merged onto v8–There is an input assignment, (0,1,1,1), for which

f (v6) = 1 and f (v8) = 0, while f (v5) = 1, a non-controlling value. If v6 were

merged onto v8, the value of f (v10) would be changed for this assignment.

Instead of selecting candidate pairs for merging from equivalence classes, it is

necessary to find independently for each vertex v the vertices onto which it may be

merged. Possible candidates include vertices whose simulation vectors are identical

to v’s, but there may also be candidates whose simulation vectors differ from v’s,

as long as v is not observable for the input assignments resulting in the differing

bits. In order to take observability into account when comparing simulation vectors,

we compute observability vectors OBS(v, k) from the simulation vectors F(v) as

follows:

OBS(v, k) =
{

[111 . . . 11] if v ∈ O or k = 0
∨

v′∈FO(v)

(

OBS(v′, k − 1) ∧ F(other(v′, v))
)

otherwise

(8.7)

For example, in Fig. 8.1 if F(v2) = 110011, F(v5) = 010010, and F(v4) =
010101, then the 1-bounded observability vector of v3 is the following:

OBS(v3, 1) = (OBS(v6, 0) ∧ F(v2))

∨ (OBS(v9, 0) ∧ F(v5))

∨ (OBS(v8, 0) ∧ ¬ F(v4))

= F(v2) ∨ F(v5) ∨ ¬ F(v4)

= 111011

(8.8)

The bits of OBS(v, k) represent the values of obs(v, k) for the input assign-

ments in the simulation vectors. When the bit at position i of OBS(v, k) (denoted as

OBS(v, k)[i]) is 1, the value of F(v)[i] is observable, and it should be considered

when comparing F(u) to F(v). When OBS(v, k)[i] = 0, we ignore any difference

between F(u)[i] and F(v)[i]. When F(u)[i] = F(v)[i] or OBS(v)[i] = 0 for all i ,

we say that F(u) is compatible with F(v).

Note that for the bits of OBS(v, k) we use an underapproximation of obs(v, k)

which may be incorrect for reconverging paths. However, as shown later in

138 Q. Zhu et al.

Algorithm 3 SAT Sweeping with Local ODCs

1: {Given: AIG C = (V, E) with inputs X ; bound k}

2: randomly initialize simulation vectors F(x) for all x ∈ X

3: simulate C to compute simulation vectors F(v) for all v ∈ V

4: compute observability vectors OBS(v, k) for all v ∈ V

5: for level L := 1 to Lmax do

6: build dictionary D for vertices at levels 1, . . . , L

7: for all v ∈ V such that LEVEL(v) = L do

8: for all u ∈ SEARCH(D, F(v), OBS(v, k)) do

9: if (F(u)⇔ F(v)) ∨ ¬OBS(v, k) = 1 {bitwise} then

10: res := SAT-CHECK ((f (u)⊕ f (v)) ∧ obs(v, k))

11: if res = S AT then

12: add SAT counterexample to vectors F(x)

13: simulate C to update vectors F(v) and OBS(v, k)

14: else if res = U N S AT then

15: MERGE (v, u)

16: simulate C to update vectors F(v) and OBS(v, k)

17: go to next v

18: end if

19: end if

20: end for

21: end for

22: end for

Algorithm 3, we use only the vectors as an initial filter for finding candidates for

merging. Any false compatibilities are caught when we check the candidates against

the criterion in Theorem 8.1.

In order to identify vertices with compatible simulation vectors, we build a dic-

tionary of simulation vectors and utilize an efficient search routine that compares

subsequences of the vectors using observability vectors as masks.

The overall flow of SAT sweeping with local ODCs is shown in Algorithm 3

and illustrated in Fig. 8.4. After initializing the simulation and observability vec-

tors, we iterate through the vertices in order of their levels (i.e., their depths from

the inputs). At each level, we rebuild the dictionary to contain the vertices at that

level and below. For each vertex v, the SEARCH routine returns the vertices in the

dictionary whose simulation vectors are compatible with F(v). For each compat-

ible candidate u, we check the criterion of Theorem 8.1 using a SAT query. If

the SAT solver finds a violation of the criterion, the input assignment that distin-

guishes u and v is added to the simulation vectors. If the criterion holds, the vertices

are merged. Because u and v are not functionally equivalent, the merge changes

the functions of the vertices formerly in the transitive fanout of v. The functional

differences are not themselves observable, but the change in graph structure can

change the observability of other vertices. Therefore, we must update the simulation

vectors.

The choice to iterate over the vertices in level order is motivated by a safety

constraint. If a vertex v is merged onto a vertex u in its transitive fanout, a

cycle will be created in the AIG. The original SAT-sweeping algorithm avoids

8 SAT Sweeping with Local Observability Don’t-Cares 139

compute
observability

vectors

dictionary

compare
vectors

SAT
check

compute
simulation

vectors
merge

v

AIG

candidates
match

counterexample

UNSAT

Fig. 8.4 Illustration of control and data flow for Algorithm 3

this case conservatively by comparing the levels of the vertices: v can be merged

onto u only if LEVEL(v) ≥ LEVEL(u). We achieve the same effect by our

order of iteration and by limiting the search for merging candidates to vertices

at the current level and below. This choice also provides a benefit for efficiency:

Because the search dictionary does not include all the vertices, the search cost is

reduced.

The theoretical complexity of our algorithm is dominated by the SAT check,

which can be exponential in the size of the circuit, regardless of the choice of

observability bound k. In practice, a larger k usually leads to more merging can-

didates and larger SAT formulas due to more side inputs for the observability check.

This results in significantly greater runtime, as shown in our experimental results

in Section 8.5. Additionally, even if the SAT checks took linear time, our algorithm

would have complexity cubic in the size of circuit, since for each vertex being swept

the number of the merging candidates can potentially be of the order of the circuit

size.

8.4.4 Implementation

To implement the search dictionary, we use a binary trie. For each level d of the

trie, there is an associated bit index i(d). Each internal node of the trie has two

children. The two sub-tries rooted at the children of a node at level d contain AIG

vertices whose simulation vectors have value 0 or 1 at bit position i(d), respectively.

Each leaf node corresponds to a bin of vertices. All the vertices in a bin have the

same values for the sub-vectors indexed by the branching bit indices i(1), i(2), etc.

Figure 8.5 illustrates the trie structure.

To search the trie for vertices with compatible simulation vectors, we use a recur-

sive routine, shown in Algorithm 4. At level d, if F(v)[i(d)] is observed, it is used

140 Q. Zhu et al.

F(v2) = 0110
F(v3) = 1110

F(v4) = 0111

F(v5) = 0100

01

10

i(2) = 3

i(1) = 4

Fig. 8.5 Illustration of trie containing AIG vertices with simulation vectors F(v2) = 0110,

F(v3) = 1110, F(v4) = 0111, and F(v5) = 0100

to choose a branch. If it is not observed, it does not affect the compatibility of other

vectors with F(v), so both branches are followed.

The efficiency of searching in the trie depends on the choice of branching bit

indices. An uneven distribution of the vertices among the leaves will increase the

complexity of the algorithm. In the extreme case, if all the vertices are in a single

bin, then every pair of vertices is considered for merging, and the total number of

SAT checks is quadratic in the graph size. To prevent this from happening, we set

an upper limit on the size of the bins. Whenever a bin exceeds the size limit, we

insert a new branch node. As a consequence, the number of branches along the path

to the leaves increases. To keep the trie as shallow as possible for fast searches, the

branching bits could be chosen so as to distribute the vertices evenly among the

leaves.

Algorithm 4 Search(T, F(v), OBS(v, k), d)

1: {Given: (sub-)trie T ; simulation vector F(v); observability vector OBS(v, k), depth d}

2: if T is a leaf then

3: return VT {vertices in bin of T }

4: else

5: if OBS(v, k)[i(d)] = 1 then

6: b := F(v)[i(d)]
7: return SEARCH(Tb, F(v), OBS(v, k), d + 1))

8: else

9: return SEARCH(T0, F(v), OBS(v, k), d+1)) ∪ SEARCH(T1, F(v), OBS(v, k), d+1))

10: end if

11: end if

Alternatively, the branching bit indices may be chosen to minimize the number

of don’t care bits indexed during searches, since the number of leaves reached in a

search is exponential in the number of unobservable bits indexed. In our implemen-

tation we chose this scheme, since we did not observe highly unbalanced distribu-

tions of vertices in our experiments. To minimize the number of unobservable bits

in searches, we select the indices with a straightforward heuristic: For each index

i , we compute the number of observed bits in the simulation vectors with index i ,

i.e.,
∑

v OBS(v, k)[i], and use the bits with the largest sums. Because we rebuild the

8 SAT Sweeping with Local Observability Don’t-Cares 141

trie for each level of the graph, the choice of branching bit indices can vary as the

algorithm progresses.

The performance of SAT sweeping with local ODCs can be tuned by adjusting

the maximum number of vertices stored in any leaf of the trie or several other param-

eters, including the initial number of simulation bits and the maximum number of

backtracks per SAT query.

Updates to the simulation vectors are needed both when vertices are merged and

when a SAT query proves that vertices are not mergeable. In the first case, the only

vectors affected are those formerly in the transitive fanout of the merged vertex. (In

fact, only k levels of transitive fanout are affected.) We take advantage of this fact

by limiting vector propagation to the local fanout in order to minimize the cost of

simulation vector updates.

We use another form of incremental simulation vector update when the SAT

solver provides a new input assignment. In this case, the values propagated from

previous input assignments are still valid, so there is no need to propagate them

again. Instead, we update only the bits at the ends of the simulation vectors.

The efficiency of the algorithm is affected by the ability of the input assign-

ments in the simulation vectors to sensitize paths through the graph. If the randomly

selected inputs do not sensitize many paths, many of the simulation values will

be unobservable. This increases the cost of search and the number of SAT checks

needed. One strategy to avoid this problem is to populate the simulation vectors with

input assignments that are known to sensitize paths in the graph. However, in our

preliminary experiments using random long paths, this strategy did not significantly

improve performance.

As presented in Section 17.5.1, our algorithm sweeps all vertices in the graph. In

some applications, such as bounded model checking, different subsets of the vertices

are swept at different times. In fact, additional vertices may be added to the graph

after each sweep. To support this usage, our implementation allows a set of vertices

to be explicitly specified and tries to merge only these vertices, not the entire graph.

8.4.5 Applications

This section describes how SAT sweeping with local ODCs interacts with other

procedures in two application settings, bounded model checking and equivalence

checking.

Figure 8.6 shows the application of SAT sweeping in bounded model checking

for simplification of the unrolled frames. First, the design (typically given as a mod-

ule in Verilog) is translated to an AND-INVERTER graph. Initially the graph contains

only the first frame. It is simplified by SAT sweeping and the property of interest

is checked by a SAT solver. Next, the second frame is unrolled from the simplified

graph for the first. The SAT-sweeping engine tries to merge vertices in the second

frame onto vertices from either of the first two frames, and the property is checked

again. The third frame is unrolled in the same manner as the second and so on.

142 Q. Zhu et al.

Fig. 8.6 Application of SAT

sweeping to bounded model

checking unroll

check

property

check

propertyproperty

check

unroll

SAT

sweeping

engine

graph
build

design

T/F T/F T/F

frame 1 frame 2 frame 3

AIG

The number of additional vertices needed for each frame decreases because of the

simplifications from SAT sweeping, resulting in reduced effort for each property

check.

SAT sweeping can also be applied to combinational equivalence checking, as

shown in Fig. 8.7. The miter structure for the two designs is built as a single AIG,

and the graph is simplified by SAT sweeping before pairs of outputs are checked

for equivalence with a SAT solver. The best total runtime is often achieved by inter-

leaving the SAT checks on the outputs with SAT sweeping, gradually increasing the

resource limit on each procedure. Counterexamples from the equivalence checks

can be used to augment the simulation vectors for SAT sweeping.

alternate

EQUIV/

DIFF
SAT

build
miter

SAT

sweeping

engine

design

design

AIG

Fig. 8.7 Application of SAT sweeping to combinational equivalence checking

8.5 Results

We implemented SAT sweeping with local ODCs in OpenAccess [1] with the

OpenAccess Gear toolkit [19]. For comparison, we also implemented basic

SAT sweeping in the same framework. In this section we present the results

of our experiments on input circuits from the IWLS 2005 benchmark set

(http://iwls.org/iwls2005/benchmarks.html). In particular, we used IWLS bench-

marks originating from the OpenCores repository, ranging in size from 200 to 48K

AND vertices.

8 SAT Sweeping with Local Observability Don’t-Cares 143

Our first set of experiments demonstrates the increased power of ODC-based

SAT sweeping for graph simplification, the effect of varying levels of observability,

and the scalability of the algorithm. In these experiments we applied ODC-based

SAT sweeping to each design, varying the observability bound k from 1 to 5. As a

preprocessing step, we applied basic SAT sweeping to remove functionally equiva-

lent vertices, so that all reported merges are due to consideration of observability.

In our experiments, the initial length of the simulation vectors is set to 32 bits.

The maximum bin size in the search dictionary is set to 16, i.e., at most 16 vertices

are allowed in a single bin. We used MiniSat (http://www.minisat.se) for satisfiabil-

ity checks.

Table 8.1 shows the number of merges for each benchmark and observability

bound k. The first column gives the names of the designs. The second column lists

the number of vertices in the original AIGs. The third column lists the number of

vertices merged by basic SAT sweeping. The fourth to eighth columns report the

number of merges for each value of k. The average percentage of vertices merged is

also given. Table 8.2 reports the runtimes for these experiments. Figures 8.8 and 8.9

show plots of the results. In Fig. 8.8, the number of merges is shown as a percentage

of the number of vertices in the original AIG. Figure 8.9 shows the runtimes relative

to the runtime of basic SAT sweeping.

The results show that ODC-based SAT sweeping is able to merge many more

vertices than basic SAT sweeping–On average, almost four times more when k = 1

and five times more when k = 2. Note that the greatest increases in the numbers

of merges come with the first two levels of observability. For k > 2, the increases

taper off quickly. The majority of the graph simplification is obtained at a moderate

cost in runtime. In most cases, the runtime of ODC-based SAT sweeping with two

Table 8.1 Number of AIG vertices merged in OpenCores benchmarks (http://iwls.org/

iwls2005/beachmarks.html) by basic SAT sweeping and SAT sweeping with observability to k

levels

Number of merges for each k

Design

AIG

vertices Basic 1 2 3 4 5

steppermotordrive 215 8 20 24 27 30 31

ss_pcm 506 0 19 19 22 22 23

usb_phy 593 19 38 42 47 47 49

sasc 894 25 210 267 299 299 299

simple_spi 1183 38 266 348 383 387 388

i2c 1315 44 88 104 110 113 114

pci_spoci_ctrl 1467 125 275 352 420 439 456

systemcdes 3322 171 354 378 479 493 496

spi 4086 37 187 211 289 292 297

tv80 10026 360 945 1173 1378 1487 1609

systemcaes 13271 206 1609 2211 2464 2471 2483

ac97_ctrl 16553 49 1822 2096 2351 2403 2409

usb_funct 17755 407 1405 1680 1984 2040 2071

aes_core 22307 341 980 1032 1073 1102 1150

wb_conmax 49755 427 1538 3834 5304 5913 6189

Average % merged 2.73 10.3 12.8 14.8 15.3 15.6

144 Q. Zhu et al.

Table 8.2 Runtime in seconds for basic SAT sweeping and SAT sweeping with observability to k

levels on OpenCores benchmarks

Runtime (s)

Design Basic 1 2 3 4 5

steppermotordrive 0.01 0.02 0.02 0.03 0.04 0.06

ss_pcm 0.01 0.02 0.04 0.04 0.05 0.06

usb_phy 0.02 0.05 0.07 0.09 0.09 0.10

sasc 0.05 0.08 0.11 0.13 0.99 1.00

simple_spi 0.09 0.17 0.24 0.27 1.35 1.46

i2c 0.07 0.29 0.39 0.41 0.88 1.04

pci_spoci_ctrl 0.32 0.61 0.76 0.93 1.05 1.42

systemcdes 0.51 1.12 1.48 1.72 2.16 2.24

spi 1.49 5.65 5.72 8.78 10.4 11.0

tv80 7.05 21.5 27.5 39.3 111 152

systemcaes 5.84 12.5 20.9 25.6 39.8 166

ac97_ctrl 5.74 11.3 18.1 22.3 32.9 35.1

usb_funct 14.1 29.8 53.2 71.8 99.6 149

aes_core 7.47 14.7 26.4 33.0 46.3 59.0

wb_conmax 21.9 58.8 115 169 196 237

Average relative time 1.00 2.40 3.48 4.41 8.39 11.3

0

5

10

15

20

25

30

35

No ODCs 1 2 3 4 5

V
e

rt
ic

e
s
 m

e
rg

e
d

 (
%

 o
f

A
IG

 s
iz

e
)

k (levels of observability)

stepper.
ss_pcm
usb_phy
sasc
simple_spi
i2c
pci_spoci.
systemcdes
spi
tv80
systemcaes
ac97_ctrl
usb_funct
aes_core
wb_conmax

Fig. 8.8 Percentage of vertices merged in OpenCores benchmarks for each observability bound k

levels of observability is between two and four times that of basic SAT sweeping.

Note also that the runtime increases linearly for low k where the greatest gains are

obtained.

To determine how much optimization potential we sacrifice by our conservative

approximation of observability given by (8.5), we compared our results with a SAT-

sweeping approach that uses an exact computation of k-bounded observability based

on Boolean difference. For k = 2, the number of vertices merged increased by less

than 0.1% on average and at most 0.3%. For k = 5, the number of merges increased

8 SAT Sweeping with Local Observability Don’t-Cares 145

0

5

10

15

20

25

30

No ODCs 1 2 3 4 5

R
u

n
ti
m

e
 r

e
la

ti
ve

 t
o

 b
a

s
ic

 S
A
T

 s
w

e
e

p
in

g

k (levels of observability)

stepper.
ss_pcm
usb_phy
sasc
simple_spi
i2c
pci_spoci.
systemcdes
spi
tv80
systemcaes
ac97_ctrl
usb_funct
aes_core
wb_conmax

Fig. 8.9 Runtimes of SAT sweeping with ODCs relative to basic SAT sweeping for each observ-

ability bound k

by 0.5% on average and at most 3%. These results show that our approximation is

very tight in practice.

Figure 8.10 shows how the runtime of ODC-based SAT sweeping increases

with the size of the circuit graph for k = 2. To capture the trend, we applied

nonlinear least squares fitting of the model axb to the data. The resulting curve,

0

20

40

60

80

100

120

140

0 10000 20000 30000 40000 50000

R
u

n
ti
m

e
 (

s
e

c
)

Vertices in Original AIG

(2.1×10–4)x1.2

Fig. 8.10 Number of AIG vertices versus runtime of SAT sweeping with two levels of observability

146 Q. Zhu et al.

(2.1 × 10−4)x1.2, is shown in the figure. The exponent 1.2 indicates that our trie

implementation successfully limits the number of candidates for merging, avoiding

the potential cubic complexity of the algorithm.

To illustrate the power of ODC-based SAT sweeping in an application setting,

we performed experiments similar to the bounded property checking in [7] on a

subset of our benchmarks. In each iteration, we ran SAT sweeping to simplify the

latest frame and then unrolled it into a new frame. The results of our experiment

are shown in Table 8.3. On average, ODC-based SAT sweeping removes 13% more

vertices, relative to the original circuit size, than basic SAT sweeping.

Table 8.3 Number of AIG vertices in each unrolled frame of OpenCores benchmarks simplified

by basic SAT sweeping and SAT sweeping with observability to two levels

Number of vertices in each frame

Design Algorithm 1 2 3 4 5

steppermotordrive Basic 177 156 152 142 139

ODC 160 114 101 107 105

ss_pcm Basic 398 383 363 361 361

ODC 379 349 341 349 349

usb_phy Basic 459 451 450 450 449

ODC 436 429 429 429 426

sasc Basic 734 491 487 476 468

ODC 492 361 336 336 336

simple_spi Basic 995 786 775 771 774

ODC 685 552 541 530 527

i2c Basic 1122 1084 1073 1076 1076

ODC 1062 1005 1002 1004 1008

pci_spoci_ctrl Basic 1255 886 704 689 687

ODC 1028 559 417 422 397

systemcdes Basic 2827 2787 2786 2786 2786

ODC 2620 2592 2586 2583 2581

spi Basic 3771 3748 3744 3744 3744

ODC 3597 3557 3543 3543 3543

ac97_ctrl Basic 14219 13730 13226 13010 12888

ODC 12172 11369 10374 10360 10937

Average % reduction Basic 3.5 14.0 16.6 17.6 18.0

ODC 16.3 27.4 30.0 30.1 30.1

8.6 Conclusions

We proposed an extension of SAT sweeping that considers observability don’t-cares.

We introduced the notion of local observability, which we exploit to reduce the cost

of computing ODCs. Ours is the first work that bounds the use of ODCs by path

length instead of windows. Our algorithm employs observability vectors that capture

information about ODCs and a trie-based dictionary that supports comparison of

simulation vectors while taking don’t-cares into account. Our experimental results

show that SAT sweeping with two or three levels of observability finds several times

8 SAT Sweeping with Local Observability Don’t-Cares 147

more merges than basic SAT sweeping with a moderate increase in runtime and that

it scales well with circuit size.

ODC-based SAT sweeping can be expected to have a great effect on various

applications, such as equivalence and property checking. Miter structures in equiv-

alence checking have many functionally equivalent points, which can be used as

cutpoints for decomposition into subproblems in order to reduce the total complex-

ity of the procedure. Our algorithm can provide more cutpoints while maintaining

the locality of the subproblems because observability is tightly bounded. Similarly,

for bounded model checking, ODC-based SAT sweeping can increase the number

of merges during AIG compaction and thus increase its capacity and performance in

comparison to non-ODC-based methods. These are just two examples of how ODC-

based SAT sweeping is an effective method for increasing the power of Boolean

reasoning.

References

1. Blanchard, T., Ferreri, R., Whitmore, J.: The OpenAccess coalition: The drive to an open

industry standard information model, API, and reference implementation for IC design data.

In: Proceedings of the International Symposium on Quality Electronic Design, pp. 69–74. San

Jose, CA (2002)

2. Brand, D.: Verification of large synthesized designs. In: Proceedings of the IEEE/ACM Inter-

national Conference on Computer Aided Design, pp. 534–537. Santa Clara, CA (1993)

3. Brayton, R.K.: Compatible observability don’t cares revisited. In: Proceedings of the

IEEE/ACM International Conference on Computer Aided Design, pp. 618–623. San Jose, CA

(2001)

4. van Eijk, C.A.J.: Sequential equivalence checking without state space traversal. In: Proceed-

ings of DATE, pp. 618–623. Paris, France (1998)

5. Fu, Z., Yu, Y., Malik, S.: Considering circuit observability don’t cares in CNF satisfiability.

In: Design, Automation and Test in Europe, pp. 1108–1113. Munich, Germany (2005)

6. Goldberg, E., Prasad, M.R., Brayton, R.K.: Using SAT in combinational equivalence check-

ing. In: Proceedings of IEEE/ACM Design Automation and Test in Europe Conference and

Exposition, pp. 114–121. Munich, Germany (2001)

7. Kuehlmann, A.: Dynamic transition relation simplification for bounded property checking. In:

Digest of Technical Papers of the IEEE/ACM International Conference on Computer Aided

Design, pp. 50–57. San Jose, CA (2004)

8. Kuehlmann, A., Krohm, F.: Equivalence checking using cuts and heaps. In: Proceedings of the

34th ACM/IEEE Design Automation Conference, pp. 263–268. Anaheim, CA (1997)

9. Kuehlmann, A., Paruthi, V., Krohm, F., Ganai, M.K.: Robust Boolean reasoning for equiva-

lence checking and functional property verification. IEEE Transactions on Computer-Aided

Design 21(12), 1377–1394 (2002)

10. Kunz, W.: HANNIBAL: An efficient tool for logic verification based on recursive learning. In:

Digest of Technical Papers of the IEEE/ACM International Conference on Computer Aided

Design, pp. 538–543. Santa Clara, CA (1993)

11. Kunz, W., Stoffel, D., Menon, P.: Logic optimization and equivalence checking by implication

analysis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

16(3), 266–281 (1997)

12. Lu, F., Wang, L.C., Cheng, K.T., Huang, R.C.Y.: A circuit SAT solver with signal correlation

guided learning. In: Design Automation and Test in Europe, pp. 892–897. Munich, Germany

(2003)

148 Q. Zhu et al.

13. McMillan, K.L.: Don’t-care computation using k-clause approximation. In: International

Workshop on Logic Synthesis (IWLS’05). Lake Arrowhead, CA (2005)

14. Mishchenko, A., Brayton, R.K.: SAT-based complete don’t-care computation for network opti-

mization. In: Design, Automation and Test in Europe, pp. 412–417. Munich, Germany (2005)

15. Safarpour, S., Veneris, A., Drechsler, R., Lee, J.: Managing don’t cares in Boolean satisfiabil-

ity. In: Design, Automation and Test in Europe, p. 10260. Paris, France (2004)

16. Saldanha, A., Wang, A.R., Brayton, R.K., Sangiovanni-Vincentelli, A.L.: Multi-level logic

simplification using don’t cares and filters. In: Proceedings of the 26th ACM/IEEE Conference

on Design Automation, pp. 277–282. Las Vegas, NV (1989)

17. Saluja, N., Khatri, S.P.: A robust algorithm for approximate compatible observability don’t

care (CODC) computation. In: Proceedings of the 41st Design Automation Conference,

pp. 422–427. San Diego, CA (2004)

18. Savoj, H., Brayton, R.K.: The use of observability and external don’t cares for the simplifi-

cation of multi-level networks. In: Proceedings of the 27th ACM/IEEE Design Automation

Conference, pp. 297–301. Orlando, FL (1990)

19. Xiu, Z., Papa, D.A., Chong, P., Albrecht, C., Kuehlmann, A., Rutenbar, R.A., Markov, I.L.:

Early research experience with OpenAccess Gear: An open source development environment

for physical design. In: Proceedings of the ACM International Symposium on Physical Design,

pp. 94–100. San Francisco, CA (2005)

20. Zhu, Q., Kitchen, N., Kuehlmann, A., Sangiovanni-Vincentelli, A.: SAT sweeping with

local observability don’t-cares. In: Proceedings of the 43rd Design Automation Conference,

pp. 229–234. San Francisco, CA (2006)

Chapter 9

A Fast Approximation Algorithm for MIN-ONE
SAT and Its Application on MAX-SAT Solving

Lei Fang and Michael S. Hsiao

Abstract The current SAT solvers can provide an assignment for a satisfiable

propositional formula. However, the capability for a SAT solver to return an “opti-

mal” solution for a given objective function is severely lacking. MIN-ONE SAT is

an optimization problem which requires the satisfying assignment with the minimal

number of ONEs, and it can be easily extended to minimize an arbitrary linear

objective function. While some research has been conducted on MIN-ONE SAT,

the existing algorithms do not scale very well to large formulas. In this chapter,

we propose a novel algorithm for MIN-ONE SAT that not only is efficient but also

achieves a tight bound on the solution quality. Thus, it can handle very large and

complex problem instances. The basic idea is to generate a set of constraints from

the objective function to guide the search. The constraints are gradually relaxed

to eliminate the conflicts with the original Boolean SAT formula until a solution

is found. The experiments demonstrate that RelaxSAT is able to handle very large

instances which cannot be solved by existing MIN-ONE algorithms; furthermore,

RelaxSAT is able to obtain a very tight bound on the solution with one to two orders

of magnitude speedup. We also demonstrated that RelaxSAT can be used to formu-

late and direct a new way to build a high-performance MAX-SAT solver.

9.1 Introduction

In the past decade, the formulation has been widely used to target a number of

problems. With the help of modern-day SAT solvers, many hard EDA instances can

now be handled. Although the recent successes of SAT have offered much promise,

the current SAT solvers have their share of limitations. The heuristics embedded

in the current SAT solvers generally steer the search to find the first solution as

L. Fang (B)

Microsoft Corporation, Redmond, WA, USA

e-mail: lei.fang@microsoft.com

Based on Fang, L., Hsiao, M.S.; “A fast approximation algorithm for MIN-ONE SAT,” Design,

Automation and Test in Europe, 2008. DATE ’08, pp.1087–1090, 10–14 March 2008. Doi:

10.1109/DATE.2008.4484921 c© [2008] IEEE.

S.P. Khatri, K. Gulati (eds.), Advanced Techniques in Logic Synthesis,

Optimizations and Applications, DOI 10.1007/978-1-4419-7518-8_9,
C© Springer Science+Business Media, LLC 2011

149

150 L. Fang and M.S. Hsiao

quickly as possible. Thus, for a satisfiable instance, one may argue that the solution

returned by a SAT solver is an arbitrary one among the potentially huge number

of satisfiable solutions. Furthermore, the “end-users” lack the ability to control the

SAT solver to return a solution that they may favor. As a result, some applications

are beyond the scope of the basic conventional SAT solver. For instance, consider the

problem of generating an input sequence that can take a sequential circuit to satisfy

some target such that the final state has the least Hamming distance from the initial

state. When this sequence generation is modeled as a SAT problem on an unrolled

instance of the circuit, the existing SAT solvers may be able to find a sequence that

can satisfy the target objective, but they may have tremendous difficulty in obtaining

the sequence that produces the final state with the least Hamming distance. Another

related problem that requires an optimal solution is the problem of power-aware test

generation, where the patterns generated should be generated with the minimum (or

maximum) switching activities across two clock cycles [16]. In addition to these

examples, other applications are emerging to demand a more intelligent SAT solver

which can return an optimal (or close to optimal) solution among its solution set.

Objective functions are commonly used to represent the optimality target. With

appropriate simplification and normalization of the objective function, the objective

function can often be represented as a linear function of the variable assignments.

This puts the MIN-ONE SAT problem as an ideal candidate to address this class of

problems.

MIN-ONE SAT can be viewed as a combination of the conventional SAT for-

mulation and an optimization problem. It tries to find the best solution (minimal

number of ONEs in the assignment) among all the possible solutions for a satisfiable

Boolean formula. Note that the MIN-ONE SAT is not meaningful for unsatisfiable

SAT formulas, since an unsatisfiable formula will also be MIN-ONE unsatisfiable.

Formally, the MIN-ONE SAT problem is defined as follows:

MIN-ONE SAT Problem: Given a formula, if it is satisfiable, find the variable

assignment that contains the minimal number of ONEs.

Compared with the conventional SAT problem, MIN-ONE SAT demands more

computation power because all the potential solutions need to be searched to identify

the optimal one.

A naive approach to the MIN-ONE SAT problem is to compute all the possi-

ble solutions first and then identify the optimal one among all the solutions. This

approach requires an all-solution SAT solver, so the overhead may render it to be

infeasible for some instances. Another way is to treat the MIN-ONE SAT problem as

a special case of problem [1, 18]. The basic idea and procedure behind the PBSAT

approach will be explained here briefly: Using the PBSAT concept, the minimal-

ONEs target can be viewed as searching the minimal sum of the assigned variable

values. Suppose Vi is the value in the assignment of Boolean variable i , and sup-

pose the total number of variables in the formula is N , then the to-be-minimized

objective function for PBSAT is simply minimize
∑N

i=1 Vi . To find the minimal

value, the PBSAT solver gradually tightens the minimal bound estimate until an

9 A Fast Approximation Algorithm for MIN-ONE SAT 151

optimum point is reached. In this approach it is easy to see that
∑N

i=1 Vi can be

replaced with any linear objective functions. More details about this technique will

be covered in Section 14.3. In [15], a method called OPT-DLL is proposed to handle

MIN-ONE SAT via a modified [11] search algorithm. Although the incorporation

between DPLL algorithm and MIN-ONE SAT optimization performs very well on

some benchmarks, it lacks the flexibility to process arbitrary linear objective func-

tions. Meanwhile the performance of the DPLL algorithm may be degraded because

of a forced decision order dictated by OPTSAT. The current MIN-ONE SAT algo-

rithms are generally more suitable for small and medium-sized formulas. For large

MIN-ONE SAT formulas, they often abort, unfortunately.

Due to the added complexity of the MIN-ONE SAT problem, performing a

complete search to find the optimal solution is extremely hard. This observation

motivated us to propose an efficient approximation algorithm for MIN-ONE SAT,

which not only should be fast but also have low computational overhead and high-

quality approximation of the solution. In our approach, a set of constraints from

the objective function is automatically generated to guide the search. This set of

constraints is gradually relaxed to eliminate any conflict(s) with the original Boolean

SAT formula until a solution is found. To the best of our knowledge, this is the first

approximation algorithm targeting specifically on MIN-ONE SAT to achieve a tight

bound on the solution. The experimental results show that our approach can obtain

a tight bound when compared with existing complete-search based methods, with

one to two orders of magnitude speedup. Furthermore, we also demonstrate that

the proposed RelaxSAT can be used to formulate and direct a new way to build a

high-performance MAX-SAT solver.

The remainder of the chapter is organized as follows: First, previous algorithms

will be discussed in Section 9.2. Then a novel approximation algorithm is proposed

in Section 9.3. The experimental results are presented and explained in Section 9.4.

Section 9.5 extends our algorithm to formulate a relaxation-based MAX-SAT solver.

The conclusions and future works will be laid out in the last section.

9.2 Preliminaries

To help the readers better understand our proposed MIN-ONE SAT approximation

algorithm, in this section we will first explain the terminology that will be used

throughout this chapter, followed by the discussion of some of the existing MIN-

ONE SAT algorithms.

The target formula is denoted as Fo. Suppose Fo has N variables, each of which

is represented as Ai , 1 ≤ i ≤ N . The value of Ai assigned by the MIN-ONE

SAT solver is denoted as Vi . As mentioned before, the objective function of basic

MIN-ONE SAT is

minimize

N
∑

i=1

Vi

152 L. Fang and M.S. Hsiao

The above objective function can easily be extended to minimize
∑N

i=1 ci × Vi ,

where ci denotes an integer coefficient corresponding to each variable value.

Listing 9.1 MIN-ONE SAT based on PBSAT

def MIN−ONE_SAT(F_o/*input formula*/)

begin

i=0 /*iteration counter*/

BE= InitBE();/*return the most pessimistic estimation*/

while ()

Fc=Bound_Transformation(BE);

FA=Fo · Fc

Result=Call_SAT_Solver(FA)

if (Result == UNSATISFIABLE)

return /*solution found*/

else

Update(BE); /*update based on current solution*/

end

We now describe a previous MIN-ONE SAT algorithm based on PBSAT. The

complete algorithm is listed in Listing 9.1. To find the optimal solution, the PBSAT

algorithm works in an iterative manner. In each iteration, a bound estimate B E is

assigned to the objective function, (
∑N

i=1 ci × Vi ≤ B E). Then, this inequality for-

mula will be transformed into a Boolean formula Fc. There are various techniques

to perform the transformation of the objective formula to a Boolean formula [13],

based on the basic conversion of the inequality to a Boolean circuit. The transfor-

mation details will not be discussed here since it is out of the scope of this chapter.

After obtaining Fc, a conventional SAT solver is invoked on the new formula FA,

where FA = Fo · Fc, whose satisfiability indicates whether the bound estimate

can be achieved by the objective function. Initially, Fc is set to be a loose bound,

usually set at a pessimistic estimate (e.g., set equal to N , the number of variables

in the formula), and Fc is gradually tightened by decreasing the value of B E . If FA

is satisfiable, it indicates that a solution exists that satisfies both Fo and Fc, and the

bound estimate, B E , formula Fc, and FA will be updated accordingly. The algorithm

stops when FA becomes unsatisfiable. The unsatisfiability of FA guarantees that no

better solution exists and the previous bound estimate is the optimal solution.

A different MIN-ONE SAT algorithm has been proposed in [15] which is quite

different from the PBSAT technique described above. In [15], the conventional

DPLL algorithm is adapted to solve the SAT-related optimization problems, such as

MAX-SAT [9], MIN-ONE, DISTANCE-SAT [5]. This algorithm is named as Opti-

mization SAT (OPTSAT). Like the DPLL algorithm, OPTSAT performs a decision-

based search through a recursive function. The only part that involves the optimiza-

tion is in the decision heuristic. OPTSAT maintains a partial order P on all literals,

and this order is used to make the next decision in the search. The order in P is

defined in a way such that the objective function based on this order is monoton-

ically increased or decreased. For example, given two variables {a, b} there exists

a P set as {{ā, b̄}, {ā, b}, {a, b̄}, {a, b}}. The order of this P set is ascending on

the number of ONEs in the assignment. One can see that by forcing a partial order

9 A Fast Approximation Algorithm for MIN-ONE SAT 153

on the set of literals the solution space is searched in a specific sequence, where

the potential solutions are ordered from the best to the worst. Thus, whenever a

solution is obtained, the algorithm returns a solution that is guaranteed to be the

optimal solution. OPTSAT achieves good performance in many benchmarks, but it

also faces the problem that the forced decision order may degrade the solver perfor-

mance in large formulas. It should also be noted that OPTSAT is not specifically for

MIN-ONE SAT; it can solve other SAT optimization problems like MAX-SAT and

DISTANCE-SAT.

Besides the above two MIN-ONE SAT algorithms, one may use an all-solution

SAT solver as a base MIN-ONE solver as well. However, because the-state-of-art

MIN-ONE SAT solvers are mainly built on the aforementioned algorithms, in this

chapter we only compare our proposed algorithm with these two algorithms.

9.3 Our Approach

9.3.1 RelaxSAT

Our approach is fundamentally different from the existing OPTSAT and PBSAT

algorithms. Instead, it is an approximation algorithm which means that the solution

obtained may not be guaranteed to be optimal. It should be pointed out that our algo-

rithm holds its value on fast solving because complete algorithms have to implicitly

search all solutions to find the optimal one, which may become an excessive burden

given the sheer size of solution set. Our approximation algorithm can potentially

skip many search spaces, hence the computational complexity and resource usage

can be significantly reduced. In addition, for many applications a low-cost near-

optimal solution is more meaningful than the costly optimal solution, where our

algorithm becomes a perfect fit. We call our approach as RelaxSAT because it uses

a relaxation technique.

The basic idea of RelaxSAT is to generate a set of constraints from the objective

function to guide the SAT solver. The detailed algorithm is shown in Listing 9.2.

A set of constraints, Sc, is first generated in order to minimize (or maximize) the

objection function. In other words, the constraint set defines a solution space within

which the optimal value of the objective function is reached. The constraints are unit

clauses that determine the corresponding variable assignments. For instance, in the

basic MIN-ONE SAT, the initial constraint set, SC , is the set of unit negative-literal

clauses that forces each variable to be ZERO. Note that it is trivial to construct Sc

when the objective function is a linear function of the variables. This constraint set

can be represented as a conjunction of all such negative-literal clauses, resulting in

a CNF constraint formula Fsc. It should be pointed out that Fsc contains at most N

clauses when every variable is constrained. Then, FA = Fsc · Fo, and FA is passed

to a SAT solver to solve.

One may raise the concern that the constraint set, Fsc, may cause considerable

conflict(s) with the original Boolean formula Fo. While this may be true, we want

154 L. Fang and M.S. Hsiao

to take advantage of these conflicts to benefit our algorithm. Whenever one or

more conflicts exist between Fsc and Fo, a relaxation procedure is invoked. This

relaxation procedure analyzes the reason behind the conflict(s) through the trace

information provided by the backbone SAT solver and removes the constraints that

are most responsible to the conflicts. Generally speaking, the constraints that cause

conflicts will be removed gradually, thereby relaxing the constraints along the way.

Listing 9.2 RelaxSAT algorithm

def RelaxSAT(F_o/*input formula*/)

begin

i=0 /*iteration counter*/

Sc= InitConstrantSet(Obj/*objective function*/);

while ()

FA=Fo · Fsc

Result=Call_SAT_Solver(FA)

if (Result == SATISFIABLE)

return /*solution found*/

else

Sc=RelaxConstraints(Sc); /*Relaxation*/

end

Assume that Fo is satisfiable (otherwise, conventional SAT solvers are sufficient

to determine its unsatisfiability), whenever FA (i.e., Fo · Fsc) is unsatisfiable, we

can conclude that some clauses in Fsc are the reason that makes FA unsatisfiable. In

other words, whenever FA is unsatisfiable, we can identify at least one unit clause

in Fsc responsible for it. This allows us to formulate Theorem 9.1 as:

Theorem 9.1 Let Fo be satisfiable. If FA = Fsc · Fo is unsatisfiable, the UNSAT

core [21] contains at least one clause from Fsc.

Proof We prove this by contradiction. If the UNSAT core does not have any clause

from Fsc, all the UNSAT core clauses will have to come from Fo. This leads to the

conclusion that Fo is unsatisfiable, which conflicts with the assumption that Fo is

satisfiable.

The relaxation procedure will be repeated until a solution is found. The number

of iterations is bounded by the number of variables in Fo, as given in Theorem 9.2.

Note that in both Theorems 9.1 and 9.2, the same symbol annotations as Listing 9.2

are used.

Theorem 9.2 RelaxSAT will terminate within N iterations, where N is the number

of variables in the formula.

Proof From Theorem 9.1, in each iteration at least one constraint clause in Fsc

will be removed. Since the maximal size of Fsc is N , so in the worst case, after N

iterations Fsc will become empty, indicating that at this point FA = Fo.

Theorem 9.2 gives an upper bound on the computational complexity of RelaxSAT.

Although up to N SAT iterations may be needed, the search space for many of

these iterations is generally very small, due to the constraints added. Details of the

computational complexity will be furthered in Section 9.3.3.

9 A Fast Approximation Algorithm for MIN-ONE SAT 155

9.3.2 Relaxation Heuristic

The basic principle of our relaxation heuristic is that the constraints that cause

more conflicts should be relaxed first. The underlying assumption of this heuristic

is that by removing those constraints that are more responsible for the conflict(s),

we can reach a solution faster. Based on this principle, each constraint carries a

score which represents how many conflicts it has involved. This conflict score is

computed in each iteration through the trace file for the UNSAT core provided by

the SAT solver1 From these trace files, the implication tree that proves the formula

unsatisfiable can be recovered [22]. Given the recovered implication tree, a back-

ward search can be performed from the conflict to identify the conflict score of each

constraint.

A simple example shown in Fig. 9.1 explains how the proposed heuristic works.

In Fig. 9.1, two conflicts C1 and C2 rise due to the unit-clause constraints (x̄)(ȳ)(z̄).

Based on a backward traversal, we identify that constraint ȳ is involved in both

conflicts, C1 and C2, while the other two only contribute to one conflict. Thus the

conflict scores of (x̄)(ȳ)(z̄) are {1, 2, 1}. Using the obtained conflict scores, con-

straint (ȳ) will be chosen to be relaxed in this iteration.

Fig. 9.1 Exploring space

enlargement

y

z

x C1

C2

Score=2

Score=1

Score=1

It is not necessary to relax only one constraint at each iteration. To reduce the

number of iterations, in our implementation we relax the top 10% of constraints on

the conflict score list. For those variables with the same conflict scores, we break

the tie by favoring on those variables that appear less frequently in the formula. It

should be noted that if more constraints are relaxed in each iteration, the quality of

the final solution may be degraded due to the decreased granularity in the search. For

the MIN-ONE SAT extension, where each variable is associated with a coefficient,

we pick the constraint that has the smallest coefficient and the highest conflict score

in order to maintain minimal loss when trying to satisfy the objective function.

1 Many modern SAT solvers are capable of providing the trace file for the unsatisfiable instances,

such as ZChaff, MiniSAT [12].

156 L. Fang and M.S. Hsiao

A side benefit should be mentioned here. The returned solution from RelaxSAT

on MIN-ONE SAT problems could have fewer ONEs than the constraint set speci-

fied in Fsc. For example, given a formula with 200 variables, if a solution is provided

by RelaxSAT under a constraint set with 100 variables specified as ZEROS, the

upper bound of ONEs would be 200− 100 = 100. However, during the search, the

SAT solver may assign the (unconstrained) free variables to ZERO, leading to an

even smaller number of ONEs.

The experiments in Section 9.4 demonstrate that our heuristic works very well to

obtain a tight bound while keeping a low computational overhead.

9.3.3 Discussion on Computation Complexity

In this section, we will discuss briefly about the algorithm complexity. From The-

orem 9.2, we know that in the worst case RelaxSAT may require N iterations. In

each iteration the original Boolean formula Fo conjuncted with some unit-clause

constraints Fsc will be solved. Although theoretically the SAT algorithm is NP

complete, modern SAT solvers can solve many of the large instances without explo-

sion in time or space. Based on these facts, conventional SAT solvers have much

less computational cost when compared with existing MIN-ONE SAT solvers. In

this regard, because RelaxSAT relies on conventional SAT, in each iteration its

complexity stays at the baseline of SAT performance. Considering the maximum

number of iterations is limited by N , practically the total computation complexity

of RelaxSAT is much smaller compared with other existing MIN-ONE SAT algo-

rithms. The memory overhead of RelaxSAT is also in line with conventional SAT

because only an extra constraint set is introduced, which is simply a set of at most

N unit clauses. The unit clauses actually help to reduce the search space of Fo by

forcing some variables to a fixed value, especially in the earlier iterations. Gener-

ally RelaxSAT consumes significantly less resources compared with PBSAT-based

algorithms where an additional Boolean network Fsc is needed, without any fixation

of any variables.

9.4 Experimental Results

Our proposed RelaxSAT was implemented in C++ under 32-bit Linux, and all the

experiments were conducted on a Intel Xeon 3.0G workstation with 2 G memory.

ZChaff version 2004.11.15 simplified was chosen to serve as the backbone SAT

solver in RelaxSAT due to the convenience on obtaining the trace information. There

are three categories of benchmarks in our experiments. The first category is from the

OPTSAT benchmarks, where OPTSAT outperformed some popular PBSAT-based

solvers [15]. Since OPTSAT outperformed PBSAT for these benchmarks, in the

first experiment we only compared RelaxSAT with OPTSAT. Note that the pub-

licly distributed OPTSAT binary program can only solve the basic MIN-ONE SAT

9 A Fast Approximation Algorithm for MIN-ONE SAT 157

problem, so it is not compared in the second and third experiments, where the

extended MIN-ONE SAT problem was targeted.

We report the results of the first experiment in Table 9.1. For each benchmark

listed under the first column, the number of variables and clauses of each instance

are listed in column 2. The third and fourth columns present the run time of OPT-

SAT and RelaxSAT, respectively, followed by a column of run time speedup. The

speedup is defined as the ratio between the run time of OPTSAT and RelaxSAT.

The objective function bound returned from OPTSAT and RelaxSAT is reported in

the sixth and seventh columns, respectively. The last column shows the difference

between the number of ONEs OPTSAT and RelaxSAT obtained. Note that whenever

OPTSAT is able to solve the instance, it is guaranteed to be the optimal solution. In

Table 9.1, OUT indicates OPTSAT times out after 3600 s and the corresponding run

time speedup is recorded as INF. Whenever OPTSAT times out, the sixth and last

columns are marked X.

Table 9.1 Experiment I: OPTSAT benchmarks

CNF #Var/#Cls

OPTSAT

time

RelaxSAT

time

Speedup OPTSAT

min 1s

RelaxSAT

min 1s DIFF

c17.cnf 13/22 0.02 0.01 2.00 4 4 0

c880.cnf 469/1164 OUT 0.02 INF X 198 X

2bitcomp_5 125/310 2.16 0.01 216.00 39 45 −6

2bitmax_6 252/766 333.88 0.11 3035.27 61 68 −7

3blocks 283/969 0.62 0.31 2.00 56 61 −5

4blocks 758/47820 OUT 6.34 INF X 116 X

4blocksb 410/24758 1.06 0.68 1.56 66 66 0

qg1-08 512/148957 52.66 37.78 1.39 64 64 0

qg2-08 512/148957 31.4 16.64 1.89 64 64 0

qg3-08 512/10469 0.31 0.47 0.66 64 64 0

s27 72/141 0.02 0.01 2.00 24 24 0

s5378 12168/26527 OUT 97.89 INF X 2796 X

sat_bw_large.a 459/4675 0.02 0.28 0.07 73 73 0

sat_bw_large.b 1087/13772 0.22 1.5 0.15 131 131 0

sat_logistics.a 728/5784 1.51 0.68 2.22 135 135 0

sat_logistics.b 757/6429 4.38 0.76 5.76 138 138 0

sat_rocket_ext.a 331/2246 1.4 0.16 8.75 65 65 0

sat_rocket_ext.b 351/2398 1.68 0.18 9.33 69 69 0

bmc-galileo-8 58074/294821 OUT 497.31 INF X 12303 X

bmc-ibm-2 2810/11683 1013.13 10.64 95.22 940 1017 −77

bmc-ibm-3 14930/72106 22.37 92.83 0.24 6356 6362 −6

OUT=3600 s

In 12 of the 21 benchmarks, both OPTSAT and RelaxSAT found the opti-

mal solutions. But RelaxSAT achieved a two to three times speedup. For exam-

ple, in sat_rocket_ext.b, a minimum of 69 ONEs were obtained by both OPTSAT

and RelaxSAT. However, RelaxSAT achieved a 9.33× speedup. For four of the

instances, OPTSAT failed to finish in 3600 s while RelaxSAT can provide a solution

in only a few seconds. While it is not possible to tell the quality of the result obtained

by RelaxSAT for these four instances, the fact that a solution is obtained can be of

158 L. Fang and M.S. Hsiao

great use in many applications. Note that the low computational cost also makes the

approach attractive. RelaxSAT returned tight bounds on the remaining five bench-

marks. For example, in 2bitmax_6, the solution achieved by RelaxSAT has seven

more ONEs, but with more than 300× speedup. For very few simple instances, the

run time is slightly increased due to the large number of iterations that RelaxSAT

went through. These are the instances that both solvers can complete within a few

seconds, but the iterative nature of RelaxSAT caused a higher cost for these simple

instances.

The second experiment involves the benchmarks from the power-aware test pat-

tern generation, where the goal is to generate a test pattern that can detect a target

delay fault and simultaneously excite as much switching activities as possible to

worsen the delay effect. As a brief background, increasing circuit activity pulls

down the VDD power source, thereby reduces the potential and increases delay.

Since considering a complicated fault model is irrelevant with this chapter, in our

experiments we only check the maximal switching activities of a sequential circuit

in two consecutive clock cycles without any other constraints. In the experiment

setup, we unroll each sequential circuit into a two-time-frame combinational cir-

cuit, signifying the circuit state across two clock cycles. The switching activities

are monitored by a set of XNOR gates with the inputs from a pair of correspond-

ing gates in two time frames. If the output of a monitor XNOR is ONE, it means

that there is no switching activity on that gate across the two clock cycles. After

transforming the two-time-frame combinational circuit and the monitor circuit into

a Boolean formula, obviously the task of maximizing the switching activities now

is equivalent to finding a MIN-ONE solution on the outputs of the XNOR gates.

It should be emphasized that this problem is different from the basic MIN-ONE

SAT because in basic MIN-ONE SAT all the variables have to be considered while

in the switching activity maximization, only the outputs of the monitor circuits are

considered. In other words, the objective function only involves a portion of the

variables in the Boolean formula.

In this second experiment, RelaxSAT is compared with MiniSAT+ [13]. Min-

iSAT+ is a high-performance PBSAT solver which can be used to solve MIN-ONE

SAT. The MiniSAT+ is chosen not only because it has been demonstrated to have

high performance [19] but also due to the reason that its techniques favor those

PBSAT problems where most of the constraints can be directly represented as sin-

gle clauses. The usual MIN-ONE SAT instances fall into this category and can be

benefited by using MiniSAT+, because all the constraints in MIN-ONE SAT are

SAT clauses except the objective function.

The results of this second experiment are shown in Table 9.2. The eight columns

of Table 9.2 are similar to Table 9.1, except that OPTSAT is replaced by MiniSAT+

due to the reason that OPTSAT is unable to handle the extended MIN-ONE SAT

problems. Since MiniSAT+ works iteratively, whenever it cannot find the optimal

solution within 3600 s, it reports the best solution obtained so far in the third col-

umn. A positive value in the last column indicates that RelaxSAT returned a tighter

bound. Among the nine instances, RelaxSAT outperformed MiniSAT+ in five of

them with better result and shorter run time. One can see that the run time of

9 A Fast Approximation Algorithm for MIN-ONE SAT 159

Table 9.2 Experiment II: power-aware test generation benchmarks

CNF #Var/#Cls

MiniSAT+

time

RelaxSAT

time Speedup

MiniSAT+

result

RelaxSAT

result DIFF

s510 972/2254 0.24 0.23 1.04 122 138 −16

s1494 2720/6812 9.25 2.15 4.30 342 421 −79

s5378 12168/26508 3600 20.85 172.66 1242 1075 167

s6669 13828/31152 3600 53.45 67.35 1635 1553 82

s15850 41880/89908 3600 402.51 8.94 6265 6259 6

s35932 72592/164716 3600 1131.21 3.18 8198 7456 742

b13 1448/3248 26.6 0.43 61.86 157 211 −54

b14 40392/98250 3600 458.99 7.84 5857 5785 72

b15 35688/87808 3600 281.97 12.77 6423 6624 −201

RelaxSAT is roughly 40× faster than that needed by MiniSAT+. For example, in

s5378, RelaxSAT can return a solution containing 1075 non-switching gate in less

than 21 s while MiniSAT+ generates 167 more non-switching gates even after 1 h.

For some small instances, MiniSAT+ was able to find the global optimum, the solu-

tion obtained by RelaxSAT still presents a very tight margin.

In the third experiment, we evaluated RelaxSAT on a set of benchmarks whose

objective functions have integer coefficients associated with each variable. Some

of them were generated similarly as those in the second experiment. The only dif-

ference is that here the gate size is considered when computing the gate switching

activities. Thus the objective functions will be slightly different, where the vari-

ables representing the outputs of the XNOR gates will have a positive coefficient

corresponding to the gate size. Actually this is a more accurate model in the power

consumption estimation, since the power consumed depends on the gate type and its

load, which can be lumped to a gate size factor. The gate size information is obtained

through the synthesized circuits. The rest of the benchmarks in this experiment are

derived from the OPTSAT benchmarks with a randomly generated coefficient of

each variable. So the objective function becomes minimize
∑N

i=1 ci × Vi . Note that

ci is a number between −20 and 20.

The layout of Table 9.3 is the same as Table 9.2. RelaxSAT outperformed Min-

iSAT+ on 6 of the total 12 benchmarks. For example, in s5378, RelaxSAT was

able to achieve a much better solution (682 smaller in the objective function) at

190× less the cost. The remaining six instances are small ones except for s6669

and b15. For s6669 and b15, MiniSAT+ was able to find a better solution than

RelaxSAT, although it could not produce the global optimum within 3600 s. The

run times shown in the third column of these two circuits are the time needed to

get a better solution than RelaxSAT. Here we take a closer look at b15 to discuss

the strength and potential improvement of RelaxSAT. For b15, RelaxSAT was able

to finish after 274 s with the result of 27748. Meanwhile MiniSAT+ discovered a

better solution after more than 1800 s but could not step further until it finally timed

out at 3600 s. One can see that although in this specific example RelaxSAT was

not able to outperform MiniSAT+ in terms of the tightness of the bound, RelaxSAT

holds the strength on a much smaller run time. In other words, MiniSAT+ needed

160 L. Fang and M.S. Hsiao

Table 9.3 Experiment III: objective functions with integer coefficients

CNF #Var/#Cls

MiniSAT+

times

RelaxSAT

time

Speedup

Speedup

MiniSAT+

min 1s

RelaxSAT

min 1s DIFF

2bitcomp_5 125/310 0.94 0.01 94.00 −297 −203 −94

3blocks 283/969 3.39 0.34 9.97 −105 −81 −24

qg3-08 512/10469 1 0.39 2.56 −73 −29 −44

sat_bw_large.a 459/4675 0.34 0.2 1.70 −189 −189 0

sat_logistics.b 757/6429 3600 0.86 4186.05 −197 −269 72

bmc-ibm-2 2810/11683 3600 9.86 365.11 −616 −581 −35

s5378 12168/26508 3600 18.9 190.48 4570 3888 682

s6669 13828/31152 86.27* 180.65 0.48 6538 6732 −194

s13207 35088/74658 3600 243.07 14.81 14942 14248 694

s15850 41880/89908 3600 359.48 10.01 19394 19244 150

b14 40392/98250 3600 727.27 4.95 23174 21144 2030

b15 35688/87808 1821.3# 273.59 6.66 27392 27748 −356

* After 3600 s, the best result is 6386.

After 3600 s, the best result is still 27392.

three times more execution time to outperform RelaxSAT by a small margin. This

observation suggests that using RelaxSAT as a preprocessing step before MiniSAT+

may be beneficial, which could be a potential future extension of RelaxSAT.

The next experiment was set up to demonstrate the low memory overhead of

RelaxSAT, compared with both OPTSAT and MiniSAT+. A total of ten large

instances are selected to measure the peak memory consumption during the solving

process. The results are presented in Figs. 9.2 and 9.3. In both figures the x-axis

denotes the instance and y-axis lists the memory consumption in megabytes. In

Fig. 9.2, five instances are selected from Experiment I and the memory consump-

20

40

60

80

100

120

140

4blocks sat_bw_large.b bmc-galileo-8 bmc-ibm-2 bmc-ibm-3

M
B

OPTSAT

RelaxSAT

Fig. 9.2 Memory consumption: OPTSAT vs. RelaxSAT

9 A Fast Approximation Algorithm for MIN-ONE SAT 161

0

10

20

30

40

50

60

70

80

90

s6669 s13207 s15850 b14 b15

M
B Minisat+

RelaxSAT

Fig. 9.3 Memory consumption: MiniSAT+ vs. RelaxSAT

tion is compared between OPTSAT and RelaxSAT. It is clear that RelaxSAT has a

smaller memory cost especially on large instances like bmc-galileo-8. The memory

cost of five instances from Experiment III is shown in Fig. 9.3. Similar to Fig. 9.2,

RelaxSAT required a significantly smaller memory consumption compared with

MiniSAT+. The reason is as we mentioned before RelaxSAT only has an additional

constraint set while PBSAT-based algorithms need a large Boolean network of Fc.

9.5 Application Discussion: A RelaxSAT-Based MAX-SAT Solver

As is known, many difficult problems can be solved by MAX-SAT solver, such

as Max-Cut, Max-Clique, and Binary Covering Problem [4, 7, 14, 17]. Due to its

theoretical and practical importance, the MAX-SAT solver is receiving increased

levels of attention. With our work on the MIN-ONE SAT solver, a new direction

for MAX-SAT could be explored along a similar manner. In this section, we will

describe how the proposed MIN-ONE SAT algorithm can benefit MAX-SAT solv-

ing. Before going further, MAX-SAT is formally defined as follows:

MAX-SAT Problem: Given an unsatisfiable CNF formula, find a variable

assignment that satisfies the maximum number of clauses.

Note that a clause is satisfied when at least one of its literals is evaluated to true.

In other words, MAX-SAT optimizes the variable assignments to satisfy as many

162 L. Fang and M.S. Hsiao

clauses as possible. One can see that the classic SAT problem can be viewed as a

special case of MAX-SAT where all the clauses are satisfied.

First, let us take a look at an example of the MAX-SAT. Suppose given a formula

(a + b)(a + b̄)(ā + c)(ā + c̄). This formula is unsatisfiable and have a MAX-SAT

solution a = 0, b = 1, c = 1. Under this assignment, three clauses (a+b), (ā+c),

(ā + c̄) are satisfied with only clause (a + b̄) evaluated to false. One may observe

that assignment {a = 0, b = 1, c = 0} can also satisfy three clauses to achieve

the same bound as the previous assignment. Thus, for a MAX-SAT problem, the

solution may not be unique.

There are various ways to solve the MAX-SAT problem, such as local search

and systematic tree-based search. To pursue a guaranteed optimality, lots of research

turn to extend the DPLL algorithm to solve the MAX-SAT problem. Generally they

are [2, 3, 10, 20] with a skeleton. During the search progress, a variable called

upper bound (U B) records the current minimal number of clauses that have been

unsatisfied by a partial assignment (along the decision tree). The number of unsat-

isfiable clauses by current partial assignment is called UNSATNUM. If we have a

underestimation, U E , of how many clauses would be unsatisfiable when the current

partial assignment in the decision tree was extended to a complete assignment, the

best reachable lower bound would be UNSATNUM+U E . It is easy to see that when-

ever U B <= UNSATNUM + U E , there is no need to continue the search within

the subspace under the current decision since no better solution would be found.

Clearly this bound estimation helps to prune the search space effectively. On the

other hand, when U B > UNSATNUM+U E the branch-and-bound search strategy

will continue under this subspace. The algorithm stops when the whole search space

has been pruned and searched. There are other ways to solve MAX-SAT problems,

like in [8] the author proposed an algorithm based on resolution.

Usually both DPLL-based MAX-SAT algorithm and MIN-ONE SAT-based

MAX-SAT algorithm are complete. It is possible to modify them to search for sub-

optimal solutions in order to save computational resources. Although the optimality

of MAX-SAT is traded with the performance gain, the results achieved usually can

justify the tradeoff.

As is known, MAX-SAT can be modeled and solved through MIN-ONE SAT,

which is shown in Fig. 9.4. The framework can be partitioned into three steps. First,

the target formula should be transformed into a new formula with auxiliary variables

embedded into each clause. Then this new formula can be solved by a MIN-ONE

SAT algorithm with the capability to find a solution on subset of variables. Finally,

the MAX-SAT bound and the solution are derived from the MIN-ONE SAT solution

of the transformed formula. Since the transformation and the final-step extraction

are linear with the size of the clause, the computational complexity is determined

by the MIN-ONE SAT solving in the second step in Fig. 9.4.

Here we present a simple example to see how this approach works. Given a

formula (x1 + x2)(x1 + x̄2)(x̄1). This formula is first transformed to (x1 + x2 +
AX1)(x1+ x̄2+ AX2)(x̄1+ AX3), with the auxiliary variables as AX1, AX2, AX3.

We call the first formula as Fo and second formula as Fn . The MIN-ONE SAT

solution of auxiliary variables in Fn is {AX1 = 0, AX2 = 0, AX3 = 1} with

9 A Fast Approximation Algorithm for MIN-ONE SAT 163

Fig. 9.4 MIN-ONE

SAT-based MAX-SAT

solving
Original Formula FO

Add auxiliary variable

set AX to FO, FN=AX U FO

MIN-ONE SAT Solver

on FN

MIN-ONE SAT solution

on AX

Extract corresponding

MAX-SAT solution of FO

associated assignment {x1 = 1, x2 = 0}. Note that the MIN-ONE solution is not

unique in this example. It is easy to see the MAX-SAT bound equals two (maximal

number of satisfied clauses are 2 with one clause left unsatisfied).

To explore the potential of our novel MIN-ONE SAT algorithm (RelaxSAT), we

built a MAX-SAT solver on top of that. By taking advantage from the relaxation

heuristic inside RelaxSAT, those clauses that potentially contribute most to the con-

flicts will be identified in order to ease the efforts to satisfy the rest of the formula.

This local greedy scheme helps us to cover the possibly largest satisfiable part of the

formula, which is exactly what the MAX-SAT solver attempts to do.

In the next section, we will introduce a new MAX-SAT solver () based on our

previously proposed MIN-ONE SAT algorithm. From the preliminary experimen-

tal results our solver achieves a significant performance improvement over existing

MAX-SAT solvers.

9.5.1 The New MAX-SAT Solver: RMAXSAT

Because our MAX-SAT solver is based on the RelaxSAT proposed in Section 9.5,

we name it RMAXSAT. It consists of three components. The first component is

formula transformation. A implementation is also embedded in RMAXSAT, and

finally the MAX-SAT solution will be taken from the outputs of RelaxSAT and

printed out. The pseudo code is presented in Listing 9.3. The program of RMAXSAT

was implemented in C++ under Linux.

164 L. Fang and M.S. Hsiao

Listing 9.3 Our solver: RMAXSAT

def RMAXSAT(F)

begin

F_n=transform(F)

Solution=RelaxSAT(F_n)

return solution //contains both assignment and bound

end

We would mention a few details about the implementation here. As previously

discussed in Section 9.3.2, in the underlying MIN-ONE SAT algorithm, it is not

necessary to relax only one constraint at a time, more constraints can be relaxed to

reach a solution faster. However, in RMAXSAT, to achieve the bound as tight as

possible, we relax only one constraint in each iteration. Because we want a MIN-

ONE solution on the auxiliary variables only, the MIN-ONE SAT target function

passed to RelaxSAT algorithm is
∑M

i AX i , where AX i is the i th auxiliary variable

that is embedded in the i th clause with a total of M clauses in the original formula.

RMAXSAT can be easily extended to handle partial MAX-SAT problems, where the

auxiliary variables are not inserted to every clause in the formula. By adding auxil-

iary variables only to a subset of clauses, those clauses without auxiliary variables

will automatically be forced to be satisfied during the search for a solution.

Since the RMAXSAT inherits the search heuristics from RelaxSAT, it intends to

leave those clauses that would most likely cause the conflicts alone (by setting their

corresponding auxiliary variable to one) and satisfy the rest of the clauses in an

iterative manner. Our experiments have shown that this conflict-guided relaxation

heuristic works effectively in most cases.

First let us look at a case study of RMAXSAT. We have tested RMAXSAT on

some equivalence checking problems to see if RMAXSAT can correctly identify the

one clause that when removed can make the rest of the clauses satisfiable. Equiva-

lence checking compares two different designs to check whether they are function-

ally equivalent or not. By adding the extra equivalence assertions, the satisfiabil-

ity of the equivalence-checking instances determines the equivalence between the

two designs. When the two original designs are indeed equivalent, the equivalence-

checking instance should be unsatisfiable. In other words, an effective MAX-SAT

solver should be able to identify the equivalence assertion clause, without which the

rest of the clauses should be satisfiable.

Thus, in our preliminary setup, when an unsatisfiable instance derived from an

equivalence-checking problem is fed to RMAXSAT, it is quite a surprise to us that

RMAXSAT was able to quickly find a MAX-SAT solution that satisfies the clauses

from the design without the clause from the equivalence assertion. This is extremely

encouraging because logically the best way to make an unsatisfiable equivalence-

checking instance to become satisfiable is by removing the equivalence assertion

constraints. This observation gave us the hints that RMAXSAT might be a powerful

tool to reveal some insightful reasoning encoded in the SAT instances. Next, we will

discuss the performance of RMAXSAT for general MAX-SAT benchmarks.

9 A Fast Approximation Algorithm for MIN-ONE SAT 165

9.5.2 Evaluation of MAX-SAT Solver

In this section some experiments were conducted to compare RMAXSAT with some

existing MAX-SAT solvers. All the experiments were conducted on a PC worksta-

tion with Intel Xeon 3.2GHz CPU and 2GB memory.

First we cite the experimental results from [15], presented in Table 9.4. The

reason we cite this table here is that we want to demonstrate that OPTSAT and

MSAT+ are the state-of-the-art solvers which have a significant edge among the

existing MAX-SAT solvers. Since the source code or executable files from most

MAX-SAT solvers are not available to us, at current stage we first compare the

performance between our RMAXSAT and OPTSAT, which is shown in Table 9.5.

The comparison with MSAT+ is reported in Table 9.6. By evaluating on the same

set of publicly available benchmarks, we can check to see if RMAXSAT is indeed a

high-performance MAX-SAT solver.

Table 9.4 Comparison of existing MAX-SAT solvers

CNF #C BF OPBDP PBS4 MSAT+ OPTSAT

barrel3 941 0.23 2.04 0.88 0.12 0.9

barrel4 2034 0.65 47.59 11.67 0.34 21.19

barrel5 5382 21.42 MEM MEM 24.01 177.11

barrel6 8930 213.6 MEM – 95.56 896.45

barrel7 13764 SF MEM – 285.55 435.46

lmult0 1205 0.39 13.05 1.45 0.16 7.35

lmult2 3524 57.11 TIME TIME 6.7 16.46

lmult4 6068 261.74 MEM – 35.34 98.05

lmult6 8852 774.08 MEM – 157.02 609.07

lmult8 11876 SF MEM – 297.32 704.08

qvar8 2272 0.62 MEM 17.67 2.95 36

qvar10 5621 2.21 MEM 234.97 55.54 156.44

qvar12 7334 6.2 MEM – 36.8 74.49

qvar14 9312 SF MEM – 117.25 815.66

qvar16 6495 SF MEM – 51.33 117.31

c432 1114 131.06 TIME 7.22 0.24 7.6

c499 1869 TIME TIME 100.41 0.8 4.59

c880 2589 TIME TIME 320.96 5.54 38.91

c1355 3661 TIME TIME TIME 80.09 21.2

c1908 5095 TIME MEM TIME 58.01 165.99

c2670 6755 TIME MEM – 63.64 100.31

c3540 9325 TIME MEM – 242.02 786.33

u-bw.a 3290 7.81 TIME 249 209.03 178.18

u-bw.b N/A TIME MEM – TIME TIME

u-log.a 5783 TIME MEM TIME 59.65 179.3

u-log.b 6428 TIME MEM – 35.37 144.83

u-log.c 9506 TIME MEM – 383.65 731.87

u-rock.a 1691 13.29 TIME 41.29 206.56 6.26

TIME: Time out at 1800 s; MEM: Memory out at 1 GB; SF: Solver aborted unexpectedly; N/A:

No solver could solve the instance; –: Solver returned incorrect result.

166 L. Fang and M.S. Hsiao

Table 9.5 RMAXSAT vs. OPTSAT

CNF

OPTSAT RMAXSAT

#C Run time #C Run time Bound DIFF Speedup

barrel3 941 0.335 941 0.02 0 16.75

barrel4 2034 2.26 2032 0.19 2 11.89

barrel5 5382 65.37 5380 2.11 2 30.98

barrel6 8930 257.48 8928 12.94 2 19.90

barrel7 13764 481.29 13763 17.63 1 27.30

lmult0 1205 2.36 1205 0.03 0 78.67

lmult2 3524 6.19 3523 0.1 1 61.90

lmult4 6068 49.74 6068 0.28 0 177.64

lmult6 8852 197.05 8852 7.2 0 27.37

lmult8 11876 787.3 11876 384.76 0 2.05

qvar8 2272 10.77 2272 0.18 0 59.83

qvar10 5621 49.18 5621 0.5 0 98.36

qvar12 7334 28.53 7334 0.95 0 30.03

qvar14 9312 188.09 9312 1.06 0 177.44

qvar16 6495 43.29 6495 1.2 0 36.08

c432 1114 2.41 1114 0.08 0 30.13

c499 1869 3.53 1869 0.3 0 11.77

c880 2589 14.43 2588 0.57 1 25.32

c1355 3661 10.88 3661 1.14 0 9.54

c1908 5095 61.04 5095 2.14 0 28.52

c2670 6755 43.14 6755 1.37 0 31.49

c3540 9325 353.27 9325 65.48 0 5.40

u-bw.a 3290 18.19 3285 0.27 5 67.37

u-bw.b N/A TIME 11480 1.14 N/A N/A

u-log.a 5783 47.63 5782 0.22 1 216.50

u-log.b 6428 45.09 6428 0.23 0 196.04

u-log.c 9506 179.57 9506 0.39 0 460.44

u-rock.a 1691 1.59 1691 0.08 0 19.88

Average 0.56 72.54

In Table 9.4, the first column lists the names of the benchmark formula in the

format of CNF. The maximal number of satisfied clauses is shown in the second

column for each instance, which is the optimal bound if at least one of the deter-

ministic MAX-SAT solver should return if it is able to finish. The running time of

each MAX-SAT solver in the competition is presented in the following columns,

in the order of BF [6], OPBDP [10], PBS4 [1], MSAT+ [13, 19]. Solver BF is a

MAX-SAT solver, while OPBDP, PBS4, and MSAT+ are generic pseudo-Boolean

solvers. MSAT+ is a pseudo-Boolean SAT solver based on MiniSat [12], and it is

shown to be capable of solving large number of instances.

All of the deterministic MAX-SAT solvers can report the optimal bound if they

could finish within the time and memory limits. The timeout limit is set at 1800 s

while the memory consumption is limited within 1 GB. “TIME” in the table indi-

cates that the corresponding solver times out. Similarly “MEM” indicates that mem-

ory is exhausted. Note that “SF” means the solver aborted unexpectedly. When no

solver can solve the instance, the optimal bound in the second column is marked as

9 A Fast Approximation Algorithm for MIN-ONE SAT 167

Table 9.6 RMAXSAT vs. MSAT+

CNF

MSAT+ RMAXSAT

#C Run time #C Run time Bound DIFF Speedup

barrel3 941 0.04 941 0.02 0 2.23

barrel4 2034 0.04 2032 0.19 2 0.19

barrel5 5382 8.86 5380 2.11 2 4.20

barrel6 8930 27.45 8928 12.94 2 2.12

barrel7 13764 315.60 13763 17.63 1 17.90

lmult0 1205 0.05 1205 0.03 0 1.71

lmult2 3524 2.52 3523 0.1 1 25.20

lmult4 6068 17.93 6068 0.28 0 64.03

lmult6 8852 50.80 8852 7.2 0 7.06

lmult8 11876 332.46 11876 384.76 0 0.86

qvar8 2272 0.88 2272 0.18 0 4.90

qvar10 5621 17.46 5621 0.5 0 34.92

qvar12 7334 14.09 7334 0.95 0 14.84

qvar14 9312 27.04 9312 1.06 0 25.51

qvar16 6495 18.94 6495 1.2 0 15.78

c432 1114 0.08 1114 0.08 0 0.95

c499 1869 0.62 1869 0.3 0 2.05

c880 2589 2.05 2588 0.57 1 3.60

c1355 3661 41.10 3661 1.14 0 36.06

c1908 5095 21.33 5095 2.14 0 9.97

c2670 6755 27.37 6755 1.37 0 19.98

c3540 9325 108.73 9325 65.48 0 1.66

u-bw.a 3290 21.34 3285 0.27 5 79.03

u-bw.b N/A TIME 11480 1.14 N/A N/A

u-log.a 5783 15.85 5782 0.22 1 72.03

u-log.b 6428 11.01 6428 0.23 0 47.88

u-log.c 9506 94.13 9506 0.39 0 241.36

u-rock.a 1691 52.46 1691 0.08 0 655.81

Average 0.56 51.55

“N/A.” Finally “-” represents that the solver returns wrong results. It can be observed

that solver BF, OPBDP, and PBS4 were not able to solve most of the instances,

either due to the resource limit or due to the implementation bugs. On the other

hand, MSAT+ and OPTSAT solved all the instances except for u-bw.b. For instance,

in c3540, BF timed out, OPBDP ran out of memory, PBS4 returned wrong results,

and both MSAT+ and OPTSAT finished in 242.02 and 786.33 s, respectively. The

maximum number of clauses that could be satisfied is 9325. From this table we see

that the two solvers, MSAT+ and OPTSAT, gave the best performance and capability

edge over other three MAX-SAT solvers. Therefore, in the following experiments,

we compare our proposed RMAXSAT with OPTSAT and MSAT+ separately.

Tables 9.5 and 9.6 share the same layout, where the first column exhibits the

instance name, followed by the results from two solvers in the comparison. In

Table 9.5, the second and the third columns report the bound and running time

of OPTSAT, respectively, while the fourth and fifth columns show the bound and

running time of RMAXSAT, respectively. The sixth column presents the bound

168 L. Fang and M.S. Hsiao

difference between RMAXSAT and OPTSAT, computed as the bound obtained from

RMAXSAT minus the bound obtained from OPTSAT. It should be noted that since

RMAXSAT is based on the approximation algorithm of MIN-ONE SAT, the bound

it returned may not be optimal. Finally, in the last column, the speedup is calculated

as
Run time of RMAXSAT
Run time of OPTSAT

. We set the time-out limit the same as in Table 9.4, 1800 s.

One can see that the bounds returned by RMAXSAT are extremely tight. In all

27 instances, RMAXSAT reported optimal bounds on 18 of them. In the remaining

nine instances, the difference with the optimal solution is at most 5; usually, the

difference is only 1 or 2. Meanwhile the performance improvement is over 70× on

average. For example, in qvar14, OPTSAT obtained the optimal MAX-SAT result

of simultaneously satisfying 9312 clauses in 188.09 s, while RMAXSAT obtained

the same MAX-SAT bound of 9312 in only 1.06 s. This is a speedup of 177.44×. In

another example, RMAXSAT finished instance u-bw.b in just 1.14 s whereas all the

other MAX-SAT solvers failed. With this result we know that in u-bw.b.cnf, at least

11480 clauses can be satisfied simultaneously, which means by removing only one

of these clauses, the formula becomes satisfiable.

The results from Table 9.6 follow the same trend as in Table 9.5, and on average,

over 50× performance improvement from RMAXSAT was achieved over MSAT+.

For example, in the instance u-log.c, MSAT+ finished the instance in 94.13 s that

simultaneously satisfied 9506 clauses. RMAXSAT, on the other hand, satisfied the

same number of clauses in just 0.39 s. This is a 241× speedup. Based on the con-

sistent results obtained in both experiments, it is safe to conclude that RMAXSAT

is able to return tight bounds with over an order of magnitude reduction in the com-

putational cost.

9.6 Conclusions and Future Works

In this chapter, a novel algorithm for MAX-SAT is proposed. A set of constraints

automatically derived from the objective function is used to guide the search. When-

ever the constraint-set causes conflicts with the original Boolean formula, those

constraints most responsible to the conflicts will be identified and relaxed. The

relaxation procedure continues until a solution is found. Our proposed algorithm has

a low memory overhead and can provide a tight bound for the objective function.

It is able to handle some large instances that the existing MIN-ONE SAT solvers

failed. Meanwhile it can achieve one or two orders of magnitude run time reduc-

tion. Furthermore, a MAX-SAT solver built on top of RelaxSAT is presented to

demonstrate the potential of our algorithm.

In the future, different relaxation heuristics can be explored, and a possible hybrid

solution can also be investigated. Although RelaxSAT can provide a tight bound

with a significant performance improvement, it may not guarantee a global opti-

mum. To address this problem, we believe a hybrid solution of RelaxSAT and other

complete MIN-ONE SAT algorithm can be very beneficial. One possible approach

is to use the RelaxSAT as a preprocessing step in based algorithms where the bound

9 A Fast Approximation Algorithm for MIN-ONE SAT 169

estimation B E is passed from RelaxSAT. In this hybrid scheme, RelaxSAT would

be able to provide a tight initial bound estimate quickly, allowing PBSAT-based

algorithms to skip many unnecessary iterations.

References

1. Aloul, F., Ramani, A., Markov, I., Sakallah, K.: Pbs: A backtrack search pseudo-Boolean

solver. In: Proceedings of the 5th International Conference on the Theory and Applications of

Satisfiability Testing, pp. 46–353. (2002)

2. Alsinet, T., Manyà, F., Planes, J.: A max-sat solver with lazy data structures. In: Proceedings

of Advances in Artificial Intelligence – IBERAMIA, pp. 334–342. (2004)

3. Alsinet, T., Manyk, F., Planes, J.: Improved branch and bound algorithms for max-sat. In: Pro-

ceedings of International Conference on the Theory and Applications of Satisfiability Testing

(SAT), pp. 408–415. (2003)

4. Asano, T., Ono, T., Hirata, T.: Approximation algorithms for the maximum satisfiability prob-

lem. Nordic Journal of Computing 3(4), 388–404 (1996)

5. Bailleux, O., Marquis, P.: Distance-sat: Complexity and algorithms. In: Proceedings

of the 14th National Conference on Artificial Intelligence (AAAI-06) and the Collo-

cated 11th Conference on Innovative Applications of Artificial Intelligence (IAAI-06),

pp. 642–647. (1999)

6. Barth, P.: A Davis-Putnam enumeration algorithm for linear pseudo-Boolean optimiza-

tion. Technical Report MPI-I-95–2-2003, Max Plank Institute for Computer Science

(1995)

7. Bertoni, A., Campadelli, P., Carpentieri, M., Grossi, G.: A genetic model: Analy-

sis and application to maxsat. Evolutionary Computation 8(3), 291–309 (2000). Doi:

http://dx.doi.org/10.1162/106365600750078790

8. Bonet, M.L., Levy, J., Manyà, F.: Resolution for max-sat. Artificial Intelligence 171(8–9),

606–618 (2007). Doi: http://dx.doi.org/10.1016/j.artint.2007.03.001

9. Bonet, M.L., Levy, J.L., Manyà, F.: A complete calculus for max-sat. In: Proceedings of

the 9th International Conference on the Theory and Applications of Satisfiability Testing,

pp. 240–251. (2006)

10. Borchers, B., Furman, J.: A two-phase exact algorithm for MAX-SAT and weighted MAXSAT

problems. Journal of Combinatorial Optimization 2, 299–306 (1999)

11. Davis, M., Logemann, G., Loveland, D.W.: Machine program for theorem proving. Commu-

nications of the ACM 5, 394–397 (1962)

12. Eén, N., Sörensson, N.: An extensible sat-solver. In: Proceedings of the 6th Interna-

tional Conference on the Theory and Applications of Satisfiability Testing, pp. 502–518.

(2003)

13. Eén, N., Sörensson, N.: Translating pseudo-Boolean constraints into sat. Journal on Satisfia-

bility, Boolean Modeling and Computation 2, 1–26 (2006)

14. Fu, Z., Malik, S.: On solving the partial max-sat problem. Theory and Applications of Satisfi-

ability Testing – SAT 2006 4121(4), 252–265 (2006)

15. Giunchiglia, E., Maratea, M.: Solving optimization problems with DLL. In: Proceedings of

the 17th European Conference on Artificial Intelligence, pp. 377–381. (2006)

16. Kriplani, H., Najm, F., Hajj, I.: Worst case voltage drops in power and ground buses of CMOS

VLSI circuits. PhD Thesis, University of Illinois at Urbana-Champaign (1994)

17. Menaï, M.E., Batouche, M.: An effective heuristic algorithm for the maximum satisfiability

problem. Applied Intelligence 24(3), 227–239 (2006). Doi: http://dx.doi.org/10.1007/s10489-

006-8514-7

18. Sheini, H.M., Sakallah, K.A.: Pueblo: A modern pseudo-Boolean sat solver. In: Proceedings

of Design, Automation and Test in Europe Conference, pp. 684–685. (2005)

170 L. Fang and M.S. Hsiao

19. Wedelin, D.: An algorithm for 0–1 programming with application to airline crew scheduling.

In: Proceedings of the Second Annual European Symposium on Algorithms, pp. 319–330.

(1994)

20. Xing, Z., Zhang, W.: Maxsolver: An efficient exact algorithm for (weighted) maxi-

mum satisfiability. Artificial Intelligence 164(1–2), 47–80 (2005). Doi: http://dx.doi.org/

10.1016/j.artint.2005.01.004

21. Zhang, L., Malik, S.: Extracting small unsatisfiable cores from unsatisfiable Boolean formu-

las. In: 6th International Conference on the Theory and Applications of Satisfiability Testing

(2003)

22. Zhang, L., Malik, S.: Validating sat solvers using an independent resolution-based checker:

Practical implementations and other applications. In: Proceedings of the 6th Design, Automa-

tion and Test in Europe Conference, pp. 10880–10885. (2003)

Chapter 10

Algorithms for Maximum Satisfiability Using
Unsatisfiable Cores

Joao Marques-Sila and Jordi Planes

Abstract Many decision and optimization problems in electronic design automa-

tion (EDA) can be solved with Boolean satisfiability (SAT). These include binate

covering problem (BCP), pseudo-Boolean optimization (PBO), quantified Boolean

formulas (QBF), multi-valued SAT, and, more recently, maximum satisfiability

(MaxSAT). The first generation of MaxSAT algorithms are known to be fairly

inefficient in industrial settings, in part because the most effective SAT techniques

cannot be easily extended to MaxSAT. This chapter proposes a novel algorithm

for MaxSAT that improves existing state-of-the-art solvers by orders of magni-

tude on industrial benchmarks. The new algorithm exploits modern SAT solvers,

being based on the identification of unsatisfiable subformulas. Moreover, the new

algorithm provides additional insights between unsatisfiable subformulas and the

maximum satisfiability problem.

10.1 Introduction

Boolean satisfiability (SAT) is used for solving an ever increasing number of deci-

sion and optimization problems in electronic design automation (EDA). These

include model checking, equivalence checking, design debugging, logic synthesis,

and technology mapping [8, 19, 34, 36]. Besides SAT, a number of well-known

extensions of SAT also find application in EDA, including pseudo-Boolean opti-

mization (PBO) (e.g., [27]), quantified Boolean formulas (QBF) (e.g., [13]), multi-

valued SAT [26], and, more recently, maximum satisfiability (MaxSAT) [33].

MaxSAT is a well-known problem in computer science, consisting of finding the

largest number of satisfied clauses in unsatisfiable instances of SAT. Algorithms for

MaxSAT are in general not effective for large industrial problem instances, in part

J. Marques-Sila (B)

University College Dublin, Dublin, Ireland

e-mail: jpms@ucd.ie

Based on Marques-Silva, J.; Planes, J.: “Algorithms for maximum satisfiability using unsatisfiable

cores,” Design, Automation and Test in Europe, 2008. DATE ’08, pp. 408–413, 10–14 March 2008

Doi: 10.1109/DATE.2008.4484715 c© [2008] IEEE.

S.P. Khatri, K. Gulati (eds.), Advanced Techniques in Logic Synthesis,

Optimizations and Applications, DOI 10.1007/978-1-4419-7518-8_10,
C© Springer Science+Business Media, LLC 2011

171

172 J. Marques-Sila and J. Planes

because the most effective SAT techniques cannot be applied directly to MaxSAT [9]

(e.g., unit propagation).

Motivated by the recent and promising application of MaxSAT in EDA (e.g., [33])

this chapter proposes a novel algorithm for MaxSAT, msu4, that performs particu-

larly well for large industrial instances. Instead of the usual algorithms for MaxSAT,

the proposed algorithm exploits existing SAT solver technology and the ability of

SAT solvers for finding unsatisfiable subformulas. Despite building on the work of

others, on the relationship between maximally satisfiable and minimally unsatisfi-

able subformulas [6, 16, 20, 21, 24], the approach outlined in this chapter is new,

in that unsatisfiable subformulas are used for guiding the search for the solution to

the MaxSAT problem. The msu4 algorithm builds on recent algorithms for the iden-

tification of unsatisfiable subformulas, which find other significant applications in

EDA [32, 37]. The msu4 algorithm also builds on recent work on solving PBO with

SAT [15], namely on techniques for encoding cardinality constraints as Boolean

circuits obtained from BDDs. The msu4 algorithm differs from the one in [16] in

the way unsatisfiable subformulas are manipulated and in the overall organization

of the algorithm.

Experimental results, obtained on representative EDA industrial instances, indi-

cate that in most cases the new msu4 algorithm is orders of magnitude more effi-

cient than the best existing MaxSAT algorithms. The msu4 also opens a new line of

research that tightly integrates SAT, unsatisfiable subformulas, and MaxSAT.

The chapter is organized as follows. The next section provides a brief overview

of MaxSAT and existing algorithms. Section 10.3 describes the msu4 algorithm

and proves the correctness of the proposed approach. Section 10.4 provides exper-

imental results, comparing msu4 with alternative MaxSAT algorithms. The chapter

concludes in Section 10.6.

10.2 Background

This section provides definitions and background knowledge for the MaxSAT prob-

lem. Due to space constraints, familiarity with SAT and related topics is assumed

and the reader is directed to the bibliography [10].

10.2.1 The MaxSAT Problem

The maximum satisfiability (MaxSAT) problem can be stated as follows. Given an

instance of SAT represented in CNF, compute an assignment that maximizes the

number of satisfied clauses. During the last decade there has been a growing interest

on studying MaxSAT, motivated by an increasing number of practical applications,

including scheduling, routing, bioinformatics, and EDA [33].

Despite the clear relationship with the SAT problem, most modern SAT tech-

niques cannot be applied directly to the MaxSAT problem. As a result, most

10 Algorithms for Maximum Satisfiability Using Unsatisfiable Cores 173

MaxSAT algorithms are built on top of the standard DPLL [12] algorithm and so

do not scale for industrial problem instances [16, 17, 22, 23].

The usual approach (most of the solvers in the MaxSAT competition [3, 4]) is

based on a Branch and Bound algorithm, emphasizing the computation of lower

bounds and the application of inference rules that simplify the instance [17, 22,

23]. Results from the MaxSAT competition [3] suggest that algorithms based on

alternative approaches (e.g., by converting MaxSAT into SAT) do not perform well.

As a result, the currently best performing MaxSAT solvers are based on branch and

bound with additional inference rules.

More recently, an alternative, in general incomplete, approach to MaxSAT has

been proposed [33]. The motivation for this alternative approach is the potential

application of MaxSAT in design debugging and the fact that existing MaxSAT

approaches do not scale for industrial problem instances.

10.2.2 Solving MaxSAT with PBO

One alternative approach for solving the MaxSAT problem is to use pseudo-Boolean

optimization (PBO) (e.g., [24]). The PBO approach for MaxSAT consists of adding

a new (blocking) variable to each clause. The blocking variable bi for clause ωi

allows satisfying clause ωi independently of other assignments to the problem vari-

ables. The resulting PBO formulation includes a cost function, aiming at minimiz-

ing the number of blocking variables assigned value 1. Clearly, the solution of the

MaxSAT problem is obtained by subtracting from the number of clauses the solution

of the PBO problem.

Example 10.1 Consider the CNF formula: ϕ = (x1) (x2 + x̄1) (x̄2). The PBO

MaxSAT formulation consists of adding a new blocking clause to each clause. The

resulting instance of SAT becomes ϕW = (x1+ b1) (x2+ x̄1+ b2) (x̄2+ b3), where

b1, b2, b3 denote blocking variables, one for each clause. Finally, the cost function

for the PBO instance is min
∑3

i=1 bi .

Despite its simplicity, the PBO formulation does not scale for industrial prob-

lems, since the large number of clauses results in a large number of blocking vari-

ables, and corresponding larger search space. Observe that, for most instances, the

number of clauses exceeds the number of variables. For the resulting PBO problem,

the number of variables equals the sum of the number of variables and clauses in

the original SAT problem. Hence, the modified instance of SAT has a much larger

search space.

10.2.3 Relating MaxSAT with Unsatisfiable Cores

In recent years there has been work on relating minimum unsatisfiable and maxi-

mally satisfiable subformulas [16, 20, 21, 24]. problem.

174 J. Marques-Sila and J. Planes

This section summarizes properties on the relationship between unsatisfiable

cores and MaxSAT, which are used in the next section for developing msu4. Let

ϕ be an unsatisfiable formula with a number of unsatisfiable cores, which may or

may not be disjoint. Note that two cores are disjoint if the cores have no identical

clauses. Let |ϕ| denote the number of clauses in ϕ.

Proposition 10.1 (MaxSAT upper bound) Let ϕ contain K disjoint unsatisfiable

cores. Then |ϕ| − K denotes an upper bound on the solution of the MaxSAT

problem.

Furthermore, suppose blocking variables are added to clauses in ϕ such that the

resulting formula ϕW becomes satisfiable.

Proposition 10.2 (MaxSAT lower bound) Let ϕW be satisfiable, and let B denote

the set of blocking variables assigned value 1. Then |ϕ|−|B| denotes a lower bound

on the solution of the MaxSAT problem.

Clearly, the solution to the MaxSAT problem lies between any computed lower

and upper bound.

Finally, it should be observed that the relationship of unsatisfiable cores and

MaxSAT was also explored in [16] in the context of partial MaxSAT. This algorithm,

msu1, removes one unsatisfiable core each time by adding a fresh set of blocking

variables to the clauses in each unsatisfiable core. A possible drawback of the algo-

rithm of [16] is that it can add multiple blocking variables to each clause, an upper

bound being the number of clauses in the CNF formula [30]. In contrast, the msu4

algorithm adds at most one additional blocking variable to each clause. Moreover, a

number of algorithmic improvements to the algorithm of [16] can be found in [30],

i.e., msu2 and msu3. The proposed improvements include linear encoding of the

cardinality constraints and an alternative approach to reduce the number of blocking

variables used.

10.3 A New MaxSAT Algorithm

This section develops the msu4 algorithm by building on the results of Sec-

tion 10.2.3. As shown earlier, the major drawback of using a PBO approach for

the MaxSAT problem is the large number of blocking variables that have to be used

(essentially one for each original clause). For most benchmarks, the blocking vari-

ables end up being significantly more than the original variables, which is reflected

in the cost function and overall search space. The large number of blocking variables

basically renders the PBO approach ineffective in practice.

The msu4 algorithm attempts to reduce as much as possible the number of neces-

sary blocking variables, thus simplifying the optimization problem being solved.

Moreover, msu4 avoids interacting with a PBO solver and instead is fully SAT

based.

10 Algorithms for Maximum Satisfiability Using Unsatisfiable Cores 175

10.3.1 Overview

Following the results of Section 10.2.3, consider identifying disjoint unsatisfiable

cores of ϕ. This can be done by iteratively computing unsatisfiable cores and adding

blocking variables to the clauses in the unsatisfiable cores. The identification and

blocking of unsatisfiable cores are done on a working formula ϕW . Eventually, a set

of disjoint unsatisfiable cores is identified, and the blocking variables allow satis-

fying ϕW . From Proposition 10.2, this represents a lower bound on the solution of

the MaxSAT problem. This lower bound can be refined by requiring fewer blocking

variables to be assigned value 1. This last condition can be achieved by adding a

cardinality constraint to ϕ1.

The resulting formula can still be satisfiable, in which case a further refined car-

dinality constraint is added to ϕW . Alternatively, the formula is unsatisfiable. In this

case, some clauses of ϕ without blocking variables may exist in the unsatisfiable

core. If this is the case, each clause is augmented with a blocking variable, and a new

cardinality constraint can be added to ϕW , which requires the number of blocking

variables assigned value 1 to be less than the total number of new blocking clauses.

Alternatively, the core contains no original clause without a blocking variable. If

this is the case, then the highest computed lower bound is returned as the solution

to the MaxSAT problem. The proof that this is indeed the case is given below.

In contrast with the algorithms in [16] and [30], the msu4 algorithm is not exclu-

sively based on enumerating unsatisfiable cores. The msu4 algorithm also identifies

satisfiable instances, which are then eliminated by adding additional cardinality con-

straints.

10.3.2 The Algorithm

Following the ideas of the previous section, the pseudocode for msu4 is shown in

Algorithm 5. The msu4 algorithm works as follows. The main loop (lines 8–33)

starts by identifying disjoint unsatisfiable cores. The clauses in each unsatisfiable

core are modified so that any clause ωi in the core can be satisfied by setting to 1 a

new auxiliary variable bi associated with ωi . Consequently, a number of properties

of the MaxSAT problem can be inferred. Let |ϕ| denote the number of clauses, let νU

represent the number of iterations of the main loop in which the SAT solver outcome

is unsatisfiable, and let μBV denote the smallest of the number of blocking variables

assigned value 1 each time ϕW becomes satisfiable. Then, an upper bound for the

MaxSAT problem is |ϕ|−νU , and a lower bound is |ϕ|−μBV . Both the lower and the

upper bounds provide approximations to the solution of the MaxSAT problem, and

the difference between the two bounds provides an indication on the number of iter-

ations. Clearly, the MaxSAT solution will require at most μBV blocking variables

to be assigned value 1. Also, each time the SAT solver declares the CNF formula

1 Encodings of cardinality constraints are studied, for example, in [15].

176 J. Marques-Sila and J. Planes

to be unsatisfiable, then the number of blocking variables that must be assigned

value 1 can be increased by 1. Each time ϕW becomes satisfiable (line 25), a new

cardinality constraint is generated (line 30), which requires the number of blocking

variables assigned value 1 to be reduced given the current satisfying assignment

(and so requires the lower bound to be increased, if possible). Alternatively, each

time ϕW is unsatisfiable (line 12), the unsatisfiable core is analyzed. If there exist

initial clauses in the unsatisfiable core, which do not have blocking variables, then

additional blocking variables are added (line 17). Formula ϕW is updated accord-

ingly by removing the original clauses and adding the modified clauses (line 18).

A cardinality constraint is added to require at least one of the blocking clauses

to be assigned value 1 (line 19). Observe that this cardinality constraint is in fact

optional, but experiments suggest that it is most often useful. If ϕW is unsatisfiable,

and no additional original clauses can be identified, then the solution to the MaxSAT

problem has been identified (line 22). Also, if the lower bound and upper bound

estimates become equal (line 32), then the solution to the MaxSAT problem has

also been identified. Given the previous discussion, the following result is obtained.

Proposition 10.3 Algorithm 5 gives the correct MaxSAT solution.

Proof The algorithm iteratively identifies unsatisfiable cores and adds blocking vari-

ables to the clauses in each unsatisfiable core that do not yet have blocking variables

(i.e., initial clauses), until the CNF formula becomes satisfiable. Each computed

solution represents an upper bound on the number of blocking variables assigned

value 1, and so it also represents a lower bound on the MaxSAT solution. For each

computed solution, a new cardinality constraint is added to the formula (see line 30),

requiring a smaller number of blocking variables to be assigned value 1. If the algo-

rithm finds an unsatisfiable core containing no more initial clauses without blocking

variables, then the algorithm can terminate and the last computed upper bound rep-

resents the MaxSAT solution. Observe that in this case the same unsatisfiable core

C can be generated, even if blocking clauses are added to other original clauses

without blocking clauses. As a result, the existing lower bound is the solution to the

MaxSAT problem. Finally, note that the optional auxiliar constraint added in line

19 does not affect correctness, since it solely requires an existing unsatisfiable core

not to be re-identified.

10.3.3 A Complete Example

This section illustrates the operation of the msu4 algorithm on a small example

formula.

Example 10.2 Consider the following CNF formula:

ϕ = ω1 · ω2 · ω3 · ω4 · ω5 · ω6 · ω7 · ω8

(x1) (x̄1 + x̄2) (x2) (x̄1 + x̄3) (x3) (x̄2 + x̄3)

(x1 + x̄4) (x̄1 + x4)

10 Algorithms for Maximum Satisfiability Using Unsatisfiable Cores 177

Algorithm 5 The msu4 algorithm

msu4(ϕ)

1 ✄ Clauses of CNF formula ϕ are the initial clauses

2 ϕW ← ϕ ✄ Working formula, initially set to ϕ

3 μBV ← |ϕ| ✄ Min blocking variables w/ value 1

4 νU ← 0 ✄ Iterations w/ unsat outcome

5 VB ← ∅ ✄ IDs of blocking variables

6 U B ← |ϕ| + 1 ✄ Upper bound estimate

7 L B ← 0 ✄ Lower bound estimate

8 while true

9 do (st, ϕC)← SAT(ϕW)

10 ✄ ϕC is an unsat core if ϕW is unsat

11 if st = UNSAT

12 then

13 ϕI = ϕC ∩ ϕ ✄ Initial clauses in core

14 I ← {i |ωi ∈ ϕI }
15 VB ← VB ∪ I

16 if |I | > 0

17 then ϕN ← {ωi ∪ {bi } |ωi ∈ ϕI }
18 ϕW ← (ϕW − ϕI) ∪ ϕN

19 ϕT ← CNF(
∑

i∈I bi ≥ 1)

20 ϕW ← ϕW ∪ ϕT

21 else ✄ Solution to MaxSAT problem

22 return L B

23 νU ← νU + 1

24 U B ← |ϕ| − νU ✄ Refine UB

25 else

26 ν ← | blocking variables w/ value 1 |
27 if μBV < ν

28 then μBV ← ν

29 L B ← |ϕ| − μBV ✄ Refine LB

30 ϕT ← CNF(
∑

i∈VB
bi ≤ μBV − 1)

31 ϕW ← ϕW ∪ ϕT

32 if L B = U B ✄ Solution to MaxSAT problem

33 then return L B

Initially ϕW contains all the clauses in ϕ. In the first loop iteration, the core

ω1, ω2, ω3 is identified. As a result, the new blocking variables b1, b2, and b3 are

added, respectively, to clauses ω1, ω2, and ω3, and the CNF encoding of the cardi-

nality constraint b1+b2+b3 ≥ 1 is also (optionally) added to ϕW . In the second iter-

ation, ϕW is satisfiable, with b1 = b3 = 1. As a result, the CNF encoding of a new

cardinality constraint, b1 + b2 + b3 ≤ 1, is added to ϕW . For the next iteration, ϕW

is unsatisfiable and the clauses ω4, ω5, and ω6 are listed in the unsatisfiable core. As

a result, the new blocking variables b4, b5, and b6 are added, respectively, to clauses

ω4, ω5, and ω6, and the CNF encoding of the cardinality constraint b4+b5+b6 ≥ 1

is also (optionally) added to ϕW . In this iteration, since the lower and the upper

bounds become equal, then the algorithm terminates, indicating that two blocking

variables need to be assigned value 1, and the MaxSAT solution is 6.

178 J. Marques-Sila and J. Planes

From the example, it is clear that the algorithm efficiency depends on the ability

for finding unsatisfiable formulas effectively and for generating manageable cardi-

nality constraints. In the implementation of msu4, the cardinality constraints were

encoded either with BDDs or with sorting networks [15].

10.4 Experimental Results

The msu4 algorithm described in the previous section has been implemented on top

of MiniSAT [14]. Version 1.14 of MiniSAT was used, for which an unsatisfiable

core extractor was available. Two versions of msu4 are considered, one (v1) uses

BDDs for representing the cardinality constraints and the other (v2) uses sorting

networks [15].

All results shown below were obtained on a 3.0 GHz Intel Xeon 5160 with 4 GB

of RAM running RedHat Linux. A time-out of 1000 s was used for all MaxSAT

solvers considered. The memory limit was set to 2 GB. The MaxSAT solvers eval-

uated are the best performing solver in the MaxSAT evaluation [3], maxsatz [23],

minisat+ [15] for the MaxSAT PBO formulation, and finally msu4. Observe that

the algorithm in [16] targets partial MaxSAT, and so performs poorly for MaxSAT

instances [3, 30].

In order to evaluate the new MaxSAT algorithm, a set of industrial problem

instances was selected. These instances were obtained from existing unsatisfiable

subsets of industrial benchmarks, obtained from the SAT competition archives and

from SATLIB [7, 18]. The majority of instances considered was originally from

EDA applications, including model checking, equivalence checking, and test-pattern

generation. Moreover, MaxSAT instances from design debugging [33] were also

evaluated. The total number of unsatisfiable instances considered was 691.

Table 10.1 shows the number of aborted instances for each algorithm. As can

be concluded, for practical instances, existing MaxSAT solvers are ineffective. The

use of the PBO model for MaxSAT performs better than maxsatz, but aborts more

instances than either version of msu4. It should be noted that the PBO approach uses

minisat+, which is based on a more recent version of MiniSAT than msu4.

Table 10.1 Number of

aborted instances
Total maxsatz pbo msu4 v1 msu4 v2

691 554 248 212 163

Figures 10.1, 10.2, and 10.3 show scatter plots comparing maxsatz, the PBO

formulation, and msu4 v1 with msu4 v2. As can be observed, the two versions of

msu4 are clearly more efficient than either maxsatz or minisat+ on the MaxSAT

formulations. Despite the performance advantage of both versions of msu4, there are

exceptions. With few outliers, maxsatz can only outperform msu4 v2 on instances

where both algorithms take less than 0.1 s. In contrast, minisat+ can outperform

msu4 v2 on a number of instances, in part because of the more recent version of

MiniSAT used in minisat+.

10 Algorithms for Maximum Satisfiability Using Unsatisfiable Cores 179

Fig. 10.1 Scatter plot:

maxsatz vs. msu4-v2

10−2

10−1

100

101

102

103

10−2 10−1 100 101 102 103

m
ax

sa
tz

msu4-v2

Fig. 10.2 Scatter plot: pbo

vs. msu4-v2

10−2

10−1

100

101

102

103

10−2 10−1 100 101 102 103

p
b

o

msu4-v2

Fig. 10.3 Scatter plot:

msu4-v1 vs. msu4-v2

10−2

10−1

100

101

102

103

10−2 10−1 100 101 102 103

m
su

4
-v

1

msu4-v2

Finally, Table 10.2 summarizes the results for design debugging instances [33].

As can be concluded, both versions of msu4 are far more effective than either

maxsatz or minisat+ on the PBO model for MaxSAT.

180 J. Marques-Sila and J. Planes

Table 10.2 Design

debugging instances
Total maxsatz pbo msu4 v1 msu4 v2

29 26 21 3 3

10.5 Related Work

The use of unsatisfiable subformulas for solving (partial) MaxSAT problems was

first proposed by Fu and Malik [16]. This algorithm is referred to as msu1.0. This

work was extended in a number of different ways in our own work [29–31]. msu4,

the algorithm described in this chapter, was first proposed in [31], whereas msu3

was first described in [30]. In addition, msu2 as well as different variations of

msu1.0 (namely, msu1.1 and msu1.2) were proposed in [29]. There has been addi-

tional work on unsatisfiability-based MaxSAT [1, 28]. A new algorithm for partial

MaxSAT was proposed in [1]. Finally, algorithms for weighted partial MaxSAT

were proposed in [1, 2, 28].

Besides dedicated unsatisfiability-based algorithms for MaxSAT, this work has

motivated its application in a number of areas. Unsatisfiability-based MaxSAT algo-

rithms motivated the development of similar algorithms for computing the minimal

correction sets (MCSes) [25]. The use of CNF encodings in unsatisfiability-based

MaxSAT algorithms motivated work on improved encodings for cardinality con-

straints [5]. Finally, one concrete application area where the best solution is given

by unsatisfiability-based MaxSAT algorithms is design debugging of digital cir-

cuits [11, 33, 35].

10.6 Conclusions

Motivated by the recent application of maximum satisfiability to design debug-

ging [33], this chapter proposes a new MaxSAT algorithm, msu4, that further

exploits the relationship between unsatisfiable formulas and maximum satisfiabil-

ity [6, 16, 20, 21, 24]. The motivation for the new MaxSAT algorithm is to solve

large industrial problem instances, including those from design debugging [33]. The

experimental results indicate that msu4 performs in general significantly better than

either the best performing MaxSAT algorithm [3] or the PBO formulation of the

MaxSAT problem [24].

For a number of industrial classes of instances, which modern SAT solvers solve

easily but which existing MaxSAT solvers are unable to solve, msu4 is able to find

solutions in reasonable time. Clearly, msu4 is effective only for instances for which

SAT solvers are effective at identifying small unsatisfiable cores and from which

manageable cardinality constraints can be obtained.

Despite the promising results, additional improvements to msu4 are expected.

One area for improvement is to exploit alternative SAT solver technology. msu4

is based on MiniSAT 1.14 (due to the core generation code), but more recent

SAT solvers could be considered. Another area for improvement is considering

10 Algorithms for Maximum Satisfiability Using Unsatisfiable Cores 181

alternative encodings of cardinality constraints, given the performance differences

observed for the two encodings considered. Finally, the interplay between different

algorithms based on unsatisfiable core identification (i.e., msu1 [16] and msu2 and

msu3 [30]) should be further developed.

References

1. Ansótegui, C., Bonet, M.L., Levy, J.: Solving (weighted) partial MaxSAT through satisfiabil-

ity testing. In: International Conference on Theory and Applications of Satisfiability Testing,

pp. 427–440. Swansea, UK (2009)

2. Ansótegui, C., Bonet, M.L., Levy, J.: A new algorithm for weighted partial MaxSAT. In:

National Conference on Artificial Intelligence. Atlanta, USA (2010)

3. Argelich, J., Li, C.M., Manyá, F., Planes, J.: MaxSAT evaluation. http://www.maxsat07.udl.es/

(2008)

4. Argelich, J., Li, C.M., Manyá, F., Planes, J.: The first and second Max-SAT evaluations. Jour-

nal on Satisfiability, Boolean Modeling and Computation 4, 251–278 (2008)

5. Asín, R., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: Cardinality networks and

their applications. In: International Conference on Theory and Applications of Satisfiability

Testing, pp. 167–180. Swansea, UK (2009)

6. de la Banda, M.G., Stuckey, P.J., Wazny, J.: Finding all minimal unsatisfiable sub-sets. In:

International Conference on Principles and Practice of Declarative Programming, pp. 32–43.

Uppsala, Sweden (2003)

7. Berre, D.L., Simon, L., Roussel, O.: SAT competition. http://www.satcompetition.org/ (2008)

8. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In: Tools

and Algorithms for the Construction and Analysis of Systems, pp. 193–207. (1999)

9. Bonet, M.L., Levy, J., Manyá, F.: Resolution for Max-SAT. Artificial Intelligence 171(8–9),

606–618 (2007)

10. Bordeaux, L., Hamadi, Y., Zhang, L.: Propositional satisfiability and constraint programming:

A comparative survey. ACM Computing Surveys 38(4) (2006)

11. Chen, Y., Safarpour, S., Veneris, A.G., Marques-Silva, J.: Spatial and temporal design debug

using partial MaxSAT. In: ACM Great Lakes Symposium on VLSI, pp. 345–350. Boston, USA

(2009)

12. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commu-

nications of the ACM 5, 394–397 (1962)

13. Dershowitz, N., Hanna, Z., Katz, J.: Bounded model checking with QBF. In: International

Conference on Theory and Applications of Satisfiability Testing, pp. 408–414. St. Andrews,

UK (2005)

14. Een, N., Sörensson, N.: An extensible SAT solver. In: International Conference on Theory and

Applications of Satisfiability Testing, pp. 502–518. Santa Margherita Ligure, Italy (2003)

15. Een, N., Sörensson, N.: Translating pseudo-Boolean constraints into SAT. Journal on Satisfia-

bility, Boolean Modeling and Computation 2, 1–26 (2006)

16. Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: International Conference on

Theory and Applications of Satisfiability Testing, pp. 252–265. Seattle, USA (2006)

17. Heras, F., Larrosa, J., Oliveras, A.: MiniMaxSat: a new weighted Max-SAT solver. In: Inter-

national Conference on Theory and Applications of Satisfiability Testing, pp. 41–55. Lisbon,

Portugal (2007)

18. Hoos, H., Stützle, T.: SAT lib. http://www.satlib.org/ (2008)

19. Kuehlmann, A., Paruthi, V., Krohm, F., Ganai, M.K.: Robust Boolean reasoning for equiva-

lence checking and functional property verification. IEEE Transactions on CAD of Integrated

Circuits and Systems 21(12), 1377–1394 (2002)

182 J. Marques-Sila and J. Planes

20. Kullmann, O.: Investigations on autark assignments. Discrete Applied Mathematics 107(1–3),

99–137 (2000)

21. Kullmann, O.: Lean clause-sets: generalizations of minimally unsatisfiable clause-sets. Dis-

crete Applied Mathematics 130(2), 209–249 (2003)

22. Li, C.M., Manyá, F., Planes, J.: Detecting disjoint inconsistent subformulas for computing

lower bounds for Max-SAT. In: National Conference on Artificial Intelligence, pp. 86–91.

Boston, USA (2006)

23. Li, C.M., Manyá, F., Planes, J.: New inference rules for Max-SAT. Journal of Artificial Intel-

ligence Research 30, 321–359 (2007)

24. Liffiton, M.H., Sakallah, K.A.: On finding all minimally unsatisfiable subformulas. In: Inter-

national Conference on Theory and Applications of Satisfiability Testing, pp. 173–186. (2005)

25. Liffiton, M.H., Sakallah, K.A.: Generalizing core-guided max-sat. In: International Confer-

ence on Theory and Applications of Satisfiability Testing, pp. 481–494. Swansea, UK (2009)

26. Liu, C., Kuehlmann, A., Moskewicz, M.W.: CAMA: A multi-valued satisfiability solver. In:

International Conference on Computer-Aided Design, pp. 326–333. San Jose, USA (2003)

27. Mangassarian, H., Veneris, A.G., Safarpour, S., Najm, F.N., Abadir, M.S.: Maximum circuit

activity estimation using pseudo-Boolean satisfiability. In: Design, Automation and Testing in

Europe Conference, pp. 1538–1543. Nice, France (2007)

28. Manquinho, V., Marques-Silva, J., Planes, J.: Algorithms for weighted Boolean optimization.

In: International Conference on Theory and Applications of Satisfiability Testing, pp. 495–

508. Swansea, UK (2009)

29. Marques-Silva, J., Manquinho, V.: Towards more effective unsatisfiability-based maximum

satisfiability algorithms. In: International Conference on Theory and Applications of Satisfia-

bility Testing, pp. 225–230. Guangzhou, China (2008)

30. Marques-Silva, J., Planes, J.: On using unsatisfiability for solving maximum satisfiability.

http://arxiv.org/corr/ (2007)

31. Marques-Silva, J., Planes, J.: Algorithms for maximum satisfiability using unsatisfiable cores.

In: Design, Automation and Testing in Europe Conference, pp. 408–413. Munich, Germany

(2008)

32. McMillan, K.L.: Interpolation and SAT-based model checking. In: Computer-Aided Verifica-

tion, pp. 1–13. Boulders, USA (2003)

33. Safarpour, S., Mangassarian, H., Veneris, A.G., Liffiton, M.H., Sakallah, K.A.: Improved

design debugging using maximum satisfiability. In: Formal Methods in Computer-Aided

Design, pp. 13–19. Austin, USA (2007)

34. Smith, A., Veneris, A.G., Ali, M.F., Viglas, A.: Fault diagnosis and logic debugging using

Boolean satisfiability. IEEE Transactions on CAD of Integrated Circuits and Systems 24(10),

1606–1621 (2005)

35. Sülflow, A., Fey, G., Bloem, R., Drechsler, R.: Using unsatisfiable cores to debug multiple

design errors. In: ACM Great Lakes Symposium on VLSI, pp. 77–82. Orlando, USA (2008)

36. Wang, K.H., Chan, C.M.: Incremental learning approach and SAT model for Boolean match-

ing with don’t cares. In: International Conference on Computer-Aided Design, pp. 234–239.

San Jose, USA (2007)

37. Zhang, L., Malik, S.: Validating SAT solvers using an independent resolution-based checker:

Practical implementations and other applications. In: Design, Automation and Testing in

Europe Conference. Munich, Germany (2003)

Part III

Boolean Matching

In Boolean matching, three research works are presented. By integrating graph-

based, simulation-driven, and SAT-based techniques, the first chapter in this sec-

tion makes Boolean matching feasible for large designs. The next chapter identi-

fies equivalent signals between the original and the modified circuits by using fast

functional and structural analysis techniques, and then uses a topologically guided

dynamic matching algorithm to identify and hash reusable portions of logic. The

last chapter in Boolean matching proposes an incremental learning-based algorithm

and a SAT-based approach for Boolean matching.

Chapter 11

Simulation and SAT-Based Boolean Matching
for Large Boolean Networks

Kuo-Hua Wang, Chung-Ming Chan, and Jung-Chang Liu

Abstract In this chapter, we explore the permutation-independent (P-equivalent)

Boolean matching problem for large Boolean networks. Boolean matching is to

check the equivalence of two target functions under input permutation and input/out-

put phase assignment. We propose a matching algorithm seamlessly integrating

Simulation and Boolean Satisfiability (S&S) techniques. Our algorithm first utilizes

functional properties like unateness and symmetry to reduce the searching space.

In the followed simulation phase, three types of input vector generation and check-

ing are applied to match the inputs of two target functions. Moreover, for those

inputs that cannot be distinguished in the simulation phase, we propose a recursive

matching algorithm to find all feasible mapping solutions. Experimental results on

large benchmarking circuits demonstrate that our matching algorithm is indeed very

effective and efficient to solve Boolean matching for large Boolean networks.

11.1 Introduction

Logic simulation technique has been widely used in design verification and debug-

ging over a long period of time. The major disadvantage of simulation comes from

the fact that it is very time consuming and almost impossible to catch completely

the functionality of a very large Boolean network. To solve this issue, Boolean

satisfiability (SAT) technique was proposed and exploited in many industrial for-

mal verification tools. In recent years, the technique of combining simulation and

SAT (S&S) was popular and successfully applied in many verification and synthesis

problems like equivalence checking [1] and logic minimization [2–5].

Boolean matching is to check whether two functions are equivalent or not under

input permutation and input/output phase assignment (so-called NPN-class). The

K.-H. Wang (B)

Fu Jen Catholic University, Taipei County, Taiwan

e-mail: khwang@csie.fju.edu.tw

This work is based on an earlier work: Simulation and SAT-based Boolean matching for large

Boolean networks, in Proceedings of the 46th Annual Design Automation Conference, ISBN:978-

1-60558-497-3 (2009) c© ACM, 2009. DOI= http://doi.acm.org/10.1145/1629911.1630016

S.P. Khatri, K. Gulati (eds.), Advanced Techniques in Logic Synthesis,

Optimizations and Applications, DOI 10.1007/978-1-4419-7518-8_11,
C© Springer Science+Business Media, LLC 2011

185

186 K.-H. Wang et al.

important applications of Boolean matching involve the verification of two circuits

under unknown input correspondences, cell-library binding, and table look-up based

FPGA’s technology mapping. In the past decades, various Boolean matching tech-

niques had been proposed and some of these approaches were discussed in the sur-

vey paper [6]. Among those previously proposed approaches, computing signatures

[6, 7] and transforming into canonical form [8–10] of Boolean functions were the

most successful techniques to solve Boolean matching. Recently, SAT technique

was also applied for Boolean matching [11, 12]. Most of these techniques were

proposed to handle completely specified functions, comparatively little research had

focused on dealing with Boolean functions with don’t cares [7, 12, 13].

The first and foremost issue for Boolean matching is the data structure for repre-

senting Boolean functions. As we know that many prior techniques used truth table,

sum of products (SOPs), and Binary Decision Diagrams (BDD’s) [14] to represent

the target functions during the matching process, they suffered from the same mem-

ory explosion problem. It is clear that the required storage for truth table will grow

exponentially as the number of input variables increases. In addition, many types of

Boolean functions cannot be represented by SOPs for large input set and the memory

space will explode while constructing their BDD’s. Therefore, these Boolean match-

ing techniques were constrained to apply for small to moderate Boolean networks

(functions). To address the above issues, And-Inverter Graphs (AIGs) [15] had been

utilized and successfully applied in verification and synthesis problems [4, 15].

In this chapter, we propose a permutation-independent (P-equivalent) Boolean

matching algorithm for large Boolean functions represented by AIGs. The contribu-

tions of our matching algorithm involve three aspects:

• it is the first one seamlessly integrating simulation and SAT-based techniques to

deal with Boolean matching;

• it applies functional properties such as unateness and symmetry to reduce the

searching space quickly;

• it is complete by integrating a recursive matching algorithm which can find not

only one feasible mapping solution but also all mapping solutions.

The remainder of this chapter is organized as follows. Section 11.2 gives

a brief research background for our work. Section 11.3 shows our procedure

of detecting functional properties. Some definitions and notations are given in

Section 11.4. Section 11.5 presents our simulation strategy for distinguishing the

input variables of Boolean functions. Sections 11.6 and 11.7 show our S&S-

based matching algorithm with implementation issues and the experimental results,

respectively. We summarize the chapter in Section 11.8.

11.2 Background

11.2.1 Boolean Matching

Consider two target Boolean functions f (X) and g(Y). Boolean matching is to

check the equivalence of these two functions under input permutation and input/out-

put phase assignment. To solve this problem, we have to search a feasible mapping

11 Simulation and SAT-Based Boolean Matching for Large Boolean Networks 187

ψ such that f (ψ(X)) = g(Y) (or ḡ(Y)). It is impractical to search all possible map-

pings because the time complexity is O(2n+1 · n!), where n is the number of input

variables. Among those previously proposed techniques for Boolean matching, sig-

nature is one of the most effective approaches. Various signatures were defined to

characterize input variables of Boolean functions. Since these signatures are invari-

ant under the permutation or complementation of input variables, the input variables

with different signatures can be distinguished to each other and many infeasible

mappings can be pruned quickly. However, it had been proved that signatures have

the inherent limitation to distinguish all input variables for those functions with

G-symmetry [16, 17].

11.2.2 Boolean Satisfiability

The Boolean Satisfiability (SAT) problem is to find a variable assignment to satisfy a

given conjunctive normal form (CNF) or prove it is equal to the constant 0. Despite

the fact that SAT problem is NP-complete, many advanced techniques like non-

chronological backtracking, conflict driven clause learning, and watch literals have

been proposed and implemented in state-of-the-art SAT solvers [18–20]. Therefore,

SAT technique has been successfully applied to solve many EDA problems [21] over

the past decade. Among these applications, combinational equivalence checking

(CEC) is an important one of utilizing SAT solver to check the equivalence of two

combinational circuits. The following briefly describes the concept of SAT-based

equivalence checking. Consider two functions (circuits) f and g to be verified. A

miter circuit with functionality f ⊕g is constructed first and then transformed into a

SAT instance (circuit CNF) by simple gate transformation rules. If this circuit CNF

cannot be satisfied, then f and g are equivalent; otherwise, they are not equivalent.

11.2.3 And-Inverter Graph

And-Inverter Graph (AIG) is a directed acyclic graph which can be used as the struc-

tural representation of Boolean functions. It consists of three types of nodes: primary

input, 2-input AND, and constant 0(1). The edges with INVERTER attribute denote

the Boolean complementation. Due to the simple and regular structure of AIG, it is

easy to transform a Boolean network (function) into AIG by simple gate transfor-

mation rules. Moreover, it is very fast to perform simulation on AIG with respect

to (w.r.t.) a large set of input vectors at one time. However, it is unlike to the BDD

which is a canonical form of Boolean functions for a specific input variable order.

It may also have many functionally equivalent nodes in the graph. In the paper [13],

SAT sweeping and structural hashing techniques were applied to reduce the graph

size. More recently, Mishchenko et al. exploited SAT-based equivalence checking

techniques to remove equivalent nodes while constructing an AIG, i.e., Functionally

Reduced AIGs (FRAIGs) [22]. By our experimental observation, FRAIGs can rep-

resent many large Boolean functions which cannot be constructed as BDD’s because

of the memory explosion problem.

188 K.-H. Wang et al.

11.3 Detection of Functional Property Using S&S Approach

Consider a function f (X) and an input xi ∈ X . The cofactor of f w.r.t. xi is fxi
=

f (x1, . . . , xi = 1, . . . , xn). The cofactor of f w.r.t. x̄i is f x̄i
= f (x1, . . . , xi =

0, . . . , xn). A function f is positive (negative) unate in variable xi if f x̄i
⊆ fxi

(fxi
⊆ f x̄i

). Otherwise, it is binate in that variable. Given two inputs xi , x j ∈ X ,

the non-equivalence symmetry (NE), equivalence symmetry (E), and single variable

symmetry (SV) of f w.r.t. xi and x j are defined and summarized in Table 11.1.

Table 11.1 Definition and S&S-based checking of functional properties

Property S&S checking

Name Definition Notation Disj. Removal_Condition SAT_Check

Positive unate f x̄i
⊆ fxi

PU (xi) xi f (v1) = 1, val(v1, xi) = 0 f x̄i
· f̄xi
= 0

Negative unate fxi
⊆ f x̄i

NU (xi) xi f (v1) = 1, val(v1, xi) = 1 f̄ x̄i
· fxi
= 0

NE symmetry f x̄i x j
= fxi x̄ j

N E(xi , x j) xi , x j val(v1, xi) �= val(v1, x j) f x̄i x j
⊕ fxi x̄ j

= 0

E symmetry f x̄i x̄ j
= fxi x j

E(xi , x j) xi , x j val(v1, xi) = val(v1, x j) f x̄i x̄ j
⊕ fxi x j

= 0

f x̄i x̄ j
= fxi x̄ j

SV (xi , x̄ j) xi val(v1, x j) = 0,∀x j ∈ X − {xi } f x̄i x̄ j
⊕ fxi x̄ j

= 0

Single variable f x̄i x j
= fxi x j

SV (xi , x j) xi val(v1, x j) = 1,∀x j ∈ X − {xi } f x̄i x j
⊕ fxi x j

= 0

symmetry f x̄i x̄ j
= f x̄i x j

SV (x j , x̄i) x j val(v1, xi) = 0,∀xi ∈ X − {x j } f x̄i x̄ j
⊕ f x̄i x j

= 0

fxi x̄ j
= fxi x j

SV (x j , xi) x j val(v1, xi) = 1,∀xi ∈ X − {x j } fxi x̄ j
⊕ fxi x j

= 0

S&S approach is applied to check functional unateness and symmetry of tar-

get functions in our matching algorithm. Instead of enumerating all items (possible

functional properties) and checking them directly, we exploit simulation to quickly

remove impossible items. For those items that cannot be removed by simulation,

SAT-based technique is applied to verify them. The generic functional property

detection algorithm is shown in Fig. 11.1. A similar NE-symmetry detection pro-

Fig. 11.1 The S&S-based functional property checking algorithm

11 Simulation and SAT-Based Boolean Matching for Large Boolean Networks 189

cedure was proposed in the paper [5]. Consider a function f and some functional

property p to be checked. Our detecting algorithm starts by using random simulation

to remove impossible items as many as possible. If there still exist some unchecked

items, it repeats taking an item and checking it with SAT-based technique until the

taken item is a true functional property of f . Guided simulation will then be used to

filter out the remaining impossible items. Rather than generating pure random vec-

tors, guided simulation can generate simulation vectors based on counterexamples

by SAT solving, i.e., solutions of the SAT instance.

In order to remove impossible items, we generate many pairs of random vec-

tors (v1, v2)’s with Hamming distance 1 or 2 for simulation. The vector pairs with

distance 1 are used to remove functional unateness and single variable symmetries,

while the pairs with distance 2 are used to remove NE and E symmetries. Assume

that v1 and v2 are disjoint on input xi (and x j) if their distance is 1 (2). Without

loss of generality, let f (v1) �= f (v2) and f (v1) = 1. The conditions for removing

impossible functional properties and SAT-based equivalence checking are briefly

summarized in Table 11.1, where the notation val(v1, xi) denotes the value of xi in

the input vector v1. The following example is given for illustration.

Example 11.1 Consider a function f (x1, x2, x3, x4, x5). Let two vectors v1 =
00011 and v2 = 10011 be disjoint on the first variable x1. Assume that f (v1) = 1

and f (v2) = 0. It is obvious f is not positive unate in x1 (PU (x1) can be removed)

because of val(v1, x1) = 0. In addition, since val(v1, x2) = val(v1, x3) = 0

and val(v1, x4) = val(v1, x5) = 1, SV (x1, x̄2), SV (x1, x̄3), SV (x1, x4), and

SV (x1, x5) can be removed accordingly. Consider the third input vector v3 = 00101

with f (v3) = 0. It is easy to see that v1 and v3 are disjoint on the variables x3 and

x4. It fulfills the condition val(v1, x3) �= val(v1, x4). Consequently, N E(x3, x4)

can be removed.

11.4 Definitions and Notations

Let P = {X1, X2, . . . , Xk} be a partition of input set X , where
⋃k

i=1 X i = X and

X i ∩ X j = ∅ for i �= j . Each X i is an input group w.r.t. P . The partition size of

P is the number of subsets X i ’s in P , denoted as |P|. The group size of X i is the

number of input variables in X i , denoted as |X i |.

Definition 11.1 Given two input sets X and Y with the same number of input vari-

ables, let PX = {X1, X2, . . . , Xk} and PY = {Y1, Y2, . . . , Yk} be two ordered input

partitions of X and Y , respectively. A mapping relation R = {G1, G2, . . . , Gk} is

a set of mappings between the input groups of PX and PY , where Gi = X i
Yi and

|X i | = |Yi |. Each element Gi ∈ R is a mapping group which maps X i to Yi .

Definition 11.2 Consider a mapping relation R and a mapping group Gi = X i
Yi ∈

R. The mapping relation size is the number of mapping groups in R, denoted as

|R|. The mapping group size of Gi , denoted as |Gi |, is the group size of X i (or Yi),

i.e., |Gi | = |X i | = |Yi |.

190 K.-H. Wang et al.

Definition 11.3 Consider two functions f (X) and g(Y). Let Gi = X i
Yi be a map-

ping group in a mapping relation R. Gi is unique if and only if |Gi | = 1 or X i (Yi)

is a NE-symmetric set of f (g). The mapping relation R is unique if and only if all

mapping groups in R are unique.

Definition 11.4 Let vi be an input vector w.r.t. the input set X . The input weight of

vi is the number of inputs with binary value 1. It is denoted as ρ(vi , X).

Definition 11.5 Consider a function f (X) and a vector set V involving m distinct

input vectors. The output weight of f w.r.t. V is the number of vectors vi ’s in V

such that f (vi) = 1. It is denoted as σ(f, V) and 0 ≤ σ(f, V) ≤ m.

Example 11.2 Consider the Boolean function f (X) = x̄1x2 + x2x4 + x1 x̄3x4 and

input vector set V = {v1, v2, v3, v4}. The Karnaugh map of f and set V are shown

in Fig. 11.2. In this figure, O = 1010 is the output vector of f w.r.t. V , where each

value in O indicates the output value of f (vi). We can see that the input weight of

each vi ∈ V is ρ(vi , X) = 3 and the output weight of f w.r.t. V is σ(f, V) = 2.

Fig. 11.2 The Karnaugh map

of f and input/output vector

sets V/O

11.5 Simulation Approach for Distinguishing Inputs

The idea behind our simulation approach is the same as the concept of exploiting

signatures to quickly remove impossible input correspondences as many as possible.

Consider two target functions f (X) and g(Y). Let R = {G1, . . . , Gi , . . . , Gc} be

the current mapping relation. Without loss of generality, groups G1, . . . , Gi are

assumed non-unique while the remaining groups are unique. To partition a non-

unique mapping group Gi = X i
Yi , for each input x j ∈ X i (y j ∈ Yi), we generate

a vector v or a set of vectors V for simulation and use the simulation results as the

signature of x j (and y j) w.r.t. f (and g). It can further partition Gi into two or more

smaller mapping groups by means of these signatures. Suppose the mapping size of

Gi is m, i.e., |Gi | = |X i | = |Yi | = m. In the following, we will propose three types

of input vectors and show how to distinguish the input variables of X i (and Yi) in

terms of the simulation results.

11 Simulation and SAT-Based Boolean Matching for Large Boolean Networks 191

11.5.1 Type-1

We first generate c subvectors v1, . . . , vi , . . . , vc, where vi is a random vector with

input weight 0 or m, i.e., ρ(vi , X i) = ρ(vi , Yi) = 0 or m. For each input variable

x j ∈ X i (and y j ∈ Yi), the subvector ṽi with input weight 1 or m − 1 can be

obtained by complementing the value of x j (and y j) in vi . The concatenated vector

v j = v1| · · · |ṽi | · · · |vm will then be used for simulating on f (and g) and its cor-

responding output value f (v j) (g(v j)) can be viewed as the signature of x j (y j).

Figure 11.3 demonstrates the vector set Vi used to partition Gi , where Ai is the set

X i or Yi . Each vector (row) in Vi is dedicated to an input variable x j (y j) in X i (Yi).

Using such a set Vi for simulation, in most cases, X i (Yi) can be partitioned into

two subsets X i0 (Yi0) and X i1 (Yi1), where the signatures of input variables in these

two sets are corresponding to the output value 0 and 1, respectively. Therefore, Gi

can be divided into two mapping groups Gi0 = X i0
Yi0 and Gi1 = X i1

Yi1 . More-

over, in our matching algorithm all non-unique mapping groups can be partitioned

simultaneously. The following example is given for illustration.

Fig. 11.3 Type-1 simulation

vectors Vi for Gi

Example 11.3 Consider two functions f (X), g(Y), and the initial mapping relation

R = {G1, G2}. Suppose that G1 = X1
Y1 and G2 = X2

Y2 , where X1 = {x1, x3},
X2 = {x2, x4}, Y1 = {y2, y3}, and Y2 = {y1, y4}. To partition the mapping groups

G1 and G2, we first generate two random vectors v1 = 00 and v2 = 11 for X1 (Y1)

and X2 (Y2), respectively. Based on the method described as above, two input vector

sets V1 and V2 are then generated for simulation. Figure 11.4 shows V1, V2, and the

corresponding simulated output vectors O f = 1100, Og = 1101. By the output

result of simulating V1, we cannot partition G1 since all its output values are equiv-

alent to 1. To look at the output values simulated by V2, we can further partition

G2 into two new mapping groups G̃2 = {x2}{y4} and G̃3 = {x4}{y1} corresponding

to the output value 1 and 0, respectively. So we can get the new mapping relation

R̃ = {G1, G̃2, G̃3}.

Fig. 11.4 Input/output

vectors of f (X) and g(Y)

192 K.-H. Wang et al.

11.5.2 Type-2

For each input x j ∈ X i (y j ∈ Yi), a vector set V j involving |Gi | − 1 vectors with

input weight 2 (or m−2) will be generated. For simplicity, Fig. 11.5 only shows out

the subvectors w.r.t. the input set X i while the subvectors w.r.t. the remaining input

sets can be generated like the initial subvectors vi ’s of Type-1. Consider any vector

v in V j . We assign 1 (or 0) to the input variable x j and one of the remaining inputs,

while the other inputs are assigned 0 (or 1). After the simulation, the output weight

σ(f, V j) (σ(g, V j)) will be used as the signature of x j (y j) and input variables with

different output weight can be distinguished to each other. Consequently, we can

partition Gi into at most m groups because of 0 ≤ σ(f, V j) ≤ m − 1. Besides, if

some input x j ∈ X i can uniquely map to an input y j ∈ Yi , we can further apply

Type-1 checking to partition the set X i−{x j } (Yi−{y j }) using the simulation results

by the vector set V j . We give an example for illustration.

Fig. 11.5 Type-2 simulation

vectors V j

Example 11.4 Consider two functions f (X), g(Y), and initial mapping relation R =
{G1, G2}, where G1 = X1

Y1 and G2 = X2
Y2 . Suppose that X1 = {x1, x2, x3},

Y1 = {y2, y3, y4}, X2 = {x4}, and Y2 = {y1}. The input vector set V = V1 ∪
V2 ∪ V3 is generated to partition G1. These vector sets V1, V2, and V3 are dedicated

to x1 (y2), x2 (y3), and x3 (y4), respectively. Figure 11.6 shows the input vector

sets Vi ’s, the output simulation vectors O f , Og , and their corresponding output

weights. By the distribution of output weight, x2 can uniquely map to y2 because

of σ(f, V2) = σ(g, V1) = 1. The input set {x1, x3} can map to {y3, y4} in the

same way. Consequently, the original group G1 can be partitioned into two groups

G̃1 = {x2}{y2} and G̃2 = {x1, x3}{y3,y4}. Moreover, since G̃1 is unique, we can

further partition G̃2 using Type-1 checking method. By the simulation results of f

on V2 and of g on V1, x1 (x3) can map to y4 (y3) because they have the same output

value 0 (1). Finally, each input variable of f can uniquely map to one variable

of g.

11.5.3 Type-3

The third type of vectors can only be used for the mapping group Gi = X i
Yi ,

where X i and Yi involve several NE-symmetric sets. The idea is mainly based on

functional symmetry that function f is invariant under the permutation of inputs in

its NE-symmetric set. Suppose X i consists of e symmetric set S1, S2, . . . , Se each

11 Simulation and SAT-Based Boolean Matching for Large Boolean Networks 193

Fig. 11.6 Input/output vectors and output weight of Example 11.4

with k input variables. To partition the group Gi , two random vectors a1 and a2 with

different input weight w1 and w2 will be generated, where 0 ≤ w1, w2 ≤ k. For each

symmetric set Si , we then generate a vector vi by assigning a2 and a1’s to Si and

the remaining sets, respectively. Figure 11.7 shows only the weight distribution of

vectors vi ’s, where vi is dedicated to Si for simulation. As to the other mapping

groups, the weights of their subvectors must be 0 or |Gi | like we use in Type-1. By

such a vector set for simulation, we can partition S1, S2, . . . , Se into two groups of

symmetric sets which have output simulation value 0 and 1, respectively. It is clear

that at most k × (k + 1) combinations of w1 and w2 are required for this type of

checking.

Fig. 11.7 Type-3 simulation

vectors of Gi

Example 11.5 Consider two functions f (X), g(Y), and initial mapping relation

R = {G1, G2}, where G1 = X1
Y1 and G2 = X2

Y2 . Suppose that X1 =
{x1, x2, x3, x5, x6, x7}, Y1 = {y2, y3, y4, y5, y6, y7}, X2 = {x4, x8}, and Y2 =
{y1, y8}. In the input set X1, there are three NE-symmetric sets with size 2,

i.e., {x1, x2}, {x3, x5}, and {x6, x7}. Y1 also has three NE-symmetric sets {y2, y3},
{y4, y5}, and {y6, y7}. Figure 11.8 shows one set of input vectors for simulation

and two output vectors of f and g. We first assign the input subvector of each

symmetric set in X1 (and Y1) as 01, i.e., the input weight is 1. For each symmetric

set to be checked, we change its input subvector to 11 with input weight 2. In this

case, the input subvector of X2 (and Y2) is assigned as 11. According to the output

vectors O f and Og , the set X1 can be divided into two groups X̃1 = {x1, x2} and

X̃2 = {x3, x5, x6, x7} which have output values 0 and 1, respectively. Similarly, Y1

can be divided into two groups Ỹ1 = {y4, y5} and Ỹ2 = {y2, y3, y6, y7}. Therefore,

we can obtain a new mapping relation R̃ = {G̃1, G̃2, G2}, where G̃1 = X̃1
Ỹ1

and

G̃2 = X̃2
Ỹ2

. So G̃1 becomes a unique mapping group by such a partitioning.

194 K.-H. Wang et al.

Fig. 11.8 Input/output

vectors in Example 11.5

Our matching algorithm checks that f (X) and g(Y) cannot be matched success-

fully by the following observation.

Observation 11.5.1 Consider a non-unique mapping group Gi = X i
Yi . Through

the simulation and checking steps as we described above, let PXi
and PYi

be the

resultant partitions w.r.t. to X j and Y j , respectively. For each group A ∈ PXi
, there

is a corresponding group B ∈ PYi
. The following shows two situations that f (X)

and g(Y) cannot match each other:

• |PX j
| �= |PY j

|, i.e., their partition sizes are different.

• |A| �= |B|, i.e., their set sizes are different.

11.6 S&S-Based Boolean Matching Algorithm

11.6.1 Our Matching Algorithm

Our Boolean matching algorithm is shown in Fig. 11.9. It can match two target

functions f (X) and g(Y) under a threshold, i.e., the maximum number of simulation

rounds. It is mainly divided into three phases: Initialization, Simulation, and Recur-

sion. In the Initialization phase, it exploits functional unateness and symmetries to

initialize the mapping relation R and computes the maximum number of mapping

groups in R, denoted as Max Size. Since the input variables in the NE-symmetric

set can be permuted without affecting the functionality, Max Size is equal to the

number of NE-symmetric sets adding the number of non-symmetric inputs. It is the

upper bound used to check the first terminating condition of the second phase. In the

Simulation phase, it improves the mapping relation R by the Simulate-and-Update

procedure implementing the simulation approach described in Section 11.5. This

step is repeated until it can find a unique mapping relation R with |R| = Max Size

or no improvement can be made to R under the threshold bound. If this phase is

ended by the second terminating condition, it calls the Recursive-Matching proce-

dure and enters into the Recursion phase to search the feasible mapping relation.

Otherwise, the SAT-Verify procedure exploiting SAT-based technique is called to

verify if two target functions are matched under the unique mapping relation R

searched by the Simulation phase.

11.6.2 Recursive-Matching Algorithm

Figure 11.10 shows our recursive matching algorithm. Consider target functions f ,

g, a mapping relation R, and the size bound Max Size of R. It starts by checking

if R is unique and so to verify R using SAT technique. For the case that R is not

11 Simulation and SAT-Based Boolean Matching for Large Boolean Networks 195

Fig. 11.9 Simulation and SAT-based Boolean matching algorithm

Fig. 11.10 Recursive-

matching algorithm

unique, the smallest non-unique mapping group Gi = X i
Yi in R will be selected for

partitioning. Consider the mapping of an input x j ∈ X i to an input yk ∈ Yi . It will

partition Gi into two mapping groups A = {x j }{yk } and B = (X i − {x j })Yi−{yk }.
With such a partitioning, we can derive a new mapping relation tmpR = R ∪ T −
{Gi } with mapping relation size |R| + 1, where T = {A, B} is derived from Gi .

196 K.-H. Wang et al.

Simulate-and-Update procedure is then called to further improve tmpR and return

a new mapping relation NewR. If NewR is not empty, it will call itself again;

otherwise, it indicates a wrong selection of input mapping. Moreover, this algorithm

can be easily modified to find all feasible mapping relations as shown in Fig. 11.10.

11.6.3 Implementation Issues

11.6.3.1 Control of Random Vector Generation

By our experimental results, most of the runtime was consumed by the simulation

phase for some test cases. The reason is that too many random vectors generated for

simulation are useless to improve current mapping relation. Thus it will incur a large

amount of iterations on the simulating and updating steps in this phase. Instead of

generating random vectors without using any criterion, we propose a simple heuris-

tic to control the generation of two adjacent random vectors. Let v1 be the first

random vector. The second vector v2 is generated by randomly complementing n/2

inputs in v1, where n is the number of input variables of target functions. We expect

it can evenly distribute the random vectors in the Boolean space and so that it can

quickly converge to find a feasible mapping relation. Our experimental result shows

the runtime can be greatly reduced for some benchmarking circuits.

11.6.3.2 Reduction of Simulation Time

Our matching algorithm can be easily extended to deal with Boolean functions with

multiple outputs. While matching two target functions with multiple outputs, we can

reduce the simulation time by utilizing the mapping relation found so far. Clearly,

the more the unique mapping groups we find, the less the number of outputs with

indistinguishable inputs is. So, rather than simulating the whole Boolean network,

simulating the subnetwork involving these outputs and their transitive fanin nodes

is enough. Our experimental result reveals that our matching algorithm can reduce

the runtime significantly as it approaches the end of matching process.

11.6.3.3 Analysis of Space Complexity and Runtime

During the simulation process, we need to store the simulation vectors for all nodes

in the Boolean network. Let the number of inputs and number of nodes in the

Boolean network be I and N, respectively. The memory space used by our matching

algorithm is M × I × N words (4 bytes), where M is an adjustable parameter, i.e.,

the number of sets used in each simulation round. The smaller M means that it can

reduce the storage space and simulation time in a simulation round. On the contrary,

it may need more simulation rounds to improve the mapping relation. Besides, it

may stop the simulation phase early and thus enter into the recursive matching

phase. If there exist many large non-unique mapping groups, then the runtime will

increase significantly because it may incur a large amount of simulation and SAT

verification on infeasible mapping relations.

11 Simulation and SAT-Based Boolean Matching for Large Boolean Networks 197

11.7 Experimental Results

The proposed S&S-based Boolean matching algorithm had been implemented into

ABC system [23] on Linux platform with dual Intel Xeon 3.0 GHz CPU’s. To

demonstrate the efficiency of our algorithm, MCNC and LGSyn benchmarking sets

were tested. For each tested circuit, we randomly permuted its input variables to gen-

erate a new circuit for being matched. In addition, to make our experimental results

more convincible, we restructured this new circuit by executing a simple script file

including some synthesis commands offered by ABC. Two sets of experiments were

conducted to test our matching algorithm.

The first experiment was conducted to search all feasible mapping relations on

112 circuits with input number ranging from 4 to 257. The experimental results

showed that three circuits C6288, i3, and o64 cannot be solved within 5000 s. To

dissect these circuits, we found that one of the two mapping relations of C6288

cannot be verified by SAT technique while the other two circuits have a large amount

of feasible mapping relations because they own a great many G-symmetries [16]. If

only to search one feasible mapping, the execution times for i3 and o64 are 0.49 s

and 8.67 s, respectively. The experimental results are summarized in Table 11.2 w.r.t.

the circuit input size. In this table, the first two columns show input ranges of bench-

marking circuits and number of circuits in different input ranges, respectively. The

third column labeled #Solved shows the number of circuits solved by our matching

algorithm. The next three columns Min, Avg, and Max give the minimum, aver-

age, and maximum runtime for the solved circuits, respectively. It shows that our

algorithm is very efficient for the circuits with moderate to large input sets.

Table 11.2 Boolean matching results for threshold 1000

CPU time (s)

#Input #Circuit #Solved Min Avg Max

4∼10 31 31 0.00 0.04 0.30

11∼20 21 21 0.01 0.55 8.04

21∼30 14 14 0.03 0.21 1.29

31∼40 10 9 0.07 1.16 4.79

41∼50 8 8 0.22 2.94 5.83

51∼257 28 26 0.14 2.57 17.56

For those solved circuits, we also compared the effectiveness of three phases.

Table 11.3 shows the comparison results. The rows labeled #Circuit and #Inc

show the number of circuits that have been matched successfully and the num-

ber of increased matched circuits in each individual step, respectively. In the first

(initialization) phase, we compared the effect of incrementally applying different

functional properties. The columns named as Unate, +Symm, and +SVS show the

results of only using functional unateness, adding E-symmetry and NE-symmetry,

and adding SV-symmetry, respectively. Obviously the more functional properties

are used, the more circuits can be solved in the first phase. It shows that 71 and

198 K.-H. Wang et al.

Table 11.3 Comparison on the effects of three phases

Functional property (1)

Unate +Symm +SVS +Sim. (2) +Rec. (3)

#Circuit 19 49 71 94 109

#Inc 19 30 22 23 15

ratio (%) 17.4 45.0 65.1 86.2 100

94 circuits can be solved after the first phase and the second (simulation) phase,

respectively. All the remaining circuits can be solved by the third (recursion) phase.

Table 11.4 shows the experimental results for the circuits with input size greater

than 50. The first three columns labeled Circuit, #I, and #O show the circuit name,

number of input variables, and number of outputs in this benchmarking circuit,

respectively. The next two columns O and S are the numbers of mapping relations

found by our matching algorithm without using and using functional properties. It

should be noted that the solutions induced by NE-symmetry is not taken into account

Table 11.4 Benchmarking results for circuits with input number > 50

#Sol CPU time (s)

Circuit #I #O O S Orig Unate +Symm

apex3 54 50 1 1 0.10 0.10 0.38

apex5 117 88 144 1 7.11 2.96 0.68

apex6 135 99 2 1 1.86 0.42 0.33

C2670 233 140 – 2 ∗ ∗ 7.96

C5315 178 123 4 1 6.31 2.86 3.29

C7552⋆ 207 108 – 1 ∗ ∗ 14.56

C880 60 26 8 1 0.28 0.20 0.25

dalu 75 16 2 1 1.20 3.36 5.47

des 256 245 1 1 10.21 0.25 2.33

e64 65 65 1 1 0.01 0.79 0.32

ex4p 128 28 – 4096 ∗ ∗ 6.08

example2 85 66 1 1 0.05 0.02 0.23

frg2 143 139 1 1 0.45 0.10 0.72

i10 257 224 48 2 25.63 15.16 17.56

i2 201 1 – 1 ∗ ∗ 1.02

i4 192 6 – 1 ∗ ∗ 0.22

i5 133 66 1 1 0.18 0.03 0.35

i6 138 67 1 1 0.50 0.02 0.14

i7 199 67 1 1 0.82 0.04 0.19

i8 133 81 1 1 0.57 0.06 0.40

i9 88 63 1 1 0.18 0.03 0.16

pair 173 137 1 1 0.84 0.64 2.44

rot 135 107 72 1 3.79 1.69 1.25

x1 51 35 2 1 0.17 0.13 0.14

x3 135 99 2 1 2.05 0.28 0.32

x4 94 71 2 1 0.62 0.37 0.15

Total > 25063 > 25029 66.94

Avg > 964 > 963 2.57

–: unknown *: CPU time > 5000 s ⋆: memory explosion

11 Simulation and SAT-Based Boolean Matching for Large Boolean Networks 199

on the numbers shown in the S column. Moreover, the numbers greater than one

indicate that these benchmarking circuits own G-symmetry. The last three columns

named as Orig, Unate, and +Symm compare the execution times of without using

functional property, using only functional unateness, and adding functional sym-

metries, respectively. The result shows that there are 5 out of 26 circuits cannot

be solved by our matching algorithm without using full functional property within

5000 s. The reason why this situation occurs is that these circuits have a great many

NE-symmetries. However, it can resolve all cases if functional symmetries are uti-

lized to reduce the searching space. The average runtime of using full functional

property is 2.57 s. It clearly reveals that our matching algorithm is indeed effective

and efficient for solving the Boolean matching problem. In this experiment, the

BDD’s of these circuits were also built for comparison with AIGs. It shows the

circuit C7752 had the memory explosion problem while constructing BDD without

using dynamic ordering.

In order to test our matching algorithm on very large Boolean networks, the

second experiment was conducted to test ISCAS89 benchmarking circuits. Since

these circuits are sequential, the comb command in ABC was executed to transform

them into combinational circuits. Table 11.5 shows the partial experimental results.

For each circuit, the columns #N, #BDD, Symmetry, and #Sol show the number

of nodes in the Boolean network (AIG), the number of nodes in the constructed

BDD, NE-symmetry, and the number of feasible mappings. The CPU times of find-

ing the first feasible mapping, finding all feasible mapping relations, and perform-

ing SAT verification of two target circuits are shown in the First, All, and SAT

columns, respectively. The experimental results show that our algorithm cannot find

all feasible mappings for those circuits with a great many NE-symmetries unless we

detect them in advance. It also reveals that only searching the first feasible mapping

relation without using symmetry is faster than the one using symmetry in some

cases. The reason is that it takes too much time on detecting symmetries for the cir-

cuits. The result shows only a very small amount of runtime was consumed by SAT

Table 11.5 Benchmarking results for s-series circuits

CPU Time (s)

Circuit #I #O #N #BDD Symmetry #Sol Orig Unate +Symm

First All First All First All SAT

s4863 † 153 120 3324 56691 1(8),1(9) 4 · 8! · 9! * * 2.6 * 1.9 1.9 0.0

s3384 264 209 2720 882 22(2) 222 4.8 * 2.1 * 4.0 4.0 0.0

s5378 199 213 2850 ⋆ 4(2),1(5),1(7) (2!)4 · 5! · 7! 1.3 * 3.4 * 2.4 2.4 0.0

s6669 † 322 294 4978 22957 32(2), 1(17) 4 · 232 · 17! 6.3 * 2.8 * 4.1 50.5 46.5

s9234.1 247 250 4023 4545 – 1 3.4 3.4 5.8 5.8 7.8 7.8 0.0

s38584.1 1464 1730 26702 22232 1(3),1(9) 3! · 9! 76.3 * 210.1 * 457.8 457.8 0.0

s38417 1664 1742 23308 55832099 2(2),1(3) (2!)2 · 3! 91.8 * 324.6 * 998.5 998.6 0.1

Total 183.9 551.4 1476.5 1523.0 46.6

Avg 30.7 78.8 210.9 217.6 6.7

Ratio 0.15 0.37 1.00 1.03 0.03

†: circuits own G-symmetry. -: no symmetry m(n):m NE-symmetric sets with n inputs.

*: CPU time > 5000 s ⋆: memory explosion

200 K.-H. Wang et al.

verification for all circuits except the s6669 circuit. Besides, the AIG size was far

less than the BDD size in many tested circuits and the s5378 circuit had the memory

explosion problem. In summary, our S&S-based Boolean matching algorithm can

be easily adjusted to fulfill different requirements for large Boolean networks.

11.8 Chapter Summary

In this chapter, we have presented a P-equivalent Boolean matching algorithm based

on S&S approach. Signatures exploiting functional unateness and symmetries were

applied to reduce the searching space quickly. Three types of input vectors were

generated for simulation and their simulated results were checked to distinguish the

input variables of two target functions. Our matching algorithm can find not only

one feasible mapping solution but also all mapping solutions. We have implemented

the matching algorithm and tested it on a set of large benchmarking circuits. The

experimental results reveal that our matching is indeed effective and efficient to

solve the Boolean matching problem for large-scale Boolean networks.

References

1. Mishchenko, A., Chatterjee S., Brayton, R., En N.: Improvements to combinational equiva-

lence checking. In: Proceedings of the International Conference on Computer-Aided Design,

pp. 836–843 San Jose, CA, USA (2006)

2. Plaza, S., Chang, K., Markov, I., Bertacco, V.: Node mergers in the presence of don’t cares.

In: Proceedings of the Asia and South Pacific Design Automation Conference, pp. 414–419

Yokohama, Japan (2007)

3. Zhu, Qi, Kitchen, N., Kuehlmann, A., Sangiovanni-Vincentelli, A.: SAT sweeping with local

observability don’t-cares. In: Proceedings of the Design Automation Conference, pp. 229–234

San Francisco, CA, USA (2006)

4. Mishchenko, A., Zhang, J.S., Sinha, S., Burch, J.R., Brayton, R., Chrzanowska-Jeske, M.:

Using simulation and satisfiability to compute flexibilities in Boolean networks. IEEE Trans-

action on Computer-Aided-Design of Integrated Circuits and Systems, 25(5) 743–755 (2006)

5. Zhang, J.S., Mishchenko, A., Brayton, R., Chrzanowska-Jeske, M.: Symmetry detection for

large Boolean functions using circuit representation, simulation, and satisfiability. In: Proceed-

ings of the Design Automation Conference, pp. 510–515 San Francisco, CA, USA (2006)

6. Benini, L., De Micheli, G.: A survey of Boolean matching techniques for library binding.

ACM Transactions on Design Automation of Electronic Systems, 2(3), 193–226 (1997)

7. Afshin Abdollahi: Signature based Boolean matching in the presence of don’t cares. In: Pro-

ceedings of the Design Automation Conference, pp. 642–647 Anaheim, CA, USA (2008)

8. Agosta, G., Bruschi, F., Pelosi, G., Sciuto, D.: A unified approach to canonical form-based

Boolean matching. In: Proceedings of the Design Automation Conference, pp. 841–846 San

Diego, CA, USA (2007)

9. Abdollahi, A., Pedram, M.: A new canonical form for fast Boolean matching in logic synthesis

and verification. In: Proceedings of the Design Automation Conference, pp. 379–384 San

Diego, CA, USA (2005)

10. Debnath, D., Sasao, T.: Efficient computation of canonical form for Boolean matching in

large libraries. In: Proceedings of the Asia and South Pacific Design Automation Conference,

pp. 591–596 Yokohama, Japan (2004)

11 Simulation and SAT-Based Boolean Matching for Large Boolean Networks 201

11. Safarpour, S., Veneris, A., Baeckler, G., Yuan, R.: Efficient SAT-based Boolean match-

ing for FPGA technology mapping. In: Proceedings of the Design Automation Conference,

pp. 466–471 San Francisco, CA, USA (2006)

12. Wang, K.H., Chan, C.M.: Incremental learning approach and SAT model for Boolean match-

ing with don’t cares. In: Proceedings of the International Conference on Computer-Aided

Design of Integrated Circuits and Systems, pp. 234–239 San Jose, CA, USA (2007)

13. Wei, Z., Chai, D., Kuehlmann, A., Newton A.R.: Fast Boolean matching with don’t cares,” In:

Proceedings of the International Symposium on Quality Electronic Design, pp. 346–351 Santa

Clara, CA, USA (2006)

14. Bryant, R.: Graph based algorithm for Boolean function manipulation. IEEE Transactions on

Computers, C-35(8), pp. 667–691 (1986)

15. Kuehlmann, A., Paruthi, V., Krohm, F., Ranai, M.K.: Robust Boolean reasoning for equiva-

lence checking and functional property verification. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 21, 377–1394 (2002)

16. Mohnke, J., Molitor, P., Malik, S.: Limits of using signatures for permutation independent

Boolean comparison. In: Proceedings of the Asia and South Pacific Design Automation Con-

ference, pp. 459–464 Makuhari, Japan (1995)

17. Wang, K.H.: Exploiting k-distance signature for Boolean matching and G -symmetry detec-

tion. In: Proceedings of the Design Automation Conference, pp. 516–521 San Francisco, CA,

USA (2006)

18. Marques-Silva, J., Sakallah, K.A.: GRASP: a search algorithm for propositional satisfiability.

In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 48(5),

pp. 506–521 (1999)

19. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an effi-

cient SAT solver. In: Proceedings of the Design Automation Conference, pp. 530–535 Las

Vegas, NV, USA (2001)

20. Eén, N., Sörensson, N.: The MiniSat page. http://minisat.se/ Cited 15 Jan 2008

21. Marques-Silva, J.P., Sakallah, K.A.: Boolean satisfiability in electronic design automation.

In: Proceedings of the Design Automation Conference, pp. 675–680 Los Angeles, CA, USA

(2000)

22. Mishchenko, A., Chatterjee, S., Jiang, R., Brayton, R.: FRAIGS: a unifying representation for

logic synthesis and verification. In: ERL Technical Report, EECS Department, UC Berkeley

(2005)

23. ABC: A System for Sequential Synthesis and Verification, by Berkeley Logic Synthesis and

Verification Group, http://www.eecs.berkeley.edu/∼alanmi/abc/ Cited 15 Jan 2008

Chapter 12

Logic Difference Optimization for Incremental
Synthesis

Smita Krishnaswamy, Haoxing Ren, Nilesh Modi, and Ruchir Puri

Abstract During the IC design process, functional specifications are often modified

late in the design cycle, often after placement and routing are completed. However,

designers are left either to manually process such modifications by hand or to restart

the design process from scratch–a very costly option. In order to address this issue,

we present DeltaSyn, a tool and methodology for generating a highly optimized

logic difference between a modified high-level specification and an implemented

design. DeltaSyn has the ability to locate similar logic in the original design which

can be reused to realize the modified specification through several analysis tech-

niques that are applied in sequence. The first phase employs fast functional and

structural analysis techniques to identify equivalent signals between the original and

the modified circuits. The second phase uses a novel topologically-guided dynamic

matching algorithm to locate reusable portions of logic close to the primary out-

puts. The third phase utilizes functional hashing to locate similar chunks of logic

throughout the remainder of the circuit. Experiments on industrial designs show

that, together, these techniques successfully implement incremental changes while

preserving an average of 97% of the pre-existing logic. Unlike previous approaches,

bit-parallel simulation and dynamic programming enable fast performance and scal-

ability. A typical design of around 10K gates is processed and verified in about 200 s

or less.

12.1 Introduction and Background

As the IC industry matures, it becomes common for existing designs to be mod-

ified incrementally. Since redesigning logic involves high expenditure of design

effort and time, previous designs must be maximally re-utilized whenever possible.

S. Krishnaswamy (B)

IBM TJ Watson Research Center, Yorktown Heights, NY

e-mail: skrishn@us.ibm.com

This work is based on an earlier work: DeltaSyn: an efficient logic difference optimizer

for ECO synthesis, in Proceedings of the 2009 international Conference on Computer-Aided

Design, ISBN:978-1-60558-800-1 (2009) c© ACM, 2009. DOI= http://doi.acm.org/10.1145/

1687399.1687546

S.P. Khatri, K. Gulati (eds.), Advanced Techniques in Logic Synthesis,

Optimizations and Applications, DOI 10.1007/978-1-4419-7518-8_12,
C© Springer Science+Business Media, LLC 2011

203

204 S. Krishnaswamy et al.

Designers have noted that, in existing flows, even a small change in the specification

can lead to large changes in the implementation [7]. More generally, the need for

CAD methodologies to be less sequential in nature and allow for transformations

that are “incremental and heterogeneous” has been recognized by leaders in indus-

try [6].

Recent advances in incremental physical synthesis [2, 22], placement [17], rout-

ing [25], timing analysis [22], and verification [4] have made incremental tools

practical. However, logic synthesis remains a bottleneck in incremental design for

several reasons. First, it is difficult to process incremental changes in the design

manually since logic optimizations can render intermediate signals unrecognizable.

Second, the inherent randomness in optimization choices makes the design process

unstable, i.e., a slight modification of the specification can lead to a different imple-

mentation. Therefore, a general incremental synthesis methodology that is able to

quickly derive a small set of changes in logic to handle incremental updates is nec-

essary.

Prior work on incremental synthesis tends to focus on small engineering change

orders (ECOs). Such methods primarily fall into two categories. The first category

consists of purely functional techniques which attempt to isolate point changes and

perform in-place rectification. Such techniques can be unscalable [12, 21] due to

the use of complex BDD manipulation and laborious analysis. Further, they may

simply fail to identify multiple point changes and changes that cannot be easily

isolated as originating at specific points in a circuit due to logic restructuring. The

second category of methods is heavily reliant on structural correspondences [3, 19]

and can result in large difference models that disrupt much of the existing design

when such correspondences are unavailable.

In this chapter, we present DeltaSyn, a method to produce a synthesized delta

or the logic difference between an RTL-level modified specification and an original

implemented design. As illustrated in Fig. 12.1, DeltaSyn combines both functional

Fig. 12.1 The main phases of DeltaSyn: (a) the original design and the modified specification

are given as inputs to DeltaSyn, (b) functional and structural equivalences forming the input-side

boundary of the changes are identified, (c) matching subcircuits which form the output-side bound-

ary of the changes are located and verified, (d) further reductions are identified through functional

hashing

12 Logic Difference Optimization for Incremental Synthesis 205

and structural analysis to minimize the logic difference. As a pre-processing step,

we compile the modified specification into a preliminary technology-independent

gate-level netlist with little optimization. Phase I finds structurally and functionally

equivalent gates to determine the input-side boundary of the logic difference. Phase

II uses a novel topologically guided functional technique that finds matching sub-

circuits starting from primary outputs and progressing upstream to determine the

output-side boundary of the change. Phase III finds further logic for reuse through a

novel functional hashing technique. DeltaSyn allows designers to avoid most design

steps including much of logic synthesis, technology mapping, placement, routing,

buffering, and other back-end optimizations on the unchanged logic.

The main features of our method include:

• An efficient multi-phase flow that integrates fast functional and structural tech-

niques to reduce the logic difference through the identification of input- and

output-side boundaries of the change.

• A novel dynamic algorithm that finds matching subcircuits between the modified

specification and implemented design to significantly decrease the logic differ-

ence.

• A functional hashing technique to enable wider use of matching.

A key advantage of our approach is that, unlike traditional ECO methodologies,

we make no assumptions about the type or extent of the changes in logic. The

remainder of the chapter is organized as follows. Section 12.2 describes previous

work in incremental synthesis. Section 12.3 describes the overall flow of Delta-

Syn. Sections 12.3.1 and 12.3.2 describe our equivalence-finding and subcircuit-

matching phases of logic difference reduction, while Section 12.3.3 presents the

functional-hashing phase of difference reduction. Section 12.4 presents empirical

results and analysis. Section 12.5 concludes the chapter.

12.2 Previous Work

Recently, the focus of incremental design has been on changes to routing or place-

ment [2, 11, 18]. However, there have been several papers dealing specifically with

logic ECO. Authors of [3, 19] present techniques that depend on structural corre-

spondences. They find topologically corresponding nets in the design. Then, gates

driving these nets are replaced by the correct gate type. While this type of analysis

is generally fast, it can lead to many changes to the design since such structural

correspondences are hard to find in designs that undergo many transformations.

In contrast, the method from [12] does not analyze topology. Instead, it uses a

BDD-based functional decomposition technique to identify sets of candidate signals

that are able to correct the outputs of the circuit to achieve the ECO. The authors

rewrite functions of each output O(X) in terms of internal signals t1, t2 to see

whether there are functions that can be inserted at t1, t2 to realize a new function

O ′. In other words, they solve the Boolean equation O(X, t1, t2) = O ′ for t1 and

t2 and check for consistency. This method does not scale well due to the memory

required for a BDD-based implementation of this technique.

206 S. Krishnaswamy et al.

More recently, Ling et al. [13] present a maximum satisfiability (MAX-SAT)

formulation similar to that of [18] for logic rectification in FPGA-based designs.

Rectification refers to corrections in response to missing or wrong connections in

the design. They find the maximum number of clauses that can be satisfied between

a miter that compares the original implementation and the modified specification.

Then, gates corresponding to unsatisfied clauses are modified to correct the logic.

They report that approximately 10% of the netlist is disrupted for five or fewer

errors. For more significant ECO changes, MAX-SAT can produce numerous unsat-

isfied clauses since it depends on the existence of functional equivalences. Further,

this method does not directly show how to correct the circuit. Deriving the correction

itself can be a difficult problem – one that is circumvented by our method.

12.3 DeltaSyn

In this section, we describe the incremental logic synthesis problem and our solution

techniques. First, we define terms that are used through the remainder of the chapter.

Definition 12.1 The original model is the original synthesized, placed, routed, and

optimized design.

Definition 12.2 The modified specification is the modified RTL-level specification,

i.e., the change order.

Definition 12.3 The difference model is a circuit representing the changes to the

original model required to implement the modified specification. The set of gates

in the difference model represent new gates added to the original model. Wires

represent connections among these gates. The primary inputs and primary outputs

of the difference model are annotated by connections to existing gates and pins in

the original model.

Given the original model, the modified specification, and a list of corresponding

primary outputs and latches, the objective of incremental synthesis is to derive a

difference model that is minimal in the number of gates. We choose the minimal

number of gates as our metric because the general procedure by which incremental

synthesis occurs in the industry motivates the need to preserve as many gates as pos-

sible. Typically, when late-stage changes occur, the masks are already set for most

metal layers. The changes are realized by rewiring spare gates in the top metal layer.

Additionally, incremental placement and routing tools can optimize wire length and

other physical concerns.

The new specification, generally written in an RTL-level hardware description

language (such as VHDL), is compiled into a technology-independent form called

the modified model. This step is relatively fast because the majority of the design

time is spent in physical design including physical synthesis, routing, and analysis

[Osler, P. Personal Communication (2009)] (see Fig. 12.17).

The circuits in Fig. 12.2 are used to broadly illustrate the three phases of our

difference optimization. By inspection, it is clear that f 3 and f 7 are the only

12 Logic Difference Optimization for Incremental Synthesis 207

Fig. 12.2 Sample circuits to

illustrate our method

differences between the two circuits. Although some of the local logic has under-

gone equivalent transformations (gates g4 and g7 have been modified through the

application of DeMorgan’s law), most of the circuit retains its global structure. The

nearby logic in the original model being unrecognizable despite the actual change

being small is typical of such examples.

DeltaSyn recognizes and isolates such changes as follows: Our first phase

involves structural and functional equivalence checking. For the given example, the

equivalences x1 ≡ w∗1 , x4 ≡ w∗4 , and x5 ≡ w∗5 are identified by these techniques.

Our second phase is geared toward finding matching subcircuits from the primary

outputs. Through a careful process of subcircuit enumeration and Boolean matching,

the subcircuits consisting of { f 8, f 9} from the original model and {g7} are matched

under the intermediate input mapping {(x3, w
∗
3), (x6, w

∗
7)}. This phase leaves g3 and

g6 as the logic difference . However, in the third phase f 3 and g6 are recognized as

subcircuits performing the same functionality, therefore f 3 can simply be rewired

to realize g6. Therefore, the third phase leaves g3 as the optimized logic difference.

The remainder of this section explains the algorithms involved in these steps.

12.3.1 Phase I: Equivalence-Based Reduction

Phase I is illustrated in Fig. 12.3. Starting with the given list of corresponding

primary inputs and latches, DeltaSyn builds a new correspondence list L between

matched signals in the original and modified models. Matches are found both struc-

turally and functionally. Candidates for functional equivalence are identified by

comparing simulation responses and verified using Boolean satisfiability (SAT).

208 S. Krishnaswamy et al.

Fig. 12.3 Logic difference

reduction through

equivalence checking

Structural equivalences are found inductively, starting with corresponding pri-

mary inputs and latch outputs. All gates g, g′ whose input signals correspond, and

whose functions are identical, are added to the correspondence list. The correspon-

dence list can keep track of all pairwise correspondences (in the case of one-to-

many correspondences that can occur with redundancy removal). This process is

then repeated until no further gate-outputs are found to structurally correspond with

each other.

Example 12.1 In Fig. 12.4 the initial correspondence list is

L = {(a, a∗)(b, b∗)(c, c∗)(d, d∗)(e, e∗)(f, f ∗)}. Since both the inputs to the gate

with output x are in L , we examine gate x∗ in the original model. Since this gate is

of the same type as x , (x, x∗) can be added to L .

After the structural correspondences are exhausted, the combinational logic is

simulated in order to generate candidate functional equivalences. The simulation

proceeds by first assigning common random input vectors to signal pairs in L . Sig-

nals with the same output response on thousands of input vectors (simulated in a

bit-parallel fashion) are considered candidates for equivalence, as in [10, 15]. These

candidates are further pruned by comparing a pre-computed fanin signature for each

of these candidate signals. A fanin signature has a bit position representing each PI

and latch in the design. This bit is set if the PI or latch in question is in the transitive

fanin cone of the signal and unset otherwise. Fanin signatures for all internal signals

can be pre-computed in one topological traversal of the circuit.

Example 12.2 In Figure 12.4, the same set of four random vectors are assigned to

corresponding input and internal signals. The output responses to each of the inputs

12 Logic Difference Optimization for Incremental Synthesis 209

Fig. 12.4 Identifying structural and functional equivalences

are listed horizontally. The simulations suggest that (z, z∗), (u, u∗), (w, v∗) are can-

didate equivalences. However, the fanin list of v∗ contains PIs c, d but the list for w

contains c, d, e, f . Therefore, these signals are not equivalent.

Equivalences for the remaining candidates are verified using SAT. We construct

miters between candidate signals by connecting the corresponding primary inputs

together and check for satisfiability. UNSAT assignments can be used to update

simulation vectors.

Note that it is not necessary for all intermediate signals to be matched. For

instance, if two non-identical signals are merged due to local observability don’t

cares (ODCs) as in [27], then downstream equivalences will be detected after the

point at which the difference between the signals becomes unobservable. After func-

tional equivalences are found, all of the gates driving the signals in L can be deleted

from the difference model.

12.3.2 Phase II: Matching-Based Reduction

Phase II of DeltaSyn finds subcircuits that are functionally equivalent under some

permutation of intermediate signals. Since incremental synthesis is intended to be

used for small changes in large netlists, there are large areas of logic that are iden-

tifiably unchanged once the dependence on the changed logic is removed. In other

words, once the output-side boundary of the change is disconnected, the remaining

logic should be equivalent under an appropriate association (connection) of internal

signals (as illustrated in Fig. 12.2).

210 S. Krishnaswamy et al.

At the outset, the task of finding matching subcircuits seems to be computation-

ally complex because it is unclear where the potentially matching subcircuits are

located within the modified and original models. Enumerating all possible subcir-

cuits (or even a fraction of them) is a computationally intractable task with expo-

nential complexity in the size of the circuit. Additionally, once such candidate sub-

circuits are located, finding an input ordering such that they functionally match is

itself an N P-complete problem known as Boolean matching . For our purposes,

we actually find all such input orders instead of just one. While these problems are

generally highly complex, we take advantage of two context-specific properties in

order to effectively locate and match subcircuits:

1. Most of the modifications we encounter are small.

2. Many of the logic optimizations performed on the original implementation

involve localized transformations that leave the global structure of the logic

intact.

In fact, about 90% of the optimizations that are performed in the design flow

are physical synthesis optimizations such as factoring, buffering, and local timing-

driven expansions [9, 20, 22, 24]. While redundancy removal can be a non-local

change, equivalent signals between the two circuits (despite redundancy removal)

can be recognized by techniques in Phase I. Since we expect the change in logic

to be small, regions of the circuit farther from the input-side boundaries are more

likely to match. Therefore, we enumerate subcircuits starting from corresponding

primary outputs in order to find upstream matches. Due to the second property, we

are able to utilize local subcircuit enumeration. The subcircuits we enumerate are

limited by a width of 10 or fewer inputs, thereby improving scalability. However,

after each subcircuit pair is matched, the algorithm is recursively invoked on the

corresponding inputs of the match.

Figure 12.5 illustrates the main steps of subcircuit identification and matching.

Candidate subcircuits are generated by expanding two corresponding outputs along

their fanin cones. For each candidate subcircuit pair, we find input symmetry classes,

and one input order under which the two circuits are equivalent (if such an order

exists). From this order, we are able to enumerate all input orders under which the

circuits are equivalent. For each such order, the algorithm is called recursively on

the corresponding inputs of the two subcircuits.

12.3.2.1 Subcircuit Enumeration

For the purposes of our matching algorithm we define a subcircuit as follows:

Definition 12.4 A subcircuit C consists of the logic cone between one output O ,

and a set of inputs {i1, i2, . . . , in}.
Pairs of subcircuits, one from the original model and one from the modified

model, are enumerated in tandem. Figure 12.6 illustrates the subcircuit enumeration

algorithm. Each subcircuit in the pair starts as a single gate and expands to incor-

porate the drivers of its inputs. For instance, in Fig. 12.6, the subcircuit initially

12 Logic Difference Optimization for Incremental Synthesis 211

Fig. 12.5 Difference reduction through subcircuit matching

Fig. 12.6 Candidate subcircuit enumeration

contains only the gate driving primary output z and then expands in both the x- and

y-directions. The expansion in a particular direction is stopped when the input being

expanded is (a) a primary input, (b) a latch, (c) a previously identified equivalence,

(d) a previously matched signal, (e) the added gate increases the subcircuit width

beyond the maximum allowed width, or (f) the signal being expanded has other

fanouts outside the subcircuit (signals with multiple fanouts can only be at the output

of a subcircuit).

Pseudocode for subcircuit expansion and enumeration are shown in Fig. 12.7. A

subcirc_enum structure (shown in Fig. 12.8) is instantiated for pairs of nets N , N∗

where N is from the modified model and N∗ is from the original model (starting

212 S. Krishnaswamy et al.

Fig. 12.7 Subcircuit pair

enumeration algorithm

EXPAND SUBCIRCUIT(subcircuit C, queue Q)

{

for(all inputs i ∈ C)

if(has outside fanouts(i))continue

g = get driver(i)

if(is PI(g) is latch(g)continue

if(is equivalent(g) is matched(g))continue

if(num inputs((C g) > MAX))continue

Q.push(new subcircuit(C g))

}

Fig. 12.8 The data structure

for enumerated subcircuits

STRUCT subcirc enum

{

N

N∗

mod queue

orig queue

pair history

next subcircuit pair(C, C∗)

expand subcircuit(subcircuit C, queue Q)

}

from corresponding primary outputs). The next_subcircuit_pair method fills in the

variables C and C∗. First, the orig_queue is popped. If the orig_queue is empty,

then all the possible subcircuits in the original model have already been enumerated

for a particular subcircuit C in the modified model. In this case, a new modified

subcircuit is found by popping the mod_queue. If a particular pair of subcircuits has

already been seen (and recorded in the pair_history) then the next pair is generated.

If the mod_queue is also empty, then all possible pairs of subcircuits have already

been enumerated for the pair of nets (N , N∗) and the process terminates.

12 Logic Difference Optimization for Incremental Synthesis 213

12.3.2.2 Subcircuit Matching

For two candidate subcircuits (C, C∗) realizing the Boolean functions F(i1, i2, . . . ,

in) and F∗(i1∗, i2∗, . . . , in∗), respectively, our goal is to find all of the permutations

of the inputs of F∗ such that F = F∗. Note that this is not necessary for most uses

of Boolean matching (such as technology mapping). We elaborate on this process

below.

Definition 12.5 A matching permutation ρ(F∗,F) of a function F∗(i1, i2, . . . , in)

with respect to a function F is a permutation of its inputs such that

F∗(ρ(F∗,F)(i1), ρ(F∗,F)(i2), . . . , ρ(F∗,F)(in)) = F

Definition 12.6 Two inputs ix and iy of a function F are said to be symmetric with

respect to each other if

F(i1, i2, . . . ix, . . . iy . . . in) = F(i1, i2, . . . iy, . . . ix . . . in)

Definition 12.7 Given a function F and a partition of its inputs into symmetry

classes

sym_F = {sym_F[1], sym_F[2], . . . , sym_F[n]},

a symmetric permutation τF on the inputs of F is a composition of permutations on

each symmetry class τF = τsym_F[1] ◦ τsym_F[2] ◦ . . . ◦ τsym_F[n]. Each constituent

permutation τsym_F[i] leaves all variables not in sym_F[i] fixed.

We now state and prove the main property that allows us to derive all matching

permutations.

Theorem 12.1 Given a matching permutation ρ(F∗,F), all other matching permuta-

tions π(F∗,F) can be derived by composing a symmetric permutation τ with ρ(F∗,F),

that is, for some symmetric permutation τ :

π(F∗,F) = ρ(F∗,F) ◦ τ

Proof Assume there exists a matching permutation π(F∗,F) that cannot be derived

by composing a symmetric permutation with ρ(F,F∗). Then, there is a permutation φ

which permutes a set of non-symmetric variables S′ such that ρ(F,F∗)◦φ = π(F∗,F).

However, by definition of symmetry

F∗(ρ(F,F∗)(φ(i1)), ρ(F,F∗)(φ(i2)), ρ(F,F∗)(φ(i3)) . . .)

�= F∗(ρ(F,F∗)(i1), ρ(F,F∗)(i2), ρ(F,F∗)(i3))

By transitivity

214 S. Krishnaswamy et al.

F∗(ρ(F,F∗)(φ(i1)), ρ(F,F∗)(φ(i2)), ρ(F,F∗)(φ(i3)) . . .) �= F.

Therefore, π(F∗,F) cannot be a matching permutation . For the other side, suppose

φ is any symmetric permutation of F∗ then by definition of symmetry

F∗(φ(i1), φ(i2), φ(i3) . . .) = F∗(i1, i2, i3 . . .)

and by definition of matching permutation:

F∗(ρ(F,F∗)(φ(i1)), ρ(F,F∗)(φ(i2)), ρ(F,F∗)(φ(i3)) . . .)

= F∗(ρ(F,F∗)(i1), ρ(F,F∗)(i2), φ(F,F∗)(i3)) = F

Therefore, ρ ◦ φ is also a matching permutation of F∗ with respect to F . ✷

Theorem 12.1 suggests that all matching permutations can be derived in these

steps:

1. Computing the set of input symmetry classes for each Boolean function, i.e., for

a function F we compute sym_F = {sym_F[1], sym_F[2], . . . , sym_F[n]}
where classes form a partition of the inputs of F and each input is contained in

one of the classes of sym_F .

2. Deriving one matching permutation through the use of a Boolean matching

method.

3. Permuting symmetric variables within the matching permutation derived in

step 2.

To obtain the set of symmetry classes for a Boolean function F we recompute the

truth table bitset after swapping pairs of inputs. This method has complexity O(n2)

for a circuit of width n, and this method is illustrated in Fig. 12.9.

We derive a matching permutation of F∗ or determine that one does not exist

through the algorithm shown in Fig. 12.11. In the pseudocode, instead of specifying

Fig. 12.9 Computing symmetry classes

12 Logic Difference Optimization for Incremental Synthesis 215

permutations ρF∗,F , we directly specify the ordering on the variables in F∗ that is

induced by ρ when F is ordered in what we call a symmetry class order, i.e., F with

symmetric variables adjacent to each other, as shown below:

F(sym_F[1][1], sym_F[1][2], . . . , sym_F[1][n], sym_F[2][1],
sym_F[2][2], . . . , sym_F[2][n], . . .)

The reorder(F, sym_F) function in the pseudocode is used to recompute the func-

tions F according to the order suggested by sym_F (and similarly with F∗). The

overall function is explained below:

1. First, we check whether number of inputs in both the functions is the same.

2. Next, we check the sizes and number of symmetry classes. If the symmetry

classes all have unique sizes, then the classes are considered resolved.

3. If the symmetry classes of F and F∗ are resolved, they can be associated with

each according to class size and immediately checked for equivalence.

4. If the symmetry classes do not have distinctive sizes, we use a simplified form

of the method from [1], denoted by the function matching_cofactor_order in

Fig. 12.10. Here, cofactors are computed for representative members of each

unresolved symmetry class, and the minterm counts of the nth-order cofactors

are used to associate the classes of F with those of F∗. This determines a per-

mutation of the variables of F∗ up to symmetry classes.

bool COMPUTE MATCHING PERM ORDER(f unction F , f unction F∗)

{

if(|inputs(F)|! = |inputs(F∗)|

return UNMATCHED

sym F = compute sym classes(F)

sym F∗ = compute sym classes(F∗)

sort by size(sym F)

sort by size(sym F∗)

if(|sym F |! = |sym F∗|)

return UNMATCHED

for(0 < = i < |sym F |)

if(|sym F[i]|! = |sym F∗[i]|)

return UNMATCHED

if(resolved(sym F∗))

reorder(F∗, sym F∗)

reorder(F, sym F)

if(F∗ = = F) return MATCHED

else return UNMATCHED

if(matching cofactor order(F, sym F, F∗, sym F∗))

return MATCHED

else

return UNMATCHED

}

Fig. 12.10 Compute a matching permutation order

216 S. Krishnaswamy et al.

Fig. 12.11 Enumerating

matching input orders
NEXT MATCHING PERM ORDER(sym classes sym F∗, f unction F∗)

{

index = −1

for(0 < = i < |sym F∗|)

if(next permutation(sym F∗[i]))

index = i

break

if(index = = −1)

return NULL

for(0 < = j < i)

next permutation(sym F∗[j])

reorder(sym F∗, F)

}

The remaining matching permutations are derived by enumerating symmetric

permutations as shown in Fig. 12.11. The next_permutation function enumerates

permutations of individual symmetry classes. Then all possible combinations of

symmetry class permutations are composed with each other.

The different input orders induced by matching permutations define different

associations of intermediate signals between the subcircuit from the original model

C∗ and that of the modified model C . Figure 12.12 illustrates that although two

subcircuits can be equivalent under different input orders, the “correct” order leads

to larger matches upstream.

Note that the discussion in this section can be applied to finding all matching

permutations under negation-permutation-negation (NPN) equivalence, by simply

negating the inputs appropriately at the outset as in [1]. This involves choosing the

polarity of each input variable that maximizes its cofactor minterm count and using

that polarity in deriving matching permutations. In other words, for a subcircuit C

realizing function F , if |F(i0 = 0, . . .)| > |F(i0 = 1, . . .)| then input i0 is used in

its negated form and the remainder of the analysis follows as discussed above. In

practice, this helps in increasing design reuse by ignoring intermediate negations.

Fig. 12.12 Although the

single-gate subcircuits in the

boxes have completely

symmetric inputs, the input

ordering (c, b, a) leads to a

larger upstream match than

(a, b, c)

12 Logic Difference Optimization for Incremental Synthesis 217

12.3.2.3 Subcircuit Covering

In this section, we describe a recursive covering algorithm which derives a set of

subcircuits or cover of maximal size.

Definition 12.8 A subcover for two corresponding nets (N , N∗) is a set of con-

nected matching subcircuit pairs that drive N and N∗.

Different subcircuit matches at nets (N , N∗) can lead to different subcovers as

shown in Fig. 12.13. Once the subcircuit D of the original and D∗ is generated

through subcircuit enumeration algorithm of Fig. 12.8, the algorithm of Fig. 12.10

finds an input ordering under which they are functionally equivalent. Figure 12.13

shows the initial ordering where inputs (0, 1) of are associated with inputs (0, 1) of

D∗. The subcover induced by this ordering is simply {(D, D∗)}, leaving the logic

difference {A, B, C}. However, an alternate input ordering–derived by swapping the

two symmetric inputs of D∗–yields a larger cover.

(a) (b)

Fig. 12.13 Snapshots of subcircuit covering: (a) Subcover induced by input ordering D∗(0, 1) on

original model and resulting difference (b) Subcover induced by input ordering D∗(1, 0), and the

resulting (smaller) logic difference

Since D(1, 0) = D∗(0, 1), the covering algorithm is invoked on the pairs of

corresponding inputs of D and D∗. The subcircuits (B, B∗) are eventually found

and matched. The inputs of B, B∗ are then called for recursive cover computation.

One of the inputs of B is an identified functional equivalence (from phase 1) so this

branch of recursion is terminated. The recursive call on the other branch leads to the

match (A, A∗) at which point this recursive branch also terminates due to the fact

that all of the inputs of A are previously identified equivalences. The resultant logic

difference simply consists of {C}. Note that this subcover requires a reconnection

of the output of A to C which is reflected in the difference model.

Figure 12.14 shows the algorithm to compute the optimal subcover . The

algorithm starts by enumerating all subcircuit pairs (see Fig. 12.6) and match-

ing permutations (see Fig. 12.11) under which two subcircuits are equivalent.

The function is recursively invoked at the input of each matching mapping in

order to extend the cover upstream in logic. For each match C, C∗ with input

correspondence {(i1, j1), (i2, j2), (i3, j3), . . .} (defined by the matching permu-

tation), the best induced subcover is computed by combining best subcovers

218 S. Krishnaswamy et al.

COMPUTE COVER(net N, net N∗)

{

subcirc enum N enum

while(N enum.next subcircuit pair(C,C∗) {

F∗ = compute truth table(C∗)

F = compute truth table(C)

sym F = compute symm classes(F)

sym F∗ = compute symm classes(F∗)

if(!compute matching perm order(F, F∗))

continue

do{

for(0 < = i < |sym F |)

for(0 < = j < |sym F[i]|)

if(is PI latch matched(sym F[i][j]))

continue

if(is PI latch matched(sym F∗[i][j])

continue

compute cover(sym F[i][j], sym F∗[i][j])

this match = combine subcovers(sym F, sym F∗)

if(|this match| > |opt match(N, N∗)|)

opt match(N, N∗) = this match

}while(next matching perm order(sym F∗))

}

mark matched gates(opt match(N, N∗)

}

Fig. 12.14 The recursive subcircuit covering algorithm

opt_match(i1, j1), opt_match(i2, j2) . . . at the inputs of the match. The subcovers

are corrected for any conflicting matches during the process of combining. For

example, if a net in the modified model has higher fanout than a net in the origi-

nal model then different subcovers may correspond the modified net with different

original nets. When such conflicts occur, the correspondence that results in the larger

subcover is retained.

In this process, we search for matches starting with topologically corresponding

primary outputs, and further topological correspondences emerge from the match-

ing processes. Since topologically connected gates are likely to be placed close to

each other during physical design, many of the timing characteristics of the original

implementation are preserved in reused logic. After a subcircuit cover is found, the

outputs of subcircuit pairs are added to the correspondence list L and all the covered

gates in the modified model are removed from the difference model.

12.3.3 Phase III: Functional Hashing-Based Reduction

In the previous section, we used a topologically-guided method to match regions

of the circuit which can be reused starting from the primary outputs. However, it is

possible to search for reusable logic at a finer level of granularity. Often, different

logic functions have subfunctions in common. Further, certain logic optimizations,

12 Logic Difference Optimization for Incremental Synthesis 219

such as rewiring, can cause global changes in connectivity while still maintain-

ing logic similarity. For instance, if two output pins were swapped, the method of

Phase-II would fail because it searches based on topological connectivity. To address

this issue, we present a method that searches for similar logic throughout the circuit

and not just in topologically relevant.

This method proceeds by traversing all of the nets in the unmatched portions of

the original and modified designs and hashing subcircuit functions of limited size

at the fanin cones of the nets. The functions within the original design that hash

to the same key as the modified design are candidates for reuse. These candidates

are then verified for Boolean matching using the method of Fig. 12.10 and then the

matches are dynamically extended using the recursive subcircuit covering algorithm

of Fig. 12.16. In other words, the hashing enables us to restart the subcircuit coveri

ng algorithm from new, promising locations. Additionally, reusable modules, such

as adders or priority muxes, which may be available in the logic, can be appropriated

for use in realizing the changed specification.

In previous literature, functional hashing has been used in logic rewriting [14] to

hash 4-input cuts such that cuts realizing identical functionality can be replaced by

each other. However, the representative member of the corresponding NPN equiva-

lence class is simply referenced from an exhaustive list. It is only possible to exhaus-

tively list 4-input functions, as classified by [16] as the number of Boolean functions

of five or more gets prohibitively large. Authors of [5] use another method of func-

tional hashing, where they derive a signature for 3- and 4-input cuts. However, that

method does not scale to larger circuits either.

Here, we propose an efficient key for the hash function based on easy-to-compute

functional characteristics such that likely Boolean matches are placed in the same

hash bucket. These functional characteristics include a subset of what is computed

in order to assess a full Boolean match.

Definition 12.9 Given a Boolean function F(i1, i2, . . . , in), the matching key

K (F, k) is the (k + 3)-tuple,

< N , S, F0, F1, . . . , Fk >

where

• N is the number of input symmetry classes in the function.

• S is a sequence containing the sizes of the symmetry classes in sorted order.

• F0 is the minterm count of the function realized by the subcircuit.

• F j for any 0 ≤ j < k is a sequence containing the kth order positive cofactor or

negative minterm counts (whichever is greater) in sorted order.

Note that if k = n, then K (F, k) completely specifies the function K . However,

in practice, one rarely needs more than k = 2 to sufficiently differentiate most

functions. Since we do not need complete differentiation through hashing, we use

k = 1. This observation has been corroborated by results in [1] where it is reported

that k = 2 is enough to determine the existence of a Boolean match between two

220 S. Krishnaswamy et al.

functions in most cases. The hash values simply consist of the boundaries of the

subcircuit in question.

Figure 12.15 shows the overall matching algorithm using functional hashing .

After the remainder of the original circuit is functionally hashed, the modified cir-

cuit is traversed and the largest matches starting at each net are found and stored

in the map Best Match. At this point the largest possible matches are known,

and we essentially have an optimization version of the set cover problem, i.e., we

want a cover of the largest number of gates in a circuit. Set cover is a well-known

N P-complete problem, whose best-known approximation algorithms simply pick

the largest covers greedily [8]. We follow the same approach in choosing a cover.

We note that this finer granularity of gate preservation will enable farther-reaching

changes to be incorporated into the incremental synthesis flow especially as the

synthesis of larger and larger blocks begins to be automated.

FIND FUNCTIONAL MATCHES(C orig, C eco){

{

foreach(unmatched net N∗ ∈ C orig){

while(N ∗ enum.next subcircuit(C∗) {

F∗ = compute truth table(C∗)

K(F∗, k) = compute hash key(F∗)

H[K(F∗, k)] = C

}

}

foreach(unmatched net N ∈ C eco){

while(N enum.next subcircuit(C) {

F = compute truth table(C)

K(F, k) = compute hash key(F)

for(0 < = i < |H[K(F, k)]|){

C cov(N) = compute cover(N,H[K(F, k)][i])

if(|C cov(N)| > |BestMatch[N]|){

BestMatch [N] = C cov

}

}

}

}

}

Fig. 12.15 Functional matching algorithm

12.4 Empirical Validation

We empirically validate our algorithms on actual ECOs, i.e., modifications to the

VHDL specifications, performed in IBM server designs. Our experiments are con-

ducted on AMD Opteron 242, 1.6 GHZ processors with 12 GB RAM. Our code is

written in C++ and compiled with GCC on a GNU linux operating system. For

our experimental setup, we initially compiled the modified VHDL into a technol-

ogy independent netlist with some fast pre-processing optimizations [20] that took

0.01% of the design time. The result, along with the original mapped/placed/routed

design, was analyzed by DeltaSyn to derive a logic difference. Results of this

12 Logic Difference Optimization for Incremental Synthesis 221

experiment are shown in Table 12.1. The logic difference is compared with the

difference derived by the cone-trace system, which is used in industry. The cone-

trace system copies the entire fanin cone of any mismatching primary output to

the difference model and resynthesizes the cone completely. Table 12.1 shows an

average improvement of 82% between the results of DeltaSyn and those of the

cone-trace system. The entries with difference size 0 represent changes that were

achieved simply by reconnecting nets.

Table 12.2 shows results on larger changes. These may be categorized as incre-

mental synthesis benchmarks rather than traditional ECO benchmarks. On such

cases, we measured the results of all three of the phases, and noted that the addition

of a third phase offers an extra 8% reduction in delta size through the reuse of

common subfunctions in logic. Note that the reduction numbers only reflect the

results of DeltaSyn and not pre-processing optimizations.

Table 12.1 DeltaSyn statistics on IBM ECO benchmarks

Design

No.

gates

Runtime

CPU (s)

Cone

size

Diff. model

size

% Diff.

reduced

% Design

preserved

ibm1 3271 35.51 342 17 95.03 99.48

ibm2 2892 47.40 1590 266 83.27 90.80

ibm3 6624 192.40 98 1 98.98 99.98

ibm4 20773 20.32 774 4 99.48 99.98

ibm5 2681 10.01 1574 177 88.75 100.00

ibm6 1771 4.99 318 152 52.20 91.42

ibm7 3228 180.00 69 0 100.00 100.00

ibm8 5218 9.01 22 13 40.91 99.75

ibm9 532 38.34 77 20 74.03 96.24

ibm10 11512 0.40 1910 429 77.54 96.27

ibm11 6650 211.02 825 126 84.73 98.11

ibm12 611 0.23 47 0 100.00 100.00

ibm13 1517 6.82 21 6 71.43 99.60

Avg. 82.03 97.31

Table 12.2 DeltaSyn statistics on IBM incremental synthesis benchmarks. Compares two-phase

difference reduction with three-phase difference reduction

Design

No.

gates

Cone

size

Diff.

model

size

New diff.

model

size

2-Phase

runtime

CPU(s)

3-Phase

runtime

CPU(s)

% 2-Phase

diff.

reduced

% 3-Phase

diff.

reduced

ibm14 7439 841 149 34 82.61 242.87 82.28 95.95

ibm15 4848 1679 447 169 24.77 29.27 73.38 89.93

ibm16 12681 4439 1310 584 179.13 474.86 70.49 86.84

ibm17 4556 510 12 9 23.93 22.58 97.65 98.23

ibm18 8711 1547 177 121 3.71 23.42 88.55 92.17

ibm19 3200 304 89 80 0.73 21.61 70.72 73.68

ibm20 5224 58 13 12 28.86 36.22 7.58 79.31

ibm21 6548 1910 429 261 190.82 266.69 77.54 86.33

ibm22 547 77 20 13 0.26 0.73 74.03 83.11

ibm23 8784 1299 249 174 13.93 85.74 80.83 86.61

Avg. 79.31 87.22

222 S. Krishnaswamy et al.

While the lack of standard benchmarks in this field makes it hard to directly

compare to previous work, it should be noted that DeltaSyn is able to derive a small

difference model for benchmarks that are significantly larger than previous work

[3, 12]. DeltaSyn processes all benchmarks in 211 or fewer seconds. The more

(global) structural similarity that exists between the modified model and the original

model, the faster DeltaSyn performs. For instance, ibm12 is analyzed in less than 1 s

because similarities between the implemented circuit and the modified model allow

for the algorithm in Fig. 12.14 to stop subcircuit enumeration (i.e., stop searching for

potential matches) and issue recursive calls frequently. Any fast logic optimizations

that bring the modified model structurally closer to the original model can, there-

fore, be employed to improve results. Figure 12.16 shows the relative percentages

of difference model size reduction achieved by our three phases. The first phase

reduces the logic difference by about 50%. The second phase offers an additional

30% difference reduction. The third phase offers an additional 8% of reduction on

average.

Fig. 12.16 Difference model reduction through phases I, II, III of DeltaSyn

Table 12.1 shows that our difference model disturbs only 3% of logic on average,

which is important for preserving the design effort. Figure 12.17 gives a break-

down of the time spent in various parts of the design flow. This is derived from an

Fig. 12.17 Percentage of

time spent in various parts of

the design flow [Osler, P,

Personal Communication

(2009)]. The VHDL

compilation step is too small

to be visible

12 Logic Difference Optimization for Incremental Synthesis 223

average of 44 circuits that were through the complete design flow [Osler, P, Per-

sonal Communication (2009)]. The first point to note in this figure is that the only

step that DeltaSyn repeats is the VHDL compilation step which takes 0.01% of the

entire design flow (not visible on the pie chart). Despite some additional overhead,

DeltaSyn allows designers to essentially skip the rest of the process on the unper-

turbed parts of the design. To demonstrate this, we have embedded DeltaSyn into

the PDSRTL physical synthesis and design system [22] which performs incremental

placement and optimization only on gates in the difference model (leaving all other

gates and latches fixed). Table 12.3 indicates that the runtime decreases drastically

for all available benchmarks. In addition, the total slack generally improves or stays

close to the same. In the case of ibm2, the fanout of a particular gate in the logic dif-

ference increased drastically and disturbed timing. We confirmed that the electrical

correction step returns the slack to its original value.

Figure 12.18 shows an example of incremental placement enabled by DeltaSyn.

The original model and the final model (with the difference model stitched in) look

very similar while the entirely replaced modified model appears significantly dif-

ferent. Preserving the placement generally has the effect of preserving wire routes

and also maintaining slack. In summary, DeltaSyn is able to automatically identify

changes which leave a large portion of the design unperturbed through the design

flow.

Table 12.3 PDSRTL [22] runtime and slack comparison between incremental design and complete

redesign

Runtime (s) % Runtime % Slack

Design Entire Design Difference Decrease Increase

ibm1 23040 823 96.43 27.79

ibm2 3240 1414.13 56.35 −20.83

ibm3 10800 1567 85.49 21.95

ibm4 50400 2146 95.74 9.36

ibm5 22680 1315 94.20 99.02

ibm6 2160 665 69.21 −2.97

ibm7 2160 748 65.38 69.72

Avg. 80.40 29.15

(a) (b) (c)

Fig. 12.18 Placement illustration of (a) the modified model placed from scratch, (b) the original

model, and (c) incremental placement on the difference model stitched. Blue indicates deleted

gates, red indicates newly added gates

224 S. Krishnaswamy et al.

12.5 Chapter Summary

In this chapter, we presented DeltaSyn, a method that analyzes an original and a

modified design to maximize the design reuse and design preservation. DeltaSyn

uses three phases of analysis in order to find redundant and usable subcircuits

in logic. These phases use a variety of techniques such as functional equivalence

checking, recursive topologically guided Boolean matching, and functional hash-

ing. Results show that DeltaSyn reduces the logic difference by an average of 88%

as compared to previous methods. Further, typical specification changes were pro-

cessed by reusing an 97% of existing logic, on average. Future work involves exten-

sions to handle changes in sequential logic.

References

1. Abdollahi, A., Pedram, M.: Symmetry detection and Boolean matching utilizing a signature

based canonical form of Boolean functions. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems 27(6), 1128–1137 (2009)

2. Alpert, C., Chu, C., Villarrubia, P.: The coming of age of physical synthesis. In: Proceedings of

the International Conference on Computer-Aided Design, San Jose, CA, pp. 246–249. (2007)

3. Brand, D., Drumm, A., Kundu, S., Narain, P.: Incremental synthesis. In: Proceedings of the

International Conference on Computer-Aided Design, San Jose, CA, pp. 14–18. (1994)

4. Chang, K.H., Papa, D.A., Markov, I.L., Bertacco, V.: Invers: An incremental verification sys-

tem with circuit similarity metrics and error visualization. IEEE Design and Test Magazine

26(2), 34–43 (2009)

5. Ganai, M., Kuehlmann, A.: On-the-fly compression of logical circuits. In: Proceedings of the

International Workshop on Logic Synthesis, Dana Point, CA, (2000)

6. Goering, R.: CAD foundations must change. EETimes (2006)

7. Goering, R.: Xilinx ISE handles incremental changes. EETimes (2007)

8. Kleinberg, J., Tardos, E.: Algorithm Design. Addison Wesley (2005)

9. Kravets, V., Kudva, P.: Implicit enumeration of structural changes in circuit optimization. In:

Proceedings of the Design Automation Conference, San Diego, CA, pp. 438–441. (2004)

10. Kuehlmann, A., Paruthi, V., Krohm, F., Ganai, M.: Robust Boolean reasoning for equivalence

checking and functional property verification. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems 21(12), 1355–1394 (2002)

11. Li, Y.L., Li, J.Y., Chen, W.B.: An efficient tile-based eco router using routing graph reduction

and enhanced global routing flow. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems 26(2), 345–358 (2007)

12. Lin, C.C., Chen, K.C., Marek-Sadowska, M.: Logic synthesis for engineering change. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems 18(3), 282–292

(1999)

13. Ling, A.C., Brown, S.D., Zhu, J., Safarpour, S.: Towards automated ECOs in FPGAs. In:

Proceedings of the International Symposium on FPGAs, Monterey, CA, pp. 3–12. (2009)

14. Mishchenko, A., Chatterjee, S., Brayton, R.: Dag-aware AIG rewriting: A fresh look

at combinational logic synthesis. In: Proceedings of the Design Automation Conference,

San Francisco, CA, pp. 532–536. (2006)

15. Mishchenko, A., Chatterjee, S., Jiang, R., Brayton, R.: Fraigs: A unifying representation for

logic synthesis and verification. ERL Technical Report, EECS Department, UC Berkeley,

March 2005.

16. Muroga, S.: Logic Design and Switching Theory, John Wiley, New York (1979)

17. Osler, P.: Personal communication (2009)

12 Logic Difference Optimization for Incremental Synthesis 225

18. Roy, J., Markov, I., Eco-system: Embracing the change in placement. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems 26(12), 2173–2185 (2007)

19. Safarpour, S., Mangassarian, H., Veneris, A.G., Liffiton, M.H., Safarpour, S., Mangassarian,

H., Veneris, A.G., Liffiton, M.H.: Improved design debugging using maximum satisfiability.

In: Proceedings of Formal Methods in Computer-Aided Design, Austin, TX, pp. 13–19. (2007)

20. Shinsha, T., Kubo, T., Sakataya, Y., Ishihara, K.: Incremental logic synthesis through gate logic

structure identification. In: Proceedings of the Design Automation Conference, Las Vegas, NV,

pp. 391–397. (1986)

21. Stok, L., Kung, D.S., Brand, D., Drumm, A.D., Sullivan, A.J., Reddy, L.N., Hieter, N., Geiger,

D.J., Chao, H.H., Osler, P.J.: Booledozer: Logic synthesis for ASICs. IBM Journal of Research

and Development 40(4), 407–430 (1996)

22. Swamy, G., Rajamani, S., Lennard, C., Brayton, R.K.: Minimal logic re-synthesis for engi-

neering change. In: Proceedings of the International Symposium on Circuits and Systems,

Hong Kong, pp. 1596–1599. (1997)

23. Trevillyan, L., Kung, D., Puri, R., Reddy, L.N., Kazda, M.A.: An integrated environment for

technology closure of deep-submicron IC designs. IEEE Design and Test Magazine 21(1),

14–22 (2004)

24. Visweswariah, C., Ravindran, K., Kalafa, K.,Walker, S., Narayan, S.: First-order incremental

block-based statistical timing analysis. In: Proceedings of the Design Automation Conference,

San Diego, CA, pp. 331–336. (2004)

25. Werber, C., Rautenback, D., Szegedy, C.: Timing optimization by restructuring long combina-

torial paths. In: Proceedings of the International Conference on Computer-Aided Design, San

Jose, CA, pp. 536–543. (2007)

26. Xiang, H., Chao, K.Y., Wong, M.: An ECO routing algorithm for eliminating coupling capac-

itance violations. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems 25(9), 1754–1762 (2006)

27. Zhu, Q., Kitchen, N., Kuehlmann, A., Sangiovanni-Vincentelli, A.L.: SAT sweeping with local

observability don’t-cares. In: Proceedings of the International Conference on Computer-Aided

Design, San Jose, CA, pp. 229–234. (2006)

Chapter 13

Large-Scale Boolean Matching

Hadi Katebi and Igor Markov

Abstract In this chapter, we propose a methodology for Boolean matching under

permutations of inputs and outputs (PP-equivalence checking problem) – a key

step in incremental logic design that identifies large sections of a netlist that are

not affected by a change in specifications. When a design undergoes incremental

changes, large parts of the circuit may remain unmodified. In these cases, the orig-

inal and the slightly modified circuits share a number of functionally equivalent

subcircuits. Finding and reutilizing the equivalent subcircuits reduce the amount

of work in each design iteration and accelerate design closure. In this chapter, we

present a combination of fast and effective techniques that can efficiently solve the

PP-equivalence checking problem in practice. Our approach integrates graph-based,

simulation-driven, and SAT-based techniques to make Boolean matching feasible

for large circuits. We verify the validity of our approach on ITC’99 benchmarks. The

experimental results confirm scalability of our techniques to circuits with hundreds

and even thousands of inputs and outputs.

13.1 Introduction

Boolean matching is the problem of determining whether two Boolean functions

are equivalent under the permutation and negation of inputs and outputs. This for-

mulation is usually referred to as the generalized Boolean matching problem or

PNPN-equivalence checking (PNPN stands for Permutation and Negation of out-

puts and Permutation and Negation of inputs); however, different variants of the

problem have been introduced for different synthesis and verification applications.

The matching problem that we discuss in this chapter is PP-equivalence checking:

two Boolean functions are called PP-equivalent if they are equivalent under per-

mutation of inputs and permutation of outputs. The simplest method to determine

H. Katebi (B)

University of Michigan, Ann Arbor, MI, USA

e-mail: hadik@eecs.umich.edu; hadi.katebi@gmail.com

Based on Katebi, H.; Markov, I.L.; “Large-scale Boolean matching,” Design, Automation & Test in

Europe Conference & Exhibition (DATE), 2010, pp.771–776, 8–12 March 2010 c© [2010] IEEE.

S.P. Khatri, K. Gulati (eds.), Advanced Techniques in Logic Synthesis,

Optimizations and Applications, DOI 10.1007/978-1-4419-7518-8_13,
C© Springer Science+Business Media, LLC 2011

227

228 H. Katebi and I. Markov

whether two n-input m-output Boolean functions are PP-equivalent is to explicitly

enumerate all the m!n! possible matches and perform tautology checking on each.

However, this exhaustive search is computationally intractable.

PP-equivalence checking finds numerous applications in verification and logic

synthesis. In many cases, an existing design is modified incrementally leaving a

great portion of the design untouched. In these cases, large isomorphic subcircuits

exist in original and slightly modified circuits [16]. Identifying such subcircuits and

reutilizing them whenever possible saves designers a great amount of money and

time. Due to the fact that modifications to the original circuit are introduced by

changing certain specifications and the fact that even a slight change in specifi-

cations can lead to large changes in implementation [9], PP-equivalence checking

helps designers identify isomorphic and other equivalent subcircuits.

Specifically, PP-equivalence checking can be used to find the minimal set of

changes in logic, known as logic difference, between the original design and the

design with modified specification. DeltaSyn [10] is a tool developed at IBM

Research that identifies and reports this logic difference. The current version of

DeltaSyn uses a relatively inefficient and unscalable Boolean matcher that only

exploits the symmetry of inputs to prune the search space.

Incremental Sequential Equivalence Checking (SEC) is another application of

PP-equivalence checking where isomorphic subcircuits can be used to create a num-

ber of highly likely candidate equivalent nodes [16]. The current implementation of

incremental SEC tires to find isomorphic subgraphs by performing extended simula-

tion and finding structural similarities. Although the Boolean approach presented in

our chapter does not fully exploit the structural similarities between two circuits, we

believe that our techniques combined with structural verification techniques create

a much more powerful tool for detecting isomorphic subgraphs.

Motivated by the practical importance of PP-equivalence checking in many EDA

applications, we develop fast and scalable Boolean matching algorithms and imple-

ment them in the ABC package – an established system for synthesis and verifica-

tion of combinational and sequential logic circuits [12]. The collection of all these

techniques creates a powerful Boolean matching module that can be integrated into

Combinational Equivalence Checking (CEC) to enhance its functionality. To this

end, CEC requires two designs whose primary I/Os match by name. Our work

allows one to relax this requirement with the help of a Boolean matcher. We call

the new command Enhanced CEC (ECEC). Figure 13.1 shows how our Boolean

matcher is integrated with CEC.

Fig. 13.1 The CEC

(pre-existing) and ECEC

(our) flows

ECEC

Network 2

Boolean Matcher

CEC

Network 1

CEC

Y/N

Network 2Network 1

Y/N

13 Large-Scale Boolean Matching 229

In general, algorithms for Boolean matching fall into two major categories:

signature-based and canonical form based. A signature is a property of an input

or an output that is invariant under permutations and negation of inputs. The goal

of signature-based matching is to prune the Boolean matching space by filtering

out impossible I/O correspondences [1, 4]. On the other hand, in matching based

on canonical forms, first canonical representations of two Boolean functions are

computed and then compared against each other to find valid I/O matches [2, 3].

Here, our PP-equivalence checking method first prunes the search space using graph

algorithms and simulation signatures, then it invokes SAT-solving until exact I/O

matches are found (Fig. 13.2).

Fig. 13.2 Overview of our

proposed Boolean matching

approach

I/O match?

Signature-based

Matching

Exponential space of possible matches

Reduced

search space SAT-based

Matching

The key contributions of our work include:

1. Analyzing functional dependency. In a Boolean network with multiple outputs,

some inputs affect only a fraction of the outputs, and different outputs are

affected in different ways. Hence, by analyzing the functional dependency of

outputs on inputs, we can distinguish the I/Os.

2. Exploiting input observability and output controllability. We use the observabil-

ity of inputs and the controllability of outputs as (1) effective matching signatures

and (2) ordering heuristics for our SAT-based matching.

3. Building a SAT-tree. When information about controllability, observability, and

all simulation-based information are exhausted, we resort to SAT-solving and

optimize the efficiency of SAT calls. This is accomplished through the concept

of a SAT-tree, which is pruned in several ways.

4. Pruning SAT-tree using SAT counterexamples. In our SAT-based matching, the

SAT-solver returns a counterexample whenever it finds an invalid match. The

information in these counterexamples is then used to prune the SAT-tree.

The remainder of this chapter is organized as follows. Section 13.2 provides rel-

evant background and discusses previous work on Boolean matching. Section 13.3

gives an overview of proposed signature-based techniques. Section 13.4 describes

our SAT-based matching approach. Section 13.5 validates our method in experi-

ments on available benchmarks, and Section 13.6 summarizes our work.

13.2 Background and Previous Work

In this section, we first review some common definitions and notation. Then, we

explain the And-Inverter representation of Boolean networks and we compare its

usage to that of conventional Binary Decision Diagrams. Next, we discuss Boolean

230 H. Katebi and I. Markov

satisfiabilty and explore its role in combinational equivalence checking. Relevant

work in Boolean matching is reviewed at the end of this section.

13.2.1 Definitions and Notation

In the following definitions, an input set of a Boolean network N refers to the set of

all the inputs of N . Similarly, an output set of N refers to the set of all the outputs

of N . An I/O set is either an input set or an output set.

Definition 13.1 A partition Px = {X1, . . . , Xk} of an I/O set X = {x1, . . . , xn} is a

collection of subsets X1, . . . , Xk of X such that ∪k
i=1 X i = X and X i ∩ X j = ∅ for

all i �= j . Partition size of Px is the number of subsets in Px and is denoted by |Px |.
Each X i in Px is called an I/O cluster of Px . The cardinality of X i , denoted by |X i |,
is the number of I/Os in X i .

Definition 13.2 A partition Px = {X1, . . . , Xk} of set X is an ordered partition if

the subsets X1, . . . , Xk are totally ordered, i.e., for any two subsets X i and X j , it is

known whether X i < X j or X j < X i .

Definition 13.3 Two ordered partitions Px = {X1, . . . , Xk} of set X and Py =
{Y1, . . . , Yk} of set Y are isomorphic if and only if |Px | = |Py | = k and |X i | =
|Yi | for all i , and non-isomorphic otherwise. Two isomorphic partitions are called

complete (discrete) if and only if |X i | = |Yi | = 1 for all i .

Definition 13.4 The positive cofactor of function f (x1, .., xn) with respect to vari-

able xi , denoted by fxi
, is f (x1, .., xi = 1, . . . , xn). Similarly, the negative cofac-

tor of f (x1, .., xn) with respect to variable xi , denoted by fx ′i
, is f (x1, .., xi =

0, . . . , xn).

Definition 13.5 A function f (x1, . . . , xn) is positive unate in variable xi if and only

if the negative cofactor of f with respect to xi is covered by the positive cofactor of

f with respect to xi , i.e., fx ′i
⊆ fxi

. Likewise, f is negative unate in variable xi if

and only if fxi
⊆ fx ′i

. f is called binate in xi if it is not unate in it.

13.2.2 And-Inverter Graphs (AIGs)

Recent tools for scalable logic synthesis, e.g., ABC, represent Boolean functions

using the And-Inverter Graph (AIG) data structure. An AIG is a Boolean network

composed of two-input AND gates and inverters. Structural hashing of an AIG

is a transformation that reduces the AIG size by partially canonicalizing the AIG

structure [13]. Representing a Boolean function in its AIG form is preferable to its

Binary Decision Diagram (BDD) form mainly because AIGs result in smaller space

complexity. Also, functional simulation can be performed much faster on AIGs, but

AIGs are only locally canonical.

13 Large-Scale Boolean Matching 231

13.2.3 Boolean Satisfiability and Equivalence Checking

Boolean Satisfiability (SAT) is the problem of determining whether there exists a

variable assignment to a Boolean formula that forces the entire formula evaluate

to true; if such an assignment exists, the formula is said to be satisfiable and oth-

erwise unsatisfiable. Pioneering techniques developed to solve the SAT problem

were introduced by Davis, Putnam, Logemann, and Loveland in early 1960s. They

are now referred to as the DPLL algorithm [6, 7]. Modern SAT-solvers, such as

MiniSAT [8], have augmented DPLL search by adding efficient conflict analysis,

clause learning, back-jumping, and watched literals to the basic concepts of DPLL.

SAT is studied in a variety of theoretical and practical contexts, including those

arising in EDA. CEC is one of the main applications of SAT in EDA. If two single-

output Boolean functions f and g are equivalent, then f
⊕

g must always evaluate

to 0, and vice versa. Now, instead of simulating all input combinations, we take

advantage of SAT solvers: if f
⊕

g is unsatisfiable, then f
⊕

g is zero for all input

combinations and hence f and g are equivalent; and if f
⊕

g is satisfiable, then

f and g are not equivalent and the satisfying assignment found by the SAT-solver

is returned as a counterexample. f
⊕

g is called the miter of f and g [14]. If f

and g have more than one output, say m outputs f1, . . . , fm and g1, . . . , gm , Mi =
fi

⊕

gi is first computed for all i and then M1 + · · · + Mm is constructed as the

miter of f and g. In our approach, instead of building one miter for the entire circuit

and handing it off to the SAT solver, we try to find equivalent intermediate signals

by simulation and use SAT to prove their equivalence. Counterexamples from SAT

are used to refine simulation.

13.2.4 Previous Work

Research in Boolean matching started in the early 1980s with main focus on tech-

nology mapping (cell binding). A survey of Boolean matching techniques for library

binding is given in [4]. Until recently, Boolean matching techniques scaled only to

10–20 inputs and one output [2, 5], which is sufficient for technology mapping, but

not for applications considered in our work. In 2008, Abdollahi and Pedram pre-

sented algorithms based on canonical forms that can handle libraries with numerous

cells limited to approximately 20 inputs [2]. Their approach uses generalized sig-

natures (signatures of one or more variables) to find a canonicity-producing (CP)

phase assignment and ordering for variables.

A DAC 2009 paper by Wang et al. [17] offers simulation-driven and SAT-based

algorithms for checking P-equivalence that scale beyond the needs of technology

mapping. Since our proposed techniques also use simulation and SAT to solve

the PP-equivalence checking problem, we should articulate the similarities and

the differences. First, we consider the more general problem of PP-equivalence

checking where permutation of outputs (beside permutation of inputs) is allowed.

In PP-equivalence, the construction of miters must be postponed until the outputs

are matched, which seems difficult without matching the inputs. To address this

232 H. Katebi and I. Markov

challenge, we develop the concept of SAT-tree which is pruned to moderate the

overall runtime of PP-matching. In addition to our SAT-based approach, we also

use graph-based techniques in two different ways: to initially eliminate impossible

I/O correspondences and to prune our SAT-tree. Furthermore, we have implemented

three simulation types; two as signatures for outputs (type 1 and type 3) and one as a

signature for inputs (type 2). While our type-2 simulation is loosely related to one of

the techniques described in [17], the other two simulations are new. We additionally

introduce effective heuristics that accelerate SAT-based matching.

13.3 Signature-Based Matching Techniques

We now formalize the PP-equivalence checking problem and outline our Boolean

matching approach for two n-input m-output Boolean networks.

Definition 13.6 Consider two I/O sets X and Y of two Boolean networks N1 and

N2 with their two isomorphic ordered partitions Px = {X1, . . . , Xk} and Py =
{Y1, . . . , Yk}. A cluster mapping of X i to Yi , denoted by X i '→ Yi , is defined as the

mapping of I/Os in X i to all possible permutations of I/Os in Yi . A mapping of X

to Y with respect to Px and Py , denoted by X '→ Y , is defined as mapping of all

same-index clusters of X and Y , i.e., X i '→ Yi for all i . X '→ Y is called a complete

mapping if Px and Py are complete.

Given two input sets X and Y and two outputs sets Z and W of two Boolean

networks N1 and N2, the goal of PP-equivalence checking is to find two complete

mappings X '→ Y and Z '→ W such that those mappings make N1 and N2 behave

functionally the same. In order to accomplish this, we first partition or refine these

I/O sets based on some total ordering criteria. This so-called signature-based match-

ing allows us to identify and eliminate impossible I/O matches. After this phase,

we rely on SAT-solving to find the two complete mappings. Furthermore, Defini-

tion 13.6 implies the following lemma.

Lemma 13.1 If at any point in the refinement process of two I/O sets X and Y , Px

and Py become non-isomorphic, we conclude that N1 and N2 behave differently and

we stop the Boolean matching process.

As mentioned earlier, refinement at each step requires a total ordering criterion,

tailored to the specific refinement technique used. Therefore, whenever we introduce

a new matching technique, we also explain its ordering criterion. Furthermore, the

following techniques are applied to the two input circuits one after another.

13.3.1 Computing I/O Support Variables

Definition 13.7 Input x is a support variable of output z and output z is a support

variable of input x , if there exists an input vector V such that flipping the value of

x in V flips the value of z.

13 Large-Scale Boolean Matching 233

Definition 13.8 The support of input (or output) x , denoted by Supp(x), is the set

of all the support variables of x . The cardinality of the support of x , denoted by

|Supp(x)|, is the number of I/Os in Supp(x). The degree of x , denoted by D(x), is

defined as the cardinality of its support.

The goal here is to find outputs that might be functionally affected by a particular

input and inputs that might functionally affect a particular output. Here, we contrast

functionally matching with structurally matching in the sense that two structurally

different circuits with the same functionality should have the same I/O support. In

general, the lack of structural dependency between an output and an input precludes

a functional dependency, and the presence of a structural dependency most often

indicates a functional dependency – this can usually be confirmed by random simu-

lation and in rare cases require calling a SAT-solver [11].

Example 13.1 Consider a 4-bit adder with input set X = {Cin, A0, . . . , A3, B0, . . . ,

B3} and output set Z = {S0, . . . , S4}. The ripple-carry realization of this adder is

shown in Fig. 13.3.

Fig. 13.3 A 4-bit ripple-carry

adder

S4

A0 B0A1 B1A2 B2A3 B3

Cin

S0S1S2S3

FAFAFAFA

It is evident from the above circuit that A0 can affect the values of S0, . . . , S4

and A1 can affect the value of S1, . . . , S4. Hence, Supp(A0) = {S0, . . . , S4} and

Supp(A1) = {S1, . . . , S4}. Similarly, the value of S0 is only affected by the value

of A0, B0, and Cin . Hence, Supp(S0) = {A0, B0, Cin}.

13.3.2 Initial refinement of I/O clusters

Lemma 13.2 Two inputs (outputs) can match only if they have the same degree.

Taking advantage of Lemma 13.2, we can initially refine the I/O sets by gathering

all I/Os of the same degree in one subcluster and then sort the subclusters based on

the following ordering criterion:

Ordering criterion 13.1 Let i and j be two inputs (outputs) with different degrees

and assume that D(i) < D(j). Then, the subcluster containing i precedes the sub-

cluster containing j .

Example 13.2 Consider the 4-bit adder of Example 13.1. The degree of each input

and output is given below:

D(A0) = D(B0) = D(Cin) = 5

D(A1) = D(B1) = 4

D(A2) = D(B2) = 3

234 H. Katebi and I. Markov

D(A3) = D(B3) = 2

D(S0) = 3

D(S1) = 5

D(S2) = 7

D(S3) = D(S4) = 9

The ordered partitions of the I/O sets of the 4-bit adder after initial refinement are

Px = {{A3, B3}, {A2, B2}, {A1, B1}, {A0, B0, Cin}}
Pz = {{S0}, {S1}, {S2}, {S3, S4}}

13.3.3 Refining Outputs by Minterm Count

Lemma 13.3 Two outputs can match only if their Boolean functions have the same

number of minterms.

Ordering criterion 13.2 Let i and j be two outputs in the same output cluster

and let M(i) and M(j) be the number of minterms of i and j , respectively. If

M(i) < M(j), then the subcluster containing i is smaller than the subcluster

containing j .

Minterm count is another effective output signature which is only practical when

the circuit is represented in BDD form. In fact, the widely adopted way to count the

minterms of a Boolean network represented in AIG is to first convert it to a BDD,

but this approach is limited in scalability [15].

13.3.4 Refining I/O by Unateness

Lemma 13.4 Two outputs match only if they are unate in the same number of

inputs. Similarly, two inputs match only if the same number of outputs is unate in

them.

Ordering criterion 13.3 Let i and j be two outputs in the same output cluster.

Assume that Unate(i) and Unate(j) are the number of unate variables of i and j

respectively, and let Unate(i) < Unate(j). Then, the output subcluster containing

i is smaller than the subcluster containing j . Similarly, let i and j be two inputs in

one input cluster. Assume that Unate(i) and Unate(j) are the number of outputs

that are unate in i and j , respectively, and let Unate(i) < Unate(j). Then, the

input subcluster containing i is smaller than the subcluster containing j .

Although unateness generates powerful signatures for Boolean matching, com-

puting unateness in an AIG encounters the same limitation as was discussed for

counting the number of minterms. Hence, refinement based on unateness is only

practical for small Boolean networks.

13 Large-Scale Boolean Matching 235

13.3.5 Scalable I/O Refinement by Dependency Analysis

We mentioned earlier that the degree of each I/O is an effective signature for initial

refinement of I/O sets. Here, we generalize this concept by not only considering the

number of support variables but also carefully analyzing I/O dependencies.

Definition 13.9 Let x be an input (output) and let Supp(x) = {z1, . . . , zk}. We

define a sequence S = (s1, . . . , sk) of unsigned integers where each si is the index

of the output (input) cluster that zi belongs to. After sorting S, we call it support

signature of x and we denote it by Sign(x).

Lemma 13.5 Two I/Os i and j in the same I/O cluster are distinguishable if

Sign(i) �= Sign(j).

Ordering criterion 13.4 Let i and j be two I/Os in the same I/O cluster. Assume

that Sign(i) < Sign(j) meaning that the support signature of i is lexicographically

smaller than the support signature of j . Then, the subcluster containing i precedes

the subcluster containing j .

Example 13.3 Consider a circuit with input set X = {x1, x2, x3} and output set Z =
{z1, z2, z3} where z1 = x1, z2 = x1 · x2 and z3 = x2 · x3. The I/O supports of

the circuit are Supp(z1) = {x1}, Supp(z2) = {x1, x2}, Supp(z3) = {x2, x3} and

Supp(x1) = {z1, z2}, Supp(x2) = {z2, z3}, Supp(x3) = {z3}. Since D(z1) = 1

and D(z2) = D(z3) = 2, and D(x3) = 1 and D(x1) = D(x2) = 2, we can

initialize I/O clusters as follows: Pz = {{z1}, {z2, z3}}, Px = {{x3}, {x1, x2}}. Now,

we try refining based on support signatures. The signatures for z2, z3, x1, and x2 are

Sign(z2) = (2, 2), Sign(z3) = (1, 2), Sign(x1) = (1, 2), Sign(x2) = (2, 2). Since

Sign(z3) < Sign(z2) and Sign(x1) < Sign(x2), we can further partition {z2, z3}
and {x1, x2}, hence Pz = {{z1}, {z3}, {z2}} and Px = {{x3}, {x1}, {x2}}.

After each round of refinement based on I/O dependencies, we check if any I/O

cluster is further partitioned. If a new partition is added, the algorithm performs

another round of refinement. The procedure terminates when no new refinement

occurs after a certain number of iterations.

13.3.6 Scalable I/O Refinement by Random Simulation

Functional simulation holds the promise to quickly prune away unpromising

branches of search, but this seems to require a matching of outputs. Instead, we

find pairs of input vectors that sensitize comparable functional properties of the two

circuits. Let V =< v1, . . . , vn > be an input vector of Boolean network N . The

result of simulating V on N is called the output vector of N under V and is denoted

by Rv =< r1, . . . , rm >.

Definition 13.10 Let N be a Boolean network with input set X and let Px =
{X1, . . . , Xk} be an ordered partition of X . An input vector V =< v1, . . . , vn >

is said to be proper if it assigns the same value (0 or 1) to all the inputs of N which

236 H. Katebi and I. Markov

are in the same input cluster, i.e., vi = v j if i, j ∈ Xl for some l. The input vectors

consisting of all 0s or all 1s are the trivial proper input vectors.

Definition 13.11 Let X = {x1, . . . , xn} and Y = {y1, . . . , yn} be the input sets

of two Boolean networks N1 and N2 and let Px = {X1, . . . , Xk} and Py =
{Y1, . . . , Yk} be two ordered partitions defined on them. Two proper random input

vectors V =< v1, . . . , vn > and U =< u1, . . . , un > of N1 and N2 are said to be

consistent if, for all 1 ≤ l ≤ k, xi ∈ Xl and y j ∈ Yl imply that vi = u j .

Intuitively, two consistent random input vectors try to assign the same value to all

potentially matchable inputs of the two Boolean networks. In the next three sections,

we distinguish three types of simulation based on pairs of consistent random input

vectors that help us sensitize certain functional properties of the two circuits. The

flow of the I/O refinement by random simulation is shown in Fig. 13.4.

U=<u1,…,un>

V=<v1,…,vn>

Y, Py

X, Px Generate two

consistent random

input vectors

Simulate V

with N1

Simulate U

with N2

Partition Px

and Py using

simulation results

Fig. 13.4 Flow of the proposed I/O refinement by random simulation

13.3.6.1 Simulation Type 1

Lemma 13.6 Let V be a proper random input vector and let Rv =< r1, . . . , rm >

be the corresponding output vector under V . Two outputs i and j in one output

cluster are distinguishable if ri �= r j .

The above lemma classifies outputs based on their values (0 or 1) using the fol-

lowing ordering criterion.

Ordering criterion 13.5 The output subcluster of all 0s precedes the output subclus-

ter of all 1s.

13.3.6.2 Simulation Type 2

Definition 13.12 Let V be a proper random input vector and let Rv =<

r1, . . . , rm > be the corresponding output vector under V . Let V ′ be another input

vector created by flipping the value of input x in V and let Rv′ =< r ′1, . . . , r ′m > be

the corresponding output vector under V ′. The observability of input x with respect

to V denoted by Obs(x) is defined as the number of flips in the outputs caused by

V ′, i.e., the number of times ri �= r ′i .

Lemma 13.7 Two inputs i and j in one input cluster are distinguishable if

Obs(i) �= Obs(j).

13 Large-Scale Boolean Matching 237

Ordering criterion 13.6 Let i and j be two inputs in one input cluster and let

Obs(i) < Obs(j). Then, the input subcluster containing i precedes the input sub-

cluster containing j .

13.3.6.3 Simulation Type 3

Definition 13.13 Consider a proper random input vector V and its correspond-

ing output vector Rv =< r1, . . . , rm >. Let V1, . . . , Vn be n input vectors

where vector Vi is created by flipping the value of ri in V . Also, let Rv1
=<

r1,1, . . . , r1,m >, . . . , Rvn =< rn,1, . . . , rn,m > be the corresponding output vec-

tors under V1, . . . , Vn . The controllability of output z with respect to V denoted by

Ctrl(z) is defined as the number of times ri �= r j,i , for all 1 ≤ j ≤ n.

Lemma 13.8 Two outputs i and j in one output cluster are distinguishable if

Ctrl(i) �= Ctrl(j).

Ordering criterion 13.7 Let i and j be two outputs in one output cluster and let

Ctrl(i) < Ctrl(j). Then, the output subcluster containing i precedes the output

subcluster containing j .

Example 13.4 Take an 8-to-1 multiplexer with input set X = {a0, . . . , a7, s0, s1, s2}
and output z where a0, . . . , a7 denote data signals and s0, s1, s2 are control signals.

Initially Px has only one partition, namely X . Initial refinement and refinement by

dependency analysis do not partition Px , hence we try random simulation. Here,

we can only use type 2 simulation since simulation of types 1 and 3 is for refin-

ing output clusters. First, we consider the trivial input vector V of all 0s. We flip

one input in V at a time and we apply the resulting vectors to the multiplexer.

Only flipping a0 flips z; hence, Px = {{a1, . . . , a7, s0, s1, s2}, {a0}}. Then we try

the trivial input vector V of all 1s. This time flipping a7 flips z; hence, Px =
{{a1, . . . , a6, s0, s1, s2}, {a7}, {a0}}. Next, we put a0 to 1 and all the other inputs to 0.

Now flipping s0, s1, s2 flips z, hence Px = {{a1, . . . , a6}, {s0, s1, s2}, {a7}, {a0}}. If

we continue partitioning based on the remaining proper input vectors no additional

refinement will be gained.

After matching I/Os using random simulation, we check if any progress is

achieved in refining I/O clusters. If a new cluster is added, the algorithm continues

refining based on random simulation. The procedure terminates when no new refine-

ment occurs in input or output subclusters after a certain number of iterations. Here,

the number of iterations does not affect the correctness of the algorithm. However,

too few iterations might diminish the impact of matching by random simulation,

and excessive iterations offer no improvement. Our current implementation limits

iterations to 200.

13.4 SAT-Based Search

The scalable methods we introduced so far typically reduce the number of possible

matches from n!m! to hundreds or less, often making exhaustive search (with SAT-

238 H. Katebi and I. Markov

based equivalence checking) practical. However, this phase of Boolean matching

can be significantly improved, and the techniques we develop facilitate scaling to

even larger instances.

13.4.1 SAT-Based Input Matching

The basic idea in our SAT-based matching approach is to build a tree data structure

called SAT-tree that matches one input at a time from the remaining non-singleton

input clusters. Subsequently, after an input is matched, all the outputs in its support

which are not matched so far are also matched, one by one. In other words, we

build a dual-purpose tree that repeatedly matches inputs and outputs until exact I/O

matches are found. We take advantage of the following lemma to build our SAT-tree:

Lemma 13.9 Assume that two Boolean networks N1 and N2 with input sets X =
{x1, . . . , xn} and Y = {y1, . . . , yn} are functionally equivalent under two complete

ordered partitions Px = {X1, . . . , Xn} and Py = {Y1, . . . , Yn}. Also, assume that

Xl = {xi } and Yl = {y j }. Let N ′1 be the positive (negative) cofactor of N1 with

respect to xi and N ′2 be the positive (negative) cofactor of N2 with respect to y j . N ′1
and N ′2 with input sets X ′ = X − {xi } and Y ′ = Y − {y j } behave functionally the

same under two complete ordered partitions Px ′ = Px −{Xl} and Py′ = Py −{Yl}.
The inputs to the SAT-based matching algorithm are two ordered input partitions

and two ordered output partitions. Here, we assume that some of the partitions are

incomplete because if all partitions are complete, an exact match is already found.

Without loss of generality, assume that in two ordered partitions Px = {X1, . . . , Xk}
and Py = {Y1, . . . , Yk} of sets X and Y , X1, . . . , Xl−1 and Y1, . . . , Yl−1 are all sin-

gleton clusters, and Xl , . . . , Xk and Yl , . . . , Yk are non-singleton clusters. Repeat-

edly applying Lemma 13.9 allows us to create two new Boolean networks N ′1 and N ′2
by setting all the inputs in Xl , . . . , Xk and Yl , . . . , Yk to either constant 0 or constant

1. In other words, we shrink input sets X to X ′ = X − {x |x ∈ {Xl , . . . , Xk}} and

input set Y to Y ′ = Y − {y|y ∈ {Yl , . . . , Yk}} such that X ′ and Y ′ only contain

the inputs that have exact match in N1 and N2. Note that, by definition, the ordered

partitions P ′x = Px − {Xl , . . . , Xk} and P ′y = Py − {Yl , . . . , Yk} are complete

partitions of X ′ and Y ′. According to Lemma 13.9, N ′1 and N ′2 must be functionally

equivalent if N1 and N2 are equivalent. N ′1 and N ′2 are called the Smallest Matching

Subcircuits (SMS) of N1 and N2.

After finding the SMS of N1 and N2, we try to expand X ′ and Y ′ back to X and Y

by matching one input at a time. Let Xl and Yl be the first two non-singleton input

clusters of Px and Py and let xi ∈ Xl . The goal here is to match xi with one of

the |Yl | inputs in Yl . Assume that y j ∈ Yl , and we pick y j as the first candidate to

match xi . Now, in order to reflect our matching decision, we partition Xl and Yl to

make {xi } and {y j } two singleton clusters; hence, Xl is partitioned to Xl,1 = {xi }
and Xl,2 = Xl − {xi } and Yl is partitioned to Yl,1 = {y j } and Yl,2 = Yl − {y j }.
Complying with our previous notation, now Xl,2, . . . , Xk and Yl,2, . . . , Yk are the

new non-singleton clusters. We then build two Boolean networks N ′′1 and N ′′2 from

13 Large-Scale Boolean Matching 239

N1 and N2 by setting all the inputs in non-singleton clusters to either constant 0 or

constant 1, and we pass the miter of N ′′1 and N ′′2 to the SAT-solver. The SAT-solver

may return either satisfiable or unsatisfiable. If the result is

• unsatisfiable: N ′′1 and N ′′2 are functionally equivalent. In other words, xi and y j

has been a valid match so far. Hence, first try to match the outputs in the supports

of xi and y j (only the outputs that have not been matched so far) and then match

the next two unmatched inputs in Xl,2 and Yl,2.

• satisfiable: N ′′1 and N ′′2 are not functionally equivalent. In other words, xi cannot

match y j . Backtrack one level up and use the counterexample to prune the SAT-

tree.

In a case where the SAT-solver times out, we terminate the matching process,

and only report the I/Os matched by our signature-based techniques. Unlike early

prototypes, our most optimized implementation does not experience this situation

on the testcases used in our experiments.

13.4.2 Pruning Invalid Input Matches by SAT Counterexamples

Pruning the SAT-tree using counterexamples produced by SAT is a key step in our

Boolean matching methodology. Continuing the scenario in Section 13.4.1, assume

that the miter of N ′′1 and N ′′2 is satisfiable. Suppose that the SAT-solver returns an

input vector V =< v1, . . . , vl+1 > as the satisfying assignment. This input vector

carries a crucial piece of information: the matching attempt before matching xi and

y j was a successful match; otherwise we would have backtracked at the previous

level and we would have never tried matching xi and y j . Thus, the input vector V

sensitizes a path from xi and y j to the outputs of the miter.

According to Lemma 13.9, repeatedly computing negative and positive cofactors

of N1 and N2 with respect to the values of v1, . . . , vl in V results in two new Boolean

networks N̂1 and N̂2 that must be functionally equivalent under some ordered parti-

tion Px − {X1, . . . , Xl} and Py − {Y1, . . . , Yl}. In other words, N̂1 and N̂2 are two

smaller Boolean networks that only contain the inputs of N1 and N2 that have not

found exact match so far. Since N̂1 and N̂2 are computed with respect to the values

of v1, . . . , vl in V and since V is a vector that sensitizes a path from xi and y j to the

output of the miter, we conclude that there exists an output in N̂1 that is functionally

dependent on xi . The existence of such an output ensures that D(xi) > 0. We can

now apply our simple filtering signature from Lemma 13.2 to prune the SAT-tree.

Specifically, xi ∈ Xl can match to yq ∈ Yl (q �= j) only if D(xi) = D(yq) in N̂1

and N̂2.

Example 13.5 Consider two 8-to-1 multiplexers with outputs z and z′ and input

sets X = {a0, . . . , a7, s0, s1, s2} and X ′ = {a′0, . . . , a′7, s′0, s′1, s′2}. Refin-

ing X and X ′ based on the techniques explained in Section 13.3 would

result in two ordered partitions Px = {{a1, . . . , a6}, {s0, s1, s2}, {a7}, {a0}}
and Px ′ = {{a′1, . . . , a′6}, {s′0, s′1, s′2}, {a′7}, {a′0}} (refer to Example 13.4). In

240 H. Katebi and I. Markov

order to find exact input matches, we build our SAT-tree and we first try

matching s2 and s′0. The SAT-solver confirms the validity of this match.

Then, s1 matches s′1 and s0 matches s′2. These two matches are also

valid. So far, Px = {{a1, . . . , a6}, {s2}, {s1}, {s0}, {a7}, {a0}} and Px ′ =
{{a′1, . . . , a′6}, {s′0}, {s′1}, {s′2}, {a′7}, {a′0}}. Now, we look at the next non-singleton

input cluster and we match a1 and a′1. Our SAT-solver specifies that matching a1

and a′1 do not form a valid match and it returns vector V with s′0 = s2 = 0,

s′1 = s1 = 0, s′2 = s0 = 1, a′7 = a7 = 0, a′0 = a0 = 0, a′1 = a1 = 1

as a counterexample. In order to see why V is a counterexample of matching a1

and a′1, we look at the cofactors of the two multiplexers, c and c′, where all the

inputs in non-singleton clusters are set to 0: c = a0s̄2s̄1s̄0+a1s̄2s̄1s0+a7s2s1s0 and

c′ = a′0s̄′0s̄′1s̄′2 + a′1s̄′0s̄′1s′2 + a′7s′0s′1s′2. Applying V to c and c′ would result in c = 1

and c′ = 0. Since we know that a1 does not match a′1, we use the counterexample

to prune the SAT-tree. Specifically, we compute cofactors of the two multiplexers,

d and d ′, with respect to the values of matched inputs in V . So, d = a1s̄2s̄1s0 and

d ′ = a′4s̄′0s̄′1s′2. In d and d ′, D(a1) = D(a′4) = 1. This means that a1 can only

match a′4. In other words, we have pruned SAT search space by not matching a1

to any of inputs a′2, a′3, a′5, and a′6. We continue matching inputs until we find valid

matches.

13.4.3 SAT-Based Output Matching

Let Z and W be the output sets of two Boolean networks N1 and N2 and let Pz =
{Z1, . . . , Zk} and Pw = {W1, . . . , Wk} be two ordered partitions defined on them.

Continuing the scenario in Section 13.4.1, assume that zi ∈ Zl is a support variable

of xi , w j ∈ Wl is a support variable of y j , and Zl and Wl are two non-singleton

output clusters of Pz and Pw. In order to verify if zi and w j match under current

input correspondence, we add zi

⊕

w j to the current miter of N ′′1 and N ′′2 and we

call SAT-solver once again. If SAT returns unsatisfiable, i.e., zi matches w j , we

continue matching the remaining unmatched outputs in the support of xi and y j . If

the result is satisfiable, we once again use the counterexample returned by SAT to

prune the search space.

Example 13.6 Consider two circuits N1 and N2 with input sets X = {x0, . . . , x3}
and Y = {y0, . . . , y3}, and output sets Z = {z0, z1} and W = {w0, w1} where

z0 = x0 ·x1 ·x2 ·x3, z1 = x0 ·x1 ·x2 ·x3, w0 = y0 · y1 · y2 · y3, and w1 = y0 · y1 · y2 · y3.

For these two circuits, signature-based matching (discussed in Section 13.3) cannot

distinguish any I/Os. Hence, we resort to SAT-solving. Assume that SAT search

starts by matching x0 to y0. Since {z0, z1} ∈ Supp(x0) and {w0, w1} ∈ Supp(y0),

the outputs of the circuits must be matched next. Among all valid matches, our SAT-

solver can match z0 to w1 and z1 to w0. For the remaining space of the unmatched

inputs, our SAT-solver can validly match x1 to y1, x2 to y3, and x3 to y2, and finish

the search.

13 Large-Scale Boolean Matching 241

13.4.4 Pruning Invalid Output Matches by SAT Counterexamples

When output zi ∈ Zl does not match output w j ∈ Wl , the counterexample returned

by SAT is a vector V that makes zi = 1 and w j = 0 or vice versa. This means that zi

matches output wq ∈ Wl (q �= j) only if zi = wq under V . This simple fact allows

us to drastically prune our SAT-tree whenever an invalid output match occurs.

13.4.5 Pruning Invalid I/O Matches Using Support Signatures

We demonstrated in Section 13.3.5 that support signatures of inputs and outputs can

be used to refine I/O subclusters of a Boolean network. In this section, we show

that support signatures can also be used in our SAT-tree to eliminate impossible I/O

correspondences.

Lemma 13.10 Suppose that N1 and N2 are two Boolean networks and xi ∈ Xl

and y j ∈ Yl are two unmatched inputs of N1 and N2. Then, xi can match y j

only if Sign(xi) = Sign(y j). Likewise, suppose that zi ∈ Zl and w j ∈ Wl are

two unmatched outputs of N1 and N2. Then, zi matches w j only if Sign(zi) =
Sign(w j).

As indicated in Section 13.4.1, matching two I/Os during SAT search introduces

new singleton cells. These new cells might change the support signature of the

remaining unmatched I/Os (the ones in the supports of the recently matched inputs

or outputs). According to Lemma 13.10, this change in the support signatures might

preclude some I/Os from matching. Taking advantage of this lemma, we can prune

the unpromising branches of the SAT-tree in the remaining space of matches.

13.4.6 Pruning Invalid Input Matches Using Symmetries

Our SAT-tree can exploit the symmetries of inputs to prune (1) impossible output

matches and (2) symmetric portions of the search space. Since computing the input

symmetries of a Boolean network is expensive, the techniques explained in this

section may in some cases hamper the matching process.

Definition 13.14 Let X = {x1, . . . , xn} be an input set of a Boolean network N .

Let xi ∼ x j (read xi is symmetric to x j) if and only if the functionality of N stays

invariant under an exchange of xi and x j . This defines an equivalence relation on

set X , i.e., ∼ partitions X into a number of symmetry classes where each symmetry

class contains all the inputs that are symmetric to each other. The partition resulting

from ∼ is called the symmetry partition of X .

For multi-output functions, symmetries of inputs are reported independently for

each output. In other words, each output defines its own symmetry partition on

inputs. Complying with the notion of symmetry in Definition 13.14, for a multi-

output function, xi is called symmetric to x j if (1) xi and x j have the same output

242 H. Katebi and I. Markov

support, i.e., Supp(xi) = Supp(x j) and (2) xi and x j are symmetric in all the

outputs in their support, i.e., xi ∼ x j for all outputs in Supp(xi) (or equivalently

Supp(x j)).

Symmetries of inputs can serve as a signature for matching outputs in our SAT-

based search. The following lemma explains the role of symmetries in detecting

invalid output matches.

Lemma 13.11 Output zi ∈ Zl (from N1) matches output w j ∈ Wl (from N2) only if

symmetry partition of zi is isomorphic to the symmetry partition of w j for at least

one ordering of symmetry classes.

Input symmetries can also be used to prune symmetric parts of the search space

during SAT-based exploration. Specifically, assume that the miter of N ′′1 and N ′′2
from Section 13.4.1 is satisfiable, i.e., xi does not match y j . Based on the notion of

input symmetries, if xi does not match y j , neither can it match another input in Yl

that is symmetric to y j . In other words, xi cannot match yq ∈ Yl , if y j and yq are

symmetric.

In practice, the use of symmetries in Boolean matching encounters two major

limitations: (1) finding symmetries of a large Boolean network usually takes a sig-

nificant amount of time and, (2) in a case where a Boolean network does not have

much symmetry, a considerable amount of time can be wasted.

13.4.7 A Heuristic for Matching Candidates

In order to reduce the branching factor of our SAT-tree, we first match I/Os of

smaller I/O clusters. Also, within one I/O cluster, we exploit the observability of

the inputs and the controllability of the outputs, to make more accurate guesses

in our SAT-based matching approach. Heuristically, the probability that two I/Os

match is higher when their observability/controllability are similar. We observed

that, in many designs, the observability of control signals is higher than that of data

signals. Therefore, we first match control signals. This simple heuristic can greatly

improve the runtime – experiments indicate that once control signals are matched,

data signals can be matched quickly.

13.5 Empirical Validation

We have implemented the proposed approach in ABC and we have experimentally

evaluated its performance on a 2.67GHz Intel Xeon CPU running Windows Vista.

Table 13.1 and Table 13.2 show the runtime of our algorithms on ITC’99 bench-

marks for P-equivalence and PP-equivalence checking problems, respectively. In

these two tables, #I is the number of inputs, #O is the number of outputs and |AIG|
is the number of nodes in the AIG of each circuit. The last four columns demon-

strate the initialization time (computing I/O support variables, initially refining I/O

cluster and refining based on I/O dependencies), simulation time, SAT time, and

13 Large-Scale Boolean Matching 243

overall time for each testcase. These runtimes are all shown in bold. In addition to

the reported runtimes, (I%) and (I%,O%) respectively show the percentage of inputs

and I/Os that are matched after each step. Note that, in these experiments, we did not

perform refinement using minterm counts and unateness, and we did not account for

input symmetries to prune our SAT-tree because these techniques appear less scal-

able than the ones reported in Tables 13.1 and 13.2. Also note that for each testcase

we generated 20 new circuits each falling into one of the two following categories:

(1) permuting inputs for verifying P-equivalence (2) permuting both inputs and out-

puts for verifying PP-equivalence. The results given in Tables 13.1 and 13.2 are the

average results over all the generated testcases for each category. Furthermore, the

AIGs of the new circuits are reconstructed using ABC’s combinational synthesis

commands to ensure that the new circuits are structurally different from the original

ones.

Table 13.1 P-equivalence runtime (s) and percentage of matched inputs for ITC’99 benchmarks

Circuit #I #O |AIG| Initialization Simulation SAT Overall

b01 6 7 48 0.30 (66%) 0 (100%) 0 (100%) 0.30

b02 4 5 28 0.28 (50%) 0 (100%) 0 (100%) 0.28

b03 33 34 157 0.36 (97%) 0 (97%) 0.04 (100%) 0.40

b04 76 74 727 0.41 (64%) 0.04 (100%) 0 (100%) 0.45

b05 34 70 998 0.52 (84%) 0.02 (100%) 0 (100%) 0.54

b06 10 15 55 0.37 (80%) 0 (100%) 0 (100%) 0.37

b07 49 57 441 0.41 (67%) 0.01 (100%) 0 (100%) 0.43

b08 29 25 175 0.36 (90%) 0 (100%) 0 (100%) 0.36

b09 28 29 170 0.40 (100%) 0 (100%) 0 (100%) 0.40

b10 27 23 196 0.34 (85%) 0 (100%) 0 (100%) 0.34

b11 37 37 764 0.40 (95%) 0.01 (100%) 0 (100%) 0.41

b12 125 127 1072 0.38 (60%) 0.25 (100%) 0 (100%) 0.63

b13 62 63 353 0.38 (71%) 0.01 (100%) 0 (100%) 0.39

b14 276 299 10067 6.89 (73%) 3.29 (100%) 0 (100%) 10.18

b15 484 519 8887 14.26 (57%) 5.82 (100%) 0 (100%) 20.08

b17 1451 1512 32290 246 (63%) 46.14 (99%) 1.41 (100%) 294

b18 3357 3343 74900 2840 (69%) 51.6 (99%) 2.96 (100%) 2895

b20 521 512 20195 52.8 (83%) 2.23 (100%) 0.01 (100%) 55

b21 521 512 20540 52.8 (83%) 2.30 (100%) 0.01 (100%) 55

b22 766 757 29920 150 (82%) 3.85 (100%) 0.32 (100%) 154

In the ITC’99 benchmark suite, 18 circuits out of 20 have less than a thousand

I/Os. Checking P-equivalence and PP-equivalence for 12 out of these 18 circuits

takes less than a second. There is only one circuit (b12) for which our software

cannot match I/Os in 5000 s. The reason is that, for b12, 1033 out of 7750 input

pairs (13%) are symmetric and since our implementation does not yet account for

symmetries, our SAT-tree repeatedly searches symmetric branches that do not yield

valid I/O matches. For b20, b21, and b22 and for b17 and b18 with more than a

thousand I/Os, computing functional dependency is the bottleneck of the overall

matching runtime. Note that checking PP-equivalence for b18 results in a very large

SAT-tree that cannot be resolved within 5000 s, although our refinement techniques

244 H. Katebi and I. Markov

Table 13.2 PP-equivalence runtime (s) and percentage of matched I/Os for ITC’99 benchmarks

Circuit #I #O |AIG| Initialization Simulation SAT Overall

b01 6 7 48 0.37 (50%, 43%) 0 (83%, 85%) 0.02 (100%, 100%) 0.39

b02 4 5 28 0.28 (50%, 60%) 0 (100%, 100%) 0 (100%, 100%) 0.28

b03 33 34 157 0.38 (48%, 38%) 0.01 (54%, 47%) 0.43 (100%, 100%) 0.82

b04 76 74 727 0.37 (16%, 13%) 0.1 (100%, 100%) 0 (100%, 100%) 0.47

b05 34 70 998 0.51 (34%, 24%) 0.03 (54%, 47%) 0.33 (100%, 100%) 0.87

b06 10 15 55 0.39 (30%, 47%) 0 (50%, 53%) 0.04 (100%, 100%) 0.43

b07 49 57 441 0.43 (67%, 70%) 0.03 (94%, 95%) 0.19 (100%, 100%) 0.65

b08 29 25 175 0.41 (27%, 36%) 0.12 (100%, 100%) 0 (100%, 100%) 0.53

b09 28 29 170 0.41 (46%, 48%) 0.01 (46%, 48%) 0.20 (100%, 100%) 0.62

b10 27 23 196 0.37 (88%, 95%) 0 (100%, 100%) 0 (100%, 100%) 0.37

b11 37 37 764 0.41 (65%, 65%) 0 (100%, 100%) 0.02 (100%, 100%) 0.43

b12 125 127 1072 0.38 (21%, 25%) 1.05 (41%, 41%) — —

b13 62 63 353 0.35 (43%, 50%) 0.05 (97%, 97%) 0.14 (100%, 100%) 0.54

b14 276 299 10067 7.99 (72%, 58%) 3.89 (89%, 90%) 27 (100%, 100%) 38.8

b15 484 519 8887 16.40 (62%, 67%) 45.6 (94%94, %) 6.30 (100%, 100%) 68.3

b17 1451 1512 32290 249 (62%, 65%) 229 (94%, 94%) 148 (100%, 100%) 626

b18 3357 3343 74900 2862 (65%, 63%) 530 (93%, 93%) — —

b20 521 512 20195 53.3 (70%, 51%) 13.82 (89%, 89%) 146 (100%, 100%) 213

b21 521 512 20540 53.3 (70%, 51%) 11.70 (89%, 89%) 159 (100%, 100%) 225

b22 766 757 29920 151 (70%, 50%) 26.28 (88%, 88%) 473 (100%, 100%) 650

— indicates runtime > 5000 s.

before invoking SAT find exact matches for 3123 out of 3357 inputs (93%) and 3111

out of 3343 outputs (93%).

The results in Tables 13.1 and 13.2 assume that target circuits are equivalent.

In contrast, Table 13.3 considers cases where input circuits produce different out-

put values on at least some inputs. For this set of experiments, we constructed 20

inequivalent circuits for each testcase, using one of the following rules:

1. Wrong signals: outputs of two random gates were swapped.

2. Wrong polarity: an inverter was randomly added or removed.

3. Wrong gate: functionality of one random gate was altered.

In Table 13.3, columns Init, Sim, and SAT demonstrate the number of testcases (out

of 20) for which our algorithms were able to prove inequivalence during initializa-

tion, simulation, and SAT search phases, respectively. Also, column Time (depicted

in bold) shows the average runtime of our matcher for the P-equivalence and PP-

equivalence problems. According to the results, our matcher resorts to SAT-solving

in 45% of the testcases which suggests that many of our instances are not particu-

larly easy. Moreover, calling SAT is due to the fact that our mismatched instances

were all generated with minimal changes to the original circuits. Note that, even in

the case of a slight mismatch, our signature-based techniques alone could effectively

discover inequivalence for 55% of testcases. Furthermore, comparing the results in

Tables 13.2 and 13.3, PP-equivalence checking is up to four times faster when mis-

match exists. For instance, the inequivalence of b12 was confirmed by our matcher

in less than 5s, even when SAT-solving was invoked. The reason is that in the case

13 Large-Scale Boolean Matching 245

Table 13.3 P-equivalence and PP-equivalence runtime (s) for ITC’99 benchmarks when mismatch

exists

P-equivalence PP-equivalence

Circuit #I #O |AIG| Init Sim SAT Time Init Sim SAT Time

b01 6 7 48 4 2 14 0.30 1 13 6 0.49

b02 4 5 28 0 10 10 0.27 2 12 6 0.33

b03 33 34 157 9 0 11 0.35 10 7 3 0.45

b04 76 74 727 8 2 10 0.42 13 4 3 0.39

b05 34 70 998 7 0 13 0.53 6 10 4 0.70

b06 10 15 55 3 3 14 0.31 14 5 1 0.46

b07 49 57 441 10 0 10 0.43 15 1 4 0.71

b08 29 25 175 9 2 9 0.36 12 6 2 0.46

b09 28 29 170 4 1 15 0.40 10 4 6 0.45

b10 27 23 196 10 5 5 0.33 11 3 6 0.31

b11 37 37 764 5 0 15 0.40 10 2 8 0.53

b12 125 127 1072 6 10 4 0.45 10 8 2 3.5

b13 62 63 353 6 9 5 0.38 7 7 6 0.55

b14 276 299 10067 3 0 17 9.89 10 3 7 10.65

b15 484 519 8887 4 2 14 20.03 8 4 8 38.2

b17 1451 1512 32290 11 0 9 260 3 7 10 373

b18 3357 3343 74900 2 0 18 2864 0 9 11 —a

b20 521 512 20195 7 0 13 54 1 4 15 75.4

b21 521 512 20540 2 0 18 54 5 11 4 59.4

b22 766 757 29920 7 1 12 154 0 4 16 181

— indicates runtime > 5000 s.
aThe average runtime excluding instances requiring SAT was 2902 s.

of a mismatch, our SAT-tree usually encounters invalid I/O matches early in the tree,

which results in a vast pruning in the space of invalid matches.

In order to compare our work to that in [17], we have tested our algorithms on

circuits from [17] that have more than 150 inputs. Results are listed in Table 13.4

(the overall runtime of our algorithms is shown in bold). For the results reported

from [17], Orig, Unate, and +Symm, respectively, show the runtime when no func-

tional property is used, only functional unatness is used and, both unateness and

symmetries are used. These three runtimes are also shown in bold. Note that exper-

iments reported in [17] used 3GHz Intel CPUs, while our runs were on a 2.67 GHz

Intel CPU. To make the numerical comparisons entirely fair, our runtimes would

need to be multiplied by 0.89. However, we omit this step, since our raw runtimes

are already superior in many cases. According to Table 13.4, our matching algorithm

times out in 5000 s on C2670, i2, and i4. This is again due to the symmetries that are

present in the inputs of these circuits. Note that the approach in [17] cannot solve

these three circuits without symmetry search, either. For some other circuits, such

as C7552, our approach verifies P-equivalence in less than 10 s but the approach

in [17] cannot find a match without invoking symmetry finder. It is also evident

from the results that checking P-equivalence for very large circuits, such as s38584

and s38417, is 3.5–11 times slower when symmetry finding and unateness calcu-

lations are performed during Boolean matching. This confirms our intuition that

246 H. Katebi and I. Markov

Table 13.4 P-equivalence runtime (s) compared to runtime (s) from [17]

P-equivalence Runtime (sec.) CPU Time (sec.) in [17]

Circuit #I #O Init Sim SAT Overall Orig +Unate +Sym

C2670 233 140 0.14 1.18 — — — — 7.96

C5315 178 123 0.33 0.11 0.06 0.5 6.31 2.86 3.29

C7552 207 108 0.51 3.76 4.83 9.10 — — 14.56

des 256 245 0.38 0.07 0 0.45 10.21 0.25 2.33

i10 257 224 0.43 1.03 1.23 2.69 25.63 15.16 17.56

i2 201 1 0.34 0.28 — — — — 1.02

i4 192 6 0.31 0.27 — — — — 0.22

i7 199 67 0.36 0.18 0 0.54 0.82 0.04 0.19

pair 173 137 0.32 0.14 0 0.46 0.84 0.64 2.44

s3384 226 209 0.10 0.25 0.47 0.82 4.79 2.14 4.02

s5378 199 213 0.11 0.53 0.63 1.27 1.31 3.38 2.42

s9234 247 250 3.11 0.53 2.85 6.49 3.41 5.84 7.82

s38584 1464 1730 58 1.66 1.54 61 76 210 458

s38417 1664 1742 50 9.46 30.9 90 91 324 999

— indicates runtime > 5000 s.

symmetry and unateness are not essential to Boolean matching in many practical

cases, although they may occasionally be beneficial.

13.6 Chapter Summary

In this chapter, we proposed techniques for solving large-scale PP-equivalence

checking problem. Our approach integrates graph-based, simulation-driven, and

SAT-based techniques to efficiently solve the problem. Graph-based techniques limit

dependencies between inputs and outputs and are particularly useful with word-level

arithmetic circuits. Simulation quickly discovers inputs on which inequivalent cir-

cuits differ. Equivalences are confirmed by invoking SAT, and these invocations are

combined with branching on possible matches. Empirical validation of our approach

on available benchmarks confirms its scalability to circuits with thousands of inputs

and outputs. Future advances in Boolean matching, as well as many existing tech-

niques, can also be incorporated into our framework to improve its scalability.

References

1. Abdollahi, A.: Signature based Boolean matching in the presence of don’t cares. In: DAC ’08:

Proceedings of the 45th annual Design Automation Conference, pp. 642–647. ACM, New

York, NY (2008). DOI: http://doi.acm.org/10.1145/1391469.1391635

2. Abdollahi, A., Pedram, M.: A new canonical form for fast Boolean matching in

logic synthesis and verification. In: DAC ’05: Proceedings of the 42nd annual

Design Automation Conference, pp. 379–384. ACM, New York, NY (2005). DOI:

http://doi.acm.org/10.1145/1065579.1065681

3. Agosta, G., Bruschi, F., Pelosi, G., Sciuto, D.: A unified approach to canoni-

cal form-based Boolean matching. In: DAC ’07: Proceedings of the 44th annual

13 Large-Scale Boolean Matching 247

Design Automation Conference, pp. 841–846. ACM, New York, NY (2007). DOI:

http://doi.acm.org/10.1145/1278480.1278689

4. Benini, L., Micheli, G.D.: A survey of Boolean matching techniques for library binding. ACM

Transactions on Design Automation of Electronic Systems 2, 193–226 (1997)

5. Chai, D., Kuehlmann, A.: Building a better Boolean matcher and symmetry detector. In: DATE

’06: Proceedings of the conference on Design, automation and test in Europe, pp. 1079–1084.

European Design and Automation Association, 3001 Leuven, Belgium, Belgium (2006)

6. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commu-

nications of the ACM 5(7), 394–397 (1962). DOI: http://doi.acm.org/10.1145/368273.368557

7. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM

7(3), 201–215 (1960). DOI: http://doi.acm.org/10.1145/321033.321034

8. Eén, N., Sörensson, N.: An extensible SAT-solver. In: E. Giunchiglia, A. Tacchella (eds.) SAT,

Lecture Notes in Computer Science, vol. 2919, pp. 502–518. Springer, Heidelberg (2003)

9. Goering, R.: Xilinx ISE handles incremental changes. http://www.eetimes.com/

showArticle.jhtml?articleID=196901122 (2009)

10. Krishnaswamy, S., Ren, H., Modi, N., Puri, R.: Deltasyn: An efficient logic difference

optimizer for ECO synthesis. In: ICCAD ’09: Proceedings of the 2009 International Con-

ference on Computer-Aided Design, pp. 789–796. ACM, New York, NY (2009). DOI:

http://doi.acm.org/10.1145/1687399.1687546

11. Lee, C.C., Jiang, J.H.R., Huang, C.Y.R., Mishchenko, A.: Scalable exploration of functional

dependency by interpolation and incremental SAT solving. In: ICCAD ’07: Proceedings of

the 2007 IEEE/ACM International Conference on Computer-aided design, pp. 227–233. IEEE

Press, Piscataway, NJ (2007)

12. Mishchenko, A.: Logic synthesis and verification group. ABC: A system for sequential syn-

thesis and verification, release 70930. http://www.eecs.berkeley.edu/˜alanmi/abc/ (2008)

13. Mishchenko, A., Chatterjee, S., Brayton, R.: FRAIGs: A unifying representation for logic

synthesis and verification. Technical report, UC Berkeley (2005)

14. Mishchenko, A., Chatterjee, S., Brayton, R., Een, N.: Improvements to combinational equiv-

alence checking. In: ICCAD ’06: Proceedings of the 2006 IEEE/ACM international con-

ference on Computer-aided design, pp. 836–843. ACM, New York, NY (2006). DOI:

http://doi.acm.org/10.1145/1233501.1233679

15. Nocco, S., Stefano, Q.: A probabilistic and approximated approach to circuit-based for-

mal verification. Journal of Satisfiability, Boolean Modeling and Computation 5, 111–132.

http://jsat.ewi.tudelft.nl/content/volume5/JSAT5_5_Nocco.pdf (2008)

16. Ray, S., Mishchenko, A., Brayton, R.: Incremental sequential equivalence checking and

subgraph isomorphism. In: Proceedings of the International Workshop on Logic Synthesis,

pp. 37–42. (2009)

17. Wang, K.H., Chan, C.M., Liu, J.C.: Simulation and SAT-based Boolean match-

ing for large Boolean networks. In: DAC ’09: Proceedings of the 46th Annual

Design Automation Conference, pp. 396–401. ACM, New York, NY (2009). DOI:

http://doi.acm.org/10.1145/1629911.1630016

Part IV

Logic Optimization

The first chapter in logic optimization enhances common subexpression elimination

using novel logic transformations. Approximate SPFDs for sequential circuits are

investigated in the second chapter. The third chapter provides details of Boolean

relation determinization using quantification and interpolation techniques while the

last chapter presents logic minimization using a window-based multi-node opti-

mization technique.

Chapter 14

Algebraic Techniques to Enhance Common
Sub-expression Extraction for Polynomial
System Synthesis

Sivaram Gopalakrishnan and Priyank Kalla

Abstract Datapath designs that perform polynomial computations over bit-vectors

are found in many practical applications, such as in Digital Signal Processing,

communication, multi-media, and other embedded systems. With the growing mar-

ket for such applications, advancements in synthesis and optimization techniques

for polynomial datapaths are desirable. Common sub-expression extraction (CSE)

serves as a useful optimization technique in the synthesis of such polynomial

systems. However, CSE has limited potential for optimization when many com-

mon sub-expressions are not exposed in the given symbolic representation. Given

a suitable set of transformations (or decompositions) that expose many common

sub-expressions, subsequent application of CSE can offer a higher degree of opti-

mization. This chapter proposes algebraic (algorithmic) techniques to perform such

transformations and presents a methodology for their integration with CSE. Exper-

imental results show that designs synthesized using our integrated approach are

significantly more area-efficient than those synthesized using contemporary tech-

niques.

14.1 Introduction

High-level descriptions of arithmetic datapaths that perform polynomial computa-

tions over bit-vectors are found in many practical applications, such as in Digi-

tal Signal Processing (DSP) for multi-media applications and embedded systems.

These polynomial designs are initially specified using behavioral or Register-

Transfer-Level (RTL) descriptions, which are subsequently synthesized into hard-

ware using high-level and logic synthesis tools [23]. With the widespread use of

S. Gopalakrishnan (B)

Synopsys Inc., Hillsboro, Oregon, USA

e-mail: sivaram.gopalakrishnan@synopsys.com

Based on Gopalakrishnan, S.; Kalla, P.; “Algebraic techniques to enhance common sub-expression

elimination for polynomial system synthesis,” Design, Automation & Test in Europe Conference

& Exhibition, 2009. DATE ’09, pp.1452–1457, 20–24 April 2009 c© [2009] IEEE.

S.P. Khatri, K. Gulati (eds.), Advanced Techniques in Logic Synthesis,

Optimizations and Applications, DOI 10.1007/978-1-4419-7518-8_14,
C© Springer Science+Business Media, LLC 2011

251

252 S. Gopalakrishnan and P. Kalla

such designs, there is a growing need to develop more sophisticated synthesis and

optimization techniques for polynomial datapaths at high-level/RTL.

The general area of high-level synthesis has seen extensive research over the

years. Various algorithmic techniques have been devised, and CAD tools have

been developed that are quite adept at capturing hardware description language

(HDL) models and mapping them into control/data-flow graphs (CDFGs), per-

forming scheduling, resource allocation and sharing, binding, retiming, etc. [7].

However, these tools lack the mathematical wherewithal to perform sophisticated

algebraic manipulation for arithmetic datapath-intensive designs. Such designs

implement a sequence of ADD, MULT type of algebraic computations over bit-

vectors; they are generally modeled at RTL or behavioral-level as systems of multi-

variate polynomials of finite degree [19, 22]. Hence, there has been increasing inter-

est in exploring the use of algebraic manipulation of polynomial expressions, for

RTL synthesis of arithmetic datapaths. Several techniques such as Horner decom-

position, factoring with common sub-expression extraction [13], term-rewriting

[1] have been proposed. Symbolic computer algebra [10, 19, 22] has also been

employed for polynomial datapath optimization. While these methods are useful as

stand-alone techniques, they exhibit limited potential for optimization as explained

below.

Typically, in a system of polynomials representing an arithmetic datapath, there

are many common sub-expressions. In such systems, common sub-expression

extraction (CSE) serves as a useful optimization technique, where isomorphic pat-

terns in an arithmetic expression tree are identified, extracted, and merged. This

prevents the cost of implementing multiple copies of the same expression. How-

ever, CSE has a limited potential for optimization if the common expressions are

not exposed in the given symbolic representation. Hence, application of a “suitable

set of transformations” (or decompositions) of the given polynomial representation

to expose more common sub-expressions offers a higher potential for optimization

by CSE. The objective of this chapter is to develop algorithmic and algebraic tech-

niques to perform such transformations, to present a methodology for their integra-

tion with CSE, and to achieve a higher degree of optimization.

14.1.1 Motivation

Consider the various decompositions for a system of polynomials P1, P2, and P3,

implemented with variables x , y, and z, as shown in Table 14.1. The direct imple-

mentation of this system will require 17 multipliers and 4 adders. To reduce the

size of the implementation, a Horner-form decomposition may be used. This imple-

mentation requires the use of 15 multipliers and 4 adders. However, a more sophis-

ticated factoring method employing kernel/co-kernel extraction with CSE [13, 14]

can further reduce the size of the implementation, using 12 multipliers and 4 adders.

Now, consider the proposed decomposition of the system, also shown in the table.

This implementation requires only 8 multipliers and 1 adder. Clearly, this is an

efficient implementation of the polynomial system. This decomposition achieves a

high degree of optimization by analyzing common sub-expressions across multiple

14 Algebraic Techniques to Enhance CSE 253

Table 14.1 Various

decompositions for a

polynomial system

Original system Horner-form decomposition

P1 = x2 + 6xy + 9y2; P1 = x(x + 6y)+ 9y2;

P2 = 4xy2 + 12y3; P2 = 4xy2 + 12y3;
P3 = 2x2z + 6xyz; P3 = x(2xz + 6yz);
Factorization+ CSE Proposed decompsoition

P1 = x(x + 6y)+ 9y2; d1 = x + 3y; P1 = d1
2;

P2 = y2(4x + 12y); P2 =4y2d1;
P3 = xz(2x + 6y); P3 = 2xzd1;

polynomials. This is not a trivial task and is not achieved by any earlier manipulation

techniques [13, 14]. Note that d1 is a good building block (common sub-expression)

for these system of equations. Identifying and factoring out such building blocks

across multiple polynomial datapaths can yield area-efficient hardware implemen-

tations.

14.1.2 Contributions

In this chapter, we develop techniques to transform the given system of polynomi-

als by employing certain algebraic manipulations. These transformations have the

potential to expose more common terms among the polynomials. These terms can

be easily identified by the CSE routines and can be used as good “building blocks”

for the design. Our expression manipulations are based on the following algebraic

concepts:

• Canonical representation of polynomial functions over finite integer rings of the

type Z2m [4]

• Square-free factorization

• Common coefficient extraction

• Factoring with kernel/co-kernel computation

• Algebraic division

We show how the above-mentioned algebraic methods are developed and employed

in a synergistic fashion. These methods form the foundation of an integrated CSE

technique for area-efficient implementations of the polynomial system.

14.1.3 Paper Organization

The next section presents the previous work in the area of polynomial datapath

synthesis. Section 14.3 describes some preliminary concepts related to polynomial

functions and their algebraic manipulations. Section 14.4 describes the optimiza-

tion methods developed in this chapter. Section 14.5 presents our overall inte-

grated approach. The experimental results are presented in Section 14.6. Finally,

Section 14.7 concludes the chapter.

254 S. Gopalakrishnan and P. Kalla

14.2 Previous Work

Contemporary high-level synthesis tools are quite adept in extracting control/data-

flow graphs (CDFGs) from the given RTL descriptions and also in performing

scheduling, resource-sharing, retiming, and control synthesis. However, they are

limited in their capability to employ sophisticated algebraic manipulations to reduce

the cost of the implementation. For this reason, there has been increasing interest in

exploring the use of algebraic methods for RTL synthesis of arithmetic datapaths.

In [20, 21], the authors derive new polynomial models of complex computa-

tional blocks by the way of polynomial approximation for efficient synthesis. In

[19], symbolic computer algebra tools are used to search for a decomposition of

a given polynomial according to available components in a design library, using a

Buchberger-variant algorithm [2, 3] for Gröbner bases. Other algebraic transforms

have also been explored for efficient hardware synthesis: factoring with common

sub-expression elimination [13], exploiting the structure of arithmetic circuits [24],

term re-writing [1], etc. Similar algebraic transforms are also applied in the area of

code optimization. These include reducing the height of the operator trees [18], loop

expansion, induction variable elimination. A good review of these approaches can

be found in [8].

Taylor Expansion Diagrams (TEDs) [5] have also been used for data-flow trans-

formations in [9]. In this technique, the arithmetic expression is represented as a

TED. Given an objective (design constraint), a sequence of decomposition cuts

are applied to the TED that transforms it to an optimized data-flow graph. Mod-

ulo arithmetic has also been applied for polynomial optimization/decomposition

of arithmetic datapaths in [10, 11]. By accounting for the bit-vector size of the

computation, the systems are modeled as polynomial functions over finite integer

rings. Datapath optimization is subsequently performed by exploiting the number

theoretic properties of such rings, along with computational commutative algebra

concepts.

14.2.1 Kernel/Co-kernel Extraction

Polynomial systems can be manipulated by extracting common expressions by

using the kernel/co-kernel factoring. The work of [13] integrates factoring using

kernel/co-kernel extraction with CSE. However, this approach has its limitations.

Let us understand the general methodology of this approach before describing its

limitations. The following terminologies are mostly referred from [13].

A literal is a variable or a constant. A cube is a product of variables raised to

a non-negative integer power, with an associated sign. For example, +acb, −5cde,

−7a2bd3 are cubes. A sum of product (SOP) is said to be cube-free if no cube

(except “1”) divides all the cubes of the SOP. For a polynomial P and a cube c, the

expression P/c is a kernel if it is cube-free and has at least two terms. For example,

when P = 4abc − 3a2b2c, the expression P/abc = 4− 3ab is a kernel. The cube

that is used to obtain the kernel is the co-kernel (abc). This approach has two major

limitations:

14 Algebraic Techniques to Enhance CSE 255

Coefficient Factoring: Numeric coefficients are treated as literals, not num-

bers. For example, consider a polynomial P = 5x2 + 10y3 + 15pq. According

to this approach, coefficients {5, 10, 15} are also treated as literals like variables

{x, y, p, q}. Since it does not use algebraic division, it cannot determine the fol-

lowing decomposition: P = 5(x2 + 2y3 + 3pq).

Symbolic Methods: Polynomials are factored without regard to their algebraic

properties. Consider a polynomial P = x2+ 2xy+ y2, which can actually be trans-

formed as (x + y)2. Such a decomposition is also not identified by this kernel/co-

kernel factoring approach. The reason for the inability to perform such a decompo-

sition is due to the lack of symbolic computer algebra manipulation.

This chapter develops certain algebraic techniques that address these limitations.

These techniques, along with kernel/co-kernel factoring, can be seamlessly inte-

grated with CSE to provide an additional degree of optimization. With this inte-

gration, we seek to extend the optimization potential offered by the conventional

methods.

14.3 Preliminary Concepts

This section will review some fundamental concepts of factorization and polynomial

function manipulation, mostly referred from [4, 6].

14.3.1 Polynomial Functions and Their Canonical Representations

A bit-vector of size m represents integer values reduced modulo 2m . Therefore,

polynomial datapaths can be considered as polynomial functions over finite integer

rings of the form Z2m . Moreover, polynomial datapaths often implement bit-vector

arithmetic with operands of different bit-widths. Let x1, . . . , xd represent the bit-

vector variables, where each bit-vector has bit-width n1, . . . , nd . Let f be the bit-

vector output of the datapath, with m as its bit-width. Then the bit-vector polynomial

can be considered as a function f : Z2n1 × Z2n2 × · · · Z2nd → Z2m .

A function f from Z2n1 × Z2n2 × · · · × Z2nd → Z2m is said to be a poly-

nomial function if it is represented by a polynomial F ∈ Z [x1, x2, . . . , xd]; i.e.,

f (x1, x2, . . . , xd) ≡ F(x1, x2, . . . , xd) for all xi ∈ Z2ni , i = 1, 2, . . . , d and ≡
denotes congruence (mod 2m).

Let f : Z21 × Z22 → Z23 be a function defined as: f (0, 0) = 1, f (0, 1) = 3,

f (0, 2) = 5, f (0, 3) = 7, f (1, 0) = 1, f (1, 1) = 4, f (1, 2) = 1, f (1, 3) =
0. Then, f is a polynomial function representable by F = 1 + 2y + xy2, since

f (x, y) ≡ F(x, y) mod 23 for x = 0, 1 and y = 0, 1, 2, 3.

Polynomial functions implemented over specific bit-vector sizes can be repre-

sented in a unique canonical form. According to [4, 10], any polynomial represen-

tation F for a function f , from Z2n1 × Z2n2 × · · · Z2nd to Z2m , can be uniquely

represented as a sum-of-product of falling factorial terms:

F = ΣkckYk (14.1)

256 S. Gopalakrishnan and P. Kalla

where,

• k =< k1, . . . , kd > for each ki = 0, 1, . . . , μi − 1;

• μi = min(2ni , λ), for each i = 1, . . . , d;

• λ is the least integer such that 2m divides λ!;
• ck ∈ Z such that 0 ≤ ck < 2m

gcd(2m ,
∏d

i=1 ki !)
;

In (14.1), Yk is represented as

Yk(x) =
d
∏

i=1

Yki
(xi)

= Yk1
(x1) · Yk2

(x2) · · · Ykd
(xd) (14.2)

where Yk(x) is a falling factorial defined as follows:

Definition 14.1 Falling factorials of degree k are defined according to:

• Y0(x) = 1

• Y1(x) = x

• Y2(x) = x(x − 1)
...

• Yk(x) = (x − k + 1) · Yk−1(x)

Intuitively, this suggests that while having a canonical form representation as in

(14.1), it is possible to find common Yki
(xi) terms.

For example, consider the following polynomials implementing a 16-bit datap-

ath, i.e., as polynomial functions over f : Z216 × Z216 → Z216 :

F = 4x2 y2 − 4x2 y − 4xy2 + 4xy + 5z2x − 5zx (14.3)

G = 7x2z2 − 7x2z − 7xz2 + 7zx + 3y2x − 3yx (14.4)

Using the canonical form representation, we get

F = 4Y2(x)Y2(y)+ 5Y2(z)Y1(x) (14.5)

G = 7Y2(x)Y2(z)+ 3Y2(y)Y1(x) (14.6)

Such a representation exposes many common terms in Yki
(xi). These terms may

subsequently serve as a good basis for common sub-expression extraction.

For a detailed description of the above canonical form representation, the canon-

ical reduction operations, and their impact on hardware implementation costs for

polynomial datapaths, the reader is referred to [10].

14 Algebraic Techniques to Enhance CSE 257

14.3.2 Factorization

Definition 14.2 Square-free polynomial Let F be a field or an integral domain Z .

A polynomial u in F[x] is a square-free polynomial if there is no polynomial v in

F[x] with deg(v, x) > 0, such that v2|u.

Although the definition is expressed in terms of a squared factor, it implies that the

polynomial does not have a factor of the form vn with n ≥ 2.

Example 14.1 The polynomial u1 = x2 + 3x + 2 = (x + 1)(x + 2) is square-free.

However, u2 = x4 + 7x3 + 18x2 + 20x + 8 = (x + 1)(x + 2)2 is not square-free,

as v2 (where v = x + 2) divides u2.

Definition 14.3 Square-free factorization A polynomial u in F[x] has a unique fac-

torization

u = cs1s2
2 · · · sm

m (14.7)

where c is in F and each si is monic and square-free with gcd(si , s j) = 1 for i �= j .

This unique factorization in (14.7) is called square-free factorization of u.

Example 14.2 The polynomial u = 2x7−2x6+24x5−24x4+96x3−96x2+128x−
128 has a square-free factorization 2(x − 1)(x2 + 4)3 where c = 2, s1 = x − 1,

s2 = 1, and s3 = x2 + 4. Note that a square-free factorization may not contain all

the powers given in (14.7).

A square-free factorization only involves the square-free factors of a polynomial

and leaves the deeper structure that involves the irreducible factors intact.

Example 14.3 Using square-free factorization

x6 − 9x4 + 24x2 − 16 = (x2 − 1)(x2 − 4)2 (14.8)

both factors are reducible. This suggests that even after obtaining square-free poly-

nomials, there is a potential for additional factorization. In other words, consider

14.8, where (x2− 1) can be further factored as (x + 1)(x − 1) and (x2− 4)2 can be

factored as ((x + 2)(x − 2))2.

14.4 Optimization Methods

The limitations of contemporary techniques come from their narrow approach to

factorization, relying on single types of factorization, instead of the myriad of opti-

mization techniques available. We propose an integrated approach, to polynomial

optimization, to overcome these limitations. This section describes the various opti-

mization techniques that are developed/employed in this chapter.

258 S. Gopalakrishnan and P. Kalla

14.4.1 Common Coefficient Extraction

The presence of many coefficient multiplications in polynomial systems increases

the area-cost of the hardware implementation. Moreover, existing coefficient fac-

toring techniques [13] are inefficient in their algebraic manipulation capabilities.

Therefore, it is our focus to develop a coefficient factoring technique that employs

efficient algebraic manipulations and as a result reduces the number of coefficient

multiplications in the given system.

Consider the following polynomial P1 = 8x + 16y + 24z. When coefficient

extraction is performed over P1, it results in three possible transformations, given

as follows:

P1 = 2(4x + 8y + 12z) (14.9)

P1 = 4(2x + 4y + 6z) (14.10)

P1 = 8(x + 2y + 3z) (14.11)

From these three transformations, (14.11) extracts the highest common term in P1.

This results in the best transformation (reduced set of operations). A method to

determine the highest common coefficient is the greatest common divisor (GCD)

computation. Therefore, in this approach, GCD computations are employed to per-

form common coefficient extraction (CCE) for a system of polynomials. The pseu-

docode to perform CCE is shown in Algorithm 6.

Algorithm 6 Common Coefficient Extraction (CCE)

1: CCE(a1, · · · , an)

2: /* (a1, · · · , an) = Coefficients of the given polynomial;*/

3: for every pair (ai , a j) in n do

4: Compute GCD(ai , a j);

5: Ignore GCDs = “1”;

6: if GCD(ai , a j) < ai and GCD(ai , a j) < a j then

7: Ignore the GCDs;

8: end if

9: end for

10: Order the GCDs in decreasing order;

11: while GCD list is non-empty do

12: Perform the extraction using that order

13: Store the linear/non-linear blocks created as a result of extraction

14: Remove GCDs corresponding to extracted terms and update the GCD list

15: end while

Let us illustrate the operation of the CCE routine. Consider the polynomial P1

computed as

P1 = 8x + 16y + 24z + 15a + 30b + 11 (14.12)

14 Algebraic Techniques to Enhance CSE 259

The input to CCE is the coefficients of the given polynomial that are involved

in coefficient multiplications. In other words, if there is a coefficient addition in

the polynomial, it is not considered while performing CCE. For example in (14.12),

only the coefficients {8, 16, 24, 15, 30} are considered and 11 is ignored. The reason

is because there is no benefit in extracting this coefficient and a direct implementa-

tion is the cheapest in terms of area-cost.

The algorithm then begins by computing the GCDs for every pair-wise combi-

nation of the coefficients in the input set. Computing pair-wise GCDs of the coeffi-

cients:

GC D(8, 16) = 8

GC D(8, 24) = 8

...

GC D(15, 30) = 15 (14.13)

we get the following set {8, 8, 1, 2, 8, 1, 2, 3, 6, 15}. However, only a subset is

generated by ignoring “GCDs = 1” and “GCDs (ai , a j) < ai and a j .” The reason for

ignoring these GCDs is that we only want to extract the highest common coefficients

that would result in a reduced cost. For example, the GCD(24, 30) = 6. However,

extracting 6 does not reduce the cost of the sub-expression 24z + 30b in (14.12), as

6(4z + 5b) requires more coefficient multipliers.

Applying the above concepts, the final subset is {8, 15}. This set is then arranged

in the decreasing order to get {15, 8}. The first element is “15.” On performing the

extraction using coefficient “15,” the following decomposition is realized:

P1 = 8x + 16y + 24z + 15(a + 2b) (14.14)

This creates a smaller polynomial (a+ 2b). It should be noted that this is a linear

polynomial. This polynomial is stored and the extraction continues until the GCD

list is empty. After CCE, the polynomial decomposition obtained is

P1 = 8(x + 2y + 3z)+ 15(a + 2b) (14.15)

Two linear blocks (a+2b) and (x+2y+3z) are finally obtained. The motivation

behind storing these polynomials is that they can serve as potentially good building

blocks in the subsequent optimization methods.

14.4.2 Common Cube Extraction

Common cubes, that consist of products of variables, also need to be extracted from

the given polynomial representation. The kernel/co-kernel extraction technique

from [13] is quite efficient for this purpose. Therefore, we employ this approach

260 S. Gopalakrishnan and P. Kalla

to perform the common cube extraction. Note that the cube extraction technique of

[13] also considers coefficients as variables. We do not allow the technique of [13]

to treat coefficients as variables – as we employ CCE for coefficient extraction. We

employ this technique of [13] for extracting cubes composed only of variables.

Consider the following system of polynomials:

P1 = x2 y + xyz

P2 = ab2c3 + b2c2x

P3 = axz + x2z2b (14.16)

A kernel/co-kernel cube extraction results in the following representation. (Here,

ck is the co-kernel cube and k is the kernel.)

P1 = (xy)ck(x + z)k

P2 = (b2c2)ck(ac + x)k

P3 = (xz)ck(a + xzb)k (14.17)

Note that this procedure (which we call Cube_Ex()) exposes both cubes and ker-

nels as potential (common) building blocks, which CSE can further identify and

extract.

14.4.3 Algebraic Division

This method can potentially lead to a high degree of optimization. The problem

essentially lies in identifying a good divisor, which can lead to an efficient decom-

position. Given a polynomial a(x), and a set of divisors (bi (x)), ∀i we can perform

the division a(x)/bi (x) and determine if the resulting transformation is optimized

for hardware implementation.

Using common coefficient extraction and cube extraction , a large number of lin-

ear blocks, that are simpler than the original polynomial, are exposed. These linear

blocks can subsequently be used for performing algebraic division. For our overall

synthesis approach, we consider only the exposed “linear expressions” as algebraic

divisors. The motivation behind using the exposed “linear” blocks for division is

that

• Linear blocks cannot be decomposed any further, implying that they have to be

certainly implemented.

• They also serve as good building blocks in terms of (cheaper) hardware imple-

mentation.

For example, using cube extraction the given system in Table 14.1 is transformed

to

14 Algebraic Techniques to Enhance CSE 261

P1 = x(x + 6y)+ 9y2 or P1 = x2 + y(6x + 9y)

P2 = 4y2(x + 3y)

P3 = 2xz(x + 3y) (14.18)

The following linear blocks are now exposed: {(x + 6y), (6x + 9y), (x + 3y)}.
Using these blocks as divisors, we divide P1, P2, and P3. (x + 3y) serves as a good

building-block because it divides all the three polynomials as

P1 = (x + 3y)2

P2 = 4y2(x + 3y)

P3 = 2xz(x + 3y) (14.19)

Such a transformation to (14.19) is possible only through algebraic division. None

of the other expression manipulation techniques can identify this transformation.

14.5 Integrated Approach

The overall approach to polynomial system synthesis is presented in this section. We

show how we integrate the algebraic methods presented previously with common

sub-expression elimination. The pseudocode for the overall integrated approach is

presented in Algorithm 7.

The algorithm operates as follows:

• The given system of polynomials is initially stored in a list of arrays. Each

element in the list represents a polynomial. The elements in the array for each

list represent the transformed representations of the polynomial. Figure 14.1a

shows the polynomial data structure representing the system of polynomials in

its expanded form, canonical form (can), and square-free factored form (sq f).

• The algorithm begins by computing the canonical forms and the square-free

factored forms, for all the polynomials in the given system. At this stage, the

polynomial data structure looks like in Fig. 14.1a.

• Then, the best-cost implementation among these representations is chosen and

stored as Pinitial. The cost is stored as Cinitial. We estimate the cost using the

number of adders and multipliers required to implement the polynomial.

• Common coefficient extraction (CCE) and common cube extraction (Cub_Ex)

are subsequently performed. The linear/non-linear polynomials obtained from

these extractions are stored/updated. Also, the resulting transformations for

each polynomial are updated in the polynomial data structure. At this stage,

the data structure looks like in Fig. 14.1b. To elaborate further, in this figure,

{P1, P1a, P1b, P1c} are various representations of P1 (as a result of CCE and

Cub_Ex), and so on.

• Using the linear blocks, algebraic division is performed and the polynomial data-

structure is further populated, with multiple representations.

262 S. Gopalakrishnan and P. Kalla

Algorithm 7 Approach to Polynomial System Synthesis

1: /*Given: (P1, P2, · · · , Pn) = Polys (P ′i s) representing the system; Each Pi is a list to store

multiple representations of Pi ;*/

2: Poly_Synth(P1, P2, · · · , Pn)

3: /*Initial set of Polynomials, Porig*/

4: Porig = 〈P1, · · · , Pn〉;
5: Pcan = Canonize(Porig);

6: Psq f = Sqr_free(Porig);

7: Initial_cost Cini tial = min_cost (Porig, Pcan, Psq f);

8: /*The polynomial with cost Cini tial is Pini tial */

9: CC E(Pini tial); Update resulting linear/non-linear polynomials;

10: /*PCC E = Polynomial representation after CCE();*/ Update P ′i s;

11: Cube_Ex(P ′i s); Update resulting linear/non-linear polynomials;

12: /*PCC E_Cube = Polynomial representation after Cube_Ex();*/ Update P ′i s;

13: Linear polynomials exposed are lin_poly =〈l1, · · · , lk〉
14: for every l j in lin_poly do

15: ALG_DIV(P ′i s, l j);

16: Update P ′i s and l ′j s;

17: end for

18: for every combination of P ′i s (Pcomb) representing Porig do

19: Cost = CSE(Pcomb);

20: if (Cost < Cini tial) then

21: Cini tial = Cost ;

22: P f inal = Pcomb;

23: end if

24: end for

25: return P f inal ;

• The entire polynomial system can be represented using a list of polynomials,

where each element in the list is some representation for each polynomial. For

example, {P1, P2a, P3b} is one possible list that represents the entire system

(refer Fig. 14.1b). The various lists that represent the entire system are given

by

{(P1, P2, P3), (P1, P2, P3a), (P1, P2, P3b),

...

(P1a, P2b, P3), (P1a, P2b, P3a), (P1a, P2b, P3b),

...

(P1c, P2b, P3), (P1c, P2b, P3a), (P1c, P2b, P3b)} (14.20)

• Finally, we can pick the decomposition with the least estimated cost. For exam-

ple, Fig. 14.1c shows that the least-cost implementation of the system is identified

as:

Pfinal = (P1a, P2b, P3a) (14.21)

14 Algebraic Techniques to Enhance CSE 263

P1

P2

P3

P1

P2

P3

P1

P2

P3

can

can

can

sqf

sqf

sqf

P1

P2

P3

P1a

P2a

P3a

P1b

P3b

P1c P1

P2

P3

P1a

P2a

P3a

P1b

P3b

P1c

P2bP2b

(a) (b) (c)

Fig. 14.1 Polynomial system representations

The working of Algorithm 7 is explained with the polynomial system presented

in Table 14.2.

Table 14.2 Illustration of algorithm 7

Original system

P1 = 13x2 + 26xy + 13y2 + 7x − 7y + 11;
P2 = 15x2 − 30xy + 15y2 + 11x + 11y + 9;
P3 = 5x3 y2 − 5x3 y − 15x2 y2 + 15x2 y + 10xy2 − 10xy + 3z2;
P4 = 3x2 y2 − 3x2 y − 3xy2 + 3xy + z + 1;
After canonization and CCE

P1 = 13(x2 + 2xy + y2)+ 7(x − y)+ 11;
P2 = 15(x2 − 2xy + y2)+ 11(x + y)+ 9;
P3 = 5x(x − 1)(x − 2)y(y − 1)+ 3z2;
P4 = 3x(x − 1)y(y − 1)+ z + 1;
After cube extraction

P1 = 13(x(x + 2y)+ y2)+ 7(x − y)+ 11;
P2 = 15(x(x − 2y)+ y2)+ 11(x + y)+ 9;
P3 = 5x(x − 1)(x − 2)y(y − 1)+ 3z2;
P4 = 3x(x − 1)y(y − 1)+ z + 1;
Final decomposition

d1 = x + y; d2 = x − y; d3 = x(x − 1)y(y − 1)

P1 = 13(d1
2)+ 7d2 + 11; P2 = 15(d2

2)+ 11d1 + 9;
P3 = 5d3(x − 2)+ 3z2; P4 = 3d3 + z + 1;

Initially, canonical reduction and square-free factorization are performed. In this

example, this technique does not result in any decomposition for square-free factor-

ization. For P3 and P4, there is a low-cost canonical representation.

We then compute the initial cost of the polynomial by using only CSE. In the

original system, there are no common sub-expressions. The total cost of the original

system is estimated as 51 MULTs and 21 ADDs. Then CCE is performed, resulting

in the transformation, as shown in the Table 14.2.

The linear polynomials obtained are (x − y) and (x + y). The non-linear poly-

nomials are (x2 + 2xy + y2) and (x2 − 2xy + y2). After performing common cube

extraction (Cube_Ex()), the additional linear blocks added are (x+2y) and (x−2y).

264 S. Gopalakrishnan and P. Kalla

Subsequently, algebraic division is applied using the linear blocks as divisors for all

representations of the polynomial system. The final decomposition with CSE leads

to an implementation where only the linear blocks (x+ y) and (x− y) are used. The

representation for the final implementation is shown in the final row of Table 14.2.

The total cost of the final implementation is 14 MULTs and 12 ADDs.

14.6 Experiments

The datapath computations are provided as a polynomial system, operating over

specific input/output bit-vector sizes. All algebraic manipulations are implemented

in Maple [15]; however, for Horner-form decomposition and factorization, we used

the routines available in MATLAB [17]. For common sub-expression elimination,

we use the JuanCSE tool available at [14]. Based on the given decomposition (for

each polynomial in the system), the individual blocks are generated using the Syn-

opsys Design Compiler [23]. These units are subsequently used to implement the

entire system.

The experiments are performed on a variety of DSP benchmarks. The results

are presented in Table 14.3. The first column lists the polynomial systems used for

the experiments. The first five benchmarks are Savitzky-Golay filters. These filters

are widely used in image-processing applications. The next benchmark is a polyno-

mial system implementing quadratic filters from [16]. The next benchmark is from

[12], used in automotive applications. The final benchmark is a multi-variate cosine

wavelet used in graphics application from [13]. In the second column, we list the

design characteristics: number of variables (bit-vectors), the order (highest degree),

and the output bit-vector size (m). Column 3 lists the number of polynomials repre-

senting the entire system. Columns 4 and 5 list the implementation area and delay,

respectively, of the polynomial system implemented using Factorization+ common

sub-expression elimination. Columns 6 and 7 list the implementation area and delay

of the polynomial system, implemented using our proposed method. Columns 8 and

9 list the improvement in the implementation area and delay using our polynomial

decomposition technique, respectively. Considering all the benchmarks, we show

Table 14.3 Comparison of proposed method with factorization/CSE

Factorization/CSE Proposed method Improvement

Systems Var/Deg/m # polys Area Delay Area Delay Area % Delay %

SG_3X2 2/2/16 9 204805 186.6 102386 146.8 50 21.3

SG_4X2 2/2/16 16 449063 211.7 197599 262.8 55.9 −24.1

SG_4X3 2/3/16 16 690208 282.3 557252 328.5 19.2 −16.3

SG_5X2 2/2/16 25 570384 205.6 271729 234.2 52.3 −13.9

SG_5X3 2/3/16 25 1365774 238.1 614955 287.4 54.9 −20.7

Quad 2/2/16 2 36405 118.4 30556 129.7 16 −9.5

Mibench 3/2/8 2 20359 64.8 8433 67.2 58.6 −3.7

MVCS 2/3/16 1 31040 119.1 22214 157.8 28.4 −32

14 Algebraic Techniques to Enhance CSE 265

an average improvement in the actual implementation area of approximately 42%.

However, this area optimization does come at a cost of higher delay.

14.7 Conclusions

This chapter presents a synthesis approach for arithmetic datapaths implemented

using a system of polynomial functions. We develop algebraic techniques that effi-

ciently factor coefficients and cubes from the polynomial system, resulting in the

generation of linear blocks. Using these blocks as divisors, we perform algebraic

division, resulting in a decomposition of the polynomial system. Our decomposi-

tion exposes more common terms which can be identified by CSE, leading to a

more efficient implementation. Experimental results demonstrate significant area

savings using our approach as compared against contemporary datapath synthesis

techniques. As part of future work, as datapath designs consume a lot of power, we

would like to investigate the use of algebraic transformations in low-power synthesis

of arithmetic datapaths.

References

1. Arvind, Shen, X.: Using term rewriting systems to design and verify processors. IEEE Micro

19(2), 36–46 (1998)

2. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes

nach einem nulldimensionalen Polynomideal. Ph.D. thesis, Philosophiesche Fakultat an der

Leopold-Franzens-Universitat, Austria (1965)

3. Buchberger, B.: A theoretical basis for reduction of polynomials to canonical forms. ACM

SIG-SAM Bulletin 10(3), 19–29 (1976)

4. Chen, Z.: On polynomial functions from Zn1 × Zn2 × · · · × Znr to Zm . Discrete Mathematics

162(1–3), 67–76 (1996)

5. Ciesielski, M., Kalla, P., Askar, S.: Taylor expansion diagrams: A canonical representation for

verification of dataflow designs. IEEE Transactions on Computers 55(9), 1188–1201 (2006)

6. Cohen, J.: Computer Algebra and Symbolic Computation. A. K. Peters, Wellesley, MA (2003)

7. DeMicheli, G.: Synthesis and Optimization of Digital Circuits. McGraw-Hill, New York, NY

(1994)

8. DeMicheli, G., Sami, M.: Hardware/Software Co-Design. Kluwer, Norwell, MA (1996)

9. Gomez-Prado, D., Ciesielski, M., Guillot, J., Boutillon, E.: Optimizing data flow graphs

to minimize hardware implementation. In: Proceedings of Design Automation and Test in

Europe, pp. 117–122. Nice, France (2009)

10. Gopalakrishnan, S., Kalla, P.: Optimization of polynomial datapaths using finite ring algebra.

ACM Transactions on Design Automation of Electronic System 12(4), 49 (2007)

11. Gopalakrishnan, S., Kalla, P., Meredith, B., Enescu, F.: Finding linear building-blocks for RTL

synthesis of polynomial datapaths with fixed-size bit-vectors. In: Proceedings of the Interna-

tional Conference on Computer Aided Design, pp. 143–148. San Jose, CA (2007)

12. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown, R.B.: Mibench:

A free, commercially representative embedded benchmark suite. In: IEEE 4th Annual Work-

shop on Workload Characterization. Austin, TX (2001)

13. Hosangadi, A., Fallah, F., Kastner, R.: Optimizing polynomial expressions by algebraic fac-

torization and common subexpression elimination. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems 25(10), 2012–2022 (2006)

266 S. Gopalakrishnan and P. Kalla

14. JuanCSE: Extensible, programmable and reconfigurable embedded systems group.

http://express.ece.ucsb.edu/suif/cse.html

15. Maple. http://www.maplesoft.com

16. Mathews, V.J., Sicuranza, G.L.: Polynomial Signal Processing. Wiley-Interscience, New York

(2000)

17. MATLAB/Simulink. http://www.mathworks.com/products/simulink

18. Nicolau, A., Potasman, R.: Incremental tree-height reduction for high-level synthesis. In: Pro-

ceedings of the Design Automation Conference. San Francisco, CA (1991)

19. Peymandoust, A., DeMicheli, G.: Application of symbolic computer algebra in high-level

data-flow synthesis. IEEE Transactions on CAD 22(9), 1154–11656 (2003)

20. Smith, J., DeMicheli, G.: Polynomial methods for component matching and verification. In:

Proceedings of the International Conference on Computer-Aided Design (ICCAD). San Jose,

CA (1998)

21. Smith, J., DeMicheli, G.: Polynomial methods for allocating complex components. In: Pro-

ceedings of Design, Automation, and Test in Europe. Munich, Germany (1999)

22. Smith, J., DeMicheli, G.: Polynomial circuit models for component matching in high-level

synthesis. IEEE Transactions on VLSI 9(6), 783–800 (2001)

23. Synopsys: Synopsys Design Compiler and DesignWare library. htpp://www.synopsys.com

24. Verma, A.K., Ienne, P.: Improved use of the Carry-save representation for the synthesis of

complex arithmetic circuits. In: Proceedings of the International Conference on Computer

Aided Design. San Jose, CA (2004)

Chapter 15

Automated Logic Restructuring with aSPFDs

Yu-Shen Yang, Subarna Sinha, Andreas Veneris, Robert Brayton,

and Duncan Smith

Abstract This chapter presents a comprehensive methodology to automate logic

restructuring in combinational and sequential circuits. This technique algorithmi-

cally constructs the required transformation by utilizing a functional flexibility rep-

resentation called Set of Pairs of Function to be Distinguished (SPFD). SPFDs

can express more functional flexibility than the traditional don’t cares and have

proved to provide additional degrees of flexibility during logic synthesis [21, 27].

Computing SPFDs may suffer from memory or runtime problems [16]. There-

fore, a simulation-based approach to approximate SPFDs is presented to alleviate

those issues. The result is called Approximate SPFDs (aSPFDs). aSPFDs approx-

imate the information contained in SPFDs using the results of test vector simula-

tion. With the use of aSPFDs as a guideline, the algorithm searches for the nec-

essary nets to construct the required function. Experimental results indicate that

the proposed methodology can successfully restructure locations where a previous

approach that uses a dictionary model [1] as the underlying transformation template

fails.

15.1 Introduction

During the chip design cycle, small structural transformations in logic netlists are

often required to accommodate different goals. For example, the designer needs to

rectify designs that fail functional verification at locations identified by a debugging

program [6, 23]. In the case of engineering changes (EC) [13], a logic netlist is

modified to reflect specification changes at a higher level of abstraction. Logic trans-

formations are also important during rewiring-based post-synthesis performance

Y.-S. Yang (B)

University of Toronto, Toronto, ON, Canada

e-mail: terry.yang@utoronto.ca

Based on Yang, Y.-S.; Sinha, S.; Veneris, A.; Brayton, R.K.; Smith, D.; “Sequential logic rectifica-

tions with approximate SPFDs,” Design, Automation & Test in Europe Conference & Exhibition,

2009, pp. 1698–1703, 20–24 April 2009 c© [2009] IEEE.

S.P. Khatri, K. Gulati (eds.), Advanced Techniques in Logic Synthesis,

Optimizations and Applications, DOI 10.1007/978-1-4419-7518-8_15,
C© Springer Science+Business Media, LLC 2011

267

268 Y.-S. Yang et al.

optimization [10, 24] where designs are optimized at particular internal locations

to meet specification constraints.

Although these problems can be resolved by another round of full logic syn-

thesis, directly modifying logic netlists is usually preferable in order to preserve

any engineering effort that has been invested. Hence, logic restructuring has sig-

nificant merits when compared to re-synthesis. Today, most of these incremental

logic changes are implemented manually. The engineer examines the netlist to deter-

mine what changes need to be made and how they can affect the remainder of the

design.

One simple ad hoc logic restructuring technique modifies the netlist by using per-

missible transformations from a dictionary model [1], which contains a set of simple

modifications, such as single wire additions or removals. This technique is mostly

adapted for design error correction [6, 18] and has been used in design rewiring

as well [24]. A predetermined dictionary model, although effective at times, may

not be adequate when complex transformations are required. It has been shown that

a dictionary-model based design error correction tool can only successfully rectify

10–30% of cases [28]. Complex modifications perturb the functionality of the design

in ways that simple dictionary-driven transformations may not be able to address.

Therefore, automated logic transformation tools that can address these problems

effectively are desirable.

The work presented in this chapter aims to develop a comprehensive methodol-

ogy to automate logic restructuring in combinational and sequential circuits. It first

presents a simulation-based technique to approximate SPFDs, or simply aSPFDs.

Using aSPFDs can keep the process memory and runtime efficient while taking

advantage of most of the benefits of SPFDs. Then, an aSPFD-based logic restruc-

turing methodology is presented. It uses aSPFDs as a guideline to algorithmically

restructure the functionality of an internal node in a design. Two searching algo-

rithms, an SAT-based algorithm and a greedy algorithm, are proposed to find nets

required for restructuring the transformation. The SAT-based algorithm selects min-

imal numbers of wires, while the greedy algorithm returns sub-optimal results with

a shorter runtime.

Extensive experiments confirm the theory of the proposed technique and show

that aSPFDs provide an effective alternative to dictionary-based transformations.

It returns modifications where dictionary-based restructuring fails, increasing the

impact of tools for debugging, rewiring, EC, etc. For combinational circuits, the pro-

posed approach can identify five times more valid transformations than a dictionary-

based one. Experiments also demonstrate the feasibility of using aSPFDs to restruc-

ture sequential designs. Although this method bases its results on a small sample of

the input test vector space, empirical results show that more than 90% of the first

solution returned by the method passes formal validation.

The remainder of this chapter is structured as follows. Section 15.2 summarizes

previous work in logic restructuring, as well as the basic concept of SPFDs. Sec-

tion 15.3 defines aSPFDs and the procedures used to generate aSPFDs. Section 15.4

presents the transformation algorithms utilizing aSPFDs. Experimental results are

given in Section 15.5, followed by the conclusion in Section 15.6.

15 Automated Logic Restructuring with aSPFDs 269

15.2 Background

This section reviews previous work on logic restructuring and summarizes the con-

cept of SPFDs.

15.2.1 Prior Work on Logic Restructuring

Most research done on logic restructuring deals with combinational designs. In [26],

the authors insert circuitry before and after the original design so that the function-

ality of the resulting network complies with the required specifications. The main

disadvantage of this approach is that the additional circuitry may be too large and

can dramatically change the performance of the design.

Redundancy addition and removal (RAR) [5, 10] is a post-synthesis logic opti-

mization technique. It optimizes designs through the iterative addition and removal

of redundant wires. All logic restructuring operations performed by RAR techniques

are limited to single wire additions and removals. There is little success in trying

to add and remove multiple wires simultaneously due to a large search space and

complicated computation [4].

In [24], the authors view logic optimization from a logic debugging angle. It

introduces a design error into the design, identifies locations for correction with

a debug algorithm, and rectifies those locations with a dictionary model [1]. This

method has been shown to exploit the complete solution space and offers great flex-

ibility in optimizing a design and achieving larger performance gains. The technique

presented in this chapter adapts the same viewpoint to logic restructuring.

Two recent approaches [3, 14] are similar to the one presented in this chapter.

They construct the truth table of the new function at the location that requires

restructuring and synthesize the new function based on the table. However, both

approaches provide few descriptions on the application on sequential designs.

15.2.2 Sets of Pairs of Functions to Be Distinguished

Set of Pairs of Function to be Distinguished (SPFD) is a representation that pro-

vides a powerful formalism to express the functional flexibility of nodes in a multi-

level circuit. The concept of SPFDs was first proposed by Yamashita et al. [27] for

applications in FPGA synthesis and has been used in many applications for logic

synthesis and optimization [7, 21, 22].

Formally, an SPFD

R = {(g1a, g1b), (g2a, g2b), · · · , (gna, gnb)} (15.1)

denotes a set of pairs of functions that must be distinguished. That is, for each pair

(gia, gib) ∈ R, the output of the node (wire) associated with R must have different

values between a minterm of gia and a minterm of gib.

270 Y.-S. Yang et al.

In [21], an SPFD is represented as a graph, G = (V, E), where

V = {mk | mk ∈ gi j , 1 ≤ i ≤ n, j = {a, b}}
E = {(mi , m j) | {(mi ∈ gpa)and(m j ∈ gpb)}

or{(mi ∈ gpb)and(m j ∈ gpa)},
1 ≤ p ≤ n} (15.2)

This graphical representation makes it possible to visualize SPFDs and can

explain the concept of SPFDs more intuitively. Figure 15.1 depicts the graph repre-

sentation of the SPFD, R = {(ab, ab), (ab, ab)}. The graph contains four vertices

that represent minterms {00, 01, 10, 11} in terms of {a, b}. Two edges are added for

(ab, ab) and (ab, ab). The edge is referred to an SPFD edge.

Fig. 15.1 The graphical

representation of SPFD

R = {(ab, ab), (ab, ab)}

m00 m01

m11 m10

SPFDs of a node or wire can be derived in a multitude of ways, depending

on their application during logic synthesis. For instance, SPFDs can be computed

from the primary outputs in reverse topology order [21, 27]. An SPFD of a node

represents the minterm pairs in which the function of the node must evaluate to

different values. In rewiring applications, the SPFD of a wire, (ηa, ηb), can denote

the minimum set of edges in the SPFD of ηb that can only be distinguished by ηa

(but none of the remaining fanins of ηb) [21]. In all these methods, the SPFD of

a node complies with Property 15.1, which indicates that the ability of a node to

distinguish minterm pairs cannot be better than the ability of all of its fanins. This

property is the key to performing logic restructuring with SPFDs in this work.

Property 15.1 Given a node ηk whose fanins are {η1, η2, · · · , ηn}, the SPFD of ηk

is the subset of the union of the SPFDs of its fanin nodes [20].

Finally, a function of a node can be synthesized from its SPFD into a two-level

AND-OR network with an automated approach by Cong et al. [7].

15.3 Approximating SPFDs

SPFDs are traditionally implemented with BDDs or with SAT. However, each

approach has its own disadvantage. Computing BDDs of some types of circuits (e.g.,

multipliers) may not be memory efficient [2]. The SAT-based approach alleviates the

memory issue with BDDs, but it can be computationally intensive to obtain all the

minterm pairs that need to be distinguished [16].

15 Automated Logic Restructuring with aSPFDs 271

Intuitively, the runtime and memory overhead of the aforementioned approaches

can be reduced if fewer minterms are captured by the formulation. Hence, this sec-

tion presents a simulation-based approach to “approximate” SPFDs to reduce the

information that needs to be processed. The main idea behind aSPFDs is that they

only consider a subset of minterms that are important to the problem. Although

aSPFDs are based on a small set of the complete input space, experiments show that

aSPFDs include enough information to construct valid transformations.

To determine a good selection of minterms, logic restructuring can be effectively

viewed as a pair of “error/correction” operations [24]. In this context, the required

transformation simply corrects an erroneous netlist to a new specification. From this

point of view, it is constructive to see that test vectors used for diagnosis are a good

means of determining minterms required to construct aSPFDs for logic restructur-

ing. This is because test vectors can be thought of as the description of the erroneous

behavior and minterms explored by test vectors are more critical than others. Since

an aSPFD of a node stores less information than its respected SPFD, it is inherently

less expensive to represent, manipulate, and compute.

Due to the loss of information, the transformation is guaranteed to be valid only

under the input space exercised by the given set of input test vectors only. The

transformations may fail to correct designs respected to the complete input space.

Hence, the design has to undergo verification after restructuring to guarantee its

correctness. However, in some cases, such as in rewiring, a full blown verification

may not be required, but a faster proof method can be used [11, 12, 24].

The next two sections present the procedures used to compute aSPFDs using a

test vector set for nodes in combinational and sequential circuits, respectively.

15.3.1 Computing aSPFDs for Combinational Circuits

Consider two circuits, Ce and Cc, with the same number of the primary inputs

and primary outputs. Let V = {v1, · · · , vq} be a set of vectors. For combinational

circuits, each vi ∈ V is a single vector, while for sequential circuits, each vi is

a sequence of input vectors. Let ηerr be the node in Ce where the correction is

required, such that Ce is functionally equivalent to Cc after restructuring. Node ηerr

can be identified using diagnosis [6, 23] or formal synthesis [13] techniques and is

referred to as a transformation node in the remaining discussion.

Let f ′ηerr
denote the new function of ηerr. As discussed earlier, the aSPFD of ηerr

should contain the pairs of primary input minterms that f ′ηerr
needs to distinguish.

To identify those pairs, the correct values of ηerr under the test vectors V are first

identified. Those values are what f ′ηerr
should evaluate for V after restructuring is

implemented. Such a set of values is referred to as expected trace, denoted as ET .

Finally, on(n)(off (n)) denotes the set of minterms that n is equal to 1(0).

After the expected trace of ηerr is calculated, the procedure uses the trace to

construct aSPFDs of ηerr. In practice, V includes vectors that detect errors (Ve), as

well as ones that do not (Vc). Both types of vectors can provide useful information

about the required transformation.

272 Y.-S. Yang et al.

The procedure to generate the aSPFD of the transformation node in Ce w.r.t. V =
{Ve ∪ Vc} is as follows. First, Ce is simulated with the input vector V . Let Vc(ηerr)

and Ve(ηerr) denote the value of ηerr when Ce is simulated with Vc and Ve. To rectify

the design, f ′ηerr
has to evaluate to the complemented values of Ve(ηerr). That is, the

expected trace of ηerr, denoted by E
ηerr

T , is {Ve(ηerr), Vc(ηerr)} for vectors {Ve, Vc}.

Finally, The aSPFD of ηerr states that minterms in on(E
ηerr

T) have to be distinguished

from minterms in off (E
ηerr

T).

Example 15.1 Figure 15.2(a) depicts a circuit; its truth table is shown in

Figure 15.2(b). Let the wire e → z (the dotted line) be the target to be removed.

After the removal of e→ z, an erroneous circuit is created where the new z, labeled

zmod, becomes AND(d, f). The value of zmod is shown in the eighth column of the

truth table.

Suppose the design is simulated with test vectors V = {001, 100, 101, 110,

111}. The discrepancy is observed when the vector 110 is applied. Therefore,

Ve = {110} and Vc = {001, 100, 101, 111}. Let zmod be the transformation node.

Ve(zmod) = {1} and Vc(zmod) = {0, 1, 0, 0}. Hence, the expected trace of zmod

consists of the complemented values of Ve(zmod) and Vc(zmod), as shown in the final

column of Fig. 15.2(b). Finally, the aSPFD of zmod w.r.t. V is generated according

to ET and contains four edges, as shown in Fig. 15.2(a). The dotted vertices indicate

that the labeled minterm is a don’t care w.r.t. V . For comparison, the SPFD of zmod

is shown in Fig. 15.3(b). One can see that information included in aSPFD of zmod

is much less than what the SPFD representation includes. The minterms that are

not encountered during the simulation are considered don’t cares in aSPFDs. For

instance, the minterm pair, (110, 000), does not need to be distinguished in the

aSPFD of zmod because the vector 000 is not simulated.

c

b
a

e

d

f

z

(a)

z zmod ET

1 1 -

0 0 0

0 0 -

0 0 -

1 1 1

0 0 0

0 1 0

a b c

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

d e f

0 1 1

0 0 0

1 0 1

1 1 1

0 1 1

0 0 0

0 0 1

0 1 0 0 0 0

(b)

Fig. 15.2 The circuit for Examples 15.1 and 15.5. (a) Circuit, (b) Truth table

Fig. 15.3 SPFD and aSPFDs

of zmod in Fig. 15.2.

(a) aSPFD of zmod , (b) SPFD

of zmod

101

001000

110

111

011

010

100

011

010

001

111

110

100

000

101

(a) (b)

15 Automated Logic Restructuring with aSPFDs 273

15.3.2 Computing aSPFDs for Sequential Circuits

The procedure of building aSPFDs of nodes in sequential circuits is more compli-

cated than the procedure for combinational circuits due to the state elements. Each

node in the circuit depends not only on the present value of the primary inputs

but also on values applied to them in previous timeframes. This time dependency

characteristic of sequential designs prohibits the application of the procedure of

generating aSPFDs presented in Section 15.3.1 directly to sequential designs. First

of all, the expected trace of the transformation node, ηerr, is not simply the com-

plemented values of the node under the erroneous vector sequences. Because it is

not known in which timeframe the error condition is excited, complementing values

in all timeframes risks the introduction of more errors. Moreover, when modeling

sequential designs in the ILA representation, the value of nets in the circuit at Ti for

some input vector sequences is a function of the initial state input and the sequence

of the primary input vectors up to and including cycle Ti . Hence, the input space of

aSPFD of a node is different in each timeframe.

To simplify the complexity of the problem, the proposed procedure constructs

one aSPFD over the input space {S ∪ X } that integrates information stored in the

aSPFD in each timeframe. It first determines the values of the state elements in

each timeframe for the given set of input vectors that should take place after the

transformation. Then, a partially specified truth table of the new function at ηerr,

in terms of the primary input and the current states, can be generated. The aSPFD

of ηerr over the input space {S ∪ X } is constructed based on the truth table. The

complete procedure is summarized below:

Step 1. Extract the expected trace ET of ηerr for an input vector sequence v. Given

the expected output response (Y) under v, a satisfiability instance, � =
∏k

i=0 �i
Ce

(vi ,Y i , ηi
err), is constructed. Each �i

Ce
represents a copy of Ce

at timeframe i , where ηi
err is disconnected from its fanins and treated as a

primary input. The original primary inputs and the primary outputs of C i
e

are constrained with vi and Y i , respectively. The SAT solver assigns values

to {η0
err, · · · , ηk

err} to make Ce comply with the expected responses. These

values are the desired value of ηerr for v.

Step 2. Simulate Ce with v at the primary inputs and ET at ηerr to determine state

values in each timeframe. Those state values are what should be expected

after the transformation is applied. Subsequently, a partial specified truth

table (in terms of {X ∪ S}) of f ′ηerr
in Ce can be constructed.

Step 3. The aSPFD of ηerr contains an edge for each minterm pair in {on(η) ×
off (η)} according to the partially specified truth table.

Example 15.2 Figure 15.4(a) depicts a sequential circuit unrolled for three cycles

under the simulation of a single input vector sequence. Assume the correct response

at o1 should be 0 and net p is the transformation node. To determine the expected

trace of p, p’s are made into primary inputs, as shown in Fig. 15.4(b). A

SAT instance is constructed from the modified circuit with the input and output

274 Y.-S. Yang et al.

discrepancy

s2 s3p1 p2 p3

→ 0

T1 T3

s1/0

o1/1
o2/0 o3/1

b1/0

a1/1

b2/1 b3/0

a3/1a2/0

T2

s2 s3

T1 T3

a1/1

s1/0

b1/0
a2/0

b2/1
o1/0 o2/0 o3/1

b3/0
a3/1

T2

p3p2p1

(a) (b)

Fig. 15.4 The circuit for Example 15.2. (a) Unrolled circuit (b) Unrolled circuit with p’s as

primary inputs

constraints. Given the instance to a SAT solver, 110 is returned as a valid expected

trace for p. Next, simulating Ce with the input vector and the expected value of p,

s2 = 1, and s3 = 1 are obtained. Then, the partially specified truth table of p states

that p evaluates to 1 under minterms (in terms of {a, b, s}) {100, 011} and to 0 under

{101}. Therefore, the aSPFD of p contains two edges: (100, 101) and (011, 101).

A special case needs to be considered in Step 1. For any two timeframes, Ti and

T j , of the same test vector, if the values of the primary inputs and the states at these

two timeframes are the same, the value of ηi
err must equal the value of η

j
err. Hence,

additional clauses are added to � to ensure that the values of ηerr are consistent

when such conditions occur.

Example 15.3 With respect to Example 15.2, another possible assignment to

(p1, p2, p3) is 100. However, in this case, the values of {a, b, s} at T1 and T3 are

both 100, while p1 and p3 have opposite values. Consequently, this is not a valid

expected trace. To prevent this assignment returned by the SAT solver, the clauses

(s1 + s3 + r) · (s1 + s3 + r) · (r + p1 + p3) · (r + p1 + p3)

are added to the SAT instance. The new variable, r , equals 1, if s1 equals s3. When

that happens, the last two clauses ensure that p1 and p3 have the same value.

15.3.3 Optimizing aSPFDs with Don’t Cares

The procedure of aSPFDs generation described above does not take into account

all external don’t cares in the design. Identifying don’t cares for ηerr can further

reduce the size of aSPFDs, since all SPFD edges connected to a don’t care can be

removed from the aSPFDs. Consequently, the constraints of qualified solutions for

restructuring are relaxed.

There are two types of combinational don’t cares: Satisfiability Don’t Cares

(SDCs) and Observability Don’t Cares (ODCs). Since aSPFDs of nodes in designs

are built over the minterms explored by test vectors, only ODCs need to be con-

sidered. ODCs are minterm conditions where the value of the node has no effect

on the behavior of the design. Hence, ODCs of ηerr can only be found under Vc.

15 Automated Logic Restructuring with aSPFDs 275

Minterms encountered under the simulation of Ve cannot be ODCs, because, other-

wise, no erroneous behavior can be observed at the primary outputs. ODCs can be

easily identified by simulating the circuit with Vc and complement of the original

simulation value at ηerr. If no discrepancy is observed at the primary outputs, the

respected minterm is an ODC.

Similarly, combinational ODCs of node η in a sequential design are assign-

ments to the primary inputs and current states such that a value change at η is not

observed at the primary outputs or at the next states. However, combinational ODCs

of sequential designs may be found in erroneous vector sequences. This is because

the sequential design behaves correctly until the error is excited. Having this in

mind, the following procedures can be added after Step 2 in Section 15.3.2 to obtain

combinational ODCs.

Step 2a. Let ET 1 denote the expected trace obtained in Step 2 in Section 15.3.2 and

Ŝ denote the values of states in each timeframe. Another expected trace

ET 2 can be obtained by solving the SAT instance � again with additional

constraints that (a) force Ŝ on all state variables, and (b) block ET 1 from

being selected as a solution again. Consequently, the new expected trace

consists of different values at the transformation node such that the same

state transition is maintained.

Step 2b. Let ET 2 be the second expected trace and Ti be the timeframe where ET 1

and ET 2 have different values. It can be concluded that the minterm at Ti is

a combinational don’t care, since, at Ti , the values of the primary outputs

and the next states remain the same, regardless of the value of η.

Step 2c. Repeat this procedure until no new expected trace can be found.

Example 15.4 In Example 15.2, an expected trace, ET = 110, has been obtained,

and the state value, {s1, s2, s3}, is {0, 1, 1}. To obtain another expected trace at p,

additional clauses, (s1)(s2)(s3), are added to ensure states {s1, s2, s3} to have the

value {0, 1, 1}. Another clause, (p1 + p2 + p3), is added to prevent the SAT solver

to assign {1, 1, 0} to {p1, p2, p3} again. In this example, another expected trace of

p, ET 2 = 010, can be obtained. The values of ET and ET 2 are different at T1, which

implies that the minterm 100 in terms of {a, b, s} is a don’t care. Hence, the aSPFD

of p can be reduced to contain only one edge, (011, 101).

15.3.3.1 Conflicts in Multiple Expected Traces

In the case of sequential circuits, there can exist multiple expected traces for the

given input sequences and the expected output responses. The procedure described

earlier for obtaining ODCs in sequential circuits identifies expected traces with the

same state transitions. To further explore equivalent states, one can obtain a trace

with different state transitions. This can be done by adding additional constraints to

block Ŝ assigned to state variables and solving the SAT instance again. However,

276 Y.-S. Yang et al.

these additional traces may assign conflict logic values to the transformation node

for the same minterms.

Let ET 1 and ET 2 represent two expected traces of the same node for the same

test vector sequence. Assume a conflict occurs for minterm m (in terms of the pri-

mary input and the current state) between the assignment to ET 1 at cycle Ti and

the assignment to ET 2 at cycle T j . In this instance, one of the two cases below is

true:

• Case 1: The output responses and the next states at cycle Ti for ET 1 and T j

for ET 2 are the same. This implies that the value of the transformation node

under m does not affect the behavior of the design. Hence, m is a combinational

ODC.

• Case 2: The next states are different. This can happen when the circuit has mul-

tiple state transition paths with the same initial transitions. Figure 15.5 shows an

example of this scenario. Let η be the transformation node. The graph depicts a

state transition diagram for a single-output design. The state transition depends

on the value of η; the value of the output is indicated inside the state. Assume

a test vector makes the design start at S0. It takes at least three cycles to differ-

entiate the transition Patha and Pathb, since the value of the primary output

is not changed until the design is in S4. Since the proposed analysis is bounded

by the length of the input vector sequences, it may not process enough cycles

to differentiate these different paths. Hence, multiple assignments at the trans-

formation node can be valid within the bounded cycle range and, consequently,

cause conflicts. In the example, if the circuit is only unrolled for two cycles, both

paths (S0 → S1 and S0 → S2) would seem to be the same from the observation

of the primary outputs. It implies that η can have either logic 0 and logic 1 in S0.

Since the algorithm does not have enough information to distinguish the correct

assignment, minterm m in this case is considered to be a don’t care as well.

This issue can be resolved if vector sequences that are long enough are used

instead.

η =1

η = 0 η =1

S1

o =1
S0

o =1

S2

o =1
η = 0

η=0 η=1

o =1

S4

S3

o = 0
Patha

Pathb

Fig. 15.5 State transition

15 Automated Logic Restructuring with aSPFDs 277

Algorithm 8 Transformation using aSPFDs

1: Ce := Erroneous circuit

2: V := A set of input vectors

3: ηerr := Transformation node

4: TRANSFORMATION_WITH_ASPFD(Ce, V . ηerr) {

5: Compute aSPFDs of ηerr

6: E ← (mi , m j) ∈ R
appx
ηerr |(mi , m j) cannot be distinguished by any fanin of ηerr

7: Let N := {ηk | ηk ∈ Ce and ηk �∈ {TFO(ηerr) ∪ ηerr}
8: Cover ←SELECTCOVER(N)

9: Re-implementing ηerr with the original fanins and the nodes in Cover

10: }

15.4 Logic Transformations with aSPFDs

In this section, the procedure to systematically perform logic restructuring with

aSPFDs is presented. The proposed restructuring procedure uses aSPFDs to seek

transformations at the transformation node, ηerr. The transformations are con-

structed with one or more additional fanins.

The procedure is summarized in Algorithm 8. The basic idea is to find a set of

nets such that every minterm pair of the aSPFD of the new transformation imple-

mented at ηerr is distinguished by at least one of the nets, as stated in Property 15.1.

Hence, the procedure starts by constructing the aSPFD of ηerr, R
appx
ηerr . To minimize

the distortion that may be caused by the rectification, the original fanins are kept

for restructuring. In other words, it is sufficient that aSPFDs of additional fanins

only need to distinguish edges in R
appx
ηerr that cannot be distinguished by any original

fanins. Those undistinguished edges are referred to as uncovered edges. A function

is said to cover an SPFD edge if it can distinguish the respected minterm pair.

Let TFO(ηerr) denote the transitive fanout of nerr. The function SELECTCOVER

is used to select a set of nodes (Cover) from nodes not in TFO(ηerr) such that

each uncovered edge is distinguished by at least one node in Cover . The function

SELECTCOVER is further discussed in the next sections. Finally, a new two-level

AND-OR network is constructed at ηerr using the nodes in Cover as additional fanins

as discussed in Section 15.2.2.

Example 15.5 Returning to Example 15.1, the aSPFD of zmod is shown in

Fig. 15.6(a) and the partial truth table of remaining nodes is shown in Fig. 15.6(b).

Figure 15.6(a) shows that the edge (110, 100) (the dotted line) is the only SPFD

edge that is not distinguished by the fanin of zmod, { f, d}. Hence, the additional

fanins required for restructuring at zmod must distinguish this edge. According to

the truth table, this edge can be distinguished by b. As a result, b is used as the

additional fanin for restructuring zmod. Since the minterm 100 is the only minterm

in the onset of new zmod w.r.t. V , it implies b = 0, d = 0 and f = 1. Therefore, the

new function of zmod is AND(b, d, f), as shown in Fig. 15.6(c).

Two approaches to find the set, Cover , are presented in the following sections:

a SAT-based approach that finds the minimal number of fanin wires and a greedy

approach that exchanges optimality for performance.

278 Y.-S. Yang et al.

011110

111 010

101 100

a b c d e f

000 001

0 0 1 0 0 0

1 0 0 0 1 1

1 0 1 0 0 0

1 1 0 0 0 1

1 1 1 0 1 0 c

b
a

z

f

d

(a) (b) (c)

Fig. 15.6 aSPFD of zmod and the partially specified truth table of nodes in Fig. 15.2 and modified

circuit. (a) aSPFD of zmod , (b) partial truth table, (c) Modified circuit

15.4.1 SAT-Based Searching Algorithm

The search problem in Algorithm 8 is formulated as an instance of Boolean satis-

fiability. Recall that the algorithm looks for a set of nodes outside TFO(ηerr) such

that those nodes can distinguish SPFD edges of R
appx
ηerr that cannot be distinguished

by any fanins of ηerr.

Construction of the SAT instance is fairly straightforward. Each uncovered SPFD

edge in the aSPFD of ηerr has a list of nodes that can distinguish the edge. The SAT

solver selects a node from each list such that at least one node in the list of each

uncovered SPFD edge is selected. The set, Cover , consists of these selected nodes.

The formulation of the SAT instance � is as follows. Each node ηk is associated

with a variable wk . Node ηk is added to the set Cover if wk is assigned a logic

value 1. The instance contains two components: �C (W) and �B(W,P), where

W = {w1, w2, · · · } is the set of variables that are associated with nodes in the

circuit and P is a set of new variables introduced.

• Covering clauses (�C (W)): A covering clause lists the candidate nodes for an

uncovered edge. A satisfied covering clause indicates that the associated edge

is covered. One covering clause, c j , is constructed for each uncovered edge e j

in the aSPFD of ηerr. Let D j be the candidate nodes which can cover edge e j .

Clause c j contains wk if ηk in D j covers e j ; that is, c j =
∨

ηk∈D j
wk . Hence,

this clause is satisfied if one of the included candidate nodes is selected.

• Blocking clauses (ΦB(W,P)): Blocking clauses define the condition where a

candidate node ηk should not be considered as a solution. They help to prune

the solution space and prevent spending time on unnecessary searches. For each

node ηk �∈ {TFO(ηerr)∪ηerr}, according to Property 15.1, ηk does not distinguish

more edges if all of its fanins are selected already. Hence, for each candidate node

ηk , a new variable, pk , is introduced; pk is assigned a logic value 1 if all of the

fanins of ηk are selected, and 0 otherwise. Consequently, wk is assigned a logic

value 0 (i.e., ηk is not considered for the solution) when pk has a logic value 1.

The blocking clause for node ηk = f (η1, η2, · · · , ηm), where ηi , 1 ≤ i ≤ m, is

a fanin of ηk , is as follows: (
∨m

i=1 wi + pk) ·
∧m

i=1(wi + pk) · (pk + wk).

15 Automated Logic Restructuring with aSPFDs 279

Given a satisfying assignment for Φ, a node ηk is added to the set Cover if

wk = 1. The covering clauses ensure that Cover can cover all the edges in the

aSPFD of ηerr. Blocking clauses reduce the possibility of the same set of edges

being covered by multiple nodes in Cover . If the function derived by the satisfying

assignment from the set Cover = {w1, w2, · · · , wn} fails formal verification, then

(w1 + w2 + · · · + wn) is added as an additional blocking clause to � and the SAT

solver is invoked again to find another solution.

Note that in the above formulation because there are no constraints on the

number of nodes that should be selected to cover the edges, the solution returned

by the solver may not be optimal. In order to obtain the optimal solution, in

experiments, SAT instances are solved with a pseudo-Boolean constraint SAT

solver [8] that returns a solution with the smallest number of nodes. The use of a

pseudo-Boolean solver is not mandatory and any DPLL-based SAT solvers [15, 17]

can be used instead. One way to achieve this is to encode the countercircuitry

from [23] to count the number of selected nodes. Then, by enumerating values

N = 1, 2, . . ., the constraint enforces that no more than N variables can be set to

a logic value 1 simultaneously or � becomes unsatisfiable. Constraining the num-

ber N in this manner, any DPLL-based SAT solver can find the minimum size of

Cover.

15.4.2 Greedy Searching Algorithm

Although the SAT-based formulation can return the minimum set of fanins to re-

synthesize ηerr, experiments show that, at times, it may require excessive runtime.

To improve the runtime performance, a greedy approach to search solutions is pro-

posed as follows:

Step 1. Let E be the set of SPFD edges in the aSPFD of ηerr that needs to be

covered. For each edge e ∈ E , let Ne be the set of nodes η �∈ {TFO(ηerr) ∪
ηerr} which can distinguish the edge. Sort e ∈ E in descending order by the

cardinality of Ne

Step 2. Select the edge, emin, with the smallest cardinality of Nemin . This step

ensures that the edge that can be covered with the least number of can-

didates is targeted first

Step 3. Select ηk from Nemin such that ηk covers the largest set of edges in E and

add ηk to Cover

Step 4. Remove edges that can be covered by ηk from E . If E is not empty, go back

to Step 1 to select more nodes

The solutions identified by the greedy approach may contain more wires than the

minimum set. However, experiments indicate that the greedy approach can achieve

results of a similar quality to the SAT-based approach in a more computationally

efficient manner.

280 Y.-S. Yang et al.

15.5 Experimental Results

The proposed logic restructuring methodology using aSPFDs is evaluated in this

section. ISCAS’85 and ISCAS’89 benchmarks are used. The diagnosis algorithm

from [23] is used to identify the restructuring locations and Minisat [9] is the under-

lying SAT solver. The restructuring potential of the aSPFD-based algorithms is com-

pared with that of a logic correction tool from [25] which uses the dictionary model

of [1]. Both methodologies are compared against the results of a formal method,

called error equation [6]. This method answers with certainty whether there exists

a modification that corrects a design at a location. Experiments are conducted on a

Core 2 Duo 2.4 GHz processor with 4 GB of memory while the runtime is reported

in seconds.

Table 15.1 summarizes the characteristics of benchmarks used in this experiment.

Combinational benchmarks are listed in the first four columns, while sequential

benchmarks are shown in the last four columns. The table includes the number

of primary inputs, the number of flip-flops, and the total number of gates in each

column, respectively.

Table 15.1 Characteristics of benchmarks

Combinational Sequential

Circ. # PI # FF # Gates Circ. # PI # FF # Gates

c1355 41 0 621 s510 19 6 256

c1908 33 0 940 s713 35 19 482

c2670 157 0 1416 s953 16 29 476

c3540 50 0 174 s1196 14 18 588

c5315 178 0 2610 s1238 14 18 567

c7552 207 0 3829 s1488 8 6 697

In this work, performance of the proposed methodology is evaluated with the

ability to correct errors in logic netlists. Three different complexities of modifica-

tions are injected in the original benchmark. The locations and the types of modifi-

cations are randomly selected. Simple complexity modifications (suffix “s”) involve

the addition or deletion of a single wire, replacement of a fanin with another node,

and a gate-type replacement. Moderate modifications (suffix “m”) on a gate include

multiple aforementioned changes on a single gate. The final type of modification

complexity, complex (suffix “c”), injects multiple simple complexity modifications

on a gate and those in the fanout-free fanin cone of the gate.

For each of the above types, five testcases are generated from each benchmark.

The proposed algorithm is set to find, at most, 10 transformations for each location

identified first by the diagnosis algorithm. Functional verification is carried out at

the end to check whether the 10 transformations are valid solutions.

15.5.1 Logic Restructuring of Combinational Designs

The first set of experiments evaluates the proposed methodology for a single location

in combinational circuits. Experimental results are summarized in Table 15.2. In this

15 Automated Logic Restructuring with aSPFDs 281

Table 15.2 Combinational logic transformation results for various complexities of modifications

Circ.

Error

loc.

Error

equat.

(%)

Dict.

model

(%) aSPFD(%)

Avg

time

(s)

Avg #

wires

(greedy)

Min #

wires

(SAT)

Avg

corr/

loc.

% verified

First All

c1355_s 5.3 100 19 81 3.5 1.7 1.7 8.3 100 46

c1908_s 18.0 84 13 84 18.9 1.4 1.4 8.1 90 62

c2670_s 9.2 98 11 82 21.9 2.4 2.2 6.2 100 75

c3540_s 7.2 100 28 86 9.3 1.1 1.1 4.5 100 66

c5315_s 6.4 100 25 100 7.6 1.9 – 5.4 89 77

c7552_s 11.8 88 19 50 25.7 1.7 – 3.1 88 54

c1355_m 2.7 100 13 100 32.0 2.1 2.0 7.0 100 52

c1908_m 5.8 100 3 83 11.0 2.5 2.5 5.6 100 68

c2670_m 5.2 96 4 60 95.4 3.4 2.9 9.4 100 60

c3540_m 3.2 100 25 100 54.2 1.6 1.6 6.1 84 78

c5315_m 9.6 94 2 100 46.7 2.9 – 5.7 100 77

c7552_m 8.8 100 9 91 39.2 1.9 – 6.9 100 79

c1355_c 3.7 96 0 73 38.4 2.9 2.9 3.3 100 40

c1908_c 15.8 47 41 70 19.0 1.4 1.3 7.2 100 88

c2670_c 12.4 98 31 62 33.2 1.7 1.7 4.7 100 76

c3540_c 3.0 100 7 67 122.4 3.6 3.4 3.8 100 33

c5315_c 6.4 97 16 100 20.0 2.7 – 9.1 100 79

c7552_c 20.6 64 20 50 23.7 1.9 – 3.5 91 43

Average 8.6 93 16 80 29.2 2.0 – 6.4 96 67

experiment, circuits are simulated with a set of 1000 input vectors that consists of a

set of vectors with high stuck-at fault coverage and random-generated vectors.

The first column lists the benchmarks and the types of modifications inserted as

described earlier. The second column has the average number of locations returned

by the diagnosis program for the five experiments. The percentage of those locations

where the error equation approach proves the existence of a solution is shown in the

third column. The next two columns show the percentage of locations (out of those

in the second column) for which the dictionary approach and the proposed aSPFD

approach can successfully find a valid solution. A valid solution is one in which

the restructured circuit passes verification. The sixth column contains the average

runtime, including the runtime of verification, to find all 10 transformations using

greedy heuristics.

Taking c1908_s as an example, there are, on average, 18 locations returned

by the diagnosis program. The error equation check returns that 15 (84% of 18)

out of those locations can be fixed by re-synthesizing the function of the location.

The dictionary approach successfully identifies two locations (13% of 15) while

the aSPFD approach can restructure 13 locations (84% of 15). This shows that

the proposed approach is seven times more effective than the dictionary approach.

Overall, the proposed methodology outperforms the dictionary approach in all cases

and achieves greater improvement when the modification is complicated.

The quality of the transformations, in terms of the wires involved as well as some

algorithm performance metrics, are summarized in column 7–11 of Table 15.2.

Here, only cases where a valid solution is identified by the proposed algorithm

are considered. The seventh and the eighth columns list the average number of

282 Y.-S. Yang et al.

additional wires returned by the greedy algorithm and by the SAT-based searching

algorithm, respectively. As shown in the table, the greedy heuristic performs well

compared to the SAT-based approach. Because the SAT-based approach may run

into runtime problems as the number of new wires increases, it times out (“-”) after

300 s if it does not return with a solution.

As mentioned earlier, the algorithm is set to find, at most, 10 transformations

for each location. The ninth column shows the average number of transformations

identified for each location. It shows that, for all cases, more than one transformation

can be identified. This is a desirable characteristic, since engineers can have more

options to select the best fit for the application. The final two columns show the

percentage of transformations that pass verification. The first column of these two

columns only considers the first identified transformation, while the second column

has the percentage of all 10 transformations that pass verification. One can observe

that the vast majority of first-returned transformations pass verification.

Next, the performance of restructuring with various numbers of test vectors is

investigated. Four sizes are used: 250, 500, 1000, and 2000 test vectors. The results

are depicted in Fig. 15.7. Figure 15.7(a) shows the percentage of the locations where

the proposed algorithm can identify a valid transformation. As shown, the success

rate increases as the size of input vectors increases for each error complexity group.

This is expected, since more vectors provide more information for aSPFDs. The

chance that the algorithm incorrectly characterizes a minterm as a don’t care is also

reduced.

Simple Moderate Complex
0

20

40

60

80

100

120

Error complexity

S
u
c
c
e
s
s
 r

a
te

 (
%

)

250 500 1000 2000

500 1000 1500 2000
0

2

4

6

8

10

12

14

of vectors

N
o
rm

a
liz

e
d
 r

u
n
ti
m

e

Simple
Moderate
Complex

(a) (b)

Fig. 15.7 Performance of restructuring with variable vector sizes for combinational designs. (a)

Solution success rate (b) Runtime profiling

Although using a larger vector set can improve the success rate of the restruc-

turing, it comes with the penalty that more computational resources are required to

tackle the problem. The average runtime is plotted in Fig. 15.7(b) and normalized

by comparing it to the runtime of the case with 250 vectors. Each line represents

one error complexity type. Taking Complex as an example, the runtime is 12 times

longer when the vector size is increased from 250 to 2000. Note that there is a

significant increase when the size of the vector set increases from 1000 to 2000.

15 Automated Logic Restructuring with aSPFDs 283

Since the success rate of cases when 1000 vectors are used is close to the success

rate of those with 2000 vectors (Fig. 15.7a), this suggests that, for those testcases,

1000 input vectors can be a good size to have a balance between the resolution of

solutions and the runtime performance.

15.5.2 Logic Restructuring of Sequential Designs

The second set of the experiments evaluates the performance of logic restructuring

with aSPFDs in sequential designs. The vector set for sequential circuits contains

500 random input vector sequences with a length of 10 cycles. To verify the cor-

rectness of transformations, a bounded sequential equivalent checker [19] is used.

This tool verifies the resulting design against the reference within a finite number of

cycles, which is set to 20 cycles in our experiment.

The performance of the proposed methodology is recorded in Table 15.3. The

benchmarks and the type of the modification inserted are listed in the first column.

The second column presents the average number of locations for transformations

reported by the diagnosis program while the percentage of these locations that are

proven to be correctable by error equation is recorded in the third column. The per-

centage of locations in which the proposed methodology finds a valid transformation

is reported in the fourth column, followed by runtime.

Table 15.3 Sequential logic transformation results for various complexities of modifications

Circ.

Error

loc.

Error

equat. (%) aSPFD(%)

Avg.

time

(s)

Avg #

wires

Avg #

corr/

loc.

% verified

First All % unique

s510_s 2.4 100 75 384 0.3 1.8 100 92 100

s713_s 5.0 72 0 325 – – – – –

s953_s 1.8 100 33 223 1.0 3.3 100 37 70

s1196_s 1.8 100 56 237 2.0 5.0 83 92 64

s1238_s 1.6 100 38 781 1.1 5.0 100 100 55

s1488_s 2.8 86 43 258 1.7 5.0 83 46 68

s510_m 2.0 100 90 68 0.3 4.2 100 38 99

s713_m 2.8 43 36 689 0.6 1.4 100 41 60

s953_m 1.6 63 40 105 1.2 1.2 100 100 100

s1196_m 1.2 83 66 27 1.8 2.6 100 72 83

s1238_m 2.6 85 72 218 2.2 4.3 100 76 47

s1488_m 3.4 100 0 83 – – – – –

s510_c 1.6 100 38 166 0.5 1.5 100 92 100

s713_c 3.4 71 47 1124 1.0 1.0 100 100 75

s953_c 2.2 73 0 122 – – – – –

s1196_c 2.0 50 20 588 0.5 2.3 50 32 100

s1238_c 1.2 100 14 328 0 – 100 – 100

s1488_c 1.8 71 30 98 1.7 1.5 33 27 100

Average 2.1 90 39 236 1.0 3.1 92 68 82

284 Y.-S. Yang et al.

Note that the error equation approach in [6] is developed for combinational cir-

cuits. Hence, here the sequential circuits are converted into combinational ones by

treating the states as pseudo-primary inputs/outputs. In this way, the number of loca-

tions reported by the error equation approach is the lower bound of the locations that

are correctable, since it constrains that the design after restructuring has to be combi-

nationally functional equivalent to the reference design. This constraint discards any

solutions that utilize equivalent states. Overall, the proposed approach can restruc-

ture 39% of the locations. The reason why the algorithm fails to correct some of the

locations is because the input vector sequences do not provide enough information

to generate a good aSPFD. This occurs when the algorithm characterizes a minterm

as a don’t care when this minterm is not exercised by the input vector sequences, or

when conflict values are required for this minterm, as discussed in Section 15.3.3.

Consequently, the resulting transformation does not distinguish all the necessary

minterm pairs that are required to correct the design.

The sixth and the seventh columns report the average number of additional wires

used in the transformations and the average number of transformations per location,

respectively. Note, because the transformation at some locations only needs to be

re-synthesized with the existing fanin nets without any additional wires, cases such

as s510_s use less than one additional wire on average. The next two columns show

the percentage of cases where the first transformation passes verification, and the

percentage of 10 transformations that pass verification. Similar to the combinational

circuits, there is a high percentage of the first transformations that passes verifica-

tion if the proposed methodology returns a valid transformation. This indicates that

aSPFD is a good metric to prune out invalid solutions.

As the result shown in the last column, the valid solutions are further checked

for whether or not they are unique to the sequential aSPFD-based algorithm. That

is, the modified design is not combinationally functional equivalent to the refer-

ence design; otherwise, such restructuring can be identified by the combinational

approach. If two designs are not combinationally equivalent, it means that the

transformation changes the state assignments as well. Consequently, these trans-

formations will be pruned out by the combinational approach. Overall, 82% of the

valid transformations is uniquely identified by the sequential approach, restructuring

method.

Finally, the impact of test vector sizes on the performance of the presented

methodology is studied. Here, the number of test vector sequences is set to 100,

200, 500, and 700. These test sequences have a length of 10 cycles and are randomly

generated. The success rate and the normalized runtime are shown in Fig. 15.8(a)

and Fig. 15.8(b), respectively. One can see that the behavior observed earlier for

the combinational cases is also observed here. The success rate of the restructuring

decreases as the number of the test sequences decreases. Among the different error

complexities, the benchmarks with complex errors are affected most. This is because

a complex error can be excited in various ways and requires more test sequences to

fully characterize the erroneous behavior. As a result, the algorithm needs more

vector sequences to construct an accurate transformation. Moreover, Fig. 15.8(b)

15 Automated Logic Restructuring with aSPFDs 285

Simple Moderate Complex
0

10

20

30

40

50

60

70

Error complexity

S
u
c
c
e
s
s
 r

a
te

 (
%

)
100 200 500 700

100 200 300 400 500 600 700
0

10

20

30

40

50

of vector sequences

N
o
rm

a
liz

e
d
 r

u
n
ti
m

e

Simple
Moderate
Complex

(a) (b)

Fig. 15.8 Performance of restructuring with variable vector sizes for sequential designs. (a) Solu-

tion success rate, (b) Runtime profiling

shows a significant reduction of the runtime with the decrease of the number of

vector sequences.

15.6 Summary

In this chapter, a simulation-based procedure to approximate SPFDs, namely

aSPFDs, is first presented. An aSPFD is an approximation of the original SPFD,

as it only contains information that is explored by the simulation vectors. Next, an

aSPFD-based logic restructuring algorithm for both combinational and sequential

designs is presented. This technique can be used for a wide range of applications,

such as logic optimization, debugging, and applying engineer changes. Experiments

demonstrate that aSPFDs provide a powerful approach to restructuring a logic

design to a new set of specifications. This approach is able to construct required

logic transformations algorithmically and restructure designs at a location where

other methods fail.

References

1. Abadir, M.S., Ferguson, J., Kirkland, T.E.: Logic verification via test generation. IEEE Trans-

actions on CAD 7, 138–148 (1988)

2. Bryant, R.E.: On the complexity of VLSI implementations and graph representations of

Boolean functions with application to integer multiplication. IEEE Transactions on Computer

40(2), 205–213 (1991)

3. Chang, K.H., Markov, I.L., Bertacco, V.: Fixing design errors with counterexamples and resyn-

thesis. IEEE Transactions on CAD 27(1), 184–188 (2008)

4. Chang, S.C., Cheng, D.I.: Efficient Boolean division and substitution using redundancy addi-

tion and removing. IEEE Transactions on CAD 18(8), 1096–1106 (1999)

5. Chang, S.C., Marek-Sadowska, M., Cheng, K.T.: Perturb and simplify: Multi-level Boolean

network optimizer. IEEE Transactions on CAD 15(12), 1494–1504 (1996)

286 Y.-S. Yang et al.

6. Chung, P.Y., Hajj, I.N.: Diagnosis and correction of multiple design errors in digital circuits.

IEEE Transactions on VLSI Systems 5(2), 233–237 (1997)

7. Cong, J., Lin, J.Y., Long, W.: SPFD-based global rewiring. In: International Symposium on

FPGAs, pp. 77–84. Monterey, CA, USA (2002)

8. Eén, N., Sörensson, N.: Translating pseudo-Boolean constraints into SAT. Journal on Satisfia-

bility, Boolean Modeling and Computation 2, 1–26 (2006)

9. In: E. Giunchiglia, A. Tacchella (eds.) Theory and Applications of Satisfiability Testing, Lec-

ture Notes in Computer Science, vol. 2919, pp. 333–336. Springer Berlin / Heidelberg (2004)

10. Entrena, L., Cheng, K.T.: Combinational and sequential logic optimization by redundancy

addition and removal. IEEE Transactions on CAD 14(7), 909–916 (1995)

11. Jiang, J.H., Brayton, R.K.: On the verification of sequential equivalence. IEEE Transactions

on CAD 22(6), 686–697 (2003)

12. Kunz, W., Stoffel, D., Menon, P.R.: Logic optimization and equivalence checking by implica-

tion analysis. IEEE Transactions on CAD 16(3), 266–281 (1997)

13. Lin, C.C., Chen, K.C., Marek-Sadowska, M.: Logic synthesis for engineering change. IEEE

Transactions on CAD 18(3), 282–292 (1999)

14. Ling, A.C., Brown, S.D., Zhu, J., Saparpour, S.: Towards automated ECOs in FPGAs. In:

International symposium on field programmable gate arrays, pp. 3–12. Monterey, CA, USA

(2009)

15. Marques-Silva, J.P., Sakallah, K.A.: GRASP: A new search algorithm for satisfiability. IEEE

Transactions on Computer 48(5), 506–521 (1999)

16. Mishchenko, A., Chatterjee, S., Brayton, R.K., Eén, N.: Improvements to combinational equiv-

alence checking. In: Proceedings of International Conference on CAD, pp. 836–843. San Jose,

CA, USA (2006)

17. Moskewicz, M.W., Madigan, C.F., Malik, S.: Chaff: Engineering an efficient SAT solver. In:

Design Automation Conference, pp. 530–535. Las Vegas, NV, USA (2001)

18. Nayak, D., Walker, D.M.H.: Simulation-based design error diagnosis and correction in com-

binational digital circuits. In: VLSI Test Symposium, pp. 70–78. San Diego, CA, USA (1999)

19. Safarpour, S., Fey, G., Veneris, A., Drechsler, R.: Utilizing don’t care states in SAT-based

bounded sequential problems. In: Great Lakes VLSI Symposium. Chicago, IL, USA (2005)

20. Sinha, S.: SPFDs: A new approach to flexibility in logic synthesis. Ph.D. thesis, University of

California, Berkeley (2002)

21. Sinha, S., Brayton, R.K.: Implementation and use of SPFDs in optimizing Boolean networks.

In: Proceedings of International Conference on CAD, pp. 103–110. San Jose, CA, USA (1998)

22. Sinha, S., Kuehlmann, A., Brayton, R.K.: Sequential SPFDs. In: Proceedings of International

Conference on CAD, pp. 84–90. San Jose, CA, USA (2001)

23. Smith, A., Veneris, A., Ali, M.F., Viglas, A.: Fault diagnosis and logic debugging using

Boolean satisfiability. IEEE Transactions on CAD 24(10), 1606–1621 (2005)

24. Veneris, A., Abadir, M.S.: Design rewiring using ATPG. IEEE Transactions on CAD 21(12),

1469–1479 (2002)

25. Veneris, A., Hajj, I.N.: Design error diagnosis and correction via test vector simulation. IEEE

Transactions on CAD 18(12), 1803–1816 (1999)

26. Watanabe, Y., Brayton, R.K.: Incremental synthesis for engineering changes. In: International

Conference on Computer Design, pp. 40–43. Cambridge, MA, USA (1991)

27. Yamashita, S., H.Sawada, Nagoya, A.: A new method to express functional permissibilities

for LUT based FPGAs and its applications. In: Proceedings of International Conference on

CAD, pp. 254–261. San Jose, CA, USA (1996)

28. Yang, Y.S., Sinha, S., Veneris, A., Brayton, R.K.: Automating logic rectification by approx-

imate SPFDs. In: Proceedings of ASP Design Automation Conference, pp. 402–407.

Yokohama, Japan (2007)

Chapter 16

Extracting Functions from Boolean Relations
Using SAT and Interpolation

Jie-Hong Roland Jiang, Hsuan-Po Lin, and Wei-Lun Hung

Abstract Boolean relations are an important tool in system synthesis and verifica-

tion to characterize solutions to a set of Boolean constraints. For hardware realiza-

tion of a system specified by a Boolean relation, a deterministic function often has

to be extracted from the relation. Prior methods, however, are unlikely to handle

large problem instances. From the scalability standpoint this chapter demonstrates

how interpolation can be exploited to extend determinization capacity. A com-

parative study is performed on several proposed computation techniques, specifi-

cally, expansion- versus composition-based quantification and interpolation- versus

cofactoring-based function extraction. Experimental results show that Boolean rela-

tions with thousands of variables can be effectively determinized and the extracted

functional implementations are of reasonable quality.

16.1 Introduction

Relations are a powerful tool to represent mappings. Admitting one-to-many map-

pings, they are strictly more generic than functions. Taking the Boolean mappings

{(x1, x2) ∈ B
2} → {(y1, y2) ∈ B

2} of Fig. 16.1 as an example, we can express

the (one-to-one) mapping of Fig. 16.1a using Boolean functions f1 = x1x2 and

f2 = ¬x1¬x2 for outputs y1 and y2, respectively. On the other hand, there is no

similar functional representation for the mapping of Fig. 16.1b due to the one-to-

many mapping under (x1, x2) = (0, 1). However, this mapping can be specified by

the relation (with characteristic function) R = ¬x1¬x2¬y1 y2 ∨ ¬x1x2¬y1¬y2 ∨
¬x1x2 y1 y2 ∨ x1¬x2¬y1¬y2 ∨ x1x2 y1¬y2.

Owing to their generality, relations can be exploited to specify the permissible

behavior of a design. For instance, the behavior of a system can be specified using

J.-H.R. Jiang (B)

National Taiwan University, Taipei, Taiwan

e-mail: jhjiang@cc.ee.ntu.edu.tw

This work is based on an earlier work: Interpolating functions from large Boolean relations, in Pro-

ceedings of the 2009 International Conference on Computer-Aided Design, ISBN:978-1-60558-

800-1 (2009) c© ACM, 2009. DOI= http://doi.acm.org/10.1145/1687399.1687544

S.P. Khatri, K. Gulati (eds.), Advanced Techniques in Logic Synthesis,

Optimizations and Applications, DOI 10.1007/978-1-4419-7518-8_16,
C© Springer Science+Business Media, LLC 2011

287

288 J.-H.R. Jiang et al.

Fig. 16.1 Boolean mappings
00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

(a) (b) (c)

x
1

x2 y1y2 x1x2 y1y2 x1x2 y1y2

relations as constraints over its input stimuli, state transitions, and output responses.

Moreover, the flexibility of a circuit can be naturally characterized by a relation.

In fact, relations subsume the conventional notion of don’t cares. To see it, assume

Fig. 16.1b to be a relaxed permissible mapping of Fig. 16.1a. That is, under input

(x1, x2) = (0, 1) the output (y1, y2) can be (1, 1) in addition to (0, 0). This flexibil-

ity is not expressible using the conventional don’t care representation, and it can be

useful in circuit optimization. By trimming off the output choice (0, 0) under input

(0, 1), the resulting mapping in Fig. 16.1c has new output functions f1 = x2 and

f2 = ¬x1, simpler than those of Fig. 16.1a.

In fact circuit flexibility can be abundant in a given multi-level netlist structure.

To illustrate, Fig. 16.2 shows an example revealing the origin of flexibility and its

potential use for circuit minimization. The circuit structure of Fig. 16.2a induces

the mapping relation shown by the solid edges in Fig. 16.2c. Observe that output

(z1, z2) equals (0, 0) when (y1, y2) is (0, 0) or (1, 1). Consequently, as indicated by

the dashed edge in Fig. 16.2c, (y1, y2) can be (1, 1) as well in addition to the original

(0, 0) when (x1, x2) = (0, 1). Hence the circuit can be simplified to Fig. 16.2b by

choosing (y1, y2) = (1, 1) under (x1, x2) = (0, 1).

Compared with relations, functions, though restrictive, are often closer to physi-

cal realization due to their deterministic nature. Therefore conversions between rela-

tions and functions are usually indispensable. To name two examples, in reachability

analysis, the transition functions of a state transition system are often converted to

a transition relation to abstract away input variables; in circuit synthesis, optimal

11

10

01

00

11

10

01

00

x
1

x
2

y
1

y
2

11

10

01

00

z
1

z
2

z
1

z
2

y
1

y
2

x
1

x
2

z
1

z
2

y
1

y
2

x
1

x
2

(b)(a)

(c)

Fig. 16.2 Exploring the flexibilities described by a relation for optimization

16 Extracting Functions from Boolean Relations Using SAT and Interpolation 289

functions can be extracted from a relation representing some specification or per-

missible behavior.

Whereas converting functions to relations is straightforward, converting relations

to functions involves much complication. Among many possibilities, relation-to-

function conversion in its two extremes can be range-preserving, where all possi-

ble output responses under every input stimulus1 are produced (with the help of

parametric variables), and can be deterministically reducing, where only one output

response under every input stimulus is produced (without the need of parametric

variables). Both extremes have important applications in system synthesis and veri-

fication. The former is particularly useful in verification. As the constraints specified

by a relation are preserved, the conversion helps create a testbench to generate simu-

lation stimuli [10, 22, 23] mimicking the constrained system environment. The later

on the other hand is particularly useful in synthesis [4]. As the synthesized compo-

nents are typically much compact than those with range preserved [3], it is attractive

for generating the final implementation. This chapter is concerned with the latter, in

particular, determinizing a relation and extracting functional implementation in the

Boolean domain.

State-of-the-art methods, such as [1, 20], are based on decision diagrams. As

BDDs are not memory efficient in representing large Boolean functions, these meth-

ods have intrinsic limitations and are not scalable to large problem instances. There

has been growing demands for scalable determinization of large Boolean relations.

Synthesis from specifications shows one such example [3]. The quest for scalable

determinization methods remains.

From the scalability standpoint, we seek reasonable representation of large

Boolean functions and, in particular, use and-inverter graphs (AIGs) (see, e.g., [18])

as the underlying data structure. Due to their simple and multi-level nature, AIGs are

often much compact and are closer to final logic implementation than the two-level

sum-of-products (SOP) form. Moreover they provide a convenient interface with

SAT solvers in terms of conversion to CNFs and representation of interpolants [15].

Therefore, unlike previous efforts on relation solving, our objective is to convert a

large relation to a set of functions with reasonable quality. Similar attempts were

pursued recently in other efforts of scalable logic synthesis, e.g., [11, 12, 14, 17].

Our main exploration includes (1) exploiting interpolation [6] for Boolean

relation determinization and function extraction, (2) studying expansion- and

substitution-based quantifications with reuse, and (3) showing support minimiza-

tion in the interpolation framework. A comparative empirical study is performed

on various computation schemes. Experimental results suggest that interpolation is

essential to scalable relation determinization and function extraction. Boolean rela-

tions with thousands of variables can be determinized effectively and the extracted

functions are typically of reasonable quality compared with their respective refer-

ence models.

1In some occasions input stimuli are unimportant and their correspondences with output responses

need not be preserved.

290 J.-H.R. Jiang et al.

16.2 Previous Work

Brayton and Somenzi [4] were among the first to observe the utility of Boolean rela-

tions in logic minimization. Boolean relations are useful not only in characterizing

circuit flexibilities [16, 21] but also in characterizing solutions to design specifi-

cations/constraints [3]. There were intensive efforts which have been proposed in

recent decades on relation determinization. These efforts can be categorized into

exact and approximate methods. The former approaches focus on finding the opti-

mum functional implementation [5, 8]. The later methods adopt heuristic strategy to

optimize the functions implementing the given relation [1, 7, 13, 20]. Such optimiza-

tion objectives, for instance, can be in terms of two-level logic minimization under

the SOP representation [5, 7, 8, 13, 20] or in term of some polynomial functions

over BDD sizes [1].

An exact approach to minimizing SOP function expressions for a given Boolean

relation was proposed [5]. This method is similar to the Quine–McCluskey proce-

dure, building all prime cubes of permissible functions and solving a binate covering

problem to derive minimal SOP representation. Extending [5], the work [8] repre-

sents constraints of the binate covering problem using multiple BDDs. Although

these methods are able to find the exact minimal function representation, they are

only applicable to small instances.

In [7], heuristic SOP minimization for a given Boolean relation is achieved using

the automatic test pattern generation (ATPG) technique in testing. There are other

BDD-based approaches [1, 13, 20]. In [13], the covering problem of SOP mini-

mization was formulated using BDDs. The method [20] adopted multiple-valued

decision diagrams (MDDs) to represent a multiple-valued relation and applied

EXPRESSO-like procedure [19] for SOP representation. Another recursive approach

was proposed in [1], where split and projection operations were applied iteratively

to find an optimal BDD representation for a given Boolean relation.

All of the above prior methods focused on the optimization of functional

implementation without considering the scalability issue. In contrast, our approach

focuses on scalability with reasonable optimization quality.

16.3 Preliminaries

As a notational convention, substituting function g for variable v in function f is

denoted as f [v/g].

16.3.1 Boolean Relation

A relation R ⊆ X × Y can be equivalently represented as a characteristic function

R : X × Y → B such that (a, b) ∈ R for a ∈ X, b ∈ Y if and only if R(a, b) = 1.

Definition 16.1 A relation R : X × Y → B is total (in X) if ∀a ∈ X, ∃b ∈
Y.R(a, b) = 1. Otherwise, R is partial.

Unless otherwise said we shall assume that a relation R ⊆ X × Y is total in X .

16 Extracting Functions from Boolean Relations Using SAT and Interpolation 291

Definition 16.2 Given a partial relation R : X × Y → B, an (input) assignment

a ∈ X is undefined if no (output) assignment b ∈ Y makes R(a, b) = 1.

Figure 16.3 shows examples of total and partial relation. The relation of

Fig. 16.3a is total because every input element maps to some output element(s); that

of Fig. 16.3b is partial because the mapping under (x1, x2) = (1, 0) is undefined.

Fig. 16.3 Examples of total

and partial relation 00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

(a) (b)

x
1
x

2
y
1
y

2
x

1
x

2
y
1

y
2

We assume that X is the input space B
n spanned by input variables x =

(x1, . . . , xn) and Y is the output space B
m spanned by output variables y =

(y1, . . . , ym).

Given a Boolean relation R : Bn×B
m → B with input variables x = (x1, . . . , xn)

and output variables y = (y1, . . . , ym), we seek a functional implementation f =
(f1, . . . , fm) with fi : Bn → B such that

D =
m
∧

i=1

(yi ≡ fi (x))

is contained by R, i.e., the implication D ⇒ R holds. Equivalently, the relation after

substituting fi for yi

R[y1/ f1, . . . , ym/ fm]

equals constant 1.

Note that the above relation D is a deterministic relation, i.e.,

∀a ∈ X,∀b, b′ ∈ Y.((D(a, b) ∧ D(a, b′))⇒ (b = b′)).

Therefore seeking a functional implementation of a total relation can be considered

as determinizing the relation. On the other hand, any deterministic total relation has

a unique functional implementation.

16.3.2 Satisfiability and Interpolation

The reader is referred to prior work [11] for a brief introduction to SAT solving and

circuit-to-CNF conversion, which are essential to our development. To introduce

terminology and convention for later use, we restate the following theorem:

292 J.-H.R. Jiang et al.

Theorem 16.1 (Craig Interpolation Theorem) [6] Given two Boolean formulas φA

and φB , with φA∧φB unsatisfiable, then there exists a Boolean formula ψA referring

only to the common variables of φA and φB such that φA ⇒ ψA and ψA ∧ φB is

unsatisfiable.

The Boolean formula ψA is referred to as the interpolant of φA with respect to

φB . Modern SAT solvers can be extended to construct interpolants from resolution

refutations [15].

In the sequel, we shall assume that Boolean relations, functions, and interpolants

are represented using AIGs.

16.4 Our Approach

In this section, we first study function extraction from single-output relations and

generalize the computation to multiple-output relations. In addition, we consider the

special case of extracting functions from a deterministic relation. Finally, methods

for function simplification are discussed.

16.4.1 Single-Output Relation

We consider first the functional implementation of a single-output relation R(x, y)

with y the only output variable.

16.4.1.1 Total Relation

Proposition 16.1 A relation R(x, y) is total if and only if the conjunction of

¬R(x, 0) and ¬R(x, 1) is unsatisfiable.

Theorem 16.2 Given a single-output total relation R(x, y), the interpolant ψA of

the refutation of

¬R(x, 0) ∧ ¬R(x, 1) (16.1)

with φA = ¬R(x, 0) and φB = ¬R(x, 1) corresponds to a functional implementa-

tion of R.

Proof Since R is total, Formula (16.1) is unsatisfiable by Proposition 16.1. That is,

the set {a ∈ X | R(a, 0) = 0 and R(a, 1) = 0} is empty. Hence φA (respectively φB)

characterizes the set SA = {a ∈ X | R(a, 1) = 1 and R(a, 0) = 0} (respectively

SB = {a ∈ X | R(a, 0) = 1 and R(a, 1) = 0}). As φA ⇒ ψA and ψA ⇒ ¬φB , the

interpolant ψA maps every element of SA to 1, every element of SB to 0, and every

other element to either 0 or 1. Let D be (y ≡ ψA). Then D ⇒ R.

Therefore interpolation can be seen as a way to exploit flexibility for function deriva-

tion without explicitly computing don’t cares.

16 Extracting Functions from Boolean Relations Using SAT and Interpolation 293

Fig. 16.4 Construct of

function extraction for

single-output total relation ψA

ϕB

¬R(x,1)

ϕA

¬R(x,0)

minimal care on-set

minimal care off-set

Figure 16.4 shows the main construct of Theorem 16.2. By assuming R(x, y) is

a total relation, ¬R(x, 0) and ¬R(x, 1) corresponds to the minimal care on-set and

minimal care off-set of the function for output variable y, respectively. Hence, the

interpolant ψA, which is implied by ¬R(x, 0) and implies R(x, 1), is a legitimate

functional implementation of y.

Corollary 16.1 Given a single-output total relation R, both R(x, 1) and ¬R(x, 0)

are legitimate functional implementation of R.

Proof Let φA = ¬R(x, 0) and φB = ¬R(x, 1). Because φA ⇒ R(x, 1) and

R(x, 1) ⇒ ¬φB , R(x, 1) is a legitimate interpolant. Similarly, ¬R(x, 0) is a legiti-

mate interpolant, too.

In fact, the cofactored relations R(x, 1) and ¬R(x, 0) are the largest (weakest) and

smallest (strongest) interpolants, respectively, in terms of solution spaces. Therefore

to derive a functional implementation of a single-output total relation, interpolation

is unnecessary. However, practical experience suggests that functional implementa-

tions obtained through interpolation are often much simpler in AIG representation.

16.4.1.2 Partial Relation

Note that Theorem 16.2 works only for total relations because partial relations

make Formula (16.1) satisfiable. To handle partial relations, we treat undefined input

assignments as don’t care conditions (this treatment is legitimate provided that the

undefined input assignments can never be activated) and define complete totalization

as follows.

Definition 16.3 Given a single-output partial relation R, its complete totalization is

the new relation

T (x, y) = R(x, y) ∨ ∀y.¬R(x, y) (16.2)

Note that T = R if and only if R is total.

Accordingly Theorem 16.2 is applicable to a totalized relation T with

φA = ¬T (x, 0) and (16.3)

φB = ¬T (x, 1) (16.4)

294 J.-H.R. Jiang et al.

which can be further simplified to

φA = ¬R(x, 0) ∧ R(x, 1) and (16.5)

φB = ¬R(x, 1) ∧ R(x, 0) (16.6)

Observe that the conjunction of Formulas (16.5) and (16.6) is trivially unsatisfiable.

Further, either of ¬R(x, 0) and R(x, 1) is a legitimate interpolant. Therefore, as

long as the undefined input assignments of R are never activated, the interpolant

is a legitimate functional implementation of R. (This fact will play a role in the

development of Section 16.4.2.2.)

Given a (partial or total) relation R with y being the only output variable, in the

sequel we let F I (y, R) denote a functional implementation of y with respect to R.

Among many possibilities, F I (y, R) can be derived through the interpolation of

Formulas (16.5) and (16.6).

16.4.2 Multiple Output Relation

We now turn attention to the functional implementation of a multiple output relation

R(x, y1, . . . , ym) with m > 1. In essence, we intend to reduce the problem so as to

apply the previous determinization of single-output relations.

A determinization procedure contains two phases: The first phase reduces the

number of output variables; the second phase extracts functional implementation.

We study two determinization procedures with different ways of reducing the num-

ber of output variables. One is through existential quantification; the other is through

substitution.

16.4.2.1 Determinization via Expansion Reduction

As a notational convention, we let R(i) denote ∃ym, . . . , yi .R for 1 ≤ i ≤ m.

Through standard existential quantification by formula expansion, i.e., ∃x .ϕ =
ϕ[x/0] ∨ ϕ[x/1] for some formula ϕ and variable x , one can reduce a multiple

output relation R to a single-output relation R(2).

In the first phase, R(i) can be computed iteratively as follows:

R(m) = ∃ym .R

...

R(i) = ∃yi .R
(i+1)

...

R(2) = ∃y2.R
(3)

for i = m − 1, . . . , 2.

16 Extracting Functions from Boolean Relations Using SAT and Interpolation 295

In the second phase, functional implementations of all output variables can be

obtained through the following iterative calculation:

f1 = F I (y1, R(2))

...

fi = F I (yi , R(i+1)[y1/ f1, . . . , yi−1/ fi−1])
...

fm = F I (ym, R[y1/ f1, . . . , ym−1/ fm−1])

for i = 2, . . . , m − 1.

The above procedure is similar to prior work (see, e.g., [20]) with some sub-

tle differences: First, the quantification results of the first phase are reused in the

second-phase computation. It reduces the number of quantifications from O(m2) to

O(m). Second, interpolation is the key element in the computation and AIGs are the

underlying data structure.

16.4.2.2 Determinization via Substitution Reduction

Alternatively the solution to the determinization of a single-output relation can be

generalized as follows. Each time we treat all except one of the output variables

as the input variables. Thereby we see a single-output relation rather than a mul-

tiple output relation. For example, let ym be the only output variable and treat

y1, . . . , ym−1 be additional input variables. In the enlarged input space (spanned

by y1, . . . , ym−1 as well as x), however, R may not be total even though it is total

in the original input space X . Let f ′m = F I (ym, R), obtained through interpolation

mentioned in Section 16.4.1.2. Note that since f ′m depends not only on x but also on

y1, . . . , ym−1, it is not readily a functional implementation of ym .

In the first phase, the number of output variables can be iteratively reduced

through the following procedure:

f ′m = F I (ym, R)

R〈m〉 = R[ym/ f ′m]
...

f ′i = F I (yi , R〈i+1〉)

R〈i〉 = R〈i+1〉[yi/ f ′i]
...

f ′2 = F I (y2, R〈3〉)

R〈2〉 = R〈3〉[y2/ f ′2]

for i = m − 1, . . . , 2.

296 J.-H.R. Jiang et al.

In the second phase, the functional implementations can be obtained through the

following iterative calculation:

f1 = F I (y1, R〈2〉)
...

fi = F I (yi , R〈i+1〉[y1/ f1, . . . , yi−1/ fi−1])
...

fm = F I (ym, R[y1/ f1, . . . , ym−1/ fm−1])

for i = 2, . . . , m − 1.

The following fact can be shown.

Lemma 16.1 [9] Given a relation R and f ′m = F I (ym, R), the equality

R[ym/ f ′m] = ∃ym .R holds.

It may be surprising, at first glance, that any f ′m = F I (ym, R) results in the same

R[ym/ f ′m]. This fact is true, however, and a detailed exposition can be found in the

work [9]. By induction on i = m, . . . , 2 using Lemma 16.1, one can further claim

that R〈i〉 = R(i).

Note that the above computation implicitly relies on the don’t care assumption

of partial relations. This assumption is indeed legitimate because the don’t cares for

deriving f ′i can never be activated when substituting f ′i for yi in R〈i+1〉.
Comparing R(i) of Section 16.4.2.1 and R〈i〉 of Section 16.4.2.2, one may notice

that the AIG of R(i) is in general wider in width but shallower in depth, and, in

contrast, that of R〈i〉 narrower but deeper.

As an implementation technicality, relations R(i) (similarly R〈i〉) can be stored

in the same AIG manger. So structurally equivalent nodes are hashed together, and

logic sharing is possible among relations R(i) (similarly R〈i〉).

16.4.3 Deterministic Relation

We consider the special case of extracting functions from a deterministic relation.

Lemma 16.2 Given a deterministic relation D(x, y) total in the input space X with

D =
m
∧

i=1

(yi ≡ fi), (16.7)

let

φA = D(x, y1, . . . , yi−1, 1, yi+1, . . . , ym) and (16.8)

φB = D(x, y′1, . . . , y′i−1, 0, y′i+1, . . . , y′m) (16.9)

16 Extracting Functions from Boolean Relations Using SAT and Interpolation 297

where y and y′ are independent variables. Then the interpolant of φA with respect

to φB is functionally equivalent to fi .

Proof Since D is deterministic and total in X , for every a ∈ X there exists a unique

b ∈ Y such that D(a, b) = 1. It follows that the formulas

∃y1, . . . , yi−1, yi+1, . . . , ym .D[yi/0] (16.10)

and

∃y1, . . . , yi−1, yi+1, . . . , ym .D[yi/1] (16.11)

must induce a partition on the input space X , and thus the interpolant of φA with

respect to φB must logically the equivalent to Formula (16.11), which is unique.

Back to the computation of Section 16.4.2.2, let

D = R ∧
∧

i

(yi ≡ f ′i) (16.12)

Since the relation D is deterministic, the computation of Lemma 16.2 can be applied

to compute fi . The strengths of this new second-phase computation are twofold:

First, no substitution is needed, in contrast to the second-phase computation of Sec-

tion 16.4.2.2. Hence the formula sizes of φA and φB in interpolant computation

do not grow, unlike the previous second-phase computation. As interpolant sizes

are more or less proportional to the formula sizes of φA and φB , this approach is

particularly desirable. Second, only functions f ′i , but not relations R〈i〉, are needed

in the computation. Since the formula sizes of R〈i〉 are typically much larger than

those of f ′i , this approach saves memory by discharging R〈i〉.

16.4.4 Function Simplification

16.4.4.1 Support Minimization

The following lemma can be exploited in reducing the support variables of a func-

tional implementation.

Lemma 16.3 For two Boolean formulas φA and φB with an unsatisfiable conjunc-

tion, there exists an interpolant without referring to variable xi if and only if the

conjunction of ∃xi .φA and φB (equivalently the conjunction of φA and ∃xi .φB) is

unsatisfiable.

Proof (⇐�) Assume the conjunction of ∃xi .φA and φB (similarly φA and ∃xi .φB)

is unsatisfiable. Since φA ⇒ ∃xi .φA (similarly φB ⇒ ∃xi .φB), the conjunction

of φA and φB is unsatisfiable as well. Also by the common-variable property of

Theorem 16.1, the existence condition holds.

298 J.-H.R. Jiang et al.

(�⇒) Observe that ∃xi .φA (respectively ∃xi .φB) is the tightest xi -independent

formula that is implied by φA (respectively φB). The existence of an interpolant

of φA with respect to φB without referring to xi infers the unsatisfiability of the

conjunction of ∃xi .φA and φB as well as that of φA and ∃xi .φB .

By the lemma, we can possibly knock out some variables from an interpolant.

Note that, in Lemma 16.3, it suffices to quantify xi over φA or φB even though

it is okay to quantify on both. In practice, quantification on just one formula results

in smaller interpolants because the unsatisfiability is easier to be shown in SAT

solving.

16.4.4.2 Determinization Scheduling

Practical experience suggests that interpolant sizes are typically proportional to the

formula sizes of φA and φB . Assuming formulas φ′A and φ′B are logically equivalent

to φA and φB , respectively, and are larger in sizes, we may expect the interpolant

of φ′A with respect to φ′B is typically larger than that of φA with respect to φB .

Therefore, it is usually beneficial to keep interpolants small during the iterative

determinization process.

To keep interpolant sizes small throughout determinization, two approaches can

be pursued. One is to apply logic synthesis to minimize interpolants and relations. It

avoids AIG sizes being amplified greatly in the iterative computation process. The

other is to choose good ordering for determinizing output variables, especially for

the second-phase computation. In essence, there is a trade-off between minimizing

complex functions first (to have more flexibility for minimization) and minimizing

simple functions first (to have less AIG size increase).

Note that, by reusing the quantification results of the first phase, the determiniza-

tion procedures of Sections 16.4.2.1 and 16.4.2.2 only require a linear number,

O(m), of quantifications. The determinization order of the second phase, however, is

constrained by that of the first phase. On the other hand, there can be more freedom

in choosing determinization order for not reusing quantification results. In this case,

a quadratic number, O(m2), of quantifications may be needed.

16.5 Experimental Results

The proposed methods were implemented in the ABC package [2]; the experiments

were conducted on a Linux machine with Xeon 3.4 GHz CPU and 6 GB RAM.

To prepare Boolean relations, we constructed the transition relations of circuits

taken from ISCAS and ITC benchmark suites. Different amounts of don’t cares

were inserted to the transition relations to introduce nondeterminism. We intended

to retrieve a circuit’s transition functions in the following experiments.

16 Extracting Functions from Boolean Relations Using SAT and Interpolation 299

The original circuits2 were minimized with the ABC command dc2, and so were

the AIGs produced during determinization and function extraction. The profile of

the original circuits (after the removal of primary output functions and after dc2

synthesis) is shown in Table 16.1, where “(n, m)” denotes the pair of input- and

output-variable sizes of the transition relation, “#n” denotes the number of AIG

nodes, “#l” AIG logic levels, and “#v” the summation of support variables of all

transition functions.

Table 16.1 Profile of original benchmark circuits

Orig

Circuit (n, m) #n #l #v

s5378 (214, 179) 624 12 1570

s9234.1 (247, 211) 1337 25 3065

s13207 (700, 669) 1979 23 3836

s15850 (611, 597) 2648 36 15788

s35932 (1763, 1728) 8820 12 7099

s38584 (1464, 1452) 9664 26 19239

b10 (28, 17) 167 11 159

b11 (38, 31) 482 21 416

b12 (126, 121) 953 16 1639

b13 (63, 53) 231 10 383

We first study the usefulness of interpolation in contrast to cofactoring, which

can be considered as a way of deriving special interpolants as mentioned in Sec-

tion 16.4.1.1. In the experiment, a circuit was determinized via expansion reduction,

where the functional implementations extracted in the second phase were derived

differently using interpolation and cofactoring to compare. Taking circuit b11 as a

typical example, Fig. 16.5 contrasts the difference between the two techniques. As

can be seen, by cofactoring, the function sizes grow almost exponentially during the

iterative computation; by interpolation, the function sizes remain under control. In

fact, derived by cofactoring, say, R(i+1) with yi = 1, function fi has almost the

same size as R(i+1) unless command dc2 can effectively minimize fi . However,

dc2 is unlikely to be helpful for large fi as justified by experiments.

Our another experiment studies the connection between interpolant sizes and for-

mula sizes of φA and φB . We, however, omit the detailed statistics and simply con-

clude that, for logically equivalent sets of φA and φB formulas, their corresponding

interpolant sizes tend to be linearly proportional to the sizes of these formulas.

Below we compare different determinization methods, including BDD-based

computation, that via expansion reduction (Section 16.4.2.1), denoted XP, that via

substitution reduction (Section 16.4.2.2), denoted ST, and that via constructing

deterministic relation (Section 16.4.3), denoted SD. Dynamic variable reordering

and BDD minimization are applied in BDD-based computation.

2Since a circuit’s primary output functions are immaterial to our evaluation, we are concerned only

about the sub-circuit responsible for transition functions.

300 J.-H.R. Jiang et al.

b11

iteration

#
n
o
d
e

Fig. 16.5 Circuit b11 determinized by expansion reduction with function extraction by interpola-

tion versus cofactoring in the second phase

Table 16.2 shows the results of function extraction from relations without don’t

care insertion. BDD-based computation is not scalable as expected. There are five

circuits whose transition relations cannot be built compactly using BDDs under

500K nodes and the computation cannot finish either within 30 h CPU time or within

the memory limitation. Ratio 1 and Ratio 2 are normalized with respect to the data

of the original circuits of Table 16.1, whereas Ratio 3 is normalized with respect to

the BDD-based derivation. Ratio 1 covers all the ten circuits, whereas Ratio 2 and

Ratio 3 cover only the five circuits that BDD-based derivation can finish.

By Ratio 1, we observe that the derived functions (without further postprocessing

to minimize) are about three times larger in nodes, four times larger in logic levels,

and 9% smaller in support sizes. To be shown in Table 16.4, with postprocessing, the

derived functions can be substantially simplified and are comparable to the original

sizes. By Ratio 2, we see that even BDD-based derivation may increase circuit sizes

by 70% while logic levels are reduced by 11%. By Ratio 3, we see that the results of

the SAT-based methods are about 40% larger in nodes and two times larger in logic

levels.

We examine closely the case of circuit s5378. Figures 16.6, 16.7, and 16.8 show

the relation and function sizes at every iterations of XP, ST, and SD computations,

respectively. For XP and ST, the size of function fi and the sizes of relations in

every step of the first- and second-phase computations are shown. For SD, the sizes

of f ′i and fi are plotted. Note that in these figures the first-phase (second-phase)

iterations proceed forwardly (backwardly). Hence the relation sizes decrease in the

first phase and those increase in the second phase, whereas the functions extracted

remain small.

Table 16.3 shows the results of function extraction from relations with don’t cares

inserted. For a circuit with r registers, ⌈r · 10%⌉ random cubes (conjunction of

16 Extracting Functions from Boolean Relations Using SAT and Interpolation 301

T
a
b

le
1
6
.2

F
u
n
ct

io
n

ex
tr

ac
ti

o
n

fr
o
m

re
la

ti
o
n
s

–
w

it
h
o
u
t

d
o
n
’t

ca
re

in
se

rt
io

n

C
ir

cu
it

B
D

D
X

P
S

T
S

D

#
n

#
l

#
v

T
im

e
#
n

#
l

#
v

T
im

e
#
n

#
l

#
v

T
im

e
#
n

#
l

#
v

T
im

e

s5
3
7
8

7
8
3

1
0

1
5
6
1

2
8
6
.4

1
4
1
2

2
5

1
5
6
1

4
9
.6

1
3
2
8

2
3

1
5
6
1

5
8
.5

1
6
2
5

3
4

1
5
6
1

3
2
.4

s9
2
3
4
.1

—
—

—
—

7
8
3
7

5
9

2
7
6
4

1
5
8
.6

8
0
1
5

4
5

2
7
6
5

2
8
2
.4

8
6
3
7

4
5

2
7
6
6

1
0
0
.7

s1
3
2
0
7

—
—

—
—

5
7
7
2

1
4
0

3
5
5
4

7
6
9
.3

6
6
2
5

2
2
3

3
5
5
4

9
4
9
.5

6
6
4
2

1
0
9

3
5
5
4

2
4
7
.2

s1
5
8
5
0

—
—

—
—

4
2
6
2
2

1
8
8

1
3
3
4
8

2
7
0
0
.0

4
2
9
0
2

1
5
3

1
3
3
1
8

3
0
2
9
.6

4
1
0
1
4

3
5
7

1
3
3
2
9

4
0
4
.7

s3
5
9
3
2

—
—

—
—

7
2
8
0

1
0

6
8
4
3

4
1
7
8
.5

7
3
1
0

1
0

6
8
4
3

3
9
8
2
.7

7
2
9
3

1
2

6
8
4
3

2
0
3
9
.2

s3
8
5
8
4

—
—

—
—

2
2
5
8
9

2
7
7

1
7
6
7
8

5
7
7
2
.8

2
2
6
9
1

3
8
7

1
7
6
7
6

8
4
8
1
.0

1
7
0
1
8

1
7
8

1
7
6
7
6

2
4
3
8
.1

b
1
0

2
0
0

1
0

1
5
2

0
.1

1
9
7

8
1
5
2

0
.9

2
3
1

1
4

1
5
2

1
.7

2
3
4

1
4

1
5
2

1
.0

b
1
1

1
3
0
1

1
8

3
9
4

0
.9

1
5
0
4

5
7

3
9
4

5
.1

1
7
5
9

5
5

3
9
4

1
4
.9

1
9
5
9

5
3

3
9
4

8
.0

b
1
2

1
6
6
3

1
4

1
5
7
4

5
6
.7

2
1
6
6

2
5

1
5
7
4

2
4
.0

2
3
6
8

3
5

1
5
7
5

7
8
.8

2
6
6
2

3
3

1
5
7
6

3
8
.6

b
1
3

2
4
0

1
0

3
4
9

3
.1

2
2
4

1
0

3
4
9

2
.2

2
2
2

1
1

3
4
9

3
.5

2
2
2

1
1

3
4
9

2
.7

R
at

io
1

3
.4

0
4
.1

6
0
.9

1
3
.4

7
4
.9

8
0
.9

1
3
.2

4
4
.4

1
0
.9

1

R
at

io
2

1
.7

0
0
.8

9
0
.9

7
2
.2

4
1
.7

9
0
.9

7
2
.4

0
1
.9

7
0
.9

7
2
.5

3
1
.9

0
0
.9

7

R
at

io
3

1
.0

0
1
.0

0
1
.0

0
1
.3

1
2
.0

2
1
.0

0
1
.4

1
2
.2

3
1
.0

0
1
.4

8
2
.1

5
1
.0

0

302 J.-H.R. Jiang et al.

iteration

s5378 (Xp)

#
n

o
d

e

Fig. 16.6 Relation and function sizes of circuit s5378 under XP computation

iteration

#
n

o
d

e

s5378 (St)

Fig. 16.7 Relation and function sizes of circuit s5378 under ST computation

literals of input and state variables) are created. Each cube represents some don’t

cares for a randomly selected set of functions. Presumably the more the don’t cares

are inserted, the simpler the transition functions are extracted. In practice, however,

such simplification3 is not guaranteed (even in BDD-based computation). The rea-

sons can be twofold: First, the simplification achieves only local optimums. Second,

3 Notice that, unlike BDD-based computation, our methods do not explicitly perform don’t care

based minimization on the extracted transition functions. The don’t care choices are made implic-

itly by SAT solving for interpolation.

16 Extracting Functions from Boolean Relations Using SAT and Interpolation 303

#
n

o
d

e

s5378 (SD)

iteration

Fig. 16.8 Function sizes of circuit s5378 under SD computation

relations with don’t cares inserted become more sophisticated and affect interpolant

derivation. Nevertheless the results of Tables 16.2 and 16.3 are comparable.

Taking circuit b07 for case study, Fig. 16.9 shows the results of function extrac-

tion by XP for relations under different amounts of don’t care insertion. The original

transition relation is augmented with a certain number of don’t care cubes. The AIG

sizes of augmented relations and their extracted functions are shown with the light

and dark bars, respectively. The light bars increase monotonically with respect to

the insertion of don’t cares, while the dark bars oscillate. To screen out the effects of

relation increase on interpolant derivation, the normalized ratios are plotted as the

line chart whose indices are on the right-hand side. The derived functions indeed

tend to get simplified with the increasing amount of don’t cares.

The above experiments of XP, ST, and SD used only light synthesis operations

in minimizing the extracted functions. Nonetheless, it is possible to greatly simplify

these functions with heavier synthesis operations. To justify such possibilities, we

applied ABC command collapse once followed by dc2 twice as postprocessing.

Table 16.4 shows the statistics of extracted functions by XP for relations without

don’t care insertion. (Similar results were observed for ST and SD, and for cases

with don’t care insertion.) The postprocessing results of the original functions and

extracted functions are shown. This postprocessing time is listed in the last column.

Operation collapse failed on circuit s15850, and the two ratios shown excludes

the data of s15850. As can be seen, the postprocessing makes the extracted func-

tions comparable to the original ones. Since the postprocessing time is short, our

method combined with some powerful synthesis operations can effectively extract

simple functions from large relations, where pure BDD-based computation fails.

Our method can be used as a way of bypassing the BDD memory explosion problem.

304 J.-H.R. Jiang et al.

T
a
b

le
1
6
.3

F
u

n
ct

io
n

ex
tr

ac
ti

o
n

fr
o

m
re

la
ti

o
n

s
–

w
it

h
d

o
n

’t
ca

re
in

se
rt

io
n

B
D

D
X

P
S

T
S

D

C
ir

cu
it

#
n

#
l

#
v

T
im

e
#
n

#
l

#
v

T
im

e
#
n

#
l

#
v

T
im

e
#
n

#
l

#
v

T
im

e

s5
3
7
8

7
6
9

1
1

1
5
6
1

2
0
0
.2

1
3
3
2

2
5

1
5
6
1

4
9
.0

5
1
1
9
6

2
7

1
5
6
1

6
0
.9

9
1
9
1
9

4
2

1
5
6
1

3
2
.7

4

s9
2
3
4
.1

—
—

—
—

7
6
9
6

5
5

2
7
6
5

1
6
6
.7

4
8
7
3
9

6
4

2
7
6
4

3
2
5
.9

8
1
1
6
1
3

9
9

2
9
2
7

1
2
0
.3

7

s1
3
2
0
7

—
—

—
—

5
8
1
8

2
0
2

3
5
5
4

8
9
7
.8

6
6
8
8
2

2
2
8

3
5
5
4

1
0
6
2
.1

5
6
2
1
8

2
0
4

3
5
5
4

2
8
7
.4

7

s1
5
8
5
0

—
—

—
—

4
0
0
7
8

1
3
6

1
3
3
0
9

2
5
9
6
.9

4
4
2
0
9
7

1
6
4

1
3
3
1
8

3
0
1
2
.3

6
4
1
2
4
0

2
1
2

1
4
2
7
6

4
6
7
.9

5

s3
5
9
3
2

—
—

—
—

7
3
6
0

2
5

6
8
4
3

4
8
1
1
.1

7
3
0
0

1
0

6
8
4
3

7
1
6
8
.5

3
8
8
2
3

1
9

8
7
5
6

2
7
7
5
.3

2

s3
8
5
8
4

—
—

—
—

2
3
7
2
6

3
3
1

1
7
6
7
6

5
4
7
6
.6

7
2
1
5
9
5

2
8
5

1
7
6
7
6

8
1
6
0
.2

8
1
7
7
0
8

2
8
1

1
8
5
5
6

2
5
9
1
.7

1

b
1
0

1
9
9

9
1
5
2

0
.1

1
9
3

8
1
5
2

0
.9

9
2
1
7

9
1
5
2

1
.6

2
2
3
9

8
1
6
8

1
.1

3

b
1
1

1
2
2
1

2
0

3
9
4

0
.9

1
5
6
2

5
2

3
9
4

5
.5

1
6
3
8

4
6

3
9
4

1
5
.1

9
1
8
9
6

5
4

3
9
4

8
.5

4

b
1
2

1
6
1
9

1
5

1
5
7
4

4
5
2
.5

2
2
6
1

2
3

1
5
7
4

2
6
.9

8
2
0
8
1

2
4

1
5
7
4

8
6
.9

6
2
4
5
8

2
5

1
5
7
5

4
4
.1

9

b
1
3

2
4
3

1
1

3
4
9

1
.6

2
2
9

1
2

3
4
9

2
.4

5
2
3
6

1
0

3
4
9

4
.2

2
3
2

1
0

3
4
9

2
.9

R
at

io
1

3
.3

5
4
.5

3
0
.9

1
3
.4

2
4
.5

2
0
.9

1
3
.4

3
4
.9

7
0
.9

8

R
at

io
2

1
.6

5
0
.9

4
0
.9

7
2
.2

7
1
.7

1
0
.9

7
2
.1

8
1
.6

6
0
.9

7
2
.7

4
1
.9

9
0
.9

7

R
at

io
3

1
.0

0
1
.0

0
1
.0

0
1
.3

8
1
.8

2
1
.0

0
1
.3

3
1
.7

6
1
.0

0
1
.6

6
2
.1

1
1
.0

0

16 Extracting Functions from Boolean Relations Using SAT and Interpolation 305

#
n

o
d
e

ra
ti
o

b07

#cube

Fig. 16.9 Connection between relations and extracted functions of circuit b07 under different

amounts of don’t care insertion

Table 16.4 Function extraction from relations – effect of collapse minimization

Orig XP

Circuit #n #l #v #n_c #l_c #v_c #n #l #v #n_c #l_c #v_c Time_c

s5378 624 12 1570 772 11 1561 1412 25 1561 760 11 1561 0.4

s9234.1 1337 25 3065 2791 25 2764 7837 59 2764 2751 22 2764 6.4

s13207 1979 23 3836 2700 20 3554 5772 140 3554 2709 20 3554 5.2

s15850* 2648 36 15788 — — — 42622 188 13348 — — — —

s35932 8820 12 7099 7825 9 6843 7280 10 6843 7857 9 6843 39.9

s38584 9664 26 19239 12071 23 17676 22589 277 17678 12132 21 17676 36.5

b10 167 11 159 195 10 152 197 8 152 195 10 152 0.0

b11 482 21 416 1187 21 394 1504 57 394 1226 21 394 0.2

b12 953 16 1639 1556 17 1574 2166 25 1574 1645 16 1574 0.4

b13 231 10 383 237 9 349 224 10 349 237 9 349 0.1

Ratio 1 1.00 1.00 1.00 1.21 0.93 0.93 2.02 3.92 0.93 1.22 0.89 0.93

Ratio 2 1.00 1.00 1.00 1.01 0.96 1.00

16.6 Chapter Summary

In this chapter, we have shown that Boolean relations with thousands of variables

can be determinized inexpensively using interpolation. The extracted functions from

a relation are of reasonable sizes. With such extended capacity, we would anticipate

real-world applications, which might in turn enable constraint-based synthesis and

verification, synthesis from specifications, and other areas that require solving large

Boolean relations.

As we just presented a first step, there remain some obstacles to overcome. In par-

ticular, the unpredictability of interpolation prevents relation determinization from

306 J.-H.R. Jiang et al.

being robustly scalable. Moreover, we may need good determinization scheduling

and powerful interpolant/AIG minimization techniques, especially under the pres-

ence of flexibility.

References

1. Baneres, D., Cortadella, J., Kishinevsky, M.: A recursive paradigm to solve Boolean relations.

In: Proceedings of the Design Automation Conference, pp. 416–421. San Diego, CA, USA

(2004)

2. Berkeley Logic Synthesis and Verification Group: ABC: A system for sequential synthesis and

verification (2005). http://www.eecs.berkeley.edu/∼alanmi/abc/ (2009)

3. Bloem, R., Galler, S., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.: Automatic

hardware synthesis from specifications: A case study. In: Proceedings of the Conference on

Design Automation and Test in Europe. Nice, France (2007)

4. Brayton, R., Somenzi, F.: Boolean relations and the incomplete specification of logic networks.

In: Proceedings IFIP International Conference on Very Large Scale Integration, pp. 231–240.

Munich, Germany (1989)

5. Brayton, R., Somenzi, F.: An exact minimizer for Boolean relations. In: Proceedings of

the International Conference on Computer-Aided Design, pp. 316–319. San Jose, CA, USA

(1989)

6. Craig, W.: Linear reasoning: A new form of the Herbrand-Gentzen theorem. Journal of Sym-

bolic Logic 22(3), 250–268 (1957)

7. Ghosh, A., Devadas, S., Newton, A.: Heuristic minimization of Boolean relations using testing

techniques. In: Proceedings of the International Conference on Computer Design. Cambridge,

MA, USA (1990)

8. Jeong, S., Somenzi, F.: A new algorithm for the binate covering problem and its application

to the minimization of Boolean relations. In: Proceedings of the International Conference on

Computer-Aided Design, pp. 417–420. San Jose, CA, USA (1992)

9. Jiang, J.H.R.: Quantifier elimination via functional composition. In: Proceedings of the Inter-

national Conference on Computer Aided Verification, pp. 383–397. Grenoble, France (2009)

10. Kukula, J., Shiple, T.: Building circuits from relations. In: Proceedings of the International

Conference on Computer Aided Verification, pp. 113–123. Chicago, IL, USA (2000)

11. Lee, C.C., Jiang, J.H.R., Huang, C.Y., Mishchenko, A.: Scalable exploration of functional

dependency by interpolation and incremental SAT solving. In: Proceedings of the International

Conference on Computer-Aided Design, pp. 227–233. San Jose, CA, USA (2007)

12. Lee, R.R., Jiang, J.H.R., Hung, W.L.: Bi-decomposing large Boolean functions via inter-

polation and satisfiability solving. In: Proceedings of the Design Automation Conference,

pp. 636–641. Anaheim, CA, USA (2008)

13. Lin, B., Somenzi, F.: Minimization of symbolic relations. In: Proceedings of the International

Conference on Computer-Aided Design, pp. 88–91. San Jose, CA, USA (1990)

14. Lin, H.P., Jiang, J.H.R., Lee, R.R.: To SAT or not to SAT: Ashenhurst decomposition in a large

scale. In: Proceedings of the International Conference on Computer-Aided Design, pp. 32–37.

San Jose, CA, USA (2008)

15. McMillan, K.L.: Interpolation and SAT-based model checking. In: Proceedings of the Interna-

tional Conference on Computer Aided Verification, pp. 1–13. Boulder, CO, USA (2003)

16. Mishchenko, A., Brayton, R.K.: Simplification of non-deterministic multi-valued networks.

In: Proceedings of the International Conference on Computer-Aided Design, pp. 557–562.

San Jose, CA, USA (2002)

17. Mishchenko, A., Brayton, R.K., Jiang, J.H.R., Jang, S.: Scalable don’t care based logic

optimization and resynthesis. In: Proceedings of the International Symposium on Field-

Programmable Gate Arrays, pp. 151–160. Monterey, CA, USA (2009)

16 Extracting Functions from Boolean Relations Using SAT and Interpolation 307

18. Mishchenko, A., Chatterjee, S., Jiang, J.H.R., Brayton, R.K.: FRAIGs: A unifying representa-

tion for logic synthesis and verification. Technical report, ERL Technical Report, UC Berkeley

(2005)

19. Rudell, R., Sangiovanni-Vincentelli, A.: Multiple-valued minimization for PLA optimization.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems CAD-6(5),

727–750 (1987)

20. Watanabe, Y., Brayton, R.: Heuristic minimization of multi-valued relations. IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems 12(10), 1458–1472

(1993)

21. Wurth, B., Wehn, N.: Efficient calculation of Boolean relations for multi-level logic optimiza-

tion. In: Proceedings of the European Design and Test Conference, pp. 630–634. Paris, France

(1994)

22. Yuan, J., Albin, K., Aziz, A., Pixley, C.: Constraint synthesis for environment modeling in

functional verification. In: Proceedings of the Design Automation Conference, pp. 296–299.

Anaheim, CA, USA (2003)

23. Yuan, J., Shultz, K., Pixley, C., Miller, H., Aziz, A.: Modeling design constraints and biasing in

simulation using BDDs. In: Proceedings of the International. Conference on Computer-Aided

Design, pp. 584–589. San Jose, CA, USA (1999)

Chapter 17

A Robust Window-Based Multi-node
Minimization Technique Using Boolean
Relations

Jeff L. Cobb, Kanupriya Gulati, and Sunil P. Khatri

Abstract In this chapter, a scalable dual-node technology-independent logic opti-

mization technique is presented. This technique scales well and can minimize both

small designs and large designs typical of industrial circuits. It is experimentally

demonstrated that this technique produces minimized technology-independent net-

works that are on average 12% smaller than networks produced by single-node

minimization techniques.

17.1 Introduction

The optimization of industrial multi-level Boolean networks is traditionally per-

formed using algebraic techniques. The main reason for this is that Boolean tech-

niques such as don’t care-based optimization, though more powerful, do not scale

well with design size. Don’t cares are calculated for a single node, and they specify

the flexibility for implementing the node function. These don’t cares (for a node) are

computed using a combination of Satisfiability Don’t Cares (SDCs), Observability

Don’t Cares (ODCs), or External Don’t Cares (XDCs). These are described further

in [12].

ODCs [13, 20] of a node are a powerful representation of the node’s flexibil-

ity. However, the minimization of a node with respect to its ODCs can potentially

change the ODCs at other nodes in the circuit, resulting in a need to recompute

ODCs for all circuit nodes. A subset of ODCs, termed as Compatible Observability

Don’t Cares (CODCs) [20], was formulated to remove this limitation. By defini-

tion, if a node n is minimized with respect to its CODCs, then the CODCs of all

other circuit nodes are still valid (and therefore do not need to be recomputed).

However, in the CODC computation, the order of selecting nodes during the CODC

K. Gulati (B)

Intel Corporation, Hillsboro, OR, USA

e-mail: kanupriya.gulati@intel.com

This work is based on an earlier work: Robust window-based multi-node technology-independent

logic minimization, in Proceedings of the 19th ACM Great Lakes Symposium on VLSI, ISBN:978-

1-60558-522-2 (2009) c© ACM, 2009. DOI= http://doi.acm.org/10.1145/1531542.1531623

S.P. Khatri, K. Gulati (eds.), Advanced Techniques in Logic Synthesis,

Optimizations and Applications, DOI 10.1007/978-1-4419-7518-8_17,
C© Springer Science+Business Media, LLC 2011

309

310 J.L. Cobb et al.

computation becomes important. The maximum flexibility that can be obtained at

the fanin node i of a node n is a function of the CODCs of the fanins computed prior

to i . In both the ODC and CODC approaches, network optimization is performed

on one node at a time.

As significant improvement (in terms of optimization power) over don’t care-

based techniques can be obtained by considering multiple nodes at once, the for-

mulation of such an optimization results in a Boolean relation [6], which implic-

itly represents the flexibility available in optimizing the nodes simultaneously. The

flexibility inherent in multi-node optimization cannot be expressed using functions.

Table 17.1 represents a Boolean relation, which, for a single input vector {10},

can express more than one allowed output vector, {00,11}. On the other hand, no

Boolean function can represent the fact that both vectors {00,11} are allowed at the

outputs, for the output {10}.

Table 17.1 Example of a

Boolean relation

Inputs Outputs

00 00

01 01

10 {00,11}

11 10

The superiority of a multi-node optimization approach (using Boolean relations)

over don’t cares has been pointed out in [5, 27]. The reason for this superior opti-

mization flexibility is that in the computation of a node’s don’t cares, the functions

of all the other nodes are not allowed to change. This restriction does not apply to

the multi-node optimization approach (using Boolean relations) since they allow the

simultaneous modification of all nodes being targeted. However, this superior opti-

mization flexibility has a price. The multi-node optimization approach requires that

a Boolean relation be solved, which is typically a highly time and memory-intensive

operation. As a result, not much attention has been devoted to these approaches,

although there have been theoretical works which have suggested the superiority

of this technique over don’t care-based approaches [27]. However, there has been

no robust, scalable approach which demonstrates the applicability of multi-node

optimization techniques to large designs.

The power of a multi-node optimization approach can be illustrated by way of a

small example [10]. Consider the network η shown in Fig. 17.1a, where node V1’s

output f implements the Boolean function x · y and node V2’s output g implements

x + y. Given a network η with primary outputs Z , the ODC of a node y is given by

ODC(y) =
∏

zi∈P O(η)

(
∂zi

∂y

)

where

∂zi

∂y
= zi |y ⊕ zi |y

17 Minimization Technique Using Boolean Relations 311

Fig. 17.1 Network η before

and after optimization

a) b)

V2

V1

V3
z zV3

y

x

y

x

y

x f

g

Using this equation for the network of Fig. 17.1, the ODCs are computed to be

ODC(V1) = ODC(V2) = NULL. As a result, no optimization is possible using

ODCs. However, one can observe that z is equivalent to x⊕y as shown in Fig. 17.1b.

This optimization can only be obtained when V1 and V2 are optimized simultane-

ously. The Boolean relation resulting from such an optimization can express this

flexibility. After minimizing this Boolean relation, nodes V1 and V2 can be deleted

from the network without compromising the network’s functionality.

This chapter is organized as follows. The problem addressed is formally defined

in Section 17.2 and relevant previous work is described in Section 17.3. Section 17.4

provides the necessary background knowledge and terminology used in this chapter,

as well as a description of the data structures used. In Section 17.5, the algorithms

used to select node pairs and to compute the Boolean relation expressing the flexibil-

ity of a two-node optimization are given. The windowing method is also described

in this section, as well as the early quantification technique is employed when com-

puting the relation.

Section 17.6 presents the experimental results for the algorithms described in

Section 17.5. Section 17.6.2 shows the approach used to choose the parameters that

control the node selection algorithm. Section 17.6.3 reports the results obtained

when the proposed method is compared with the mfsw approach of [17]. Sec-

tion 17.6.4 presents results of many variations on the original approach, as well

as a timing and quantification analysis.

Section 17.7 summarizes the chapter and discusses the implications of the exper-

imental results. Ideas for future improvements are also presented in this section.

17.2 Problem Definition

This chapter addresses the problem of creating a scalable dual-node optimiza-

tion technique which can handle the large designs typical of industrial circuits.

The approach presented uses Reduced Ordered Binary Decision Diagrams (ROB-

DDs) [7, 24] to represent the Boolean relations expressing the flexibility. The terms

ROBDD and BDD are used interchangeably in this chapter. ROBDDs provide an

efficient mechanism to compute and store the Boolean relation. Many of the steps

that occur frequently in the dual-node optimization technique, including quantifica-

tion and complementation, can be performed extremely efficiently using this data

structure.

312 J.L. Cobb et al.

Large designs can have tens of thousands of nodes in the network, which would

make the task of computing the Boolean relation that represents the dual-node flexi-

bility impractical due to the computational time and/or memory required. To address

this problem, the relation is not built in terms of the primary inputs and outputs of the

network, but it is instead built using a subnetwork η
′

rooted around the nodes being

targeted. Building the relations in terms of the primary inputs and outputs would

be applicable to small networks. However, the ROBDDs representing the relation

would be intractable for larger networks. Working with the subnetwork allows the

resulting Boolean relation to be significantly smaller, which enables the approach to

work on large networks.

Another feature of this approach, which allows it to scale elegantly, is that it

uses aggressive early quantification [8] while computing the Boolean relation. Dur-

ing the computation, the size of the ROBDDs can blow up rapidly if the relevant

intermediate variables are not quantified out. Performing operations on the large

ROBDDs can be very expensive in time as well as memory, especially on large

networks. To reduce the size of the ROBDDs, intermediate variables are quantified

out during each step of the computation when possible.

Additionally, since the work presented in this optimizes two nodes at a time,

the node pair must be carefully selected. Optimizing all node pairs in a network

would result in a quadratic cost. By choosing only those node pairs which have a

high likelihood of minimizing the network, the algorithm remains efficient for large

designs.

Finally, the dual-node optimization approach results in a Boolean relation that

encodes the flexibility in implementing the targeted nodes. To re-implement the

targeted functions, this relation needs to be minimized. The technique used to do

this comes from [1].

17.3 Previous Work

Some of the previous research efforts which are relevant to the technique and objec-

tive of this approach are discussed next. In [16], the authors describe a method

to compute don’t cares using overlapping subnetworks, computed using a varying

window size. Their method does not optimize wires, but only the gates in a design, in

contrast to the approach described in this chapter (which frequently removes wires

in a circuit). Further, the technique of [16] uses [15] to optimize a single subnetwork.

In [15], optimization is done by manipulating a cover of the subnetwork explicitly.

The authors indicate that this requires large amounts of runtime for small networks.

As a consequence, the technique of [16], in many examples, requires run-times

which are dramatically larger than MIS [3].

The approach of [11] partitions the circuit into subnetworks, each of which is flat-

tened and optimized using ESPRESSO [4]. The technique presented in this chapter

uses a similar approach of circuit partitioning but with a relation-based optimization

method in place of ESPRESSO and achieves a significantly lower literal count.

17 Minimization Technique Using Boolean Relations 313

In [2], the CODC computation of [19] was shown to be dependent on the current

implementation of a node, and an implementation-independent computation was

proposed. In [18], the authors perform CODC computation on overlapping subnet-

works and demonstrate a faster technique compared to the full CODC computation.

They report achieving a good literal count reduction (within 10% of the full_simplify

(FS) command of SIS [22]) with a faster runtime (25x faster than FS). The method

presented in this chapter improves on these results due to the additional flexibility

encoded in the dual-node optimization technique (using Boolean relations).

In [17], the authors present a Boolean Satisfiability (SAT)-based methodology

for computing the ODC and SDC, termed as complete DC (CDC), for every node

in a network. They also propose a windowing scheme to maintain robustness. This

approach provides the best results in terms of both optimization ability and runtime

among all the previous single-node approaches mentioned here.

While [17] explores the flexibility of exactly one node at a time, a much greater

flexibility can be availed by optimizing multiple nodes of a network simultaneously.

This is a relatively unexplored aspect of multi-level optimization. There are research

efforts which recognize the power of such a technique [5, 23, 27], but none of these

work on even medium-sized circuits. The survey described in [5] only points out

the advantage of multi-node minimization over don’t cares. The approach in [23]

describes a BDD-based computation of SPFDs [28], which can encode the flexibility

of more than one node, but it is limited to small circuits and shown not to be scalable

to large designs.

In [27], an approach for computing the Boolean relation of a single subnetwork of

the original network is described. However, no approach or intuition for selecting the

subnetwork is discussed. The approach in this chapter, in contrast, uses an efficient

method to find pairs of nodes to optimize together. This method effectively filters

out pairs of nodes for which the expected flexibility is low. Also, the results reported

in [27] are for very small circuits and incur extremely high runtimes. The implemen-

tation in this chapter is powerful and robust, resulting in the ability to optimize large

networks extremely fast, with a high quality of results. Further, [27] does not use a

relation minimizer, but instead it calls ESPRESSO in order to minimize the Boolean

relation that represents the optimization flexibility. The authors do acknowledge this

as a possible limitation in their paper. The work in this chapter uses BREL [1] to

minimize the Boolean relation which is constructed for each pair of nodes being

optimized simultaneously.

There are some earlier research efforts in the context of multi-node optimiza-

tion (using Boolean relations to express the multi-node optimization flexibility), but

the approach in this chapter is very different. A technique which calculates this

Boolean relation in terms of primary inputs is presented in [10]. The work in this

chapter computes this Boolean relation in terms of the ‘primary input’ variables of

the extracted subnetwork, allowing the technique to handle large designs.

A technique to compute the maximal Boolean relation that represents the opti-

mization flexibility for the nodes in an arbitrary subnetwork is presented in [9],

which was improved by [21] to additionally compute approximate Boolean rela-

tions. However, they do not support their work with experimental results.

314 J.L. Cobb et al.

Techniques for minimizing a Boolean relation are reported in [1, 25, 26]. In [26]

the authors represent a Boolean function as a multi-valued decision diagram and

propose a heuristic to minimize it. The authors of [25] formulate the problem of min-

imizing a Boolean relation as a binate-covering problem. The more recent approach

used in BREL [1] follows a recursive branch-and-bound heuristic for minimizing

a given Boolean relation. This approach demonstrates better results and runtimes

as compared to those reported in [25, 26]. Therefore the work in this chapter uses

BREL [1] for minimizing the Boolean relation that is computed. The details of the

BREL algorithm are described in the next section.

17.4 Preliminaries and Definitions

The goal of the approach presented is to reduce the size and complexity of a Boolean

network at the technology-independent level. A Boolean network is defined as the

following:

Definition 17.1 A Boolean network η is a directed acyclic graph (DAG) G =
(V, E) in which every node has a Boolean function fi associated with it. Also,

fi has a corresponding Boolean variable yi associated with it, such that yi ≡ fi .

There is a directed edge ei j ∈ E from yi to y j if f j explicitly depends on yi .

A node yi is a fanin of a node y j iff there exists a directed edge ei j ∈ E . Node yi

is a fanout of y j iff there exists a directed edge e j i ∈ E . F I (y) and F O(y) represent

the set of fanins and the set of fanouts of y, respectively. F I (y) and F O(y) are

equivalently referred to as immediate fanins and immediate fanouts, respectively.

A node yi is in the transitive fanin of a node y j if there is a directed path from

yi to y j . Node yi is in the transitive fanout of node y j if there is a directed path

from y j to yi . The transitive fanin of a node yi up to a k levels, T F I (yi , k), is the

set of nodes {y j } such that there is a directed path of length less than or equal to

k, between y j and yi . Similarly, the transitive fanout of a node T F O(yi , k) is the

set of nodes {y j } such that there is a directed path of length less than or equal to k,

between yi and y j .

The transitive fanin frontier of a node yi at k levels, TFIfrontier(yi , k), is the set

of nodes {y j } such that there is a directed path of length exactly equal to k, between

y j and yi . The transitive fanout frontier of a node TFOfrontier is the set of nodes {y j }
such that there is a directed path of length exactly equal to k, between yi and y j .

These definitions are illustrated in Fig. 17.2. The gray nodes are the immediate

fanins and fanouts of the node y. The white nodes represent nodes in the TFIfrontier

and TFOfrontier of node y. The nodes of TFI(y, 2) and TFO(y, 2) are also shown, as

well as the nodes in TFI(y) and TFO(y). These classifications are used extensively

in Section 17.5 of this chapter.

Definition 17.2 The consensus operator or universal quantification of a function

f with respect to a variable xi is

∀xi
f = fxi

· fxi

17 Minimization Technique Using Boolean Relations 315

TFI(y) TFO(y)

Fig. 17.2 Terminology for nodes in a boolean network

Definition 17.3 The smoothing operator or existential quantification of a func-

tion f with respect to a variable xi is

∃xi
f = fxi

+ fxi

A Boolean relation is used to represent the flexibility available in optimizing

multiple nodes simultaneously. Related definitions are given next.

Definition 17.4 A Boolean relation R is a one-to-many multi-output Boolean map-

ping, R : Bn → Bm .

An output vector yl ∈ Bm is allowed for an input vector xk ∈ Bn iff (xk ,yl)

∈ R.

Definition 17.5 A multi-output Boolean function f is a mapping compatible with

R if f (x) ∈ R, ∀x ∈ Bn . This is denoted by f ≺ R.

A Boolean relation R can be represented by its characteristic function � : Bn ×
Bm → B such that �(xk, yl) = 1 iff (xk, yl) ∈ R.

For a network η which implements the multi-output Boolean function zzz = f (xxx),

the characteristic function is denoted by �η, where

�η =
m
∏

k=1

(zi⊕ fzi
(xxx))

where m is the number of outputs of η and fzi
(xxx) is the function of zi in terms of xxx .

Note that in the sequel a set of variables {a} is represented as aaa.

The following BDD operations are used in the work presented:

316 J.L. Cobb et al.

• bdd_smooth(f, smoothing_vars): This function returns the BDD formula

of f existentially quantified with respect to the variables in the array

smoothing_vars. For example, if f = ab + ac, and smoothing_vars = [a],
then the function returns b + c.

• bdd_consensus(f, quantifying_vars): This function returns the BDD formula

of f universally quantified with respect to the variables in the array

quanti f ying_vars. For example, if f = ab + ac, and quanti f ying_vars =
[a], then the function returns bc.

• bdd_node_to_bdd(node,leaves): This function builds the BDD for node in terms

of the variables given in the table leaves. The BDD is built recursively from the

BDD’s of its immediate fanins. If a visited node already has a BDD, then this

BDD will be reused; if it does not, then a new BDD will be constructed for the

node.

17.4.1 BREL Boolean Relation Minimizer

Finding a set of multi-output functions that are compatible with a Boolean relation is

a trivial task. For the relation in Table 17.1, arbitrarily choosing either {00} or {11}

as outputs for the input vector {10} would yield a compatible solution. However, this

solution may not be minimal in terms of the literal count of the resulting functions.

BREL uses a recursive algorithm to explore a wide range of solutions and chooses

the best result based on a given cost function.

First, a quick initial solution is found. This is done by projecting the rela-

tion onto each output, and then minimizing the resulting incompletely specified

function using the maximum flexibility provided by the relation. The constraints

of the solution are passed on to the rest of the outputs to ensure that the final

solution is compatible with the relation. Once this is done for all outputs, an

initial cost for the solution is determined. However, this initial solution depends

on the order that the outputs are minimized. In addition, it favors outputs mini-

mized first, since they have the most flexibility, while the last outputs inherit little

flexibility.

Next, a recursive algorithm is used to find an optimal solution. Each output is first

minimized independently. If the resulting solution is compatible with the relation

and has the lowest cost explored so far, then the solution is returned to the calling

function. If the resulting solution is incompatible with the relation, then the relation

R is split into two relations R1 and R2, which are compatible with R. This is done

by selecting an incompatible input vertex x and an output yi and defining R1 and

R2 as

R1 = R · (x + yi)

R2 = R · (x + yi)

17 Minimization Technique Using Boolean Relations 317

The algorithm is recursively called on R1 and R2, until either the cost is greater

than the best cost previously explored or if the terminal case is reached where R is

a function. In the end, the output of BREL is the minimum cost set of functions that

are compatible with R.

17.5 Approach

In general, the exact computation of the Boolean relation expressing the optimiza-

tion flexibility of multiple nodes is extremely memory intensive, even for small

networks. This is one of the reasons why past research efforts in this area have been

mostly theoretical in nature. The approach for simultaneous multi-node minimiza-

tion of a multi-level network presented in this chapter has several salient features.

• The flexibility is computed for simultaneously optimizing a pair of nodes of the

network at a time, using an ROBDD-based approach.

• Memory explosion is avoided by a windowing technique which first creates a

subnetwork around the two nodes being optimized. This subnetwork has a user-

controllable topological depth. The Boolean relation representing the flexibility

for simultaneously optimizing the two nodes is built in terms of the primary

inputs of the subnetwork. This keeps the sizes of the ROBDDs under control,

and effectively allows the approach to scale robustly for large networks, with

very good result quality.

• During the computation of the ROBDD of the characteristic function of the

Boolean relation, memory utilization is aggressively controlled by performing

careful early quantification.

• Further, instead of running this algorithm on all pairs of nodes, it is run on only

those node pairs that are likely to yield good optimization opportunities. This is

done without enumerating all node pairs.

Algorithm 1 describes the flow of the multi-level optimization methodology. The

input is a Boolean network η, and the output is an optimized Boolean network η′,
which is functionally equivalent to η.

The algorithm begins by efficiently selecting pairs of nodes to optimize from

the original multilevel network η. Given a pair of nodes (ni , n j) to optimize simul-

taneously, the algorithm then finds a subnetwork ηi, j which is rooted around these

nodes. The Boolean relation R representing the simultaneous flexibility of these two

nodes is computed in terms of the primary inputs of the subnetwork ηi, j . Finally,

the Boolean relation R is minimized using a relation minimizer (BREL [1] in the

approach presented). The relation minimizer returns a multi-output function (in par-

ticular a 2 output function) f , such that f is compatible with R (f ≺ R). The

optimized pair of nodes are then grafted back into η. At the end of the f or loop, a

minimized multi-level network η
′

is obtained.

The details of the steps of the algorithm are described next.

318 J.L. Cobb et al.

Algorithm 9 Boolean relation-based multi-node optimization

L = select_nodes(thresh, k1, k2, α)

for all (ni , n j) ∈ L do

ηi, j = extract_subnetwork(ni , n j , k1)

RY (sss, yyy) = build_relation_bdd(ηi, j , X, Z , S, Y)

(n
′
i , n

′
j) = B RE L(RY (sss, yyy))

Graft (n
′
i , n

′
j) in η

Delete ni and n j from η

end for

Return η
′ = network_sweep(η)

17.5.1 Algorithm Details

17.5.1.1 Selecting Node Pairs

When selecting node pairs, it is important to find nodes that share common fanins

and fanouts when the subnetwork is created. Not only will this make the subnetwork

smaller, but it will also increase the likelihood that more flexibility will be found

from the resulting relation.

To generate a list of all node pairs to minimize, select_nodes(thresh, k1, k2, α)

is called. This algorithm is shown in pseudocode in Algorithm 2 and graphically in

Fig. 17.3.

Algorithm 10 Pseudocode of node selection algorithm

for all (ni) ∈ η do

mmm ← TFIfrontier(ni , k1)

for all ml ∈ mmm do

nnn← T F O(ml , k2)

for all n j ∈ nnn do

if n j /∈ fanin or fanout of ni then

δ← common_pi(ni , n j , k1)

ǫ ← common_po(ni , n j , k1)

if α · δ + (1− α) · ǫ ≥ thresh then

L ← (ni , n j)

end if

end if

end for

end for

end for

Return L

This function starts by selecting a node ni in the network. To find a potential

partner n j for this node, TFIfrontier(ni , k1) is called, which returns only the nodes

mmm in the transitive fanin frontier of ni which have a backward depth of exactly k1

levels from ni . This step is shown in Fig. 17.3a. For each of these nodes ml ∈ mmm,

TFO(ml , k2) is called, which returns nodes nnn in the transitive fanout of ml that

have a forward depth of up to k2 levels from ml . This gives all potential partners

17 Minimization Technique Using Boolean Relations 319

m={ml}

a)

ni

ni

c)

nj

k1 k1

ni

nj

k2

b)

ml

k1

oipi

qj

n={nj}

primary inputs (PI)

primary outputs (PO)

pi=TFIfrontier(ni k1)

pj=TFIfrontier(nj k1)

oi=TFOfrontier(ni k1)

oj=TFOfrontier(nj k1)

qj=TFIfrontier(oj k1)

oj

pj

Fig. 17.3 Selection of node pairs

nnn and ensures that they will later share at least one common primary input in the

subnetwork with ni .

Note that nodes in the transitive fanin or fanout of ni are not included in nnn.

The reason for this is explained in Section 17.5.1.3. Figure 17.3b shows the nodes

(circles) that are included in nnn, and the darkened edges show paths in the TFI of ni

where nodes will not be included in nnn.

Next, each node n j ∈ nnn is tested against ni to measure their compatibility. The

TFI and TFO (up to k1 levels) of both nodes are considered when determining

compatibility; however, only nodes at the frontier of these sets are used, shown in

Fig. 17.3c. Node sets pipipi and p jp jp j are the TFIfrontier sets for ni and n j , respectively.

Node sets oioioi and o jo jo j are the TFOfrontier sets for ni and n j respectively. In addition, as

will be explained in Section 17.5.1.2, the sets qiqiqi and q jq jq j are the TFIfrontier sets for oioioi

and o jo jo j , respectively. In Fig. 17.3c, the set of nodes qiqiqi is empty because all nodes in

oioioi can be expressed completely in terms of nodes already in pipipi . These frontier nodes

will later be the PIs and POs of the k1 × k1 window around the nodes. The more of

these nodes that ni and n j share in common, the fewer the number of nodes required

in the subnetwork. The PI and PO compatibility of both nodes are calculated. The

more these sets overlap, the more likely they are to be selected as a pair. The PI

factor δ is defined as

δ = |pipipi ∩ p jp jp j ∩ qiqiqi ∩ q jq jq j |
|pipipi ∪ p jp jp j ∪ qiqiqi ∪ q jq jq j |

320 J.L. Cobb et al.

and the PO factor ǫ is defined as

ǫ = |oioioi ∩ o jo jo j |
|oioioi ∪ o jo jo j |

To determine whether or not ni and n j will be selected as a pair to be optimized, δ

and ǫ are scaled by α and 1− α, respectively, and tested if their sum is higher than

a user-defined threshold thresh:

αδ + (1− α) · ǫ ≥ thresh

All nodes n j for which the above test evaluates to be true are placed in the node

pair list L , along with ni .

These steps are performed for all ni ∈ η, visited in topological order from the

POs to the PIs, until every node has been tested for potential partners. A list L of all

node pairs to optimize is returned. Additionally, care is taken to ensure that no pairs

appear twice in L ,

Next, a subnetwork ηi, j of η, rooted at nodes (ni , n j), is extracted. The technique

for this extraction is explained in the following section.

17.5.1.2 Building the Subnetwork

For each pair of nodes (ni , n j) found, subnetworks of η rooted at the nodes ni and n j

are extracted by calling extract_subnetwork(ni , n j , k1). This function constructs a

subnetwork ηi, j such that if node m ∈ {TFO(ni , k1)∪TFO(n j , k1)}, then m ∈ ηi, j

and if node p ∈ {TFI(ni , k1) ∪ TFI(n j , k1)}, then p ∈ ηi, j . Here k1 is the

same value used when calling select_nodes. The result of this step is illustrated in

Fig. 17.4a as the shaded subnetwork.

Node m ∈ ηi, j is designated as a primary input of ηi, j if ∃n∈F I (m), n /∈ ηi, j .

Similarly, a node m is designated as a primary output of ηi, j if ∃n∈F O(m), n /∈ ηi, j .

The set of primary inputs (outputs) of ηi, j is referred to as X (Z).

Next the set of all nodes m ∈ T F I (v, k1) is collected, where v is a primary

output of the subnetwork ηi, j . This step is illustrated in Fig. 17.4b. Let this set be

called D. The nodes in the dotted and shaded region of Fig. 17.4b constitute the set

D. These nodes are included in the subnetwork as well, by setting ηi, j ← ηi, j ∪ D.

Figure 17.4c zooms into the region of interest for the subsequent discussion.

Next, for each d ∈ D a check is done to see if F I (d) can be expressed com-

pletely in terms of the current nodes in ηi, j . This check is performed by recursively

traversing the network topologically from d toward the primary inputs Xglobal of η.

If this traversal visits a node in ηi, j , the traversal terminates and all nodes visited

in this traversal are added to ηi, j . If the traversal visits a node in Xglobal instead,

then the set of primary inputs of ηi, j is augmented with d, i.e., X is updated as

X ← X ∪ d. This step is illustrated in Fig. 17.4d.

Nodes w and r ∈ D could be considered as primary inputs to the subnetwork;

however, all of their fanins can be expressed completely in terms of X . Thus, the

17 Minimization Technique Using Boolean Relations 321

primary outputs

a) b)

d) c)

primary inputs

rru u

t

k1

k1 k1

ni

ni ni

nj

ni

njnj

n j

t

w

yyy

xxx
zzz

ηi j

ηη

w

sss

ηi j

Fig. 17.4 Extraction of subnetwork

fanin of the node w ∈ D and the fanin u of r ∈ D are added to ηi, j . However, the

fanin of node t ∈ D cannot be expressed in terms of nodes in ηi, j , and so t is added

to X . This check avoids the addition of unnecessary primary inputs for representing

the subnetwork ηi, j . A larger number of primary input variables typically results

in larger intermediate ROBDDs in the computation of the Boolean relation R, and

consequently more time needed for the computations.

Note that the size of each subcircuit ηi, j is determined by the depth parameter

k1. Hence, by suitably choosing k1, it can be guaranteed that the subcircuits are

never too large, and the Boolean relation can be computed with low memory uti-

lization, even for an extremely large network η. The final subnetwork ηi, j is shown

in Fig. 17.4d. This subnetwork is then used to create a Boolean relation which inher-

ently represents the simultaneous flexibility of both ni and n j , as discussed in the

following section.

17.5.1.3 Computing the Boolean Relation R
Y

As mentioned previously, the exact computation of a Boolean relation expressing

the flexibility in a medium to large design could be extremely memory intensive.

Additionally, ROBDD-based computations are used for this relation. ROBDDs can,

by nature, exhibit very irregular memory requirements, especially for medium to

large designs. A goal of this approach is to develop a robust methodology for com-

322 J.L. Cobb et al.

puting the Boolean relation. This is achieved by keeping a tight control on the sizes

of the BDDs of the Boolean relation. Not only is this relation computed for a node

pair (ni , n j) using a windowed subnetwork ηi, j (thus ensuring that the ROBDDs are

small) but also careful early quantification is performed to ensure that the ROBDD

sizes stay tractable during the relation computation.

Consider a subnetwork ηi, j , its set of primary inputs X and its set of primary

outputs Z . Let the set of nodes being simultaneously optimized be referred to as Y

and their combined support be S. Note that S, Y , X and Z correspond to a set of

nodes of ηi, j . Let the variables for these be sss, yyy, xxx and zzz, respectively, as shown

in Fig. 17.4d. The characteristic function of the Boolean relation R is a mapping

B|S| × B|Y |→ B s.t.

RY (sss, yyy) = ∀xxx [(sss = gS(xxx))⇒ ∀zzz[(zzz = Z M
i (xxx, yyy))⇒ Φ(xxx, zzz)]]

In this expression, �(xxx, zzz) is the characteristic function of the circuit outputs zzz =

f (xxx). The subexpression Z M (xxx, yyy) represents the characteristic function of the cir-

cuit outputs expressed in terms of xxx and yyy. Also, gS(xxx) is the characteristic function

of the sss variables in terms of xxx . The computation of RY is explained intuitively as

follows. For all primary input minterms xxx , let sss take on values dictated by xxx (i.e.,

sss = gS(xxx)). If this is the case, then if zzz takes on the values dictated by xxx and the

node values of yyy, the values of xxx and zzz should be related by the original network

functionality (i.e., �(xxx, zzz)).

One caveat of this computation is that the two nodes (n1, n2) for which the

relation is calculated cannot be in each others’ TFI or TFO. The reason for this

is explained as follows. Suppose node n1 is a fanin of node n2. If that is true,

then n1 ∈ sss and n1 ∈ yyy simultaneously. If the relation is then minimized, BREL

produces functions yyy = f (sss) that are cyclic, with variables being on both sides of

the equation. This could lead to feedback in the optimized circuit. For this reason, a

node in the other node’s TFI or TFO is not chosen in the node selection algorithm.

17.5.1.4 Quantification Scheduling

In the approach presented, the Boolean relation RY (sss, yyy) is computed using ROB-

DDs. In order to avoid a possible memory explosion problem, early quantification

is performed as explained next.

The computation for RY (sss, yyy) is rewritten as

RY (sss, yyy) = ∀xxx

[

(sss = gS(xxx))⇒ ∀zzz

[

∏

i

(zi⊕Z M
i (xxx, yyy))⇒

∏

i

(zi⊕Zi (xxx))

]]

This expression can be rewritten as

RY (sss, yyy) = ∀xxx

[

(sss = gS(xxx))⇒ ∀zzz

[

∏

i

[(zi⊕Z M
i (xxx, yyy))⇒ (zi⊕Zi (xxx))]

]]

17 Minimization Technique Using Boolean Relations 323

The first observation is that the quantification over zzz (∀zzz) and the product term

over i (
∏

i) can be swapped to obtain a new expression for RY (sss, yyy):

RY (sss, yyy) = ∀xxx

[

(sss = gS(xxx))⇒
∏

i

[∀zzz[(zi⊕Z M
i (xxx, yyy))⇒ (zi⊕Zi (xxx))]]

]

This is correct because in general,

∀ω(f · g) = ∀ω(f) · ∀ω(g)

Quantifying out the zzz variables earlier results in smaller intermediate ROBDDs for

the expression to the right of the first implication. The computation can therefore be

expressed as

RY (sss, yyy) = ∀xxx [(sss = gS(xxx))⇒ P(xxx)] = ∀xxx [(sss = gS(xxx))+ P(xxx)]

where P(xxx) is the ROBDD obtained after applying the first observation.

P(xxx) =
∏

i

[∀zzz[(zi⊕Z M
i (xxx, yyy))⇒ (zi⊕Zi (xxx))]]

In general, however,

∀ω(f + g) �= ∀ω(f)+ ∀ω(g)

Let the common variables between f and g be ω∗. Let ω
′ = ω ∩ ω∗. Then,

∀ω(f + g) = ∀
ω
′ (∀

ω\ω′ (f)+ ∀
ω\ω′ (g))

The second observation is that gS(xxx) depends on a smaller subset (x
′

x
′

x
′
) of the

primary inputs (xxx) of the network. Hence, RY (sss, yyy) can be computed as

RY (sss, yyy) = ∀
x
′

x
′

x
′ [∀

xxx\x ′x ′x ′ (sss = gS(xxx))+ ∀
xxx\x ′x ′x ′ (P(xxx))]

which reduces to

RY (sss, yyy) = ∀
x
′

x
′

x
′ [(sss = gS(xxx))+ ∀

xxx\x ′x ′x ′ (P(xxx))]

In practice, both observations are applied in tandem. First gS(xxx) is found, as

well as the set x
′

x
′

x
′
. Then, while computing P(xxx), xxx\x ′x

′
x
′

is quantified out. The final

computing step is

RY (sss, yyy) = ∀
x
′

x
′

x
′ [(sss = gS(xxx))+ P

′
(x
′

x
′

x
′
)]

324 J.L. Cobb et al.

where P
′
(x
′

x
′

x
′
) = ∀

xxx\x ′x ′x ′ (P(xxx)). By implementing both these techniques, intermedi-

ate ROBDD never blows up in size. Without using the early quantification ideas,

the ROBDD size is dramatically larger, hence the early quantification is key to the

robustness and scalability of the approach. The final ROBDD representing RY (sss, yyy)

is returned to the calling function.

17.5.1.5 Endgame

Next, BREL is called to minimize RY (sss, yyy). The output of BREL is a pair of com-

pletely specified functions for the nodes n
′
i and n

′
j such that these functions are

compatible with RY (sss, yyy) and the total cost of n
′
i and n

′
j is minimal. The new nodes

n
′
i and n

′
j are grafted back into η and the original nodes ni and n j are deleted from

η.

At the end of the for loop in Algorithm 1, when all node pairs have been pro-

cessed by the relation-based minimization procedure, the network_sweep command

of SIS [22] is run. This command quickly eliminates any constant-valued nodes in

the network that may have been created during the minimization process. Finally,

the network_verify command of SIS is run to check if the resulting network η
′

is

functionally equivalent to the original network η.

17.6 Experimental Results

This section presents the experimental results for the algorithm described in the

previous section. Section 17.6.1 describes the preprocessing steps used in all the

experimental results. Section 17.6.2 shows the methodology used to determine the

the parameters that control the node selection algorithm. Section 17.6.3 reports the

results obtained when comparing with the mfsw approach of [17], which is the most

powerful technique among single-node optimized approaches (in terms of runtime

and quality of results). Section 17.6.4 discusses some variations on the original algo-

rithm and their results.

The metric for quality that is used throughout this section is literal count. This

is the sum of the number of literals for each node in the network. The fewer the

number of literals in the network, the better the optimization technique. The literal

counts shown in the results are all relative to another approach used for comparison.

Runtimes are also reported in these results. For some experiments, absolute runtime

is reported, and for others, runtime relative to another approach is reported.

The approach was implemented in SIS [22], a logic synthesis package written

in C. The ROBDD package used was the CUDD package [24]. A sample of 15

medium and large circuits from the mcnc91 and itc99 benchmarks was used in the

experiments. The experiments were performed on a Linux-based Dell Optiplex with

a 2.6 GHz Core 2 Quad CPU with 4 GB of RAM.

17 Minimization Technique Using Boolean Relations 325

17.6.1 Preprocessing Steps

Before any minimization is performed on the original network, two preprocessing

steps are performed. The first is the network_sweep command of SIS, which elimi-

nates constant-valued nodes as well as nodes which do not fanout anywhere.

The second step is running sat_sweep [14] on the network. This command uses

a Boolean Satisfiability (SAT) checker to determine if two nodes u and v are func-

tionally identical by calling SAT_CHECK(u ⊕ v). This checks if there is any input

vector to u and v for which the outputs of u and v differ. If there is, then the nodes are

functionally different and cannot be merged, and a new pair is selected. Otherwise,

then the nodes are functionally equivalent and can be merged together. This algo-

rithm quickly reduces the literal count of a circuit by removing redundancies. The

result is obtained over and above what sat_sweep achieves. The results reported for

the competing technique mfsw [17] were also preceded by a sat_sweep command.

In other words, sat_sweep is run first. Then the additional improvements obtained

by the proposed method are compared to those obtained by mfsw.

17.6.2 Parameter Selection

As described in Section 17.5.1, the node selection algorithm is based on four user-

defined parameters, namely thresh, k1, k2, and α. Tuning these parameters can cus-

tomize the trade-off between quality of results and runtime. In general, the longer the

runtime, the better the quality of results. However, the runtime is heavily dependent

on the number of nodes chosen. If changing a parameter increases the runtime, this

is because either more node pairs were selected, or the processing time of a node pair

is increased. Depending on the ‘quality’ of the additional pairs, the literal reduction

could change as well. Because of this, optimal values need to be determined for all

parameters as a first step.

The experiments in this section are conducted to find a ‘golden’ set of parameter

values for the proposed approach. In these experiments, the ranges of values for

each parameter are listed in Table 17.2. The nominal values of these parameters are

also listed in this table.

Table 17.2 Initial values,

final values, increments, and

nominal values of the node

selection parameters

Parameter Low High Increment Nominal

α 0 1.0 0.1 0.5

k1 2 3 1 2

k2 2 4 1 3

thresh 0 1.0 0.1 0.5

17.6.2.1 Selecting α

The first parameter to determine is α. This parameter determines the weight that PIs

and POs of the subnetwork are given when selecting a node pair. The parameter α

can range from 0, which considers only POs, to 1.0, which considers only PIs. The

326 J.L. Cobb et al.

reason for determining α first is because it is the parameter least dependent on the

others. Since thresh, k1, and k2 affect only the number of pairs selected and the

window size, α can be chosen first.

Figure 17.5 shows α being swept from 0 to 1.0, while the other three parameters

are held constant. The nominal values for thresh, k1, and k2 were chosen in the

middle of their ranges at 0.5, 2, and 3, respectively. The left axis represents the ratio

of literals obtained compared to that obtained after running sat_sweep, and the right

axis represents the average runtime of the method used here. For each value of α, the

average literal ratio and runtime are presented in Fig. 17.5, across all the benchmark

examples.

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0 0.2 0.8 1
0

10

20

30

40

50

60

70

80

90

R
at

io
o
f

L
it

er
al

s
to

 s
a
t_

sw
ee

p

A
v
er

ag
e

R
u
n
ti

m
e

(s
)

α

Literals
Time

0.4 0.6

Fig. 17.5 Sweeping α with thresh = 0.5, k1 = 2, k2 = 3

The main observation is that in general, lower values of α yield lower runtimes

as well as fewer literals. This means that PO compatibility is more important when

choosing node pairs than PI compatibility. At the extremes, it is seen than an α value

of 0 provides 40% more literal reduction in a quarter of the runtime than with an

α value of 1.0. Since both runtime and literal count increase with α, one can infer

that with the higher α values, more node pairs were chosen, but the pairs gave less

literal count reduction. This shows that when two nodes are minimized together,

more flexibility is obtained if they reconverge quickly than if they share a common

variable support.

For 0 ≤ α < 0.5, both runtime and literal count are relatively flat. Therefore,

the value of 0.25 is chosen for α for the rest of the experiments. Although there is

no empirical data to guide the selection of α for values less than 0.5, a value in the

middle of the range is chosen. This is so that PI compatibility still contributes to the

node selection, but not enough to degrade the results.

17 Minimization Technique Using Boolean Relations 327

17.6.2.2 Selecting k1 and k2

The parameters k1 and k2 are determined next. The size of the window is determined

by k1, because the subnetwork created includes nodes k1 levels back and k1 levels

forward from the nodes to be minimized, as shown in Fig. 17.4a. Therefore a larger

value of k1 means more nodes are included in the subnetwork. The parameter k2

affects the number of nodes in nnn, shown in Fig. 17.3b, which are tested against the

first node ni for compatibility. A larger value of k2 means that more partners are

tested for ni .

Figure 17.6 shows the literal ratio and average runtime for different values of

(k1, k2). The first observation is that the point (3, 2) has a distinctly higher literal

ratio than the other points. This is because node n j is selected by going back three

topological levels from ni but then forward only two levels from there. This pre-

cludes any node n j that is on the same level as ni from being selected. By comparing

points (3, 2) and (3, 3) in Fig. 17.6, is clear that these nodes account for a large

portion of the gains in literal ratio.

Fig. 17.6 Sweeping k1 and k2 with thresh = 0.5 and α = 0.25

From the other points, it can be seen that increasing k1 or k2 has little effect on

the literal ratio but causes a much higher increase in runtime. Therefore the values

k1 = 2 and k2 = 2 are chosen.

17.6.2.3 Selecting thresh

The final parameter to determine is thresh. This parameter controls how ‘compat-

ible’ two nodes must be for them to be selected as a pair. A high value of thresh

means that only node pairs with a high percentage of outputs and inputs in common

are chosen for minimization. A low value of thresh allows the nodes with fewer

inputs and outputs in common to be minimized as well.

328 J.L. Cobb et al.

Fig. 17.7 Sweeping thresh with k1 = 2, k2 = 2, and α = 0.25

Figure 17.7 shows thresh being swept with k1 = 2, k2 = 2, and α = 0.25. The

left axis again shows the ratio of the number of literals using this technique to the

literals from the original network after calling sat_sweep. The right axis shows the

average runtime in seconds for the minimization to complete, plotted on a log scale.

This shows that for thresh ≤ 0.2, the runtime increases exponentially as thresh

decreases, and the literal ratio decreases linearly. For large values of thresh, the

runtime decreases, but the literal ratio increases drastically. This is because very

few nodes are selected for minimization when the threshold is high.

While either extreme can be chosen if speed or literal ratio alone were desired,

selecting an intermediate value of thresh can achieve a balance between the two.

Therefore thresh = 0.4 is selected for the remaining experiments.

17.6.3 Comparison of the Proposed Technique with mfsw

As described in Section 17.3, many single-node techniques have been developed for

minimizing Boolean networks using don’t cares. Of these techniques, the method

of [17], called mfsw, has the best results and scales well. In this section, the results

from the method presented in this chapter are labeled as relation and are compared

with the results from mfsw. The mfsw technique uses a SAT-based CDC method and

a 2× 2 window for creating subnetworks.

For the remaining experiments, the ‘golden’ values of the parameters as

described in Section 17.6.2 are used. In particular, thresh = 0.4, k1 = 2, k2 = 2,

and α = 0.25.

For the results shown in Table 17.3, sat_sweep is run first, providing the starting

point for both the mfsw technique and the method described in this chapter. The lit-

eral count after sat_sweep is shown in Column 2 of Table 17.3. The literal count and

17 Minimization Technique Using Boolean Relations 329

Table 17.3 Results after sat_sweep

Orig mfsw relation Ratio

Circuit Lits Lits Time Lits Time Lits Time Mem % Gain

c1355 992 992 0.09 598 1.53 0.603 16.96 339 1

c1908 759 748 0.09 595 6.74 0.795 74.88 54939 0.41

c2670 1252 1197 0.11 901 4.04 0.753 36.76 1025 0.78

c5315 3062 2935 0.29 2372 12.37 0.808 42.65 2683 0.74

c7552 3796 3549 0.43 2990 14.30 0.842 33.25 3314 0.68

b15 15084 14894 1.78 14654 49.31 0.984 27.70 5594 0.64

b17 49096 48595 5.74 48047 228.57 0.989 39.82 6578 0.60

b20 22037 21816 2.56 21501 91.40 0.986 35.70 3489 0.26

b21 22552 22306 2.59 21933 92.08 0.983 35.55 3489 0.32

b22 33330 33001 3.97 32321 203.11 0.979 51.16 3519 0.28

s1494 1239 1177 0.13 1195 3.68 1.015 28.31 594 0.20

s5378 2327 2283 0.27 1993 7.36 0.873 27.26 3306 0.38

s13207 5052 4833 0.38 4259 27.35 0.881 71.96 1430 0.30

s15850 6624 6342 0.52 5519 26.10 0.870 50.19 1234 0.51

s38417 17531 17314 1.43 17158 68.68 0.991 48.02 2598 0.41

Average 1 0.974 – 0.859 – 0.882 38.62 – 0.45

runtime after running mfsw is reported in Column 3 and Column 4, respectively. The

literal count and runtime after running relation is reported in Column 5 and Column

6, respectively. For these columns, the average literal count relative to sat_sweep is

shown in the last row. Column 7 shows the ratio of literals in Column 5 to Column

3, and Column 8 shows the ratio of runtimes in Column 6 to Column 4. Column

9 reports the peak number of ROBDD nodes for relation, and Column 10 shows

the percentage of node pairs selected by relation that actually reduce the number of

literals in the network.

From Table 17.3 it is seen that after sat_sweep, the relation method reduces the

literal count by approximately 12% over what mfsw achieves. This shows that min-

imizing two nodes simultaneously has significant benefits in terms of literal count

over the don’t care approach of mfsw. The memory requirements are also very low

regardless of the size of the circuit, due to the aggressive quantification scheduling

performed. This supports the claim that relation scales well and is a robust tech-

nique. Column 7 shows that the node selection method is quite efficient. On average,

45% of the node pairs chosen resulted in a reduction in the number of literals in the

network.

In terms of runtime, mfsw is clearly more efficient than relation, which requires

nearly 40× more runtime on average. However, the absolute time values must be

taken into account. Column 6 shows that for most circuits runtimes are under 1 min,

and the peak runtime is still under 4 min for the largest circuit. Compared to the time

scale of the entire design process, which is measured in months or years, these times

are therefore quite small. In addition, as discussed in Section 17.6.2, the parameters

for selecting node pairs can be altered to decrease the runtime.

It should also be noted that increasing the window size of mfsw to a 10 × 10

window greatly increases the runtime of that method but reduces the literal count

330 J.L. Cobb et al.

by less than 1%. This means that while relation does require more runtime, the

minimization it performs cannot be matched by mfsw regardless of the time it is

allowed to run.

17.6.4 Additional Experiments

Section 17.6.3 presented the gains of the relation-based minimization approach after

running sat_sweep. In this section, a variety of other experiments are performed to

further explore the relation-based technique.

17.6.4.1 Running relation After mfsw

For this experiment, relation is run on networks that have already been reduced by

sat_sweep and mfsw. The purpose is to test how much relation can improve upon

the minimization results of mfsw. Table 17.4 shows the results of this experiment.

Column 2 (3) reports the literal count (runtime) of running sat_sweep followed

mfsw. Columns 4 and 5 show the literal count and runtime (respectively) of running

relation on the netlist obtained by sat_sweep followed by mfsw. The literal and

runtime ratios are shown in Column 6 and Column 7, respectively.

Table 17.4 Results after sat_sweep and mfsw

mfsw m f sw + relation Ratio

Circuit Lits Time Lits Time Lits Time Mem

c1355 992 0.09 600 1.53 0.605 16.994 336

c1908 748 0.09 588 2.86 0.786 31.759 12026

c2670 1197 0.11 906 4.21 0.757 38.307 742

c5315 2935 0.29 2298 11.57 0.783 39.912 1452

c7552 3549 0.43 2795 13.17 0.788 30.635 1842

b15 14894 1.78 14558 44.18 0.977 24.822 1262

b17 48595 5.74 47639 213.90 0.980 37.264 5648

b20 21816 2.56 21293 91.65 0.976 35.802 3490

b21 22306 2.59 21711 91.97 0.973 35.509 3489

b22 33001 3.97 32050 202.72 0.971 51.063 3511

s1494 1177 0.13 1142 3.29 0.970 25.319 673

s5378 2283 0.27 1972 6.95 0.864 25.738 5666

s13207 4833 0.38 4256 27.15 0.881 71.442 13121

s15850 6342 0.52 5331 23.92 0.841 46.004 1212

s38417 17314 1.43 16968 55.62 0.980 38.897 2009

Average – – – – 0.868 34.684 –

It is seen from Column 6 that running relation after mfsw can further reduce

the literals by about 13%. Since the window sizes of both methods were identical,

this improvement represents the benefits of two-node minimization over single-node

minimization. In the specific case of circuit c1355, nearly 40% of the literals can be

removed only through the node pair technique. Columns 6 and 7 demonstrate again

that the memory utilization is very low, and the node selection method is effective.

17 Minimization Technique Using Boolean Relations 331

17.6.4.2 Running relation Twice

In this experiment, after running sat_sweep, relation is run twice in succession

on the same network. The purpose of this experiment is to determine if there are

improvements that can be had by minimizing a network multiple times. Three sep-

arate experiments are tried. In the first, only nodes pairs that did not give any literal

count reduction during the first run are minimized again. In the second, only node

pairs that did give a reduction in literal count are minimized again. And finally, all

node pairs were rerun regardless of whether they yielded a literal reduction or not

during the first run.

The results for all three experiments showed a less than 1% improvement in

literal count compared to the first run of relation. These experiments show that even

though the network has changed significantly after the first run of relation, these

changes have almost no impact on the ability of other nodes to be further minimized

in a subsequent iteration. The same conclusion can be drawn for the mfsw method

as well, which also yields almost no further reductions when run more than once on

a network.

17.6.4.3 Minimizing Single Nodes

In this experiment, sat_sweep is run first, followed by relation. During the relation

algorithm, some nodes get minimized while others do not, either because they were

not selected in a node pair or because the algorithm did not reduce their literal count.

For such nodes, an additional step of minimization was performed after running

relation. After relation, these nodes are again minimized individually using ODCs.

This is implemented using the same steps in Section 17.5, by creating a relation

corresponding to the subnetwork, and then using BREL to minimize it. The only

difference is that only one node is used. This experiment ensures that some type of

minimization is attempted for each node in the network.

However, experimental results showed that this idea does not further reduce the

literal count by more than 1%, across all the circuits. Almost all of the nodes which

were subjected to single-node optimization techniques were those that were origi-

nally selected but did not reduce their literal count when minimized with other nodes

in a pair. The conclusion that can be drawn is that if a node cannot be minimized

with another node, then minimizing it alone does not yield any gains either.

17.6.4.4 Effects of Early Quantification

Section 17.5.1.4 discusses the methods for early quantification used for the approach

presented. Figure 17.8 shows the effects of quantifying during different stages of the

computation of P(xxx) from R(Y). One node pair of the network c432 is being min-

imized in this example, and the number of nodes in the BDD during each iteration

of the P(xxx) computation is reported.

The plot Q1 represents the incremental size of the relation BDD without any

early quantification. Note that the BDD size is reported on a logarithmic scale. After

332 J.L. Cobb et al.

10

100

1000

10000

100000

1e+06

0 2 4 6 8 10 12 14 16 18 20

S
iz

e
o
f

B
D

D

Iteration

Q1

Q2

Q3

Q4

Fig. 17.8 Effects of quantification scheduling on BDD size

only 20 BDD calculations, the size of the BDD is almost one million nodes. Only at

the end of the computation, when the zzz and xxx variables are quantified out, does the

size of the BDD drop.

The plot Q2 shows the BDD size when the output variables zzz are quantified out

after each iteration of the computation. The number of nodes stays near 1000 until

a particular output in zzz is quantified out, and then the BDD size drops to 25.

The plot Q3 is the case when only the xxx\x ′x
′

x
′
variables are quantified out after each

iteration. The BDD size steadily climbs to over 100, until the final iteration, when

the xxx variables are quantified out.

Q4 shows the results when the quantification techniques Q2 and Q3 are applied

in tandem. The size of the BDD never grows past 25 during the entire computation.

This example demonstrates that for a single-node pair, even when a windowing

technique is employed, the BDD of R(Y)can blow up in size unless both the early

quantification techniques of Section 17.5.1.4 are employed.

17.7 Chapter Summary

In this chapter, a scalable dual-node technology-independent logic optimization

technique was presented. This technique scales well and can minimize both small

designs and large designs typical of industrial circuits.

The algorithm presented first selects which node pairs will be minimized. For

each node pair, a subnetwork is created around the nodes. This windowing is done

in order to make this approach feasible for large industrial circuits. Once the subnet-

work is created, the Boolean relation, which represents the flexibility of the nodes,

is computed. During this process, early quantification is performed. BREL is used

17 Minimization Technique Using Boolean Relations 333

to minimize the Boolean relation, and the new nodes replace the original nodes in

the original circuit. This is done for all node pairs that were selected.

It is experimentally demonstrated that this technique produces minimized

technology-independent networks that are on average 12% smaller than networks

produced by a single-node minimization technique called mfsw. Although the run-

times of mfsw are significantly smaller than this approach, the runtime for any given

circuit using this approach is never more than 4 min. In addition, the memory usage

is very low and is independent of the circuit size.

Additionally, the approach can further reduce the literal count of networks that

have already been minimized by mfsw, by 13%. This result shows how the increased

flexibility from two-node minimization can simplify networks better than single-

node techniques.

Some of the future work involves using a SAT-based approach for constructing

the Boolean relation. An alternative SAT-based replacement for BREL can be imple-

mented as well. Both of these have the potential to reduce runtimes of the technique.

In addition, modifications to minimize three or more nodes simultaneously can be

made to gain even more flexibility using the Boolean relation-based multi-output

optimization technique.

References

1. Baneres, D., Cortadella, J., Kishinevsky, M.: A recursive paradigm to solve Boolean relations.

In: Proceedings of the Design Automation Conference, pp. 416–421. San Diego, CA (2004)

2. Brayton, R.: Compatible output don’t cares revisited. In: Proceedings of International Confer-

ence on Computer-Aided Design, pp. 618–623. San Jose, CA (2001)

3. Brayton, R., Rudell, R., Sangiovanni-Vincentelli, A., Wang, A.: MIS: A multiple-level logic

optimization system. IEEE Transactions on CAD/ICAS CAD-6(6), 1062–1082 (1987)

4. Brayton, R.K., Hachtel, G.D., McMullen, C.T., Sangiovanni-Vincentelli, A.L.: Logic Mini-

mization Algorithms for VLSI Synthesis. Kluwer, Norwell, MA (1984)

5. Brayton, R.K., Hachtel, G.D., Sangiovanni-Vincentelli, A.L.: Multilevel logic synthesis. In:

Proceedings of IEEE, vol.78, pp. 264–300. (1990)

6. Brayton, R.K., Somenzi, F.: Boolean relations and the incomplete specification of logic net-

works. In: Proceedings of International Conference on VLSI. Cambridge, MA (1989)

7. Bryant, R.E.: Graph based algorithms for Boolean function representation. IEEE Transactions

on Computers C-35, 677–690 (1986)

8. Burch, J.R., Clarke, E.M., Long, D.E.: Symbolic model checking with partitioned transition

relations. In: Proceedings of International Conference on VLSI. Cambridge, MA (1991)

9. Cerny, E., Marin, M.A.: An approach to unified methodology of combinational switching

circuits. In: Proceedings of IEEE Transactions on Computers, vol. 26, pp. 745–756. (1977)

10. Chen, K.C., Fujita, M.: Efficient sum-to-one subsets algorithm for logic optimization. In: Pro-

ceedings of Design Automation Conference, pp. 443–448. Anaheim, CA (1992)

11. Dey, S., Brglez, F., Kedem, G.: Circuit partitioning and resynthesis. In: Proceedings of Custom

Integrated Circuits Conference, pp. 29.4/1–29.4/5. (1990)

12. Hassoun, S. (ed.): Logic Synthesis and Verification. Kluwer, Norwell, MA (2001)

13. Jiang, Y., Brayton, R.K.: Don’t cares and multi-valued logic network minimization. In: Pro-

ceedings of International Conference on Computer-Aided Design. San Jose, CA (2000)

14. Kuehlmann, A.: Dynamic transition relation simplification for bounded property checking. In:

Proceedings of International Conference on Computer-Aided Design, pp. 50–57. San Jose,

CA (2004)

334 J.L. Cobb et al.

15. Limqueco, J.C., Muroga, S.: SYLON-REDUCE: An MOS network optimization algorithms

using permissible functions. In: Proceedings of International Conference on Computer-Aided

Design, pp. 282–285. Santa Clara, CA (1990)

16. Limqueco, J.C., Muroga, S.: Optimizing large networks by repeated local optimization using

windowing scheme. In: IEEE International Symposium on Circuits and Systems, ISCAS,

vol. 4, pp. 1993–1996. San Diego, CA (1992)

17. Mishchenko, A., Brayton, R.K.: SAT-based complete don’t care computation for network opti-

mization. In: Proceedings of Design, Automation and Test in Europe, pp. 412–417. Munich,

Germany (2005)

18. Saluja, N., Khatri, S.P.: A robust algorithm for approximate compatible observability don’t

care (CODC) computation. In: Proceedings of Design Automation Conference, pp. 422–427.

San Diego, CA (2004)

19. Savoj, H., Brayton, R., Touati, H.: Extracting local don’t cares for network optimization. In:

Proceedings of IEEE Transactions on Computer-Aided Design, pp. 514–517. Santa Clara, CA,

USA (1991)

20. Savoj, H., Brayton, R.K.: The use of observability and external don’t cares for the simplifica-

tion of multi-level networks. In: Proceedings of Design Automation Conference, pp. 297–301.

Orlando, Florida (1990)

21. Savoj, H., Brayton, R.K.: Observability relations for multi-output nodes. In: Proceedings of

International Workshop on Logic Synthesis. Tahoe City, CA (1993)

22. Sentovich, E.M., Singh, K.J., Lavagno, L., Moon, C., Murgai, R., Saldanha, A., Savoj, H.,

Stephan, P.R., Brayton, R.K., Sangiovanni-Vincentelli, A.L.: SIS: A System for Sequential

Circuit Synthesis. Technical Report, UCB/ERL M92/41, Electronics Research Lab, University

of California, Berkeley, CA 94720 (1992)

23. Sinha, S., Brayton, R.K.: Implementation and use of SPFDs in optimizing Boolean net-

works. In: Proceedings of International Conference on Computer-Aided Design, pp. 103–110.

San Jose, CA (1998)

24. Somenzi, F.: CUDD: CU decision diagram package. Accessed November 2007 [Online].

http://vlsi.colorado.edu/ fabio/CUDD/cudd.html

25. Somenzi, F., Brayton, R.K.: An exact minimizer for Boolean relations. In: Proceedings of

International Conference on Computer-Aided Design, pp. 316–319. Santa Clara, CA (1989)

26. Watanabe, Y., Brayton, R.: Heuristic minimization of multi-valued relations. In: Proceedings

of IEEE Transactions on Computer-Aided Design, vol.12, pp. 1458–1472. (1993)

27. Wurth, B., Wehn, N.: Efficient calculation of Boolean relations for multi-level logic optimiza-

tion. In: Proceedings of European Design and Test Conference, pp. 630–634. Paris, France

(1994)

28. Yamashita, S., Sawada, H., Nagoya, A.: A new method to express functional permissibilities

for LUT based FPGAs and its applications. In: Proceedings of the International Conference

on Computer-Aided Design, pp. 254–261. San Jose, CA (1996)

Part V

Applications to Specialized Design
Scenarios

In this section, the first chapter describes the generation of arbitrary decimal prob-

abilities from small sets of probabilities (or pairs of probabilities) through combi-

national logic. The next work presents a circuit reliability calculator which employs

Boolean difference. A realizable combination logic circuit using sinusoidal signals,

along with gates that can operate on such signals, is presented in the third chapter

in the applications category. The last chapter investigates throughput reduction and

synchronization failures introduced by existing GALS pausible clocking schemes

for SoCs and NoCs and proposes an optimized scheme for more reliable GALS

system design.

Chapter 18

Synthesizing Combinational Logic to Generate
Probabilities: Theories and Algorithms

Weikang Qian, Marc D. Riedel, Kia Bazargan, and David J. Lilja

Abstract As CMOS devices are scaled down into the nanometer regime, concerns

about reliability are mounting. Instead of viewing nano-scale characteristics as an

impediment, technologies such as PCMOS exploit them as a source of randomness.

The technology generates random numbers that are used in probabilistic algorithms.

With the PCMOS approach, different voltage levels are used to generate different

probability values. If many different probability values are required, this approach

becomes prohibitively expensive. In this chapter, we demonstrate a novel technique

for synthesizing logic that generates new probabilities from a given set of proba-

bilities. We focus on synthesizing combinational logic to generate arbitrary decimal

probabilities from a given set of input probabilities. We demonstrate how to generate

arbitrary decimal probabilities from small sets – a single probability or a pair of

probabilities – through combinational logic.

18.1 Introduction and Background

It can be argued that the entire success of the semiconductor industry has been

predicated on a single, fundamental abstraction, namely, that digital computation

consists of a deterministic sequence of zeros and ones. From the logic level up,

the precise Boolean functionality of a circuit is prescribed; it is up to the physical

layer to produce voltage values that can be interpreted as the exact logical values

that are called for. This abstraction delivers all the benefits of the digital paradigm:

precision, modularity, extensibility. And yet, as circuits are scaled down into the

nanometer regime, delivering the physical circuits underpinning the abstraction is

increasingly costly and challenging. Power consumption is a major concern [6].

W. Qian (B)

University of Minnesota, Minneapolis, MN, USA

e-mail: qianx030@umn.edu

This work is based on an earlier work: The synthesis of combinational logic to generate probabili-

ties, in Proceedings of the 2009 international Conference on Computer-Aided Design, ISBN:978-

1-60558-800-1 (2009) c© ACM, 2009. DOI= http://doi.acm.org/10.1145/1687399.1687470

S.P. Khatri, K. Gulati (eds.), Advanced Techniques in Logic Synthesis,

Optimizations and Applications, DOI 10.1007/978-1-4419-7518-8_18,
C© Springer Science+Business Media, LLC 2011

337

338 W. Qian et al.

Also, soft errors caused by ionizing radiation are a problem, particularly for circuits

operating in harsh environments [1].

We advocate a novel view for digital computation: instead of transforming defi-

nite inputs into definite outputs – say, Boolean, integer, or real values into the same –

we design circuits that transform probability values into probability values; so, con-

ceptually, real-valued probabilities are both the inputs and the outputs. The circuits

process random bit streams; these are digital, consisting of zeros and ones; they are

processed by ordinary logic gates, such as AND and OR. The inputs and outputs are

encoded through the statistical distribution of the signals instead of specific values.

When cast in terms of probabilities, the computation is robust [10].

The topic of computing probabilistically dates back to von Neumann [9]. Many

flavors of probabilistic design have been proposed for circuit-level constructs. For

instance, [8] presents a design methodology based on Markov random fields, geared

toward nanotechnology. Recent work on probabilistic CMOS (PCMOS) is a promis-

ing approach. Instead of viewing variable circuit characteristics as an impediment,

PCMOS exploits them as a source of randomness. The technology generates random

numbers that are used in probabilistic algorithms [3].

A PCMOS switch is an inverter with the input coupled to a noise source, as shown

in Fig. 18.1. With the input Vin set to 0 volts, the output of the inverter has a certain

probability p (0 ≤ p ≤ 1) of being at logical one. Suppose that the probability

density function of the noise voltage V is f (V) and that the trip point of the inverter

is Vdd/2, where Vdd is the supply voltage. Then, the probability that the output is

one equals the probability that the input to the inverter is below Vdd/2, or

p =
∫ Vdd/2

−∞
f (V) dV,

which corresponds to the shaded area in Fig. 18.2. Thus, with a given noise distri-

bution, p can be modulated by changing Vdd .

Fig. 18.1 A PCMOS switch.

It consists of an inverter with

its input coupled to a noise

source
Vin

Vdd

CL

noise

In [2], PCMOS switches are applied to form a probabilistic system-on-a-chip

(PSOC) architecture that is used to execute probabilistic algorithms. In essence, the

PSOC architecture consists of a host processor that executes the deterministic part

of the algorithm, and a coprocessor built with PCMOS switches that executes the

probabilistic part of the algorithm. The PCMOS switches in the coprocessor are

configured to realize the set of probabilities needed by the algorithm. This approach

achieves an energy-performance-product improvement over conventional architec-

tures for some probabilistic algorithms.

18 Synthesizing Combinational Logic to Generate Probabilities 339

Fig. 18.2 Probability density

function of the noise source.

The probability that the

output of the PCMOS switch

is one equals the shaded area

in the figure. Changing Vdd

will change this probability

↑

0 V
dd

2

Probability Density of V

However, as is pointed out in [2], a serious problem must be overcome before

PCMOS can become a viable design strategy for many applications: since the prob-

ability p for each PCMOS switch is controlled by a specific voltage level, different

voltage levels are required to generate different probability values. For an appli-

cation that requires many different probability values, many voltage regulators are

required; this is costly in terms of area as well as energy.

In this chapter, we present a synthesis strategy to mitigate this issue: we describe

a method for transforming probability values from a small set to many different

probability values entirely through combinational logic. For what follows, when we

say “with probability p,” we mean “with a probability p of being at logical one.”

When we say “a circuit,” we mean a combinational circuit built with logic gates.

Example 18.1 Suppose that we have a set of probabilities S = {0.4, 0.5}. As illus-

trated in Fig. 18.3, we can generate new probabilities from this set:

1. An inverter with an input x with probability 0.4 will have output z with proba-

bility 0.6 since for an inverter,

P(z = 1) = P(x = 0) = 1− P(x = 1). (18.1)

2. An AND gate with inputs x and y with independent probabilities 0.4 and 0.5,

respectively, will have an output z with probability 0.2 since for an AND gate,

P(x = 1) = 0.4

x z

P(z = 1) = 0.6

(a)

AND

P(x = 1) = 0.4

P(y = 1) = 0.5

x

y
z

P(z = 1) = 0.2

(b)

NOR

P(x = 1) = 0.4

P(y = 1) = 0.5

x

y
z

P(z = 1) = 0.3

(c)

Fig. 18.3 An illustration of generating new probabilities from a given set of probabilities through

logic. (a): An inverter implementing pz = 1− px . (b): An AND gate implementing pz = px · py .

(c): A NOR gate implementing pz = (1− px) · (1− py)

340 W. Qian et al.

P(z = 1) = P(x = 1, y = 1) = P(x = 1)P(y = 1). (18.2)

3. A NOR gate with inputs x and y with independent probabilities 0.4 and 0.5,

respectively, will have output z with probability 0.3 since for a NOR gate,

P(z = 1) = P(x = 0, y = 0) = P(x = 0)P(y = 0)

= (1− P(x = 1))(1− P(y = 1)).
(18.3)

Thus, using only combinational logic, we can get the additional set of probabilities

{0.2, 0.3, 0.6}. �

Motivated by this example, we consider the problem of how to synthesize com-

binational logic to generate a required probability q from a given set of probabili-

ties S = {p1, p2, . . . , pn}. Specifically, we focus on synthesizing arbitrary decimal

probabilities (i.e., q is a decimal number). We assume that the probabilities in a set

S can be freely chosen and each element in S can be used as the input probability

any number of times. (We say that the probability is duplicable.) The problem is to

find a good set S such that, for an arbitrary decimal probability, we can construct a

circuit to generate it.

As a result, in Section 18.3, we will show that there exist sets consisting of two

elements that can be used to generate arbitrary decimal probabilities. In fact, in Sec-

tion 18.3.1, we will first show that we can generate arbitrary decimal probabilities

from the set S = {0.4, 0.5}. The proof is constructive: we will show a procedure

for synthesizing logic that generates such probabilities. Next, in Section 18.3.2,

we will show that we can generate arbitrary decimal probabilities from the set

S = {0.5, 0.8}. We will show that with this set of input probabilities, for an out-

put probability of n decimal digits, we can synthesize combinational logic with 2n

inputs.

Further, in Section 18.4, we will show that there exist sets consisting of a single

element that can be used to generate arbitrary decimal probabilities. This is essen-

tially a mathematical result: we will show that the single probability value cannot

be a rational value; it must be an irrational root of a polynomial.

In Section 18.5, we will show a practical algorithm based on fraction fac-

torization to synthesize circuits that generate decimal probabilities from the set

S = {0.4, 0.5}. The proposed algorithm optimizes the depth of the circuit.

The remainder of this chapter is organized as follows: Section 18.2 describes

related work. Sections 18.3 and 18.4 show the existence of a pair of probabilities

and of a single probability, respectively, that can be used as input sources to gener-

ate arbitrary decimal probabilities. Section 18.5 describes our implementation and

presents algorithms for optimizing the resulting circuits. Section 18.6 demonstrates

the effectiveness of the proposed algorithms. Finally, Section 18.7 summarizes this

chapter.

18 Synthesizing Combinational Logic to Generate Probabilities 341

18.2 Related Work

We point to three related pieces of research:

• In an early set of papers, Gill discussed the problem of generating a new set of

probabilities from a given set of probabilities [4, 5]. He focused on synthesizing

a sequential state machine to generate the required probabilities.

• In recent work, the proponents of PCMOS discussed the problem of synthesizing

combinational logic to generate probability values [2]. These authors suggest a

tree-based circuit. Their objective is to realize a set of required probabilities with

minimal additional logic. This is positioned as future work; no details are given.

• Wilhelm and Bruck [11] proposed a general method for synthesizing switching

circuits to achieve a desired probability. Their designs consist of relay switches

that are open or closed with specified probabilities. They proposed an algorithm

that generates circuits of optimal size for any binary fraction.

In contrast to Gill’s work and Wilhelm and Bruck’s work, we focus on combina-

tional circuits built with logic gates. Our approach dovetails nicely with the circuit-

level PCMOS constructs. It is complementary and orthogonal to the switch-based

approach of Wilhelm and Bruck. Our scheme can generate arbitrary decimal proba-

bilities, whereas the method of Wilhelm and Bruck only generates binary fractions.

18.3 Sets with Two Elements that Can Generate Arbitrary

Decimal Probabilities

In this section, we will show two input probability sets that contain only two ele-

ments and can generate arbitrary decimal probabilities. The first one is the set

S = {0.4, 0.5} and the second one is the set S = {0.5, 0.8}.

18.3.1 Generating Decimal Probabilities from the Input Probability

Set S = {0.4, 0.5}

We will first show that we can generate arbitrary decimal probabilities from the

input probability set S = {0.4, 0.5}. Then, we will show an algorithm to synthesize

circuits that generate arbitrary decimal probabilities from the set of input probabili-

ties.

Theorem 18.1 With circuits consisting of fanin-two AND gates and inverters, we

can generate arbitrary decimal fractions as output probabilities from the input prob-

ability set S = {0.4, 0.5}.
Proof First, we note that an inverter with a probabilistic input gives an output prob-

ability equal to one minus the input probability, as was shown in (18.1). An AND

gate with two probabilistic inputs performs a multiplication on the two input proba-

bilities, as was shown in (18.2). Thus, we need to prove that with the two operations

342 W. Qian et al.

1 − x and x · y, we can generate arbitrary decimal fractions as output probabilities

from the input probability set S = {0.4, 0.5}. We prove this statement by induction

on the number of digits n after the decimal point.

Base case:

1. n = 0. It is trivial to generate 0 and 1.

2. n = 1. We can generate 0.1, 0.2, and 0.3 as follows:

0.1 = 0.4× 0.5× 0.5,

0.2 = 0.4× 0.5,

0.3 = (1− 0.4)× 0.5.

Since we can generate the decimal fractions 0.1, 0.2, 0.3, and 0.4, we can gener-

ate 0.6, 0.7, 0.8, and 0.9 with an extra 1 − x operation. Together with the given

value 0.5, we can generate any decimal fraction with one digit after the decimal

point.

Inductive step:

Assume that the statement holds for all m ≤ (n − 1). Consider an arbitrary decimal

fraction z with n digits after the decimal point. Let u = 10n · z. Here u is an integer.

Consider the following four cases.

1. The case where 0 ≤ z ≤ 0.2.

a. The integer u is divisible by 2. Let w = 5z. Then 0 ≤ w ≤ 1 and w =
(u/2) · 10−n+1, having at most (n − 1) digits after the decimal point. Thus,

based on the induction hypothesis, we can generate w. It follows that z can

also be generated as z = 0.4× 0.5× w.

b. The integer u is not divisible by 2 and 0 ≤ z ≤ 0.1. Let w = 10z. Then

0 ≤ w ≤ 1 and w = u · 10−n+1, having at most (n − 1) digits after the

decimal point. Thus, based on the induction hypothesis, we can generate w.

It follows that z can also be generated as z = 0.4× 0.5× 0.5× w.

c. The integer u is not divisible by 2 and 0.1 < z ≤ 0.2. Let w = 2− 10z. Then

0 ≤ w < 1 and w = 2 − u · 10−n+1, having at most (n − 1) digits after the

decimal point. Thus, based on the induction hypothesis, we can generate w.

It follows that z can also be generated as z = (1− 0.5× w)× 0.4× 0.5.

2. The case where 0.2 < z ≤ 0.4.

a. The integer u is divisible by 4. Let w = 2.5z. Then 0 < w ≤ 1 and w =
(u/4) · 10−n+1, having at most (n − 1) digits after the decimal point. Thus,

based on the induction hypothesis, we can generate w. It follows that z can be

generated as z = 0.4× w.

b. The integer u is not divisible by 4 but is divisible by 2. Let w = 2− 5z. Then

0 ≤ w < 1 and w = 2 − (u/2) · 10−n+1, having at most (n − 1) digits after

18 Synthesizing Combinational Logic to Generate Probabilities 343

the decimal point. Thus, based on the induction hypothesis, we can generate

w. It follows that z can be generated as z = (1− 0.5× w)× 0.4.

c. The integer u is not divisible by 2 and 0.2 < u ≤ 0.3. Let w = 10z− 2. Then

0 < w ≤ 1 and w = u · 10−n+1 − 2, having at most (n − 1) digits after the

decimal point. Thus, based on the induction hypothesis, we can generate w. It

follows that z can also be generated as z = (1− (1− 0.5×w)× 0.5)× 0.4.

d. The integer u is not divisible by 2 and 0.3 < u ≤ 0.4. Let w = 4− 10z. Then

0 ≤ w < 1 and w = 4 − u · 10−n+1, having at most (n − 1) digits after the

decimal point. Thus, based on the induction hypothesis, we can generate w.

It follows that z can be generated as z = (1− 0.5× 0.5× w)× 0.4.

3. The case where 0.4 < z ≤ 0.5. Let w = 1 − 2z. Then 0 ≤ w < 0.2 and w

falls into case 1. Thus, we can generate w. It follows that z can be generated as

z = 0.5× (1− w).

4. The case where 0.5 < z ≤ 1. Let w = 1− z. Then 0 ≤ w < 0.5 and w falls into

one of the above three cases. Thus, we can generate w. It follows that z can be

generated as z = 1− w.

For all of the above cases, we proved that z can be generated with the two oper-

ations 1 − x and x · y on the input probability set S = {0.4, 0.5}. Thus, we proved

the statement for all m ≤ n. Thus, the statement holds for all integers n. �

Based on the proof above, we derive an algorithm to synthesize a circuit that gen-

erates an arbitrary decimal fraction output probability z from the input probability

set S = {0.4, 0.5}. See Algorithm 11.

The function GetDigits(z) in Algorithm 11 returns the number of digits after the

decimal point of z. The while loop continues until z has at most one digit after the

decimal point. During the loop, it calls the function ReduceDigit(ckt, z), which syn-

thesizes a partial circuit such that the number of digits after the decimal point of z is

reduced, which corresponds to the inductive step in the proof. Finally, Algorithm 11

calls the function AddBaseCkt(ckt, z) to synthesize a circuit that realizes a number

having at most one digit after the decimal point; this corresponds to the base case of

the proof.

Algorithm 11 Synthesize a circuit consisting of AND gates and inverters that

generates a required decimal fraction probability from the given probability set

S = {0.4, 0.5}.
1: {Given an arbitrary decimal fraction 0 ≤ z ≤ 1.}

2: Initialize ckt ;

3: while GetDigits(z) > 1 do

4: (ckt, z)⇐ ReduceDigit(ckt, z);

5: end while

6: AddBaseCkt(ckt, z); {Base case: z has at most one digit after the decimal point.}

7: Return ckt ;

344 W. Qian et al.

Algorithm 12 ReduceDigit(ckt, z)

1: {Given a partial circuit ckt and an arbitrary decimal fraction 0 ≤ z ≤ 1.}

2: n ⇐ GetDigits(z);

3: if z > 0.5 then {Case 4}

4: z ⇐ 1− z; AddInverter(ckt);

5: end if

6: if 0.4 < z ≤ 0.5 then {Case 3}

7: z ⇐ z/0.5; AddAND(ckt, 0.5);

8: z ⇐ 1− z; AddInverter(ckt);

9: end if

10: if z ≤ 0.2 then {Case 1}

11: z ⇐ z/0.4; AddAND(ckt, 0.4);

12: z ⇐ z/0.5; AddAND(ckt, 0.5);

13: if GetDigits(z) < n then

14: go to END;

15: end if

16: if z > 0.5 then

17: z ⇐ 1− z; AddInverter(ckt);

18: end if

19: z = z/0.5; AddAND(ckt, 0.5);

20: else {Case 2: 0.2 < z ≤ 0.4}

21: z ⇐ z/0.4; AddAND(ckt, 0.4);

22: if GetDigits(z) < n then

23: go to END;

24: end if

25: z ⇐ 1− z; AddInverter(ckt);

26: z ⇐ z/0.5; AddAND(ckt, 0.5);

27: if GetDigits(z) < n then

28: go to END;

29: end if

30: if z > 0.5 then

31: z ⇐ 1− z; AddInverter(ckt);

32: end if

33: z = z/0.5; AddAND(ckt, 0.5);

34: end if

35: END: return ckt, z;

Algorithm 11 builds the circuit from the output back to the inputs. The circuit

is built up gate by gate when calling the function ReduceDigit(ckt, z), shown in

Algorithm 12. Here the function AddInverter(ckt) attaches an inverter to the input

of the circuit ckt and then changes the input of the circuit to the input of the inverter.

The function AddAND(ckt, p) attaches a fanin-two AND gate to the input of the

circuit and then changes the input of the circuit to one of the inputs of the AND

gate. The other input of the AND gate is connected to a random input source of

probability p. In Algorithm 12, Lines 3–5 correspond to Case 4 in the proof; Lines

6–9 correspond to Case 3 in the proof; Lines 10–19 correspond to Case 1 in the

proof; Lines 20–34 correspond to Case 2 in the proof.

The synthesized circuit has a number of gates that is linear in the number of

digits after the required value’s decimal point, since at most three AND gates and

three inverters are needed to generate a value with n digits after the decimal point

18 Synthesizing Combinational Logic to Generate Probabilities 345

from a value with (n − 1) digits after the decimal point.1 The number of primary

inputs of the synthesized circuit is at most 3n + 1.

Example 18.2 We show how to generate the probability value 0.757. Based on Algo-

rithm 11, we can derive a sequence of operations that transform 0.757 to 0.7:

0.757
1−�⇒ 0.243

/0.4�⇒ 0.6075
1−�⇒ 0.3925

/0.5�⇒ 0.785

1−�⇒ 0.215
/0.5�⇒ 0.43,

0.43
/0.5�⇒ 0.86

1−�⇒ 0.14
/0.4�⇒ 0.35

/0.5�⇒ 0.7.

Since 0.7 can be realized as 0.7 = 1 − (1 − 0.4) × 0.5, we obtain the circuit

shown in Fig. 18.4. (Note that here we use a black dot to represent an inverter.) �

Fig. 18.4 A circuit taking

input probabilities from the

set S = {0.4, 0.5} generating

a decimal output probability

of 0.757

0.4
0.5

0.6 0.7

0.5

0.35

0.4

0.86

0.5
0.5

0.43
0.785

0.6075

0.5
0.4

0.757

AND

AND

AND

AND

AND

AND

AND

18.3.2 Generating Decimal Probabilities from the Input Probability

Set S = {0.5, 0.8}

Given a probability set S = {0.4, 0.5}, the algorithm in the previous section pro-

duces a circuit with at most 3n + 1 inputs to generate a decimal probability of n

digits. If we use the set S = {0.5, 0.8}, then we can do better in terms of the number

of inputs. With this set, we can synthesize a circuit with at most 2n inputs that

generates a decimal probability of n digits. To prove this, we need the following

lemma.

Lemma 18.1 Given an integer n ≥ 2, for any integer 0 ≤ m ≤ 10n , there exist

integers 0 ≤ ai ≤ 2n
(

n
i

)

, i = 0, 1, . . . , n, such that m =
∑n

i=0 ai 4
i .

Proof Define sk =
∑k

i=0 2n

(
n

i

)

4i . We first prove the following statement:

1In Case 3, z is transformed into w = 1− 2z where w is in Case 1(a). Thus, we actually need only

three AND gates and one inverter for Case 3. For the other cases, it is not hard to see that we need

at most three AND gates and three inverters.

346 W. Qian et al.

Given 0 ≤ k ≤ n, for any integer 0 ≤ m ≤ sk , there exist integers 0 ≤ ai ≤
2n
(

n
i

)

, i = 0, 1, . . . , k, such that m =
∑k

i=0 ai 4
i .

We prove the above statement by induction on k.

Base case: When k = 0, we have s0 = 2n . For any integer 0 ≤ m ≤ 2n , let

a0 = m. Then 0 ≤ a0 ≤ 2n
(

n
0

)

. The statement is true for k = 0.

Inductive step: Assume the statement holds for k − 1 (k ≤ n). Consider the

statement for k. There are two cases for 0 ≤ m ≤ sk .

1. 0 ≤ m ≤ 2n
(

n
k

)

4k . Let ak =
⌊

m
4k

⌋

. Then,

0 ≤ ak ≤
m

4k
≤ 2n

(
n

k

)

and

0 ≤ m − ak4k < 4k ≤ 2n4k−1 ≤
k−1
∑

i=0

2n

(
n

i

)

4i = sk−1.

Based on the induction hypothesis, there exist integers 0 ≤ ai ≤ 2n
(

n
i

)

, i =
0, 1, . . . , k − 1, such that

m − ak4k =
k−1
∑

i=0

ai 4
i .

Therefore, m =
∑k

i=0 ai 4
i , where 0 ≤ ai ≤ 2n

(
n
i

)

, for i = 0, 1, . . . , k.

2. 2n
(

n
k

)

4k < m ≤ sk . Let ak = 2n
(

n
k

)

. Then,

0 < m − ak4k ≤ sk − 2n

(
n

k

)

4k = sk−1.

Based on the induction hypothesis, there exist integers 0 ≤ ai ≤ 2n
(

n
i

)

, i =
0, 1, . . . , k − 1, such that

m − ak4k =
k−1
∑

i=0

ai 4
i .

Therefore, m =
∑k

i=0 ai 4
i , where 0 ≤ ai ≤ 2n

(
n
i

)

, for i = 0, 1, . . . , k.

Thus, the statement is true for all 0 ≤ k ≤ n.

Note that when k = n,

sk =
n
∑

i=0

2n

(
n

i

)

4i = 2n(4+ 1)n = 10n .

18 Synthesizing Combinational Logic to Generate Probabilities 347

Thus, for any integer 0 ≤ m ≤ 10n = sn , there exist integers 0 ≤ ai ≤ 2n
(

n
i

)

,

i = 0, 1, . . . , n, such that m =
∑n

i=0 ai 4
i . �

With the above lemma, we can prove the following theorem.

Theorem 18.2 For any decimal fraction of n (n ≥ 2) digits, there exists a com-

binational circuit with 2n inputs generating that decimal probability with input

probabilities taken from the set S = {0.5, 0.8}.

Proof Consider combination logic with 2n inputs x1, x2, . . . , x2n with input proba-

bilities set as

P(xi = 1) =
{

0.8, i = 1, . . . , n,

0.5, i = n + 1, . . . , 2n.

For n + 1 ≤ i ≤ 2n, since P(xi = 1) = 0.5, we have P(xi = 1) = P(xi =
0) = 0.5. Therefore, the probability of a certain input combination occurring only

depends on the values of the first n inputs or, more precisely, only depends on the

number of ones in the first n inputs. Thus, there are in total 2n
(

n
i

)

(0 ≤ i ≤ n) input

combinations whose probability of occurring is 0.8i · 0.2n−i · 0.5n .

Suppose the given decimal fraction of n digits is q = m
10n , where 0 ≤ m ≤ 10n

is an integer. Then, based on Lemma 18.1, there exist integers 0 ≤ ai ≤ 2n
(

n
i

)

,

i = 0, 1, . . . , n, such that m =
∑n

i=0 ai 4
i .

For each 0 ≤ i ≤ n, since 0 ≤ ai ≤ 2n
(

n
i

)

, we are able to choose ai out of

2n
(

n
i

)

input combinations whose probability of occurring is 0.8i · 0.2n−i · 0.5n ; let

the combinational logic evaluate to one for these ai input combinations. Thus, the

probability of the output being one is the sum of the probability of occurrence of all

input combinations for which the logic evaluates to one, which is

n
∑

i=0

ai 0.8i · 0.2n−i · 0.5n =
n
∑

i=0

ai 4
i · 0.1n = m

10n
= q. �

Remarks: Like Theorem 18.1, Theorem 18.2 implies a procedure for synthesizing

combinational logic to generate a required decimal fraction. Although this pro-

cedure will synthesize a circuit with fewer inputs than that synthesized through

Algorithm 11, the number of two-input logic gates in this circuit may be greater.

Moreover, for this procedure, we must judiciously choose ai out of 2n
(

n
i

)

input

combinations with probability 0.8i · 0.2n−i · 0.5n of occurring as the minterms of

the Boolean function, in order to minimize the gate count. In contrast, Algorithm 11

produces a circuit directly.

348 W. Qian et al.

18.4 Sets with a Single Element that Can Generate Arbitrary

Decimal Probabilities

In Section 18.3, we showed that there exist input probability sets of two elements

that can be used to generate arbitrary decimal fractions. A stronger question is

whether we can further reduce the size of the set down to one, i.e., whether there

exists a real number 0 ≤ p ≤ 1 such that any decimal fraction can be generated

from p with combinational logic.

The first answer to this question is that there is no rational number p such that

an arbitrary decimal fraction can be generated from that p through combinational

logic. To prove this, we first need the following lemma.

Lemma 18.2 If the probability
1

2
can be generated from a rational probability p

through combinational logic, then p = 1

2
.

Proof Obviously, 0 < p < 1. Thus, we can assume that

p = a

b
, (18.4)

where both a and b are positive integers, satisfying that a < b and (a, b) = 1.

Moreover, we can assume that a ≥ b − a. Otherwise, suppose that a < b − a.

Since we can generate
1

2
from p, we can also generate

1

2
from p∗ = 1− p by using

an inverter to convert p∗ into p. Note that p∗ = a∗

b∗
, where a∗ = b− a and b∗ = b,

satisfying that a∗ > b∗ − a∗. Thus, we can assume that a ≥ b − a.

Suppose that the combinational logic generating
1

2
from p has n inputs. Let lk

(k = 0, 1, . . . , n) be the number of input combinations that evaluate to one and have

exactly k ones. Note that 0 ≤ lk ≤
(

n
k

)

, for k = 0, 1, . . . , n.

Since each input of the combinational logic has probability p of being 1, we have

1

2
=

n
∑

k=0

lk(1− p)n−k pk . (18.5)

Let c = b − a. Based on (18.4), we can rewrite (18.5) as

bn = 2

n
∑

k=0

lkakcn−k . (18.6)

From (18.6), we can show that a = 1, which we prove by contradiction.

Suppose that a > 1. Since 0 ≤ l0 ≤
(

n
0

)

= 1, l0 is either 0 or 1. If l0 = 0, then

from (18.6), we have

18 Synthesizing Combinational Logic to Generate Probabilities 349

bn = 2

n
∑

k=1

lkakcn−k = 2a

n
∑

k=1

lkak−1cn−k .

Thus, a|bn . Since (a, b) = 1, the only possibility is that a = 1 which is contra-

dictory to our hypothesis that a > 1. Therefore, we have l0 = 1. Together with

binomial expansion

bn =
n
∑

k=0

(
n

k

)

akcn−k,

we can rewrite (18.6) as

cn +
n
∑

k=1

(
n

k

)

akcn−k = 2cn + 2

n
∑

k=1

lkakcn−k,

or

cn = a

n
∑

k=1

((
n

k

)

− 2lk

)

ak−1cn−k . (18.7)

Thus, a|cn . Since (a, b) = 1 and c = b − a, we have (a, c) = 1. Thus, the only

possibility is that a = 1, which is contradictory to our hypothesis that a > 1.

Therefore, we proved that a = 1. Together with the assumption that b−a ≤ a <

b, we get b = 2. Thus, p can only be
1

2
. �

Now, we can prove the original statement:

Theorem 18.3 There is no rational number p such that an arbitrary decimal frac-

tion can be generated from that p with combinational logic.

Proof We prove the above statement by contradiction. Suppose that there exists a

rational number p such that an arbitrary decimal fraction can be generated from it

through combinational logic.

Since an arbitrary decimal fraction can be generated from p, 0.5 = 1

2
can be

generated. Thus, based on Lemma 18.2, we have p = 1

2
.

Note that 0.2 = 1

5
is also a decimal number. Thus, there exists combinational

logic which can generate the decimal fraction
1

5
from p = 1

2
. Suppose that the

combinational logic has n inputs. Let mk (k = 0, 1, . . . , n) be the number of input

combinations that evaluate to one and that have exactly k ones.

Since each input of the combinational logic has probability p = 1

2
of being 1,

we have

350 W. Qian et al.

1

5
=

n
∑

k=0

mk

(

1− 1

2

)n−k (
1

2

)k

,

or

2n = 5

n
∑

k=0

mk,

which is impossible since the right-hand side is a multiple of 5.

Therefore, we proved the statement in the theorem. �

Thus, based on Theorem 18.3, we have the conclusion that if such a p exists, it

must be an irrational number.

On the one hand, we note that if such a value p exists, then 0.4 and 0.5 can be

generated from it. On the other hand, if p can generate 0.4 and 0.5, then p can

generate arbitrary decimal numbers, as was shown in Theorem 18.1. The following

lemma shows that such a value p that could generate 0.4 and 0.5 does, in fact, exist.

Lemma 18.3 The polynomial g1(t) = 10t − 20t2+ 20t3− 10t4− 1 has a real root

0 < p < 0.5. This value p can generate both 0.4 and 0.5 through combinational

logic.

Proof First, note that g1(0) = −1 < 0 and that g1(0.5) = 0.875 > 0. Based on the

continuity of the function g1(t), there exists a 0 < p < 0.5 such that g1(p) = 0.

Let polynomial g2(t) = t − 2t2 + 2t3 − t4. Thus, g2(p) = 0.1.

Note that the Boolean function

f1(x1, x2, x3, x4, x5) = (x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3 ∨ ¬x4 ∨ ¬x5)

has 30 minterms, m1, m2, . . . , m30. It is not hard to verify that with P(xi = 1) = p

for i = 1, 2, 3, 4, 5, the output probability of f1 is

p1 = 5(1− p)4 p + 10(1− p)3 p2 + 10(1− p)2 p3 + 5(1− p)p4

= 5g2(p) = 0.5.

Thus, the probability value 0.5 can be generated. The Boolean function

f2(x1,x2, x3, x4, x5) = (x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ ¬x5)

∧ (¬x2 ∨ x3 ∨ ¬x5) ∧ (¬x1 ∨ ¬x2 ∨ ¬x4 ∨ ¬x5)

has 24 minterms, m2, m4, m5, . . . , m8, m10, m12, m13, . . . , m24, m26, m28, m29, m30.

It is not hard to verify that with P(xi = 1) = p for i = 1, 2, 3, 4, 5, the output

probability of f2 is

18 Synthesizing Combinational Logic to Generate Probabilities 351

p2 = 4(1− p)4 p + 8(1− p)3 p2 + 8(1− p)2 p3 + 4(1− p)p4

= 4g2(p) = 0.4.

Thus, the probability value 0.4 can be generated. �

Based on Theorem 18.1 and Lemma 18.3, we have the following theorem.

Theorem 18.4 With the set S = {p}, where p is the root of the polynomial g1(t) =
10t−20t2+20t3−10t4−1 in the unit interval, we can generate arbitrary decimal

fractions with combinational logic.

18.5 Implementation

In this section, we will discuss algorithms to optimize circuits that generate decimal

probabilities from the input probability set S = {0.4, 0.5}.
As shown in Example 18.2, the circuit synthesized by Algorithm 11 is in a linear

style (i.e., each gate adds to the depth of the circuit). For practical purposes, we want

circuits with shallower depth. We explore two kinds of optimizations to reduce the

depth.

The first kind of optimization is at the logic level. The circuit synthesized by

Algorithm 11 is composed of inverters and AND gates. We can reduce its depth by

properly repositioning certain AND gates, as illustrated in Fig. 18.5.

a
b

...AND
AND

Fanin

Cone

a

b

...AND

AND

Fanin

Cone

(a) (b)

Fig. 18.5 An illustration of balancing to reduce the depth of the circuit. Here a and b are primary

inputs. (a) The circuit before balancing. (b) The circuit after balancing

The second kind of optimization is at a higher level, based on the factorization of

the decimal fraction. We use the following example to illustrate the basic idea.

Example 18.3 Suppose we want to generate the decimal fraction probability value

0.49.

Method based on Algorithm 11: We can derive the following transformation

sequence:

0.49
/0.5�⇒ 0.98

1−�⇒ 0.02
/0.4�⇒ 0.05

/0.5�⇒ 0.1.

352 W. Qian et al.

Fig. 18.6 Synthesizing

combinational logic to

generate probability 0.49. (a)

The circuit synthesized

through Algorithm 11. (b)

The circuit synthesized based

on fraction factorization

0.5
0.5

0.2

0.98
0.49

0.4

0.5

AND

AND

AND

0.4

0.25

0.1

0.5

AND

AND

AND

AND

AND

0.5

0.5

0.4

0.4
0.7

0.7

0.49

(b)(a)

The synthesized circuit is shown in Fig. 18.6a. Notice that the circuit is balanced

and it still has 5 AND gates and depth 4.2

Method based on factorization: Notice that 0.49 = 0.7×0.7. Thus, we can generate

the probability 0.7 twice and feed these values into an AND gate. The synthesized

circuit is shown in Fig. 18.6b. Compared to the circuit in Fig. 18.6a, both the number

of AND gates and the depth of the circuit are reduced. �

Algorithm 13 shows the procedure that synthesizes the circuit based on the fac-

torization of the decimal fraction. The factorization is actually carried out on the

numerator. A crucial function is PairCmp(al , ar , bl , br), which compares the integer

factor pair (al , ar) with the pair (bl , br) and returns a positive (negative) value if the

pair (al , ar) is better (worse) than the pair (bl , br). Algorithm 14 shows how the

function PairCmp(al , ar , bl , br) is implemented.

The quality of a factor pair (al , ar) should reflect the quality of the circuit that

generates the original probability based on that factorization. For this purpose, we

define a function EstDepth(x) to estimate the depth of the circuit that generates the

decimal fraction of a numerator x . If 1 ≤ x ≤ 9, the corresponding fraction is x/10.

EstDepth(x) is set as the depth of the circuit that generates the fraction x/10, which

is

EstDepth(x) =

⎧

⎪
⎨

⎪
⎩

0, x = 4, 5, 6,

1, x = 2, 3, 7, 8,

2, x = 1, 9.

When x ≥ 10, we use a simple heuristic to estimate the depth: we let

EstDepth(x) = ⌈log10(x)⌉ + 1. The intuition behind this is that the depth of the

circuit is a monotonically increasing function of the number of digits of x . The

estimated depth of the circuit that generates the original fraction based on the factor

pair (al , ar) is

max{EstDepth(al), EstDepth(ar)} + 1. (18.8)

The function PairCmp(al , ar , bl , br) essentially compares the quality of pair

(al , ar) and pair (bl , br) based on (18.8). Further details are given in Algorithm 14.

2 When counting depth, we ignore inverters.

18 Synthesizing Combinational Logic to Generate Probabilities 353

Algorithm 13 ProbFactor(ckt, z)

1: {Given a partial circuit ckt and an arbitrary decimal fraction 0 ≤ z ≤ 1.}

2: n ⇐ GetDigits(z);

3: if n ≤ 1 then

4: AddBaseCkt(ckt, z);

5: Return ckt ;

6: end if

7: u ⇐ 10n z; (ul , ur)⇐ (1, u); {u is the numerator of the fraction z}

8: for each factor pair (a, b) of integer u do

9: if PairCmp(ul , ur , a, b) < 0 then

10: (ul , ur)⇐ (a, b); {Choose the best factor pair for z}

11: end if

12: end for

13: w⇐ 10n − u; (wl , wr)⇐ (1, w);

14: for each factor pair (a, b) of integer w do

15: if PairCmp(wl , wr , a, b) < 0 then

16: (wl , wr)⇐ (a, b); {Choose the best factor pair for 1− z}

17: end if

18: end for

19: if PairCmp(ul , ur , wl , wr) < 0 then

20: (ul , ur)⇐ (wl , wr); z ⇐ w/10n ;

21: AddInverter(ckt);

22: end if

23: if IsTrivialPair(ul , ur) then {ul = 1 or ur = u}

24: ReduceDigit(ckt, z); ProbFactor(ckt, z);

25: Return ckt ;

26: end if

27: nl ⇐ ⌈log10(ul)⌉; nr ⇐ ⌈log10(ur)⌉;
28: if nl + nr > n then {Unable to factor z into two decimal fractions in the unit interval}

29: ReduceDigit(ckt, z); ProbFactor(ckt, z);

30: Return ckt ;

31: end if

32: zl ⇐ ul/10nl ; zr ⇐ ur /10nr ;

33: ProbFactor(cktl , zl); ProbFactor(cktr , zr);

34: Add an AND gate with output as ckt and two inputs as cktl and cktr ;

35: if nl + nr < n then

36: AddExtraLogic(ckt, n − nl − nr);

37: end if

38: Return ckt ;

In Algorithm 13, Lines 2–6 corresponds to the trivial fractions. If the fraction z

is non-trivial, Lines 7–12 choose the best factor pair (ul , ur) of integer u, where u is

the numerator of the fraction z. Lines 13–18 choose the best factor pair (wl , wr) of

integer w, where w is the numerator of the fraction 1 − z. Finally, the better factor

pair of (ul , ur) and (wl , wr) is chosen. Here, we consider the factorization on both z

and 1− z, since in some cases the latter might be better than the former. An example

is z = 0.37. Note that 1− z = 0.63 = 0.7× 0.9; this has a better factor pair than z

itself.

After obtaining the best factor pair, we check whether we can utilize it. Lines

23–26 check whether the factor pair (ul , ur) is trivial. A factor pair is considered

354 W. Qian et al.

Algorithm 14 PairCmp(al , ar , bl , br)

1: {Given two integer factor pairs (al , ar) and (bl , br)}

2: cl ⇐ EstDepth(al); cr ⇐ EstDepth(ar);

3: dl ⇐ EstDepth(bl); dr ⇐ EstDepth(br);

4: Order(cl , cr); {Order cl and cr , so that cl ≤ cr }

5: Order(dl , dr); {Order dl and dr , so that dl ≤ dr }

6: if cr < dr then {The circuit w.r.t. the first pair has smaller depth}

7: Return 1;

8: else if cr > dr then {The circuit w.r.t. the first pair has larger depth}

9: Return -1;

10: else

11: if cl < dl then {The circuit w.r.t. the first pair has fewer ANDs}

12: Return 1;

13: else if cl > dl then {The circuit w.r.t. the first pair has more ANDs}

14: Return -1;

15: else

16: Return 0;

17: end if

18: end if

trivial if ul = 1 or ur = 1. If the best factor pair is trivial, we call the function

ReduceDigit(ckt, z) (shown in Algorithm 12) to reduce the number of digits after

the decimal point of z. Then we perform factorization on the new z.

If the best factor pair is non-trivial, Lines 27–31 continue to check whether the

factor pair can be transformed into two decimal fractions in the unit interval. Let

nl be the number of digits of the integer ul and nr be the number of digits of the

integer ur . If nl + nr > n, where n is the number of digits after the decimal point of

z, then it is impossible to utilize the factor pair (ul , ur) to factorize z. For example,

consider z = 0.143. Although we could factorize u = 143 as 11 × 13, we could

not utilize the factor pair (11, 13) for the factorization of 0.143. The reason is that

either the factorization 0.11× 1.3 or the factorization 1.1× 0.13 contains a fraction

larger than 1, which cannot be a probability value.

Finally, if it is possible to utilize the best factor pair, Lines 32–34 synthesize two

circuits for fractions ul/10nl and ur/10nr , respectively, and then combine these two

circuits with an AND gate. Lines 35–37 check whether n > nl + nr . If this is the

case, we have

z = u/10n = ul/10nl · ur/10nr · 0.1n−nl−nr .

We need to add an extra AND gate with one input probability 0.1n−nl−nr and the

other input probability ul/10nl · ur/10nr . The extra logic is added through the func-

tion AddExtraLogic(ckt, m).

18 Synthesizing Combinational Logic to Generate Probabilities 355

18.6 Empirical Validation

We empirically validate the effectiveness of the synthesis scheme that was presented

in Section 18.5. For logic-level optimization, we use the “balance” command of the

logic synthesis tool ABC [7], which we find very effective in reducing the depth of

a tree-style circuit.3

Table 18.1 compares the quality of the circuits generated by three different

schemes. The first scheme is called “Basic,” which is based on Algorithm 11. It gen-

erates a linear-style circuit. The second scheme is called “Basic+Balance,” which

combines Algorithm 11 and the logic-level balancing algorithm. The third scheme

is called “Factor+Balance,” which combines Algorithm 13 and the logic-level bal-

ancing algorithm. We perform experiments on a set of target decimal probabili-

ties that have n digits after the decimal point and average the results. The table

shows the results for n ranging from 2 to 12. When n ≤ 5, we synthesize cir-

cuits for all possible decimal fractions with n digits after the decimal point. When

n ≥ 6, we randomly choose 100000 decimal fractions with n digits after the decimal

point as the synthesis targets. We show the average number of AND gates, average

depth, and average CPU runtime in columns “#AND,” “Depth,” and “Runtime,”

respectively.

Table 18.1 A comparison of the basic synthesis scheme, the basic synthesis scheme with balanc-

ing, and the factorization-based synthesis scheme with balancing.

Number Basic Basic+balance Factor+balance

of digits #AND Depth #AND Depth Runtime #AND Depth Runtime #AND Depth

————— (ms) ————— (ms) Imprv. (%) Imprv. (%)

n a1 d1 a2 d2 100
a1 − a2

a1
100

d1 − d2

d1

2 3.67 3.67 3.67 2.98 0.22 3.22 2.62 0.22 12.1 11.9

3 6.54 6.54 6.54 4.54 0.46 5.91 3.97 0.66 9.65 12.5

4 9.47 9.47 9.47 6.04 1.13 8.57 4.86 1.34 9.45 19.4

5 12.43 12.43 12.43 7.52 0.77 11.28 5.60 0.94 9.21 25.6

6 15.40 15.40 15.40 9.01 1.09 13.96 6.17 1.48 9.36 31.5

7 18.39 18.39 18.39 10.50 0.91 16.66 6.72 1.28 9.42 35.9

8 21.38 21.38 21.38 11.99 0.89 19.34 7.16 1.35 9.55 40.3

9 24.37 24.37 24.37 13.49 0.75 22.05 7.62 1.34 9.54 43.6

10 27.37 27.37 27.37 14.98 1.09 24.74 7.98 2.41 9.61 46.7

11 30.36 30.36 30.36 16.49 0.92 27.44 8.36 2.93 9.61 49.3

12 33.35 33.35 33.35 17.98 0.73 30.13 8.66 4.13 9.65 51.8

From Table 18.1, we can see that both the “Basic+Balance” and the “Fac-

tor+Balance” synthesis schemes have only millisecond-order CPU runtimes. Com-

pared to the “Basic+Balance” scheme, the “Factor+Balance” scheme reduces by

10% the number of AND gates and by more than 10% the depth of the circuit for all

3We find that the other combinational synthesis commands of ABC such as “rewrite” do not affect

the depth or the number of AND gates of a tree-style AND-inverter graph.

356 W. Qian et al.

Fig. 18.7 Average number of

AND gates and depth of the

circuit versus n

2 4 6 8 10 12
0

5

10

15

20

25

30

35

n

Basic+Balance #AND

Basic+Balance Depth

Factor+Balance #AND

Factor+Balance Depth

n. The percentage of reduction on the depth increases with increasing n. For n = 12,

the average depth of the circuit is reduced by more than 50%.

In Fig. 18.7, we plot the average number of AND gates and depth of the cir-

cuit versus n for both the “Basic+Balance” scheme and the “Factor+Balance”

scheme. Clearly, the figure shows that the “Factor+Balance” scheme is superior

to the “Basic+Balance” scheme. As shown in the figure, the average number of

AND gates in the circuits synthesized by both the “Basic+Balance” scheme and

the “Factor+Balance” scheme increases linearly with n. The average depth of the

circuit synthesized by the “Basic+Balance” scheme also increases linearly with n.

In contrast, the average depth of the circuit synthesized by the “Factor+Balance”

scheme increases logarithmically with n.

18.7 Chapter Summary

In this chapter, we introduced the problem of synthesizing combinational logic to

generate specified output probabilities from a given set of input probabilities. We

focused on generating decimal output probabilities and aimed at finding a small set

of input probabilities. We first showed that input probability sets consisting of two

elements can be used to generate arbitrary decimal output probabilities. Next, as a

mathematical result, we demonstrated that there exists a single input probability that

can be used to generate any output decimal probability. That input probability cannot

be rational; it must be an irrational root of a polynomial. We proposed algorithms to

synthesize circuits that generate output decimal probabilities from the input prob-

ability set S = {0.4, 0.5}. To optimize the depth of the circuits, we proposed a

method based on fraction factorization. We demonstrated the effectiveness of our

algorithm with experimental results. The average depth of the circuits synthesized

by our method is logarithmic in the number of digits of the output decimal proba-

bility.

18 Synthesizing Combinational Logic to Generate Probabilities 357

References

1. Borkar, S., Karnik, T., De, V.: Design and reliability challenges in nanometer technologies. In:

Design Automation Conference, p. 75. San Diego, CA, USA (2004)

2. Chakrapani, L., Korkmaz, P., Akgul, B., Palem, K.: Probabilistic system-on-a-chip architec-

ture. ACM Transactions on Design Automation of Electronic Systems 12(3), 1–28 (2007)

3. Cheemalavagu, S., Korkmaz, P., Palem, K., Akgul, B., Chakrapani, L.: A probabilistic CMOS

switch and its realization by exploiting noise. In: IFIP International Conference on VLSI,

pp. 535–541. Perth, Western Australia (2005)

4. Gill, A.: Synthesis of probability transformers. Journal of the Franklin Institute 274(1), 1–19

(1962)

5. Gill, A.: On a weight distribution problem, with application to the design of stochastic gener-

ators. Journal of the ACM 10(1), 110–121 (1963)

6. Karnik, T., Borkar, S., De, V.: Sub-90 nm technologies: Challenges and opportunities for CAD.

In: International Conference on Computer-Aided Design, pp. 203–206. San Jose, CA, USA

(2002)

7. Mishchenko, A., et al.: ABC: A system for sequential synthesis and verification (2007).

http://www.eecs.berkeley.edu/˜alanmi/abc/ (2010)

8. Nepal, K., Bahar, R., Mundy, J., Patterson, W., Zaslavsky, A.: Designing logic circuits

for probabilistic computation in the presence of noise. In: Design Automation Conference,

pp. 485–490. Anaheim, CA, USA (2005)

9. von Neumann, J.: Probabilistic logics and the synthesis of reliable organisms from unreliable

components. In: C.E. Shannon, J. McCarthy (eds.) Automata Studies, pp. 43–98. Princeton

University Press, Princeton, NJ (1956)

10. Qian, W., Riedel, M.D.: The synthesis of robust polynomial arithmetic with stochastic logic.

In: Design Automation Conference, pp. 648–653. Anaheim, CA, USA (2008)

11. Wilhelm, D., Bruck, J.: Stochastic switching circuit synthesis. In: International Symposium

on Information Theory, pp. 1388–1392. Toronto, ON, Canada (2008)

Chapter 19

Probabilistic Error Propagation in a Logic
Circuit Using the Boolean Difference Calculus

Nasir Mohyuddin, Ehsan Pakbaznia, and Massoud Pedram

Abstract A gate-level probabilistic error propagation model is presented which

takes as input the Boolean function of the gate, input signal probabilities, the error

probability at the gate inputs, and the gate error probability and generates the error

probability at the output of the gate. The presented model uses the Boolean dif-

ference calculus and can be efficiently applied to the problem of calculating the

error probability at the primary outputs of a multilevel Boolean circuit with a time

complexity which is linear in the number of gates in the circuit. This is done by

starting from the primary inputs and moving toward the primary outputs by using

a post-order – reverse Depth First Search (DFS) – traversal. Experimental results

demonstrate the accuracy and efficiency of the proposed approach compared to the

other known methods for error calculation in VLSI circuits.

19.1 Introduction

As CMOS hits nano-scale regime, device failure mechanisms such as cross talk,

manufacturing variability, and soft error become significant design concerns. Being

probabilistic by nature, these failure sources have pushed the CMOS technol-

ogy toward stochastic CMOS [1]. For example, capacitive and inductive coupling

between parallel adjacent wires in nano-scale CMOS integrated circuits (ICs) are the

potential sources of cross talk between the wires. Cross talk can indeed cause flip-

ping error on the victim signal [2]. In addition to the probabilistic CMOS, promis-

ing nanotechnology devices such as quantum dots are used in technologies such as

quantum cellular automata (QCA). Most of these emerging technologies are inher-

ently probabilistic. This has made reliability analysis an essential piece of circuit

N. Mohyuddin (B)

Department of Electrical Engineering – Systems, University of Southern California, Los Angeles,

CA 90089, USA

e-mail: mohyuddi@usc.edu

Based on Mohyuddin, N.; Pakbaznia, E.; Pedram, M.; “Probabilistic error propagation in logic

circuits using the Boolean difference calculus,” Computer Design, 2008. ICCD 2008. IEEE Inter-

national Conference on pp. 7–13, 12–15 Oct. 2008 [2008] IEEE.

S.P. Khatri, K. Gulati (eds.), Advanced Techniques in Logic Synthesis,

Optimizations and Applications, DOI 10.1007/978-1-4419-7518-8_19,
C© Springer Science+Business Media, LLC 2011

359

360 N. Mohyuddin et al.

design. Reliability analysis will be even more significant in designing reliable cir-

cuits using unreliable components [3, 4].

Circuit reliability will thus be an important trade-off factor which has to be taken

care of similar to traditional design trade-off factors such as performance, area, and

power. To include the reliability into the design trade-off equations, there must exist

a good measure for the circuit reliability, and there must exist fast and robust tools

that, similar to timing analyzer and power estimator tools, are capable of estimating

circuit reliability at different design levels. In [5] authors have proposed a probabilis-

tic transfer matrix (PTM) method to calculate the output signal error probability for

a circuit while [6] presents a method based on the probabilistic decision diagrams

(PDDs) to perform this task.

In this chapter we first introduce a probabilistic gate-level error propagation

model based on the concept of Boolean difference to propagate errors from inputs to

output of a general gate. We then apply this model to account for the error propaga-

tion in a given circuit and finally estimate the error probability at the circuit outputs.

Note that in the proposed model a gate’s Boolean function is used to determine the

error propagation in the gate. An error at an output of a gate is due to its input(s)

and/or the gate itself being erroneous. The internal gate error in this work is modeled

as an output flipping event. This means that, when a faulty gate makes an error, it

flips (changes a “1” to a “0” and a “0” to a “1”) its output value that it would have

generated given the inputs, Von Neumann error model. In the rest of this chapter,

we call our circuit error estimation technique the Boolean Difference-based Error

Calculator, or BDEC for short, and we assume that a defective logic gate produces

the wrong output value for every input combination. This is a more pessimistic

defect model than the stuck-at-fault model.

Authors in [5] use a PTM matrix for each gate to represent the error propagation

from the input(s) to the output(s) of a gate. They also define some operations such

as matrix multiplication and tensor product to use the gate PTMs to generate and

propagate error probability at different nodes in a circuit level by level. Despite

of its accuracy in calculating signal error probability, PTM technique suffers from

the extremely large number of computational-intensive tasks namely regular and

tensor matrix products. This makes the PTM technique extremely memory inten-

sive and very slow. In particular, for larger circuits, size of the PTM matrices

grows too fast for the deeper nodes in circuit making PTM an inefficient or even

infeasible technique of error rate calculation for a general circuit. References [8]

and [9] developed a methodology based on probabilistic model checking (PMC)

to evaluate the circuit reliability. The issue of excessive memory requirement of

PMC when the circuit size is large was successfully addressed in [10]. However, the

time complexity still remains a problem. In fact, the authors of [10] show that the

run time for their space-efficient approach is even worse than that of the original

approach.

Boolean difference calculus was introduced and used by [11] and [12] to ana-

lyze single faults. It was then extended by [13] and [14] to handle multiple fault

situations; however, they only consider stuck-at-faults and they do not consider the

case when the logic gates themselves can be erroneous and hence a gate-induced

output error may nullify the effect of errors at the gate’s input(s). Reference [6] has

used Boolean difference to estimate the switching activity of Boolean circuits when

19 Probabilistic Error Propagation in a Logic Circuit 361

multiple inputs switch, but error estimation using Boolean difference in the presence

of multiple faults is more involved due to the fact that certain combinations of faults

may cancel each other. In [15] authors use Bayesian networks to calculate the output

error probabilities without considering the input signal probabilities.

The author in [6] uses probabilistic decision diagrams (PDD) to calculate the

error probabilities at the outputs using probabilistic gates. While PDDs are much

more efficient than PTM for average case, the worst-case complexity of both PTM-

and PDD-based error calculators is exponential in the number of inputs in the circuit.

In contrast, we will show in Section 19.5 that BDEC calculates the circuit error

probability much faster than PTM while achieving as accurate results as PTM’s. We

will show that BDEC requires a single pass over the circuit nodes using a post-order

(reverse DFS) traversal to calculate the errors probabilities at the output of each gate

as we move from the primary inputs to the primary outputs; hence, complexity is

O (N) where N is the number of the gates in the circuit, and O (.) is the big O

notation.

19.2 Error Propagation Using Boolean Difference Calculus

Some key concepts and notation that will be used in the remainder of this chapter

are discussed next.

19.2.1 Partial Boolean Difference

The partial Boolean difference of function f (x1, x2, . . . , xn) with respect to one

variable or a subset of its variables [14] is defined as

∂ f

∂xi

= fxi
⊕ f x̄i

∂ f

∂
(

xi1
xi2

. . . xik

) = fxi1
xi2

... xik
⊕ f x̄i1

x̄i2
... x̄ik

(19.1)

where ⊕ represents XOR operator and fxi
is the co-factor of f with respect to xi ,

i.e.,

fxi
= f (x1, . . . , xi−1, xi = 1, xi+1, . . . , xn)

f x̄i
= f (x1, . . . , xi−1, xi = 0, xi+1, . . . , xn) (19.2)

Higher order co-factors of f can be defined similarly. The partial Boolean difference

of f with respect to xi expresses the condition (with respect to other variables) under

which f is sensitive to a change in the input variable xi . More precisely, if the logic

values of {x1, . . . , xi−1, xi+1, . . . , xn} are such that ∂ f/∂xi = 1, then a change in

the input value xi , will change the output value of f. However, when ∂ f/∂xi = 0,

changing the logic value of xi will not affect the output value of f.

It is worth mentioning that the order-k partial Boolean difference defined in

(19.1) is different from the kth Boolean difference of function f as used in [13],

which is denoted by ∂k f /∂xi1
. . . ∂xik

. For example, the second Boolean difference

362 N. Mohyuddin et al.

of function f with respect to xi and x j is defined as

∂2 f

∂ xi∂ x j

= ∂

∂ xi

(
∂ f

∂ x j

)

= fxi x j
⊕ f x̄i x j

⊕ fxi x̄ j
⊕ f x̄i x̄ j

(19.3)

Therefore, ∂2 f/∂xi∂x j �= ∂ f/∂(xi x j).

19.2.2 Total Boolean Difference

Similar to the partial Boolean difference that shows the conditions under which

a Boolean function is sensitive to change of any of its input variables, we can

define total Boolean difference showing the condition under which the output of

the Boolean function f is sensitive to the simultaneous changes in all the variables

of a subset of input variables. For example, the total Boolean difference of function

f with respect to xi x j is defined as

� f

�(xi x j)
= ∂ f

∂(xi x j)

(

xi x j + x̄i x̄ j

)

+ ∂ f

∂(x̄i x j)

(

x̄i x j + xi x̄ j

)

(19.4)

where � f/�(xi x j) describes the conditions under which the output of f is sensitive

to a simultaneous change in xi and x j . That is, the value of f changes as a result

of the simultaneous change. Some examples for simultaneous changes in xi and

x j are transitioning from xi = x j = 1 to xi = x j = 0 and vice versa or from

xi = 1, x j = 0 to xi = 0, x j = 1 and vice versa. However, transitions in the

form of xi = x j = 1 to xi = 1, x j = 0 or xi = 1, x j = 0 to xi = 0, x j = 0

are not simultaneous changes. Note that ∂ f/∂(xi x j) describes the conditions when

a transition from xi = x j = 1 to xi = x j = 0 and vice versa changes the value of

function f .

It can be shown that the total Boolean difference in (19.4) can be written in the

form of

� f

�
(

xi x j

) = ∂ f

∂ xi

⊕ ∂ f

∂ x j

⊕ ∂2 f

∂ xi∂ x j

(19.5)

The total Boolean difference with respect to three variables is

� f

�(x1x2x3)
= ∂ f

∂(x1x2x3)
(x1x2x3 + x̄1 x̄2 x̄3)

+ ∂ f

∂(x1x2 x̄3)
(x1x2 x̄3 + x̄1 x̄2x3)

+ ∂ f

∂(x1 x̄2x3)
(x1 x̄2x3 + x̄1x2 x̄3)

+ ∂ f

∂(x̄1x2x3)
(x̄1x2x3 + x1 x̄2 x̄3) (19.6)

19 Probabilistic Error Propagation in a Logic Circuit 363

It is straightforward to verify that

� f

�(x1x2x3)
= ∂ f

∂x1
⊕ ∂ f

∂x2
⊕ ∂ f

∂x3
⊕ ∂2 f

∂x1∂x2

⊕ ∂2 f

∂x2∂x3
⊕ ∂2 f

∂x1∂x3
⊕ ∂3 f

∂x1∂x2∂x3
(19.7)

In general total Boolean difference of a function f with respect to an n-variable

subset of its inputs can be written as

� f

�(xi1
xi2

. . . xin)
=

2n−1−1
∑

j=0

∂ f

∂
↔
x

∣
∣
∣
∣
m j

(

m j + m2n− j−1

)

(19.8)

where m j ’s are defined as

m0 = x̄i1
x̄i2

. . . x̄in−1
x̄in

m1 = x̄i1
x̄i2

. . . x̄in−1
xin

...

m2n−1 = xi1
xi2

. . . xin−1
xin (19.9)

and we have

∂ f

∂
↔
x

∣
∣
∣
∣
m j

= ∂ f

∂
(

x∗1 x∗2 . . . x∗n−1x∗n
) where m j = x∗1 x∗2 . . . x∗n−1x∗n (19.10)

19.2.3 Signal and Error Probabilities

Signal probability is defined as the probability for a signal value to be “1.” That is

pi = Pr {xi = 1} (19.11)

Gate error probability is shown by εg and is defined as the probability that a

gate generates an erroneous output, independent of its applied inputs. Such a gate

is sometimes called (1–εg)-reliable gate. Signal error probability is defined as the

probability of error on a signal line. If the signal line is the output of a gate, the error

can be due to either error at the gate input(s) or the gate error itself. We denote the

error probability on signal line xi by εi .

We are interested in determining the circuit output error rates, given the circuit

input error rates under the assumption that each gate in the circuit can fail indepen-

dently with a probability of εg. In other words, we account for the general case of

multiple simultaneous gate failures.

364 N. Mohyuddin et al.

19.3 Proposed Error Propagation Model

In this section we propose our gate error model in the Boolean difference calculus

notation. The gate error model is then used to calculate the error probability and

reliability at outputs of a circuit.

19.3.1 Gate Error Model

Figure 19.1 shows a general logic gate realizing Boolean function f , with gate error

probability of εg. The signal probabilities at the inputs, i.e., probabilities for input

signals being 1, are p1, p2, . . . , pn while the input error probabilities are ε1, ε2, . . .,

εn . The output error probability is εz .

Fig. 19.1 Gate implementing

function f
p1,ε1
p2,ε2

pn,εn

f, εg
εz

First consider the error probability equation for a buffer gate shown in Fig. 19.2.

The error occurs at the output if (i) the input is erroneous and the gate is error free or

(ii) the gate is erroneous and the input is error free. Therefore, assuming independent

faults for the input and the gate, the output error probability for a buffer can be

written as

εz = εin(1− εg)+ (1− εin)εg = εg + (1− 2εg)εin (19.12)

where εin is the error probability at the input of the buffer. It can be seen from this

equation that the output error probability for buffer is independent of the input signal

probability. Note (19.12) can also be used to express the output error probability of

an inverter gate.

Fig. 19.2 A faulty buffer

with erroneous input
εz

εg

pin , εin

We can model each faulty gate with erroneous inputs as an ideal (no fault) gate

with the same functionality and the same inputs in series with a faulty buffer as

shown in Fig. 19.3.

f, εg
εz f

(ideal)

εz
εg

p1,ε1

p2,ε2

pn,εn

p1,ε1

p2,ε2

pn,εn

pin

εin

Fig. 19.3 The proposed model for a general faulty gate

19 Probabilistic Error Propagation in a Logic Circuit 365

Now consider a general 2-input gate. Using the fault model discussed above, we

can write the output error probability considering all the cases of no error, single

error, and double errors at the input and the error in the gate itself. We can write the

general equation for the error probability at the output, εz, as

εz = εg + (1− 2εg)

⎛

⎜
⎜
⎜
⎝

ε1(1− ε2) Pr

{
∂ f

∂x1

}

+ (1− ε1)ε2 Pr

{
∂ f

∂x2

}

+ε1ε2 Pr

{
� f

�(x1x2)

}

⎞

⎟
⎟
⎟
⎠

︸ ︷︷ ︸

εin

(19.13)

where Pr{.} represents the signal probability function and returns the probability

of its Boolean argument to be “1.” The first and the second terms in εin account

for the error at the output of the ideal gate due to single input errors at the first

and the second inputs, respectively. Note error at each input of the ideal gate prop-

agates to the output of this gate only if the other inputs are not masking it. The

non-masking probability for each input error is taken into account by calculating the

signal probability of the partial Boolean difference of the function f with respect to

the corresponding input. The first two terms in εin only account for the cases when

we have single input errors at the input of the ideal gate; however, error can also

occur when both inputs are erroneous simultaneously. This is taken into account by

multiplying the probability of having simultaneous errors at both inputs, i.e., ε1ε2,

with the probability of this error to be propagated to the output of the ideal gate, i.e.,

the signal probability of the total Boolean difference of f with respect to x1x2.

For 2-input AND gate (f = x1x2) shown in Fig. 19.4 we have

Pr

{
∂ f

∂x1

}

= Pr {x2} = p2 , Pr

{
∂ f

∂x2

}

= Pr {x1} = p1

Pr

{
� f

�(x1x2)

}

= Pr {x̄1 x̄2 + x1x2} = (1− p1) (1− p2)+ p1 p2 (19.14)

= 1− (p1 + p2)+ 2p1 p2

Plugging (19.14) into (19.13) and after some simplifications we have

εAND2 = εg +
(

1− 2εg

)

(ε1 p2 + ε2 p1 + ε1ε2 (1− 2 (p1 + p2)+ 2p1 p2))

(19.15)

Fig. 19.4 A 2-input faulty

AND gate with erroneous

inputs

p1 , ε1

p2 , ε2

εAND2εg

Similarly, the error probability for the case of 2-input OR can be calculated as

εOR2 = εg +
(

1− 2εg

)

(ε1 (1− p2)+ ε2 (1− p1)+ ε1ε2 (2p1 p2 − 1)) (19.16)

366 N. Mohyuddin et al.

And for 2-input XOR gate we have

εXOR2 = εg +
(

1− 2εg

)

(ε1 + ε2 − 2ε1ε2) (19.17)

It is interesting to note that the error probability at the output of the XOR gate

is independent of the input signal probabilities. Generally, the 2-inpout XOR gate

exhibits larger output error compared to 2-input OR and AND gates. This is

expected since XOR gates show maximum sensitivity to input errors (XOR, like

inversion, is an entropy-preserving function). The output error expression for a 3-

input gate is

εz = εg + (1− 2εg)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ε1(1− ε2 − ε3 + ε2ε3) Pr

{
∂ f

∂x1

}

+ε2(1− ε1 − ε3 + ε1ε3) Pr

{
∂ f

∂x2

}

+ε3(1− ε1 − ε2 + ε1ε2) Pr

{
∂ f

∂x3

}

+ε1ε2(1− ε3) Pr

{
� f

�(x1x2)

}

+ε2ε3(1− ε1) Pr

{
� f

�(x2x3)

}

+ε1ε3(1− ε2) Pr

{
� f

�(x1x3)

}

+ε1ε2ε3 Pr

{
� f

�(x1x2x3)

}

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(19.18)

As an example of a 3-input gate, we can use (19.18) to calculate the probability of

error for the case of 3-input AND gate. We can show that the output error probability

can be calculated as

εAND3 = εg + (1− 2εg)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

p2 p3ε1 + p1 p3ε2 + p1 p2ε3

+p3(1− 2(p2 + p1)+ 2p1 p2)ε1ε2

+p1(1− 2(p2 + p3)+ 2p2 p3)ε2ε3

+p2(1− 2(p1 + p3)+ 2p1 p3)ε1ε3

+
(

1− 2(p1 + p2 + p3)

+4(p1 p2 + p2 p3 + p1 p3)− 6p1 p2 p3

)

ε1ε2ε3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(19.19)

Now we give a general expression for a 4-input logic gate as

19 Probabilistic Error Propagation in a Logic Circuit 367

εz = εg+(1−2εg)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑

i

εi

(

1−
∑

j �=i

ε j +
∑

(j,k) �=i

ε jεk −
∑

(j,k,l) �=i

ε jεkεl

)

Pr

{
∂ f

∂xi

}

+
∑

(i, j)

εiε j

(

1−
∑

k �=i, j

εk +
∑

(k,l) �=i, j

εkεl

)

Pr

{
� f

�(xi x j)

}

+
∑

(i, j,k)

εiε jεk

(

1−
∑

l �=i, j,k

εl

)

Pr

{
� f

�(xi x j xk)

}

+ε1ε2ε3ε4 Pr

{
� f

�(x1x2x3x4)

}

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(19.20)

The Boolean expression for a general k-input gate can be calculated in a similar

manner.

19.3.2 Error Propagation in 2-to-1 Mux Using BDEC

We represent 2-to-1 Multiplexer (Mux) function as f = as + bs. Using BDEC the
output error probability in terms of the gate error probability, input signal probabil-
ities, and input error probabilities is

εMux2to1 = εg +
(

1− 2εg

)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

εa (1− εb) (1− εs) Pr

(
∂ f

∂a

)

+ εb (1− εa) (1− εs) Pr

(
∂ f

∂b

)

+εs (1− εa) (1− εb) Pr

(
∂ f

∂s

)

+ εaεb (1− εs) Pr

(
� f

�(ab)

)

+εaεs (1− εb) Pr

(
� f

�(as)

)

+ εbεs (1− εa) Pr

(
� f

�(bs)

)

+εaεbεs Pr

(
� f

�(abs)

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(19.21)

Now we stepwise show how to calculate various partial and total Boolean differ-

ences.
First we calculate all single variable partial Boolean differences as

∂ f

∂a
= fa ⊕ fa

= (s + bs)⊕ (bs)

= (s + bs). (bs)+ (s + bs) .(bs)

=
(

s.bs
)

. (bs)+
(

s.bs + bs.bs
)

=
(

s.bs
)

= s.
(

b + s
)

= s.b + s

= s.
(

1+ b
)

= s

∂ f

∂b
= fb ⊕ fb

= (as + s)⊕ (as)

= (as + s). (as)+ (as + s) .(as)

= (as.s) . (as)+ (as.as + s.as)

= (s.as)

= s. (a + s)

= as + s

= s. (a + 1)

= s

∂ f

∂ (s)
= fs ⊕ fs

= a ⊕ b

368 N. Mohyuddin et al.

Then we calculate two-variable partial Boolean differences as

∂ f

∂ (ab)
= fab ⊕ fab

= 1⊕ 0

= 1

∂ f

∂ (ab)
= fab ⊕ fab

= s ⊕ s

= 1

∂ f

∂ (as)
= fas ⊕ fas

= 1⊕ b

= b

∂ f

∂ (as)
= fas ⊕ fas

= b ⊕ 0

= b

∂ f

∂ (bs)
= fbs ⊕ fbs

= a ⊕ 0

= a

∂ f

∂ (bs)
= fbs ⊕ fbs

= 1⊕ a

= a

Finally we calculate three-variable partial Boolean differences as

∂ f

∂ (abs)
= fabs ⊕ f

abs

= 1⊕ 0

= 1

∂ f

∂ (abs)
= fabs ⊕ f

abs

= 0⊕ 0

= 0

∂ f

∂
(

abs
) = f

abs
⊕ fabs

= 1⊕ 1

= 0

∂ f

∂ (abs)
= fabs ⊕ f

abs

= 1⊕ 0

= 1

Next we calculate total Boolean differences as

� f

�(as)
= ∂ f

∂a
⊕ ∂ f

∂s
⊕ ∂2 f

∂a∂s

= s ⊕ (a ⊕ b)⊕ 1

= s ⊕ (a ⊕ b)

= s ⊕ (a ⊗ b)

� f

�(bs)
= ∂ f

∂b
⊕ ∂ f

∂s
⊕ ∂2 f

∂b∂s

= s ⊕ (a ⊕ b)⊕ 1

= s ⊕ (a ⊕ b)

� f

�(ab)
= ∂ f

∂a
⊕ ∂ f

∂b
⊕ ∂2 f

∂a∂b

= s ⊕ s ⊕ 0

= 1

� f

�(abs)
= ∂ f

∂a
⊕ ∂ f

∂b
⊕ ∂ f

∂s
⊕ ∂2 f

∂a∂s
⊕ ∂2 f

∂b∂s
⊕ ∂2 f

∂a∂b
⊕ ∂3 f

∂a∂b∂s

= s ⊕ s ⊕ (a ⊕ b)⊕ 1⊕ 1⊕ 0⊕ 0

= s ⊕ s ⊕ (a ⊕ b)

= 1⊕ (a ⊕ b)

= a ⊗ b

Plugging these values in (19.21)

εMux2to1 = εg+
(

1− 2εg

)

⎛

⎜
⎝

εa (1− εb) (1− εs) ps + εb (1− εa) (1− εs) (1− ps)

+εs (1− εa) (1− εb) Pr (a ⊕ b)+ εaεb (1− εs)

+εaεs (1− εb) Pr (s ⊕ (a ⊗ b))+ εbεs (1− εa) Pr (s ⊕ (a ⊕ b))

+εaεbεs Pr (a ⊗ b)

⎞

⎟
⎠

(19.22)

19 Probabilistic Error Propagation in a Logic Circuit 369

19.3.3 Circuit Error Model

In this section we use the gate error model proposed in Section19.3.1 to calculate

the error probability at the output of a given circuit. Given a multilevel logic circuit

composed of logic gates, we start from the primary inputs and move toward the

primary outputs by using a post-order (reverse DFS) traversal. For each gate, we

calculate the output error probability using input signal probabilities, input error

probabilities, and gate error probability and utilizing the error model proposed in

Section 19.3.1. The signal probability for the output of each gate is also calculated

based on the input signal probabilities and the gate function. The process of output

error and signal probability calculation is continued until all the gates are processed.

For each node z in the circuit, reliability is defined as

χz = 1− εz (19.23)

After processing all the gates in the circuit and calculating error probabilities and

reliabilities for all the circuit primary outputs, we can calculate the overall circuit

reliability. Assuming that different primary outputs of the circuit are independent,

the overall circuit reliability can be calculated as the product of all the primary

outputs reliabilities, that is

χcircuit =
∏

i

χPOi
(19.24)

The case of dependent primary outputs (which is obviously a more realistic

scenario) requires calculation of spatial correlation coefficient as will be outlined

further on in this chapter. The detailed treatment of spatial correlation coefficient

calculation however falls outside the scope of this work.

This error propagation algorithm has a complexity of O(2k N) where k is the

maximum number of inputs to any gate in the circuit (which is small and can be

upper bounded a priori in order to give O(N) complexity) and N is the number of

gates in the circuit. This complexity should be contrasted to that of the PTM-based

or the PDD-based approaches that have a worst-case complexity of O(2N). The

trade-off is that our proposed approach based on post-order traversal of the circuit

netlist and application of Boolean difference operator results in only approximate

output error and signal probability values due to the effect of reconvergent fanout

structures in the circuit, which create spatial correlations among input signals to a

gate. This problem has been extensively addressed in the literature on improving

the accuracy of signal probability calculators [16, 17]. Our future implementation

of BDEC shall focus on utilizing similar techniques (including efficient calculation

of spatial correlation coefficients) to improve the accuracy of proposed Boolean

difference-based error calculation engine.

370 N. Mohyuddin et al.

19.4 Practical Considerations

In this section we use the error models introduced in previous section to calculate

the exact error probability expression at the output of a tree-structured circuit.

19.4.1 Output Error Expression

For the sake of elaboration, we choose a 4-input AND gate implemented as a bal-

anced tree of 2-input AND gates as shown in Fig. 19.5. We can calculate the output

error of this circuit by expressing the error at the output of each gate using (19.18).

Fig. 19.5 Balanced tree

implementation of 4-input

AND gate

p1 , ε1

p2 , ε2

p3 , ε3

p4 , ε4

εAND4
εg

εg

εg

X

Y

Out

Equation (19.25) provides the exact output error probability of the circuit shown
in Fig. 19.5 in terms of the input signal probabilities and input error probabilities
where similar to [18] higher order exponents of the signal probabilities are reduced
to first-order exponents.

εAND4 = (p2 p3 p4ε1 + p1 p3 p4ε2 + p1 p2 p4ε3 + p1 p2 p3ε4)

+p3 p4 (1− 2 (p1 + p2)+ 2p1 p2) ε1ε2

+p2 p4 (1− 2 (p1 + p3)+ 2p1 p3) ε1ε3

+p2 p3 (1− 2 (p1 + p4)+ 2p1 p4) ε1ε4

+p1 p4 (1− 2 (p2 + p3)+ 2p2 p3) ε2ε3

+p1 p3 (1− 2 (p2 + p4)+ 2p2 p4) ε2ε4

+p1 p2 (1− 2 (p3 + p4)+ 2p3 p4) ε3ε4

+p4 (1− 2 (p1 + p2 + p3)+ 4 (p1 p2 + p1 p3 + p2 p3)− 6p1 p2 p3) ε1ε2ε3

+p2 (1− 2 (p1 + p3 + p4)+ 4 (p1 p3 + p1 p4 + p3 p4)− 6p1 p3 p4) ε1ε3ε4

+p3 (1− 2 (p1 + p2 + p4)+ 4 (p1 p2 + p1 p4 + p2 p4)− 6p1 p2 p4) ε1ε2ε4

+p1 (1− 2 (p2 + p3 + p4)+ 4 (p2 p3 + p2 p4 + p3 p4)− 6p2 p3 p4) ε2ε3ε4

+

⎛

⎜
⎝

1− 2 (p1 + p2 + p3 + p4)

+4 (p1 p2 + p1 p3 + p1 p4 + p2 p3 + p2 p4 + p3 p4)

−8 (p1 p2 p3 + p1 p2 p4 + p1 p3 p4 + p2 p3 p4)

+14p1 p2 p3 p4

⎞

⎟
⎠ ε1ε2ε3ε4 (19.25)

In (19.25), without loss of generality, we assume εg = 0 in order to reduce the

length of the expression.

19 Probabilistic Error Propagation in a Logic Circuit 371

Using symbolic notation along with higher order exponent suppression, the

model presented in Section 19.3 can compute the exact output error probability in

circuits with no reconvergent fanout. We will show in next section that by sacrificing

little accuracy and using numerical values instead of symbolic notation, the compu-

tational complexity of our gate error model becomes linear in terms of the number

of gates in the circuit.

19.4.2 Reconvergent Fanout

Figure 19.6 shows an example of a circuit with reconvergent fanout. It is clear from

the figure that inputs to the final logic gate are not independent. Therefore, if the

BDEC technique discussed in Section 19.3 is applied to this circuit, the calculated

output error probability will not be accurate. In this section we describe a modifica-

tion to the BDEC technique that improves the probability of error for the circuit in

the presence of reconvergent fanout structures in the circuit.

Fig. 19.6 Reconvergent

fanout in a 2-to-1 multiplexer

ps , εs

εMux2to1

pa , εa

pb , εb

εg

εg

εg

εg

Out

Super Gate

Local reconvergent fanout such as the one depicted in Fig. 19.6 can be handled

by collapsing levels of logic. For this example, we consider all the four gates in

Fig. 19.6 as a single super gate and then apply the BDEC technique to this super

gate. For the input to output error propagation in the original circuit, BDEC will

ignore the internal structure of the super gate and only considers the actual function

implemented by the super gate, 2-to-1 Mux in this case. The original implementation

information can be taken into account by properly calculating the εg value for this

new 3-input super gate.

The εg value for the collapsed gate is calculated using BDEC for the original cir-

cuit block before collapsing but assuming that the input error probabilities are zero.

For example, for the circuit in Fig. 19.6 the error probability at the output of the top

AND gate and the inverter using BDEC equations described in Section 19.3.1 and

assuming input error probabilities to be 0 will be εg each. Similarly the error proba-

bility at the output of the bottom AND gate will be εAND2 = εg+
(

1− 2εg

) (

εg pb

)

.

Likewise we can calculate the expression for the error probability at the output of the

OR gate which in this case will be the εg of the super gate. Equation (19.26) shows

the final expression for the εg value of the collapsed gate; note that the εg value for

the collapsed gate is also a function of the input signal probabilities. As discussed

372 N. Mohyuddin et al.

in Section 19.4.1, the error expression for the super gate εg has been obtained after

suppressing the exponents of signal probabilities that are greater than “1” to “1.” In

contrast we do not suppress the exponents of εg values since this higher exponent

may have correctly resulted from the fact that each gate in the circuit can fail with

same error probability. On the other hand the signal probability higher exponent may

have arisen from the fact that the error of some multiple fanout gate is propagated to

a reconvergent fanout point through different paths in the circuit, and hence, these

higher exponent must indeed be suppressed. So there is some inaccuracy in our

proposed method. To be able to decide precisely whether or not the exponents of εg

must be suppressed, we will have to use a unique symbol for each gate’s error prob-

ability and propagate these unique symbols throughout the circuit while suppressing

the higher exponents of each unique symbol. The results reported in Table 19.1 have

been obtained using the estimation of super gate’s εg from our implementation of

BDEC in SIS [20], which does not include exponent suppression.

ε∗g = 3εg − 5ε2
g + 2ε3

g

+pb psεg − pa psεg − pa pb psεg

−3pbε
2
g + 2pa psε

2
g − 2pb psε

2
g + 4pa pb psε

2
g

+8pbε
3
g − 4pa pb psε

3
g − 4pbε

4
g (19.26)

Table 19.1 shows that BDEC+ logic collapsing produces accurate results for the

circuit in Fig. 19.6. Table 19.2 shows the comparison of percent error for BDEC and

BDEC + collapsing as compared to PTM. If the reconvergent fanout extends over

multiple circuit levels then multiple level collapsing can be used but after few levels,

the computational complexity of computing output error probability of a super gate

with many inputs will become prohibitive and a trade-off between accuracy and

complexity will have to be made.

Table 19.1 Output error probability with reconvergent fanout

S/N Pa Pb Ps εg εa εb εs BDEC BDEC-CLP PTM

1 0.5 0.5 0.5 0.05 0.05 0.05 0.05 0.1814 0.1835 0.1829

2 0.1 0.2 0.3 0.05 0.05 0.05 0.05 0.1689 0.1820 0.1852

3 0.5 0.6 0.7 0.05 0.05 0.05 0.05 0.1909 0.1827 0.1830

4 0.7 0.8 0.9 0.05 0.05 0.05 0.05 0.1858 0.1684 0.1668

5 0.5 0.5 0.5 0.001 0.001 0.001 0.001 0.0044 0.0044 0.0044

6 0.5 0.5 0.5 0.002 0.001 0.001 0.001 0.0072 0.0072 0.0072

7 0.5 0.5 0.5 0.01 0.01 0.01 0.01 0.0421 0.0422 0.0422

8 0.5 0.5 0.5 0.02 0.01 0.02 0.03 0.0842 0.0815 0.0814

9 0.5 0.5 0.5 0.08 0.08 0.08 0.08 0.2603 0.2645 0.2633

10 0.5 0.5 0.5 0.05 0.06 0.07 0.08 0.2027 0.2037 0.2032

In passing, we point out that the correlation coefficient method and partial col-

lapse methods both tackle the same problem, that is, how to account for the cor-

relations due to reconvergent fanout structures in VLSI circuits. The trade-off is

that the correlation coefficient method has high complexity due to the requirement

19 Probabilistic Error Propagation in a Logic Circuit 373

Table 19.2 Percent error reduction in output error probability using BDEC +collapsing

BDEC BDEC-CLP

S/N Pa Pb Ps εg εa εb εs error (%) error (%)

1 0.5 0.5 0.5 0.05 0.05 0.05 0.05 0.84 0.33

2 0.1 0.2 0.3 0.05 0.05 0.05 0.05 8.78 1.75

3 0.5 0.6 0.7 0.05 0.05 0.05 0.05 4.34 0.15

4 0.7 0.8 0.9 0.05 0.05 0.05 0.05 11.39 0.94

5 0.5 0.5 0.5 0.001 0.001 0.001 0.001 0.02 0.01

6 0.5 0.5 0.5 0.002 0.001 0.001 0.001 0.01 0.01

7 0.5 0.5 0.5 0.01 0.01 0.01 0.01 0.21 0.08

8 0.5 0.5 0.5 0.02 0.01 0.02 0.03 3.48 0.12

9 0.5 0.5 0.5 0.08 0.08 0.08 0.08 1.13 0.46

10 0.5 0.5 0.5 0.05 0.06 0.07 0.08 0.25 0.24

11 – – – – – – Average 3.05 0.41

to calculate and propagate all correlation coefficients along with signal and error

probabilities, whereas the partial collapse has high complexity due to the need to

calculate output signals and error probabilities of super gates with a large number of

inputs. In practice, the partial collapse of two or three levels of logic into each node

(super gate) or the computation of only pairwise spatial correlations is adequate and

provides high accuracy.

19.5 Simulation Results

In this section we present some simulation results for the proposed circuit reliability

technique and we compare the results of our approach with those of PTM and PGM

[19].

We implemented the proposed error calculator and algorithm (BDEC) in SIS

[20]. SIS has been widely used by logic synthesis community for designing com-

binational and sequential logic circuits. We extended existing logic simulation in

SIS with faulty circuit simulation based on Monte Carlo simulation technique. We

attached a probability function with each node which flips the correct output of the

node with a predefined error probability. We used this Monte Carlo simulation to

form a reference to compare BDEC results for medium and large circuits.

We added a new BDEC module to the existing SIS package. While simulating

a logic circuit, BDEC module models each gate as a probabilistic gate. We used

the built-in co-factor function in SIS to develop partial Boolean difference and total

Boolean difference functions that are used to propagate single and simultaneous

multiple errors from the inputs to the output of the gate, respectively. We have also

implemented level collapsing to overcome the inaccuracies introduced because of

local reconvergent fanouts. Note that while collapsing levels of logic, we do not

change the original logic network; instead, we simply recalculate and update the

error and signal probability at the output of the nodes that have reconvergent fanout

structures inside their corresponding super gate.

374 N. Mohyuddin et al.

In the past, SIS has been used to apply various delay, area, and power-level opti-

mizations to logic circuits. By incorporating BDEC module to SIS, we expect that

researches will be able to use SIS to develop reliability-aware optimizations for

logic circuits. For example, given a library of gates with different levels of reliabil-

ity, design a circuit with given functionality that minimizes area, delay, and power

overheads while meeting a given reliability constraint.

Regarding simulation results in this section, for simplicity, but without loss of

generality, we assume all gates in a circuit have the same gate error probability εg.

All primary inputs are assumed to be error free and spatiotemporally uncorrelated.

Moreover, signal probability for all the inputs was set to 0.5. The gate error prob-

ability was set to 0.05. We thus present results that show how efficiently BDEC

can calculate the output reliability for circuits with high primary input count. Run-

ning our MATLAB 7.1-based implementation of PTM on a computer system with

2 GB of RAM, we observed that typically for circuits with 16 or more inputs, PTM

reported out of memory error. BDEC, however, does the calculations much faster

and more efficient than PTM.

Table 19.3 shows the results for reliability calculation for some tree-structured

circuits. For example, “8-Input XOR BT” (BT for Balanced Tree) refers to 8-

input XOR function implemented using 2-input XOR gates in three levels of logic,

whereas “8-Input XOR Chain” refers to the same function realized as a linear chain

of seven 2-input XOR gates. We also show results for two 16-input circuits with

balanced tree implementation of 2-input gates having layers of 2-input AND, OR,

or XOR gates. First letter of gate name is used to show the gates used in each

level. For example, AOXO means that the circuits consist of four levels of logic

with AND, OR, XOR, and OR gates at the first, second, third, and fourth levels,

respectively. Since the complexity of the PTM approach increases with the number

of primary inputs exponentially, all the circuits in Table 19.3 are chosen to have

relatively small number of primary inputs. Second and third columns of this table

compare the execution times for PTM and BDEC, respectively, while the forth and

the fifth columns compare the output reliability for the two approaches. It can be

seen that our proposed BDEC technique achieves highly accurate reliability val-

ues, i.e., the reliability values are different than PTM ones by at most 0.1% for the

circuits reported in Table 19.3. More importantly, Table 19.3 shows the difference

between the scaling trend of the execution time in both PTM and BDEC techniques.

In PTM, the execution time increases exponentially when we move from smaller

circuits to larger circuits in Table 19.3, whereas in BDEC the change in the execution

time when we move from smaller circuits to the larger ones in Table 19.3 is really

small. For the two cases, 16-input XOR chain and 16-input AND chain, the system

runs out of memory while executing PTM technique. This shows that execution of

PTM technique for even relatively small circuits needs a huge amount of system

memory.

Another important advantage of the proposed BDEC technique which can be

observed from Table 19.3 is that the complexity of this technique mainly depends

on the number of the gates in the circuit; however, the complexity of PTM technique

depends on several other factors such as number of the inputs, width and depth of

19 Probabilistic Error Propagation in a Logic Circuit 375

Table 19.3 Circuit reliability for tree-structured circuits having relatively small number of PIs

Execution time (ms) Circuit reliability

Benchmarks # of gates PTM BDEC PTM BDEC

8-Input XOR BT 7 0.790 0.011 0.7391 0.7391

16-Input XOR BT 15 1664.5 0.017 0.6029 0.6029

16-Input XOR chain 15 Out of Memory 0.015 Out of Memory 0.6029

8-Input AND BT 7 0.794 0.010 0.9392 0.9382

16-Input AND BT 15 1752.2 0.017 0.9465 0.9462

16-Input AND chain 15 Out of Memory 0.016 Out of Memory 0.9091

16-input AOXO BT 15 1769.3 0.017 0.7622 0.7616

16-input OXAX BT 15 1593.1 0.017 0.7361 0.7361

the circuit, and number of the wire crossovers. In other words, efficiency (execution

time and memory usage) of PTM depends not only on the number of the gates in the

circuit but also on the circuit topology. This is a big disadvantage for PTM making

it an infeasible solution for large and/or topologically complex circuits.

It is worth mentioning that although the complexity of Boolean difference equa-

tions increases exponentially with the number of the inputs of the function; this does

not increase the complexity of the BDEC technique. The reason is the fact that using

gates with more than few inputs, say 4, in the actual implementation of any Boolean

function is not considered as a good design practice. This makes the complexity of

calculating Boolean difference equations small. On the other hand for a fixed library

of gates, all the Boolean difference equations can be calculated offline, so there is

no computational overhead due to calculating the Boolean difference equations in

BDEC.

Table 19.4 shows the results, execution time, and reliability calculation for some

of synthesized tree-structured circuits with relatively larger number of inputs. Since

the complexity of the PTM is really high for these circuits we only show the results

for BDEC. Some of the circuits in Table 19.4 are the larger versions of the cir-

cuits reported in Table 19.3. We have also included 16-and 32-bit ripple carry adder

(RCA) circuits. Results for two benchmark circuits, I1 and C18, are also included

in this table.

Table 19.4 Circuit reliability for tree-structured circuits having relatively large number of PIs

Circuit # of gates Execution time (ms) Circuit reliability

64-Input XOR (BT) 63 0.046 0.5007

64-Input XOR (Chain) 63 0.043 0.5007

64-Input AND (BT) 63 0.054 0.9475

64-Input AND (Chain) 63 0.051 0.9091

64-Input AOXAOXBT 63 0.054 0.6314

64-Input XAOXAOBT 63 0.053 0.9475

16-Bit RCA 80 0.115 0.0132

32-Bit RCA 160 0.216 0.0002

I1 46 0.054 0.3580

C18 6 0.013 0.8032

376 N. Mohyuddin et al.

From the results of Tables 19.3 and 19.4 we note that circuits that use more XOR

gates will incur smaller output reliability under a uniform gate failure probability.

Furthermore, moving XOR gates closer to the primary outputs results in lower out-

put reliability. Therefore, in order to have more reliable designs, we must have less

number of XOR gates close to the primary outputs.

Table 19.5 compares the results for PTM, PGM [19], and BDEC for some more

general circuits. Note FA1 and FA2 are two different implementations of full adder

circuit. The former is XOR/AND implementation and the latter is NAND only

implementation. Also Comp. is a 2-bit comparator circuit. We report the results

for our implementation of PTM and BDEC; however, since we were not able to

produce the results of PGM, we took the reported results in [19]. As it can be seen

from this table, BDEC shows better accuracy as compared to PGM.

Table 19.5 Circuit reliability and efficiency of BDEC compared to PGM and PTM

Circuit

Execution time

(ms)

Circuit reliability

(εg = 0.05)

% Error compared

to PTM

BDEC PTM BDEC PGM PTM BDEC PGM

2–4 Decoder 0.014 6.726 0.7410 0.7397 0.7479 0.92 1.10

FA1 0.013 2.399 0.7875 0.7898 0.8099 2.77 2.48

FA2 0.017 3.318 0.6326 0.5933 0.6533 3.17 9.18

C17 0.012 2.304 0.7636 0.7620 0.7839 2.59 2.79

Comp. 0.014 0.937 0.7511 0.7292 0.8264 9.11 11.76

Avg. Err. – – – – – 3.71 5.46

Table 19.6 shows the results of running BDEC for somewhat larger benchmark

circuits. In the last column, we report the results for some of the circuits that were

analyzed in [5] to compare the run times of running PTM with that of BDEC.

PTM results were reported for technology-independent benchmarks whereas BDEC

results are for benchmark circuits mapped to a cell library in 65 nm CMOS technol-

ogy. PTM results were generated using a system with 3 GHz Pentium 4 processor

whereas BDEC results are generated from a system with 2.4 GHz dual-core pro-

cessor. One can see that BDEC (which has very low memory usage) is orders of

magnitude faster than PTM.

Table 19.7 shows how BDEC execution times linearly scale with the number of

gates. As it was mentioned in the introduction of this chapter, the worst-case time

complexity of previously proposed techniques such as PTM and PDD is exponential

in terms of the number of the gates in the circuit.

Table 19.6 Run time comparison between BDEC and PTM for some large benchmark circuits

Benchmark # of gates PIs POs BDEC exec time (s) PTM exec times (s)

C17 6 5 2 7.00E-06 0.313

Pcle 71 19 9 2.40E-05 4.300

z4ml 74 7 4 2.20E-05 0.840

Mux 106 21 1 2.80E-05 2.113

9symml 252 9 1 5.20E-05 696.211

19 Probabilistic Error Propagation in a Logic Circuit 377

Table 19.7 Circuit reliability for large benchmark circuits

Benchmark # of gates PIs POs BDEC exec time (µs) BDEC reported reliability

Majority 22 5 1 9.0 0.6994

Decod 66 5 16 18.0 0.2120

Count 139 31 16 38.0 0.0707

frg1 143 28 3 48.0 0.6135

C880 442 60 26 96.0 0.0038

C3540 1549 50 22 358.0 0.0003

alu4 2492 12 8 577.0 0.0232

t481 4767 16 1 1710.0 0.8630

Table 19.8 shows how BDEC execution times and reliability calculations com-

pared to those of Monte Carlo (MC) simulations. We could not run PTM for larger

circuits because of out of bound memory requirements to store probability transfer

matrices hence we resorted to MC simulations. In most of the cases we ran 10,000

iterations of MC simulations where each input changed with the probability of 0.5.

In the case of higher input count we ran up to 1 M iterations to get more accu-

rate results, but the execution times reported in fourth column of Table 19.8 are

for 10,000 iterations in each case. Since overall circuit reliability for multi-output

circuits tend to be very low, we also report BDEC calculated minimum output reli-

ability for single output in the last column of Table 19.8.

Table 19.8 BDEC Circuit reliability compared to MC simulations for large benchmark circuits

Benchmark

of

gates POs

MC

exec

time (s)

BDEC

exec

time (ms)

MC

reported

reliability

BDEC

reported

reliability % Error

Min single

output

reliability

majority 22 1 0.25 2244 0.6616 0.6994 5.71 0.6994

decod 66 16 0.69 6234 0.2159 0.2120 1.81 0.8820

pcle 71 9 0.82 6899 0.2245 0.2270 1.11 0.8401

cordic 116 2 1.26 10093 0.5443 0.5299 2.65 0.7220

sct 143 15 1.54 13086 0.1310 0.130 0.76 0.7988

frg1 143 3 1.59 13864 0.5895 0.6135 4.07 0.7822

b9 147 21 1.64 14118 0.0271 0.0261 3.69 0.7223

lal 179 19 2.52 18001 0.0924 0.0990 7.14 0.8067

9symml 252 1 2.90 27225 0.7410 0.6189 16.48 0.6189

9sym 429 1 4.93 48039 0.7705 0.6398 16.96 0.6398

C5315 2516 123 33.34 267793 0.0000 0.0000 0.00 0.5822

Average – – – – – – 5.49 –

19.6 Extensions to BDEC

19.6.1 Soft Error Rate (SER) Estimation Using BDEC

As technology scales down, the node-level capacitance (which is a measure of the

stored charge at the output of the node) and the supply voltage decrease; hence, soft

378 N. Mohyuddin et al.

error rates are increasing exponentially [21]. Soft errors in CMOS ICs are caused

by a particle (Alpha, energetic neutron, etc.) striking a node which is holding some

data value. Soft errors in general result in discharging of a node capacitance which

in a combinational circuit means a “1” to “0” transition. This type of error is thus

different from Von Neumann error discussed so far in this chapter. A soft error in

SRAM can change the logic value stored in the SRAM and thus can be thought as a

flipping error.

To use BDEC for soft error rate estimation of combinational logic circuits, we

modify the BDEC equations developed in Section 19.3.1. We still use the Boolean

difference calculus method to find out the conditions when an error on one or more

inputs will affect the output of the gate. We also assume a sufficiently large latching

window for a soft error so that such an error can in the worst case propagate to the

primary output(s) of the target combinational circuit. In the following, we show the

equations to calculate the soft error rate at the output of a buffer, a 2-input AND

gate, and a 2-input XOR gate. Note εg, soft in the following equations means the

probability that a soft error at the output of the gate will cause the output to transition

from logic “1” to logic “0.”

To calculate the soft error rate expression at the output of a buffer, we note that

soft error happens only when the input is “1” and either of the input or of the output

is affected. That is

εbuf, soft = pin

(

εin, soft + εg, soft − εin, softεg, soft

)

(19.27)

where εin, soft is the soft error rate at the input, and the term in the parentheses is the

probability of error at the input or the output.

To calculate the soft error rate at the output of a 2-input AND gate, we pay

attention to the truth table of this gate knowing that soft error can only make “1”

to “0” changes. This leads us to the fact that the only time that the output value of

a 2-input AND gate is affected by a soft error is when both inputs are “1” and an

error occurs at any of the inputs or at the output. Therefore, the soft error rate at the

output of a 2-input AND gate is written as

εAND2, soft = p1 p2

⎛

⎝

ε1, soft + ε2, soft + εg, soft

−ε1, softε2, soft − ε1, softεg, soft − ε2, softεg, soft

+ε1, softε2, softεg, soft

⎞

⎠ (19.28)

Similarly, the soft error rate at the output of a 2-input XOR gate can be calculated

by looking into its truth table and realizing that the output value can be affected by

a soft error when (i) exactly one input is “1” and one input is “0” and soft error

changes the logic-1 input or the output or (ii) both inputs are “1” and soft error

changes one and only one of these logic-1 inputs. Therefore, the soft error rate at

the output of a 2-input XOR gate is calculated as

19 Probabilistic Error Propagation in a Logic Circuit 379

εXOR2, soft = p1 (1− p2)
(

ε1, soft + εg, soft − ε1, softεg, soft

)

+ (1− p1) p2

(

ε2, soft + εg, so f t − ε2, softεg, soft

)

+p1 p2

(

ε1, soft

(

1− ε2, soft

)

+
(

1− ε1, soft

)

ε2, soft

)

(19.29)

Similarly we can derive error equations for other types of gate functions.

19.6.2 BDEC for Asymmetric Erroneous Transition Probabilities

BDEC for Von Neumann fault model assumed equal probability of error for a “0”

to “1” and “1” to “0” erroneous transition. But this may not always be the case, for

example, in dynamic and domino logic families, the only possible erroneous transi-

tion during the evaluate mode is from “1” to “0.” In these situations, the solution is

to independently calculate the overall circuit error probability using the low-to-high

and high-to-low probability values and gate-level error rates. Both circuit error rates

are then reported.

19.6.3 BDEC Applied to Emerging Nanotechnologies

A quantum-dot cellular automaton (QCA) [22] is a binary logic architecture which

can miniaturize digital circuits to the molecular levels and operate at very low-

power levels [23]. QCA devices encode and process binary information as charge

configurations in arrays of coupled quantum dots, rather than current and voltage

levels. One unique aspect of QCA is that both wires and gates are constructed from

quantum dots. Each dot consists of a pair of electrons that can be configured in two

different ways to represent a single bit of information. Hence in QCA both gates and

wire are subject to bit-flip errors. QCAs have two main sources of error: (1) decay

(decoherence)—when electrons that store information are lost to the environment

and (2) switching error—when the electrons do not properly switch from one state

to another due to background noise or voltage fluctuations [23]. BDEC uses Von

Neumann (bit-flip) fault model, hence it is thus well suited to calculate errors in

QCAs. In QCA wires/interconnects can also make bit-flip errors, hence BDEC must

be extended to be used for QCAs. This extension in BDEC is straightforward and

requires a simple replacement of each interconnect in the circuit with a probabilis-

tically faulty buffer.

19.7 Conclusions

As technology scales down circuit reliability is becoming one of the main concerns

in VLSI design. In nano-scale CMOS regime circuit reliability has to be consid-

ered in the early-design phases. This shows the need for fast reliability calculator

tools that are accurate enough to estimate overall circuit reliability. The presented

380 N. Mohyuddin et al.

error/reliability calculator, BDEC, takes primary input signal and error probabili-

ties and gate error probabilities and computes the reliability of the circuit. BDEC

benefits from a linear-time complexity with number of the gates in the circuit. Com-

pared to PTM which generates accurate reliability results, BDEC generates highly

accurate results that are very close to PTM ones. We showed that the efficiency,

execution time, and memory usage of BDEC is much better than those for PTM.

BDEC can find application in any combinatorial logic design where reliability

is a major concern. Presently BDEC can be applied to combinatorial circuits only,

sequential logic is not supported. BDEC can be easily enhanced to be applied to

sequential logic. Current version of BDEC uses level collapsing to reduce the effect

of reconvergent fanout. In future BDEC can be enhanced to use spatial correlations

between the signals to further reduce the inaccuracies introduced because of recon-

vergent fanouts.

References

1. Krishnaswamy, S.: Design, analysis, and test of logic circuits under uncertainty. Dissertation,

University of Michigan at Ann Arbor (2008)

2. Rabey, J.M., Chankrakasan, A., Nikolic, B.: Digital Integrated Circuits. Prentice Hall,

pp. 445–490 (2003)

3. Hu, C. Silicon nanoelectronics for the 21st century. Nanotechnology 10(2), 113–116 (1999)

4. Bahar, R.I., Lau, C., Hammerstrom, D., Marculescu, D., Harlow, J., Orailoglu, A., Joyner,

W.H. Jr., Pedram, M.: Architectures for silicon nanoelectronics and beyond. Computer 40(1),

25–33 (2007)

5. Krishnaswamy, S., Viamontes, G.F., Markov, I.L., Hayes, J.P.: Accurate reliability evaluation

and enhancement via probabilistic transfer matrices. Proceedings of Design, Automation and

Test in Europe (DATE), pp. 282–287 (2005)

6. Abdollahi, A. Probabilistic decision diagrams for exact probabilistic analysis. Proceedings of

International Conference on Computer Aided Design (ICCAD) (2007)

7. Mehta, H., Borah, M., Owens, R.M., Irwin, M.J.: Accurate estimation of combinational circuit

activity. Proceedings of the Design Automation Conference, (DAC), pp. 618–622 (1995)

8. Bhaduri, D., Shukla, S.: NANOPRISM: A tool for evaluating granularity versus reliability

trade-offs in nano architectures. In: Proceedings of 14th ACM Great Lakes Symposium VLSI,

pp. 109–112. (2004)

9. Norman G, Parker D, Kwiatkowska M, Shukla, S.: Evaluating the reliability of NAND multi-

plexing with PRISM. IEEE Transactions on Computer-Aided Design Integrated Circuits Sys-

tem 24(10), 1629–1637 (2005)

10. Bhaduri, D., Shukla, S.K., Graham, P.S., Gokhale, M.B.: Reliability analysis of large cir-

cuits using scalable techniques and tools. IEEE Transactions on Circuits and Systems 54(11),

2447–2460 (2007)

11. Sellers, F.F., Hsiao, M.Y., Bearnson, L.W.: Analyzing errors with the boolean difference. IEEE

Transactions on Computers 17(7), 676–683 (1968)

12. Akers, S.B. Jr. (1959) On the theory of Boolean functions. SIAM Journal on Applied Mathe-

matics 7, 487–498

13. Ku, C.T., Masson, G.M.: The Boolean difference and multiple fault analysis. IEEE Transac-

tions on Computers c-24, 62–71 (1975)

14. Das, S.R., Srimani, P.K., Dutta, C.R.: On multiple fault analysis in combinational circuits by

means of boolean difference. Proceedings of the IEEE 64(9), 1447–1449 (1976)

19 Probabilistic Error Propagation in a Logic Circuit 381

15. Rejimon, T., Bhanja, S.: An accurate probabilistic model for error detection. Proceedings of

18th International Conference on VLSI Design, pp. 717–722. (2005)

16. Ercolani, S., Favalli, M., Damiani, M., Olivo, P., Ricco, B.: Testability measures in pseudo-

random testing. IEEE Transactions on CAD 11, 794–800 (1992)

17. Marculescu, R., Marculescu, D., Pedram, M.: Probabilistic modeling of dependencies dur-

ing switching activity analysis. IEEE Transactions on Computer Aided Design 17(2), 73–83

(1998)

18. Parker, K.P., McCluskey, E.J.: Probabilistic treatment of general combinational networks.

IEEE Transactions on Computers 24(6), 668–670 (1975)

19. Han, J., Gao, J.B., Jonker, P., Qi, Y., Fortes, J.A.B.: Toward hardware-redundant fault-

tolerant logic for nanoelectronics. IEEE Transactions on Design and Test of Computers 22–24

328–339 (2005)

20. Sentovich, E.M., Singh, K.J., Lavagno, L., Moon, C., Murgai, R., Saldanha, A., Savoj, H.,

Stephan, P.R., Brayton, R.K., SangiovanniVincentelli, A.: SIS: A system for sequential circuit

synthesis,“ U.C. Berkeley, Technical Report, (1992)

21. Li, L., Degalahal, V., Vijaykrishnan, N., Kandemir, M., Irwin, M.J.: Soft error and energy

consumption interactions: A data cache perspective. In: Proceedings of the international sym-

posium on low power electronics and design ISPLD’04 (2004)

22. Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotech-

nology 4, 49–57 (1993)

23. Rejimon, T., Bhanja, S.: Probabilistic error model for unreliable nano-logic gates. In: Proceed-

ings NANO, 47–50 (2006)

Chapter 20

Digital Logic Using Non-DC Signals

Kalyana C. Bollapalli, Sunil P. Khatri, and Laszlo B. Kish

Abstract In this chapter, a new type of combinational logic circuit realization is

presented. These logic circuits are based on non-DC representation of logic values.

In this scheme, logic values can be represented by signals that are uncorrelated,

for example, distinct values represented by independent stochastic processes (noise

from independent sources). This provides a natural way of implementing multival-

ued logic. Signals driven over long distances could take advantage of this fact and

can share interconnect lines. Alternately, sinusoidal signals can be used to represent

logic values. Sinusoid signals of different frequencies are uncorrelated. This prop-

erty of sinusoids can be used to identify a signal without ambiguity. This chapter

presents a logic family that uses sinusoidal signals to represent logic 0 and logic 1

values. We present sinusoidal gates which exploit the anti-correlation of sinusoidal

signals, as opposed to uncorrelated noise signals. This is achieved by employing a

pair of sinusoid signals of the same frequency, but with a phase difference of 180◦.
Recent research in circuit design has made it possible to harvest sinusoidal signals of

the same frequency and 180◦ phase difference from a single resonant clock ring, in

a distributed manner. Another advantage of such a logic family is its immunity from

external additive noise. The experiments in this chapter indicate that this paradigm,

when used to implement binary valued logic, yields an improvement in switching

(dynamic) power.

20.1 Introduction

With the recent slowing of Moore’s law, unconventional ways to perform computa-

tion are being investigated. Signals that are not DC in nature are being used to repre-

sent logic values and their properties are being used for deterministic computation.

K.C. Bollapalli (B)

NVIDIA Corporation, San Jose, CA, USA

e-mail: kbollapalli@nvidia.com

Based on Bollapalli, K.C.; Khatri, S.P.; Kish, L.B.; “Implementing digital logic with sinu-

soidal supplies,” Design, Automation & Test in Europe Conference & Exhibition (DATE), 2010,

pp. 315–318, 8–12 March 2010 c© [2010] IEEE.

S.P. Khatri, K. Gulati (eds.), Advanced Techniques in Logic Synthesis,

Optimizations and Applications, DOI 10.1007/978-1-4419-7518-8_20,
C© Springer Science+Business Media, LLC 2011

383

384 K.C. Bollapalli et al.

An example of a signal that is not DC in nature (and can be used for deterministic

computation) is thermal noise generated by resistors [5, 6, 10]. Thermal noise gen-

erated by resistors are independent stochastic processes. The numerous problems

that complicate the design of modern processors and ASICs motivates us to explore

such logic schemes. These problems include process variations, thermal noise, and

supply noise, to name a few. These issues introduce non-ideal waveforms in circuits

that represent logic values using DC voltages. In the case of noise-based circuits,

these problems introduce new noise on signals. These noise signals introduced being

independent stochastic processes, they interfere non-destructively, thus not altering

the properties of the output signals.

A new type of deterministic logic scheme was introduced in [5], which utilized

the orthogonality of independent stochastic processes (noise processes). Generally,

for arbitrary independent reference noise sources Vi (t)(i = 1, . . . , N):

{Vi (t)V j (t)} = δi, j (20.1)

where δi, j is the Kronecker symbol (for i = j , δi, j = 1, otherwise δi, j = 0)

and {} represents the correlation operator. Due to (20.1), the Vi (t) processes can

be represented by orthogonal unit vectors in a multidimensional space, thus we can

use the term logic basis vectors for the reference noises and introduce the notion of

an N-dimensional logic space, with N logic state vectors in it. Deterministic logic

implies a logic framework where identification of logic values is independent of any

notion of probability (as opposed to quantum computing).

By using this multidimensional space along with linear superposition, logic vec-

tors and their superpositions can be defined, which results in a large number of

different logic values, even with a relatively low number N of basis vectors. For

example, when using binary superposition coefficients that have only on/off pos-

sibilities of the reference noises, the number of possible logic values is 22N
. It is

important to emphasize that such a logic state vector is transmitted in a single wire

[5], not on an ensemble of parallel wires. Thus, using a linear binary superposition of

basis vectors, X (t) = �N
i=1ai Vi (t), where the X (t) represents a single number with

N bit resolution, residing in a single wire. The coefficients ai are weights for each

of the reference noise sources Vi (t). It was also shown that the noise-based logic

scheme can replace classical digital gates, and the basic Boolean building elements

(INVERTER, AND, OR, and XOR) were introduced in the noise-based scheme [5]

in a deterministic way. The noise-based logic has several potential advantages, such

as reduced error propagation and power dissipation, even though it may need larger

numbers of circuit elements and binary computations may be slower.

Another powerful property of noise-based logic is that the product of two dif-

ferent orthogonal basis vectors (independent stochastic signals) is orthogonal to

both the original noises. This property yields a logic hyperspace. If i �= k and

Hi,k(t) ≡ Vi (t)Vk(t) then for all n = 1, . . . , N can be used to construct

{Hi,k(t)Vn(t)} = 0 (20.2)

20 Digital Logic Using Non-DC Signals 385

In this manner, we can construct a product of all possible N Ci noise basis ele-

ments (1 ≤ i ≤ N), yielding a logic hyperspace with 2N −1 elements. Hence a wire

can carry up to 22N−1 logic values, yielding an extremely powerful multivalued logic

scheme.

In this chapter we explore sinusoid signals to represent logic values. Sinusoid

signals with different frequencies share many properties with noise from indepen-

dent sources. Sinusoid signals with different frequencies do not correlate and are

immune to additive noise. These properties ensure that only signals with the same

frequency can correlate, and hence can be used to deterministically identify signals.

This property of sinusoid signals could be exploited to implement different logic

values using different frequencies and different phases. Let Sk
i represent the sinusoid

of frequency i and phase k and let <,> represents the correlation operator, then

δ
k,l
i, j :=< Sk

i , Sl
j > (20.3)

i �= j → δ
k,l
i, j = 0

i = j → δ
k,l
i, j = cos(k − l)

Correlation between sinusoids is computed as the average of the product of the two

sinusoids. In this chapter we use the above-mentioned ideas and present a way to

realize binary valued logic gates that utilize sinusoidal supplies. We also explore

design considerations that are induced due to the nature of the supplies and the

methodology of computation. Logic gates using sinusoid supplies present us with

some attractive advantages

• Additive noise immunity: Additive noise does not affect the orthogonality of logic

values, as opposed to the traditional representation of logic values, where signal

integrity degrades with additive noise.

• Multivalued logic: Sinusoids with different frequencies do not correlate. Multi-

valued logic can be realized by using sinusoidal signals of different frequencies,

where different logic values can be represented by different frequencies or as

a superimposition of multiple frequencies. Multivalued logic could be used to

reduce the logic depth and thereby reduce circuit area.

• Interconnect reduction: The above-mentioned property of sinusoids (non-

correlation of sinusoids of different frequencies) could also be used for multiple

signals to share a single wire. This could be exploited by signals that have to be

routed over large distances, thereby reducing wiring area.

• Using N sinusoids, a logic hyperspace with 22N−1 values can be constructed.

The contributions of this chapter are

• demonstrating that logic gates can be implemented with sinusoidal supply signals

and

• exploring design considerations induced by the methodology of computation and

quantifying the induced design parameters.

386 K.C. Bollapalli et al.

The remainder of this chapter is organized as follows. Section 20.2 discusses

some previous work in this area. In Section 20.3 we describe our method to imple-

ment logic gates using sinusoidal supplies. Section 20.4 presents experimental

results, while conclusions are drawn in Section 20.5.

20.2 Previous Work

There has been significant amount of research in conventional ways of represent-

ing logic. Recently, newer ways to represent logic values have been envisioned.

In [11], authors have proposed using independent stochastic vectors for noise robust

information processing. In their approach, an input signal is compared with a stored

reference signal using a comparator. The number of rising edges in the output of the

comparator is computed. The authors claim that as the similarity between signals

increases as the number of rising edges counted would also increase. The authors

present results averaged over a large number of simulations and show that similar

signals, on an average, result in larger count values. Their work presents a way to

correlate two signals, but their implementation requires complex hardware units (a

comparator and a counter). Also, their method cannot deterministically identify a

signal and therefore it belongs to the class of stochastic logic. In [5, 6], authors

have proposed using noise for deterministic logic and digital computing. Indepen-

dent noise sources are uncorrelated (orthogonal) stochastic processes. The author

presents an approach to implement noise-based logic gates. In a binary logic system,

there would be two reference noise signals (one signal per logic value) with which

the input is correlated. A noise signal can be identified by correlating it with all the

reference noise signals. A correlator could be realized as an analog multiplier fol-

lowed by a time averaging unit like a low-pass filter. The result of the time averaging

unit can then be used to drive the output of the gate with either logic 0 noise or logic

1 noise value or their superimposition. However, there are many open problems and

questions with utilizing the noise-based logic. Calculations indicate a factor of 500

slowdown compared to the noise bandwidth (otherwise error rates are higher than

traditional digital gates). Significant power reductions can only be expected with

small noise amplitudes, which needs preamplifier stages in the logic gates (which

results in extra power consumption). In [7], the authors build a multidimensional

logic hyperspace with properties similar to quantum Hilbert space. They provide a

noise-based deterministic string search algorithm which outperforms Grover’s quan-

tum search engine [7]. In this chapter, we seek an alternative way to implement logic

with non-DC values. Among the features we desire are

• a representation in which the time for computing correlation is low and can be

deterministically predicted and

• a representation that allows us to choose sources that are not very sensitive to

load.

In the next section we describe our approach to realizing such a logic family, which

uses some starting ideas from [6].

20 Digital Logic Using Non-DC Signals 387

20.3 Our Approach

We describe our approach with an example. Figure 20.1 illustrates the block dia-

gram of a basic gate. This gate consists of two mixers, two integrators (low-pass

filters), and an output driver. The input signal (in) is mixed (multiplied) with refer-

ence sinusoidal signals (S0 and S1) which represent the logic 0 and logic 1 values.

Equation (20.4) describes the result of mixing two sinusoidal signals:

< sin(ω1t + δ1), sin(ω2t + δ2) >=
1

2
× (cos((ω1 − ω2)t + (δ1 − δ2))− (20.4)

cos((ω1 + ω2)t + (δ1 + δ2)))

If ω1 = ω2, the low-frequency term of (20.4) (cos((ω1 − ω2)t + (δ1 − δ2))) would

result in a constant. The output of the mixer is integrated using a low-pass filter

(LPF). The LPF filters out the high-frequency component of (20.4). If the signals

that are being mixed are in phase (δ1 = δ2) the result of the integrator is a positive

constant. If the signals are out of phase (δ1 = δ2 ± π) the result of integration is a

negative constant. Thus if sinusoidal sources S0 and S1 are of the same frequency

and are out of phase by 180◦, they would correlate negatively. We now describe a

way of practically realizing two signals of the same frequency and a 180◦ phase

difference.

S1

G
outin Output

Stage

Integrator

Integrator

in out

Mixer

Mixer

V1

S1

S0

S0

V0

Fig. 20.1 Logic gate

20.3.1 Standing Wave Oscillator

Recent research in the field of low-power high-frequency clock generation has

shown the feasibility of realizing a distributed LC oscillator on chip [3, 4, 9]. These

oscillators use the parasitic inductance of on-chip interconnect, along with the par-

388 K.C. Bollapalli et al.

Fig. 20.2 Distributed

resonating oscillator

Single Inverter pairMobius Crossing

asitic capacitance presented by interconnect as well as semiconductor devices to

realize a high-frequency resonant oscillator. Figure 20.2 shows a schematic descrip-

tion of one such resonant oscillator. Such oscillators include a negative resistance

structure to compensate for the resistive losses in the interconnect. In the example

in Fig. 20.2, the cross-coupled inverter pair acts as the negative resistance element.

Figure 20.3 illustrates the two out-of-phase sinusoidal signals that can be

extracted from the standing wave oscillator of Fig. 20.2

V
o
l
t
a
g
e
s

(
l
i
n
)

0
50m

100m

150m

200m

250m

300m

350m

400m

450m

500m

550m

600m

650m

700m

750m

800m

850m

900m

950m

1

Time (lin) (TIME) 3

Fig. 20.3 Out-of-phase sinusoid sources

20 Digital Logic Using Non-DC Signals 389

20.3.2 A Basic Gate

We now describe a basic inverter gate. To be able to use these gates in large inte-

grated circuits, each of the components of the gate has to be implemented with as

few devices as possible. Figure 20.4 illustrates the structure of a inverter in our

implementation. The structure of any sinusoidal supply-based logic gate would be

very similar to the gate in Figure 20.4. The input of the gate is a sinusoid signal. The

input signal is correlated with all the reference sinusoidal sources (two sources in

this instance). Based on the logic value identified on the wire, and based on the logic

implemented in the gate, a corresponding sinusoidal signal is driven out. A combi-

nation of a multiplier and an integrator is used as a correlation operator. The output

of the integrator is then used to enable pass gates which drive out the appropriate

reference sinusoidal signal.

inin

in

S1 S0

in

R

C

R

C

Mixers Integrators

V0

V1

Output

Stage

out

S0 S1
S1

S0

V0

V1

Fig. 20.4 Logic gate

20.3.2.1 Multiplier

To implement a multiplier with two devices, we bias an NMOS device and a PMOS

device in the linear region. Equation (20.5) presents the formula for the drain current

in an NMOS when the device is in linear region. The drain current is dependent on

a product of gate voltage (Vgs) and drain voltage (Vds). The drain current can thus

be used to extract the result of multiplication:

Ids(t) = β

(

Vgs(t)− Vth −
Vds(t)

2

)

Vds(t) (20.5)

Ids(t) = β

(

Vgs(t)Vds(t)− Vth Vds(t)−
Vds(t)

2

2

)

If this drain current is driven through a suitable low-pass filter to block the high-

frequency components, we can extract the average drain current. Let I indicates the

390 K.C. Bollapalli et al.

average value of I (t):

Ids = β

(

VgsVds − VthVds −
V 2

ds

2

)

Let Vgs(t) and Vds(t) be signals of the same frequency and a phase difference of α.

Without loss of generality, let Vgs(t) = V1 sin(ωt) and Vds = V1 sin(ωt + α). Then

from (20.4),

VgsVds =
cos(α)

2
V 2

1

and

VdsVds =
1

2
V 2

1

Also since Vth is a constant, VthVds(t) is a high-frequency sinusoidal signal and thus

VthVds = 0. Hence,

Ids = β

(
cos(α)

2
V 2

1 − 0− 1

4
V 2

1

)

Ids =
(

2 cos(α)− 1

4

)

βV 2
1 (20.6)

If the signals Vgs(t) and Vds(t) are signals of the same frequency with α = 0,

Ids is positive. If they are of same frequency with α = 180◦, Ids is negative. The

above result shows that when signals correlate, the result is an average positive

drain current, but when the signals do not correlate there is an average negative

drain current.

A similar effect can be achieved with a PMOS device. The drain current of a

PMOS transistor in linear region is given by

Isd(t) = −β(Vgs(t)− Vth −
Vds(t)

2
)Vds(t) (20.7)

By the same argument as above, if Vgs and Vds are sinusoidal signals of the same

frequency, same amplitude, and differ in phase by α,

Isd = −
(

2 cos(α)− 1

4

)

βV 2
1 =

(
1− 2 cos(α)

4

)

βV 2
1 (20.8)

If the signals Vgs and Vds are in phase (α = 0), Isd is negative. But if α = 180◦, Isd

is positive.

20 Digital Logic Using Non-DC Signals 391

From (20.6) and (20.8) we can conclude that the drain current is positive when

the NMOS device mixes signals that are in phase and is positive when PMOS mixes

signals that are out of phase. Thus an NMOS device mixing the input with one ref-

erence sinusoidal signal and PMOS mixing the same input with the other reference

sinusoidal signal forms a good complementary mixer. Figure 20.4 shows the circuit

diagram of the above-described mixer. The total average drain current that can be

driven by such a mixer is (from (20.6) and (20.8))

I =
(

2 cos(α)− 1

4
+ 1− 2 cos(π − α)

4

)

βV 2
1

I =
(

2 cos(α)− 1

4
+ 1+ 2 cos(α)

4

)

βV 2
1

I = cos(α)βV 2
1 (20.9)

20.3.2.2 Low-Pass Filter

The choice of the R and C values of the integrator (Fig. 20.4) poses an optimization

problem. A small RC product ensures that the voltage on the capacitor reaches the

final DC value early, but a large portion of the sinusoid will be present at output

node. On the other hand a large value of RC product ensures that a smaller AC

signal is visible on the capacitor but the DC voltage on the capacitor would take

longer to reach its final DC value. We have

1

RC
= 3F

where F is the corner frequency of the low-pass filter. From the above equation

we can compute the magnitude of input signal that is visible on the output of the

low-pass filter as

1
jωC

R + 1
jωC

= 1

jωRC+ 1

= 1
jω
3F
+ 1

(20.10)

Based on the input frequency, a low-pass filter can be designed to minimize the peak

to peak amplitude of input signal visible after the correlator. The resistance is real-

ized using a poly-silicon wire, and the capacitance is realized as a gate capacitance.

20.3.2.3 Output Stage

Once the logic values on the inputs have been identified, they can be used to compute

and drive out the correct reference signal on the gate output. To be able to achieve

392 K.C. Bollapalli et al.

a full rail swing, it is necessary to have a complementary pass gate structure. Fig-

ure 20.4 highlights the pass gate structure of the output stage of a simple inverter.

To enable correct functionality we appropriately connect the correlator outputs to

the reference signals in the pass gate structure. The positive correlation outputs (V1

in Fig. 20.4) drive the NMOS gates of the pass gate structure while the negative

correlation outputs (V0 in Fig. 20.4) drive the PMOS gates of the pass gate structure.

To implement a buffer, the S0 and S1 connections in the pass gate structure (output

stage) are reversed.

20.3.2.4 Complex Gates

In the same manner as described for an inverter, more complex gates can also be

designed. Figure 20.5 illustrates the design of a sinusoidal supply-based NAND2

gate. Both the inputs of the NAND2 gate are correlated with both reference signals

to identify the logic values on the input signals. Again, a complimentary pass gate

structure (shown in Fig. 20.5) is used to drive out the correct reference signal.

out

S1

ina

inb

ina
out

NAND

inb

S0

V
b
1

V
b
0

V
a
0

Va
1

S1

S1

S1

S0

S0

S0

Va
1

Va
1V

a
0

V
a
0

V
b
1

V
b
1V

b
0

V
b
0

Fig. 20.5 NAND gate

20.3.3 Interconnects

In the sinusoidal supply-based logic style, information propagates around the circuit

as high-frequency AC signals, and these signals are correlated. Hence it is important

to estimate the effect of interconnect delays on the signals. All realistic circuits are

plagued with parasitic capacitances and inductances. The effect of these parasitics

on a signal can be modeled as a transformation of these signals by the transfer

function of the parasitics. Identical signals could reach a gate by traversing different

paths (i.e., different parasitics). These signals could therefore have different phases

and different magnitudes when they are correlated. We quantify the error induced

20 Digital Logic Using Non-DC Signals 393

by such a phase shift. If the input signal gets phase shifted by α and is correlated

with the reference signals, its correlation value reduces by a factor of cos(α), from

(20.9)

I α

I 0

=
cos(α)βV 2

1

cos(0)βV 2
1

= cos(α)

As the phase difference increases, the correlation between a signal and its like source

decreases. To avoid this effect, the frequency of the reference sinusoidal signal

should be chosen to be as low as possible. A fixed time shift of a signal presents

itself as a smaller phase shift at lower frequencies and hence can tolerate a larger

time shift without losing correlation. However, lower frequencies require a larger

RC product in the low-pass filter of the gate. A larger RC product leads to a slower

gate and also requires larger area to implement R and C. This presents us with an

optimization problem which we solve empirically in the next section.

20.4 Experimental Results

In all our experiments we use a predictive technology model (PTM) 45 nm, metal

gate, high-K dielectric, strained silicon model card [1]. All the sinusoid signals

(unless otherwise stated) are 1 V peak to peak signals, with an average voltage of

0.5 V. This choice of average voltage is driven by the fact that the resonant oscillator

that produces the sinusoidal supplies (Fig. 20.3) produces sinusoids whose average

value is VDD

2
. The choice of the amplitude is technology dependent but the technique

of sinusoidal supply-based circuit design is not restricted by the choice of peak to

peak voltage.

We first quantify the power consumed by a circuit designed with sinusoidal

supply-based gates. The total power consumed is the power consumed by the gates

as well as the power consumed by the standing wave oscillator [3].

20.4.1 Sinusoid Generator

We modified the sinusoid generator described in Section 20.3.1 to consume as lit-

tle power as possible. Results from [3] indicate that the power consumed is a few

milliwatts. However, these power numbers are from experiments with very little

capacitive load on the oscillator. However, when the oscillator is used to generate

the sinusoidal supplies in our approach, a large number of sinusoidal supply-based

gates are connected to it, and they load the oscillator to a greater extent. As the

load on the oscillator increases, the frequency of oscillation decreases and the power

consumption increases. Figure 20.6 plots the variation in power and frequency of the

oscillator as the load on the oscillator (in terms of the number of gates connected

to it) increases. The nature of the load presented by the gates on the oscillator is

394 K.C. Bollapalli et al.

capacitive, and it arises from the diffusion and gate terminals of the transistors of the

gates. The frequency of oscillation varies with capacitive load C on the oscillator,

as F = 1√
LC

. On the other hand, the only source of power loss in the oscillator is

the resistive loss. The power consumed due to resistive losses is I 2 R, where I is the

transient current, whose value is determined by the characteristic impedance of the

transmission line used in the oscillator:

I = V

Z0

The characteristic impedance of a transmission line is given by

Z0 =
√

L

C

where L is the parasitic inductance in the transmission line and C is the parasitic

capacitance. Thus the power consumed in the ring is

P = I 2 R =
(

V

Z0

)2

R

P = V 2C

L
R = V 2C R

L
(20.11)

The power consumed in the oscillator is thus expected to grow linearly with

the capacitive load on the oscillator. This is confirmed in Fig. 20.6, which plots

the power of the oscillator from HSPICE [8] simulations. In this simulation the

NMOS devices of the inverter pair had a width of 40 µm. The ring was imple-

mented in metal 8 and its length was 80 µm. This trend of increasing power

with load continues until the negative resistance structure can no longer compen-

sate for the losses in the oscillator ring, which occurs at about 1800 gates, from

Fig. 20.6.

For the oscillator shown in Fig. 20.2, the negative resistance is provided by the

cross-coupled inverter pair. As discussed earlier, to be able sustain oscillations at

larger loads, we require a larger cross-coupled inverter pair. A larger inverter pair

also presents its own parasitic capacitance to the oscillator, thus offsetting the gains

of using a larger inverter pair. Figure 20.7 plots the change in frequency of oscilla-

tion and power consumed in a oscillator, with varying inverter pair size. Oscillations

do not set in until the inverter pair can sustain the resistive losses. Once oscillations

start, increasing the inverter pair size increases power linearly while the frequency

reduces as discussed earlier.

20 Digital Logic Using Non-DC Signals 395

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

500 1000 1500 2000
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

P
o
w

e
r

(m
W

)

F
re

q
u
e
n
c
y
 (

G
H

z
)

Gate Count

40 µm NMOS

Power

Frequency

0

Fig. 20.6 Change in oscillator frequency and power with load

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

0 20 40 60 80 100 120 140
 0

 2

 4

 6

 8

 10

 12

 14

 16

P
o
w

e
r

(m
W

)

F
re

q
u
e
n
c
y
 (

G
H

z
)

Size of NMOS (µm)

Power

Frequency

Fig. 20.7 Change in frequency and power with inverter pair size

20.4.2 Gate Optimization

As discussed in the Section 20.3.2.2 the design of the low-pass filter in a gate is

an optimization problem. The optimal low-pass filter design is dependent on the

frequency of operation. To find the best frequency of operation we compare the

performance of a simple gate (buffer) with a fanout of four at various frequencies.

The output stage of a gate also acts as a low-pass filter (the resistance of the output

stage transistors along with the diffusion and gate capacitances of the fanout gates

396 K.C. Bollapalli et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

O
/P

 V
o
lt
a
g
e
 P

2
P

 (
V

)

Sinusoidal Freq (GHz)

Reconstruction with Frequency

(O/P P2P)/(I/P P2P)

Fig. 20.8 Output amplitude with varying frequency

forms the low-pass filter). Figure 20.8 plots the ratio of the amplitude of output

signal to that of the reference signals, as a function of oscillation frequency. As

expected, the amplitude of the output signal reduces as the frequency of operation

increases.

The choice of frequency is process dependent. Choosing a low frequency

increases the output amplitude and reduces the power consumption but also

increases gate delay and the value of the filter’s resistance and capacitance. The

increase in switching power with increasing frequency can be observed in Fig. 20.9,

while the decrease in gate delay with an increase of frequency is portrayed in

Fig. 20.10.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

P
o
w

e
r

(µ
W

)

Sinusoidal Freq (GHz)

Power vs. Frequency

Power

Fig. 20.9 Change in power with frequency

20 Digital Logic Using Non-DC Signals 397

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

D
e
la

y
 (

n
s
)

Sinusoidal Freq (GHz)

Delay vs. Frequency

Delay

Fig. 20.10 Change in delay with frequency

The choice of frequency is also based on circuit performance requirements. For

the rest of the discussion, we choose an operating frequency of 1 GHz. The next

optimization explored is the choice of the R and C values in the low-pass filter of

a gate. As discussed in Section 20.3.2.2 a large RC product increases the delay of

computation, while a small RC product would cause the voltage of the capacitor to

have a larger AC component. Mixing two 1 GHz sinusoids results in a DC compo-

nent and a 2 GHz component. Thus the low-pass filter has to be designed to suppress

the 2 GHz frequency signals. Realizing a large on-chip capacitance requires a large

amount of active area. Thus area is minimized by realizing a larger resistance. A

large resistance can be implemented in resistive poly-silicon, which offers a resis-

tance of a few M� per square [2]. A 1 M� of resistance can therefore be practically

realized on-chip with a small area footprint using resistive poly-silicon. The gate

capacitance of the minimum size device in the 45 nm technology node is of the

order of 0.1 fF [2]. Thus an RC product of about 1 ns can be achieved with very low

area.

To be able to suppress a signal of frequency, 2 GHz we implement a low-pass

filter with a corner frequency of 2
3

GHz. The filter has a resistor of 1 M�. The

capacitance C is realized as the sum of gate capacitance presented by output stage

and an additional capacitor (in the form of gate capacitance), such that the RC prod-

uct is 1.5 ns.

20.4.3 Gate Operation

We implemented and simulated (in HSPICE) simple gates based on the optimiza-

tions discussed. Simulation results of these gates are presented next. Figure 20.11

illustrates the operation of a simple buffer switching its output. The non-sinusoidal

398 K.C. Bollapalli et al.

0

0

1n

1n

2n

2n

3n

3n

4n

4n

5n

5n

Seconds

0

0.2

0.4

0.6

0.8

1

V
o

lt
s

Output

Reference

Fig. 20.11 Buffer operation

looking line represents the actual output of the buffer, while the sinusoidal line is

the reference signal that the buffer is expected to drive out. The output signal takes

a non-sinusoid form when the output of the correlator is switching due to a change

in the input signal. The switching delay of the sinusoidal supply based inverter was

about 2.55 ns.

Figure 20.12 presents the HSPICE simulation results from the operation of four

NAND2 gates. Each of the NAND2 gates is driven by the four possible input com-

binations, respectively. Three of the four gates’ outputs evaluate to the reference

signal representing the logic value 1. The remaining gate evaluates to the reference

signal representing the logic value 0, as shown in Fig. 20.12.

We now compare the power of sinusoid-based logic gates with traditional static

CMOS gates. We present numbers from HSPICE simulations of a static CMOS

inverter and a sinusoidal supply-based inverter, both implemented in a 45 nm PTM

process. The static CMOS inverter is minimum sized, and sized to ensure equal rise

and fall times, and is made of devices with same threshold voltage as the devices in

the output stage of the sinusoid gate. The static CMOS inverter is operated with a

1 V supply. The power consumed by the static CMOS inverter over a 1 ns (1 GHz

clock) duration (during which the inverter switches once) is 1.75 µW. The power

consumed by a sinusoidal supply-based gate (with supply’s oscillation frequency of

1 GHz) for 1 computation is 500 nW, which is lower than the static CMOS gate. At

this operating point the sinusoidal supply-based inverter completes 1 computation

in 2 ns (500 MHz of operation frequency) as opposed to 40 ps by a CMOS inverter.

The leakage power of the static CMOS inverter at 1 V supply is 17 nW as opposed to

120 nW for a sinusoidal supply-based inverter. The high leakage power of sinusoidal

supply-based inverter is due to the fact that the output stage switches from rail to

20 Digital Logic Using Non-DC Signals 399

V
o
l
t
a
g
e
s

(
l
i
n
)

0

50m

100m

150m

200m

250m

300m

350m

400m

450m

500m

550m

600m

650m

700m

750m

800m

850m

900m

950m

Time (lin)(TIME)

1n 2n 3n

Fig. 20.12 NAND gate operation

rail even during steady state. Therefore the sinusoidal supply-based gates have a

lower dynamic power (power per computation) and high leakage power, and are

thus more suitable for implementing high activity circuits. Although the delay and

the power-delay product (PDP) of the sinusoidal supply-based gates are larger than

their CMOS counterparts (for binary valued gates), we expect that using multivalued

sinusoidal supply-based gates would improve the PDP due to the possible reduction

in logic depth. The bulk of the power consumed in the sinusoidal gate is in the

output stage, due to the ON resistance of the passgates. If these passgates are imple-

mented using relays, the power consumption of the sinusoidal gates can be dropped

significantly. In this case, the dynamic and steady-state power of the sinusoidal gate

are, respectively, 25X and 6X lower than the corresponding numbers for a static

CMOS inverter. For our implementation, the oscillator power averaged over the

gates powered by it is 0.05X of the gate power (during steady-state operation).

20.5 Conclusions

Sinusoidal supply-based logic could be a viable means to implement logic. Such

circuits exhibit several advantages, being significantly immune to additive noise

while elegantly implementing multivalued logic. Since sinusoids of any two fre-

quencies are orthogonal, multiple sinusoidal signals can share the same wire and

400 K.C. Bollapalli et al.

their logic values can still be recovered. Also, since additive noise does not affect

the frequency of the signal, the signals could traverse a long distance without requir-

ing to be buffered, thereby alleviating the problem of signal integrity. It should be

noted that the two logic states used in this chapter are not orthogonal but anti-

correlated. Though we present results with anti-correlated signals, the approach

can be extended to orthogonal vector logic by employing multiple frequencies.

We present design considerations in this chapter to aid in designing sinusoidal

supply-based logic circuits. Our circuit-level simulations indicate that sinusoidal

supply-based logic gates consume lower switching power than the static CMOS

counterparts.

References

1. Zhao, W., Cao, Y.: Predictive technology model for nano-CMOS design exploration. J. Emerg-

ing Technol. Comput. System 3(1), 1 (2007)

2. The International Technology Roadmap for Semiconductors. http://public.itrs.net/(2009)

3. Cordero, V.H., Khatri, S.P.: Clock distribution scheme using coplanar transmission lines. In:

Design Automation, and Test in Europe (DATE) Conference, pp. 985–990. (2008)

4. Karkala, V., Bollapalli, K.C., Garg, R., Khatri, S.P.: A PLL design based on a standing wave

resonant oscillator. In: International Conference on Computer Design (2009)

5. Kish, L.B.: Thermal noise driven computing. Applied Physics Letters 89(144104) (2006)

6. Kish, L.B.: Noise-based logic: Binary, multi-valued, or fuzzy, with optional superposition of

logic states, Physics Letters A 373, 911–918 (2009)

7. Kish, L.B., Khatri, S., Sethuraman, S.: Noise-based logic hyperspace with the superposition of

2N states in a single wire. Physics Letters A 373, 1928–1934 (2009). DOI: 10.1016/j.physleta.

2009.03.059

8. Meta-Software, I.: HSPICE user’s Manual. Meta-Software, Campbell, CA

9. O’Mahony, F., Yue, P., Horowitz, M., Wong, S.: Design of a 10 GHz clock distribution network

using coupled standing-wave oscillators. In: DAC ’03: Proceedings of the 40th Conference on

Design automation, pp. 682–687. ACM (2003)

10. Peper, F.: Noise-Driven Computation and Communication. The Society of Instrument and

Control Engineers (SICE), pp. 23–26. Japan, Catalog (2007)

11. Ueda, M., Ueda, M., Takagi, H., Sato, M., Yanagida, T., Yamashita, I., Setsune, K.:

Biologically-inspired stochastic vector matching for noise-robust information processing.

Physica 387, 4475–4481 (2008)

Subject Index

A

Acknowledge latency, 401, 403, 406, 410, 415

AIG, see AND-INVERTER graph, 187

And-Inverter Graph, 186

AND-INVERTER graph (AIG), 129, 131–132

And-Inverter graph (AIG), 230

Approximate SPFD, 267, 268, 271

blocking clause, 278

covering clause, 278

uncovered edge, 277

Approximation algorithm, 149, 153, 168

Ashenhurst decomposition, 67–70, 72–76, 79,

80, 84

multiple-output, 79

single-output, 72, 79

aSPFD, see approximate SPFD

B

Balanced tree, 370

Basis vectors, 384

Bi-decomposition, 35, 69, 87–90, 92, 95, 101,

103, 104

AND, 97

balanced, 88

disjoint, 88

non-trivial, 90

OR, 91

XOR, 98

Binary decision diagram, 32

Binary superposition, 384

Binate, 188, 230

2nd Boolean difference, 361

Boolean function, 315

Boolean interval, 33

Boolean matching, 185, 186, 207, 210, 213,

217, 219, 224, 227

Boolean network, 314

Boolean relation, 310, 321

Boolean satisfiability (SAT), 149, 187, 231

Boundary point, 109, 110, 112

Bounded model checking, 141, 146

k-bounded observability, see local observability

BREL, 316

C

Canonical form based matching, 229

Canonical representation, 253, 255, 263

CEC, 187

Cell library, 376

Characteristic function, 35

Characteristic impedance, 394

Circuit graphs, 129

Circuit reliability, 369

Clause, 111

Clock generation, 387

Clock tree delay, 407–410, 414, 415

CMOS, 359

CNF, 150, 162

Co-factors, 361

Collapsed gate, 371

Combinational equivalence checking, 187

Common sub-expression extraction, 252, 256

Common-coefficient extraction, 253, 258, 260,

261

Common-cube extraction, 259–261, 263

Compatible Observability Don’t Cares, 309

Compatible ODCs, 130

Complementary mixer, 391

Complementary pass gate, 392

Complete assignment, 111

Complete Don’t Care, 313

Complete partitions, 230

Complexity, 374

of RelaxSAT, 156

Computational complexity, 371

Cone trace system, 221

Conjunctive normal form, 187

Consensus operator, 314

S.P. Khatri, K. Gulati (eds.), Advanced Techniques in Logic Synthesis,

Optimizations and Applications
C© Springer Science+Business Media, LLC 2011

419

, DOI 10.1007/978-1-4419-7518-8,

420 Subject Index

Consistent input vectors, 236

Controllability, 237

Correlation operator, 384

Cover, 217

Cross-coupled inverter pair, 388, 394

Crosstalk, 359

Cut boundary point, 123

Cut of resolution graph, 123

D

Decoherence, 379

Decomposition, 10, 11

(xi , p)-decomposition, 12

Decomposition chart, 70

OR bi-decomposition, 92

XOR bi-decomposition, 98

(xi , p)-Decomposition with intersection, 14

Depth-first branch-and-bound algorithms, 162

Design considerations, 385

Design parameters, 385

Deterministic computation, 383

Determinization scheduling, 298

DFS, 359

Dictionary model, 268

Difference model, 206

Diffusion, 394

N-dimensional logic space, 384

Domino logic, 379

Don’t cares, 11, 31, 309

Double latching mechanism, 410

DPLL, 151, 162

Drain current, 389

Drain voltage, 389

E

Electronic Design Automation (EDA), 149

Engineering change order, 204, 205

Enhanced CEC, 228

Entropy-preserving, 366

Equivalence checking, 130, 142, 147

formula, 118

Equivalence symmetry, 188, 197

Error calculator, 373

Error propagation, 360

ESPRESSO, 312

Existential quantification, 315

Expected trace, 271

Exponent suppression, 371

External Don’t Cares, 309

F

Fanin signature, 208

Fanout, 395

Faulty gate, 364

Feasible mapping, 186

Flipping error, 359

FRAIGs, 187

Function extraction, 289

Functional decomposition, 67–70, 80, 84, 87

multiple-output, 70

single-output, 70

Functional dependency, 67, 68, 71–73, 75, 79,

84

Functional equivalence, 207, 209, 217, 224

not necessary for merging vertices in

circuit, 134

Functional hashing, 219, 220, 224

Functional unateness, 188, 194, 197, 199

G

GALS, 402, 406, 407, 415

Gate capacitance, 391

Gate error probability, 363

Gate voltage, 389

Generalized Boolean matching, 227

Generalized cofactor, 11

Grover’s quantum search engine, 386

G-symmetry, 187, 197, 199

H

High-K dielectric, 393

Higher order exponents, 370

Horner form decomposition, 252, 253

I

I/O cluster, 230

mapping, 232

I/O degree, 233

I/O mapping, 232

I/O signature, 235

I/O support, 233

signature, 229

variable, 232

Ideal gate, 365

If-then-else, 34

Incremental design, 204

Incremental synthesis, 204–206, 221

Independent stochastic vectors, 386

Input error probabilities, 364

4-Input logic gate, 366

Input space, 291

Input variable, 288, 291, 295

Input weight, 190–193

Integrators, 387

Interconnect delays, 392

Interconnect reduction, 385

Interpolant, 72, 74, 77, 78, 84, 90, 93, 94, 289,

292–294, 297–299, 306

Subject Index 421

Interpolation, 67, 68, 71–73, 75, 80, 84, 287,

289, 291–295, 299, 305

Isomorphic partitions, 230

Iterations, 377

IWLS benchmarks, 142

K

Kernel/co-kernel extraction, 253, 254,

259, 260

Kronecker symbol, 384

L

LC oscillator, 387

Literal, 111

Local clock generators, 402, 409

Local observability, 135

Local observability don’t-cares, 129

Local reconvergent fanout, 371

Logic basis vectors, 384

Logic circuit, 383

Logic difference, 204, 206, 207, 218, 222, 224

Logic family, 383, 386

Logic hyperspace, 385

Logic state vector, 384

Logic synthesis, 373

Logic values, 383

Low pass filter, 389

M

Mandatory resolution, 110, 116

Mapping group, 189, 194, 195

size, 189

Mapping relation, 189, 194, 196

Mapping relation size, 189, 195

Matching, 205

key, 219

permutation, 213, 214, 216, 217

MATLAB, 374

MAX-SAT, 161, 162

Memory intensive, 360

Methodology, 385

MIN-ONE SAT, 150, 151, 162, 168

Miter, 187, 231

Mixers, 387

Modified model, 206

Monte Carlo simulation, 373

MTBF, 410

Multi-node optimization, 310

Multi-valued logic, 383

Multi-variable decomposition, 21

Multidimensional logic hyperspace, 386

Multidimensional space, 384

Multilevel logic circuit, 369

Multiple fault, 360

2-to-1 Multiplexer, 367

Multivalued logic, 385

N

NAND2 gate, 392

Negative cofactor, 230

Negative resistance, 394

Negative unate, 230

65nm, 376

NoC, 402, 415

Noise immunity, 385

Noise robust, 386

Non-equivalence symmetry, 188, 192–194,

197, 199

Non-masking probability, 365

O

OBDD data structures, 19

Objective function, 153

Observability, 134, 236

in presence of reconvergent paths, 134

Observability don’t care, 209, 274

Observability don’t-cares (ODCs), 130, 309

Observability vector, 137

ODC, see observability don’t-cares

Offline, 375

O(2k N), 369

OpenAccess, 142

OpenAccess Gear (OAGear), 142

OpenCores, 142

Optimal subcover, 217

OPTSAT, 151, 152

Order-k, 361

Ordered partition, 230

Out of memory error, 374

Output error expression, 366

Output error rates, 363

Output space, 291

Output variable, 291–295, 298

Output vector, 235

Output weight, 190, 192

P

P-circuit, 11, 17, 24

Pair wise spatial correlations, 373

Parameterized abstraction, 34

Partial Boolean difference, 361

Particle, 378

Partition, 230

Path sensitizability

effect on SAT sweeping with ODCs, 141

Pausible clocking, 401, 402, 407

PBSAT, 152, 169

Pessimistic defect model, 360

422 Subject Index

Phase shift, 393

PNPN-equivalence checking, 227

Poly-silicon wire, 391

Polynomial function, 253, 255

Positive cofactor, 230

Positive unate, 230

Positive/negative unate, 188

Post-order, 359

Power consumption, 10, 18

PP-equivalence checking, 227, 232

Preamplifier, 386

Probabilistic Decision Diagrams (PDDs), 360

Probabilistic Transfer Matrix (PTM), 360

Probability function, 365

Proper input vector, 235

Property checking, 130, 141

Pseudo Boolean SAT (PBSAT), 150

Q

Quantification Scheduling, 322

Quantum, 359

Quantum dots, 379

Quantum Hilbert space, 386

Quantum-dot cellular automaton, 379

R

RAR, see redundancy addition and removal

RAW, 403, 404, 406, 409–411

Reconvergent fanout, 371

Recursive covering, 217

Reduced Ordered Binary Decision Diagrams,

311

Redundancy addition and removal, 269

Refinement, 232

Relation, 287–293, 296–298, 300, 305

deterministic, 291, 292, 296, 297, 299

determinization, 289–291, 305

multiple-output, 292, 294, 295

partial, 290, 291, 293, 294, 296

single-output, 292–295

total, 290–294

totalization, 293

totalized, 293

RelaxSAT, 149, 163, 168

Reliability constraint, 374

Reliability-aware optimizations, 374

Request acknowledge window, 403

Resolution completeness and cut boundary

point elimination, 124

Resolution graph, 123

Resolution operation, 113

Resolution proof, 116

system, 110

Resonant clock ring, 383

Resonant oscillator, 388, 393

RMAXSAT, 163, 164, 168

S

Safe timing region, 401, 408, 411

SAT, 68, 69, 71–73, 75, 76, 79, 81, 84, 88–92,

95, 98, 103, 104, 111, 231, 291, 298

incremental, 87, 101, 104

instance, 71, 72, 90

SAT sweeping, 129, 132–134

with ODCs, 129–147

Sat-solver, 109

SAT-tree, 238

Satisfiability, 206

Satisfiability Don’t Cares, 309

Satisfiable assignment, 231

Set cover, 220

Sets of Pair of Function to be Distinguished,

269

formal definition, 269

graph representation, 270

property, 270

SPFD edge, 270

Shannon cofactoring, 10

Signal probability, 363

Signature, 186, 187, 190

Signature-based matching, 229

Simulation and SAT, 185

Simulation vector, 132

Simultaneous errors, 365

Single pass, 361

Single variable symmetry, 188, 197

Sinusoid signals, 385

Sinusoidal signals, 383

Sinusoidal supplies, 385

SIS, 373

Smallest matching sub-circuits, 238

Smoothing operator, 315

SMR metric, 110

SoC, 401, 410, 415

Soft error rates, 378

Space-efficient, 360

Spatial correlation coefficient, 369

SPFD, see Sets of Pair of Function to be

Distinguished

Square-free factorization, 253, 257, 263

Standing wave oscillator, 387, 388

Stochastic processes, 386

Strained silicon, 393

Structural equivalence, 208

Structural hashing, 230

Stuck-At Fault Model, 20

Stuck-at-fault, 360

Subject Index 423

Subcircuit, 205, 210

Subcircuit enumeration, 207, 210, 217

Subcover, 217

Subnetwork, 317, 320

Super gate, 371

Superimposition, 385, 386

Supply noise, 384

Support variable, 70, 74, 84, 89, 97, 100, 297

Switching activity, 10, 21

Symbolic notation, 371

Symmetric inputs, 213, 217

Symmetric permutation, 213, 214, 216

Symmetry, 241

Symmetry class, 213, 214, 219, 241

Symmetry partition, 241

Synchronization failures, 401, 407, 414, 415

T

Taylor Expansion Diagrams, 254

Tensor product, 360

Theorem, 154

Thermal noise, 384

Time complexity, 360

Total Boolean difference, 362

Transformation node, 271

Transmission line, 394

Trie

for comparing simulation vectors under

observability, 139

Trivial proper input vector, 236

U

Unique, 190

Universal quantification, 314

Unreachable states, 31

Unsatisfiable assignment, 231

Unsatisfiable core, 71, 76, 95

minimal, 76, 83, 97, 101, 104

refinement, 83

V

Variable partition, 68–70, 72, 74–77, 81–84,

87–89, 91–96, 98–103

balanced, 104

disjoint, 70, 89, 104

non-disjoint, 70, 89

non-trivial, 76, 91, 96

seed, 76, 77, 81, 95, 96

trivial, 76, 89, 95

Von Neumann, 360

W

Windowing, 317

X

XOR gate, 366

XOR operator, 361

Chapter 21

Improvements of Pausible Clocking Scheme
for High-Throughput and High-Reliability
GALS Systems Design

Xin Fan, Milos̆ Krstić, and Eckhard Grass

Abstract Pausible clocking-based globally asynchronous locally synchronous

(GALS) systems design has been proven a promising approach to SoCs and NoCs.

In this chapter, we study the throughput reduction and synchronization failures

introduced by the widely used pausible clocking scheme and propose an optimized

scheme for higher throughput and more reliable GALS system design. The local

clock generator is improved to minimize the acknowledge latency, and a novel input

port is applied to maximize the safe timing region for clock tree insertion. Simula-

tion results using the IHP 0.13 µm standard CMOS process demonstrate that up to

one-third increase in data throughput and an almost doubled safe timing region for

clock tree insertion can be achieved in comparison to the traditional pausible clock-

ing schemes. This work contributes to high-throughput and high-reliability GALS

systems design.

21.1 Introduction

The ongoing technology scaling and device miniaturization enable novel and

advanced applications. While the consumers can get more innovative and higher

integrated products, today the chip designers are facing challenges. The require-

ments are continuously increasing in terms of more complexity, more performance,

more mobility, less power, less cost, less time-to-market, etc. On the other hand,

the new technologies are introducing even harder challenges for the design pro-

cess including large process variability and problems with reliability and signal

integrity. Consequently, application of the standard digital design flow based on the

synchronous paradigm usually leads to problems to deliver the most complicated

systems.

X. Fan (B)

Innovations for High Performance Microelectronics, Frankfurt (Oder), Brandenburg, Germany

e-mail: fan@ihp-microelectronics.com

Based on Xin Fan; Krstic, M.; Grass, E.; “Analysis and optimization of pausible clocking

based GALS design,” Computer Design, 2009. ICCD 2009. IEEE International Conference on

pp. 358–365, 4–7 Oct. 2009 [2009] IEEE.

S.P. Khatri, K. Gulati (eds.), Advanced Techniques in Logic Synthesis,

Optimizations and Applications, DOI 10.1007/978-1-4419-7518-8_21,
C© Springer Science+Business Media, LLC 2011

401

402 X. Fan et al.

One of the main issues is the system integration of complex high-performance

digital design. It is not uncommon that the clock signal cannot even propagate

from one side of the chip to the other, with acceptable clock skew, latency, and

power consumption. It is hard to expect then the application of standard methods,

architectures, and tools can give satisfactory results. Therefore, new design

approaches appear, for example, in the direction of communication centric

networks-on-chip (NoCs).

One alternative to the classical synchronous integration is the application of

globally asynchronous locally synchronous (GALS) technology. This method, on

one hand, reduces main system integration challenges and eases the timing closure

by removing the global clock. On the other hand, the other design parameters are

improved, including power consumption, noise profile, and in some cases also per-

formance.

The most straightforward way to GALS systems is to insert synchronizer cir-

cuits between different clock domains [1]. Normally a synchronizer consists of

two or more cascaded flops, and it introduces latency in the data transfer. Another

approach to GALS systems is the use of asynchronous FIFOs [2, 3], and this results

in overheads in both area and power. In recent years, an alternative method to GALS

design, which is mainly based on pausible local clocks, has been developed [4–12].

Communication between asynchronous modules is achieved using a pair of request–

acknowledge handshaking signals and the local clocks are paused and stretched, if

necessary, to avoid metastability in data transfer. As a latest example, this scheme is

applied in [13] to implement a dynamic voltage frequency scaling NoC. Figure 21.1

depicts a point-to-point GALS system based on this scheme and its handshaking

waveforms. The design and evaluation of asynchronous wrappers are presented in

detail in [14, 15].

21.2 Analysis of Pausible Clocking Scheme

21.2.1 Local Clock Generators

Generally speaking, the local clock generators used in pausible clocking-based

GALS systems need to have the following three features: (a) create a clock signal

with required clock period for each locally synchronous module, (b) stop the clock

signals for transferring data safely across different clock domains, and (c) support

concurrent transfer requests from multiple communication channels.

Figure 21.2 illustrates the typical structure of local clock generators applied in

GALS design [8, 9, 13, 16]. A programmable delay line is employed to generate

the clock signal LClk, and a Muller-C element is utilized to withhold the rising

edge of the next clock pulse if any port request is acknowledged by the MUTEX

elements. To support multi-port requests, an array of MUTEX elements is deployed

in Fig. 21.2 to arbitrate between port requests Reqx and the request clock RClk.

21 Improvements in Pausible Clocking Scheme 403

Synchronous

transmitter Output

port

Local clock generator

Synchronous

receiver
Input

port

Local clock generator

L

Asynchronous wrapper Asynchronous wrapper

ReqTxAckTx ReqRx AckRxLClkTx LClkRx

DataTx DataRx

LClkTx

DataTx

PenTx

ReqTx

AckTx

ReqP

AckP

AckRx

ReqRx

DataRx

PenRx

LClkRx

(a)

(b)

FF
DataRxS

FF

AckP

ReqP

PenRx

TaRx

TaTx

PenTx

TLClkTx

TLClkRx

Fig. 21.1 A point-to-point GALS system (a) and its handshaking waveforms (b)

21.2.2 Clock Acknowledge Latency

We define the request–acknowledge window (RAW) in a local clock generator as

the duration in each cycle of LCLK when port requests can be acknowledged. For

the clock generator in Fig. 21.2, its RAW is the off-phase of RClk, as shown in

Fig. 21.3. Considering the 50% duty cycle of LClk, the duration of RAW and the

maximum acknowledge latency of the clock generator are deduced below:

tRAW = tRCLK=0 ≈ tLCLK=1 ≈ TLCLK/2 (21.1)

max(LatencyAck) = tRCLK=1 = TLCLK − tRAW ≈ TLCLK/2 (21.2)

404 X. Fan et al.

And

Mutex

0

C-ELE
Delay Line

Mutex

1

D0

Ack0Req0

Ack1Req1

RClk

LClkAllowed
LClk

Fig. 21.2 The typical structure of local clock generators (with two ports)

RAW 1

LClk

Cycle 1

RClk

Cycle 3

0 T 2T 3T0.5T 1.5T 2.5T

RAW 2 RAW 3

Cycle 2

Fig. 21.3 Request acknowledged window

21.2.3 Throughput Reduction

21.2.3.1 Demand-Output (D-OUT) Port to Poll-Input (P-IN) Port Channel

For the receiver equipped with a P-IN port, the local clock LClkRx will be paused

after ReqRx+ occurs [8]. ReqRx will be asserted after a ReqP+ is detected, which

is generated by the output port in the transmitter running at an independent clock.

Therefore, without loss of generality, the arrival time of ReqP+, and then the arrival

time of ReqRx+, can be modeled as a uniformly distributed random variable within

a period of LClkRx . Since tRAW = TLCLKRx/2 in the above clock generator, there is

50% probability that a ReqRx+ is extended to be acknowledged in the next RAW.

Moreover, because the data is sampled in the receiver at the next rising edge of

LClkRx , DataRx S will be delayed for one cycle of LClkRx .

For the transmitter equipped with a D-OUT port, its local clock LClkT x is paused

before ReqP is asserted by the output port, and LClkT x will not be released until

ReqP gets acknowledged [8]. Since ReqP will not be acknowledged by the input

port until ReqRx+ is acknowledged by the clock generator on the receiver side, there

is maximum a TLClkRx/2 latency in acknowledging ReqP as well. Consequently, the

latency in the receiver is propagated into the transmitter. If the period of LClkRx is

21 Improvements in Pausible Clocking Scheme 405

much longer than that of LClkT x , this latency will result in a multi-cycle suspension

in LClkT x . Since data is processed synchronously to LClkT x in the transmitter, the

suspension in LClkT x eventually results in a delay in data transfer.

For instance, considering a D-OUT port to P-IN port communication channel,

where the periods of LClkT x and LClkRx satisfy the following (21.3), and the

requests in the transmitter, ReqT x , are asserted every N cycles of LClkT x as shown

in (21.4):

(N − 1) · TLCLKTx =
3

2
· TLCLKRx (21.3)

TReqTx = N · TLCLKTx (21.4)

After ReqT x is asserted in the transmitter, a ReqP+ will be generated by the

output port controller. If a ReqP+ arrives in the receiver in the on-phase of RClkRx ,

it will not be acknowledged until RClkRx turns low. Once RClkRx – happens, which

corresponds to LClkRx+ occurring, ReqP will be acknowledged and then LClkT x

will be released. As a result, the next LClkT x+ and LClkRx+ are automatically

synchronized to occur at almost the same time. Then according to condition (21.3),

all the following ReqP+ and RClkT x+ will occur simultaneously, and the extension

in ReqP+ and the suspension in LClkT x will appear periodically. As an example,

Fig. 21.4 illustrates a waveform fragment in this case with N = 7.

ExtensionExtension

Suspension SuspensionLClkTx

RLClkRx

ReqTx

AckTx

ReqP

AckP

ReqRx

AckRx

LClkRx

DnData Dn+1

Fig. 21.4 Extension in ReqP and suspension in LClkTx

Every time LClkT x is suspended, its inactive phase will be stretched for a period

of (TLClkRx/2−TLClkTx). The throughput reduction RTx due to the suspension of

LClkT x is deduced in (21.5), and with the increase in the value of N , we see the

limit of RT x reaches one-third, as shown in (21.6):

406 X. Fan et al.

RT x = (
1

2
· TLCLKRx − TLCLKTx)/TReqTx =

N − 4

3 · N (21.5)

lim
N→+∞

RT x = lim
N→+∞

N − 4

3 · N = 1

3
(21.6)

21.2.3.2 Other Point-to-Point Channels

A similar analysis can be applied on the other three point-to-point communication

channels. Table 21.1 presents the impacts of acknowledge latency on handshake

signals and local clocks in four channels. Attentions need to be paid on D-OUT

port to D-IN port channel. In this case, no matter whether there is data ready

to be transferred or not, the clocks on both sides will be paused as soon as the

ports get enabled. As a result, this channel is prone to unnecessarily very long sus-

pensions in LClkRx as well as LClkT x , and a significant throughput drop can be

introduced.

Table 21.1 Impacts of acknowledge latency

Channel type Extended signals Suspended clock Maximum suspension

D-OUT to P-IN ReqP+ LClkTx TLClkRx/2

P-OUT to D-IN AckP+ LClkRx TLClkTx/2

P-OUT to P-IN ReqP+, AckP+ LClkRx TLClkTx/2

D-OUT to D-IN NO NO 0

21.2.3.3 Further Discussion on Throughput Reduction

In the above we present a particular example to analyze the maximum throughput

reduction introduced by the local clock acknowledge latency, where, for each data

transfer, according to (21.3) and (21.4), the port request is asserted at the rising edge

of RCLK and the local clock is suspended with the maximum acknowledge latency.

In practical GALS design, as long as the port requests could arrive outside the RAW

of the local clock generators, the systems are always suffered, more or less, from

the throughput reduction due to the acknowledge latency.

Another issue is we take only the single channel communication into consider-

ation in the previous section to simplify the analysis. When applying to multiple

channels concurrent communication systems, however, such latency may result in

even more substantial throughput reduction. First, the acknowledge latency from

clock generators could occur more frequently when port requests are asserted inde-

pendently from different channels. Second, at the same time there could be a number

of port requests extended and a number of local clocks suspended. Third, each local

clock could be suspended for up to a half-cycle of the longest clock signal running

in the GALS system, due to the propagation of the acknowledge latency across

communication channels.

21 Improvements in Pausible Clocking Scheme 407

21.2.4 Synchronization Failures

21.2.4.1 �LClkRx < TLClkRx

A benefit from GALS design is to simplify the globally distributed clock tree by a set

of local clock trees. For the pausible clocking scheme, however, a crucial issue is to

avoid synchronization failures caused by the local clock tree delays on receiver side

[7, 12]. As the clock tree insertion delays are irrelevant to the handshake signals’

propagation delays, LClkRxDly+, can arrive at the sampling flip–flop F F simulta-

neously with loading data into the input port latch L . Then metastability occurs in

F F . For the receiver clock tree delay satisfying �LClkRx < TLClkRx, [12, 17] reveals

that there are two timing regions in each cycle of LClkRx , as depicted in Fig. 21.5,

where negligible synchronization failure probability can be expected.

LClkRx

RClkRx

ReqP

AckP

ReqRx

AckRx

DataRx

dNOR

dPort

d0
MUTEX

dNOR

dPort

+∆
dLatch

Cycle 1 Cycle 2

d0
MUTEX dMUTEX

S1 S2

Fig. 21.5 Safe regions for �LClkRx < TLClkRx

In Fig. 21.5, Cycle 1 illustrates the situation that the data is safely sampled by

F F before L turns transparent. It contributes the safe timing region S1 of �LClkRx

as shown in (21.7), where d0
MUTEX and dPort denote the MUTEX delay time from

ReqRx+ to AckRx+ without metastability and the asynchronous port delay from

AckRx+ to AckP+

0 ≤ �LCLKRx < dNOR + d0
MUTEX + dPort − thold (21.7)

On the contrary, Cycle 2 represents another situation that data is safely sampled

after it is latched in L . We draw the pessimistic case that ReqRx+ happens concur-

rently with RClk+ and metastability occurs in the MUTEX. This leads to the safe

timing region S2 shown in (21.8), where �dMUTEX denotes the additional delay of

the MUTEX to resolve metastability, and dLatch is the delays of L from asserting the

gate enable AckP+ to data being stable

TLCLKRx/2+(dNOR+d0
MUTEX+�dMUTEX+dPort+dLatch)+tsetup ≤ �LCLK < TLCLKRx

(21.8)

408 X. Fan et al.

It can be seen in (21.8) that the width of safe timing region S2, WS2, is actually

dominated by the receiver clock period TLClkRx. In below we analyze WS2 in two

typical cases:

(a) If TLCLKRx/2 ≈ dNOR+d0
MUTEX+�dMUTEX+dPort+dLatch+tsetup then WS2 ≈ 0.

It means that the MUTEX needs to consume half of a clock cycle to resolve

metastability. As a result, only the safe region S1 is left for safely inserting

clock tree in the receiver, which is rather narrow in width to be the propagation

delay through a number of simple gates shown in (21.7).

(b) If TLCLKRx/2 ≫ dNOR + d0
MUTEX + �dMUTEX + dPort + dLatch + tsetup then

WS2 ≈ TLCLKRx/2. With the increase of TLClkRx, WS2 is widened, but the hazard

timing region is extended as well. With the increase in TLCLKRx, the ratio of WS2

to TLCLKRx reaches at most only 50%.

21.2.4.2 �LClkRx ≥ TLClkRx

It should be noted that the safe timing regions within each cycle of LClkRx , as

shown in the above Fig. 21.5, is automatically aligned with LClkRx+, and a stretch

in LClkRx will lead to a delay on the safe regions of the next cycle. If the clock tree

delay meets �LClkRx ≥ TLClkRx, this delay in safe regions also need to be considered

for data synchronization. Take Fig. 21.6 for instance, where �LClkRx ≈ 1.8TLClkRx.

During Cycle 1, the rising edge of the delayed clock LClkRxDly falls in the safe

region of LClkRx , and data is sampled correctly by FF. Then a stretching on LClkRx

happens, and the safe regions in Cycle 2 are delayed as well. But there is another

LClkRxDly+ scheduled in the clock tree, which arrives at F F without any delay. This

eventually leads to the sampling conflict.

To analyze the potential stretching on LClkRx , the behavior of input port con-

trollers used in the receiver has to be taken into account, as presented in below:

Clock tree delay

LClkRx

RClkRx

Reqp

Ackp

ReqRx

AckRx

DataRx

LClkRxDly
Sampling conflict

DataRxS
Metastability

Clock stretching
Cycle 1 Cycle 2

Fig. 21.6 An example of synchronization failures for �LC L K Rx > TLC L K Rx

21 Improvements in Pausible Clocking Scheme 409

(a) P-IN port

In this situation, a maximum TLClkTx/2 suspension on each cycle of LClkRx could

be introduced by the acknowledge latency as shown in Table 21.1. So the stretching

on LClkRx , and then the delay of safe regions, is up to (TLCLKTx/2−TLCLKRx). Since

TLCLKTx is independent from TLCLKRx, this delay could be long enough to mismatch

the safe regions of successive cycles of LClkRx , as illustrated in Fig. 21.7. Moreover,

if �LCLKRx > 2TLCLKRx, more than one cycle of LClkRx could be stretched within

the clock tree delay and an accumulated delay in safe regions should be considered.

(b) D-IN port

In this case, LClkRx is paused and stretched by the input port controller until ReqP−
is triggered by the output port controller. The stretching on LClkRx as well as the

delay in safe regions is unpredictable. That means no common safe region exists for

the multi-cycle clock delay.

Cycle 1

Cycle 2

S1 S2

TLCLKRx

S1 S2

Mismatch in S1 Mismatch in S2

Stretching

Fig. 21.7 Mismatch on safe timing regions due to clock stretching

Now we can conclude that, for the clock tree delay exceeding one clock period,

clock stretching must be taken into account, and no matter what type of input port

is utilized, the traditional scheme could hardly provide safe regions for clock tree

insertion. In fact, in most of the reported pausible clocking systems, the local clock

trees were deliberately distributed with �LClkRx < TLClkRx [14, 15, 18, 19].

21.3 Optimization of Pausible Clocking Scheme

21.3.1 Optimized Local Clock Generator

Figure 21.8 presents a simple solution to widen the RAW of local clock generators.

Two delay lines, the programmable delay line D0 followed by the fixed one D1,

which lengths are set in (21.9) and (21.10), are used to construct the ring oscil-

lator. The request clock RClk is generated by an AND operation between LClkB,

being the inverted signal of LClk, and L0, the delayed version of LClkB after the

programmable delay line D0.

dD0 = TLClK/2− (dD1 + dC-ELE + dNOR) (21.9)

dD1 = dAND0 + dAND1 + (d0
MUTEX +�dMUTEX) (21.10)

The on-phase duration of RClk is the propagation delay through the path

MUTEX− > AND0− > C − ELEMENT− > INV− > AND1. If such a

410 X. Fan et al.

Mutex

0

AND 0

Mutex

1

Ack0Req0

Ack1Req1

LClkGnt

C-ELE

AND 1

Fixed

Delay Line

D1

RClk
LClkB

L0

L1
LClk

Programmable

Delay Line

D0

RClkGnt1

RClkGnt0

Fig. 21.8 An optimized local clock generator (with two ports)

delay is shorter than TLClk, the RAW in this clock generator will be wider than

that in Fig. 21.2. It is well known that there is no upper bound on the resolution

time of the MUTEX elements [20]. A practical solution is to estimate the reso-

lution time based on the mean time between failures (MTBF). From [1, 17], 40

FO4 inverter delays are sufficient for metastability resolution, i.e., for a MTBF of

10,000 years. Take the IHP 0.13 µm CMOS process, for instance, where dFO4 is

30 ps, and the resolution time of MUTEX in that technology can be estimated as

dMUTEX = d0
MUTEX + �dMUTEX ≈ 40dFO4 ≈ 1.2 ns. Therefore, the length of D1

can be fixed at 50dFO4, including the delays of gates AND0 and AND1 according

to (21.10). Based on the length of D1, the active phase of RClk, the duration of

the RAW, as well as the acknowledge latency in the optimized clock generator are

deduced in (21.11). It reveals that the duration of RAW is determined by the period

of LClk. If TLCLK > 100dFO4, normally which represents the shortest clock cycle

for standard cells based SoCs [17], the optimized clock generator provides a wider

RAW than the traditional one:

tRCLK=1 ≈ dD1 + dC−ELE + dNOR ≈ dD1

tRAW = tRCLK=0 = TLCLK − tRCLK=1 ≈ TLCLK − dD1

max(LatencyAck) = tRCLK=1 ≈ dD1

. (21.11)

21.3.2 Optimized Input Port

21.3.2.1 Double Latching Mechanism

To widen the safe regions for the clock tree delay meeting �LCLKRx < TLCLKRx,

a double latching mechanism is proposed in Fig. 21.9. Since data latches L1 and

L2 are enabled by the acknowledge signals of the MUTEX, there is only one latch

21 Improvements in Pausible Clocking Scheme 411

FF

CLK

D Q

DataRxS

MUTEX

C-ELE

AND 0

ReqRx

LClkGrant

D1 LClkRx

RCLK

Fixed

Delay Line

L1

Data*
RxDataTx

L2

DataRx

G

D Q

G

D Q

AckRx RClkGrant LClkRxDly

Double Latching Mechanism

Fig. 21.9 Double latching mechanism

transparent at any time. Therefore, data is transferred by two mutually exclusive

coupling latches in this scheme, instead of the single latch L in Fig. 21.1.

During the off-phase of RClk, RClkGnt remains low and DataRx is locked in

L2 stably. Any LClkRxDly+ arriving at F F in the inactive phase of RClk samples

DataRx safely. If RClk turns high, RClkGnt+ is triggered to load Data∗Rx into L2.

Once ReqRx+ occurs simultaneously with RClk+, RClkGnt will be asserted by the

MUTEX in a random resolution time. Therefore, the safe timing region for clock

tree distribution in this double latching mechanism is the off-phase period of RClk,

which equals to its RAW duration as shown in (21.11).

Analyze the RAW duration in the following two typical cases:

(a) If TLCLKRx ≈ 2dD1, then WS ≈ dD1 ≈ TLCLKRx/2. It occurs when dD0 is

programmed to be 0 and only dD1 is valid. The optimized clock generator is

then working as the traditional clock generator, while providing a half-cycle

wide safe region.

(b) If TLCLKRx ≫ dD1, then WS ≈ TLCLKRx. With the increase of TLCLKRx, the safe

region is widened, but the hazard region is fixed to be dD1. The percentage of

WS in TLCLKRx will reach almost 100%, covering the entire clock period.

Comparing to the traditional structure analyzed in Section 21.2.4.1, this scheme

provides a safe timing region with almost doubled width for clock tree insertion at

any clock period, as demonstrated in Fig. 21.10.

21.3.2.2 Optimized Input Port Controller

An optimized signal transition graph of P-IN port controller, along with its logic

synthesized with Petrify, is presented in Fig. 21.11 [21]. Once LClkRx has been

paused, which is indicated by AckRx+ from the clock generator, the input port

controller will assert both Ackp and T aRx , and then trigger ReqRx− to de-assert

AckRx , which signifies the release of LClkRx . The transitions are highlighted in

Fig. 21.11a, and their delay time determines the on-phase period of AckRx as well

as the maximum stretching on LClkRx. Fig. 21.11b shows the longest delay path

412 X. Fan et al.

TLCLK0

WS

dD1

dD1

WS1

Double latching: WS≈ TLCLK

Single latching: WS1+S2≈ TLCLK/2

T0>>dD1

T0
/2

T0

Fig. 21.10 Comparison of WS in two kinds of latching mechanisms

from AckRx+ to ReqRx−, which consists of only 4 complex gates. So the stretching

on LClkRx introduced by the optimized controller is small and predictable, as shown

below:

0 ≤ StretchingLClkRx ≤ tAckRx=1 = dAckRx+→ReqRx− + d0
MUTEX (21.12)

We use nCT to denote the maximum number of rising edges in the clock tree at

one time. A common safe region among nCT successive clock cycles is needed to

insert clock tree. The location of the common safe region provided by the input port

is shown in (21.13), and the width of safe regions for different nCT is deduced in

(21.14). A scenario for nCT = 3 is depicted in Fig. 21.12 for example.

(nCT − 1) · (TLCLKRx + tAckRx=1)+tsetup <�LCLKRx < nCT · TLCLKRx − dD1 − thold

(21.13)

WS(nCT) ≈ (TLCLKRx − dD1)− (nCT − 1) · tAckRx=1 (21.14)

21.4 Experimental Results

21.4.1 Input Wrapper Simulation

An asynchronous input wrapper consisting of the optimized clock generator and

input port was designed at transistor level using the IHP 0.13 µm CMOS process.

The delay slice as shown in [16], which delay is measured to be 0.13 ns in the

experiment, is used to generate the delay lines. According to the analysis in Sec-

tion 21.3.1, the delay of D1 is fixed to be 1.56 ns (12 delay slices), and the delay

of D0 is programmed to be 0.52 ns (4 delay slices). Hence, the period of LClkRx

is 4.16 ns (240 MHz). In the input port controller, the on-phase duration of AckRx ,

tAckRx=1, which indicates the maximum clock stretching on LClkRx , is measured to

be about 0.67 ns. Based on the above timing parameters, we derive the safe region

widths from (21.14) for different clock tree depths nCT as shown in Table 21.2. We

21 Improvements in Pausible Clocking Scheme 413

ReqRx +

PenRx + Reqp +

AckRx +

TaRx + Ackp +

Reqp –ReqRx –

AckRx –

Ackp – PenRx –Reqp +

ReqRx +

AckRx +

TaRx –Ackp +

Reqp – ReqRx –

AckRx –

Ackp –

AckRx

Reqp

PenRx

AckRx

Reqp

PenRx

Ackp

TaRx

ReqRx

AckRx

(a)

(b)

Fig. 21.11 An optimized P-IN port controller: (a) signal transition graph and (b) synthesized logic

tAck=1
tAck=1

Cycle 1

Cycle 2

Safe region

TLClkRx

dD1
Common safe region

Safe region
Safe regionCycle 3

Timing margin

Fig. 21.12 An example of common safe region with nCT = 3

414 X. Fan et al.

Table 21.2 nCT and WS (TLClkRx = 4.16 ns)

nCT 1 2 3 4 5

WS (ns) 2.64 1.97 1.30 0.63 NA

see that, for nCT ≤ 4, which indicates a rather large range of the clock tree delay

satisfying �LClkRx < 4TLClkRx, there exists a safe timing region in the wrapper for

clock tree distribution without synchronization failures.

As an example, the simulation waveforms of the input wrapper using Cadence

Virtuoso Spectre in the case of nCT = 2, i.e., TLCLKRx ≤ �LClkRx < 2TLCLKRx, is

presented in Fig. 21.13. The port request ReqP is asserted every 6.6 ns (150 MHz)

in association with a 16-bit input data. First, the exact location of the safe timing

region, which is covered by the green area in Fig. 21.13, is calculated using (21.13)

in below:

4.95 ns ≈ TLCLKRx + tAckRx=1 + tsetup = T0 < �LCLKRx < T1

= 2TLCLKRx − dD1 − thold ≈ 6.65 ns

LClkRx

RClkRx

RClkGrant

PenRx

TaRx

ReqP

AckP

ReqRx

AckRx

LClkRxDelay

10ps 20ps 30ps

–100mV
1.3V

–100mV
1.3V

–100mV
1.3V

–100mV
1.3V

–100mV
1.3V

–100mV
1.3V

–100mV
1.3V

–100mV
1.3V

–100mV
1.3V

–100mV
1.3V

0ps

D0

D0

D1

D1

D1

D1

D2

D2

tAckRx=1

D0

D0

T1T0

clock stretching

D2

D2min(tRClkGrant=1)

clock stretching=0.2ns

timing margin=0.4ns∆LCl kRx

TLClkRx

Fig. 21.13 Simulation waveforms with nCT = 2

Second, a �LCLKRx ≈ 5.5 ns ≈ 1.32 · TLCLKRx delay is inserted on LClkRx from

the output signal of local clock generator to the sampling flip-flop FF, which rep-

resents the multi-cycle clock tree delay in the receiver falling inside the above safe

region.

21 Improvements in Pausible Clocking Scheme 415

In Fig. 21.13 the handshaking signal waveforms when transferring three data

items are illustrated. Each input data is first loaded in L1 when AckRx=1, and then

it is loaded in L2 when RClkGnt = 1, and finally it is sampled by FF at the next

LClkRxDly+. Even if LClkRx is stretched accidentally and RClkGnt+ is delayed for

tAckRx=1, as shown in the transfer of data D1 in Fig. 21.13, there is a sufficient

timing margin from loading data in L2 at RClkGnt+ to sampling data by FF at the

next LClkRxDly+. Therefore, safe data synchronization is achieved, and no additional

latency in synchronization is required in the input wrapper.

21.4.2 Point-to-Point Communication

A point-to-point GALS system described in Section 21.2.3.1 is implemented at gate

level to demonstrate the throughput increase from the optimized scheme. On the

receiver side, the delay of the ring oscillator is fixed to be 12.48 ns, thus TLClkRx

is 24.96 ns, while on the transmitter side, the delay line is configured to generate a

serial of clock periods TLClkTx. At each value of TLClkTx, the traditional scheme in

Fig. 21.1 was first used to transfer 32 data items and then the proposed clock gen-

erator and input port were applied in the scheme running simulation for exactly the

same duration. Table 21.3 presents the amount of data transfers accomplished using

the optimized scheme and the percentage of improvement in data rate compared to

the traditional scheme. It exhibits that the optimized scheme leads to much higher

throughput and the increase becomes pronounced for the large value of N . As an

example, Fig. 21.14 presents a waveform fragment for N = 7.

Table 21.3 Comparison in system throughput (TLClkRx = 25 ns)

TLClkTx (ns) 9.36 6.25 5.72 4.16

N from Equation (21.3) 5 7 8 10

Throughput in Fig. 21.2 32 32 32 32

Throughput in Fig. 21.8 34 36 37 38

Improvement percentage 6.3% 12.5% 15.6% 18.8%

Improvement from Equation (21.5) 1/15 1/7 1/6 1/5

21.5 Conclusions

Pausible clocking-based GALS design has been widely applied in SoCs and NoCs

design. In this chapter, we analyze the potential throughput reduction caused by the

acknowledge latency of local clock generators and demonstrate the synchronization

failures introduced by the uncertainty on clock stretching for multi-cycle clock tree

insertion delays. Then the optimized pausible clocking scheme is proposed, where

the local clock generator is first improved to minimize the acknowledge latency, and

a novel input port is then proposed to maximize the safe region for clock tree delay.

This work contributes to high throuhput and high reliability GALS systems design.

416 X. Fan et al.

ClkTx

Reqp

EnTx

TaTx

ReqTx

AckTx

DataTx

ClkRx

Ackp

EnRx

TaRx

ReqRx

AckRx

Data
*
Rx

Suspension in LClkTx Extension in ReqTx

(a)

(b)

30ns 150ns 270ns 390ns

ClkTx

Reqp

EnTx

TaTx

ReqTx

AckTx

DataTx

ClkRx

Ackp

EnRx

TaRx

ReqRx

AckRx

DataRx

30ns 150ns 270ns 390ns

DataRx

Fig. 21.14 Simulation waveforms (15–420 ns) (a) in traditional scheme and (b) in optimized

scheme

Acknowledgments This work has been supported by the European Project GALAXY under grant

reference number FP7-ICT-214364 (www.galaxy-project.org).

References

1. Ginosar, R.: Fourteen ways to fool your synchronizer. In: Proceedings of the International

Symposium on Advanced Research in Asynchronous Circuits and Systems (ASYNC), pp.

89–96. Vancouver, BC, Canada (2003)

2. Greenstreet, Mark R.: Implementing a STARI chip. In: Proceedings of the International Con-

ference on Computer Design (ICCD), pp. 38–43. Austin, TX, USA (1995)

21 Improvements in Pausible Clocking Scheme 417

3. Sutherland, I., Fairbanks, S. :GasP: a minimal FIFO control. In: Proceedings of the Interna-

tional Symposium on Advanced Research in Asynchronous Circuits and Systems (ASYNC)

pp. 46–53, Salt Lake City, UT, USA (2001)

4. Chapiro, D.M.: Globally asynchronous locally synchronous systems. PhD thesis, Standford

University, Stanford, CA (1984)

5. Yun, K.Y., Donohue, R.: Pausible clocking: A first step toward heterogeneous system. In: Pro-

ceedings of the International Conference on Computer Design (ICCD) pp. 118–123, Austin,

TX, USA (1996)

6. Bormann, D.B., Cheung, P.: Asynchronous wrapper for heterogeneous systems. In Proceed-

ings International Conference Computer Design (ICCD) pp. 307–314, Austin, TX, USA

(1997)

7. Sjogren, A.E., Myers, C.J.: Interfacing synchronous and asynchronous modules within a

high-speed pipeline. In Proceedings International Symposium Advanced Research in VLSI

pp. 47–61, Ann Arbor, MI, USA (1997)

8. Muttersbach, J., Villiger, T., Fichtner, W.: Practical design of globally-asynchronous locally-

synchronous systems. In: Proceedings of the International Symposium on Advanced Research

in Asynchronous Circuits and Systems (ASYNC) pp. 52–59, Eilat, Israel (2000)

9. Moore, S., Taylor, G., Mullins, R., Robinson, P.: Point to point GALS interconnect. In Pro-

ceedings of the International Symposium on Advanced Research in Asynchronous Circuits

and Systems (ASYNC) pp. 69–75, Manchester, UK (2002)

10. Kessels, J., Peeters, A., Wielage, P., Kim, S.-J.: Clock synchronization through handshaking.

In: Proceedings of the International Symposium on Advanced Research in Asynchronous Cir-

cuits and Systems (ASYNC) pp. 59–68, Manchester, UK (2002)

11. Mekie, J., Chakraborty, S., Sharma, D.K.: Evaluation of pausible clocking for interfacing high

speed IP cores in GALS framework. In: Proceedings of the International Conference on VLSI

Design pp. 559–564, Mumbai, India (2004)

12. Dobkin, R., Ginosar, R., Sotirou, C.P.: Data synchronization issues in GALS SoCs. In: Pro-

ceedings of the International Symposium on Advanced Research in Asynchronous Circuits

and Systems (ASYNC) pp. 170–179, Crete, Greece (2004)

13. Beigne, E., Clermidy, F., Miermont, S., Vivet, P.: Dynamic voltage and frequency scaling

architecture for units integration within a GALS NoC. In: Proceedings of the International

Symposium Networks-on-Chip (NoC) pp. 129–138, Newcastle upon Tyne, UK (2008)

14. Muttersbach, J.: Globally asynchronous locally synchronous architecture for VLSI systems.

PhD thesis, ETH Zurich (2001)

15. Villiger, T., Kaslin, H., Gurkaynak, F. K., Oetiker, S., Fichter, W.: Self-time ring for globally-

asynchronous locally-synchronous systems. In: Proceedings of the International Symposium

on Advanced Research in Asynchronous Circuits and Systems (ASYNC) pp. 141–150, Van-

couver, B.C., Canada (2003)

16. Moore, S. W., Taylor, G. S., Cunningham, P. A., Mullins, R. D., Robinson, P.: Self-calibrating

clocks for globally asynchronous locally synchronous systems. In: Proceedings of the Inter-

national Conference on Computer Design (ICCD) pp. 73–78, Austin, TX, USA (2000)

17. Rostislav (Reuven) Dobkin, Ran Ginosar, C.P. Sotiriou: High rate data synchronization in

GALS SoCs. In: IEEE Transaction on VLSI Systems pp. 1063–1074, Volume: 14 Issue: 10

(2006)

18. Bormann, D.: GALS test chip on 130 nm process. In: Electronic Notes in Theoretical

Computer Science, pp. 29–40, Volume 146, Issue 2, 2006

19. Gurkaynak, F. K.: GALS system design – side channel attach secure cryptographic accelerator.

PhD thesis, ETH Zurich (2006)

20. Kinniment, D. J., Bystrov, A., Yakovlev, A.: Synchronization circuit performance. IEEE Jour-

nal of Solid State Circuits pp. 202–209, Volume 37, Issue 2 (2002)

21. Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: Petrify: A tool

for manipulating concurrent specifications and synthesis of asynchronous controllers. IEICE

Transaction on Information and Systems pp. 315–325, Volume: 80 (1997)

	Preface
	Contents
	Contributors
	Part I Logic Decomposition
	2 Logic Synthesis by Signal-Driven Decomposition
	Anna Bernasconi, Valentina Ciriani, Gabriella Trucco, and Tiziano Villa
	2.1 Introduction
	2.2 Decomposition Methods
	2.3 P-Circuits
	2.3.1 Synthesis Algorithms

	2.4 Multivariable Decomposition
	2.5 Experimental Results
	2.6 Conclusion
	References

	3 Sequential Logic Synthesis Using Symbolic Bi-decomposition
	Victor N. Kravets and Alan Mishchenko
	3.1 Introduction and Motivation
	3.2 Preliminary Constructs
	3.2.1 ``Less-Than-or-Equal'' Relation
	3.2.2 Parameterized Abstraction

	3.3 Bi-decomposition of Incompletely Specified Functions
	3.3.1 OR Decomposition
	3.3.2 XOR Decomposition

	3.4 Parameterized Decomposition
	3.4.1 OR Parameterization
	3.4.2 XOR Parameterization

	3.5 Implementation Details of Sequential Synthesis
	3.5.1 Extraction of Incompletely Specified Logic
	3.5.2 Exploring Decomposition Choices
	3.5.3 Synthesis Algorithm

	3.6 Experimental Evaluation
	3.7 Conclusions and Future Work
	References

	4 Boolean Factoring and Decomposition of Logic Networks
	Robert Brayton, Alan Mishchenko, and Satrajit Chatterjee
	4.1 Introduction
	4.2 Background
	4.3 General Non-disjoint Decompositions
	4.4 Rewriting K-LUT networks
	4.4.1 Global View
	4.4.2 Cut Computation
	4.4.3 Cuts with a DSD Structure
	4.4.4 Cut Weight
	4.4.5 Decomposition and Network Update
	4.4.6 Finding the Maximum Support-ReducingDecomposition
	4.4.7 Additional Details
	4.4.7.1 Using Timing Information to Filter Candidate Bound Sets
	4.4.7.2 Restricting Bound Sets for Balanced Decompositions
	4.4.7.3 Opportunistic MUX-Decomposition

	4.5 Comparison with Boolean Matching
	4.6 Experimental Results
	4.7 Conclusions and Future Work
	References

	5 Ashenhurst Decomposition Using SATand Interpolation
	Hsuan-Po Lin, Jie-Hong Roland Jiang, and Ruei-Rung Lee
	5.1 Introduction
	5.2 Previous Work
	5.3 Preliminaries
	5.3.1 Functional Decomposition
	5.3.2 Functional Dependency
	5.3.3 Propositional Satisfiability and Interpolation
	5.3.3.1 Refutation Proof and Craig Interpolation
	5.3.3.2 Circuit-to-CNF Conversion

	5.4 Main Algorithms
	5.4.1 Single-Output Ashenhurst Decomposition
	5.4.1.1 Decomposition with Known Variable Partition
	5.4.1.2 Decomposition with Unknown Variable Partition

	5.4.2 Multiple-Output Ashenhurst Decomposition
	5.4.3 Beyond Ashenhurst Decomposition

	5.5 Experimental Results
	5.6 Chapter Summary
	References

	6 Bi-decomposition Using SAT and Interpolation
	Ruei-Rung Lee, Jie-Hong Roland Jiang, and Wei-Lun Hung
	6.1 Introduction
	6.2 Previous Work
	6.3 Preliminaries
	6.3.1 Bi-Decomposition
	6.3.2 Propositional Satisfiability
	6.3.2.1 Refutation Proof and Craig Interpolation

	6.3.3 Circuit to CNF Conversion

	6.4 Our Approach
	6.4.1 OR Bi-decomposition
	6.4.1.1 Decomposition of Completely Specified Functions
	6.4.1.2 Decomposition of Incompletely Specified Functions

	6.4.2 AND Bi-decomposition
	6.4.3 XOR Bi-decomposition
	6.4.3.1 Decomposition of Completely Specified Functions

	6.4.4 Implementation Issues

	6.5 Experimental Results
	6.6 Summary
	References

	Part II Boolean Satisfiability
	7 Boundary Points and Resolution
	Eugene Goldberg and Panagiotis Manolios
	7.1 Introduction
	7.2 Basic Definitions
	7.3 Properties
	7.3.1 Basic Propositions
	7.3.2 Elimination of Boundary Points by Adding Resolvents
	7.3.3 Boundary Points and Redundant Formulas

	7.4 Resolution Proofs and Boundary Points
	7.4.1 Resolution Proof as Boundary Point Elimination
	7.4.2 SMR Metric and Proof Quality

	7.5 Equivalence Checking Formulas
	7.5.1 Building Equivalence Checking Formulas
	7.5.2 Short Proofs for Equivalence Checking Formulas

	7.6 Experimental Results
	7.7 Some Background
	7.8 Completeness of Resolution Restricted to Boundary Point Elimination
	7.8.1 Cut Boundary Points
	7.8.2 The Completeness Result
	7.8.3 Boundary Points as Complexity Measure

	7.9 Conclusions and Directions for Future Research
	References

	8 SAT Sweeping with Local Observability Don't-Cares
	Qi Zhu, Nathan B. Kitchen, Andreas Kuehlmann, and Alberto Sangiovanni-Vincentelli
	8.1 Introduction
	8.2 Previous Work
	8.3 Preliminaries
	8.3.1 And-Inverter Graphs
	8.3.2 SAT Sweeping

	8.4 SAT Sweeping with Observability Don't Cares
	8.4.1 Motivating Example
	8.4.2 Observability Don't Cares
	8.4.3 Algorithm
	8.4.4 Implementation
	8.4.5 Applications

	8.5 Results
	8.6 Conclusions
	References

	9 A Fast Approximation Algorithm for MIN-ONE SAT and Its Application on MAX-SAT Solving
	Lei Fang and Michael S. Hsiao
	9.1 Introduction
	9.2 Preliminaries
	9.3 Our Approach
	9.3.1 RelaxSAT
	9.3.2 Relaxation Heuristic
	9.3.3 Discussion on Computation Complexity

	9.4 Experimental Results
	9.5 Application Discussion: A RelaxSAT-Based MAX-SAT Solver
	9.5.1 The New MAX-SAT Solver: RMAXSAT
	9.5.2 Evaluation of MAX-SAT Solver

	9.6 Conclusions and Future Works
	References

	10 Algorithms for Maximum Satisfiability Using Unsatisfiable Cores
	Joao Marques-Sila and Jordi Planes
	10.1 Introduction
	10.2 Background
	10.2.1 The MaxSAT Problem
	10.2.2 Solving MaxSAT with PBO
	10.2.3 Relating MaxSAT with Unsatisfiable Cores

	10.3 A New MaxSAT Algorithm
	10.3.1 Overview
	10.3.2 The Algorithm
	10.3.3 A Complete Example

	10.4 Experimental Results
	10.5 Related Work
	10.6 Conclusions
	References

	Part III Boolean Matching
	11 Simulation and SAT-Based Boolean Matching for Large Boolean Networks
	Kuo-Hua Wang, Chung-Ming Chan, and Jung-Chang Liu
	11.1 Introduction
	11.2 Background
	11.2.1 Boolean Matching
	11.2.2 Boolean Satisfiability
	11.2.3 And-Inverter Graph

	11.3 Detection of Functional Property Using S&S Approach
	11.4 Definitions and Notations
	11.5 Simulation Approach for Distinguishing Inputs
	11.5.1 Type-1
	11.5.2 Type-2
	11.5.3 Type-3

	11.6 S&S-Based Boolean Matching Algorithm
	11.6.1 Our Matching Algorithm
	11.6.2 Recursive-Matching Algorithm
	11.6.3 Implementation Issues
	11.6.3.1 Control of Random Vector Generation
	11.6.3.2 Reduction of Simulation Time
	11.6.3.3 Analysis of Space Complexity and Runtime

	11.7 Experimental Results
	11.8 Chapter Summary
	References

	12 Logic Difference Optimization for Incremental Synthesis
	Smita Krishnaswamy, Haoxing Ren, Nilesh Modi, and Ruchir Puri
	12.1 Introduction and Background
	12.2 Previous Work
	12.3 DeltaSyn
	12.3.1 Phase I: Equivalence-Based Reduction
	12.3.2 Phase II: Matching-Based Reduction
	12.3.2.1 Subcircuit Enumeration
	12.3.2.2 Subcircuit Matching
	12.3.2.3 Subcircuit Covering

	12.3.3 Phase III: Functional Hashing-Based Reduction

	12.4 Empirical Validation
	12.5 Chapter Summary
	References

	13 Large-Scale Boolean Matching
	Hadi Katebi and Igor Markov
	13.1 Introduction
	13.2 Background and Previous Work
	13.2.1 Definitions and Notation
	13.2.2 And-Inverter Graphs (AIGs)
	13.2.3 Boolean Satisfiability and Equivalence Checking
	13.2.4 Previous Work

	13.3 Signature-Based Matching Techniques
	13.3.1 Computing I/O Support Variables
	13.3.2 Initial refinement of I/O clusters
	13.3.3 Refining Outputs by Minterm Count
	13.3.4 Refining I/O by Unateness
	13.3.5 Scalable I/O Refinement by Dependency Analysis
	13.3.6 Scalable I/O Refinement by Random Simulation
	13.3.6.1 Simulation Type 1
	13.3.6.2 Simulation Type 2
	13.3.6.3 Simulation Type 3

	13.4 SAT-Based Search
	13.4.1 SAT-Based Input Matching
	13.4.2 Pruning Invalid Input Matches by SATCounterexamples
	13.4.3 SAT-Based Output Matching
	13.4.4 Pruning Invalid Output Matches by SAT Counterexamples
	13.4.5 Pruning Invalid I/O Matches Using Support Signatures
	13.4.6 Pruning Invalid Input Matches Using Symmetries
	13.4.7 A Heuristic for Matching Candidates

	13.5 Empirical Validation
	13.6 Chapter Summary
	References

	Part IV Logic Optimization
	14 Algebraic Techniques to Enhance Common Sub-expression Extraction for Polynomial System Synthesis
	Sivaram Gopalakrishnan and Priyank Kalla
	14.1 Introduction
	14.1.1 Motivation
	14.1.2 Contributions
	14.1.3 Paper Organization

	14.2 Previous Work
	14.2.1 Kernel/Co-kernel Extraction

	14.3 Preliminary Concepts
	14.3.1 Polynomial Functions and Their Canonical Representations
	14.3.2 Factorization

	14.4 Optimization Methods
	14.4.1 Common Coefficient Extraction
	14.4.2 Common Cube Extraction
	14.4.3 Algebraic Division

	14.5 Integrated Approach
	14.6 Experiments
	14.7 Conclusions
	References

	15 Automated Logic Restructuring with aSPFDs
	Yu-Shen Yang, Subarna Sinha, Andreas Veneris, Robert Brayton,and Duncan Smith
	15.1 Introduction
	15.2 Background
	15.2.1 Prior Work on Logic Restructuring
	15.2.2 Sets of Pairs of Functions to Be Distinguished

	15.3 Approximating SPFDs
	15.3.1 Computing aSPFDs for Combinational Circuits
	15.3.2 Computing aSPFDs for Sequential Circuits
	15.3.3 Optimizing aSPFDs with Don't Cares
	15.3.3.1 Conflicts in Multiple Expected Traces

	15.4 Logic Transformations with aSPFDs
	15.4.1 SAT-Based Searching Algorithm
	15.4.2 Greedy Searching Algorithm

	15.5 Experimental Results
	15.5.1 Logic Restructuring of Combinational Designs
	15.5.2 Logic Restructuring of Sequential Designs

	15.6 Summary
	References

	16 Extracting Functions from Boolean Relations Using SATand Interpolation
	Jie-Hong Roland Jiang, Hsuan-Po Lin, and Wei-Lun Hung
	16.1 Introduction
	16.2 Previous Work
	16.3 Preliminaries
	16.3.1 Boolean Relation
	16.3.2 Satisfiability and Interpolation

	16.4 Our Approach
	16.4.1 Single-Output Relation
	16.4.1.1 Total Relation
	16.4.1.2 Partial Relation

	16.4.2 Multiple Output Relation
	16.4.2.1 Determinization via Expansion Reduction
	16.4.2.2 Determinization via Substitution Reduction

	16.4.3 Deterministic Relation
	16.4.4 Function Simplification
	16.4.4.1 Support Minimization
	16.4.4.2 Determinization Scheduling

	16.5 Experimental Results
	16.6 Chapter Summary
	References

	17 A Robust Window-Based Multi-node Minimization Technique Using Boolean Relations
	Jeff L. Cobb, Kanupriya Gulati, and Sunil P. Khatri
	17.1 Introduction
	17.2 Problem Definition
	17.3 Previous Work
	17.4 Preliminaries and Definitions
	17.4.1 BREL Boolean Relation Minimizer

	17.5 Approach
	17.5.1 Algorithm Details
	17.5.1.1 Selecting Node Pairs
	17.5.1.2 Building the Subnetwork
	17.5.1.3 Computing the Boolean Relation RY
	17.5.1.4 Quantification Scheduling
	17.5.1.5 Endgame

	17.6 Experimental Results
	17.6.1 Preprocessing Steps
	17.6.2 Parameter Selection
	17.6.2.1 Selecting
	17.6.2.2 Selecting k1 and k2
	17.6.2.3 Selecting thresh

	17.6.3 Comparison of the Proposed Technique with mfsw
	17.6.4 Additional Experiments
	17.6.4.1 Running relation After mfsw
	17.6.4.2 Running relation Twice
	17.6.4.3 Minimizing Single Nodes
	17.6.4.4 Effects of Early Quantification

	17.7 Chapter Summary
	References

	Part V Applications to Specialized Design Scenarios
	18 Synthesizing Combinational Logic to Generate Probabilities: Theories and Algorithms
	Weikang Qian, Marc D. Riedel, Kia Bazargan, and David J. Lilja
	18.1 Introduction and Background
	18.2 Related Work
	18.3 Sets with Two Elements that Can Generate Arbitrary Decimal Probabilities
	18.3.1 Generating Decimal Probabilities from the Input Probability Set S = {0.4, 0.5}
	18.3.2 Generating Decimal Probabilities from the Input Probability Set S = {0.5, 0.8}

	18.4 Sets with a Single Element that Can Generate Arbitrary Decimal Probabilities
	18.5 Implementation
	18.6 Empirical Validation
	18.7 Chapter Summary
	References

	19 Probabilistic Error Propagation in a Logic Circuit Usingthe Boolean Difference Calculus
	Nasir Mohyuddin, Ehsan Pakbaznia, and Massoud Pedram
	19.1 Introduction
	19.2 Error Propagation Using Boolean Difference Calculus
	19.2.1 Partial Boolean Difference
	19.2.2 Total Boolean Difference
	19.2.3 Signal and Error Probabilities

	19.3 Proposed Error Propagation Model
	19.3.1 Gate Error Model
	19.3.2 Error Propagation in 2-to-1 Mux Using BDEC
	19.3.3 Circuit Error Model

	19.4 Practical Considerations
	19.4.1 Output Error Expression
	19.4.2 Reconvergent Fanout

	19.5 Simulation Results
	19.6 Extensions to BDEC
	19.6.1 Soft Error Rate (SER) Estimation Using BDEC
	19.6.2 BDEC for Asymmetric Erroneous TransitionProbabilities
	19.6.3 BDEC Applied to Emerging Nanotechnologies

	19.7 Conclusions
	References

	20 Digital Logic Using Non-DC Signals
	Kalyana C. Bollapalli, Sunil P. Khatri, and Laszlo B. Kish
	20.1 Introduction
	20.2 Previous Work
	20.3 Our Approach
	20.3.1 Standing Wave Oscillator
	20.3.2 A Basic Gate
	20.3.2.1 Multiplier
	20.3.2.2 Low-Pass Filter
	20.3.2.3 Output Stage
	20.3.2.4 Complex Gates

	20.3.3 Interconnects

	20.4 Experimental Results
	20.4.1 Sinusoid Generator
	20.4.2 Gate Optimization
	20.4.3 Gate Operation

	20.5 Conclusions
	References

	Subject Index
	21 Improvements of Pausible Clocking Scheme for High-Throughput and High-Reliability GALS Systems Design
	Xin Fan, Milos Krstic, and Eckhard Grass
	21.1 Introduction
	21.2 Analysis of Pausible Clocking Scheme
	21.2.1 Local Clock Generators
	21.2.2 Clock Acknowledge Latency
	21.2.3 Throughput Reduction
	21.2.3.1 Demand-Output (D-OUT) Port to Poll-Input (P-IN) Port Channel
	21.2.3.2 Other Point-to-Point Channels
	21.2.3.3 Further Discussion on Throughput Reduction

	21.2.4 Synchronization Failures
	21.2.4.1 LClkRx < TLClkRx
	21.2.4.2 LClkRx TLClkRx

	21.3 Optimization of Pausible Clocking Scheme
	21.3.1 Optimized Local Clock Generator
	21.3.2 Optimized Input Port
	21.3.2.1 Double Latching Mechanism
	21.3.2.2 Optimized Input Port Controller

	21.4 Experimental Results
	21.4.1 Input Wrapper Simulation
	21.4.2 Point-to-Point Communication

	21.5 Conclusions
	References

	Cover
	Preface
	Contents
	Contributors
	Part I Logic Decomposition
	Anna Bernasconi, Valentina Ciriani, Gabriella Trucco, and Tiziano Villa
	2.1 Introduction
	2.2 Decomposition Methods
	2.3 P-Circuits
	2.3.1 Synthesis Algorithms

	2.4 Multivariable Decomposition
	2.5 Experimental Results
	2.6 Conclusion
	References

	Victor N. Kravets and Alan Mishchenko
	3.1 Introduction and Motivation
	3.2 Preliminary Constructs
	3.2.1 ``Less-Than-or-Equal'' Relation
	3.2.2 Parameterized Abstraction

	3.3 Bi-decomposition of Incompletely Specified Functions
	3.3.1 OR Decomposition
	3.3.2 XOR Decomposition

	3.4 Parameterized Decomposition
	3.4.1 OR Parameterization
	3.4.2 XOR Parameterization

	3.5 Implementation Details of Sequential Synthesis
	3.5.1 Extraction of Incompletely Specified Logic
	3.5.2 Exploring Decomposition Choices
	3.5.3 Synthesis Algorithm

	3.6 Experimental Evaluation
	3.7 Conclusions and Future Work
	References

	Robert Brayton, Alan Mishchenko, and Satrajit Chatterjee
	4.1 Introduction
	4.2 Background
	4.3 General Non-disjoint Decompositions
	4.4 Rewriting K-LUT networks
	4.4.1 Global View
	4.4.2 Cut Computation
	4.4.4 Cut Weight
	4.4.3 Cuts with a DSD Structure
	4.4.5 Decomposition and Network Update
	4.4.6 Finding the Maximum Support-ReducingDecomposition
	4.4.7 Additional Details
	4.4.7.3 Opportunistic MUX-Decomposition
	4.4.7.1 Using Timing Information to Filter Candidate Bound Sets
	4.4.7.2 Restricting Bound Sets for Balanced Decompositions

	4.5 Comparison with Boolean Matching
	4.6 Experimental Results
	4.7 Conclusions and Future Work
	References

	Hsuan-Po Lin, Jie-Hong Roland Jiang, and Ruei-Rung Lee
	5.1 Introduction
	5.3 Preliminaries
	5.2 Previous Work
	5.3.1 Functional Decomposition
	5.3.3 Propositional Satisfiability and Interpolation
	5.3.2 Functional Dependency
	5.3.3.1 Refutation Proof and Craig Interpolation

	5.4 Main Algorithms
	5.4.1 Single-Output Ashenhurst Decomposition
	5.4.1.1 Decomposition with Known Variable Partition
	5.3.3.2 Circuit-to-CNF Conversion
	5.4.1.2 Decomposition with Unknown Variable Partition

	5.4.2 Multiple-Output Ashenhurst Decomposition

	5.5 Experimental Results
	5.4.3 Beyond Ashenhurst Decomposition

	References
	5.6 Chapter Summary

	Ruei-Rung Lee, Jie-Hong Roland Jiang, and Wei-Lun Hung
	6.1 Introduction
	6.2 Previous Work
	6.3 Preliminaries
	6.3.1 Bi-Decomposition
	6.3.2 Propositional Satisfiability
	6.3.2.1 Refutation Proof and Craig Interpolation

	6.4 Our Approach
	6.4.1 OR Bi-decomposition
	6.3.3 Circuit to CNF Conversion
	6.4.1.1 Decomposition of Completely Specified Functions

	6.4.2 AND Bi-decomposition
	6.4.1.2 Decomposition of Incompletely Specified Functions

	6.4.3 XOR Bi-decomposition
	6.4.3.1 Decomposition of Completely Specified Functions

	6.5 Experimental Results
	6.4.4 Implementation Issues

	6.6 Summary
	References

	Part II Boolean Satisfiability
	Eugene Goldberg and Panagiotis Manolios
	7.1 Introduction
	7.2 Basic Definitions
	7.3 Properties
	7.3.1 Basic Propositions
	7.3.2 Elimination of Boundary Points by Adding Resolvents

	7.4 Resolution Proofs and Boundary Points
	7.3.3 Boundary Points and Redundant Formulas
	7.4.2 SMR Metric and Proof Quality
	7.4.1 Resolution Proof as Boundary Point Elimination

	7.5 Equivalence Checking Formulas
	7.5.1 Building Equivalence Checking Formulas
	7.5.2 Short Proofs for Equivalence Checking Formulas

	7.6 Experimental Results
	7.7 Some Background
	7.8 Completeness of Resolution Restricted to Boundary Point Elimination
	7.8.1 Cut Boundary Points
	7.8.2 The Completeness Result
	7.8.3 Boundary Points as Complexity Measure

	References
	7.9 Conclusions and Directions for Future Research

	Qi Zhu, Nathan B. Kitchen, Andreas Kuehlmann, and Alberto Sangiovanni-Vincentelli
	8.1 Introduction
	8.2 Previous Work
	8.3 Preliminaries
	8.3.1 And-Inverter Graphs
	8.3.2 SAT Sweeping

	8.4 SAT Sweeping with Observability Don't Cares
	8.4.1 Motivating Example
	8.4.2 Observability Don't Cares
	8.4.3 Algorithm
	8.4.4 Implementation
	8.4.5 Applications

	8.5 Results
	8.6 Conclusions
	References

	Lei Fang and Michael S. Hsiao
	9.1 Introduction
	9.2 Preliminaries
	9.3 Our Approach
	9.3.1 RelaxSAT
	9.3.2 Relaxation Heuristic

	9.4 Experimental Results
	9.3.3 Discussion on Computation Complexity

	9.5 Application Discussion: A RelaxSAT-Based MAX-SAT Solver
	9.5.1 The New MAX-SAT Solver: RMAXSAT
	9.5.2 Evaluation of MAX-SAT Solver

	9.6 Conclusions and Future Works
	References

	Joao Marques-Sila and Jordi Planes
	10.1 Introduction
	10.2 Background
	10.2.1 The MaxSAT Problem
	10.2.3 Relating MaxSAT with Unsatisfiable Cores
	10.2.2 Solving MaxSAT with PBO

	10.3 A New MaxSAT Algorithm
	10.3.2 The Algorithm
	10.3.1 Overview
	10.3.3 A Complete Example

	10.4 Experimental Results
	10.6 Conclusions
	10.5 Related Work
	References

	Part III Boolean Matching
	Kuo-Hua Wang, Chung-Ming Chan, and Jung-Chang Liu
	11.1 Introduction
	11.2 Background
	11.2.1 Boolean Matching
	11.2.2 Boolean Satisfiability
	11.2.3 And-Inverter Graph

	11.3 Detection of Functional Property Using S&S Approach
	11.4 Definitions and Notations
	11.5 Simulation Approach for Distinguishing Inputs
	11.5.1 Type-1
	11.5.2 Type-2
	11.5.3 Type-3

	11.6 S&S-Based Boolean Matching Algorithm
	11.6.1 Our Matching Algorithm
	11.6.2 Recursive-Matching Algorithm
	11.6.3 Implementation Issues
	11.6.3.1 Control of Random Vector Generation
	11.6.3.2 Reduction of Simulation Time
	11.6.3.3 Analysis of Space Complexity and Runtime

	11.7 Experimental Results
	References
	11.8 Chapter Summary

	Smita Krishnaswamy, Haoxing Ren, Nilesh Modi, and Ruchir Puri
	12.1 Introduction and Background
	12.2 Previous Work
	12.3 DeltaSyn
	12.3.1 Phase I: Equivalence-Based Reduction
	12.3.2 Phase II: Matching-Based Reduction
	12.3.2.1 Subcircuit Enumeration
	12.3.2.2 Subcircuit Matching
	12.3.2.3 Subcircuit Covering

	12.3.3 Phase III: Functional Hashing-Based Reduction

	12.4 Empirical Validation
	12.5 Chapter Summary
	References

	Hadi Katebi and Igor Markov
	13.1 Introduction
	13.2 Background and Previous Work
	13.2.1 Definitions and Notation
	13.2.2 And-Inverter Graphs (AIGs)
	13.2.4 Previous Work
	13.2.3 Boolean Satisfiability and Equivalence Checking

	13.3 Signature-Based Matching Techniques
	13.3.1 Computing I/O Support Variables
	13.3.2 Initial refinement of I/O clusters
	13.3.3 Refining Outputs by Minterm Count
	13.3.4 Refining I/O by Unateness
	13.3.5 Scalable I/O Refinement by Dependency Analysis
	13.3.6 Scalable I/O Refinement by Random Simulation
	13.3.6.1 Simulation Type 1
	13.3.6.2 Simulation Type 2

	13.4 SAT-Based Search
	13.3.6.3 Simulation Type 3
	13.4.1 SAT-Based Input Matching
	13.4.2 Pruning Invalid Input Matches by SATCounterexamples
	13.4.3 SAT-Based Output Matching
	13.4.4 Pruning Invalid Output Matches by SAT Counterexamples
	13.4.6 Pruning Invalid Input Matches Using Symmetries
	13.4.5 Pruning Invalid I/O Matches Using Support Signatures

	13.5 Empirical Validation
	13.4.7 A Heuristic for Matching Candidates

	13.6 Chapter Summary
	References

	Part IV Logic Optimization
	Sivaram Gopalakrishnan and Priyank Kalla
	14.1 Introduction
	14.1.1 Motivation
	14.1.2 Contributions
	14.1.3 Paper Organization

	14.2 Previous Work
	14.2.1 Kernel/Co-kernel Extraction

	14.3 Preliminary Concepts
	14.3.1 Polynomial Functions and Their Canonical Representations

	14.4 Optimization Methods
	14.3.2 Factorization
	14.4.1 Common Coefficient Extraction
	14.4.2 Common Cube Extraction
	14.4.3 Algebraic Division

	14.5 Integrated Approach
	14.6 Experiments
	References
	14.7 Conclusions

	Yu-Shen Yang, Subarna Sinha, Andreas Veneris, Robert Brayton,and Duncan Smith
	15.1 Introduction
	15.2 Background
	15.2.1 Prior Work on Logic Restructuring
	15.2.2 Sets of Pairs of Functions to Be Distinguished

	15.3 Approximating SPFDs
	15.3.1 Computing aSPFDs for Combinational Circuits
	15.3.2 Computing aSPFDs for Sequential Circuits
	15.3.3 Optimizing aSPFDs with Don't Cares
	15.3.3.1 Conflicts in Multiple Expected Traces

	15.4 Logic Transformations with aSPFDs
	15.4.1 SAT-Based Searching Algorithm
	15.4.2 Greedy Searching Algorithm

	15.5 Experimental Results
	15.5.1 Logic Restructuring of Combinational Designs
	15.5.2 Logic Restructuring of Sequential Designs

	References
	15.6 Summary

	Jie-Hong Roland Jiang, Hsuan-Po Lin, and Wei-Lun Hung
	16.1 Introduction
	16.2 Previous Work
	16.3 Preliminaries
	16.3.1 Boolean Relation
	16.3.2 Satisfiability and Interpolation

	16.4 Our Approach
	16.4.1 Single-Output Relation
	16.4.1.1 Total Relation
	16.4.1.2 Partial Relation

	16.4.2 Multiple Output Relation
	16.4.2.1 Determinization via Expansion Reduction
	16.4.2.2 Determinization via Substitution Reduction

	16.4.3 Deterministic Relation
	16.4.4 Function Simplification
	16.4.4.1 Support Minimization

	16.5 Experimental Results
	16.4.4.2 Determinization Scheduling

	16.6 Chapter Summary
	References

	Jeff L. Cobb, Kanupriya Gulati, and Sunil P. Khatri
	17.1 Introduction
	17.2 Problem Definition
	17.3 Previous Work
	17.4 Preliminaries and Definitions
	17.4.1 BREL Boolean Relation Minimizer

	17.5 Approach
	17.5.1 Algorithm Details
	17.5.1.1 Selecting Node Pairs
	17.5.1.2 Building the Subnetwork
	17.5.1.3 Computing the Boolean Relation RY
	17.5.1.4 Quantification Scheduling

	17.6 Experimental Results
	17.5.1.5 Endgame
	17.6.2 Parameter Selection
	17.6.1 Preprocessing Steps
	17.6.2.1 Selecting
	17.6.2.2 Selecting k1 and k2
	17.6.2.3 Selecting thresh

	17.6.3 Comparison of the Proposed Technique with mfsw
	17.6.4 Additional Experiments
	17.6.4.1 Running relation After mfsw
	17.6.4.2 Running relation Twice
	17.6.4.3 Minimizing Single Nodes
	17.6.4.4 Effects of Early Quantification

	17.7 Chapter Summary
	References

	Part V Applications to Specialized Design Scenarios
	Weikang Qian, Marc D. Riedel, Kia Bazargan, and David J. Lilja
	18.1 Introduction and Background
	18.3 Sets with Two Elements that Can Generate Arbitrary Decimal Probabilities
	18.2 Related Work
	18.3.1 Generating Decimal Probabilities from the Input Probability Set S = {0.4, 0.5}
	18.3.2 Generating Decimal Probabilities from the Input Probability Set S = {0.5, 0.8}

	18.4 Sets with a Single Element that Can Generate Arbitrary Decimal Probabilities
	18.5 Implementation
	18.6 Empirical Validation
	18.7 Chapter Summary
	References

	Nasir Mohyuddin, Ehsan Pakbaznia, and Massoud Pedram
	19.1 Introduction
	19.2 Error Propagation Using Boolean Difference Calculus
	19.2.1 Partial Boolean Difference
	19.2.2 Total Boolean Difference
	19.2.3 Signal and Error Probabilities

	19.3 Proposed Error Propagation Model
	19.3.1 Gate Error Model
	19.3.2 Error Propagation in 2-to-1 Mux Using BDEC
	19.3.3 Circuit Error Model

	19.4 Practical Considerations
	19.4.1 Output Error Expression
	19.4.2 Reconvergent Fanout

	19.5 Simulation Results
	19.6 Extensions to BDEC
	19.6.1 Soft Error Rate (SER) Estimation Using BDEC

	19.7 Conclusions
	19.6.2 BDEC for Asymmetric Erroneous TransitionProbabilities
	19.6.3 BDEC Applied to Emerging Nanotechnologies

	References

	Kalyana C. Bollapalli, Sunil P. Khatri, and Laszlo B. Kish
	20.1 Introduction
	20.2 Previous Work
	20.3 Our Approach
	20.3.1 Standing Wave Oscillator
	20.3.2 A Basic Gate
	20.3.2.1 Multiplier
	20.3.2.3 Output Stage
	20.3.2.2 Low-Pass Filter

	20.3.3 Interconnects
	20.3.2.4 Complex Gates

	20.4 Experimental Results
	20.4.1 Sinusoid Generator
	20.4.2 Gate Optimization
	20.4.3 Gate Operation

	20.5 Conclusions
	References

	Subject Index
	Applications to Specialized Design Scenarios
	Xin Fan, Milos Krstic, and Eckhard Grass
	21.1 Introduction
	21.2 Analysis of Pausible Clocking Scheme
	21.2.1 Local Clock Generators
	21.2.2 Clock Acknowledge Latency
	21.2.3 Throughput Reduction
	21.2.3.1 Demand-Output (D-OUT) Port to Poll-Input (P-IN) Port Channel
	21.2.3.3 Further Discussion on Throughput Reduction
	21.2.3.2 Other Point-to-Point Channels

	21.2.4 Synchronization Failures
	21.2.4.1 LClkRx < TLClkRx
	21.2.4.2 LClkRx TLClkRx

	21.3 Optimization of Pausible Clocking Scheme
	21.3.1 Optimized Local Clock Generator
	21.3.2 Optimized Input Port
	21.3.2.1 Double Latching Mechanism
	21.3.2.2 Optimized Input Port Controller

	21.4 Experimental Results
	21.4.1 Input Wrapper Simulation

	21.5 Conclusions
	21.4.2 Point-to-Point Communication

	References

